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1. Abstract 
 

 

An E2F associated phospho protein (EAPP) has been recently identified through 

yeast two-hybrid assay. EAPP consists of 285 amino acids, weighs about 40 KDa, is 

localized in the cell nucleus and interacts with a subgroup of E2F proteins. EAPP is 

involved in cell cycle regulation as it significantly stimulates the S-phase entry of the 

cell and disappears in M phase. EAPP can control E2F-mediated transcription and 

affect cell proliferation. 

In this study the interactions and post-translational modifications of EAPP have been 

investigated. Different truncations of this protein were examined for activity and post-

translational modifications, among that sumoylation and acetylation, to figure out the 

functional domains and regulation of EAPP. Besides, the stability of the protein and 

the domain affecting this character were also studied. 

Treatment with TSA, an HDAC inhibitor, induced acetylation of EAPP at its N 

terminus, within amino acids 1-140. 

Through FACS method it was shown that the cells expressing truncated EAPP 1-140, 

took much longer to re-enter the cell cycle after the release from Nocodazole which 

arrests the cells at M phase. It in turn shows the possibility of involvement of this 

truncation in inhibition of cyclin-dependent kinase (CDK) complexes which control the 

transitions between different phases of the cell cycle. 

Utilizing Pulse Chase methods and treating the cells expressing full length or 

truncated versions of EAPP it was demonstrated that the amino-terminal part of 

EAPP confers acetylation-dependent stability to the protein.  
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1. Zusammenfassung 
 

Das E2F assoziierte Phosphoprotein (EAPP) wurde kürzlich in einem Two-Hybrid-

Versuch in Hefe identifiziert. Das ca. 40 kDa große EAPP besteht aus 285 

Aminosäuren, ist im Zellkern lokalisiert und interagiert mit einer Untergruppe von 

E2F-Proteinen. EAPP stimuliert in der Zelle maßgeblich den Übergang von G1- zu S-

Phase und verschwindet in der M-Phase. Somit spielt EAPP eine Rolle in der 

Zellzyklus-Regulation, kontrolliert aber auch E2F-vermittelte Transkription und 

beeinflusst die Zellteilung. 

Thema dieser Arbeit ist EAPP und seine Interaktionen und Modifikationen nach der 

Translation. Hierzu wurden verschiedene Verkürzungen von EAPP auf Aktivität und 

Modifikationen wie Sumoylierung und Acetylierung untersucht, um mehr über die 

funktionellen Proteindomänen und ihre Regulation herauszufinden. Weiters wurden 

EAPP-Domänen hinsichtlich ihres Einflusses auf die Proteinstabilität untersucht. 

Behandlung mit TSA (einem HDAC-Hemmstoff) induzierte Acetylierung am N-

terminalen Teil der EAPP-Verkürzung 1-140. Mittels FACS-Analyse konnte gezeigt 

werden, dass Zellen, welche die EAPP-Verkürzung 1-140 exprimieren, sehr viel 

länger brauchen, um nach einer Behandlung mit Nocodazole (arretiert Zellen in M-

Phase) eine neue Zellzyklusrunde zu starten. Diese Ergebnisse lassen darauf 

schließen, dass diese EAPP-Domäne an der Inhibierung von Cyclin-abhängigen 

Kinase (CDK)-Komplexen beteiligt ist, welche die Übergänge in die verschiedenen 

Zellzyklus-Phasen kontrollieren. 

Mittels Pulse Chase-Versuchen und Cycloheximid-Behandlung von Zellen, welche 

die EAPP-Verkürzung 1-140 exprimieren, konnte gezeigt werden, dass EAPP an 

seinem N-terminalen Ende (Verkürzung 1-140) sehr viel stabiler ist. Die Quintessenz 

dieser Arbeit besagt, dass die Acetylierung von EAPP an seinem N-terminalen Ende  

seine Stabilität beeinflusst. 
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2. INTRODUCTION 
 

2.1 The mammalian cell cycle  

The cell cycle is a complex ordered set of events that control the cell division. The 

activation of two significant proteins; cyclins and cyclin dependent kinases (cdks) 

regulate the progression of the cell cycle. The cell cycle consists of four different 

phases, G1-, S-, G2-phase and Mitosis. The phosphorylation of numerous proteins 

caused by different sets of cdk- cyclin complexes leads to the entry of the cell into 

mitosis. There is an additional state of the cell, the G0-phase, which allows the cell to 

rest for a period of time, before going through the new cell cycle or terminal 

differentiation. 

 

2.2 The E2F family of transcription factors 

E2F play a crucial role in a wide range of biological processes, comprising DNA 

replication, mitosis, the mitotic checkpoint, DNA-damage checkpoints, DNA repair, 

differentiation, development and apoptosis (Polager et al., 2008). It can also 

function as transcriptional repressor or activator (De Gregori et al. 2006). The 

identification of E2F family of proteins was based on its role in advancing the G0 to 

S phase transition (Blais et al. 2007). E2F activity will be deregulated through many 

different mechanisms in the vast majority of human tumors. These comprise 

functional loss of the pocket protein family including the retinoblastoma protein 

(pRB); phosphorylation of pRB promoted by amplification of cyclin D; loss of p16 a 

cyclin-dependent kinase inhibitor that inhibits the phosphorylation of pRB (Polager 

et al., 2008). E2F transcription factors may thus play a significant role in regulating 

the transcription of different cellular processes far beyond the originally described 

cell cycle and proliferation (Rotheneder et al., 2007).  
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The E2F family comprises eight different genes (E2F1-8) in mammals, which code 

for nine distinct proteins (Polager et al., 2008 ; De Gregori et al., 2006). All members 

of this transcription factors contain a DNA-binding domain. E2F1–5 have a 

transactivation domain which enables the activation of gene expression. Additionally 

E2F1–6 comprise a dimerization domain which is necessary for their interaction with 

a member of the dimerization-partner family (DP1–DP4). This interaction enables 

them to bind DNA and function as transcriptional regulators. E2F1, E2F2 and 

E2F3a, are named “activator E2fs’” they are believed to function mostly in gene 

expression activation and they interact only with pRB. E2F3b, E2F4 and 5, on the 

other hand, are repressors and are believed to be capable of interacting with the 

other pocket proteins. The main role of E2F6–8 is repression of gene expression, 

they do not have any interaction with pocket proteins and are mostly regarded as the 

‘repressor E2Fs’ (Polager et al., 2008; Alonso MM et al., 2008). 

E2F-1, -2, and –3 can function as oncogene products (Xu etal., 1995), and E2F-1 is 

also known for its role as a tumor suppressor (Field et al., 1996; Yamasaki et al., 

1996). This can be described by the capability of E2F-1 in inducing apoptosis, for 

instance by activating the expression of the tumor suppressor protein p14ARF 

(Bates et al., 1998). 

E2F1 can either induce cell proliferation or cell death. Signal from DNA damage can 

lead E2F1 to apoptosis through p53-dependent and p53-independent pathways, 

(Rotheneder et al., 2007) whereas signal-transduction pathways, such as the 

phosphatidylinositol 3 kinase (PI3K)–protein kinase B (Akt) and epidermal-growth-

factor receptor (EGFR)–ras pathways play a role in inhibition of E2F-induced 

apoptosis (Polager et al., 2008). 
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Upstream signals direct E2F1 to proliferation or apoptosis. Mitogenic signals and DNA 

damage activate different signaling pathways that determine whether E2F1 activity will 

induce transcription of proliferative or apoptotic genes. Mitogenic stimuli elevate cyclin-D 

levels, leading to repression of pRB activity via phosphorylation by cyclin D–CDK4 or cyclin 

D–CDK6 complexes. Subsequently, E2F1 is free to activate proliferative or apoptotic genes. 

When mitogenic signals also switch on the PI3K–Akt pathway or, in some situations EGFR–

Ras–Raf signaling, the apoptotic activity of E2F1 is inhibited and it induces mainly 

proliferation. In response to DNA damage, signals direct E2F1 to activate its apoptotic target 

genes: pRB acetylation specifically releases E2F1, and not other E2Fs, to enable induction 

of apoptosis; E2F1 is phosphorylated by ATM and Chk2 and also acetylated these 

modifications direct it preferentially to its apoptotic target genes. In addition, binding of Jab1, 

an E2F pro-apoptotic co-factor, enhances the apoptotic activity of E2F1. Conversely, SirT1 

is induced after DNA damage and it can inhibit the apoptotic functions of E2F1 (Polager et 

al. 2008). 
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  2.2.1 The role of p53 in E2F1-induced apoptosis 

Accumulation of p53 is induced by ectopic expression of E2F1 (Kowalik et al., 

1995; Hiebert et al., 1995) and direct transactivation of p14ARFtumor suppressor 

gene by E2F1 is one mechanism underlying this phenomenon (Bates et al 1998; 

Robertson et al., 1998). ARF has an interaction with the Mdm2 E3 ubiquitin ligase 

and inhibits the ability of Mdm2 to target p53 for ubiquitination and subsequent 

degradation (Weber et al., 1999). Therefore, Increase in ARF levels induced by 

E2F1, leads to activation and stabilization of p53 (Ginsberg et al., 2002). 

Additionally, there are also ARF-independent functional links between E2F1 and 

p53 whereby E2F1 can increase p53 levels and p53-dependent apoptosis also in 

the absence of ARF. Recently a number of studies show that E2F1 over-expression 

or pRB inactivation leads to apoptosis that is inhibited by loss of p53 but not by loss 

of ARF (Russel et al., 2002; Tolbert et al., 2002; Tsai et al., 2002). E2F1 has an 

interaction with p53 via the cyclin A binding domain of E2F1 and this interaction 

increases the apoptotic activity of p53 (Hsieh et al., 2002). This function of E2F1 is 

shared by E2F2 and E2F3 (Ginsberg et al., 2002; Hsieh et al., 2002). 

2.2.2 E2F1 sensitizes cells to apoptotic stimuli 

In a variety of cell types over-expression of E2F1 followed by treatment with 

ionizing radiation or chemotherapeutic drugs such as the topoisomerase II 

inhibitors, etoposide and adriamycin sensitizes cells to apoptosis (Nip et al., 1997; 

Pruschy et al., 1999). This increased level of E2F1 protein is due to protein 

stabilization which is mediated by an ATM-induced phosphorylation (Lin W.C. et al., 

2001). Currently, the molecular mechanisms which underlie the capability of E2F1 

to sensitize cells to apoptotic stimuli are not completely understood. However, it is 

significantly established that the pRB pathway is functionally inactivated in most 

human cancers leading to deregulation of E2F activity. Thus the increased 

sensitivity of tumor cells to radio- and chemotherapy might be due to the capability 

of E2F to induce apoptosis in reaction to genotoxic stress (Ginsberg et al., 2002). 
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Pathways of E2F1 induced apoptosis (Ginsberg et.al.2002). 
  

2.3 E2F and the pocket protein family 

The gene regulation of E2F results from a complex mechanism which enables the 

cell cycle to enter S phase and begin DNA replication only under approving 

conditions. For example, if genomic DNA sustained damages and requires repair, cell 

cycle will not proceed to S phase and in this way the accumulation of genetic defects 

within the cellular genome might be prevented. In this context, the regulators of E2F 

activity are the members of Rb family, which are capable of binding to E2F and 

preventing it from interacting with the promoter region of those genes which are 

crucial for S phase entry (Sun et al., 2007). 

  

The pocket protein family consists of three members, pRb (pRb1/p105), p107 and 

p130 (pRb2). They are all nuclear proteins and operate mainly as regulators of the 
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cell cycle, although several studies presume that pocket proteins are also involved in 

development and differentiation (Lipinski and Jacks, 1999; Thomas et al., 2001).  

The retinoblastoma susceptibility gene was identified as the first tumour suppressor 

gene. pRB, The product of this gene, is known as the negative regulator of cell 

proliferation. Active pRB has interactions with many nuclear proteins including 

numerous transcription factors and chromatin associated proteins (Morris et al., 

2001; Goodrich et al., 2003 and 2006). The E2F transcription factors are the best-

known targets of pRB (Bandara et al., 1991; Chellapan et al., 1991; Chittenden et al., 

1991). Both pRB and pRB family members inhibit E2Fmediated activation and 

enhance E2F mediated repression. pRB family members are capable of repressing 

E2F dependent transcription and this mechanism is controlled by Cyclin -dependent 

kinases (CDKs) (van den Heuvel et al., 2008). 

The three pocket proteins show similarities especially in the A and B pocket but there 

are also obvious distinctions. p107 and p130 have much closer similarity to each 

other than either to pRB. The expression pattern of pocket proteins varies, p107 is 

highly expressed in cycling cells and p130 is expressed at higher levels in cells that 

have exited the cell cycle (Classon et al., 2002; Mcpherson D., 2008).  

In quiescent cells (G0) and cells in early G phase, pRb2/p130 is highly expressed 

(Cobrinik et al., 1993; Smith et al., 1996) it interacts mainly with E2F4 and to a less 

extent with E2F5 (Hijmans et al., 1995; Vairo et al., 1995; Sun et al., 2007). This 

complex first binds to the promoter regions of the genes required for S phase entry. 

pRb2/p130 and pRb/p107 mediate the transcriptional expression in G0 and early G1. 

In addition to that, there is another mechanism provided by pRB/p105, which 

represses the expression of genes inducing S phase entry. pRb/p105 is expressed at 

moderate and stable levels during the cell cycle in contrast to pRb2/p130 and pRb/ 

p107 (Buchkovich et al., 1989; Chen et al., 1989; Decaprio et al., 1989; Mihara et al., 

1989). 

Pocket proteins interfere with the E2F transactivtion domain and in this way can 

inhibit the E2F transactivation activity directly. They also build complexes with histone 

deacetylases, histone methyltransferases, histone demethylases, and other 

chromatin modulators, which act to confer a repressive chromatin state around E2F 

target genes (Mcpherson D., 2008). These chromatin-remodelling factors cause  

Histon deacetylation, which results in chromatin condensation, which is not 

permissive for transcriptional activity. Naturally this suppresses the expression of 

those genes that are needed for entering into S phase (Sun et al., 2007). It has been 

shown that pRB, besides controlling the transition from G1 to S phase, also regulates 
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ribosome biogenesis and in this way directly connects cell growth to cell proliferation. 

Genetic alteration involving the pathway leading to pRB inactivation, such as RB1 

mutation or deletion, INK4a mutation, deletion or gene silencing and cyclin D1 or 

Cdk4 overexpression, are observed regularely in human cancers (Sherr et al., 2002; 

Montanaro et al., 2008). 

 

2.4 EAPP, a novel E2F binding protein 

EAPP was verified as a novel E2F-binding protein by means of a yeast two-hybrid 

interaction system utilizing the N-terminal domain of E2F-1 as the bait. Due to the 

fact that this protein is highly phosphorylated, it was named EAPP (e2F-associated 

phosphoprotein). EAPP is localized in the cell nucleus and interacts with the E2F 

members 1-3, but not with E2F4. It was observed that EAPP is present during the cell 

cycle but vanishes during mitosis. An identical increase of cells in S phase was 

resulted when EAPP was over-expressed in U2OS cells, whereas knocking down of 

EAPP mediated by RNAi diminished the fraction of cells in S-phase. Coming to the 

conclusion, EAPP controls E2F-regulated transcription and stimulates cell 

proliferation (Novy et al, 2005). 

 

On some promoters (e.g murine thymidine kinase promoter) that have just one E2F 

binding site but an Sp-1 binding site in addition (Ogris et al 1993) (Sp-1 also works 

synergistically with E2F) the activation by only E2F-1 alone was not that strong but 

the synergistic effect of E2F-1 and EAPP was much stronger than with the artificial 

E2F-promoter (Novy et al, 2005). As for p14 promoter it was shown that E2F-1 over-

expression resulted in a strong activation, but contrary to all other examined E2F 

controlled promoters, a co-expression of EAPP caused a p14-repression, showing 

that EAPP can also be a transcriptional repressor (for p14 repression EAPP does not 

need to be mediated by E2F). 

It was also examined if EAPP levels change during the cell cycle. Surprisingly the 

only phase of fluctuation was identified in mitotic cells, where EAPP disappeared in 

mitosis, showing that EAPP in this phase might interfere with the completion of the 

cell cycle. The mechanism of the EAPP degradation is not yet known. In M/G1 EAPP 

reappeared. In all other phases throughout the cell cycle EAPP levels remained 

rather constant (Novy et al, 2005). 

EAPP might interfere with the degradation of E2F-1 via the proteasome pathway, as 

a slight increase of E2F-1 levels was found in cells transiently over-expressing EAPP 
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(Novy et al 2005).This could be a result of the repression of the p14 mediated E2F-1 

degradation and/or enhanced E2F-1 promoter activity. 

 

2.5 Histon acetylation 

Intracellular and external mutagens attack DNA constantly. Sites of DNA damage 

need to be identified precisely so that the DNA repair machinery can be assembled  

for the proper location. The recognition of damaged sites, recruitment of repair 

factors and assembly of repair “factories” is modulated by posttranslational 

modifications(PTMs) These PTMs comprise acetylation, phosphorylation, methylation 

ubiquitination and sumoylation (Aimee N. Lake et al., 2007).  

Histones are a family of nuclear proteins that have interactions with DNA. This 

interaction results in DNA being wrapped around a core of histone octamer in the 

nucleosome. Histon Acetyl Transferases (HATs) mediate the acetylation of histones 

on lysine residues, This important mechanism has a crucial role in regulation of 

chromatin remodelling and gene expression. Histone deacetylase (HDAC) inhibitors 

are the recent category of chemotherapeutic drugs which modulate gene expression 

by increasing  histone acetylation , and therefore resulting in chromatin relaxation 

and modified gene expression. In preclinical studies, it has been demonstrated that 

HDAC inhibitors have strong anticancer activities (Rasheed at al. 2007). 

Hyperacetylation of histones  leads to an open modification of chromatin structure 

and influences transcription of the gene through accessibility of DNA to the basal 

transcription initiation machinery (Ogryzko et al., 1996; Grünstein et al., 1997; Struhl 

et al., 1998 and  Pons et al., 2009 ). 

 

 

2.5.1 Chromatin modification in response to DNA double strand 
break 
 
Chromatin makes a natural barrier against access to DNA throughout recombination, 

transcription and damage repair. Subsequent to DNA damage, chromatin structure is 

modified by (i) covalent histone modifications, (ii) ATP-dependent chromatin 

remodeling and (iii) incorporation of histone variants into nucleosomes (Vaquero et 

al., 2003; Shogren-Knaak et al., 2006). 
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One target of the ATM kinase subsequent to DNA damage is the histone H2A-variant 

H2AX (Redon et al., 2002). Histone H2AX is the major isoform in yeast and a minor 

H2A species in mammals. It is phosphorylated at the carboxy-terminal serine 139 in 

somatic cells in response to damage resulting from double strand breaks (DSBs) 

(Rogakou et al., 1998) 

Within minutes of damage Phosphorylated H2AX ( -H2AX) appears over large 

adjacent chromatin regions over tens of kilobase in yeast and up to 2 Mb in 

mammalian cells (Rogakou et al., 1999; Pandita et al., 2009). 

 

2.5.2 The role of HDAC inhibitors 
 

HDAC inhibitors, based on their structures, can be divided into four groups (Miller et 

al., 2003; Marks et al., 2004), comprising hydroximates, cyclic peptides, aliphatic 

acids and benzamides. The first discovered natural product belonging to 

hydroximates group was Trichostatin A (TSA) (Yoshida et al., 1990). Low 

concentration (nM) of TSA can result in cell differentiation and inhibit growth in 

tumors, with a tiny influence on normal cells (Marks et al., 2005). TSA causes cell 

cycle arrest or apoptosis by delaying the transition of G1/S phase (Mukhopadhyay et 

al., 2006). Despite the existence of strong evidence that TSA, as a common HDAC 

inhibitor, has a wide range of anti-cancer effects; it has not so far been used in the 

clinical trials, possibly because of its unrecognized  potential side effects (Pan et al., 

2007). 

Histone deacetylase (HDAC) inhibitors have been employed over the last decade as 

an anti-proliferative strategy targeting solid or hematopoietic malignant disorders 

(Kelly et al., 2005). 

Histone deacetylase (HDAC) inhibitors have been used as an anti-proliferative 

strategy targeting solid or hematopoietic malignant disorders over the last 

decade(Kelly et al., 2005; Glauben R. et al., 2009). They repress the pro-

inflammatory cytokines which can lead to apoptosis (Glauben R. et al., 2006). 
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Molecular mechanism of HDAC inhibitors in anticancer effects. Transcriptional 

repression in chromatin with HDAC can lead to cell growth and tumor growth; transcriptional 

activation in chromatin with HAT can lead to cell growth arrest, differentiation and/or 

apoptosis and inhibition of tumor growth. HDAC inhibitor can directly inhibit HDAC and 

indirectly activate HAT (Bi et al., 2006). 
 

 

There are many evidences which indicate that histone hypo-acetylation causes 

repression of tumor suppressor gene expression. Small molecular inhibitors of HDAC 

(HDACI) are very efficient in up-regulating the gene expression of tumor suppressor, 

resulting in tumor growth reduction and inducing programmed cell death (Liu et al., 

2006). 

Repressing HDAC activity and preventing the deacetylation of histone may result in 

hyperacetylation of histone, then unfolding the chromatin and promoting transcription 

factors to bind  to DNA and in this manner, genes which are inhibited can be 

expressed (Brown et al., 2002). HDAC enzymes eliminate the acetyl group from the 

histone (hypoacetylation), thereby decline the space between the nucleosome and 

the DNA wrapped around it, reducing transcription factor access and inducing 

transcriptional repression (De Ruijter et al., 2003; Bi et al., 2006). 
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2.6 Protein stability 

 

Intracellular proteins are turning over extensively, this process is specific, and the 

stability of many proteins is controlled induvidually and can change under various 

conditions. Proteolysis of cellular proteins is a temporally regulated and tightly 

controlled process which plays major roles in broad array of basic pathways. Among 

these processes are cell cycle, development, differentiation, regulation of 

transcription, antigen presentation, signal transduction, receptor-mediated 

endocytosis, quality control, and regulation of different metabolic pathways. The 

stability of all cellulare proteins can be influenced by alteration in pathophysiological 

conditions, such as starvation or re-supplementation of nutrients (Aaron Ciechanover, 

2007). 

 

 

2.6.1 Protein degradation 
 

In eukaryotic cells the ubiquitin–proteasome and autophagy–lysosome pathways are 

the two main routes of protein and organelle clearance. Short-lived nuclear and 

cytosolic proteins are mainly degraded by proteasomes which are barrel-shaped 

multiprotein complexes (Ciechanover, A. 2006; David C. Rubinsztein 2006).  
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Schematic diagram of the ubiquitin–proteasome system. Before they are targeted for 

proteasomal degradation, most proteins are covalently modified with ubiquitin (Ub). Typically, 

three enzyme types are involved in this process — ubiquitin-activating (E1), ubiquitin-

conjugating (E2) and ubiquitin ligase (E3) enzymes. Proteins tagged with chains of four or 

more ubiquitins are shuttled to the the proteasome by various proteins such as CDC48/p97. 

In the proteasome, proteins are reduced to peptides, which are then released into the cytosol 

and further broken down by peptidases (David C. Rubinsztein 2006). 

 

Most proteins are targeted for proteasomal degradation after being covalently 

moderated with ubiquitin, which is conjugated through its carboxy terminus, usually to 

lysine residues. Three different kinds of enzymes involve in this conjugation: E1 is an 

ubiquitin activating enzyme. Hydrolyses ATP and makes a thioester-linked conjugate 

between itself and ubiquitin.; E2 which is an ubiquitin-conjugating enzyme forms a 

similar thioester intermediate with ubiquitin receiving it from E1; and E3 as ubiquitin 

ligase transfers the ubiquitin to the substrate binding both E2 and the substrate 

(Richly H. et al., 2005; Weihl et al., 2006;  Rubinsztein DC. 2006). 
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Transcription can be influenced by Ubiquitin conjugation through different 

mechanisms (Muratani et al., 2003). Many transcription factors are ubiquitinated and 

degraded by the proteasome. In fact, in many cases,. , transcriptional activation 

domains and signals for Ubiquitin conjugation directly overlap. Ubiquitination and 

proteolysis of repressors even may stimulate transcriptional activity and reset a 

promoter for further rounds of transcription (Lipford et al., 2005; H.Lecker et al. 2006). 
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Aims of the project 
 

Considering the fact that EAPP interacts with different proteins playing important 

roles in the cell cycle (Ludwig Schwartzmayer unpublished data), different EAPP 

truncations should be examined for interactions and post-translational modifications 

to identify the regulatory domains of this protein. 

 

Recognition of the sumoylation and acetylation sites of EAPP was planned based on 

the unpublished data of Peter Andorfer demonstrating the fact of post-translational 

modifications of EAPP. 

 

Identification of the protein domain playing a role in the stability of EAPP was also 

among the questions to be answered.  
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3. RESULTS 
 

3.1. Generation of U2OS cells stably expressing EAPP truncations 

Considering the fact that EAPP interacts with different proteins playing important 

roles in the cell cycle (Ludwig Schwartzmayer unpublished data), this experiment was 

done with the aim of revealing the binding site of interacting proteins with EAPP. 

   

 

 

Transfection of the cells with the 
vector carrying the sequence  

  
 

 

Cloning of different EAPP 
truncations in a vector 

Selection with Geneticin 

Studying the activity of 

truncations compared to the wild 

type 

Isolation of single clones 

  
 

 

Fig.3.1.1. Different EAPP truncations were cloned in a vector. Then the U2OS cells were transfected 

with the vector carrying the sequence. The single clones were isolated after selection with geneticin 

and western blotting was performed with the cell lysate to study the activity of the truncations.  
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M    1    2     3    4     5    6     7   8    9    10   11 

1. U2OS 
2. HA-EAPP 
3. 1-120 
4. 1-140 
5. 1-160 
6. 1-180 
7. 1-240 
8. 1-266 
9. 55-C 
10 .95-C 
11. 135-C 

 
Fig.3.1.2: Western blot with α HA, the stably expressed levels of different EAPP truncations (as shown in the 

box) were studied in this figure. All the truncations have a HA tag and the expression could be followed by anti HA 

antibody in western blot. U2OS were loaded as a negative control.  

 

All the EAPP truncations were stably expressed, confirming the expected weight and 

size.   

 

  M  1   2   3    4   5    6    7   8    9  10  11  12  13  14 
1. U2OS 
2. HA-EAPP 
3. 1-120 
4. 1-140 
5. 1-160 
6. 1-180 
7. 1-240 
8. 1-266 
9. 55-C 
10 .95-C 
11. 135-C 
12.175-C 
13. 195-C 
14. 215-C 

 
Fig.3.1.3. 1E4 western blot, a western blot was performed with anti EAPP by EAPP truncations as shown in 

the box to study the expression of endogenous EAPP. 

 

As it can be seen, 1E4 antibody recognized the truncations 1-180, 55-C, 95-C and 

135-C indicating that the recognition site of 1E4 is between135-180. 

The protein amounts were higher in truncations 1-180, 55-C and 95-C compared to 

endogenous EAPP. 

 

 

 23



 

3.2 Effect of drugs influencing cell cycle on EAPP truncations 

The fact of post translational modification and among that, putative sumoylation of 

EAPP (Peter Andorfer unpublished data), brought up the idea of finding these 

sumoylation sites on EAPP. The U2OS cells, stably expressing different EAPP 

truncations, were treated with Iodoacetamide which is the inhibitor of isopeptidases  

uestion was whether the truncations are differentially 

ffected by different drugs. 

     

that remove sumo moieties from the protein. 

They were also treated with TSA which is a histon deacetylase inhibitor and also with 

Etoposide, which inhibits topoisomerase II and leads to DNA double strand break. 

With this experiment the q

a

 

             

ugs. On the right, the ponceau stain belonging to  

is blot is shown.  

 the protein   

f protein after treatment with TSA.  

 

Fig.3.2.1 α-HA Western blot, a western blot was performed  

with anti HA, by EAPP truncations tagged with HA and treated with  

different drugs, as shown in the box, to examine if they are differentially  
1. U2OS WT 
2. U2OS+etoposide 
3. U2OS+TSA 
4. U2OS+iodoacetamide

affected by these dr

th
 

l 

 
amide 

1. 1-120+TSA 
2. 1-120+iodoacetamide 

 

5. HA EAPP norma
6. HA EAPP+etoposide 
7. HA EAPP+TSA
8. HA EAPP+iodoacet
9. 1-120 normal 
10. 1-120+etoposide 
1
1
 

 

Comparing the signal strength with

amount shown in ponceau stain,  

EAPP 1-120 showed higher levels  

o
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Fig.3.2.2 α-HA Western blot a western blot was performed  

with anti HA, by EAPP truncations tagged with HA and treated with different  

1. 1-140 normal 
2. 1-140+etoposide 
3. 1-140+TSA 
4. 1-140+iodoacetamide 
5. 1-160 normal 
6. 1-160+etoposide 
7. 1-160+TSA 
8. 1-160+iodoacetamide 
9. 1-180 normal 
10. 1-180+etoposide 
11. 1-180+TSA 
12. 1-180+iodoacetamide 

drugs, as shown in the box, to examine if they are differentially affected  

by these drugs. On the right, the ponceau stain belonging to this  

blot is shown.  

 

  

 

 

Fig.3.2.3 α-HA Western blot a western blot was performed  

with anti HA, by EAPP truncations tagged with HA and treated with different  1. 1-240 normal 
2. 1-240+etoposide 
3. 1-240+TSA 
4. 1-240+iodoacetamide 
5. 1-266 normal 
6. 1-266+etoposide 
7. 1-266+TSA 
8. 1-266+iodoacetamide 
9. 55-C normal 
10. 55-C+etoposide 
11. 55-C+TSA 
12. 55-C+iodoacetamide 

drugs, as shown in the box, to examine if they are differentially  affected  

by these drugs. On the right, the ponceau stain belonging to this  

blot is shown.  
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Comparing the results of this part, higher protein amounts of some truncations (1-

120, 1-140, 1-160) were distinguished after treatment with TSA but this effect was not 

observed with other truncations.  

This difference in protein amount can either depend on levels of protein translation 

and mRNA transcrioption or might depend on stability of the protein at this part. 

 

 

 

 

3.3 Inhibition of gene expression in translational level 

 

Comparing the results of part 3.2, higher protein amounts of some truncations (1-120, 

1-140, 1-160) were seen after treatment with TSA. To examine if this difference 

depends on protein translation, the cells expressing full length and truncated  EAPP, 

were treated with Cycloheximide which is an inhibitor of protein biosynthesis in 

eukaryotic cells.  

Increased levels of protein amount can result from either higher expression or higher 

stability of the protein. 

This experiment was performed to examine the main cause of increased level of 

protein.  

If the induction by TSA occurs after translation then no expression was expected 

after treatment with cycloheximide. If the protein amount is maintained by TSA in the 

presence of cycloheximid, it indicates that TSA increases protein stability.  
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 1           2           3            4 
    1       2       3       4       

1. HA EAPP normal 
2. HA EAPP+TSA 
3. HA EAPP+cycloheximide 
4. HA EAPP+TSA+cycloheximide 

 
 

 
 
   1           2           3           4  1         2        3      4  

 
 
      3       4 

1. 1-120 normal 
2. 1-120+TSA 
3. 1-120+cycloheximide 
4. 1-120+TSA+cycloheximide  

 
   1           2            3           4                1        2      3      4 

1. 1-140normal 
2. 1-140+TSA 
3. 1-140+cycloheximide 
4.1-140+TSA+cycloheximide 

 
  
 

 
 
 

1. 1-160 normal 
2. 1-160+TSA 
3. 1-160+cycloheximide 
4.1-160+TSA+cycloheximide

   1           2            3           4                1        2      3      4 
 
 
 

 
Fig.3.3.1, α-HA Western blot                Fig.3.3.2, α βActin Western blot 

 
Fig.3.3.1 A,B,C & D; western blot was performed with anti HA, by full length and truncated EAPP tagged  with HA 

and treated with cycloheximide and TSA, as shown in the boxes.  

Fig.3.3.2 A,B,C & D; western blot with anti beta Actin, as loading control. 
 
  
 

As it can be seen in (Fig.3.3.1 B and D) the protein amount of EAPP1-120 and EAPP 

1-160 were both decreased after treatment with Cycloheximide; Treatment with TSA 

in the presence of Cycloheximid even did not affect the maintaining of protein 

amount.  

 

Full length EAPP together with EAPP1-140 (Fig.3.3.1 A and C) showed less 

decrease in protein amount as they were treated with Cycloheximid and surprisingly 

even higher levels of protein amount were observed when they were treated with 

both Cycloheximide and TSA which in turn can indicate that TSA-induced acetylation, 

accompanied with increased protein amount, can increase the  protein stability. 
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3.4 Cell cycle analysis with flow cytometry 

 

To examine the effects of EAPP on cell cycle, a flow cytometry was performed on 

U2OS cells with over expressed EAPP, Knocked down EAPP and the cells 

expressing truncation of EAPP, 1-140. The cells were pre-treated with Nocodazole to 

be arrested at G2/M phase and were then released by different time intervals. 
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Varying the amounts of full length EAPP within the range of our experiments had no 

effect on cell cycle because no difference was observed in cell cycle profile by 

Fig.3.4.2 which shows the effects of over expressed EAPP and Fig.3.4.3 which 

shows the effects of knocked down EAPP. Controversially the truncated EAPP, 1-

140, showed that the cells come out from M phase, slower than full length EAPP after 

release. 

 
 
3.5. Effect of EAPP 1-140 on cell cycle  

 

Flow cytometry was performed with the cells expressing EAPP 1-140 because the 

TSA effect was more pronounced by this truncation. The cells were pre-treated with 

nocodazole to arrest them in G2/M phase. Then they were treated once with and 

once without TSA by different time intervals after release. This experiment was done 

to examine if this truncation does affect the cell cycle in M phase and to see if this 

effect changes after release when they are treated with TSA. 

 

  

 

 

 

 

 
      Fig.3.5.1A; 1-140 Log 

                                                  Fig.3.5.1.B; 1-140 with nocodazole treatment overnight 

 

 

 
 
 

 

 

 
        

Fig.3.5.2.A; 1-140 w/o TSA 1.5h after release          Fig.3.5.3.A; 1-140 w/o TSA 3h after release 

Fig.3.5.2B; 1-140 with TSA 1.5h after release          Fig.3.5.3B; 1-140 with TSA 3h after release  
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Fig.3.5.4.A; 1-140 w/o TSA 4.5h after release          Fig.3.5.5.A; 1-140 w/o TSA 6h after release   

Fig.3.5.4B; 1-140 with TSA 4.5h after release          Fig.3.5.5B; 1-140 with TSA 6h after release 

 

 

 
1 2 3 4 5 6 7 8 9 10 

 
1. 1-140 normal 

2. 1-140 + noco 

3. 1-140 – TSA 1.5h 

4. 1-140 – TSA  3h 

5. 1-140 – TSA  4.5h 

6. 1-140 – TSA  6h 

7. 1-140 + TSA  1.5h 

8. 1-140 + TSA  3h 

9. 1-140 + TSA  4.5h 

10. 1-140 + TSA  6h  

 

 

 
1 2 3 4 5 6 7 8 9 10 

 

 

 

 
1 2 3 4 5 6 7 8 9 10

 

 
Fig 3.5.6 A, αHA Western blot; Western blot was performed with each of the FACS samples to check 

the levels of protein amount. They were tagged with HA and the loading map is shown in the box. 

Fig.3.5.6B, α  β Actin Western blot; western blot with anti beta actin as loading control. 

Fig.3.5.6 C, 1E4 (α EAPP); western blot with anti EAPP to check the levels of endogenous EAPP 

 

Generally the truncation EAPP 1-140 took much longer to re-enter the cell cycle after 

the release from Nocodazole. 

With a small difference, the cells without TSA treatment, shifted to S phase more 

than the TSA treated cells, in the first 1.5h and the last 6h after release. 
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Comparing the western blot analyses, the cells with and without TSA treatment 

showed the same protein amount after release (Fig.3.5.6A) but regarding the 

endogenous EAPP (Fig 3.5.6C) the cells showed less protein, the longer the intervals 

were after release and no strong difference was observed between the cells with and 

without TSA treatment.  

 

3.6. Protein stability and protein degradation 

After obtaining no adequate results to realize the reason for increased amount of 

expression by some TSA treated EAPP truncations (1-120, 1-140 and 1-160), it was 

thought that maybe the acetylation of EAPP has some effect on protein stability and 

not necessarily the protein biosynthesis results in increased levels of expression. 

Therefore the next step was to check the protein stability with “pulse chase” method.  

The truncation 1-140 by which the effects of treatment with TSA was more 

pronounced, together with other truncation of EAPP which covers the C terminal of 

the protein, 55-C and also the full length HA-EAPP were put through this method. 

Each of the samples was treated with and without TSA. Stability of all forms was 

evaluated by labelling for 30 min with [35S]methionine/cysteine-containing medium 

and a subsequent chase with medium containing non-radioactive methionine and 

cysteine.(Klenk et. al. 2006) The time intervals for harvesting were 5min, 1h and 3h 

after “chase” phase. 

 

 

 

        

  

 

 

 

  

 

 

1 2 3 4 5 6

1        2         3        4        5        6 

1 2 3 4 5 6

1.55-C – TSA 5min                    4.55-C + TSA 5min   
2.55-C – TSA 1h                        5.55-C + TSA 1h  
3.55-C – TSA 3h                        6.55-C + TSA 3h 

1.1-140 – TSA 5min                     4.1-140 + TSA 5min   
2.1-140 – TSA 1h                         5.1-140 + TSA 1h  
3.1-140 – TSA 3h                         6.1-140 + TSA 3h 

1.HA EAPP – TSA 5min               4.HA EAPP + TSA 5min   
2.HA EAPP – TSA 1h                   5.HA EAPP + TSA 1h  
3.HA EAPP – TSA 3h                   6.HA EAPP + TSA 3h 

Fig.3.6.1 A,B & C; full length EAPP and truncated EAPP treated with and without TSA, harvested by 

different time intervals of 5 min, 1h and 3h after chase phase. Western blot was performed with αHA. 

The loading map is shown in the box. 
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As it is shown in Fig. 3.6.1C, it seems that the C terminus of the protein (55-C) is less 

stable than the N terminal, where 1-140 belongs. Generally the protein had shown a 

longer half life when it was treated with TSA indicating that acetylation regulates its 

stability. Amazingly the truncation 1-140 showed the most stability.  
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4. DISCUSSION 
 

4.1. U2OS cells stably expressing EAPP truncations 

 

4.1.1 Western blot analysis 
 

The production of cells, expressing different EAPP truncations, as it was explained in 

chapter 3.1, worked properly and the results shown Fig.3.1.2 did confirm our 

anticipation, considering the weight and size of each truncation. 

As it can be seen in Fig.3.1.3, the antibody 1E4 recognizes EAPP at the truncations 

1-180, 55-C, 95-C and 135-C confirming that the recognition site of 1E4 should be 

between135-180. 

 

4.2 Post translational modification of EAPP  

 

As it can be seen in figures of part 3.2, some of TSA treated EAPP truncations 

showed higher levels of expression. Trichostatin A (TSA) is a well-characterized 

histone deacetylase (HDAC) inhibitor. TSA is known to modify the balance between 

histone acetyltransferase and HDAC activities that induce histone hyperacetylation 

and regulate gene expression (Sung-Hye Kim et al. 2010). HDACs class I and class 

II, are TSA-sensitive and form a multiprotein repressor complex to remove the acetyl 

group from lysine residues of histones (Yang XJ et al. 2007). Recently, the effect of 

TSA in acetylation/ deacetylation of nonhistone proteins has been demonstrated as a 

diverse regulatory event, including ubiquitination/proteasomal degradation. (Sung-

Hye Kim et al. 2010).  

Regarding Fig.3.2.1 and 3.2.2, two truncations, 1-120 and 1-140 appeared to have 

increased level of expression in comparison to other truncations. It can somehow 

depend on the clonal effect and that the inserts do not always integrate in the same 

site of DNA. The problem can be solved by Flip in system by which the insert and the 

host DNA have two flanking sites on a definite part, which could be recognized by 

integration.  
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On the other hand it can also depend on amount of protein translation or may rely on 

protein stability which were examined in the subsequent experiments. 

 

4.3 Inhibition of gene expression in translational level 

 

Treatment with Cycloheximide inhibits the protein biosynthesis in the cell. Referring 

to Fig.3.3.1, effects of treatment was observed with EAPP 1-120 and 1-160 but 

surprisingly not with EAPP 1-140 and full length EAPP, although it was supposed to 

maintain no expression, if the induction by TSA occurs after translation. 

  

On the other hand, the protein amount of EAPP 1-140 and full length EAPP in the 

presence of Cycloheximide was maintained by addition of TSA, observing higher 

amount of protein. Therefore it can be concluded that Trichostatin A increases 

acetylation and protein stability at this part of EAPP. 

 

 

 

 
1 2 3 4 1 2 3 4

                               

        

 

           
1. 1-140normal 
2. 1-140+TSA 
3. 1-140+cycloheximide 
4.1-140+TSA+cycloheximide 

 

 

1. HA EAPP normal 
2. HA EAPP+TSA 
3. HA EAPP+cycloheximide 
4. HA EAPP+TSA+cycloheximide 

 
1A and 1C; western blot was performed with anti HA, by full length EAPP and 1-140, tagged  with HA and treated 

with cycloheximide and TSA, as shown in the boxes. 

2A and 2C; western blot with anti beta Actin, as loading control. 
 

 

With truncation EAPP 1-140, TSA effect appeared to depend on stability of the 

protein at this part but still could also be influenced by transcription. 
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4.5 Effect of EAPP on cell cycle profile 

4.5.1 FACS Analysis 
 

It was proved that there are more cells in S-phase if EAPP is over-expressed. On the 

other hand, EAPP knock down by RNAi, reduces the fraction of cells in S-phase 

dramatically (Novy et al., 2005). Another result suggests that cells overexpressing 

EAPP abrogate nocodazole -induced arrest (Peter Andorfer, unpublished data). 

 

In the DNA profile analyses in FACS experiments, however there was no difference 

shown between cells that had an EAPP knockdown and cells with an EAPP 

overexpression. This in turn could depend on the density of the cells, as it is indirectly 

proportional to the cell number in S-phase. The denser they are, the fewer cells are in 

S phase. 

Contradicting P.Andorfer’s result, the cells overexpressing EAPP, do undergo 

Nocodazole arrest. 

 

U2OS cells expressing EAPP 1-140 took much longer than control cells or cells over-

expressing full length EAPP to re-enter the cell cycle after the release from 

Nocodazole, It may be due to a clonal effect or may be exposure to stress through 

treatment with Nocodazole, has been highlighted in this part of protein or maybe 1-

140 has interplay with mitotic control proteins which undergo depletion after arrest.  

 

4.6 Effect of 1-140 on cell cycle 

4.6.1 FACS analysis 
 

Generally the truncation EAPP 1-140 took much longer to re-enter the cell cycle after 

the release from Nocodazole. 

With a small difference, the cells without TSA treatment, shifted to S phase more 

than the TSA treated cells, in the first 1.5h and the last 6h after release.  

This truncation of EAPP might have some effects on inhibition of cyclin-dependent 

kinase (CDK) complexes. CDK complexes regulate transitions between different 

phases of the cell cycle. (Bey-Dih Chang et al, 2000).  Consequences of CDK 

inhibition include dephosphorylation of pRb and downregulation of a large group of 

E2F-dependent genes that are involved in DNA replication and cell cycle progression 

(Nevins, 1998). 
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Considering the DNA profile of TSA treated cells, acetylation of this truncation seems 

to have stronger effects on inhibition of mitotic control proteins.  

4.6.2 Western blot analysis 
 

Considering the western blot analyses with anti HA in Fig.3.5.6A, treatment with TSA 

in different time intervals after release, didn’t affect the protein amount of EAPP.  

Interestingly the amount of endogenous EAPP was descending over the time after 

release. Regarding the endogenous EAPP levels, a tiny difference was recognized 

with TSA treated cells.  

 

4.7 Protein stability and degradation 

4.7.1 Analysis with pulse chase 
 

It seems that EAPP proteins with a deleted N-terminus (55-C) is less stable than the 

part containing this part (1-140). Generally the protein had shown more stability as it 

was treated with TSA compared to without TSA.  

This result indicates the TSA affected protein stability at the N terminus. Referring to 

chapter.3.3, the protein level of 1-140 was sustained by TSA in the presence of 

Cycloheximide, indicating that TSA increases the protein stability of this truncation. 

It seems that Trichostatin A enhances acetylation as well as the stability of the 

protein but the precise mechanism remains unclear (Sung-Hye Kim et al. 2010).  

Amazingly the truncation 1-140 showed the most stability in comparison to full length 

EAPP and 55-C. 
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5. Material and Methods 
 

5.1 Cell lines: 

 

U2OS (ATCC: HTB-96): Human osteosarcoma cell line. The cells were grown in  

DMEM with 10% FCS and AB. 

T98G (ATCC: CRL 1690): Human glioblastoma cell line. The cells were grown in 

DMEM with 10% FCS and AB. 

 

 

5.2 Vectors: 

 

pCIneo-HA-MCS: Expression vector with a Hemaglutinin-tag and a multiple cloning 

site 

pSuper: RNAi vector based on the pBlueScript-KS vector with ampicilline resistance  

 

5.3 Special chemicals, antibodies and solutions 

ECL detection solution 

Reagents: 

p-Coumaric acid Sigma 

3-Aminophtalhydrazide (Luminol) Fluka 

Hydrogen Peroxide 30% Aldrich 

Nitrocellulose Transfer Membrane Protran 

PEI 25000  Aldrich 

Protein-Assay Dye Reagent BIO-RAD Protein Assay 

Silica Sigma 

X-Ray Films Fuji Medical X-Ray Film 

Antibodies: 

α-EAPP polyclonal Mouse polyclonal 

α-EAPP [1E4] Mouse monoclonal 

α-EAPP [4A6] Mouse monoclonal 

α-HA [16B12] Babco 

α-β-Actin 
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αP53 Santa Cruz 

 

 

5.4 Solutions 

 

40% Acrylamid (100ml H2O):  

    

38 g Acrylamid 

2 g NN´Methylenbisacrylamid 

add one spoon DOWEX-

Ionenaustauscherharz.  

Store at 4°C in the dark 

Antibiotics: 1000 x Ampicillin (50 mg / ml) 

1000 x Kanamycin (50 mg / ml) 

 

Blocking Solution for primary ab´s:  1 x PBS  

0,1 % Tween  

Sodium Azide (20 % NaN3 = 20000 

stock) 

3 % Milkpowder 

Blocking Solution for secondary ab´s 1 x PBS 

0,1% Thinerazol 

0,5% Milkpowder 

Coomassie blue:              0,25 % (w/v) Coomassie R 

10 %  (v/v) Aceticacid   

50 %  (v/v) Methanol 

Filtration 

Destaining Solution:  10% Acetic acid 

30% MeOH 

60% distilled H2O 

DNA-Loading dye:    0,25 % Bromphenolblau (25 mg) 

0,25 % Xylen-Cyanin  (25 mg) 

30 % v/v Glyzerin 

x  ml H2O to 10 ml 

1000x Ethidium bromide:   5 mg Ethidium bromide / ml H2O 

Hunt extraction buffer 20 mM TRIS/HCL pH=8,0 

100 mM NaCl 
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1 mM EDTA 

0,5 % NP-40 

1 mM DTT 

1 mM PMSF 

Laemmli sample buffer:   

    

 

100 mM TRIS-HCl pH=6,8 

20 % Glycerol 

0,01 % Bromphenolblue 

10 % ß-Mercaptoethanol 

5 % SDS 

10 x PBS: 80 g / l  NaCl 

2 g / l KCl 

2 g / l Kaliumdihydrogenphosphate 

11,5 g / l Disodiumhydrogenphosphate 

pH= 7,4 

Ponceau:  0,2 % w/v Ponceau S   in 3 % 

Trichloracetic acid 

10x Running buffer:  

    

192mM Glycin 

25mM TRIS 

0,1 % SDS 

Stripping buffer:   100mM   2-Mercaptoethanol 

2 % (w/v) SDS 

62,5mM TRIS-HCl pH 6,7 

1x TE:  10mM TRIS/Cl 

1mM EDTA 

pH= 8.0 

5 x Transfer-buffer (2000 ml):   125mM TRIS...........30,29 g 

960mM Glycin...144,13 g 

For 1 x Buffer add 20 % v/v Methanol 

prior of use.  

UltraNewWash: 

 

50mM NaCl 

10mM TRIS/HCl pH=7,5 

25mM EDTA 

50 % v/v Ethanol 
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5.5 SDS-PAGE Minigel 

 

 6 % 8 % 10 % 12 % 14 % Stacking 

40 % 

Acrylamid 
600 µl 800 µl 1 ml 1,2 ml 1,4 ml 250 µl 

ddH2O 1,85 ml 1,65 ml 1,45 ml 1,25 ml 1,05 ml 1,48 ml 

1 M TRIS-Cl, 

pH= 8,7 
1,5 ml 1,5 ml 1,5 ml 1,5 ml 1,5 ml 250 µl 

20 % SDS 20 µl 20 µl 20 µl 20 µl 20 µl 10 µl 

TEMED 4 µl 4 µl 4 µl 4 µl 4 µl 2 µl 

10 % APS 20 µl 20 µl 20 µl 20 µl 20 µl 10 µl 
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6. EXPERIMENTAL METHODS 
 

6.1 Bacterial Cultures 

 

6.1.1 Luria Broth (LB) 
 

1% Trypton, 1% NaCl, 0,5% Yeast-extract, (1,5% Agar-Agar for plates) 

LB has to be sterilized by autoclavation 

 

6.1.2 For Agar Dishes 
 

1% Trypton 

1% NaCl 

0,5% Yeast extract 

1,5% Agar 

The Antibiotics (Ampiciline/Tetracycline) were supplied after cooling down the 

autoclaved agar to 50°C 

Pour out the solution into petri-dishes 

 

6.1.3 Storage of bacteria 
 

0,9 ml of an overnight culture were added to the same volume of freezing buffer and 

stored at –80°C 

2x Freezing buffer:  

12.6g/l    K2HPO4     

  3.6g/l    KH2PO4   

 0.9g/l    Na-Citrat    

 1.8g/l    (NH4)2SO4     

0.18g/l    MgSO4 .7H2O   

88.0g/l    Glycerol 
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6.1.4 Transformation of competent E.coli 

Mix DNA and an aliquot of competent cells.  

Keep the mixture 20min on ice 

Heat shock the cells 2 min at 42°C.  

Add 400µl LB and keep the cells on 37°C for 30min.  

Plate the suspension on antibiotic-plates. 

 

6.2 Mammalian cells 

 

6.2.1 Media for mammalian cell 
 

DMEM (10 Litre): 

„Dulbeco´s modified Eagles´s Medium“ [Gibco / BRL # 52100 /039] powder solved in 

5 Litre Aqua. dest. Addition of 30g NaHCO3. Addition of 5 Litre aqua. dest.  

Sterilfiltration [ Satorius P plus]. Immediately before use ad 10 % FCS (foetal calf 

serum) or 10 % CS (Calf serum) and AB or AB+G. 

100 x antibiotic-stock (AB): 

6g/l Penicillin G, Potassium salt, 10g/l Streptomycinsulfate. Antibiotics are solved in 

1x PBS and sterile filtrated [0,2µm]. 

50 x AB+G in 1x PBS: 

5,8 g / l Glutamat, 6 g/l Penicillin G, Pothassium salt, 10 g/l Streptomycinsulfat.  

AB+G are solved in 1x PBS and sterile filtrated [0,2µm]. 

Trypsin/EDTA Solution: 

500mg / 1000ml Trypsin 

0,2 w/v% NaEDTA 

solved in H2O and sterile filtrated [0,2µm]. 

 

6.2.2 Storage of mammalian cells 
 

Mix cells in media + 10 % v/v DMSO + 50 % v/v FCS. Freeze 2 hours at –20, then at 

– 80°C up to a view weeks, then in N2. 
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6.2.3 Propagation and splitting of cells 
 

Attached cells were grown in petri-dishes at 37°C in special chambers with 

waterstream saturated atmosphere containing 7,5% CO2. For splitting confluent cells 

the petri-dish had to be washed once with warm 1xPBS and incubated with about 12 

drops T/E for 1-10 min. The floating cells were now resuspended in complete DMEM 

medium to stop the activity of T/E and were diluted to the preferred density. 

 

6-wells, 3 ml media per well (10% FCS or 10% CS) 

Ø 100 mm plate, 10 ml media (10% FCS or 10% CS) 

Ø 140 mm plate, 20 ml media (10% FCS or 10% CS) 

 

6.2.4 Transfection of mammalian cells (PEI –method) 

 
Ø 100 mm plate, 10 ml media (10 % FCS). Change media two hours prior to 

transfection and 24 hours after transfection. 

Transfection mix: 

x µg DNA in H2O 

ad 200µl 150mM HBS (steril) 

Add 200µl 150mM NaCl with PEI working solution (ratio DNA(µg) : PEI(µl) ~ 1:2,5) 

Vortex 10 sec and let mixture rest for 10 min 

Add to cells  

 

6-Wells  1-5 µg DNA and 200 µl HBS 

Ø 100 mm plate 10-20 µg DNA and 400 µl HBS 

Ø 140 mm plate 20-30 µg DNA and 1000 µl HBS 

2x HBS: 

280 mM NaCl 

50 mM HEPES 

1,5 mM Na2HPO4 

PEI working solution: 

42.2g PEI 25000 in 42.2g H2O 

Mix well for 4-5h 
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Use 87µl of this solution and add 100ml H2O  

Adjust pH to 7.0 with HCl 

Steril fitration, aliquote and store at 4°C 

 

6.2.5 Cell-extracts of mammalian cells 
 

Wash cells two times with 1x PBS. 

Resuspend the cell pellet in 5x volume HUNT-extraction buffer or 3x volume WCE-

extraction buffer.  

Freeze-thaw 2-3 times in liquid N2 

Centrifuge 10min with 14000rpm  

Store supernatant at -80°C  

 

 

HUNT-Extraction buffer: 

20 mM TRIS / HCl pH=8,0 

100 mM NaCl 

1 mM EDTA 

0,5 % NP-40 

1mM DTT 

1mM PMSF 

 

6.2.6 Protein Quantification (Bradford) 
 

For the quantification of proteins in extracts the method of Bradford was used. 

Therefore 1ml Bio-Rad Solution (1:5) was incubated with 3, 5 and 10 µl of the 

concentration standard BSA (1µg/µl) and 1-10µl of the sample extracts for 5-10 min. 

The specific extinction was analysed in a spectrophotometer at 595nm. With the 

known BSA concentrations a standard curve can be obtained and the protein 

concentration of the cell extracts can be determined by comparing the ODs. 
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6.3 Methods for DNA 

 

6.3.1 Plasmid DNA preparation 
 

6.3.1.1 over night culture 
 

Bacteria, picked directly from the petri dishes or taken from frozen cultures, were 

incubated in 2-6 ml LB-media with antibiotics and shaked over night at 37°C under 

aerobe conditions. These cultures can be used either for mini- or maxipreps, for 

protein expression experiments, of freezing.  

 

6.3.1.2 Small scale plasmid DNA preparation with silica milk 
(Miniprep) 
 

Harvest cells by centrifugating of bacteria culture in eppendorf tube 5min 14000rpm; 

RT 

Remove supernatant and resuspend pellet in 200µl Solution I plus 2µl of RNaseA 

(10mg/ml), 10min on ice  

Add 400µl of Solution II and shake, 10min on ice 

Add 300µl of Solution III and shake, 10min on ice 

Add 20-30µl of silica milk and incubate on a shaker for 10-20 min; 37°C, 900 rpm.  

Wash the silica-pellet 2 x with Ultra New Wash.  

Resuspend the pellet in 20-50 µl H2O and heat the probe 5 min 55°C.  

Transfer the supernatant into a fresh Eppendorf-tube. 

 

Silika milk: 

Wash silica two times with H2O 

Prepare a 50/50 Solution of silica and H2O 

Store at 4°C in the dark 

 

Solution 1: 50mM Glucose 

  25mM TRIS-HCl pH=8 

  10mM EDTA 

Solution 2: 0,2 N NaOH 
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  1 % SDS 

Solution 3: 3 M KOAc 

  5 M Acetic acid 

 

6.3.1.3 Large-scale plasmid DNA preparation: 
 

Harvest cells of a 500 ml bacteria-culture by centrifugation (5 min, 6000 rpm, 4°C). 

Resuspend the pellet in 20 ml cold Solution 2. Add a small aliquot Lysozym and 

shake . 

Add 40 ml Solution 2 and wait 10min, RT.  

Add 20 ml Solution 3 and wait 10min, RT. 

Centrifugation (20 min, 8000 rpm, 4°C). Filter the supernatant through a fine paper 

layer into 50ml isopropanol.  

Centrifugation (20 min, 10000 rpm, 4°C).  

Drain the pellet and resuspend in 5 ml TE. Transfer the solution into a clean SS34-

beaker and add 5 ml 5M LiCl.  

Centrifugation (20 min, 10000 rpm, 4°C). Transfer the supernatant into a clean SS34-

beaker and add 10 ml isopropanol. 

Centrifugation (20 min, 10000 rpm, 4°C). Drain the pellet and resuspend in 500 µl 

TE.  

Add 20 µl RNaseA (10 mg / ml), 30 min, RT.  

Add 500 µl 2 x PN and shake. Put the mixture 10min on ice. 

Centrifugation (10 min, 14000 rpm, 4°C). Resuspend the pellet in 400 µl TE.  

Add 10 µl RNaseA (10 mg / ml), 30 min, RT. 

 2 x extraction with 400µl phenol / chloroform / isoamylalkohol. 1 x Extraction with 

400µl chloroform. 

Precipitate the supernatant with 100µl 10M NH4OAc and 800 µl cold 96 % ethanol. 

Centrifugation (10 min, 14000 rpm, 4°C). Wash the pellet 2 x with 1ml 70 % ethanol. 

Dry pellet in speed-vac 

Resuspend the dry pellet in 400 µl TE.  

2 x PN:  30 % PEG 6000 

   1,5 M NaCl 

Lithiumchlorid: 5M LiCl 

Ammoniumacetat:  10M NH4OAc 

TE :   10mM TRIS-HCl pH=8 
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1mM EDTA pH=8 

 

 

6.3.2 DNA Purification 

 

6.3.2.1 DNA isolation from agarosegel with silica-milk: 
 

Melt agarose-DNA slices in 3x volume of 6M NaJ at 55°C, 600 rpm.  

Add 10-15µl silica suspension and incubate on a shaker for 10-20 min; 30°C, 600 

rpm.  

Wash the silica-pellet 2 x with Ultra New Wash.  

Resuspend the pellet in 30 µl TE and heat the probe 5 min 55°C.  

Transfer the supernatant into a fresh Eppendorf-tube. 

 

 

6.3.3 DNA Quantification 
 

To estimate the amount of DNA, separated DNA samples in the agarose gel were 

compared to the DNA markers of known concentrations under UV. 

For precise quantification y µl of DNA-solution (in TE) were diluted with water to 1 ml 

and measured in a photometer: µg/µl = OD260 x 50 x y (used µl of DNA) 

If OD260 us between 1,8 and 2,0 the DNA is clean, but less than 1,8 indicates for 

impurities in the solution 

 

 

6.4 Special methods 

6.4.1 Immunoblot analysis 
 

Samples: 

Mix 10-20 µg cell extract with an equal volume of Laemmli sample buffer and boil for 

3-5 minutes at 95°C 

Unused samples may be stored at –20°C 
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Electrophoresis: 

Load 2-3 µl protein marker per well and the samples 

Electrophorese in 1x Running buffer: 125mV 

 

Transfer to membrane: 

Transfer proteins from the gel to a nitrocellulose membrane 

Use an electroblotting apparatus 

 

Blotting: 

250mA for 2,5 hours at 4°C 

Use ice for cooling the transfer buffer 

 

Immunostaining: 

Block non-specific binding by incubating the membrane in a blocking solution for 30 

min at RT  

Incubate the blocker membrane for 1, 5 hours with primary antibody-milk 

Wash three times for 10 min in PBST 

Incubate the membrane for 1 hour with secondary antibody 

Wash three times for 10 min in PBST 

 

Detection of bound antibodies: 

Incubate the membrane for 1 min with ECL detection solution 

6.4.2 Fluorescence activated cell sorter (FACS) -Analysis 
 

Preparation of cells for FACS: 

Wash cells twice with PBS. Add Trypsin/EDTA. Incubate at 37°C.  

Stop the reaction by addition of 1ml media + 10% FCS.  

Centrifugate for 5min at 1000rpm, discard the supernatant.  

Add 1ml PBS and centrifugate (1000 rpm, 5min).  

Resuspend the pellet in 1mlPBS.  

Pour the necessary amount of suspension into 5ml cold 85% ethanol and store at –

20°C. 

 

Staining of cells for FACS: 
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Centrifugation of fixed cells (1000 rpm, 2min, 4°C). Remove supernatant and 

resuspend the 

pellet in 100-200µl 0,05% Pepsin (Sigma # P-7000). Add 1-2 ml staining solution 

(3min, RT). 

Store at 4°C and use the preparation for FACS-analysis in between the next two 

hours. 

Staining solution: 

100mM TRIS-HCl pH= 7,5 

2mM MgCl2 

0,1 % Triton-X 100 

2µg / ml DAPI (4,6-Diamidino-2-phenylindolhydrochlorid; Merck # 25653) 

15µg / ml Sulforhodamin 101 (Sigma #. S-7635) 

 

6.4.3 Nocodazole arrest and release 
 

Grow cells up to 80% confluency 

Add nocodazole and remove medium after 16h through centrifugation 

Wash cell pellet once with 1xPBS 

Resuspend cell pellet in new medium and add to the cells 

To harvest the cells, use the cell scraper 

 

 

6.4.4 Metabolic Labelling of Proteins and Immunoprecipitation 
(palse chase method) 
 

Cells were starved for 30 min in 1 ml of methionine/cysteine^and FCS free medium, 

then metabolically labeled for 30 min with 125 μCi/ml of 35S-methionin in 

methionine/cysteine-free medium (pulse), washed free of unbound radioactive amino 

acids, and incubated in prewarmed complete medium (chase). At the indicated time 

points, the cells were disrupted in ice-cold hunt lysis buffer and immunoprecipitated 

with anti-HA antibodies. Proteins were subjected to SDS-PAGE.  
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