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1. INTRODUCTION

The basic principles which have been exploited are very gen-
eral and can be applied to other coherent spectroscopies as well.
Applications are conceivable in electron spin resonance, nuclear
quadrupole resonance, in microwave rotational spectroscopy, and
possibly in laser infrared spectroscopy.

R. R. Ernst and co-workers in J. Chem. Phys., 64, 2229 (1976)

Related publication:

Two-dimensional electronic spectroscopy of molecular excitons
F. Milota, J. Sperling, A. Nemeth, T. Mancal, and H. F. Kau�mann
Accounts of Chemical Research, 42, 1364 (2009)
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Historical Perspective

The �eld of molecular chemical physics has advanced considerably over the past half-
century, and a vast part of this knowledge has been gained by probing the response of
molecular systems to sequences of pulsed electromagnetic �elds. Historically, the associ-
ated experimental techniques rapidly evolved for the radio frequency regime of the electro-
magnetic spectrum. Coherent multi-dimensional spectroscopies, which rely on sequences
of pulsed radiation �elds with de�ned phase properties, have thus been developed initially
for the interrogation of nuclear magnetic resonances.

Modern nuclear magnetic resonance (NMR) spectroscopy has started around 1950, with
the demonstration of the so-called spin-echo (the reversal of inhomogeneous dephasing
by a sequence of two pulses) by E. L. Hahn [1]. More than two decades later, follow-
ing suggestions made by J. Jeener during a conference presentation, R. R. Ernst and
co-workers demonstrated a Fourier transform approach for a two-dimensional (2D) version
of NMR, and introduced the term two-dimensional spectrum for when all variables of the
plotted function are frequencies [2]. In the ensuing decades, literally hundreds of di�erent
pulse sequences have been developed, and have potentiated the capabilities of NMR spec-
troscopy [3, 4]. Because multi-dimensional NMR techniques allow to sense (through-bond
or through-space) coupled spins, nowadays they are not only in routine use by organic
chemists for molecular structure analysis, but they also have revolutionized structural bi-
ology [4].

In view of the success of 2D-NMR spectroscopy, it has been ever since tantalizing to envis-
age analogues for the interrogation of spectroscopic transitions that occur at successively
higher frequencies of the electromagnetic spectrum. Already in 1957, R. P. Feynman et al.
pointed out that the theoretical techniques developed for analyzing the magnetic resonance
precession model can be adapted to treat any quantum mechanical two-level system [5].
Concepts equivalent to those of NMR would thus also apply to optical transitions - given co-
herent light �elds were to be ever created [5]. Experimentally, 2D microwave spectroscopy
for correlating molecular rotational transitions has been realized in the late 1980s [6]. The
vision of 2D infrared (IR) spectra that reveal interacting vibrations, or an electronic ver-
sion of 2D spectroscopy for studying electronic coupling patterns (cf. Fig. 1.1), has driven
the implementation of multi-dimensional concepts also at these frequency regimes.
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Fig. 1.1: Coherent two-dimensional (2D) spectroscopy illustrated. (a) A 2D spectrum of nuclear
magnetic resonances can map the coupling pattern of an ensemble of spin-1/2 systems (here, the
H1-nuclei of Codeine). (b) A 2D electronic spectrum reveals coupling strengths between electronic
transitions (absorption bands) of a supramolecular aggregate.

Indeed, very soon after the �rst report of a pulsed laser light source [7], the optical version of
a spin-echo, the photon-echo, has been demonstrated by S. R. Hartmann and co-workers in
1964 [8]. Since then, the technical progress in pulsed laser instrumentation, accompanied
by the ongoing development of experimental and theoretical concepts in nonlinear laser
spectroscopy [9, 10, 11, 12], has allowed to deepen the understanding of electronic structures
and dynamics of molecular systems considerably (as recognized, inter alia, by A. H. Zewail's
Nobel Prize in 1999, for his studies of the transition states of chemical reactions using
femtosecond spectroscopy [13]). However, although a variety pico- and femtosecond time-
resolved spectroscopies of vibrational and electronic transitions meanwhile have come of
age, the exploitation of coherent pulse sequences has yet not reached a level comparable
to that in NMR spectroscopy, and multi-dimensional concepts have been relatively slow to
come.

Only within roughly the past decade, after an impressive amount of work in both experi-
ment and theory [14, 15, 16, 17, 18, 19], coherent infrared spectroscopy has been established
for providing 2D correlations of vibrations with femtosecond time resolution. The exper-
imental realization of two-dimensional electronic spectroscopy (2D-ES) [20], on the other
hand, has been lagging the IR counterparts by several years. The reasons for this delay are
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commonly summed up by the notion that the required interferometric stability of experi-
mental designs and the precise manipulation of pulse delays become increasingly di�cult
to achieve at shorter wavelengths. More generally, while real-time detection of electro-
magnetic �elds is straightforward at radio frequencies, there is no such thing like a simple
antenna for electric �elds at the carrier frequencies of vibrational or electronic transitions.
These obstacles have been overcome recently only, and several experimental approaches to
generate phase-locked pulse sequences have meanwhile been successfully demonstrated1.
Notably, all of them share the principle of spectral interferometry for detection of the signal
�eld [21]. The �rst pioneering experiment on a simple dye molecule [22] has thereby paved
the way for experiments devised particularly to unravel electronic interactions. Exemplary
highlights in the course of recent developments are investigations of electronic coupling
strengths and coherence e�ects in natural [23, 24, 25] and arti�cial [26] light harvesting
systems, conjugated polymers [27], and the direct observation of biexcitons (bound exciton
pairs) in quantum wells [28].

Principles of Two-Dimensional Electronic Spectroscopy

In two-dimensional electronic spectroscopy, a sequence of three laser pulses allows for ex-
perimental control of two time intervals: the one between the �rst and the second (t1), and
the one between the second and the third (t2) interaction with the sample (cf. Fig. 1.2a).
During the third time interval which follows the last excitation pulse (t3), the created
third-order nonlinear polarization radiates the signal S(3)(t3, t2, t1). In principle, given an
appropriate experimental scanning scheme, the time domain data might be Fourier trans-
formed with respect to any two (out of the three) time-variables and analyzed as a series of
two-dimensional frequency-frequency domain spectra (as a function of the remaining time
variable).

The present work focuses on the currently most popular variant of 2D electronic spec-
troscopy, designated for evaluating signals in the form of S(3)(ω3, t2, ω1), i.e. for the mea-
surement of (ω1, ω3)-spectra along a more or less coarse grid of t2-delays. This version of a
2D experiment can be intuitively perceived as a correlation of electronic coherences, that
evolve during t1 and t3. Accordingly, for the simplest case of an electronic two-level system,
the �rst laser pulse (with wavevector k1) creates a coherence between the ground- and the
excited state. The second pulse (k2) converts the quantum mechanical superposition into a
population (or a vibrational wavepacket), either in the ground- or the excited state. After

1 A detailed and referenced discussion is given Chapter IV.
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Fig. 1.2: (a) De�nition of time-delays in two-dimensional electronic spectroscopy. The sequence
of excitation pulses (with wavevectors k1, k2, k3) is preceded by a local oscillator pulse (LO).
(b) Spatial wavevector architecture in which rephasing (ks = −k1 + k2 + k3, denoted by R) and
non-rephasing (ks = +k1 − k2 + k3, NR) signal contributions are collected. Signal detection is
accomplished in frequency domain by spectral interference with the LO.

time t2, again, electronic coherences are created by the third pulse (k3), and, depending
on phase-matching conditions, so-called rephasing or non-rephasing signal contributions
are radiated in particular spatial wavevector architectures (cf. Fig. 1.2b).

Though the experimental realization involves a number of hurdles, mapping of the third-
order nonlinear response by 2D-ES exploits a number of unique advantages that are in-
herent to the method. First, it is essential to note that both the real and the imaginary
part of the complex nonlinear signal are characterized, gathering the maximum amount of
information that can be inferred by any third-order technique [20]. Further, the achievable
spectral resolution of a 2D experiment is in practice only limited by the maximal delay
between consecutive interactions, while its temporal resolution is given by the accuracy in
timing the interaction sequence, i.e., by pulse durations. Unlike other techniques, 2D-ES is
therefore not limited by a trade-o� between time- and frequency-resolution, which results
from the inverse relation between the spectral bandwidth and the temporal duration of the
excitation pulses.

Apart from this general characteristics, the spread of the information content into two fre-
quency dimensions considerably facilitates the interpretation of the nonlinear response. A
key property of the two-dimensional signal representation can be appreciated by recalling
that a 2D plot e�ectively compares the frequencies of electronic transitions (traced as co-
herences in t1 and t3) against each other. Considering an energetically disordered ensemble
of absorbers, the width of the static distribution of transition frequencies (inhomogeneous
broadening) will be re�ected as a diagonal elongation of the 2D signal, as long as each
absorber evolves with the same frequency during t1 and t3 (cf. Fig. 1.3a). The same ef-
fect, in turn, removes static broadening from the anti-diagonal width of 2D signal peaks,
which allows to discern homogeneous and inhomogeneous line broadening mechanisms.
This property is particularly helpful if a strict separation of timescales is not applicable,
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Fig. 1.3: Fundamental e�ects in 2D electronic spectra. (a) 2D relaxation spectra trace the
correlation loss between ω1- and ω3-frequencies in a disordered ensemble, re�ected by the decreasing
ellipticity of the 2D lineshape. (b) Cross-peaks allow to distinguish between uncoupled (left) and
coupled (right) absorbers.

as is typically the case in condensed-phase systems, where the transition energies of indi-
vidual chromophores are continuously altered by their local environments. In this case,
the transient loss of the correlation between ω1- and ω3-frequencies due to system-bath
interactions can be directly monitored by recording 2D spectra for a sequence of increasing
t2-delays. The ellipticity of an initially diagonally elongated peak will thereby steadily
decrease, directly re�ecting the decay of the frequency-frequency correlation function (cf.
Fig. 1.3a).

Whereas the above considerations refer to ensembles of non-interacting absorbers, the full
potential of 2D-ES unfolds when interrogating coupled molecular multi-chromophores, in
which the close spatial proximity of molecular transition dipoles induces the formation
of delocalized excited states (molecular excitons). 2D-ES allows to probe the strengths
of electronic inter-molecular interactions in a direct way, by exposing coupled electronic
transitions as cross-peaks in the 2D spectrum, and providing information that is not ex-
posed at all in linear spectra (cf. Fig. 1.3b). While the appearance of a cross-peak in a
2D correlation plot (recorded at t2= 0) immediately visualizes electronic couplings, the
transient behavior of cross-intensities in 2D relaxation spectra (recorded for t2 > 0) can
capture the pathways and timescales of exciton motion even in complex dynamical systems.
The perspective to observe and quantify electronic interactions in an unbiased fashion has
been one of the main driving forces for pursuing coherent non-linear spectroscopy in two
dimensions.
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Outline of the Thesis

Two-dimensional electronic spectroscopy is a unique tool for gathering spectral information
which either can not be accessed directly or can not be accessed at all by other spectroscopic
methods. The content of this thesis is intended to substantiate this statement, presenting
studies of molecular samples that can be di�erentiated by their structural complexity,
ranging from simple dye molecules to a supramolecular assembly of coupled molecular
absorbers. By combining experimental and theoretical results, it is shown how 2D-ES can
image the physical phenomena that are behind the optical response of a particular system.

• The theoretical framework is brie�y outlined in Chapter II.

• Chapter III presents a theoretical study on the information content of 2D electronic
photon-echo spectra, focusing on their potential to distinguish between di�erent con-
formations of coupled symmetric dimers.

• Chapter IV describes a passively phase-stabilized experimental set-up, suitable for
studies across the entire range of the visible spectrum. Experimental di�culties and
evaluation protocols are discussed.

• Chapter V reports and analyzes the oscillatory behavior of lineshapes in 2D relaxation
spectra of a perylene-based dye molecule, whose signals are strongly modulated by
an underdamped low-frequency vibrational mode.

• In Chapter VI, monomers and van-der-Waals bound dimers of a molecular chro-
mophore are simultaneously monitored in a 2D experiment, illustrating how 2D line-
shapes re�ect excitation delocalization e�ects.

• Chapter VII characterizes exciton motion in a self-assembled supramolecular aggre-
gate by temporal, energetic, and spatial attributes, which are inferred from a com-
parison of experimental 2D spectra to simulations employing both homogeneous and
inhomogeneous microscopic models.

• Chapter VIII closes with an outlook on forthcoming developments.





2. THEORETICAL FRAMEWORK

After a brief description of the dynamics of quantum systems, the concept of
time-dependent perturbation theory is outlined. The focus is then kept on
the sequence of steps towards deriving a perturbative expansion of the density
matrix, and the diagrammatic representation of the optical transition pathways
that contribute to nonlinear signals. Aspects of the theoretical treatment of
multi-chromophoric systems and the incorporation of system-bath interactions
are brie�y addressed.
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2.1 Dynamic Quantum Systems and Perturbation Theory

Time-Dependent Schrödinger Equation. The following considerations start with
a time-independent Hamiltonian in the Schrödinger-picture (wavefunction picture) [10],
where the formal solution of the time-dependent Schrödinger equation1

∂|Ψ(t)〉
∂t

= − i

~
H|Ψ(t)〉 (2.1)

is given by2

|Ψ(t)〉 = e−
i
~H(t−t0)|Ψ0〉 (2.2)

where |Ψ0〉 ≡ |Ψ(t0)〉. The solution can be represented using the eigenvalues En and
eigenvectors |φn〉 of the stationary Schrödinger equation

H|φn〉 = En|φn〉 (2.3)

by expanding |Ψ(t)〉 in the (complete and orthonormal) basis set of eigenstates |φn〉

|Ψ(t)〉 =
∑

n

〈φn|Ψ(t)〉|φn〉 (2.4)

where 〈φn|Ψ(t)〉 are the time-dependent expansion coe�cients, which can be readily deter-
mined. Substituting the above equation into Eq. 2.1 and multiplying with 〈φn| from the
left gives

d

dt
〈φn|Ψ(t)〉 = − i

~
En〈φn|Ψ(t)〉 (2.5)

with the solution(s)

〈φn|Ψ(t)〉 = e−
i
~En(t−t0)〈φn|Ψ0〉 (2.6)

1 The discussion does not refer to a particular representation. The state vector |Ψ(t)〉 is related to the
wavefunction (representing the state in coordinate representation) via Ψ(x, t) = 〈x|Ψ(t)〉, where x is a
complete set of coordinates.

2 The action of an operator A on one of its eigenfunctions |φn〉 is de�ned as A|φn〉 = an|φn〉, where an

is the eigenvalue of the operator A. The function of an operator (like the exponential on the righthand
side of Eq. 2.2) can be de�ned in a similar way: f(A)|φn〉 = f(an)|φn〉.
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where 〈φn|Ψ0〉 are the initial expansion coe�cients of the wavefunction. Combining the
solution above with Eq. 2.4 gives

|Ψ(t)〉 =
∑

n

e−
i
~En(t−t0)〈φn|Ψ0〉|φn〉 (2.7)

where the superposition of oscillatory terms is determined by oscillations of the expansion
coe�cients, and is well known as a wavepacket from standard textbooks on quantum
mechanics. The time-evolution of |Ψ(t)〉 can also be written in a simple form as

|Ψ(t)〉 ≡ U(t, t0)|Ψ0〉 (2.8)

by introducing the time evolution operator U(t, t0). The speci�c representation (in terms
of eigenstates of the Hamiltonian H, cf. Eq. 2.7)

U(t, t0) =
∑
n

|φn〉e−
i
~En(t−t0)〈φn| (2.9)

will only be useful if the full set of eigenstates is readily available. In a basis free represen-
tation U(t, t0) is given by (cf. Eq. 2.2)

U(t, t0) = e−
i
~H(t−t0) . (2.10)

The introduction of U(t, t0) allows to solve the time evolution in general, since, once U(t, t0)

is obtained, it can act on any initial state |Ψ0〉 to get the state at time t. As shown below,
the concept of the time evolution operator opens up a convenient approximation scheme
for quantum dynamics [10].

Time-Dependent Hamiltonian. So far, the equations hold for a time-independent
Hamiltonian, which, for dynamic systems, implies the inclusion of all degrees of freedom.
However, it is often useful to eliminate some degrees of freedom and treat them as �exter-
nal� forces. This is the case in time-resolved nonlinear spectroscopy, where it is common
to classically approximate the pulsed electromagnetic �elds acting on the system.

Generalizing the time evolution operator for a time-dependent Hamiltonian H(t) corre-
sponds to a non-perturbative expansion of the wavefunction in the Schrödinger picture.
Keeping in mind the time-dependence of the Hamiltonian, substitution of Eq. 2.8 into
Eq. 2.1 gives3

3 Note that U(t, t0) 6= U(t− t0) for a time-dependent Hamiltonian.



12 2. Theoretical Framework

∂

∂t
U(t, t0)|Ψ0〉 = − i

~
H(t)U(t, t0)|Ψ0〉 . (2.11)

Since this relation must hold for any initial state vector |Ψ0〉, U(t, t0) must satisfy the same
equation

∂

∂t
U(t, t0) = − i

~
H(t)U(t, t0) (2.12)

which, upon integration from t0 to t, and using the relation U(t0, t0) = 1 yields

U(t, t0) = 1− i

~

∫ t

t0

dτH(τ)U(τ, t0) . (2.13)

One can solve this equation by iteratively plugging it into itself. The �rst iteration gives

U(t, t0) = 1− i

~

∫ t

t0

dτH(τ) +
(

i

~

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1H(τ2)H(τ1)U(τ1, t0) . (2.14)

Further iteration gives the expression

U(t, t0) = 1 +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1H(τn)H(τn−1) . . .H(τ1) (2.15)

where U(t, t0) has disappeared on the right hand side. Notably, since the Hamiltonians at
di�erent times do not commute, the time variables in the above integral need to be fully
ordered (i.e. t ≥ τn ≥ . . . ≥ τ1 ≥ t0) [10].

In practice, the above expressions are not very useful. Since the expansion Eq. 2.15 treats
the entire Hamiltonian perturbatively, it usually applies only for very short times (and
breaks down at longer times). Thus, in the following, the time evolution operator is recast
in the so-called interaction picture, which allows to treat part of the Hamiltonian (H0)
exactly and expand perturbatively only in the remainder of the Hamiltonian (H ′(t)). Such
expansions form the basis of perturbation theory.

Interaction Representation. If the system Hamiltonian H(t) can be decomposed as

H(t) = H0 + H ′(t) (2.16)

where H ′(t) represents a small perturbation of the dynamics given by H0, a perturbation



2.1. Dynamic Quantum Systems and Perturbation Theory 13

expansion with respect to H ′(t) can be performed. Usually one will attempt to separate
H(t) such that the eigenvalue problem of H0 can be solved analytically, or by means of
numerical diagonalization. The time evolution operator with respect to H0 is then known
and given by

U0(t, t0) = e−
i
~H0(t−t0) . (2.17)

Provided such a separation can be made, the time-dependent state vector

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 (2.18)

can be written as

|Ψ(t)〉 ≡ U0(t, t0)|ΨI(t)〉 (2.19)

where the subscript I denotes the interaction picture4. Note that |Ψ(t)〉 is the wavefunction
under subject of the full Hamiltonian H(t), whereas U0(t, t0) is the time evolution operator
with respect to the system Hamiltonian H0 only. Hence, the time dependence of |ΨI(t)〉
describes the time evolution of the wavefunction caused by the di�erence between H(t)

and H0, i.e. by the perturbation H ′(t) 5. The equation of motion for the state vector in the
interaction representation follows from the original time-dependent Schrödinger equation.
Substitution of Eq. 2.19 into the Schrödinger equation gives

− i

~
H(t)|Ψ(t)〉 =

∂|Ψ(t)〉
∂t

− i

~
H(t)U0(t, t0)|ΨI(t)〉 =

∂

∂t
U0(t, t0)|ΨI(t)〉

=
( ∂

∂t
U0(t, t0)

)
|ΨI(t)〉+ U0(t, t0)

( ∂

∂t
|ΨI(t)〉

)

= − i

~
H0U0(t, t0)|ΨI(t)〉+ U0(t, t0)

( ∂

∂t
|ΨI(t)〉

)
(2.20)

Using the relation H ′(t) = H(t)−H0, one obtains

− i

~
H ′(t)U0(t, t0)|ΨI(t)〉 = U0(t, t0)

( ∂

∂t
|ΨI(t)〉

)
. (2.21)

4 Since U0(t0, t0) = 1, it follows from Equ. 2.19 that |ΨI(t0)〉 = |Ψ(t0)〉
5 In particular, if there is no perturbation, |ΨI(t)〉 = |Ψ(t0)〉
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Recalling that U0 is unitary6, one can now write

− i

~
U †

0(t, t0)H ′(t)U0(t, t0)|ΨI(t)〉 =
∂

∂t
|ΨI(t)〉 . (2.22)

De�ning the weak perturbation in the interaction picture as

H ′
I(t) = U †

0(t, t0)H ′(t)U0(t, t0) (2.23)

one arrives at the equation of motion for the state vector |ΨI(t)〉

∂

∂t
|ΨI(t)〉 = − i

~
H ′

I(t)|ΨI(t)〉 . (2.24)

Eq. 2.24 is formally equivalent to the Schrödinger equation, and can be solved iteratively
along the same lines as outlined in the previous subsection. Introducing the time evolution
operator in the interaction representation

|ΨI(t)〉 ≡ UI(t, t0)|ΨI(t0)〉 (2.25)

one obtains the expression (cf. Eq. 2.15)

UI(t, t0) = 1 +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1H
′
I(τn)H ′

I(τn−1) . . . H ′
I(τ1) .

(2.26)

To arrive at an expression for U(t, t0), note that with the above de�nitions one can write

|Ψ(t)〉 = U0(t, t0)|ΨI(t)〉
= U0(t, t0)UI(t, t0)|ΨI(t0)〉
= U0(t, t0)UI(t, t0)|Ψ(t0)〉 (2.27)

from which follows that

U(t, t0) = U0(t, t0)UI(t, t0) . (2.28)

Combining Eq. 2.28 and Eq. 2.26 gives

6 U†0 (t, t0) = U−1
0 (t, t0)
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U(t, t0) = U0(t, t0) +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1 (2.29)

U0(t, t0)H ′
I(τn)H ′

I(τn−1) . . . H ′
I(τ1)

Using the relation U0(τn, τn−1) = U0(τn, t0)U0(t0, τn−1) = U0(τn, t0)U
†
0(τn−1, t0) and writ-

ing the interaction Hamiltonian in the Schrödinger picture (cf. also Eq. 2.23), the above
equation can be alternatively written as

U(t, t0) = U0(t, t0) +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1 (2.30)

U0(t, τn)H ′(τn)U0(τn, τn−1)H ′(τn−1) . . . U0(τ2, τ1)H ′(τ1)U0(τ1, t0)

This type of expressions allow for an intuitive physical interpretation and, as will be shown,
connects to the diagrammatic representation of the system's evolution in terms of so-called
Feynman diagrams [10]. The system propagates freely under the subject of the system
Hamiltonian H0 until time τ1, described by U0(τ1, t0). At time τ1 it interacts with the
perturbation H ′(τ1), propagates again freely until τ2, interacts with H ′(τ2), and so on.

Eq. 2.30 at hand, one obtains for the wavefunction in the Schrödinger picture

|Ψ(t)〉 = |Ψ(0)(t)〉+
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1 (2.31)

U0(t, τn)H ′(τn)U0(τn, τn−1)H ′(τn−1) . . . U0(τ2, τ1)H ′(τ1)U0(τ1, t0)|Ψ(t0)〉

where |Ψ(0)(t)〉 ≡ U0(t, t0)|Ψ(t0)〉 is the zero-order wavefunction, i.e. the wavefunction
without the perturbation H ′(t).

2.2 Perturbative Expansion of the Density Matrix and
Nonlinear Polarization

Making use of the methodology outlined in the previous section, one can develop a per-
turbative expansion of the systems's density matrix (for a de�nition of the density matrix,
see Appendix). To this end, the density matrix is de�ned in the interaction picture

|Ψ(t)〉〈Ψ(t)| = U0(t, t0)|ΨI(t)〉〈ΨI(t)|U †
0(t, t0) (2.32)
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or, written alternatively

ρ(t) = U0(t, t0)ρI(t)U
†
0(t, t0) . (2.33)

Analogous to the time evolution of the wavefunction in the interaction picture |ΨI(t)〉 and
its perturbative expansion (cf. Eqs. 2.24, 2.25, and 2.26), one can likewise perturbatively
expand the density matrix in the interaction picture ρI(t), whose time evolution is governed
by

∂ρI(t)
∂t

= − i

~
[H ′

I(t), ρI(t)] (2.34)

i.e., an expression formally equivalent to the Liouville-von Neumann equation (see Ap-
pendix). Accordingly, the perturbative power expansion of ρI(t) is given by

ρI(t) = ρI(t0) +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1 (2.35)

[H ′
I(τn), [H ′

I(τn−1), . . . [H ′
I(τ1), ρI(t0)] . . .]] .

Going back to the Schrödinger picture yields the expression

ρ(t) = ρ(0)(t) +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1 (2.36)

U0(t, t0) · [H ′
I(τn), [H ′

I(τn−1), . . . [H ′
I(τ1), ρ(t0)] . . .]] · U †

0(t, t0) .

The interaction Hamiltonian in the equations above contains both the perturbation H ′(t)

and the time evolution operators (cf. Eq. 2.23). Since the density matrix contains a ket
and a bra, it can act on H ′

I(t) either from the left or from the right.

In a next step, one can proceed and specify the perturbation as

H ′(t) = E(r, t) · µ (2.37)

where E(r, t) is the electric �eld and µ is the (time-independent) dipole operator in the
Schrödinger picture. The electric �eld can be written as summation over all incoming �elds

E(r, t) =
∑

j

(
Ej(t)e−iωjt+ikjr + E∗

j (t)eiωjt−ikjr
)

(2.38)

where Ej(t) respectively E∗
j (t) denote the temporal �eld envelopes. Rewriting Eq. 2.36
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one thus obtains7

ρ(t) = ρ(0)(−∞) +
∞∑

n=1

ρ(n)(t) (2.39)

with the nth-order density matrix elements given by

ρ(n)(t) =
(
− i

~

)n ∫ t

−∞
dτn

∫ τn

−∞
dτn−1 . . .

∫ τ2

−∞
dτ1E(τn)E(τn−1) . . . E(τ1) (2.40)

U0(t, t0) · [µI(τn), [µI(τn−1), . . . [µI(τ1), ρ(−∞)] . . .]] · U †
0(t, t0)

and the dipole operator in the interaction picture de�ned as

µI(t) = U †
0(t, t0)µU0(t, t0) . (2.41)

The expectation value of the nth-order polarization, which is the observable in any exper-
iment, is given by (see Appendix) [10]

P (n)(t) = 〈µρ(n)(t)〉 . (2.42)

Thus, inserting Eq. 2.40 into the above equation and making use of Eq. 2.41, one obtains

P (n)(t) =
(
− i

~

)n ∫ t

−∞
dτn

∫ τn

−∞
dτn−1 . . .

∫ τ2

−∞
dτ1E(τn)E(τn−1) . . . E(τ1) (2.43)

〈µI(t) · [µI(τn), [µI(τn−1), . . . [µI(τ1), ρ(−∞)] . . .]]〉 .

Finally, by performing a transformation of the time variables (replacing the absolute time
points τn with time intervals tn) [10], one arrives at the expression for the nth-order polar-
ization

P (n)(t) =
(
− i

~

)n ∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt1 (2.44)

E(t− tn)E(t− tn − tn−1) . . . E(t− tn − tn−1 − . . .− t1)

〈µI(tn + tn−1 + . . . + t1) · [µI(tn−1 + . . . + t1), . . . [µI(0), ρ(−∞)] . . .]〉

which can be rewritten as a convolution of n electric �elds

7 Assuming ρ(t0) to be an equilibrium density matrix that does not evolve in time under subject of H0,
one can send t0 → −∞, as done in Eq. 2.39 and Eq. 2.40.
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P (n)(t) =
∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt1 (2.45)

E(t− tn)E(t− tn − tn−1) . . . E(t− tn − tn−1 − . . .− t1) · S(n)(tn, tn−1, . . . , t1)

with the nth-order nonlinear response function

S(n)(tn, . . . , t1) =
(
− i

~

)n

〈µI(tn + . . . + t1) · [µI(tn−1 + . . . + t1), . . . [µI(0), ρ(−∞)] . . .]〉

(2.46)

In the above expression, the interactions in the commutators generate a non-equilibrium
density matrix ρ(n), whose o�-diagonal elements emit a light �eld at time tn + . . . + t1.
Note that only the �rst n interactions are part of the commutators, while the last is not.
Writing down explicitly the commutator of a nth-order response function, one obtains a set
of 2n terms (pathways), each with various numbers of interactions on the left (on the ket)
respectively on the right (on the bra) of the density matrix. Since the entire set of terms
can be grouped into pairs that are complex conjugates of each other, one is left with an
expression that contains 2n−1 independent terms.

Is should be further mentioned that the form of Eq. 2.46 guarantees that the response
functions are real (as they relate two real quantities, the electric �eld and the polarization)
[10]. However, individual contributions (pathways) to the response function are complex.
Thus, once a particular wavevector is chosen for the signal in order to select particular
contributions, the relevant polarization becomes complex (see discussion below).

2.3 Modeling the Nonlinear Response of Excitonic Systems

The considerations outlined so far do not relate explicitly to a particular scheme of elec-
tronic levels, and the molecular systems covered within this work are to be discussed on an
individual basis. However, as the interrelation between electronic and optical properties of
excitonic systems is a central issue throughout most of the remaining chapters, some gen-
eral aspects of modeling the nonlinear optical response of molecular multi-chromophores
are outlined in the following.

Fortunately, a theoretical description of electronic excitations of molecular assemblies
becomes considerably simpli�ed if non-overlapping charge distributions can be assumed
(which applies for the systems studied here). The excitations are then known as Frenkel
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Fig. 2.1: (a) Assembly of molecular sites with individual coupling strengths (J) and site-transition
energies (ε); µn indicates a transition dipole moment in the local basis. (b) Level scheme and
(schematically indicated) transition dipoles in the excitonic basis. The energy spectrum consists
of well-separated groups of energy levels, representing single (|e〉) and double excitations (|f〉).

excitons, and their localization and energy-transfer dynamics have been extensively stud-
ied using the Frenkel exciton Hamiltonian, whose parameters are closely related to the
electronic structure of the individual chromophores [29, 30]. In the Frenkel exciton pic-
ture of multi-chromophoric systems (cf. Fig. 2.1), excitations can occur at molecular sites
(n = 1, . . . , N) with individual site transition energies εn and inter-site couplings Jmn. For
the one-exciton manifold, the Frenkel exciton Hamiltonian is given by

Hs =
∑

n

εn|n〉〈n|+
∑
m

∑

n 6=m

Jmn|m〉〈n| . (2.47)

The electronic eigenstates of the system can be obtained by diagonalization of the above
matrix. Their spatial characteristics may vary from site-localized states (if the energetic
width of the distribution of transition frequencies is larger than typical couplings) to de-
localized ones (if coupling terms become dominant over the variation of transition fre-
quencies). The two-exciton manifold, in turn, comprises the highest accessible states in
(conventional) 2D electronic spectroscopy, and involves simultaneous excitation of di�erent
sites (m 6= n). A thorough discussion of the construction of the respective Hamiltonian is
beyond the scope in the present context [31].

Since the studies described here deal with condensed phase systems, molecular properties
have generally to be assumed to be �uctuating; in other words, energy levels and other
intramolecular quantities become time dependent, which necessitates a theoretical descrip-
tion of the system-bath coupling. The population and phase relaxation processes, induced
by a �uctuating environment (may it be solvent modes or intramolecular modes), result
in line-broadenings and spectral shifts, directly impacting multidimensional signals. While
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such bath e�ects may be incorporated by simply �adding� (phenomenological) relaxation
rates (as is done, in fact, in Chapter III of this theses), it is common to involve semiclassical
treatments of bath degrees of freedom by using correlation function time-domain methods.

Generally, the coupling of an excitonic system to a bath will induce time-dependent �uctu-
ations Qmn(t) in all matrix elements of the total Hamiltonian, represented by the system-
bath coupling Hamiltonian

Hsb =
∑
m

∑
n

Qmn(t)|m〉〈n| . (2.48)

Since purely stochastic models of �uctuations do not account for dissipation [32, 33], for
electronic transitions, most frequently a microscopic description of the bath is applied.
The widely used multimode Brownian oscillator (BO) model provides closed expressions
for the optical response of two-level systems [34, 35, 10]. Therein, �uctuations are related
to the collective coordinate of a BO, whose equilibrium position is displaced in the ex-
cited electronic state, and which experiences the (random) in�uence of the remaining bath
coordinates during propagation. Within the BO model, the ensemble averaged �uctuation-
correlation functions

Cklmn(τ) = 〈Qkl(t + τ)Qmn(t)〉 (2.49)

carry in principle all relevant information on bath �uctuations8. A large number of phe-
nomenological models commonly used in nonlinear optics, e.g. stochastic models, homoge-
neous Lorentzian, and inhomogeneous Gaussian line broadening can be obtained as limiting
cases of the BO model. It therefore provides an unifying framework for the analysis of op-
tical response functions. After adequate transformation of the matrix elements Qmn(t),
i.e. in the electronic eigenstate representation, diagonal exciton-phonon coupling leads to
the decay of coherences (pure dephasing), while o�-diagonal elements induce a population
redistribution within the excitonic states. It should be mentioned that only the diagonal
part of the system-bath coupling can be treated exactly (for Gaussian �uctuations) [10, 30].
Exciton relaxation e�ects in assemblies of electronic chromophores (e�ects of o�-diagonal
�uctuations), on the other hand, are commonly accounted for within the framework of
Red�eld theory or extensions thereof [36, 37, 38, 39].

Given the excitonic level positions (transition frequencies) and their linewidths (relaxation
rates) have been determined, the nonlinear optical response of the system under study can

8 For multi-chromophores, the relevant number of such expressions reduces signi�cantly if �uctuations
of couplings Qmn(t) can be neglected (Hsb can be assumed to be diagonal in the site representation),
and/or �uctuations at di�erent chromophores are statistically independent, i.e. Cmmnn(τ) = δmn〈Qmm(t+
τ)Qnn(t)〉.
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be calculated on the basis of the 3rd-order response function (cf. Eq. 2.46)

S(3)(t3, t2, t1) =
(
− i

~

)3

〈µI(t3 + t2 + t1) · [µI(t2 + t1)[µI(t1)[µI(0), ρ(−∞)]]]〉 . (2.50)

Note that, since the experiments to be presented involve three laser pulses, the expression
for the electric �eld (cf. Eq. 2.38)

E(r, t) =
3∑

j=1

(
Ej(t)e−iωjt+ikjr + E∗

j (t)eiωjt−ikjr
)

(2.51)

contains six terms. As a result, already for a two-level system, the integrand

P (3)(t) =
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1 (2.52)

E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) · S(3)(t3, t2, t1)

which needs to be evaluated when calculating the nonlinear polarization, contains a total
of 6 · 6 · 6 · 23−1 = 864 terms, which arise from convolving the systems's nonlinear response
function with the electric �eld. Fortunately, the number of terms that are relevant for
comparing calculated and experimental data can be reduced considerably [10].

First, if the temporal envelopes Ej(t) of the laser pulses are shorter then the typical time
separations between them, one can neglect pulse overlap e�ects and assume strict time
ordering. It is further common to perform calculations in the so-called semi-impulsive
limit, assuming the laser pulses to be short compared with any timescale of the material
system, but still long compared to optical periods. The temporal envelopes of the pulses are
then replaced by δ-functions, while keeping the assigned carrier frequencies and wavevectors
(assumption of �physical� δ-functions). Each pulse then enters with a term containing either
e−iωt or eiωt (and the associated wavevector) into Eq. 2.52. This allows, in turn, to employ
the rotating wave approximation (RWA), which relies on the fact that integrals of highly
oscillating functions vanish (given the �functional envelope� does not change signi�cantly
during an oscillation period). Simply speaking, the RWA is a way to select only resonant
terms in S(3)(t3, t2, t1), where the optical frequency is canceled by a material frequency of
opposite sign. It is valid near resonance conditions and if the envelope of the electric �eld
is slowly varying in time (compared to the pulse carrier frequency). Given the RWA is
applicable, and recalling that each threefold product of electric �elds in Eq. 2.52 carries
a wavevector ks = ±k1 ± k2 ± k3, the number of relevant terms is further reduced due
to a non-collinear wavevector architecture in the experiment. Depending on the choice of
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Fig. 2.2: Double-sided Feynman diagrams representing the evolution of the density matrix dur-
ing the pathways that contribute to the third order response of a molecular aggregates (in the
rotating wave approximation). Shown are the signal directions (a) ks = −k1 + k2 + k3 and (b)
ks = +k1−k2 +k3, which can be distinguished as rephasing respectively non-rephasing contribu-
tions. In each diagram, the left (right) vertical line denotes the time evolution of the ket (bra) of
the density matrix, time is running from bottom to top. Interactions with the light �eld are repre-
sented by arrows. An arrow pointing towards the diagram represents energetic up-climbing on the
corresponding side of the density matrix, an arrow pointing away represents a de-excitation. The
diagrams can be classi�ed as ground state bleach (GSB), stimulated emission (SE), and excited
state absorption (ESA) contributions, respectively, giving rise to positive (GSB, SE) and negative
(ESA) absorptive signals. After the �rst two interactions, i.e. during t2, the system evolves either
in the ground state (GSB), or in the one-exciton manifold (SE and ESA). Note that in the lat-
ter case, population and/or coherence transfer may lead to new pathways. The third interaction
takes the system again into a one-exciton coherence (GSB, SE), or, alternatively, into a coherence
between a one- and a two-exciton state (ESA).

ks, only a handful of terms in S(3)(t3, t2, t1) usually survives the RWA and needs to be
considered for the calculation of P (3)(t).

This chapter closes with presenting the Liouville-space pathways that contribute to the
third-order response of a molecular aggregate (level scheme Fig. 2.1b) in the rotating wave
approximation. Fig. 2.2 shows the so-called double sided Feynman diagrams for the signal
directions ks = −k1+k2+k3 respectively ks = +k1−k2+k3. The rules governing this type
of diagrammatic representation are outlined in the �gure caption. This type of presentation
is intimately linked to Eq. 2.50. The illustrated pathways form the interpretational basis
for simulations and experiments described in the forthcoming chapters.
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APPENDIX

Expanding |Ψ(t)〉 in a basis |n〉 one obtains

|Ψ(t)〉 =
∑

n

cn(t)|n〉 (2.53)

respectively

〈Ψ(t)| =
∑

n

c∗n(t)〈n| (2.54)

for the Hermitian conjugate [10]. The density matrix ρ(t) of a pure quantum state is
de�ned as

ρ(t) ≡ |Ψ(t)〉〈Ψ(t)| =
∑
n,m

cn(t)c∗m(t)|n〉〈m| (2.55)

with matrix elements

ρnm(t) ≡ 〈n|ρ(t)|m〉 = cn(t)c∗m(t) . (2.56)

The expectation value of an operator A in the density matrix picture is given by

〈A(t)〉 = 〈Ψ(t)|A|Ψ(t)〉 =
∑
nm

cn(t)c∗m(t)Anm = Tr[ρ(t)A] . (2.57)

The equation of motion for the density operator is given by the time-evolution of the ket
and the bra

∂ρ(t)
∂t

=
∂|Ψ(t)〉

∂t
〈Ψ(t)|+ |Ψ(t)〉∂〈Ψ(t)|

∂t
= − i

~
[H, ρ] . (2.58)

This equation is known as the Liouville-von Neumann equation, written in Hilbert space
[10]. In condensed phase systems, one generally deals with statistical ensambles, rather
than pure states. While there is no way to write a wavefunction of a statistical average,
one can write the density matrix of a statistical average. Let Pk be the probability of a
system being in a pure state |Ψk(t)〉, then the density matrix is de�ned as

ρ(t) =
∑

k

Pk|Ψk(t)〉〈Ψk(t)| . (2.59)

If the system can be represented by a wavefunction, it is in a pure state, and all Pk's
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are 0, except for one which is 1. Otherwise the system is in a mixed state and has to be
represented by ρ(t).



3. TWO-DIMENSIONAL SPECTRA OF SYMMETRIC DIMERS - A
THEORETICAL STUDY

An exemplary theoretical study on the information content of two-dimensional
photon-echo spectra is presented, focusing on their potential to distinguish between
di�erent conformations of electronically coupled symmetric dimers. The analysis is
performed on the basis of an analytical formula for the frequency-domain signal.
The dimers are modeled in terms of two identical, energy-degenerate, excitonically
coupled pairs of electronic states in the site-representation. The spectra of conforma-
tionally weighted ensembles, composed of either two or four dimers, are compared
with their one-dimensional linear absorption counterparts. In order to provide a
realistic coupling pattern for the ensemble consisting of four dimers, excitonic cou-
plings are estimated on the basis of optimized geometries and site-transition dipole
moments, calculated by standard semiempirical methods for a bridged bithiophene
structure. In the framework of the model, the highly readable two-dimensional spec-
tra allow to unambiguously identify spectral doublets, by relating peak heights and
positions to mutual orientations of site-localized transition dipoles.

Related publication:

Two-dimensional electronic spectra of symmetric dimers: Intermolecular coupling and
conformational states
V. Szöcs, T. Pálszegi, V. Luke², J. Sperling, F. Milota, W. Jakubetz, and H. F. Kau�mann
Journal of Chemical Physics, 124, 124511 (2006)
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3.1 Introduction

The information provided by conventional one-dimensional (1D) spectroscopies is limited
by the projection onto a single frequency-axis. This complicates the separation of oper-
ative line-broadening mechanisms and studies on chromophore-chromophore interactions,
particularly in studies carried out in condensed phases. Time-resolved multi-dimensional
(nD) spectroscopies, on the other hand, hold great potential to identify correlations of
electronic transitions by spreading congested spectra into two (or more) frequency dimen-
sions that correspond to speci�c time-intervals of a pulse sequence. In the present chapter,
in a lowest order approach to tackle electronically interacting molecular units, heterodyne
detected photon-echo (PE) signals of energy-degenerate symmetric dimers (SDs) are an-
alyzed. Comprising the simplest case of a polychromophoric assembly, the SDs under
consideration are modeled in terms of two identical, excitonically coupled pairs of elec-
tronic states in the site-representation. The resonant, purely electronic inter-site coupling
is assumed to be mediated by the interaction of (site-)transition dipole moments, which
is a useful approximation in the absence of direct inter-chromophoric orbital overlap. The
method has been developed keeping an eye on the treatment of the coherent dynamics of
the �bottom states� in the density-of-states of conjugated polymers [40, 41], for which the
model of non-interacting excitonic two-site conformational systems is a reasonable choice -
even though the present model assumptions may not hold in terms of a fully quantitative
description.

This study continues previous work [42], where, by numerical Fourier inversion of the
time-domain PE-signal of inhomogeneously broadened (but otherwise identical) dimers,
the essential features of electronic two-dimensional (2D) correlation spectra have been an-
alyzed in frequency-frequency space. Here, the probability information content of electronic
2D-PE and 1D linear absorption (LA) spectra of discrete conformational distributions of
SDs (with individual coupling strengths and transition dipole orientations) is compared in
detail. This task is accomplished on the basis of an analytic expression for the 2D-PE sig-
nal in frequency-frequency space at waiting time zero (T = 0)1. It is this con�guration of
the 3-pulse PE experiment (where the second and third pulses coincide), that contains the

1 Throughout this chapter τ12, T , and t′ refer to time intervals that are otherwise denoted as t1, t2, and
t3, respectively.
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required spectroscopic information, taking the classical tasks of absorption spectroscopy
to new levels of resolution. More advanced possibilities are connected with waiting-time
resolved 3-pulse PE spectroscopy [30, 43, 23, 39, 44, 45] through its direct access to energy
transfer between coupled chromophores.

The chapter is organized as follows. In Section 3.2, a brief outline of the model is given,
the 2D-PE spectra of symmetric dimers are discussed, and analytic formulas for the signals
in 2D frequency-frequency space are derived. Section 3.3 turns to the corresponding elec-
tronic linear absorption (LA) spectra, again providing analytic formulas for the signals. In
two case studies described in Section 3.4, spectra of statistical distributions formed by two
and four bichromophores, respectively, are compared. For the SD-pair, it is shown how the
information content of PE spectra in frequency-frequency space can be used for the iden-
ti�cation of SD doublets in a blurred linear absorption spectrum. In the case of four SDs,
using realistic estimates on excitonic couplings obtained from optimized geometries and
semiempirical calculations on a bridged bithiophene-structure, a multiplet is deciphered,
which, for the same parameters of spectral broadening, is hidden in the congested LA
spectrum. The chapter closes with a summary and conclusions addressing the limitations
of the model.

3.2 Two-Dimensional Photon-Echo Spectra

Outline of the Model. The calculation of the time-domain 2D-PE signal for a single
resonantly coupled SD is discussed in detail in Ref. [42]. For the sake of completeness, the
most relevant steps are outlined brie�y in the following, before turning to the analytically
derived expression for the the heterodyned 2D-PE signal of a SD in frequency-frequency
space.

The electronic site-subsystem of a speci�c SD is described by its electronic ground state
|gi〉 and its �rst excited state |ei〉, with equal transition frequency ωeg for both sites forming
the SD (see Fig.3.1). The Hilbert space of the SD's electronic states consists of the ground
state |G〉 = |gI〉|gII〉, a subspace of two one-exciton states |E1〉 = {|gI〉|eII〉, |eI〉|gII〉}, and a
two-exciton state |E2〉 = |eI〉|eII〉, the latter comprising a pair of site-localized excitations
(di�erent from one-electron, delocalized Frenkel excitons). In the interaction Hamiltonian,
each site is represented by its electronic states |gi〉 and |ei〉 and by the corresponding basis
of intramolecular vibrational states. The resonant dipole-dipole inter-site coupling of mag-
nitude J , which is assumed to be factorized from nuclear vibrational motions, depends on
the inter-site distance. Its e�ective component is determined by the angle θ between the
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Fig. 3.1: Two-site, four-level excitonic system in the adiabiatic approximation, showing schemat-
ically the intersite coupling of magnitude J and the site transition dipole angle θ determining the
e�ective coupling.

site transition dipole moments dI and dII of equal magnitude d = |dI| = |dII|. Assuming
site-localized vibrations, the total energy of a dimer is obtained by adding the correspond-
ing vibrational Hamiltonians to those for the electronic states. Overall, the interaction
causing delocalization and resonant transfer of excitation energy between the sites will be
determined by the stable conformation geometry in a local free energy minimum, and the
extent of coupling determines the energy splitting between the electronically excited states
of the system.

The 3-pulse PE sequence consists of three pulses with time delay τ12 between the �rst
and second pulse and waiting time (or population time) T between the second and the
third pulse, with T = 0 (coinciding or degenerate pulses 2 and 3) representing the limit
of zero waiting time. The coherence time after the third pulse, when the echo is built
up, is denoted t′, so that the total time elapsed (t) is given t = τ12 + T + t′. With the
assumptions outlined above, the time-domain PE signal of a SD can be derived [42] for
resonant δ-pulse excitation by propagation of the density operator in Liouville space [10].
Accordingly, in an ensemble of randomly oriented, but otherwise identical dimers, at T = 0

the PE sequence generates the 3rd-order polarization2

P (3)(τ12, t
′) = iK exp(iωLt) exp(−t/T2) exp(−σ2(t′−τ12)2/2) Rδ(τ12, t

′)+c.c. . (3.1)

Here, c.c. stands for complex conjugate, K is a constant that results from the signal phase-
matching condition kS = −k1 +k2 + k3, which at T = 0 simpli�es to kS = −k1 + 2k2 (kn

is the wave-vector of the vertically polarized nth electric �eld pulse), and ωL is the carrier
frequency of the δ-pulses. The parameters 1/T2 and σ describe the homogeneous dephasing
of coherence due to unspeci�ed system-bath interactions, and the width of the inhomo-

2 The convention ~ = 1 is used throughout this chapter.
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geneous (static) distribution of transition energies, respectively. Note that, following the
convention introduced above (~ = 1), 1/T2 and σ are given in energy units, so that the ratio
of homogeneous (HLB) to inhomogeneous line-broadening (IHLB), HLB/IHLB= T−1

2 σ−1,
becomes dimensionless.

As discernible from the exponential prefactors in Eq. 3.1, the overall decay of P (3) is
determined by the rate 1/T2, while the contribution due to rephasing reaches its maximum
at time t′ = τ12 (formation of the "true echo"). In the above expression, the response
function to δ-pulse excitation Rδ(τ12, t

′) is composed of two four-point dipole correlation
functions

Rδ(τ12, t
′) = 2FE1(τ12, τ12 + t′, τ12, 0)− FE2(τ12, τ12, τ12 + t′, 0) (3.2)

which are given by four-point correlation functions of coupled SDs [42],

FE1(t1, t2, t3, t4) = 〈dGE1(t1) dE1G(t2) dGE1(t3) dE1G(t4)〉 (3.3)

FE2(t1, t2, t3, t4) = 〈dGE1(t1) dE1E2(t2) dE2E1(t3) dE1G(t4)〉 . (3.4)

Since the weak inter-site coupling J is assumed to be independent of vibrations, FE1 and
FE2 can be decomposed into excitation transfer (ET) and vibrational (ν) parts, which de-
pend on the coupling J respectively on the vibrational Hamiltonians [42]. For appropriate
time-ordering, FE1 equals the one-particle response functions R∗

2(3)(t
′, 0, τ12) of a two-level

system (TLS) in the well-known formalism developed by Mukamel and co-workers [10],
while FE2 has no simple one-particle counterpart. The four point dipole correlation func-
tions contain the electronic coupling term J and explicitly read [42]

FE1(τ12, τ12 + t′, τ12, 0) = |d|4 (4/5){sin4 θ exp(−iJt−) + cos4 θ exp(iJt−)}+

|d|4 (2/15) sin2 θ {exp(−iJt+) + exp(iJt+)} (3.5)

FE2(τ12, τ12, τ12 + t′, 0) = (2/15) {(2 + 3 cos θ + cos 2θ) exp(−iJt+) +

(2− 3 cos θ + cos 2θ) exp(iJt+)}

where the notation t± = t′ ± τ12 has been introduced.

The method of heterodyne-detection relies on mixing the signal with a local oscillator �eld,
for which a δ-pulse shape, a carrier frequency equal to the excitation frequency ωL, and
zero relative phase shift with respect to the phase of the signal �eld are assumed. The
time-domain 2D-PE signal S(τ12, t

′) is then simply proportional to the signal polarization
given in Eq. 3.1,

S(τ12, t
′) ∝ P (3)(τ12, t

′) . (3.6)
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One is now interested in the analytical form of the corresponding double Fourier transform
of S(τ12, t

′), which allows to switch to the undoubtedly more informative signal represen-
tation in frequency-frequency space, i.e. in the derivation of

S(ωτ12 , ωt′) =
∫ ∞

0

∫ ∞

0
exp(iωt′t

′) exp(iωτ12τ12)S(τ12, t
′)dt′dτ12 . (3.7)

The 2D Photon-Echo Signal. In previous work, analytical results for S(ωτ12 , ωt′) have
been given only for the two simple special cases of parallel (θ = 0) and perpendicular (θ =

π/2) orientations of transition dipoles, for which P (3)(τ12, t
′) simpli�es considerably [42].

Here, inserting Eqs. 3.6 and 3.1 into Eq. 3.7 results in a tedious expression, whose numerator
consists of a lengthy sum of exponentials, with exponents that can be written as quadratic
polynomials in (ωt′ − ωτ12)/2, ωL, J , 1/T2, and θ. Exploiting the fact that exponentials
with imaginary exponents involve multiples of θ, and applying the Euler formula and
subsequently the sum rules for polynomials in sin(nθ) and cos(nθ), the numerator can be
simpli�ed considerably. After some rearrangements, a compact and instructive formula
can be obtained for the heterodyned PE signal of a SD in frequency-frequency space:

S(ωd, ωa) =
(1− cos θ)2

2(T−1
2 − iωa)

[
e−(ωd+J)2/2 σ2

+ e−(ωd−J−2ωL)2/2 σ2
]

+
(1 + cos θ)2

2(T−1
2 − iωa)

[
e−(ωd−J)2/2σ2

+ e−(ωd+J−2ωL)2/2 σ2
]

(3.8)

+
i cos θ

J2 +
(
T−1

2 − iωa

)2

[
J + i

(
T−1

2 − iωa

)
cos θ

]
e−ω2

d/2 σ2

− i cos θ

J2 +
(
T−1

2 − iωa

)2

[
J − i

(
T−1

2 − iωa

)
cos θ

]
e−(ωd−2ωL)2/2 σ2

.

To make the following discussion more transparent, in the expression given above, ωτ12 and
ωt′ have been transformed into the (−π/4) rotated diagonal (ωd) and antidiagonal (ωa)
frequencies according to

ωd = −(ωt′ − ωτ12)/2 + ωL ωa = (ωt′ + ωτ12)/2 . (3.9)

The shape of the absolute value of the real part of the 2D signal in frequency-frequency
space, |Re{S(ωτ12 , ωt′)}|, is schematically shown in Fig. 3.2a. In (−ωτ12 , ωt′)-coordinates,
four peaks are arranged at the edges of a square with side-length 2J . The transformation
S(ωτ12 , ωt′) → S(ωd, ωa) represented by Eq. 3.9 moves the new frequency origin to the cen-
ter of the square and sets the signs in such a way that ωt′ and |ωτ12 | decrease with increasing
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Fig. 3.2: (a) Schematics of peak positions in |Re{S(ωτ12 , ωt′)}|, i.e. the absolute value of the
real part of the 2D-PE signal, for a symmetric dimer. The origin in the (−ωτ12 , ωt′ ) plane is
set to (ωL, ωL). The rotated diagonal (ωd) and anti-diagonal (ωa) axes are also shown (arrows
point in the directions of increasing coordinate values). HLB and IHLB denote homogeneous and
inhomogeneous line-broadening, respectively. (b) Angle dependence of diagonal and anti-diagonal
peak amplitudes of the real part Re [S(ωτ12 , ωt′)] of the 2D-PE signal (in the limit σ → 0 and
1/T2 → 0). Note that anti-diagonal peaks disappear for θ = π/2, due to cancellation of one- and
two-exciton contributions, as illustrated in (c).

ωd. As discussed below, the cut of the signal along this axis is closely related to the (1D)
LA spectrum. Since the transformation is not unitary, the positions of the peak maxima
in the new coordinates (ωd, ωa) are P1 ≡ (J, 0) and P3 ≡ (−J, 0) for the diagonal peaks,
and P2 ≡ (0, J) and P4 ≡ (0,−J) for the antidiagonal peaks, respectively. Eq. 3.8implies
a second four-peak signal-structure, equivalent to the one sketched in Fig. 3.2a, and cen-
tered around (−ωτ12 = −ωL, ωt′ = −ωL). This can be seen by substituting ωd with
2ωL − ωd in Eq. 3.8, which leads to the interchange (ωd ± J − 2ωL)2 ←→ (ωd ∓ J)2 and
(ωd − 2ωL)2 ←→ (ωd)

2. However, since for optical carrier frequencies |2ωL| À J , terms
containing 2ωL are neglected in the analysis of the signal structure around (ωL, ωL).
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Clearly, the inter-peak distances in the 2D-PE frequency-domain spectrum contain infor-
mation on the inter-site coupling J . The peak heights, on the other hand, are in distinct
relation to the mutual angle θ of site-localized transition dipoles, thus serving as a struc-
tural probe for resonantly interacting molecules. For the case J > 0, and the limit σ → 0

and 1/T2 → 0, Fig. 3.2b shows the angle dependence of the maxima of diagonal and
anti-diagonal peaks in the Re [S(ωτ12 , ωt′)]-spectrum. While diagonal peaks have qualita-
tively the same dependence on θ as the peaks in LA (see below), the anti-diagonal peaks
disappear in the limit θ = π/2. This is due to the cancelation of one- and two-exciton
contributions, as illustrated in Fig. 3.2c, from which one further perceives the dominance
of the two-exciton contribution at small values of θ.

The consistency of results can be checked on the basis of diagonal and anti-diagonal cuts
of the signal S(ωd, ωa), de�ned as

DRe(ωd) = Re [S(ωd, 0] (3.10)

ARe(ωa) = Re [S(0, ωa] . (3.11)

From Eq. 3.8, one obtains for the diagonal cut

DRe(ωd) =
(1− cos θ)2

2
e−(ωd+J)2/2 σ2

+
(1 + cos θ)2

2
e−(ωd−J)2/2σ2

− cos2 θ

1 + (JT2)2
e−ω2

d/2 σ2
. (3.12)

The �rst two peaks of DRe(ωd) are centered at ωd = ∓J , i.e. at absolute frequency ωL∓J ,
with weights (1 ∓ cos θ)2/2. As shown below, within the presented model the peaks in
the LA spectrum appear at the same frequencies with quantitatively similar peak height
factors of (1− cos θ) and (1 + cos θ), respectively. However, in contrast to LA, where the
peak shapes are determined by the convolution of homogeneous and inhomogeneous line-
broadening, the peak-widths in Eq. 3.12 are exclusively determined by the IHLB parameter,
which is one of the key-features of heterodyne-detected frequency-domain 2D spectra [46].
The last term in Eq. 3.12, centered around ωd = 0 (absolute frequency ωL), ensures that
the response of the system is well-behaved in the limit of decoupled sites. While the
contribution vanishes under the conditions assumed here, i.e. for 1/T2 ¿ |J |, the signal of
an isolated TLS, DTLS

Re (ωd) = e−ω2
d/2 σ2 , is recovered in the limit J → 0 and θ → 0.

The anti-diagonal cut of the signal, in turn, is given by
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ARe(ωa) = − 1
T 2

2

(ω2
a + J2 + T−2

2 ) cos θ + 2Jωa

[(ωa + J)2 + T−2
2 ][(ωa − J)2 + T−2

2 ]
cos θ

+
1
T 2

2

3 + 2 cos 2θ

2(ω2
a + T−2

2 )
e−J2/2 σ2

. (3.13)

The shape of the cut is Lorentzian around the peaks at ωa = ±J , and is controlled by the
homogenous broadening parameter T2, with peak heights determined by θ. In analogy to
the cut along the diagonal, the central peak around ωa = 0 (absolute frequency ωL) again
disappears (T 2

2 ω2
a À 1). Furthermore, checking the TLS limit of the equation above, one

obtains ATLS
Re (ωa) = 1/[1 + (ωaT2)2], i.e. a single peak at the absolute frequency ωL, as

expected.

3.3 Linear Absorption Spectra

In systems without dissipation, the absorption coe�cient describes a transition between
two states, with a rate proportional to the inter-state oscillator strength. Here, one has
to consider the absorption from the common SD ground state G to a one-exciton state
E1 mediated by the dipole moment dGE1 [42]. Assuming the inter-site coupling to be
independent of vibrational modes, the Hamiltonian HE1 takes the simple form

HE1 =

(
ωeg J

J ωeg

)
(3.14)

HE1 has one antisymmetric eigenstate with energy E− = ωeg − J , and one symmetric
eigenstate with energy E+ = ωeg + J . Following established procedures [47] one obtains
for the pure, dissipation-free absorption coe�cient

α0(ω) = K1ω{|dI − dII |2δ(ω − ωeg + J) + |dI + dII |2δ(ω − ωeg − J)} (3.15)

where constants are collected in the prefactor K1. After spatial averaging, using the rela-
tions

〈
d2

I

〉
or

=
〈
d2

II

〉
or

= |d|2 /3 and 〈dIdII〉or = |d|2 /3 cos θ, the SD absorption becomes

α0(ω) = K1ω{(1− cos θ) δ(ω − ωeg + J) + (1 + cos θ) δ(ω − ωeg − J)} . (3.16)

Eq. 3.16 has a noteworthy limit: for θ = 0, a single peak at energy ω = ωeg + J appears.
This is a consequence of the fact that for parallel dipoles the symmetric eigenstate |+〉
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carries the entire oscillator strength. The �real� frequency shift, however, may be either to
the red or to the blue, depending on the sign of J .
To model HLB and IHLB in Eq. 3.16, one can use a well-established approach wherein the
real time-resolved absorption α0(t) is modi�ed according to [47]

α(t) = α0(t)D(t) (3.17)

where D(t) is symmetric in time and includes a Lorentzian (homogeneous) and a Gaussian
(inhomogeneous) contribution, i.e. D(t) = DHLB(t)DIHLB(t) = exp(−|t|/T2) exp(−t2σ2/2).
In frequency-space, α(ω) is then given by

α(ω) =
∫

α0(ω − Ω)D(Ω) dΩ . (3.18)

In the above expression, D(Ω) is the Fourier transform of D(t), which can be derived
analytically as

D(Ω) =
1

2σ
√

2π

{
exp[−(Ω− iT−1

2 )2/2σ2]
(
1− erf[(iΩ + T−1

2 )/σ
√

2]
)}

+c.c. . (3.19)

Here, erf[z] is the complex error function. As is evident, Eq. 3.19 assumes a Lorentzian
shape in the limit σ → 0 and a Gaussian shape in the limit T2 → ∞, frequently referred
to as the homogeneous and inhomogeneous limits of line broadening. Finally, combining
Eq. 3.18 and Eq. 3.19, the absorption coe�cient has the form

α(ω) = K1ωeg{(1− cos θ) D(ω − ωeg + J) + (1 + cos θ) D(ω − ωeg − J)} (3.20)

where in view of |J | ¿ ωeg, the prefactor ω in Eq. 3.16 has been substituted by ωeg.

3.4 Spectra of Discrete Conformational Distributions

With the expressions derived above at hand, one can now calculate the 1D LA spectrum
as well as the 2D-PE spectrum of a given ensemble of SD conformers. In both cases, the
SD spectra are simply given by the sum of individual spectra, weighted by conformational
probabilities. Before demonstrating the potential of 2D-PE spectra for decoding the num-
ber of dimers involved and their inter-site orientations in disordered ensembles, it should
be mentioned that the particular choices for the HLB and IHLB parameters are somewhat
arbitrary. However, as will be shown, this does not a�ect any of the conclusions to be
drawn.
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Fig. 3.3: Hypothetical linear absorption quadruplets (top row) vs. absolute values of the real
part of 2D-PE signals |Re{S(ωτ12 , ωt′)}| (bottom row) for two symmetric dimers with common
parameters σ/ωeg = 1/(T2ωeg) = 5 · 10−4, corresponding to pairings {1} = {(a, b), (c, d)} (left),
{2} = {(a, c), (b, d)} (middle), and {3} = {(a, d), (b, c)} (right). The arbitrary assignment of the
coherence transfer parameter J as indicated in the top left plot is explained in the text.

In the following, two speci�c cases are studied: (i) the assignment problem in an ensemble
of two dimers (N = 2 system) giving a quadruplet in LA, and (ii) the unraveling of
spectral doublets hidden in a congested spectrum of an N = 4 ensemble, for the excitonic
couplings are estimated on the basis of optimized geometries and site-transition dipole
moments calculated for the bridged bithiophene structure 1,2-bithiophene-2-yl-ethane-1,2-
dion (T2[CO]2) using standard semiempirical methods.

Peak Assignment in an Ensemble of Two Dimers. The three top panels of Fig. 3.3
show a calculated LA spectrum of two SDs (p1 = p2 = 0.5) formed by four peaks, denoted,
with increasing energy, a, b, c and d. The spectrum has been obtained from Eq. 3.20;
for the parameters used, see below. Lets assume these parameters to be unknown, and to
attempt to disentangle the spectrum. Guided by the general form of Eq. 3.20, and in view
of the additivity of the two individual SD spectra, one can assign ~ωeg (i.e., numerically
ωeg) to the frequency halfway between the peaks b and c. Further, the energy di�erences of
neighboring absorption peaks can be denoted as J/2, J and J/2 (cf. Fig. 3.3). Pairing the
peaks into doublets without using any additional information, i.e. inverting the addition
of the individual spectra, the overall spectrum can be interpreted in three di�erent ways,
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as any of three di�erent sums of individual absorption spectra. A lower and higher energy
peak specify a given pairing, and the possible selections from the set {a, b, c, d} give the
three pairings {(a, b); (c, d)}, {(a, c); (b, d)}, and {(a, d); (b, c)}, denoted as {1}, {2}, and
{3} in the following. The three ways to interpret the LA spectrum are visualized in the
top row of Fig. 3.3.

The evaluation of the corresponding electronic couplings {J1;J2} gives the values {J/4;J/4},
{3J/4; 3J/4} and {J ; J/2}; furthermore, the site energy gaps {ω1

eg, ω
2
eg} are given by the

pairs {ωeg−3J/4;ωeg +3J/4}, {ωeg−J/4;ωeg +J/4}, and {ωeg;ωeg}, respectively. Even-
tually, using the relation for the peak intensity ratio of an individual SD in LA given by
Eq. 3.20, the mutual orientations {θ1; θ2} of site transition dipoles in the i-th SD can be
calculated. The pairs so obtained are (30◦; 67.5◦), (82◦; 54.5◦), and (37.3◦; 59.6◦) for the
possible pairings {1}, {2}, and {3}. As can be veri�ed, the calculation of a LA spectrum
with any of the given sets of parameters results in the same spectral shape.

The 2D-PE spectra corresponding to the three pairings are shown in the three bottom pan-
els of Fig. 3.3. For clarity of presentation, the discussion is restricted to |Re{S(ωτ12 , ωt′)}|,
i.e. to the absolute values of the real part of 2D-PE signals. In each case, the spectrum is
formed by two squares of four related peaks, each square structure representing the signals
of an individual dimer. In correspondence to the speci�c pairings, the squares are either
separated from each other (case {1}), intersecting (case {2}), or concentric (case {3}).
Although the LA spectrum can be interpreted by di�erent sums of SD doublets, the 2D-
PE spectra are speci�c for each of the three pairings, allowing to resolve the assignment
problem in LA.

The relative peak intensities in the diagonal part of the spectrum are the same as those
in the LA spectrum. This is a signature of the strict one-exciton dependence of the 2D
diagonal peaks. Overall, the diagonal part of the 2D-PE spectra carries the same informa-
tion content as the LA spectra, which follows from the comparison of the θ-dependences
of the diagonal peaks in the frequency-frequency domain, Eq. 3.12, with the LA peaks,
Eq. 3.20. However, the assignment problem can be unambiguously solved by inspection of
the o�-diagonal peaks. This would even hold for much larger HLB and IHLB parameters.
If such a simultaneous analysis of 1D LA and 2D-PE spectra were applied in an experi-
mental study, the agreement between the relative positions of 2D-PE square quadruplets
would play a decisive role.

Spectral Doublets in an Ensemble of Four Dimers. It becomes clear from the simple
treatment above, that the frequency-frequency space 2D-PE signals provide a very helpful
platform for the visualization of site-to-site coupling relations. Lets now turn to the more
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Fig. 3.4: (a) Structure of 1,2-bis-thiophen-2-yl-ethane-1,2-dion (T2[CO]2). (b)-(e) The four con-
formations of T2[CO]2 as obtained from semiclassical conformation analysis, denoted as A, B, C,
and D, respectively (cf. Table 3.1 for details).

involved case of an N = 4 ensemble. Further, to approach a more realistic situation,
excitonic couplings shall now be estimated on the basis of optimized geometries and semi-
empirically calculated site-transition dipole moments for 1,2-bithiophene-2-yl-ethane-1,2-
dion (T2[CO]2, cf. Fig. 3.4a), a symmetric dimer with four di�erent conformations, denoted
A, B, C, and D (cf. Fig. 3.4b-e).

Site-to-site couplings are estimated according to the following procedure. First, a con-
formational analysis of T2[CO]2 has been carried out at the Hartree-Fock level using the
standard semiempirical AM1 (Austin Model 1) method [48]. The inter-ring orientation
is determined by two dihedral angles between the thiophene rings and the neighboring
CO-group of the bridge (Sn−Cα−C=O), and an additional dihedral angle (O=C−C′=O′)
within the bridge [49]. For further calculations, the molecule (in a particular conformer
geometry) is split into two thiophene units, by breaking the bond between the two CO-
groups of the bridge and replacing the carbonyl groups by hydrogen atoms. Now, for each
of the two sites, electronic transition energies and electronic transition dipole moments are
calculated by the semiempirical ZINDO/S method [50]. The single excitations from the 10

highest occupied to the 10 lowest unoccupied molecular orbitals are considered. The stan-
dard ZINDO/S hamiltonian is used, with σ−σ and π−π overlap weighting factors of 1.267

and 0.584, respectively. All calculations are done using the Hyperchem program package
[51]. Finally, taking the (center-of-mass) distance and the spatial orientation of two re-
lated units (as obtained from conformational analysis), as well as their quasi-individual
electronic properties (as obtained by the described procedure), the site-to-site coupling is
approximated as the dipole-dipole interaction energy [47].
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T2[CO]2 −A T2[CO]2 −B T2[CO]2 − C T2[CO]2 −D

J (cm−1) −19.3 −255.7 −34.4 64.1
θ (deg) 119.5 123.1 76.1 178.8

ωeg + J (cm−1) 34945.7 34709.3 34930.6 35029.1
ωeg − J (cm−1) 34984.3 35220.7 34999.4 34900.9

Tab. 3.1: T2[CO]2 conformation parameters

Table 3.1 collects the excitonic couplings, mutual angles of site-transition dipole moments,
and one-excitonic eigenenergies of T2[CO]2 − X, where X is either A, B, C or D (and
denotes the actual conformation). The single-site transition energy ωeg = 34965 cm−1

(286 nm) represents the central position of all T2[CO]2 − X doublets in the absorption
spectrum. Notably, the S0 → S1 transition maxima as calculated with ZINDO/S (including
con�guration interaction) without splitting the T2[CO]2 − X conformers into individual
sites, have been found at 35335.7 cm−1, 33222.6 cm−1, 35971.2 cm−1, and 31847.1 cm−1

for T2[CO]2 − A, B, C, and D, respectively. Clearly, these values are di�erent from the
one-exciton energy values obtained from the procedure described above, implying that
dipole-dipole coupling describes the intersite interaction only partially, and that the e�ect
of the site-connecting bridge is not included in J . However, for the present purposes
(estimates of realistic parameters), this uncertainty is not relevant.

The LA spectrum (Fig. 3.5a) of the T2[CO]2 − X ensemble, assuming the same ground
state energy for all conformations, and a relatively small HLB/IHBL ratio (T−1

2 σ−1 = 0.1),
consists of 7 peaks. In the corresponding 2D-PE spectrum (Fig. 3.5b), one discerns 14 peaks
(out of a possible 16) of non-zero amplitude. As for the previous (N = 2) ensemble, it is a
straightforward exercise to correctly assign LA doublets on the basis of squares formed by
diagonal and o�-diagonal signal peaks in the 2D-PE spectrum. By increasing the ratio of
homogeneous to inhomogeneous line-broadening (T−1

2 σ−1 = 1), the number of discernible
peaks in the LA spectrum drops to 5 (see Fig. 3.5a), since the HLB is merging some peaks
into broader bands. Hence, quite apart from the assignment problem, if only the LA of a
system with larger HLB is available, it is impossible to identify the number of individual
peaks that are hidden under a broad, band-like structure.

In this case the 2D-PE spectrum, obtained for the same parameter set as the LA, and
shown in Figs. 3.5b and 3.5c, turns out to be helpful. In the 2D spectrum, super�cially
viewed at the resolution of Fig. 3.5b, the number of peaks has decreased to 9. However,
two of them are very broad, and evidently must be composed of two or more individual
peaks. Indeed, inspecting the blow-up in Fig. 3.5c, both broad peaks are distributed over
corners on di�erent, but intertwined concentric pairs of squares. It follows that in the
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Fig. 3.5: Linear absorption vs. |Re{S(ωτ12 , ωt′)}| for the system formed by T2[CO]2 − A, B,
C, and D, assuming equal conformational probabilities. Left column (I): Low HLB/IHLB ratio
T−1

2 σ−1 = 0.1. Right column (II): High HLB/IHLB ratio T−1
2 σ−1 = 1. In both cases, σ/ωeg =

2.10−4 and ωeg = 34965 cm−1. Remaining parameters are given in Table I. (a) LA spectra. (b) 2D-
PE spectra calculated for the same parameters. (c) Central parts of the 2D-PE spectra showing
precise peak-positions in the frequency range of overlapping LA peaks. Dashed squares indicate
the positions of peaks corresponding to individual symmetric dimer signals.

inner area of the 2D spectrum, it is possible to assign peaks corresponding to three SDs,
the fourth SD clearly corresponding to the well separated outer square in Fig. 3.5b.
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As it is well known that in a 2D-PE spectrum HLB operates by broadening peaks along
the anti-diagonal coordinate, it is interesting to note that the strongly broadened peaks
in the present spectrum belong to the diagonal subset, while the o�-diagonal spectrum is,
in fact, the better resolved one. This can be ascribed to the lower amplitudes of the o�-
diagonal peaks. On an absolute scale, the more intense peaks have a larger homogeneous
width and thus, for the same peak-to-peak distances, the broader (diagonal) peaks are
more strongly overlapping. Based on this analysis of information contents of the LA and
2D-PE spectra of the system formed by T2[CO]2 − A, B, C and D, one concludes that,
not quite unexpectedly, �the more peaks, the more information�. From the broad band in
the center of the LA spectrum, it is impossible to determine how many individual peaks
are hidden under the three apparent ones, while from the 2D-PE spectrum, with twice
the information content, this number can readily be extracted. In the 2D-PE spectrum
of SDs, the number of peaks is increased by a factor of two (relative to LA), but since
the spectra are spread into a second dimension, there is a chance to resolve congested 1D
spectra by comparison with informationally richer 2D signals. This will always be the case
if the range of the 2D-PE spectrum accommodating the cross peaks is less congested than
the LA spectrum.

3.5 Conclusions

On the basis of a Frenkel exciton description, an analytical solution for the heterodyne
detected 2D-PE signal of SDs is presented. The expressions are su�ciently general to
recover the correct signal shapes for isolated chromophores as limiting cases. The 2D
spectra, determined by �eld- and coupling-induced transitions of site-localized excitons
(correlated up to the fourth order), provide the direct visualization of exciton correlations,
and a projection of homogeneous and inhomogeneous broadening into orthogonal frequency
channels. Since the coupled dynamics of site transition-dipoles depends on their mutual
orientation and on the extent of the inter-site coupling J , it can form the basis of structural
studies, which are spatially limited only by the range of the electronic interaction. Two
examples illustrate how assignment problems in 1D LA spectra of disordered systems can
be solved by inspection of the 2D-PE signal peak structure in frequency-frequency space.
In a system of two conformationally di�erent SDs, each individual dimer gives rise to a
square-like peak pattern, which can readily be identi�ed in the 2D spectrum. The concept
is equally applicable to congested spectra subject to substantial broadening, as illustrated
in the case study of a bridged bithiophene structure with four stable conformations.
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For many systems of experimental interest, at least some of the simpli�cations of the present
model will have to be dropped. If the electron densities of chromophores overlap, the elec-
tronic coupling will involve additional contributions. In particular for π-conjugated chro-
mophores in close spatial proximity, charge-transfer states will have to be included into the
excited state description. The pair of lowest allowed excited states can be e�ectively rep-
resented by two mixed Frenkel-Wannier excitons (i.e. by �right� and �left� local excitations
with some charge-transfer character), and by an e�ective coupling having both resonant
and charge-transfer contributions [43]. Such an e�ective excitonic description complicates
the situation, because delocalized molecular orbitals of strongly coupled (quasi-) dimers
will �rst have to be transformed to obtain quasi-monomer localized orbitals (compare,
e.g., Ref. [52]). Another important issue is electron-nuclear coupling and the possibility
of coherent nuclear motion in photoexcited, �exible sites. In such systems, vibrational
e�ects on the topology of 2D-PE signals of electronically coupled dimers are essential and
will have to be included. In this context, the 2D wavepacket interferometry description of
multi-dimensional electronic spectroscopy developed by Cina et al. [44] can be taken as a
guidepost. Certainly, the most important feature left unconsidered in the present work,
but also the most natural extension of the model, is the inclusion of time-resolution with
respect to the waiting time T . This additional information can already be helpful in the
context of spectroscopic assignment, since a di�erent time evolution of individual peaks
may expose still hidden information. The most important aspect, however, is its capability
to provide a direct time-resolved view into ongoing energy transfer processes.

To summarize, in combination with quantum-chemical calculations of geometrical struc-
tures and electronic states, the presented model provides a platform for the interpretation
of cross-correlation signals in 2D-PE spectra. A system of two conformationally di�erent,
electronically coupled dimers may be considered as the simplest case of a disordered chro-
mophoric ensemble. For larger systems, the solutions presented may be used in iterative
procedures to test model assumptions on narrow conformational distributions underlying
the observed 1D and 2D spectra.





4. EXPERIMENTAL DESIGN

After addressing the essential prerequisites for the experimental implementation
of two-dimensional optical spectroscopy, this chapter describes a passively phase-
stabilized set-up, suitable for studies across the entire visible spectrum. Passive
phase-stabilization is achieved by a di�ractive optical element, the use of refractive
optics for introducing pulse delays, and the use of common optics for the pulse-
pairs that need to be phase-locked. Calibration procedures and evaluation protocols,
experimental pitfalls, and the super�cially trivial point of sample handling are dis-
cussed.

Related publications:

Two-dimensional electronic spectroscopy of molecular excitons
F. Milota, J. Sperling, A. Nemeth, T. Mancal, and H. F. Kau�mann
Accounts of Chemical Research, 42, 1364 (2009)

2D Optical Spectroscopy of a Conjugated Polymer with tunable visible 15 fs-Pulses
from a 200kHz NOPA
F. Milota, P. Baum, J. Sperling, E. Riedle, K. Matuszna, and H. F. Kau�mann
Springer Series in Chemical Physics, 88, 359 (2007)
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4.1 Introduction

The experimental implementation of two-dimensional electronic spectroscopy requires two
essential prerequisites. First, the emitted signal �eld, not just its intensity, must be fully
characterized in time and/or frequency, commonly referred to as heterodyne detection
(in contrast to homodyne detection schemes, in which phase information is lost). Notably,
heterodyne detected photon-echoes have been carried out by D. A. Wiersma and co-workers
already in the mid 90's, by characterizing nonlinear signals in a separate up-conversion
experiment [53, 54, 55, 56]. The level of complexity has been signi�cantly reduced by the
pioneering works of M. Jo�re and co-workers [21, 57, 58], who switched experimental signal
detection into frequency domain employing Fourier transform spectral interferometry. The
technique relies on mixing the signal �eld with a collinearly propagating local oscillator
�eld (LO), that is usually much stronger than the signal itself and shifted by an amount
t4 in time. The interference pattern of the two �elds can be recorded in frequency domain
with a simple time-integrating spectrometer. It is given by

Ihet(ω) = |Esig(ω) + ELO(ω)|2

= |Esig(ω)|2 + |ELO(ω)|2 + 2Re(E∗
sig(ω)ELO(ω))

= |Esig(ω)|2 + |ELO(ω)|2 + 2|E∗
sig(ω)ELO(ω)| cos (φLO(ω)− φsig(ω) + ωt4) (4.1)

where Esig (ELO) and φsig (φLO) are the electric �eld and the spectral phase of the signal
(local oscillator) [21]. Given that (i) Esig ¿ ELO and (ii) the LO �eld is known, the �rst
two terms (|Esig|2+|ELO|2) in the last line above can be neglected respectively subtracted.
The phase of the signal �eld is then retrieved from the remaining term 2Re(E∗

sigELO) by
a Fourier transform into time-domain, �ltering, and back transformation [21]. This allows
to separate the detected nonlinear optical response into its real and imaginary part.

It is essential to realize that Ihet(ω) is usually not recorded in �single-shot mode�, but
integrated over a certain number of pulse pairs. Thus, a characterization of the signal
transient by spectral interferometry is only applicable if there is a stable synchronization
between the two �elds. In other words, the signal electric �eld must result from a coherent
emission that is triggered either by the local oscillator itself or by a coherent o�spring
under a constant phase relation. This notion connects to the second challenge encountered
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in electronic 2D spectroscopy: Creation of phase stable relationships within the sequence
of excitation/detection pulses in combination with adjustable time delays.

Several experimental strategies have been established to ful�ll the outlined criteria. Em-
ploying active phase-stabilization, all of the excitation beams may be stabilized, which al-
lows to perform di�erent variants of four-wave mixing experiments in heterodyne detection
mode, such as heterodyned transient gratings or double-quantum 2D spectroscopy [59, 60].
A drawback of this approach is the considerable complexity of such experiments due to ad-
ditional feedback loops of the stabilization electronics. Alternatively, pulse-shaping devices
may be utilized to create collinear [61], partially non-collinear [62, 63], or fully non-collinear
[64, 28] pulse sequences with controllable inter-pulse delays and phases. As a key advantage,
pulse-shaping based set-ups permit to select the desired nonlinear signal by phase-cycling
procedures (coadding experimental results obtained with di�erent inter-pulse phases). A
particular disadvantage of collinear geometries, in turn, is the necessity of signal detection
against a background that is orders of magnitude more intense, as it includes the inci-
dent light �elds as well as all other nonlinear responses. Pulse-shaping techniques have
thus been joined with non-collinear geometries by several groups [64, 63, 28], combining
interferometric phase stability and generalized waveform shaping capabilities in each of the
incident beams.

Yet another approach relies on employing di�ractive optical elements (gratings) as beam-
splitters that generate two or more replicas out of a single incoming pulse [65, 66, 67, 68, 69].
In such arrangements, pulse delays are commonly adjusted by steering refractive optical
elements like, e.g., moveable glass wedge pairs inserted into the beam paths. This allows to
design reliable and relatively simple, passively phase-locked set-ups for carrying out two-
dimensional electronic spectroscopy in the visible part of the spectrum. It should be noted,
however, that due to the dispersive nature of gratings such strategies presumably will not
be e�ective for ultra-broadband excitation conditions or for experiments covering the ul-
traviolet spectral range. Experimental set-ups that are particularly designed for exploiting
phase-cancelation e�ects emerge as promising alternatives in this context [66, 70, 71].

The results reported in this thesis have been obtained by employing an experimental design
inspired by the work R. J. D. Miller and co-workers [66], and G. R. Fleming and co-workers
[67, 68]. Passive phase-stabilization is achieved by a di�ractive optical element, the use
of refractive optics for introducing pulse delays, and the use of common optics for the
pulse-pairs that need to be phase-locked.
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4.2 Pulse Generation

The beamline is based on an all-solid state laser system that pumps a non-collinear op-
tical parametric ampli�er (NOPA) at a reptition rate of 200 kHz [72]. After appropriate
compression by combining brewster angled chirped mirrors and a fused-silica prism se-
quence [73], the system yields pulses which are widely tuneable in the region from 20800
to 13900 cm−1 (480 to 720 nm), and have energies of more than 250 nJ and durations of
less than 20 fs. The high repetition rate thereby strongly facilitates averaging and data
acquisition. For complete characterization of the excitation �elds and to ensure shortest
possible pulse durations at the sample, zero-additional-phase SPIDER1 (ZAP-SPIDER) is
applied [74, 75, 76, 77].

Pump Laser, Oscillator, Regenerative Ampli�er. The sole pump source Verdi
V-18 (Coherent Inc.) is a diode-pumped, frequency-doubled Nd:Vanadate (Nd:YVO4)
laser. After intracavity doubling (intracavity SHG) of the characteristic lasing wavelength
(1064nm), Verdi V-18 delivers 16 W of continuous wave power at 532 nm, which is split to
pump the oscillator Mira Seed and the regenerative ampli�er RegA9050 (both Coherent
Inc.) with 6 W and 10 W, respectively.

Mira Seed is a passively (Kerr lens) modelocked Titanium:Sapphire oscillator, featuring an
intracavity prism-compressor. For the experiments described here, its operating wavelength
(tunable from 780 to 840 nm) has been adjusted to 800 nm. Mira Seed typically delivers
420 mW in mode-locked operation, with pulse durations of 30 fs at a repetition rate of
76 MHz, corresponding to a single pulse energy of 5.5 nJ. Prior to ampli�cation, the pulses
are stretched in a di�ractive (grating-based) stretcher-compressor unit to approximately
10 ps.

The principle of operation of the regenerative ampli�er RegA9050 essentially relies on
appropriately timed Q-switching of the laser cavity, injection of a stretched oscillator pulse,
its ampli�cation within a de�ned number of intracavity round-trips, and pulse ejection
by the cavity dumper. The ampli�cation process thereby lowers the repetition rate to
200 kHz. Recompression of the pulses is again achieved in the aforementioned stretcher-
compressor unit. The obtained pulse train is characterized by a typical average power of
1.1 W (corresponding to a single pulse energy of 5.5 µJ) and pulse lengths of 45 fs.

Noncollinear Optical Parametric Ampli�er. For conversion of the pulses into the
visible spectral range, a non-collinear optical parametric ampli�er (NOPA) [78] is em-
ployed. The non-collinear arrangement of the pump and seed (signal) beam in a NOPA is

1 Spectral Phase Interferometry for Direct Electric �eld Reconstruction
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Fig. 4.1: Schematics of the non-collinear optical parametric ampli�er (NOPA): (BS) beamsplitter,
(L1,L2) lenses, (SHG-BBO) second-harmonic crystal, (DM) dichroic mirror, (WLC) white light
continuum stage, (S-DM) spherical dichroic mirror.

an elegant solution to the problem of pulse lengthening encountered in collinearly phase
matched parametric interactions (as a result of di�erent group velocities of the pump, sig-
nal, and idler beams). The e�ective matching of the signal and idler group velocities in a
non-collinear geometry is equivalent to very broadband phase matching in the parametric
process. Consequently, a broad spectral range of the seed light can be ampli�ed, resulting
in output pulses that can be routinely compressed below 20 fs. A more detailed discussion
can be found in Ref. [79].

Fig. 4.1 shows the schematic design of the NOPA unit. Brie�y, the 800 nm input is split
with a 10:90 beamsplitter (BS). For second harmonic generation, 90% of the energy are
focused with a lens (f = 200 mm, L1) onto a 300 µm thick BBO crystal. The remaining
10 % are focused onto a 1 mm thick sapphire crystal for white light continuum generation
(WLC unit in Fig.4.1). The second harmonic and the white light are brought to temporal
and spatial overlap in a 2 mm thick BBO crystal (NOPA-BBO), where a part of the
white light is ampli�ed in a parametric ampli�cation process (the white light beam is
thereby aligned onto the super-�uorescence cone generated by the 400 nm pulses). As
the white light pulses generated in the sapphire plate are highly chirped, control of their
temporal delay with respect to the 400 nm pump-pulses (λ-delay in Fig. 4.1) allows for
frequency selective ampli�cation (the interaction geometry at the NOPA-BBO requiring
appropriate readjustment). To increase the ampli�ed spectral bandwidth, the 400 nm
pulses are temporally stretched prior to the parametric ampli�cation step (stretcher in
Fig. 4.1) in two 15 mm thick fused silica plates which are arranged at Brewster angle. The
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Fig. 4.2: Pulse compression by chirped mirrors and a prism pair: (SM1) spherical mirror
ROC=1000 mm, (SM2) spherical mirror ROC=300 mm, (SM3) spherical mirror ROC=200 mm,
(CM) chirped mirrors, (P1,P2) prisms.

central wavelength of the NOPA output can be tuned in the region between 480 nm and
720 nm. At 600 nm, e.g., the spectral width is 40 nm, the power reaches typically 45 mW
(pulse energy 225 nJ), and the pulse duration can be compressed to typically 16 fs.

Pulse Compression and Characterization. Since the broad bandwidth output pulses
of the NOPA are chirped due to the initial chirp of the seed continuum and additional chirp
caused by the dispersion in the BBO (and the transmissive optics), pulse compression is
required. Fig. 4.2 shows the schematics of the employed compressor unit. After collimating
the slightly diverging NOPA output beam (by spherical mirror SM1), a telescope (SM2
and SM3) is implemented to reduce the beam diameter and to homogenize its spatial
intensity distribution. Subsequently, in a �rst step, higher order chirp is compensated
by 24 re�ections from two Brewster-angled chirped mirrors coated with 58 alternating
SiO2/TiO2 layers (a detailed discussion of the underlying principle and its applications
can be found in Refs. [80, 73, 81]). The second step is a conventional (fused silica) prism
compression for eliminating linear chirp (cf. Fig. 4.2).

It is important to note that compression of pulses minimizes their durations at one single
point in space only. In other words, pulse durations are ideally characterized in the spot
of the spectroscopic experiment or an equivalent position, which allows for appropriate
precompensation of dispersive elements encountered along the beam baths for pulse ma-
nipulation. Thus, for a full characterization of the excitation pulses and e�ective precom-
pression ensuring the shortest possible pulse duration at the location of the experiment,
a ZAP-SPIDER apparatus is applied (the set-up is equivalent to the one presented in
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Ref. [76]). To cross-check the validity of ZAP-SPIDER traces, additionally a frequency
resolved second-harmonic intensity autocorrelation is recorded, by placing a 50 µm thick
β-barium borate (BBO) crystal at the sample position. To reduce unwanted higher-order
e�ects (and non-resonant signals from the solvent) and to prevent samples from too fast
photodegradation, the NOPA beam is attenuated by a neutral density (ND) �lter to yield
not more than typically 1 nJ of energy in each of the excitation pulses.

4.3 Experimental Set-up and Procedures

Passively Phase-locked Di�ractive Optics based Set-up. The experimental set-up
is shown in Fig. 4.3. The description below follows the beam path of the precompressed
input from the NOPA.

A 50:50 beamsplitter creates two beams of equal intensity, one of which travels along a
conventional delay line (a linear translation stage with re�ective optics) for adjustment
of time delay t2 (cf. inset in Fig. 4.3 and further explanations below). Both beams
are focused with a spherical mirror (ROC = 600 mm) on a transmission grating (125
grooves/mm respectively a groove spacing of 8 µm), that is optimized for di�raction into
± �rst order. This creates two phase locked pulse pairs (k1/k2 and k3/LO) and arranges
the four beams on the corners of a square (boxcar geometry). Pulse k3 and the LO are
di�racted downwards (dotted lines in Fig. 4.3) and pulses k1 and k2 are di�racted upwards
(solid lines) with respect to the initial beam height.

A focusing mirror (ROC = 750 mm) parallelizes the four diverging beams. Pulse k2

can be variably delayed with a motorized arrangement of two fused-silica glass wedges
(thickness 0.9 mm, angle 2°, from Hellma) that are oriented antiparallel to each other (to
avoid angular beam displacement upon increasing or decreasing the overall glass thickness).
Given the encoder resolution (0.1 µm) of the computer controlled stage, time delay t1 can
be introduced with a resolution of 5.3 as and negligible amounts of chirp, as illustrated in
Fig. 4.4. The latter shows ZAP-SPIDER traces for three wedge positions (corresponding
to a time delay of -200, 0, and +200 fs) at pulse durations of 16 fs and a time-bandwidth
product of 0.606. Pulses k1 and k3 traverse equivalent glass wedges in order to balance the
dispersion with respect to k2. The LO is attenuated by a neutral density �lter (ND), which
is chosen in such a fashion that the local oscillator is attenuated by 3 orders of magnitude
and precedes the other pulses by approximately 550 fs.

All four beams are focused onto the sample with a second spherical mirror (ROC = 750 mm)
to a common spot size of ≈ 150 µm. The generated signals (ks = ±k1 ∓ k2 + k3), prop-



50 4. Experimental Design

Fig. 4.3: Experimental set-up (rotated �gure): (BS) beamsplitter, (CP) compensation plate,
(DOE) di�ractive optical element, (SM) spherical mirror, (GP) gear pump, (CCD) charge coupled
device spectrometer. The left inset shows the de�nition of delay times, the right inset depicts the
detection scheme and the geometry of the 2D-ES experiment: three pulses with wavevectors k1,k2

and k3 create a nonlinear signal (ks = +k1 − k2 + k3 for t1 < 0 respectively ks = −k1 + k2 + k3

for t1 > 0) which is spectrally interfered with a local oscillator �eld (LO) for signal detection in
frequency domain.
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Fig. 4.4: (a) ZAP-SPIDER traces for the three wedge positions corresponding to a time delay of
-200 fs (left), 0 fs (middle), and +200 fs (right). In all three cases the pulses have a duration of
16 fs and a �at temporal phase. (b) Residual phase di�erences between 0 fs and -200 fs (dashed
line) respectively 0 fs and +200 fs (solid line).

agating along the path of the LO, are collimated by a spherical mirror (ROC = 500 mm)
and focused onto the slit of a thermo-electrically cooled 1024 pixel CCD spectrometer
(equipped with a 1800 groves/mm grating).

The phase stability of the setup can be tested, e.g., by monitoring the interference pattern
between the signal and the LO over an extended period of time. Fig. 4.5 shows magni�ca-
tions of typical spectral interferograms recorded over a time period of 90 minutes and after
multiple scans and delay line movements. Fringe positions in the interferograms show no
substantial changes within typical measurement sequences.

Calibration of Delays. The t1 = 0 and t2 = 0 points and the delay lines are determined,
respectively calibrated, by spectral interferometry. A 25 µm diameter pinhole is placed at
the sample position where all beams overlap. Two of the beams (1 and 2 for t1-, 1 and 3
for t2-delay) pass the pinhole. Since the diameter of the pinhole is smaller than the actual
focus of the beams (approx. 150 µm), di�raction e�ectively generates two collinear plane
waves whose spectrum (recorded with the spectrometer) shows an interference pattern.
The number and distance of the fringes is a function of the delay stage position. Fourier
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Fig. 4.5: Comparison of three interferograms (t1, t2 = 0) recorded over a time period of 90 minutes
and after multiple scans and delay line movements. Solid line indicates the �rst interferogram,
dashed line after 45 minutes, and short dashed line after 90 minutes (vertical lines serve as guidelines
to the eye).

transformation of these interferograms gives three peaks at t = 0 and t = ±τ , where τ is
the temporal separation of the pulses. For pulse separations above/below ±50 fs we plot
delay versus stage position and extrapolate for τ = 0 to determine t1, t2 = 0. Fig. 4.6
shows this procedure in a exemplary manner.

Though this procedure has been found suitable for the determination of zero-points, we
have found it inappropriate for a precise calibration of the mechanical-to-optical delay
conversion factors (necessary for converting the movement of the translation stages into
optical delays). This point is crucial insofar, as our temporal scans are designed to ful�ll
the Nyquist criterion given by the central excitation wavelength (at least two points are
sampled within a spatial delay corresponding to one period of the central excitation fre-
quency). Consequently, any inappropriate calibration immediately translates into spectral
shifts of the 2D spectra along ω1 (i.e., along the indirectly measured frequency axis, for
which Fourier transform into frequency domain has to be done explicitly).

Determination of calibration coe�cients for the stages is achieved by selecting several
frequency-cuts in the frequency resolved scan (oscillating functions of the stage position,
cf. Fig. 4.7). A subsequent Fourier transformation of this waveforms yields the inverse
number of stage steps necessary for one full period at a particular frequency cut. Since the
period for a given frequency is well known (e.g. 2 fs at 500 THz), the calibration coe�cient
is the product of the inverse number of steps times the period in femtoseconds. This is
done for a number of frequency cuts to calculate an average calibration coe�cient.
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the corresponding frequency cuts. (c) shows the corresponding Fourier transforms, which give the
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Data Acquisition and Evaluation Protocol. Two-dimensional electronic spectra are
recorded by scanning the t1-delay (separating the �rst two interactions) symmetrically
around t1 = 0, while delay t2 (separating the second and third interaction) is kept constant.
In other words, for negative delay times only the t1-stage is moving (refractive delay line),
while for t1 ≥ 0 both stages (refractive and conventional delay line) move simultaneously
to maintain the desired t2 delay. The procedure collects non-rephasing contributions in
the direction ks = k1 − k2 + k3 for negative values of t1, and rephasing contributions in
the direction ks = −k1 + k2 + k3 for positive t1 values. This allows to dissect the signals
into purely absorptive and purely dispersive parts of the complex 2D spectrum, by equally
weighting rephasing and non-rephasing contributions [82].
Applying the described scheme, t1-delays are scanned in 0.65 fs steps within intervals that
range from typically ± 100 fs to ± 200 fs . Note that despite the high resolution of the
refractive delay line, the applicable step-size is limited by the resolution of the conventional
delay line (since, for t1 ≥ 0, the refractive delay can be only moved in multiples of the
resolution of the conventional delay, in order to ensure a constant t2).
The remaining steps follow very closely the procedure outlined by T. Brixner et al. [68], and
shall be brie�y repeated only for the sake of completeness. First, the CCD spectrometer
does not only detect the desired signal

Ihet(ω) = |Esig(ω) + ELO(ω)|2 (4.2)

but also scattering contributions from all other pulses, which need to be subtracted prior to
evaluation of the interference patterns. This is done in two steps. At the beginning of each
experiment beams k1 and k2 are blocked with a shutter and the scattering contribution
from beam k3 is recorded. As the delay between k3 and LO does not change during
the course of an experimental scan, this contribution has to be recorded only once. For
subtraction of the scattering contribution from beams k1 and k2, beam k3 is blocked with
a computer controlled mechanical shutter (this scattering contribution has to be recorded
and subtracted for each time step t1 during a scan).
For every time-step in t1, the signal �eld Esig(ω) is reconstructed from the interferogram
(Eq. 4.2) as follows. Ihet(ω) is Fourier transformed into time domain, yielding three peaks
at t = −t4, 0, +t4 (where t4 denotes the time delay between the signal and the LO). Upon
applying a �lter function, only the peak at t = +t4 is kept and inverse Fourier transformed.
The amplitude of this complex term corresponds to |ELO(ω)||Esig(ω)|. |ELO(ω)| is related
to the spectrum of the LO pulse (which is readily measured), and can be divided out. The
phase of the complex term corresponds to φsig(ω) − φLO(ω) + ωt4, where t4 is initially



4.3. Experimental Set-up and Procedures 55

approximated by the time delay between pulses k3 and LO, so that the ωt4-term can
be subtracted. Assuming a Fourier transform limited pulse (with a �at phase), φLO is
neglected2 (cf. also phasing procedure below). Thus, only the phase of the signal φsig

remains, which is combined with the spectral amplitude |Esig(ω)| to yield the frequency-
domain electric �eld

Esig(t1, t2, ω3) = |Esig(t1, t2, ω3)|e−iφsig(t1,t2,ω3) (4.3)

that is related to the third-order nonlinear polarization by

Esig(t1, t2, ω3) ∝ iω3

n(ω3)
P (3)(t1, t2, ω3) (4.4)

where n(ω3) is the frequency-dependent refractive index of the medium (which is ne-
glected). Via the relation

S2D(ω1, t2, ω3) =
∫ ∞

−∞
iP (3)(t1, t2, ω3)eiω3τdt1 (4.5)

a division of Esig(t1, t2, ω3) by ω3 and a Fourier transformation with respect to t1 gives the
desired two dimensional spectrum in frequency-frequency space.

Due to the aforementioned uncertainty in the exact timing between the LO pulse and the
signal, in the �nal data-analysis the projection slice theorem is applied, which relates the
projection of the real part of the complex 2D spectrum onto the ω3-axis to a frequency
resolved pump-probe spectrum [20]. For recording pump-probe spectra, k1 is used as
pump and k3 as probe pulse (other beams are blocked). The pump-probe spectrum is
given by the di�erence in intensity of the probe beam with and without the pump beam
(during the measurement, the pump beam is periodically blocked with a computer con-
trolled electromechanical shutter). In analogy to the approach outlined by T. Brixner et
al. [68], a second CCD-spectrometer employed (CCD 2 in Fig. 4.3), which can be read-out
simultaneously with the �rst, as a reference to eliminate intensity �uctuations in the probe
beam. This is done by taking a re�ection of the compensation plate (cf. Fig. 4.3). The
pump-probe spectrum is given by [68]

IPP (t2, ω3) =

(
Ipu(ω3)

Iref
pu (ω3)

− I0(ω3)

Iref
0 (ω3)

)
Iref
pu (ω3) + Iref

0 (ω3)
2
√

I0(ω3)
(4.6)

where t2 denotes the pump-probe delay, Ipu and I0 are the intensities of the probe beam
2 In principle, φLO could be determined by ZAP-SPIDER.
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Fig. 4.8: Projections of �phased� 2D spectra (solid lines) for a t2-delay set to 0 respectively 1000 fs
in comparison with spectrally resolved pump-probe data (squares). Excitation vertical to the �ow
of a wire guided jet is depicted on the left, excitation parallel to the �ow on the right side. The
data is discussed in Chapter VII.

with and without the action of the pump, and Iref
pu and Iref

0 are the corresponding reference
beams. The corresponding projection of the real part of the 2D spectrum onto the ω3 axis
is given by

I2D(t2, ω3) = Re
(

ω3

n(ω3)

∫ ∞

−∞
S2D(ω1, t2, ω3)dω1

)
. (4.7)

In order to overlap this projection with the independently measured IPP (t2, ω3) signal,
the term S2D(ω1, t2, ω3) in the equation above is multiplied by a phase factor eiφc , which
is varied for best overlap of the two plots3. This procedure removes uncertainties in the
phase of the LO (φLO) and in the exact delay t4 between the signal and the local oscillator
�eld. For illustration, Fig. 4.8 shows a comparison of spectrally resolved pump-probe data
with projections of the corresponding �phased� 2D spectra at t2-delays of 0 and 1000 fs.

Sample Handling. During numerous pre-runs and testing of the set-up, nonlinear signals
of various dyes in solution have been recorded, initially employing conventional cuvettes
for handling liquid samples. Thereby, severe di�culties have been encountered due to for-
mation of thermal gratings and non-resonant signals from the window material of standard
�ow cells (typically made of Suprasil), which were partly found to be of the same order
of magnitude as the desired signals themselves. To circumvent this obstacles, a gravity
driven, wire-guided drop jet [83, 84] for circulation of the sample has been employed (cf.
Fig. 4.9a). The basic design has been described by M. J. Tauber et al. [83] and has been

3 An additional timing correction (tc), as described in Ref. [68], has been found to be abdicable for data
analysis.



4.3. Experimental Set-up and Procedures 57

Fig. 4.9: (a) Arrangement for handling liquid samples. (b) Close-up of the wire-guided drop jet.
(c) Layout for linear dichroism measurements. A Glan-Thompson polarizer can be adjusted to
transmit light parallel respectively orthogonal to the �ow direction.

further improved by S. Laimgruber et al. [84]. Here, a stainless steel wire with a diameter
of 300 µm is arcuated to form an inverse �U�, which is clamped between two rectangular
stainless steel plates. The two rectangles are pressed together by eight screws. The liquid
enters through a hole in one of the plates and leaves at the bottom of the assembly, form-
ing a �lm of approx. 200 µm thickness between the two wire ends (cf. Fig. 4.9b). The
sample holder is mounted on a manual xyz-stage. The sample solution �ows from an upper
reservoir through the assembly into a lower reservoir, from where it is pumped back by
means of a gear pump that circulates the sample solution at a �ow rate of approximately
20 ml/min. The con�guration avoids signals from cell windows, obliterates the necessity
to compensate the dispersion of any cell material, avoids precipitation of the sample on
the cell windows, and generates a stable and pulsation free sample �lm. All vessels, tubes,
and connectors are made of Te�on to resist organic and corrosive solvents.
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The presence of an aligning �ow is also bene�cial for the investigation of mesoscopic samples
that tend to align along the �ow direction in thin liquid �lms (cf. Chapter VII). For
preferential excitation of selected transition dipole moments, one can simply switch the
polarization of the excitation pulses between parallel and vertical to the �ow direction.
Linear dichroism (LD) spectra, on the other hand, are recorded with a home-built LD
spectrometer, consisting of a halogen light source, collimating/focusing optics, a Glan-
Thompson polarizer, the wire-guided jet, and a miniature CCD-spectrometer (USB2000,
Ocean Optics). The schematic layout of this arrangement is depicted in Fig. 4.9c.



5. PHONON-COUPLING OF A TWO-LEVEL SYSTEM

Although modulations of nonlinear signals by vibrational wavepackets are readily
observed in a variety of ultrafast time-resolved experiments, their signatures in two-
dimensional electronic spectra have so far only been addressed in a handful of theoret-
ical studies. This chapter reports and analyzes the oscillatory behavior of lineshapes
in the two-dimensional relaxation spectra of a perylene-based dye molecule, whose
four-wave-mixing signals are strongly modulated by coupling to an underdamped
low-frequency vibrational mode. Vibrational wavepacket motion is found to induce
a pronounced beating of the anti-diagonal absorptive peak width, accompanied by
orientational changes in the dispersive signal part. The e�ects are reproduced well
by simulations based on a Brownian oscillator model, and can be assigned to periodic
alternations in the relative amplitudes of rephasing and non-rephasing contributions
to the 2D spectra.

Related publications:

Vibrational wavepacket induced oscillations in two-dimensional electronic spectra
I. Experiments
A. Nemeth, F. Milota, T. Mancal, V. Lukes, J. Hauer, H. F. Kau�mann, and J. Sperling
Journal of Chemical Physics, submitted (2010)

Vibrational wavepacket induced oscillations in two-dimensional electronic spectra
II. Theory
T. Mancal, A. Nemeth, F. Milota, V. Lukes, H. F. Kau�mann, and J. Sperling
Journal of Chemical Physics, submitted (2010)

Vibronic modulation of lineshapes in two-dimensional electronic spectra
A. Nemeth, F. Milota, T. Man£al, V. Luke², H. F. Kau�mann, and J. Sperling
Chemical Physics Letters, 459, 94 (2008)
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5.1 Introduction

Creation of wavepackets in time-resolved spectroscopic experiments takes place if the em-
ployed excitation pulses are spectrally broad enough to coherently excite several vibrational
and/or electronic levels. Femtosecond (fs) laser pulses meet this criterion for a broad range
of molecular systems. In two-dimensional electronic spectroscopy (2D-ES), three femtosec-
ond laser-pulses are incident on the sample and the emitted signal �eld is characterized in
terms of amplitude and phase. The frequency domain 2D correlation spectrum corresponds
to a Fourier transform of the induced polarization with respect to t1 (time-separation be-
tween the �rst two pulses) and the detection time t3 (the time elapsed after the third
pulse). An additional time-delay t2 between the two observation windows, separating the
second and third pulse, can be used to measure the ongoing correlation loss of transition
frequencies due to, e.g., system-bath interactions. Given the system under study features a
vibronic multi-level structure, a t2-sequence of two dimensional spectra allows to follow the
dynamics of electronic and/or vibrational populations and/or coherences created by the
�rst two interactions. The signatures of electronic coherences, as traced in two-dimensional
electronic spectra, have recently received considerable theoretical [85, 86, 87, 88, 89, 90]
and experimental [25, 27] attention. Using 2D electronic spectroscopy, quantum coherence
during energy transport in a natural photosynthetic complex has been demonstrated, and
suggested to increase the e�ciency of the transfer process [25]. An assignment of the ob-
served spectral modulation to an excitonic wavepacket motion was made, based on a good
agreement of the experiment with the predictions of an excitonic model [85].

In general, however, contributions of vibrational wavepacket motion cannot be excluded
and it is therefore of considerable interest to study the coherent vibrational case separately.
Modulations of four-wave-mixing signals due to intramolecular vibrations are ubiquitous
in femtosecond time-resolved experiments, and readily observed, e.g., in transient grating
(TG) or three-pulse photon-echo peak-shift (3-PEPS) measurements on a variety of molec-
ular systems (see, e.g., Ref. [91] and [92]). On the other hand, coherent vibrational motion
has not yet been directly addressed in experimental electronic two-dimensional studies,
and theoretical calculations explicitly including a manifold of vibrational states are rare
[93, 87, 88], which motivates the present work. Since the temporal evolution of the 2D pat-
tern is expected to become increasingly complex in the presence of several high-frequency
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Fig. 5.1: (a) Chemical structure (inset) and the absorption spectrum of PERY in toluene (solid
line). The dashed line shows the laser pulse spectrum. (b) Normalized transient grating signal
of PERY (solid line) and the Fourier transform of the oscillating signal components (inset; the
pulse-bandwidth is shown as dashed line for comparison). Vertical arrows indicate the t2-delays
for the 2D spectra shown in Fig. 5.2

vibrations, a simple system coupled to preferably only a few underdamped modes is desir-
able for a �rst-principle study. Thus, for the present study, the well characterized molecu-
lar dye N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylicdiimide (PERY) has
been chosen (cf. Fig. 5.1).

The linear absorption spectrum of PERY in solution (Fig. 5.1a) is characterized by a
progression of a high-frequency mode (1410 cm−1). Upon electronic excitation, the spectral
region of its fundamental (Sν=0

0 → Sν=0
1 ) transition can be selected and entirely covered by

the spectral bandwidth of routinely available sub-20 fs laser pulses. As demonstrated by
extensive studies in several solvents [91, 92], under these excitation conditions, the third-
order spectroscopic signals of PERY experience large amplitude modulations, dominated
by coupling of the electronic transition to a low-frequency 140 cm−1 vibrational mode (cf.
Fig. 5.1b, which shows typical transient grating data). The associated beating period of
240 fs allows to compare 2D-ES spectra at well-separated maxima, minima, rising, and
trailing edges of the oscillating nonlinear signal, which minimizes obstructions due to the
�nite temporal resolution in the experiment. 3-PEPS studies on PERY in toluene have
shown the major part of solvent relaxation to be completed on an ultrafast timescale
(t2 ≤ 50 fs) [92]. Thus, one can expect solvation-induced shifts in the electronic transition
energy (caused by a dynamic Stokes shift) to be small only, which is advantageous for
analyzing variations in the 2D lineshape.
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Fig. 5.2: (a) Absorptive and (b) dispersive experimental (upper rows) and calculated (lower
rows) 2D electronic spectra of PERY in toluene. From left to right, the panels show the absorptive
(dispersive) signal at a t2-delay of 200, 300, 450, 550, and 650 fs (cf. also Fig. 5.1b). All spectra are
normalized to the respective maximum absolute value, the color scale on the right applies for both
(a) and (b). Diagonal lines are shown in the absorptive spectra; the black lines in the dispersive
signal parts indicate the zero-crossings between positive and negative contributions.

5.2 Experiment and Results

PERY is purchased from Sigma-Aldrich and used as received. Solutions (c = 3 · 10−4 M)
are prepared with spectrophotometric grade toluene (Uvasol, Merck). The 2D spectra are
obtained by scanning the t1-delay from -100 fs to +100 fs with a resolution of 0.65 fs, thus
ful�lling the Nyquist sampling criterion for this frequency regime (approximately 1.77 fs).
After the signal analysis procedure, the spectra in Fig. 5.2 feature a frequency resolution
of 26 cm−1 in ω1 respectively 3.3 cm−1 in ω3.
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A sequence of relaxation spectra is recorded for t2-delays scanned in 50 fs steps from 0 to
800 fs. Three additional measurements are performed at delays close to the maxima of
the transient grating signal (225, 475, and 675 fs, respectively). Since the main interest
here lies in extracting dynamical features, the following discussion is focused on the data
for nonzero t2-delays. Periodic changes in the absorptive and dispersive 2D lineshapes are
illustrated in Fig. 5.2a, which shows the results at �ve selected delay times close to the
�rst three recurrence maxima of the TG signal, and the minima in between.

At all delays, the coordinates of the absorptive peak maxima are located in the |ω1| > ω3

triangular signal part and show weak variations within a range of ≈ 50 cm−1 only. As
perceived from inspection of the top row in Fig. 5.2a, the ellipticity of the absorptive signal
peak is subject to a periodic change. For t2 = 200/450/650 fs, the absorptive lineshapes
are of pronounced elliptic shape, with the major of the ellipse slanted towards the diagonal.
On the other hand, at t2 = 300 fs/550 fs, the form of the 2D peaks is more circular, and
the major of the ellipse is oriented almost parallel to the ω3-axis. Due to two contributions
of opposite sign, the spectral changes are even more pronounced in the dispersive part of
the 2D-ES signal (cf. top row in Fig. 5.2b). Both contributions experience an alternating
narrowing and widening (along ω3) that is in-phase with the vertical stretching of the
absorptive peaks. Further, the slope of the zero-crossing between positive and negative
signal contributions (nodal line) experiences strong changes in its orientation. The signal
minima/maxima thereby oscillate out-of-phase to each other, experiencing a pendular type
of motion along the ω1-coordinate.

The results of a quantitative analysis, performed for every single 2D-ES spectrum of the
t2-sequence, are shown and compared to the TG signal in Fig. 5.3. Following a recently
proposed procedure, the changes in the ellipticity of the absorptive 2D signal part are quan-
ti�ed in a straightforward way by determining the diagonal and anti-diagonal widths at a
1/e peak-height [25]. As seen by comparing Fig. 5.3b and c, the diagonal widths generally
exceed the anti-diagonal ones, and show only a weak dependence on the time-delay, in-
creasing slightly at t2-values that correspond to the maxima of the TG signal. In contrast,
the anti-diagonal peak widths are sharply decreased at the corresponding t2-delays. This
counter-evolution is mainly responsible for the strong modulation of the diagonal to anti-
diagonal peak-width ratio (cf. Fig. 5.3d), whose functional form is remarkably close to the
TG signal. The nodal line in every individual dispersive 2D spectrum is constructed from
the experimental data using a set of vertical (|ω1| = const.) cuts in the region 18700 cm−1

< |ω1| < 19200 cm−1. For each cut, the zero-crossing between negative and positive signal
contributions is evaluated by interpolation along ω3. The slope of the nodal line is then
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Fig. 5.3: A clip of the transient grating signal (a) compared to oscillations in the 2D spectral
lineshape (b-e). Plots (a)-(c) share the same abscissa. Full symbols refer to experimental data,
open symbols to calculations. Figs. (b)-(d) show the t2-dependency of the (b) diagonal and
(c) anti-diagonal width of the absorptive 2D peak, and (d) the corresponding evolution of the
diagonal/anti-diagonal peak width ratio. (e) shows the angles of the nodal line in the dispersive
2D signal with respect to the ω1-axis.

determined by �tting the resulting set of (|ω1|, ω3) coordinates to a �rst order polynomial.
As shown in Fig. 5.3e, the orientation of the nodal line shows pronounced changes over a
range of 30◦, and partly experiences a sign inversion at points were the absorptive peaks
acquire circular shapes.

5.3 Simulations and Discussion

Tough the oscillation of the 2D lineshape is qualitatively similar to the one observed for
the coherent evolution of electronic states [93, 85], it originates form a low-frequency vi-
brational beat in the present case. To substantiate this interpretation of the data in the
following, theoretical simulations of the 2D spectra of PERY are performed in the impul-
sive limit, applying standard semi-classical second order cumulant expansion treatment of
the electron-phonon interaction. PERY is treated as an electronic two-level system inter-
acting with intramolecular as well as solvent vibrational modes. For both the overdamped
solvent modes and the underdamped oscillatory modes the Brownian oscillator model is
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employed [10]. For the third-order response functions which are used to calculate the non-
linear signals the standard textbook expressions are used [10]. The response of a two-level
electronic system is composed of four di�erent response functions, usually denoted as R1,
R2, R3, and R4, that are functions of the delays between three successive interactions of
the system with an incident electric �eld. The incident �eld, in turn, enters into the total
nonlinear signal via triple convolution with the response functions. Full expressions for the
third order nonlinear signal can be found, e.g., in Ref. [68].

In the impulsive limit, the 2D spectrum is formally composed of two parts: One contribu-
tion where pulse k1 arrives at the sample before pulse k2 (t1 > 0), and another contribution
where k2 precedes k1 (t1 < 0). In the �rst case, the signal electric �eld is proportional to
the sum of the response functions ER(t1, t2, t3) ∝ R2(t1, t2, t3) + R3(t1, t2, t3), while in the
second case, the signal �eld reads ENR(t1, t2, t3) ∝ R1(t1, t2, t3) + R4(t1, t2, t3). In both
cases, delay t1 is taken as an absolute value of the delay between pulses k1 and k2. The
signal ER(t1, t2, t3) features the well-known rephasing of the photon-echo, i.e. its phase
evolves with mutually opposite signs during delays t1 and t3. This part of the signal will be
denoted as rephasing part. In ENR(t1, t2, t3), on the other hand, the phase evolves with the
same sign during both delays, consequently the signal has no rephasing capability. Based
on the rephasing and the non-rephasing part of the signal, a two-dimensional spectrum in
frequency domain can be de�ned as

S(ω1, t2, ω3) = SR(ω1, t2, ω3) + SNR(ω1, t2, ω3), (5.1)

where

SR(ω1, t2, ω3) =

∞∫

0

∞∫

0

dt1dt3ER(t1, t2, t3)e−iω1t1+iω3t3 (5.2)

and

SNR(ω1, t2, ω3) =

∞∫

0

∞∫

0

dt1dt3ENR(t1, t2, t3)e+iω1t1+iω3t3 . (5.3)

Since the spectral and temporal width are Fourier related quantities, the observable spectral
window in a 2D experiment is inversely proportional to the pulse duration. To account
for this e�ect, one has to recall that the 2D spectrum is a double Fourier transform of
the third order signal, which in turn is a triple convolution of the response function with
the electric �elds of the pulse sequence. Utilizing the fact that the Fourier transform of a
convolution of two functions results in a product of their respective Fourier transforms, the
e�ect of the �nite excitation bandwidth can be incorporated [94]. Assuming the response
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functions to vary only slowly with t2, a correcting factor

f(ω1, ω3) = [A(ω1 − Ω)]2A(ω3 − Ω) (5.4)

which multiplies the impulsive spectrum can be introduced. In the expression above, A(ω)

is the Fourier transform of the slowly varying temporal envelope of the laser pulse, and Ω

is the central frequency of the pulses. The apparent asymmetry of Eq. 5.4 in frequencies
ω1 and ω3 mirrors the fact that two interactions of the system with the electric �eld are
needed to reach the population period (time interval t2) of the experiment, whereas the
photon-echo signal is stimulated by a single interaction. In the simulations discussed below,
Gaussian pulses with durations of 21 fs are assumed.
The system parameters used for the simulations are obtained by �tting the diagonal and
the anti-diagonal width of the absorptive, and the tilt of the nodal line of the dispersive
parts of the 2D spectrum for times t2 = 200, 300, 450, and 550 fs. Although only these four
points are �tted (using the least square non-linear minimization algorithm from the Matlab
optimization toolbox), a good qualitative agreement at all population times is achieved. In
order to restrict the number of minimization parameters, only the reorganization energies
of two overdamped solvent modes (with correlation times of τ

(1)
c = 150 fs and τ

(2)
c = 650 fs)

and two underdamped modes (with frequencies of ω
1)
osc = 143 cm−1 and ω

(2)
osc = 575 cm−1)

are varied. All other modes are neglected in this calculation. In particular, any fast
oscillatory modes of PERY do not contribute to the 2D spectrum, because their spectral
features lie outside the observation window set by the laser pulse spectrum. The correlation
times τ

(1)
c , and τ

(2)
c are taken from Ref. [95], while the oscillator frequencies ω

(1)
osc, and

ω
(2)
osc are extracted from TG measurements. Within these limitations, best results are

obtained with solvent reorganization energies of λ
(1)
solv = 39 cm−1 and λ

(2)
solv = 106 cm−1,

and reorganization energies of the intramolecular modes of λ
(1)
osc = 110 cm−1 and λ

(2)
osc =

84 cm−1, respectively.
Results of the numerical simulations are shown in the bottom rows of Fig. 5.2a and b.
Closer inspection of the �gures reveals very good congruity with the experimental spectra.
A detailed comparison of experimental and simulated values is presented in Fig. 5.3b-e.
In fact, the positions of the beating maxima and minima, the magnitude of both the
diagonal (Fig. 5.3b) and the anti-diagonal (Fig. 5.3c) widths, the relative amplitudes of
their oscillations, and the trend of the tilt angle (Fig. 5.3e), including the negative sign of
the angle at certain population times, are fairly well reproduced. The good correspondence
of theoretical and experimental results strongly suggests that the observed modulation of
the 2D spectra indeed originates from a slow vibrational mode.
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5.4 Analytical Considerations

The qualitative agreement between experiment and theory (on the basis of numerical simu-
lations) motivates to proceed to an analytical analysis to gain further understanding of the
nature of the vibrational e�ects in 2D electronic spectra. To this end, a two-level electronic
system interacting with a single underdamped oscillatory mode (frequency ωosc = 140 cm−1

and reorganization energy λosc = 80 cm−1) and a single solvent mode (correlation time
τc = 150 fs and reorganization energy λsolv = 100 cm−1) is assumed in the following. These
values are of the same characteristic magnitude as in the calculations above. Starting from
the same theoretical point as in the numerical calculations (the third order response func-
tions), a separation of the vibrational part of the response from the one of the overdamped
solvent mode is performed. Because the response functions Rn have the form of an expo-
nential function of a sum of g functions of di�erent time arguments (see, e.g., Ref. [10]),
the separation can be performed considering the line broadening function g(t) as the sum
of vibrational and solvent contributions

g(t) = gsolv(t) + gvib(t) . (5.5)

Thus, each response function Rn (n = 1, . . . , 4) can be written as a product of two contri-
butions Rn(t1, t2, t3) = Rsolv

n (t1, t2, t3)Rvib
n (t1, t2, t3)e−iωeg(t1±t3)−iλvib(t1±t3), where the plus

sign in the exponent corresponds to the non-rephasing and the minus sign to the rephas-
ing part of the 2D spectrum. Given time t2 is longer than the solvent correlation time
τc, the solvent response becomes t2-independent and can be written as Rsolv

n (t1, t2, t3) =

R
(0)
n (t1, t3). It is further assumed that gvib(t) of the underdamped vibrational mode can

be approximated as

gvib(t) = iλt + i
λ

ω
sinωt +

λ

ω
Ξ(T )[1− cosωt] (5.6)

where Ξ(T ) = coth(~ωvib/2kBT ), and T is the temperature [10]. Further, in Eq. 5.6, the
damping of the vibrational mode is assumed to be negligible. Using again the properties
of the response functions Rn, one can expand Rn in terms of the Huang�Rhys factors λ

ω .
This leads to

Rvib
n (t1, t2, t3) ≈ 1 +

λ

ω
Fn(t1, t2, t3) (5.7)

where F is a function containing only sines and cosines of the arguments t1, t2, t3, t1 + t2,
t2 + t3, t1 + t3, and t1 + t2 + t3. Using trigonometric transformations F can be written as



68 5. Phonon-Coupling of a Two-Level System

Fig. 5.4: Components of the two-dimensional spectrum of an electronic two-level system interact-
ing with a single overdamped and a single underdamped Brownian mode at room temperature. The
parameters for the simulation are given in the text. (a) shows the stationary rephasing and non-
rephasing components (S0

R and S0
NR, respectively). (b) illustrates the rephasing and non-rephasing

prefactors of cos ωt2 (Scos
R and Scos

NR, cf. Eq. (5.10)). (c) presents the sum of the stationary and
cosine contributions for cos ωt2 = 1 (left), respectively −1 (right). Every �gure is normalized to
the maximum of the absolute value (0.5 for stationary, 0.19 for cosine, and 1.0 for the sum).

Fn(t1, t2, t3) = Kn(t1, t3) + Hn(t1, t3) cos(t2) + Gn(t1, t3) sin(t2) (5.8)

where the complete t2-dependence is condensed into the sine and cosine functions (cf. Ap-
pendix). The derivation of the functions Kn(t1, t3), Hn(t1, t3), and Gn(t1, t3) is straightfor-
ward, and results in expressions which are sums of sine and cosine terms of the arguments
ωt1, ωt3, and ω(t1 + t3). Thus, the total response function Rn can be written as

Rn(t1, t2, t3) = R(0)
n (t1, t3) + R(0)

n (t1, t3)Kn(t1, t3)

+R(0)
n (t1, t3)Hn(t1, t3) cos(t2) + R(0)

n (t1, t3)Gn(t1, t3) sin(t2). (5.9)

Combining Eqs. 5.9, 5.1, 5.2, and 5.3, one can write for the 2D spectrum

S(ω1, t2, ω3) = S0
R(ω1, ω3) + S0

NR(ω1, ω3)

+ [Scos
R (ω1, ω3) + Scos

NR(ω1, ω3)] cos ωt2

+
[
Ssin

R (ω1, ω3) + Ssin
NR(ω1, ω3)

]
sinωt2. (5.10)

For t2 = nπ
ω , i.e. where sinωt2 = 0, Fig. 5.4 illustrates the characteristic shapes of the
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contributions (on the right hand side of Eq. 5.10) to the absorptive part of the 2D signal.
Fig. 5.4a presents the stationary contributions, S0

R and S0
NR, respectively. Fig. 5.4b shows

the prefactors of the cosine term in Eq. (5.10) (Scos
R and Scos

NR). Fig. 5.4c, �nally, presents the
sum of all contributions (for times t2 = nπ

ω ) when cosωt2 = 1 (left), and for cosωt2 = −1

(right), respectively.

One immediately notices that rephasing contributions are elongated along the diagonal of
the 2D spectrum, whereas the non-rephasing features are elongated along the anti-diagonal.
A striking feature of these partial 2D spectra is the sign inversion of the non-rephasing
cosine contribution Scos

NR with respect to the corresponding stationary contribution S0
NR.

For cosωt2 = 1, the summation thus results in an enhancement of the rephasing part and
a decrease of the non-rephasing part of the spectrum, causing an overall elongation along
the diagonal. For cosωt2 = −1, one observes enhancement of the non-rephasing part and
thus elongation along the anti-diagonal.

For parameters relevant for the present system, the amplitudes of the contributions os-
cillating with a cosine function are found to be approximately two times larger than the
ones oscillating with a sine function, and both are signi�cantly smaller than the stationary
contributions. One can therefore expect the most signi�cant changes in the 2D lineshape
to oscillate with the cosine of the population time. An evaluation of the rephasing and
non-rephasing parts of the experimental absorptive 2D spectra (not shown here) con�rms
this notion. The amplitudes of the rephasing and non-rephasing parts at population times
t2 = nπ/ω are observed to vary without signi�cant changes of their line-shape. Rather, the
oscillation of the diagonal and anti-diagonal width is a result of the periodic enhancement
and suppression of rephasing and non-rephasing parts with respect to each other.

5.5 Conclusions

The �rst experimental signatures of vibrational coherence in 2D electronic spectra are
presented. They can be assigned to periodic changes of the relative amplitudes of the
rephasing and non-rephasing signal parts. Expansion of the vibrational part of the third-
order response in terms of the Huang-Rhys factor (λ/ω) shows that these enhancements
and suppressions are caused by coherent vibrational motion. For an intuitive understand-
ing of the periodic changes, one has to recall the multi-level structure of the quantum
mechanical system. Both the ground and excited electronic states of PERY feature levels
spaced by vibrational frequency ω, which is smaller than the bandwidth of the pulses. The
�rst two laser pulses thus not only populate vibrational states, but also excite coherences
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between these states. During t2-evolution, these coherences modulate the signal by a fac-
tor exp(±iωt2). The second-order cumulant approach permits to comprise this coherent
dynamics together with solvent induced damping into the energy gap correlation function.
Expanding this function of an underdamped vibrational mode in λ/ω, one �nds the most
signi�cant changes to oscillate with the cosine of the population time. Given ω is small
compared to the electronic energy gap, one �nds the rephasing and non-rephasing signal
parts to oscillate with opposite phase.

APPENDIX

The vibrational part Rvib
n (t1, t2, t3) of the response functions can be approximately writ-

ten as Rvib
n (t1, t2, t3) = e−iω(t3±t1)e

λ
ω

Fn(t1,t2,t3) ≈ e−iω(t3±t1)(1 + λ
ωFn(t1, t2, t3)), where the

function Fn(t1, t2, t3) consists of three parts. The �rst, t2-independent part, Kn(t1, t3), is
given by

K1(t1, t3) = −i[sinωt1 − sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (5.11)

K2(t1,t3) = i[sinωt1 + sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (5.12)

K3(t1, t3) = i[sinωt1 − sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (5.13)

K4(t1, t3) = −i[sinωt1 + sinωt3]− Ξ(T )[2− cosωt1 − cosωt3] (5.14)

The second, cosine-oscillating part, Hn(t1, t3) cos ωt2, reads

H1(t1, t3) = Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 − sinωt3 − sinω(t1 + t3)] (5.15)

H2(t1, t3) = −Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 − sinωt3 − sinω(t1 + t3)] (5.16)
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H3(t1, t3) = −Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 + sin ωt3 − sinω(t1 + t3)] (5.17)

H4(t1, t3) = Ξ(T )[1− cosωt3 − cosωt1 + cosω(t1 + t3)]

+i[sinωt1 + sin ωt3 − sinω(t1 + t3)] (5.18)

The third, sine-oscillating part, Gn(t1, t3) sinωt2, is given by

G1(t1, t3) = Ξ(T )[sinωt3 + sinωt1 − sinω(t1 + t3)]

+i[1− cosωt3 + cos ωt1 − cosω(t1 + t3)] (5.19)

G2(t1, t3) = −Ξ(T )[sinωt3 + sin ωt1 − sinω(t1 + t3)]

+i[1− cosωt3 + cos ωt1 − cosω(t1 + t3)] (5.20)

G3(t1, t3) = −Ξ(T )[sinωt3 + sin ωt1 − sinω(t1 + t3)]

−i[1− cosωt3 − cosωt1 + cos ω(t1 + t3)] (5.21)

G4(t1, t3) = Ξ(T )[sinωt3 + sinωt1 − sinω(t1 + t3)]

−i[1− cosωt3 − cosωt1 + cos ω(t1 + t3)] (5.22)

The total response can therefore be separated into stationary, cosine-oscillating, and sine-
oscillating contributions.





6. SIMULTANEOUS CHARACTERIZATION OF MONOMERIC
AND DIMERIC LINESHAPES

Excitonic interactions are investigated at the simplest possible stage of molecular
aggregation - the formation of a dimer. Two-dimensional electronic spectra of a pro-
totypical cyanine dye, whose spectral properties in aqueous solution are determined
by an equilibrium of monomers and dimers, are presented. Exploiting the broad ex-
citation bandwidth and the high temporal resolution of ultrashort excitation pulses,
the experiments allow to characterize simultaneously the spectral lineshapes of the
two species in terms of static and dynamic disorder. The distinctly di�erent spectral
relaxation dynamics are quanti�ed by a lineshape analysis and compared to impul-
sive limit simulations employing a Brownian oscillator model. Quantum chemical
methods give insight into the interplay between structure and electronic properties
of the species involved. The �ndings are qualitatively in line with theoretical consid-
erations, which predict the energetic �uctuations of delocalized excitonic states to
be reduced as compared to site-localized excitations.

Related publication:

Two-Dimensional Electronic Spectra of an Aggregating Dye: Simultaneous Measure-
ment of Monomeric and Dimeric Lineshapes
A. Nemeth, V. Lukes, J. Sperling, F. Milota, H. F. Kau�mann, and T. Mancal
Physical Chemistry Chemical Physics, 11, 5986 (2009)
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6.1 Introduction

Given inter-molecular interactions in an ensemble of molecular absorbers are weak, elec-
tronic excitations can be assumed to be site-localized, as electronic couplings will act as
a small perturbation of the system only. If, on the other hand, the electronic coupling
strengths between molecules become comparable to (static and/or dynamic) �uctuations
of their site-transition energies, excitations may become coherently delocalized, and col-
lective excited states (excitons) with distinct spectral properties are formed [29]. Experi-
mentally, this phenomenon has been reported already in 1936 independently by G. Scheibe
and E. E. Jelley [96, 97]. E.g., for the well-studied case of a linear periodic arrangement of
molecules, a new dominant absorption band appears, which, depending on the mutual ori-
entation of molecular transition dipoles, is either red-shifted (J-aggregates) or blue-shifted
(H-aggregates) to the monomer transition.

Being projected onto a single frequency axis, detailed informations on inter-molecular
coupling strengths, excitation delocalization e�ects, and homogenous/inhomogeneous con-
tributions to the spectral lineshape remain hidden in linear optical spectra of excitonic
systems. Several nonlinear spectroscopies have been designed to selectively probe only
homogeneous dynamics by eliminating inhomogeneous contributions [10, 98, 99]. Two-
dimensional electronic spectroscopy (2D-ES), in particular, has emerged as the method of
choice for investigating inter-molecular interaction strengths and for deepening the com-
prehension of how properties of individual sites are re�ected in the optical response of
aggregates. However, apart form a study on a covalently linked oligophenylene-dimer
[69], experimental studies so far focused on either dilute solutions of non-interacting dye
molecules [22, 61, 66, 59, 94], or on larger complexes, like natural [23, 25, 100] or arti-
�cial [101, 102, 103] light harvesters. This is in some contradiction to the popularity of
dimers (as the simplest aggregate prototypes) in theoretical studies of excitonic interac-
tions [86, 104, 85, 90], and the following results are considered as a step towards closing
this gap.

Analyzing suitable molecular systems that o�er straightforward access to control the ex-
tent of excitation delocalization, one �nds a variety of convenient choices from the class
of aggregating cyanine dyes. Due to strong dispersion forces associated with the high
polarizability of the chromophore, cyanine dyes (at higher concentrations) tend to form
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Fig. 6.1: (a) Linear absorption spectrum of Pinacyanol chloride (PIN) in methanol. (b) Schematics
of new bands appearing upon aggregation of PIN monomers. The chemical structure of PIN is
shown at the bottom. (c) Absorption spectrum (solid line) of an equilibrated mixture of PIN in a
water/methanol solution compared to the laser pulse spectrum (dashed line).

aggregates in aqueous solution [105]. The degree of aggregation can thereby be controlled
by both solute concentration and/or the polarity of the solvent, which permits to study
e�ects of excitation delocalization at the lowest level of aggregation, by direct comparison
of monomeric and dimeric lineshapes in 2D-ES spectra.

The aggregates of Pinacyanol chloride (PIN, cf. Fig. 6.1), a prototypical cyanine dye inves-
tigated in the present study, belong to the class of H-aggregates. Fig. 6.1b schematically
explains the spectral pattern of the sample that is observed in water-methanol mixtures.
According to the common interpretation of the PIN spectrum under conditions of partial
aggregation [105], the three new bands in linear absorption (LA) are assigned to the lower
and the upper exciton levels of molecular dimers, and an additional blue-shifted band orig-
inating from higher aggregates (cf. the aggregate spectrum shown in the upper right corner
of Fig. 6.1b). By tuning the solvent polarity, the concentrations of the di�erent species
can be adjusted for a double-peaked LA spectrum, referred to as the monomeric and the
dimeric absorption maximum in the following (cf. Fig. 6.1c).

In this study, 2D-ES is applied to simultaneously characterize the two spectral bands in
terms of underlying dynamic and static disorder, fully exploiting the broad bandwidth
and ultrashort duration of the excitation pulses. After a quantum chemical characteriza-
tion of the electronic properties of monomers and of dimeric molecular arrangements, the
experimental data is qualitatively recovered in simulations based on third-order response
function theory, employing Brownian oscillators for modeling the lineshapes.
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6.2 Experiment and Results

Experimental. Pinacyanol chloride is purchased from Sigma Aldrich and used as received.
Solutions with c = 1.5 · 10−4 mol/l are prepared with a mixture of water and methanol
(37.5 % v/v). The central frequency of the excitation pulses is tuned to 17500 cm−1,
to cover both the monomer and the dimer absorption peak. Nonlinear experiments are
performed with 10 nJ of energy in each pulse. The observed spectral features are found to
remain unchanged also for reduced pulse energies (4 nJ), from which one can conclude that
higher order and/or saturation e�ects do not a�ect the spectral lineshapes. 2D spectra are
obtained by scanning t1 in the interval ±100 fs in steps of 0.65 fs (for a �xed value of t2).

It should be mentioned that, even though the excitation pulses are spectrally broad enough
to simultaneously investigate the dynamics of both the monomer and the dimer band, they
do not cover the entire absorption spectrum of the sample. In other words, when comparing
linear absorption features and the 2D electronic spectra, one has to keep in mind that the
latter are dressed by the �nite bandwidth of the laser pulses. This spectral �lter e�ect
a�ects the extracted diagonal peak widths more than the anti-diagonal ones [93], so that
the corresponding numerical values can be taken only as a relative measure. This point
becomes further evident if the experimental data is compared to impulsive limit calculations
(see below), however, it does not a�ect the conclusions drawn.

Experimental Results. Fig. 6.2a shows a selection of normalized 2D electronic spectra
in amplitude representation, recorded at t2-delays of 0, 20, 70, 2500, and 10000 fs. The
2D spectra recover the two isolated peaks observed in linear absorption (being related to
monomer and dimer signal contributions), and one can clearly perceive the di�erence in
their dynamical evolution. The e�ects are quanti�ed in Fig. 6.2b (for the monomer peak)
and Fig. 6.2c (for the dimer peak), which show the evolution of the diagonal and anti-
diagonal peak-widths (determined at the intensity level of 1/e), and the corresponding
diagonal to anti-diagonal peak-width (D/A) ratios for the full sequence of experimentally
recorded t2-delays.

Notably, both species exhibit quite similar characteristics at t2 = 0 fs, with an initial
D/A-ratio of 1.7 (cf. Fig. 6.2). For the monomer, however, the anti-diagonal width quickly
increases, and, after 70 fs, approaches the value of the diagonal width (the latter remains
essentially constant throughout all t2-delays). Accordingly, the D/A-ratio decreases to
1.1, corresponding to a circular peak shape, which remains almost invariant at increased
t2-delays, indicating only little residual spectral inhomogeneity. The dimer peak, on the
other hand, exhibits distinctly di�erent behavior. Being slightly twisted o� of the diagonal
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Fig. 6.2: (a) Two-dimensional amplitude spectra of Pinacyanol for t2-times of 0, 20, 70, 2500, and
10000 fs (from left to right). All spectra are normalized to the respective signal maximum, the color
scale is shown on top. The lineshape analysis for the full sequence of 2D spectra is shown separately
for the (b) monomeric and the (c) dimeric peak. Squares (diamonds) show the evolution of the
diagonal (anti-diagonal) peak-widths; circles (red) show the diagonal to anti-diagonal peak-width
ratio.

at t2 = 0 fs, its long axis initially rotates clockwise towards the diagonal. As shown
below, this e�ect can be attributed to interferences between positive and negative signal
contributions (in the absorptive signal part). In accordance with this clockwise rotation,
the diagonal width of the dimer peak increases, whereas the anti-diagonal width slightly
decreases and reaches a minimum after 70 fs (the D/A-ratio is thus increased to 2.4). At
later t2-times, the diagonal width levels o� to approximately twice the anti-diagonal width,
as indicated by a D/A-ratio of roughly 1.9. It is further apparent from the data shown
in Fig. 6.2, that the lifetimes of the two species strongly di�er. One observes that the
monomer signal has completely vanished after 10 picoseconds (ps), which is in very good
agreement with previously reported �uorescence lifetimes [106, 107]. The quick decay is
attributed to non-radiative decay channels (associated with torsional motion), that are not
open to dimers [108].
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Fig. 6.3: Absorptive (left column) and dispersive (right column) parts of the experimental 2D
signal for t2-times of 0, 20, 70, 2500, and 10000 fs (from top to bottom). All spectra are normalized
to the respective maximum absolute value and share the same color scale.

The absorptive parts of the complex 2D signals essentially re�ect the characteristics of
the amplitude plots (cf. left column in Fig. 6.3). The weak negative features in |ω1| >

ω3 (observed for the pulse overlap region t2 ≤ 20 fs) are attributed to Liouville space
pathways in which correct pulse ordering is not maintained. These negative contributions
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are responsible for the distorted peak shapes in the amplitude representation. Apart from
this notion, the absorptive signals evolve similarly to the amplitude spectra, with the dimer
peak maintaining its diagonal elongation and the monomer peak quickly acquiring a circular
shape. In the dispersive signal parts, in turn, positive and negative valued contributions
are observed for both peaks (cf. right column in Fig. 6.3). In analogy to the D/A-ratio
described above, here, it is the slope of the nodal line (separating the positive and negative
contributions) that pinpoints the di�ering spectral characteristics of monomers and dimers.
Upon closer inspection of Fig. 6.3, for the monomer, one �nds the angle of the nodal line
to be initially rotated o� from a horizontal orientation by ≈30◦ (t2 = 0 fs). Within the
�rst 20 fs, the nodal line becomes parallel to the ω1-axis, and rotates further clockwise at
later times. Contrarily, the orientation of the nodal line for the dimer peak is very similar
for all t2-delays.

6.3 Simulations and Discussion

Quantum Chemical Calculations. To provide a conceptual basis for the simulation of
nonlinear signals, a quantum chemical analysis of the structure and absorption properties
of the PIN monomers and dimers is carried out. Notably, density functional theory (DFT)
has been successfully applied to interpret the structure and optical spectra of various π-
conjugated systems, but is numerically limited to a relatively small number of atoms.
Therefore, the simulations partly resort to semi-empirical methods that o�er a reasonable
compromise between reliability of results and computational requirements.

The ground state geometries of the PIN monomers are optimized using DFT as well as
the semi-empirical DFTB+ method [109]. For the DFT calculations, which are performed
using the Turbomol program [110], the SV(P) basis set [111] and the B3LYP [112] and PBE
[113] functionals are employed. Due to numerical problems connected with the geometry
optimization of PIN dimers, the possible van-der-Waals structures are calculated using the
DFTB+ method only, following the procedure outlined by Aradi et al. [109], and under
inclusion of dispersion interactions. On the basis of the optimized ground state geometries,
the vertical electronic absorption transitions are calculated at the ZINDO level of theory
(using the the Gaussian03 package [114]).

The optimized DFTB+ geometries reveal the existence of eight possible conformations; two
of them (Mcis, Mtrans) are depicted in Fig. 6.4a. Both of the two most stable conformations
have cis-orientation (Mcis) of the two nitrogen atoms carrying the ethyl chains, and the
molecules are almost planar. These two conformations di�er only in the mutual orientation
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Fig. 6.4: (a) Optimal DFTB+ structures of two out of eight possible monomer structures with
cis- and trans-conformation of the two nitrogen atoms (labeled Mcis respectivley Mtrans). (b) Two
out of four possible van-der-Waals dimer structures (D1, D2).

of the alkyl groups that are twisted by approximately 8-11◦ with respect to the central
bridge. Further, the energy di�erence (11 cm−1) between the two structures is practically
negligible. The two trans-conformations (Mtrans), on the other hand, are about 1500 cm−1

higher in energy with respect to the most stable cis-conformation. Comparable results are
obtained also by DFT calculations employing B3LYP and PBE functionals. Thus, the
dimer structures are analyzed further for cis-oriented monomers only. The lowest ZINDO
vertical electronic transition of Mcis is found at 17123 cm−1 and carries an oscillator
strength of f = 1.692. The transition is of predominantly π − π∗ character (92% of its
oscillator strength can be associated with the HOMO to LUMO transition).

As already mentioned, starting geometries for dimer calculations are generated only for
cis-conformations. On the basis of DFTB+ calculations, one �nds four stable van-der-
Waals structures; two of them (D1, D2) are depicted in Fig. 6.4b. Structure D1 has a
T-shape orientation, where the shortest distance between the nitrogen atoms of the two
interacting molecules is 6.2 Å. The sandwich structure D2, in turn, exhibits the highest π-
stacking. In D2, the interacting molecules are practically co-planar and their distance is ca.
3.5 Å. The remaining two conformations are half-slipped sandwich structures with similar
(parallel) monomer orientations. In the following, the sandwich orientation is assumed to
be the dominant structural motif also in the condensed phase, and slipped structures to
be re�ected as inhomogeneous broadening of the associated electronic transition.
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Fig. 6.5: ZINDO orbitals based on the optimal DFTB+ geometry of D2, depicting the main
contributions to the transition at 18 727 cm−1.

As expected for a sandwich-type dimer (D2), the allowed electronic transition to the
�rst excited state is blue-shifted with respect to the monomer absorption, and located
at 18727 cm−1. The oscillator strength of this transition is about twice the oscillator
strength of the corresponding monomer transition and amounts to f = 3.395. Fig. 6.5
depicts the HOMO and LUMO orbitals that dominate the electronic transition, with
HOMO-1→LUMO accounting for 48 %, and HOMO→LUMO+1 accounting for 42 % of
the oscillator strength, respectively. In accordance with considerations based on Frenkel
exciton theory (predicting a second, red-shifted, forbidden transition for sandwich-type
dimers), the quantum-chemical calculations reveal a transition at 14115 cm−1 carrying
zero oscillator strength. It is important to note that for the three other dimer conforma-
tions, electronic excitations are found to be localized on one of the two monomers only.
Therefore, the excitation energy coincides with the one of the monomer, and no energetic
shift of absorption is observed.

Conceptual Approach to Simulations of 2D Electronic Spectra. In the following,
while keeping an eye on the results presented above, the relevant electronic states, intra-
molecular vibrations, and system-bath coupling parameters that need to be accounted for
in simulations of the 2D spectra shall be discussed.
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In view of the quantum chemical calculations (which indicate higher lying electronic states
to be beyond the experimental excitation bandwidth), is it reasonable to assume that the
monomeric spectral band can be represented by an electronic two-level system. In other
words, one can assume the Hamiltonian

H(mon) = [εg + Vg(Q)]|g〉〈g|+ [εe + Ve(Q)]|e〉〈e| (6.1)

where εg and εe are the pure electronic excitation energies, and Vg(Q) (Ve(Q)) is the
nuclear potential energy surface in the electronic ground (excited) state. The electron-
phonon interaction can be identi�ed by splitting the above Hamiltonian into pure bath,
pure electronic, and interaction terms (H(mon) = Hbath + Hel + Hel−ph). This yields

Hel−ph = ∆V (Q)|e〉〈e| (6.2)

where ∆V (Q) = Ve(Q) − Vg(Q) − 〈Ve(Q) − Vg(Q)〉 (therein, 〈. . .〉 denotes averaging over
the reservoir degrees of freedom). In third-order response function theory, the signatures of
both intra-molecular as well as bath modes are comprised in the so-called line-broadening
function

g(t) =
1
~2

t∫

0

dτ

τ∫

0

dτ ′〈∆V (Q, τ ′)∆V (Q, 0)〉 (6.3)

where the time-dependence of ∆V results from the interaction picture with respect to the
bath Hamiltonian Hbath. To model both type of e�ects (intra-molecular and bath modes),
the Brownian oscillator model is employed [10], wherein which each mode is speci�ed by
its vibrational frequency (ω), its reorganization energy (λ), and its dephasing time (τc)1.
A fast underdamped vibrational mode is introduced according to the progression in linear
absorption of PIN monomers (cf. Fig. 6.1a); a second (slow) underdamped vibrational
mode is postulated to account for the pronounced dynamics in the time evolution of the 2D
monomeric peak (cf. Fig. 6.3). Bath e�ects are incorporated by an additional overdamped
mode. Further, the monomer signal is damped by a relaxation factor to account for the
short lifetime of the lower energy band.

Appropriate boundaries are less straight forward to argue for the aggregated species, in
particular if trying to bridge to an excitonic picture of the dimers' spectral properties.
So far, the electronic states of PIN dimers have been experimentally inferred from linear
absorption spectra of monomer/dimer-mixtures, by applying iterative �tting procedures

1 In theory, the electronic transition energy obtained from quantum chemical calculations corresponds
to the value εe + λ− εg.
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(in fact, also Fig. 6.1 is based on such an approach) [105]. Accordingly, the two redmost
peaks of the aggregate's linear absorption spectrum (cf. Fig. 6.1b) are commonly attributed
to the lower and higher one-exciton states of H-type dimers [115, 116, 117, 118]. In the
Frenkel exciton picture, the corresponding Hamiltonian (for the dimer) is given by

H(dim) = H
(mon)
1 ⊗ 12 + 11 ⊗H

(mon)
2 + J (|g1〉|e2〉〈e1|〈g2|+ h.c.) (6.4)

where J is the excitonic resonance coupling and⊗ denotes the direct product of a monomeric
Hamiltonian with the unity operator (1n = |gn〉〈gn|+ |en〉〈en|) de�ned on the Hilbert space
of the other monomer. The eigenstates of H(dim), the so-called excitonic states |α〉, are
linear combinations of the excited states |n〉 localized on individual monomers

|α〉 =
2∑

n=1

cα
n|n〉 (6.5)

where the coe�cients cα
n are obtained from the diagonalization of H(dim). The transfor-

mation from the basis of local states to the basis of the electronic eigenstates also changes
the electron-phonon interaction Hamiltonian [39]. In the excitonic basis, the lineshape
function transforms to

gα(t) =
2∑

n=1

|cα
n|4gn(t) . (6.6)

In the above expression, the g(t)-functions are de�ned according to Eq. 6.3, and the indices
n and α refer to states localized on individual monomers respectively the excitonic states
in Eq. 6.5. As is well known, the delocalization of electronic excitations (due to mixing
of the monomeric electronic states) in molecular aggregates a�ects the contributions from
both static and dynamic disorder to the spectral line shape. For static disorder (inhomoge-
neous broadening), the e�ect refers to the reduction of spectral inhomogeneity as a result
of statistic sampling over independent site energies. The exchange narrowing of dynam-
ical �uctuations (homogeneous broadening) [119], on the other hand, will act towards a
reduction of the anti-diagonal width in the 2D lineshape of the dimer.

To establish the context with the present study, it should be emphasized that the quantum
chemical calculations indicate excitation delocalization (�excitonic behavior�) in only one
type of dimer (D2), while electronic excitations are found to remain site-localized for the
remaining structures. Accordingly, the linear absorption of the latter will overlap with
the absorption of (isolated) monomers, making them indistinguishable in the spectroscopic
sense. Further, for the excitonic structure D2, one �nds an energetically lower lying (for-
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bidden) electronic state, however, it is pronouncedly red-shifted to monomer absorption
(as expected from Frenkel exciton theory). Therefore, the two redmost peaks of aggregated
PIN monomers (cf. Fig. 6.1b) are assumed to originate from di�erent species, rather than
from the excitonic splitting of electronic states in one and the same dimer. This conclu-
sion is substantiated by the experimental 2D electronic spectra shown in Fig. 6.3. Given
the excitonic dimer had an electronic transition in the vicinity of the monomer peak, one
would clearly expect the appearance of cross-peaks, as a consequence of a common ground
state, and, presumably, from excitation relaxation from the upper to the lower exciton
level. Obviously, such cross-peaks do not appear in the experimental 2D spectra2. In view
of these �ndings and the fact that, for the experimental excitation bandwidth, the spectral
characteristics of the aggregated species are strongly dominated by a single (dimeric) peak,
one can again resort to an electronic two-level model (incorporating the dominant dimer
transition only).

Simulations and Comparison to Experiment. Absorptive and dispersive 2D elec-
tronic spectra, calculated for a t2-delay of 0, 20, 70, 100, 2500, and 10000 fs, are shown
in Fig. 6.6 (cf. Fig. 6.3 for corresponding experimental data). The simulation results are
obtained with the model boundaries outlined above, assuming the impulsive limit, and
performing an extensive search in parameter space for best agreement with experimental
data. Before further discussion, is should be mentioned that the ratio of monomer to
dimer concentrations has been initially adjusted to match the experimental linear absorp-
tion spectrum. However, keeping this ratio for calculations of nonlinear data, one �nds the
2D spectra to be entirely dominated by the dimer peak. Therefore, in Fig. 6.6, the dimer
peak has been scaled down (in amplitude) by a factor of 0.3, for better comparability with
experimental data. This procedure can be justi�ed as a consequence of the experimentally
limited excitation bandwidth, from which quantitatively similar changes in relative peak
magnitudes can be expected.

The parameters used to generate the data presented in Fig. 6.6 are summarized as follows.
For the monomer, the fast vibrational mode (1350 cm−1) is assigned a reorganization
energy of 500 cm−1 and a dephasing time of 1 ps. The second underdamped mode is
assigned a frequency of 200 cm−1, a reorganization energy of 100 cm−1, and a dephasing
time of 1 ps. This (slower) mode accounts for the dynamics observed at early t2-delays,
characterized by oscillations of the amplitude, and diagonal and anti-diagonal widths of the
monomer peak. The remaining, overdamped mode, which is introduced to represent bath

2 In line with this argumentation, one can attribute negative contributions to the real parts of the
2D spectra (observed at very early times, cf. left column in Fig. 6.3) to pulse overlap e�ects and/or to
electron-phonon interaction e�ects, rather than to the excited state absorption of excitonic states.
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e�ects and used to �ne-tune the spectral lineshapes, is characterized by a reorganization
energy of 150 cm−1, and, like the two underdamped modes, a dephasing time of 1 ps. No
signi�cant changes in the simulated data are found upon variation of the latter parameter.
The monomer signal is damped using a relaxation factor e−Kt2 (with K = 0.2 ps−1), in
order to account for the short lifetime of the monomer's excited state and to reproduce the
consequent disappearance of the monomer peak.

Distinctly di�erent system-bath coupling characteristics need to be assumed for reproduc-
ing the behavior of the dimeric peak. In particular, the experimentally observed anti-
diagonal width is by far smaller than one would predict from a Frenkel exciton model, i.e.,
by a straight forward transformation of monomer parameters according to Eq. 6.6. Rather,
for reproducing the shape and the t2-evolution of the dimer peak, one needs to assume a
signi�cant inhomogeneous broadening of the excitonic transition (full width at half max-
imum ∆ = 600 cm−1), while including a single overdamped mode only (reorganization
energy 50 cm−1). The inhomogeneous broadening contribution enters as an additional
term αt2 (with α = ∆2/16 ln 2) into the line broadening function. These parameters are
found to appropriately account for the small initial anti-diagonal width of the dimer peak
(and its comparably large diagonal width), as well as the increase of the anti-diagonal
width at longer t2-delays.

In the simulated 2D spectra, electron-phonon coupling e�ects are re�ected as two dis-
similar signatures. First, as a consequence of assuming the impulse limit, the simulated
data exhibits vibrational cross-peaks, which are related to the high-frequency mode of
the monomer. Under the present experimental conditions, the temporal period of this
mode (approximately 25 fs) is comparable to the temporal widths of the excitation pulses.
Therefore, since the vibrational cross-peaks quickly oscillate (changing their magnitude and
phase) as a function of t2, they can be expected to be averaged out in the experiment, due
to the integrating e�ect of �nite pulse envelopes. While this e�ect gives rise to a signi�cant
dissimilarity between simulated and measured data, on the other hand, the calculations
do reproduce negative contributions to the absorptive signal part for 0 < t2 < 20 fs (not
shown here). Thus, in line with the argumentation above, one can interpret these features
to originate from the modulation of the electronic system by electron-phonon interactions,
rather than being indicative of excited state absorption (in the experiment, additional
negative contributions arise due to the pulse overlap e�ects).

Apart from the vibrational cross-peak, the impulsive limit calculations are in good quali-
tative agreement with the experimental data. In particular, as can be seen by inspecting
both the absorptive and the dispersive signal parts (left and right column in Fig. 6.6), the
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Fig. 6.6: Absorptive (left column) and dispersive (right column) parts of the simulated 2D signal
for t2-times of 0, 20, 70, 2500, and 10000 fs (from top to bottom). All spectra are normalized to
the respective maximum absolute value and share the same color scale.

dynamics of the monomer peak is fairly well reproduced. Its anti-diagonal width in the
absorptive 2D spectrum increases rapidly between 0 and 70 fs, and the peak acquires a
circular contour at a t2-delay of 2.5 ps. In the dispersive signal part, on the other hand,
the nodal line of the monomer peak is initially oriented along the diagonal (at t2 = 0 fs),
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while turning rapidly clockwise at increasing t2-delays. Finally, note that for t2 =20 and
t2 =70 fs, the tilt of the (monomeric) nodal line towards the anti-diagonal, in combination
with the dynamics of the vibrational cross-peak, lead to a pronounced signal enhancement
in the |ω1| > ω3 part of the 2D spectrum. On the basis of this observation, it is tempting to
speculate that some weak remnants of these features are resembled also in the experimental
data plotted in Fig. 6.2a respectively Fig. 6.3.

6.4 Conclusions

The present study combines quantum chemical calculations on the structure, geometry, and
transition energies of Pinacyanol monomers and dimers, with experimental and simulated
2D electronic spectra. The quantum chemical calculations reproduce the peak positions
of monomers and dimers in linear absorption, and indicate the existence of a blue-shifted
absorption band for sandwich-type dimer conformations. Two-dimensional electronic spec-
troscopy, in turn, allows to simultaneously track the evolution of monomeric and dimeric
peak shapes in real time. One observes the monomeric transition to exhibit a very fast loss
of inhomogeneity, which can be followed by the evolution of the D/A-ratio in the absorptive
2D signal, and the slope of the nodal line in the corresponding dispersive signal part. The
dimer contribution to the 2D spectrum, on the other hand, exhibits a remarkable absence
of dynamics on the timescales explored in the experiment, lacking characteristic traces of
electron-phonon interaction.

Though these �ndings are qualitatively in line with predictions from Frenkel exciton the-
ory, the observed (anti-diagonal) narrowing of the dimer transitions exceeds the exchange
narrowing expected from excitation delocalization. Moreover, the results indicate a high
degree of inhomogeneity to be present for the dimer structures. On one hand, this is pre-
sumably related to a broad distribution of monomer distances in the dimers, implying a
broad distribution of coupling strengths and excitonic transition energies. On the other
hand, the data indicates that dimer formation is accompanied by a change of the dominant
vibrational modes coupled to the electronic transition. The latter hypothesis is supported
by the increased lifetime of the dimer. Also the fact that the dimeric 2D lineshapes (in
both the absorptive and the dispersive 2D signal parts) depend only weakly on delay time
t2, suggests that the dimer transition is much less a�ected by intra- and/or inter-molecular
phonon-modes. Although a strong vibrational cross-peak is observed in the (impulsive
limit) simulations of the 2D spectra (as a consequence of the unlimited excitation band-
width), the presented calculations provide a basis for qualitative conclusions.
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The chapter is closed with two remarks. First, excitonic interactions between di�erent
vibrational levels are neglected in the present study. Such e�ects are beyond the linear semi-
classical description of the system-bath coupling, but may impact quantitative aspects of
the simulations. Second, in contrast to previous work (cf. Chapter V) [94], �nite bandwidth
e�ects are not accounted for. The validity of the procedure applied previously relies on a
weak dependence of the nonlinear response on delay t2, and is therefore precluded in the
present context, due to inclusion of a high frequency mode for the monomer transition.
Quantitative calculations based on �nite pulse theory, and an explicit inclusion of at least
some vibrational modes, are thus referred to forthcoming work.



7. EXCITON MOTION IN MOLECULAR NANOTUBES

In this chapter, exciton motion in a supramolecular double-walled tubular aggregate
is characterized by temporal, energetic, and spatial attributes. The experimental
results from two-dimensional electronic spectroscopy measurements are compared
against both homogeneous and inhomogeneous microscopic models. Accounting for
intra- as well as inter-wall electronic interactions in the framework of an excitonic
basis, the phenomena evidenced in the experimental patterns are captured in the in�-
nite homogeneous limit. Calculations on large but �nite structures identify disorder-
induced e�ects, which become increasingly relevant for higher energy states. Though
a simple translation of energetic into spatial exciton properties fails to describe the
spectrum of eigenstates, exciton funneling into lowest energy states is accompanied
by spatial localization on molecular sites of the inner tubular wall.
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7.1 Introduction

The e�ectiveness of natural light-harvesting complexes relies on delocalization and directed
transfer of excitation energy on spatially well-de�ned arrangements of molecular absorbers.
Therefore, long-range molecular order and coherent excitation delocalization are central
prerequisites for engineering energy �ows in bio-inspired devices.

A novel ansatz in the development of arti�cial light harvesters is the transfer of the self-
organization tendency of organic surfactants to molecular dyes [120]. The approach relies
on linking hydrophobic and hydrophilic substituents to aggregate forming molecular dyes
with e�cient excitonic couplings. Among such amphiphilic (hydrophilic and hydrophobic)
chromophores, the class of cyanine derivatives has the outstanding ability to self-organize
into tubular structures [121]. As illustrated in Fig. 7.1a for a tubular aggregate formed
by the dye C8S3

1, the spatial structure of the supramolecules is well characterized [122].
In a motif that is typical for molecular nanotubes, the C8S3-chromophores are wrapped
into a double-walled cylinder, with an inner diameter of ≈10 nm, a wall-to-wall distance
of ≈4 nm, and lengths approaching the micrometer scale. The complexes thereby strongly
resemble the rod elements in light-harvesting chlorosomes of green bacteria, which contain
a huge number of bacteriochlorophylls in cylindrical arrangements of comparable diameters
[123, 124].

Even though the idea to use self-assembled tubules as arti�cial light-harvesters is tantaliz-
ing, up to now, experimental and theoretical studies addressing inter-wall exciton trans-
port have not been clearly linked. As in linear aggregates, the spectroscopic properties
of cylindrical aggregates are determined by the close spatial proximity of coupled molec-
ular transition dipoles and the consequent formation of Frenkel-excitons [29]. However,
in contrast to one-dimensional structures, the linear absorption (LA) of a periodic lattice
with cylindrical symmetry splits into a longitudinal (coinciding with the cylinder axis)
and two energy-degenerate transversal transitions (perpendicular to the cylinder axis, cf.
Fig. 7.1b) [122, 125]. The experimental LA spectrum of the double-walled C8S3-aggregate,
on the other hand, shows three bands, with two lower energy bands (band I/band II)
polarized parallel and a third band (band III) polarized predominately transversal to the
main tubular axis (cf. Fig. 7.2). The question arises to which extent this spectral shape

1 3,3'-bis(3-sulfopropyl)-5,5',6,6'-tetrachloro-1,1'-dioctylbenzimidacarbocyanine
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Fig. 7.1: (a) Chemical structure of the monomer and a cryogenic transmission microscopy image
of the aggregated sample C8S3. The curve on the right side shows the horizontally integrated image
gray tone. (b) Schematics of the spatial arrangement of monomer transition moments in a single
wall. Electronic coupling gives rise to a longitudinal (µ‖) and two (energy-degenerate) transversal
transitions (µ′⊥, µ′′⊥). The splitting ∆ω between bands ‖ and ⊥ is inversely proportional to the
diameter of the tubule. The spectral red-shift δ with respect to the monomer transition (ω0)
re�ects inter-chromophore coupling strengths.

can be regarded as an additive superposition of two single-wall contributions. So far,
band-mixing e�ects due to inter-wall couplings have been regarded to be weak only, and,
consequently, excitation energy transfer between the spectral domains assumed to be of
Förster-type. This chapter presents evidence for strong electronic inter-wall interactions
and their spectroscopic signatures.

7.2 Linear and Nonlinear Experiments

Sample Preparation. The sample is purchased from FEWChemicals (Wolfen, Germany)
and used as received. The dye is dissolved in water (Alfa Aesar, spectrophotometric grade)
and gently stirred for one week under exclusion of light. This stock solution, with a
concentration of 5·10−4 mol/l can be stored for a few weeks without any changes in the
linear absorption spectrum. For the measurements the stock solution is diluted with water
(1:1) to tune the maximum absorbance to ≈0.4.
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Fig. 7.2: Linear absorption (LA) spectra from experiment and in�nite model simulation. (a)
Isotropic LA spectrum (solid line) with labeling of bands. The dotted line shows the laser pulse
spectrum for comparison. The calculated isotropic LA is shown as dashed line; vertical solid lines
indicate the stick spectrum. (b) LA spectra under conditions of alignment in a �ow-jet, recorded
with light polarized parallel (red line, ε‖) and vertical (green line, ε⊥) to the �ow direction.
Colored dots show the corresponding linear dichroism (LD) spectrum (ε‖−ε⊥). The corresponding
simulated data is shown in (c).

Linear Spectra. Due to the huge disparity in spatial dimensions, tubular aggregates
tend to align along the �ow direction in thin liquid �lms. This property can be utilized by
implementing a gravity driven, wire-guided drop jet [83], in which, based on comparison
with calculations, the average angle between the longitudinal tubular axes and the direction
of the aligning �ow is estimated to be 20◦. By switching the light polarization between
parallel and vertical to the jet, this allows preferential excitation of either longitudinal
or transversal transition moments (for which the terminology parallel respectively vertical
excitation is used in the following).

The isotropic LA spectrum of C8S3 in aqueous solution (cf. Fig. 7.2) shows two well-
resolved peaks and a broad shoulder at higher energies (hereafter referred to as band I,
II, and III, respectively). As illustrated in Fig. 7.2b, the LA substantially reshapes for
parallel and vertical excitation conditions. For parallel excitation, the two strong peaks of
band I and II dominate the spectrum (ε‖), and band III appears only as a weak spectral
ridge. For vertical excitation (ε⊥) band III is the most intense feature, with a well resolved
peak maximum. To considerable extent, this linear dichroism (LD = ε‖− ε⊥, cf Fig. 7.2b)
has been taken to support the notion of weak inter-wall interactions. Accordingly, the two
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main bands (band I and band II) have been assigned to longitudinal transitions of weakly
interacting cylindrical mono-layers, with transversal transitions that energetically coincide
in a high energy wing (band III).

2D Correlation and Relaxation Patterns. To reduce unwanted higher-order e�ects
and non-resonant signals from the solvent, and to prevent the sample from too fast pho-
todegradation, the input beam is attenuated by a ND �lter (after the NOPA) to yield not
more than 0.5 nJ of energy in each of the excitation pulses. This energy corresponds to
a �uence of 2.2·1013 photons/cm2 for each excitation pulse, which results in excitation of
0.08% of the molecules. For the present sample the scanning procedure for a given t2-time
(population time) requires stepping the t1-delay from -200 fs to +200 fs in 0.65 fs steps.

Fig. 7.3 shows the amplitude representations of the complex 2D signals. Due to o�-diagonal
cross-intensities, the correlation spectra (t2 = 0) in Fig. 7.3a and c are asymmetric with
respect to the diagonal, which divides the plots into two triangular parts (ω3 < |ω1| and
ω3 > |ω1|). For parallel excitation (Fig. 7.3a), the double peak structure of the LA is
recovered along the diagonal, and one observes around 20% of the maximal intensity at
the band II/band I o�-diagonal coordinate in ω3 < |ω1|. Also for vertical excitation
(Fig. 7.3c), all cross-intensities in ω3 < |ω1| are non-zero, although the diagonal signal of
band III is substantially weaker than one would expect from its intensity in the LA. A
cross-peak between band III and band I is clearly resolved. These o�-diagonal intensities
reveal electronic couplings between all of the three bands, the variation in the coupling
patterns re�ecting the dominant orientations of transition dipole moments. Parallel exci-
tation intensi�es the cross-intensity between the predominantly longitudinal transitions of
band I and band II. Vertical excitation increases the relative contribution of band III and
highlights its correlation with both of the two lower energy bands.

Apart from the di�erences in the correlation plots, the temporal evolution of the relaxation
spectra is governed by comparable e�ects. A striking feature is the growing in of an intense
cross-peak (ω3 < |ω1|), that arises from exciton relaxation into band I (cf. Fig. 7.3). At
increasing t2-delays, the feature acquires a more and more elliptic shape, extending from
the |ω1|-coordinate of band II far into higher frequencies. Also the diagonal contours of
band I and band II become pronouncedly streaked. Because of simultaneous energy uphill
transfer (on a slower timescale), a much weaker o�-diagonal feature appears at reversed
coordinates (ω3 > |ω1|). This observation of concurrent exciton transfer thereby illustrates
the gain in information content by a 2D spread of the system's response.

Depending on whether the system evolves in a one-exciton coherence or a coherence be-
tween a one- and a two-exciton state during t3, absorptive 2D-ES signal parts of coupled
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Fig. 7.3: Amplitude representations of 2D electronic spectra recorded with excitation pulses
polarized (a) parallel and (c) vertical to the �ow direction (all spectra are normalized). From left
to right, each row shows the 2D correlation spectrum (t2 = 0 fs) and relaxation spectra recorded
for t2-delays of 50, 200, 500, and 1000 fs, respectively. The corresponding (normalized) linear
absorption spectra are shown for comparison in the �rst and last 2D spectrum of each sequence,
along with dotted guidelines that mark the absorption maxima. The middle row (b) shows the
calculated (spatially averaged) 2D signals of the in�nite model system (also used to generate the
linear spectra shown in Fig. 7.2a and c).

absorbers feature both positive and negative contributions [18, 68, 126]. In the language of
pump-probe spectroscopy, 2D peaks with negative sign are related to excited-state absorp-
tion (ESA) from the one- into the two-exciton band [18, 127]. Since transitions between
successively higher exciton manifolds are blue-shifted with respect to each other, ESA con-
tributions to the 2D signal become shifted o� of the diagonal into ω3 > |ω1|. Turning to the
2D absorptive correlation spectra shown in Fig. 7.4, one observes this e�ect for both lower
energy bands (cf. Fig. 7.4a and c). In particular for parallel excitation, ESA signals are
strong and contribute signi�cantly to all of the recorded relaxation spectra (cf. Fig. 7.4a).
For vertical excitation, the negative signals are generally weaker, and essentially disappear



7.2. Linear and Nonlinear Experiments 95

Fig. 7.4: Absorptive parts of 2D electronic spectra recorded with excitation pulses polarized (a)
parallel and (c) vertical to the �ow direction (same delay times as in Fig. 7.3). The curves in
the side panels of the �rst and the last column show the 2D signals integrated along ω1, and are
equivalent to frequency resolved pump-probe spectra. The middle row (b) shows simulated data.
All spectra are normalized to their maximum absolute value.

within 500 fs (cf. Fig. 7.4c). The transition probabilities into the two-exciton manifold are
enhanced for one-exciton states with longitudinal transition dipoles. Due to two contri-
butions of opposite sign, the absorptive signals reveal yet another polarization dependent
e�ect. The appearance of the nodal line, separating positive from negative signal parts of
the dominant band II peak, changes from an almost horizontal alignment (parallel excita-
tion, Fig. 7.4a) to a more slanted orientation (vertical excitation, Fig. 7.4c). Hence, the
spectral inhomogeneity, as perceived from these orientational changes [126], is correlated
with the orientation of the exciton's transition dipole moments.

Beyond these aspects, the sequences of 2D absorptive spectra resemble the evolution of
diagonal and o�-diagonal intensities in the amplitude plots. While correlation spectra
(t2 = 0) are dominated by the intense signal of band II, the relaxation spectra highlight
the evolution of the o�-diagonal peak in ω3 < |ω1| (simultaneously gaining in intensity and
ellipticity) and the appearance of a considerably weaker cross-peak in ω3 > |ω1|. Within
one picosecond, the motion of relaxing excitons thus reshapes the diagonal signals of band
I and band II into peaks of almost equal intensity.
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These experimental �ndings allow to draw two conclusions. First, 2D-ES proves that all of
the excitonic states are coupled and share a common ground state. As to the second point,
is shall be recalled that a cross-peak imaging exciton transfer in a 2D relaxation spectrum
is proportional to the product of the squared transition dipole magnitudes of both of the
states involved (∝ |µi|2|µj |2). This permits to observe the process as long as at least one
of the states absorbs strong enough. In the present case, the formation of streaked pro�les,
despite the only weak diagonal intensities at high frequencies, re�ects the characteristics of
excitonic states to substantially change across the spectrum of eigenstates. Both of these
statements are substantiated in the following.

7.3 Simulations and Discussion

Construction of a Microscopic Model. In C8S3, roughly one hundred sites �ll a tubular
volume of one nanometer length [121, 122], implying that roughly 104 sites are needed to
set up a reasonably converged structure. On the other hand, a calculation of the nonlinear
response of N excitonically coupled sites requires explicit information of the N single- and
the N(N-1)/2 double-excited eigenstates [30]. A simulation of nonlinear spectra within a
microscopic model that includes disorder e�ects is thus by far too expensive. Therefore, an
in�nite one-dimensional periodic lattice is employed, whose unit cell contains two circular
arrangements of transition dipoles (representing molecular sites, cf. Fig. 7.5). Though
limited to homogeneous broadening, this permits to calculate linear and nonlinear signals
employing the quasi-particle scattering approach [127] (see Appendix).

Keeping the inter-wall distance �xed, one can observe the key spectral properties to remain
essentially unaltered for a broad range of tubular diameters (if site-per-ring occupation
numbers are appropriately adjusted). This allows to reduce the number of chromophores
by assuming diameters of 10 nm and 3.3 nm for the outer and inner ring, respectively. The
two rings are equidistantly occupied with 24 (outer wall) and 16 (inner wall) sites, re�ecting
the occupation ratio of roughly 60 versus 40 sites as deduced from experiment [121]. All
other microscopic parameters compare well to previous estimates [122]. A lattice constant
(distance of adjacent rings along the longitudinal cylinder axis) of 1.1 nm is assumed, and
the site transition energies are set to ω0 =18380 cm−1. Site-to-site couplings are calculated
within the extended dipole model, assuming two charges Q = ±0.41e (e stands for electron
charge) separated by l =0.56 nm (corresponding to a molecular transition dipole moment
of µ = 11.03 debye). In an iterative procedure, these parameters are initialized (while
restricting transition dipole orientations to tangential planes) and a �t to the experimental
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Fig. 7.5: Lattice used for simulations. Tick labels indicate the spatial dimensions in angstroms.
The clip shows a stack of 10 adjacent unit cells, arrows indicate the orientation of the molecular
transition dipole moments (scaled for a correspondence of 1 Debye to 1 Å).

linear absorption spectrum is performed, varying the transition dipole orientations and the
system-bath coupling parameters. Doing so, one obtains the transition dipoles of the inner
and outer wall oriented at an angle of 32◦ respectively 38◦ to the longitudinal cylinder
axis (cf. Fig. 7.5), and an e�ective system-bath coupling strength of 280 cm−1 (timescale
50 fs). Despite the limitations inherent to an in�nite model, as shown in Fig. 7.2, the linear
spectra can be well reproduced.

Simulation of Nonlinear Spectra. As the essential features of the experimental 2D
spectra are similar for both excitation polarizations, for the present context of experiment
and theory, only spatially averaged signals (simulations of the isotropic nonlinear response)
shall be discussed. As illustrated in Fig. 7.3b and Fig. 7.4b, the key spectral properties
of the experimental 2D signals are fairly well reproduced. In the correlation spectra, the
asymmetry of the two triangular 2D signal parts is recovered. In particular, the diagonal
signal of band III is virtually missing on the normalized scale, while its cross-correlation
with band II and band I is readily perceived. Similar is true for the intensity rearrangements
in the sequence of 2D relaxation spectra. As can be seen by comparing the rightmost
columns of Fig. 7.3 and 7.4 (t2 = 1000 fs), the agreement thereby improves with increasing
time delays and approaches a quantitative level, except for the cross-peaks in the ω3 > |ω1|
signal part (being too intense in the simulation). The relative overestimation of energy
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uphill transfer rates can be attributed to mainly originate from experimentally observed
excited-state population decay by �uorescence from band I, which is not included in the
model.

In essence, the calculations show best agreement with the experiment if the low energy
regions of the 2D spectra are compared (i.e. bands I and II). This is remarkable insofar,
as due to the symmetry of the perfectly ordered structure, in the homogeneous limit, the
model involves only four states with a non-zero transition moment: As shown in Fig. 7.2a,
the stick spectrum of the in�nite lattice features two longitudinal and two transversal
transitions (each of the two latter stemming from two energy-degenerate contributions with
orthogonal transition dipole moments). Thus, in the experiment, the spectral properties
of the corresponding bands are determined by a small number of electronic levels only. On
the other hand, the limitations of the few-level approach become increasingly apparent at
higher frequencies. The ongoing elongation of the cross-peak and the diagonal contour of
band II, both stretching far into the high energy region of |ω1|, are not fully reconstructed.
Apart from deviations that arise from the assumption of purely homogeneous lineshapes,
this �nding re�ects a growing density of excitonic states, accompanied by a decrease of the
average oscillator strength. This notion is proven in the following section, by examining the
excited state manifold of a large but �nite structure, in which molecular sites are spatially
and energetically disordered.

Disorder and Spatio-Energetic Exciton Properties. As outlined above, essential as-
pects of the relaxation dynamics in tubular aggregates are presumed to originate from site
disorder and the consequent variation of the spatio-energetic exciton characteristics across
the spectrum. For an analysis of the manifold of excitonic states beyond the homogenous
limit, the microscopic information (lattice parameters) as deduced from the in�nite model
is an obvious starting point. By introducing energetic and spatial site disorder, and recal-
culating the electronic site-to-site couplings, the exciton wavefunctions can be obtained by
diagonalization of the corresponding Frenkel exciton Hamiltonian.

The �nite model calculations are performed on a structure containing 80 adjacent double-
rings (i.e. a total of 3200 sites), building up a tubule of roughly 90 nm length. To
model orientational disorder, a random deviation of site-transition moments from their
ideal lattice position is introduced. For energetic disorder, site transition energies are ran-
domly assigned from a Gaussian distribution with a width σω = 225 cm−1 (centered at
ω0 =18380 cm−1). These parameters for static disorder ensure exciton properties to be
converged for the chosen size of the system (i.e. to be independent of a further increase
of the tubular length). Dynamical disorder is modeled by coupling every site to a bath



7.3. Simulations and Discussion 99

Fig. 7.6: Results from �nite model calculations. Both plots (a) and (b) show the same data
for a single realization of disorder. (a) Inverse participation ratio versus exciton energy. Each
dot represents an excitonic state, its color indicating the normalized transition dipole moment.
The plotting sequence of points thereby follows increasing transition strengths, ensuring that a
particular state can be only overlaid by a state with stronger absorption. The density of states
(light grey line) and the averaged absorption spectrum (dark gray line) are shown as overlay.
Inset: Calculated absorption spectrum (black solid line), linear dichroism (colored dots), and the
experimental absorption spectrum (solid orange line) for comparison. (b) Sum of wavefunction
amplitudes located on the outer wall (see text for details). Coloring of points as in (a). The dark
grey line shows the averaged LA spectrum.

mode (an overdamped Brownian oscillator with a reorganization energy of 100 cm−1 and
a correlation time of 50 fs) [127]. To cross-check these assumptions, the averaged (104 re-
alizations) linear spectra are calculated, employing the cumulant expansion of Gaussian
�uctuations (CGF) approach [10]. As illustrated by the inset of Fig. 7.6a, the simulated
linear spectra of the �uctuating multilevel system reproduce the experimental data, except
for deviations that are analogous to the ones already observed for the in�nite case.

Fig. 7.6a and b illustrate the essential characteristics of the excited state manifold for
a single, representative realization of disorder (statistical averaging does not a�ect the
conclusions). In Fig. 7.6a, the inverse participation ratio (excitation delocalization length)
is plotted as a function of the absorption frequency. Each dot represents an excitonic state,
and is colored according to the (normalized) absolute value of the corresponding transition
dipole moment (µi). A comparison with the (averaged) linear absorption spectrum allows
to classify bands I to III according to the underlying transitions. For each �nite tubular
segment, there are only a few, dominant states that contribute to band I, which can
be characterized to be of highly localized nature. For band II, it is still a relatively small
number of states that determine the absorption peak. However, their delocalization lengths
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span a wide range of values, precluding a simple characterization of the absorption band.
Finally, band III, originates from a large number of only weakly absorbing excitonic states,
that are less densely spaced in energy and strongly delocalized.

To extract the predominant spatial location of the excitonic wavefunctions in terms of the
inner or outer tubular wall, in Fig. 7.6b, for the same data set, the sums of the wavefunction
amplitudes collected on sites of the outer wall only are shown. Recalling that for every
exciton wavefunction a summation of amplitudes over all sites gives unity, this fraction
tends to zero for excitons that mainly reside on the inner wall (while approaching unity
if the wavefunctions are spread on the outer wall only). The functional form of this
plot, which resembles a rectangular shape with a rounded edge on its low energy side, is
revealing. While the localization of excitons within band I, in fact, takes place on the inner
wall, the states within band II are not only dispersed in delocalization lengths, but are
also highly scattered in their spatial properties with respect to the double-walled structure.
Again, the e�ect is less pronounced for band III excitons, which can be crudely described
as excitations that are equally shared between both of the two aggregate walls. It should
be emphasized that the strong inter-wall delocalization of all but the lowest energy states
falsi�es a straightforward classi�cation of the aggregate's absorption bands.

It is essential to note that the behavior described above, even though with variably strin-
gent contrasts, is observed for a wide range of disorder parameters. The implications for
not only the spatio-energetic assignment of absorption bands, but also for the perception
of the exciton relaxation process is to be underlined. Because of intra- and inter-wall
electronic interactions, all bands share at least a part of their wavefunction on the inner
cylindrical assembly. As band I is dominated by (site-) localized transitions located on the
inner tubule, the energy downhill motion of relaxing excitons is associated with an overall
spatial transfer towards the inner wall and, simultaneously, a localization on a decreasing
number of molecular sites. Even for quite large tubular segments, the lower energy parts
of the absorption spectrum are determined by a handful of states only. Thus, the essential
spectral signatures of exciton motion might be either �tted into phenomenological schemes
of e�ective levels [103, 101, 102, 128], or, as demonstrated in the present work, recovered
in the in�nite limit of a microscopic model. The �nite model results, in turn, explain why
a congruence of experimental data and few-level simulations becomes increasingly di�-
cult to achieve for the high energy region of the density-of-states [101, 102]: The higher
the exciton frequencies, the more the consequences of molecular disorder come into play.
Thereby, disorder a�ects transversal transitions (with typically high transition energies) to
a greater extent than longitudinal ones (which dominate the red side of the spectrum).
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7.4 Conclusions

The present sample is only one out of a variety of available tubular supramolecules. Nev-
ertheless, one can expect the key conclusions to be general, and to hold also for structures
that are either spatially even more complex (like interwoven tubules [101, 102, 129] ), or
whose detailed microscopic structure is tuned toward new morphologies by the admixture
of surfactants [101, 130]. In particular, a simple translation of spectral (energetic) band
positions into spatial properties will generally fail, due to the delocalization of excitons
induced by both intra- and inter-wall couplings. It is the consideration of all electronic
interactions, in the framework of an excitonic Hamiltonian basis, which provides an ap-
propriate description of the experimental data. The picture drawn here can be readily
connected to the recently reported correlated �uctuation of excitonic bands in a related
tubular aggregate [129]. Since all exciton wavefunctions are found to be at least partly
located on one and the same wall, and to consequently overlap in space (i.e. to involve
common molecular chromophores), also their �uctuations share a certain degree of correla-
tion. Notably, the e�ect does not necessarily implicate correlated �uctuations of individual
molecular sites. Further, even in the presence of disorder, only a relatively small number
of states governs the spectroscopic properties of the aggregate. Combined with the notion
that �uctuation amplitudes become exchange-narrowed for delocalized (excitonic) states,
the theoretical considerations are fully in line with experimentally observed inter-band co-
herences [101, 128]. This study provides a guideline of how exciton motion in supramolecu-
lar systems can be studied, despite the limits currently set for connecting experimental and
theoretical methodologies. Though the present work reports on an arti�cial light harvester
which self-assembles in aqueous solution, it is inspiring to think about likely functional
analogies to tubular complexes occurring in nature [124, 131], which, similarly, do not
require any structural templates.

APPENDIX

For simulations of linear and nonlinear signals, a one-dimensional periodic lattice whose
unit cell contains two circular arrangements of transition dipoles is employed (cf. Fig. 7.5).
In the following, sites inside a unit cell are labeled by the index m, while each cell is
identi�ed by its position vector R. Each chromophore is treated as an electronic two-level
system. The chromophore coupling Jmm′(R−R′) is a function of the distance between
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the cells R and R′. The real-space Hamiltonian of the system is given by [132]

Ĥ =
∑

RR′

∑
mn

Jmn(R−R′)B̂†
RmB̂R′n +

∆
2

∑

R

∑
m

B̂†2
RmB̂2

Rm (7.1)

where B̂†
Rm is the exciton creation operator on the mth chromophore in the Rth cell,

and B̂Rm is the conjugate annihilation operator. Boson statistics, i.e. the commutation
relation [B̂Rm, B̂†

R′n] = δmnδRR′ , is assumed (soft-core boson model). The �rst term in the
Hamiltonian above represents one-exciton site energies (ε = Jmm(0)) as well as resonant
interactions, while the second term is a two-exciton binding parameter.
The one-exciton states of the system are Bloch states with wavefunctions

Ψqλ
Rm =

1√
L

e−iqRφmλ(q) (7.2)

where L is the number of unit cells. Each eigenstate has a pair of quantum numbers qλ,
where λ denotes di�erent Davydov subbands in the one-exciton band, and q = π

L [−1, 1],
with a step δq = 2π

L , is the momentum. The states φmλ(q) are the one-exciton states of a
unit cell ∑

n

Jmn(q)φnλ(q) = ελ(q)φmλ(q) (7.3)

where
Jmn(q) =

∑

R

eiqRJmn(R) (7.4)

and ελ(q) is the exciton energy (in the Davydov subband λ).
The response of the excitonic system to optical �elds is given in terms of many-exciton
propagators (the exciton Green functions). The one-exciton Green function is Gqλ(t) =

θ(t)e−iελ(q)t−γλ(q)t, wherein γλ(q) is the exciton dephasing. The linear response function
(used for calculating LA and LD spectra) is given by [10]

R(1) =
∑

λ

|µλ|2Gλ(t) (7.5)

where µλ = L
∑

µmφmλ is the exciton transition dipole. It is further assumed that La ¿ λ̄

(where a is the lattice constant and λ̄ is the optical wavelength), i.e., only zero-momentum
exciton states contribute to the response.
The calculation of the nonlinear response involves two-exciton states. Using the quasi-
particle representation, the third order response can be calculated from the Green function
solution of the nonlinear exciton equations (NEE) [133, 132]. For the photon-echo phase-
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matching direction (ks = −k1 + k2 + k3) one �nds

R(3)(t3, t2, t1) =
∑

λ4λ3λ2λ1

∑

λ′′2λ′3λ′2λ′1

µλ4µλ3µλ2µλ1

×
∫ ∞

0
dτGλ4(t3 − τ)Vλ4λ′1λ′2λ′3G

∗
λ′1

(τ)G(Y )
λ′2λ′3,λ′′2λ3

(τ)G(N)
λ′′2λ′1,λ2λ1

(t2)G∗
λ1

(t1) .

(7.6)

In the expression above, V is the �scattering potential� (obtained by transforming the
second term in the Hamiltonian to the one-exciton eigenstate basis), G(Y ) is the two-exciton
Green function, and G(N) is the one-exciton density-matrix Green function (both of the
latter in the one-exciton basis). Eq. 7.6 re�ects the interaction and propagation sequence
in the third order response: the �rst interaction generates an exciton which propagates
according to G∗, the second interaction generates a density matrix in one-exciton space that
propagates according to G(N). After the third-interaction, the propagation is factorized
into G∗

λ′1
and G

(Y )
λ′2λ′3,λ′′2λ3

, in order to account for two-exciton states. The particles �nally
interact through the scattering potential and generate the signal at λ4. Similar to the
linear response, only zero-momentum states are assumed to interact with the �eld.

To avoid the explicit calculation of G(Y ), which involves all two-exciton states, their reso-
nances are described using the exciton scattering matrix Γλ4λ3λ2λ1 . In frequency domain
one obtains

G(Y )(ω) = G(0)(ω) + G(0)(ω)Γ(ω)G(0)(ω) (7.7)

where G
(0)
λ4λ3,λ2λ1

(ω) = δλ4λ2δλ3λ1Iλ2λ1(ω) is the free two-exciton Green function with
Iλ2λ1(ω) = (ω − ελ2 − ελ1 + iγλ2 + iγλ1)

−1. Using this scattering matrix and applying
a double Fourier transformation, one arrives at the response function

R(3)(Ω3, t2, Ω1) =
∑

λ4λ3λ2λ1

∑

λ′2λ′1

µλ4µλ3µλ2µλ1

×Gλ4(Ω3)Γλ4λ′1λ′2λ3
(Ω3 + ελ′1 + iγλ′1)Iλ′2λ3

(Ω3 + ελ′1 + iγλ′1)

×G
(N)
λ′2λ′1,λ2λ1

(t2)G∗
λ1

(Ω1) .

(7.8)

The scattering matrix is calculated using the Dyson equation [10]. For a two-level system,
it is given by

Γλ4λ3λ2λ1(ω) =
∑
mn

φmλ4φmλ3φnλ2φnλ1 [D
−1(ω)]mn (7.9)
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with

Dmn(ω) =
1
L

∑
q

∑

λ2λ1

φmλ2(q)φmλ1(−q)φ∗nλ2
(−q)φ∗nλ1

(q)
ω − ελ2(q)− ελ1(−q) + iγλ2(q) + iγλ1(−q)

. (7.10)

The exciton density matrix Green function, in turn, is obtained from the Red�eld equation
for the density matrix [127]:

d
dt

ρλλ′ = −i(ελ − ελ′)ρλλ′ −
∑

λ′′λ′′′
Kλλ′,λ′′λ′′′ρλ′′λ′′′ (7.11)

where K is the Red�eld relaxation rate matrix. The secular approximation for the density
matrix is used (populations, i.e. diagonal elements in the density matrix, and coherences,
i.e. o�-diagonal elements in the density matrix, evolve independently). Populations follow
the Pauli master equation, while coherences show exponentially damped oscillations [10].
Thus, the Red�eld rate matrix is of the form

Kλλ′,λ′′λ′′′ = δλλ′δλ′′λ′′′Kλλ,λ′′λ′′ + δλλ′′δλ′λ′′′(1− δλλ′)γ
(N)
λλ′ (7.12)

where Kλλ,λ′′λ′′ is the population transport rate from exciton state λ′′ to λ and γ
(N)
λλ′ is the

dephasing rate for inter-band coherence.

The �nal signal is obtained by convoluting the response function with the envelopes of the
optical �elds (pulse overlap e�ects are neglected). One thus obtains

S(3)(Ω3, t2, Ω1) =
∑

λ4λ3λ2λ1

∑

λ′2λ′1

µλ4µλ3µλ2µλ1

× E∗
4(ελ4 − ω4)E3(ω3 − ελ3)E2(ω2 − ελ2)E

∗
1(ελ1 − ω1)

×Gλ4(Ω3)Γλ4λ′1λ′2λ3
(Ω3 + ελ′1 + iγλ′1)Iλ′2λ3

(Ω3 + ελ′1 + iγλ′1)

×G
(N)
λ′2λ′1,λ2λ1

(t2)G∗
λ1

(Ω1) .

(7.13)

The relaxation rates (cf. Eq. 7.11 and Eq. 7.12) are calculated assuming each chromophore
to be coupled to a statistically independent bath, represented by a single overdamped
Brownian oscillator [10]. Such a model is characterized by the spectral density of the
transition energy �uctuations, ε̃(t) [134]:

C ′′(ω) =
1
2

∫
dteiωτ 〈[ε̃(t), ε̃(0)]〉 = 2l

ωΛ
ω2 + Λ2

. (7.14)

The relaxation rates in real space can be calculated using second-order perturbation theory
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(in �uctuations) and assuming the Markovian (fast �uctuation) limit. For the present
system, using the auxiliary function [127]

M (±)(ω) =
∫ ∞

0
dteiωt

∫
dω

2π
C ′′(ω)

[
coth

(
β~ω
2

)
cos(ωt)∓ i sin(ωt)

]
(7.15)

one obtains
γλ =

∑

λ′
M (+)(ελ − ελ′)φλλ′ (7.16)

and
Kλ′λ′,λλ = 2ReM (+)(ελ − ελ′)φλλ′ (7.17)

where φλλ′ = η
∑

n φ2
nλφ2

nλ′ . For inter-band coherences, pure dephasing is neglected and
the expression γ

(N)
λλ′ = 1

2(Kλλ,λλ + Kλ′λ′,λ′λ′) is used.





8. OUTLOOK

We start o� confused and end up confused on a higher level.
A. F. Chalmers in his book What is this thing called science?

Related publication:

Compact phase-stable design for single- and double-quantum two-
dimensional electronic spectroscopy
A. Nemeth, J. Sperling, J. Hauer, H. F. Kau�mann, and F. Milota
Optics Letters, 34, 3301 (2009)
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Emerging Experimental Re�nements

The presentation of this work has been done with the intention to illustrate how two-
dimensional electronic spectroscopy (2D-ES) can simply visualize the physics behind com-
plex third-order nonlinear spectroscopic signals. In view of the relatively simple experimen-
tal implementation presented here, one can certainly expect 2D-ES to become recognized
and accessed by a broader scienti�c community - even though �2D-spectrometers� will
probably not become commercially available as ready-to-use �black boxes� in the very next
future. Nevertheless, since 2D-ES has distinct advantages if compared to other nonlinear
methods, it has the potential to attain a comparable level of importance for studying elec-
tronic processes as 2D nuclear magnetic resonance has for determining molecular structures.
The success of NMR and its continuing application to increasingly larger molecules not
least results from a great freedom in generating sophisticated, speci�cally tailored pulses
sequences, containing up to hundreds of pulses. Such developments are out of reach in
2D-ES, due to physical barriers that limit the attainable nonlinear signal intensities. How-
ever, also in 2D-ES, emerging methodological variations rely on re�nements of the pulse
sequence for enhancing desired signal pathways, in tandem with experiments designed to
access correlations of successively higher excited states.

Recent examples of such developments are experiments devised to directly probe double-
quantum coherences, i.e. coherences between single- and double-excited states [135]. In
the experimental realization described in the present work, constant phase relations within
the sequence of excitation pulses (and the local oscillator) are accomplished only pairwise,
which imposes limitations on the time-delays that can be Fourier transformed without loss
of phase information. Only recently, employing a pulse shaper [28], by implementing ac-
tive phase-stabilization [60], or by uncoupling of time-delays [71], this limitation has been
overcome, o�ering access to new types of 2D frequency-frequency correlations. Further,
an universal set-up has been reported, that is easy to implement and align, yet provides
passive phase-stability between all four pulses involved in the experiment [136]. The pro-
posed design not only permits to carry out a variety of four-wave mixing experiments,
but also allows to reliably record single-quantum and double-quantum (2Q) 2D-ES spec-
tra, as illustrated for the electronic multi-level structure of a linear molecular aggregate
in Fig. 8.1 [136]. In even more complex excitonic systems, where congested peak patterns
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Fig. 8.1: Comparison of conventional 2D-ES and double-quantum (2Q) 2D-ES. The amplitude
(Am) and real part (Re) representation of experimental data recorded with both methods for a lin-
ear molecular aggregate is shown. (a) In 2D-ES, the real part representation of the signal reveals two
contributions giving rise to an intense peak in the amplitude spectrum. Positive features (red) are
associated with single-quantum coherences (ground-state bleach/stimulated emission pathways),
while the negative feature (blue) originates from coherences between single- and double excited
states (excited state absorption). (b) In 2Q 2D-ES, the system is in a double-quantum coherence
during t2, oscillating at approximately twice the frequency of single-quantum coherences. After
Fourier transformation, the single peak in the amplitude spectrum now appears along ω2 ≈ 2ω3.
Again, two contributions adding up to form the amplitude spectrum can be distinguished in the
real part of the two-dimensional spectrum.

may hamper the analysis of conventional 2D data, 2Q 2D-ES can be expected to provide
valuable information on how signals are to be assigned to contributions arising from single-
and double-quantum coherences. In particular, one can envision to directly explore the
correlations between double excited states and their constituent single excited states, by
spreading their signatures into two di�erent frequency axes [135].

The complexity of nonlinear signals, which commonly rapidly grows with the number cou-
pled molecular chromophores, has been also the driving force behind the so-called method
of cross-peak speci�c 2D-ES, aimed to selectively highlight electronic coupling e�ects in
two-dimensional signals [137]. The principle of cross-peak speci�c 2D-ES relies on a partic-
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ular choice of pulse polarizations, for speci�c enhancement of nonlinear response pathways
that otherwise become obscured by broad diagonal features. As has been demonstrated,
a selective elimination of diagonal signals can reveal electronic intermolecular interactions
that can not be resolved by conventional 2D-ES spectra [137]. Moreover, the cross-peak
speci�c technique causes some response pathways to contribute with opposite sign to the
2D signal, which facilitates the assignment of cross-peaks to speci�c nonlinear response
pathways (based on sign changes) and allows for stringent tests against theoretical mod-
els. A captivating notion is that, in principle, all possible polarization sequences can be
constructed from linear combinations of three orthogonal sequences [138]. Thus, given
experimental recordings for only three polarization conditions, it should be possible to
construct arbitrary polarization dependent spectra. The idea to employ programmable
pulse shaping in this context is tantalizing.

Future Perspective

It appears fair to say that the extension of two-dimensional electronic spectroscopy with
ultra-broadband excitation sources, enabling experimentalists to cover the entire visible
range, is predictable, as is a shift of forthcoming studies towards higher frequency regimes.
On the one hand, extending experiments into the regime of ultraviolet radiation will not
only give access to spectral regions where residues of proteins absorb, but also permit
to study smaller and hence simpler chromophores, which can be tackled with high-level
electronic structure calculations. On the other hand, the feasibility of broadband excitation
might connect future 2D-ES studies to open questions in non-equilibrium dynamics. One
can envision, e.g., to apply a 2D-ES pulse sequence to a system that has been previously
kicked into a non-equilibrium state, like a reactive crossing, by yet another laser pulse.

In a general perspective, the potential of 2D-ES currently relies to a considerable extent
on the support that can be provided by theoretical modeling, which is particularly pro-
li�c if the spatial structure of a molecular complex under study is already more or less
well known. For studies of systems for which spatial information is not readily at hand,
it will be essential to develop strategies that can extract more quantitative information
directly from experimental data. The above described re�nements might open new stages
of multi-dimensional spectroscopy, in which space-energy relationships between interacting
electronic systems will be visualized for an increasingly broader range of molecular systems,
both from the natural and the synthetic world.
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ABSTRACT

Though a variety of time-resolved spectroscopies of electronic transitions have come of age,
only recent experimental progress allows to exploit coherent pulse sequences, and to adopt
concepts that were initially developed in nuclear magnetic resonance spectroscopy. Two-
dimensional electronic spectroscopy (2D-ES) correlates electronic transition frequencies
that evolve in di�erent time intervals, and is currently becoming recognized as a unique tool
for gathering spectral information that can not be accessed directly by other spectroscopic
methods. The content of this thesis substantiates this statement, by presenting theoretical
and experimental studies of increasingly complex molecular systems, covering the range
from non-interacting dye molecules in solution to a supramolecular assembly of coupled
molecular absorbers.

After a brief presentation of underlying concepts, an exemplary theoretical study on the
information content of 2D electronic spectra is presented, focusing on their potential to dis-
tinguish between di�erent conformations of electronically coupled dimers. In the following,
experimental hurdles in the implementation are discussed, and a passively phase-stabilized
2D experimental set-up is described, suitable for studies across the entire visible spec-
trum. For the simplest possible case of an electronic two-level absorber, the motion of
a low-frequency vibrational wavepacket in a perylene-based dye is traced experimentally.
By simultaneously monitoring monomers and van-der-Waals bound dimers of an aggre-
gating molecular chromophore, it is then illustrated how 2D line-shapes are a�ected by
exciton delocalization induced by electronic inter-molecular couplings. Finally, electronic
interactions are found to dominate the optical response of a self-assembling aggregate, in
which the motion of excitons, relaxing across a multi-band spectrum, is characterized by
temporal, spatial, and energetic attributes. Forthcoming developments are subsumed in
the outlook.





ZUSAMMENFASSUNG

Obwohl sich während der letzten Jahrzehnte eine Vielzahl von Techniken zur Ultrakurzpuls-
Spektroskopie elektronischer Übergänge etablieren konnte, sind Messungen mit koherän-
ten Pulssequenzen erst seit wenigen Jahren möglich. Dieser Forschritt in der Instrumen-
tierung erlaubt, die ursprünglich in der Kernspinresonanzspektroskopie entwickelten multi-
dimensionalen Konzepte auch im sichtbaren Bereich des elektromagnetischen Spektrums
experimentell umzusetzen. Zwei-Dimensionale Elektronische Spektroskopie (2D-ES) ist in
der Lage, elektronische Koheränzen zwischen verschiedenen Zeitintervallen zu korrelieren,
und erlaubt damit die eine direkte Abfrage von spektralen Informationen, die in alterna-
tiven Exerimenten nur indirekt zugänglich oder gänzlich verborgen sind. Die vorliegende
Arbeit untermauert diese Aussage mit theoretischen und experimentellen Untersuchungen
molekularer Systeme zunehmender Komplexität.

Nach einer kurzen Diskussion theoretischer Grundlagen wird zunächst der Informations-
gehalt von 2D Spektren anhand von Modellrechnungen an einem Ensemble von konfor-
mativ ungeordneten, elektronisch gekoppelten Dimeren illustriert. Anschlieÿend werden
die Hürden bei der experimentellen Implementierung von 2D-ES diskutiert und ein passiv
phasen-stabilisierter Aufbau beschrieben, der Versuche im gesamten sichbaren Wellenlän-
genbreich ermöglicht. Experimente an einem Perylen-Farbsto�, einem einfachen moleku-
laren System mit nur zwei relevanten elektronischen Zuständen, illustrieren durch das Ver-
folgen einer niederfrequenten Vibration wie sich vibronische E�ekte in der Dynamik von
2D Spektren wiederspiegeln. Eine gleichzeitige spektrale Vermessung der monomeren und
der van-der-Waals gebundenen dimeren Form eines aggregierenden Chromophors zeigt,
daÿ inter-molekulare Wechselwirkungen und die konsequente Delokalisierung elektronis-
cher Zustände direkt mit 2D-ES vermessen werden kann. Inter-molekulare elektronis-
che Kopplungen dominieren die optische Antwortfunktion des abschlieÿend untersuchten
supramolekularen Aggregates, in welchem die Relaxation von elektronischen Exzitonen
durch 2D-ES temporal, spatial, und energetisch charakterisiert wird. Die Arbeit schlieÿt
mit einem Ausblick auf mögliche zukünftige Weiterentwicklungen multi-dimensionaler elek-
tronischer Spektroskopien.
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