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Abstract

In the first part of this thesis we investigate the kernels of the transformation
operators for one–dimensional Schrödinger operators with potentials, which are
asymptotically close to Bohr almost periodic infinite–gap potentials. Based on
this we can develop scattering theory in the steplike case.
Furthermore we present an application of direct and inverse scattering theory
for the Korteweg–de Vries equation, by solving the associated Cauchy problem
with initial conditions, which are steplike Schwartz–type perturbations of finite–
gap quasi–periodic potentials under the assumption that the respective spectral
bands either coincide or are disjoint.
The second and last part is devoted to the Camassa-Holm equation, for which
we study the stability of solutions of the Cauchy problem by deriving a Lipschitz
metric.
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Chapter 1

Introduction

In this thesis, we will at first have a look at transformation operators, which
play an important role in the investigation of direct and inverse scattering prob-
lems. They first showed up in the context of generalized shift operators in the
work of Delsarte [31], and were constructed for arbitrary Sturm–Liouville equa-
tions by Povzner [86]. Afterwards transformation operators have been applied
for the first time when considering inverse spectral problems, for example by
Marchenko [81]. Soon after that Gel’fand and Levitan [44] found a method of
recovering Sturm-Liouville equations from its spectral functions, using transfor-
mation operator techniques.
Another important step was the introduction of transformation operators, which
preserve the asymptotic behavior of solutions at infinity by Levin [76]. Since
that, these transformation operators are the main tool for solving different kinds
of scattering problems, mainly in the case of constant backgrounds. They have
been partly studied for periodic infinite-gap backgrounds by Firsova [39], [40],
without estimates, which are necessary for solving related inverse scattering
problems and they have been recently investigated in the finite-gap case by
Boutet de Monvel, Egorova, and Teschl [10].
Since the seminal work of Gardner, Green, Kruskal, and Miura [43] in 1967, one
of the main tools for solving various Cauchy problems is the inverse scattering
transform and therefore, since then, a large number of articles has been devoted
to direct and inverse scattering theory.
In much detail direct and inverse scattering have been studied (see e.g Marchenko
[81]) in the case where the initial condition is asymptotically close to p±(x) = 0.
Taking this as a starting point, there are two natural cases, which have also
been considered in the past. On the one hand the case of equal quasi-periodic,
finite-gap potentials p−(x) = p+(x) and on the other hand the case of steplike
constant asymptotics p±(x) = c± with c− 6= c+. Very recently, the combination
of these two cases, namely the case that the initial condition is asymptotically
close to steplike quasi-periodic finite-gap potentials p−(x) 6= p+(x), has been
investigated by Boutet de Monvel, Egorova and Teschl [10]. Of much interest is
also the case of asymptotically periodic solutions, which has first been consid-
ered by Firsova [40].
As the Korteweg–de Vries (KdV) equation

qt = −qxxx + 6qqx (1.1)
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Chapter 1. Introduction

is one of the most famous examples of a completely integrable nonlinear wave
equation, a lot of articles have been devoted to the corresponding Cauchy prob-
lem, since the seminal work of Gardner, Green, Kruskal, and Miura [43] in 1967,
where the inverse scattering transform is one of the main tools for solving the
KdV equation. In particular, the case when the initial condition is asymptot-
ically close to 0 is well understood and we just refer to the monographs by
Eckhaus and Van Harten [32], Marchenko [81], Novikov, Manakov, Pitaevskii,
and Zakharov [84] or Faddeev and Takhtajan [37]. The same is true for the
case of steplike initial conditions which are asymptotically constant (with dif-
ferent constants in different directions), where we refer to Buslaev and Fomin
[17], Cohen [22], Cohen and Kappeler [23] and Kappeler [65]. In fact, even the
case where the asymptotics are given by some power-like behavior (including
some unbounded initial conditions) were investigated by Bondareva, Kappeler,
Perry, Shubin and, Topalov [7], [8], [66]. On the other hand, essentially nothing
is known about the Cauchy problem for initial conditions which are asymptoti-
cally periodic. The first to consider a periodic background seem to be Kuznetsov
and A.V. Mikhăılov, [74], who informally treated the Korteweg–de Vries equa-
tion with the Weierstraß elliptic function as background solution. The only
known results, concerning to the existence of the solution seem to be by Er-
makova [35], [36] and Firsova [41] (where the evolution of the scattering data
for periodic background was given). However, both works are incomplete from
the point of view of a rigorous application of the inverse scattering method.
Surprisingly, much more is know about the asymptotical behavior (assuming
existence) of such solutions, see for example [1], [4]–[6], [59], [67]–[71], [85]. Fi-
nally we mention that in the discrete case (Toda lattice) the same problem was
completely solved in [34] (for corresponding long-time asymptotics see [9], [30],
[61], [62], [63], [64], [73], [93]).

The second part of this thesis is devoted to the Camassa–Holm equation
and the corresponding Cauchy problem. The Camassa-Holm (CH) equation,
also known as the dispersive shallow water equation, is given through

ut + 2kux − utxx + 3uux = 2uxuxx + uuxxx, t < 0, x ∈ R, (1.2)

where u = u(x, t) is the fluid velocity in the x direction, and k > 0 is a constant
related to the critical shallow water wave speeds, and the subscripts denote the
partial derivatives. This equation first appeared in a list by B. Fuchssteiner
and A. Fokas [42] and was first introduced as a model for shallow water waves
by R. Camassa and D. Holm [18] and R. Camassa et al. [19]. More on the
hydrodynamical relevance of this model can be found in the recent articles by
R. Johnson [60] and A. Constantin and D. Lannes [27]. With

w := u− uxx + κ, (1.3)

called the “momentum”, equation (1.2) can be expressed as the condition of
compatibility between

1

w

(

−f ′′ +
1

4
f

)

= λf, (1.4)

and

∂tf = −
(

1

2λ
+ u

)

f ′ +
1

2
u′f, (1.5)
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Chapter 1. Introduction

that is,
∂t∂xxf = ∂xx∂tf

is the same as to say that (1.2) holds. Equation (1.4) is the spectral problem
associated to (1.2). It were again R. Camassa and D. Holm [18], who noted
that wave breaking can occur, by investigating the momentum in the case k = 0.
Later existence of solutions, long-time behavior, and the blow up phenomena for
k ≥ 0 were studied using various methods, see for example [11], [13], [24], [25],
and [26] and the references therein. The question of how to continue solutions
beyond wave breaking has been of special interest and has been considered for
example by Bressan and Constantin [13], and Holden and Raynaud [54], [56].
One way to do that is to continue the solution in such a way that the energy is
conserved for almost all times. This can be described figurative in the context
of peakon and antipeakon solutions by saying that peakon and antipeakon pass
through each other when colliding. The questions that naturally arise in that
context are the ones about stability of solutions and how to measure distances
between two solutions.

The structure of this thesis, which is composed of the following four papers
[48], [49], [33], and [50], is as follows:
In Chapter 2 we will investigate the kernels of transformation operators for
one–dimensional Schrödinger operators with potentials, which are asymptoti-
cally close to Bohr almost periodic infinite–gap potentials.
Based on this, we develop, in Chapter 3, direct scattering theory for one–
dimensional Schrödinger operators, which are asymptotically close to different
Bohr almost periodic infinite–gap potentials on different half–axes.
Chapter 4 presents an application of the direct and inverse scattering theory
in the case of one-dimensional Schrödinger operators with steplike potentials,
which are asymptotically close to different finite–gap potentials on different
half–axes. In more detail, we will solve the Cauchy problem for the KdV equa-
tion with initial conditions, which are steplike Schwartz–type perturbations of
finite–gap potentials under the assumption that the mutual spectral bands ei-
ther coincide or are disjoint.
After that we will consider the Camassa–Holm equation in the periodic case
(Chapter 5) and study the stability of the solution of the corresponding Cauchy
problem. In particular, we derive a Lipschitz metric, which states that two
solutions, whose initial conditions are close, stay close.

3



Chapter 1. Introduction

4



Chapter 2

The transformation

operator for Schrödinger

operators on almost

periodic infinite-gap

backgrounds

2.1 Introduction

In this chapter we propose an investigation of the transformation operator in
the case of Bohr almost periodic infinite–gap backgrounds, which belong to the
so called Levitan class. The reason why this is a difficult problem is that the
background Weyl solutions have countable many poles and the same will be
valid for the Jost solutions. As a special case the Levitan class includes the set
of smooth, periodic infinite–gap operators, in which case the background Weyl
solutions have been thoroughly investigated, but not in the case of the more
general Levitan class.

To set the stage, we need:

Hypothesis H.2.1. Let

0 ≤ E0 < E1 < · · · < En < . . .

be an increasing sequence of points on the real axis which satisfies the following
conditions:

(i) for a certain l > 1,
∑∞
n=1(E2n−1)

l(E2n − E2n−1) <∞ and

(ii) E2n+1 −E2n−1 > Cnα, where C and α are some fixed, positive constants.

We will call, in what follows, the intervals (E2j−1, E2j) for j = 1, 2, . . . gaps.
In each closed gap [E2j−1, E2j ] , j = 1, 2, . . . , we choose a point µj and an
arbitrary sign σj ∈ {±1}.
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Chapter 2. Transformation operator

Consider next the system of differential equations for the functions µj(x),
σj(x), j = 1, 2, ..., which is an infinite analogue of the well-known Dubrovin
equations, given by

dµj(x)

dx
= − 2σj(x)

√

−(µj(x) − E0)
√

µj(x) − E2j−1

√

µj(x) − E2j× (2.1)

∞
∏

k=1,k 6=j

√

µj(x) − E2k−1

√

µj(x) − E2k

µj(x) − µk(x)

with initial conditions µj(0) = µj and σj(0) = σj , j = 1, 2, . . . 1. Levitan
[77], [78], and [79], proved, that this system of differential equations is uniquely
solvable, that the solutions µj(x), j = 1, 2, . . . are continuously differentiable
and satisfy µj(x) ∈ [E2j−1, E2j ] for all x ∈ R. Moreover, these functions µj(x),
j = 1, 2, . . . are Bohr almost periodic 2. Using the trace formula (see for example
[77])

p(x) = E0 +

∞
∑

j=1

(E2j−1 + E2j − 2µj(x)), (2.2)

we see that also p(x) is real Bohr almost periodic. The operator

L̃ := − d2

dx2
+ p(x), (2.3)

is then called an almost periodic infinite-gap Schrödinger operator of the Levitan
class. It has as absolutely continuous spectrum the set

σ = [E0, E1] ∪ · · · ∪ [E2j , E2j+1] ∪ . . . ,

and has spectral properties analogous to the quasi-periodic finite-gap Schrödinger
operator. In particular, it is completely defined by the series

∑∞
j=1(µj , σj),

which we call the Dirichlet divisor. Analogously to the finite–gap case this di-
visor is connected to a Riemann surface of infinite genius, which is associated
to the function Y 1/2(z), where

Y (z) = −(z − E0)

∞
∏

j=1

(z − E2j−1)

E2j−1

(z − E2j)

E2j−1
, (2.4)

and where the cuts are taken along the spectrum. It is known, that the spectral
equation

(

− d2

dx2
+ p(x)

)

y(x) = λy(x)

with any continuous, bounded potential p(x) has two Weyl solutions ψ±(z, x)
normalized by

ψ±(z, 0) = 1 and ψ±(z, .) ∈ L2(R±), for z ∈ C\σ.

In our case of Bohr almost periodic potentials of the Levitan class, these solu-
tions have complementary properties similar to properties of the Baker-Akhiezer
functions in the finite-gap case. We will briefly discuss them in the next section.

1We will use the standard branch cut of the square root in the domain C \ R+ with
Im

√
z > 0.

2 For informations about almost periodic functions we refer to [80].
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Chapter 2. Transformation operator

The objects of interest, for us, are the Jost solutions of the one-dimensional
Schrödinger operator

L := − d2

dx2
+ q(x), (2.5)

with the real potential q(x) ∈ C(R) satisfying the following condition

∫

R

(1 + |x|2)|q(x) − p(x)|dx <∞. (2.6)

We will prove the following result

Theorem 2.2. Assume Hypothesis 2.1. Let p, defined as in (2.2), belong to
the Levitan class, and q satisfy (2.6), then the Jost solutions φ±(z, x) can be
represented in the following form

φ±(z, x) = ψ±(z, x) ±
∫ ±∞

x

K±(x, y)ψ±(z, y),

where, the solutions of (2.68), are real valued, continuously differentiable with
respect to both parameters and for ±y > ±x they satisfy

|K±(x, y)| ≤ ±C±(x)

∫ ±∞

x

|q(x) − p(x)|dx.

Here C±(x) are continuous positive functions, which are monotonically decreas-
ing as x→ ∞.

Here it should be pointed out that a subset of the operators belonging to
the Levitan class consists of operators with periodic potentials. Assume that
the sequence {Ej}∞j=1 fulfills Hypothesis 2.1, then there is a criteria when this
sequence is the set of band edges of the spectrum of some Schrödinger opera-
tor with periodic potential p(x + a) = p(x) ≥ 0 with p ∈ W 3

2 [0, a]. Namely,
Marchenko and Ostrovskii proved in [82], that

p ∈W k
2 [0, a], iff

∞
∑

j=1

j2k+2(
√

E2j − E0 −
√

E2j−1 − E0)
2 <∞,

for k = 0, 1, . . . . As it is well–known that in the periodic case E2j−1 = j2 +O(1)
and E2j = j2 +O(1) as j → ∞, we obtain for large j that

E2j−1(E2j − E2j−1) ≤ E2j−1(
√

E2j − E0 −
√

E2j−1 − E0)×
(
√

E2j − E0 −
√

E2j−1 − E0)

≤ 2j3(
√

E2j − E0 −
√

E2j−1 − E0) =: Ij .

As Hypothesis 2.1 is satisfies, we have
∑∞

j=1 j
2k−4I2

j < ∞ for k > 2 and hence

the Cauchy inequality implies that
∑∞
j=1 Ij <∞ in this case. This means, that

Hypothesis 2.1 is satisfied for any a-periodic potential p(x) ≥ 0 with p ∈ W k
2 [0, a]

for k > 2.

7



Chapter 2. Transformation operator

2.2 Background Schrödinger operators

In this section we want to summarize some facts for the background Schrödinger
operator of Levitan class. We present these results, obtained in [77], [88], and
[89], in a form similar to the finite-gap case used in [10] and [45].

Let L̃ be as in (2.3). Denote by s(z, x), c(z, x) the sin- and cos-type solutions
of the corresponding equation

(

− d2

dx2
+ p(x)

)

y(x) = zy(x), z ∈ C, (2.7)

associated with the initial conditions

s(z, 0) = c′(z, 0) = 0, c(z, 0) = s′(z, 0) = 1,

where prime denotes the derivative with respect to x. Then c(z, x), c′(z, x),
s(z, x), and s′(z, x) are holomorphic with respect to z ∈ C\σ. They can be
represented in the following form

c(z, x) = cos(
√
zx) +

∫ x

0

sin(
√
z(x− y))√
z

p(y)c(z, y)dy,

s(z, x) =
sin(

√
zx)√
z

+

∫ x

0

sin(
√
z(x− y))√
z

p(y)s(z, y)dy.

The background Weyl solutions are given by

ψ±(z, x) = c(z, x) +m±(z, 0)s(z, x), (2.8)

where

m±(z, x) =
ψ′
±(z, x)

ψ±(z, x)
=
H(z, x) ± Y 1/2(z)

G(z, x)
, (2.9)

are the Weyl functions of L̃ (cf, [77]), where Y (z) is defined by (2.4),

G(z, x) =

∞
∏

j=1

z − µj(x)

E2j−1
, and H(z, x) =

1

2

d

dx
G(z, x). (2.10)

Using (2.1) and (2.10), we have

H(z, x) =
1

2

d

dx
G(z, x) = G(z, x)

∞
∑

j=1

σj(x)Y
1/2(µj(x))

d
dzG(µj(x), x)(z − µj(x))

. (2.11)

The Weyl functionsm±(z, x) are Bohr almost periodic as the following argument
shows: For each j ∈ N the functions µj(x) are almost periodic and hence, as a
finite product of almost periodic functions is again almost periodic, also

Gn(z, x) =

n
∏

j=1

z − µj(x)

E2j−1
(2.12)

is almost periodic for fixed z ∈ C. Moreover, we have

|Gn(z, x) −G(z, x)| =

∣

∣

∣

∣

∣

∣

n
∏

j=1

z − µj(x)

E2j−1

(

1 −
∞
∏

j=n+1

z − µj(x)

E2j−1

)

∣

∣

∣

∣

∣

∣

, (2.13)

8



Chapter 2. Transformation operator

and for every fixed z ∈ C there exists a m ∈ N such that |z| ≤ E2m−1. Then for
n > m, we obtain on the one hand

exp
(

−
∞
∑

j=n+1

|z|
E2j−1 − |z|

)

≤
∞
∏

j=n+1

µj(x) − |z|
E2j−1

≤
∞
∏

j=n+1

|z − µj(x)

E2j−1
|, (2.14)

and on the other hand

∞
∏

j=n+1

|z − µj(x)

E2j−1
| ≤

∞
∏

j=n+1

µj(x) + |z|
E2j−1

≤ exp
( 1

E2n+1

∞
∑

j=n+1

(E2j − E2j−1) + |z|
∞
∑

j=n+1

1

E2j−1

)

,

(2.15)

where we used that log(1 + x) ≤ x and log(1− x) ≥ −x
1−x for x > 0. Noticing

that the second condition in Hypothesis 2.1 implies that
∑∞
j=1

1
E2j−1

converges,

all terms are well-defined, and it follows that the product
∏∞
j=n+1

z−µj(x)
E2j−1

con-

verges to 1 as n → ∞. Furthermore,
∏∞
j=1

z−µj(x)
E2j−1

is uniformly bounded with

respect to x for any fixed z. As all our estimates are independent of x, we
have that Gn(z, x) converges uniformly for fixed z against G(z, x) and thus, the
function G(z, x) is almost periodic with respect to x. Furthermore by definition
H(z,x)
G(z,x) = 1

2
G′(z,x)
G(z,x) = 1

2 (log(G(z, x))′ and therefore H(z,x)
G(z,x) is also almost periodic,

where we use that log(G(z, x)) 6= 0 for z 6∈ [E1, E2] ∪ · · · ∪ [E2j−1, E2j ] ∪ . . .
together with [80, Property 3,4,5], and hence m±(z, x) are also almost periodic
functions.

Lemma 2.3. The background Weyl solutions, for z ∈ C, can be represented in
the following form

ψ±(z, x) = exp

(∫ x

0

m±(z, y)dy

)

=

(

G(z, x)

G(z, 0)

)1/2

exp

(

±
∫ x

0

Y 1/2(z)

G(z, y)
dy

)

.

(2.16)

If for some ε > 0, |z − µj(x)| > ε for all j ∈ N and x ∈ R, then the following
holds: For any C > 0 there exists an R > 0 such that

|ψ±(z, x)| ≤ e∓(1−C)x Im(
√
z)
(

1 +
D

|z|
)

, for any |z| ≥ R, (2.17)

where D denotes some constant dependent on R.

Proof. First we will show that

f±(z, x) =

(

G(z, x)

G(z, 0)

)1/2

exp

(

±
∫ x

0

Y 1/2(z)

G(z, y)
dy

)

(2.18)

fulfills
(

− d2

dx2
+ p(x)

)

y(x) = zy(x). (2.19)

9



Chapter 2. Transformation operator

Using (2.9) we obtain that f ′
± = m±f± and f ′′

± = (m′
± +m2

±)f±. Hence (2.19)
will be satisfies if and only if

m′
± +m2

± = p(x) − z. (2.20)

This can be checked using the following relations, which are proved in [77],

G(z, x)N(z, x) +H(z, x)2 = Y (z), (2.21)

where

N(z, x) = −(z − τ0(x))
∞
∏

j=1

z − τj(x)

E2j−1
, (2.22)

with τ0(x) ∈ (−∞, E0] and τj(x) ∈ [E2j−1, E2j ] and

d2

dx2
G(z, x) = 2((p(x) − z)G(z, x) −N(z, x)). (2.23)

Moreover, for z outside an ε neighborhood of the gaps we have f(z, 0) = 1, and
we can make the following considerations

G(z, x)

G(z, 0)
=

∞
∏

j=1

z − µj(x)

z − µj(0)
= exp

(

∞
∑

j=1

log
(

1 +
µj(0) − µj(x)

z − µj(0)

))

. (2.24)

Thus we obtain
∣

∣

∣

∣

G(z, x)

G(z, 0)

∣

∣

∣

∣

≤ exp
(

∞
∑

j=1

log
(

1+

∣

∣

∣

∣

µj(0) − µj(x)

z − µj(0)

∣

∣

∣

∣

))

≤ exp
(

∞
∑

j=1

∣

∣

∣

∣

µj(0) − µj(x)

z − µj(0)

∣

∣

∣

∣

))

,

(2.25)
where we used that log(1 + x) ≤ x for x > 0. Moreover

∣

∣

∣

∣

µj(0) − µj(x)

z − µj(0)

∣

∣

∣

∣

=
1

∣

∣

∣

z−µj(0)
µj(0)−µj(x)

∣

∣

∣

, (2.26)

which implies for |z| ≤ 2E2j that
∣

∣

∣

∣

(µj(0) − µj(x))z

z − µj(0)

∣

∣

∣

∣

≤
∣

∣

∣

∣

2(µj(0) − µj(x))E2j

ε

∣

∣

∣

∣

. (2.27)

For |z| > 2E2j we can estimate the terms by

∣

∣

∣

∣

(µj(0) − µj(x))z

z − µj(0)

∣

∣

∣

∣

≤ |µj(0) − µj(x)|
∣

∣

∣

∣

∣

1

1 − µj(0)
z

∣

∣

∣

∣

∣

≤ |µj(0) − µj(x)|
1

1 −
∣

∣

∣

µj(0)
z

∣

∣

∣

(2.28)

≤ |µj(0) − µj(x)|
1

1 −
∣

∣

∣

E2j

z

∣

∣

∣

≤ 2|µj(0) − µj(x)|.

Combining the estimates from above, we obtain
∣

∣

∣

∣

(µj(0) − µj(x))z

z − µj(0)

∣

∣

∣

∣

≤ 2 max(1,
E2j

ε
)|µj(0) − µj(x)| (2.29)

≤ 2 max(1,
E2j

ε
)(E2j − E2j−1),

10



Chapter 2. Transformation operator

and for any fixed ε > 0 there exists a k independent of x and z such that E2n

ε > 1
for all n > k, and therefore

∣

∣

∣

∣

G(z, x)

G(z, 0)

∣

∣

∣

∣

≤ exp
( 1

|z|

∞
∑

j=1

∣

∣

∣

∣

(µj(0) − µj(x))z

z − µj(0)

∣

∣

∣

∣

)

≤ exp
(

C
1

|z|
)

. (2.30)

where C is a constant independent of x and z. Analogously one can now inves-

tigate Y 1/2(z)
G(z,x) . Using

Y 1/2(z) = i
√

z − E0

∞
∏

j=1

√

z − E2j−1

√

z − E2j

E2j−1
, (2.31)

where the roots are defined as follows

√
z − E =

√

|z − E|ei arg(z−E)/2, (2.32)

together with Y 1/2(z)
G(z,x) is a Herglotz function and

√

z − E0 =
√
z(1 +O(

1

z
)), as z → ∞, (2.33)

we obtain the following estimate, which is uniform with respect x,

Y 1/2(z)

G(z, x)
= i

√
z(1 +O(

1

z
)), as z → ∞. (2.34)

Using now that
∫ x

0
Y 1/2(z)
G(z,τ) dτ = xY

1/2(z)
G(z,ζ) , where ζ ∈ (0, x) by the mean value

theorem, we finally obtain that f±(z, x) has the following asymptotic expansion
outside a small neighborhood of the gaps as z → ∞

f±(z, x) = e±i
√
zx(1+O( 1

z ))
(

1 +O(
1

z
)
)

,

where we use the branch cut of the square root in the domain C\R+ with
Im(

√
z) > 0. Thus f±(z, .) ∈ L2(R±) for z ∈ C outside a small neighbor-

hood of the gaps and therefore away from the gaps f±(z, x) must coincide with
ψ±(z, x). Taking limits for the values on the real axis, we get that ψ±(z, x) can
be represented for any z ∈ C by (2.16).

As the spectrum consists of infinitely many bands, let us cut the complex
plane along the spectrum σ and denote the upper and lower sides of the cuts by
σu and σl. The corresponding points on these cuts will be denoted by zu and
zl, respectively. In particular, this means

f(zu) := lim
ε↓0

f(z + iε), f(zl) := lim
ε↓0

f(z − iε), z ∈ σ.

Define the Green function (see e.g. [2], [28], and [88])

g(z) = − G(z, 0)

2Y 1/2(z)
, (2.35)

11



Chapter 2. Transformation operator

where the branch of the square root is chosen in such a way that

1

i
g(zu) = Im(g(zu)) > 0 for λ ∈ σ, (2.36)

then we obtain after a short calculation

W (ψ−(z), ψ+(z)) = m+(z) −m−(z) = −g(z)−1, (2.37)

where W (f, g)(x) = f(x)g′(x) − f ′(x)g(x) denotes the usual Wronskian deter-
minant.

For every Dirichlet eigenvalue µj = µj(0), the Weyl functions m±(z) might
have singularities. If µj is in the interior of its gap, precisely one Weyl function
m+ or m− will have a simple pole. Otherwise, if µj sits at an edge, both will
have a square root singularity. Hence we divide the set of poles accordingly:

M+ = {µj | µj ∈ (E2j−1, E2j) and m+ has a simple pole},
M− = {µj | µj ∈ (E2j−1, E2j) and m− has a simple pole},
M̂ = {µj | µj ∈ {E2j−1, E2j}}.

In particular, the following properties of the Weyl solutions are valid (see,
e.g. [29], [77], [88], [91]):

Lemma 2.4. The Weyl solutions have the following properties:

(i) The functions ψ±(z, x) are holomorphic as a function of z in the domain
C \ (σ ∪M±), real valued on the set R \ σ, and have simple poles at the
points of the set M±. Moreover, they are continuous up to the boundary
σu ∪ σl except at the points from M̂ and

ψ+(λu) = ψ−(λl) = ψ+(λl), λ ∈ σ. (2.38)

For E ∈ M̂ the Weyl solutions satisfy

ψ±(z, x) = O

(

1√
z − E

)

, as z → E ∈ M̂.

The same is true for ψ′
±(z, x).

(ii) The functions ψ±(z, x) form an orthonormal basis on the spectrum with
respect to the weight

dρ(z) =
1

2πi
g(z)dz, (2.39)

and any f(x) ∈ L2(−∞,∞) can be expresses through

f(x) =

∮

σ

(∫

R

f(y)ψ+(z, y)dy

)

ψ−(z, x)dρ(z). (2.40)

Here we use the notation
∮

σ

f(z)dρ(z) :=

∫

σu

f(z)dρ(z)−
∫

σl

f(z)dρ(z). (2.41)

12



Chapter 2. Transformation operator

Proof. (i) Having in mind (2.16), we will show as a first step that
∫ x

0
Y 1/2(z)
G(z,τ) dτ

is purely imaginary as z → E2j , with z ∈ σ, (the case z → E2j−1 can be
handled in the same way). For fixed x ∈ R we can separate the inter-
val [0, x] into smaller intervals [0, x1] ∪ [x1, x2] ∪ · · · ∪ [xk, x] such that
µj(xl) ∈ {E2j−1, E2j} and µj(xl) 6= µj(xl+1). Assuming µj(xl) = E2j−1

and µj(xl+1) = E2j , and setting

Ỹj(z, x) :=
√

−(z − E0)
√

z − E2j−1

∏

j 6=l

(

z − E2l−1

z − µl(x)

z − E2l

z − µl(x)

)1/2

,

where Ỹj(z, x) is bounded for any z inside the j’th gap, we can conclude,

∫ xl+1

xl

Y 1/2(z)

G(z, τ)
dτ =

√

z − E2j

∫ xl+1

xl

Ỹj(z, τ)

z − µj(τ)
dτ

=
√

z − E2j

(

∫ xl+1

xl

Ỹj(µj(τ), τ)

z − µj(τ)
dτ +

∫ xl+1

xl

Ỹj(z, τ) − Ỹj(µj(τ), τ)

z − µj(τ)
dτ
)

=
√

z − E2j

(

∫ xl+1

xl

− dµj(τ)
dτ

2σj(τ)
√

µj(τ) − E2j(z − µj(τ))
dτ+

+

∫ xl+1

xl

d

dz
Ỹj(z, τ)|z=ζj(τ)dτ

)

,

where ζj(τ) ∈ (µj(τ), z). Note that the function d
dz Ỹj(z, τ) is uniformly

bounded for z ∈ [E2j−1+ε, E2j+ε] for some ε > 0 and that
Ỹj(z,τ)−Ỹj(µj(τ),τ)

z−µj(τ)

is uniformly bounded for µj ∈ [E2j−1, E2j−1 + ε] and z near E2j , which
yields

√

z − E2j

∫ xl+1

xl

d

dz
Ỹj(z, τ)|z=ζj(τ)dτ = O

(

√

z − E2j

)

. (2.42)

On each of the intervals [xl, xl+1] the function σj(x) is constant and there-
fore

√

z − E2j

(

∫ xl+1

xl

− dµj(τ)
dτ

2σj
√

µj(τ) − E2j(z − µj(τ))
dτ

)

(2.43)

=
√

z − E2j

(

−
∫ µj(xl+1)

µj(xl)

1

2σj
√

y − E2j(z − y)
dy

)

=
√

E2j − z

(

∫ 0

√
E2j−E2j−1

1

σj(z − E2j + s2)
ds

)

= −σj i arctan

(

√

E2j − E2j−1
√

z − E2j

)

.

A close look shows that the same method can be applied to compute
∫ x1

0
Y 1/2(z)
G(z,τ) dτ and

∫ x

xk

Y 1/2(z)
G(z,τ) dτ

This implies that
∫ xl+1

xl

Y 1/2(z)
G(z,τ) dτ → − 1

2σj iπ as z → E2j and thus
∫ x

0
Y 1/2(z)
G(z,τ) dτ ∈

iR.

13



Chapter 2. Transformation operator

In more detail one obtains that

exp

(∫ x

0

Y 1/2(z)

G(z, τ)
dτ

)

=



















±1, µj(0) 6= E, µj(x) 6= E,

±1, µj(0) = E, µj(x) = E,

±i, µj(0) = E, µj(x) 6= E,

±i, µj(0) 6= E, µj(x) = E.

(2.44)

For the product term in (2.16), we have the following estimate

z − µj(x)

z − µj(0)
exp

(

− 2

β

∞
∑

j=1

(E2j − E2j−1)
)

≤
∞
∏

l=1

z − µl(x)

z − µl(0)

≤ z − µj(x)

z − µj(0)
exp

( 2

β

∞
∑

j=1

(E2j − E2j−1)
)

,

for z inside the interval [E2j−1 − β
2 , E2j + β

2 ] ∩ σ for some ε > 0, where
β = minl,j;l 6=j{|E2j − E2l|, |E2j−1 − E2l|}. This finishes the proof of the
first claim, as (2.38) follows directly from (2.36). For the second claim
consider, using (2.16),

ψ′
±(z, x) = m±(z, x)ψ±(z, x). (2.45)

By the investigations from before, it suffices to analyze m±(z, x), given by
(2.9), which has the following representation,

m±(z, x) =
∞
∑

n=1

σn(x)Y
1/2(µn(x))

d
dzG(µn(x), x)(z − µn(x))

± Y 1/2(z)

G(z, x)
. (2.46)

For j 6= n we have

| Y 1/2(µn(x)
d
dzG(µn(x), x)(E2j − µn(x)

| ≤ C1

√
E2n − E0

β
(E2n − E2n−1), (2.47)

where C1 := exp
(

1
β

∑∞
j=1(E2j − E2j−1)

)

. Thus; using Hypothesis 2.1,

we obtain that
∑

n6=j
σj(x)Y 1/2(µj(x))

d
dzG(µj(x),x)(z−µj(x))

converges uniformly and is uni-

formly bounded with respect to x.
For j = n, we obtain

| Y 1/2(µj(x))
d
dzG(µj(x), x)(z − µj(x))

| ≤ C1

√

E2j − E0

√

(µj(x) − E2j−1)(E2j − µj(x))

z − µj(x)
,

and analogously

|Y
1/2(z)

G(z, x)
| ≤ C1

√
z − E0

√

(z − E2j−1)(z − E2j)

z − µj(x)
.

Multiplying now the last two terms of interest by ψ±(z, x) and let z → E2j

with z ∈ σ as in the proof of the first claim, finishes the proof.

(ii) For a proof we refer to [29] and [77] or [92].
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Chapter 2. Transformation operator

2.3 Derivation of the integral equations for the

transformation operators and estimates

Consider the equation

(

− d2

dx2
+ q(x)

)

y(x) = zy(x), z ∈ C, (2.48)

with a potential q(x) satisfying (2.6). Suppose that this equation has two solu-
tions φ±(z, x), which we will call the Jost solutions, which are asymptotically
close for fixed z as x→ ±∞ to ψ±(z, x), the background Weyl solutions defined
in (2.8). Set

J(z, x, y) =
ψ+(z, y)ψ−(z, x) − ψ+(z, x)ψ−(z, y)

W (ψ+(z), ψ−(z))
(2.49)

and

q̃(x) = q(x) − p(x). (2.50)

Then the Jost solutions have to satisfy the following integral equations

φ±(z, x) = ψ±(z, x) −
∫ ±∞

x

J(z, x, y)q̃(y)φ±(z, y)dy (2.51)

Suppose, that solutions of this form, also have the following representation

φ±(z, x) = ψ±(z, x) ±
∫ ±∞

x

K±(x, y)ψ±(z, y)dy, (2.52)

where K±(x, y) are real valued functions, then we have to show that these
functions exist and for showing the existence of the Jost solutions we must also
show that these functions are decaying fast enough for fixed x, when y tends to
infinity in a certain sense. For simplicity and because both representations can
be obtained using the same techniques we will only investigate the + case.

Assume that there exist K+(x, y) with K+(x, .) ∈ L2(R) and K+(x, y) = 0
for y < x, such that φ+(z, x) can be represented by (2.52). Then substituting
(2.52) into (2.51), multiplying it with ψ−(z, x)g(z), integrating over the set σu,l,
using the identity (2.40), and taking into account that K+(x, y) = 0, x > y, we
obtain

K+(x, s) +

∫ ∞

x

dy q̃(y)

∮

σ

J(λ, x, y)ψ+(λ, y)ψ−(λ, s)dρ(λ) (2.53)

+

∫ ∞

x

dy q̃(y)

∫ ∞

y

dtK+(y, t)

∮

σ

J(λ, x, y)ψ+(λ, t)ψ−(λ, s)dρ(λ) = 0.

Set

Γ+(x, y, t, s) =

∮

σ

ψ+(λ, x)ψ−(λ, y)ψ+(λ, t)ψ−(λ, s)g(λ)dρ(λ), (2.54)

where the integral has to be understood as a principal value.
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Chapter 2. Transformation operator

Then substituting (2.37), (2.39), (2.49), and (2.54) into (2.53) we obtain

K+(x, s) +

∫ ∞

x

(Γ+(x, y, y, s) − Γ+(y, x, y, s)) q̃(y) dy (2.55)

+

∫ ∞

x

dy q̃(y)

∫ ∞

y

K+(y, t) (Γ+(x, y, t, s) − Γ+(y, x, t, s)) dt = 0.

A simple calculation using (2.36) and (2.38) shows that (2.54) satisfies

Γ+(x, y, t, s) = −Γ+(y, x, s, t). (2.56)

Combining (2.16), (2.35), and (2.39), one obtains that the only poles of the
integrand are given at the band edges. Using ideas from Cauchy’s theorem it
turns out to be necessary to investigate the following series

D+(x, y, r, s) = −1

4

∑

E∈∂σ
f+(E, x, y, r, s), (2.57)

where

f+(E, x, y, r, s) = lim
z→E

G(z, 0)2

d
dzY (z)

ψ+(z, x)ψ−(z, y)ψ+(z, r)ψ−(z, s). (2.58)

Lemma 2.5. The series D+(x, y, r, s) defined by (2.57) and (2.58) converges,
is continuous, and uniformly bounded with respect to all variables.

Proof. First note that by (2.16) we have

f+(E, x, y, r, s) =
(G(E, x)G(E, y)G(E, r)G(E, s))1/2

d
dzY (E)

×

lim
z→E

exp

(
∫ x

y

Y 1/2(z)

G(z, τ)
dτ

∫ r

s

Y 1/2(z)

G(z, τ)
dτ

)

,

where the limit is taken from inside the spectrum. For computing the integral
terms we refer to the proof of Lemma 2.4. We will now investigate

M+(E2l, x, y, r, s) =
(G(E2l, x)G(E2l, y)G(E2l, r)G(E2l , s))

1/2

d
dzY (E2l)

= − ((E2l − µl(x))(E2l − µl(y))(E2l − µl(r))(E2l − µl(s)))
1/2

(E2l − E0)(E2l − E2l−1)
×

(2.59)
∞
∏

j=1,j 6=l

((E2l − µj(x))(E2l − µj(y))(E2l − µj(r))(E2l − µj(s)))
1/2

(E2l − E2j−1)(E2l − E2j)
,

which can be estimated as follows
∞
∏

j=1,j 6=l
| (E2l − µj(x))

(E2l − E2j)

(E2l − µj(y))

(E2l − E2j−1)
| ≤

l−1
∏

j=1

(E2l − µj(x))

(E2l − E2j)

∞
∏

j=+11

(E2l − µj(y))

(E2l − E2j−1)

≤ exp





l−1
∑

j=1

log
(

1 +
E2j − µj(x)

E2l − E2j

)

+

∞
∑

j=l+1

log
(

1 +
µj(y) − E2j−1

E2j − E2l

)





≤ exp
( 1

β

∞
∑

j=1

(E2j − E2j−1)
)

<∞,
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where we used log(1+x) ≤ x for x > 0 and β = minl,j;l 6=j{|E2j −E2l|, |E2j−1 −
E2l|}. Moreover,

((E2l − µl(x))(E2l − µl(y))(E2l − µl(r))(E2l − µl(s)))
1/2

(E2l − E0)(E2l − E2l−1)
≤ (E2l − E2l−1)

(E2l − E0)
.

(2.60)

This implies,

0 ≤ |f+(Ek, x, y, r, s)| = |M+(Ek, x, y, r, s)| ≤ C1
E2l − E2l−1

E2l − E0
, (2.61)

where k ∈ {2l−1, 2l} and C1 := exp
(

1
β

∑∞
j=1(E2j −E2j−1)

)

, and therefore our

series converges and hence D+(x, y, r, s) is well-defined and uniformly bounded
with respect to all variables.

The continuity follows immediately, by using (2.16) and (2.44).

Lemma 2.6. The function D+(x, y, r, s), defined through (2.57) and (2.58),
has first partial derivatives, which are uniformly bounded in R4.

Proof. Consider the integral representation (2.16) of the background Weyl so-
lutions, then the derivative with respect to x is given by

ψ′
+(z, x) =

(

H(z, x) + Y 1/2(z)

G(z, x)

)(

G(z, x)

G(z, 0)

)1/2

exp

(∫ x

0

Y 1/2(z)

G(z, x)

)

. (2.62)

Note that G(z, 0)1/2 d
dxψ+(z, x), by Lemma 2.4 has neither poles nor square

root singularities at the band edges, which allows us to pass to the limit in the
following expression

lim
z→E

(z − E)
H(z, x) + Y 1/2(z)

G1/2(z, x)

(G(z, y)G(z, r)G(z, s))1/2

Y (z)
, . (2.63)

Therefore we will slightly abuse the notation by omitting the limit and replacing
z by E. W.l.o.g. we will assume that E = E2n (the case E = E2n−1 can be
treated similarly). Using (2.11), we have

H(E2n, x)

G1/2(E2n, x)

(G(E2n, y)G(E2n, r)G(E2n, s))
1/2

d
dzY (E2n)

=

∞
∑

j=1

σj(x)Y
1/2(µj(x))

d
dzG(µj(x), x)(E2n − µj(x))

M+(E, x, y, r, s).

Due to (2.61) we will at first consider
∑

j 6=n
Y 1/2(µj(x))

d
dzG(µj(x),x)(E2n−µj(x))

, which can

be done using the same ideas as in Lemma 2.5. Namely, for j 6= n

0 ≤ | Y 1/2(µj(x))
d
dzG(µj(x), x)(E2n − µj(x))

| ≤ 1

β

√

(E2j − E0)(E2j −E2j−1)C
1/2
1 , (2.64)

which implies that the corresponding sum converges.
For j = n, there are two cases to distinguish:
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Chapter 2. Transformation operator

(i) If µn(x) = E2n, then

0 ≤ |Y
1/2(E2n)

G(E2n, x)
M+(E2n, x, y, r, s)|

≤ C
3/2
1

((E2n − µn(y))(E2n − µn(r))(E2n − µn(s)))
1/2

√

(E2n − E0)(E2n − E2n−1)

≤ C
3/2
1

E2n − E2n−1√
z − E0

.

(ii) If µn(x) 6= E2n, we have

0 ≤ | Y 1/2(µn(x))
d
dzG(µn(x), x)(z − µn(x))

M+(E, x, y, r, s)|

≤ C
3/2
1 (µn(x) − E0)

1/2 ((µn(x) − E2n−1)(E2n − µn(y)))1/2

(E2n − E0)

((E2n − µn(r))(E2n − µn(s)))
1/2

(E2n − E2n−1)

≤ C
3/2
1

(E2n − E2n−1)√
E2n − E0

.

Next we consider

Y 1/2(E2n)

G1/2(E2n, x)

(G(E2n, y)G(E2n, r)G(E2n, s))
1/2

d
dzY (E2n)

, (2.65)

which can be investigated as before.

(i) If µn(x) = E2n, then

0 ≤ |Y
1/2(E2n)

G(E2n, x)
M+(E2n, x, y, r, s)|

≤ C
3/2
1

((E2n − µn(y))(E2n − µn(r))(E2n − µn(s)))
1/2

√

(E2n − E0)(E2n − E2n−1)

≤ C
3/2
1

(E2n − E2n−1)
√

(E2n − E0)
.

(ii) If µn(x) 6= E2n,

Y 1/2(E2n)

G(E2n, x)
M+(E2n, x, y, r, s) = 0,

because

lim
z→E2n

(−(z − E2n−1)(z − E2n)(z − µn(y))(z − µn(r))(z − µn(s)))1/2
√

(z − E0)(z − µn(x))(z − E2n−1)
= 0.

(2.66)
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Figure 2.1: Contour Cn

This finishes the proof, as all our estimates are uniformly and

0 ≤ |f+,x(Ek, x, y, r, s)| ≤ C
(E2n − E2n−1)
√

(E2n − E0)
, (2.67)

where k ∈ {2n− 1, 2n} and C denotes a constant independent of n.

Lemma 2.7. The kernels K±(x, s) of the transformation operators satisfy the
integral equation

K±(x, s) = −2

∫ ±∞

x+s
2

q̃(y)D±(x, y, y, s)dy

∓ 2

∫ ±∞

x

dy

∫ s+y−x

s+x−y
D±(x, y, r, s)K±(y, r)q̃(y) dr, ±s > ±x,

(2.68)

where D±(x, y, r, s) are defined by (2.57). In particular,

K±(x, x) = ±1

2

∫ ±∞

x

(q(s) − p(s))ds. (2.69)

Proof. Suppose (x − y + r − s) > 0, where x, y, r, s are considered as fixed
parameters, and take a series of closed contours Cn consisting of a circular
arc Rn centered at the origin with radius (E2n + E2n+1)/2 together with some
parts wrapping around each of the first n+ 1 bands of the spectrum σ, but not
intersecting it, as indicated in figure 2.1.

On the circle Rn we have the following asymptotic behavior as n → ∞ and
therefore z → ∞,

g1/2(z)ψ+(z, x) = ei
√
zx(1+O( 1

z ))O

(

1

z1/4

)

, (2.70)

where we used Lemma 2.3 and the fact that these asymptotics are valid as long
as we are outside a small neighborhood of the gaps. This yields

g(z)2ψ+(z, x)ψ−(z, y)ψ+(z, r)ψ−(z, s) = ei
√
z(x−y+r−s)(1+O( 1

z ))O

(

1

z

)

, (2.71)
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as z → ∞.
Hence one can apply Jordan’s lemma to conclude that the contribution of

the circle Rn vanishes as n→ ∞.
Shrinking the loops around the bands of the spectrum, the integral converges

to
Γ+(x, y, t, s) = D+(x, y, t, s), for (x− y + t− s) > 0. (2.72)

Note that f+(E, x, y, r, s) is real for anyE ∈ ∂σ, because (2.44) andG(E, x) =
0, if µj(x) = E, imply that f+(E, x, y, r, s) = 0. Moreover f+(E, x, y, r, s) =
f+(E, y, x, s, r). Thus D+(x, y, r, s) is also real and satisfies

D+(x, y, r, s) = D+(y, x, s, r). (2.73)

Now let (x− y+ r− s) < 0, that is −(x− y+ r− s) > 0. Then (2.56), (2.72),
and (2.73) imply

Γ+(x, y, t, s) = −Γ+(y, x, s, r) = −D+(x, y, r, s) = −D+(x, y, r, s). (2.74)

Therefore,

Γ(x, y, r, s) = D(x, y, r, s, ) sign(x − y + r − s). (2.75)

Combining all the informations, the domain, where the first integrand in
(2.55) does not vanish is given by

sign(x− s) = − sign(2y − x− s), s > x. (2.76)

In the second integral the domain of integration is

sign(x− y + t− s) = − sign(y − x+ t− s), with s > x, t > y > x.

Solving (2.76) and (2.77), proves (2.68).
Setting now s = x in (2.68), the second summand vanishes, because we set

K+(y, r) = 0 for r < y. Hence

K+(x, x) = −2

∫ ∞

x

q̃(y)D+(x, y, y, x). (2.77)

Thus we obtain

D+(x, y, y, x) =
1

4

∑

E∈∂σ
Res
E

1

z − E0

∞
∏

j=1

(z − µj(x))(z − µj(y))

(z − E2j−1)(z − E2j)
(2.78)

=
1

4

∞
∑

l=0

lim
z→El

z − El
z − E0

∞
∏

j=1

(z − µj(x))(z − µj(y))

(z − E2j−1)(z − E2j)
,

and we already know that this function is bounded by Lemma 2.5. Considering
now the following sequence

D+,n(x, y, y, x) =
1

4

∑

E∈∂σ
Res
E

1

z − E0

n
∏

j=1

(z − µj(x))(z − µj(y))

(z − E2j−1)(z − E2j)
(2.79)

=
1

4

2n
∑

l=0

lim
z→El

z − El
z − E0

n
∏

j=1

(z − µj(x))(z − µj(y))

(z − E2j−1)(z − E2j)
,
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which corresponds to the case where we only have n gaps and crossed out all
the other ones. We will now estimate

|D+(x, y, y, x) −Dn,+(x, y, y, x)| ≤ 1

4

2n
∑

l=0

lim
z→El

∣

∣

∣

∣

∣

∣

z − El
z − E0

n
∏

j=1

(

z − µj(x)

z − E2j−1

z − µj(y)

z − E2j

)

∣

∣

∣

∣

∣

∣

×

(2.80)
∣

∣

∣

∣

∣

∣





∞
∏

j=n+1

(

z − µj(x)

z − E2j−1

z − µj(y)

z − E2j

)

− 1





∣

∣

∣

∣

∣

∣

+
1

4

∞
∑

l=2n+1

lim
z→El

∣

∣

∣

∣

∣

∣

z − El
z − E0

∞
∏

j=1

(

z − µj(x)

z − E2j−1

z − µj(y)

z − E2j

)

∣

∣

∣

∣

∣

∣

,

using the same techniques as in the proof of Lemma 2.5. We fix z = E2l, (the
case z = E2l−1 can be handled analogously). If l < n, we have

lim
z→E2l

∣

∣

∣

∣

∣

∣

z − E2l

z − E0

n
∏

j=1

(

z − µj(x)

z − E2j−1

z − µj(y)

z − E2j

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E2l − µl(x)

E2l − E0

E2l − µj(y)

E2l − E2j−1

n
∏

j=1,j 6=l

E2l − µj(x)

E2l − E2j−1

E2l − µj(y)

E2l − E2j

∣

∣

∣

∣

∣

∣

≤ E2l − E2l−1

E2l − E0

l−1
∏

j=1

E2l − µj(x)

E2l − E2j

n
∏

j=l+1

E2l − µj(x)

E2l − E2j−1

≤ E2l − E2l−1

E2l − E0
exp

( 1

β

n
∑

j=1

(E2j − E2j−1)
)

and

exp
(

− 1

β

∞
∑

j=n+1

(E2j − E2j−1)
)

≤
∞
∏

j=n+1

µj(x) − E2l

E2j − E2l
(2.81)

≤
∞
∏

j=n+1

µj(x) − E2l

E2j−1 − E2l

µj(y) − E2l

E2j − E2l

≤
∞
∏

j=n+1

µj(x) − E2l

E2j−1 − E2l
≤ exp

( 1

β

∞
∑

j=n+1

(E2j − E2j−1)
)

,

where the last estimate implies that the first sequence in (2.80) converges uni-
formly to zero as n tends to ∞ as in the investigation of (2.13). Analogously, one
can estimate the second sequence, which also converges uniformly to zero, as we
are working in the Levitan class and hence Dn,+(x, y, y, x) converges uniformly
against D+(x, y, y, x).

Moreover, it is known (see e.g. [10]), that

Dn,+(x, y, y, x) = −1

4
(2.82)
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for each fixed n. and hence we finally obtain

D+(x, y, y, x) = lim
n→∞

Dn,+(x, y, y, x) = lim
n→∞

−1

4
= −1

4
. (2.83)

Therefore we can now conclude, using (2.77), that

K±(x, x) = ±1

2

∫ ±∞

x

(q(s) − p(s))ds. (2.84)

Lemma 2.8. Suppose (2.6), then (2.68) has a unique solution K±(x, y), such
that K±(x, y) has first order partial derivatives with respect to both variables.
Moreover for ±y ≥ ±x the following estimates are valid

|K±(x, y)| ≤ C±(x)Q±(x+ y), (2.85)
∣

∣

∣

∣

∂K±(x, y)

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂K±(x, y)

∂y

∣

∣

∣

∣

≤ C±(x)

(∣

∣

∣

∣

q̃

(

x+ y

2

)∣

∣

∣

∣

+Q± (x+ y)

)

, (2.86)

where

Q±(x) = ±
∫ ±∞

x
2

|q̃(s)|ds, q̃(x) = q(x) − p(x), (2.87)

and C±(x) are positive continuous functions for x ∈ R, which decrease as x →
±∞ and depend on the corresponding background data and on the first moment
of the perturbation.

Proof. Using the method of successive approximation one can prove existence
and uniqueness of the solutionK±(x, y) of (2.68). We restrict our considerations
to the + case. After the following change of variables

2α := s+ r, 2β := r − s, 2u := x+ y, 2v := y − x, (2.88)

(2.68) becomes

H(u, v) = −2

∫ ∞

u

q̃(s)D1(u, v, s)ds

− 4

∫ ∞

u

dα

∫ v

0

q̃(α− β)D2(u, v, α, β)H(α, β)dβ, (2.89)

with

H(u, v) = K+(u − v, u+ v), D1(u, v, s) = D+(u− v, s, s, u+ v),

D2(u, v, α, β) = D+(u− v, α− β, α+ β, u+ v).
(2.90)

As the functions D1 and D2 are bounded uniformly with respect to all their
variables by a constant C, we can apply the method of successive approximation
to estimate H(u, v), which yields

|H(u, v)| ≤ C(u− v)Q+(2u), (2.91)
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where

C(u− v) = 2C exp

(

4C

∫ ∞

2u−2v

Q+(x)dx

)

. (2.92)

To obtain the second estimate remember that the partial derivatives with
respect to all variables exist for D1 and D2 and that they are also bounded with
respect to all variables. Thus, using

∂H(u, v)

∂u
− 2q̃(u)D1(u, v, u) = (2.93)

= +4

∫ v

0

q̃(u− β)D2(u, v, u, β)H(u, β)dβ − 2

∫ ∞

u

q̃(s)
∂D1(u, v, s)

∂u
ds

− 4

∫ ∞

u

dα

∫ v

0

q̃(α− β)
∂D2(u, v, α, β)

∂u
H(α, β)dβ,

and

∂H(u, v)

∂v
= (2.94)

= −2
(

∫ ∞

u

q̃(s)
∂D1(u, v, s)

∂v
ds+ 2

∫ ∞

u

q̃(α − β)D2(u, v, α, v)H(α, v)dα

+ 2

∫ ∞

u

dα

∫ v

0

q̃(α− β)
∂D2(u, v, α, β)

∂v
H(α, β)dβ

)

,

one obtains.

| ∂
∂u
H(u, v)| ≤ C1(u− v)(|q̃(u)| +Q+(2u)), (2.95)

| ∂
∂v
H(u, v)| ≤ C1(u− v)(|q̃(u)| +Q+(2u)),

where C1(u − v) is a positive continuous function for x = u − v ∈ R, which
decreases as x → ±∞ and depends on the corresponding background data.
Using

∣

∣

∣

∣

dK+(x, y)

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

dK+(x, y)

dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

dH(u, v)

du

∣

∣

∣

∣

+

∣

∣

∣

∣

dH(u, v)

dv

∣

∣

∣

∣

, (2.96)

completes the proof.

To finish the proof of Theorem 2.2, we have to show the following:

Lemma 2.9. The functions

φ̃±(z, x) = ψ±(z, x) ±
∫ ±∞

x

K±(x, s)ψ±(z, s), (2.97)

where K±(x, s) is defined by (2.68), satisfy

(

− d2

dx2
+ q(x)

)

φ̃±(z, x) = zφ̃(z, x). (2.98)
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Proof. Again we will only consider the + case as the other one can be treated
similarly and drop the + whenever possible. On the one hand we obtain, using
(2.77), that

(

− d2

dx2
+ q(x)

)

φ̃(z, x) = −ψ′′(z, x) + p(x)ψ(z, x)

+
1

2
q̃(x)ψ(z, x) +K(x, x)ψ′(z, x) +Kx(x, x)ψ(z, x)

+

∫ ∞

x

(q(x)K(x, s) −Kxx(x, s))ψ(z, s)ds, (2.99)

and on the other hand, using that ψ±(z, x) are the background Weyl solutions,
we have

zφ̃(z, x) = zψ(z, x) +K(x, x)ψ′(z, x) −Ky(x, x)ψ(z, x)

+

∫ ∞

x

(p(s)K(x, s) −Kss(x, s))ψ(z, s)ds. (2.100)

Applying (2.77) once more, we see that (2.98) is satisfied if and only if

∫ ∞

x

(Kxx(x, s) −Kss(x, s))ψ(z, s)ds =

∫ ∞

x

(q(x) − p(s))ψ(z, s)ds. (2.101)

For proving this identity we use the integral equation (2.53) instead of (2.68)
for K(x, s), which yields for x < s

Kss(x, s) = −
∫ ∞

x

dyq̃(y)

∮

σ

J(λ, x, y)ψ+(λ, y)ψ′′
−(λ, s)dρ(λ)

−
∫ ∞

x

dyq̃(y)

∫ ∞

y

dtK(y, t)

∮

σ

J(λ, x, y)ψ+(λ, t)ψ′′
−(λ, s)dρ(λ)

= (p(s) − p(x))K(x, s) −
∫ ∞

x

dyq̃(y)

∮

σ

Jxx(λ, x, y)ψ+(λ, y)ψ−(λ, s)dρ(λ)

−
∫ ∞

x

dyq̃(y)

∫ ∞

y

dtK(y, t)

∮

σ

Jxx(λ, x, y)ψ+(λ, t)ψ−(λ, s)dρ(λ)

= (p(s) − p(x))K(x, s) +Kx,x(x, s) − q̃(x)

∮

σ

Jx(λ, x, x)ψ+(λ, x)ψ−(λ, s)dρ(λ)

− q̃(x)

∫ ∞

x

dtK(x, t)

∮

σ

Jx(λ, x, x)ψ+(λ, t)ψ−(λ, s)dρ(λ)

= (p(s) − q(x))K(x, s) +Kxx(x, s). (2.102)

Here it should be noticed that
∮

σ
J(λ, x, y)ψ+(λ, t)ψ′′

−(λ, s)dρ(λ) exists, because
we can again estimate the sum of the absolute values of the residues by using that
−ψ′′

±(z, x)+p(x)ψ±(z, x) = zψ±(z, x) and the same techniques as in Lemma 2.5.
Analogously for

∮

σ
Jxx(λ, x, y)ψ+(λ, t)ψ−(λ, s)dρ(λ). Thus (2.101) is fulfilled

and therefore also (2.98).

Lemma 2.10. The functions K±(x, y) ∈ L2(R±) as a function of y for fixed x.
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Proof. Using (2.6), we can conclude

∫

R

|K±(x, y)|2dy ≤ ±C±(x)2
∫ ±∞

x

Q±(x+ y)2dy (2.103)

= C±(x)2Q±(2x)

∫ ±∞

x

∫ ±∞

x+y
2

|q̃(s)|dsdy

= C±(x)2Q±(2x)

∫ ±∞

x

(2s− 2x)|q̃(s)|ds <∞.

It should also be noticed that for any function f±(x) ∈ L2(R±),

h±(x) = f±(x) ±
∫ ±∞

x

K±(x, y)f±(y)dy ∈ L2(R±). (2.104)

Thus as a consequence we obtain

Corollary 2.11. The normalized Jost solutions φ±(z, x) coincide with the Weyl
solutions of the Schrödinger operator (2.5).
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Chapter 3

Scattering theory for

Schrödinger operators on

steplike, almost periodic

infinite-gap backgrounds

3.1 Introduction

One of the main tools for solving various Cauchy problems, since the seminal
work of Gardner, Green, Kruskal, and Miura [43] in 1967, is the inverse scat-
tering transform and therefore, since then, a large number of articles has been
devoted to direct and inverse scattering theory.

In much detail the case where the initial condition is asymptotically close
to p±(x) = 0, has been studied (see e.g Marchenko [81]). Taking this as a
starting point, there are two natural cases, which have also been considered in
the past. On the one hand the case of equal quasi-periodic, finite-gap potentials
p−(x) = p+(x) and on the other hand the case of steplike constant asymptotics
p±(x) = c± with c− 6= c+. Very recently, the combination of these two cases,
namely the case that the initial condition is asymptotically close to steplike
quasi-periodic finite-gap potentials p−(x) 6= p+(x), has been investigated by
Boutet de Monvel, Egorova, and Teschl [10].

Of much interest is also the case of asymptotically periodic solutions, which
has been first considered by Firsova [40]. In the present work we propose a
complete investigation of the scattering theory on Bohr almost periodic infinite-
gap backgrounds, which belong to the so–called Levitan class. It should be
noticed, that this class, as a special case, includes the set of smooth, periodic
infinite–gap operators.

To set the stage, we need:

Hypothesis H.3.1. Let

0 ≤ E±
0 < E±

1 < · · · < E±
n < . . . (3.1)

be two increasing sequences of points on the real axis which satisfy the following
conditions:
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(i) for a certain l > 1,
∑∞

n=1(E
±
2n−1)

l(E±
2n − E±

2n−1) <∞ and

(ii) E±
2n+1 − E±

2n−1 > Cnα± , where C and α± are some fixed, positive con-
stants.

We will call, in what follows, the intervals (E±
2j−1, E

±
2j) for j = 1, 2, . . . gaps.

In each closed gap [E±
2j−1, E

±
2j ] , j = 1, 2, . . . , we choose a point µ±

j and an

arbitrary sign σ±
j ∈ {−1, 1}.

Next consider the system of differential equations for the functions µ±
j (x),

σ±
j (x), j = 1, 2, ..., which is an infinite analogue of the well-known Dubrovin

equations, given by

dµ±
j (x)

dx
= − 2σ±

j (x)
√

−(µ±
j (x) − E±

0 )
√

µ±
j (x) − E±

2j−1

√

µ±
j (x) − E±

2j× (3.2)

∞
∏

k=1,k 6=j

√

µ±
j (x) − E±

2k−1

√

µ±
j (x) − E±

2k

µ±
j (x) − µ±

k (x)

with initial conditions µ±
j (0) = µ±

j and σ±
j (0) = σ±

j , j = 1, 2, . . . 1. Levitan
[77], [78], and [79], proved, that this system of differential equations is uniquely
solvable, that the solutions µ±

j (x), j = 1, 2, . . . are continuously differentiable

and satisfy µ±
j (x) ∈ [E±

2j−1, E
±
2j ] for all x ∈ R. Moreover, these functions µ±

j (x),

j = 1, 2, . . . are Bohr almost periodic 2. Using the trace formula (see for example
[77])

p±(x) = E±
0 +

∞
∑

j=1

(E±
2j−1 + E±

2j − 2µ±
j (x)), (3.3)

we see that also p±(x) are real Bohr almost periodic. The operators

L± := − d2

dx2
+ p±(x), (3.4)

are then called an almost periodic infinite-gap Schrödinger operator of the Lev-
itan class. They have as absolutely continuous spectrum the set

σ± = [E±
0 , E

±
1 ] ∪ · · · ∪ [E±

2j , E
±
2j+1] ∪ . . . , (3.5)

and have spectral properties analogous to the quasi-periodic finite-gap Schrödinger
operator. In particular, they are completely defined by the series

∑∞
j=1(µ

±
j , σ

±
j ),

which we call the Dirichlet divisor. These divisors are associated to a Riemann
surfaces of infinite genius, which are connected with the functions Y

1/2
± (z), where

Y±(z) = −(z − E±
0 )

∞
∏

j=1

(z − E±
2j−1)

E±
2j−1

(z − E±
2j)

E±
2j−1

, (3.6)

where the cuts are taken along the spectrum. It is known, that the spectral
equation

(

− d2

dx2
+ p±(x)

)

y(x) = zy(x) (3.7)

1We will use the standard branch cut of the square root in the domain C \ R+ with
Im

√
z > 0.

2 For informations about almost periodic functions we refer to [80].
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with any continuous, bounded potential p±(x) has two Weyl solutions ψ±(z, x)

and ψ̆±(z, x), which satisfy

ψ±(z, .) ∈ L2(R±), resp. ψ̆±(z, .) ∈ L2(R∓), (3.8)

for z ∈ C\σ± and which are normalized by ψ±(z, 0) = ψ̆±(z, 0) = 1. In our
case of Bohr almost periodic potentials of the Levitan class, these solutions
have complementary properties similar to the properties of the Baker-Akhiezer
functions in the finite-gap case. We will briefly discuss them in the next section.

The object of interest, for us, is the one-dimensional Schrödinger operator

L := − d2

dx2
+ q(x), (3.9)

with the real potential q(x) ∈ C(R) satisfying the following condition

±
∫ ±∞

0

(1 + |x|2)|q(x) − p±(x)|dx <∞, (3.10)

for which we will characterize the corresponding scattering data with the help
of the transformation operator, which has been investigated in Chapter 4.100.

3.2 The Weyl solutions of the background oper-

ators

In this section we want to summarize and recall some facts for the background
Schrödinger operators L± of Levitan class and introduce the notation we will
use from now on. We present these results, obtained in Chapter 4.100, [77], [88],
and [89], in a form, similar to the finite-gap case used in [10] and [45].

Let L± be the quasi-periodic one-dimensional Schrödinger operators asso-
ciated with the potentials p±(x). Let s±(z, x), c±(z, x) be sin- and cos-type
solutions of the equation

(

− d2

dx2
+ p±(x)

)

y(x) = zy(x), z ∈ C, (3.11)

associated with the initial conditions

s±(z, 0) = c′±(z, 0) = 0, c±(z, 0) = s′±(z, 0) = 1, (3.12)

where prime denotes the derivative with respect to x. Then c±(z, x), c′±(z, x),
s±(z, x), and s′±(z, x) are holomorphic with respect to z ∈ C\σ±. Moreover,
they can be represented in the following form

c±(z, x) = cos(
√
zx) +

∫ x

0

sin(
√
z(x− y))√
z

p±(y)c±(z, y)dy, (3.13)

s±(z, x) =
sin(

√
zx)√
z

+

∫ x

0

sin(
√
z(x− y))√
z

p±(y)s±(z, y)dy. (3.14)

The background Weyl solutions are given by

ψ±(z, x) = c±(z, x) +m±(z, 0)s±(z, x),

resp. ψ̆±(z, x) = c±(z, x) + m̆±(z, 0)s±(z, x),
(3.15)
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where

m±(z, x) =
H±(z, x) ± Y

1/2
± (z)

G±(z, x)
, m̆±(z, x) =

H±(z, x) ∓ Y
1/2
± (z)

G±(z, x)
, (3.16)

are the Weyl function of L± (cf [77]), where Y±(z) are defined by (3.6),

G±(z, x) =

∞
∏

j=1

z − µ±
j (x)

E±
2j−1

, and H±(z, x) =
1

2

d

dx
G±(z, x). (3.17)

Using (3.2) and (3.17), we have

H±(z, x) =
1

2

d

dx
G±(z, x) = G±(z, x)

∞
∑

j=1

σ±
j (x)Y

1/2
± (µ±

j (x))
d
dzG(µ±

j (x), x)(z − µ±
j (x))

. (3.18)

The Weyl functions m±(z, x) and m̆±(z, x) are Bohr almost periodic.

Lemma 3.2. The background Weyl solutions, for z ∈ C, can be represented in
the following form

ψ±(z, x) = exp

(∫ x

0

m±(z, y)dy

)

=

(

G±(z, x)

G±(z, 0)

)1/2

exp

(

±
∫ x

0

Y
1/2
± (z)

G±(z, y)
dy

)

,

(3.19)

and

ψ̆±(z, x) = exp

(∫ x

0

m̆±(z, y)dy

)

=

(

G±(z, x)

G±(z, 0)

)1/2

exp

(

∓
∫ x

0

Y
1/2
± (z)

G±(z, y)
dy

)

.

(3.20)

If for some ε > 0, |z − µ±
j (x)| > ε for all j ∈ N and x ∈ R, then the following

holds: For any C > 0 there exists an R > 0 such that

|ψ±(z, x)| ≤ e∓(1−C)x Im(
√
z)
(

1 +
D

|z|
)

, for any |z| ≥ R, (3.21)

and

|ψ̆±(z, x)| ≤ e±(1−C)x Im(
√
z)
(

1 +
D

|z|
)

, for any |z| ≥ R, (3.22)

where D denotes some constant dependent on R.

As the spectra σ± consist of infinitely many bands, let us cut the complex
plane along the spectrum σ± and denote the upper and lower sides of the cuts
by σu

± and σl
±. The corresponding points on these cuts will be denoted by λu

and λl, respectively. In particular, this means

f(λu) := lim
ε↓0

f(λ+ iε), f(λl) := lim
ε↓0

f(λ− iε), λ ∈ σ±.

Defining

g±(λ) = −G±(λ, 0)

2Y
1/2
± (λ)

, (3.23)
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where the branch of the square root is chosen in such a way that

1

i
g±(λu) = Im(g±(λu)) > 0 for λ ∈ σ±, (3.24)

it follows from Lemma 3.2 that

W (ψ̆±(z), ψ±(z)) = m±(z) − m̆±(z) = ∓g±(z)−1, (3.25)

where W (f, g)(x) = f(x)g′(x) − f ′(x)g(x) denotes the usual Wronskian deter-
minant.

For every Dirichlet eigenvalue µ±
j = µ±

j (0), the Weyl functions m±(z) and

m̆±(z) might have poles. If µ±
j is in the interior of its gap, precisely one Weyl

functionm± or m̆± will have a simple pole. Otherwise, if µ±
j sits at an edge, both

will have a square root singularity. Hence we divide the set of poles accordingly:

M± = {µ±
j | µ±

j ∈ (E±
2j−1, E

±
2j) and m± has a simple pole},

M̆± = {µ±
j | µ±

j ∈ (E±
2j−1, E

±
2j) and m̆± has a simple pole},

M̂± = {µ±
j | µ±

j ∈ {E±
2j−1, E

±
2j}},

and we set Mr,± = M± ∪ M̆± ∪ M̂±.
In particular, we obtain the following properties of the Weyl solutions (see,

e.g. [29], [77], [91]):

Lemma 3.3. The Weyl solutions have the following properties:

(i) The function ψ±(z, x) (resp. ψ̆±(z, x)) is holomorphic as a function of z
in the domain C \ (σ± ∪M±) (resp. C\(σ± ∪ M̆±), real valued on the set
R \ σ±, and have simple poles at the points of the set M± (resp. M̆±).
Moreover, they are continuous up to the boundary σu± ∪ σl± except at the

points from M̂± and

ψ±(λu) = ψ̆±(λl) = ψ±(λl), λ ∈ σ±. (3.26)

For E ∈ M̂± the Weyl solutions satisfy

ψ±(z, x) = O

(

1√
z − E

)

, ψ̆±(z, x) = O

(

1√
z − E

)

, as z → E ∈ M̂±.

The same is true for ψ′
±(z, x) and ψ̆′

±(z, x).

(ii) At the edges of the spectrum these functions possess the properties

ψ±(z, x) − ψ̆±(z, x) = O(
√
z − E) near E ∈ ∂σ±\M̂±, (3.27)

and
ψ±(z, x) + ψ̆±(z, x) = O(1) near E ∈ M̂±. (3.28)

(iii) The functions ψ±(z, x) form an orthonormal basis on the spectrum with
respect to the weight

dρ±(z) =
1

2πi
g±(z)dz, (3.29)
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and any f(x) ∈ L2(−∞,∞) can be expresses through

f(x) =

∮

σ±

(∫

R

f(y)ψ±(z, y)dy

)

ψ̆±(z, x)dρ(z). (3.30)

Here we use the notation
∮

σ±

f(z)dρ±(z) :=

∫

σu
±

f(z)dρ±(z) −
∫

σl
±

f(z)dρ±(z). (3.31)

3.3 The direct scattering problem

Consider the equation

(

− d2

dx2
+ q(x)

)

y(x) = zy(x), z ∈ C, (3.32)

with a potential q(x) satisfying the following condition

±
∫ ±∞

0

(1 + x2)|q(x) − p±(x)|dx <∞. (3.33)

Then, as in Chapter 4.100, there exist two solutions, the so called Jost solu-
tions φ±(z, x), which are asymptotically close to the background Weyl solutions
ψ±(z, x) of equation (3.11) as x→ ±∞ and they can be represented as

φ±(z, x) = ψ±(z, x) ±
∫ ±∞

x

K±(x, y)ψ±(z, y)dy. (3.34)

Here K±(x, y) are real-valued functions, which are continuously differentiable
with respect to both parameters and satisfy the estimate

|K±(x, y)| ≤ C±(x)Q±(x+ y) = ±C±(x)

∫ ±∞

x+y
2

|q(t) − p±(t)|dt, (3.35)

where C±(x) are continuous, positive, monotonically decreasing functions, and
therefore bounded as x→ ±∞. Furthermore,

∣

∣

∣

∣

dK±(x, y)

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

dK±(x, y)

dy

∣

∣

∣

∣

≤ C±(x)

(∣

∣

∣

∣

q±

(

x+ y

2

)∣

∣

∣

∣

+Q±(x+ y)

)

(3.36)

and

±
∫ ±∞

a

(1 + x2)

∣

∣

∣

∣

d

dx
K±(x, x)

∣

∣

∣

∣

dx <∞, ∀a ∈ R. (3.37)

Moreover, for λ ∈ σu± ∪ σl± a second pair of solutions of (3.32) is given by

φ±(λ, x) = ψ̆±(λ, x) ±
∫ ±∞

x

K±(x, y)ψ̆±(λ, y)dy, λ ∈ σu± ∪ σl±. (3.38)

Note ψ̆±(λ, x) = ψ±(λ, x) for λ ∈ σ±.
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Unlike the Jost solutions φ±(z, x), these solutions only exist on the upper
and lower cuts of the spectrum and cannot be continued to the whole complex
plane. Combining (3.25), (3.34), (3.35), and (3.38), one obtains

W (φ±(λ), φ±(λ)) = ±g(λ)−1. (3.39)

In the next lemma we want to point out, which properties of the background
Weyl solutions are also inherited by the Jost solutions.

Lemma 3.4. The Jost solutions φ±(z, x) have the following properties:

(i) The function φ±(z, x) considered as a function of z, is holomorphic in the
domain C\(σ± ∪M±), and has simple poles at the points of the set M±.
They are continuous up to the boundary σu±∪σl± except at the points from

M̂±. Moreover, we have

φ±(z, x) ∈ L2(R±), z ∈ C\σ± (3.40)

For E ∈ M̂± they satisfy

φ±(z, x) = O

(

1√
z − E

)

, as z → E ∈ M̂±. (3.41)

(ii) At the band edges we have the following behavior:
φ±(z, x) − φ±(z, x) = O(

√
z − E) for E ∈ ∂σ±\M̂±, and

φ±(z, x) + φ±(z, x) = O(1) for E ∈ M̂±.

Proof. Everything follows from the fact that these properties are only dependent
on z and therefore the transformation operator does not influence them.

Now we want to characterize the spectrum of our operator L, which consists
of an (absolutely) continuous part, σ = σ+ ∪ σ− and an at most countable
number of discrete eigenvalues, which are situated in the gaps, σd ⊂ R\σ. For
our purposes it will be convenient to write

σ = σ
(1)
− ∪ σ(1)

+ ∪ σ(2), (3.42)

with

σ(2) := σ− ∩ σ+, σ
(1)
± = clos(σ±\σ(2)). (3.43)

It is well-known that a point λ ∈ R\σ corresponds to the discrete spectrum
if and only if the two Jost solutions are linearly dependent, which implies that
we should investigate

W (z) := W (φ−(z, .), φ+(z, .)), (3.44)

the Wronskian of the Jost solutions. This is a meromorphic function in the
domain C\σ, with possible poles at the points M+ ∪ M− ∪ (M̂+ ∩ M̂−) and
possible square root singularities at the points M̂+∪M̂−\(M̂+∩M̂−). Moreover
it should be pointed out (cf. [72] and [87]) that every gap can only contain a finite
number of discrete eigenvalues and thus they cannot cluster. For investigating
the function W (z) in more detail, we will multiply the possible poles and square
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root singularities away. Thus we define locally in a small neighborhood U±
j of

the j’th gap [E±
2j−1, E

±
2j ], where j = 1, 2, . . .

φ̃j,±(z, x) = δj,±(z)φ±(z, x), (3.45)

where

δj,±(z) =

{

z − µ±
j , if µ±

j ∈M±,

1, else
(3.46)

and

φ̂j,±(z, x) = δ̂j,±(z)φ±(z, x), (3.47)

where

δ̂j,±(z) =















z − µ±
j , if µ±

j ∈M±,
√

z − µ±
j , if µ±

j ∈ M̂±,

1, else.

(3.48)

Correspondingly, we set

W̃ (z) = W (φ̃−(z, .), φ̃+(z, .)), Ŵ (z) = W (φ̂−(z, .), φ̂+(z, .)). (3.49)

Here we use the definitions

φ̃±(z, x) =

{

φ̃j,±(z, x), for z ∈ U±
j , j = 1, 2, . . . ,

φ±(z, x), else .
, (3.50)

φ̂±(z, x) =

{

φ̂j,±(z, x), for z ∈ U±
j , j = 1, 2, . . . ,

φ±(z, x), else .
(3.51)

and we will choose U+
j = U−

m, if [E+
2j−1, E

+
2j ] ∩ [E−

2m−1, E
−
2m] 6= ∅. Analogously,

one can define δ±(z) and δ̂±(z).
Note that the function Ŵ (z) is holomorphic in the domain U±

j ∩ (C\σ) and

continuous up to the boundary. But unlike the functions W (z) and W̃ (z) it
may not take real values on the set R\σ and complex conjugated values on the
different sides of the spectrum σu ∪ σl inside the domains U±

j . That is why
we will characterize the spectral properties of our operator L in terms of the
function W̃ (z) which can have poles at the band edges.

Since the discrete spectrum of our operator L is at most countable, we can
write it as

σd =

∞
⋃

n=1

σn ⊂ R\σ, (3.52)

where

σn = {λn,1, . . . , λn,k}, n ∈ N, (3.53)

and k(n) denotes the number of eigenvalues in the n’th gap of σ.
For every eigenvalue λn,m we can introduce the corresponding norming con-

stants

(γ±n,m)−2 =

∫

R

φ̃2
±(λn,m, x)dx. (3.54)

34



Chapter 3. Scattering theory

Now we begin with the study of the properties of the scattering data. Therefore
we introduce the scattering relations

T∓(λ)φ±(λ, x) = φ∓(λ, x) +R∓(λ)φ∓(λ, x), λ ∈ σu,l∓ , (3.55)

where the transmission and reflection coefficients are defined as usual,

T±(λ) :=
W (φ±(λ), φ±(λ))

W (φ∓(λ), φ±(λ))
, R±(λ) := −W (φ∓(λ), φ±(λ))

W (φ∓(λ), φ±(λ))
, λ ∈ σu,l±

(3.56)

Theorem 3.5. For the scattering matrix the following properties are valid:

(i) T±(λu) = T±(λl) and R±(λu) = R±(λl) for λ ∈ σ±.

(ii)
T±(λ)

T±(λ)
= R±(λ) for λ ∈ σ

(1)
± .

(iii) 1 − |R±(λ)|2 =
g±(λ)

g∓(λ)
|T±(λ)|2 for λ ∈ σ(2).

(iv) R±(λ)T±(λ) +R∓(λ)T±(λ) = 0 for λ ∈ σ(2).

Proof. (i) and (iv) follow from (3.34), (3.38), (3.56), and Lemma 3.3

For showing (ii) observe that φ̃∓(λ, x) ∈ R as λ ∈ int(σ
(1)
± ), which implies (ii).

Now assume λ ∈ intσ(2), then by (3.55)

|T±|2W (φ∓, φ∓) = (|R±|2 − 1)W (φ±, φ±). (3.57)

Thus using (3.39) finishes the proof.

Theorem 3.6. The transmission and reflection coefficients have the following
asymptotic behavior, as λ → ∞ for λ ∈ σ(2) outside a small ε neighborhood of
the band edges of σ(2):

R±(λ) = O(|λ|−1/2), (3.58)

T±(λ) = 1 +O(|λ|−1/2). (3.59)

Proof. The asymptotics can only be valid for λ ∈ σ(2) outside an ε neighbor-
hood of the band edges, because the Jost solutions φ± might have square root
singularities there. At first we will investigate W (φ−(λ, 0), φ+(λ, 0)):

φ−(λ, 0)φ′+(λ, 0) =

(

1 +

∫ 0

−∞
K−(0, y)ψ−(λ, y)dy

)

× (3.60)

(

m+(λ) −K+(0, 0) +

∫ ∞

0

K+,x(0, y)ψ+(λ, y)dy

)

.

∫ 0

−∞
K−(0, y)ψ−(λ, y)dy =

∫ 0

−∞

K−(0, y)

m−(λ, y)
ψ′
−(λ, y) (3.61)

where we used (cf. (3.19))

ψ′
±(λ, x) = m±(λ, x)ψ±(λ, x).
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Hence
∫ 0

−∞
K−(0, y)ψ−(λ, y)dy =

K−(0, 0)

m−(λ)
+ I1(λ), (3.62)

I1(λ) = −
∫ 0

−∞

(

K−,y(0, y)
ψ−(λ, y)

m−(λ, y)
−K−(0, y)ψ−(λ, y)

m′
−(λ, y)

m−(λ, y)2

)

dy.

(3.63)
Here it should be noticed that m±(λ)−1 has no pole, because (see e.g. [77])

G±(z)N±(z) +H±(z)2 = Y±(z), (3.64)

where

N±(z) = −(z − τ±0 )
∞
∏

j=1

z − τ±j
E±

2j−1

, (3.65)

with τ±0 ∈ (−∞.E±
0 ] and τ±j ∈ [E±

2j−1, E
±
2j ]. Thus we obtain

m±(λ)−1 =
G±(λ)

H±(λ) ± Y±(λ)1/2
= −H±(λ) ∓ Y±(λ)1/2

N±(λ)
, (3.66)

and therefore K−(0,0)
m−(λ) = O( 1√

λ
).

Moreover I1(λ) = O
(

1√
λ

)

as the following estimates show:

|I1(λ)| ≤
∫ 0

−∞
|K−,y(0, y)

ψ−(λ, y)

m−(λ, y)
|dy +

∫ 0

−∞
|K−(0, y)ψ−(λ, y)

m′
−(λ, y)

m−(λ, y)2
|dy

(3.67)

≤ C√
λ

∫ 0

−∞
(|q(y) − p−(y)| +Q−(y))dy,

where we used that |ψ±(λ, y)| = |G±(λ,y)
G±(λ,0) | = O(1) and m−1

± (λ, y) = O
(

1√
λ

)

for

all y by the quasi-periodicity, together with (3.7) and

ψ′′
±(λ, x) = m±(λ, x)2ψ±(λ, x) +m′

±(λ, x)ψ±(λ, x).

Making the same conclusions as before, one obtains

∫ ∞

0

K+,x(0, y)ψ+(λ, y)dy = O(1). (3.68)

In a similar manner one can investigate

φ′−(λ, 0)φ+(λ, 0) =

(

m−(λ) +K−(0, 0) +

∫ 0

−∞
K−,x(0, y)ψ−(λ, y)dy

)

×
(

1 +

∫ ∞

0

K+(0, y)ψ+(λ, y)dy

)

, (3.69)

where
∫ 0

−∞
K−,x(0, y)ψ−(λ, y)dy = O(1), (3.70)
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∫ ∞

0

K+(0, y)ψ+(λ, y)dy = −K+(0, 0)

m+(λ)
+ I2(λ), (3.71)

I2(λ) = −
∫ ∞

0

(

K+,y(0, y)
ψ+(λ, y)

m+(λ, y)
−K+(0, y)ψ+(λ, y)

m′
+(λ, y)

m+(λ, y)2

)

dy,

(3.72)
with I2(λ) = O

(

1√
λ

)

. Thus combining all the informations we obtained so far

yields

W (φ−(λ), φ+(λ)) = m+(λ) −m−(λ) +K−(0, 0)

(

m+(λ) −m−(λ)

m−(λ)

)

+K+(0, 0)

(

m−(λ) −m+(λ)

m+(λ)

)

+O(1). (3.73)

and therefore, using (3.39),

T±(λ) = 1 +O

(

1√
λ

)

. (3.74)

Analogously one can investigate the behavior of W (φ∓(λ), φ±(λ) to obtain

R±(λ) = O
(

1√
λ

)

.

Theorem 3.7. The functions T±(λ) can be extended analytically to the domain
C\(σ ∪M± ∪ M̆±) and satisfy

−1

T+(z)g+(z)
=

−1

T−(z)g−(z)
=: W (z), (3.75)

where W (z) possesses the following properties:

(i) The function W̃ is holomorphic in the domain U±
j ∩ (C\σ), with simple

zeros at the points λk, where

(

dW̃

dz
(λk)

)2

= (γ+
n,kγ

−
n,k)

−2. (3.76)

Besides it satisfies

W̃ (λu) = W̃ (λl), λ ∈ U±
j ∩ σ and W̃ (λ) ∈ R, λ ∈ U±

j ∩ (R\σ).
(3.77)

(ii) The function Ŵ (z) is continuous on the set U±
j ∩C\σ up to the boundary

σl ∪ σu. It can have zeros on the set ∂σ ∪ (∂σ
(1)
+ ∩ ∂σ

(1)
− ) and does not

vanish at any other points of σ. If Ŵ (E) = 0 as E ∈ ∂σ∪ (∂σ
(1)
+ ∩∂σ(1)

− ),

then Ŵ (z) =
√
z − E(C(E) + o(1)), C(E) 6= 0.

Proof. (i) Except for (3.76) everything follows from the corresponding prop-
erties of φ±(z, x). Therefore assume Ŵ (λ0) = 0 for some λ0 ∈ C\σ, then

φ̃±(λ0, x) = c±φ̃∓(λ0, x), (3.78)
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for some constants c±, which satisfy c−c+ = 1. Moreover, every zero
of W̃ (or Ŵ ) outside the continuous spectrum, is a point of the discrete
spectrum of L and vice versa.

Denote by γ± the corresponding norming constants defined in (3.54) for
some fixed point λ0 of the discrete spectrum. Proceeding as in [81] one
obtains

W
(

φ̃±(λ0, 0),
d

dλ
φ̃±(λ0, 0)

)

=

∫ ±∞

0

φ̃2
±(λ0, x)dx. (3.79)

Thus using (3.78) and (3.79) yields

γ−2
± = ∓c2±

∫ ∓∞

0

φ̃2
∓(λ0, x)dx±

∫ ±∞

0

φ̃2
±(λ0, x)dx (3.80)

= ∓c2±W
(

φ̃∓(λ0, 0),
d

dλ
φ̃∓(λ0, 0)

)

±W
(

φ̃±(λ0, 0),
d

dλ
φ̃±(λ0, 0)

)

= c±
d

dλ
W (φ̃−(λ0), φ̃+(λ0)),

applying now c−c+ = 1, we obtain (3.76).

(ii) The continuity of Ŵ (z) up to the boundary follows immediately from the

corresponding properties of φ̂±(z, x). Now we will investigate the possible
zeros.

Assume W (λ0) = 0 for some λ0 ∈ int(σ(2)). Then φ+(λ0, x) = cφ−(λ0, x)
and φ+(λ0, x) = cφ−(λ0, x). ThusW (φ+, φ+) = |c|2W (φ−, φ−) and there-
fore sign g+(λ0) = − sign g−(λ0) by (3.39), contradicting (3.24).

Next let λ0 ∈ int(σ
(1)
± ) and W̃ (λ0) = 0, then φ±(λ0, x) and φ±(λ0, x) are

linearly independent and bounded, moreover φ̃∓(λ0, x) ∈ R. Therefore
W̃ (λ0) = 0 implies that φ̃∓ = c±1 φ± = c±2 φ± and thus W (φ±, φ±) = 0 ,
which is impossible by (3.39). Note that in this case λ0 can coincide with
a pole µ ∈M∓.

Now introduce the local parameter τ =
√
z − E in a small neighborhood

of each point E ∈ ∂σ± and define ẏ(z, x) = d
dτ y(z, x). A simple calcula-

tion shows that dz
dτ (E) = 0, hence for every solution y(z, x) of (3.32), its

derivative ẏ(E, x) is again a solution of (3.32). Therefore, the Wronskian
W (y(E), ẏ(E)) is independent of x.

For each x ∈ R in a small neighborhood of a fixed point E ∈ ∂σ± we
introduce the function

ψ̂±,E(z, x) =

{

ψ±(z, x), E ∈ ∂σ±\M̂±,

τψ±(z, x), E ∈M±.

Proceeding as in [10] Lemma B.1 one obtains

W
(

ψ̂±,E(E),
d

dτ
ψ̂±,E(E)

)

= ± lim
z→E

ατα

2g±(z)
, (3.81)

where α = −1 if E ∈ ∂σ±\M̂± and α = 1 if E ∈ M̂±.
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Using representation (3.19) for ψ±(z, x) one can show (cf [48]),

ψ±(E, x) =

(

G±(E, x)

G±(E, 0)

)1/2

exp

(

± lim
z→E

∫ x

0

Y±(z)1/2

G±(z, τ)
dτ

)

, E ∈ ∂σ

(3.82)
where

exp

(

± lim
z→E

∫ x

0

Y±(z)1/2

G±(z, τ)
dτ

)

=



















(i)2s+1, µj 6= E, µj(x) = E,

(i)2s+1, µj = E, µj(x) 6= E,

(i)2s, µj = E, µj(x) = E,

(i)2s, µj 6= E, µj(x) 6= E,

(3.83)

for s ∈ {0, 1}. Defining

φ̂±,E(λ, x) =

{

φ±(λ, x), E ∈ ∂σ±\M̂±,

τφ±(λ, x), E ∈ M̂±,
(3.84)

we can conclude using (3.34) that

φ±(E, x) = φ±(E, x), for E ∈ ∂σ±\M̂±. (3.85)

Moreover, for E ∈ M̂±,
{

φ̂±,E(E, x) = −φ̂±,E(E, x), a left band edge from σ±,

φ̂±,E(E, x) = φ̂±,E(E, x), a right band edge from σ±.

If λ0 = E ∈ ∂σ(2) ∩ int(σ±) ⊂ int(σ±), then Ŵ (E) = 0 if and only if

W (ψ±, ψ̂∓,E)(E) = 0. Therefore, as φ̂∓,E(E, .) are either pure real or

pure imaginary, W (φ±, φ̂∓,E)(E) = 0, which implies that φ±(E, x) and
φ±(E, x) are linearly dependent, a contradiction.

Thus the function Ŵ (z) can only be zero at points E of the set ∂σ ∪
(∂σ

(1)
+ ∩∂σ(1)

− ). We will now compute the order of the zero. First of all note

that the function Ŵ (λ) is continuously differentiable with respect to the

local parameter τ . Since d
dτ (δ+δ−)(E) = 0, the function W (φ̂+,E , φ̂−,E)

has the same order of zero at E as Ŵ (λ). Moreover, if δ̂±(E) 6= 0,then
d
dτ δ̂±(E) = 0 and if δ̂−(E) = δ̂+(E) = 0, then d

dτ (τ−2δ̂+δ̂−)(E) = 0.

Hence d
dτ Ŵ (E) = 0 if and only if d

dτW (φ̂+,E , φ̂−,E) = 0.

Combining now all the informations we obtained so far, we can conclude
as follows: if Ŵ (E) = 0, then φ̂±,E(E, .) = c±φ̂∓,E(E, .), with c−c+ = 1.
Furthermore we can write

Ẇ (φ̂+,E , φ̂−,E)(E) = W (
d

dτ
φ̂+,E , φ̂−,E)(E) −W (

d

dτ
φ̂−,E , φ̂+,E)(E)

= c−W (
d

dτ
φ̂+,E , φ̂+,E)(E) − c+W (

d

dτ
φ̂−,E , φ̂−,E)(E)

(3.86)

= c−W (
d

dτ
ψ̂+,E , ψ̂+,E)(E) − c+W (

d

dτ
ψ̂−,E , ψ̂−,E)(E).

Using (3.81), (3.85), (3.86), and distinguishing several cases as in [10]
finishes the proof.

39



Chapter 3. Scattering theory

Theorem 3.8. (i) The reflection coefficient R±(λ) is a continuous function

on the set int(σu,l± ).

(ii) If E ∈ ∂σ+ ∩∂σ− and Ŵ (E) 6= 0, then the function R±(λ) is also contin-
uous at E. Moreover,

R±(E) =

{

−1 for E 6∈ M̂±,

1 for E ∈ M̂±.
(3.87)

Proof. (i) At first it should be noted that by Lemma 3.5 the reflection co-

efficient is bounded, as g±(λ)
g∓(λ) > 0 for λ ∈ int(σ(2)). Thus, using the

corresponding properties of φ±(z, x), finishes the first part.

(ii) By (3.56) the reflection coefficient can be represented in the following form:

R±(λ) = −W (φ±(λ), φ∓(λ))

W (φ±(λ), φ∓(λ))
= ±W (φ±(λ), φ∓(λ))

W (λ)
, (3.88)

and is therefore continuous on both sides of the set int(σ±)\(M∓ ∪ M̂∓).
Moreover,

|R±(λ)| =

∣

∣

∣

∣

∣

W (φ̂±(λ), φ̂∓(λ))

Ŵ (λ)

∣

∣

∣

∣

∣

, (3.89)

where the denominator does not vanish, by assumption and hence R±(λ)
is continuous on both sides of the spectrum in a small neighborhood of
the band edges under consideration.

Next, let E ∈ {E±
2j−1, E

±
2j} with Ŵ (E) 6= 0. Then, if E 6∈ M̂±, we can

write

R±(λ) = −1 ∓ δ̂j,±(λ)W (φ±(λ) − φ±(λ), φ̂∓(λ))

Ŵ (λ)
, (3.90)

which implies R±(λ) → −1, since φ±(λ) − φ±(λ) → 0 by Lemma 3.4 as
λ→ E. Thus we proved the first case.
If E ∈ M̂± with Ŵ (E) 6= 0, we use (3.88) in the form

R±(λ) = 1 ± δ̂j,±(λ)W (φ±(λ) + φ±(λ), φ̂∓(λ))

Ŵ (λ)
, (3.91)

which yields R±(λ) → 1, since δ̂j,±(λ) → 0 and φ±(λ) + φ±(λ) = O(1) by
Lemma 3.4 as λ→ E. This settles the second case.

3.4 The Gel’fand-Levitan-Marchenko Equation

The aim of this section is to derive the Gel’fand-Levitan-Marchenko (GLM)
equation, which is also called the inverse scattering problem equation and to
obtain some additional properties of the scattering data, as a consequence of
the GLM equation.
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Figure 3.1: Contours Γε,n

Therefore consider the function

G±(z, x, y) = T±(z)φ∓(z, x)ψ±(z, y)g±(z) − ψ̆±(z, x)ψ±(z, y)g±(z) (3.92)

:= G′
±(z, x, y) +G′′

±(z, x, y), ±y > ±x,

where x and y are considered as fixed parameters. As a function of z it is
meromorphic in the domain C\σ with simple poles at the points λk of the
discrete spectrum. It is continuous up to the boundary σu ∪ σl, except for the
points of the set, which consists of the band edges of the background spectra
∂σ+ and ∂σ−, where

G±(z, x, y) = O((z − E)−1/2) as E ∈ ∂σ+ ∪ ∂σ−. (3.93)

Outside a small neighborhood of the gaps of σ+ and σ−, the following asmp-
totics as z → ∞ are valid:

φ∓(z, x) = e∓i
√
zx(1+O( 1

z ))
(

1 +O(z−1/2)
)

, g±(z) =
−1

2i
√
z

+O(z−1),

ψ̆±(z, x) = e∓i
√
zx(1+O( 1

z ))
(

1 +O(z−1)
)

, T±(z) = 1 +O(z−1/2),

ψ±(z, y) = e±i
√
zy(1+O( 1

z ))
(

1 +O(z−1)
)

,

and the leading term of φ∓(z, x) and ψ̆±(z, x) are equal, thus

G±(z, x, y) = e±i
√
z(y−x)(1+O( 1

z ))O(z−1), ±y > ±x. (3.94)

Consider the following sequence of contours Γε,n,±, where Γε,n,± consists of
two parts for every n ∈ N and ε ≥ 0:

(i) Cε,n,± consists of a part of a circle which is centered at the origin and has
as radii the distance from the origin to the midpoint of the largest band of
[E±

2n, E
±
2n+1], which lies inside σ(2), together with a part wrapping around

the corresponding band of σ at a small distance, which is at most ε, as
indicated by figure 1.

(ii) Each band of the spectrum σ, which is fully contained in Cε,n,±, is sur-
rounded by a small loop at a small distance from σ not bigger than ε.

41



Chapter 3. Scattering theory

W.l.o.g. we can assume that all the contours are non-intersecting.
Using the Cauchy theorem, we obtain

1

2πi

∮

Γε,n,±

G±(z, x, y)dz =
∑

λk∈int(Γε,n,±)

Res
λk

G±(z, x, y), ε > 0. (3.95)

By (3.93) the limit value of G±(z, x, y) as ε → 0 is integrable on σ, and the
function G′′

±(z, x, y) has no poles at the points of the discrete spectrum, thus
we arrive at

1

2πi

∮

Γ0,n,±

G±(z, x, y)dz =
∑

λk∈int(Γ0,n,±)

Res
λk

G′
±(z, x, y), ±y > ±x. (3.96)

Estimate (3.94) allows us now to apply Jordan’s lemma, when letting n → ∞,
and we therefore arrive, up to that point only formally, at

1

2πi

∮

σ

G±(λ, x, y)dλ =
∑

λk∈σd

Res
λk

G′
±(λ, x, y), ±y > ±x. (3.97)

Next, note that the functionG′′
±(λ, x, y) does not contribute to the left part of

(3.97), sinceG′′
±(λu, x, y) = G′′

±(λl, x, y) for λ ∈ σ
(1)
∓ and, hence

∮

σ
(1)
∓
G′′

±(λ, x, y)dλ =

0. In addition,
∮

σ±
G′′

±(λ, x, y)dλ = 0 for x 6= y by Lemma 3.3 (iv).

Therefore we arrive at the following equation,

1

2πi

∮

σ±

G′
±(λ, x, y)dλ =

∑

λk∈σd

Res
λk

G′
±(λ, x, y), ±y > ±x. (3.98)

For making our argument rigorous, we have to apply Jordan’s lemma, which
implies that the contribution of the integral along the circle of C0,n,±, converges
against zero as n → ∞ and we have to show that the series of integrals along
the parts of the spectrum contained in C0,n,± converges as n → ∞. This will
be done next.

Using (3.30), (3.34), (3.38), (3.55), and Lemma 3.3 (iv) we obtain

1

2πi

∮

σ±

G′
±(λ, x, y)dλ =

∮

σ±

T±(λ)φ∓(λ, x)ψ±(λ, y)dρ±(λ)

=

∮

σ±

(

R±(λ)φ±(λ, x) + φ±(λ, x)
)

ψ±(λ, y)dρ±(λ)

=

∮

σ±

R±(λ)ψ±(λ, y)ψ±(λ, y)dρ±(λ) +

∮

σ±

ψ̆±(λ, x)ψ±(λ, y)dρ±(λ)

±
∫ ±∞

x

dtK±(x, t)
(

∮

σ±

R±(λ)ψ±(λ, t)ψ±(λ, y)dρ±(λ) + δ(t− y)
)

= Fr,±(x, y) ±
∫ ±∞

x

K±(x, t)Fr,±(t, y)dt+K±(x, y), (3.99)

where

Fr,±(x, y) =

∮

σ±

R±(λ)ψ±(λ, y)ψ±(λ, y)dρ±(λ). (3.100)
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Now properties (ii) and (iii) from Lemma 3.5 imply that

|R±(λ)| < 1 for λ ∈ int(σ(2)), |R±(λ)| = 1 for λ ∈ σ
(1)
± . (3.101)

and by (3.19) we can write

Fr,±(x, y) =

∮

σ±

R±(λ)ψ±(λ, x)ψ±(λ, y)dρ±(λ)

= −
∮

σ±

R±(λ)
(G±(λ, x)G±(λ, y))1/2

2Y±(λ)1/2
exp(η±(λ, x) + η±(λ, y))dλ,

with

η±(λ, x) := ±
∫ x

0

Y±(λ)1/2

G±(λ, τ)
dτ ∈ iR. (3.102)

We will show

Lemma 3.9. The series

Fr,±(x, y) =

∞
∑

n=0

∮

(E±
2n,E

±
2n+1)

R±(λ)ψ±(λ, x)ψ±(λ, y)dρ±(λ)

= lim
n→∞

∮

σ±∩Γ0,n,±

R±(λ)ψ±(λ, x)ψ±(λ, y)dρ±(λ) = Fr,n,±(x, y),

(3.103)

is convergent and uniformly bounded with respect to x and y.

Proof. For λ ∈ σ± as λ→ ∞ we have the following asymptotic behavior

(i) in a small neighborhood V ±
n of E = E±

n

|R±(λ)ψ±(λ, x)ψ±(λ, y)g±(λ)| = O
(

√

E±
2j − E±

2j−1
√

λ(λ − E)

)

, (3.104)

(ii) in a small neighborhood W±
n of E = E∓

n , if E ∈ σ±

R±(λ)ψ±(λ, x)ψ±(λ, y)g±(λ) = exp(±i
√
λ(x+ y)(1 +O(

1

λ
))O(

1√
λ

),

(3.105)

(iii) and for λ ∈ σ±\
⋃

j∈N
(V ±
n ∪W±

n )

R±(λ)ψ±(λ, x)ψ±(λ, y)g±(λ) = exp(±i
√
λ(x+y)(1+O(

1

λ
)))
(C

λ
+O
( 1

λ3/2

))

.

(3.106)

These estimates are good enough to show that Fr,±(x, y) exists, if we choose V ±
n

and W±
n in the following way: We choose V ±

n ⊂ σ
(1)
± ∪σ(2), if E±

n is a band edge

of σ
(1)
± , such that V ±

n consists of the corresponding band of σ
(1)
± together with

the following part of σ
(2)
± with length E±

n − E±
n−1, if n is even and E±

n+1 − E±
n ,

if n is odd. If E+
n is a band edge of σ(2), we choose V ±

n ⊂ σ(2), where the length
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of V ±
n is equal to the length of the gap pf σ± next to it. We set W±

n ⊂ σ(2) with
length 3(E∓

n − E∓
n−1), if n is even and 3(E∓

n+1 − E∓
n ), if n is odd, centered at

the midpoint of the corresponding gap in σ∓. As we are working in the Levitan
class and we therefore know that

∑∞
n=1(E

±
2n−1)

l(E±
2n − E±

2n−1) < ∞ for some
l > 1, we obtain that the sequences belonging to V ±

n and W±
n converge.

For the last sequence, observe first that

| exp(±i
√
λ(x+ y)O(

1

λ
))| ≤ (x+ y)O(

1√
λ

), if (x + y)O(
1√
λ

) ≥ π/2, (3.107)

respectively

| exp(±i
√
λ(x+y)O(

1

λ
))| ≤ 1+(x+y)O(

1√
λ

), if (x+y)O(
1√
λ

) ≤ π/2. (3.108)

Furthermore
∫ b

a

exp(±i
√
λ(x+ y))

C

λ
dλ = ± exp(±i

√
λ(x+ y))

C

2λ1/2(x+ y)
|ba (3.109)

±
∫ b

a

exp(±i
√
λ(x+ y))

C

4λ3/2(x+ y)
dλ,

and
∫ b

a

exp(±i
√
λ(x+ y))(x+ y)O(

1

λ3/2
)dλ = exp(±i

√
λ(x+ y))O(

1

λ
)|ba (3.110)

+

∫ b

a

exp(±i
√
λ(x+ y))O(

1

λ2
)dλ

For showing the convergence of the corresponding series, we can use the following
argument: Integrate (3.106), where C can be computed explicitly, from E±

0 to
∞ and subtract the parts corresponding to the gaps, and use

exp(±i
√

E±
2j(x+ y)) − exp(±i

√

E±
2j−1(x+ y))

x+ y
= O(

√

E±
2j −

√

E±
2j−1),

(3.111)
and

√

E±
2j −

√

E±
2j−1 =

E±
2j − E±

2j−1
√

E±
2j +

√

E±
2j−1

. (3.112)

Thus, putting all together, also the last part of the integral is finite and the
bound is only dependent on x.

For investigating the other terms, we will need the following lemma, which
is taken from [40]:

Lemma 3.10. Suppose in an integral equation of the form

f±(x, y) ±
∫ ±∞

x

K±(x, t)f±(t, y)dt = g±(x, y), ±y > ±x, (3.113)

the kernel K±(x, y) and the function g±(x, y) are continuous for ±y > ±x,

|K±(x, y)| ≤ C±(x)Q±(x + y), (3.114)
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and for g±(x, y) one of the following estimates hold

|g±(x, y)| ≤ C±(x)Q±(x+ y), or (3.115)

|g±(x, y)| ≤ C±(x)(1 + max(0,±x)). (3.116)

Furthermore assume that

±
∫ ±∞

0

(1 + |x|2)|q(x) − p±(x)|dx <∞. (3.117)

Then (3.113) is uniquely solvable for f±(x, y). The solution f±(x, y) is also con-
tinuous in the half-plane ±y > ±x, and for it the estimate (3.115) respectively
(3.116) is reproduced.

Moreover, if a sequence gn,±(x, y) satisfies (3.115) or (3.116) uniformly with
respect to n and pointwise gn,±(x, y) → 0, for ±y > ±x, then the same is true
for the corresponding sequence of solutions fn,±(x, y) of (3.113).

Proof. For a proof we refer to [38, Lemma 6.3].

Remark 3.11. An immediate consequence of this lemma is the following. If
|g±(x, y)| ≤ C±(x), where C±(x) denotes a bounded function, then |g±(x, y)| ≤
C±(x)(1+max(0,±x)) and therefore |f±(x, y)| ≤ C±(x)(1+max(0,±x)). Rewrit-
ing this integral equation as follows

f±(x, y) = g±(x, y) ∓
∫ ±∞

x

K±(x, t)f±(t, y)dt, (3.118)

we obtain that the absolute value of the right hand side is smaller than a bounded
function C̃±(x) by using (3.10) and (3.35), and hence the same is true for the
left hand side. In particular if C±(x) is a decreasing function the same will be
true for C̃±(x).

We will now continue the investigation of our integral equation.

Lemma 3.12. The series

Fh,±(x, y) =

∫

σ
(1),u
∓

|T∓(λ)|2ψ±(λ, x)ψ±(λ, y)dρ∓(λ)

= lim
n→∞

∫

σ
(1),u
± ∩Γ0,n,±

|T∓(λ)|2ψ±(λ, x)ψ±(λ, y)dρ∓(λ) = Fh,n,±(x, y)

(3.119)

converges uniformly and for every n ∈ N we have

|Fh,n,±(x, y)| ≤ C±(x), and |Fh,±(x, y)| ≤ C±(x) (3.120)

where C±(x) are monotonically decreasing functions.

Proof. On the set σ
(1)
∓ both the numerator and the denominator of the function

G′
±(λ, x, y) have poles (resp. square root singularities) at the points of the set

σ
(1)
∓ ∩ (M± ∪ (∂σ

(1)
+ ∩ ∂σ(1)

− )) (resp. σ
(1)
∓ ∩ (M∓\(M∓ ∩M±)) , but multiplying
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them, if necessary away, we can avoid singularities. Hence, w.l.o.g., we can

suppose σ
(1)
∓ ∩ (Mr,+ ∪Mr,−) = ∅. Thus we can write

1

2πi

∮

σ
(1)
∓

G′
±(λ, x, y)dλ =

1

2πi

∮

σ
(1)
∓

T±(λ)φ∓(λ, x)ψ±(λ, y)g±(λ)dλ. (3.121)

For investigating this integral we will consider, using (3.75),

1

2πi

∮

σ
(1)
∓

T∓(λ)φ∓(λ, x)φ±(λ, y)g∓(λ, y)dλ

=
1

2πi

∮

σ
(1)
∓

φ∓(λ, x)
(

φ∓(λ, y) +R∓(λ)φ∓(λ, y)
)

g∓(λ)dλ.

First of all note that the integrand, because of the representation on the right

hand side, can only have square root singularities at the boundary ∂σ
(1)
∓ and

we therefore have
∫

σ
(1)
∓ ∩[E±

2n−1,E
±
2n]

|φ∓(λ, x)
(

φ∓(λ, y) +R∓(λ)φ∓(λ, y)
)

g∓(λ)|dλ

≤ 2

∫

σ
(1)
∓ ∩[E±

2n−1,E
±
2n]

|φ∓(λ, x)φ∓(λ, y)g∓(λ)|dλ

≤ C±(y)C±(x)





(E±
2n − E±

2n−1)
√

λ− E∓
0

+

√

E±
2n − E±

2n−1
√

λ− E∓
0



 ,

where E±
2n−1 and E±

2n denote the edges of the gap of σ± in which the corre-

sponding part of σ
(1)
∓ lies and C±(x) denote monotonically decreasing functions

from now on. Therefore as we are working in the Levitan class and by separating

σ
(1)
∓ into the different parts, one obtains that

| 1

2πi

∮

σ
(1)
∓

T±(λ)φ∓(λ, x)φ±(λ, y)g±(λ)dλ| ≤ C±(y)C±(x).

Thus we can now apply Lemma 3.10, and hence

| 1

2πi

∮

σ
(1)
∓

T±(λ)φ∓(λ, x)ψ±(λ, y)g±(λ)dλ| ≤ C±(y)C±(x)(1 + max(0,±y)).

Note that we especially have, because of (3.35),

| 1

2πi

∮

σ
(1)
∓

T±(λ)φ∓(λ, x)φ±(λ, y)g±(λ)dλ| ≤ C±(x)

Therefore we can conclude that for fixed x and y the left hands side of (3.98)
exists and satisfies

| 1

2πi

∮

σ
(1)
∓

T±(λ)φ∓(λ, x)ψ±(λ, y)g±(λ)dλ| ≤ C±(x), (3.122)

and hence

| 1

2πi

∮

σ

G±(z, x, y)dz| ≤ C±(x). (3.123)
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Furthermore, since ψ±(λ, x) ∈ R as λ ∈ σ
(1)
∓ , we have

1

2πi

∮

σ
(1)
∓

G′
±(λ, x, y)dλ =

1

2πi

∫

σ
(1),u
∓

ψ±(λ, y)
(φ∓(λ, x)

W (λ)
−φ∓(λ, x)

W (λ)

)

dλ (3.124)

Moreover, (3.55) and Lemma 3.5 (ii) imply

φ∓(λ, x) = T∓(λ)φ±(λ, x) − T∓(λ)

T∓(λ)
φ∓(λ, x). (3.125)

Therefore,

φ∓(λ, x)

W (λ)
− φ∓(λ, x)

W (λ)
= φ∓(λ, x)

( 1

W (λ)
+

T∓(λ)

T∓(λ)W (λ)

)

− T∓(λ)φ±(λ, x)

W (λ)
(3.126)

= φ∓(λ, x)
2 Re(T−1

∓ (λ)W (λ))T∓(λ)

|W (λ)|2 − T∓(λ)φ±(λ)

W (λ)
.

But by (3.75)

T−1
∓ (λ)W (λ) = |W (λ)|2g∓(λ) ∈ iR, for λ ∈ σ

(1)
∓ , (3.127)

and therefore the first summand of (3.126) vanishes. Using now W = (T∓g∓)−1

we arrive at

φ∓(λ, x)

W (λ)
− φ∓(λ, x)

W (λ)
= |T∓(λ)|2g∓(λ)φ±(λ, x) (3.128)

and hence

1

2πi

∮

σ
(1)
∓

G′
±(λ, x, y)dλ = Fh,±(x, y) ±

∫ ±∞

x

K±(x, t)Fh,±(t.y)dt, (3.129)

where

Fh,±(x, y) =

∫

σ
(1),u
±

|T∓(λ)|2ψ±(λ, x)ψ±(λ, y)dρ∓(λ), (3.130)

and

|Fh,±(x, y)| ≤ C±(x)C±(y) (3.131)

by Lemma 3.10. The partial sums Fh,n,±(x, y) can be investigated similarly

We will now investigate the r.h.s. of (3.96) and (3.98). Therefore we consider
first the question of the existence of the right hand side:

To prove the boundedness of the corresponding series on the left hand side,
it is left to investigate the series, which correspond to the circles. We will derive
the necessary estimates only for the part of the n’th circle KRn,± , where Rn,±
denotes the radius, in the upper half plane as the part in the lower half plane
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can be considered similarly. We have

|
∫

KRn,±

G±(z, x, y)dz| ≤
∫ π

0

Ce±
√
R(x−y)(1−ν) sin(θ/2)dθ

≤
∫ π/2

0

Ce±
√
R(x−y)(1−ν) sin(η)dη

≤
∫ π/2

0

Ce±
√
R(x−y)(1−ν)2 η

π dη

≤ C
1√

R(x− y)(1 − ν)
e±

√
R(x−y)(1−ν)2 η

π |
π
2
0 ,

where C and ν denote some constant, which are dependent on the radius (cf.
Lemma 3.2). Therefore as already mentioned the part belonging to the circles
converges against zero and hence the same is true for the corresponding series.

Additionally we have to estimate

1

2πi

∮

σ±∩Γ0,n,±

G′
±(λ, x, y)dλ =

∮

σ±∩Γ0,n,±

T±(λ)φ∓(λ, x)ψ±(λ, y)dρ±(λ)

(3.132)

=

∮

σ±∩Γ0,n,±

(

R±(λ)φ±(λ, x) + φ±(λ, x)
)

ψ±(λ, y)dρ±(λ).

Therefore observe that both terms can be investigated using the same techniques
as in the proof of Lemma 3.9.

Thus we obtain that this sequence of partial sums is uniformly bounded and
we are therefore able to proof the following result:

Lemma 3.13.

Fd,±(x, y) =
∑

λk∈σd

(γ±k )2ψ̃±(λk, x)ψ̃±(λk, y) (3.133)

=
∑

λk∈σd∩Γ0,n,±

(γ±k )2ψ̃±(λk, x)ψ̃±(λk, y) = Fd,n,±(x, y),

exists and satisfies for every n ∈ N

|Fd,n,±(x, y)| ≤ C±(x), and |Fd,±(x, y)| ≤ C±(x) (3.134)

where C±(x) are monotonically decreasing functions.

Proof. Applying (3.34), (3.49), (3.50), (3.78), and (3.80) to the right hand side
of (3.98), yields

∑

λk∈σd

Res
λk

G′
±(λ, x, y) = −

∑

λk∈σd

Res
λk

φ̃∓(λ, x)ψ̃±(λ, y)

W̃ (λ)

= −
∑

λk∈σd

φ̃±(λk, x)ψ̃±(λk, y)

W̃ ′(λk)ck,±

= −
∑

λk∈σd

(γ±k )2φ̃±(λk, x)ψ̃±(λk, y) (3.135)

= −Fd,±(x, y) ∓
∫ ±∞

x

K±(x, t)Fd,±(t, y)dt,
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where
Fd,±(x, y) :=

∑

λk∈σd

(γ±k )2ψ̃±(λk, x)ψ̃±(λk, y). (3.136)

Thus we obtained the following integral equation,

Fd,±(x, y) = −K±(x, y) − Fc,±(x, y) ∓
∫ ±∞

x

K±(x, t)Fc,±(t, y)dt (3.137)

∓
∫ ±∞

x

K±(x, t)Fd,±(t, y)dt,

which we can now solve for Fd,±(x, y) using again Lemma 3.10 and hence
Fd,±(x, y) exists and satisfies the given estimates. The corresponding partial
sums can be investigated analogously using the considerations from above.

Thus we have proved the following theorem

Theorem 3.14. The GLM equation has the form

K±(x, y) + F±(x, y) ±
∫ ±∞

x

K±(x, t)F±(t, y)dt = 0, ±(y − x) > 0, (3.138)

where

F±(x, y) =

∮

σ±

R±(λ)ψ±(λ, x)ψ±(λ, y)dρ±(λ) (3.139)

+

∫

σ
(1),u
∓

|T∓(λ)|2ψ±(λ, x)ψ±(λ, y)dρ∓(λ)

+

∞
∑

k=1

(γ±k )2ψ̃±(λk, x)ψ̃±(λ, y).

Moreover, we have

Lemma 3.15. The function F±(x, y) is continuously differentiable with respect
to both variables and there exists a real-valued function q±(x), x ∈ R with

±
∫ ±∞

a

(1 + x2)|q±(x)|dx <∞, for all a ∈ R, (3.140)

such that
|F±(x, y)| ≤ C̃±(x)Q±(x + y), (3.141)

∣

∣

∣

∣

d

dx
F±(x, y)

∣

∣

∣

∣

≤ C̃±(x)

(∣

∣

∣

∣

q±

(

x+ y

2

)∣

∣

∣

∣

+Q±(x+ y)

)

, (3.142)

±
∫ ±∞

a

∣

∣

∣

∣

d

dx
F±(x, x)

∣

∣

∣

∣

(1 + x2)dx <∞, (3.143)

where

Q±(x) = ±
∫ ±∞

x
2

|q±(t)|dt, (3.144)

and C±(x) > 0 is a continuous function, which decreases monotonically as
x→ ±∞.
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Proof. Applying once more Lemma 3.10, one obtains (3.141). Now, for sim-
plicity, we will restrict our considerations to the + case and omit + whenever
possible. Proceeding as in [10], we set Q1(u) =

∫∞
u Q(t)dt. Then, using (3.33),

the functions Q(x) and Q1(x) satisfy

∫ ∞

a

Q1(t)dt <∞,

∫ ∞

a

Q(t)(1 + |t|)dt <∞. (3.145)

Differentiating (3.138) with respect to x and y yields

|Fx(x, y)| ≤ |Kx(x, y)| + |K(x, x)F (x, y)| +
∫ ∞

x

|Kx(x, t)F (t, y)|dt, (3.146)

Fy(x, y) +Ky(x, y) +

∫ ∞

x

K(x, t)Fy(t, y)dt = 0. (3.147)

We already know that the functions Q(x), Q1(x), C(x), and C̃(x) are monoton-
ically decreasing and positive. Moreover,

∫ ∞

x

(

∣

∣

∣

∣

q+

(x+ t

2

)

∣

∣

∣

∣

+Q(x+ t)
)

Q(t+y)dt ≤ (Q(2x)+Q1(2x))Q(x+y), (3.148)

thus we can estimate Fx(x, y) and Fy(x, y) can be estimates using (3.36) and
the method of successive approximation. It is left to prove (3.143). Therefore
consider (3.138) for x = y and differentiate it with respect to x:

dF (x, x)

dx
+
dK(x, x)

dx
−K(x, x)F (x, x)+

∫ ∞

x

(Kx(x, t)F (t, x)+K(x, t)Fy(t, x))dt = 0.

(3.149)
Next (3.35) and (3.141) imply

|K(x, y)F (x, x)| ≤ C̃(a)C(a)Q2(2x), for x > a, (3.150)

where
∫∞
a

(1 + x2)Q2(2x)dx <∞. Moreover, by (3.36) and (3.142)

|K ′
x(x, t)F (t, x)|+

∣

∣K(x, t)F ′
y(t, x)

∣

∣ ≤ 4C̃(a)Ĉ(a)
{∣

∣

∣q
(x+ t

2

)∣

∣

∣Q(x+t)+Q2(x+t)
}

,

together with the estimates

∫ ∞

a

dxx2

∫ ∞

x

Q2(x+ t)dt ≤
∫ ∞

a

|x|Q(2x)dx sup
x≥a

∫ ∞

x

|x+ t|Q(x+ t)dt <∞,

∫ ∞

a

x2

∫ ∞

x

∣

∣

∣q
(x+ t

2

)∣

∣

∣Q(x+ t)dt ≤

≤
∫ ∞

a

Q(2x)dx sup
x≥a

∫ ∞

x

∣

∣

∣q
(x+ t

2

)∣

∣

∣(1 + (x+ t)2)dt <∞,

and (3.37), we arrive at (3.143).

In summary, we have obtained the following necessary conditions for the
scattering data:
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Theorem 3.16. The scattering data

S =
{

R+(λ), T+(λ), λ ∈ σu,l
+ ; R−(λ), T−(λ), λ ∈ σu,l

− ;

λ1, , λ2, · · · ∈ R \ (σ+ ∪ σ−), γ±1 , γ
±
2 , · · · ∈ R+

}

(3.151)

possess the properties listed in Theorem 3.5, 3.6, 3.7, and 3.8, and Lemma 3.9,
3.12, and 3.13. The functions F±(x, y) defined in (3.139), possess the properties
listed in Lemma 3.15.
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Chapter 4

The Cauchy problem for

the Korteweg-de Vries

equation with steplike

finite-gap initial data

4.1 Introduction

The aim of this chapter is to provide a rigorous treatment of the inverse scat-
tering transform for the Korteweg–de Vries (KdV) equation

qt = −qxxx + 6qqx (4.1)

in the case of initial conditions which are steplike Schwartz–type perturbations
of finite–gap solutions. The reason which makes the periodic case much more
difficult are the poles of the Baker–Akhiezer functions which arise from the fact
that the underlying hyperelliptic Riemann surface is no longer simply connected.
In particular, we include a complete discussion of the problems arising from
these poles. We will consider the case of Schwartz–type perturbations together
with the additional assumption that the mutual spectral bands either coincide
or are disjoint. While this last assumption excludes the classical case of steplike
constant background, it clearly includes the case of short range perturbations
of arbitrary finite-gap solutions.

More precisely, we will prove the following result

Theorem 4.1. Let p±(x, t) be a real-valued finite-gap solution of the KdV equa-
tion corresponding to the initial condition p±(x) = p±(x, 0). Suppose that the
mutual spectral bands of the one-dimensional Schrödinger operators associated
with p+ and p− either coincide or are disjoint.

Let q(x) be a real-valued smooth function such that (the Schwartz class)

±
∫ ±∞

0

∣

∣

∣

∣

dn

dxn
(

q(x) − p±(x)
)

∣

∣

∣

∣

(1 + |x|m)dx <∞, ∀m,n ∈ N ∪ {0}, (4.2)
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then there is a unique smooth solution q(x, t) of the KdV equation corresponding
to the initial condition q(x, 0) = q(x) and satisfying

±
∫ ±∞

0

∣

∣

∣

∣

∂n

∂xn
(

q(x, t) − p±(x, t)
)

∣

∣

∣

∣

(1 + |x|m)dx <∞, ∀m,n ∈ N ∪ {0}, (4.3)

for all t ∈ R.

4.2 Some general facts on the KdV flow

Let q(x, t) be a classical solution of the KdV equation, that is, all partial deriva-
tives appearing in equation (4.1) exist and are continuous. Moreover, suppose
q(x, t) and qx(x, t) are bounded with respect to x for all t ∈ R+.

Introduce the Lax pair [75]

Lq(t) = −∂2
x + q(x, t), (4.4)

Pq(t) = −4∂3
x + 6q(x, t)∂x + 3qx(x, t). (4.5)

Note that Lq(t) is self-adjoint on D(Lq(t)) = H2(R) and Pq(t) is skew-adjoint
on D(Pq(t)) = H3(R). Moreover, the KdV equation is equivalent to the Lax
equation

∂tLq(t) = [Pq(t), Lq(t)]

on H5(R).

The following result follows from classical theory of ordinary differential
equations.

Lemma 4.2. Let c(λ, x, t) and s(λ, x, t) be the solutions of the differential equa-
tion Lq(t)u = λu corresponding to the initial conditions c(λ, 0, t) = sx(λ, 0, t) =
1 and cx(λ, 0, t) = s(λ, 0, t) = 0.

Then c(λ, x, t) and cx(λ, x, t) are holomorphic with respect to λ ∈ C (for
fixed x and t) and continuously differentiable with respect to t (provided q(x, t)
is). Similarly for s(λ, x, t) and sx(λ, x, t).

Next, note the following property

Lemma 4.3. Suppose q(x, t) is three times differentiable with respect to x and
once with respect to t. If Lq(t)u = λu holds, then

(Lq(t) − λ)(ut − Pq(t)u) = −(qt + qxxx − 6qqx)u (4.6)

Proof. Suppose Lqu = λu, then we have Pqu = (2(q + 2λ)∂x − qx)u and thus

(Lq(t) − λ)Pq(t)u = (qxxx − 6qqx)u

respectively

(Lq(t) − λ)ut = −qtu

which proves the claim.
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Corollary 4.4 ([81], corollary to Lemma 4.1.1’). Suppose q(x, t) is three times
differentiable with respect to x and once with respect to t. The function q(x, t)
satisfies the KdV equation (4.1) if and only if the operator

Aq(t) = ∂t − 2(q(x, t) + 2λ)∂x + qx(x, t) (4.7)

transforms solutions of equation (Lq(t) − λ)u = 0 into solutions of the same
equation.

Furthermore, we obtain

Lemma 4.5. Let q(x, t) be a classical solution of the KdV equation (4.1). The
system of differential equations

Lq(t)u = λu, (4.8)

ut = Pq(t)u (4.9)

has a unique solution u(λ, x, t) for any given initial conditions u(λ, 0, 0) = a0(λ)
and ux(λ, 0, 0) = b0(λ). It will be continuous with respect to λ if a0, b0 are.

Proof. Write
u(λ, x, t) = a(λ, t)c(λ, x, t) + b(λ, t)s(λ, x, t),

then clearly Lq(t)u = λu holds by construction, and Lemma 4.3 implies

(Lq − λ)(ut − Pqu) = 0.

Hence ut = Pqu will hold if and only if

atc+ act + bts+ bst = a(Pqc) + b(Pqs) = 2(2λ+ q)(acx + bsx) − qx(ac+ bs)

holds together with its x derivative at x = 0, that is,

at(λ, t) = −a(λ, t)qx(0, t) + b(λ, t)(4λ+ 2q(0, t)),

bt(λ, t) = b(λ, t)qx(0, t) + a(λ, t) (2(2λ+ q(0, t))(q(0, t) − λ) − qxx(0, t)) ,

a(λ, 0) = a0(λ),

b(λ, 0) = b0(λ). (4.10)

This is a system of ordinary differential equations for the unknown functions
a(λ, t), b(λ, t) and hence the claim follows.

Let c(λ, x, t) + m±(λ, t)s(λ, x, t) be a pair of Weyl solutions for operator
Lq(t), where m±(λ, t) are the Weyl m-functions associated with Lq.

Lemma 4.6. The functions

u±(λ, x, t) = a±(λ, t)
(

c(λ, x, t) +m±(λ, t)s(λ, x, t)
)

, (4.11)

where

a±(λ, t) = exp

(∫ t

0

(

2
(

q(0, s) + 2λ
)

m±(λ, s) − qx(0, s)
)

ds

)

, (4.12)

solve (4.8), (4.9).
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Proof. Let u denote one of the Weyl solutions u+(λ, x, t) or u−(λ, x, t) and
let ū be the other one. Then Lemma 4.3 implies that ut − Pqu is again a
solution of Lqu = λu. Consequently ut − Pqu = βu + γū, where β = β(λ, t),
γ = γ(λ, t). Since the Weyl solution decays sufficiently fast with respect to
x on the corresponding half-axis when λ ∈ C \ σ, then ut − Pqu also decays
on the same half-axis. Therefore, γ = 0 and ut − Pqu = βu and the function

û(λ, x, t) = exp(−
∫ t

0 β(λ, s)ds)u(λ, x, t) satisfies the system (4.8), (4.9).
It remains to compute β(λ, t). Using u(λ, x, t) = c(λ, x, t)+m(λ, t)s(λ, x, t),

where m(λ, t) is the corresponding Weyl function, we obtain

ct +mts+mst = − 4cxxx − 4msxxx + 6q(cx +msx) + 3qx(c+ms) + β(c+ms)

=4(λcx − qxc− cxq) + 4m(λsx − qxs− sxq) + 6q(cx +msx)

+ 3qx(c+ms) + β(c+ms).

For x = 0 this equation reads 0 = 2(q(0, t) + 2λ)m(λ, t) − qx(0, t) + β(λ, t).

Let W(f, g)(x) = f(x)g′(x) − f ′(x)g(x) denote the Wronski determinant.
The next lemma is a straightforward calculation.

Lemma 4.7. Let u1, u2 be two solutions of (4.8), (4.9), then the Wronskian
W(u1, u2) does neither depend on x nor on t.

4.3 Some general facts on finite-gap potentials

Since we want to study the initial value problem for the KdV equation in the
class of initial conditions which asymptotically look like (different) finite-gap
solutions, we need to recall some necessary background from finite-gap solutions
first. For further information and for the history of finite-gap solutions we refer
to, for example, [45], [46], [81], or [84].

Let L±(t) := Lp±(t) be two one-dimensional Schrödinger operators associ-
ated with two arbitrary quasi-periodic finite-gap solutions p±(x, t) of the KdV
equation. We denote by

ψ±(λ, x, t) = c±(λ, x, t) +m±(λ, t)s±(λ, x, t) (4.13)

the corresponding Weyl solutions of L±(t)ψ± = λψ±, normalized according to
ψ±(λ, 0, t) = 1 and satisfying ψ±(λ, ., t) ∈ L2((0,±∞)) for λ ∈ C \ R.

It is well-known that the spectra σ± := σ(L±(t)) are t independent and
consist of a finite number, say r± + 1, bands:

σ± = [E±
0 , E

±
1 ] ∪ · · · ∪ [E±

2j−2, E
±
2j−1] ∪ · · · ∪ [E±

2r±
,∞). (4.14)

Then p± are uniquely determined by their associated Dirichlet divisors
{

(µ±
1 (t), σ±

1 (t)), . . . , (µ±
r±(t), σ±

r±(t))
}

,

where µ±
j (t) ∈ [E±

2j−1, E
±
2j ] and σ±

j (t) ∈ {+1,−1}.
Let us cut the complex plane along the spectrum σ± and denote the upper

and lower sides of the cuts by σu
± and σl

±. The corresponding points on these
cuts will be denoted by λu and λl, respectively. In particular, this means

f(λu) := lim
ε↓0

f(λ+ iε), f(λl) := lim
ε↓0

f(λ− iε), λ ∈ σ±.
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Set

Y±(λ) = −
2r±
∏

j=0

(λ − E±
j ), (4.15)

and introduce the functions

g±(λ, t) = −
∏r±
j=1(λ− µ±

j (t))

2Y
1/2
± (λ)

, (4.16)

where the branch of the square root is chosen such that

1

i
g±(λu) = Im(g±(λu)) > 0 for λ ∈ σ±. (4.17)

The functions ψ± admit two other well-known representations that will be
used later on. The first one is

ψ±(λ, x, t) = u±(λ, x, t)e±iθ±(λ)x λ ∈ C \ σ± (4.18)

where θ±(λ) are the quasimoments and the functions u±(λ, x, t) are quasiperi-
odic with respect to x with the same basic frequencies as the potentials p±(x, t).
The quasimoments are holomorphic for λ ∈ C\σ± and normalized according to

dθ±
dλ

> 0 for λ ∈ σu
±, θ±(E±

0 ) = 0. (4.19)

This normalization implies (cf. (4.17))

dθ±
dλ

=
i
∏r±
j=1(λ− ζ±j )

Y
1/2
± (λ)

, ζ±j ∈ (E±
2j−1, E

±
2j), (4.20)

and therefore, the quasimoments are real-valued on σ±. Note, in the case where
p±(x, t) ≡ 0 we have θ±(λ) =

√
λ and u±(λ, x, t) ≡ 1.

Furthermore, the Weyl solutions possess more complicated properties, for
example, they can have poles, as we see from the other representation. Namely,

let P± be the Riemann surfaces, associated with the functions Y
1/2
± (λ) and let

π± be parameters on these surfaces, corresponding to the spectral parameter λ,
where π+ (resp. π−) is the parameter on the upper (resp., lower) sheet of P+

(resp. P−). Then

ψ±(π±, x, t) = exp

(∫ x

0

m±(π±, y, t)dy

)

, (4.21)

where m±(π±, x, t) are shifted Weyl functions (cf. [77]). Note, that the Weyl
function m+(λ, t) is the branch, corresponding to values of m+(π+, 0, t) and
m−(λ, t) = m−(π−, 0, t). Denote the divisor of poles (the Dirichlet divisor)
of the shifted Weyl functions by

∑r±
j=1(µ

±
j (x, t), σ±

j (x, t)). Then the functions

µ±
j (x, t) satisfy the system of Dubrovin equations ([45, Lem. 1.37])

∂µ±
j (x, t)

∂x
= −2σ±

j (x, t)Y±,j(µ
±
j (x, t), x, t), (4.22)

∂µ±
j (x, t)

∂t
= −4σ±

j (x, t)(p±(x, t) + 2µ±
j (x, t))Y±,j(µ

±
j (x, t), x, t), (4.23)
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where

Y±,j(λ, x, t) =
Y

1/2
± (λ)(λ − µ±

j (x, t))

G±(λ, x, t)
(4.24)

and

G±(λ, x, t) =

r±
∏

j=1

(λ− µ±
j (x, t)). (4.25)

In (4.23) p±(x, t) have to be replaced by the trace formulas

p±(x, t) =

2r±
∑

j=0

E±
j − 2

r±
∑

j=1

µ±
j (x, t). (4.26)

Moreover, the following formula holds ([45, (1.165)])

m±(λ, x, t) =
H±(λ, x, t) ± Y

1/2
± (λ)

G±(λ, x, t)
, (4.27)

where

H±(λ, x, t) =
1

2

∂

∂x
G±(λ, x, t). (4.28)

We will also use

m̆±(λ, x, t) =
H±(λ, x, t) ∓ Y

1/2
± (λ)

G±(λ, x, t)
, (4.29)

to denote the other branches of the Weyl functions on the Riemann surfaces
P±, that is, m̆±(λ, x, t) = m±(π∗

±, x, t). In addition,

m±(λ, t) − m̆±(λ, t) =
±2Y

1/2
± (λ)

G±(λ, 0, t)
. (4.30)

Lemma 4.8. The following asymptotic expansion for large λ is valid

ψ±(λ, x, t) = exp

(

±i
√
λx+

∫ x

0

κ±(λ, y, t)dy

)

, (4.31)

where

κ±(λ, x, t) =
∞
∑

k=1

κ±k (x, t)

(±2i
√
λ)k

, (4.32)

with coefficients defined recursively via

κ±1 (x, t) = p±(x, t), κ±k+1(x, t) = − ∂

∂x
κ±k (x, t) −

k−1
∑

m=1

κ±k−m(x, t)κ±m(x, t).

(4.33)

Proof. By (4.27) we conclude that

m±(λ, x, t) = ±i
√
λ+ κ±(λ, x, t),

where κ±(λ, x, t) has an asymptotic expansion of the type (4.32). Inserting this
expansion into the Riccati equation

∂

∂x
κ±(λ, x, t) ± 2i

√
λκ±(λ, x, t) + κ2

±(λ, x, t) − p±(x, t) = 0 (4.34)

and comparing coefficients shows (4.33).
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As a special case of Lemma 4.6 we obtain

Lemma 4.9. The functions

ψ̂±(λ, x, t) = eα±(λ,t)ψ±(λ, x, t), (4.35)

where

α±(λ, t) :=

∫ t

0

(

2(p±(0, s) + 2λ)m±(λ, s) − ∂p±(0, s)

∂x

)

ds, (4.36)

satisfy the system of equations

L±(t)ψ̂± = λψ̂±, (4.37)

∂ψ̂±
∂t

= P±(t)ψ̂±, (4.38)

where P±(t) := Pp±(t).

We note that ([45, (1.148)])

α±(λ, t) =
1

2
log

(

G±(λ, 0, t)

G±(λ, 0, 0)

)

± 2Y
1/2
± (λ)

∫ t

0

p±(0, s) + 2λ

G±(λ, 0, s)
ds (4.39)

and corresponding to m̆±(λ, t) we also introduce

ᾰ±(λ, t) :=

∫ t

0

(

(2p±(0, s) + 4λ)m̆±(λ, s) − ∂p±(0, s)

∂x

)

ds

=
1

2
log

(

G±(λ, 0, t)

G±(λ, 0, 0)

)

∓ 2Y
1/2
± (λ)

∫ t

0

p±(0, s) + 2λ

G±(λ, 0, s)
ds. (4.40)

Note
α±(λ, t) = ᾰ±(λ, t), λ ∈ σ±. (4.41)

In order to remove the singularities of the functions ψ±(λ, x, t) we set

M±(t) = {µ±
j (t) | µ±

j (t) ∈ (E2j−1, E2j) and m±(λ, t) has a simple pole},
M̂±(t) = {µ±

j (t) | µ±
j (t) ∈ {E2j−1, E2j}},

(4.42)
and introduce the functions

δ±(λ, t) :=
∏

µ±
j (t)∈M±(t)

(λ− µ±
j (t)),

δ̂±(λ, t) :=
∏

µ±
j (t)∈M±(t)

(λ− µ±
j (t))

∏

µ±
j (t)∈M̂±(t)

√

λ− µ±
j (t), (4.43)

where
∏

= 1 if the index set is empty.

Lemma 4.10. For each t ≥ 0 and λ ∈ C \ σ± the functions α±(λ, t) possess
the properties

exp
(

α±(λ, t) + ᾰ±(λ, t)
)

=
G±(λ, 0, t)

G±(λ, 0, 0)
, (4.44)

exp
(

α±(λ, t)
)

=
δ̂±(λ, t)

δ̂±(λ, 0)
f±(λ, t), (4.45)
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where the functions f±(λ, t) are holomorphic in C \ σ±, continuous up to the
boundary and f±(λ, t) 6= 0 for all λ ∈ C.

Furthermore, let E ∈ {E±
2j−1, E

±
2j}, then

lim
λ→E

(α±(λ, t) − ᾰ±(λ, t)) =



















0, µ±
j (t) 6= E, µ±

j (0) 6= E,

0, µ±
j (t) = E, µ±

j (0) = E,

iπ, µ±
j (t) = E, µ±

j (0), 6= E,

iπ, µ±
j (t) 6= E, µ±

j (0) = E,

(mod 2πi).

(4.46)

Proof. To shorten notations let us denote the derivative with respect to t by
a dot and the derivative with respect to x by a prime. Equations (4.36) and
(4.39) immediately give (4.44) and

α±(λ, t) − ᾰ±(λ, t) = ±4Y
1/2
± (λ)

∫ t

0

p±(0, s) + 2λ

G±(λ, s)
ds, (4.47)

where we have abbreviated

G±(λ, t) := G±(λ, 0, t).

This function is well-defined on the set C \ ∪r±j=1[E
±
2j−1, E

±
2j ], but may have

singularities inside gaps. Note, that

α±(λ, t) − ᾰ±(λ, t) ∈ R, for λ ∈ R \ σ±. (4.48)

Consider the behavior of this function in the jth gap. By splitting the integral
∫ t

0 in the definition of α±(λ, t) (resp. ᾰ±(λ, t)) into a sum of smaller integrals
∫ t1
t0

it suffices to consider the cases where µ±
j (s) 6∈ {E±

2j−1, E
±
2j} for s ∈ [t0, t1) or

s ∈ (t0, t1]. We will only investigate the first case (the other being completely
analogous) and assume t0 = 0 without loss of generality. In other words, it
suffices to consider the case where µ±

j (0) ∈ (E±
2j−1, E

±
2j) and the time t > 0 is

so small, that σ±
j (s) = σ±

j (0) for s ≤ t. Consequently, µ±
j (t) ∈ (E±

2j−1, E
±
2j) and

there exists some ε = ε(t) such that

µ±
j (s) ∈ (E±

2j−1 + 2ε, E±
2j − 2ε), 0 ≤ s ≤ t. (4.49)

Consider (e.g.) the case where the point µ±
j (s) moves to the right, that is

µ±
j (0) < µ±

j (t). If λ /∈ (µ±
j (0) − ε, µ±

j (t) + ε), then the integral (4.47) is well-
defined and by definition (4.15) the first case of (4.46) is fulfilled. Now let

λ ∈ (µ±
j (0) − ε, µ±

j (t) + ε). (4.50)

From equation (4.23) we have

µ̇±
j (s) = −σ±

j (s)Ỹ±,j(µ
±
j (s), s), (4.51)

where

Ỹ±,j(λ, s) = 4(p±(s) + 2λ)Y±,j(λ, 0, s) (4.52)
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and the functions Y±,j(λ, 0, s) are defined by (4.24). Recall that σ±
j (s) = const.

Thus

∫ t

0

±4(p±(s) + 2λ)Y
1/2
± (λ)

G±(λ, s)
= ±

∫ t

0

Ỹ±,j(λ, s)

λ− µ±
j (s)

ds

= ±
∫ t

0

Ỹ±,j(µ
±
j (s), s)

λ− µ±
j (s)

ds±
∫ t

0

∂

∂λ
Ỹ±,j(λ, s)|λ=ξ±j (s) ds, (4.53)

where ξ±j (s) ∈ (E±
2j−1 + ε, E±

2j − ε). Therefore ∂
∂λ Ỹ±,j(λ, s) is bounded here.

But

±
∫ t

0

Ỹ±,j(µ
±
j (s), s)

λ− µ±
j (s)

ds = ∓σ±
j (0)

∫ t

0

µ̇±
j (s)

λ− µ±
j (s)

ds

= ±σ±
j (0) log

λ− µ±
j (t)

λ− µ±
j (0)

.

Thus, in the case under consideration we have

α±(λ, t) − ᾰ±(λ, t) = log
(λ − µ±

j (t))±σ
±
j (t)

(λ− µ±
j (0))±σ

±
j (0)

+ f̃±(λ, ε), (4.54)

where f̃±(λ, ε) is a smooth function, bounded by virtue of (4.50). Combining
this formula with (4.44) we arrive at the following representation:

exp
(

2α±(λ, t)
)

=
(λ − µ±

j (t))±σ
±
j (t)+1

(λ− µ±
j (0))±σ

±
j (0)+1

f
(1)
± (λ, t), f

(1)
± (λ, t) 6= 0, (4.55)

which is valid provided (4.49) and (4.50) hold. According to our notations
µ±
j (s) ∈M±(s) iff ±σ±

j (s) = 1. Thus, if µ±
j (t) ∈M±(t) (resp. µ±

j (0) ∈M±(0)),
then the function exp(α±(λ, t)) has a first order zero (resp. pole) at such a point
and does not have any other poles or zeros inside the gap (E±

2j−1, E
±
2j). But if

±σ±
j (t) = −1 (resp. ±σ±

j (0) = −1), then the function exp(α±(λ, t)) has no zero
(resp. pole) at this point.

Now let us turn to the case µ±
j (t) or µ±

j (0) ∈ {E±
2j−1, E

±
2j}. Here we cannot

use the decomposition (4.53) since the function ∂
∂λ Ỹ±,j(λ, s) is not bounded at

the edges of the spectrum σ±. Suppose, that µ±
j (0) ∈ (E±

2j−1, E
±
2j), the point

µ±
j (s) moves to the right, and the time t > 0 is such, that σ±

j (s) = σ±
j (0) for

s < t and µ±
j (t) = E±

2j . Set ε < 1/2(µ±
j (0) − E±

2j−1) and let λ be such that

E±
2j−1 + ε < λ < E±

2j + ε < E±
2j+1.

Represent the function Ỹ±,j(λ, s), defined by (4.52), as

Ỹ±,j(λ, s) =
√

λ− E±
2j Y̆±,j(λ, s), (4.56)

with

Y̆±,j(λ, s) = Y̆±,j(µ
±
j (s), s) + (λ− µ±

j (s))
∂

∂λ
Y̆±,j(ζ

±
j (s), s) (4.57)
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where ∂
∂λ Y̆±,j is evidently bounded. From (4.51) it follows that

Y̆±,j(µ
±
j (s), s) = −

σ±
j (0)µ̇±

j (s)
√

µ±
j (s) − E±

2j

, 0 ≤ s ≤ t,

and

∫ t

0

Ỹ±,j(λ, s)

λ− µ±
j (s)

ds = −σ±
j (0)

√

λ− E±
2j





∫ t

0

µ̇±
j (s)

√

µ±
j (s) − E±

2j(λ− µ±
j (s))

ds+ f±
j (t, ε)





= −σ±
j

√

E±
2j − λ





∫ E±
2j

µ±
j (0)

dτ

(λ− τ)
√

E±
2j − τ

+ f±
j (t, ε)



 =

= σ±
j

√

E±
2j − λ

∫ 0

q

E±
2j−µ

±
j (0)

2dy

y2 + λ− E±
2j

+O

(

√

λ− E±
2j

)

.

(4.58)

To compute the first summand in (4.58) we will distinguish two cases. First let
λ ∈ σ±, that is, λ > E±

2j . Then the first summand in (4.58) is equal to

−2σ±
j (0)i arctan

√

E±
2j − µ±

j (0)
√

λ− E±
2j

→ −σ±
j (0)iπ, as λ→ E±

2j , λ ∈ σ±.

This proves the two lower cases in (4.46). Next, consider the case when λ ∈
(µ±
j (0), E±

2j). Then

σ±
j (0)

√

E±
2j − λ

∫ 0

q

E±
2j−µ

±
j (0)

2dy

y2 + λ− E±
2j

=

= σ±
j (0)



− log

√

E±
2j − µ±

j (0) −
√

E±
2j − λ

√

E±
2j − µ±

j (0) +
√

E±
2j − λ

+ log(−1)



 =

= −σ±
j (0) log

λ− µ±
j (0)

(√

E±
2j − µ±

j (0) +
√

E±
2j − λ

)2 + σ±
j (0)iπ. (4.59)

If λ → E±
2j , then the first summand in (4.59) vanishes, and we arrive again at

(4.46). If λ is in a small vicinity of µ±
j (0), then

±
∫ t

0

Ỹ±,j(λ, s)

λ− µ±
j (s)

ds = ∓σ±
j (0) log(λ− µ±

j (0)) +O(1),

that confirm (4.45) for the case under consideration.
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4.4 Scattering theory

First we collect some facts from scattering theory for Schrödinger operators
with step-like finite-gap potentials (cf. [10]). To shorten notations we omit the
dependence on t throughout this section.

Let L± be two Schrödinger operators with real-valued finite-gap potentials

p±(x), corresponding to the spectra (4.14) and the Dirichlet divisors
∑r±

j=1(µ
±
j , σ

±
j ),

where µ±
j ∈ [E±

2j−1, E
±
2j ] and σ±

j ∈ {−1, 1}.
Let q(x) be a real-valued smooth function satisfying condition (4.2). The

case m = 2 and n = 0 was rigorously studied in [10]. In this section we point
out the necessary modifications for the Schwartz case. Let

Lq := − d2

dx2
+ q(x), x ∈ R, (4.60)

be the “perturbed” operator with a potential q(x), satisfying (4.2). The spec-
trum of Lq consists of a purely absolutely continuous part σ := σ+ ∪ σ− plus a
finite number of eigenvalues situated in the gaps, σd ⊂ R \ σ. We will use the
notation int(σ±) for the interior of the spectrum, that is, int(σ±) := σ± \ ∂σ±.

The set σ(2) := σ+ ∩σ− is the spectrum of multiplicity two, and σ
(1)
+ ∪σ(1)

− with

σ
(1)
± = clos(σ± \ σ∓) is the spectrum multiplicity one.

The Jost solutions of the equation

(

− d2

dx2
+ q(x)

)

y(x) = λy(x), λ ∈ C, (4.61)

that are asymptotically close to the Weyl solutions of the background operators
as x → ±∞, can be represented with the help of the transformation operators
as

φ±(λ, x) = ψ±(λ, x) ±
∫ ±∞

x

K±(x, y)ψ±(λ, y)dy, (4.62)

where K±(x, y) are real-valued functions, that satisfy the integral equations

K±(x, y) = −2

∫ ±∞

x+y
2

(q(s) − p±(s))D±(x, s, s, y)ds

∓ 2

∫ ±∞

x

ds

∫ y±s∓x

y±x∓s
D±(x, s, r, y)K±(s, r) (q(s) − p±(s)) dr, ±y > ±x,

(4.63)

where

D±(x, y, r, s) = ∓1

4

∑

E∈∂σ±

f±(E, x, y)f±(E, r, s)
d
dλY±(E)

, (4.64)

with

f±(E, x, y) = lim
λ→E





r±
∏

j=1

(λ− µ±
j )



ψ±(λ, x)ψ̆±(λ, y). (4.65)

In particular,

K±(x, x) = ±1

2

∫ ±∞

x

(q(s) − p±(s))ds. (4.66)
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Since
∂n+l

∂xl∂yn
f±(E, x, y) ∈ L∞(R × R),

condition (4.2) and the method of successive approximations imply smoothness
of the kernels for the transformation operators and the following estimate

∣

∣

∣

∣

∂n+l

∂xn∂yl
K±(x, y)

∣

∣

∣

∣

<
C±(n, l,m)

|x+ y|m , x, y → ±∞, m, n, l ∈ N ∪ {0}, (4.67)

where C±(n, l,m) are positive constants (see Section 4.7 for the details).
Representation (4.62) shows, that the Jost solutions inherit all singularities

of the background Weyl m-functions m±(λ). Hence we set (recall (4.43))

φ̃±(λ, x) = δ±(λ)φ±(λ, x) (4.68)

such that the functions φ̃±(λ, x) have no poles in the interior of the gaps of the
spectrum σ. Let

σd = {λ1, . . . , λp} ⊂ R \ σ
be the set of eigenvalues of the operator Lq. For every eigenvalue we introduce
the corresponding norming constants

(

γ±k
)−2

=

∫

R

φ̃2
±(λk, x)dx. (4.69)

Furthermore, introduce the scattering relations

T∓(λ)φ±(λ, x) = φ∓(λ, x) +R∓(λ)φ∓(λ, x), λ ∈ σu,l
∓ , (4.70)

where the transmission and reflection coefficients are defined as usual,

T±(λ) :=
W(φ±(λ), φ±(λ))

W(φ∓(λ), φ±(λ))
, R±(λ) := −W(φ∓(λ), φ±(λ))

W(φ∓(λ), φ±(λ))
, λ ∈ σu,l

± .

(4.71)

Lemma 4.11. Suppose (4.86). Then the scattering data

S :=
{

R+(λ), T+(λ), λ ∈ σu,l
+ ; R−(λ), T−(λ), λ ∈ σu,l

− ;

λ1, . . . , λp ∈ R \ σ, γ±1 , . . . , γ±p ∈ R+

}

(4.72)

have the following properties:

I. (a) T±(λu) = T±(λl) for λ ∈ σ±.

R±(λu) = R±(λl) for λ ∈ σ±.

(b)
T±(λ)

T±(λ)
= R±(λ) for λ ∈ σ

(1)
± .

(c) 1 − |R±(λ)|2 =
g±(λ)

g∓(λ)
|T±(λ)|2 for λ ∈ σ(2) with g±(λ) from (4.16).

(d) R±(λ)T±(λ) +R∓(λ)T±(λ) = 0 for λ ∈ σ(2).

(e) T±(λ) = 1 +O
(

1√
λ

)

for λ→ ∞.
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(f) R±(λ) = O
(

1

(
√
λ)n+1

)

for λ→ ∞ and for all n ∈ N.

II. The functions T±(λ) can be extended as meromorphic functions into the
domain C \ σ and satisfy

1

T+(λ)g+(λ)
=

1

T−(λ)g−(λ)
=: −W (λ), (4.73)

where the function W (λ) possesses the following properties:

(a) The function W̃ (λ) = δ+(λ)δ−(λ)W (λ), where δ±(λ) is defined by
(4.43), is holomorphic in the domain C \ σ, with simple zeros at the
points λk, where

(

dW̃

dλ
(λk)

)2

= (γ+
k γ

−
k )−2. (4.74)

In addition, it satisfies

W̃ (λu) = W̃ (λl), λ ∈ σ and W̃ (λ) ∈ R for λ ∈ R\σ. (4.75)

(b) The function Ŵ (λ) = δ̂+(λ)δ̂−(λ)W (λ), where δ̂±(λ) is defined by
(4.43), is continuous on the set C \ σ up to the boundary σu ∪ σl.
Moreover, the function Ŵ (λ) is infinitely many times differentiable
with respect to λ on the set

(

σu ∪ σl
)

\ ∂σ and continuously differen-

tiable with respect to the local variable
√
λ− E for E ∈ ∂σ. It can

have zeros on the set ∂σ and does not vanish at the other points of the
set σ. If Ŵ (E) = 0 as E ∈ ∂σ, then Ŵ (λ) =

√
λ− E(C(E) + o(1)),

C(E) 6= 0.

III. (a) The reflection coefficients R±(λ) are continuously differentiable in-

finitely many time functions on the sets int(σu,l
± ).

(b) If E ∈ ∂σ and Ŵ (E) 6= 0 then the functions R±(λ) are also contin-
uous at E. Moreover, in this case

R±(E) =

{

−1 for E /∈ M̂±,

1 for E ∈ M̂±.
(4.76)

Proof. For the case m = 2 and n = 0 this lemma was proven in [10]. In
particular, except for the differentiability properties of the scattering data and
item I.(f) everything follows from Lemma 3.3 in [10].

Differentiability of Ŵ (λ) and R±(λ) is a direct consequence of differentia-

bility of the Jost solutions. In fact, since ∂lψ±(λ,y)
∂λl = O(|y|l) for λ ∈ intσ±

as y → ±∞, equations (4.62), (4.67), and (4.2) imply, that φ±(λ, x) are con-
tinuously differentiable infinitely many times with respect to λ ∈ intσ± since
ψ±(λ, x) are. Moreover, note, that at the points E±

j these solutions are con-

tinuously differentiable with respect to the local parameter
√

λ− E±
j since this

holds for ψ±(λ, x). Furthermore, since Im θ±(λ) > 0 for λ ∈ R\σ±, we infer that
ψ±(λ, y) are exponentially decaying together with all derivatives as y → ±∞ if
λ ∈ R \ σ±.
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It remains to show I.(f). To this end, represent the Jost solutions in the
form

φ±(λ, x) = ψ±(λ, x) exp

(

−
∫ ±∞

x

κ̃±(λ, y)dy

)

, (4.77)

where

κ̃±(λ, x) =

∞
∑

k=1

κ̃±k (x)

(±2i
√
λ)k

. (4.78)

To derive a differential equation for κ̃±(λ, x) we substitute (4.77) into (4.61)
and use (4.31) and (4.34). This yields the differential equations

∂

∂x
κ̃±(λ, x) + κ̃2

±(λ, x)± 2(i
√
λ+ κ±(λ, x))κ̃±(λ, x) + p±(x)− q(x) = 0, (4.79)

from which we obtain the recurrence formulas

κ̃±1 (x) = q(x)−p±(x), κ̃±k+1(x) = − ∂

∂x
κ̃±k (x)−

k−1
∑

m=1

κ̃±k−m(x)(κ̃±m(x)+2κ±m(x)).

(4.80)
Using (4.71) we now derive an asymptotic formula for R+(λ) (for R− the con-
siderations are analogous). By (4.77) and (4.78)

W(φ−(λ), φ+(λ)) = φ−(λ, 0)φ+(λ, 0)

(

2i
√
λ+O

(

1√
λ

))

= 2i
√
λ(1 + o(1))

(4.81)
and

W(φ−(λ), φ+(λ)) = φ−(λ, 0)φ+(λ, 0)
(

y+(λ, 0) − y−(λ, 0)
)

, (4.82)

where we have set y±(λ, x) := κ̃±(λ, x) + κ±(λ, x). Equations (4.34) and (4.79)
imply

∂

∂x
y±(λ, x) ± 2i

√
λy±(λ, x) + y2

±(λ, x) − q(x) = 0. (4.83)

Therefore, the functions ỹ+(λ, x) := y+(λ, x) and ỹ−(λ, x) := y−(λ, x) satisfy
one and the same equation. Moreover, κ±1 (x)+ κ̃±1 (x) = q(x). Hence, since q(x)
is smooth, the functions ỹ± admit asymptotic expansions

ỹ±(λ, x) =
∞
∑

k=1

ỹ±k (x)

(−2i
√
λ)k

,

where ỹ+
k (x) and ỹ−k (x) satisfy the same recurrence equations

ỹ±1 (x) = q(x), ỹ±k+1(x) = − ∂

∂x
ỹ±k (x) −

k−1
∑

l=1

ỹ±k−l(x)ỹ
±
l (x). (4.84)

Therefore,
y+(λ, 0) − y−(λ, 0) = O(λ−n/2)

for λ → ∞ and for all n ∈ N and the same is true for R+(λ) by (4.81) and
(4.82).
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To complete the characterization of scattering data S, consider the associ-
ated Gelfand-Levitan-Marchenko (GLM) equations.

Lemma 4.12. The kernels K±(x, y) of the transformation operators satisfy the
Gelfand-Levitan-Marchenko equations

K±(x, y) + F±(x, y) ±
∫ ±∞

x

K±(x, s)F±(s, y)ds = 0, ±y > ±x, (4.85)

where 1

F±(x, y) =
1

2πi

∮

σ±

R±(λ)ψ±(λ, x)ψ±(λ, y)g±(λ)dλ+ (4.86)

+
1

2πi

∫

σ
(1),u
∓

|T∓(λ)|2ψ±(λ, x)ψ±(λ, y)g∓(λ)dλ

+

p
∑

k=1

(γ±k )2ψ̃±(λk, x)ψ̃±(λk, y).

IV. The functions F±(x, y) are differentiable infinitely many times with respect
to both variables and satisfy

∣

∣

∣

∣

∂l+n

∂xl∂yn
F±(x, y)

∣

∣

∣

∣

≤ C±(m,n, l)

|x+ y|m as x, y → ±∞, m, l, n = 0, 1, 2, . . .

(4.87)

Proof. Formulas (4.85) and (4.86) are obtained in [10], estimate (4.87) follows
directly from (4.85) and (4.67).

Properties I–IV from above are characteristic for the scattering data S, that
is

Theorem 4.13 (characterization, [10]). Properties I–IV are necessary and
sufficient for a set S to be the set of scattering data for operator L with a
potential q(x) from the class (4.2).

In addition, we will now describe a procedure of solving of the inverse scat-
tering problem.

Let L± be two one-dimensional finite-gap Schrödinger operators associated
with the potentials p±(x). Let S be given scattering data (4.72) satisfying
I–IV and define corresponding kernels F±(x, y) via (4.86). As it shown in
[10], condition IV the GLM equations (4.85) have unique smooth real-valued
solutions K±(x, y), satisfying estimate of type (4.67), possibly with some other
constants C±, than in (4.87). In particular,

±
∫ ±∞

0

(1 + |x|m)

∣

∣

∣

∣

dn

dxn
K±(x, x)

∣

∣

∣

∣

dx <∞, ∀m,n ∈ N. (4.88)

Now introduce the functions

q±(x) = ∓2
d

dx
K±(x, x) + p±(x), x ∈ R (4.89)

1Here we have used the notation
H

σ±
f(λ)dλ :=

R

σ
u
±

f(λ)dλ −
R

σ
l
±

f(λ)dλ.
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and note that the estimate (4.88) reads

±
∫ ±∞

0

| d
n

dxn
(q±(x) − p±(x))|(1 + |x|m)dx <∞, ∀n,m ∈ N ∪ {0}. (4.90)

Moreover, define functions φ±(λ, x) by formula (4.62), where K±(x, y) are the
solutions of (4.85). Then these functions solve the equations

(

− d2

dx2
+ q±(x)

)

φ±(λ, x) = λφ±(λ, x). (4.91)

The only remaining difficulty is to show that in fact q−(x) = q+(x):

Theorem 4.14 ([10]). Let the scattering data S, defined as in (4.72), satisfy the
properties I–IV. Then the functions q±(x), defined by (4.89) coincide, q−(x) ≡
q+(x) =: q(x). Moreover, the data S are the scattering data for the Schrödinger
operator with potential q(x) from the class (4.2).

4.5 The inverse scattering transform

As our next step we show how to use the solution of the inverse scattering
problem found in the previous section to give a formal scheme for solving the
initial-value problem for the KdV equation with initial data from the class (4.2).

Suppose first that our initial-value problem has a solution q(x, t) satisfying
(4.3) for each t > 0. Then all considerations from the previous section apply
to the operator Lq(t) if we consider t as an additional parameter. In particu-
lar, there are time-dependent transformation operators with kernels K±(x, y, t)
satisfying the estimates

∣

∣

∣

∣

∂l+n

∂xl∂yn
K±(x, y, t)

∣

∣

∣

∣

≤ C±(m,n, l, t)

|x+ y|m , x, y → ±∞, l, n,m = 0, 1, 2, . . . .

(4.92)
and
∣

∣

∣

∣

∂n+l+1

∂xn∂yl∂t
K±(x, y, t)

∣

∣

∣

∣

≤ C±(m,n, l, t)

|x+ y|m , x, y → ±∞, l, n,m = 0, 1, 2, . . . .

(4.93)
These estimates follows from the fact that the kernels D±(x, y, s, r, t) of the
time-dependent equations (4.63) are smooth with respect to all variables, and
each partial derivative is uniformly bounded with respect to x, y, s, r, t ∈ R.
Consequently, the Jost solutions

φ±(λ, x, t) = ψ±(λ, x, t) ±
∫ ±∞

x

K±(x, y, t)ψ±(λ, y, t)dy, (4.94)

are also differentiable with respect to t and satisfy

∂

∂t
φ±(λ, x, t) =

∂

∂t
ψ±(λ, x, t)(1 + o(1)) as x→ ±∞, (4.95)

∂n

∂xn
φ±(λ, x, t) =

∂n

∂xn
ψ±(λ, x, t)(1 + o(1)) as x→ ±∞. (4.96)
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By Lemma 4.3 we know that the functions Pq(t)φ±(λ, x, t) solves the equation
Lq(t)u = λu. Asymptotics (4.95) and (4.96) show, that

Pq(t)φ±(λ, x, t) = β±(λ, t)φ±(λ, x, t),

where β±(λ, t) is the same factor as in P±(t)ψ±(λ, x, t) = β±(λ, t)ψ±(λ, x, t).
From Lemma 4.6 we obtain then

Lemma 4.15. Let α±(λ, t) be defined by (4.36) and let q(x, t) be a solution of
the KdV equation satisfying (4.2). Then the functions

φ̂±(λ, x, t) = eα±(λ,t)φ±(λ, x, t) (4.97)

solve the system (4.8), (4.9).

Before we proceed further we note that equation (4.45) implies

Corollary 4.16. The function φ̂±(λ, x, t), defined by formula (4.97), have sim-
ple poles on the set M±(0), square root singularities on the set M̂±(0), and no
other singularities.

Next, consider the time-dependent scattering relations

T∓(λ, t)φ±(λ, x, t) = φ∓(λ, x, t) +R∓(λ, t)φ∓(λ, x, t), λ ∈ σu,l
∓ . (4.98)

Then, using the previous lemma in combination with Lemma 4.7 to evaluate
(4.71) we infer

Lemma 4.17. Let q(x, t) be a solution of the KdV equation satisfying (4.2).
Then λk(t) = λk(0) ≡ λk;

R±(λ, t) = R±(λ, 0)eα±(λ,t)−ᾰ±(λ,t), λ ∈ σ±, (4.99)

T∓(λ, t) = T∓(λ, 0)eα±(λ,t)−ᾰ∓(λ,t), λ ∈ C, (4.100)

(

γ±k (t)
)2

=
(

γ±k (0)
)2 δ2±(λk, 0)

δ2±(λk, t)
e2α±(λk,t), (4.101)

where α±(λ, t), ᾰ±(λ, t), δ±(λ, t) are defined in (4.36), (4.40), (4.43), respec-
tively.

Proof. First of all set Ŵ (λ, t) = δ̂+(λ, t)δ̂−(λ, t)W (λ, t) (recall (4.73)). Then,

since W(φ̂−(λ, t), φ̂+(λ, t)) does not depend on t by Lemma 4.7, it follows from
(4.73) and (4.45) that

f(λ, t)Ŵ (λ, t) = Ŵ (λ, 0), f(λ, t) = f−(λ, t)f+(λ, t) 6= 0. (4.102)

This implies, that the discrete spectrum of the operator L(t), which is the set
of zeros of the function Ŵ (λ, t) on the set R \ σ, does not depend on t.

Similarly, if we replace the functions φ± by φ̂± in all Wronskians of formulas
(4.71), the result will be a constant with respect to t. Together with (4.97) it im-

plies (4.99) and (4.100). To obtain (4.101) we set φ̌(λ, x, t) = δ±(λ, 0)φ̂±(λ, x, t)
(which is continuous near λk) and compute

d

dt

∫

R

φ̌±(λk, x, t)
2dx = 2

∫

R

φ̌±(λk, x, t)∂tφ̌±(λk, x, t)dx

=

∫

R

φ̌±(λk, x, t)Pq(t)φ̌±(λk, x, t)dx = 0,
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since Pq is skew-adjoint and φ̌±(λk, x, t) is real-valued. Note that interchanging
differentiation and integration is permissible by the dominated convergence the-
orem (recall that the quasimoments θ±(λ) are independent of t). Thus, (4.68)
and (4.69) imply

d

dt

δ±(λk, 0) eα±(λk,t)

δ±(λk, t) γ
±
k (t)

= 0,

which finishes the proof.

Hence the solution q(x, t) can be computed from the time-dependent scat-
tering data as follows. Construct one of the functions F+(x, y, t) or F−(x, y, t)
via

F±(x, y, t) =
1

2πi

∮

σ±

R±(λ, t)ψ±(λ, x, t)ψ±(λ, y, t)g±(λ, t)dλ+ (4.103)

+
1

2πi

∫

σ
(1),u
∓

|T∓(λ, t)|2ψ±(λ, x, t)ψ±(λ, y, t)g∓(λ, t)dλ

+

p
∑

k=1

(γ±k (t))2ψ̃±(λk, x, t)ψ̃±(λk, y, t).

Solve the corresponding GLM equation

K±(x, y, t) + F±(x, y, t) ±
∫ ±∞

x

K±(x, s, t)F±(s, y, t)ds = 0, ±y > ±x,
(4.104)

and obtain the solution by

q(x, t) = ∓2
d

dx
K±(x, x, t) + p±(x, t), x ∈ R. (4.105)

Theorem 4.14 guarantees, that both formulas give one and the same solution.
Up to now we have assumed that q(x, t) is a solution the KdV equation

satisfying (4.2). Now we can get rid of this assumption. We will proceed as
follows. Suppose the initial condition q(x) satisfies (4.2) with some finite-gap
potential p±(x). Consider the corresponding scattering data S = S(0) which
obey conditions I–IV. Let p±(x, t) be the finite-gap solution of the KdV equation
with initial condition p±(x) and let m±(λ, t), ψ±(λ, x, t), and α±(λ, t) be the
corresponding quantities as in Section 4.3.

Introduce the set of scattering data S(t), where R±(λ, t), T±(λ, t) and γ±k (t)
are defined by formulas (4.99)–(4.101). In the next section we prove, that these
data satisfies conditions I–III, and the functions F±(x, y, t), defined via (4.103),
satisfy IV under the assumption that the respective bands of the spectra σ±
either coincide or otherwise do not intersect at all, that is

σ(2) ∩ σ(1)
± = ∅ and σ

(1)
+ ∩ σ(1)

− = ∅. (4.106)

The typical situation is depicted in Figure 4.1.
Then Theorem 5.3 from [10] ensures the unique solvability for each of the

GLM equations (4.104)with the solutions K±(x, y, t) that satisfy the estimate
of type (4.92). Moreover, since F±(x, y, t) are differentiable with respect to t
with (4.87) valid for this derivative, then (4.85) implies (4.93). Consequently,
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σ−

σ+

Figure 4.1: Typical mutual locations of σ− and σ+.

the function q(x, t), defined by formula (4.105), has a continuous derivative with
respect to t and satisfies (4.3) and

±
∫ ±∞

0

∣

∣

∣

∣

∂

∂t

(

q(x, t) − p±(x, t)
)

∣

∣

∣

∣

(1 + |x|m)dx <∞. (4.107)

Moreover, the functions φ±(λ, x, t), defined via (4.94), solve equation (4.8) with
q(x, t), defined by (4.105). To prove, that this q(x, t) solves the KdV equation,
we will apply Corollary 4.4 as follows.

Since φ+(λ, x, t) and φ−(λ, x, t) are independent for all λ ∈ C but a finite
number of values, it is sufficient to check that both functions (Aqφ±)(λ, x, t)
solve (4.8), where Aq is defined by (4.7) with q(x, t) from (4.105). But due to
(4.94) and the estimates (4.92), (4.93) we have (4.95) and (4.96). This implies
one should show that

(Aqφ±)(λ, x, t) = β±(λ, t)φ±(λ, x, t), (4.108)

for some β±(λ, t). Letting x→ ±∞ in (4.108) and comparing with

(Ap±ψ±)(λ, x, t) = −∂α±(λ, t)

∂t
ψ±(λ, x, t) (4.109)

(which is evident form Lemma 4.9), gives

β±(λ, t) = −∂α±(λ, t)

∂t
= −2(p±(0, t) + 2λ)m±(λ, t) +

∂p±(0, t)

∂x
. (4.110)

Finally, as already pointed out before, (4.108) is equivalent to the KdV equation
for q(x, t) by Corollary 4.4. Equality (4.108) will be proved in the next section.

4.6 Justification of the inverse scattering trans-

form

Our first task is to check, that if S(0) satisfies I–III, then the time-dependent
scattering data S(t), defined by (4.99)–(4.101) satisfy the same conditions (with
g±(λ) = g±(λ, t)). Properties I, (a)–(f) are straightforward to check. Using

g±(λ, t) = g±(λ, 0)eα±(λ,t)+ᾰ±(λ,t), (4.111)

which follows from (4.16) and (4.44), we see that W (λ, t) defined as in (4.73)
satisfies

W (λ, t) = W (λ, 0)e−α−(λ,t)−α+(λ,t). (4.112)

Hence Lemma 4.10 implies that properties II, (a) and (b) hold.
Property III, (a) is evident, and property III, (b) follows from (4.46). In

summary,
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Lemma 4.18. Let the set S(0) satisfy properties I–III and let the set S(t) be
defined by (4.99)–(4.101). Then the set S(t) satisfies I–III with g±(λ, t) defined
by (4.111).

Now substitute formulas (4.99)–(4.101), (4.35), (4.44), and (4.111) into (4.103),
then we obtain the following representation for the kernels of GLM equations

F±(x, y, t) =
1

2πi

∮

σ±

R±(λ, 0) ψ̂±(λ, x, t)ψ̂±(λ, y, t)g±(λ, 0)dλ (4.113)

+
1

2πi

∫

σ
(1),u
∓

|T∓(λ, 0)|2ψ̂±(λ, x, t)ψ̂±(λ, y, t)g∓(λ, 0)dλ

+

p
∑

k=1

(γ±k (0))2ψ̃±(λk, x, t)ψ̃±(λk, y, t),

where the functions

ψ̃±(λ, x, t) := δ±(λ, 0)ψ̂±(λ, x, t) (4.114)

are well-defined (bounded, continuous) for λ ∈ C\σ±. Recall that the functions

ψ̂±(λ, x, t) inherit all singularities from the functions ψ±(λ, x, 0), that is, they
have simple poles on the set M±(0), square-root singularities on the set M̂±(0),
and no other singularities. Therefore, formula (4.113) consists of three well-
defined summands, the singularities of the integrands are integrable (cf. [10,
Sect. 5]), and it remains to verify IV.

Due to our assumption (4.106) the second and third summands in (4.113)
(or (4.103)) satisfies IV for all m and n, and hence we only need to investigate
the first summand in (4.103). To this end, we use (4.18)–(4.20) to obtain the
representation

F±,R(x, y, t) := 2 Re

∫

σu
±

R±(λ, t)ψ±(λ, x, t)ψ±(λ, y, t)
g±(λ, t)

2πi
dλ

= Re

∫ ∞

0

e±i(x+y)θ±ρ±(θ±, x, y, t)dθ±, (4.115)

where

ρ±(θ±, x, y, t) :=
1

2π
Ψ±(θ±, x, y, t)e

α±(λ,t)−ᾰ±(λ,t)R±(λ, 0), (4.116)

Ψ±(θ±, x, y, t) := u±(λ, x, t)u±(λ, y, t)

r±
∏

j=1

λ− µ±
j (t)

λ− ζ±j
, (4.117)

and λ = λ(θ±). We will integrate (4.115) by parts m times for arbitrary m.
Since the integrand is not continuous for θ± ∈ [0,∞), we regard this integral as

F±,R(x, y, t) = Re

r±
∑

k=0

∫ θ±(E±
2k+1)

θ±(E±
2k)

e±i(x+y)θρ±(θ, x, y, t)dθ, (4.118)

where we set E±
2r±+1 = +∞ for notational convenience. Then the boundary

terms during integration by parts will be

Re lim
λ→E

e±iθ±(E)(x+y) ∂
sρ±(λ(θ±),x,y,t)

∂θs
±

(i(x+ y))
s+1 , s = 0, 1, . . . , E ∈ ∂σ±, (4.119)
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and we will prove that they vanish for all s=0,1,....

Lemma 4.19. Let E ∈ ∂σ±. The following limits exists for all s = 0, 1, ... and
take real or pure imaginary values:

lim
λ→E, λ∈σ±

ds

dθs±
R±(λ(θ±), 0) ∈ is R, (4.120)

e±i θ±(E) (x+y) lim
λ→E

∂s

∂θs±
Ψ±(θ±, x, y, t) ∈ isR, (4.121)

lim
λ→E

∂s

∂θs±
exp{α±(λ, t) − α̌±(λ, t)} ∈ isR. (4.122)

Proof. The proof is the same for + and − cases, we will give it for + case and
omit the sign + in notations, except of notation for spectrum σ+.

Let ε be a positive value smaller than the minimal length of all bands in σ+

and abbreviate

O(E) = (E − ε, E + ε) ∩ σ+.

Let

F(E) = C∞(O(E),R)

be the class of all functions f(λ) which are smooth and real-valued on O(E)
and let

G(E) = {f1(λ) + i
dλ

dθ
f2(λ) | f1, f2 ∈ F(E)}.

From (4.20) we see that dλ
dθ is a real-valued and bounded function on the set

σ+ and dλ
dθ (E) = 0. This function is smooth with respect to θ on the set O(E).

From (4.19) we conclude, that

d2λ

dθ2
=

d

dλ

(

iY 1/2(λ)
∏

(λ− ζj)

)

iY 1/2(λ)
∏

(λ− ζj)
∈ F(E) and

(

dλ

dθ

)2

∈ F(E). (4.123)

In particular, the last two formulas imply that G(E) is an algebra. Moreover,
from (4.123) it follows, that

d2kλ

dθ2k
(E) ∈ R,

d2k+1λ

dθ2k+1
(E) = 0. (4.124)

Now let

g(λ) = f1(λ) + i
dλ

dθ
f2(λ) ∈ G(E), (4.125)

then (4.123) shows that

dg(λ)

dθ
= i

(

df2
dλ

(

dλ

dθ

)2

+ f2
d2λ

dθ2
− i

df1
dλ

dλ

dθ

)

∈ iG(E). (4.126)

Hence (4.125) and (4.126) imply

dsg

dθs
(E) ∈ isR, s = 0, 1, . . . , (4.127)
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where the values are to be understood as limits at E from within the spectrum.
In particular, for any f(λ) ∈ F(E),

d2kf

dθ2k
(E) ∈ R,

d2k+1f

dθ2k+1
(E) = 0, k = 0, 1, . . . . (4.128)

The idea of the proof of (4.120) and (4.121) is to write R(λ, 0) and

Ψ̂(θ, x, y, t) := ψ(λ, x, t)ψ(λ, y, t)

r
∏

j=1

λ− µj(t)

λ− ζj
(4.129)

in the form (4.125). We start with Ψ̂(θ) (where x, y, t play the role of parame-

ters). From (4.28), (4.22), (4.24), and (4.25) we see, that the function H(λ,0,t)
G(λ,0,t)

is a holomorphic function in a vicinity of E even if µj(t) = E. Thus,

H(λ, 0, t)

G(λ, 0, t)
∈ F(E). (4.130)

Since ζj ∈ (E2j−1, E2j), then
∏

(λ−ζj)−1 ∈ F . Also s(λ, x, t), c(λ, x, t) ∈ F(E).
Using in (4.129) the representations (4.13), (4.27), and (4.28) we conclude that
the function Ψ̂(θ, x, y, t) admits a representation of the type (4.125). Therefore

lim
λ→E

∂s

∂θs
Ψ̂(θ, x, y, t) ∈ isR, s = 0, 1, . . . . (4.131)

Note that in this formula it is in fact irrelevant from what side the limit is taken.
Now consider the function Ψ(λ, x, y, t) defined by formula (4.117). As is

known (cf.[3], [45]) for each t and λ this function is a quasiperiodic bounded
function with respect to x and y. Therefore, if its derivatives with respect to
the quasimomentum variable exist, then they will be bounded with respect to
x and y. Taking into account (4.131) we obtain

lim
λ→E

∂s

∂θs
Ψ(θ, x, y, t) = Us(E, x, y, t)e

−iθ(E)(x+y),

where Us(E, x, y, t) ∈ isR, s = 0, 1, . . . , are functions which are bounded with
respect to x, y ∈ R for each t. This proves (4.117). Note that e−iθ(E)(x+y) has
modulus one, but it is in general not real-valued.

To prove (4.120) we will distinguish the resonant and nonresonant cases. We
start with nonresonant case Ŵ (E, t) 6= 0 (cf. II, (b) and note that by (4.102)
this is independent of t).

Suppose, that E ∈ ∂σ+ ∩ ∂σ(2) is a left edge of the spectrum σ, that is,

E = E+
2j = E−

2k. (4.132)

Consider the reflection coefficient R+(λ, 0), defined by formula (4.71) and let
θ := θ+. Suppose, that µ+

j (0) 6= E, µ−
k (0) 6= E. Then from (4.13), (4.130),

(4.62), (4.67),(4.2), and (4.20) we see, that the Jost solution φ+(λ, x) plus its
derivative ∂

∂xφ+(λ, x) is in G(E). Moreover, by (4.20) and (4.132)

dθ+
dθ−

=
dθ+
dλ

dλ

dθ−
∈

√

(λ− E−
2k)(λ − E−

2k+1)
√

(λ− E−
2j)(λ − E−

2j+1)
F(E) = F(E)).
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Therefore, the same is true for φ−(λ, x) and hence we also have

W(φ−(λ), φ+(λ)), W(φ−(λ), φ+(λ)) ∈ G(E)

Since W(φ−, φ+)(E) 6= 0 we conclude R+(λ, 0) ∈ G(E) and (4.120) is proven in
this case.

If µ+
j (0) 6= E but µ−

k (0) = E we replace φ−(λ, x) by

φ
(1)
− (λ, x) := i

dλ

dθ
φ−(λ, x)

which is in G(E) and proceed as before (observe that the extra factor cancels
in the definition of R+(λ, 0)). The cases µ+

j (0) = E, µ−
k (0) 6= E and µ+

j (0) =

µ−
k (0) = E can be handled similarly.

In the nonresonant case, when E ∈ ∂σ
(1)
+ ∩ ∂σ the consideration are even

simpler, because in this case (cf. (4.68)) φ̃−(λ, x) ∈ F(E). We assume µ+
j (0) 6=

E, if µ+
j (0) = E one only needs to replace φ+(λ) by φ

(1)
− (λ) as pointed out

before. Thus

R+(λ, 0) =
f1(λ) + idλdθ f2(λ)

f3(λ) + idλdθ f4(λ)
, where fi(λ) ∈ F(E), i = 1, 2, 3, 4. (4.133)

This finishes the proof of formula (4.120) in the nonresonant case, because in
this case we have f3(E) 6= 0 and, therefore R+(λ, 0) ∈ G(E).

In the resonance case we have Ŵ (E) = 0 but dŴ
dθ (E) 6= 0 (cf. II, (b)).

Hence we have (4.133) with f1(E) = f3(E) = 0 and f4(E) 6= 0. Let us show
that the derivative of the right-hand side of (4.133) satisfies

d

dθ

f1(λ) + idλdθ f2(λ)

f3(λ) + idλdθ f4(λ)
∈ iG(E). (4.134)

Namely, denote by dot the derivative with respect to θ and by prime - with
respect to λ. Then

d

dθ

g1(λ) + iλ̇g2(λ)

g3(λ) + iλ̇g4(λ)
= i
(

λ̈(g2g3 − g4g1) + (λ̇)2(g′1g4 − g′3g2 + g′2g3 − g′4g1)+

+iλ̇
(

g′3g1 − g′1g3 + (λ̇)2(g′2g4 − g′4g2)
))(

−(λ̇)2 g2
4 + g2

3 + iλ̇(2g4g3)
)−1

.

Functions g1, g3 and (λ̇)2 have zeros of the first order with respect to λ at
the point E and g4(E)λ̈(E) 6= 0. It means, that we can divide nominator and
denominator in the r.h.s. of the last equality by (λ̇)2 and using (4.123) we arrive
at (4.134). The last one implies (4.120) for s ≥ 1. To prove the remaining case
s = 0 we have to check that R+(E, 0) ∈ R in the resonance case. Since the
nominator and denominator in (4.133) vanishes,

lim
λ→E

R+(λ, 0) = lim
λ→E

(f ′
1 + if2)λ̇+ iλ̈f2

(f ′
3 + if4)λ̇+ iλ̈f4

=
f2(E)

f4(E)
∈ R.

this completes the proof of (4.120).
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To prove (4.122) we use the same approach. Again the prove will be done
for the + case. From (4.46) it follows, that

lim
λ→E

exp
(

α+(λ, t) − α+(λ, t)
)

∈ R,

therefore it suffices to show that for

h(λ) := (α+(λ, t) − α+(λ, t))

the derivative ḣ(λ) = dh
dθ satisfies

ḣ(λ) = if(λ), f(λ) ∈ F(E). (4.135)

To simplify notations, we will omit sign + until the end of this lemma.
Suppose first, that

µj(t) 6= E = E2j , µj(0) 6= E (4.136)

Let 0 < t1 < ... < tN < t be the set of points, where µj(tk) = E. Choose δ > 0
so small, that

µj(E ± δ) > max{µj(0), µj(t), (E2j−1 + E)/2}.

Denote
∆ = [0, t] \ ∪Nk=1(tk − δ, tk + δ).

Let λ > E be a point in the spectrum, close to E. Then for s ∈ ∆ |µj(s)−λ| >
const(E) > 0 we have (see (4.47))

4Y 1/2(λ)

∫

∆

p±(0, s) + 2λ

G±(λ, s)
ds = iλ̇f1(λ), f1 ∈ F(E). (4.137)

On the remaining set we use the representations (4.56) and (4.57). Proceeding
as in (4.58) we obtain

4Y 1/2(λ)

∫ tk

tk−δ

p+(0, s) + 2λ

G+(λ, s)
ds = −σj i

(

arctan

√

E − µj(tk − δ)√
λ− E

)

+

+
√
λ− E

∫ tk

tk−δ

∂

∂λ
Ğj(ξj(s, λ), s)ds, σj ∈ {−1, 1}, (4.138)

where ξ(λ, s) ∈ F(E) such that µj(tk − δ) ≤ ξ(λ, s) ≤ λ for tk − δ ≤ s ≤ tk.
Furthermore, note that the function

Ğ(ξ, s) =
Y 1/2(ξ)√

ξ − E
∏

l 6=j(ξ − µl)

is smooth with respect to ξ in the domain µj(tk − δ) ≤ ξ ≤ λ and takes pure
imaginary values there. Namely,

Y 1/2(ξ) ∈ iR,
√
ξ − E ∈ R for E ≤ ξ ≤ λ,

Y 1/2(ξ) ∈ R,
√
ξ − E ∈ iR for µj(tk − δ) ≤ ξ ≤ E.
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Thus,

∂sĞ(ξ, s)

∂ξs
∈ iR for µj(tk − δ) ≤ ξ ≤ λ, s = 0, 1, . . . . (4.139)

The same considerations show

√
λ− E = λ̇f2(λ) where f2(λ) ∈ F(E), f(E) 6= 0. (4.140)

Combining this with (4.139) we obtain

√
λ− E

∫ tk

tk−δ

∂

∂λ
Ğj(ξj(s, λ), s)ds = iλ̇ f3(λ), f3(λ) ∈ F(E).

Thus

d

dθ

(√
λ− E

∫ tk

tk−δ
Ğ′
j(ξj(s, λ), s)ds

)

= if4(λ), f4(λ) ∈ F(E). (4.141)

Using (4.140) one can also represent the argument of arctan in the first summand

of (4.138) as f5(λ)

λ̇
, where f5(λ) ∈ F(E) and f5(E) 6= 0. Therefore,

−σj i
d

dθ

(

arctan

√

E − µj(tk − δ)√
λ− E

)

= −σj i
f ′
5(λ̇)2 − λ̈ f5

(λ̇)2 + f2
5

∈ iF(E). (4.142)

The same is valid for the interval (tk, tk + δ). Combining (4.137), (4.141), and
(4.142) we obtain (4.135). These considerations also show that the restriction
(4.136) is unessential.

Our next goal is to prove formula (4.108). Since for any solution of the
equation Lv(t)u = λu the equality Avu = ut − Pv(t)u is valid, it suffices to
prove the following

Lemma 4.20. Let K±(x, y, t) be the solutions of the GLM equations (4.104)
with the kernels (4.103), corresponding to the scattering data (4.99)–(4.101).
Let the functions φ±(λ, x, t) be defined by (4.94) and let q(x, t) be defined by
(4.105). Then φ±(λ, x, t) satisfy

( ∂

∂t
− Pq(t)

)

φ±(λ, x, t) = β±(λ, t)φ±(λ, x, t), (4.143)

where β±(λ, t) is defined by (4.110).

Proof. As before we prove this lemma only for the + case. To simplify notations,
set P = Pq(t), P0 = P+(t), φ = φ+(λ, x, t), ψ = ψ+(λ, x, t), p = p+,

(Kf)(x, t) =

∫ +∞

x

K+(x, y, t)f(y, t)dy

(K̇f)(x, t) =

∫ +∞

x

∂

∂t
K+(x, y, t)f(y, t)dy, (4.144)
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and denote by a dot the derivative with respect to t and by a prime the derivative
with respect to spatial variables. Moreover, we will omit the variable t whenever
it is possible and use the notations

Dxlym(x) :=

(

∂l

∂xl
+

∂m

∂ym

)

D(x, y)|y=x, Dx0y0(x) = D(x).

Since ψ̇ − P0ψ = βψ, then

φ̇− Pφ = βφ+ (P0 − P )ψ + K̇ψ + KP0ψ − PKψ. (4.145)

Differentiating the last term and integrating by parts gives

(PKψ)(x) = {−2(q′(x) − p′(x)) + 4Kxy(x) + 8Kx2(x) − 6q(x)K(x)}ψ(x)

− {4(q(x) − p(x)) − 4Kx(x)}ψ′(x) + 4K(x)ψ′′(x)+

+

∫ ∞

x

(−4Kx3(x, y) + 6q(x)Kx(x, y) + 3q′(x)K(x, y))ψ(y)dy,

(4.146)

and

(KP0ψ) (x) =
(

4Ky2(x) − 6K(x)p(x)
)

ψ(x) − 4Ky(x)ψ
′(x) + 4K(x)ψ′′(x)

+

∫ ∞

x

(

4Ky3(x, y) − 6Ky(x, y)p(y) − 3K(x, y)p′(y)
)

ψ(y)dy.

(4.147)

Besides,

(P − P0)ψ(x) = 6(q(x) − p(x))ψ′(x) + 3(q′(x) − p′(x))ψ(x). (4.148)

Combining (4.144)–(4.148) and taking into account the formula (cf. [38])

−Kxx(x, y) + q(x)K(x, y) = −Kyy(x, y) + p(y)K(x, y), (4.149)

where we put x = y, we arrive at the representation

(φ̇− Pφ− βφ)(x) = A(x)ψ(x) +B(x)ψ′(x) +

∫ ∞

x

(τxyK(x, y))ψ(y)dy = 0,

(4.150)
where

A(x) = p′(x) − q′(x) − 2Kx2(x) − 4Kxy(x) − 2Ky2(x),

B(x) = 2(p(x) − q(x)) − 4(Kx(x) +Ky(x)),

and

τxy :=
∂

∂t
+ τxq + τyp , τxq := 4

∂3

∂x3
− 6q(x)

∂

∂x
− 3q′(x). (4.151)

But according to (4.105)

p(x)−q(x) = 2Kx(x)+2Ky(x), p′(x)−q′(x) = 2Kx2(x)+4Kxy(x)+2Ky2(x),
(4.152)
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and therefore, A(x) = B(x) = 0. Thus, to prove (4.143) one has to check, that

D(x, y) :=τxyK(x, y) = Kt(x, y) + 4Ky3(x, y) + 4Kx3(x, y) − 6q(x)Kx(x, y)

− 6p(y)Ky(x, y) − 3q′(x)K(x, y) − 3p′(y)K(x, y) ≡ 0. (4.153)

To this end, let us derive an equation for the function F = F+(x, y, t), defined
by formula (4.103). This function can be represented (see (4.113)) as

F (x, y, t) =

∫

R

ψ̂(λ, x, t)ψ̂(λ, y, t)dρ(λ),

where the measure

dρ(λ) =
( 1

πi
R+(λ, 0)g+(λ, 0)χσu

+
(λ) +

1

2πi
|T−(λ, 0)|2g−(λ, 0)χ

σ
(1)
−

(λ)

+
∑

k

(γ+
k )2(0)δ(λ− λk)δ+(λk, 0)2

)

dλ

does not depend on t. Using (4.38) we conclude, that

τxy0 F (x, y) = 0, τxy0 =
∂

∂t
+ τxp + τyp . (4.154)

Now set V (x) = q(x) − p(x) and apply the operator τxy to the GLM equation
(4.104). Taking into account (4.153), (4.154) and the equality

τxy − τxy0 = −6V (x)
∂

∂x
− 3V ′(x)

we obtain

D(x, y) =

∫ ∞

x

{

K(x, s)τsp [F (s, y)] −Kt(x, s)F (s, y)
}

ds

− τxq

[∫ ∞

x

K(x, s)F (s, y)ds

]

+ 6V (x)Fx(x, y) + 3V ′(x)F (x, y),

or

D(x, y) +

∫ ∞

x

D(x, s)F (s, y)ds = r(x, y), (4.155)

where

r(x, y) =

∫ ∞

x

{

τsp [K(x, s)]F (s, y) +K(x, s)τsp [F (s, y)]
}

ds+ (4.156)

+

∫ ∞

x

τxq [K(x, s)]F (s, y)ds− τxq

[∫ ∞

x

K(x, s)F (s, y)ds

]

+

+6V (x)Fx(x, y) + 3V ′(x)F (x, y).

It is proved in [10], that the equationD(x, y)+
∫∞
x
D(x, s)F (s, y)ds = 0, where x

plays the role of a parameter, has only the trivial solution in the space L1(x,∞).
Since the function D(x, ·) evidently belongs to this space, then to prove (4.153)
it is sufficient to prove that r(x, y) = 0.
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Taking into account, that V (x) = −2 d
dxK(x, x), direct computations imply

∫ ∞

x

τxq [K(x, s)]F (s, y)ds− τxq

[∫ ∞

x

K(x, s)F (s, y)ds

]

+ (4.157)

+6V (x)Fx(x, y) + 3V ′(x)F (x, y) = 4K(x, x)Fx2(x, y)+

+4Kx(x, x)Fx(x, y) + 8Kx2(x, x)F (x, y) + 4Kxy(x, x)F (x, y)+

+V ′(x)F (x, y) + 2V (x)Fx(x, y) − 6q(x)K(x, x)F (x, y).

From the other side, integration by parts gives
∫ ∞

x

{

τsp [K(x, s)]F (s, y) +K(x, s)τsp [F (s, y)]
}

ds = (4.158)

= −4 {Ks2(x, s)F (x, y) +K(x, x)Fs2 (s, y) −Ks(x, s)Fs(s, y)} |s=x+
+6p(x)K(x, x)F (x, y).

Substituting last to formulas to (4.156) gives

r(x, y) = Fx(x, y)(4Kx(x, x) + 4Ky(x, x) + 2V (x))+

+F (x, y)
(

−6V (x)K(x, x) + 8Kx2(x, x) + 4Kxy(x, x) − 4Ky2(x, x) + V ′(x)
)

.

Taking into account (4.152) we obtain

r(x, y) = F (x, y)
(

−6V (x)K(x, x) + 6Kx2(x, x) − 6Ky2(x, x)
)

,

and (4.149) implies r(x, y) = 0.

4.7 Appendix

In this section we thoroughly investigate the integral equations for the kernels
K±(x, y, t) of the transformation operators. We will obtain the necessary esti-
mates for them and their derivatives with respect to t, x and y. This will allow
us to state the necessary and sufficient conditions on the functions F±(x, y, t)
and to solve the scattering problem in the prescribed class of perturbations
(4.2).

Throughout this section we will assume that

±
∫ ±∞

0

∣

∣

∣

∣

∂n

∂xn
(

q(x, t) − p±(x, t)
)

∣

∣

∣

∣

(1+|x|m)dx <∞, ∀m,n ∈ N∪{0}, (4.159)

for all t ∈ R. First we recall some facts for the operator kernel K±(x, y, t) which
have been proved in [10]:

Lemma 4.21. The kernels K±(x, y, t) of the transformation operators satisfy
the integral equation

K±(x, y, t) = −2

∫ ±∞

x+y
2

q±(s, t)D±(x, s, s, y, t)ds

∓ 2

∫ ±∞

x

ds

∫ y+x−s

y+s−x
D±(x, s, r, y, t)K±(s, r, t)q±(s, t)ds, ±y > ±x,

(4.160)
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where

D±(x, y, r, s, t) = ∓1

4

∑

E∈∂σ±

f±(E, x, y, t)f±(E, r, s, t)
d
dzY±(E)

, (4.161)

with
f±(E, x, y, t) = lim

z→E
G±(z, 0, t)ψ±(z, x, t)ψ̆±(z, y, t), (4.162)

q±(x, t) = q(x, t) − p±(x, t). (4.163)

In particular,

K±(x, x, t) = ±1

2

∫ ±∞

x

(q(s, t) − p±(s, t))ds. (4.164)

Lemma 4.22. Assume (4.159). Then

∂n+l

∂xl∂yn
f±(E, x, y, t) ∈ L∞(R × R),

for any fixed t ∈ R.

Proof. It is well known that the background Weyl solutions can be represented
as

ψ±(z, x, t) = c±(z, x, t) +m±(z, t)s±(z, x, t), (4.165)

where c±(z, x, t) and s±(z, x, t) satisfy the initial conditions c(z, 0, t) = sx(z, 0, t) =
1 and cx(z, 0, t) = s(z, 0, t) = 0. Furthermore they are solutions of

− d2

dx2
y±(x, t) + p±(x, t)y±(x, t) = zy±(x, t) (4.166)

Thus one can conclude by differentiating this expressions that

c
(2)
± (z, x, t) = (p±(x) − z)c±(z, x, t), (4.167)

c
(3)
± (z, x, t) = (p±(x) − z)c

(1)
± (z, x, t) + p′±(x, t)c±(z, x, t), (4.168)

s
(2)
± (z, x, t) = (p±(x) − z)s±(z, x, t), (4.169)

s
(3)
± (z, x, t) = (p±(x) − z)s

(1)
± (z, x, t) + p′±(x, t)s±(z, x, t), (4.170)

which also implies that every derivative of c±(z, x, t) (resp. s±(z, x, t)) with

respect to x can be written as a combination of c±(z, x, t), c
(1)
± (z, x, t) (resp.

s±(z, x, t), s
(1)
± (z, x, t)) and the derivatives of p±(x, t) with respect to x. Thus

knowing that all derivatives with respect to x of p±(x, t) are uniformly bounded
for x ∈ R and t ∈ R fixed which can be obtained from

p±(x, t) =

2r±
∑

j=0

E±
j − 2

r±
∑

j=1

µ±
j (x, t), (4.171)

we only have to show that f±(E, x, y, t), df±(E,x,y)
dx , and df±(E,x,y,t)

dx are uniformly
bounded with respect to x and y for any fixed time t. Therefore we will use the
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following representation of the background Weyl solutions

ψ±(z, x, t) = exp

(∫ x

0

m±(z, y, t)dy

)

, (4.172)

ψ̆±(z, x, t) = exp

(∫ x

0

m̆±(z, y, t)dy

)

. (4.173)

This can be rewritten as

ψ±(z, x, t) =

(

G±(z, x, t)

G±(z, 0, t)

)1/2

exp

(

±
∫ x

0

Y
1/2
± (z)

G±(z, τ, t)
dτ

)

, (4.174)

ψ̆±(z, x, t) =

(

G±(z, x, t)

G±(z, 0, t)

)1/2

exp

(

∓
∫ x

0

Y
1/2
± (z)

G±(z, τ, t)
dτ

)

. (4.175)

In the next step we want to show that
∫ x

0

Y
1/2
± (z)

G±(z,τ,t)dτ is purely imaginary as z →
E±

2j (the case z → E±
2j−1 can be handled in the same way). For fixed t ∈ R we

can separate the interval [0, x] into smaller intervals [0, x1]∪ [x1, x2]∪· · ·∪ [xk, x]
such that xl ∈ {E±

2j−1, E
±
2j} and xl 6= xl+1. On each of these intervals the

function σj(x, t) is constant, thus we can conclude

∫ xl+1

xl

Y
1/2
± (z)

G(z, τ, t)
dτ =

∫ xl+1

xl

Y ±
j (z, τ, t)

z − µ±
j (τ, t)

dτ =
√

z − E±
2j

∫ xl+1

xl

Ỹ ±
j (z, τ, t)

z − µ±
j (τ, t)

dτ

=
√

z − E±
2j

(

∫ xl+1

xl

Ỹ ±
j (µ±

j (τ, t), τ, t)

z − µ±
j (τ, t)

dτ +

∫ xl+1

xl

Ỹ ±
j (z, τ, t) − Ỹ ±

j (µ±
j (τ, t), τ, t)

z − µ±
j (τ, t)

dτ

)

=
√

z − E±
2j(

∫ xl+1

xl

− dµ±
j (τ,t)

dτ

2σ±
j (τ, t)

√

µ±
j (τ, t) − E±

2j(z − µ±
j (τ, t))

dτ

+

∫ xl+1

xl

d

dz
Ỹ ±
j (z, τ, t)|z=µ±

j (s,t) )

=
√

z − E±
2j(−

∫ µ±
j (xl+1,t)

µ±
j (xl,t)

1

2σ±
j (τ, t)

√

y − E±
2j(z − y)

dy

+

∫ xl+1

xl

d

dz
Ỹ ±
j (z, τ, t)|z=µ±

j (s,t) )

=
√

E±
2j − z

(

∫ E±
2j−E

±
2j−1

0

1

σ±
j (τ, t)(z − E±

2j + s2)
ds

)

+
√

z − E±
2jM

= σ±
j i arctan





√

E±
2j − E±

2j−1

z − E±
2j



+
√

z − E±
2jM,

where we define Y ±
j (z, x, t) =

√

z − E±
2j Ỹ

±
j (z, x, t). This implies that

∫ xl+1

xl

Y
1/2
± (z)

G(z,τ,t)dτ →
1
2σ

±
j iπ as z → E±

2j and thus
∫ x

0

Y
1/2
± (z)

G±(z,τ,t)dτ ∈ iR. Combining all the informations

we have proved that

|f±(E, x, y, t)| = |(G±(E, x, t)G±(E, y, t))1/2| (4.176)
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and thus f±(E, x, y, t) is uniformly bounded with respect to x and y for fixed
t ∈ R. Returning to our representation we can conclude that

d

dx
ψ±(z, x, y) = m±(z, x, t)ψ±(z, x, t)

=

(

H±(z, x, t) ± Y
1/2
± (z)

G±(z, x, t)

)

(

G±(z, x, t)

G±(z, 0, t)

)1/2

exp

(

±
∫ x

0

Y
1/2
± (z)

G± (z, τ, t)
dτ

)

.

Thus we can write

d

dx
f±(z, x, y, t) =

(

H±(z, x, t) ± Y
1/2
± (z)

G±(z, x, t)1/2

)

G±(z, y, t)1/2 exp

(

±
∫ x

y

Y
1/2
± (z)

G± (z, τ, t)
dτ

)

,

which also implies that d
dxf±(E, x, y, t) is uniformly bounded with respect to x

and y for any fixed t ∈ R, where we use the well known fact that
H±(z,x,t)±Y 1/2

± (z)

G±(z,x,t)1/2

is uniformly bounded. Thus the claim follows by combining all the informations
we obtained so far.

Lemma 4.23. Assume (4.159). Then

∂n+l+1

∂xl∂yn∂t
f±(E, x, y, t) ∈ L∞(R × R × [0, T )),

for some constant T ∈ [0,∞).

Proof. We already know that every derivative with respect to x and y is uni-
formly bounded for any fixed t ∈ R. To proof our assumption remember the
following lemma. The functions

ψ̂±(z, x, t) = eα±(z,t)ψ±(z, x, t), (4.177)

where

α±(z, t) :=

∫ t

0

(

2(p±(0, s) + 2z)m±(z, s) − ∂p±(0, s)

∂x

)

ds, (4.178)

satisfy the system of equations

L±(t)ψ̂± = zψ̂±, (4.179)

∂ψ̂±
∂t

= P±(t)ψ̂±, (4.180)

where

Lp±(t) = −∂2
x + p±(x, t), (4.181)

Pp±(t) = −4∂3
x + 6p±(x, t)∂x + 3p±,x(x, t). (4.182)

This implies

dψ±(z, x, t)

dt
= −4ψ

(3)
± (z, x, t) + 6p±(x, t)ψ

(1)
± (z, x, t) (4.183)

+ 3p
(1)
± (x, t)ψ±(z, x, t) − α̇(z, t)ψ±(z, x, t),
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with

α̇(z, t) = (2p±(0, t) + 4z)m±(z, t) − ∂p±(0, t)

∂x
. (4.184)

Similarly one obtains: The functions

ˆ̆
ψ±(z, x, t) = eᾰ±(z,t)ψ̆±(z, x, t), (4.185)

where

ᾰ±(z, t) :=

∫ t

0

(

2(p±(0, s) + 2z)m̆±(z, s) − ∂p±(0, s)

∂x

)

ds, (4.186)

satisfy the system of equations

L±(t)
ˆ̆
ψ± = z

ˆ̆
ψ±, (4.187)

∂
ˆ̆
ψ±
∂t

= P±(t)
ˆ̆
ψ±, (4.188)

where

Lp±(t) = −∂2
x + p±(x, t), (4.189)

Pp±(t) = −4∂3
x + 6p±(x, t)∂x + 3p±,x(x, t). (4.190)

Thus we can conclude that the only critical term of d
dtψ±(E, x, t) is given

by 2(p±(0, t) + 2E)m±(E, 0, t)ψ±(E, x, t) and of d
dt ψ̆±(E, x, t) it is given by

2(p±(0, t) + 2E)m̆±(E, 0, t)ψ̆±(E, x, t). Using now (4.23) and (4.25), we obtain

that the critical terms cancel out in df±(E,x,y,t)
dt and therefore we obtain that

df±(E, x, y)

dt
∈ L∞(R × R × [0, T )). (4.191)

Computing now d2ψ±(z,y,t)
dxdt using (4.183) yields

d2ψ±(z, x, t)

dxdt
= −4ψ

(4)
± (z, x, t) + 6p±(x, t)ψ

(2)
± (z, x, t) + 3p

(1)
± (x, t)ψ

(1)
± (z, x, t)

− α̇(z, t)ψ
(1)
± (z, x, t) + 6p

(1)
± (x, t)ψ

(1)
± (z, x, t) + 3p

(2)
± (x, t)ψ±(z, x, t).

Hence the critical term of d
2ψ±(E,x,t)
dxdt is given by 2(p±(0, t)+2E)m±(E, 0, t)ψ

(1)
± (E, x, t)

and of d
2ψ̆±(E,x,t)
dxdt is given by 2(p±(0, t)+2E)m̆±(E, 0, t)ψ̆

(1)
± (E, x, t). This again

implies, using (4.23) and (4.25), that the critical terms cancel out in d2f±(E,x,y,t)
dxdt .

Thus we obtain
d2f±(E, x, y)

dxdt
∈ L∞(R × R × [0, T )) (4.192)

.
Again knowing that the derivatives with respect to x and t are bounded,

and combining all the informations we obtained so far, proofs the claim.

Lemma 4.24. Let

Q±(x, t) = ±
∫ ±∞

x
2

|q±(s, t)|ds and Q±,t(x, t) = ±
∫ ±∞

x
2

|q±,t(s, t)|ds.

(4.193)
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Then K±(x, y, t) has partial derivatives of any order with respect to both vari-
ables x and y. Moreover, for large x the following estimates are valid

| ∂m+n

∂xm∂yn
K±(x, y, t)| ≤C±,m,n,0(x, t)(Q±(x+ y, t) +

m+n−1
∑

l=0

|q(l)± (
x+ y

2
, t))

(4.194)

where C±,m,n,0(x, t) are positive continuous functions for x ∈ R which depend on
the corresponding background data, on the first moment and on the derivatives
of q±(x, t) for large x. For every such function there exists an x0 ∈ R such that
C±,m,n,0(x, t) is decreasing for all x > x0.
Furthermore for large x we have

| ∂
m+n+1

∂xm∂yn∂t
K±(x, y, t)| ≤ C±,m,n,1(x, t)(Q±(x+ y, t) +Q±,t(x+ y, t)+

(4.195)

+

m+n−1
∑

l=0

(|q(l)± (
x+ y

2
, t)| + |q(l)±,t(

x+ y

2
, t)|))

where C±,m,n,1(x, t) inherit the same properties as C±,m,n,0(x, t).

Proof. We restrict our considerations to the + case and omit for the proof of
the first part the time dependence. After the following change of variables

2α := s+ r, 2β := r − s, 2u := x+ y, 2v := y − x, (4.196)

(4.160) yields

H(u, v) = −2

∫ ∞

u

q+(s)D1(u, v, s)ds

− 4

∫ ∞

u

dα

∫ v

0

q+(α− β)D2(u, v, α, β)H(α, β)dβ, (4.197)

with

H(u, v) = K+(u− v, u+ v), D1(u, v, s) = D+(u− v, s, s, u+ v),

D2(u, v, α, β) = D+(u − v, α− β, α+ β, u+ v).
(4.198)

A simple calculation shows that

| ∂m+n

∂xm∂yn
K+(x, y)| ≤ 1

2m+n

n+m
∑

j=0

|
(

m+ n

j

)

∂m+n

∂uj∂vn+m−jH(u, v)|. (4.199)
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Moreover, by induction one can formally show,

∂n+m

∂vn∂um
H(u, v) = −2

∫ ∞

u

q+(s)
∂n+m

∂vn∂um
D1(u, v, s)ds

+ 2

m−1
∑

l=0

∂l

∂ul
(q+(u)(

∂n−1+m−l

∂vn∂um−1−lD1(u, v, s))s=u)

− 4

∫ ∞

u

dα

∫ v

0

q+(α− β)
∂n+m

∂vn∂um
D2(u, v, α, β)H(α, β)dβ

− 4

∫ ∞

u

dα(

n−1
∑

k=0

∂k

∂vk
(q+(α− β)(

∂m+n−1−k

∂um∂vn−1−kD2(u, v, α, β))β=vH(α, β)))

(4.200)

+

∫ v

0

m−1
∑

l=0

∂l

∂ul
(q+(u − β)(

∂n+m−1−l

∂vn∂um−1−lD2(u, v, α, β))α=uH(u, β))dβ

+ 4

m−1
∑

k=0

n−1
∑

l=0

∂l+k

∂vl∂uk
(q+(u− v)(

∂m−1−k+n−1−l

∂um−1−k∂vn−1−lD2(u, v, α, β))β=v,α=uH(u, v)).

As the functions D1 and D2 are bounded uniformly with respect to all their
variables, we can apply the method of successive approximation to estimate
H(u, v), which is given by

|H(u, v)| ≤ C(u− v)Q+(2u). (4.201)

To obtain the other estimates observe that the partial derivatives with respect
to all variables exist for D1 and D2 and they are again bounded with respect to
all variables. Thus one can show

| ∂
∂u
H(u, v)| ≤ C1(u − v)(|q+(u)| +Q+(2u)), (4.202)

| ∂
∂v
H(u, v)| ≤ C1(u− v)(|q+(u)| +Q+(2u)),

where C(u − v) is a positive continuous function for x = u − v ∈ R, which
decreases for large x and depends on the corresponding background data. This
is the starting point for the induction to show the claim for arbitrary derivatives

with respect to x and y. Here we use that q
(n)
+ (x) → 0 as x→ ∞, which implies

that there exists an x0 ∈ R such that q
(n)
+ (x) is decreasing for all x > x0, with

n ∈ N. Thus we obtain

| ∂n

∂um∂vn−m
H(u, v)| ≤ Cm,n−m,0(u− v)(Q±(2u) +

n−1
∑

l=0

|q(l)+ (u)|), (4.203)

where C(u − v) has the same properties C1(u − v), but also depends on the
derivatives of q+(x) up to order n−1 for large x. Thus combining these estimates
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we arrive at (4.199). The same method can be used to obtain

| ∂n+1

∂um∂vn−m∂t
H(u, v, t)| ≤ Cm,n−m,1(u− v, t)(Q+(2u, t) +Q+,t(2u, t)+

(4.204)

n−1
∑

l=0

(|q(l)+ (u, t)| + |q(l)+,t(u, t)|)),

which proves the second part of the claim, where again the function Cm,n−m,1(u−
v, t) is decreasing.

As an immediate consequence of the last lemma we obtain

Corollary 4.25. The functions K±(x, y, t) are infinitely many times differen-
tiable with respect x and y, and

∣

∣

∣

∣

∂l+n

∂xl∂yn
K±(x, y, t)

∣

∣

∣

∣

≤ C±(m,n, l, t)

|x+ y|m , x, y → ±∞, l, n,m = 0, 1, 2, . . . ,

(4.205)
Moreover they are also differentiable with respect to t and satisfy

∣

∣

∣

∣

∂n+1

∂xn∂t
K±(x, y, t)

∣

∣

∣

∣

≤ C±(m,n, l, t)

|x+ y|m , x, y → ±∞, l, n,m = 0, 1, 2, . . . .

(4.206)

Proof. Again we restrict our considerations to the + case. We only need to
apply (4.159) as follows

∫ ∞

x+y
2

|q+(s, t)|ds ≤ 2m

|x+ y|m
∫ ∞

0

(1 + |s|m)|q+(s, t)|ds <∞, (4.207)

and

|q(n)
+ (y, t)| ≤ 1

|y|m
∫ ∞

y

(1 + |s|m)|q(n+1)
+ (s, t)|ds <∞, (4.208)

where we used that q
(n)
+ (x, t) → 0 as x→ ∞. Analogously we can show

|q(n)
+,t(y, t)| ≤

1

|y|m
∫ ∞

y

(1 + |s|m)|q(n+1)
+,t (s, t)|ds <∞, (4.209)

if we assume that

∫ ∞

0

(1 + |x|m)|q(n)
+,t(x, t)|dx <∞, ∀n,m ∈ N and t ∈ R. (4.210)

This proves the claim.

With the help of this lemma we can now derive the corresponding estimates
for the GLM equation.
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Lemma 4.26. The kernel F±(x, y, t) of the GLM equation (4.104) has partial
derivatives of any order with respect to each variable. Furthermore, for large x
it satisfies the following estimates

| ∂m+n

∂xm∂yn
F±(x, y, t)| ≤ C±,0(x, t)(Q±(x+y, t)+

m+n−1
∑

l=0

|q±(
x+ y

2
, t)|), (4.211)

and

| ∂
m+n+1

∂xm∂yn∂t
F±(x, y, t)| ≤ C±,1(x, t)(Q±(x+ y, t) +Q±,t(x+ y, t)+ (4.212)

+

m+n−1
∑

l=0

|q(l)± (
x+ y

2
, t)| + |q(l)±,t(

x+ y

2
, t)|)

where the functions q±(x, t), Q±(x, t) and Q±,t(x, t) are defined as in Lemma 4.24
Again C±,0(x, t) and C±,1(x, t) are positive continuous functions which decrease
as x→ ±∞.

Proof. Again we restrict our consideration to the + case and omit for the proof
of the first part the time dependence. We consider the GLM equation

K+(x, y) + F+(x, y) +

∫ ∞

x

K+(x, s)F+(s, y)ds. (4.213)

Furthermore

∂n

∂yn
F+(x, y) = − ∂n

∂yn
K+(x, y) −

∫ ∞

x

K(x, s)
∂n

∂yn
F+(s, y)ds, (4.214)

which implies that we must use in this cases the method of successive approxi-
mation to obtain

| ∂
n

∂yn
F+(x, y)| ≤ C(x)(Q+(x+ y) +

n−1
∑

l=0

|q(l)+ (
x+ y

2
, t)|), ∀n ∈ N0. (4.215)

For the other derivatives one can show by induction that

∂n+m

∂xn∂ym
F+(x, y) = − ∂n+m

∂xn∂ym
K+(x, y) +

n−1
∑

k=0

∂k

∂xk
((
∂n−1−k

∂xn−1−kK+(x, y))y=x
∂m

∂ym
F+(x, y))

−
∫ ∞

x

(
∂n

∂xn
K+(x, s))

∂m

∂ym
F+(s, y)ds. (4.216)

Therefore one can now show by induction with respect to n that the statement
is true for every fixed y ∈ N0 . The same method can be used to proof the
second part of the lemma.

Remark 4.27. Note the result of this lemma is in some sense invertible, as
we can obtain the properties of the kernels K±(x, y, t) from the properties of the
functions F±(x, y, t) by using (4.213) and (4.216).
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Chapter 5

Lipschitz metric for the

periodic Camassa–Holm

equation

5.1 Introduction

The ubiquitous Camassa–Holm (CH) equation [18, 19]

ut − uxxt + κux + 3uux − 2uxuxx − uuxxx = 0, (5.1)

where κ ∈ R is a constant, has been extensively studied due to its many in-
triguing properties. The aim of this paper is to construct a metric that renders
the flow generated by the Camassa–Holm equation Lipschitz continuous on a
function space in the conservative case. To keep the presentation reasonably
short, we restrict the discussion to properties relevant for the current study.

More precisely, we consider the initial value problem for (5.1) with periodic
initial data u|t=0 = u0. Since the function v(t, x) = u(t, x−κt/2)+κ/2 satisfies
equation (5.1) with κ = 0, we can without loss of generality assume that κ
vanishes. For convenience we assume that the period is 1, that is, u0(x + 1) =
u0(x) for x ∈ R. The natural norm for this problem is the usual norm in the
Sobolev space H1

per as we have that

d

dt
‖u(t)‖2

H1
per

=
d

dt

∫ 1

0

(

u2 + u2
x

)

dx = 2

∫ 1

0

(

uut + uxuxt
)

dx = 0 (5.2)

(by using the equation and several integration by parts as well as periodicity)
for smooth solutions u. Even for smooth initial data, the solutions may de-
velop singularities in finite time and this breakdown of solutions is referred to
as wave breaking. At wave breaking the H1 and L∞ norms of the solution re-
main finite while the spatial derivative ux becomes unbounded pointwise. This
phenomenon can best be described for a particular class of solutions, namely
the multipeakons. For simplicity we describe them on the full line, but similar
results can be described in the periodic case. Multipeakons are solutions of the
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Figure 5.1: The dashed curve depicts the antisymmetric multipeakon solution
u(t, x), which vanishes at t∗, for t = 0 (on the left) and t = t∗ (on the right).
The solid curve depicts the multipeakon solution given by uε(t, x) = u(t− ε, x).

form (see also [55])

u(t, x) =
n
∑

i=1

pi(t)e
−|x−qi(t)|. (5.3)

Let us consider the case with n = 2 and one peakon p1(0) > 0 (moving to the
right) and one antipeakon p2(0) < 0 (moving to the left). In the symmetric case
(p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the solution u will vanish pointwise
at the collision time t∗ when q1(t

∗) = q2(t
∗), that is, u(t∗, x) = 0 for all x ∈ R.

Clearly the well-posedness, in particular, Lipschitz continuity, of the solution
is a delicate matter. Consider, e.g., the multipeakon uε defined as uε(t, x) =
u(t− ε, x), see Figure 5.1. For simplicity, we assume that ‖u(0)‖H1 = 1. Then,
we have

lim
ε→0

‖u(0) − uε(0)‖H1 = 0 and ‖u(t∗) − uε(t∗)‖H1 = ‖uε(t∗)‖H1 = 1,

and the flow is clearly not Lipschitz continuous with respect to the H1 norm.
Our task is here to identify a metric, which we will denote by dD for which

conservative solutions satisfy a Lipschitz property, that is, if u and v are two
solutions of the Camassa–Holm equation, then

dD(u(t), v(t)) ≤ CT dD(u0, v0), t ∈ [0, T ]

for any given, positive T . For nonlinear partial differential equations this is in
general a quite nontrivial issue. Let us illustrate it in the case of hyperbolic
conservation laws

ut + f(u)x = 0, u|t=0 = u0.

In the scalar case with u = u(x, t) ∈ R, x ∈ R, it is well-known [52] that the
solution is L1-contractive in the sense that

‖u(t) − v(t)‖L1(R) ≤ ‖u0 − v0‖L1(R), t ∈ [0,∞).

In the case of systems, i.e., for u ∈ Rn with n > 1 it is known [52] that

‖u(t) − v(t)‖L1(R) ≤ C‖u0 − v0‖L1(R), t ∈ [0,∞),
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for some constant C. More relevant for the current study, but less well-known,
is the recent analysis [16] of the Hunter–Saxton (HS) equation

ut + uux =
1

4

(

∫ x

−∞
u2
x dx−

∫ ∞

x

u2
x dx

)

, u|t=0 = u0, (5.4)

or alternatively

(ut + uux)x =
1

2
u2
x, u|t=0 = u0, (5.5)

which was first introduced in [58] as a model for liquid crystals. Again the
equation enjoys wave breaking in finite time and the solutions are not Lipschitz
in term of convex norms. The Hunter–Saxton equation can in some sense be
considered as a simplified version of the Camassa–Holm equation, and the con-
struction of the semigroup of solutions via a change of coordinates given in [16]
is very similar to the one used here and in [56] for the Camassa–Holm equation.
In [16] the authors constructed a Riemannian metric which renders the conser-
vative flow generated by the Hunter–Saxton equation Lipschitz continuous on
an appropriate function space.

For the Camassa–Holm equation, the problem of continuation beyond wave
breaking has been considered by Bressan and Constantin [13, 14] and Holden
and Raynaud [54, 56, 57] (see also Xin and Zhang [95, 96] and Coclite, Karlsen,
and Holden [20, 21]). Both approaches are based on a reformulation (distinct in
the two approaches) of the Camassa–Holm equation as a semilinear system of or-
dinary differential equations taking values in a Banach space. This formulation
allows one to continue the solution beyond collision time, giving either a global
conservative solution where the energy is conserved for almost all times or a
dissipative solution where energy may vanish from the system. Local existence
of the semilinear system is obtained by a contraction argument. Going back
to the original function u, one obtains a global solution of the Camassa–Holm
equation.

In [15], Bressan and Fonte introduce a new distance function J(u, v) which is
defined as a solution of an optimal transport problem. They consider two mul-
tipeakon solutions u(t) and v(t) of the Camassa–Holm equation and prove, on
the intervals of times where no collisions occur, that the growth of J(u(t), v(t))
is linear (that is, dJdt (u(t), v(t)) ≤ CJ(u(t), v(t)) for some fixed constant C) and
that J(u(t), v(t)) is continuous across collisions. It follows that

J(u(t), v(t)) ≤ eCTJ(u(0), v(0)) (5.6)

for all times t that are not collision times and, in particular, for almost all
times. By density, they construct solutions for any initial data (not just the
multipeakons) and the Lipschitz continuity follows from (5.6). As in [15], the
goal of this article is to construct a metric which makes the flow Lipschitz
continuous. However, we base the construction of the metric directly on the re-
formulation of the equation which is used to construct the solutions themselves,
and we use some fundamental geometrical properties of this reformulation (rela-
beling invariance, see below). The metric is defined on the set D which includes
configurations where part of the energy is concentrated on sets of measure zero;
a natural choice for conservative solutions. In particular, we obtain that the
Lipschitz continuity holds for all times and not just for almost all times as in
[15].
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Let us describe in some detail the approach in this paper, which follows
[56] quite closely in setting up the reformulated equation. Let u = u(t, x)
denote the solution, and y(t, ξ) the corresponding characteristics, thus yt(t, ξ) =
u(t, y(t, ξ)). Our new variables are y(t, ξ),

U(t, ξ) = u(t, y(t, ξ)), H(t, ξ) =

∫ y(t,ξ)

y(t,0)

(u2 + u2
x) dx (5.7)

where U corresponds to the Lagrangian velocity while H could be interpreted as
the Lagrangian cumulative energy distribution. In the periodic case one defines

Q =
1

2(e− 1)

∫ 1

0

sinh(y(ξ) − y(η))(U2yξ +Hξ)(η) dη (5.8)

− 1

4

∫ 1

0

sign(ξ − η) exp
(

− sign(ξ − η)(y(ξ) − y(η))
)

(U2yξ +Hξ)(η) dη,

P =
1

2(e− 1)

∫ 1

0

cosh(y(ξ) − y(η))(U2yξ +Hξ)(η) dη (5.9)

+
1

4

∫ 1

0

exp
(

− sign(ξ − η)(y(ξ) − y(η))
)

(U2yξ +Hξ)(η) dη.

Then one can show that










yt = U,

Ut = −Q,
Ht = [U3 − 2PU ]ξ0,

(5.10)

is equivalent to the Camassa–Holm equation. Global existence of solutions
of (5.10) is obtained starting from a contraction argument, see Theorem 5.5.
The issue of continuation of the solution past wave breaking is resolved by
considering the set D (see Definition 5.22) which consists of pairs (u, µ) such
that (u, µ) ∈ D if u ∈ H1

per and µ is a positive Radon measure with period
one, and whose absolutely continuous part satisfies µac = (u2 + u2

x) dx. With
three Lagrangian variables (y, U,H) versus two Eulerian variables (u, µ), it is
clear that there can be no bijection between the two coordinate systems. If
two Lagrangian variables correspond to one and the same solution in Eulerian
variables, we say that the Lagrangian variables are relabelings of each other.
To resolve the relabeling issue we define a group of transformations which acts
on the Lagrangian variables and lets the system of equations (5.10) invariant.
We are able to establish a bijection between the space of Eulerian variables and
the space of Lagrangian variables when we identify variables that are invariant
under the action of the group. This bijection allows us to transform the results
obtained in the Lagrangian framework (in which the equation is well-posed) into
the Eulerian framework (in which the situation is much more subtle). To obtain
a Lipschitz metric in Eulerian coordinates we start by constructing one in the
Lagrangian setting. To this end we start by identifying a set F (see Definition
5.2) that leaves the flow (5.10) invariant, that is, if X0 ∈ F then the solution
X(t) of (5.10) with X(0) = X0 will remain in F , i.e., X(t) ∈ F . Next, we
identify a subgroup G, see Definition 5.6, of the group of homeomorphisms on
the unit interval, and we interpret G as the set of relabeling functions. From
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this we define a natural group action of G on F , that is, Φ(f,X) = X • f
for f ∈ G and X ∈ F , see Definition 5.6 and Proposition 5.8. We can then
consider the quotient space F/G. However, we still have to identify a unique
element in F for each equivalence class in F/G. To this end we introduce the

set H, see (5.64), of elements in F for which
∫ 1

0
y(ξ)dξ = 0 and yξ + Hξ =

1 + ‖Hξ‖L1 . This establishes a bijection between F/G and H, see Lemma 5.10,
and therefore between H and D. Finally, we define a semigroup S̄t(X0) = X(t)
on H (Definition 5.12), and the next task is to identify a metric that makes the
flow S̄t Lipschitz continuous on H. We use the bijection between H and D to
transport the metric from H to D and get a Lipschitz continuous flow on D.

In [56], the authors define the metric on H by simply taking the norm of the
underlying Banach space (the set H is a nonlinear subset of a Banach space).
They obtain in this way a metric which makes the flow continuous but not
Lipschitz continuous. As we will see (see Remark 5.20), this metric is stronger
than the one we construct here and for which the flow is Lipschitz continuous.
In [16], for the Hunter–Saxton equation, the authors use ideas from Riemannian
geometry and construct a semimetric which identifies points that belong to the
same equivalence class. The Riemannian framework seems however too rigid
for the Camassa–Holm equation, and we have not been able to carry out this
approach. However, we retain the essential idea which consists of finding a
semimetric which identifies equivalence classes. Instead of a Riemannian metric,
we use a discrete counterpart. Note that this technique will also work for the
Hunter–Saxton and will give the same metric as in [16]. A natural candidate
for a semimetric which identifies equivalence classes is (cf. (5.71))

J(X,Y ) = inf
f,g∈G

‖X • f − Y • g‖,

which is invariant with respect to relabeling. However, it does not satisfy the tri-
angle inequality. Nevertheless it can be modified to satisfy all the requirements
for a metric if we instead define, see Definition 5.14, the following quantity1

d(X,Y ) = inf

N
∑

i=1

J(Xn−1, Xn) (5.11)

where the infimum is taken over all finite sequences {Xn}Nn=0 ∈ F which satisfy
X0 = X and XN = Y . One can then prove that d(X,Y ) is a metric on H,
see Lemma 5.19. Finally, we prove that the flow is Lipschitz continuous in this
metric, see Theorem 5.21. To transfer this result to the Eulerian variables we
reconstruct these variables from the Lagrangian coordinates as in [56]: Given
X ∈ F , we define (u, µ) ∈ D by (see Definition 5.24) u(x) = U(ξ) for any ξ
such that x = y(ξ), and µ = y#(νdξ). We denote the mapping from F to D

by M , and the inverse restricted to H by L. The natural metric on D, denoted
dD, is then defined by dD((u, µ), (ũ, µ̃)) = d(L(u, µ), L(ũ, µ̃)) for two elements
(u, µ), (ũ, µ̃) in D, see Definition 5.28. The main theorem, Theorem 5.30, then
states that the metric dD is Lipschitz continuous on all states with finite energy.
In the last section, Section 5.6, the metric is compared with the standard norms.
Two results are proved: The mapping u 7→ (u, (u2 + u2

x)dx) is continuous from
H1

per into D (Proposition 5.31). Furthermore, if (un, µn) is a sequence in D that

converges to (u, µ) in D. Then un → u in L∞
per and µn

∗
⇀ µ (Proposition 5.32).

1This idea is due to A. Bressan (private communication).
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The problem of Lipschitz continuity can nicely be illustrated in the simpler
context of ordinary differential equations. Consider three differential equations:

ẋ = a(x), x(0) = x0, a Lipschitz, (5.12a)

ẋ = 1 + αH(x), x(0) = x0, H the Heaviside function, α > 0, (5.12b)

ẋ = |x|1/2, x(0) = x0, t 7→ x(t) strictly increasing. (5.12c)

Straightforward computations give as solutions

x(t) = x0 +

∫ t

0

a(x(s)) ds, (5.13a)

x(t) = (1 + αH(t− t0))(t− t0), t0 = −x0/(1 + αH(x0)), (5.13b)

x(t) = sign
( t

2
+ v0

)( t

2
+ v0

)2
where v0 = sign(x0)|x0|1/2. (5.13c)

We find that

|x(t) − x̄(t)| ≤ eLt|x0 − x̄0|, L = ‖a‖Lip, (5.14a)

|x(t) − x̄(t)| ≤ (1 + α)|x0 − x̄0|, (5.14b)

x(t) − x̄(t) = t(x0 − x̄0)
1/2 + |x0 − x̄0|, when x̄0 = 0, t > 0, x0 > 0.

(5.14c)

Thus we see that in the regular case (5.12a) we get a Lipschitz estimate with
constant eLt uniformly bounded as t ranges on a bounded interval. In the second
case (5.12b) we get a Lipschitz estimate uniformly valid for all t ∈ R. In the
final example (5.12c), by restricting attention to strictly increasing solutions
of the ordinary differential equations, we achieve uniqueness and continuous
dependence on the initial data, but without any Lipschitz estimate at all near
the point x0 = 0. We observe that, by introducing the Riemannian metric

d(x, x̄) = |
∫ x̄

x

dz

|z|1/2 |, (5.15)

an easy computation reveals that

d(x(t), x̄(t)) = d(x0, x̄0). (5.16)

Let us explain why this metric can be considered as a Riemannian metric. The
Euclidean metric between the two points is then given

|x0 − x̄0| = inf
x

∫ 1

0

|xs(s)| ds (5.17)

where the infimum is taken over all paths x : [0, 1] → R that join the two points
x0 and x̄0, that is, x(0) = x0 and x(1) = x̄0. However, as we have seen, the
solutions are not Lipschitz for the Euclidean metric. Thus we want to measure
the infinitesimal variation xs in an alternative way, which makes solutions of
equation (5.12c) Lipschitz continuous. We look at the evolution equation that
governs xs and, by differentiating (5.12c) with respect to s, we get

ẋs =
sign(x)xs

2
√

|x|
,
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and we can check that
d

dt

(

|xs|
√

|x|

)

= 0. (5.18)

Let us consider the real line as a Riemannian manifold where, at any point
x ∈ R, the Riemannian norm is given by |v|/

√

|x| for any tangent vector v ∈ R

in the tangent space of x. From (5.18), one can see that at the infinitesimal
level, this Riemannian norm is exactly preserved by the evolution equation. The
distance on the real line which is naturally inherited by this Riemannian is given
by

d(x0, x̄0) = inf
x

∫ 1

0

|xs|
√

|x|
ds

where the infimum is taken over all paths x : [0, 1] → R joining x0 and x̄0. It is
quite reasonable to restrict ourselves to paths that satisfy xs ≥ 0 and then, by
a change of variables, we recover the definition (5.15).

The Riemannian approach to measure a distance between any two distinct
points in a given set (as defined in (5.17)) requires the existence of a smooth
path between points in the set. In the case of the Hunter–Saxton (see [16]), we
could embed the set we were primarily interested in into a convex set (which is
therefore connected) and which also could be regularized (so that the Rieman-
nian metric we wanted to use in that case could be defined). In the case of the
Camassa–Holm equation, we have been unable to construct such a set. How-
ever, there exists the alternative approach which, instead of using a smooth path
to join points, uses finite sequences of points, see (5.11). We illustrate this ap-
proach with equation (5.12c). We want to define a metric in (0,∞) which makes
the semigroup of solutions Lipschitz stable. Given two points x, x̄ ∈ (0,∞), we
define the function J : (0,∞) × (0,∞) → [0,∞) as

J(x, x̄) =







x−x̄
x̄1/2 if x ≥ x̄,

x̄−x
x1/2 if x < x̄.

The function J is symmetric and J(x, x̄) = 0 if and only if x = x̄, but J does
not satisfy the triangle inequality. Therefore we define (cf. (5.11))

d(x, x̄) = inf
N
∑

n=0

J(xn, xn+1) (5.19)

where the infimum is taken over all finite sequences {xn}Nn=0 such that x0 = x
and xN = x̄. Then, d satisfies the triangle inequality and one can prove that
it is also a metric. Given xn, xn+1 ∈ E such that xn ≤ xn+1, we denote xn(t)
and xn+1(t) the solution of (5.12c) with initial data xn and xn+1, respectively.
After a short computation, we get

d

dt
J(xn(t), xn+1(t)) = − 1

2xn
(xn + xn+1 − 2

√
xnxn+1) ≤ 0.

Hence, J(xn(t), xn+1(t)) ≤ J(xn, xn+1) so that

d(x(t), x̄(t)) ≤ d(x, x̄)
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and the semigroup of solutions to (5.12c) is a contraction for the metric d. It
follows from the definition of J that, for x1, x2, x3 ∈ E with x1 < x2 < x3, we
have

J(x1, x2) + J(x2, x3) < J(x1, x3). (5.20)

It implies that d(x, x̄) satisfies

d(x, x̄) = inf
δ

N
∑

n=0

J(xn, xn+1)

where δ = minn|xn+1−xn|, which is also the definition of the Riemann integral,
so that

d(x, x̄) =

∫ x̄

x

1√
z
dz

and the metric we have just defined coincides with the Riemannian metric we
have introduced. Note that if we choose

J̄(x, x̄) =

{

x−x̄
x1/2 if x ≥ x̄
x̄−x
x̄1/2 if x < x̄,

then (5.20) does not hold; we have instead J̄(x1, x3) < J̄(x1, x2) + J̄(x2, x3),
which is the triangle inequality. Thus, for d̄ as defined by (5.19) with J replaced
by J̄ , we get

d̄(x, x̄) = J̄(x, x̄) 6=
∫ x̄

x

1√
z
dz.

It is also possible to check that, for J̄ , we cannot get that J̄(xn(t), xn+1(t)) ≤
CJ̄(xn, xn+1) for any constant C for any xn and xn+1 and t ∈ [0, T ] (for a given
T ), so that the definition of J̄ is inappropriate to obtain results of stability for
(5.12c).

5.2 Semi-group of solutions in Lagrangian coor-

dinates

The Camassa–Holm equation for κ = 0 reads

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (5.21)

and can be rewritten as the following system2

ut + uux + Px = 0, (5.22)

P − Pxx = u2 +
1

2
u2
x. (5.23)

We consider periodic solutions of period one. Next, we rewrite the equation
in Lagrangian coordinates. Therefore we introduce the characteristics

yt(t, ξ) = u(t, y(t, ξ)). (5.24)

2For κ nonzero, equation (5.22) is simply replaced by P − Pxx = κu + u2 + 1

2
u2

x
.
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We introduce the space V1 defined as

V1 = {f ∈W 1,1
loc (R) | f(ξ + 1) = f(ξ) + 1 for all ξ ∈ R}.

Functions in V1 map the unit interval into itself in the sense that if u is periodic
with period 1, then u◦f is also periodic with period 1. The Lagrangian velocity
U reads

U(t, ξ) = u(t, y(t, ξ)). (5.25)

We will consider y ∈ V1 and U periodic. We define the Lagrangian energy
cumulative distribution as

H(t, ξ) =

∫ y(t,ξ)

y(t,0)

(u2 + u2
x)(t, x) dx. (5.26)

For all t, the function H belongs to the vector space V defined as follows:

V = {f ∈ W 1,1
loc (R) | there exists α ∈ R

such that f(ξ + 1) = f(ξ) + α for all ξ ∈ R}.

Equip V with the norm

‖f‖V = ‖f‖L∞([0,1]) + ‖fξ‖L1([0,1]).

As an immediate consequence of the definition of the characteristics we obtain

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px ◦ y(t, ξ). (5.27)

This last term can be expressed uniquely in term of U , y, and H . We have the
following explicit expression for P ,

P (t, x) =
1

2

∫

R

e−|x−z|(u2(t, z) +
1

2
u2
x(t, z)) dz. (5.28)

Thus,

Px ◦ y(t, ξ) = −1

2

∫

R

sign(y(t, ξ) − z)e−|y(t,ξ)−z|(u2(t, z) +
1

2
u2
x(t, z)) dz,

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1

2

∫

R

[

sign(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1

2
u2
x(t, y(t, η))

)

yξ(t, η)
]

dη. (5.29)

We have
Hξ = (u2 + u2

x) ◦ yyξ =: ν. (5.30)

Note that ν is periodic with period one. Then, (5.29) can be rewritten as

Px ◦y(ξ) = −1

4

∫

R

sign(y(ξ)−y(η)) exp(−|y(ξ)−y(η)|)
(

U2yξ+ν
)

(η) dη, (5.31)
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where the t variable has been dropped to simplify the notation. Later we will
prove that y is an increasing function for any fixed time t. If, for the moment,
we take this for granted, then Px ◦ y is equivalent to Q where

Q(t, ξ) = −1

4

∫

R

sign(ξ − η) exp
(

− sign(ξ − η)(y(ξ) − y(η))
)(

U2yξ + ν
)

(η) dη,

(5.32)
and, slightly abusing the notation, we write

P (t, ξ) =
1

4

∫

R

exp
(

− sign(ξ − η)(y(ξ) − y(η))
)(

U2yξ + ν
)

(η) dη. (5.33)

The derivatives of Q and P are given by

Qξ = −1

2
ν −

(

1

2
U2 − P

)

yξ and Pξ = Qyξ, (5.34)

respectively. For ξ ∈ [0, 1], using the fact that y(ξ + 1) = y(ξ) + 1 and the
periodicity of ν and U , the expressions for Q and P can be rewritten as

Q =
1

2(e− 1)

∫ 1

0

sinh(y(ξ) − y(η))(U2yξ + ν)(η) dη

− 1

4

∫ 1

0

sign(ξ − η) exp
(

− sign(ξ − η)(y(ξ) − y(η))
)

(U2yξ + ν)(η) dη, (5.35)

and

P =
1

2(e− 1)

∫ 1

0

cosh(y(ξ) − y(η))(U2yξ + ν)(η) dη

+
1

4

∫ 1

0

exp
(

− sign(ξ − η)(y(ξ) − y(η))
)

(U2yξ + ν)(η) dη. (5.36)

Thus Px ◦ y and P ◦ y can be replaced by equivalent expressions given by (5.32)
and (5.33) which only depend on our new variables U , H , and y. We obtain a
new system of equations, which is at least formally equivalent to the Camassa–
Holm equation:











yt = U,

Ut = −Q,
Ht = [U3 − 2PU ]ξ0.

(5.37)

After differentiating (5.37) we find



















yξt = Uξ,

Uξt =
1

2
ν +

(

1

2
U2 − P

)

yξ,

Hξt = −2QUyξ +
(

3U2 − 2P
)

Uξ.

(5.38)

From (5.37) and (5.38), we obtain the system










yt = U,

Ut = −Q,
νt = −2QUyξ +

(

3U2 − 2P
)

Uξ.

(5.39)
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We can write (5.39) more compactly as

Xt = F (X), X = (y, U, ν). (5.40)

Let
W 1,1

per = {f ∈W 1,1
loc (R) | f(ξ + 1) = f(ξ) for all ξ ∈ R}.

We equip W 1,1
per with the norm of V , that is,

‖f‖W 1,1
per

= ‖f‖L∞([0,1]) + ‖fξ‖L1([0,1]),

which is equivalent to the standard norm ofW 1,1
per because ‖f‖L1([0,1]) ≤ ‖f‖L∞([0,1]) ≤

‖f‖L1([0,1]) + ‖fξ‖L1([0,1]). Let E be the Banach space defined as

E = V ×W 1,1
per × L1

per.

We derive the following Lipschitz estimates for P and Q.

Lemma 5.1. For any X = (y, U, ν) in E, we define the maps Q and P as
Q(X) = Q and P(X) = P where Q and P are given by (5.32) and (5.33),
respectively. Then, P and Q are Lipschitz maps on bounded sets from E to
W 1,1

per. More precisely, we have the following bounds. Let

BM = {X = (y, U, ν) ∈ E | ‖U‖W 1,1
per

+ ‖yξ‖L1 + ‖ν‖L1 ≤M}. (5.41)

Then for any X, X̃ ∈ BM , we have

‖Q(X)−Q(X̃)‖W 1,1
per

≤ CM‖X − X̃‖E (5.42)

and
‖P(X)− P(X̃)‖W 1,1

per
≤ CM‖X − X̃‖E (5.43)

where the constant CM only depends on the value of M .

Proof. Let us first prove that P and Q are Lipschitz maps from BM to L∞
per.

Note that by using a change of variables in (5.35) and (5.36), we obtain that
P and Q are periodic with period 1. Let now X = (y, U, ν) and X̃ = (ỹ, Ũ , ν̃)
be two elements of BM . Since the map x 7→ coshx is locally Lipschitz, it is
Lipschitz on [−M,M ]. We denote by CM a generic constant that only depends
on M . Since, for all ξ, η in [0, 1] we have |y(ξ) − y(η)| ≤ ‖yξ‖L1 , we also have

|cosh(y(ξ) − y(η)) − cosh(ỹ(ξ) − ỹ(η))| ≤ CM |y(ξ) − ỹ(ξ) − y(η) + ỹ(η)|
≤ CM‖y − ỹ‖L∞ .

It follows that, for all ξ ∈ [0, 1],

‖cosh(y(ξ) − y( · ))(U2yξ + ν)( · ) − cosh(ỹ(ξ) − ỹ( · ))(Ũ2ỹξ + ν̃)( · )‖L1

≤ CM
(

‖y − ỹ‖L∞ + ‖U − Ũ‖L∞ + ‖yξ − ỹξ‖L1 + ‖ν − ν̃‖L1

)

and the map X = (y, U, ν) 7→ 1
2(e−1)

∫ 1

0
cosh(y(ξ)− y(η))(U2yξ + ν)(η) dη which

corresponds to the first term in (5.36) is Lipschitz from BM to L∞
per and the

Lipschitz constant only depends on M . We handle the other terms in (5.36) in
the same way and we prove that P is Lipschitz from BM to L∞

per. Similarly,
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one proves that Q : BM → L∞
per is Lipschitz for a Lipschitz constant which

only depends on M . Direct differentiation gives the expressions (5.34) for the
derivatives Pξ and Qξ of P and Q. Then, as P and Q are Lipschitz from BM
to L∞

per, we have

∥

∥Q(X)ξ −Q(X̃)ξ
∥

∥

L1

= ‖yξP(X) − ỹξP(X̃) − 1

2
(U2yξ − Ũ2ỹξ) − ν + ν̃‖L1

≤ CM
(

‖P(X)− P(X̃)‖L∞ + ‖U − Ũ‖L∞ + ‖yξ − ỹξ‖L1 + ‖ν − ν̃‖L1

)

≤ CM‖X − X̃‖E .

Hence, we have proved that Q : BM →W 1,1
per is Lipschitz for a Lipschitz constant

that only depends on M . We prove the corresponding result for P in the same
way.

The short-time existence follows from Lemma 5.1 and a contraction argu-
ment. Global existence is obtained only for initial data which belong to the set
F as defined below.

Definition 5.2. The set F is composed of all (y, U, ν) ∈ E such that

y ∈ V1, (y, U) ∈ W 1,∞
loc (R) ×W 1,∞

loc (R), ν ∈ L∞, (5.44a)

yξ ≥ 0, ν ≥ 0, yξ + ν ≥ c almost everywhere, for some constant c > 0,
(5.44b)

yξν = y2
ξU

2 + U2
ξ almost everywhere. (5.44c)

Lemma 5.3. The set F is preserved by the equation (5.39), that is, if X(t)
solves (5.39) for t ∈ [0, T ] with initial data X0 ∈ F , then X(t) ∈ F for all
t ∈ [0, T ].

Proof. The proof is basically the same as in [56], and we will repeat this proof
with the necessary adaptions here for completeness. Solutions of (5.40) can be
rewritten as

X(t) = X +

∫ t

0

F (X(τ))dτ, (5.45)

where X denotes the initial condition. Proceeding as in the proof of Lemma 5.1,
one obtains that F is Lipschitz on bounded sets from E → E, which implies the
existence of short time solutions.

Next we want to show that for initial data in [W 1,∞]2 × L∞ we have short
time solutions in [W 1,∞]2 × L∞. Therefore observe first that y, U, P,Q ∈ W 1,1

implies that y, U, P,Q ∈ L∞, and we therefore have to consider the following
system of ordinary differential equations for yξ, Uξ, and ν:































d

dt
α(t, ξ) = β(t, ξ),

d

dt
β(t, ξ) =

1

2
γ(t, ξ) +

(

1

2
U2 − P

)

(t, ξ)(1 + α(t, ξ)),

d

dt
γ(t, ξ) = −2QU(t, ξ)(1 + α(t, ξ)) +

(

3U2 − 2P
)

(t, ξ)β(t, ξ).

(5.46)
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where we substituted ζξ, Uξ, and ν by α, β, and γ. We specify the initial
conditions for this system by defining A as the following set

A = {ξ ∈ R||Uξ(ξ)| ≤ ‖Uξ(ξ)‖L∞ , |ζξ(ξ)| ≤ ‖ζξ(ξ)‖L∞ , |ν(ξ)| ≤ ‖ν‖L∞}.

Since we assume X ∈ [W 1,∞]2 × L∞, we have that A has full measure, that is,
meas(Ac) = 0. For ξ ∈ A, we define (α(0, ξ), β(0, ξ), γ(0, ξ)) = (ζξ(ξ), U ξ(ξ), ν(ξ)).
For ξ ∈ Ac we take (α(0, ξ), β(0, ξ), γ(0, ξ)) = (0, 0, 0). This allows us to work in
the Banach space of everywhere bounded periodic functions B∞

per, whose norm
is given by ‖f‖B∞

per
= supξ∈[0,1] |f(ξ)|. We define (α, β, γ) as the solutions of

(5.46) in [B∞
per]

3 with initial data as given above. As to any function in L∞
per

we can find a function in B∞
per, so that the two functions coincide almost ev-

erywhere, it is no problem to work in this slightly different setting. As before
we can use a contraction argument to show the short time existence of solu-
tions in [B∞

per]
3 and applying Gronwall’s lemma yields that this solution exists

on [0, T ], the interval on which (ζ, U, ν) exist. For showing that (α, β, γ) coin-
cide with (ζξ, Uξ, ν) almost everywhere for any t ∈ [0, T ], we need the following
proposition, which is adapted from [94, p.134, Corollary 2].

Proposition 5.4. Let R be a bounded linear operator on a Banach space X into
a Banach space Y . Let f be in C([0, T ], X). Then, Rf belongs to C([0, T ], Y )
and therefore is Riemann integrable, and

∫

[0,T ]
Rf(t)dt = R

∫

[0,T ]
f(t)dt.

For any given ξ, the map f → f(ξ) from B∞
per to R is linear and continuous.

Hence after applying this map to each term in (5.46) written in integral from
and using Proposition 5.4, we recover the original definition of α, β, and γ
as solutions, for any given ξ ∈ R, of the system (5.46) of ordinary differential
equations in R3. The derivation map d

dξ is continuous form W 1,1
per to L1

per. We

can apply it to (5.39), written in integral form, and by Proposition 5.4, this map
commutes with the integral. Thus we end up with



































ζξ(t) = ζξ +

∫ t

0

Uξ(τ)dτ,

Uξ(t) = U ξ +

∫ t

0

(1

2
ν +

(

1

2
U2 − P

)

(1 + ζξ)
)

(τ)dτ,

ν(t) = ν −
∫ t

0

(

2QU(1 + ζξ) +
(

3U2 − 2P
)

Uξ

)

(τ)dτ.

(5.47)

The map fromB∞
per to L1

per is also continuous, we can apply it to (5.46) written in
integral from, and again use Proposition 5.4. Then, we subtract each equation in
(5.47) from the corresponding one in (5.46), take the norm and add them. After
introducing Z(t) = ‖α(t, .)−ζξ(t, .)‖L1+‖β(t, .)−Uξ(t, .)‖L1+‖γ(t, .)−ν(t, .)‖L1,
we end up with the following equation

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ)dτ, (5.48)

where C is a constant which again, only depends on the C([0, T ],W 1,1) norms
of U , P , and Q. By assumption we have Z(0) = 0 and therefore by Gronwall’s
lemma, we get Z(t) = 0 for all t ∈ [0, T ]. Thus we showed that (5.44a) is
preserved.
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Denote by B the set where the absolute values of ζξ(ξ), Uξ(ξ), and ν(ξ) all

are smaller than ‖X‖[W 1,∞]2×L∞ and where (5.44b) and (5.44c) are satisfied for

yξ, U ξ, and ν. By assumption we have that measBc = 0, and we set (ζξ, Uξ, ν)
equal to zero on Bc.

Using that B ⊂ A, we obtain that X(t) satisfies (5.44a) for all t ∈ [0, T ].
Next we will show that (5.44b) and (5.44c) hold for any ξ ∈ B and hence almost
everywhere. We consider a fixed ξ in B and drop it in the notation when there
is no ambiguity. From (5.39), we have, on the one hand,

(yξν)t = yξtν + νtyξ = Uξν + (3U2Uξ − 2yξQU − 2PUξ)yξ,

and, on the other hand,

(y2
ξU

2 + U2
ξ )t = 2yξtyξU

2 + 2y2
ξUtU + 2UξtUξ

= 3UξU
2yξ − 2PUξyξ + νUξ − 2y2

ξQU.

Thus (yξν − y2
ξU

2 − U2
ξ )t = 0, and since yξν(0) = (y2

ξU
2 − U2

ξ )(0), we have
proved (5.44c). Let us introduce t⋆ given by

t⋆ = sup{t ∈ [0, T ]|yξ(t′) ≥ 0 for all t′ ∈ [0, t]}.
Here we recall that we consider a fixed ξ ∈ B and drop it in the notation.
Assume t⋆ < T . Since yξ(t) is continuous with respect to time, we have

yξ(t
⋆) = 0. (5.49)

Hence, from (5.44c), that we just proved, we get Uξ(t
⋆) = 0 and by (5.39),

yξt(t
⋆) = Uξ(t

⋆) = 0. (5.50)

Form (5.39), since yξ(t
⋆) = Uξt(t

⋆) = 0, we get

yξtt(t
⋆) = Uξt(t

⋆) =
1

2
ν(t⋆). (5.51)

If ν(t⋆) = 0, then (yξ, Uξ, ν) = (0, 0, 0) and, by the uniqueness of the solution
of (5.39), seen as a system of ordinary differential equations, we must have
(yξ, Uξ, ν) = 0 for all t ∈ [0, T ]. This contradicts the fact that yξ(0) and ν(0)
cannot vanish at the same time. If ν(t⋆) < 0, then yξtt(t

⋆) < 0, and because of
(5.49) and (5.50), there exists a neighborhood U of t⋆ such that yξ(t) < 0 for all
t ∈ U\{t⋆}. This contradicts the definition of t⋆. Hence, ν(t⋆) > 0, and, since
we now have yξ(t

⋆) = yξt(t
⋆) = 0 and yξtt(t

⋆) > 0, there exists a neighborhood
of t⋆, which we again denote by U such that yξ(t) > 0 for all t ∈ U\{t⋆}. This
contradicts the fact that t⋆ < T , and we have proved the first inequality in
(5.44c), namely that yξ(t) ≥ 0 for all t ∈ [0, T ]. Let us prove that ν(t) ≥ 0
for all t ∈ [0, T ]. This follows from (5.44c) when yξ(t) > 0, Now if yξ(t) = 0,
then Uξ(t) = 0 from (5.44c) and we have seen that ν(t) < 0 would imply that
yξ(t

′) > 0 for some t′ in a punctured neighborhood of t, which is impossible.
Hence ν(t) ≥ 0 and we have proved the second inequality in (5.44b). Assume
that the third inequality in (5.44b) does not hold. then, by continuity, there
exists a time t ∈ [0, T ] such that (yξ + ν)(t) = 0. Since yξ and ν are positive,
we must have yξ(t) = ν(t) = 0 and , by (5.44c), Uξ(t) = 0. Since zero is a
solution of (5.39), this implies that yξ(0) = Uξ(0) = ν(0) = 0, which contradicts
(yξ +Hξ)(0) > 0.
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Theorem 5.5. For any X̄ = (ȳ, Ū , ν̄) ∈ F , the system (5.39) admits a unique
global solution X(t) = (y(t), U(t), ν(t)) in C1(R+, E) with initial data X̄ =
(ȳ, Ū , ν̄). We have X(t) ∈ F for all times. Let the mapping S : F ×R+ → F be
defined as

St(X) = X(t).

Given M > 0 and T > 0, we define BM as before, that is,

BM = {X = (y, U, ν) ∈ E | ‖U‖W 1,1
per

+ ‖yξ‖L1 + ‖ν‖L1 ≤M}. (5.52)

Then there exists a constant CM which depends only on M and T such that, for
any two elements Xα and Xβ in BM , we have

‖StXα − StXβ‖E ≤ CM‖Xα −Xβ‖E (5.53)

for any t ∈ [0, T ].

Proof. By using Lemma 5.1, we proceed using a contraction argument and ob-
tain the existence of short time solutions to (5.39). Let T by the maximal
time of existence and assume T < ∞. Let (y, U, ν) be a solution of (5.39) in
C1([0, T ), E) with initial data (y0, U0, ν0). We want to prove that

sup
t∈[0,T )

‖(y(t, · ), U(t, · ), ν(t, · ))‖E <∞. (5.54)

From (5.39), we get

∫ 1

0

ν(t, ξ) dξ =

∫ 1

0

ν(0, ξ) dξ +

∫ 1

0

∫ t

0

(−2QUyξ +
(

3U2 − 2P
)

Uξ)(t, ξ) dtdξ

=

∫ 1

0

ν(0, ξ) dξ +

∫ t

0

∫ 1

0

(U3 − 2PU)ξ(t, ξ) dξdt

=

∫ 1

0

ν(0, ξ) dξ. (5.55)

Hence, ‖ν(t, · )‖L1 = ‖ν(0, · )‖L1 . This identity corresponds to the conservation
of the total energy. We now consider a fixed time t ∈ [0, T ) which we omit
in the notation when there is no ambiguity. For ξ and η in [0, 1], we have
|y(ξ) − y(η)| ≤ 1 because y is increasing and y(1) − y(0) = 1. From (5.44c), we
infer U2yξ ≤ ν and, from (5.35), we obtain

|Q| ≤ 1

e− 1

∫ 1

0

sinh(|y(ξ) − y(η)|)ν(η) dη +

∫ 1

0

e−|y(ξ)−y(η)|ν(η) dη.

Hence,

‖Q(t, · )‖L∞ ≤ C‖ν(t, · )‖L1 = C‖ν(0, · )‖L1 (5.56)

for some constant C. Similarly, one prove that ‖P (t, · )‖L∞ ≤ C‖ν(0, · )‖L1

and therefore supt∈[0,T )‖Q(t, · )‖L∞ and supt∈[0,T )‖P (t, · )‖L∞ are finite. Since
Ut = −Q, it follows that

‖U(t, · )‖L∞ ≤ ‖U(0, · )‖L∞ + CT ‖ν(0, · )‖L1 (5.57)
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and supt∈[0,T )‖U(t, · )‖L∞ <∞. Since yt = U , we have that supt∈[0,T )‖y(t, · )‖L∞

is also finite. Thus, we have proved that

C1 = sup
t∈[0,T )

{‖U(t, · )‖L∞ + ‖P (t, · )‖L∞ + ‖Q(t, · )‖L∞}

is finite and depends only on T and ‖U(0, · )‖L∞ + ‖ν(0, · )‖L1 . Let Z(t) =
‖yξ(t, · )‖L1 +‖Uξ(t, · )‖L1 +‖ν(t, · )‖L1. Using the semi-linearity of (5.38) with
respect to (yξ, Uξ, ν), we obtain

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ

where C is a constant depending only on C1. It follows from Gronwall’s lemma
that supt∈[0,T ) Z(t) is finite, and this concludes the proof of the global existence.

Moreover we have proved that

‖U(t, · )‖W 1,1
per

+ ‖yξ(t, · )‖L1 + ‖ν(t, · )‖L1 ≤ CM (5.58)

for a constant CM which depends only on T and ‖U(0, · )‖W 1,1
per

+‖yξ(0, · )‖L1 +

‖ν(0, · )‖L1 . Let us prove (5.53). Given T and Xα, Xβ ∈ BM , from Lemma 5.1
and (5.58), we get that

‖Uα(t, · ) − Uβ(t, · )‖L∞ + ‖Qα(t, · ) −Qβ(t, · )‖L∞ ≤ CM‖Xα(t) −Xβ(t)‖E

where CM is a generic constant which depends only on M and T . Using again
(5.38) and Lemma 5.1, we get that for a given time t ∈ [0, T ],

‖Uαξ − Uβξ‖L1 + ‖1

2
να +

(

1

2
U2
α − Pα

)

yαξ −
1

2
νβ −

(

1

2
U2
β − Pβ

)

yβξ‖L1

+ ‖−2QαUαyαξ +
(

3U2
α − 2Pα

)

Uαξ + 2Qβ Uβyβξ −
(

3U2
β − 2Pβ

)

Uβξ‖L1

≤ CM‖Xα −Xβ‖E .

Hence, ‖F (Xα(t))−F (Xβ(t))‖E ≤ CM‖Xα(t)−Xβ(t)‖E where F is defined as
in (5.40). Then, (5.53) follows from Gronwall’s lemma applied to (5.40).

5.3 Relabeling invariance

We denote by G the subgroup of the group of homeomorphisms on the unit
interval defined as follows:

Definition 5.6. Let G be the set of all functions f such that f is invertible,

f ∈W 1,∞
loc (R), f(ξ + 1) = f(ξ) + 1 for all ξ ∈ R, and (5.59)

f − I and f−1 − I both belong to W 1,∞
per . (5.60)

The set G can be interpreted as the set of relabeling functions. Note that
f ∈ G implies that

1

1 + α
≤ fξ ≤ 1 + α
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for some constant α > 0. This condition is also almost sufficient as Lemma 3.2
in [56] shows. Given a triplet (y, U, ν) ∈ F , we denote by h the total energy
‖ν‖L1 . We define the subsets Fα of F as follows

Fα = {X = (y, U, ν) ∈ F | 1

1 + α
≤ 1

1 + h
(yξ + ν) ≤ 1 + α}.

The set F0 is then given by

F0 = {X = (y, U, ν) ∈ F | yξ + ν = 1 + h}. (5.61)

We have F = ∪α≥0Fα. We define the action of the group G on F .

Definition 5.7. We define the map Φ: G×F → F as follows










ȳ = y ◦ f,
Ū = U ◦ f,
ν̄ = ν ◦ ffξ,

where (ȳ, Ū , ν̄) = Φ(f, (y, U, ν)). We denote (ȳ, Ū , ν̄) = (y, U, ν) • f .
Proposition 5.8. The map Φ defines a group action of G on F .

Proof. By the definition it is clear that Φ satisfies the fundamental property
of a group action, that is X • f1 • f2 = X • (f1 ◦ f2) for all X ∈ F and f1,
f2 ∈ G. It remains to prove that X • f indeed belongs to F . We denote
X̂ = (ŷ, Û , ν̂) = X • f , then it is not hard to check that ŷ(ξ + 1) = ŷ(ξ) + 1,
Û(ξ + 1) = Û(ξ), and ν̂(ξ + 1) = ν̂(ξ) for all ξ ∈ R. By definition we have
v̂ = v ◦ ffξ, and we will now prove that

ŷξ = yξ ◦ ffξ, and Ûξ = Uξ ◦ ffξ,

almost everywhere. Let B1 be the set where y is differentiable and B2 the set
where ŷ and f are differentiable. Using Rademacher’s theorem, we get that
meas(Bc1) = meas(Bc2) = 0. For ξ ∈ B3 = B2∩f−1(B1), we consider a sequence
ξi converging to ξ with ξi 6= ξ for all i ∈ N. We have

y(f(ξi)) − y(f(ξ))

f(ξi) − f(ξ)

f(ξi) − f(ξ)

ξi − ξ
=
ŷ(ξi) − ŷ(ξ)

ξi − ξ
. (5.62)

Since f is continuous, f(ξi) converges to f(ξ) and, as y is differentiable at f(ξ),
the left-hand side of (5.62) tends to yξ ◦ f(ξ)fξ(ξ), the right-hand side of (5.62)
tends to ŷξ(ξ), and we get

yξ(f(ξ))fξ(ξ) = ŷξ(ξ), (5.63)

for all ξ ∈ B3. Since f−1 is Lipschitz continuous, one-to-one, and meas(Bc1) = 0,
we have meas(f−1(B1)

c) = 0 and therefore (5.63) holds almost everywhere. One
proves the other identity similarly. As fξ > 0 almost everywhere, we obtain
immediately that (5.44b) and (5.44c) are fulfilled. That (5.44a) is also satisfied
follows from the following considerations: ‖ŷξ‖L1 = ‖yξ‖L1 , as yξ is periodic

with period 1. The same argument applies when considering ‖Ûξ‖L1 and ‖ν̂‖L1 .

As U is periodic with period 1, we can also conclude that ‖Û‖L∞ = ‖U‖L∞. As
f ∈ G, one obtains that ‖ŷ‖L∞ is bounded, but not equal to ‖y‖L∞.
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Note that the setBM is invariant with respect to relabeling while the E-norm
is not, as the following example shows: Consider the function y(ξ) = ξ ∈ V1,
and f ∈ G, then this yields

‖y(f(ξ))‖L∞([0,1]) = ‖f(ξ)‖L∞([0,1]).

Hence, the L∞-norm of y(f(ξ)) will always depend on f .
Since G is acting on F , we can consider the quotient space F/G of F with

respect to the group action. Let us introduce the subset H of F0 defined as
follows

H = {(y, U, ν) ∈ F0 |
∫ 1

0

y(ξ) dξ = 0}. (5.64)

It turns out that H contains a unique representative in F for each element of
F/G, that is, there exists a bijection between H and F/G. In order to prove
this we introduce two maps Π1 : F → F0 and Π2 : F0 → H defined as follows

Π1(X) = X • f−1 (5.65)

with f = 1
1+h (y +

∫ ξ

0
ν(η) dη) ∈ G and X = (y, U, ν), and

Π2(X) = X(ξ − a) (5.66)

with a =
∫ 1

0
y(ξ) dξ. First, we have to prove that f indeed belongs to G. We

have

f(ξ + 1) =
1

1 + h

(

y(ξ + 1) +

∫ ξ+1

0

ν(η) dη
)

=
1

1 + h

(

y(ξ) + 1 +

∫ ξ

0

ν(η) dη + h
)

= f(ξ) + 1

and this proves (5.59). Since (y, U, ν) ∈ F , there exists a constant c ≥ 1
such that 1

c ≤ fξ ≤ c for almost every ξ and therefore (5.60) follows from an
application of Lemma 3.2 in [56]. After noting that the group action lets the
quantity h = ‖ν‖L1 invariant, it is not hard to check that Π1(X) indeed belongs
to F0, that is, 1

1+h̄
(ȳξ + ν̄) = 1 where we denote (ȳ, Ū , ν̄) = Π1(X). Let us

prove that (ȳ, Ū , ν̄) = Π2(y, U, ν) belongs to H for any (y, U, ν) ∈ F0. On the
one hand, we have 1

1+h̄
(ȳξ + ν̄) = 1 because h̄ = h and 1

1+h (yξ + ν) = 1 as

(y, U, ν) ∈ F0. On the other hand,

∫ 1

0

ȳ(ξ) dξ =

∫ 1−a

−a
y(ξ) dξ =

∫ 1

0

y(ξ) dξ +

∫ 0

−a
y(ξ) dξ +

∫ 1−a

1

y(ξ) dξ (5.67)

and, since y(ξ + 1) = y(ξ) + 1, we obtain

∫ 1

0

ȳ(ξ) dξ =

∫ 1

0

y(ξ) dξ +

∫ 0

−a
y(ξ) dξ +

∫ −a

0

y(ξ) dξ − a =

∫ 1

0

y(ξ) dx− a = 0.

(5.68)
Thus Π2(X) ∈ H. Note that the definition (5.66) of Π2 can be rewritten as

Π2(X) = X • τa
where τa : ξ 7→ ξ − a denotes the translation of length a so that Π2(X) is a
relabeling of X .
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Definition 5.9. We denote by Π the projection of F into H given by Π1 ◦ Π2.

One checks directly that Π ◦ Π = Π. The element Π(X) is the unique
relabeled version of X which belongs to H and therefore we have the following
result.

Lemma 5.10. The sets F/G and H are in bijection.

Given any element [X ] ∈ F/G, we associate Π(X) ∈ H. This mapping is
well-defined and is a bijection.

Lemma 5.11. The mapping St is equivariant, that is,

St(X • f) = St(X) • f. (5.69)

Proof. For any X0 = (y0, U0, ν0) ∈ F and f ∈ G, we denote X̄0 = (ȳ0, Ū0, ν̄0) =
X0 • f , X(t) = St(X0), and X̄(t) = St(X̄0). We claim that X(t) • f satis-
fies (5.39) and therefore, since X(t) • f and X̄(t) satisfy the same system of
differential equations with the same initial data, they are equal. We denote
X̂(t) = (ŷ(t), Û(t), ν̂(t)) = X(t) • f . Then we obtain

Ût =
1

4

∫

R

sign(ξ − η) exp
(

− sign(ξ − η)(ŷ(ξ) − y(η))
)[

U2yξ + ν
]

(η)dη.

As ŷξ(ξ) = yξ(f(ξ))fξ(ξ) and ν̂(ξ) = ν(f(ξ))fξ(ξ) for almost every ξ ∈ R, we
obtain after the change of variables η = f(η′),

Ût =
1

4

∫

R

sign(ξ − η) exp
(

− sign(ξ − η)(ŷ(ξ) − ŷ(η))
)[

Û2ŷξ + ν̂
]

(η)dη.

Treating similarly the other terms in (5.39), it follows that (ŷ, Û , ν̂) is a solution
of (5.39). Thus, since (ŷ, Û , ν̂) and (ȳ, Ū , ν̄) satisfy the same system of ordinary
differential equations with the same initial conditions, they are equal and (5.69)
is proved.

From this lemma we get that

Π ◦ St ◦ Π = Π ◦ St. (5.70)

Definition 5.12. We define the semigroup S̄t on H as

S̄t = Π ◦ St.

The semigroup property of S̄t follows from (5.70). Using the same approach
as in [56], we can prove that S̄t is continuous with respect to the norm of E.
It follows basically of the continuity of the mapping Π but Π is not Lipschitz
continuous and the goal of the next section is to improve this result and find a
metric that makes S̄t Lipschitz continuous.

5.4 Lipschitz metric for the semigroup S̄t

Definition 5.13. Let Xα, Xβ ∈ F , we define J(Xα, Xβ) as

J(Xα, Xβ) = inf
f,g∈G

‖Xα • f −Xβ • g‖E . (5.71)
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Note that, for any Xα, Xβ ∈ F and f, g ∈ G, we have

J(Xα • f,Xβ • g) = J(Xα, Xβ). (5.72)

It means that J is invariant with respect to relabeling. The mapping J does
not satisfy the triangle inequality, which is the reason why we introduce the
mapping d.

Definition 5.14. Let Xα, Xβ ∈ F , we define d(Xα, Xβ) as

d(Xα, Xβ) = inf
N
∑

i=1

J(Xn−1, Xn) (5.73)

where the infimum is taken over all finite sequences {Xn}Nn=0 ∈ F which satisfy
X0 = Xα and XN = Xβ.

For any Xα, Xβ ∈ F and f, g ∈ G, we have

d(Xα • f,Xβ • g) = d(Xα, Xβ), (5.74)

and d is also invariant with respect to relabeling.

Remark 5.15. The definition of the metric d(Xα, Xβ) is the discrete version
of the one introduced in [16]. In [16], the authors introduce the metric that we
denote here as d̃ where

d̃(Xα, Xβ) = inf

∫ 1

0

|||Xs(s)|||X(s) ds

where the infimum is taken over all smooth path X(s) such that X(0) = Xα and
X(1) = Xβ and the triple norm of an element V is defined at a point X as

|||V ||| = inf
g
‖V − gXξ‖

where g is a scalar function, see [16] for more details. The metric d̃ also enjoys
the invariance relabeling property (5.74). The idea behind the construction of d
and d̃ is the same: We measure the distance between two points, in a way where
two relabeled versions of the same point are identified. The difference is that in
the case of d we use a set of points whereas in the case of d̃ we use a curve to
join two elements Xα and Xβ. Formally, we have

lim
δ→0

1

δ
J(X(s), X(s+ δ)) = |||Xs|||X(s). (5.75)

We need to introduce the subsets of bounded energy in F0.

Definition 5.16. We denote by FM the set

FM = {X = (y, U, ν) ∈ F | h = ‖ν‖L1 ≤M}

and let HM = H ∩ FM .
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The important property of the set FM is that it is preserved both by the
flow, see (5.55), and relabeling. Let us prove that

BM ∩H ⊂ HM ⊂ BM̄ ∩H (5.76)

for M̄ = 6(1+M) so that the sets BM ∩H and HM are in this sense equivalent.
From (5.61), we get ‖yξ‖L∞ ≤ 1+M which implies ‖yξ‖L1 ≤ 1+M . By (5.44c),
we get that U2

ξ ≤ yξν ≤ 1
2 (y2

ξ + ν2) ≤ 1
2 (yξ + ν)2 ≤ 1

2 (1 + h)2 and therefore

‖Uξ‖L1 ≤ 1 +M . Since
∫ 1

0 yξ(η) dη = 1 and yξ ≥ 0, the set {ξ ∈ [0, 1] | yξ(ξ) ≥
1
2} has strictly positive measure. For a point ξ0 in this set, we get, by (5.44c),

that U2(ξ0) ≤ ν(ξ0)
yξ(ξ0) ≤ 2(1+M). Hence, ‖U‖L∞ ≤ |U(ξ0)|+‖Uξ‖L1 ≤ 3(1+M)

and, finally,
‖U‖W 1,1

per
+ ‖yξ‖L1 + ‖ν‖L1 ≤ 6(1 +M),

which concludes the proof of (5.76).

Definition 5.17. Let dM be the metric on HM which is defined, for any
Xα, Xβ ∈ HM , as

dM (Xα, Xβ) = inf
N
∑

i=1

J(Xn−1, Xn) (5.77)

where the infimum is taken over all finite sequences {Xn}Nn=0 ∈ HM which
satisfy X0 = Xα and XN = Xβ.

Lemma 5.18. For any Xα, Xβ ∈ HM , we have

‖yα − yβ‖L∞ + ‖Uα − Uβ‖L∞ + |hα − hβ | ≤ CMdM (Xα, Xβ) (5.78)

for some fixed constant CM which depends only on M .

Proof. First, we prove that for any Xα, Xβ ∈ HM , we have

‖yα − yβ‖L∞ + ‖Uα − Uβ‖L∞ + |hα − hβ| ≤ CMJ(Xα, Xβ) (5.79)

for some constant CM which depends only on M . By a change of variables in
the integrals, we obtain

|hα − hβ | = |
∫ 1

0

να ◦ ffξ dξ −
∫ 1

0

νβ ◦ ggξ dξ|

≤ ‖Xα • f −Xβ • g‖E.

We have

‖yα − yβ‖L∞ + ‖Uα − Uβ‖L∞

≤ ‖Xα • f −Xβ • g‖E + ‖yβ ◦ f − yβ ◦ g‖L∞ + ‖Uβ ◦ f − Uβ ◦ g‖L∞

≤ ‖Xα • f −Xβ • g‖E + (‖yβξ‖L∞ + ‖Uβξ‖L∞)‖f − g‖L∞.
(5.80)

From the definition of HM we get that, for any element X = (y, U, ν) ∈ HM ,
we have ‖yξ‖L∞ + ‖ν‖L∞ ≤ 2(1 +M). Since U2

ξ ≤ yξν, from (5.44c), it follows
that ‖Uξ‖L∞ ≤ 2(1 +M). Thus, (5.80) yields

‖yα−yβ‖L∞ +‖Uα−Uβ‖L∞ ≤ ‖Xα•f−Xβ •g‖E+4(1+M)‖f−g‖L∞. (5.81)
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We denote by CM a generic constant which depends only on M . The identity
(5.79) will be proved when we prove

‖f − g‖L∞ ≤ CM‖Xα • f −Xβ • g‖E. (5.82)

By using the definition of H, we get that

‖fξ − gξ‖L1 = ‖ 1

1 + hα
(yαξ ◦ f + να ◦ f)fξ −

1

1 + hβ
(yβξ ◦ g + νβ ◦ g)gξ‖L1

≤ |hα − hβ |
1 + hβ

+
1

1 + hβ
‖Xα • f −Xβ • g‖E

≤ CM‖Xα • f −Xβ • g‖E. (5.83)

Let δ = g(0) − f(0). Similar to (5.67) and (5.68), we can conclude that

∫ 1

0

yβ ◦ (f + δ)fξdξ =

∫ f(0)+1+δ

f(0)+δ

yβdξ

=

∫ 0

f(0)+δ

yβdξ +

∫ 1

0

yβdξ +

∫ 1+f(0)+δ

1

yβdξ

=

∫ 0

f(0)+δ

yβdξ +

∫ 1

0

yβdξ +

∫ f(0)+δ

0

yβdξ + f(0) + δ

= f(0) + δ.

Thus we have δ =
∫ 1

0 yβ ◦ (f + δ)fξ dξ − f(0) and analogously 0 =
∫ 1

0 yβ ◦
(f)fξdξ − f(0). Hence,

|δ| = |
∫ 1

0

yβ ◦ (f + δ)fξ dξ −
∫ 1

0

yα ◦ ffξ dξ|. (5.84)

By (5.83), we get that

‖g − f − δ‖L∞ ≤ ‖fξ − gξ‖L1 ≤ CM‖Xα • f −Xβ • g‖E. (5.85)

Then, since

‖yβ ◦ (f + δ) − yβ ◦ g‖L∞ ≤ ‖yβξ‖L∞‖f + δ − g‖L∞

≤ CM‖Xα • f −Xβ • g‖E,

we obtain that

‖yα ◦ f − yβ ◦ (f + δ)‖L∞ ≤ ‖yα ◦ f − yβ ◦ g‖L∞ + ‖yβ ◦ g − yβ ◦ (f + δ)‖L∞

≤ CM‖Xα • f −Xβ • g‖E. (5.86)

Then, (5.84) yields

|δ| ≤ CM‖Xα • f −Xβ • g‖E. (5.87)

From (5.85) and (5.87), (5.82) and therefore (5.79) follows. For any ε > 0, we
consider a sequence {Xn}Nn=0 in HM such that X0 = Xα and XN = Xβ and
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∑N
i=1 J(Xn−1, Xn) ≤ dM (Xα, Xβ) + ε. We have

‖yα − yβ‖L∞+‖Uα − Uβ‖L∞ + |hα − hβ |

≤
N
∑

n=1

‖yn−1 − yn‖L∞ + ‖Un−1 − Un‖L∞ + |hn−1 − hn|

≤ CM

N
∑

n=1

J(Xn−1, Xn)

≤ CM (dM (Xα, Xβ) + ε).

Since ε is arbitrary, we get (5.78).

From the definition of d, we obtain that

d(Xα, Xβ) ≤ ‖Xα −Xβ‖E , (5.88)

so that the metric d is weaker than the E-norm.

Lemma 5.19. The mapping dM : HM ×HM → R+ is a metric on HM .

Proof. The symmetry is embedded in the definition of J while the construction
of dM from J takes care of the triangle inequality. From Lemma 5.18, we get
that dM (Xα, Xβ) = 0 implies that yα = yβ , Uα = Uβ and hα = hβ . Then, the
definition (5.61) of F0 implies that να = νβ .

Remark 5.20. In [56], a metric on H is obtained simply by taking the norm
of E. The authors prove that the semigroup is continuous with respect to this
norm, that is, given a sequence Xn and X in H such that limn→∞‖Xn −X‖E,
we have limn→∞‖S̄tXn − S̄tX‖E = 0. However, S̄t is not Lipschitz in this
norm. From (5.88), we see that the distance introduced in [56] is stronger than
the one introduced here. (The definition of E in [56] differs slightly from the
one employed here, but the statements in this remark remain valid).

We can now prove the Lipschitz stability theorem for S̄t.

Theorem 5.21. Given T > 0 and M > 0, there exists a constant CM which
depends only on M and T such that, for any Xα, Xβ ∈ HM and t ∈ [0, T ], we
have

dM (S̄tXα, S̄tXβ) ≤ CMdM (Xα, Xβ). (5.89)

Proof. By the definition of dM , for any ε > 0, there exists a sequences {Xn}Nn=0

in HM and functions {fn}N−1
n=1 , {gn}N−1

n=1 in G such that X0 = Xα, XN = Xβ

and
N
∑

i=1

‖Xn−1 • fn−1 −Xn • gn−1‖E ≤ dM (Xα, Xβ) + ε. (5.90)

Since HM ⊂ BM̄ for M̄ = 6(1 + M), see (5.76), and BM̄ is preserved by
relabeling, we have that Xn • fn and Xn • gn−1 belong to BM̄ . From the
Lipschitz stability result given in (5.53), we obtain that

‖St(Xn−1 •fn−1)−St(Xn •gn−1)‖E ≤ CM‖Xn−1 •fn−1−Xn •gn−1‖E , (5.91)

111



Chapter 5. Stability for the periodic Camassa–Holm equation

where the constant CM depends only on M and T . Introduce

X̄n = Xn • fn, X̄t
n = St(X̄n), for n = 0, . . . , N − 1,

and
X̃n = Xn • gn−1, X̃

t
n = St(X̃n), for n = 1, . . . , N.

Then (5.90) rewrites as

N
∑

i=1

‖X̄n−1 − X̃n‖E ≤ dM (Xα, Xβ) + ε (5.92)

while (5.91) rewrites as

‖X̄t
n−1 − X̃t

n‖E ≤ CM‖X̄n−1 − X̃n‖E . (5.93)

We have

Π(X̄t
0) = Π ◦ St(X0 • f0) = Π ◦ (St(X0) • f0) = Π ◦ St(X0) = S̄t(Xα)

and similarly Π(X̃t
N ) = S̄t(Xβ). We consider the sequence in HM which con-

sists of {ΠX̄t
n}N−1
n=0 and S̄t(Xβ). The set FM is preserved by the flow and by

relabeling. Therefore, {ΠX̄t
n}N−1
n=0 and S̄t(Xβ) belong to HM . The endpoints

are S̄t(Xα) and S̄t(Xβ). From the definition of the metric dM , we get

dM (S̄t(Xα), S̄t(Xβ)) ≤
N−1
∑

n=1

(

J(ΠX̄t
n−1,ΠX̄

t
n)
)

+ J(ΠX̄t
N−1, S̄t(Xβ))

=

N−1
∑

n=1

(

J(X̄t
n−1, X̄

t
n)
)

+ J(X̄t
N−1, X̃

t
N)) by (5.72).

(5.94)

By using the equivariance of St, we obtain that

X̃t
n = St(X̃n) = St((X̄n • f−1

n ) • gn−1)

= St(X̄n) • (f−1
n ◦ gn−1) = X̄t

n • (f−1
n ◦ gn−1).

(5.95)

Hence, by using (5.72), that is, the invariance of J with respect to relabeling,
we get from (5.94) that

dM (S̄t(Xα), S̄t(Xβ)) ≤
N−1
∑

n=1

(

J(X̄t
n−1, X̃

t
n)
)

+ J(X̄t
N−1, X̃

t
N )

≤
N
∑

n=1

‖X̄t
n−1 − X̃t

n‖E by (5.88)

≤ CM

N
∑

n=1

‖X̄n−1 − X̃n‖E by (5.93)

≤ CM (dM (Xα, Xβ) + ε).

After letting ε tend to zero, we obtain (5.89).
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5.5 From Lagrangian to Eulerian coordinates

We now introduce a second set of coordinates, the so–called Eulerian coordi-
nates. Therefore let us first consider X = (y, U, ν) ∈ F . We can define the
Eulerian coordinates as in [56] and also obtain the same mappings between Eu-
lerian and Lagrangian coordinates. For completeness we will state the results
here.

Definition 5.22. The set D consists of all pairs (u, µ) such that

(i) u ∈ H1
per, and

(ii) µ is a positive Radon measure whose absolute continuous part, µac, satis-
fies

µac = (u2 + u2
x)dx. (5.96)

We can define a mapping, denoted by L, from D to H ⊂ F :

Definition 5.23. For any (u, µ) in D, let

h = µ([0, 1)),

y(ξ) = sup{y | Fµ(y) + y < (1 + h)ξ},
ν(ξ) = (1 + h) − yξ(ξ),

U(ξ) = u ◦ y(ξ),

(5.97)

where

Fµ(x) =











µ([ 0, x)) if x > 0,

0 if x = 0,

−µ([x, 0)) if x < 0.

(5.98)

Then (y, U, ν) ∈ F0. We define L(u, µ) = Π(y, U, ν).

Thus from any initial data (u0, µ0) ∈ D, we can construct a solution of (5.39)
in F with initial data X0 = L(u0, µ0) ∈ F . It remains to go back to the original
variables, which is the purpose of the mapping M , defined as follows.

Definition 5.24. For any X ∈ F , then (u, µ) given by

u(x) = U(ξ) for any ξ such that x = y(ξ),

µ = y#(νdξ),
(5.99)

belongs to D. We denote by M the mapping from F to D which for any X ∈ F
associates the element (u, µ) ∈ D given by (5.99).

The mapping M satisfies
M = M ◦ Π. (5.100)

The inverse of L is the restriction of M to H, that is,

L ◦M = Π, and M ◦ L = I. (5.101)

Next we show that we indeed have obtained a solution of the CH equation.
By a weak solution of the Camassa–Holm equation we mean the following.
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Π
(Id, u,

R

x

−∞
dµ)

Tt(u0)

(Id, u0,
R

x

−∞
dµ0)

St(X0)

X

F

[X0]

X0

[X]

S̄t(X0)

H

Eulerian coordinates (D)Lagrangian coordinates (F)

Figure 5.2: A schematic illustration of the construction of the semigroup. The
set F where the Lagrangian variables are defined is represented by the interior
of the closed domain on the left. The equivalence classes [X ] and [X0] (with
respect to the action of the relabeling group G) of X and X0, respectively, are
represented by horizontal curves. To each equivalence class there corresponds a
unique element in H and D (the set of Eulerian variables). The sets H and D

are represented by the vertical curves.

Definition 5.25. Let u : R+ × R → R. Assume that u satisfies
(i) u ∈ L∞([0,∞), H1

per),
(ii) the equations

∫∫

R+×R

−u(t, x)φt(t, x) + (u(t, x)ux(t, x) + Px(t, x))φ(t, x)dxdt

=

∫

R

u(0, x)φ(0, x)dx, (5.102)

and

∫∫

R+×R

(P (t, x)−u2(t, x)− 1

2
u2
x(t, x))φ(t, x)+Px(t, x)φx(t, x)dxdt = 0, (5.103)

hold for all φ ∈ C∞
0 ([0,∞),R). Then we say that u is a weak global solution of

the Camassa–Holm equation.

Theorem 5.26. Given any initial condition (u0, µ0) ∈ D, we denote (u, µ)(t) =
Tt(u0, µ0). Then u(t, x) is a weak global solution of the Camassa–Holm equation.
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Proof. After making the change of variables x = y(t, ξ) we get on the one hand

−
∫∫

R+×R

u(t, x)φt(t, x)dxdt = −
∫∫

R+×R

u(t, y(t, ξ))φt(t, y(t, ξ))yξ(t, ξ)dξdt

= −
∫∫

R+×R

U(t, ξ)[(φ(t, y(t, ξ))t − φx(t, y(t, ξ)))yt(y, ξ)]yξ(t, ξ)dξdt

= −
∫∫

R+×R

[U(t, ξ)yξ(t, ξ)(φ(t, y(t, ξ)))t − φξ(t, y(t, ξ))U(t, ξ)2]dξdt

=

∫

R

U(0, ξ)φ(0, y(0, ξ))yξ(0, ξ)dξ (5.104)

+

∫∫

R+×R

[Ut(t, ξ)yξ(t, ξ) + U(t, ξ)yξt(t, ξ)]φ(t, y(t, ξ))dξdt

+

∫∫

R+×R

U2(t, ξ)φξ(t, y(t, ξ))dξdt

=

∫

R

u(0, x)φ(0, x)dx

−
∫∫

R+×R

(Q(t, ξ)yξ(t, ξ) + Uξ(t, ξ)U(t, ξ))φ(t, y(t, ξ))dξdt,

while on the other hand

∫∫

R+×R

(u(t, x)ux(t, x) + Px(t, x))φ(t, x)dxdt

=

∫∫

R+×R

(U(t, ξ)Uξ(t, ξ) + Px(t, y(t, ξ))yξ(t, ξ))φ(t, y(t, ξ))dξdt

(5.105)

=

∫∫

R+×R

(U(t, ξ)Uξ(t, ξ) +Q(t, ξ)yξ(t, ξ))φ(t, y(t, ξ))dξdt,

which shows that (5.102) is fulfilled. Equation (5.103) can be shown analogously

∫∫

R+×R

Px(t, x)φx(t, x)dxdt

=

∫∫

R+×R

Q(t, ξ)yξ(t, ξ)φx(t, y(t, ξ))dξdt

=

∫∫

R+×R

Q(t, ξ)φξ(t, y(t, ξ))dξdt (5.106)

= −
∫∫

R+×R

Qξ(t, ξ)φ(t, y(t, ξ))dξdt

=

∫∫

R+×R

[
1

2
ν(t, ξ) + (

1

2
U2(t, ξ) − P (t, ξ))yξ(t, ξ)]φ(t, y(t, ξ))dξdt

=

∫∫

R+×R

[
1

2
u2
x(t, x) + u2(t, x) − P (t, x)]φ(t, x)dxdt.
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In the last step we used the following
∫ 1

0

u2 + u2
xdx =

∫ y(0)+1

y(0)

u2 + u2
xdx =

∫ y(1)

y(0)

u2 + u2
xdx (5.107)

=

∫

{ξ∈[0,1]|yξ(t,ξ)>0}
U2yξ +

U2
ξ

yξ
dξ =

∫ 1

0

νdx, (5.108)

the last equality holds only for almost all t because for almost every t ∈ R+ the
set {ξ ∈ [0, 1] | yξ(t, ξ) > 0} is of full measure and therefore

∫ 1

0

(u2 + u2
x)dx =

∫ 1

0

νdξ = h, (5.109)

which is bounded by a constant for all times. Thus we proved that u is a weak
solution of the Camassa–Holm equation.

Next we return to the construction of the Lipschitz metric on D.

Definition 5.27. Let
Tt := MS̄tL : D → D. (5.110)

Note that, by the definition of S̄t and (5.100), we also have that

Tt = MStL.

Next we show that Tt is a Lipschitz continuous semigroup by introducing a
metric on D. Using the bijection L transport the topology from H to D.

Definition 5.28. We define the metric dD : D × D → [0,∞) by

dD((u, µ), (ũ, µ̃)) = d(L(u, µ), L(ũ, µ̃)). (5.111)

The Lipschitz stability of the semigroup Tt follows then naturally from The-
orem 5.21. The stability holds on sets of bounded energy that we now introduce
in the following definition.

Definition 5.29. Given M > 0, we define the subsets DM of D, which corre-
sponds to sets of bounded energy, as

D
M = {(u, µ) ∈ D | µ([0, 1)) ≤M}. (5.112)

On the set DM , we define the metric dDM as

dDM ((u, µ), (ũ, µ̃)) = dM (L(u, µ), L(ũ, µ̃)) (5.113)

where the metric dM is defined in (5.77).

The definition (5.113) is well-posed as we can check from the definition of L
that if (u, µ) ∈ DM then L(u, µ) ∈ HM . We can now state our main theorem.

Theorem 5.30. The semigroup (Tt, dD) is a continuous semigroup on D with
respect to the metric dD. The semigroup is Lipschitz continuous on sets of
bounded energy, that is: Given M > 0 and a time interval [0, T ], there exists a
constant C which only depends on M and T such that, for any (u, µ) and (ũ, µ̃)
in DM , we have

dDM (Tt(u, µ), Tt(ũ, µ̃)) ≤ CdDM ((u, µ), (ũ, µ̃))

for all t ∈ [0, T ].
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Proof. First, we prove that Tt is a semigroup. Since S̄t is a mapping from H to
H, we have

TtTt′ = MS̄tLMS̄t′L = MS̄tS̄t′L = MS̄t+t′L = Tt+t′

where we also use (5.101) and the semigroup property of S̄t. We now prove the
Lipschitz continuity of Tt. By using Theorem 5.21, we obtain that

dDM (Tt(u, µ), Tt(ũ, µ̃)) = dM (LMS̄tL(u, µ), LMS̄tL(ũ, µ̃))

= dM (S̄tL(u, µ), S̄tL(ũ, µ̃))

≤ CdM (L(u, µ), L(ũ, µ̃))

= CdDM ((u, µ), (ũ, µ̃)).

5.6 The topology on D

Proposition 5.31. The mapping

u 7→ (u, (u2 + u2
x)dx) (5.114)

is continuous from H1
per into D. In other words, given a sequence un ∈ H1

per

converging to u ∈ H1
per, then (un, (u

2
n + u2

nx)dx) converges to (u, (u2 + u2
x)dx)

in D.

Proof. Let Xn = (yn, Un, νn) be the image of (un, (u
2
n + u2

n,x)dx) given as in
(5.97) and X = (y, U, ν) the image of (u, (u2 + u2

x)dx) given as in (5.97). We
will at first prove that un converges to u in H1

per implies that Xn converges
against X in E. Denote gn = u2

n + u2
nx and g = u2 + u2

x, then gn and g are
periodic functions. Moreover, as Xn, X ∈ F0, we have yn,ξ + νn = 1 + hn and
yξ + ν = 1 + h, where hn = ‖νn‖L1 and h = ‖ν‖L1. By Definition 5.23, we have
that yn(0) = 0 and y(0) = 0, and hence

∫ yn(ξ)

0

gn(x)dx + yn(ξ) =

∫ ξ

0

νn(x)dx + yn(ξ) = (1 + hn)ξ, (5.115)

∫ y(ξ)

0

g(x)dx + y(ξ) =

∫ ξ

0

ν(x)dx + y(ξ) = (1 + h)ξ.

By assumption un → u in H1
per, which implies that un → u in L∞, gn → g in

L1, and hn → h. Therefore we also obtain that yn → y in L∞. We have

Un − U = un ◦ yn − u ◦ y = un ◦ yn − u ◦ yn + u ◦ yn − u ◦ y. (5.116)

Then, since un → u in L∞, also un ◦ yn → u ◦ yn in L∞ and as u is in H1
per, we

also obtain that u◦yn → u◦y in L∞. Hence, it follows that Un → U in L∞. By
definition, the measures (u2 + u2

x)dx and (u2
n + u2

nx)dx have no singular part,
and we therefore have almost everywhere

yξ =
1 + h

1 + g ◦ y and ynξ =
1 + hn

1 + gn ◦ yn
. (5.117)

117



Chapter 5. Stability for the periodic Camassa–Holm equation

Hence

yξ − ynξ = yξynξ

(1 + gn ◦ yn
1 + hn

− 1 + g ◦ y
1 + h

)

(5.118)

= yξynξ

(1 + gn ◦ yn
1 + hn

− 1 + gn ◦ yn
1 + h

)

+
yξynξ
1 + h

(gn ◦ yn − g ◦ yn + g ◦ yn − g ◦ y).

In order to show that ζn,ξ → ζξ in L1
per, it suffices to investigate

∫ 1

0

|g ◦ yn − g ◦ y|yξyn,ξdξ, (5.119)

and
∫ 1

0

|gn ◦ yn − g ◦ yn|yξyn,ξdξ, (5.120)

as we already know that hn → h and therefore yn,ξ and yξ are bounded. Since
0 ≤ yξ ≤ 1 + h, we have

∫ 1

0

|g ◦ yn − gn ◦ yn|yξyn,ξdξ ≤ (1 + h)‖g − gn‖L1. (5.121)

For the second term, let C = supn(1 + hn) ≥ 1. Then for any ε > 0 there exists
a continuous function v with compact support such that ‖g−v‖L1 ≤ ε/3C2 and
we can make the following decomposition

(g ◦ y − g ◦ yn)yn,ξyξ = (g ◦ y − v ◦ y)yn,ξyξ (5.122)

+ (v ◦ y − v ◦ yn)yn,ξyξ + (v ◦ yn − g ◦ yn)yn,ξyξ.

This implies

∫ 1

0

|g ◦ y − v ◦ y|yn,ξyξdξ ≤ C

∫ 1

0

|g ◦ y − v ◦ y|yξdξ ≤ ε/3, (5.123)

and analogously we obtain
∫ 1

0 |g ◦ yn − v ◦ yn|yn,ξyξdξ ≤ ε/3. As yn → y
in L∞ and v is continuous, we obtain, by applying the Lebesgue dominated
convergence theorem, that v ◦ yn → v ◦ y in L1, and we can choose n so big that

∫ 1

0

|v ◦ yn − v ◦ y|yn,ξyξdξ ≤ C2‖v ◦ y − v ◦ yn‖L1 ≤ ε/3. (5.124)

Hence, we showed, that
∫ 1

0
|g ◦ y − g ◦ yn|yn,ξyξdξ ≤ ε and therefore, using

(5.122),

lim
n→∞

∫ 1

0

|g ◦ y − g ◦ yn|yn,ξyξdξ = 0. (5.125)

Combing now (5.118), (5.121), and (5.122), yields ζnξ → ζξ in L1, and therefore
also νn → ν in L1. Because ζn,ξ and νn are bounded in L∞, we also have that
ζn,ξ → ζξ in L2 and νn → ν in L2. Since yn,ξ, νn and Un tend to yξ, ν and U in
L2 and ‖Un‖L∞ and ‖yn,ξ‖L∞, are uniformly bounded, it follows from (5.44c)
that

lim
n→∞

‖Un,ξ‖L2 = ‖Uξ‖L2 . (5.126)
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Once we have proved that Un,ξ converges weakly to Uξ, this will imply that
Un,ξ → Uξ in L2. For any smooth function φ with compact support in [0, 1] we
have

∫

R

Un,ξφdξ =

∫

R

un,x ◦ ynyn,ξφdξ =

∫

R

un,xφ ◦ y−1
n dξ. (5.127)

By assumption we have un,ξ → uξ in L2. Moreover, since yn → y in L∞,
the support of φ ◦ y−1

n is contained in some compact set, which can be chosen
independently of n. Thus, using Lebesgue’s dominated convergence theorem,
we obtain that φ ◦ y−1

n → φ ◦ y−1 in L2 and therefore

lim
n→∞

∫

R

Un,ξφdξ =

∫

R

uxφ ◦ y−1dξ =

∫

R

Uξφdξ. (5.128)

Form (5.44c) we know that Un,ξ is bounded and therefore by a density argument
(5.128) holds for any function φ in L2 and therefore Un,ξ → Uξ weakly and hence
also in L2. Using now that

‖Un,ξ − Uξ‖L1 ≤ ‖Un,ξ − Uξ‖L2 , (5.129)

shows that we also have convergence in L1. Thus we obtained that Xn → X
in E. As a second and last step, we will show that Π2 is continuous, which
then finishes the proof. We already know that yn → y in L∞ and therefore

an =
∫ 1

0 yn(ξ)dξ converges to a =
∫ 1

0 y(ξ)dξ. Thus we obtain as an immediate
consequence

‖Un(ξ − an) − U(ξ − a)‖L∞

≤ ‖Un(ξ − an) − U(ξ − an)‖L∞ + ‖U(ξ − an) − U(ξ − a)‖L∞ , (5.130)

and hence the same argumentation as before shows that Un(ξ− an) → U(ξ− a)
in L∞. Moreover,

∫ 1

0

|Un,ξ(ξ − an) − Uξ(ξ − a)|dξ (5.131)

≤
∫ 1

0

|Un,ξ(ξ − an) − Uξ(ξ − an)|dξ +

∫ 1

0

|Uξ(ξ − an) − Uξ(ξ − a)|dξ

≤ ‖Un,ξ − Uξ‖L1 + ‖Uξ(ξ − an) − Uξ(ξ − a)‖L1 ,

and again using the same ideas as in the first part of the proof, we have that
Un,ξ(ξ − an) → Uξ(ξ − a) in L1, which finally proves the claim, because of
(5.88)

Proposition 5.32. Let (un, µn) be a sequence in D that converges to (u, µ) in
D. Then

un → u in L∞
per and µn

∗
⇀ µ. (5.132)

Proof. Let Xn = (yn, Un, νn) = L(un, µn) and X = (y, U, ν) = L(u, µ) . By the
definition of the metric dD, we have limn→∞ d(Xn, X) = 0. We immediately
obtain that

Xn → X in L∞(R), (5.133)
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by Lemma 5.18. Denote by C = supn(1 + hn). For any x ∈ R there exists ξn
and ξ, which may not be unique, such that x = yn(ξn) and x = y(ξ). We set
xn = yn(ξ). Then we have

un(x) − u(x) = un(x) − un(xn) + Un(ξ) − U(ξ), (5.134)

and hence

|un(x) − un(xn)| = |
∫ ξn

ξ

Un,ξ(η)dη| (5.135)

≤
√

|ξn − ξ|
(

∫ ξn

ξ

U2
n,ξ(η)dη

)1/2

≤
√

|ξn − ξ|
(

∫ ξn

ξ

yn,ξνn(η)dη
)1/2

≤ C
√

|ξ − ξn|
√

|yn(ξn) − yn(ξ)|
= C

√

|ξ − ξn|
√

|y(ξ) − yn(ξ)|
≤ C

√

|ξ − ξn|‖y − yn‖1/2
L∞ .

W.l.o.g., we can assume that ‖yn−y‖L∞ < 1, and |ξn−ξ| < 1 as yn is increasing.
Thus

|un(x) − un(xn)| ≤ C‖yn − y‖1/2
L∞ . (5.136)

Since yn → y and Un → U in L∞, it follows that un → u in L∞.
By weak-star convergence, we mean that

lim
n→∞

∫

R

φdµn =

∫

R

φdµ, (5.137)

for all continuous functions with compact support. Using Definition 5.24, it
follows that

∫

R

φdµn =

∫

R

φ ◦ ynνndξ and

∫

R

φdµ =

∫

R

φ ◦ yνdξ. (5.138)

Since yn → y in L∞, the support of φ◦yn is contained in some compact set, which
can be chosen independently of n and from Lebesgue’s dominated convergence
theorem, we obtain that φ ◦ yn → φ ◦ y in L2. As νn → ν in L2, we have

lim
n→∞

∫

R

φ ◦ ynνndξ =

∫

R

φ ◦ yνdξ. (5.139)

This finishes the proof.
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Appendix A

Zusammenfassung

Im ersten Teil dieser Dissertation untersuchen wir den Kern von Transforma-
tionsoperatoren für eindimensionale Schrödingeroperatoren mit Potentialen, die
asymptotisch nahe bei Bohr fast-periodischen Potentialen sind, deren Schrödinger-
operatoren Spektren mit unendlich vielen Lücken besitzen. Darauf basierend
werden wir direkte Streutheorie für den Fall von stufenartigen Hintergründen
entwickeln.
Außerdem präsentieren wir eine Anwendung von direkter und indirekter Streuthe-
orie auf die Korteweg–de Vries Gleichung, in der wir das zugehörige Cauchy-
Problem für Anfangsbedingungen lösen, die Störungen vom Schwartz-Typ von
quasi–periodischen Potentialen sind, deren Schrödingeroperatoren ein Spektrum
mit endlich vielen Lücken besitzen, unter der Voraussetzung, dass die zugehörigen
Teile der Spektren gleich oder disjunkt sind.
Im zweiten und letzten Teil beschäftigen wir uns mit der Camassa–Holm Gle-
ichung und studieren die Stabilität von Lösungen des zugehörigen Cauchy-
Problems in dem wir eine Lipschitz Metrik konstruieren.
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