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1. ABSTRACT 

Cancer is one of the major diseases of our century with very high mortality rates. To 

fight cancer, several strategies such as surgery, radiation therapy, and chemotherapy 

are used either alone or in combination. Chemotherapy is frequently used for systemic 

treatment of cancer cells using several chemicals especially at late stages of the 

disease. Platinum-containing drugs such as cisplatin or oxaliplatin are among the most 

important chemotherapeutic drugs. However, due to often observed complications, 

including severe side effects or ineffectiveness through drug resistance, the need for 

better chemotherapeutics still exists. Due to their promising anti-cancer properties 

(such as tumor selectivity) ruthenium compounds have attracted much attention. 

Recently, the ruthenium compound KP1019 (indazolium trans-(tetrachlorobis(1H-

indazole)ruthenate(III))) has demonstrated promising anti-cancer activity in a pilot 

clinical trial. However, due to better pharmacological properties its sodium salt 

(KP1339) was selected for further clinical development. In this study, both ruthenium 

complexes were compared in their cytotoxicity, accumulation in the cell, intracellular 

distribution, and apoptosis induction. Although KP1339 tended to be moderately less 

cytotoxic than KP1019, almost all analyzes proved that they targets similar 

components in the cell. Accordingly, both drugs activated apoptosis via caspase 

activation. Additionally, drug uptake experiments using inductively coupled plasma 

mass spectrometry (ICP-MS) showed that KP1019 was accumulated in higher levels as 

compared to KP1339 after 1 hour drug exposure. Interestingly, these compounds 

differed in their intracellular distribution that KP1019 remained mainly in cytosol while 

KP1339 was localized in nuclei. This finding related to higher cytotoxic activity of 

KP1019 suggests that the major targets for these ruthenium drugs are cytosolic rather 

than nuclear.  
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As a next step, this study aimed to investigate the impact of KP1339 on the cellular 

iron homeostasis. To this end KP1339 was combined with several compounds, which 

are known to interact with the cellular iron regulation such as FeCl3, gallium nitrate, 

and triapine. In general, all of these combinations enhanced the anti-tumor potential 

of KP1339, especially in hepatocellular carcinomas indicating that KP1339 treatment 

does indeed interact with the cellular iron homeostasis. 

Furthermore, KP1339 was combined with the tyrosine kinase inhibitor sorafenib, 

which led to enhanced cytotoxicity and intracellular accumulation of KP1339. Notably, 

this was not based on enhanced cell death. In contrast, sorafenib co-treatment 

reduced the apoptosis level after KP1339 as indicated by a reduced number of 

apoptotic nuclei and reduced PARP cleavage. However, JC-1 staining revealed that the 

apoptosis-inducing mitochondrial membrane depolarization was enhanced by 

combination of KP1339 with sorafenib, indicating that the observed reduction of cell 

death is not based on reduced apoptosis induction but on hampered apoptosis 

execution. Finally, the effects of the KP1339/sorafenib combination on cell cycle 

distribution were analyzed. While KP1339 alone led to G2/M arrest, addition of 

sorafenib led to a shift towards G0/G1. These data suggest that the synergism between 

KP1339 and sorafenib is multi-factorial involving transport as well as signal 

transduction mechanisms. In summary, this study showed that KP1339 is a promising 

anticancer ruthenium complex targeting specific cancer cell characteristics by a unique 

mode of action. Moreover, this innovative metal compound demonstrates distinct 

synergism with novel targeted therapies especially in hepatoma cell lines. 
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Krebs ist eine der häufigsten Erkrankungen unserer Zeit mit sehr hoher Mortalität. Um 

gegen Krebs zu kämpfen, wurden viele Strategien entwickelt, welche alleine oder in 

Kombinationen miteinander verwendet werden. Chemotherapie ist eine oft eingesetzte 

systemische Behandlung der Patienten mit unterschiedlichen Chemikalien, die 

besonders im weit fortgeschrittenen Stadium der Krankheit wichtig ist. Zu den am 

häufigsten verwendeten Chemotherapeutika gehören die Platinverbindungen Cisplatin 

oder Oxaliplatin. Leider verursachen diese Chemotherapeutika oft schwere 

Nebenwirkungen und gerade die Uneffektivität durch Resistenzentwicklung stellt ein 

großes Problem in der Therapie dar. Deswegen besteht immer noch dringender Bedarf 

an neuen Medikamenten gegen Krebs. Die vielversprechende Eigenschaften (wie 

Tumor-Selektivität) von Ruthenium-Komplexen haben in den letzten Jahrzehnten 

Aufmerksamkeit erregt und zu der klinischen Entwicklung solcher Verbindungen 

geführt. Besonders KP1019 (indazolium trans-(tetrachlorobis(1H-

indazole)ruthenate(III))) hat sich in ersten klinischen Studien  als sehr vielversprechend 

herausgestellt. Auf Grund besserer pharmakologischer Eigenschaften, wurde für die 

weitere klinische Entwicklung das Natriumsalz von KP1019, KP1339 ausgewählt. In der 

hier präsentierten Arbeit wurden die Zytotoxizität, die zelluläre Aufnahme und 

Lokalisierung sowie das apoptose-auslösende Potential der beiden Ruthenium-

Komplexe miteinander verglichen. Obwohl KP1339 im Vergleich zu KP1019 weniger 

toxisch war, zeigten all die Analysen, dass beide Substanzen ähnliche Ziele in der Zelle 

haben. Außerdem wurde es in den Akkumulation-Experimenten mit ICP-MS 

festgestellt, dass KP1019 besser in die Zelle aufgenommen wird als KP1339. 

Interessanterweise unterschieden sich die Komplexe stark in ihrer intrazellulären 

Lokalisation. Während KP1019 größtenteils im Zytosol blieb, reicherte sich KP1339 im 

Kern an. Diese Ergebnisse lassen vermuten, dass sich die zentralen Angriffspunkte der 

getesteten Ruthenium-Substanzen im Zytosol befinden. Ein weiterer Schwerpunkt der 

hier präsentierten Arbeit, lag auf der Untersuchung der Interaktion von KP1339 mit 

dem intrazellulären Redox und Eisenhaushalt. Hierfür wurde KP1339 mit verschiedenen 

Verbindungen kombiniert, welche bekannt für ihre Interaktion mit zellulärer 
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Eisenregulation sind. Im allgemein führte dies immer zu einer verstärkung der KP1339 

Wirksamkeit. Diese Erkenntnisse stärken die Hypothese, dass KP1339 mit zellulärer 

Eisenhomöstase interagieren könnte. Um die Interaktion von KP1339 mit 

herkömmlicher Chemotherapie zu untersuchen, umfasste der letzte Teil der Studie die 

Kombination von KP1339 mit klassischen Chemotherapeutika sowie neuen 

zielgerichteten Medikamenten. Hier zeigte sich, dass KP1339 die Wirkung von 

Sorafenib synergistisch verstärkten kann. Genauere Untersuchungen der 

zugrundeliegenden Mechanismen ergaben, dass Zugabe von Sorafenib zu erhöhter 

Aufnahme von KP1339 führte. Bemerkenswerterweise führte die KP1339/Sorafenib-

kombination zwar zu erhöhter Apoptose-Induktion, allerdings nicht zu erhöhten Zahlen 

an sterbenden Krebszellen. Dies legt nahe, dass der Synergismus nicht auf verstärktem 

Zelltod beruht. Da KP1339 Toxizität zu Zellzyklusarrest in der G2/M Phase führt, wurde 

als nächstes der Einfluss von Sorafenib auf diesen Effekt untersucht. Hier zeigte sich, 

dass die Zugabe von Sorafenib zu einer Verschiebung der Zellzyklusdistribution in die 

G0/G1 Phase führt. Zusammengefasst lassen unsere Daten vermuten, dass der 

Synergism zwischen KP1339 und Sorafenib auf einer multi-faktoriellen Interaktion 

sowohl mit der Substanzaufnahme als auch mit der Signaltransduktion beruht. Zudem 

zeigt diese Arbeit, dass KP1339 ein vielversprechendes neues Krebsmedikament mit 

einem gezielt gegen Krebszellen gerichteten Wirkungsmechanismus ist. Außerdem 

macht die beobachtete synergistische Wirkung von KP1339 mit neuen gezielten 

Therapien diese neue Rutheniumverbindung gerade für den schwer therapierbaren 

Leberkrebs besonders wertvoll. 
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2. INTRODUCTION 

2.1. What is cancer? 

Cancer is a disease characterized by uncontrolled growth of abnormal cells and their 

spreading into diverse organs (metastasis). Although diseases of the heart and blood 

vessels are still the main cause of death in our ageing population, the incidence of 

cancer is increasing. At least one in three will develop cancer, and one in four men and 

one in five women will die from it each year [3] (Figure 1). 

Several discoveries in developmental biology led to increased understanding how 

tissues in higher organisms are functioning and which molecular mechanisms are 

involved in this very complex system. The theory on development of cells by Theodor 

Schwann et al. in 1839 was the first to suggest that cells are the basic units of life and 

arise from pre-existing cells. These theories were crucial for the understanding of 

tumor development [4]. 

The process of carcinogenesis is a multi-stage process (Figure 2) [5] requiring a series 

of changes which allow transformed cell to increase proliferation, avoid cell death and  

Figure 1: 2009 estimated US cancer deaths and cases (Source: American Cancer Society). 
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perform aggressive growth over healthy tissues [6]. It 

has now become basic knowledge that cancer is 

caused by stepwise accumulation of changes in the 

genetic information (the genome) of cells. Such 

mutations in the genome can occur in oncogenes 

leading to dominant gain-of-function or in tumor 

suppressor genes causing recessive loss of function 

[7]. Current evidence indicates that most cancers arise 

from one single cell that has undergone malignant 

transformation driven by such mutations [8]. 

One current hypothesis suggests that malignant 

growth is driven by so-called cancer stem cells. These 

cells are able to self-renewal, to proliferate 

independent from normal growth-regulating 

mechanisms as well as to invade and destroy healthy 

tissues [9]. The concept of malignant stem cells is 

based on the similarity of cancer cells to stem cells.  

Figure 3: Mutations in stem cells and/or 
progenitor cells might give rise to cancer 
stem cells. Environmental factors or 
mutations can induce changes in the cell 
program that these abnormal cells 
proliferate limitless and are able to self-
renewal like a stem cell. Thus, these 
changes can result in uncontrolled 
growth and disruption of adjacent 
tissues [8]. 

         Figure 2: Development of  

         cancer [3]. 
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Additionally, tumors often originate from malignantly transformed stem cells [10] 

(Figure 3). This suggests that similar pathways and molecular mechanisms might be 

responsible for common features of both “normal” and cancer stem cells [11]. 

 

Based on the requirements for tumor development, Weinberg et al. suggested in the 

review “The hallmarks of cancer” that there are six essential alterations in cell 

physiology causing malignant growth (Figure 4) [7]: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory (anti-growth) signals, evasion of programmed cell 

death (apoptosis), limitless replicative potential, sustained angiogenesis and tissue 

invasion. In 2009, Luo et al. have suggested that in addition to these alterations there 

are also other stress induced mechanisms involved in the tumorigenesis [12]: evading 

immune surveillance, metabolic stress, proteotoxic stress, mitotic stress, oxidative 

stress, and DNA damage stress. 

Figure 4: The hallmarks of 
cancer. In addition to six 
important alterations in the 
cell physiology of cancer 
cells suggested in the 
review of Weinberg et al. 
[2], another six alterations 
were proposed by Luo et al. 
[10]. 
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2.1.1. SELF-SUFFICIENCY IN GROWTH SIGNALS 

Normal cells require mitogenic growth factors for an active proliferation state. In most 

cases, these signals are transmitted in a paracrin-manner from the microenvironment 

in order to stimulate cell division. Cancer cells often have the ability to produce 

growth factors to stimulate themselves in an autocrine loop [7]. For example, it has 

been shown that the production of platelet-derived growth factor (PDGF) and tumor 

growth factor α (TGFα) is typical for glioblastomas and sarcomas [13]. Another way to 

stimulate tumor cell proliferation is the uncontrolled overexpression or activation of 

cell surface receptors, which transduce stimulatory signals into the cell. This is for 

example frequently observed in the epidermal growth factor receptor EGFR which is 

upregulated in stomach, brain, and breast tumors, while the HER2/neu receptor is 

overexpressed in stomach and mammary carcinomas [14-15]. Mutations, gene 

amplification and overexpression can lead to enhanced activation of these receptors 

[16]. 

2.1.2. INSENSITIVITY TO GROWTH-INHIBITORY (ANTI-GROWTH) SIGNALS 

Antiproliferative signals are essential for the maintenance of cellular quiescence and 

tissue homeostasis. Basically, there are two mechanisms [7]: (1) Cells may be forced 

out of the active proliferative cycle into the G0 state, or (2) induced to enter into 

postmitotic states, usually associated with acquisition of specific differentiation-

associated characteristics. However, cancer cells must escape from these growth-

inhibiting signals to proliferate limitless. Thus, mutations on the components 

responsible for the regulation of proliferation are frequently observed [7]. One 

example is retinoblastoma protein (pRb), which controls the expression of several 

genes essential for progression from G1 into S cell cycle [17]. Disruption of this 

pathway causes uncontrolled proliferation and insensitivity to anti-growth factors [18-

19]. 
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2.1.3. EVASION OF PROGRAMMED CELL DEATH (APOPTOSIS) 

Net growth of cancers is determined not only by higher rates of proliferation but also 

by the rate of cell death. Programmed cell death, also called apoptosis, is the main 

mechanism for removal of altered cells and thus a barrier for tumor development [20]. 

For the survival, tumor cells often acquire resistance to apoptosis. To escape from 

apoptosis, tumor cells regulate antiapoptotic survival signals or tumor supressors [7]. 

Some factors, like bcl-2 and c-myc in follicular lymphoma [21-23] , p53 [24], Ras or 

PTEN [25], have been shown to play major roles in this alteration of tumor cells. 

2.1.4. LIMITLESS REPLICATIVE POTENTIAL 

For limitless proliferation, tumor cells must also have unlimited replicative potential. 

This potential can be supported by loss of tumor suppressors like p53 or pRb. 

Moreover, telomere maintenance at a length above a critical threshold is another key 

feature required for limitless replicative potential [26-27]. Telomeres are regions of 

repetitive DNA at the end of chromosomes which protect the ends of chromosomes 

from deterioration. To inhibit the shortening of telomeres after each replication cycle, 

telomerases add DNA sequence repeats to the 3’ end of DNA strands in the telomere 

regions. Telomerase is a reverse transcriptase that carries its own RNA molecule which 

is used as template when it elongates telomeres. The upregulation of telomerase has 

been shown in most human cancers [28-29], and it is believed that this upregulation of 

telomerase is required to allow malignant cells to divide after genetic rearrangements 

enabled by telomere dysfunction [30]. 

Furthermore, tumors, especially solid tumors, show extreme genomic instability 

resulting in the accumulation of point mutations, deletions, complex chromosomal 

rearrangements, and extensive aneuploidy [31]. DNA damages can underlie 

shortening of telomeres due to replication in the absence of sufficient telomerase 

activity. This leads to the appearance of double-strand breaks at telomeric ends 
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initiating breakage-fusion-bridge cycles and results in translocations and gene 

amplification events [32]. 

2.1.5. SUSTAINED ANGIOGENESIS 

Oxygen and nutrients are crucial for cell function and survival. However, especially 

rapidly dividing tumor tissues are tend to lack blood supply as compared to normal 

tissues. Therefore they must have the ability to form new vessels for the maintenance 

of their aggressive growth. This process is called angiogenesis and allows a better 

obtainment of nutriment, oxygen and thus energy production. Neoangiogenesis is a 

prerequisite to metastasize and growth beyond a certain size [7].One example is the 

production and secretion of vascular endothelial growth factor (VEGF) (caused e.g. by 

the activation of ras oncogenes) or loss of the VHL tumor suppressor gene [33-34] 

leading to new blood vessel formation. Notably, two similar processes play a key role 

which should be distinguished from each other. Vasculogenesis is the blood vessel 

formation occurring by a de novo production of endothelial cells. By contrast, 

angiogenesis is a physiological process involving the growth of new blood vessels from 

pre-existing vessels. These two mechanisms used by cancer cells differ in this aspect 

that angiogenesis denotes the formation of new blood vessels from pre-existing ones, 

whereas vasculogenesis is the term used for spontaneous blood-vessel formation 

when there are no pre-existing ones. 

2.1.6. TISSUE INVASION 

The capability for invasion enables cancer cells to escape the primary tumor mass and 

to metastasize into distant organs [7]. These distant clones of tumor cells cause about 

90% of human cancer deaths [35]. Although the molecular mechanisms of metastasis 

are not fully understood, the typical alterations leading to enhanced invasion and 

metastases are loss of E-cadherin expression [36] as well as upregulated production of 
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extracellular proteases like MMP [37-38]. E-cadherin is a key component in cell-to-

environment interactions which is ubiquitously expressed on epithelial cells. E-

cadherin bridges can be build between adjacent cells resulting in the transmission of 

anti-growth and other signals via cytoplasmic contacts with ß-catenin to intracellular 

signaling circuits [36]. The second alteration, upregulation of extracellular proteases, is 

based on the docking of the active proteases on the cell surface leading to facilitate 

the invasion into nearby stroma, across basal membranes, blood vessel walls, and 

through normal epithelial cell layers [7]. 

2.1.7. STRESS-INDUCED MECHANISMS 

In addition to these six alterations of cancer [7], another work by Kroemer and 

colleagues has suggested that evading immune surveillance is also a key feature to 

induce tumorigenesis. The metabolic microenvironment of tumor cells may inhibit the 

function of antitumor immune effectors such as cytotoxic T lymphocytes and natural 

killer cells. In contrast, attracting inflammatory cells is a double-edged sword and 

might participate in tumor progression [39]. The microenvironment of tumor tissues is 

often characterized by enrichment of tumor-associated macrophages (TAMs) which 

facilitates angiogenesis, migration and induction of immunosuppressive effects [40]. 

Within TAMs, an essential key factor, hypoxia inducible factor-1 (HIF-1), upregulates 

glycolysis so that the cells can migrate into tumor beds [41]. 

Moreover, DNA hyper-replication [42-43] can also increase DSBs and genomic 

instability [44]. Finally, some mutations of genes involved in either DNA repair 

programs or the DNA damage response (DDR) pathways can lead to increased DNA 

damages and genomic instability [45] which cannot be eliminated because of the 

destruction of the respective genomic control mechanisms. Other mutations in tumors 

cause rates of chromosome missegregation inducing chromosome instability (CIN) 

[46]. This phenotype is driven by defects in mitotic proteins [47]. It has been also 
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shown that mutations of some oncogenes, such as Ras or p53, contribute to the CIN 

phenotype [48] based on a combination of growth advantage and limited genetic and 

genomic control. 

Aneuploidy and gene copy-number changes imbalance the levels of transcription [49-

51] and additionally produce increased amounts of toxic, unfolded protein aggregates 

[52]. Consequently, tumors exhibit proteotoxic stress evidenced by their frequent 

constitutive activation of the heat shock response [12] suggesting because of the 

aneuploidy [53-54]. 

Due to insufficient blood supply the microenvironment within the tumor is often 

characterized by low oxygen levels (hypoxia) and enhanced CO2 levels which lead to 

an acidic milieu. Thus, in addition of ATP generation through the mitochondrial 

oxidative phosphorylation, cancer cells frequently produce energy by glycolysis [55]. 

Due to utilization of this less efficient pathway, tumors are characterized by a high 

need of glucose and large amounts of the glycolysis endproduct lactic acid [56]. 

In the microenvironment of tumor tissues, oxidative stress dominates mostly in form 

of reactive oxygen species (ROS) [57]. Both oncogenic signaling [58] and the 

downregulation of mitochondrial function [59] in tumors can contribute to ROS 

generation. ROS also regulate some transcription factors, such as HIF-1, which is a 

characteristic of hypoxia [60] and promotes the glycolytic switch and neoangiogenesis 

observed in tumors.  
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2.2. Types of Cancer 

Depending on the stage of disease, tumors can be classified into two broad categories. 

Benign tumors usually resemble their tissue of origin. They grow locally without 

invasion into adjacent tissues. Generally, they are considered harmless to their hosts 

based on the possibility for complete surgical removal. However, even benign tumors 

may cause clinical problems, for example when they release high levels of hormones. 

In contrast, malignant tumors show cellular abnormalities (compare with section 

2.1.), invasion into surrounding tissues and potential for metastasis [4]. Malignant 

tumors have no well-defined fibroblast capsule and grow in a much more disorganized 

form than benign tumors [6]. Furthermore, malignant tumors can arise from diverse 

cell types throughout the body (Table 1) [3]. They can be classified in carcinoma 

(including squamous cell carcinoma and adenocarcinoma), sarcoma, leukemia, 

lymphoma, and neuroectodermal tumors.  

      Figure 5: A typical tissue showing epithelial and mesenchymal components [1]. 
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2.2.1. CARCINOMA 

The majority of human tumors originates from epithelial tissues and is called 

carcinomas (Figure 5) [3]. This form of malignancies is responsible for more than 80% 

of the cancer-related deaths in the Western world [4] and comprises two subgroups: 

squamous cell carcinoma and adenocarcinoma. Squamous cell carcinomas arise from 

epithelial cells which mainly serve to seal cavities or channels that they line and to 

protect the underlying cell populations [4]. Epithelia occur in all organs which form 

typical barriers between the host and the external environment, like skin, lips, mouth, 

esophagus, urinary bladder, prostate, lungs, vagina, and cervix. Adenocarcinomas 

originate from specialized epithelial cells which secrete substances into the ducts or 

cavities [4]. 

2.2.2. SARCOMA 

Malignant tumors can also occur in non-epithelial tissues throughout the body. For 

instance, sarcomas arise from the various connective tissues which originate from 

mesenchymal cell types. Some examples for these cells are fibroblasts, adipocytes at 

adipose tissues, bone marrow-derived osteoblasts, and myocytes in muscles [4]. 

2.2.3. LEUKEMIA 

Another group of cancer is originated from hematopoietic tissues, including cells of 

the immune system. Malignant growth of any hematopoietic cell type is called 

leukemia. They usually have only a few chromosome rearrangements [61], such as 

translocations or inversions, and these are used as markers for detecting residual 

malignant cells after treatment [62]. Leukemia cells need less mutations because of 

the non-essentiality of invasion and angiogenesis in comparison to solid tumors. 
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2.2.4. LYPMHOMA 

In contrast, lymphomas represent tumors of the lymphoid lineages (B and T 

lymphocytes) that aggregate to form solid tumor masses. Like leukemias, also 

lymphomas often possess also consistent and, in some cases, highly specific 

chromosome aberrations [63]. 

2.2.5. NEUROECTODERMAL TUMORS 

Additionally, another major group of nonepithelial tumors are neuroectodermal 

tumors, including gliomas, glioblastomas, neuroblastomas, schwannomas, and 

medulloblastoma. Neuroectodermal tumors are malignancies originated from various 

cellular components of the central and nervous systems. These are responsible for 

about 2.5% of cancer-related deaths [4]. 
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Tissue Cell type Benign tumor Malignant tumor 

Epithelium 
     Skin 

 

     Upper aero-digestive tract 
          Nose, mouth, pharynx,  
          larynx, and oesophagus 

     Alimentary tract 
          Stomach, small and large        
         bowel 

     Lungs 

 

 
     Urinary system 
         Ureters and bladder 

     Solid epithelial organs 
          Liver, pancreas, kidney,       
             prostate, etc. 

     Gonads 
          Ovary 

          Ovary 

          Testis 

Squamous epithelium 

Melanocytes 

Squamous epithelium 

Columnar epithelium 

Respiratory epithelium 

 

Urothelium (transitional 
epithelium) 

Specific epithelium 

 

Surface epithelium 

Germ cells 

Germ cells 

Squamous cell papilloma 

Melanocytic naevus 

Squamous cell papilloma 

Adenoma 

 

 

 

Transitional cell 
papilloma 

 

Adenoma 

Serous cystadenoma 
Mucinous cystadenoma 

Teratoma 

Squamous carcinoma 
Basal cell carcinoma 

Malignant melanoma 

Squamous carcinoma 

Adenocarcinoma 

Squamous carcinoma 
Adenocarcinoma 
Small cell carcinoma 
Undifferentiated carcinoma 

Transitional cell carcinoma 

 
Adenocarcinoma 

Serous cystadenocarcinoma 
Mucinous cystadenocarcinoma 

Dysgerminoma 
Yolk sac tumor 
Embryonal carcinoma 
Choriocarcinoma 

Seminoma 
Teratoma 
Yolk sac tumor 
Choriocarcinoma 

Mesenchyme 
     Fibrous tissue 
     Fat 
     Bone 
     Cartilage 
     Smooth muscle 
     Striated muscle 
     Blood vessels 
     Peripheral nerve 

Fibroblasts 
Adipocytes 
Osteocytes 
Chondrocytes 
Smooth muscle cells 
Striated muscle cells 
Endothelial cells 
Schwann cells 

Fibroma 
Lipoma 
Osteoma 
Chondrioma 
Leiomyoma 
Rhadbomyoma 
Haemangioma 
Schwannoma 
Neurofibroma 

Fibrosarcoma 
Liposarcoma 
Osteosarcoma 
Chondrosarcoma 
Leiomyosarcoma 
Rhabdomyosarcoma 
Angiosarcoma 
Malignant peripheral nerve  sheath tumor 

Haemato-lymphoid 
     Haemopoietic system 

     Immune system 

Red cells, leukocytes, and      
     platelets 

Lymphoid cells 

 

Acute myeloid leukemia 
Chronic myeloid leukemia 
Myeloproliferative disorders 

Acute lymphoblastic leukemia 
Chronic lymphocytic leukemia 
Non-Hodgkin lymphoma 
Hodgkin lymphoma 
Multiple myeloma 

Central Nervous System 
     Glial cells 

     Meninges 

     Embryonal 

Astrocytes and      
     oligodendrocytes 

Meningothelial cells 

Neurones 

 

 

Meningioma 

Glioma-Astrocytoma and  
    oligodendroglioma 

Anaplastic (malignant) meningioma 

Medulloblastoma and primitive  
    neuroectodermal tumor 

Table 1: Nomenclature of common tumor types [3]. 
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2.3. Hepatocellular Carcinoma 

Hepatocellular carcinoma (HCC) is a primary malignancy of the liver. It is currently the 

fifth most common solid tumor worldwide and the fourth leading cause of cancer 

related-mortality with 610 000 deaths each year (Source: World Health Organization) 

(Table 2) [64]. HCC represents 83% of all cancer cases (Source: American Cancer 

Society). 

 

HCC is one of the best studied liver diseases. The high mortality rate of HCC is based 

on its lack of symptoms in the early stages of the disease and its rapid tumor growth 

[65]. Although researches have been largely successful in defining the factors of its 

Region HCC Incidence 

(occurrences/100 000 

population) Males 

HCC Incidence 

(occurrences/100 000 

population) Females 

No. of HCC 

Cases 

Principal 

Associations 

Asia, Sub-

Saharan 

Africa 

30-120 9-30 >500 000 
cases per year 

HBV, 

aflatoxin 

exposure 

Japan 10-30 3-9  HCV 

Southern 

Europe, 

Argentina, 

Switzerland 

5-10 2-5  HCV 

Western 

Europe 

<5 <3  HCV 

United States <5 <3 18 000 

predicted for 

2005 

HCV, alcohol 

Table 2: The worldwide distribution of HCC and its associated etiologies. HBV… Hepatitis B virus, HCV… 
Hepatitis C virus [64].  
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pathogenesis [65], the development of more effective therapeutic tools and strategies 

is urgently needed [66]. 

The difficulties to treat HCC are based on several aspects. First, HCC cells are 

characterized by diverse toxins and thus also high therapeutical resistance because of 

enhanced cellular drug efflux of several cytotoxic agents. For example, MDR1 (P-gp) 

and MRP (multidrug resistance protein) proteins of the drug transporter family 

adenosine triphosphate-binding cassette proteins are upregulated [67-68]. Moreover, 

it has been hypothesized that certain p53 mutants may contribute to the upregulation 

of P-gp in cancer cells [69]. Although only approximately half of the clinical specimen 

studies showed a positive association between p53 mutation and P-gp overexpression 

[70], numerious other studies suggested that the MDR1 promoter is suppressed by 

wild-type p53 through a sequence-specific binding [71-74]. Another reason for 

therapeutical resistance of HCC is the ability of hepatocytes to efficiently metabolize 

most drugs by non-specific pathways by enzymes in microsomes of the smooth 

Figure 6: Causes of hepatocellular carcinoma. The main factors in HCC development are aflatoxin B1, 
which is a fungal toxin, hepatitis B and C viruses, and alcohol [77]. 
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endoplasmic reticulum. These enzymes convert lipid-soluble compounds into more 

water-soluble ones thus enabling them to be excreted in the bile or urine [75]. 

There exists only a limited array of therapeutic options for HCC. At present, surgery or 

liver transplantation are the best curative methods for HCC at early stage [64]. 

However, systemic chemotherapy is inefficient in HCC evidenced by low response 

rates and no demonstrated survival benefits [64]. 

The orally active multikinase inhibitor sorafenib (Nexavar®) allows the targeted 

therapy of HCC and advanced renal cell carcinoma [76]. It inhibits both cell surface 

tyrosine kinase receptors, including vascular endothelial growth factor (VEGFR)-1, 

VEGFR-2, VEGFR-3, platelet-derived growth factor receptor (PDGFR)-ß, c-KIT, FMS-like 

tyrosine kinase (FLT)-3, RET [76] as well as downstream intracellular serine/threonin 

kinases in the Ras/MAPK cascade, such as Raf-1 (or C-Raf), wild-type B-Raf and mutant 

B-Raf [77-78].  

There are three main mechanisms underlying HCC (Figure 6) [79]: 1) Virus infection 

(HBV, HCV), 2) alcohol consumption, and 3) aflatoxin-B1-contaminated food. 

2.3.1. VIRAL-INDUCED HEPATOCARCINOGENESIS 

80% of HCC are caused by viruses [64]. Especially, hepatitis B (HBV) and C virus (HCV) 

are associated with HCC. HBV annually infects approximately 2 billion individuals 

worldwide causing 320 000 deaths annually. HBV is a non-cytopathic, partially double-

stranded hepatotropic DNA virus classified as a member of the hepadnaviridae family. 

The HBV-dependent induction of HCC is a multistep heterogenous process, and 

several molecular pathways are involved in this process, including p53, nuclear factor-

κB (NF-κB), mitogen-activated protein kinase (MAPK), c-jun N-terminal kinase (JNK) 

and PI3 kinase/Akt [80].  This appearance is mostly accompanied by HBV X protein 

(HBX) which is the most common ORF integrated into the host genome [81]. HBX is an 

oncogenic protein with no homology to genes in the human genome [82]. The HBX 



Hepatocellular 

Carcinoma 
Introduction 

 

 

28 28 

gene is frequently integrated into the genome, and its transcripts are expressed in 

many cases of HBV-associated HCC [83-84]. Moreover, several studies have shown 

that HBX transactivates host genes resulting in deregulation of cell-cycle checkpoints 

[85-86].  

In contrast, HCV infection is less 

aggressive [79], although there are 

approximately 170 billion infected 

individuals worldwide. This infection is 

characterized by inflammatory lesion in 

the liver, often accompanied by 

intrahepatic lipid accumulation and 

progressive fibrosis [80]. In contrast to 

HBV, HCV is not able to integrate into its 

host genome [87], and therefore it is 

suggested that HCV-mediated 

hepatocarcinogenesis must involve 

several indirect mechanisms including the interplay between chronic inflammation, 

steatosis, fibrosis and oxidative stress, as well as their pathological consequences 

(Figure 7) [80]. 

2.3.2.  ALCOHOL-INDUCED HEPATOCARCINOGENESIS 

It has been shown that chronic alcohol consumption causes the production of 

proinflammatory cytokines (including TNFα, IL-1β, IL6) and initiates increased 

concentrations of endotoxins with adverse effects on hepatocyte survival [88-89]. 

Moreover, hepatocytes show increased sensitivity to the cytotoxic effects of tumor 

necrosis factor α (TNFα) under alcohol consumption [90] and oxidative stress. These 

factors promote the developments of fibrosis and cirrhosis which are key features of a 

permissive HCC microenvironment [79]. The key factor TNFα is a cytokine involved in 

Figure 7: HCV-induced hepatocarcinogenesis 

[78]. 
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systemic inflammation, has the primary role in the regulation of immune cells and can 

inhibit tumorigenesis as well as viral replication [91]. It also sets the stage for chronic 

hepatocyte destruction-regeneration, stellate cell activation, cirrhosis, and ultimately 

HCC [79]. 

2.3.3.  AFLATOXIN-B1-INDUCED HEPATOCARCINOGENESIS 

Aflatoxin B1 (AFB1) (Figure 8) is a fungal toxin 

naturally produced by many species of 

Aspergillus. AFB1 is metabolized in the liver to 

an AFB1-8,9-exo-epoxide which forms a 

promutagenic AFB1-N7-guanine DNA adduct 

that results in G to T transversion mutations 

[92]. AFB1-induced HCC is characterized by a 

specific p53 mutation [93], such as at codon 

249 [93], and mutational activation of 

oncogenes such as HRAS [94]. Interestingly, aflatoxin B1 exposure increases the risk of 

developing HCC by HBV infection by 5-10 fold, although the mechanisms for this 

synergy are so far unclear [95]. 

In general, the events leading to HCC are accompanied by very typical impact on the 

genetic alterations of the tumor cells (Table 3) [64]. Some insults can lead to the 

activation of MAPK pathway or deregulation of some key oncogenes and tumor-

suppressor genes, such as p16 (INK4a) and E-cadherin. It is widely accepted that the 

p53 deficiency participates in the development of HCC [79]. Additionally, it was 

suggested that activation of Wnt signaling plays an early role in hepatocarcinogenesis. 

ß-catenin is a downstream component of the Wnt-signaling pathway involved in 

embryogenesis and cancer. Activated Wnt-signaling induces the stabilization and 

nuclear translocation of ß-catenin leading to transactivation of target genes, including 

MYC, cyclin D1, COX2, and matrix metalloproteinase 7 (MMP7), which are responsible 

Figure 8: Chemical structure of fungal 

toxin aflatoxin B1. 
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for cancer progression [96]. Furthermore, some other oncogenes and signal 

transductions are also upregulated [97]. For example, the ErbB receptors are a family 

of tyrosine kinase receptors and have been implicated in the development of various 

cancer types. Several studies have shown that these receptors are overexpressed in 

HCCs resulting in activation of Akt pathway [90]. Other examples are the 

overexpression of MET receptor [98] and the specific hypermethylation of p16(INK4a) 

[99], E-cadherin, COX2 [100], apoptosis-associated speck-like protein (ASC) and 

deleted in liver cancer 1 (DLC1) [97]. Furthermore, HCC can be also induced by 

genomic instability. These instabilities can be caused by telomere shortening, 

chromosome segregation defects or mutations in DNA-damage-response pathways 

[79]. 
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Molecular Event Comment 

Growth factors and receptors: 

EGFR 

ErbB2 

VEGF 

Overexpressıon common in chronic hepatitis, fibrosis, cirrhosis, and 

HCC; known EGFR ligands (EGF, HGF, TGF-ß, IGF) mitogenic for 

hepatocytes and implicated in hepatocarcinogenesis; upregulated 

HCC cell lines, DN, HCC lesions 

Variable (11%-80%) expression in HCC 

HCC highly vascular tumors; VEGF overexpression in HCC cell lines, 

DN, tumors; may correlate with tumor invasion and metastases 

Intracellular signaling pathways: MAPK/MEK signaling pathway activated in HCC in vivo model 

Evidence for role of PKC in HCC is conflicting 

Cell cycle control Cyclin D1 overexpression low to moderate in HCC; cyclin E 

overexpressed in majority of HCCs and associated with large 

tumors, poor differentiation, and invasion;  may be correlated with 

p53 mutations 

Abnormalities in p16/cyclin D1/pRB pathway common in HCC 

specimens 

Of the positive cell-cycle regulators, cyclin D1, cyclin A and B1 

significantly linked to biologic character of HCC 

Oncogenes No single oncogenes preferentially required for human HCC 

development; activating mutations seen in ras, Myc, Met, c-fos 

genes; Ras overexpression in HCC animal model, less so sporadic 

HCC 

Tumor suppressor genes A variety of p53 aberrations common in HCC (30%-60%); aflatoxin-

B-related HCC commonly have consistent codon 249 changes 

Altered expression of p16, p21, p27 common 

Rb gene abnormalities seen in 25% HCC 

Apoptosis FAS-Fas-L complex principal component of apoptotic signaling in 

normal liver; strongly upregulated in chronic hepatitis, cirrhosis; Fas 

strongly downregulated in HCC 

ECM Genes for ECM and cytoskeleton upregulated early in preneoplastic 

process; integrins, MMP-14 important 

 

Table 3: Summary of the molecular and genetic mechanisms leading to develop hepatocellular 
carcinoma [64]. 
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2.4. Cancer Therapies 

Several medical therapies are available to treat cancer depending on the type, 

location and stage of tumor. The most common cancer treatment options are surgery, 

chemotherapy and radiation therapy, which are used alone or in combination. 

Additionally, there are also several experimental cancer treatments under 

development with the aim of specific tumor targeting with less damaging of healthy 

tissues. The goal of cancer therapy is to reverse the alterations of tumor cells as well 

as to target them as tumor-specific vulnerabilities, preferably through the 

combinatorial application of a relatively small number of drugs [12]. 

Additionally, some carcinomas are hormone-dependent, and based on these 

characteristics their growth can be prevented through removal or treatment with 

hormones [101-102]. Hormone therapy is frequently used for cancer types derived 

from hormonally responsive tissues, like breast, prostate, endometrium, and adrenal 

cortex [6]. Such substances influence the proliferation control of tumor tissues 

originating from hormone-sensitive tissues [101]. 

Another treatment option against malignant tumor cells is radiation therapy. Ionizing 

radiation is used in palliative as well as therapeutic settings. Nevertheless, the cellular 

and molecular changes in cells after radiation are not well understood. It has been 

shown that DNA is a very sensitive target for radiation, and DNA lesions such as 

double strand breaks (DSB) can develop chromosomal aberrations blocking cell 

division [101]. Radiotherapy is frequently combined with surgery, chemotherapy, and 

hormone therapy.  

Furthermore, cancer can be also treated by immunotherapy, a method, which aims to 

stimulate the patient’s immune system against tumor cells. For this treatment, 

therapeutic antibodies, interferons or other cytokines are used, which are normally 

found in very low concentrations in body [101]. 
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For non-hematological and non-metastatic cancers in early-stage, surgery is often 

curative. However, late stage disseminated tumors often cannot be cured this way. 

Chemotherapy is a method for systemic treatment of tumor cells using chemicals 

which mainly target rapidly dividing cells [101]. Consequently, healthy proliferating 

tissues such as bone marrow and colon are often also affected by these chemicals [6] 

leading to adverse side effects during therapy. In comparison to chemotherapy, 

targeted therapies are drugs or substances (like imatinib, erlotinib, sunitinib, 

sorafenib, gefitinib or bortezomib) that block the growth and spread of cancer by 

interfering with specific molecules involved in tumor growth and progression [60]. 

However, also in case of these targeted drugs severe side effects are observed due to 

often unexplored on-target effects against healthy tissues. 

Overall, there are diverse types of chemotherapy drugs. Following their mode of 

action or their chemical structure were classified in alkylating agents, antimetabolites, 

anti-tumor antibiotics, topoisomerase inhibitors, mitotic inhibitors and 

corticosteroids. 

2.4.1. ALKYLATING AGENTS 

The chemotherapeutic alkylating agents exhibit the cytotoxic activity by becoming 

strong electrophiles through the formation of carbonium ion intermediates or of 

transition complexes with the target molecules [102]. This involves reactions with 

guanine in DNA adding methyl or other alkyl groups (CnH2n+1) at the number 7 nitrogen 

atom of the imidazole ring. Thus, they inhibit the correct utilization by base pairing 

and cause disruption of DNA functions, such as inhibition of transcription and 

translation [103]. This type of anticancer drugs (like cisplatin, BCNU, temozolomid) 

targets cancer cells based on their higher proliferative rates and deficiency in error-

correcting mechanisms. Due to these features, cancer cells are more sensitive to DNA 

damage in comparison to healthy cells. 
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There are three mechanisms for alkylating agents (Figure 9) [102]. In the first one, an 

alkylating agent (such as cobalamin) attaches alkyl groups to DNA bases resulting in 

DNA fragmentation by repair enzymes in their attempts to replace the alkylated bases. 

Alkylated bases prevent DNA synthesis and RNA transcription from the affected DNA. 

In the second mechanism, DNA damages are caused by the formation of cross-bridges. 

In this process, two bases are linked together by an alkylating agent that has two DNA 

binding sites, such as BCNU. Bridges can be formed within a single molecule of DNA, 

or a cross-bridge may connect two different DNA molecules. This cross-linking 

prevents the separation of DNA strands for synthesis or transcription. The third 

mechanism is based on the induction of nucleotides leading to mismatches of bases. 

Following failure of repair mechanisms, such mutations may lead to permanent 

mutations. An example for such an alkylating agent is MNU. 

2.4.2. ANTIMETABOLITES 

These compounds act on tumor cells via interference with DNA and RNA synthesis by 

substituting for normal nucleic acids leading to stop of cell division and growth of 

tumors (Source: American Cancer Society). Antimetabolits damage cells during the S 

phase, and similar to alkylating agents, cancer cells are major targets of these drugs 

due to their high cell division and proliferation rates [102]. Some examples for 

antimetaboilites are 5FU, gemcitabine and Alimta® (Pemetrexed for injection). 

A B     C 

Figure 9: Mechanism of alkylating agents. (A) Fragmentation of DNA, (B) formation of cross-bridges, and 
(C) mispairing of nucleotides. 
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2.4.3. ANTI-TUMOR ANTIBIOTICS AND TOPOISOMERASE INHIBITORS 

These agents inhibit cell division by intercalation, DNA strand breaks through a free 

radical intermediate or by inhibition of the topoisomerase II. Many of the respective 

compounds are designed to interfere with the topoisomerase enzymes. The key role 

of topoisomerase enzymes is the control of changes in DNA structure by catalyzing the 

breaking and rejoining of the phosphodiester backbone of DNA strands during diverse 

processes including cell cycle. Examples of topoisomerase inhibitors are topotecan, 

irinotecan and etoposide [101]. In vitro studies have shown that such drugs can also 

induce accumulation of cells in the G2 phase of the cell cycle displaying chromosomal 

aberrations, including chromatid breaks, gaps, and fragments, as well as translocations 

[104]. Most of these substances have been isolated from natural sources and 

represent antibiotics. Examples for anti-tumor antibiotics are doxorubicin, 

daunorubucin and actinomycin D. 

2.4.4. MITOTIC INHIBITORS 

These derivatives from natural substances, such as plant alkaloids, specifically prevent 

cell division at mitosis. These drugs are cell-cycle-specific agents and work during the 

M phase [102]. However, they can also damage cells in all cell cycle phases. These 

agents disrupt microtubule polymerization, which is necessary for division, and lead to 

cell arrest during metaphase [102]. The inability to segregate chromatids correctly 

during mitosis consequently leads to cell death. Malignant cells exposed to such drugs 

undergo changes characteristic for apoptosis [105]. Examples for mitotic inhibitors are 

taxol, vinblastine and vincristine. 
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Figure 10: Chemical structures of cisplatin (left), KP1019 (middle), and the analogous salt 
KP1339 (right). 

2.5. Ruthenium Drugs 

Metallopharmaceuticals are a class of chemotherapeutics, widely used in cancer 

treatment. Metal compounds came in the focus of interest after discovery of cis-

diamminedichloroplatinum(II) (cisplatin) by Rosenberg in the 1960s (Figure 10). He 

discovered that electrolysis of a platinum electrode produces cisplatin which inhibits 

binary fission in E.coli by disrupting of cell division [106-107]. It has been shown that 

platinum compounds can interact with the plasma membrane [108] and regulatory 

proteins [109]. However, it is generally accepted that the anticancer activity of 

platinum complexes arises from their ability to damage DNA by induction of various 

crosslinking adducts [110]. Moreover, it has been suggested that the effectivity of 

platinum compounds can underlie the rates of ligand-exchange reactions that are 

comparable with those of cell-division processes [111]. Antitumor platinum(II) 

complexes like cisplatin, carboplatin or oxaliplatin, are currently used in the clinic 

against ovarian and testicular cancer and are highly effective in combination regimens 

for the treatment of bladder, small cell lung as well as head and neck cancers [112-

114]. However, these compounds exhibit several disadvantages. For example, cisplatin 

displayed limited activity against some of the most common tumors such as colon and 

breast cancers [115]. Furthermore, it has high systemic toxicity [116], induces a variety 

of adverse effects [115], and tumor cells frequently develop resistance following the 
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initial successful treatment [117]. In addition, it has to be administered intravenously 

due to its limited solubility in water and has severe side effects [113]. 

Nevertheless, induced by the success of platinum drugs, several novel active 

antitumor metallodrugs have been synthesized and developed. Ruthenium complexes 

became interesting candidates for further analysis in middle seventies because of 

several advantages [118]. For example, ruthenium compounds have shown reduced 

toxicity and non-cross-resistance in cisplatin-resistant cells [119-120] suggesting that 

ruthenium compounds have a different mode of action in comparison to platinum 

complexes [121-122]. Moreover, ruthenium compounds also bind DNA, although 

much weaker than platinum complexes. Additionally, strong affinity for plasma 

proteins with a marked preference for surface imidazole groups was discovered [115]. 

This feature is also expected to be responsible for the tumor selective drug 

accumulation, which minimizes damages in healthy tissues. Another ability of 

ruthenium compounds is mimic iron in binding to certain biological molecules like 

transferrin [123]. Due to this feature of ruthenium compounds, it was hypothesized 

that they accumulated via transferrin receptor-mediated endocytosis in tumor cells 

which express a high number of transferrin receptors in order to meet their high iron 

demand [121, 124]. Moreover, selective toxicity of ruthenium complexes is based on 

`activation by reduction’ [118]. Tumors utilize more oxygen and other nutrients. 

Moreover, angiogenesis often fails to keep pace with tumor growth resulting in 

insufficient blood supply and hypoxia. Thus, hypoxia and higher energy requirements 

induce lower pH values in tumor tissue [125]. Under these conditions typical for the 

environment in tumors, Ru(III) is reduced to Ru(II) leading to chemical activation [118]. 

During last decades, several ruthenium(III) complexes have been developed, and 

under these complexes some have attracted attention due to their antitumor 

activities. The first ruthenium drug studied was ruthenium red. This drug was found to 

inhibit in vivo tumor growth mainly by impairment of Ca++ transport across 
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mitochondrial and cell membranes [126]. It can also prevent and reduce the 

anticancer drug cytotoxicity was observed [118]. Another ruthenium-based antitumor 

drug is imidazolium-trans-imidazoledimethyl-sulfoxide-tetrachlororuthenate (NAMI-A) 

representing one of the most studied ruthenium compounds. It was selected because 

of its very good antimetastatic activity although it had only marginal activity at the 

primary tumor site [118]. NAMI-A was the first ruthenium drug which has been tested 

in clinical studies [115]. 

Among these ruthenium complexes, indazolium trans-(tetrachlorobis(1H-

indazole)ruthenate(III)) (KP1019) and the analog sodium trans-(tetrachlorobis(1H-

indazole)ruthenate(III)) (KP1339) synthesized by Keppler et al (Figure 10) belong to 

the most promising compounds for anticancer treatments [2]. It has been shown that 

KP1019 and KP1339 are effective tumor-inhibiting drugs in preclinical experiment 

using autochtonous colorectal carcinomas in rats inducing antineoplastic activity in 

vivo [2, 127], and exhibit moderate cytotoxicity in vitro [128]. For example, KP1019 

have not shown any symptoms of toxicity as evidenced by 2% body weight gain 

compared to controls as well as 0% mortality. Generally, the treatment with KP1019 

caused not only growth inhibition but also partial remission of established colorectal 

carcinomas, since the median tumor was decreased by one third in rats [2]. 

It was suggested that these ruthenium compounds should be taken up into the cells 

via interaction with transferrin [123, 129-130] and induce apoptotic via the 

mitochondrial pathway [131-132]. KP1019 has been shown to bind to serum proteins 

in cell-free experiments, such as albumin [133] as well as apotransferrin [123]. There 

are two possible mechanisms to explain the apparent tumor selective cytotoxicity of 

ruthenium compounds such as KP1019: (1) Due to the ability to mimic iron, it can bind 

to transferrin receptor and might be taken up through endocytosis into the cell in a 

transferrin-dependent manner. As tumor cells require more iron, KP1019 might 

accumulate preferentially into the tumor in comparison to healthy cells. (2) KP1019 
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might serve as prodrug activated by reduction in the environment of tumor tissues 

leading to the selective cytotoxicity [121, 124].  

Moreover, it has been detected that KP1019 induces DNA interstrand and DNA-

protein cross-links [119] which are characteristic for many ruthenium and platinum 

drugs. Interestingly, the binding of KP1019 to serum proteins hampered P-

glycoprotein (P-gp)-mediated drug efflux, although cytotoxic effects of KP1019 are not 

substantially changed by overexpression of drug resistance proteins multidrug 

resistance-related protein 1, breast cancer resistance protein, and lung resistance 

protein [134]. P-gp, encoded by the mdr1 gene, is one of the ABC transporters, which 

are responsible for the phenomenon of multidrug resistance (MDR). MDR is 

characterized by a rapidly escalating failure of chemotherapy [135]. This feature 

makes KP1019 a possible drug for treatment of multidrug-resistant tumor types [134]. 

KP1019 was tested in a pilot phase I clinical trial. The study was designed as an open-

label, dose-escalation trial with an accelerated dose titration in patients with 

advanced solid tumors without established therapeutic options. Eight patients were 

selected for the clinical trial and received KP1019 intravenously in doses ranging from 

25 to 600 mg twice weekly over three weeks in order to give a dose recommendation 

for further studies. Disease stabilization has been detected in five of six patients, and 

two patients dropped out during the study due to adverse events. It has been shown 

that KP1019 was well tolerated and caused no serious side effects although 

stabilization of disease [136]. 

Because of the low water solubility of KP1019 and feasibility problems experienced in 

clinical trial, KP1339 was selected for further clinical development. KP1339 has a 30-

fold more aqueous solubility and has shown similar anticancer activities in the 

preclinical studies like KP1019. 
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2.6. Cell Cycle and Cell Cycle Regulation 

“Where a cell arises, there must be a previous cell, just as animals can only arise from 

animals and plants from plants.” After the introduction of cell theory by Theodor 

Schwann, Matthias Jakop Schleiden and Rudolf Virchow in 1839, this cell doctrine has 

been widely accepted that cells arise from pre-existing cells, and cell division of these 

pre-existing cells is the only plausible mechanism to explain this molecular machinery. 

A cell reproduces by performing an orderly sequence of events in which it duplicates 

its contents and then divides in two daughter cells [137]. This process is called cell 

cycle. Although the details of cell cycle vary from organism to organism, certain 

characteristics are universal and highly conserved throughout evolution. 

The eukaryotic cell cycle is 

traditionally divided into four phases 

(Figure 11): G1, S (synthesis of DNA), 

G2 and M (mitosis). G1, S, and G2 

together are called interphase. In 

interphase, cell performs 

transcription of genes, synthesis of 

proteins, mass increase and 

replication of chromosomes. 

Condensation of replicated 

chromosomes is the first sign that cell 

is able to enter into the M phase [137]. M phase is also divided in five subphases: 

prophase, promethaphase, metaphase, anaphase, and telophase. In prophase, 

chromatin condenses, and chromatides stay connected at the centromere by the 

cohesion complex. In prometaphase, the nuclear membrane is disassembles, and 

microtubules invade the nuclear space. Furthermore, each chromosome can attach on 

the spindle microtubule forming two kinetochores at the centrome, one attached at 

    Figure 11: Cell cycle. 
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each chromatid. In metaphase, the metaphase plate is formed by convening the 

centromeres of chromosomes along this plate. In anaphase, proteins that connect 

sister chromatids are cleaved allowing them to separate, and the chromosomes move 

toward the respective centrosomes by shortening of kinetochore microtubules. In 

telophase, the chromosomes are on the spindle poles, new nuclear membrane is 

formed, and the division of cytoplasm is initiated [137]. 

A cell that has recently been formed by 

the processes of cell division 

(cytogenesis and mitosis) must decide 

soon thereafter whether it will once 

again initiate a new round of cell 

growth and division, or remain into the 

nongrowing state [4]. The cell cycle 

clock (Figure 12) apparatus, operating 

in the cell nucleus, functions as the 

master controller governing the 

decision of the cell to proliferate, to 

enter into reversible quiescence, or to 

enter into a postmitotic differentiation 

state [138]. The cell cycle clock is a 

network of interacting proteins to decide the cell’s fate. Therefore, cell cycle 

machinery needs mitogenic growth factors from the microenvironment and influence 

this decision strongly [4]. Cell cycle machinery is composed of two major components, 

cyclin-dependent kinases (CDKs) and cyclins. CDKs phosphorylate target proteins on 

specific serine or threonine sites underlying regulatory function [138]. Once CDKs are 

associated with their cyclin partners, cyclin-CDK complexes are able to constitute the 

engine of the cell cycle clock machinery (Figure 13). Several cyclin-CDK complexes are 

formed during the cell cycle process. It depends on the levels and availability of cyclins 

Figure 12: The central governor of growth and 

proliferation: „Cell Cycle Clock“ [2]. 
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during various phases of the cell cycle. In contrast, the levels of most CDKs vary only 

minimally [137]. However, additional levels of control may be superimposed on these 

complexes [138]. 

Arthur Pardee found that cells require growth factor stimulation only during the first 

two-thirds of their G1 phase. He has experienced that continous mitogenic stimulation 

during this time window allows cells to complete the growth cycle through mitosis in 

the absence of further exposure to mitogens. This behavior suggests the existence of a 

decision point at the end of this G1 which he has called restriction point (R point) 

[139]. R point decision is the central event in normal cellular proliferation control, and 

therefore also important for understanding of neoplastic growth deregulation. 

In comparison to normal tissues, cancer is a disease of deregulated cell proliferation 

and survival [140]. These features can be gained by derangement of R point control, 

mutations by the mechanisms of cell cycle checkpoint, or escape from cell senescence 

and apoptosis. Cancer cells can induce autocrine production of normally limiting 

external (paracrine) mitogenic signals [141] due to activation of mitogen receptor 

tyrosine kinases or G-protein signal transducers such as Ras, or mutations affecting 

one of the many intermediary signal transducing molecules that convey mitogenic 

Figure 13: Several cyclin-CDK complexes and their levels during the cell cycle [2]. 
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information to the respective intracellular targets [142]. Cancer cells may also harbor 

growth-targeting mutations in the late-G1 cell-cycle checkpoint regulated by 

phosphorylated retinoblastoma protein (pRB). These alterations include deletion of RB 

gene itself or deregulation of the CDKs that phosphorylate and functionally inactivate 

pRB [143]. pRB serves as the R point switch. In the unphosphorylated or 

hypophosphorylated state, pRB blocks the R point transition. In phosphorylated state 

it looses its growth-inhibitory powers and permits cells to enter into late G1 and 

furhermore into the remainder of the cell cycle [144]. Another key factor, Myc, is a 

strategic controller of proliferation and is frequently expressed in tumor cells in an 

uncontrolled manner [145]. 

Cell-cycle checkpoint refers to 

mechanisms by which the cell actively 

halts progression through the cell cycle to 

ensure that an earlier process, such as 

DNA replication or mitosis, is complete 

[146]. Any DNA damages, such as double 

strand breaks (DSB) caused by free 

oxygen radicals or ionizing radiation are 

recognized by several factors or pathways 

leading to inhibition of cell-cycle 

progression (Figure 14). Phosphotidyl-

inositol-3-OH kinase (PI3K)-like kinases (PIKKs), ataxia telangiectasia mutated (ATM) 

and AT- and Rad3-related (ATR) are important components of damage detection 

[147]. For example, activated ATM phosphorylates p53 leading to stabilisation of p53 

[148]. Thus, the binding of p53 to its target sites in the p21/WAF1 and GADD45 gene 

promoter leads to silencing the G1/s-promoting cyclins and thereby causing G1 arrest 

[147]. 

Figure 14: General scheme of responses to 

DNA damage and replication fork arrest [145]. 
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In S phase, DNA synthesis is also controlled by ATM/ATR signaling machinery [147]. 

For example, the inhibition of CDK2 activity downstream of this pathway blocks the 

loading of CDC45 onto chromatin which is required for the recruitment of DNA 

polymerase α into assembled pre-replication complexes. Thus, the inhibition of CDK2 

activity prevents the initiation of new origin firing [149-150]. Furthermore, in G2 

checkpoint the critical target is cyclin B/CDK1 kinase whose activation can be inhibited 

by ATM/ATR, CHK1/CHK2 or p38-kinase This mediates subcellular sequestration, 

degradation or inhibition of the CDC25 family of phosphatases responsible for the 

G2/M boundary progression [151-154]. 

Cancer cells can circumvent senescence and apoptosis can be solved by several 

mutations or deregulations. For example, activation of oncogenes through mutations 

might play a role, such as ras to elicit cell senescence [155-156] and myc to escape 

from apoptosis [157-158]. The senescence response mechanism appears closely tied 

to the actions of cdk inhibitor, like p16INK4A and p21. Loss of p53 disrupts activation of 

p21 for inducing senescence and proteins like Bax that are important for triggering 

apoptosis [138]. Moreover, the inactivation of p19ARF and p53 allows cells to escape 

from apoptosis due to some possible protection against it [154]. Therefore, p53 plays 

a key role in tumorigenesis by several mechanismes (Figure 15). Thus, it is termed the 

“guardian of the genome” in normal cells [159].  

Figure 15: Activities of p53 resulting apoptosis and growth arrest [138]. 
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2.7. Programmed Cell Death (Apoptosis, Autophagy, and Necrosis) 

Apoptosis is a physiological cell death program that plays fundamental roles during 

embryonic development and in the maintenance of tissues by controlling normal cell 

homeostasis [160-161]. The first observations about this phenomenon was described 

by Galen, although he did not directly address cell death. He reported the transitional 

state of the fetal arterial duct allowing the direct circulation of blood from the 

pulmonary artery to the aorta while bypassing the fetal lung. This disappearance could 

be explained based on the identification of cells by Schleiden and Schwann in 1839 

[162]. First, Vogt has described cell death in 1842 on amphibian metamorphosis, and it 

was officially recognized in 1871 as both a pathological and physiological process 

[163]. Furthermore, in 1972, Kerr et al. forwarded a theory of cell death defining 

necrosis and apoptosis. They have defined necrosis as a „violent“ form of cell death 

initiated by environmental stimuli and resulting in the rapid disruption of cellular 

homeostasis, and apoptosis as an alternative, programmed form of cell death [20]. 

In 1990, Clarke has classified programmed cell death (PCD) according to lysosomal 

involvement [164]. After Clarke’s model, apoptosis was called type I PCD which is 

marked by cell shrinkage, oligonucleosomal DNA fragmentation, chromatin 

condensation leading to the appearance of apoptotic bodies and involving 

heterophagocytosis [165]. By contrast, another form of PCD, described as type II PCD 

or autophagy, is characterized by the formation of autophagic vacuoles, as well as by 

the dilation of the mitochondria and the endoplasmic reticulum (ER) and the slight 

enlargement of the Golgi [162]. Furthermore, these double-membraned autophagic 

vesicles fuse with lysosomes for degradation. However, in necrosis or type III PCD no 

lysosomes were found. In this form of PCD the intracellular organelles swell, the 

plasma membrane breaks down, and the cytoplasm is disintegrated.  
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One of the best characterized PCD mechanism is the mitochondria-mediated 

apoptosis. Mitochondrion is a membrane-enclosed organelle found in most eukaryotic 

cells [166]. It is responsible for generation of chemical energy by supplying of 

adenosine triphosphate (ATP), and involved in a range of other processes, such as 

signalling, cellular differentiation, cell death, as well as the control of cell cycle and cell 

growth [167]. Moreover, mitochondria are characterized by an outer and an inner 

membrane separated by an intermembrane space. The intermembrane space plays 

key role in releasing of proteins involved in cell death induction. These ıntermembrane 

space proteins include caspase-independent death effectors as nucleases and/or 

proteases, as well as caspase activators [162]. 

Apoptosis can be induced through two separable pathways leading to caspase 

activation [168-169] (Figure 16). The extrinsic pathway is initiated by ligands of 

transmembrane death receptors, such as CD95, TNF and TRAIL receptor, to activate 

membrane-proximal (activator) caspases (caspase 8 and 10), which in turn cleave and 

activate effector caspases such as caspase 3 and 7. In contrast, the intrinsic pathway 

requires disruption of the mitochondrial membrane and the release of mitochondrial 

proteins including Smac/DIABLO, HtRA2, and cytochrome c [160]. The initiation of 

apoptosis in this pathway is dependent on the balance between proapoptotic and 

prosurvival Bcl-2 family proteins [170]. In response to apoptotic stimuli, a subgroup of 

Bcl-2 family, BH3-only proteins such as Bim, Bid and Bad, are activated. These proteins 

promote oligomerization of Bax/Bak, permeabilization of the mitochondrial outer 

membrane and release of factors from IMS. The most important factor releasing from 

intermembrane space is cytochrome c. Cytochrome c in the cytoplasm forms 

complexes with apoptosis protease-activating factor 1 (Apaf-1), dATP, and procaspase 

9 [171-174]. Apaf-1 recruits the zygomenic form of caspase 9 and forms the 

apoptosome, which leads to dimerization-induced activation of caspase 9. Caspase 9 

in turn cleaves other effector caspases [175]. A proteolytic cascade is then initiated  
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with the cleavage of procaspases 2, 6, 8, and 10 leading to dismantling of the cell [176-

177]. 

 

 

 

 

 

 

 

 

 

 

Although the exact molecular mechanisms are not clear yet, there are different 

models to explain the permeabilization of the outer membrane. It was initially thought 

that this permeability might caused by opening of a multiprotein pore (PTP) [178]. 

There are several ways to stimulate the opening of this PTP, such as disruption of Ca2+ 

homeostasis. It might results in mitochondrial swelling and rupture of the OM leading 

to nonspecific release of proteins from the IMS [179-180]. Another model has 

proposed an interaction of the proapoptotic Bcl-2 family member, Bax, with adenine 

nucleotide translocator (ANT) [181] and voltage dependent anion channel (VDAC) 

[182]. 

Figure 16: Extrinsic and intrinsic pathways. The extrinsic pathway is induced by activated death 

receptors forming the death-inducing signalling complex (DISC). This activation leads to cleavage 

cascade of several caspases. Furthermore, the intrinsic pathway is activated through executioner 

caspases and/or BH3-only protein Bid. Additionally, the intrinsic pathway triggers the release of 

cytochrome c to the cytoplasm. If cytochrome c binds to Apaf-1, it activates caspase 9 leading to 

activation of executioner caspases [173]. 
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With respect to cytochrome c release, loss of transmembrane potential is a major 

determinant for induction of cell death. The transmembrane potential is essential for 

cellular viability. Due to this potential, the ATP production through ATP synthase 

across the inner membrane is enabled. This process is responsible for the supply of 

cellular energy. Therefore, the disruption of the transmembrane potential leads to 

alterations and defects in mitochondrial respiration, energy production, and cell 

survival [162]. 

Additionally, the escape of an electron from the mitochondrial electron transport 

chain can cause the reaction with molecular oxygen leading to production of oxygen 

radicals. These radicals are normally converted into the hydrogen peroxide or other 

reactive oxygen species (ROS). High intracellular ROS levels cause significant damages, 

such as lipid peroxidation or DNA damage [183]. These processes can also introduce 

damages in the mitochondrial membrane resulting in release of cytochrome c [184]. 

Cytochrome c plays normally a key role in the generation of ATP via the electron 

transport chain. Thus, minor alterations or damages in mitochondrial respiration may 

be amplified rapidly leading to cell death [162]. 

Interestingly, cancer cells are characterized by increased respiration even under high 

levels of oxidative stress This appearance can be caused by the frequently 

hyperpolarized intermembrane of their mitochondria leading to higher degree of ROS 

generation and an increased sensitivity to inhibitors of ROS elimination [185]. 

Furthermore, some tumor cells with postmitochondrial defects are able to survive 

chemotherapy. Even in the absence of downstream caspase activation, damage to the 

mitochondrial membrane and release of cytochrome c still disrupts the electron 

transport chain and enhances ROS production [160]. However, it was shown that 

mitochondria can restore transmembrane potential and maintain ATP production 

[186]. This might be explained by two possible mechanisms. It may occur either 1) 

through relocalization of cytoplasmic cytochrome c back into the mitochondria or 2) 
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through rapidly recovery of cytochrome c [160]. Interestingly, the capacity of some 

tumor cells to tolerate mitochondrial dysfunction may be because they frequently 

express elevated levels of antioxidants [187]. Moreover, tumor cells are often growing 

in glycolytic conditions and therefore rely less on oxidative phosphorylation than 

normal cells [188]. 
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3. AIM OF THE STUDY 

Metal compounds belong to the most important chemotherapeutics for the treatment 

of human malignancies at the disseminated stage. Besides platinum-containing drugs, 

especially ruthenium compounds such as KP1019/KP1339 are very promising 

candidate in the development of new cancer therapeutics. Recently, KP1019 

containing an indazolium counter ion demonstrated exciting anti-cancer activity in a 

clinical phase I study with low side effects. However, based on the relatively low water 

solubility large infusion volumes were necessary in this clinical trial. Consequently, the 

better water soluble sodium salt of trans-[tetrachlorobis(1H-indazole)ruthenate(III)] 

(KP1339) got in the focus of interest. 

The aim of the here presented study was 

1) To investigate the anti-cancer activity and the mode of action of KP1339 and 

compare its anti-tumor potential with its precursor drug KP1019. To this end, 

several analyzes regarding cytotoxicity, drug accumulation, intracellular drug 

distribution as well as cell death induction were performed. 

2) To gain more insights into the interaction of KP1339 with the cellular iron 

homeostasis. Consequently, KP1339 was combined with compounds which are 

known for their effects on the cellular redox and iron balance. 

3) To test the efficacy of KP1339 in combination with several clinically used 

classical chemotherapeutics as well as new tyrosine kinase inhibitors. The most 

promising combination, namely KP1339 with sorafenib, was then further 

analyzed for the underlying mechanisms with respect to drug accumulation, 

cell death induction, and its effects on the cell cycle distribution. 
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4. MATERIALS AND METHODS 

4.1. Cell culture 

The cells were maintained in a humidified atmosphere of 5% CO2 at 37˚C using 

different growth media supplemented with 10% FCS (compare Table 5). The list of 

used cell lines and their most important genetic alterations are also shown in Table 5. 

4.2. Drugs 

KP1019, as previously published [189], KP1339, KP46, oxaliplatin, and cisplatin were 

synthesized at the Institute of Inorganic Chemistry, University of Vienna. All the other 

drugs and reagents were purchased from Sigma Aldrich (St. Louis, USA) and LC 

laboratories (Woburn, USA) (Table 4). Final DMSO concentrations were always below 

1%. 

 

 

 

Drugs / Reagents Specification Solvent Source 

KP1019 Ruthenium drug DMSO IIC 

KP1339 Ruthenium drug DMSO IIC 

FeCl3 - H2O Sigma Aldrich 

Gallium nitrate - H2O Sigma Aldrich 

Adriamycin 
DNA intercalating agent, 

Topo II inhibitor 
0.9 % NaCl Sigma Aldrich 

Ara-C Anti-metabolite Serum-free medium Sigma Aldrich 

Temozolomid Alkylating agent Serum-free medium Asca 

Triapine 
Ribonucleotide-reductase 

inhibitor 
DMSO IIC 

Taxol Microtubuli stabilisation DMSO Sigma Aldrich 

Vinblastine 
Tubulin binding, inhibition 

of microtubules 
0.9% NaCl Sigma Aldrich 

Sorafenib Tyrosine kinase inhibitor DMSO LC Laboratories 

Table 4: List of used drugs and reagents. IIC… Institute of Inorganic Chemistry, University of Vienna. 
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Cell line Tissue Growth medium Specification Source 

Hep3B HCC RPMI 1640 HBV, p53-, cox-2+, EGFR++, ERB2-

,ERb3-, ERB4-, all ras wt 

ATCC 

HepG2 HCC MEME + 0.2% Na-

pyruvate + 1% non 

essential amino acids 

(NEAA) 

p53+, P-gp+, triglyceride lipase active, 

3-hydroxy-3-methylglutaryl CoA 

reductase active, N-ras mut (Codon-

61), c-myc+,  K/H-ras wt, cox-2+, EGFR-, 

ERB2+, ERB3++, ERB4-, Aurora A/B+, 

increased Aurora B activity 

ATCC 

HCC1.1 HCC RPMI 1640 Fibrosis, EGFR+, ERB2-, ERB3-,ERB4-, all 

ras wt 

ICR 

HCC1.2 HCC RPMI 1640 Fibrosis, EGFR+, ERB2++, ERB3++, 

ERB4-, all ras wt 

ICR 

KB-3-1 

(HeLa) 

Cervix carcinoma RPMI 1640 p53 and Rb downregulated by HPV18 W. Shen, 

BETHESDA, 

USA 

VL-8 SCC RPMI 1640 Ras wt ICR 

A549 NSLC, 

Adenocarcinoma 

RPMI 1640 p53 wt, Ras mutated (hom) ATCC 

Calu-6 NSLC, 

Adenocarcinoma 

MEME + 0.2% Na-

pyruvate + 1% non 

essential amino acids 

(NEAA) 

Ras (mut +/-), p53 (mut -/-), EGFR wt ATCC 

VM-1 Melanome RPMI 1640 lymphnode metastasis, b-Raf mut 

(het?), N-ras wt 

ICR 

VM-48 Melanome RPMI 1640 Brain metastasis, b-Raf mut (hom), N-

ras wt 

ICR 

B1 HCC RPMI 1640   

HCC2 HCC RPMI 1640 Cirrhosis, EGFR-, ERB2-, ERB3++, 

ERB4+, all ras wt 

ICR 

HCC3 HCC RPMI 1640 Cirrhosis, EGFR+,ERB2-, ERB3+, ERB4-, 

all ras wt 

ICR 

A427 NSLC, 

Adenocarcinoma 

MEME + 0.2% Na-

pyruvate + 1% non 

essential amino acids 

(NEAA) 

Ras (mut +/-), p53 wt, EGFR wt ATCC 

SW480 Colorectal 

carcinoma 

MEME p53mut, Pgp+, myc+, mycb+, k-ras mut, 

h-ras mut, Fos+, SIS+, Src-, N-ras (nd), 

EGFR+, Her2 - 

ATCC 

HCT116 Colorectal 

carcinoma 

McCoy p53+,MMR-, k-Ras mut (codon13), 

EGFR+, Her2- 

B. Vogelstein, 

John Hopkins 

University, 

Baltimore 

VM-21 Melanome RPMI 1640 b-Raf mut (hom), N-ras wt  

Table 5: List of used cell lines and their growth medium.SCC… Squamous cervix carcinoma, HCC… 
Hepatocellular carcinoma, NSLC… Non-small lung carcinoma, ICR… Institute of Cancer Research, Vienna. 
HBV…  Hepatitis B virus 
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4.3. Cell Proliferation and Cell Vitality Assays 

4.3.1. CYTOTOXICITY ASSAYS 

Background: 

The MTT assay is a standard colorimetric assay for measuring the activity of enzymes 

that reduce 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) to 

formazan giving a purple color. In cell vitality assays, MTT is reduced by mitochondrial 

reductase causing the typical colorimetric reaction (Figure 17). This colorimetric 

reaction can be measured at a wavelength (450 and 620 nm) by a spectrophotometer, 

and the cytotoxic effects of drugs on the cell number can be examined due to the ratio 

of viable and dead cells. MTT assays are widely used to determine thr cytotoxic 

activity of drugs and drug combinations. 

In combination tests, the complementary cytotoxicity of both drugs was determined. 

Modes of interactions between drugs were classified as synergism, additivism or 

antagonism [190-191]. Drug synergism occurs when drugs can interact in ways that 

enhance or magnify one or more effects, or side effects, of those drugs. Additivism is 

another variant of interpretation of drug treatment calculated the sample sum of drug 

cytotoxicities. In comparison to these, antagonism defines the reduction of overall 

drug effectivity, if they are used in combination with each other. 

Figure 17: The reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) by 
mitochondrial reductase to formazan. 
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Figure 18: Chemical structure 
of thymidine, also called 
deoxythymidine. 

Preparation: 

Cells were plated (2-3x103 cells in 100 µl growth medium per well) in 96-well plates 

and allowed to recover for 24 hours. Drugs were added in other 100 µl growth 

medium, and cells were exposed for other 72 hours. After drug exposure, the 

proportion of viable cells was determined by MTT assay following the manufacturer’s 

procedure (EZ4U, Biomedica, Vienna, Austria). After incubation for 2-5 hours 

(depending on the metabolic capacity of the cells in the control wells) plates were 

gently shaken before extinction measurement at 450 nm. 620 nm was used as 

reference wavelength. Cytotoxicity was expressed as IC50 values calculated by 

software GraphPad Prism 5.0 from dose-response curves (drug concentrations 

inducing a 50% reduction of cell survival in comparison with the control cultured in 

parallel without drugs). 

4.3.2. DNA SYNTHESIS ANALYSIS BY 3H-THYMIDINE INCORPORATION ASSAY 

Background: 

Thymidine (Figure 18) is a pyrimidine deoxynucleoside 

which pairs with deoxyadenosine in double stranded 

DNA. In its composition, deoxythymidine is a nucleoside 

composed of deoxyribose joined to the pyrimidine base 

thymine. Tritiated thymidine (3H-Thymidine) is 

commonly used in cell proliferation assays. During S 

phase, thymidine is incorporated into the DNA of 

dividing cells, and after cell lysis the level of 

incorporation and accordingly radioactivity can be 

measured using scintillator solution via a liquid scintillation counter. This analysis is 

based on the measurement of fluorescence level of a transparent crystal (usually 

phosphor or organic liquid) which fluoresces when stuck by ionizing radiation. In 
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contrast to MTT assay, which determines cell viability, the level of 3H-thymidine 

incorporation is proportional to the DNA-synthesis rate. 

Preparation: 

Cells were plated (5x104 cells in 100 µl growth medium per well) in 96-well plates. 

After recovery for 24 hours, drugs were added. To determine the effects of our test 

drugs on DNA-synthesis rate, test solutions were replaced with 100 µl of a 2 nM 3H-

thymidine solution (GE Healthcare). Cells were incubated for 1 hour at 37°C. Then, 

cells were washed three times with 100 µl PBS. After washing, the cells were lysed in 

100 µl lysis buffer for 3H-thymidine incorporation. Subsequently, cell lysates were 

transferred into scintillator tubes. The 96-wells were washed again with 100 µl PBS, 

and this PBS was also transferred to the cell lysates. After adding of 2 ml scintillator 

solution into each tube, the samples were mixed by turning up side down. The 

radioactivity was measured with liquid scintillation analyser Tri-Carb 1900TR 

(Packard). Radioactivity was expressed as IC50 values calculated by software GraphPad 

Prism 5.0 from dose-response curves (drug concentrations inducing a 50% reduction 

of cellular thymidine incorporation in comparison with the control cultured in parallel 

without drugs). 

Receipts: 

10x PBS:             Lysis buffer for 3H-thymidine incorporation: 

95 g 0.53 M Na2HPO4 x 2 H2O           10 mM Tris-HCl, pH= 7.8 

32 g 0.23 M NaH2PO4 x H2O           1% SDS 

44 g 0.75 M NaCl            Σ 1 l ddH2O 

Σ 1 l ddH2O 
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Figure 19: Chemical structure of 4’,6-diamidino-2-phenylindole (DAPI). 

4.3.3. DAPI STAINING 

Background: 

4’,6-diamidino-2-phenylindole (DAPI) (Figure 19) is a fluorescent nuclear stain that 

intercalates strongly to DNA. It associates with the minor groove of double strand 

DNA, preferentially binding to AT clusters. DAPI can pass through an intact cell 

membrane, and viable as well as fixed cells can be analyzed using fluorescence 

microscopy. When bound to double-stranded DNA the absorption maximum of DAPI is 

at 358 nm and its emission maximum at 461 nm. DAPI binds also to RNA, but the 

resulting fluorescence is not as strong as when DAPI is bound to DNA. Using DAPI DNA 

can be stained, and informations on nuclear morphology, apoptosis and necrosis 

induction as well as cell division can be gained. 

 

 

Preparation: 

Cells were plated in 6-well plates (2x105 cells in 2ml growth medium per well) and 

allowed to recover for 24 hours. After recovery the cells were treated with test drugs. 

After drug exposure, cells were collected by trypsinisation, washed once with PBS, and 

centrifuged (5 minutes, 1100 rpm). The pellet was resuspended in 300 µl PBS. For each 

sample two slides were prepared, and cytospins were performed. The slides were 

mounted with the paper pad and the cuvette in the metal holder and placed in the 

cytocentrifuge. 50-75 µl of each sample were aliquoted into the appropriate wells of 

the cytospin. The cells were cytospined, fixed using a 1:1 methanol-aceton solution for 
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10 minutes and stained with DAPI containing antifade solution (Vector Laboratories, 

Inc., Burlingame, CA). Nuclear morphology was examined using a Leica DMRXA 

fluorescence microscope (Leica Microscopy and System, Wetzlar, Germany) equipped 

with appropriate epifluorescence filters and a COHU charge-coupled device camera. 
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Figure 21: Chemical structure of 
intercalating agent propidium iodide 
(PI). 

Figure 20: A functional diagram of flow 
cytometry. 

4.4. Flow Cytometry 

Flow cytometry is a technique for counting 

and examining microscopic particles, such 

as cells and chromosomes, by suspending 

them in a stream of fluid and passing them 

by an electronic detection apparatus 

(Figure 20). Samples can stained with a 

fluorescent antibody or dye. Using this 

method, analysis about cell cycle, 

mitochondrial membrane potential or 

proteins on cell surface or can be 

performed. 

4.4.1. CELL CYCLE ANALYSIS BY PI STAINING 

Background: 

Propidium iodide (PI) is an intercalating agent 

and is able to fluorescence after excitation with 

488 nm (Figure 21). PI binds with little or no 

sequence preference to DNA at a stoichiometry 

of one dye per 4-5 base pairs. PI is frequently 

used for the analysis of cell cycle distribution via 

flow cytometry (Figure 22). 

During cell cycle, normal diploid cells run through four stages: GO/G1, S, G2 and M 

phase. G0 is the post-mitotic phase, and nonproliferative cells enter this quiescent 

state. G1 is the first phase within interphase providing basis for cell duplication with 

high biosynthetic activities but the amount of DNA is still 2n. DNA replication starts at 

the beginning of S phase, and at the end of  
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Figure 22: DNA histogram using PI 
staining. 

this phase the DNA amount has changed 

from 2n to 4n. Significant protein synthesis 

and production of microtubules required for 

mitosis occurs in G2 phase. In G2, the cell 

ensures if DNA replication is complete and 

without any errors before entering M phase. 

Following to G2 the cells enter M phase 

involving cell division. 

The levels of PI-fluorescence directly correlate with the DNA content which changes 

during phases of cell cycle. As shown in Figure 21, cells in G0/G1 phase show a distinct 

2n peak. The height of peaks is dependent on the number of cells. In comparison to 

this, no peak can be detected by cells in S phase where DNA replication starts, and 

therefore the level of fluorescence increases. However, in G2/M phase cells are 4n 

causing the highest fluorescence level because of the large amount of DNA. 

Preparation: 

Cells were seeded (5x105 cells in 2 ml growth medium per well) in 6-well plates and 

treated with drug after 24 hours recovery. Then, cells were collected by trypsinisation 

and washed once with FACS-PBS. The all pellets were resuspended in 100 µl 0.9% NaCl 

and dropped slowly into 70% ice-cold ethanol. Due to the treatment with NaCl and 

ethanol, cell membranes become permeabilized, and PI can diffuse into the cell 

intercalating into DNA. After at least 1 hour incubation at -20˚C, cells were centrifuged 

again (1 minute, 8000 rpm) and resuspended in 1 ml FACS-PBS. 0.79 Kunitz units/ml 

RNAse A were added, and samples were incubated at 37˚C for 30 minutes. Cells were 

filtrated into FACS tubes, stained with 1 mg/ml of PI for another 30 minutes at 4˚C, 

and fluorescence was measured by flow cytometry (FACS Calibur – Becton Dickinson, 

Palo Alto, CA) using Cell Quest Pro software. 
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Receipts: 

FACS-PBS: 

11.5 g Na2PO4 x 2 H2O 

2 g KH2PO4 

2 g KCl 

80 g NaCl 

Σ 1 l ddH2O 

4.4.2. MITOCHONDRIAL MEMBRANE POTENTIAL DETECTIONS BY JC-1 STAINING 

Background: 

JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-

tetraethyl-benzimidazolocarbocyanine 

iodide) is a dual-emission potential-

sensitive probe that can be used to 

measure mitochondrial membrane 

potential. At low membrane potential e.g. 

in cytoplasm, JC-1 (Figure 23) is a green-

fluorescent monomer. At higher mitochondrial potentials, typical in healthy 

mitochondria, JC-1 forms red-fluorescent “J-aggregates”. If the mitochondrial 

membrane depolarization occurs, mitochondria are unable to build polymers leading 

to loss of red-fluorescent. Underlying these features, fluorescent signals can be 

measured using FACS. The ratio of red to green fluorescence of JC-1 is dependent only 

on membrane potential, and not influenced by mitochondrial size, shape, or density. 

Preparation: 

Cells were seeded (1x106 cells in 5 ml growth medium per T25 cm2 culture flask) and 

treated with the test compounds after 24 hours recovery. Following drug exposure, 

cells were collected by trypsinisation and washed once with ice-cold FACS-PBS. The 

cells were resuspended in 1 ml JC-1 solution (10 µg/ml in DMSO) and incubated for 10 

Figure 23:  Chemical structure of JC-1 
(5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethyl-
benzimidazolocarbocyanine iodide). 
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minutes at 37°C. After incubation, cells were centrifuged (5 minutes, 1200 rpm). The 

pellet was washed again with FACS-PBS, and resuspended in 1 ml FACS-PBS, and cells 

were filtrated into FACS tubes. The samples were analyzed by flow cytometry using 

Calibur (Becton Dickinson, Palo Alto, CA). 
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4.5. Drug Accumulation Assays  

INDUCTIVELY-COUPLED PLASMA-MASS SPECTROSCOPY (ICP-MS) 

Inductively-coupled plasma-mass spectrometry (ICP-MS) is a type of mass 

spectroscopy designed for the determination of a range of metal and several non-

metals. This analysis method is based on the ionization of the metals in the sample in 

argon plasma at ~10000 Kelvin followed by a mass spectrometer for their separation 

and detection. The ions are separated based on their mass-to charge ratio, and the 

detector receives an ion signal proportional to the concentration of this ion. This very 

sensitive method allows the exact quantification of metal contents in liquid and solid 

samples. 

4.5.1. TOTAL DRUG ACCUMULATION 

Preparation: 

Cells were plated (1-2x105 cells in 2 ml growth medium per well) in 6-well plates and 

were exposed after 24 hours recovery with the test drug. After 1 hour drug exposure, 

cells were washed with ice-cold PBS and lysed by 400 µl tetramethylammonium 

hydroxide (TMAH). After adding 1.6 ml 0.6 N HNO3, the lysates were filled up with 

ddH2O to 25 ml. To determine the unspecific binding of ruthenium to cell culture flask 

plastic, a blank well containing only growth medium and drug was also prepared. The 

ruthenium concentrations were determined by inductively-coupled plasma mass 

spectroscopy (ICP-MS) using an Elan 6100 (Perkin-Elmer/Sciex Corporation) at the 

Institute for Geology, University of Vienna. 
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4.5.2. DRUG LEVELS IN CELL FRACTIONS 

Preparation: 

Cells were seeded (1x106 in 5 ml growth medium per T25 cm2 culture flask or 1x107 in 

20 ml growth medium per T150cm2 culture flask) and allowed to recover for 24 hours. 

Drugs were added, and after drug exposure 1 ml from cell culture medium was stored 

at -80˚C for determination of drug concentration in medium. Cells were collected by 

trypsinisation and washed twice with ice-cold PBS. Cells were counted microscopically 

and lysed in lysis buffer for cell fractionation. Total cell lysis was checked immediately 

microscopically by trypan blue staning. Cell lysates were centrifuged (5 minutes, 

14000 rpm, 4˚C). Supernatants (cytosolic fractions) were aliquoted in 500 µl 

eppendorf tubes, and pellets (nucleic fractions) as well as supernatants (containing 

protein lysates) were stored at -80˚C. The samples were analyzed by size exclusion 

chromatography combined with ICP-MS (SEC-ICP-MS) using ELAN DRC-II (PE SCIEX, 

Ontario, Canada) at the Institute of Analytical Chemistry; BOKU, Vienna. Moreover, 

protein concentrations of cytosolic fractions were determined using by Micro BCATM 

Protein Assay Reagent Kit (Pierce Biotechnology, Rockford, USA). 

Receipts: 

Lysis buffer for cell fractionation: 

500 µl lysis buffer 

0.5% Triton X-100 

10 µl/ml phenylmethanesulphonylfluoride (PMSF) –serine protease inhibitor, Roche- 

25 µl/ml Complete (protease inhibitor cocktail tablets, Roche) 

4.5.3. INCORPORATION OF DRUGS INTO DNA 

Preparation: 

Cells were seeded (1x106 cells in 5 ml growth medium per T25 cm2 culture flask) and 

allowed to recover overnight. Then, drugs were added, and after drug exposure cells 
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were collected by trypsinisation. Following washing with PBS, cells were lysed in 400 

µl DNA lysis buffer and incubated for 15 minutes at -20°C. 1.58 Kunitz units/ml RNAse 

A were added. After 1 hour at 37°C, 15 mg/ml Proteinase K were added and incubated 

for 24 hours at 37°C. 400 µl phenol/chloroform/isoamylalkohol solution (25:24:1) 

were added, the solution was centrifuged (5 minutes, 12000 rpm). The supernatant 

was transferred in an eppendorf tube and washed twice with 400 µl 

chloroform/isoamylalkohol (24:1). The supernatant was transferred again into a new 

eppendorf tube. Then, 40 µl Na-acetat were added and followed by 1 ml 100% 

ethanol. The solution was mixes and allowed to precipitate for 20 minutes on ice. Cells 

were centrifuged (15 minutes, 15000 rpm), and the supernatant was removed. The 

pellet was resuspended in 100 µl ddH2O, DNA concentrations was measured using 

NanoDrop Spectrophotometer ND-1000 (Peqlab Biotechnology GmbH, Germany). 

After adding 1.6 ml 0.6 N HNO3, the DNA samples were filled up with ddH2O to 25 ml. 

The ruthenium concentrations were determined by ICP-MS using an Elan 6100 (Perkin-

Elmer/Sciex Corporation) at the Institute for Geology, University of Vienna. 

Receipts: 

DNA lysis buffer: 

1 ml 0.5 M EDTA 

2.5 ml 1 M Tris-HCl, pH= 8 

5 ml 5% Sarcosin 

Σ 50 ml ddH2O 
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4.6. Protein analysis 

4.6.1. PROTEIN EXTRACTION 

Preparation: 

Cells were plated (3-5x105 cells in 2 ml growth medium per well) in 6-well plates and 

allowed to recover for 24 hours. After drug exposure, cells were collected by 

scratching. After washing with PBS, cells were lysed in lysis buffer for total protein 

extraction and were incubated for 10 minutes on ice. Subsequently, the lysates were 

treated with ultrasound for 3 minutes and centrifuged for another 15 minutes (14000 

rpm, 4˚C). Supernatants (protein lysats) were collected, and the protein 

concentrations were determined by using Micro BCATM Protein Assay Reagent Kit 

(Pierce Biotechnology, Rockford, USA). 

Receipts: 

Lysis buffer for total protein extraction: 

500 µl lysis buffer 

5 µl phenylmethanesulphonylfluoride (PMSF) –serine protease inhibitor, Roche- 

12.5 µl Complete (protease inhibitor cocktail tablets, Roche) 

25 µl PhosSTOP (phosphatase inhibitor cocktail tablets, Roche) 

4.6.2. WESTERN BLOT ANALYSIS 

Background: 

Western Blot is an analytical technique developed to detect specific proteins in a given 

sample using electric current to protein-separation. For this method, the proteins are 

denatured in SDS-containing lysis buffer for protein extraction. SDS is an anionic 

detergent that binds most proteins and unfolds them. SDS masks also the native 

charge of the proteins, so that all proteins have the same charge to mass ratio and the 

same shape. So, it is gained that the samples are separated only due their molecular 
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weight. Additionally, samples are often treated to 95˚C in mercaptoethanol-containing 

loading buffer. Protein denaturation means that the secondary and tertiary structures 

are destroyed leaving only peptide bonds between the amino acids are intact. The 

sample proteins are then separated by gel electrophoresis due to protein size and 

electrophoretic mobilities. In our study, SDS-PAGE protein electrophoresis, a system 

consisting two different polyacrylamide gels, a collecting and a separating gel, have 

been used In the collecting gel, the denatured proteins become sandwiched into very 

thin, sharp bonds before entering the separating gel, the samples are fractionated by 

size. The two gels differ mainly in their amount of acrylamide which leads to different 

size of pores in the gel. The separating gel has a higher percentage of polyacrylamide 

compared to collecting gel allowing a better separation of proteins. Additionally, these 

two gels have different pH values. In course of electrophoresis, the chloride and 

glycinate ions from the electrode buffer migrate through the collecting gel. Because of 

the pH value of this gel (pH= 6.8), glycine molecules are zwitterionic and their mobility 

is very low. In comparison to that, chloride ions have a much higher mobility and 

migrate in front. Thus, the mobility of proteins is between these two ions, and the 

proteins are stacked into thin distinct layers in order of their electrophoretic mobility. 

Due to the higher pH value in the separating gel, glycine ions become negatively 

charged increasing their mobility. The ion front moves ahead of the proteins which are 

now separated by size. 

Sufficiently separated proteins have to be transferred to a solid membrane to be 

detectable by antibodies. For our analyzes, the proteins were transferred to a PVDF 

membrane. The procedure of electroblotting uses electric current to pull negatively 

charged proteins out of the gel on the PVDF membrane. The protein binding occurs via 

hydrophobic interactions, as well as interactions between the membrane and protein. 

After blotting, the membrane with bounded proteins is washed with TBST (tris-

buffered saline with Tween). Using TBST, unbound components can be washed away 
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without suppressing antigen-antibody binding interactions, thereby reducing 

nonspecific background and increasing the specific signal. To prevent unspecific 

bindings and interactions of antibodies with PVDF membrane, the membrane must be 

blocked. Commonly bovine serum albumin (BSA) and non-fat dry milk solution with 

TBST are used for this purpose. The proteins in this solution attach everywhere on the 

membrane where no target proteins from the gel have been bound avoiding 

unspecific binding of antibodies to the membrane. 

After washing and blocking, a dilute solution of primary antibody directed against a 

specific protein is incubated with the membrane overnight at 4°C (Table 6). In order to 

detect primary antibody bound to the target protein, secondary antibody, which is 

directed against the species-specific region of the first antibody, is used. Commonly, 

this secondary antibody is linked to horseradish peroxidase, a reporter enzyme, which 

cleaves an added substrate resulting in a luminescent signal. For the detection, a 

sensitive photographic film is placed against the membrane, and the luminescence 

blackens the film at the specific protein bands (Figure 24). 

Preparation: 

Denatured protein samples (25 µg, 3 minutes at 95°C) were resolved by SDS-PAGE 

(sodium dodecyl sulphate polyacrylamide gel electrophoresis) using 10% separating 

gel and 4.5% collecting gel. Electrophoresis was conducted with 90 V till protein bands 

reached the end of the gel chamber. After the separation of proteins due their 

molecular weight using electrophoresis, proteins were transferred onto a 

polyvinylidene difluoride (PVDF) membrane (activated in methanol) using Trans-Blot 

SD (Bio-Rad) with 0.08 mA for 45 minutes. In semi-dry blotting, the gel and membrane 

are sandwiched between to stacks of filter paper. These filters are soaked with a 

cathode and an anode buffer acting as ions-reservoirs. After blotting, the membranes 

were blocked with milk solution (0.5% BSA + 1% milk powder) for at least 1 hour, 

washed with TBST and incubated with primary antibody (1:1000 dilution in 3% BSA) at 
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4˚C overnight. After incubation, the membranes were washed again three times with 

TBST for 10 minutes and incubated with HRP-coupled secondary antibody (anti-mouse 

or anti-rabbit, 1:10000 dilution in 1% BSA) for at least 1 hour. The membranes were 

washed against three times with TBST each for 10 minutes. Following to washing, the 

proteins were detected using Santa Cruz Biotechnology Detection Kit. 

 

 

 

 

 

 

 

Antibodies Species Concentration Source 

Caspase 3 Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

Caspase 7 Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

Caspase 8 Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

Caspase 9 Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

CDC2 = CDK1 Rabbit 1:1000 Santa Cruz Biotechnology 

CDK2 Rabbit 1:1000 Santa Cruz Biotechnology 

Cleaved Caspase 7 Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

Clevaed PARP Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

ERK 1/2 Rabbit 1:1000 p44/42 MAP Kinase Antibody – Cell Signaling 

IRE1α Rabbit 1:1000 ER Stress Antibody Sampler Kit – Cell Signaling 

p38 Rabbit 1:1000 Santa Cruz Biotechnology 

PARP Rabbit 1:1000 Apoptosis Sampler Kit – Cell Signaling 

pERK Rabbit 1:1000 
Phospho-p44/42 MAP Kinase (Thr202/Tyr204) 

Antibody – Cell Signaling 

pp38 Rabbit 1:1000 
Phospho-MAPK Family Antibody Sampler Kit – 

Cell Signaling 

β-actin Mouse 1:5000 Santa Cruz Biotechnology 

Table 6: List of the antibodies used for the detection of several protein expression 
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Figure 24: The main steps of Western blotting: Gel electrophoresis, blotting and detection of 

proteins using specific antibodies. 
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Receipts: 

Tris-HCl 1.5 M, pH= 8.8:    Tris-HCL 0.5 M, pH= 6.8 

18.2 g Tris      3 g Tris 

Σ 100 ml ddH2O, pH= 8.8    Σ 50 ml ddH2O, pH= 6.8 

Lysis buffer:      4x Sample loading buffer: 

50 mM Tris-HCl, pH= 7.6    4 ml 10% Glycine 

300 mM NaCl      2 ml 2-Mercaptoethanol 

0.5% Triton X-100     0.92 g SDS 

Σ 500 ml ddH2O     2.5 ml 1 M Tris-HCl (pH= 6.8) 

       Σ 10 ml ddH2O 

10x TBS:      1x TBST: 

120 g Tris      100 ml 10xTBS 

90 g NaCl      900 ml ddH2O 

Σ 1 l ddH2O, pH= 7.6     1 ml Tween 20 ( Bio-Rad) 

10x Laemmli-Electrophoresis buffer:  Bjerrumbuffer with SDS: 

30 g Tris      5.82 g Tris 

144 g Glycine      2.93 g Glycine 

10 g SDS      0.375 g SDS 

Σ 1 l ddH2O      Σ 1 l ddH2O 

Bjerrumbuffer with Methanol:   SDS-PAGE – 4.5% Collecting gel: 

5.82 g Tris      1.56 ml ddH2O 

2.93 g Glycine      0.281 ml Acrylamid 

200 ml Methanol     0.625 ml 0.5 M Tris-HCl, pH= 6.8 

Σ 1 l ddH2O      25 µl 20% SDS 

       12.5 µl 10% APS 

2.5 µl TEMED 

SDS-PAGE – 10% Separating gel: 

3.65 ml ddH2O 

1.875 ml Acrylamid 

1.875 ml 1.5 M Tris-HCl, pH= 8.8 

75 µl 20% SDS 

5 µl 10% APS 

5 µl TEMED 
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5. RESULTS 

5.1. Comparison of KP1019 and KP1339 

5.1.1.  Cell line-dependent cytotoxicity of KP1019 and KP1339 

Cytotoxicity assays were performed using several cell lines after 72 hours drug 

exposure (Figure 25). Hepatoma cell lines tested with KP1019 and KP1339 included 

Hep3B, HepG2, HCC1.1 and HCC1.2 cells. Although levels of cytotoxicity differed from 

cell line to cell line, KP1019 showed generally higher cytotoxic activity than KP1339 in 

hepatoma cell lines. The same effect was demonstrated in cervix carcinoma cell line 

KB-3-1. However, in colorectal carcinoma cell line HCT116 KP1339 seemed to be more 

cytotoxic in comparison to KP1019. IC50 values of all tested cell lines were calculated 

by software GraphPad Prism 5.0 and shown in Table 7. 

 

Cell lines IC50 values with KP1019 IC50 values with KP1339 

Hep3B 79.906 µM 199.918 µM 

HepG2 42.128 µM 161.544 µM 

HCC1.1 72.656 µM 126.984 µM 

HCC1.2 83.026 µM 123.764 µM 

KB-3-1 114.364 µM 176.013 µM 

HCT116 44.265 µM 35.253 µM 

In Hep3B hepatoma cells, differences in cytotoxicity between KP1019 and KP1339 

became detectable at concentrations higher than 50 µM. At concentrations higher 

than 150 µM KP1019 led to 100% cell death. In contrast, treatment with 200 µM 

Table 7: The half maximal inhibitory concentration (IC50) values of Hep3B, HepG2, HCC1.1, HCC1.2, KB-

3-1, HCT116 cell lines with KP1019 or KP1339. 
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KP1339 induced viable cell number reduction to 15%. Nevertheless, the curve 

progressions of Hep3B cells exposed to KP1019 and KP1339 were parallel at 

concentrations higher than 50 µM.  

The second hepatoma cell line HCC1.1 demonstrated similar sensitivity to the tested 

ruthenium drugs. Again up to 50 µM, both drugs did not differ in levels of cytotoxicity 

with enhanced activity of KP1019 at higher concentrations. Interestingly, KP1339 did 

not display dose-dependent cytotoxicity at the two highest concentrations (150 and 

200 µM), but rather stabilization in cell number. 

Also the hepatoma cell line HCC1.2 was responsive to KP1019 and KP1339. Both drugs 

at the concentrations lower than 75 µM showed similar levels of cytotoxicity. The 

cytotoxicity curve of KP1019 demonstrated an almost linear progression, and 

concentrations higher than 150 µM led to 100% cell death. Comparable to Hep3B and 

HCC1.1 cell lines, 100% cytotoxicity induced by KP1339 could not be reached. 

The fourth hepatoma cell line, HepG2, responded differently to the investigated 

ruthenium drugs. KP1339 stimulated HepG2 cell proliferation up to a concentration of 

100 µM. In comparison to Hep3B cells, almost 100% cell death could be achieved at 

the concentration of 200 µM KP1339. The highest cytotoxicity of KP1339 was 

observed at the highest concentration used (200 µM). In contrast, KP1019 caused no 

stimulated proliferation and was much more toxic in comparison to the previous 

experiment with Hep3B cells. Additionally, HepG2 cells were highly sensitive against 

KP1019. Concentrations higher than 100 µM induced 100% cell death. 

The anticancer activity of KP1019 and KP1339 were also tested in KB-3-1 cells, a cervix 

carcinoma cell line. At concentrations lower than 100 µM, KB-3-1 cells reacted almost 

similar to KP1019 and KP1339. At higher doses the differences between these two 

curve progressions became significant. KP1019 showed an almost linear curve 

progression in a dose-dependent manner. Although KP1339 did not induce 100% cell 
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death, at the highest concentration (200 µM) of KP1019 all cells underwent cell death. 

In HCT116, a colorectal carcinoma cell line, KP1339 showed highest cytotoxicity of all 

tested cell lines with IC50 < 50 µM for both compounds (compare Table 7). KP1019 

and KP1339 showed similar activity at almost all concentrations leading to total cell 

death at concentrations of 150 µM and 200 µM. 

5.1.2. Enhanced cellular accumulation of KP1019 as compared to KP1339 

Cytotoxicity analyzes showed that in most cell lines KP1019 was more active in 

comparison to KP1339. This might be explained by alterations on the uptake levels of 

these drugs. To test this hypothesis, total intracellular ruthenium levels were 

determined using ICP-MS after 1 hour drug exposure. ruthenium levels were set in 

relation to the cell number of each sample, and expressed in ng per 105 cells (Figure 

26). These analyzes were performed with Hep3B, KB-3-1, HCC1.1, HCC1.2 and HCT116 

cells. As shown in Table 8 and Figure 26, the highest uptake levels of KP1019 and 

Figure 25: Activity of KP1019 and KP1339 against Hep3B, HepG2, HCC1.1, HCC1.2, KB-3-1 and 

HCT116 cells. The values given are means and standard deviations of six independent experiments. 
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KP1339 were found in HCC1.1 and Hep3B cells. 

 

 

 

 

Notably, HCT116 cells displayed the lowest drug accumulation levels of all cell lines 

tested, arguing against the hypothesis that drug accumulation levels are the only 

factor responsible for drug efficacy. 

Especially in Hep3B and HCT116 cells, the uptake level of KP1019 was up to 2-fold 

higher than KP1339 accumulation. A similar difference in uptake levels between two 

ruthenium drugs was also found in KB-3-1 cells (~1.75-fold). Nevertheless, although 

uptake of KP1019 occurred more efficient in all cell lines analyzed, no significant 

 KP1019 KP1339 

Cell lines Mean SD Mean SD 

KB-3-1 5.3 0.556777 3.033334 0.057735 

HCC1.1 7.7 2.545584 5.1 0.964365 

HCC1.2 4.433333 0.351189 3.133333 0.461880 

Hep3B 7.508928 0.428160 3.239361 0.143549 

HCT116 2.952 0.269 1.425 1.5 

Table 8: Absolute values and their standard derivations of each cell line. 

Figure 26: Ru uptake levels 

in KB-3-1, Hep3B, HCC1.1, 

HCC1.2 and HCT116 cell 

lines after 1 hour KP1019 

and KP1339 exposure. Ru 

values were calculated 

relating to the cell number 

of each sample by using 

GraphPad Prism 5.0 
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correlation between total cellular uptake and cytotoxicity was found in case of both 

drugs indicating that more drug accumulation is not decisive for the exerted levels of 

cytotoxicity. 

5.1.3. Different intracellular distributions of KP1019 and KP1339 

Furthermore, the localisation of KP1019 and KP1339 in the cell might influence the 

mechanisms underlying their efficacy or mode of action (Figure 27). As the 

intracellular fate of the tested ruthenium drugs is still widely unknown, the 

intracellular distribution between cytosol and nucleus was examined. KP1019 and 

KP1339 were significantly and completely accumulated in the tumor cells within the 

first hour of drug incubation. Longer drug exposures did not cause enhanced uptake 

levels leading to suggest that within 1 hour the accumulation of both drugs had 

reached a stage. Moreover, ruthenium amount in cytosol and in nuclei increased in a 

concentration-dependent manner. Generally, KP1019 remained predominantly in 

cytosol, while KP1339 was enriched in nuclei. At all concentrations and time points, 

about 75% of KP1019 were detected in the cytosolic fraction. In contrast, 90% of 

KP1339 accumulated in the nucleus. 

Figure 27: Ru levels in cytosol and nuclei fractions after 1, 3 and 6 hours drug exposure in KB-3-1 cells. 

The values were calculated relative to the cell number of each sample and normalised using GraphPad 

Prism 5.0. 
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5.1.4. Apoptosis induction potential of KP1019 and KP1339 

As a next step, it was examined whether the differences in activity between KP1019 

and KP1339 were accompanied by alterations in apoptosis induction. The potential of 

KP1019 and KP1339 to induce apoptosis can be examined using DAPI staining and 

fluorescence microscopy. KB-3-1 cells were analysed and compared based on their 

morphological appearances. As expected, after 24 hours drug exposure higher 

amounts of apoptotic/necrotic cells were detected, and the number of normal cells 

decreased in a concentration-dependent manner (Figure 28). In general, KB-3-1 cells 

treated with both drugs exhibited typical signs of apoptosis including chromatin 

condensation and fragmentation of nuclei into apoptotic bodies (Figure 29). In case of 

KP1019, pronounced apoptosis induction was observed after treatment with 150 µM 

(38.9%) and 200 µM (77.1%), while KP1339 only led to 11.5% and 12.9% apoptotic 

cells at 150 µM and 200 µM, respectively. Treatment with 400 µM KP1339 strongly 

increased the proportion of apoptotic cells to 93.7%. 

 

Figure 28: Comparison of the apoptosis-inducing potential of KP1019 with KP1339 in KB-3-1 cells. 

After 24 hours drug exposure, morphological features of about 200 nuclei of at least two slides for 

each concentration were analyzed. Percentages of normal, mitotic and apoptotic/necrotic nuclei are 

shown. 
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In accordance to MTT assay data, KP1339 caused a 2-fold weaker apoptotic response. 

The level of mitotic cells also showed a decrease of 3.3%, and there were no mitotic 

cells found at the highest concentrations (200 µM KP1019 and 400 µM KP1339) 

displaying apoptotic morphology in more than 80% of the treated cell. 

 

 

 

5.1.5. Mitochondrial membrane depolarization induced by KP1019 and KP1339 

To identify the molecular mechanisms underlying the observed apoptosis induction, 

KB-3-1 cells were treated with increasing concentrations of KP1019 and KP1339 for 24 

hours, and the samples were stained using JC-1. JC-1 staining allows determination the 

mitochondrial regulation of apoptosis. 24 hours treatment with KP1019 and KP1339 

induced depolarisation of mitochondrial membrane in a concentration-dependent 

manner. A detectable increase (from 4.57% to 8.33%) of cells with depolarized 

mitochondria was observed already using 100 µM KP1019. Exposure to 200 µM 

Figure 29: DAPI staining. KB-3-1 cells were treated with (B) 100 µM KP1019, (C) 200 µM KP1019, (D) 

100 µM KP1339, (E) 200 µM KP1339 or (F) 400 µM KP1339 for 24 hours. A sample of untreated KB-3-

1 cells (A) was also stained to compare the morphological changes in treated cells. After cytospin and 

fixation with 1:1 aceton/methanol, 300-500 nuclei of at least two slides for each concentration were 

counted and analyzed. A... apoptotic bodies, M... mitosis. 
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Figure 30: JC-1 staining histograms of KB-3-1 cells after 24 hours drug exposure in several 

concentrations. The highest concentrations of KP1019 and KP1339 induced more than 65% 

mitochondrial apoptosis. 

KP1019 resulted in profound mitochondrial depolarization in 78.72% of cells. 

Interestingly, when the cells were treated in a 2-fold higher concentration of KP1339 

as the one used for KP1019, the percentages of apoptotic cells were very similar 

(Figure 30). Treatment with 200 µM KP1339 resulted in 7.03% cells with depolarized 

mitochondria and 400 µM KP1339 in 65.67%. This supports the hypothesis that 

ruthenium drugs act in the cell via similar pathways although with less activity in case 

of KP1339. 
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5.1.6. Apoptosis detection by KP1019 and KP1339 at protein level 

For Western blot analysis, proteins were isolated after 24 hours drug exposure, 

separated by SDS-PAGE, blotted to PVDF membrane, and detected with several 

antibodies for typical apoptosis-related  in Hep3B, HepG2 and KB-3-1 cells (Figure 31). 

In case of Hep3B and HepG2, cells were treated with 75 and 150 µM KP1019 or 

KP1339. Caspase-mediated cleavage of PARP was observed in Hep3B exposed with 

150 µM drug, especially with KP1019. 75 µM KP1019 and KP1339 did not induced any 

cleavage of PARP in comparison to untreated Hep3B cells. Moreover, no changes in 

Figure 31: Detection of expression of 

apoptosis-regulating proteins using 

Western blotting in Hep3B (A), HepG2 

(B) and KB-3-1 (C) cell lines after 24 

hours drug exposure. 
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signal intensity of caspase 3, 7 and 9 were demonstrated after drug exposure. 

Interestingly, caspase 7 was mainly cleaved by 150 µM KP1019, while KP1339 showed 

lower efficiency to cleave this protein.  

A different efficiency of PARP cleavage was obtained in HepG2 cells. Comparable to 

Hep3B cells, the cleavage was induced with increasing concentrations of drugs. The 

strongest PARP cleavage was detected in HepG2 cells exposed to 150 µM KP1019. 

Similar to Hep3B cells, caspase 3 and caspase 8 were not activated compared to 

caspase 7 and caspase 9, which were downregulated in a drug-dependent manner. 

KB-3-1 cells were also investigated for alterations of apoptosis-related proteins. In 

comparison to other cell lines, 150 µM KP1019 induced a very strong cleavage of 

PARP, while 75 µM and 150 µM KP1339 were not so active for PARP cleavage. Similar 

to Hep3B cells, uncleaved caspase 3 and caspase 7 levels remained unchanged, 

although upregulation of caspase 7 cleavage in cells exposed with 150 µM KP1019 was 

observed (Figure 31). 
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5.2. Combination tests with KP1339 and other chemical compounds 

5.2.1. Combinations with FeCl3, Gallium nitrate, and triapine 

FeCl3 and Gallium nitrate compounds were examined for their activity in cell lines 

Hep3B, HepG2, HCC1.1, HCC1.2, and KB-3-1. Furthermore, they were also combined 

with KP1339 to detect the alterations in cytotoxicity. 

Based on the theory that both KP1019 and KP1339 are taken up via interaction with 

transferrin, cells were pre-incubated with FeCl3 for 6 hours. Without removing FeCl3, 

cells were exposed with KP1339 for another 72 hours (Figure 32, Table 9). In case of 

Hep3B, FeCl3 led to higher sensitivity against KP1339 in a dose-dependent manner, 

especially at concentrations higher than 50 µM, although 10 µM and 30 µM FeCl3 did 

not differ in the induction of sensitivity. This enhancement of KP1339 activity was also 

observed in HepG2 and HCC1.1 cells at the concentrations higher than 100 µM 

KP1339, but in lower levels. Interestingly, only in HCC1.2 hepatoma cell line FeCl3 

induced resistance to KP1339 in a drug-dependent manner. In contrast, increase of 

intracellular iron levels did not sensitize KB-3-1 cells to KP1339. 
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Figure 32: Cytotoxicity of 

KP1339 in combination with 

FeCl3 were shown in linear 

regression calculated using 

GraphPad Prism 5.0 software. 
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Figure 33: Cytotoxicity assays in Hep3B and KB-3-1 cells after co-treatment of Gallium 

nitrate and KP1339 for 72 hours. The values were calculated using GraphPad Prism 5.0 

software and shown in linear regression. 

 

 

To gain more insights into the interaction of KP1339 with iron homeostasis 

combination experiments with Gallium nitrate were performed. Simple gallium salts 

share some characteristics with Fe3+ and have been shown to accumulate in tumor 

cells via the transferrin receptor. This leads to deficiencies in iron uptake. 

Consequently, resistance to Gallium nitrate was based on transferrin receptor 

overexpression [192]. In both Hep3B and KB-3-1 cells, Gallium nitrate induced 

sensitivity against KP1339 (Figure 33, Table 10). Generally, Hep3B cells were very 

Cell lines 
IC50 values with 

FeCl3 

IC50 values with 

KP1339 

IC50values in combination with 

10 µM FeCl3 and KP1339 

Hep3B > 30 µM 106.517 µM 57.464 µM 

HepG2 > 30 µM 164.834 µM  

HCC1.1 > 30 µM > 200 µM 180.477 µM 

HCC1.2 7.791 µM 123.805 µM 190.779 µM 

KB-3-1 > 30 µM 148.958 µM 142.031 µM 

Table 9: The half maximal inhibitory concentration (IC50) values for Hep3B, HepG2, HCC1.1, 

HCC1.2, and KB-3-1 of KP1339, FeCl3 or co-treatment of both drugs. 
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sensitive against Gallium nitrate mono-therapy at a concentration of 250 µM and 500 

µM. In combination, even lowest concentrations of KP1339 displayed strong cytotoxic 

activities. KP1339 higher than 150 µM in combination with 10 µM, 50 µM, and 100 µM 

Gallium nitrate led to stabilized cell number of Hep3B cells, while 10µM and 50 µM 

Gallium nitrate with KP1339 higher than 100 µM Gallium nitrate caused almost total 

cell death. Moreover, KB-3-1 cells showed also synergistic activity in combination 

therapy. The highest sensitivity was found with 500 µM Gallium nitrate, especially in 

combination with 50 µM, 75 µM and 100 µM KP1339. Additionally, KB-3-1 cells were 

less sensitive against Gallium nitrate in comparison to Hep3B cells. 

 

The next tested agent was Triapine. Triapine is an experimental drug in phase II clinical 

trial. It exerts its anti-neoplastic activity by inhibition of the enzyme ribonucleotide 

reductase and generation of ROS after formation of an intracellular iron complex 

[193]. Ribonucleotide reductase inhibition by triapine results in depletion of cellular 

dNTP pools leading to DNA synthesis arrest and apoptosis induction. The combination 

of triapine with KP1339 was tested in two cell lines, Hep3B and KB-3-1 (Figure 34, 

Table 11). In both cell lines investigated, triapine mono-treatment did not induce 

strong cytotoxic activity. Combination with KP1339 in Hep3B cells had strong 

synergistic activity with CI values ranging from 0.2 up to 0.7. Notably, the increase of 

triapine concentrations was directly associated with a decrease of the respective CI 

Cell lines 
IC50 values with 

Gallium nitrate 

IC50 values with 

KP1339 

IC50values in combination with 

250 µM Gallium nitrate and 

KP1339 

Hep3B 240.66 µM 152.03 µM 42.2 µM 

KB-3-1 > 500 µM 135.434 µM 87.694 µM 

Table 10: The half maximal inhibitory concentration (IC50) values for Hep3B, and, KB-3-1 cells of 

KP1339, Gallium nitrate and combination therapy. 
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values. In case of KB-3-1 cells, no synergistic activity between KP1339 and triapine was 

observed indicating that synergism with triapine is cell type-dependent. 

 

 

 

5.2.2. Combinations with DNA damaging agents Ara-C, adriamycin, and 

temozolomide 

Ara-C is an anti-cancer chemotherapy drug, which is classified as an anti-metabolite. 

Incorporation of this modified nucleic acid during DNA synthesis leads to cell cycle 

arrest in S-phase and DNA damage. Ara-C is used to treat different forms of leukemia. 

After 72 hours simultaneous treatment of KP1339 with Ara-C, cytotoxicity was 

evaluated using MTT assay (Figure 35A, Table 12). In this setting Ara-C treatment 

Cell lines 
IC50 values with 

triapine 

IC50 values with 

KP1339 

IC50values in combination with 

0.4 µM triapine and KP1339 

Hep3B > 0.8 µM 185.315 µM 120.912 µM 

KB-3-1 > 0.8 µM > 200 µM > 200 µM 
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Figure 34: Triapine was tested in combination with KP1339, and the cytotoxic activity was 

detected after 72 hours drug exposure in Hep3B and KB-3-1 cells. 

Table 11: The half maximal inhibitory concentration (IC50) values of Hep3B, and KB-3-1 cells 

with triapine, KP1339 or co-treatment of both drugs. 
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Figure 35: Cytotoxic activities were determined in Hep3B and KB-3-1 cells (A) after 

simultaneously treatment of Ara-C and KP1339, and (B) Ara-C exposure following to pre-

treatment of KP1339 for 3 hours. 

A B 

A B 

alone displayed potent cytostatic activity against both Hep3B and KB-3-1 cells. KB-3-1 

cells were found to more sensitive to Ara-C with an IC50 value of 6 µM. In contrast, 

treatment with up to 100 µM Ara-C was not sufficient to reach IC50 levels in Hep3B 

cells. Co-incubation revealed that Ara-C acted in most combinations interacted with 

KP1339 in an additive to synergistic manner (CI values between 0.4 and 1.2). However, 

in selected cases, especially at higher concentrations of Ara-C in KB-3-1 cells, 

antagonism was observed. Moreover, sequential drug treatment settings such as 

adding KP1339 after 6 hours pre-treatment with Ara-C (data not shown) or Ara-C after 

3 hours pre-treatment with KP1339 (Figure 35B, Table 12) did not enhance the activity 

of this drug combination. 
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As a next step, the combination of KP1339 with adriamycin was tested for efficacy 

against several cancer cell models. Adriamycin (also called doxorubicin) is a DNA 

damaging drug, which leads to DNA lesions by topoisomerase II inhibition and ROS 

generation. This antibiotic drug of the anthracycline family is frequently used for the 

treatment of bladder, breast as well as head and neck cancers. Figure 36 shows the 

impact of simultaneous application of adriamycin with KP1339 on KB-3-1, Hep3B, VL-8 

and A549 cells. In general, co-treatment with adriamycin did enhance KP1339 anti-

cancer activity in an additive manner (CI values between 0.8 and 1.5). However, at 

some concentration combinations tested also antagonistic effects were detected. 

Especially in the rather adriamycin-resistant A549 cell model (IC50 of 145 µM in 

comparison with e.g. the IC50 of 42.5 µM in KB-3-1 cells) CI values up to 3.9 were 

observed (Table 13). Consequently, it was evaluated whether sequential application 

was able to enhance the efficacy of combination of KP1339 with adriamycin. To this 

end, Hep3B and KB-3-1 cells were either pre-treated with KP1339 for 3 hours or with 

adriamycin for 6 hours before adding adriamycin or KP1339, respectively. In both 

settings, no antagonistic effects were observed, but KP1339 and adriamycin were 

found to act additively (all CI values between 0.9 and 1.2). 

Cell lines 
IC50 values with 

Ara-C 

IC50 values with 

KP1339 

IC50values in combination with 

50 µM Ara-C and KP1339 

Hep3B (A) > 100 µM 121.885 µM 110.115 µM 

Hep3B (B) > 100 µM 63.454 µM 93.721 µM 

KB-3-1(A) 5.98 µM 160.366 µM 198.918 µM 

KB-3-1 (B) 6.107 µM 129.42 µM 180.573 µM 

Table 12: The half maximal inhibitory concentration (IC50) values for Hep3B and KB-3-1 cells 

of Ara-C, KP1339 or co-treatment of both drugs after pre-treatment (B) or 

contemporaneously treatment (A). 
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A B C 

D E F 

Figure 36: The cytotoxicity of adriamycin and KP1339 in combination was detected against 

Hep3B, KB-3-1, VL-8 and A549 cells. Drugs were either added simultaneously to the cells, such 

as in (A), (C), (D), and (F), or cells were exposed with adriamycin following to pre-incubation 

with KP1339 shown in (B) and (E). 
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Cell lines 
IC50 values with 

adriamycin 

IC50 values with 

KP1339 

IC50values in combination with 

100 µM adriamycin and KP1339 

Hep3B (A) > 250 µM 147.684 µM 128.146 µM 

Hep3B (B) > 250 µM 97.821 µM 104.672 µM 

KB-3-1 (A) 42.305 µM 186.593 µM > 200 µM 

KB-3-1 (B) 65.043 µM 144.053 µM 182.463 µM 

VL-8 8.577 µM 103.208 µM 163.755 µM 

A549 144.65 µM 175.861 µM 197.739 µM 

Table 13: The half maximal inhibitory concentration (IC50) values of Hep3B, KB-3-1, VL8 and 

A549 cells with adriamycin, KP1339 or co-treatment of both drugs after pre-treatment (B) or 

contemporaneously treatment (A). 
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Figure 37: Cytotoxicity of temozolomide and KP1339 in Hep3B, KB-3-1, VM-1, VM-21 and VM-48 cells 

were identified using MTT assay. The values after calculation in GraphPad Prism 5.0 were shown in 

linear regression. 

Temozolomide is an alkylating agent which is clinically used for the treatment of 

glioblastome (Grade IV astrocytoma) and melanoma. Alkylating agents exert their 

anticancer activity due to DNA methylation and/or cross linking. The resulting DNA 

lesions lead to cell cycle arrest and apoptotic cell death. The combination of 

temozolomide with KP1339 was tested additionally to Hep3B and KB-3-1 cells also in 

the melanoma cell lines VM-1, VM-21, and VM-48 (Figure 37). Temozolomide mono-

treatment induced significant cytotoxicity in all cell lines (compare IC50 values in Table 

13) with the exception of VM-1 cells, which had an IC50 of higher than 2 mM. Figure 38 

shows that co-treatment of the two test drugs had in general additive effects in all 

temozolomide-responsive cell lines (CI values of 0.8 to 1.2). Notably, in KB-3-1 and 

VM-21 cells combination of KP1339 with 2 mM temozolomide resulted frequently in 

synergistic activity with CI values between 0.33 and 0.82. In contrast, mainly 

antagonistic activity was observed in the temozolomide-resistant VM-1 cell line (CI 

values up to 6.2). 
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Table 13: The half maximal inhibitory concentration (IC50) values of Hep3B, KB-3-1, VM1, 

VM21 and VM48 cells with Temozolomid, KP1339 or co-treatment of both drugs. 
 

 

5.2.3. Combinations with tubulin-targeting agents taxol and vinblastine 

Taxol and vinblastine are characterized by their interaction with the cellular 

cytoskeleton, which subsequently leads to impaired mitosis and cell death. Taxol binds 

specifically to the β-tubulin subunit, which inhibits the disassembly of microtubules 

and interferes with the normal breakdown of microtubules during cell division. In 

contrast, vinblastine inhibits the assembly of microtubules. Taxol is clinically used in 

the treatment of lung, ovarian as well as head and neck cancer. Consequently, the 

combination with KP1339 was tested in VL-8 lung cancer cells (Figure 38, Table 14). 

Taxol mono-treatment was very cytotoxic with an IC50 values of 11.9 nM. With regard 

to the combination effects of our test drugs, the simultaneous application of taxol 

with KP1339 had mainly antagonistic activity in VL-8 cells (CI values up to 240), 

especially at low KP1339 concentrations (50 µM). To test whether sequential 

application is able to reduce this antagonism, other application schemas were tested. 

In these experiments, pre-incubation with KP1339 for 3 hours (Figure 38 B) or taxol for 

6 hours (Figure 38 C) caused mostly antagonistic activity with CI values higher than 

1.5, and only in some concentrations such as co-treatment with 50 µM KP1339 after 6 

hours pre-incubation with taxol. 

Cell lines 
IC50 values with 

temozolomid 

IC50 values with 

KP1339 

IC50values in combination with 1 

mM temozolomid and KP1339 

Hep3B 712.223 µM 76.111 µM 85.971 µM 

KB-3-1 1311.137 µM 136.753 µM 105.857 µM 

VM-1 > 2000 µM > 200 µM 180.991µM 

VM-21 1024.139 µM 121.429 µM 117.5 µM 

VM-48 1183.381 µM > 200 µM 123.822 µM 
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Vinblastine is frequently used in treatment of Hodgkin’s lymphoma, non-small cell 

lung cancer, breast, head, neck as well as testicular cancer. Thus, for the experiments 

Cell lines 
IC50 values with 

taxol 

IC50 values with 

KP1339 

IC50values in combination with 

10 nM taxol and KP1339 

VL-8 (A) 11.858 nM 119.775 µM 166.697 µM 

VL-8 (B) 9.847 nM 27.748 µM 58.14 µM 

VL-8 (C) 9.798 nM 30.633 µM 61.865 µM 

KB-3-1 (A) 8.332 nM > 200 µM > 200 µM 

A549 (B) 11.892 µM 67.794 µM 110.647 µM 

A549 (C) 11.684 µM 55.631 µM 89.721 µM 

Table 14: The half maximal inhibitory concentration (IC50) values of VL-8, KB-3-1,and A549 

cells with taxol, KP1339 or co-treatment of both drugs with simultaneously treatment (A), 

pre-incubation for 3 hours with KP1339 (B), and for 6 hours with taxol (C). 

Figure 38: Cytotoxic activity of taxol and 

KP1339 were determined using MTT assays 

in VL-8 cells. In (A), the cells were treated for 

72 hours. In contrast, in (B) they were pre-

incubated with KP1339 for 3 hours, and in 

(C) with taxol for 6 hours. 
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Figure 39: The activity of vinblastine and KP1339 was determined in KB-3-1 and VL-8. The cells were 

exposed to drugs for 72 hours. The linear regression of the cytotoxicity values was calculated in 

GraphPad Prism 5.0 software. 
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with vinblastine KB-3-1 and VL-8 cells were used (Figure 39, Table 15). Vinblastine 

alone had strong cytotoxic effects against KB-3-1 cells with an IC50 of 3.1 nM, while VL-

8 cells turned out to be vinblastine-resistant with an IC50 of higher than 10 nM. The 

combination of vinblastine with KP1339 had at most concentrations tested additive 

effects (CI values from 0.8 to 1.5). Notably in the VL-8 cell model, addition of KP1339 

was found to synergistically enhance the activity of 10 nM vinblastine leading to CI 

values between 0.4 – 0.7. This suggests that KP1339 might be able to synthesize 

resistant tumor cells to vinblastine treatment. 

 

 

 

 

Cell lines 
IC50 values with 

vinblastine 

IC50 values with 

KP1339 

IC50values in combination with 

5 nM vinblastine and KP1339 

KB-3-1 3.143 nM 183.85 µM > 200 µM 

VL-8 > 200 µM 133.147 µM 124.169 µM 

Table 15: The half maximal inhibitory concentration (IC50) values of A549, KB-3-1 and VL8 

cells with vinblastine, KP1339 or co-treatment with both drugs. 
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5.3. Combination tests with KP1339 and tyrosine kinase inhibitor 

sorafenib 

Sorafenib is an oral, dual inhibitor of Raf and vascular endothelial growth factor 

receptor (VEGFR). The molecule has demonstrated preclinical antineoplastic activity 

against a wide spectrum of human cancers [78]. Moreover, it has exhibited in vitro 

inhibitory effects against Raf-1, B-Raf, VEGFR-2, platelet-derived growth factor 

receptor (PDGFR), and VEGFR-3. It is approved for the treatment of advanced renal 

cell carcinoma and hepatocellular carcinoma [194].  

5.3.1. Differences in cytotoxicity of KP1339 by sorafenib co-treatment 

The tyrosine kinase inhibitor sorafenib was tested in addition to several hepatoma cell 

lines (Hep3B, HepG2, HCC1.1, HCC1.2, HCC2 and B1) also in the lung carcinoma cell 

lines VL-8, Calu-6 and several melanoma cell lines (Table 16). Most cell lines were 

rather sensitive to sorafenib mono-treatment with IC50 values of ~3 µM. Most 

resistant to sorafenib were HCC1.1 and VL-8 cells (IC50 higher than 10 µM), while B1 

and Calu-6 were the most sensitive ones with IC50 values of 0.5 µM and 0.3 µM, 

respectively. Notably, all melanoma cell lines tested showed only little sensitivity 

against sorafenib. 

With regard to the drug combination, sorafenib co-treatment with KP1339 showed 

additive to synergistic activity in all cell lines investigated (Figure 40). Especially, 

combination of KP1339 with 10 µM sorafenib was always highly synergistic with CI 

values between 0.1 and 0.5. In general, at lower KP1339 concentrations (50 - 100 µM) 

mainly additive effects were observed (CI values of 0.9-1.5). Furthermore, higher 

KP1339 doses (100 - 200 µM) increased the anticancer activity of sorafenib 

synergistically. Especially in HepG2 and VM-1 cells this led to a drastic reduction in CI 

values (CI values from 1.8 to 0.1 in HepG2 cells and from 1.3 to 0.4 in VM-1 cells). 
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Notably, synergistic activity of KP1339 with sorafenib was found in sorafenib-resistant 

(HCC1.1. and VL-8) as well as sorafenib-responsive cell lines (e.g. Hep3B, HepG2, 

HCC2, HCC1.2). Only, in the very sorafenib-sensitive hepatoma model B1, KP1339 with 

sorafenib solely additive effects were observed. This indicates that KP1339 co-

treatment in general enhances the activity of sorafenib and is able to overcome 

sorafenib resistance. 
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Figure 40: The indicated liver (Hep3B, HepG2, HCC1.1, HCC1.2, HCC2, and B1), lung cancer (VL-8) 

as well as melanoma cell lines (VM-1 were tested in combinations with sorafenib and KP1339. Cells 

were exposed for 72 hours, and their cytotoxicity was analysed by MTT assays. 
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Cell lines 
IC50 values for 

sorafenib 

IC50 values for 

KP1339 

IC50values in combination with 

5 µM sorafenib and KP1339 

Hep3B 5.443 µM 78.801 µM 63.815 µM 

HepG2 2.79 µM - 128.422 µM 

HCC1.1 - - 137.494 µM 

HCC1.2 3.211 µM 67.582 µM 120.486 µM 

B1 0.534 µM 103.046 µM 191.492 µM 

HCC2 3.194 µM 132.796 µM 131.939 µM 

HCC3 4.55 µM 29.898 µM 102.531 µM 

KB-3-1 - - - 

KBC-1 - 169.753 µM 155.619 µM 

VL-8 - 106.139 µM 38.585 µM 

A427 0.836 µM 186.845 µM 169.653 µM 

A549 8.769 µM - - 

AHWG - 101.691 µM 90.361 µM 

Calu-6 0.308 µM 135.284 µM - 

VM-1 9.341 µM 177.178 µM 108.031 µM 

VM-21 6.073 µM 116.989 µM 116.849 µM 

VM-48 9.475 µM 136.71 µM 128.126 µM 

GLC4 5.19 µM 127.157 µM 126.532 µM 

GLC4-ADR 4.075 µM 90.837 µM 118.312 µM 

HCT116 3.791 µM 42.438 µM 29.566 µM 

HCT116 p21 KO 4.155 µM 29.501 µM 26.065 µM 

Table 16: IC50 values were determined from the cytotoxicity tests of different carcinoma cell lines. 
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5.3.2. Enhanced accumulation of KP1339 in combination with sorafenib 

As the cytotoxicity assays revealed that co-treatment with sorafenib enhanced the 

efficacy of KP1339 in most of the investigated cell lines, we aimed to identify the 

underlying mechanisms responsible for the observed synergism. Sorafenib has 

beenrecently reported to inhibit multiple ATP-binding cassette (ABC) transporters, 

which are responsible for multidrug resistance due to enhanced drug efflux [195] for 

several drugs (e.g. doxorubicin [196], etoposide [197], topotecan [198], imatinib [199], 

gefitinib [200]). Thus, one possible explanation for the enhanced activity of the 

KP1339/sorafenib combination might be that sorafenib influences KP1339 efflux or 

uptake. 

Therefore, ruthenium levels after simultaneous treatment of KP1339 with sorafenib 

were determined by ICP-MS (Figure 41). Comparable to the results shown in Section 

3.3.1., significant KP1339 accumulation in a range of 5-10 ng/ 105 cells was detected in 

cells after treatment with 75 µM KP1339. Moreover, treatment with 150 µM KP1339 

led to further increase of the intracellular ruthenium levels in most cell lines (Hep3B, 

HCC1.2, VL-8, A549, and SPC111). With regards to the drug combination, sorafenib co-

treatment dose-dependently enhanced KP1339 uptake in most cell lines (Hep3B, 

HepG2, HCC1.1, HCC1.2, VL-8, SPC111). Especially, Hep3B, HepG2, and VL-8 cells 

turned out to be very responsive to the modulator effects of sorafenib with an 

increase of intracellular ruthenium of ~10-fold. Remarkably, in the ABC-transporter-

overexpressing and highly drug-resistant A549 cell model, sorafenib co-treatment had 

no significant effect on intracellular KP1339 accumulation. This suggests that although 

sorafenib leads to enhanced KP1339 levels, these effects seem to be not based on 

inhibition of ABC transporter function. This is in accordance with experiments using 

KB-3-1 and KBC-1 cell line which differs from KB-3-1 cell line in its ABCB1-

overexpression [201]. However, in case of the P-gp overexpressing KBC-1 cells no  
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Figure 41: Accumulation levels of KP1339 

with and without sorafenib in Hep3B, HepG2, 

HCC1.1, HCC1.2, A549, SPC111 and VL-8 cell 

lines after 3 hours drug exposure. Generally, 

sorafenib enhanced the ruthenium uptake 

into the cells.  
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synergistic activity of sorafenib in combination with KP1339 could be detected (data 

not shown). 
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5.3.3 Apoptosis-induction by combination therapy with KP1339 and sorafenib 

Cytotoxicity and uptake experiments indicated that sorafenib enhanced activity and 

accumulation of KP1339 in almost all cell lines investigated. To gain more insights into 

the mode of action underlying this drug combination, levels of apoptosis induction 

after drug treatment were determined. To this end, typical signs of apoptosis were 

examined in drug-treated cells after 24 hours exposure using DAPI staining (Figure 42 

and 43), and the number of normal, mitotic, and apoptotic cells were counted.  

Comparable to the results obtained in KB-3-1 cells (compare Figure 28 and 29), 

KP1339 mono-treatment dose-dependently increased the level of apoptotic cells also 

in Hep3B cells. This resulted in an increase in apoptotic cells from 4.5% in the control 

to 10 % and 47.7% after treatment with 75 µM and 150 µM, respectively (Figure 42). 

This was accompanied by a significant decrease in the number of mitotic cells from 

1.8% to 0.6% and 1.3%, respectively. Also treatment with sorafenib alone (5 and 10 
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Figure 42: Detection of morphological changes of nuclei after single and combinated drug 

treatment with sorafenib and KP1339. DAPI staining of Hep3B and VL-8 cells was analyzed after 24 

hours incubation with the indicated drug concentrations. Percentages of normal, mitotic and 

apoptotic/necrotic cells are shown. 
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µM) led to an increase in the number of apoptotic cells to 6.1% and 18.2%, 

respectively. After exposure to 10 µM sorafenib, a reduction in mitotic cells to 0.4% 

was observed. 

Combination of KP1339 with sorafenib did not enhance the levels of apoptotic cells 

and was at several concentrations even less effective in apoptosis induction than the 

single compounds. For example, while 150 µM KP1339 led to 47.7% apoptotic cells, 

addition of 5 µM sorafenib caused only 20% cell death. Also combination of 75 µM 

KP1339 with 10 µM sorafenib induced about 20% less cell death than 10 µM sorafenib 

alone. In contrast, sorafenib co-treatment significantly enhanced the anti-mitotic 

effects of KP1339 leading to complete loss of mitotic cells after combination of 75 µM 

KP1339 with 10 µM sorafenib or 150 µM KP1339 with 5 and 10 µM sorafenib. 

The combination therapy was also tested for its apoptosis-inducing potential in lung 

cancer cell line VL-8 (Figure 42). In comparison to Hep3B cells, KP1339 treatment 

resulted in higher apoptotic levels. Thus, after treatment with 75 µM and 150 µM 

KP1339 the percentages of normal cells decreased from 82% up to 11% and the 

amount of apoptotic/necrotic cells increased from 7.3% up to 88%. Again, KP1339 

induced very strong anti-mitotic activity reducing the number of mitotic cells from 

10.72% to 1% and 0% after treatment with 75 µM and 150 µM, respectively. Mono-

treatment of 10 µM sorafenib induced only minor changes in percentages of normal 

(from 82% to 83.9%), mitotic (from 10.7% to 7%) or apoptotic/necrotic cells (from 

7.3% to 9%). Comparably to the results obtained in Hep3B cells, combination of 

KP1339 with sorafenib was again strongly antagonistic in its apoptosis-inducing 

potential. Addition of 10 µM sorafenib reduced the number of dead cells from 88% to 

40% and 18%, respectively. With regard to the mitotic fraction, the combination of 

KP1339 with sorafenib again caused total disappearance of mitotic cells (from 10.72% 

to 0%). This suggests that the synergism of KP1339 with sorafenib is not based on 

enhanced apoptosis induction but a stronger cytostatic activity. 
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Figure 43: DAPI staining of Hep3B nuclei. The analyses were performed using fluorescence microscopy 

to visualize the morphological changes after drug exposure for 24 hours. (A) untreated cells, (B) 75µM 

KP1339, (C) 150 µM KP1339, (D) 5 µM sorafenib, (E) 5µM sorafenib and 75 µM KP1339, (F) 5 µM 

sorafenib and 150 µM KP1339, (G) 10 µM sorafenib, (H) 10 µM sorafenib and 75 µM KP1339, (I) 10 µM 

sorafenib and 150 µM KP1339. M… mitosis, A… apoptotic bodies. 

The reduced apoptosis-inducing potential of the KP1339/sorafenib combination was 

further analyzed by Western bloting using apoptotic PARP cleavage as a marker. As 

shown in Figure 44, PARP cleavage in Hep3B cells was induced in a dose-dependent 

manner after KP1339 mono-treatment. 150 µM KP1339 led to ~50% cleavage of PARP 

protein. In accordance to the results obtained by DAPI staining, the levels of apoptotic 

PARP cleavage were strongly diminished by sorafenib co-treatment. 
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Apoptosis is executed either intrinsically via mitochondria or extrinsically by activation 

of death receptors. One major characteristic of the intrinsic pathway is the disruption 

of the mitochondrial membrane potential, which leads to release of cytochrome c into 

the cytosol which then activates the caspase cascade. As shown in section 4.1., 

KP1339 is able to induce apoptosis via mitochondrial membrane depolarisation and 

activation of caspase 7. To test whether the combination of Sorafenib with KP1339 

has an impact on the KP1339-induced mitochondrial membrane depolarisation, the 

mitochondrial integrity of Hep3B cells after drug treatment was determined via JC-1 

staining (Figure 45). The influence on the mitochondrial membrane potential was 

detected after 3 and 24 hours drug exposure. Comparable to the results obtained in 

section 3.1., KP1339 slightly increased the level of depolarised of mitochondria after 3 

hours as well as 24 hours treatment. Also exposure with 5 µM sorafenib for 3 hours 

and 10 µM sorafenib for 24 hours led to increased mitochondrial disruption (from 4% 

to 8.3% and 6.3%, respectively). With regard to the drug combination, after 3 hours 

sorafenib cotreatment in general doubled the effects of KP1339 on mitochondria. 

After 24 hours, the levels of depolarized mitochondria further increased to 15% and 

18%, respectively. These data indicate that the reduction in the apoptotic cell number 

observed in DAPI staining and PARP cleavage is not due to reduced apoptosis 

induction by the KP1339/ sorafenib combination but due to reduced apoptosis 

execution. 

Figure 44: Detection of PARP cleavage in Hep3B cells after 24 hours drug exposure. 
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Figure 45: JC-1 stainings of Hep3B cells shown as histogram  after 3 hours drug exposure (A) and 

as % cells with depolarized mitochondria after 3 hours and 24 hours drug exposure (B) at several 

sorafenib and KP1339 concentrations. 
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Figure 46: 
3
H-thymidine incorporation in Hep3B cells after drug exposure for 6 hours. Sorafenib alone 

induced stronger inhibition of DNA synthesis in comparison to KP1339 alone. In the combination of 

these drugs, the levels of DNA synthesis did not differ from the samples treated with sorafenib alone. 

5.3.4. Effects of KP1339 and sorafenib co-treatment on DNA synthesis 

To analyze the activity of KP1339 and sorafenib on DNA, Hep3B cells were treated for 

6 hours, and the DNA synthesis levels in these samples were investigated using 3H 

thymidine incorporation assay (Figure 46). This experiment showed that both drugs 

inhibited DNA synthesis. Cells exposed with sorafenib alone showed lower levels of 

DNA synthesis compared to cells after KP1339 treatment. Interestingly, the co- 

treatment did not induce any enhanced inhibition of DNA synthesis, although both 

drugs alone demonstrated decreasing levels of DNA synthesis. Unexpectedly, the 

combination with 10 µM sorafenib and 25 µM KP1339 caused lower activity in altering 

of DNA synthesis. 
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5.3.5. Cell cycle alterations induced by KP1339 and sorafenib exposure 

To identify the alterations in cell cycle induced by the combination of KP1339 with 

sorafenib, the cell cycle distribution after 24 hours treatment was evaluated using PI 

staining and flow cytometry (Figure 47). In all cell lines tested, KP1339 exposure alone 

resulted in increased G2/M phase levels. Especially HCT116 and SPC111 cells were 

most responsive in this respect (from 14.57% to 55.29% and 19.9% to 51.95%, 

respectively), while in Hep3B only a small increase of cells in G2/M phase (von 7.1% 

auf 16.63%) were observed. In general the effects of sorafenib mono-treatment on 

cell cycle distribution were less pronounced. In accordance to the literature [202-204], 

sorafenib mono-treatment mainly induced dependent on the cell type and the used 

concentration either G0/G1- or S-phase arrest. Also with regard to the drug 

combination, the effects were found to strongly differ dependening on cell type and 

drug concentrations. 

In Hep3B cells 5 µM sorafenib increased the number of cells in the G2/M phase (from 

8% and 17% by treatment with 75 µM and 150 µM KP1339 to 20% and 21%, 

respectively). This was accompanied mainly by a decrease of G0/G1 phase cells while 

the number of cells in S-phase remained constant. In contrast, co-treatment with 10 

µM sorafenib completely abolished the KP1339-induced G2/M arrest, leading to an 

34% increase in the number of S-phase cells. 

Similar effects were observed in HCC1.1 cells. At low drug concentrations (5 µM 

sorafenib with 75 µM KP1339) sorafenib enhanced the KP1339-induced G2/M arrest 

by 40%, all other combinations induced ~ 65% increase of cells in S-phase. Comparable 

to previous cell lines tested, KP1339 again induced G2/M arrest with an 2-fold and 1.6-

fold increase, respectively. In contrast, 10 µM sorafenib caused a G0/G1 cell cycle 

arrest (from 51.62% to 66.65%). Moreover, the co-treatment of KP1339 and sorafenib 

led to a decrease by 56% of cells in S phase while the cells mainly arrested in G0/G1 

phase (from 45.56% after 75 µM KP1339 exposure to 61.51% in combination with 5 



RESULTS 
Combination tests with  

 KP1339 and sorafenib 

 

 

107 

µM sorafenib and to 63.52% in combination with 10 µM sorafenib, respectively). 

In cell lines, where KP1339 treatment induced very strong G2/M arrest, namely 

SW480, HCT116 and SPC111, combination with sorafenib was not able to completely 

abolish the increase of cells in G2/M phase after KP1339 treatment. Nevertheless, 

sorafenib co-treatment decreased the KP1339-induced G2/M arrest. In addition to the 

increase of G2/M induced by KP1339, the sorafenib increased the amount of S-phase 

cells in these cell models. This led to a drastic reduction of G0/G1-phase cells, in the 

samples treated with the KP1339/sorafenib combination setting, especially at high 

drug concentrations (Figure 47). 

5.3.6. Alterations in p38 MAPK and ERK pathway induced by KP1339/sorafenib 

combination 

Furthermore, in response to stress mammalian cells activate three well-characterized 

subfamilies of mitogen-activated protein kinases (MAPKs): ERK1/2, Jun N-terminal 

kinases (JNKs), and p38s [205-206]. It is known that deregulation of MAPK signaling is 

one of the most common alterations in human cancers. Consequently, sorafenib has 

been shown to inhibit the MAPK pathway [78, 194, 207]. Therefore, the effects of 

KP1339/sorafenib combination on this pathway were tested. In all cell lines 

investigated (Hep3B, HepG2, HCT116, and VM-1 cells), pp38 upregulation was 

observed after KP1339 mono-treatment. However, addition of sorafenib led to 

decrease of pp38 in Hep3B and HepG2 cells or total disappear in HCT116 and VM-1 

cells (Figure 48). In contrast, ERK1/2 level was not changed in HepG2 cells, while 

enhanced phosphorylation of ERK was detected after KP1339 mono-treatment and in 

combination with 5 µM sorafenib. Interestingly, co-treatment with 10 µM sorafenib 

decreased the pERK signal. 
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Fıgure 47: Impact of KP1339, sorafenib, and the combination on cell cycle detected via PI 

stainings of Hep3B as histogram (A) and several other cell lines as graphs (B. using GraphPad 

Prism 5.0. 
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Figure 48: Western blot analyzes in Hep3B, HepG2, HCT116, and VM-1 cells after 24 hour KP1339 

and sorafenib exposure. The protein extracts were tested against p38, pp38, ERK1/2 and pERK. 
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6. DISCUSSION 

Cancer is a disease caused by genetic mutations as well as genome alterations in DNA. 

These alterations allow tumor tissues uncontrolled growth and spreading into diverse 

organs. When untreated, the development of such distant metastases leads inevitably 

to the patient’s death [115]. The options to cure cancer patients especially surgery are 

mainly successful in the primary lesions at early-stage disease. At late stage, when the 

tumors are far progressed and distant metastases have developed, curative treatment 

by surgery or radiation therapy is often impossible. Therefore, systemic therapy with 

chemical drugs (or more recent antibodies) is often used to fight cancer at the 

metastatic stage. There is already a huge repertoire of clinical used chemotherapeutic 

drugs including several antibiotics (e.g. daunomycin, adriamycin), plant toxins (e.g. 

vincristine, paclitaxel), antimetabolites (e.g. 5-fluorouracil, cytarabine), as well as 

several metal compounds (e.g. cisplatin, oxaliplatin). However, especially the 

phenomena of drug resistance as well as unwanted side effects make the 

development of new anticancer drugs necessary. Thus, new drugs are frequently 

screened for their anticancer activity and there are currently several metal-based 

compounds with promising features [208]. 

Although the biological activities of ruthenium complexes were first recognized by 

Dwyer and co-workers in the 1950s [209-210], further researches were mainly 

performed after discovery and success of cisplatin in 1960s by Rosenberg et al. [106-

107]. Ruthenium compounds have attracted much attention as promising alternatives 

to platinum complexes. They show several advantages like tumor-selective toxicity, 

lower side effects, ligand-exchange abilities analogous to platinum complexes and a 

well-understood chemistry. KP1019 and KP1339 belong to the group of ruthenium 

compounds currently developed for anti-cancer treatment. KP1339 is the sodium salt 

of KP1019 and differs from KP1019 in the indazolium counter ion. It was suggested 

that these agents might exhibit similar anticancer activities and modes of action 
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because of their almost identical chemistry [132]. Although KP1019 was tested in a 

phase I dose-escalation clinical trial, KP1339 was selected for further clinical 

development [136].  KP1339 showed better pharmaceutical properties, such as 30-

fold more aqueous solubility in comparison to KP1019. 

The aim of the study was to determine the anticancer activity of KP1339 and to clarify 

the mode of action of this ruthenium compound. Molecular mechanisms underlying 

this activity were investigated on gene expression and protein levels including 

additional experiments detecting inputs on cell cycle alterations, disruptions in DNA-

synthesis or mitochondrial depolarization. Moreover, combinations with several other 

antitumor agents or tyrosine kinase inhibitors were performed in order to clarify their 

impact on the anticancer activity of KP1339 in the cell and to demonstrate possible 

synergistic molecular mechanisms induced by these co-treatments. 

6.1. KP1019 vs. KP1339 

Based on the close chemical relationship between KP1019 and KP1339, the evaluation 

of their effects on the tumor cells could help to get more information about the mode 

of action of ruthenium drugs as antitumor complexes. To this end, both drugs were 

analyzed using different approaches in hepatoma, cervix carcinoma, and colorectal 

carcinoma cell lines. Generally, it was observed that mechanistically both drugs act at 

least in most aspects very similar. The most obvious observation in all these 

experiments was the lower activity of KP1339 in comparison to KP1019. 

KP1019 and KP1339 differ in their cytotoxicity in most cases. Almost all cell lines 

investigated (Hep3B, HepG2, HCC1.1, HCC1.2, KB-3-1 cells) displayed distinct higher 

sensitivity to KP1019. In contrast, HCT116 cells (a colon carcinoma cell line) were the 

most responsive cell line to both ruthenium compounds. This sensitivity is surprising 

as colon cancer cells are known to be highly chemo-resistant with characteristic 
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features such as p53 mutations [211], overexpression of pro-survival protein bcl2 

[212], and multidrug-resistence genes [213-214]. 

Furthermore, intracellular accumulation of both drugs was determined as a possible 

explanation for the different anticancer activity. Ruthenium complexes, such as 

KP1019 and KP1339, have chemical similarity to iron, and it has been suggested that 

they accumulate into the cell via transferrin [123, 215], which is able to transport iron 

and other species (for example gallium) into cells [216]. Transferrin receptors are 

upregulated in tumor cells because of the increased requirement for iron. Thus, 

ruthenium complexes can accumulate specifically in tumor cells by interaction with 

the iron binding sites of transferrin [215, 217]. Additionally, these drugs have also 

been shown to bind to albumin [218] and diverse intracellular molecules, such as 

nucleotides and glutathione [219-226]. These interactions and binding partners could 

act as natural drug carriers for ruthenium drugs like KP1019 and KP1339. 

Interestingly, in all models investigated (Hep3B, HCC1.1, HCC1.2, KB-3-1, and HCT116 

cells), KP1019 accumulated in higher amounts into the cell. However, the drug uptake 

could not fully clarify the mechanisms leading to differences in apoptosis induction 

between KP1019 and KP1339. The accumulation levels of KP1019 did not correlate 

with the anticancer activity determined by cytotoxicity assays. High KP1019 

accumulation did not necessarily predict the cytotoxic activity, comparable to the 

study by Kapitza et al. [132]. Especially in Hep3B and HCC1.1 cells, highest KP1019 

levels in the cell were detected, although they were comparable more resistant 

against KP1019 in cytotoxicity assays. 

In further analyzes, the subcellular localization of KP1019 and KP1339 in the cell was 

analyzed as a possible mechanisms underlying the different activities of these 

ruthenium complexes. The accumulation of these ruthenium complexes was rapid as 1 

hour drug exposure already induced significant anticancer activity, and ruthenium 

levels in the cell did not increase with longer drug incubation. Interestingly, KP1019 
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was mainly located in cytosol (~75%), although KP1339 was found in high levels in 

nuclei (~90%). As described previously, ruthenium drugs might target DNA [227] 

comparable to cisplatin [228] or doxorubicin [229]. KP1019 is able to bind strongly to 

serum proteins in vitro [1, 216], which interaction might be also found with proteins in 

the cytosol. These findings suggest that the higher cytotoxicity of KP1019 might be 

based on the anti-tumor activations in cytosol, while the nuclear localization of 

KP1339 seem to correspond to a lower cytotoxic activity. Consequently, DNA damages 

induced by ruthenium compounds cannot be major mechanism to trigger apoptosis in 

cancer cells. KP1019 and KP1339 lead to apoptosis via several mechanisms which 

might be initiated by targets residing in the cytosol. 

In parallel to experiments regarding cytotoxicity and drug accumulation, DAPI 

stainings were performed to determine alterations in nuclear morphology after drug 

treatment. KP1019 induced more cells to undergo apoptosis in comparison to KP1339 

which correlates with cytotoxicity tests. Moreover, KP1019 and KP1339 in highest 

concentrations demonstrated an inhibiting effect on cell proliferation as no mitotic 

cells could be detected in nuclear morphology analyzes. To determine the 

mechanisms for apoptosis induction, the integrity of the mitochondrial membrane 

potential was also measured. Mitochondrial membrane depolarization was observed 

in a drug-dependent manner. For similar level of mitochondrial depolarization induced 

by KP1019, ~2-fold higher concentrations of KP1339 were required. Comparable to 

other studies [131-132], KP1019 and KP1339 induced apoptosis by direct action on the 

mitochondrial membrane which is a characteristic of Ru(III) complexes. 

Moreover, protein cleavages by caspases typical for apoptosis induction were 

detected in Hep3B, HepG2, and KB-3-1 cells. In all tested cell lines, PARP cleavage was 

observed after KP1019 as well as KP1339 exposure. Again, more potent cleavage was 

observed for KP1019. Moreover, it was also shown that caspase 3 and 8 levels 

remained unchanged in all cell lines tested, although Kapitza et al. [131] demonstrated 

a downregulation of procaspase 3 by KP1019 treatment of SW480 cells after 4 and 8 
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hours. Moreover, drug exposure triggered caspase 7 cleavage in all cell lines 

investigated and downregulation of caspase 9 only in HepG2 cells. These results 

indicate that the activation of intrinsic pathway of apoptosis by KP1019 or KP1339 is 

cell line-dependent at least with respect to caspase activation. 

Following analyzes for apoptosis induction, impacts of ruthenium drugs on cell cycle 

distributions were analyzed using PI staining and FACS analyzes. The treatment with 

ruthenium complexes led KB-3-1 cells to arrest in G2/M phase of the cell cycle in a 

drug- and dose-dependent manner. These alteration in cell cycle caused by KP1019 

and KP1339 are observed in more or less all tested cell lines suggesting that both 

drugs act in a very similar manner to growth inhibition and to induce apoptosis. 

Together with the results obtained in DAPI stainings, it can be concluded that the 

tested ruthenium drugs target cell proliferation because of the disappearance of 

mitotic cells after drug treatment. Notably, many studies have shown that exposure to 

several ruthenium complexes, such as KP1019-analogue imidazolium salt NAMI-A, 

lead to the arrest of cells in G2/M phase [230-231]. G2 checkpoint prevents cells from 

initiating mitosis when they experience DNA damage during G2, or they progress into 

G2 with some unrepaired damage inflicted during S or G1 phases [152, 232]. As 

described previously (compare to section 2.6.), the p53 tumor-suppressor protein, 

which controls genes involved in cell death and DNA repair, is a major transcription 

factor playing a key role in the regulation of G2/M checkpoint activation after stress by 

suppressing or transactivating specific genes [233]. However, also tumor cells with 

mutant p53 tend to selectively accumulate in G2 after treatment with KP1019/KP1339. 

This fact indicates that G2 arrest is based on p53-independent mechanisms [147]. An 

alternative explanation for the observed G2/M arrest might be the activation of p38. 

Phosphorylation of p38 leads to activation of other factors leading to cell cycle arrest 

or apoptosis [234-235]. To prove this hypothesis, p38-inhibitors can be used in 

combination with KP1339, and the changes in activity of this ruthenium compound 

can be investigated. Consequently, cell cycle arrest in G2/M phase might be a typical 
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mechanism of heterocyclic ruthenium compounds with anti-tumor activity. Moreover, 

cell cycle arrest points towards DNA double strand breaks or genetic errors like the 

ones typical for platinum compounds like cisplatin [236]. 

Based on the chemical similarity of ruthenium to platinum, it is expected that 

ruthenium compounds show in some aspects similarities in anti-tumor activities with 

cisplatin. Treatment with cisplatin induced forming of DNA-adducts resulting in 

apoptosis [237]. Consequently, several studies have also shown that the ruthenium 

complex KP1019 might be able to interact with DNA and to form cross-links or induce 

strand breaks [131]. Although platinum compounds induce apoptosis mainly via 

monofunctional adducts, intrastrand and interstrand crosslinks [238-240], these 

ruthenium compounds trigger cell death via mitochondrial pathway additionally to 

induction of DNA damages [132]. Moreover, it was detected that endogenous bcl2 

down-modulation may explain lower sensitivity to ruthenium and platinum 

compounds in some cell lines [132, 241-242]. Activation of caspase 3, 8, and 9 is 

attenuated in cisplatin-resistant cells [1, 243-248], whereas downregulation of 

procaspase 3 [131] and caspase 9 beyond cleavage of caspase 7 were determined. 

Another similarity of these compounds is inducing G2 cell cycle arrest typical for DNA 

damaging agents [236]. Nevertheless, the intracellular ruthenium-protein binding 

pattern of KP1019 and KP1339-treated cells distinctly differed from the platinum-

protein-binding pattern observed after cisplatin treatment. Additionally, KP1019-

induced cell death is independent of the p53 status in tumor cells [1], although p53 

promotes increased sensitivity to cisplatin [249]. Interestingly, cisplatin is not a 

substrate for the P-glycoprotein which is overexpressed in multi-drug resistant cells 

and functions as a drug efflux pump [250-252]. In contrast, overexpression of P-

glycoprotein reduced weakly but significantly KP1019 activity in cancer cells [134]. 

In summary, both ruthenium drugs are promising metallopharmaceuticals against 

several cancer types, especially against platinum-resistant cell lines. They have in most 

aspects similarities, although KP1019 showed generally higher anti-tumor activity. 



DISCUSSION 

 

 

117 

They displayed correlating cytotoxicity, induction of mitochondrial depolarization, 

triggering of apoptosis through caspase 3 and 7, and cell cycle arrest in G2/M phase. 

Based on the high activity of KP1019, it may be hypothesized that KP1019 might be 

able to accumulate at higher levels in the cell or might lead to inhibition of drug efflux 

pumps. Notably, several studies reported that KP1019 acts as a substrate and as an 

inhibitor of ATPase activity of P-glycoprotein, although the interaction between 

KP1019 and P-glycoprotein can be influenced by serum proteins [134]. This could 

suggest that KP1019 cannot be exported via this pump from the tumor cells. 

Nevertheless, higher accumulation levels of KP1019 cannot fully explain its higher 

cytotoxicity in all cell lines investigated. Another suggestion for different anti-tumor 

activities of KP1019 and KP1339 is their different localization in the cell. Apparently, 

KP1019 remains in cytosol, while KP1339 accumulates mainly in nuclei of tumor cells. 

Nevertheless, it was hypothesized that KP1019 induced DNA strand breaks 

characterized by ruthenium compounds although it localized mainly in cytosol. It is 

suggested that oxidative stress induced by KP1019 caused DNA damages [131]. 

KP1339 displayed lower activity although its localization in nuclei, and KP1339 higher 

cytotoxicity probably via protein interactions in cytosol. Consequently, the ability to 

damage DNA cannot be the only reason for anti-tumor activity of these ruthenium 

compounds, and major targets for this anticancer ruthenium compound seem to 

reside in the cytoplasm. Probably, the binding of KP1019 to cytosolic proteins 

corresponds its activity. 
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6.2. Combination tests with KP1339 and other chemical compounds 

KP1339 is a ruthenium drug whose mode of action is not fully clarified yet. To gain 

more insights into the mechanism underlying the anti-tumor activity of KP1339, 

carcinoma cell lines were treated with this ruthenium drug in combination with 

several other chemical compounds. With regard to the theory that ruthenium 

complexes accumulate into the cell in a transferrin-dependent manner [253], cells 

were co-incubated with FeCl3 and Gallium nitrate. These chemical complexes are 

known to utilize the transferrin-dependent pathway for accumulation into the cell 

[254-255]. 

Generally, FeCl3 co-treatment enhanced activity of KP1339 in most hepatoma cell lines 

tested. In contrast, KB-3-1 cells did not display any enhanced anti-tumor activity of 

KP1339 in a FeCl3-dependent manner. 

Iron is an essential element for virtually all living organisms. Iron is required for 

survival and proliferation, as a constituent of other hemoproteins, iron-sulfur (Fe-S) 

proteins, and proteins that use iron in other functional groups to carry out essential 

housekeeping functions for cellular metabolism. However, iron also is possible toxic 

agent because of the inter-conversion of Fe(II) and Fe(III) and side reactions between 

iron and oxygen [256]. To this end, cellular iron homeostasis necessitates tight control 

of iron uptake, storage, and export and management of intracellular iron distribution 

[257]. In mammals, iron is primarily absorbed from the diet by intestinal epithelial 

cells through the apical membrane protein divalent metal transporter 1 (DMT1). These 

cells export iron into the bloodstream through basolateral membrane protein 

ferroportin [257-259], and exported iron binds to the serum carrier transferrin for iron 

transport throughout the body. Body iron is sensed by the liver, and in response liver 

synthesizes and secretes hepcidin. Hepcidin negatively regulates iron export from 

intestinal cells via degradation of ferroportin, decrease of serum iron concentration, 

and increase of intracellular iron content [260]. Moreover, TfR1 expression is 
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regulated by RNA binding-proteins IRP1 and IRP2. At low cellular iron concentrations, 

degradation of TfR1 mRNA is inhibited, and the expression is increased leading to 

transferrin-bound iron uptake [257, 261]. Intracellular iron levels are stringently 

regulated as a labile iron pool (LIP) which provides optimum iron levels for vital 

biochemical reactions and limits the availability of free iron for generation of ROS. 

Once iron enters the cell, the portion that is not needed for immediate use is stored 

by ferritin [262]. In accordance to this, treatment with FeCl3 would lead to 

downregulation of TfR expression, upregulation of transferrin, and probably to 

oxidative stress because of presence of harmful “free” iron. 

In humans, hepatic iron overload diseases may occur leading to the development of 

cirrhosis and hepatocellular carcinoma [263]. Furthermore, many studies have shown 

that transferrin receptor 2, which is responsible for iron internalization in addition to 

transferrin receptor 1 via binding to transferrin [264], is highly expressed in the liver 

[265]. The study by Heffeter et al. has shown that TfR-overexpressing cells were 

hypersensitive to KP1019 [134]. Thus, more transferrin-bound ruthenium compounds 

can be taken up into the cell via TfR. This might explain the higher sensitivity of 

hepatoma cell lines to KP1339 in combination with FeCl3. However, it has been shown 

that Hep3B cells have no detectable TfR2 expression, while HepG2 cells express this 

receptor endogenously [266]. As the effect of FeCl3 was not higher in HepG2 cells than 

in Hep3B cells, it cannot be explained by expression of TfR2 in hepatoma cell lines. 

Additionally, another study has shown that even in HepG2 cells TfR1 expression was 

much higher than TfR2 [267]. To this end, it can be suggested that KP1339 

accumulation is TfR2-independent, and probably occurs mainly via TfR1. 

Moreover, hepatocytes are the main storage site of iron in the body, and accordingly 

the liver is the organ most likely to be afflicted by iron overloading [268]. Iron 

overloading causes the generation of “free” iron (redox active) which catalyzes the 

formation of highly toxic reactive oxygen species (ROS) [269]. In accordance, ROS 

production leads to production of antioxidants to reduce any possible damages in the 
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cell. The major and most studied cofactors are ascorbic acid and glutathione (GSH), 

which are also linked to iron homeostasis [270-271]. Ascorbic acid, as a reducing 

agent, is able to release iron from ferritin and mobilize iron from the 

reticuloendothelial system to transferrin, which leads to increased iron availability and 

may prevent tissue iron overload [272-273]. Furthermore, GSH has been found to be 

elevated in a number of drug-resistant tumor cell lines [274-278]. Huang et al. have 

shown that GSH level is increased in human HCC [279]. Another feature of these 

reducing agents is that they lead to reduction of the ruthenium (III) complexes 

resulting in activation of these compounds such as KP1019 and KP1339 [225]. 

Moreover, it was shown that concentration-dependent accumulation of iron was 

accompanied by a biphasic change in the intracellular GSH level. Concentrations up to 

80 µM iron, corresponding the concentrations tested in section 3.2, resulted in 

marked increase in GSH levels [280]. To this end, higher GSH levels dependent on iron 

overload and ROS production may explain the synergistic activity of KP1339 in 

combination therapy with FeCl3 in hepatoma cell lines. 

Additionally, combination therapy of KP1339 and Gallium nitrate was tested in Hep3B 

and KB-3-1 cells. Comparable to the results obtained with FeCl3, Hep3B cells displayed 

high synergism, while this effect was less pronounced in KB-3-1 cells. Gallium has been 

shown to share several properties with iron with respect to Tf binding [281], cellular 

uptake by TfRs [282-283], and incorporation into ferritin [283-284]. Both elements are 

present in intracellular “pools” in the cell and may compete for binding to 

macromolecules essential for cellular function [192]. Moreover, Chitambar et al. have 

demonstrated that exposure of HL60 cells (leukemia cell line) to Tf-Ga results in a 

decrease in iron uptake, an increase in cellular TfR number, and a subsequent growth 

arrest of these cells [285]. This increase of TfR expression might lead to higher 

accumulation and anti-cancer potential of KP1339. Furthermore, the inhibition of iron 

uptake after gallium treatment may render cells sensitive to the interference of 

iron/redox homeostasis by KP1339. 
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Also in case of doxorubicin (adriamycin), it was demonstrated that apoptosis is 

accompanied by a significant increase in TfR-mediated uptake of transferrin iron and 

that blockade of iron uptake by an anti-TfR antibody abolishes adriamycin-induced 

apoptosis [286]. Interestingly, combination of KP1339 with adriamycin showed 

additive to antagonistic activity, but no synergism. This observation can be explained 

by anti-cancer activity of adriamycin. Adriamycin belongs to the group of 

anthracyclines with ability to intercalate into DNA and induce DNA damages followed 

by growth arrest in G1 and G2 [287-289]. To this end, it suggests that adriamycin 

features additional mechanism resulting in apoptosis and may abolish the anti-tumor 

activity of KP1339. 

Another drug, which has been shown to interfere with the cellular iron metabolism is 

triapine. Triapine is an iron chelator and known to inhibit the iron-dependent enzyme 

ribonucleotide reductase which catalyzes the reduction of ribonucleotides to 

deoxyribonucleotides and is essential for cell proliferation. After formation of an 

intracellular Fe-complex, triapine is also able to generate reactive oxygen species 

(ROS) [193], and the characteristic of this thiosemicarbazone makes it very interesting 

for co-treatment with KP1339. As mentioned previously, ruthenium drugs such as 

KP1019 are suggested to induce oxidative stress reactions resulting in DNA damages 

[131]. Based on these similarities in mode of action, the co-treatment of KP1339 with 

triapine was performed. Comparable to the results obtained with FeCl3 and Gallium 

nitrate, combination of KP1339 and triapine showed strong synergistic effects in 

Hep3B cells, while KB-3-1 was very resistant against this co-treatment. 

In general, all these complexes are known to play a role in iron metabolism based on 

their common uptake mechanism via transferrin and/or as an iron chelator. Especially 

hepatoma cell models showed enhanced sensitivity to KP1339 in combination with 

these compounds. Nevertheless, alterations in iron homeostasis and ROS production 

cannot fully explain the mode of action of KP1339 that probably features additionally 

mechanism to induce apoptosis. 
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6.3. Combination tests with KP1339 and tyrosine kinase inhibitor 

sorafenib 

Previous analyzes have shown that KP1339 is able to trigger the intrinsic cell death 

pathway resulting in apoptosis, probably via ROS production and alterations in iron 

metabolism. In addition, this ruthenium drug showed high activity mainly in hepatoma 

cell models after mono-treatment as well as combination with several chemical 

compounds. As sorafenib (BAY 43-9006) is the currently approved first-line 

therapeutic against hepatocellular carcinoma (HCC), the effects of KP1339 on 

sorafenib efficacy were tested. Sorafenib is an oral, small-molecule tyrosine kinase 

inhibitor targeting vascular endothelial growth factor (VEGF) receptors 2 and 3, serine 

kinase B-Raf, Raf-1, and platelet-derived growth factor receptor (PDGFR) [78, 290]. 

Due to its impressive activity, sorafenib moved into phase II and III clinical trials [291], 

and FDA has approved sorafenib for treatment of renal cell carcinoma (RCC) and HCC. 

In this study, combination of KP1339 and sorafenib was tested in several cell models 

with a focus on liver cancer. In all cell lines investigated, additive to synergistic 

activities were observed after co-treatment with KP1339 and sorafenib. Notably, this 

enhanced activity was detected especially in HCC cell lines. This observation might be 

explained by alterations of KP1339 accumulation levels induced by sorafenib. It was 

demonstrated that addition of sorafenib increased ruthenium levels up to ~10-fold 

higher in almost all cell lines tested (Hep3B, HepG2, HCC1.1, HCC1.2, VL-8, and 

HCT116 cells), except lung carcinoma model A549. 

This might be explained by interactions of KP1339 and sorafenib with several drug 

transporters. It has been shown in some cell models that sorafenib is transported by 

the multidrug-resistance-conferring efflux transporters ABCB1 (P-gp) and ABCG2 

(BCRP) and inhibits the function of these ABC transporters [195, 292]. As previously 

mentioned, KP1019 is a P-gp substrate and the overexpression of P-gp reduced 

KP1019 activity [134]. Consequently, sorafenib might inhibit the P-gp-dependent 
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KP1339 efflux resulting in higher ruthenium accumulation after co-treatment with 

sorafenib. This might be the reason why in HepG2 cells with higher P-gp levels a 

stronger enhancement of ruthenium accumulation in combination with sorafenib was 

observed as compared to Hep3B cells with lower P-gp levels (especially at higher 

sorafenib concentrations) [293]. In contrast, KB-C-1 cells with overexpressed P-gp and 

A549 cells with upregulated MRP1 did not demonstrate synergistic activity of KP1339 

and sorafenib (data not shown). 

Moreover, another study demonstrated that sorafenib is a substrate for efflux from 

cells by RLIP76. RLIP76 is a stress-responsive membrane protein and plays a key role in 

defending cancer cells from radiation, chemotherapeutic toxin-mediated apoptosis, 

and oxidant injury [291] via mediating efflux of GSH-conjugates and chemotherapeutic 

agents from cells [294]. Moreover, increased expression of RLIP76 was observed in 

several human tumors, such as kidney cancer [291, 295]. Sorafenib is a competitive 

inhibitor of RLIP76-mediated gluthathione conjugate transport [291]. As mentioned 

previously, KP1019 can be reduced and get activated by glutathione. By Schluga et al. 

on interaction of GSH and KP1019 as well as with other ruthenium compounds was 

proven [225]. However, these investigations did not report any conjugates of GSH and 

KP1019 as well as KP1339 so far. Nevertheless, a possible conjugation to GSH might 

explain the higher accumulation and stronger cytotoxicity of KP1339 in combination 

with sorafenib. 

Furthermore, additive to synergistic activity of the tested co-treatment might also be 

explained by enhanced cytotoxicity induction. Based on the assumption that the anti-

tumor activity of KP1339 is mainly mediated by ROS production, any effect of 

sorafenib leading to imbalance of the intracellular redox homeostasis might serve as 

an explanation for the observed synergistic activity. Reactive oxygen species (ROS), 

including O-2, OH and H2O2, are important in signal transduction and regulation of 

several pathophysiological processes, such as cell cycle progression and apoptosis 

[296-297]. Cells produce ROS through multiple mechanisms. However, the major 
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source of ROS is mitochondria [298]. Electron leakage from the mitochondrial 

respiratory chain may react with molecular oxygen resulting in formation of 

superoxide, which can be converted to other ROS [299]. To prevent the cells from 

oxidative damage of lipids, proteins, and DNA, intracellular ROS levels must be strict 

by controlled [300]. For maintaining ROS homeostasis, cells balance ROS generation 

with their elimination by ROS-scavenging systems such as superoxide dismutases 

(SOD1, SOD2, and SOD3), glutathione peroxidise, peroxiredoxins, glutaredoxin, 

thioredoxin, and catalase. An increase in the level of ROS may result in transient 

cellular alteration and further in irreversible oxidative damage leading to cell death 

[299]. 

Moreover, several studies have shown that oxidative stress is involved in the process 

of carcinogenesis [301-304]. The regulation and recognition of ROS production occurs 

via Ras-Raf-MEK1/2-ERK1/2 signalling and the p38 mitogen activated protein kinases 

(MAPK) pathway. Notably, Ras-Raf-MEK1/2-ERK1/2 signalling is related to oncogenesis 

while p38 MAPK pathway participates in cancer suppression via inducing apoptosis or 

cellular senescence [234, 305-306]. Inhibition of Raf by sorafenib directly interferes 

with this pathway and inhibits the activation of ERK and p38. 

Oxidative stress and Ras activation lead to the production of ROS [307]. In cells with 

activated Ras-Raf-MEK sorafenib, ROS cause non-apoptotic, oxidative cell death [308]. 

Furthermore, oncogenic Ras activates MEK, p38, and other downstream kinases and 

proteins which in turn suppress Ras-induced cell proliferation by blocking activation of 

JNK. In accordance to ROS production, p38 signalling cascade may be activated which 

is prerequisite for oxidative stress-mediated functions of ROS such as apoptosis in 

cancer cells [305, 309]. 

Through activation of Ras, several other components in the cell are upregulated or 

blocked. For example, oncogenic Ras induces upregulation of vascular endothelial 

growth factor (VEGF) [310] which has been reported as an additional target of 
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sorafenib. Notably, preliminary results obtained using the antibody array screen 

showed that KP1339 short term exposure enhanced phosphorylation of VEGFR in 

colon adenocarcinoma cell line SW480 cells (data not shown). Notably, the stimulation 

of VEGFR is an important antiapoptotic factor resulting in enhanced proliferation of 

tumor cells. Thus, KP1339 mono-treatment may result in escape of tumor cells from 

apoptosis by activation of several pathways strongly suppressed by addition of 

sorafenib. These observations suggest that enhanced anti-tumor efficacy of the 

KP1339/sorafenib combination might be based on inhibition of KP1339-induced 

activation of e.g. VEGFR by sorafenib. 

Indeed, our data showed that KP1339 treatment stimulated phosphorylation of p38 

and ERK. KP1339 mono-treatment led to strong increase of pERK phosphorylation 

which was downregulated after addition of sorafenib. Sorafenib has been shown to 

inhibit the MAPK signaling cascade in both melanomas and breast cancer preclinical 

models and ERK signaling in HCC models [78, 194, 207]. In case of the ERK1/2 

pathway, phosphorylation activates ERK1/2, followed by translocation to the nucleus. 

Here, it phosphorylates several nuclear transcription factors such as Elk-1, Myc, CREB, 

and FOS, which subsequently bind promoters of many genes resulting in stimulation 

of cell proliferation, differentiation, and survival [311-313]. Similar to observations in 

VEGFR expression, KP1339 stimulated the phosphorylation of ERK1/2 probably based 

on its potential to produce ROS. The inhibition of KP1339-induced pERK by sorafenib 

suggests that tumor cells were not able to activate survival pathways and 

consequently underwent apoptosis triggered by KP1339 mono-treatment. Moreover, 

similar results were found for p38, where phosphorylation also increases after KP1339 

treatment. Again, co-treatment with sorafenib blocked this survival pathway 

activation. With regard to these findings, ROS production by KP1339 may activate p38 

MAPK while sorafenib inhibits the Ras-induced p38 phosphorylation. These alterations 

in phosphorylation of ERK and p38 correspond with other studies regarding activities 

of sorafenib [194, 207, 314]. Notably, in both cases the efficacy of 125orafenib was 



DISCUSSION 

 

 

126 126 

able to abolish partially or totally the upregulation of pERK and pp38 induced by 

KP1339. 

Furthermore, cell cycle alterations dependent on 126orafenib/KP1339 co-treatment 

were investigated. In almost all cell lines investigated, KP1339 mono-treatment 

induced G2/M cell cycle arrest (compare to section 5.3.5). Regarding to the suggestion 

that KP1339 causes ROS production, several studies have shown that ROS are able to 

trigger activation of cell cycle checkpoints [315]. Moreover, ROS production in cells 

has been reported to peak in the G2/M phase of the cell cycle in some studies [316]. 

Additionally, other reports have indicated that phosphorylation of p38 MAPK is 

required for the induction of cell cycle arrest in the G2 phase dependent on 

environmental stress [154, 317]. As p38 phosphorylation has been shown to increase 

in response to ROS [318], KP1339 might induce G2/M phase arrest based on the 

activation of p38 through ROS generation. Moreover, an antibody array screen in 

SW480 cells indicated that other key regulators in G2/M phase, such as CDK1 and 

Cdc25b, were downregulated by KP1339 mono-treatment (data not shown). 

In contrast to KP1339, 126orafenib alone in our experiments caused G0/G1 or S cell 

cycle arrest. In accordance, other reports have also shown that sorafenib is able to 

cause G1 [202-203] or S phase arrest [204]. Consequently, sorafenib decreased the 

expression of severe key regulators of the G1/S transition such as cyclin D1, cyclin D3, 

CDK4, and CDK6 [202, 319]. Additionally, it was found that mouse embryonic 

fibroblasts were arrested in G1 phase with a 70% decrease in cyclin D1 levels, when 

cells were treated with NAC resulting in reduction in intracellular redox state [320]. 

The combination of KP1339 and sorafenib showed mainly G0/G1 cell cycle arrest 

indicating that sorafenib abrogates or overrides the KP1339-induced G2/M arrest. The 

enhanced G0/G1 cell cycle arrest in response to combination treatment is very similar 

to the study by Heim et al. who have worked with sorafenib in combination with 

oxaliplatin or cisplatin [321]. In this study, sorafenib abolished the G2/M arrest 
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induced by cisplatin, which was suggested to be based on sorafenib-induced inhibition 

of CDC2 expression, a protein which is a regulator in G2/M phase [321]. Similar 

interactions might be the underlying mechanisms explaining the reduction of KP1339-

induced G2/M arrest by sorafenib treatment. 

Our data showed that the synergistic activity of KP1339/sorafenib combination may 

be based at least in part on uptake mechanisms, such as drug transporters, and/or 

intracellular processes caused by ROS production. Furthermore, another explanation 

for the synergistic activity of sorafenib and KP1339 might be the induction of ER stress 

via different but synergizing pathways. Rahmani et al. have suggested that sorafenib 

may induce apoptosis additionally to known mechanisms, such as targeting MAPK 

pathway and VEGFR, in a MEK1/2-ERK1/2-independent manner [322]. In this study, 

they have demonstrated that sorafenib induced cell death in human leukemia cells 

through generating of ER stress rather than inactivation of the MEK1/2-ERK1/2 

pathway [322]. Sorafenib treatment led to rapid increase in phosphorylation of eIF2α 

and PERK, which have been shown to protect cells against ER stress inducers [323-

325]. They have reported that these events were accompanied by pronounced 

generation of ROS through a mechanism dependent on cytosolic-calcium mobilization 

and a significant decline in GRP78/Bip protein levels [322]. Interestingly, similar results 

were observed in our antibody array screen and Western blot analyzes (data not 

shown). After 1 hour KP1339 exposure of Hep3B and HCT116 cells, the level of 

phosphorylated eIF2α was significantly decreased. Additionally, Rahmani et al. have 

found that sorafenib further induced IRE1α upregulation [322]. Western blot analyzes 

of Hep3B extracts revealed that the protein level of IRE1α increased after treatment 

with KP1339 and with sorafenib. Moreover, co-treatment of sorafenib and KP1339 

caused a stronger increase of IRE1α level (data not shown). These observations 

suggest that KP1339 and sorafenib induce via similar mechanisms and factors ER 

stress resulting in cell death. However, we suggest that ER stress induced by 
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KP1339/sorafenib combination cannot be the main mechanism to enhance anti-tumor 

activity and/or trigger apoptosis. 

In summary, the observed synergism between sorafenib and KP1339 might be based 

on several mechanisms: 1) KP1339/sorafenib combination resulted in enhanced 

accumulation of KP1339. 2) Both sorafenib and KP1339 led to apoptosis via 

mitochondrial pathway, and they act additive to synergistic in depolarization of 

mitochondrial membrane potential. 3) Both compounds induce ER stress via different 

mechanisms in addition to inhibition of several tyrosine kinases and ROS production. 

4) KP1339 induced several MAPK-pathways, which are believed to represent the major 

survival signaling upon stress situations. Sorafenib was shown to inhibit these survival 

pathways. Surprisingly, co-treatment was synergistic but did not cause higher levels of 

late stage apoptotic cells, indicating that the observed reduction of cell death is not 

based on reduced apoptosis induction but on hampered execution.  

Overall, these data demonstrate that KP1339 and sorafenib act synergistically via 

multiple mechanisms, which makes this combination very promising against liver 

cancer. Especially, in the light of the tumor cell heterogeneity underlying frequent 

treatment failure, such multi-factorial treatment approaches are in the center of 

interest in experimental therapy research. 
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7. CONCLUSION 

In this study, it was demonstrated that the ruthenium compound KP1339 represents a 

promising novel anticancer metal drug. Moreover, the synergistic activities of 

combinations with agents influencing intracellular iron homeostasis or ROS generation 

indicated that KP1339 interacts with the cellular iron and redox balance. Interestingly, 

co-treatment with tyrosine kinase inhibitor sorafenib (Nexavar®), currently 

representing the standard therapy in liver cancer, enhanced the cytotoxic and 

cytostatic effects of KP1339. Based on these findings, further in vivo analyses should 

be performed with this very promising ruthenium compound alone as well as in 

combination with other tyrosine kinase inhibitors to pave the way for clinical 

evaluations in cancer patients. 

 

Diese Arbeit hat gezeigt, dass die Ruthenium-Verbindung KP1339 stellt ein neues 

vielversprechendes Anti-Krebs-Metall-Medikament. Weiters wurden synergistische 

Aktivitäten in KP1339-Kombinationen mit unterschiedlichen chemischen Verbindungen 

gezeigt, die intrazelluläre Eisenhomöstasie oder ROS-Produktion beeinflussen.  

Dementsprechend wurde es festgestellt, dass KP1339 mit zellulärem Eisenspiegel und 

zellulärer Redox-Balance interagiert. Interessanterweise, die Kombination mit Tyrosin-

Kinase-Inhibitor Sorafenib (Nexavar®), welcher zurzeit als Standardtherapie für 

Leberkarzinomen gilt, verstärkte die cytotoxischen und cyostatischen Wirkungen von 

KP1339. Anhand von diesen Ergebnissen sollen weitere in-vivo-Analysen durchgeführt 

werden, in denen dieser vielversprechende Ruthenium-Komplex sowohl alleine als auch 

in Kombinationen mit anderen Tyrosin-Kinase-Inhibitoren verwendet werden, um 

klinische Evaluationen in Krebspatienten zu ermöglichen. 
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8. ABBREVATIONS 

ABC ……….……….. ATP-binding cassette 

AFB1 ………………. Aflatoxin B1 

ANT ………………… Adenine nucleotide translocator 

Apaf-1 …….…….... Apoptosis protease-activating factor 1 

ASC ………………… Apoptosis-associated speck-like protein 

ATP …………..……. Adenosine triphosphate 

ATR …………....….. Ataxia telangiectasia- and Rad3-related 

BSA ………..….…… Bovin serum albumin 

CDK ……………..…. Cyclin-dependent kinase 

CIN ………..……..… Chromosome instability 

Cisplatin ….………. cis-diamminedichloroplatinum(II) 

DAPI …………..…… 4',6-diamidino-2-phenylindole 

dATP …………….... Deoxyadenosine triphosphate 

DDR ……….…..….. DNA damage response 

DLC1 ………………. Deleted in liver cancer 1 

DMSO …….....…… Dimethyl sulfoxide 

DMT1 ..............…. Divalent metal transporter 1 

DNA ………...…….. Deoxyribonucleic acid 

DSB …………..….... Double strand breaks 

EGFR ………..…….. Epidermal growth factor receptor 

ER ………......……… Endoplasmic reticulum 

FACS ……..………… Fluorescence-activated cell sortiment 
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FCS ………………….. Fetal calf serum 

FeCl3 ……………..… Iron chloride 

Fe-S ……………….... Iron-sulfur 

FLT ……….…………. FMS-like tyrosine kinase 

GSH …………….…… Glutathione 

HBV ……………..….. Hepatitis B virus 

HBX ……………….… Hepatitis B virus X protein 

HCC …………..…….. Hepatocellular carcinoma 

HCV ……………..….. Hepatitis C virus 

HGF ……………….… Hepatocyte growth factor 

HIF-1 ..................... Hypoxia inducible factor-1 

ICP-MS …….……….. Inductively-coupled mass spectrometry 

IGF …………………... Insulin-like growth factor 

IL-1β ………….……... Interleukin-1β 

IL-6 ….................…. Interleukin-6 

JC-1 ………. 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethyl-benzimidazolocarbocyanine iodide 

JNK …..............……. c-Jun N-terminal kinase 

KP1019 …………...… trans-(tetrachlorobis(1H-indazole)ruthenate(III)) 

KP1339 ................. Sodium trans-(tetrachlorobis(1H-indazole)ruthenate(III)) 

LIP ………………….… Labile iron pool 

MAPK …………….... Mitogen activated protein kinase 

MDR ……………..…. Multidrug resistance 

MMP7 …………..…. Matrix metalloproteinase 7 

MRP ………………….. Multidrug resistance protein 
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MTT ………..………… Dimethyl thiazolyl diphenyl tetrazolium salt 

NAC …………………… N-acetyl-cysteine 

NAMI-A ………..… Imidazolium-trans-imidazoledimethyl-sulfoxide-tetrachlororuthenate 

NEAA ……….....……. Non-essential amino acids 

NFκB …………………. Nuclear factor κB 

NSLC ……………….… Non-small lung carcinoma 

PBS …………………... Phosphate buffered saline 

PCD ………………..…. Programmed cell death 

PDGF ………………... Platelet-derived growth factor 

P-gp ………………….. P-glycoprotein 

PI ………………….….. Propidium iodide 

PI3K ………….………. Phosphotidyl-inositol-3-OH kinase 

PIKK ………….………. Phosphotidyl-inositol-3-OH kinase-like kinase 

PMSF ………………… Phenylmethanesulfonylfluoride 

PTP ………………..…. Multiprotein pore 

PVDF ……..….……… Polyvinylidene fluoride 

Rb ……………...…….. Retinoblastoma protein 

RCC ………..….….….. Renal cell carcinoma 

ROS ……………….….. Reactive oxygen species 

SCC ……..……..….…. Squamous cervix carcinoma 

SDS-PAGE ……….…. Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEC-ICP-MS ….….…. Size-exclusion chromatography-ICP-MS 

SOD …..….…….……. Superoxide dismutase 

TAM …………………. Tumor-associated macrophage 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
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TBST …..……….……. Tris-buffered saline with Tween 

Tf ………………..……. Transferrin 

TfR ………….……..…. Transferrin receptor 

TGFα….……………… Tumor growth factor α 

TFβ …………………... Tumor growth factor β 

TMAH ..……...……...Tetramethylammonium hydroxide 

TNFα ……..........…. Tumor necrosis factor α 

VDAC …….…………. Voltage dependent anion channel 

VEGF ……….....……. Vascular endothelial growth factor 
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