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Abstract 
 

CD45 was one of the first signaling molecules identified on leukocytes and 

is used as a leukocyte marker molecule. It is the prototypic member of 

transmembrane receptors like protein tyrosine phosphatases (PTPs) and 

various forms of it are expressed on all nucleated hematopoetic cells. 

CD45 plays an essential role in immune functions by dephosphorylating 

different substrates. Recently an alternative function for the intracellular 

domain of CD45 (ct-CD45) was discovered by our group. It was shown 

that CD45 is cleaved and ct-CD45 is released during activation of human 

monocytes and granulocytes by fungal stimuli. Furthermore ct-CD45 was 

found to ct-CD45 act as a cytokine like factor which inhibits T cell prolifera-

tion induced by dendritic cells or CD3 antibodies. The cytoplasmatic tail of 

CD45 can thereby act as an intercellular regulator between the innate and 

the adaptive immune system. In this study the direct impact of ct-CD45 on 

the activation and function of T cells was further investigated in an antigen 

presenting cell free system. We found that ct-CD45 inhibited CD3 and 

CD3/CD63 but not CD3/CD28 induced proliferation in peripheral T cells 

and that it did not inhibit the proliferation of cord blood T cells which were 

stimulated the same way. Surprisingly the production of IL-2, IL-4, IL-10, 

IL-13, IL-17 and IFN gamma was strongly reduced even in those T cells 

whose proliferation was not inhibited. The only exception was IL-4 which 

showed an increased production in cord blood T cells upon stimulation in 

the presence of ct-CD45. In line with the downregulation of cytokine pro-

duction the expression of de novo synthesized activation markers on the 

cell surface of T-cells like CD25, CD97 and MHCII and the surface ex-

pression of CD69, which originate in part from preformed intracellular 

pools, was down regulated. Furthermore we found out that these ct-CD45 

treated T cells show no proliferation upon restimulation without ct-CD45 
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and that this effect can be only partly reversed by addition of exogenous 

IL-2.  

In addition to that we were trying to find a possible receptor candidate for 

ct-CD45 on activated T cells. It was shown that this protein binds specifi-

cally to activated T cells and that this binding can be blocked by mAb. 

Binding assays with a cDNA library for activated T cells gave evidence for 

interaction of ct-CD45 and a protein associated with Toll-like receptor 4 

(PRAT4A). PRAT4A was recently discovered as an ER-resident chaperon 

which is indispensable for the trafficking of most TLRs. Even though this 

protein is described as ER resident binding assays showed that PRAT4A 

is also expressed on the cell surface of activated T cells. 

In this study we showed that PRAT4A is a possible receptor candidate for 

ct-CD45 and that the binding of this cytoplasmatic part of CD45 to acti-

vated T cells lead to an anergy like hyporesponsive state that can only be 

partly reversed by the addition of exogenous IL-2. 
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Zusammenfassung 
 

CD45 war eines der ersten signaling Moleküle die auf Leukozyten 

identifiziert worden sind und wird als Leukozyt Markermolekül verwendet. 

Es ist der Prototyp von Transmembranrezeptor ähnlichen Protein Tyrosin 

Phosphatasen (PTPs) und es werden verschiedene Isoformen davon auf 

allen kernhaltigen hematopoetischen Zellen exprimiert. CD45 spielt eine 

essenzielle rolle im Immunsystem indem es verschiedene Substrate 

dephosphoryliert. Vor kurzem wurde, von unserer Gruppe, eine alternative 

Funktion für die intrazelluläre Domäne dieses Proteins (ct-CD45) 

gefunden. Es wurde gezeigt, dass wenn humane Monozyten und 

Granulozyten mit Pilzstimuli aktiviert werden CD45 gespalten und ct-CD45 

freigesetzt wird. Dieses ct-CD45 agiert als zytokinähnlicher Faktor, der die 

T Zell Proliferation hemmt wenn diese mit dendritischen Zellen oder CD3 

Antikörper aktiviert werden. Der zytoplasmatische Teil von CD45 kann 

dabei als interzellulärer Regulator zwischen dem angeborenen und dem 

adaptiven Immunsystem wirken. In dieser Studie wurde die direkte 

Wirkung von ct-CD45 auf die Aktivierung und die Funktion von T Zellen in 

einem APC freien System weiter untersucht. Wir haben entdeckt, dass ct-

CD45 die Proliferation von peripheren T Zellen inhibiert wenn diese über 

CD3 oder CD3/CD63 aktiviert werden aber nicht wenn sie mit CD3/CD28 

stimuliert werden. Im Gegensatz dazu hatte ct-CD45 keinen Einfluss auf 

die Proliferation von Nabelschnurblut T Zellen, die auf die gleiche Weise 

aktiviert worden sind. Überraschender Weise wurde dennoch die 

Produktion von IL-2, IL-4, IL-10, IL-13, IL-17 und IFN gamma stark 

reduziert, auch in den T Zellen bei denen die Proliferation nicht gehemmt 

worden ist. Die einzige Ausnahme war IL-4, welches eine erhöhte 

Produktion in Nebelschnur Blut T Zellen in der Anwesenheit von ct-CD45 

zeigte. Genauso wie die Zytokine wurde auch die Expression von neu 
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synthetisierten Aktivierungsmarkern wie CD25, CD97 und MHCII und auch 

die Oberflächenexpression von CD69, das zum Teil schon in 

intrazellulären Pools gespeichert wird und dann von dort aus an die 

Zelloberfläche gebracht wird,  herunter reguliert. Darüber hinaus haben wir 

entdeckt, dass diese mit ct-CD45 behandelten T Zellen bei Restimulierung 

ohne ct-CD45 keine Proliferation zeigen und dass dieser Effekt nur zum 

Teil durch Zugabe von IL-2 rückgängig gemacht werden kann.  

Außerdem haben wir versucht einen möglichen Rezeptorkandidaten für ct-

CD45 auf aktivierten T Zellen zu finden. Es wurde gezeigt, dass dieses 

Protein spezifisch an aktivierte T Zellen bindet und dass diese Bindung mit 

mAb blockiert werden kann. Bindungsassays mit einer cDNA Bibliothek für 

aktivierte T Zellen haben eine Bindung  zwischen ct-CD45 und einem 

Protein (PRAT4A), das mit dem Toll-like Rezeptor 4 assoziiert ist, gezeigt. 

PRAT4A wurde vor kurzem entdeckt und als ER-residentes Chaperon 

beschrieben, das unentbehrlich für das Trafficking der meisten TLRs ist. 

Obwohl dieses Protein als ER-resident beschrieben worden ist ist es uns 

gelungen es auch auf der Zelloberfläche von aktivierten T Zellen 

nachzuweisen. 

In dieser Diplomarbeit haben wir gezeigt, dass PRAT4A ein potentieller 

Rezeptorkandidat für ct-CD45 ist und dass die Bindung dieses 

cytoplasmatischen Teiles von CD45 an aktivierte T Zellen zu einem 

Anergie ähnlichen Stadium führt, das nur zum Teil durch Zugabe von IL-2 

umgekehrt werden kann. 

 

 
 



Formular Nr.: A.04   
 

6 

Index 

ABSTRACT ............................................................................................... 2 

ZUSAMMENFASSUNG ............................................................................. 4 

INDEX ........................................................................................................ 6 

INTRODUCTION ........................................................................................ 9 

INNATE AND ADAPTIVE IMMUNITY ................................................................ 9 
T CELLS .................................................................................................. 10 

T cell subsets ..................................................................................... 12 

T cell activation .................................................................................. 15 

T cell anergy ....................................................................................... 17 

CYTOKINES ............................................................................................. 20 
IL-2 ..................................................................................................... 21 

IL-4 ..................................................................................................... 22 

IL-10 ................................................................................................... 22 

IL-13 ................................................................................................... 23 

IL-17 ................................................................................................... 23 

Interferon gamma ............................................................................... 24 

CD45 ..................................................................................................... 24 

AIM OF THE STUDY ............................................................................... 28 

ABBREVIATIONS ................................................................................... 30 

MATERIALS AND METHODS ................................................................. 32 

Antibodies .......................................................................................... 32 

Fusionproteins .................................................................................... 32 

Cell Culture conditions ....................................................................... 32 

Freezing of cells ................................................................................. 33 



Formular Nr.: A.04   
 

7 

Thawing of cells ................................................................................. 33 

Cell preparation .................................................................................. 34 

Production of ct-CD45 fusion protein (ct-CD45) ................................. 34 

Transformation of E. coli cells ............................................................ 34 

Transfection of Phoenix cells ............................................................. 35 

Plasmid purification ............................................................................ 36 

Protein Purification ............................................................................. 37 

Magnetic cell sorting (MACS) ............................................................. 38 

Isolation of Peripheral Blood Mononuclear Cells (PBMC) .................. 39 

Purification of T-cells .......................................................................... 40 

T-cell proliferation assays ................................................................... 41 

Flow cytometry ................................................................................... 41 

Membrane staining with unconjugated mAb ....................................... 42 

Quantification of cytokines via LUMINEX100 ..................................... 43 

Polymerase Chain Reaction (PCR) .................................................... 43 

Agarose Gelelectrophoresis ............................................................... 44 

Restimulation assay ........................................................................... 44 

FACS cell sorting ............................................................................... 45 

siRNA knockdown .............................................................................. 45 

RESULTS ................................................................................................ 47 

ANALYSIS OF THE FUNCTIONAL CONSEQUENCES OF THE INHIBITORY SIGNAL 

DELIVERED BY CT-CD45 TO T CELLS ........................................................ 47 
ct-CD45 inhibits the proliferation of T cells under certain conditions .. 47 

ct-CD45 inhibits cytokine production of CD3/CD63 stimulated 

peripheral T cells ................................................................................ 53 

ct-CD45 inhibits cytokine production of CD3/CD28 stimulated 

peripheral T cells ................................................................................ 56 

ct-CD45 inhibits cytokine production of naive T cells ......................... 57 



Formular Nr.: A.04   
 

8 

Expression of activation marker molecules on T cells in the presence 

of ctCD45Fc ....................................................................................... 60 

ctCD45Fc treated T cells can not be restimulated with CD3/CD28 or 

CD3/CD63 .......................................................................................... 62 

The addition of exogenous IL-2 can only partly reverse the ctCD45Fc 

induced hyporesponsive state ............................................................ 63 

IDENTIFICATION OF THE RECEPTOR FOR CT-CD45 ON HUMAN T CELLS ......... 66 
Identification of ct-CD45 receptors by screening a cDNA library ........ 66 

siRNA knockdown of PRAT4A inhibits binding of ctCD45Fc .............. 70 

DISCUSSION ........................................................................................... 72 

REFERENCES ......................................................................................... 77 

CURRICULUM VITAE ............................................................................. 91 

 



Formular Nr.: A.04   
 

9 

Introduction 
Innate and Adaptive Immunity 
The defense against pathogens is mediated by the innate immunity and 

the adaptive immunity. Innate immunity provides the early line of defense 

against microbes and consists of cellular and biochemical defense me-

chanisms that are in place even before infections. These mechanisms only 

react to microbes and not to noninfectious substances, and they respond 

in essentially the same way to repeated infections. They are specific for 

structures that are common throughout microbial groups like LPS or flage-

lin. The innate immune system consists of various components: physical 

and chemical barriers, like epithelia and the antimicrobial substances, 

which are produced at epithelial surfaces; phagocytical cells like neutro-

phils and macrophages; natural killer cells; blood proteins like the com-

plement system proteins and other mediators of inflammation and cyto-

kines which regulate many of the activities of the innate and the adaptive 

immunity.  

The adaptive immunity, in contrast to innate immunity, develops as a re-

sponse to infection and adepts to the infection. The characteristics of 

adaptive immunity are specificity for distinct molecules and ability to re-

member and respond stronger and faster to repeated exposure to the 

same pathogen. 

There are two types of adaptive immune responses, called humoral im-

munity and cell mediated immunity. Those types of immune responses are 

mediated by different components of the immune system and function to 

eliminate different types of microbes.  

Humoral immunity is mediated by antibodies, which are produced by B 

lymphocytes (B cells). Antibodies are molecules in the blood and mucosal 

secretions. They are the principal defense mechanism against extracellu-

lar microbes and toxins because secreted antibodies can bind to those 
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microbes and toxins. They can promote the phagocytosis of the bound 

microbes and toxins, can neutralize them or can trigger the release of in-

flammatory mediators from leukocytes.  

Cell-mediated immunity is mediated by T lymphocytes (T cells). Intracellu-

lar microbes, like viruses, survive and proliferate inside phagocytes and 

other host cells, where they are inaccessible to circulating antibodies. De-

fense against such infections is a function of cell mediated immunity, 

which promotes the destruction of microbes residing in phagocytes or kill-

ing of infected cells to eliminate reservoirs of infection. 

The adaptive and the innate immunsystem can not be seen as separated 

systems because they work closely together to defend the organism 

against infectious diseases and they need each other to function properly. 

Interferon gamma for example is produced by CD4 pos T cells, which are 

cells of the adaptive immune system and activates macrophages, which 

are cells of the innate immune system.  

T cells also need cells of the innate immunity for activation because they 

can not bind directly to an antigen. They can only bind to an antigen when 

it is presented to them by an antigen presenting cell (APC) like macro-

phages or dendritic cells.  

There are numerous other examples for the collaboration of the adaptive 

and innate immunity.1 

 

T cells 
The precursors of T lymphocytes (Tcells), which are the mediators of cel-

lular immunity, arise in the bone marrow but then migrate to and mature in 

the thymus.  

During their maturation in the thymus these cells are positive and negative 

selected. Weak interaction between T cell antigen receptors on double pos 

thymocytes and complexes of self peptide and major histokompatibility 
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complex on cortical thymic epithelial cells induce positive selection and 

prevent death by neglect.2-6 Positive selection ensures that TCRs are re-

stricted by the self MHC molecules present in the thymus. If the double 

positive T cell progenitors bind too strong to the self peptide MHC complex 

the cells die by apoptosis to ensure that no auto reactive T cells are pro-

duced.1,4-6 

T cells recognize the antigens of intracellular microbes and function to de-

stroy these microbes or the infected cells. They consist of functionally dis-

tinct populations, which are helper T cells and cytolytic or cytotoxic T lym-

phocytes (CTLs). 

T cells do not produce antibody molecules. Their antigen receptors are 

membrane molecules different from but structurally related to antibodies. T 

cells do not recognize whole antigens like soluble proteins. Their receptors 

can only bind peptide antigens which are bound to host proteins. These 

host proteins are encoded by genes in the major histocompatibility com-

plex (MHC) and that are expressed on the surface of other cells. As a re-

sult T cells recognize and respond only to cell surface-associated but not 

soluble antigens.  

T cells are specific for amino acid sequences of peptides, because the 

antigen receptor of T cells recognizes very few amino acid residues within 

a single peptide, and different T cells can distinguish peptides that differ 

even at single amino acid residues. 

T cells from any one individual recognize foreign peptide antigen only 

when these peptides are displayed by the MHC molecules of that individu-

al. This phenomenon is called self MHC restriction. 

Helper T cells recognize only peptides bound to class II MHC molecules. 

These peptides are mainly obtained from extracellular proteins that are 

internalized into the vesicles of antigen presenting cells. 

CTLs recognize only peptides derived from cytosolic, usually endogenous-

ly synthesized, proteins, which are bound to class I MHC molecules. They 
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kill cells that produce and present foreign antigens on their MHC class I 

receptor, such as cells infected by viruses and other intracellular microbes.  

Some T lymphocytes, which are called regulatory T cells, function mainly 

to inhibit immune responses 

In response to antigenic stimulation, helper T cells secrete proteins called 

cytokines. The function of the cytokines is to stimulate the proliferation of 

the T cells themselves, and other cells like B cells, macrophages and oth-

er leukocytes. 

The initiation and development of adaptive immune responses require that 

antigens are captured and displayed to specific lymphocytes. The cells 

that serve this role are called antigen-presenting cells (APCs). The most 

highly specialized APCs are dendritic cells, which capture microbial anti-

gens that enter from the external environment, transport these antigens to 

naïve T cells to initiate immune responses. 

In cell mediated immunity, CD4+ T cells activate macrophages to destroy 

phagocytosed microbes, in humoral immunity, CD4+ helper T cells interact 

with B lymphocytes and stimulate the proliferation and differentiation of 

these B cells. Both the induction phase and the effector phase of T cell 

responses are triggered by the specific recognition of antigen.1 

T cell subsets 

CD4 positive  T cells (CD4+ T cells) 
The antigen-driven differentiation of naive T cells into effector cells is cen-

tral to adaptive immunity. After activation, naïve CD4+ T cells differentiate 

into two subsets. Those two subsets are called T helper type 1 (Th1) and 

T helper type 2 (Th2) cells.  CD4+ T cells have been assigned to the Th1 

or Th2 lineage based on their cytokine profiles.7-9 These CD4+ helper T 

cells recognize peptid antigens, which are presented by class II MHC 

molecules. 
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Th1 cells evolved to enhance clearance of intracellular pathogens and are 

defined on the basis of their production of interferon-gamma (IFN-gamma). 

Th2 cells are critical for the control of certain parasitic infections through 

the production of the clustered group of cytokines interleukin 4 (IL-4), IL-5 

and IL-13. Both lineages have been associated with immune pathogenesis 

in the setting of dysregulated or unchecked activation. Th1 cells have 

been linked to many chronic autoinflammatory disorders, whereas Th2 

cells are linked to atopy and asthma.9 

Substantial advances have been made in understanding the developmen-

tal pathways that give rise to Th1 and Th2 cells.9-13  The decision to de-

velop into Th1 or Th2 effector cells is dependant on a large extent on cy-

tokines.14 Th1 cell development is coupled to the sequential involvement 

of cell-extrinsic and cell-intrinsic factors, including signal transducer and 

transcription activator 1 (STAT1), the transcription factor T-bet, IL-12 and 

STAT4, whereas TH2 cell development is coupled to IL-4, STAT6 and the 

transcription factor GATA-3. Cytokines, which are produced by mature 

effector cells of each lineage, can reinforce their own developmental pro-

gram through positive and negative feedback acting on both naive T cells 

and innate immune cells. IFN gamma produced by mature Th1 cells or 

innate immune cells, and IL-27, an IL-12 family member produced by in-

nate immune cells, induce STAT1 signaling and T-bet expression in anti-

gen-activated, naive CD4+ T cells, leading to upregulation of the IL-12 re-

ceptor (IL-12R) on developing Th1 cells and suppression of GATA-3. 9,15-17 

Similarly, IL-4 produced by mature Th2 cells initiates Th2 cell development 

through its upregulation of GATA-3  via STAT6 and suppresses Th1 cell 

development by blocking IL-12R expression.9,18 The ability of GATA-3 to 

promote its own transcription through a cell-intrinsic, positive feedback 

loop represents a potent mechanism for rapidly stabilizing Th2 cell devel-

opment.9,19 As a result of these robust counter-regulatory pathways, Th1 

and Th2 cell development diverges rapidly after antigen priming to pro-
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duce mature effector cells with stable, mutually exclusive expression of 

IFN gamma and IL-4.9 

 

CD8 positive  T cells (CD8+ T cells) 

Naïve CD8+ T cells differentiate into cytotoxic T cells (CTLs). Those effec-

tor CD8+ T cells recognize and kill target cells presenting foreign peptide 

antigens bound to class I MHC molecules. CD8+ T cells mediate their ef-

fector functions through production of cytokines such as IFN gamma and 

tumor necrosis factor (TNF) alpha and/or by cytolytic mechanisms. Such 

responses are important in preventing or maintaining control against dis-

ease in a variety of intracellular infections and perhaps also against certain 

tumors.20 

Cytotoxic T lymphocytes (CTLs) are effector lymphocytes that have 

cytotoxic pathways that are necessary for defence against virus-infected 

or transformed cells. Those cells kill their cellular targets by either of two 

mechanisms that require direct contact between the effector and target 

cells. In the first pathway, cytoplasmic granule toxins, primarily a 

membrane-disrupting protein known as perforin, and a family of 

structurally related serine proteases (granzymes) with various substrate 

specificities are secreted by exocytosis and induce apoptosis of the target 

cell.21,22 The granule-exocytosis pathway activates cell-death pathways 

that operate through the activation of apoptotic cysteine proteases 

(caspases), but it also leads to cell death in the absence of activated 

caspases.22-24 The second pathway involves the engagement and 

aggregation of target-cell death receptors, such as FAS (CD95), by their 

ligands, such as FAS ligand (FASL), on the killer-cell membrane, which 

results in classical caspase-dependent apoptosis.22,25 
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Cord blood T cells 

It is now well established that CB lymphocytes are more naive than adult 

lymphocytes. Although there is much evidence for this, the most common 

description of CB naivete´ is the observation that the majority of CB lym-

phocytes are CD45RA, whereas the majority of adult lymphocytes are 

CD45RO.26-29 

A good indication of how a cell is functioning is by the cytokines it pro-

duces.29 In the presence of endogenous APCs, human cord-blood T cells 

proliferate poorly and are poor producers of cytokines, including interleukin 

2 (IL-2), interferon gamma, IL-4, granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-5, when stimulated with soluble anti-

CD3 or anti-CD2.30-32 Similarly, stimulation with anti- CD3 crosslinked via a 

plastic-immobilized bridging antibody generally results in poor IL-232,33 and 

IFN gamma32,34 production, although exceptions have been reported.32,35 

By contrast, T-cell receptor (TCR)-independent stimulation promotes 

equivalent IL-2 production and proliferation from cord-blood and adult T 

cells. These results indicate that neonatal T cells respond weakly to 

physiologically relevant stimuli that is, activation via cell surface mole-

cules, notably the TCR-associated CD3 molecules, in an APC dependent 

[soluble monoclonal antibody (mAb)] system. Nonetheless, they are capa-

ble of adult-level IL-2 production and proliferation when the TCR is by-

passed.32 

T cell activation 

An antigen-specific immune response is initiated by the accumulation of T 

cells in specialized lymphoid regions, such as lymph nodes or inflamed 

peripheral tissues, by a phase of physical contact between T lymphocytes 

and APCs, which move between and within tissues for immune surveil-

lance and defense against bacteria, viruses and damage.36,37 
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In order to be activated, T cells must recognize peptide fragments that are 

bound to MHC molecules. This alone is not sufficient. The delivery of a 

costimuatory signal presented by specialized antigen presenting cells is 

also necessary. Dendritic cells, macrophages and B cells are capable of 

delivering both the MHC/antigen complex and the costimulatory signal to 

activate naïve T cells.1,38  

The ability of naive T cells to clonally expand and acquire effector 

functions depends on the strength of signals received by the T-cell 

receptor (TCR) and by an array of co-stimulatory receptors.39  

If T cells bind to the MHC/antigen complex in the absence of costimulatory 

signals, they fail to respond efficiently to antigenic stimulation and are ren-

dered anergenic. The interaction between T-cells and the APC during an-

tigen recognition creates the immunological synapse. In this immunologi-

cal synapse specific ligands and costimulator molecules trigger and sus-

tain T cell activation.40  

The activation of T cell requires immunogenic and tolerogenic stimuli41 that 

can be divided into two main categories. The first signal (Signal 1) is re-

layed through the ligation of the T-cell receptor (TCR) by peptide/MHC 

complexes, which ensures that the ensuing immune response is specific 

and is essential for removing T cells from quiescence (G0 phase) and pre-

paring them for proliferation and differentiation. The second subset of 

stimuli (Signal 2), generally referred to as co-stimuli, ensure that immune 

responses are induced when they are needed and not against harmless 

substances or self antigens. They are conferred by counter-receptors ex-

pressed by APCs or by soluble factors such as cytokines and chemokines. 

Costimuli might or might not coincide spatially and temporally with the 

peptide/MHC stimulus and contribute to upregulated synthesis of macro-

molecules and energy metabolism, to promote cell-cycle progression, pro-

tect from or enhance cell death and regulate cell differentiation.39 
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The most prominent and best described of the costimulatory receptors is 

CD28 and its binding partners on the APC side B7.1 (CD80) and B7.2 

(CD86). CD28 potently enhances T-cell receptor induced proliferation and 

differentiation of naive T cells, especially at low TCR occupancy, making it 

responsible for the signal two predicted by the two-signal hypothesis of 

lymphocyte activation. CD28 favors T-cell survival by inducing nuclear 

factor- B (NF- B)-dependent expression of the anti-apoptotic protein BCL-

XL and the development of T helper 2 (Th2) cells by promoting the 

expression of a 'second wave' of co-stimulatory receptors (such as CD40 

ligand, OX40 and inducible co-stimulatory molecule (ICOS).39 

CD63 is a lysosomal-associated membrane protein (LAMP-3). It is not ex-

pressed on the surface of resting T cells but is upregulated upon T cell 

stimulation.42 Stimulation of the T cell receptor together with CD63 leads to 

a stong T cell activation. 

T cell anergy 

Central tolerance 

The thymus is an organ that supports the differentiation and selection of T 

cells.43-46 The thymic development of T cells consists of several processes 

that require the dynamic relocation of developing lymphocytes into, within 

and out of the multiple environments of the thymus. These processes 

include: first, the entry of lymphoid progenitor cells into the thymus; 

second, the generation of CD4+CD8+ double-positive (DP) thymocytes at 

the outer cortex of the thymus; third, the positive and negative selection of 

DP thymocytes in the cortex; fourth, the interaction of positively selected 

thymocytes with medullary thymic epithelial cells (mTECs) to complete 

thymocyte development and ensure central tolerance; and last, the export 

of mature T cells from the thymus.47-51,46 

The immature repertoire of T lymphocytes consists of cells whose 

receptors may recognize any peptide/MHC molecule complex (self or 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=920�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=925�
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foreign), or no peptide/MHC complex at all. The only useful T cells are the 

ones that are specific for foreign peptides and self MHC molecules. T cells 

that recognize self antigen are dangerous because such recognition may 

trigger autoimmunity. The selection process ensures that only the useful T 

cells complete the maturation. 

When double positive thymocytes first express αβ TCRs, they encounter 

self peptides presented by self MHC molecules. Positive selection is the 

process in which thymocytes which bind the self peptide/self MHC 

complex with low avidity are stimulated to survive. Thymocytes which do 

not recognize self MHC molecules die by apoptosis. This ensures that the 

T cells that mature are self MHC restricted. Positive selection also ensures 

that CD8+ T cells are specific for peptides presented by class I MHC 

molecules and CD4+ T cells for MHC class II associated peptides.1,2,52,53 

Negative selection is the process in which thymocytes whose TCR bind 

strongly to the self peptide/ self MHC complex are deleted. This is 

necessary to ensure that no autoreactive T cells leave the thymus.53,54 

The result of the positive and the negative selection process is the 

generation of self MHC restricted and self tolerant T cells. 

 

Peripheral tolerance 

Whereas high-avidity recognition of peptide-MHC complexes by develop-

ing T cells in the thymus results in deletion and promotes self-tolerance, 

such recognition by mature T cells in the periphery results in activation 

and clonal expansion.55 Since it is possible that auto reactive T cells 

escape the central tolerance mechanisms and are not completely 

eliminated, the immune system had to develop mechanisms to protect the 

organism against this threat. Peripheral tolerance is the mechanism by 

which mature T cells that recognize self antigens in peripheral tissues 

become incapable of responding to these antigens.2,55 
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T cell anergy is a tolerance mechanism in which the T cells are function-

ally inactivated following an antigen encounter, but remain alive for an ex-

tended period of time in a hyporesponsive state. Anergy is induced, when 

T cells bind to an antigen/MHC complex without costimulationor or with 

inhibitory signals.56 This can be done by stimulating T cells with only anti 

CD3 or anti TCR antibodies. Those T cells which were stimulated this way 

became anergic. The stimulation of T cells with anti CD3 or anti TCR 

antibodies together with anti CD28 antibodies lead to full T cell 

activation.57-59 

The decision between anergy and productive T cell activation is made by a 

series of intracellular proteins that oppose the induction of the interleukin 2 

(IL-2) gene but are inactivated by signals from CD38 or the IL-2R. These 

factors are called Ikaros, Tob NFAT1 and p27kip1. They are present in 

naive T cells and are required for the induction of anergy. In the absence 

of Tob or Ikaros, quiescent T cells are able to produce IL-2 and 

differentiate in the absence of a costimulatory signal.60  

In response to T cell signaling alone, NFAT1 induces an array of anergy 

associated genes like Cbl-b, Itch, GRAIL, DGKalpha, Casp3, Egr3 and 

CREM. Each of those proteins belongs to the category of an "anergy 

factor". The se proteins are induced under anergic conditions, where they 

are required to execute the anergic program by targeting critical factors 

involved in signal transduction or gene transcription.60 Clonal T cell anergy 

was found not to be a terminal fate, as the addition of exogenuos IL-2 

during restimulation reverses the anergy.61  

Regulatory T cells (Treg cells) have emerged as important means of 

enforcing peripheral self tolerance too.62 Treg cells are characterized by 

the expression of the transcription factor Foxp3 and play a key role in 

immune homeostasis. Foxp3 is a specialized anergy factor that also acts 

as a sensor of mitogenic signals. It responds to antigenic signaling by 

binding to and silencing proinflammatory cytokine genes.60 Treg cells 
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maintain tolerance to self and control autoimmune deviation prevent 

runaway responses to pathogens or allergens, help maintain a balance 

with obligate microbial flora, and faciliate tumor escape from immune 

monitoring. Treg cells were initially identified in the mouse as CD4+ CD25+ 

Tcells.63 Studies in the past years have demonstrated that CD4+ CD25+ T 

cells are the products of a unique lineage of T cells developing in the thy-

mus.62,64,65 In addition to those naturally occurring CD4+ CD25+ T cell 

population, it is possible to generate in the periphery a distinct population 

of regulatory T cells.62,66 In general, these regulatory T cells are antigen-

specific populations that are derived from conventional CD4+ CD25- naive 

precursors following exposure to antigen under conditions of limiting 

costimulation. Regulatory T cells block the activation and functions of ef-

fector T cells. The mechanism of action of regulatory T cells is not com-

pletely understood. One of the best known means of regulatory T cells is 

the secretion of immunosuppressive cytokines such as IL-10 or transform-

ing growth factor-β (TGF-β).62,67,68 TGF-β inhibits B and T cell proliferation 

and IL-10 supresses macrophage activation and antagonizes IFN 

gamma.1,69,70 

 

Cytokines 
Cytokine is a term derived from Greek roots meaning “to set cells in mo-

tion”. Cytokines are intercellular signaling peptides (usually between 8 and 

30 kDa in mass) that can act at any range (autocrine, paracrine, endo-

crine).71 They are secreted by the cells of innate and adaptive immunity 

that mediate many of the functions of these cells. Cytokines are produced 

in response to microbes and other antigens, and different cytokines stimu-

late diverse responses of cells involved in immunity and inflammation. In 

the activation phase of adaptive immune responses, cytokines stimulate 

the growth and differentiation of lymphocytes and in the effector phase of 
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innate and adaptive immunity. They activate different effector cells to 

eliminate microbes and other antigens.1 

Cytokine activity in any clinical or biological context is a complex issue be-

cause of the variety and multiple activities of cytokines. Furthermore, one 

cytokine can radically alter (even reverse) the activity of another cytokine 

on a target cell. As a result, it is sometimes useful to consider cytokines in 

functional groups. For example IL-2, granulocyte- macrophage colony 

stimulating factor, and interferon-γ promote cytotoxicity, whereas IL-4 and 

-13 promote antibodymediated immunity.71 

Cytokines are usually not stored as preformed molecules, and their syn-

thesis is initiated by new gene transcription as a result of cellular activa-

tion. Such transcriptional activation is transient, and the messenger RNAs 

encoding most cytokines are unstable. The production of some cytokines 

additionally is controlled by RNA processing and by posttranscriptional 

mechanisms. Once synthesized, cytokines are rapidly secreted, resulting 

in a burst of release as needed.1 

IL-2 

Interleukin 2 (IL-2) was the first interleukin that was discovered and 

originally was called T cell growth factor because it is responsible for 

clonal T cell expansion after stimulation with antigen. IL-2 is produced by 

activated CD4 pos and CD8 pos T cells and acts mainly on the cells that 

produce it.1,72  

IL-2 is also important for the development of regulatory T cells. The IL-

2/IL-2 receptor pathway is clearly important in the development and ex-

pansion of CD4+CD25+ cells in vivo as IL-2 and IL-2 receptor deficient  

mice all die early in life of severe lymphoproliferation and autoimmune dis-

ease.73-76 

Although IL-2 and its receptor play a critical role in the homeostasis of 

CD4+CD25+ T cells in vivo, the contribution of IL-2 to their suppressive 

http://en.wikipedia.org/wiki/Regulatory_T_cells�
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function is poorly understood. Indeed, the molecular basis for suppression 

of T cell activation by CD4+CD25+ T cells in vitro is inhibition of IL-2 gene 

transcription in the CD4+CD25– responder T cells. Furthermore, addition of 

IL-2 or the enhancement of costimulation by the addition of anti CD28 are 

thought to break the anergic state of the CD4+CD25+ T cells and abrogate 

their suppressive function.77 76.   

IL-4 

Interleukin 4 (IL-4) is a member of the four-alpha-helical cytokine family. 

The principal cellular sources of IL-4 are CD4+ T cells of the TH2 subset, 

activated mast cells and basophils. 

IL-4 stimulates the development of Th2 cells from naïve CD4+ T cells and 

functions as an autocrine growth factor for differentiated Th2 cells. In addi-

tion to that it is the main cytokine that stimulates B cell Ig heavy chain 

class switching to the IgE isotype and is therefore the major stimulus for 

the production of IgE antibodies and for the development of Th2 cells.1 

IL-10 

Interleukin 10 (IL-10) is an important regulatory cytokine whose involve-

ment extends into diverse areas of the human immune system.78 It has a 

four-alpha-helical structure and binds to type II cytokine receptor. IL-10 is 

mainly produced by activated macrophages. It is a good example of a 

negative feedback regulator, because it inhibits macrophage functions.1 

It inhibits the production of IL-12 by activated macrophages and dendritic 

cells. Because IL-12 is a stimulus for IFN-gamma secretion and is an in-

ducer of innate and cell mediated immune reactions, IL-10 functions to 

down-regulate all such reactions.1 

IL-10 inhibits the expression of costimulators and class II MHC molecules 

on macrophages and dendritic cells. So IL-10 serves to inhibit T cell acti-

vation and terminate cell mediated immune reactions.1 
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IL-13 

Interleukin 13 (IL-13) is structurally related to IL-4 and is produced by Th2 

CD4 pos T cells and by some epithelial cells. The IL-13 receptor is found 

on nonlymphoid cells, like macrophages, and can be activated by IL-13 

and IL-4.1 

Even though IL-13 was thought to be functionally redundant with IL-4, 

studies conducted with knockout mice, neutralizing antibodies, and novel 

antagonists demonstrate that IL-13 possesses several unique effector 

functions that distinguish it from IL-4.79 

It mimics the effects of IL-4 on nonlymphoid cells like macrophages but 

seems to have less effect on T or B cells than IL-4. The major function of 

IL-13 on macrophages is to inhibit their activation and to antagonize IFN-

gamma. IL-13 stimulates mucus production by lung epithelial cells and it is 

possible that it plays a role in asthma.1  

IL-17 

More recently, T cells were shown to produce cytokines that could not be 

classified according to the Th1–Th2 scheme. Interleukin-17 (IL-17) was 

among these cytokines80,81 and the T cells that preferentially produce IL-

17, but not interferon-  or interleukin-4, were named Th17 cells.9,81,82 Like 

Th1 and Th2 cells, Th17 cells produce a group of distinctive cytokines: 

Interleukin-17 (also called interleukin-17A), interleukin-17F, interleukin-22, 

and interleukin-21. All of those cytokines participate in orchestrating a spe-

cific kind of inflammatory response.81  

Accordingly the biological actions of IL-17 are quite proinflammatory in 

character. It increases the local production of chemokines such as IL-883-

85, monocyte chemoattractant protein-1 (MCP-1)85-87, and Gro-alpha85,88, 

thereby promoting the recruitment of monocytes and neutrophils85,89-91. 

Further, it stimulates the production of the hematopoietic cytokines G-CSF 
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and granulocyte macrophage (GM)-CSF that promote the expansion of 

these myeloid lineages.85,92-94 Other actions such as the stimulation of IL-6 

and PGE2 production enhance the local inflammatory environment.85,95-98 

In addition, IL-17 also drives T-cell responses, notably through the induc-

tion of the costimulatory molecule intercellular adhesion molecule 

(ICAM).85,99-101 

Interferon gamma 

Interferon-gamma (IFN gamma), also called type II interferon, is the prin-

cipal macrophage activating cytokine and therefore is crucial for immunity 

against intracellular pathogens and for tumor control.1,102 

It is produced in response to viral or intracellular bacterial infection by NK 

cells, CD4+ Th1 cells, and CD8+ T cells. Its function is to activate 

macrophages, to increase expression of major histocompatibility complex 

molecules and to exert direct antiviral activity on infected cells.1,103 

IFN gamma promotes the differentiation of naïve CD4+ T cells to the Th1 

subset, which then produce IFN gamma in a positive feedback loop. IFN 

gamma inhibits the proliferation of Th2 cells and acts on B cells to promote 

isotype switching to certain IgG subclasses and inhibits the isotype 

switching to IL-4 dependend isotypes (IgE).1 

 

CD45 
CD45 (PTPRC, leukocyte common antigen, B220, T200) was one of the 

first signaling molecules identified on leukocytes and is used as a leuko-

cyte marker molecule.104-114 It is the prototypic member of transmembrane 

receptors like protein tyrosine phosphatases (PRTPs) and various forms of 

it are expressed on all nucleated hematopoetic cells.111-114 
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CD45 plays an essential role in immune functions. Humans with certain 

mutations in CD45 develop a severe-combined immunodeficiency pheno-

type, systemic lupus, multiple sclerosis and other diseases.111,112,115-118 

It is generally accepted today that CD45 sets threshold of positive and 

negative signaling events in leukocytes.111-114 It dephosphorylates and ac-

tivates the src-family kinases Lck, Fyn and Lyn. That way CD45 serves as 

a positive regulator for signaling via the T-cell and B-cell receptor.119-121 

On the other hand, through dephosphorylation of JAK, CD45 negatively 

regulates cytokine receptor signaling and promotes viral infection. In addi-

tion CD45 has been shown to be involved in regulating development, ad-

hesion and apoptosis in leukocytes.122 

CD45 is a large cell surface glycoprotein of 180-220 kDa. It covers up to 

10% of the leukocyte surface area.123 The CD45 family consists of multiple 

members that are all products of a single complex gene. This gene con-

tains 34 exons and the primary RNA transcript of three of the exons (4,5 

and 6) are alternatively spliced to generate up to 8 different mRNAs and 8 

different protein products.112 The protein products contain external do-

mains of variable lengths which are heavily glycosylated. All isoforms of 

CD45, however, share the 707 amino acid long (95 kDa) cytoplasmatic 

domain, which is one of the largest identified among membrane pro-

teins.124-128 

The cytoplasmatic part of CD45 (ct-CD45) is composed of a juxtamem-

brane spacer segment, two tandemly duplicated protein tyrosine phos-

phatase domains (PTP), the active domain 1 (D1) and the catalytically im-

paired domain 2 (D2), which are divided by a short interdomain linker, and 

a COOH-terminal tail.129-133 

CD45 D1 (37 kDa) is 273 amino acids long (608-890) and the catalytic 

cysteine residues are at the amino acid 828. D1 is responsible for the 

dephosphorylation of the different substrates, for example the immunore-

ceptor tyrosine-based activation motifs (ITAMs) of CD3zeta.129-133 
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CD45 D2 (42 kDa) is 310 amino acids long (895-1205) and the catalytic 

cysteine residues are at the amino acid 1144. The strong structural con-

servation of D2 implies that it serves a cellular function, but it is still of ma-

jor mystery what that function may be. Inspection of the D2 structure sug-

gests, that it plays a role in substrate recruitment and it may contribute to 

stabilize D1.129-133 

PTPs are now known to undergo posttranslational proteolytic process-

ing.134-138 Cleavage of the intercellular parts of type 1 cell surface recep-

tors by presenilin/gamma-secretase is typically executed after the recep-

tors have undergone ectodomain-shedding.134,135,137,138 This proteolysis 

frequently generates fragments of cell surface receptors with new biologic 

functions. 

Our group has shown an alternative function for the intracellular domain of 

CD45. We discovered that CD45 is sequentially cleaved by ser-

ine/metalloproteases and gamma-secretases during activation of human 

phagocytes by fungal stimuli or phorbol 12-myristate 13-acetate (PMA). 

Stimulation with other microbial stimuli did not lead to this cleavage of 

CD45. Proteolytic processing of CD45 occurred upon activation of mono-

cytes or granulocytes but not of T-cells, B-cells, or dendritic cells and re-

sulted in a 95 kDa fragment of the cytoplasmatic tail of CD45 (ct-CD45).139 

The finding that those ct-CD45 molecules are created even though the 

ribosomal translation is blocked, the apearence of ct-CD45 within one hour 

and that ct-CD45 could not be found after induction of celldeath, suggests 

that this protein is not created from newly synthesized different splice vari-

ants of CD45.139 

Since ct-CD45 could only be generated in monocytes and granulocytes, 

which are capable of of producing a strong respiratory burst, but not in T 

cells, B cells or dendritic cells, and the observation that the generation of 

ct-CD45 could be blocked by inhibiting the NADPH-oxidase, it was specu-
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lated that the formation of an oxidative burst is an important factor in the 

generation of ct-CD45.139 

Binding studies with this protein revealed a counter receptor on preacti-

vated T-cells. Moreover, T-cell proliferation induced by dendritic cells or 

anti-CD3 antibodies was inhibited in the presence of ct-CD45.139  
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Aim of the study 
 

As mentioned before, our group observed that the cytoplasmatic tail of 

CD45 molecules (ct-CD45) is cleaved and released upon activation of 

monocytes and neutrophil granulocytes and that it acts as a cytokine-like 

factor, which inhibits T cell proliferation (Figure1).139 

The exact nature of this ct-CD45 induced inhibition effect is unknown. 

Since the specific binding of this protein to preactivated T cells and the 

fact that this binding is saturable and can be blocked by mAb it is very 

likely that there is a specific receptor for ct-CD45139. This receptor has jet 

to be found though. 

Therefore, the first aim of this study was to further investigate the function 

of ct-CD45 and its effect on T cell proliferation and polarisation and if the 

inhibition of T cell proliferation is due to anergy. The second aim was to 

find a possible receptor candidate for ct-CD45.  
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Figure 1: The binding of fungal stimuli like C. albicans to monocytes leads to activation 

and to the formation of an oxidative burst. The activation of monocytes also seems to 

lead to the cleavage of CD45 by gamma-secretases. The oxidative burst then leads to 

celldeath. Upon celldeath ct-CD45 is released from the cell and then binds to a yet un-

known receptor on T cells. This binding of ct-CD45 triggers a signalling cascade which 

inhibits T cell proliferation.  
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Abbreviations 
 

APC antigen presenting cell 

BSA bovine serum albumin 

CD cluster of differentiation 

cpm counts per minute 

ct-CD45 cytoplasmatic part of CD45 

CTL cytotoxic T lymphocyte 

CTLA-4 cytotoxic T lymphocyte antigen 4 

ER endoplasmatic reticulum 

FITC fluorescin-5-isothiocyanate 

ICOS-L ICOS ligand 

IFN interferon 

Ig immunoglobulin 

IL interleukin 

kDa kilo Dalton 

LPS lipopolysaccharide 

mAb monoclonal antibody 

MHC major histocompatibility complex 

MNC mononuclear cells 

NK natural killer cells 

PBMNC peripheral blood mononuclear cells 

PE phycoerythin 

PBS phosphate buffered saline 

PRAT4A protein associated with toll like receptor 4 

TCR T cell receptor 

TGF transforming growth factor 

Th T herlper cell 
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TLR toll like receptor 

TNF tumor necrosis factor 

Treg rerulatory T cell 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Formular Nr.: A.04   
 

32 

Materials and Methods 

Antibodies 

specifity clone isotype source 
T cell activation       
CD3 OKT3 IgG2a Jansen-Cilag, Vienna 
CD28 15E8 IgG1 Caltag Laboratories, Burlingame, CA 

CD63 
CD63-
11C9 IgG3 

Otto Majdic, Institute of Immunology, Vi-
enna 

staining       

VIAP VIAP-2D5 IgG1 
Otto Majdic, Institute of Immunology, Vi-
enna 

CD25-PE 
CD25-
3G10 IgG1 

Otto Majdic, Institute of Immunology, Vi-
enna 

CD69-FITC FN50 IgG1 BD PharMingen, San Diego, CA 
MHCII L243 IgG2a ATCC 

IL-4-PE 
MP4-
25D2 IgG1 BD PharMingen, San Diego, CA 

CD97 VIM3b IgG1 
Otto Majdic, Institute of Immunology, Vi-
enna 

CD27 VIT14a IgG2a 
Otto Majdic, Institute of Immunology, Vi-
enna 

CD54 
CD54-
6F2 IgG2a 

Otto Majdic, Institute of Immunology, Vi-
enna 

PRAT4A polyclonal   Santa Cruz Biotechnology 
Tabel 1: Antibodies 

Fusionproteins 

fusionproteins source 
ctCD45Fc Stefan Hopf, Institute of Immunology, Vienna 
CTLA4Fc Bristol-Meyers Squibb, NY 
ICOS-L-Fc Peter Steinberger, Institute of Immunology, Vienna 
CD80-Fc Peter Steinberger, Institute of Immunology, Vienna 
Tabel 2: Fusionproteins 

Cell Culture conditions  

For cell culture RPMI (NBK, Novartis Research Institute, Vienna) supple-

mented with 10% FCS (HyClone, Logan, UT), 2 mM L-glutamine (NBK, 

Novartis Research Institute, Vienna), 100 U/ml penicillin and 100 μg/ml 

streptamycin (NBK, Novartis Research Institute, Vienna) was used. Cells 
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were cultured at 37°C with 5% CO2. 

Freezing of cells 

• Freezing buffer: RPMI 1640 +20% FCS + 100U/ml penicillin + 100 

µg/ml streptamycin and 2mM L-glutamine + 10% DMSO 

• Nunc TMCryo Tube Vials (Nunc, Roskilde, Denmark) 

• NALGENETM Cryo 1°C Freezing container  

 

1. Freshly isolated cells or cell lines were adjusted to a cell number of 

1x107/ml freezing buffer. 

2. 1ml of cell-suspension were filled into a Cryo-tube. The tubes were 

stored in a 2-Propanol filled cryo container at –70°C for 24hours.  

3. After 1 day the tubes were transferred to the N2-tank.   

Thawing of cells 

1. The tubes were taken from the N2-tank and thawed with lukewarm tap-

water.  

2. To avoid overheating we left a rest frozen and put the tube on ice for 

10 minutes. 

3. After 10 minutes the cells were transferred to a 15 ml tube and droplets 

of supplemented cell culture medium were added in an interval of 

1min: Starting with 3 drops at 0 minutes, 6 drops at 1 minute, 12 drops 

at 2 minutes etc. up to 48 drops.  

4. The cells were washed twice: The tube was filled up and centrifuged 

for 5 minutes at 900g, the supernatant was discarded and the cells 

were resuspend and so on. 

5. We determined the cell number.  
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Cell preparation 

Peripheral blood mononuclear cells (PBMCs) were separated from whole 

blood of normal healthy donors by density gradient centrifugation using 

Ficoll-Paque. After centrifugation granulocytes and erythrocytes gathered 

at the bottom of the tube, mononuclear cells in the interphase. For the Iso-

lation of monocytes and T-cells Magnetic Cell Sorting (MACS, Miltenyi 

Biotec, Bergisch-Gladbach, Germany) was applied.  

Production of ct-CD45 fusion protein (ct-CD45) 

To produce these proteins, bacteria (E. coli) were transformed with the 

vector containing our fusion proteins as an insert. Then the plasmids were 

isolated with a maxiprep. kit and were used to transfect Phoenix cells. 

After transfection of Phoenix cells with the fusion protein coding genes, the 

supernatant was harvested after 3 and 6 days. 

To increase the protein concentration of the fusion protein we used a pro-

tein isolation procedure to increase the concentration. The protein in-

crease of the concentration of our fusion proteins was determined after the 

isolation with an ELISA (data not shown). 

Transformation of E. coli cells 

• Luria broth agar: 32 mg Lennox L Agar + 5 g NaCl per litre of dis-

tilled water; boil to dissolve and autoclave before use.  

• Luria broth media: 25 mg Luria Broth Base per litre of distilled wa-

ter; boil to dissolve and autoclave before use.   

• Luria broth Amp agar: LB agar containing ampicillin in a final con-

centration of 100 µg/ml. 

• The plasmids containing the fusion protein insert were provided by 

Mag. Schrauf. 
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For transformation 100 µl competent E.coli (stored at -80°C) were thawed 

on ice, mixed with 10 ng plasmid DNA or 3 µl of a ligation mix and then 

incubated on ice for 10 min.   

The bacteria were heat shocked at 42°C in a water bath for 2 min, chilled 

on ice, diluted in 300 µl LB, incubated at 37°C for about 1 h under constant 

shaking and plated on LB-Amp dishes. Bacteria were allowed to grow over 

night at 37°C. 

Transfection of Phoenix cells 

CaCl2 Transfection  

 

HBS-Buffer (pH 7,05):  

• 140 mM NaCl 

• 1,5 mM Na2HPO4 

• 50 mM HEPES 

• 2,5 M CaCl2 

 

24 h before transfection cells were harvested by trypsination and seeded 

in a concentration as indicated below. One hour before transfection fresh 

medium was applied.  Plasmid DNA was diluted with sterile ddH2O and 

CaCl2 (see table below). The transfection mix was sterile filtered using a 

0,22 µm filter and then the required amount of 2 x HBS was added while 

vortexing on low level. Formation of DNA-calcium phosphate precipitates 

was allowed by incubation for exactly 1 minute at room temperature, be-

fore applying the mix drop wisely to the cells. After 16 - 24 h the medium 

was replaced. The supernatants were harvested after 3 and 6 days. For 

generation of immunoglobulin fusion proteins 6 to 10 ∅10 cm plates were 

transfected with the respective plasmid construct.  
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 Cell 
number/ml 

DNA ddH2O CaCl2 2,5 M *) 2 x HBS-
Buffer 

10cm 

plate 

6 x 106 30 µg ad 900 

µl 

100 µl 1000 µl 

6-well 1 x 106 6 µg ad 90 µl 10 µl 100 µl 

24-well 0,3 x 106 3 

µg**) 

ad 45 µl 5 µl 50 µl 

48-well 2 x 105 1 µg ad 25 µl 2,5 µl 25 µl 

optional: use 5 µg of a GFP-Plasmid to monitor transfection 

efficiency 

*) add shortly before transfection  

**) for spin-infection add 1,5 µg MLV + 1,5 µg Plasmid-DNA 

 

Table 3: Transfection-mix. 

Plasmid purification 

For large scale up preparation of plasmids, bacteria were grown under 

shaking over night at 37°C in 250 up to 300 ml LB media supplemented 

with ampicillin (70 µg/ml). Plasmid maxipreparation was performed with 

the Qiagen Plasmid Maxi Kit, according to the manufacturers protocol. 

Bacterial cells were harvested by centrifugation at 5 000 x g (4 000 rpm) 

for 15 minutes at 4°C. The pellet was resuspendend in 10 ml buffer P1 

(Qiagen) for cell lysis.  

Then 10 ml of buffer P2 (Qiagen) were added, the solution was gently 

mixed and incubated at room temperature for 5 minutes. In the next step 

10ml of buffer P3 (Qiagen) were added to stop cell lyses.  

Lysates were incubated on ice for 15 minutes and then the cell debris was 

removed by centrifugation at 5 000 x g (4 000 rpm) for 30 minutes at 4°C. 

The supernatant was transferred to a Qiagen tip 500 column, which had 
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been equilibrated with 10 ml buffer QBT (Qiagen). After washing the col-

umn twice with 30 ml buffer QC (Qiagen), DNA was eluted with 15 ml 

buffer QF (by Qiagen) and precipitated by adding 10,5 ml isopropanol. The 

precipitated DNA was collected by centrifugation for 30 minutes at 4°C at 

12 000 x g (10 000 rpm). DNA pellet was washed twice with 70 % ethanol, 

dried and resuspendend in nuclease free water according to the pellet 

size. The DNA content was determined by measuring the OD at 260 nm 

and diluted to a final concentration of 1 µg/µl. Plasmid preparations were 

stored at -20°C. 

Protein Purification 

Buffers and solutions: 

All buffers were sterile filtered (0,45 µm filter) before usage 

Binding buffer (wash buffer): 20 mM sodium phosphate, 3M NaCl (pH: 7) 

on ice 

Elution buffer 0,1 M sodium citrate pH 3 

1M Tris-HCl pH 9 

PBS + 20% EtOH 

Dialyse buffer: 50mM HEPES, pH 7,0, 0,15M NaCl, 4mM DTT, 0,0035% 

Tween 20 

 

For protein purification of fusion proteins from cell-culture supernatants the 

HiTrap rProtein A FF column was used. The specifity of protein A is pri-

marily for the Fc region of IgG. 

The cell culture supernatants of Phoenix cells transfected with a vector 

encoding various CD45 Ig fusion proteins were centrifuged at 2200 rpm for 

5 minutes to remove cells. Before applying to the column the samples 

were filtered using a 0,45 µm filter. 

Using a constant flow rate of 1 ml/minute the column was equilibrated with 

10 ml binding buffer, 10 ml elution buffer and 10 ml binding buffer again. 
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Then the sample was loaded to the column. Before elution, the column 

was washed with 10 ml binding buffer, then 5 x 1 ml  

fractions were collected. 120 µl of Tris-HCl pH 9 were added so that the 

final pH of the sample would be neutral, to provide proper folding of the 

protein. The column was regenerated by washing with 10 ml binding 

buffer. For further storage (4°C) the column was washed with 20% ethanol 

in PBS. 

After purification the protein concentation was measured at OD280. Then 

all fractions which contain protein were pooled and dialysed over night 

against the dialyse buffer under stirring. The fusion proteins were ali-

quoted and stored at -80°C. 

Magnetic cell sorting (MACS)  

Cells can be purified from a heterogeneous cell suspension by magneti-

cally labelled antibodies. The mAbs we used were indirectly labelled with 

biotin. These biotinylated antibodies recognizing cell-type specific surface 

molecules were mixed with the cells to be separated. In a second incuba-

tion step paramagnetic beads (50 nm in diameter) were coupled via a bio-

tin-streptavidin interaction to the monoclonal antibodies which had been 

specifically bound to a distinguished cell population. The cells were ap-

plied onto a separation column placed in a strong permanent magnet. In 

this strong magnetic field the cells labelled with paramagnetic beads stack 

to the iron mesh and were retained while non-labelled cells passed 

through. Retained cells were eluted by removing the column from the 

magnetic field.  

For the separation of Monocytes we applied positive selection utilizing an 

antibody against the monocyte-marker CD14. The PBMC were incubated 

with a biotinylated anti-CD14 Antibody. Monocytes retained in the column 

and were eluted after removal from the magnet.  
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T-cells were purified by negative selection: Populations expressing 

CD11b, CD14, CD16, CD19, CD33 and MHCII were labelled and retained 

in the column while T-cells passed through. 

Isolation of Peripheral Blood Mononuclear Cells (PBMC) 

• Heparin-Medium: 500 ml RPMI 1640 (+10% FCS + 100 U/ml penicillin 

+ 100 µg/ml streptamycin and 2 mM L-glutamine) + 10 U/ml Heparin 

(stock: 5000 U/ml, Baxter, Vienna) 

• MACS-buffer (stored at 0°C): 1000 ml 1x PBS def. + 25 ml HSA (stock: 

20%, Centeon, Vienna) + 10 ml EDTA (stock: 0,5 M); filtrated sterile 

• Ficoll-Paque (Pharmacia, Uppsala,Sweden) 

 

Blood from normal healthy donors was diluted 1:2 to 1:3 with Heparin-

Medium 

For density gradient centrifugation 15 ml of Ficoll-Paque were prepared in 

50 ml tubes and a layer of heparinized blood was carefully pipetted 

onto. The cells were spun 30 minutes at 900 g without brake. 

The interphase contained all the PBMCs, whereas the erythrocytes and 

granulocytes gathered at the bottom of the tube: The white interphase 

ring was transferred into a new tube and spun down (5 minutes at 

900g). The supernatant was discarded.  

The cells were washed twice with MACS-buffer: 

The pellet was resuspend in a few ml of buffer, filled up, spun down. 

The supernatant was discarded, and the cells again resuspend. The 

number of PBMCs was determined and the cells were used for mono-

cyte and T-cell selection. 
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Purification of T-cells    

For the isolation of monocytes up to 1 x 109 PBMNCs were incubated with 

250 μl of biotinylated CD14 (VIM13) and positively enriched (positive se-

lection), whereas T-cells  

were isolated by collecting the flowthrough of PBMNCs depleted by using 

an antibody cocktail containing anti-CD14 (monocytes), anti-CD16 (mono-

cytes, NK–cells), anti-CD19 (B cells), anti-CD36 (monocytes, thrombo-

cytes), anti-CD56 (NK-cells) and anti-CD123 (progenitor cells, megakar-

yocytes, granulocytes, negative selection).   

Freshly isolated PBMNCs were resuspended in 750 μl MACS buffer and 

incubated with 250 μl biotinylated antibodies for 15 minutes at 4°C. To re-

move unbound antibodies the cells were washed with MACS buffer and 

again resuspended in 750 μl buffer. Then 250 μl anti-Streptavidin Mi-

croBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) were added to 

the suspension and incubated for 15 minutes at 4°C. In the mean time a 

CS column (Miltenyi biotec) was placed onto a VarioMACS apparatus and 

equilibrated with 40 ml MACS buffer. Afterwards the labelled PBMNCs 

were loaded onto the column and for monocyte enrichment washed with 

40 ml MACS buffer. The flow through was collected as monocyte negative 

fraction. The column was further washed four times with 10 ml MACS 

buffer and monocytes were collected by removal of the column from the 

magnet and aspiration of the retained cells from the side valve using a 

syringe.  

For T-cells the flowthrough was collected, washed with MACS buffer and 

counted. 20 μl of this solution were pipetted into a tube for cell counting 

with the coulter. Before measuring the cell number two drops of Zap-

Oglobin® (Beckman Coulter, Miami, FL) are added to remove residual 

erythrocytes. 
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T-cell proliferation assays  

 For proliferation assays with Ig-fusion proteins, plates were coated with 3 

µg/ml of both anti-mouse IgG (3 µg/ml; Invitogen) and anti-human IgG, Fc-

specific (3 µg/ml; Jackson ImmunoResearch Laboratories, West Grove, 

Pa) overnight at 4°C, washed, and then incubated with 4 µg/ml of the re-

spective fusion protein (ctCD45Fc and CTLA4Fc) plus anti-CD3 (1 µg/ml; 

OKT3; Ortho Pharmaceutical Corporation) or the combination of anti 

CD3/CD28 or anti CD3/CD63 mAb. After another washing step, T-cells (1 

x 105 /well) were added. Proliferation was monitored by measuring tritiated 

thymidine ((methyl-3H)TdR; Valeant Pharmaceuticals, Irvine, CA) incorpo-

ration on day 3 of culture. Cells were harvested 18 hours later and radio-

activity was determined on a microplate scintillation counter (PerkinElmer 

Life and Analytical Science, Waltham, MA). Assays were performed in trip-

licate. 

Flow cytometry 

Flow cytometry can be used to examine diverse properties of cells includ-

ing the relative size, relative granularity and relative fluorescence intensity. 

Cells are transported in a fluid stream to a laser beam. To accomplish that 

single cells are passing through the beam, a principle related to laminar 

flow is applied. The sample is injected into a stream of sheath fluid. Cells 

within this stream are accelerated and are focused to the center, a proc-

ess called hydrodynamic focussing.  

The incident laser light is scattered by the cells and detected in different 

angles. Forward scatter light (FSC) is measured just of the axis of the inci-

dent beam by a photo diode and gives information about the size of a par-

ticle. Side scatter light (SSC) is collected by a photo-multiplier at approxi-

mately 90° of the laser beam axis and is proportional to the granularity.  
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The argon ion laser used emits light at 488nm, a wavelength matching 

with the absorption spectrum of a range of fluorescent dyes. These fluoro-

chromes can be excited by the laser, which means that an electron is 

raised to a higher state of energy. After returning to ground state a photon 

is emitted and fluorescence can be detected after passing a system of 

lenses and filters. The intensities of different fluorochromes can be ana-

lysed at once, provided that their absorption maximae are not to close to 

each other.  

Membrane staining with unconjugated mAb 

Binding of mAbs to Fcg-receptors was blocked by incubation of cells with 

a mouse anti VIAP, a non-binding calf intestine alkaline phosphatase-

specific antibody. As negative control Beriglobin, a human immunoglobin, 

was applied. For secondary labelling we used R-Phycoerythrin-conjugated 

goat anti-human antibody.  

 

• PBS/BSA: 1x PBS def + 1% BSA 

• Fusion protein: 20µg/ml 

• Secondary antibody: R-Phycoerythrin-conjugated AffinityPure F(ab`)2 

Fragment Goat anti-Human IgG, Fc Fragment Specific antibody (Jack-

son ImmunoResearch) 20µg/ml in PBS/BSA (Molecular Probes; 

Eugene, Oregon) 

 

1. The cell suspension (2x105 /assay ) was spun down. 5´ at 300g 

2. The pellet was resuspended with 50µl mouse anti VIAP antibody/assay 

and kept 25´on ice. 

3. 20µl of Antibody were prepared in Micronic-tubes and 50µl of the cell 

suspension was added, mixed and incubated 30´ at 4°C.  

4. Each assay was washed twice with PBS/BSA: resuspended in 

PBS/BSA, spun down (5´at 300g), the supernatant was discarded... 
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5. 20µl R-Phycoerythrin-conjugated secondary antibody was added to the 

cells, and again incubated for 30´at 4°C. 

6. The tubes were kept on ice until they were analyzed by flow cytometry 

using a FACScalibur Flow Cytometer (Becton Dickinson, Palo Alto, 

CA) 

Quantification of cytokines via LUMINEX100 

The Flourokine MAP system, using LUMINEX xMAP technology (R&D 

Systems Inc., Minneapolis, MN), provides a tool to simultaneously meas-

ure multiple cytokines in a single sample. Analyte-specific antibodies are 

pre-coated onto color-coded beads. Standards and samples are pipetted 

into the wells and analytes of interest are bound by the immobilized anti-

bodies. After washing away any unbound substances, labelled antibodies 

specifid to the analytes of interest are added. Following a wash to remove 

any unbound labelled antibodies, the beads are resuspended in buffer and 

read using the LUMINEX100 analyzer. Advanced optics capture the color 

signals and digital signal processing sorts and translates the signal into 

real-time, quantitave data for each reaction. Supernatants remaining from 

various experiments were measured via the Luminex100 System (R&D 

Systems Inc., Minneapolis, MN) for their content of IL-2, IL-10, IL-13, IL-17 

and IFN-gamma. 

Polymerase Chain Reaction (PCR) 

The principle of the PCR technique is the amplification of a specific DNA 

segment in vitro. In the first step a double stranded template DNA is heat 

denaturated and separated. Two primers specific for the flanking region of 

the desired DNA fragment were selected. The specific primer annealing 

temperature depends on the GC content of the primer sequences, and is 

usually around 50°C. Finally, by elongating the primers in 5’ → 3’ direction, 

the heat-resistant Taq-Polymerase copies the DNA template. Repetitive 
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cycles of template denaturation, primer annealing and primer extension 

lead to an exponential amplification of the desired DNA fragment.  

Agarose Gelelectrophoresis 

Buffers 

• running buffer 1 x TAE:  

− 40 mM Tris Acetate 

− 20 mM EDTA 

− pH 8,5 

• sample buffer:  

− 20 % Glycerol in 1 x TAE 

− Orange G 

DNA molecules migrate in an electric field towards the positive pole due to 

the negative charge of their backbone. Depending on the length of the 

analyzed DNA-Fragments 0,8 % - 1,5 % agarose gels were used. For gel 

preparation agarose was dissolved in 1xTAE by boiling. After cooling 500 

µg/l ethidiumbromid were added. GeneRuler™ 1 Kb plus DNA ladder was 

used as size marker. 

Gelelectrophoresis was performed at a constant voltage (according to the 

gel size) of 80 V to 120 V using 1 x TAE as running buffer. DNA molecules 

can be detected by irradiation with UV-light as intercalated ethidiumbromid 

renders the DNA fluorescent.  

Restimulation assay 

For restimulation assays with Ig-fusion proteins, 24 well plates were 

coated with 3 µg/ml of both anti-mouse IgG (3 µg/ml; Invitogen) and anti-

human IgG, Fc-specific (3 µg/ml; Jackson ImmunoResearch Laboratories, 

West Grove, Pa) overnight at 4°C, washed, and then incubated with 4 

µg/ml of the respective fusion protein (ctCD45Fc and CTLA4Fc) plus anti-
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CD3 (1 µg/ml; OKT3; Ortho Pharmaceutical Corporation) or the combina-

tion of anti CD3/CD28 or anti CD3/CD63 mAb. The cells were cultured for 

5 days, washed twice counted and rested for 5 days in new media and 24 

well plates without stimulation or fusion proteins. 

After this resting periode the cells were counted again and restimulated in 

new CD3, CD3CD28 or CD3/CD63 mAb coated plates. Thymidine incor-

poration was measured 4 days after stimulation.  

FACS cell sorting 

All reagents have to be sterile before use! 

To isolate ct-CD45 receptors the human T cell cDNA library was screened 

using the generated Ig fusion proteins as baits. 

For this purpose approximately 30 x 106 cells of the human T cell  cDNA 

library were stained using ctCD45Fc fusion protein (3 µg/ml) and goat anti 

human PE conjugated secondary antibody (20 µg/ml). Cells were washed 

between the antibody incubation steps with sterile FACS buffer. All incuba-

tion steps were made at 4°C. To exclude isolation of Fcγ receptor express-

ing cells, counterstaining with a mAb to CD64 (20 µg/ml) was done. Cells 

were resuspended in 100 up o 300 µl of sterile FACS buffer. Sorting was 

done using a FACS Aria (Becton Dickinson). Cells were sorted in eppen-

dorf tubes supplemented with 300 µl cRPMI 1640. Sorted cells were 

spined down, resuspended in 100 µl c RPMI 1640 and finally replated in 

96 well plates. 

siRNA knockdown 

For each transfection, a cell suspension containing 5x105 BW cells in 500 

µl of growth medium with serum but without antibiotics was added to a well 

of a 24 well plate. 2 solutions were prepaired: 

Solution A: 2 µl siRNA (20nM/ml) were diluted in 50 µl OptiMEM I Medium. 
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Solution B: 1µl LipofectamineTM 2000 were diluted in 50 µl OptiMEM I Me-

dium. 

Both solutions were incubated for 5 min. Then they were combined and 

incubated for additional 20 min. After that the combined solutions were 

added to each well and mixed gently. Then those cells were incubated at 

37°C in a CO2 incubator. 48 and 72 hours later those cells were stained 

with ctCD45Fc as a primary reagent and PE conjugated goat anti human 

Fc-specific antibodies (Jackson ImmunoResearch Laboratories, West 

Groove, PA) as a second reagent. 



Results 
Analysis of the functional consequences of the in-
hibitory signal delivered by ct-CD45 to T cells  

ct-CD45 inhibits the proliferation of T cells under certain 

conditions 

In order to analyse the influence of ct-CD45 on T cell proliferation, we 

conducted proliferation assays in an antigen presenting cell free system 

and used ct-CD45-Fc fusion proteins, which consist of the cytoplasmatic 

part of CD45 an the Fc part of a human antibody. For these assays bulk T 

cells, bulk T cells without regulatory T cells (CD25- T cells), cord blood T 

cells and isolated CD4+ and CD8+ T cell were used. The bulk T cells, the 

CD25- T cells and the CD4+ and CD8+ T cells were isolated from human 

peripheral blood. The cord blood T cells were purified from cord blood. 

These different T cell populations then were stimulated with an anti CD3 

monoclonal antibody (OKT3) and anti CD3 monoclonal antibody (mAb) in 

combinations with anti CD28 or anti CD63 monoclonal antibodies. OKT3 

binds to the CD3 molecule, which initiates T cell receptor signalling. The 

binding of this anti CD3 mAb to CD3 activates the T cell receptor and pro-

vides Signal 1 which is essential for T cell proliferation. The binding of the 

anti CD28 and the anti CD63 antibody deliver the costimulatory signal 

which is also necessary for proper T cell activation. 

The experiments with bulk T cells showed the exact same results as the 

experiments with CD25- T cells. CD3 and CD3/CD63 stimulated CD25-  T 

cells showed a strong inhibition of T cell proliferation when ct-CD45 fusion 

proteins (ctCD45Fc) but not CTLA4 fusion proteins (CTLA4Fc) were 

added (Figure 2). CTLA4 fusion proteins, which consist of the human 

CTLA4 protein and the Fc part of human antibodies, were used as a con-
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trol to ensure that the inhibitory effect is not due to the Fc-part of those 

fusion proteins. The CD25- T cells that were CD3/CD28 stimulated 

showed no inhibition of T cell proliferation after ctCD45Fc was added.  

 
Figure 2: ct-CD45 inhibits the proliferation of CD25- T cells, if they are CD3 or 
CD3/CD63 activated but not if they are CD3CD28 activated 
CD25-  T cells were stimulated with platebound anti CD3 monoclonal antibody (OKT3) and 

anti CD3 mAb in combinations with anti CD28 or anti CD63 mAb or no stimulation at all 

(mock) for 90 hours and cultured with or without  platebound ct-CD45 or  CTLA4 fusion 

protein. The proliferation of those T cells then was monitored by adding [methyl-3H]TdR 

after 72 hours of cultivation and measuring [methyl-3H]TdR incorporation 18 hours later. 

A) CD25- T cells with or without CD3 activation;  B) CD25-  T cells with or without a com-

bination of anti CD3 and anti CD28 mAb; B) CD25- T cells with or without a combination 

of anti CD3 and anti CD63 mAb; The results of one representative of seven independent 

experiments are shown. Mean values of triplicate determination ± standard deviation are 

shown. 
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Figure 2 shows representative examples of CD25- T cell proliferation after 

stimulation with plate bound antibodies. Figure 2 A shows CD3 stimulated 

CD25- T cells. A strong inhibition of proliferation in these T cells can be 

seen when the ct-CD45 fusion protein is added. Figure 2 B shows 

CD3/CD28 stimulated CD25- T cells. In this setup ct-CD45 shows no in-

hibitory effect on those cells. CD3/CD63 activated CD25- T cells showed 

an inhibition of T cell proliferation when ctCD45Fc was added (Figure 2 C). 

The control with the CTLA4 fusion protein shows no inhibition of T cell pro-

liferation. The CTLA4 fusion protein showed no effect on T cell prolifera-

tion in any of these three experiments. The unstimulated T cell showed no 

sign of proliferation in all experiments. 
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Figure 3: ct-CD45 does not inhibit the proliferation of CD3, CD3/CD63 and 
CD3/CD28 stimulated cord blood T cells 
Cord blood T cells were stimulated with platebound anti CD3 monoclonal antibody (OKT3) 

and anti CD3 mAb in combinations with anti CD28 or anti CD63 mAb or no stimulation at 

all (mock) for 90 hours and cultured with or without platebound ct-CD45 or  CTLA4 fusion 

protein. The proliferation of those T cells then was monitored by adding [methyl-3H]TdR 

after 72 hours of cultivation and measuring [methyl-3H]TdR incorporation 18 hours later. 

A) cord blood T cells with or without anti CD3 activation;  B) cord blood T cells with or 

without a combination of anti CD3 and anti CD28 mAb; B) cord blood T cells with or with-

out a combination of anti CD3 and anti CD63 mAb; The results of one representative of 

two independent experiments are shown. Mean values of triplicate determination ± stan-

dard deviation are shown. 

 

Cord blood T cells were used to determine if ct-CD45 has a different effect 

on naive T cells. For this purpose the same three proliferation assays were 

conducted with those T cells (Figure 3). The CTLA fusion protein was 

used as a control again. 

 

Representative examples of cord blood T cell proliferation under three dif-

ferent activation conditions are shown in Figure 3. Figure 3 A shows CD3 

stimulated cord blood T cells. The CD45 fusion protein had no inhibitory 

effect on the proliferation of those T cells. The proliferation of the cord 

blood T cell, which were CD3/CD28 (Figure 3 B) and CD3/CD63 (Figure 3 

C) activated could not be inhibited with the ct-CD45 fusion protein as well. 

Neither the CD45 fusion protein nor the CTLA4 fusion protein showed any 

effect on cell proliferation under all three different activation conditions. 

The cord blood T cells, which were cultivated without activation (mock) 

showed a very low proliferation. 

 

In order to find out if ct-CD45 has a different effect on CD4+ and CD8+ T 

cells, CD4+ (Figure 4) and CD8+ T cell (Figure 5) were activated sepa-



Formular Nr.: A.04   
 

51 

rately with anti CD3 mAb and anti CD3 mAb in combinations with anti 

CD28 or anti CD63 monoclonal antibodies.  

 

 
Figure 4: ct-CD45 inhibits the proliferation of CD3 and CD3/CD63 but not CD3/CD28 
activated CD4+ T cells 
CD4+ T cells were stimulated with platebound anti CD3 monoclonal antibody (OKT3) and 

anti CD3 mAb in combinations with anti CD28 or anti CD63 mAb or no stimulation at all 

(mock) for 90 hours and cultured with or without platebound ct-CD45 or  CTLA4 fusion 

protein. The proliferation of those T cells then was monitored by adding [methyl-3H]TdR 

after 72 hours of cultivation and measuring [methyl-3H]TdR incorporation 18 hours later. 

A) CD4+ T cells with or without anti CD3 activation;  B) CD4+ T cells with or without a 

combination of anti CD3 and anti CD28 mAb; B) CD4+ T cells with or without a combina-

tion of anti CD3 and anti CD63 mAb; The results of one representative of two independ-

ent experiments are shown. Mean values of triplicate determination ± standard deviation 

are shown. 
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Figure 4 A shows CD3 activated CD4+ T cells. The ct-CD45 fusion protein 

inhibits the proliferation of those T cells. This effect can not be seen when 

the CTLA4 fusion protein is added. When the CD4+ T cells are CD3/CD28 

activated (Figure 4 B) proliferation can not be inhibited by ctCD45Fc. The 

proliferation of CD3/CD63 activated CD4+ T cells could be inhibited by 

ctCD45Fc. The CTLA4 fusion protein had little to no effect on the prolifera-

tion of CD4+ T cells under these three conditions. Those cells that were 

cultivated without activation showed no proliferation. 

 

 
Figure 5: ct-CD45 inhibits the proliferation of CD3 and CD3/CD63 stimulated CD8 
positive T cells but it increases the proliferation of CD3/CD28 stimulated CD8+ T 
cells  
CD8+ T cells were stimulated with platebound anti CD3 monoclonal antibody (OKT3) and 

anti CD3 mAb in combinations with anti CD28 or anti CD63 mAb or no stimulation at all 

(mock) for 90 hours and cultured with or without platebound ct-CD45 or  CTLA4 fusion 
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protein. The proliferation of those T cells then was monitored by adding [methyl-3H]TdR 

after 72 hours of cultivation and measuring [methyl-3H]TdR incorporation 18 hours later. 

A) CD8+ T cells with or without anti CD3 activation;  B) CD8+ T cells with or without a 

combination of anti CD3 and anti CD28 mAb; B) CD8+ T cells with or without a combina-

tion of anti CD3 and anti CD63 mAb; The results of one representative of two independ-

ent experiments are shown. Mean values of triplicate determination ± standard deviation 

are shown. 

 

The proliferation of CD8 positive T cells, which are activated with anti CD3 

(Figure 5 A) or the combination of anti CD3 and anti CD63 antibodies 

(Figure 5 C), can be inhibited if the ct-CD45 fusion protein is added.  In 

contrast to that, ctCD45Fc slightly increased the proliferation of the CD8 

positive T cells upon activation with a combination of anti CD3 and anti 

CD28 antibodies. The CTLA4 fusion protein had only little effect on the 

proliferation of CD8 positive T cells under these three conditions. The CD4 

positive cells that were cultivated without activation showed no prolifera-

tion. 

 

ct-CD45 inhibits cytokine production of CD3/CD63 stimu-

lated peripheral T cells 

The finding that ctCD45Fc strongly inhibits the proliferation of peripheral T 

cells which were stimulated by anti CD3/CD63 mAb raised the question if 

ctCD45Fc effects cytokine production and T cell polarisation as well. 

The cytokines Interleukin 2 (IL-2), Interleukin 4 (IL-4), Interleukin 10 (IL-

10), Interleukin 13 (IL-13), Interleukin 17 (IL-17) and Interferon gamma 

(IFN gamma) are important for the function, proliferation and polarisation 

of T cells. Therefore the influence of ct-CD45 on the expression of those 

cytokines in peripheral T cells after stimulation with different stimuli was 

evaluated. To do that, peripheral T cells were isolated from human periph-

eral blood and stimulated with an anti CD3 mAb in combination with anti 
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CD63 (Figure 6) mAb. Then these cells were incubated with or without ct-

CD45 (ctCD45Fc) or CTLA4 fusion proteins (CTLA4Fc), which were used 

as a control. After five days the concentration of IL-2, IL-10, IL-13, IL-17 

and IFN gamma in the supernatant was measured using an E.L.I.S.A.. 

The concentration of IL-4 was determined by intracellular staining after five 

days of cultivation.  

Il-2 is produced by activated T cells and stimulates the proliferation and 

effector functions of NK cells, B cells and T cells. It is also involved in the 

development of regulatory T cells. The main sources for IL-4 are CD4 

positive T cells of the TH2 subset. It induces the differentiation of TH2 

cells from naive CD4 positive precursors, stimulates the IgE production 

and suppresses IFN gamma dependent macrophage function. IL-10 is 

produced by activated macrophages and some T cells. Its function is to 

control immune reactions by inhibiting activated macrophages. Il-13 mim-

ics the effect of IL-4 on macrophages but has less effect on T and B cells. 

It is produced by CD4+ Th2 cells. IL-17 is a proinflamatory cytokine and is 

produced by Th17 cells. IFN gamma is the principal macrophage activat-

ing cytokine, promotes the differentiation of naive CD4+ T cells to the Th1 

subset and inhibits the proliferation of Th2 cells. Those Th1 cells the pro-

duce IFN gamma in a positive feedback loop. 
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Figure 6: ct-CD45 inhibits the cytokine production of CD3/CD63 activated periph-
eral T cells. 
Peripheral T cells were stimulated with platebound anti CD3 mAb (OKT3) in combination 

with an anti CD63 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion proteinor not stimulated at all (mock). After five days the concentration 

of IL-2 (A), IL-10 (C), IL-13 (D), IL-17 (E) and IFN gamma (F) in the supernatant was 

measured via Luminex. The expression of IL-4 (B) was determined by intracellular stain-

ing: Peripheral T cells were stimulated in the presence of platebound anti CD3 mAb 

(OKT3) and anti CD63 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein. After four days monensin was added to block the release of IL-

4. 18 hours later the concentration of IL-4 was determined by intracellular staining. The 

results of one representative of five independent experiments are shown. 

 

 

The concentration of IL-2 is almost as low in the supernatant of the 

CD3/CD63 activated T cells (Figure 6 A), which were cultivated in the 

presence of the ct-CD45 fusion protein (ctCD45Fc), as in the supernatant 

of the T cells, which were not stimulated at all (mock). There is a slight 

increase in the IL-2 concentration in the supernatant of the peripheral T 

cells, which were cultivated with CTLA4 fusion proteins (CTLA4Fc). 

ctCD45Fc inhibits the expression of IL-4 while CTLA4Fc seems to have no 
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influence (Figure 6 B). The concentration of IL-10 (Figure 6 C), IL-13 (Fig-

ure 6 D), IL-17 (Figure 6 E) and IFN gamma (Figure 6 F) is almost as low 

in the supernatant of the cells which were cultivated in the presence of 

ctCD45Fc as in the supernatant of the negative control (mock). The pres-

ence of the CTLA4 fusion protein has only little to no effect on the expres-

sion of those cytokines. 

 

ct-CD45 inhibits cytokine production of CD3/CD28 stimu-

lated peripheral T cells 

Since ctCD45Fc inhibited cytokine production or release of CD3/CD63 

stimulated peripheral T cells, the question was if the cytokine production of 

anti CD3/CD28 mAb activated T cells is also influenced by ctCD45Fc. Fig-

ure 7 shows that ctCD45 has a quite similar effect on the cytokine produc-

tion or release of CD3/CD28 activated peripheral T cells than it has on the 

cytokine production of CD3/CD63 activated peripheral T cells.  

The concentration of IL-2 is much lower in the supernatant of those T cells 

(Figure 7 A), which were cultivated in the presence of the ct-CD45 fusion 

protein (ctCD45Fc), than without. There is an increase in the IL-2 concen-

tration in the supernatant of the peripheral T cells, which were cultivated 

with CTLA4 fusion proteins (CTLA4Fc). ctCD45Fc inhibits the expression 

of IL-4 while CTLA4Fc increases it (Figure 6 B). The concentration of IL-10 

(Figure 6 C), IL-13 (Figure 6 D), IL-17 (Figure 6 E) and IFN gamma (Figure 

6 F) is much lower in the supernatant of the cells which were cultivated in 

the presence of ctCD45Fc. The presence of the CTLA4 fusion protein has 

only little to no effect on the expression of those cytokines. 
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Figure 7: ct-CD45 inhibits the cytokine production of CD3/CD28 activated periph-
eral T cells. 
Peripheral T cells were stimulated with platebound anti CD3 mAb (OKT3) in combination 

with an anti CD28 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein or not stimulated at all (mock). After five days the concentration 

of IL-2 (A), IL-10 (C), IL-13 (D), IL-17 (E) and IFN gamma (F) in the supernatant was 

measured via Luminex. The expression of IL-4 (B) was determined by intracellular stain-

ing: Peripheral T cells were stimulated in the presence of platebound anti CD3 mAb 

(OKT3) and anti CD28 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein. After four days monensin was added to block the release of IL-

4. 18 hours later the concentration of IL-4 was determined by intracellular staining. The 

results of one representative of five independent experiments 
 

ct-CD45 inhibits cytokine production of naive T cells 

Since ctCD45Fc inhibits even the cytokine production of the CD3/CD28 

stimulated peripheral T cells, whose proliferation was not inhibited by 

ctCD45Fc, we wanted to find out if it inhibits the cytokine production of 

naive T cells as well. To do that cord blood T cells were isolated from cord 

blood and stimulated with the combination of either anti CD3 and anti 
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CD63 (Figure 8) or the combination of anti CD3 and anti CD28 antibodies 

(Figure 9). Then those cells were cultivated in the presence of either 

ctCD45Fc, CTLA4Fc, which was used as a control or no fusion protein at 

all. 

Figure 8 shows the CD3/CD63 stimulated naive T cells. The concentration 

of all the measured cytokines in the supernatant of those cells, which were 

cultivated in the presence of ctCD45Fc, was almost as low in the super-

natant of those T cells which were not stimulated with the exception of IL-

4, which was down regulated by about 30% (Figure 8 B). The presence of 

CTLA4Fc has almost no influence on the cytokine production of those 

cells. 

 
 

 
 
Figure 8: ct-CD45 inhibits the cytokine production of CD3/CD63 activated cord 
blood T cells. 
Cord blood T cells were stimulated with platebound anti CD3 mAb (OKT3) in combination 

with an anti CD63 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein or not stimulated at all (mock). After five days the concentration 

of IL-2 (A), IL-10 (C), IL-13 (D), IL-17 (E) and IFN gamma (F) in the supernatant was 

measured via Luminex. The expression of IL-4 (B) was determined by intracellular stain-
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ing: Cord blood T cells were stimulated in the presence of platebound anti CD3 mAb 

(OKT3) and anti CD63 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein. After four days monensin was added to block the release of IL-

4. 18 hours later the concentration of IL-4 was determined by intracellular staining. The 

results of one representative of two independent experiments are shown. 

 

 
Figure 9 shows cord blood T cells, which were stimulated with the combi-

nation of anti CD3 and anti CD28 mAb. The concentration of IL-2 in the 

supernatant of the CD3/CD28 activated cord blood T cells was almost as 

low as in the supernatant of those cells without any activation (Figure 9 A) 

and the concentration was reduced to zero in the presence of ctCD45Fc. 

The expression of IL-4 was downregulated by about 30% in the presence 

of ctCD45Fc (Figure 9 B). The concentration of IL-10 (Figure 9 C), IL-13 

(Figure 9 D) and IL-17 (Figure 9 E) was greatly reduced in the supernatant 

of those cord blood T cells, which were cultivated with ctCD45Fc com-

pared to the supernatant of the T cells cultivated with CTLA4Fc or no fu-

sion protein. ctCD45Fc inhibits the production of IFN gamma while 

CTLA4Fc increases it (Figure 9 F). 
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Figure 9: ct-CD45 inhibits the cytokine production of CD3/CD28 activated cord 
blood T cells. 
Cord blood T cells were stimulated with platebound anti CD3 mAb (OKT3) in combination 

with an anti CD28 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein or not stimulated at all (mock). After five days the concentration 

of IL-2 (A), IL-10 (C), IL-13 (D), IL-17 (E) and IFN gamma (F) in the supernatant was 

measured via Luminex. The expression of IL-4 (B) was determined by intracellular stain-

ing: Cord blood T cells were stimulated in the presence of platebound anti CD3 mAb 

(OKT3) and anti CD28 mAb with or without platebound ct-CD45 (ctCD45Fc) or CTLA4 

(CTLA4Fc) fusion protein. After four days monensin was added to block the release of IL-

4. 18 hours later the concentration of IL-4 was determined by intracellular staining. The 

results of one representative of two independent experiments are shown. 

 

Expression of activation marker molecules on T cells in the 

presence of ctCD45Fc 

To examine if the ctCD45Fc induced inhibitory effects are caused by an 

altered regulation of cell surface molecules involved in T cell activation, we 

had a look on the expression of cell-surface molecules on activated peri-
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pheral and naive T cells cultivated in the presence of ctCD45Fc or 

CTLA4Fc. 

The main function of MHC II is to present processed antigens and it is ex-

pressed on activated human T cells. CD25 is a part of the IL-2 receptor 

and its expression is up regulated during T cell activation like the expres-

sion of CD97. CD69 is one of the earliest cell surface molecules ex-

pressed by T cells after activation. 

In peripheral T cells the up regulation of the activation markers CD25 and 

CD97 was strongly reduced in the presence of ctCD45Fc (Figure 10). The 

co cultivation of the activated T cells with ctCD45Fc had only a minor ef-

fect on the expression of CD69. The CTLA4 fusion protein CTLA4Fc had 

only very little influence on the expression of any of these surface mole-

cules on activated peripheral T cells. 

There is a strong reduction of CD25 and MHC II expression if the activated 

cord blood T cells are co cultivated with the ctCD45 fusion protein (Figure 

10). ctCD45Fc only  had only little effect on the expression of CD97. 

CTLA4Fc reduced the expression of CD25 of activated cord blood T cells 

while it had only minimal effect on the other surface molecules. 
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Figure 10: expression of surface molecules in the presence of different fusion pro-
teins. 
Peripheral and naive (cord blood) T cells were stimulated with plate bound CD3/CD28 

mAb for 5 days in the presence of ctCD45Fc, CTLA4Fc or without any fusion protein; 

black thin line: negative control (CD3/28 mAb activated T cells stained with an anti VIAP 

mAb); grey histogram: CD3/28 mAb stimulation without any fusion protein; thick black 

line: CD3/28 mAb stimulation with ctCD45Fc or CTLA4Fc. CD69 was stained 48 hours 

after activation with CD3/28 mAb. Facs histogram plots of 1 representative out of 2 ex-

periments are shown.  

 

ctCD45Fc treated T cells can not be restimulated with 

CD3/CD28 or CD3/CD63 

Since T cells which are cultivated with ctCD45Fc are still alive 139, but do 

not proliferate and show reduced cytokine levels, the question was if these 

cells could be restimulated with platebound anti CD3/CD28 or CD3/CD63 

mAb. 

T cells were stimulated with the combination of an anti CD3 with either an 

anti CD28 (Figure 11 A) or anti CD63 mAb (Figure 11 B) in the presence 

of ctCD45Fc, CTLA4Fc or no fusion protein. Then after resting for five 
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days they were restimulated the same way as before but without fusion 

protein. Under both conditions the T cells which were preincubated with 

ctCD45Fc did not proliferate anew upon stimulation while the CTLA4Fc 

treated T cells showed the same proliferation as the T cells which were not 

preincubated with fusion protein.  

 

 
Figure 11: Restimulation of T cells 
T cells were stimulated with plate bound CD3/CD28 or CD3/CD63 mAb for five days and 

incubated with ctCD45Fc, CTLA4Fc or without any fusion protein. After five days these 

cells were washed and incubated for another five days without any stimulation in fresh 

media. The T cells were then restimulated with either CD3/CD28 (Figure 11 A) or 

CD3/CD63 (Figure 11 B) mAb like they were before or not stimulated at all (mock). The 

proliferation of those T cells then was monitored by adding [methyl-3H]TdR after 72 hours 

of cultivation and measuring [methyl-3H]TdR incorporation 18 hours later. The results of 

one representative of 5 independent experiments are shown. Mean values of triplicate 

determination ± standard deviation are shown. 

 

The addition of exogenous IL-2 can only partly reverse the 

ctCD45Fc induced hyporesponsive state 

Since ctCD45Fc strongly reduced the concentration of IL-2 in the super-

natant of stimulated T cells and given the fact that IL-2 is one of the most 

important factors for T cell proliferation, we wanted to find out if the addi-

tion of exogenous IL-2 could reverse the ctCD45Fc induced hyporespon-
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sive state and trigger proliferation in ctCD45Fc treated T cells. Figure 12 A 

and B show that the addition of IL-2 partly reverses the inhibitory effect of 

ctCD45Fc and increases the T cell proliferation. However Figure 11 C and 

D show that even though IL-2 increases the proliferation of the T cell 

which were incubated with ctCD45Fc the T cells which were incubated 

with CTLA4Fc or without any fusion protein, in the presence of 10 Units/ml 

IL-2, proliferated much stronger than the ones which were incubated with 

ctCD45Fc. There seems to be no difference between the CD3/28 and the 

CD3/63 stimulations. 

 

 
 
Figure 12: The addition of exogenous IL-2 can only partly reverse the ctCD45Fc 
induced hyporesponsive state 
(A, B) T cells were stimulated with plate bound CD3/CD28 or CD3/CD63 mAb for five 

days in the presence of ctCD45Fc. After five days these cells were washed and incu-

bated for another five days without any stimulation in fresh media. Then the T cells were 
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restimulated with or without 10 Units/ml IL-2 with either CD3/CD28 (Figure 11 C) or 

CD3/CD63 (Figure 11 D) mAb or not stimulated at all (mock). The proliferation of those T 

cells then was monitored by adding [methyl-3H]TdR after 72 hours of cultivation and 

measuring [methyl-3H]TdR incorporation 18 hours later. The results of one representative 

of 3 independent experiments are shown. 

(C, D) T cells were stimulated the same way as in Figure 12 A and B with the only differ-

ence that all the cells were restimulated in the presence of 10 Units/ml IL-2.The prolifera-

tion of those T cells then was monitored by adding [methyl-3H]TdR after 72 hours of culti-

vation and measuring [methyl-3H]TdR incorporation 18 hours later. The results of one 

representative of 5 independent experiments are shown. Mean values of triplicate deter-

mination ± standard deviation are shown. 
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Identification of the receptor for ct-CD45 on human 
T cells 

Identification of ct-CD45 receptors by screening a cDNA 

library 

ctCD45 has been described to inhibit the proliferation of CD3 activated T 

cells. To analyze the interaction between ct-CD45 and human T cells, 

binding studies were performed with fluorescence labelled ct-CD45 fusion 

proteins. In these experiments, ct-CD45 was found to bind to activated t 

cells. This binding was saturable and blockable with blocking antibodies or 

unlabeled ct-CD45 fusion protein. 139 

To identify activated T cell surface molecules involved in the interaction 

with ct-CD45, we used a cDNA library, derived from activated T cells. The 

cDNA library was expressed in the mouse B cell line BW. The target cell 

pool was then stained with ctCD45Fc as a primary reagent. Then the BW 

cells binding ctCD45Fc were labelled with a goat anti human Fc, PE con-

jugated mAb and FACS cell sorting was used to separate them from the 

rest of the cells (Figure 13). These ctCD45Fc binding BW cells were ex-

panded for two additional sorting steps. After three rounds of FACS cell 

sorting 10,7% of the cells bound to ctCD45Fc from originally 0,3%. As a 

control we used two different cell sorting experiments. For the first control 

we used a combination of anti CD27 and anti CD54 mAb, for the second 

control we used the combination of two fusion proteins consisting of either 

ICOS-L or CD80 and the Fc part of human antibodies.  
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Figure 13: Identification of ct-CD45 receptor by cDNA library screen 
ctCD45Fc-reactive cells were isolated from a cDNA library by performing three  FACS 

sorting steps. The cDNA library was derived from activated human T cells expressed in 

BW cell line. Gates used for selection of ctCD45Fc- binding cells are shown. The cells 

were probed with ctCD45Fc following a staining step with a PE labelled anti human Fc 

mAb. Two controls were used to ensure that the sorting procedure worked. The first sort-

ing control was with a combination of anti CD27/CD54 antibodies the second with the 

combination of ICOS-L-Fc/CD80-Fc fusion proteins. 

 

Single cell clones were established from the reactive cell pool. Two of 

these single cell clones bound to ctCD45Fc (Figure 14). These two cell 

clones (clone A and clone B) were stained with CTLA4 (CTLA4Fc), ICOS-

L (ICOS-L-Fc) and ct-CD45 fusion proteins (ctCD45Fc). Neither CTLA4Fc 

nor ICOS-L-Fc show a binding reaction to those cells, only ctCD45Fc 

shows such a binding. 
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Figure 14: Two BW single cell clones bind ctCD45Fc 
The BW single cell clones A and B were then stained with ctCD45Fc, CTLA4Fc or ICOS-

L-Fc as a primary reagent. Then the BW cells binding to those fusion proteins were la-

belled with a goat anti human Fc, PE conjugated mAb. The gray histograms are the 

negative control with VIAP antibody and the black lines are the stainings with the different 

fusion proteins. Six histograms of one representative out of 5 different experiments are 

shown. 

 

The cDNA inserts of those two single cell clones were retrieved from 

ctCD45Fc-binding BW cell clones by PCR. It turned out that both clones 

had the same six inserts (Figure 15 A). This DNA inserts were sequenced 

and they were found to be identical to five different mRNAs and one ran-

dom chromosome 16 sequence (Figure 15 B). The only one that was de-

scribed of having any function in the immune system was canopy 3 ho-

molog protein PRAT4A (Figure 15 A: band F). This protein is described as 

an endoplasmatic reticulum resident protein, which is involved in the traf-

ficking of toll like receptors (TLR) 1,2 and 9. Nevertheless staining of these 

BW cell clones with anti PRAT4A antibodies showed that PRAT4A is ex-

pressed on the cell surface of these BW cell clones (Figure 15 C). Anti 

VIAP mAb were used as control to verify that the binding of the anti 
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PRAT4A antibodies is not due to unspecific binding.  We also stained 

these cells with ctCD45Fc and control fusion proteins (CTLA4Fc and 

ICOS-L-Fc) to be sure that these cells bind ctCD45Fc as well. By intracel-

lular staining of T cells, it was shown that PRAT4A is expressed in resting 

as well as in activated T cells (Figure 15 D). However PRAT4A is stronger 

expressed on the cell surface of activated T cells then on resting ones. 

 

 
 
Figure 15: Identification of ct-CD45 receptors by screening a cDNA library 
(A) PCR-amplified inserts from two different ctCD45Fc-binding single cell clones estab-

lished from the selected cell pool. The 6 bands (in the red box), which were obtained in 

both products, was subjected to DNA sequence analysis. (B) List of the result of the se-

quence analysis of the 6 bands (Figure 15 A). (C) PRAT4A staining of ctCD45Fc binding 

BW single cell clone A was stained with anti PRAT4A antibody. Anti VIAP mAb and 
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ICOS-L-FC fusion protein were used to ensure that the binding of ctCD45Fc and 

PRAT4A antibodie is not due to unspecific binding. (D) CD3/CD28 activated and resting T 

cells were extra and intracellular stained with anti PRAT4A antibodies. 

 

siRNA knockdown of PRAT4A inhibits binding of ctCD45Fc 

To verify if the binding of ctCD45Fc to clone A and B is related to the ex-

pression of PRAT4A a siRNA knockdown was conducted. The BW cells 

were cultivated with Lipofectamin and with or without PRAT4A siRNA. 

Then a binding assay was used to determine if a knockdown of PRAT4A 

has any influence on the binding of ctCD45 to those BW cells. 

Figure 16 shows that the binding of ctCD45 to the BW cells, in which 

PRAT4A was knocked down, is reduced compared to the ones, which 

were cultivated with just Lipofectamine. CTLA4Fc was used as a negative 

control to ensure that the binding of ctCD45 is not due to unspecific bind-

ing.   

 

 
Figure 16: siRNA knockdown of PRAT4A inhibits binding of ctCD45Fc 
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ctCD45Fc-binding BW single cell clone A was incubated with µg Lipofectamine and with 

or without µg PRAT4A siRNA  for 48 hours. Then these cells were stained with ctCD45Fc 

or CTLA4Fc as a primary reagent. The ctCD45Fc or CTLA4Fc binding cells then were 

labelled with PE conjugated goat anti human Fc mAb. 

 
 
 
 

 



Formular Nr.: A.04   
 

72 

Discussion 
 

CD45 was one of the first signaling molecules identified on leukocytes and 

is used as a leukocyte marker molecule.104-114 It is the prototypic member 

of transmembrane receptors like protein tyrosine phosphatases (PRTPs) 

and various forms of it are expressed on all nucleated hematopoetic cells. 
111-114 CD45 plays an essential role in immune functions by dephosphoryl-

izing different substrates.119-122  

The starting point of the first part of my project was that recently an alter-

native function for the intracellular domain of CD45 (ct-CD45) was discov-

ered. It was shown that CD45 is cleaved and ct-CD45 is released during 

activation of human monocytes and granulocytes by fungal stimuli. Fur-

thermore was observed that ct-CD45 acts as a cytokine like factor, which 

inhibits T cell proliferation induced by dendritic cells or CD3 antibodies.  

The cytoplasmatic tail of CD45 can thereby act as an intercellular regulator 

between the innate and the adaptive immune system.139 In order to ana-

lyze the functual consequences of the inhibitory signal delivered by ct-

CD45 to T cells proliferation assays were conducted. They show that ct-

CD45 inhibits the proliferation of CD3 as well as CD3/CD63 activated pe-

ripheral T cells. The proliferation of CD3/CD28 activated peripheral T cells 

however, was not inhibited together with the proliferation of CD3, 

CD3/CD63 and CD3/CD28 activated cord blood T cells. If the cells were 

CD4 or CD8 positive had no effect on the inhibitory effect of ctCD45. 

The second question was if the cytokine production of T cells is affected 

by ct-CD45. The experiments show that the production or release of the 

cytokines IL-2, IL-4, IL-10, IL-13, IL-17 and IFN gamma which are impor-

tant for activation and proliferation of all the different T cell subtypes, are 

strongly down regulated. Surprisingly even the CD3/CD28 activated pe-

ripheral T cells as well as the cord blood T cells which showed normal pro-
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liferation in the presence of ct-CD45 had a reduced cytokine production 

with the only exception of IL-4, which showed an increased expression in 

cord blood T cells. Since IL-4 stimulates the development of Th2 cells from 

naïve CD4 pos T cells it seems that ct-CD45 induces the differentiation of 

cord blood T cells into Th2 cells. It inhibits the proliferation and the IL-4 

production of peripheral T cells, though. 

The down regulation of the activation markers on the cell surface of acti-

vated peripheral T cells in the presence of ct-CD45 together with the al-

most complete absence of effector cytokines shows that, even though 

their proliferation is not inhibited when they are stimulated with CD3/CD28, 

their function is severely impaired. Since CD3/CD28 provides a stronger 

activation signal then CD3 alone or CD3/CD63 the reason why the prolif-

eration CD3/CD28 activated T cells is not inhibited when ct-CD45 is pre-

sent might be because due to the strong activation signal the activation of 

these cells is powerful enough for the proliferation even though their cyto-

kine production is inhibited. The same goes for the cord blood T cells 

which show a severe reduction of cytokine production except IL-4 but no 

inhibition of proliferation. Cord blood T cells showed a very strong prolif-

eration in all the conducted experiments regardless of the means of activa-

tion in fact much stronger than peripheral T cells. So it could be that the 

activation signal is powerful enough for a normal proliferation even though 

ct-CD45 is present the only reason why those cells which were stimulated 

in the absence of this protein did not proliferate stronger was because 

their proliferation was already at its maximum. 

It seems that ct-CD45 induces a hyporesponsive state in the T cells be-

cause even though T cells proliferated in the presence of ct-CD45 upon 

certain activating conditions none of those cells which were incubated with 

this protein showed proliferation upon restimulation. This hyporesponsive 

state appears to be different from normal T cell anergy because the addi-

tion of exogenous IL-2 during restimulation only has a minor effect on pro-
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liferation. Clonal T cell anergy on the other side should be reversible by 

adding exogenous IL-2.  

 

The second part of my diploma thesis was about finding a possible recep-

tor candidate for ct-CD45 on T cells. The reason for searching for a recep-

tor was the finding that ct-CD45 binds to T cells. Binding assays showed 

that this protein only binds to activated T cells and that this binding can be 

blocked by mAb. Furthermore it was shown that the binding of ct-CD45 to 

activated T cells is saturable.139 These findings suggest that there is a 

specific receptor for this protein on the cell surface of those cells.  

Binding assays with a cDNA library for activated T cells gave evidence for 

interaction of ct-CD45 and a protein associated with Toll-like receptor 4 

(PRAT4A). PRAT4A was recently discovered as an ER-resident chaperon. 

It was initially described as a TLR4 binding chaperon (Figure 17), but 

PRAT4A also associates with TLR1. It was shown to be necessary for cell 

surface expression of these TLRs.140 PRAT4A regulates not only the re-

sponse of cell surface TLR but also that of intracellular TLR. In the ab-

sence of PRAT4A, the response to TLR9 ligand is completely abolished. It 

is required for the ligand induced trafficking of TLR9 from the ER to ly-

sosomal components. TLR9 and TLR7 mediated responses are com-

pleately dependent on PRAT4A, TLR3 on the contrary has been shown to 

respond to stimulation in the absence of PRAT4A.140  
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Figure 17:  
PRAT4A interacts with the hypoglycosilated TLR4 bound to MD-2 to regulate the translo-

cation of TLR4. After the interaction of PRAT4A with TLR4, TLR4 is glycosylated in ER 

and Golgi to the mature form of TLR4. TLR4/MD-2 is expressed on the cell surface and 

recognizes LPS to dimerize. LPS activation also induces TLR4/MD-2 endocytosis and 

translocates to endosomes/lysosomes to shut off the signaling by TLR4 degradation.141 

 

Another unique characteristic of this protein is that it is necessary for in-

ducting the endotoxin shock. Experiments have shown that PRAT4A-/- BM 

chimeric mice are capable to withstand toxic shock. In comparison to chi-

meric WT controls, it was revealed that serum cytokines level also follow a 

PRAT4A dependency.140 
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Although described as an endoplasmatic reticulum resident protein extra 

cellular staining showed that PRAT4A is also presented on the cell surface 

of activated T cells. Furthermore a siRNA knockdown of PRAT4A showed 

that the expression of PRAT4A and the binding of ct-CD45 are linked. 

Even though PRAT4A might not bind directly to ct-CD45, the experiments 

show that PRAT4A is involved in the signalling pathway of ct-CD45. 

 

 
Figure 18: Summary of ct-CD45 binding to activated T cells 

 

In summary ct-CD45 binds to naïve and activated T cells. PRAT4A is in-

volved in this binding which leads to the Th2 linage commitment of naïve T 

cells and to the induction of a hyporesponsive, anergy like state in periph-

eral T cells. Since ct-CD45 is released upon celldeath of monocytes and 

granulocytes it is possible that this induced hyporesponsitivity serves as a 

regulatory effect to prevent a too strong T cell activation. 
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activated T cell 

polarization in naive T cells 
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