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Zusammenfassung der Diplomarbeit in deutscher Sprache 
 
 

 

Mikromechanische Resonatoren spielen eine zunehmende Rolle in der 

experimentellen und theoretischen Quantenphysik. Jüngste Experimente bringen  

mikromechanische Systeme mehr und mehr in Richtung des Quantenregimes. Theoretische 

Prognosen sagen voraus, dass das Verhalten der Resonatoren im Quantenregime entscheidend 

von ihrer Kopplung an die Umgebung abhängt. Das Verständnis von der Kopplung an die 

Umgebung ist daher von großer Bedeutung für das Verständnis der Dekohärenz und des 

Verhaltens der mechanischen Quantensysteme.  

 

Theoretischer Teil befasst sich mit der Herleitung der Dynamik des mechanischen 

Oszillators linear gekoppelt an ein allgemeines thermisches Bad. Dabei wird ausgehend vom 

Caldeira-Leggett Modell Bewegungsgleichung aufgestellt und  Spektraldichte des Bades 

eingeführt. Spektraldichte ist eine zentrale Größe bei der Beschreibung der Umgebung des 

mechanischen Systems. Es wird Abhängigkeit der messbaren Größen des mechanischen 

Oszillators von der Spektraldichte untersucht. Weiters wird deren Messprozess behandelt. 

Dies wird ermöglicht durch Kopplung des Oszillators an ein optisches Laserfeld. Durch 

Auslesen der optischen Quadraturen kann Dynamik des Oszillators und die Spekraldichte des 

Bades ausgelesen werden.  

 

Im experimentellen Teil der Diplomarbeit wird die Messung der optischen 

Quadraturen untersucht. Mit Methoden aus der mathematischen Statistik wird daraus 

Information über die Spektraldichte der Umgebung des mechanischen Oszillators gewonnen. 

Das Ergebnis ist eine negative Steigung der Spektraldichte für das konkrete mechanische 

System.  
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1 Introduction

Micromechanical resonators are playing an increasing role in experimental

and theoretical quantum physics [8]-[12]. Recent experiments are pushing mi-

cromechanical systems more and more towards the quantum regime. Theoretical

predictions claim that the behaviour of resonators in the quantum regime crucially

depends on their coupling to environment [14]. Therefore the understanding of

the environmental coupling is of great importance for understanding of the deco-

herence and the quantum behaviour of micromechanical systems.

Theoretical part deals with the derivation of the dynamics of the mechanical

oscillator linearly coupled to a general thermal bath and discusses the measure-

ment of the mechanical system. Furthermore it provides corrections for wrong

theoretical results found in the literature [2], [3], [4]. The experimental part shows

how information about the resonator’s environment can be obtained.
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2 Equation of motion for a harmonic oscillator in a

general thermal bath

In this section we find equation of motion for a harmonic oscillator linearly

coupled to a general thermal bath. We will see that the dynamics of the mechani-

cal oscillator depends on the coupling to the environment only through its spectral

density.

The mathematical describtion of the system is based on the Caldeira-Leggett

model [13]. This consists of a particle in a potential and a bath described by a set

of harmonic oscillators, where the position of the particle is linearly coupled to

the position of each bath oscillator. In our case the potential of the particle is one

of a harmonic oscillator. So the total Hamiltonian of the system is [4]:

H =
p2

2M
+

1

2
MΩ2q2 +

∑

n

(
p2

n

2mn

+
1

2
mnω

2
nq2

n) + q
∑

n

Cnqn (2.1)

q and p are position and momentum of the particle in a harmonic potential

with mass M and bare frequency Ω. This bare frequency is not the resonance fre-

quency of the oscillator in the presence of the bath, as we will see later. qn and pn

are position and momentum of the nth bath oscillator with mass mn and frequency

ωn. Cn is coupling strength of each bath oscillator to the particle.

Additionally we make 2 more assumptions: (1) The particle and the thermal

bath are initially uncoupled. This means that the whole system is a product state

for t = 0.

(2) The enviroment is initially in thermal equilibrium at temperature T. This

means, that the state of the bath itself is in a product of states of each bath oscilla-

tor, where each bath oscillator is in a Gaussian state with:

< qn(0) > = 0 (2.2)

< pn(0) > = 0 (2.3)

< qn pn(0) + pnqn(0) > = 0 (2.4)

< q2
n(0) > =

~

2mnωn

coth(
1

2
~ωnβ) (2.5)

< p2
n(0) > = < q2

n(0) > (mnωn)2 (2.6)

We want to find the equation of motion for the position operator of the particle.

Therefore we first calculate Heisenberg equations of motion for q, p, qn, pn by :
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q̇(t) =
i

~
[H, q](t) =

p(t)

M
(2.7)

ṗ(t) = −MΩ2q(t) −
∑

n

Cnqn(t) (2.8)

q̇n(t) =
pn(t)

mn

(2.9)

ṗn(t) = −mnω
2
nqn(t) −Cnq(t) (2.10)

Combining both pairs of equations one can eliminate p and pn:

q̈(t) + Ω2q(t) = − 1

M

∑

n

Cnqn(t) (2.11)

q̈n(t) + ω2
nqn(t) = −Cn

mn

q(t) (2.12)

(2.12) as well as (2.11) are second order differential equation describing a

driven undamped harmonic oscillator. Solution of (2.12) is:

qn(t) = qn(0) cos(ωnt) +
pn(0)

mn

sin(ωnt)

ωn

−Cn

∫ t

0

ds
sin[ωn(t − s)]

ωn

q(s)

mn

(2.13)

Inserting (2.13) into (2.11) gives:

q̈(t) + Ω2q(t) +
2

M

∫ t

0

dsη(t − s)q(s) =
f (t)

M
(2.14)

with

f (t) = −
∑

n

Cn ( qn(0) cos(ωnt) +
pn(0)

mn

sin(ωnt)

ωn

) (2.15)

η(s) =
d

ds
ν(s) (2.16)

ν(s) :=

∫ ∞

0

dω
I(ω)

ω
cos(ωs) (2.17)

I(ω) :=
∑

n

δ(ω − ωn)
C2

n

2mnωn

(2.18)
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I(ω) is the spectral density of the environment. This is the relevant quantity,

where the complete information about the coupling of the mechanical system to

its environment is contained. As coupling to a thermal bath enters in the equation

of motion only though I(ω).
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3 Force correlation function 〈 f (t) f (t′)〉
Correlation function of the thermal force acting on the mechanical oscillator is

an important quantity for studying the oscillator’s environment. The Fourier trans-

form of the force correlation function turns out to be proportional to the spectral

density of the thermal bath.

We recall (2.15)

f (t) = −
∑

n

Cn(qn(0) cos(ωnt) +
pn(0)

mn

sin(ωnt)

ωn

) (3.1)

Using

〈qn(0)qm(0)〉 = 〈pn(0)pm(0)〉 = 〈qn(0)pm(0)〉 = 〈pn(0)qm(0)〉 = 0

for n , m one gets

〈 f (t) f (t′)〉 =

〈
∑

n

Cn(qn(0) cos(ωnt)+
pn(0)

mn

sin(ωnt)

ωn

)
∑

m

Cm(qm(0) cos(ωmt′)+
pm(0)

mm

sin(ωmt′)

ωm

)〉 =

∑

n

C2
n〈(qn(0) cos(ωnt) +

pn(0)

mn

sin(ωnt)

ωn

)(qn(0) cos(ωnt′) +
pn(0)

mn

sin(ωnt′)

ωn

)〉.

Mixed terms containing p and q can be simplified by using trigonometric the-

orem sin(x)cos(y) = 1
2
(sin(x− y)+ sin(x+ y)) as well as commutator and anticom-

mutator relations

〈qn pn − pnqn〉 = ~, 〈qn pn + pnqn〉 = 0 (3.2)

Terms containing q2 and p2 are calculated using cos(x)cos(y) + sin(x)sin(y) =

cos(x − y) and

〈q2
n(0)〉 =

〈p2
n(0)〉

(mnωn)2
=

~

2mnωn

coth(
1

2
~ωnβ). (3.3)

Thus:

〈 f (t) f (t′)〉 =
∑

n

c2
n

~

2ωnmn

(coth(
1

2
~ωnβ)cos(ωn(t − t′)) +

sin(ωn(t − t′))

i
)

Finally using the definition

I(ω) =
∑

n

c2
n

2mnωn

δ(ω − ωn) (3.4)

we obtain
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〈 f (t) f (t′)〉 =
∫ ∞

0

~I(ω)(coth(
1

2
~ωβ)cos(ω(t − t′)) +

sin(ω(t − t′))

i
) dω (3.5)

=

∫ ∞

−∞
eiω(t−t′)~

2
I(ω)(coth(

1

2
~ωβ) − 1)dω (3.6)

Here we expand the domain of definition of I(ω) to the whole real axis by:

I(−ω) := −I(ω).
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4 Time-local form of equation of motion

We will see that equation of motion (2.14) of the mechanical oscillator can

be written down in a more comfortable form in a steady state. The new form is

local in time, as the convolution term in (2.14) will be replaced by a velocity-

proportional damping term.

4.1 Derivation of the time-local form of equation of motion

We start with the equation of motion (2.14) for the position operator of the

oscillator:

Ltq(t) := q̈(t) +
2

M

∫ t

0

η(t − s)q(s)ds + Ω2q(t) =
f (t)

M

The Green’s function of this equation is defined by:

LtG(t, λ) := δ(t − λ) (4.1)

with

G(t, t) := 0 ∂tG(t, λ)|λ=t := 1 (4.2)

G(t, λ) has the form G(t, λ) = G(t − λ)Θ(t − λ), with G(t) = G(t, 0), because:

for t < λ:

Lt[G(t − λ)Θ(t − λ)] = 0

for t ≥ λ:

Lt[G(t − λ)Θ(t − λ)] =

= G̈(t − λ) + 2

M

∫ t

0

η(t − s)G(s − λ)Θ(s − λ)ds + Ω2G(t − λ) =

= G̈(t − λ) + 2

M

∫ t

λ

η(t − s)G(s − λ)ds + Ω2G(t − λ) =

= G̈(t − λ)Θ(t − λ) + 2

M

∫ t−λ

0

η(t − λ − s′)G(s′)ds′ + Ω2G(t − λ) =

= LtG(t)|t→t−λ = δ(t − λ)

9



Notice, that Green function found in [4] is wrong. (See equation (60) in [4], in

this reference it is denoted by G1(s1, s2). In particular, apart from some special

cases as Ohmic spectral density, it doesn’t fulfill G1(s1, s2) = G1(s1 − s2, 0) )

Solution of the equation (2.14) is:

q(t) = Ġ(t)q(0) +G(t)q̇(0) +

∫ t

0

G(t − s)
f (s)

M
ds (4.3)

:= Ġq0 +Gq̇0 + qinh

By deriving this equation with respect to t one gets:

(I) q = Ġq0 +Gq̇0 + qinh

(II) q̇ = G̈q0 + Ġq̇0 + q̇inh

(III) q̈ =
...
Gq0 + G̈q̇0 + q̈inh

(4.4)

Equations (I) and (II) can be regarded as system of equations in q0, q̇0. Its so-

lution can be inserted in (III), this eliminates q0 and q̇0. The result is a differential

equation for q(t). In contrast to integrodiffertial equation (2.14), it is just a second

order differential equation with time dependent coefficients γ(t) and Ω′2(t) and a

renormalized force f̄ ′(t):

q̈(t) + γ(t)q̇(t) + Ω′2(t)q(t) =
f̄ ′(t)

M
(4.5)

with

γ(t) =
G

...
G − ĠG̈

Ġ2 −GG̈
Ω′2(t) =

G̈2 − Ġ
...
G

Ġ2 −GG̈
(4.6)

f̄ ′(t) = (∂2
t + γ(t)∂t + Ω

′2(t))

∫ t

0

G(t − s) f (s)ds (4.7)

This is a very important correction to procedure in [3], where the right hand side

of (4.5) remains unnormalized f (t)/M, which is true only for the ohmic case.

(See equation (2.18) in [3])
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4.2 Stationary time-local equation of motion

Now we study the time-local form of equation of motion in a steady state with

the assumpion of converging time-local coeffients.

We assume that time dependent coefficients converge to constant values for

infinite times, as this assumption is consistent with the experiment:

γ(t)→ γ Ω′2(t)→ Ω′2 (4.8)

In this case the renormalized force converges to:

f̄ ′(t)→ (∂2
t + γ∂t + Ω

′2)

∫ t

−∞
G(t − s) f (s)ds =: f ′(t) (4.9)

So the time-local equation of motion converges to:

q̈(t) + γq̇(t) + Ω′2q(t) =
f ′(t)

M
(4.10)

We are interested in autocorrelation funcion of f ′(t). For doing that we regard

the fourier transform of (4.9):

f̃ ′(ω) = (−ω2 + iγω + Ω′2)G̃(ω) f̃ (ω)

:= A(ω) f̃ (ω) (4.11)

We recall (3.6), the correlation function for the original thermal force f (t):

〈 f (t) f (t′)〉 =
∫ ∞

−∞
eiω(t−t′)~

2
I(ω)(coth(

1

2
~ωβ) − 1)dω

⇒ 〈 f̃ (ω1) f̃ ∗(ω2)〉 = (2π)2~

2
I(ω)(coth(

1

2
~ωβ) − 1)δ(ω1 − ω2) (4.12)

In the last step we used the equivalence, which is valid for any time dependent

complex operator F(t):

F(t)F∗(t′) =

∫ ∞

−∞
eiω(t−t′)c(ω)dω

⇔ F̃(ω1)F̃∗(ω2) = (2π)2c(ω1)δ(ω1 − ω2) , (4.13)

where we use the following convention of the fourier transform:
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f̃ (ω) =

∫ ∞

−∞
f (t)e−iωtdt (4.14)

⇒ f (t) =
1

2π

∫ ∞

−∞
f̃ (ω)eiωtdω . (4.15)

Inserting (4.11) into (4.12) we find:

〈 f̃ ′(ω1)

A(ω1)

f̃ ′
∗
(ω2)

A∗(ω2)
〉 = (2π)2~

2
I(ω1)(coth(

1

2
~ω1β) − 1)δ(ω1 − ω2) (4.16)

⇒ 〈 f̃ ′(ω1) f̃ ′
∗
(ω2)〉 = (2π)2|A(ω1)|2~

2
I(ω1)(coth(

1

2
~ω1β) − 1)δ(ω1 − ω2)

Using (4.13) again we obtain:

〈 f ′(t) f ′(t′)〉 =
∫ ∞

−∞
|A(ω)|2~

2
I(ω)(coth(

1

2
~ωβ) − 1)eiω(t−t′)

=

∫ ∞

−∞
((Ω′2 − ω2)2 + γ2ω2)|G̃(ω)|2~

2
I(ω)(coth(

1

2
~ωβ) − 1)eiω(t−t′)

G̃(ω) can be found by performing a Fourier transform on (4.1) for λ = 0:

G̃(ω) =
1

−ω2 + 2
M
η̃(ω) + Ω2

(4.17)

,where η̃(ω) =
∫ ∞

0
η(t)e−iωtdt, as the upper limit of

∫ t

0
η(t − s)G(s)ds is t.

Finally we get:

〈 f ′(t) f ′(t′)〉 =
∫ ∞

−∞

(Ω′2 − ω2)2 + γ2ω2

(Ω2 − ω2 + 2
M

Re[η̃(ω)])2 + Im[ 2
M
η̃(ω)]2

~

2
I(ω)(coth(

1

2
~ωβ) − 1)eiω(t−t′)dω

(4.18)

〈 f ′(t) f ′(t′)〉 can be written in the same form as 〈 f (t) f (t′)〉 but with a modified

spectral density:

〈 f ′(t) f ′(t′)〉 =
∫ ∞

−∞

~

2
I′(ω)(coth(

1

2
~ωβ) − 1)eiω(t−t′)dω (4.19)

with
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I′(ω) =
(Ω′2 − ω2)2 + γ2ω2

(Ω2 − ω2 + 2
M

Re[η̃(ω)])2 + Im[ 2
M
η̃(ω)]2

I(ω) (4.20)

The denominator is squared absolute value of a Fourier transform of a real

function G(t) and thus symmetric, whereas I(ω) is asymmetric by definition. Thus

I′(ω) is asymmetric too.

Notice, that γ and Ω′2 actually depend on G(t) and therefore can be expressed

by Ω and η̃(ω).
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4.3 Time-local coefficients

In this part we explicitly calculate the steady-state values of time-dependent

time-local coefficients under assumption of a rational Green function in the Laplace

space.

According to definition (4.1) G(t) fulfills:

G̈(t) +
2

M

∫ t

0

η(t − s)G(s)ds + Ω2G(t) = δ(t) (4.21)

The conditions G(0) = 0, Ġ(0) = 1 implicit G(0−) = 0 and Ġ(0−) = 0

(as this gives rise to G̈(0) + ... = δ(0)).

We use the defintion of Laplace transform:

L{G}(s) :=

∫ ∞

0−
G(t)e−tsdt (4.22)

and the rules:

L{Ġ}(s) = sL{G} −G(0−) (4.23)

lim
s−>∞

sL{G}(s) = G(0+) (4.24)

Thus we find:

L{G}(s) =
1

s2 + 2
M
L{η}(s) + Ω2

(4.25)

L{G}(s) is real as G(t) is real.

We assume that G(t) is smooth for t ∈ [0, ǫ). Then G(0) = G(0+) = 0 and

Ġ(0) = Ġ(0+) = 1 implies:

lim
s−>∞

sL{G}(s) = 0 (4.26)

lim
s−>∞

s2L{G}(s) = 1 (4.27)

So if L{G}(s) is or can be approximated by a rational function, it has to be of

the form:

L{G}(s) =
sn + An−1sn−1 + An−2sn−2 + ...

sn+2 + Bn+1sn+1 + Bnsn + ...
(4.28)
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with real coefficients An and Bn. The last fact implies that roots of both polynomi-

als are either real or for each complex root there exists a complex conjugate root.

According to the partial fraction decomposition theorem, any rational function

f : C→ C with poles xi (i = 1, 2, ..., n) of the order ri can be written in the form:

f (s) =

n
∑

i=1

ri
∑

j=1

ai j

(s − xi) j
+ polynomial(s) (4.29)

So L{G}(s) can be written in the form:

L{G}(s) =

n
∑

i=1

ri
∑

j=1

ai j

(s − xi) j
(4.30)

Note that polynomial(s) ≡ 0 due to lims−>∞ sL{G}(s) = 0. Now we know the

shape of G(t)

L{ t
n

n!
e−at}(s) =

1

(s + a)n+1
(4.31)

⇒ G(t) =

n
∑

i=1

ri
∑

j=1

ai j

t j−1

( j − 1)!
exit (4.32)

G(t) equals the expectation value of the position < q(t) > of the particle if an

external force f (t) = δ(t) is acting on it. In our case, where the particle cannot

”diffuse away” under the influence of a singe deltalike kick, it is clear that

Re[xi] < 0 (4.33)

Let the pair {−β,−δ} be the two real parts of the poles, which are closest to 0.

Then:

G(t) = f0(t)e−βt + g0(t)e−δt + O(e−κt) κ > δ > β (4.34)

Ġ(t) = f1(t)e−βt + g1(t)e−δt + O(e−κt) (4.35)

... (4.36)
...
G(t) = f3(t)e−βt + g3(t)e−δt + O(e−κt) (4.37)

with some real functions f0,1,2,3 and g0,1,2,3, where f1,2,3 and g1,2,3 can be ex-

pressed by f0 and g0 respectively.
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We recall (4.6):

γ(t) =
G

...
G − ĠG̈

Ġ2 −GG̈
(4.38)

=
( f0 f3 − f1 f2)e−2βt + ( f0g3 + f3g0 − f1g2 − f2g1)e−(β+δ)t + ...

( f 2
1
− f0 f2)e−2βt + (2 f1g1 − f0g2 − f2g0)e−(β+δ)t + ...

(4.39)

Now we distinguish two general cases:

I). There exists more than one pole xi with Re[xi] = −β or at least one pole xi

with ri > 1. So the poles of L{G}(s) can be written down as:

{xi} = {−β + iω1,−β + iω2,−β + iω3, ... ,−δ + iα1, ...} (4.40)

Furthermore we regard 3 more distinctions of cases:

a).There exist ωi and ω j with |ωi| , |ω j|.
In this case γ(t) and Ω′2(t) do not converge. It can be checked easily with exatly

the same technique, that I will use to calculate the values of γ(∞) and Ω′2(∞) for

the next case.

b).Imaginary parts of all poles {xi} with Re[xi] = −β have the same absolut value

ω , 0.

⇒ f0(t) =
∑

n

cntneiωt +
∑

n

c∗ntne−iωt ci ∈ C (4.41)

=
∑

n

dntn sin(ω + φn) dn ∈ R (4.42)

= dntn sin(ωt + φn) + o(tn) (4.43)

Using (4.34)-(4.37) one can calculate f1, f2 and f3. The results lead to:

( f0 f3 − f1 f2)(t) = A t2n2βω2 + o(t2n) (4.44)

( f 2
1 − f f2)(t) = A t2nω2 + o(t2n) (4.45)
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with some constant factor A.

By inserting these equations into (4.39) we obtain:

γ(t) =
(t2n2βω2 + o(t2n))e−2βt + O(e−(β+δ)t)

(t2nω2 + o(t2n))e−2βt + O(e−(β+δ)t)
(4.46)

=
(2βω2 + o(1)) + O(e−(δ−β)t)

(ω2 + o(1)) + O(e−(δ−β)t)
(4.47)

⇒ γ =: γ(∞) (4.48)

= 2β (4.49)

In the same way one can calculate:

Ω′2 =: Ω′2(∞) (4.50)

= β2 + ω2 (4.51)

c).In the third case we consider ωi = 0.

⇒ f0(t) = cntn + o(tn) (4.52)

with n ≥ 1 as ri > 1.

⇒ ( f0 f3 − f1 f2)(t) = B 2nt2n−2β + o(t2n−2) (4.53)

( f 2
1 − f0 f2)(t) = B nt2n−2 (4.54)

for some constant B.

The time-local coefficients converge to:

⇒ γ = 2β (4.55)

Ω′2 = β2 (4.56)

II). There exist only one pole xi with Re[xi] = −β with ri = 1. So the poles of

L{G}(s) can be written down as:

{xi} = {−β,−δ + iα1,−δ + iα2, ...} (4.57)

17



It can be shown, that the time-local coefficients converge only in the case if

|α j| = 0 ∀ j.

In this case f0(t) is a constant and it turns out, that:

( f0 f3 − f1 f2)(t) = ( f 2
1 − f0 f2)(t) ≡ 0 (4.58)

Furthermore:

g0(t) = cntn + o(tn) (4.59)

( f0g3 + f3g − f1g2 − f2g1)(t) = C tn(β − δ)2(β + δ) + o(tn) (4.60)

(2 f1g1 − f0g2 − f2g0)(t) = C tn(β − δ)2 + o(tn) (4.61)

By inserting (4.58), (4.60) and (4.61) into (4.39) we obtain:

γ = β + δ (4.62)

Ω′2 = βδ (4.63)

Summing up all cases we can find a simple rule for calculating time-local coeffi-

cients:

If {xi} is list of the poles of L{G}(s), where each xi appears ri times, and {a, b}
are elements of the list with the biggest real part, then:

γ = −Re[a + b] (4.64)

Ω′2 = |ab| (4.65)

This result for Ω′2 is different from that in [2], where Ω′2 is supposed to be

− 2
M

∫ ∞
0

I(ω)

ω
dω + Ω2. This is only true in the weak coupling limit, but not gen-

erally, as can be checked numerically. (See (2.44) and (2.45) and the text below

in [2])
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4.4 Time-local coefficients in the weak-coupling regime

In the previous subsection we have found, that the time-local coefficients for

infinite times γ and Ω′2 are given by the 2 poles of L{G}(s) with the biggest real

part.

Now we try to find a simple approximated formula for the relevant poles and there-

fore for γ and Ω′2 in the case, where the coupling of the harmonic oscillator to the

thermal bath is small, and give the conditions where this approximation applies.

Using the definition of L{G}(s) we obtain:

L{G}(s)−1 = s2 +
2

M
L{η}(s) + Ω2 (4.66)

= s2 +
2

M
sL{ν}(s) − 2

M
ν(0) + Ω2 (4.67)

In the last step we used (2.16).

We define
√

− 2

M
ν(0) + Ω2 =: K (4.68)

and x a pole of L{ν}(s).

Now we expand L{ν}(s) around iK′, with K′ being a guess for the imaginary

part of x, with K′ ∈ R, δ ∈ C:

L{ν}(iK′ + δ) = L{ν}(iK′) + ∂sL{ν}(s)|s=iK′ δ + ∂
2
sL{ν}(s)|s=iK′

δ2

2
+ ...

(4.69)

If

L{ν}(iK′) + ∂sL{ν}(s)|s=iK′ δ ≫ ∂2
sL{ν}(s)|s=iK′

δ2

2
+ ... (4.70)

in the intervall for δ = s − iK, where |s2 + K2| 4 | 2
M

sL{ν}(s)| (i.e. the terms

are comparable and therefore roots can occur), its only the first two terms in the

taylor expansion that matter.
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To find a pole of L{G}(s) we insert the linearized L{ν}(iK′ + δ) into (4.67) and set

the resulting expression to 0:

(iK′ + δ)2 +
2

M
(iK′ + δ)

(

L{ν}(iK′) + ∂sL{ν}(s)|s=iK′ δ
)

+ K2 = 0 (4.71)

⇔ 2

M
iK′L{ν}(iK′) + K2 − K′2

+δ
(

2iK′ +
2

M
iK′∂sL{ν}(s)|s=iK′ +

2

M
L{ν}(iK′)

)

+

+δ2
(

1 +
2

M
∂sL{ν}(s)|s=iK′

)

= 0 (4.72)

Under conditions:

| 2
M
∂sL{ν}(s)|s=iK′ | ≪ 1 (4.73)

| 1
M
L{ν}(iK′)| ≪ K′ (4.74)

(4.72) simplifies to:

K2 − K′2 +
2

M
iK′Re[L{ν}(iK′)] + δ

(

2iK′ +
2

M
Re[L{ν}(iK′)]

)

+ δ2 = 0

(4.75)

⇒ δ1,2 = −iK′ − 1

M
L{ν}(iK′) ±

√

−K2 + (
1

M
L{ν}(iK′))2 (4.76)

≈ −i(K′ ∓ K) − 1

M
L{ν}(iK′) (4.77)

To be precise we also assume that:

| 1
M
L{ν}(iK′)| ≪ K (4.78)

So the first guess for two poles x1,2 of L{ν}(s) is:

x1,2 ≈ ±iK − 1

M
L{ν}(iK′) (4.79)

≈ ±iK − 1

M
Re[L{ν}(iK′)] (4.80)
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Now we can find a better approximation for x1,2 , if we repeat the procedure

from step (4.69) but expanding L{ν}(s) around iK. The result is:

x1,2 ≈ ±iK − 1

M
Re[L{ν}(iK)]. (4.81)

Untill now we do not know if the poles x1,2, the approximation to which we

have found, are poles with the biggest real part, which we denote by xmax1,2:

If Im[xmax1,2] ≈ ±K, it could still be, that there is another pole with the same

imaginary part but with smaller real part and therefore not the pole of interest.

However the approximation of (4.69), which we insert in (4.67) to calculate δ,

works the better the smaller |δ|. So the resulting δ is an approxamtion for the real

part of the pole with the real part closest to 0. Because real part of all poles is

negative (otherwise there would be no damping), this pole is one with the biggest

real part.

If Im[xmax1,2] ≈ ±K′ 0 ±K and we would try to find an approximation for

the real part, we would get δ1,2 ≈ −i(K′ ∓ K) − 1
M

Re[L{ν}(iK′)], which contains a

correction for the imaginary part. This means that ±K′ 0 Im[xmax1,2].

Of course these arguments work only if the linearisation of (4.69) around

iIm[xmax] for δ = Re[xmax] is a good approximation.

Summing up we can state, that if conditions characterizing the smallness of I(ω),

namely (4.70), (4.73), (4.74) and (4.78) hold, poles with the biggest real part are

given by:

xmax1,2 ≈ ±iK − 1

M
Re[L{ν}(iK)] (4.82)

and the time-local coefficients at infinity are therefore:

γ ≈ 2

M
Re[L{ν}(iK)] (4.83)

Ω′2 ≈ K2 (4.84)

We can also express there coefficients through I(ω) and the bare oscillator

frequency Ω. Using (2.17) we find:
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Re[L{ν}(iK)] = Re[

∫ ∞

0

ν(s)e−iKsds] (4.85)

=

∫ ∞

0

ν(s) cos(Ks)ds (4.86)

=

∫ ∞

0

∫ ∞

0

I(ω)

ω
cos(ωs) cos(Ks)dωds (4.87)

=

∫ ∞

0

∫ ∞

0

I(ω)

2ω
(cos(s(ω + K)) + cos(s(ω − K)))dωds

=

∫ ∞

0

πI(ω)

2ω
(δ(ω + K) + δ(ω − K))dω (4.88)

=
πI(K)

2K
(4.89)

⇒ γ ≈ πI(K)

MK
(4.90)

Now we use (4.68):

K2 = − 2

M
ν(0) + Ω2 (4.91)

= − 2

M

∫ ∞

0

I(ω)

ω
dω + Ω2 (4.92)

⇒ Ω′2 ≈ − 2

M

∫ ∞

0

I(ω)

ω
dω + Ω2 (4.93)
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4.5 Renormalized force correlation function 〈 f ′(t) f ′(t′)〉 in the

weak coupling regime

We recall (4.19):

〈 f ′(t) f ′(t′)〉 =
∫ ∞

−∞

~

2
I′(ω)(coth(

1

2
~ωβ) − 1)eiω(t−t′)dω (4.94)

with

I′(ω) =
(Ω′2 − ω2)2 + γ2ω2

(Ω2 − ω2 + 2
M

Re[η̃(ω)])2 + Im[ 2
M
η̃(ω)]2

I(ω) (4.95)

=
(Ω′2 − ω2)2 + γ2ω2

(K2 − ω2 − ω 2
M

Im[ν̃(ω)])2 + ω2Re[ 2
M
ν̃(ω)]2

I(ω) (4.96)

We want to find out under which conditions

(Ω′2 − ω2)2 + γ2ω2

(K2 − ω2 − ω 2
M

Im[ν̃(ω)])2 + ω2Re[ 2
M
ν̃(ω)]2

≈ 1 (4.97)

The argumentation and conditions are the same as in the previous subsection:

If 2
M
ν̃(ω) is much smaller and varies slower then K for ω in the region around

K, its only the value of ν̃(ω) for ω = K which matters. More precisely:

| 2
M
∂ων̃(ω)|ω=K | ≪ 1 (4.98)

| 1
M
ν̃(K)| ≪ K (4.99)

and the linearization of ν̃(ω) around ω = K

ν̃(ω) ≈ ν̃(K) + ∂ων(ω)|ω=K(ω − K) (4.100)

should be valid in the region, where |K2 − ω2| 4 |ω 2
M
ν̃(ω)|.

Then with exactly the same argumentation as in the previous subsection one can
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apply the following approximations:

(K2 − ω2 − ω 2

M
Im[ν̃(ω)])2 + ω2Re[

2

M
ν̃(ω)]2 ≈ (K2 − ω2 − ω 2

M
Im[ν̃(K)])2 + ω2Re[

2

M
ν̃(K)]2

≈ (K2 − ω2 − K
2

M
Im[ν̃(K)])2 + ω2Re[

2

M
ν̃(K)]2

≈ (K2 − ω2)2 + ω2Re[
2

M
ν̃(K)]2

Finally using (4.83) and (4.84) we find, that the renormalized spectral density is

well approximated by the original one:

(K2 − ω2 − ω 2

M
Im[ν̃(ω)])2 + ω2Re[

2

M
ν̃(ω)]2 ≈ (Ω′2 − ω2)2 + ω2γ2

⇒ I′(ω) ≈ I(ω) (4.101)

For the correlation function of the renormalized thermal force this means by

comparing (4.19) with (3.6):

〈 f ′(t) f ′(t)〉 ≈ 〈 f (t) f (t)〉 (4.102)
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5 Mean square steady-state displacement of a har-

monic oscillator coupled to a thermal bath

We assume that γ(t) and Ω′2(t) converge to constant values γ and Ω′2 for t →
∞:

q̈(t) + Ω′2(t)q(t) + γ(t)q̇(t) =
f ′(t)

M
(5.1)

t→∞−→ q̈(t) + Ω′2q(t) + γq̇(t) =
f ′(t)

M
(5.2)

First we solve (5.2) for q(t) using the Fourier transform of the equation:

q̃(ω) =
f̃ ′(ω)

M

1

Ω′2 − ω2 + iγω
(5.3)

⇒ q(t) =
1

2π

∫ ∞

−∞

f̃ ′(ω)

M

eiωt

Ω′2 − ω2 + iγω
dω (5.4)

⇒ 〈q(t)q(t′)〉 = 1

(2π)2

" 〈 f̃ ′(ω) f̃ ′(ω′)〉ei(ωt+ω′t′)

M2(Ω′2 − ω2 + iγω)(Ω′2 − ω′2 + iγω′)
dω dω′

(5.5)

Now we have to find the formula for 〈 f̃ ′(ω) f̃ ′(ω′)〉:

〈 f̃ ′(ω) f̃ ′(ω′)〉 = 〈
∫ ∞

−∞
f ′(t)e−iωt dt

∫ ∞

−∞
f ′(t′)e−iω′t′ dt′〉

=

"
〈 f ′(t) f ′(t′)〉e−i(ωt+ω′t′) dt dt′ (5.6)

Force correlation function can be written in the following way:

〈 f ′(t) f ′(t′)〉 =
∫ ∞

0

I′(ω̄)~(coth(
1

2
~ω̄β) cos(ω̄(t − t′)) +

sin(ω̄(t − t′))

i
) dω̄

=

∫ ∞

0

a(ω̄) cos(ω̄(t − t′)) + ib(ω̄) sin(ω̄(t − t′)) dω̄

=

∫ ∞

−∞

a(ω̄) + b(ω̄)

2
eiω̄(t−t′)dω̄. (5.7)

In the last step we extend the definition area of a(ω̄) and b(ω̄) to the whole real

axis with the properties: a(−ω̄) = a(ω̄) and b(−ω̄) = −b(ω̄). Now we insert (5.7)

in (5.6):

25



〈 f̃ ′(ω) f̃ ′(ω′)〉 =
$

a(ω̄) + b(ω̄)

2
eiω̄(t−t′)e−i(ωt+ω′t′) dt dt′ dω̄

= (2π)2

$
a(ω̄) + b(ω̄)

2

1

2π
eit(ω̄−ω) 1

2π
eit′(−ω̄−ω′) dt dt′ dω̄

= (2π)2

∫

a(ω̄) + b(ω̄)

2
δ(ω̄ − ω) δ(ω̄ + ω′) dω̄

= (2π)2 a(ω) + b(ω)

2
δ(ω + ω′) (5.8)

Substituting (5.8) in (5.5) we obtain:

〈q(t)q(t′)〉 =
"

a(ω) + b(ω)

2
δ(ω + ω′)

ei(ωt+ω′t′)

M2(Ω′2 − ω2 + iγω)(Ω′2 − ω′2 + iγω′)
dω dω′

=

∫

a(ω) + b(ω)

2

eiω(t−t′)

M2(Ω′2 − ω2 + iγω)(Ω′2 − ω2 − iγω)
dω

=

∫ ∞

−∞

a(ω) + b(ω)

2M2

eiω(t−t′)

(Ω′2 − ω2)2 + (γω)2
dω

=
1

M2

∫ ∞

−∞

I′(ω)~
(

coth(
~ωβ

2
) − 1

)

(Ω′2 − ω2)2 + (γω)2
eiω(t−t′) dω, (5.9)

By inserting (4.20) into (5.9), one gets a general expression for 〈q(t)q(t′)〉 in a

steady state, which holds even if γ(t) and Ω′2(t) do not converge. It can be derived

directly from (2.14):

〈q(t)q(t′)〉 = 1

M2

∫ ∞

−∞

I(ω)~
(

coth(
~ωβ

2
) − 1

)

(Ω2 − ω2 + 2
M

Re[η̃(ω)])2 + Im[ 2
M
η̃(ω)]2

eiω(t−t′) dω

(5.10)
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6 Mean square steady-state displacement of a har-

monic oscillator coupled to laser and a thermal

bath

Now we consider a system where the harmonic oscillator described above is

coupled to a laser field within an optical cavity. This can be realized as follows:

A vibrational mode of a high reflective micromirror is modeled as harmonic oscil-

lator. The micromirror together with another solid mirror forms an optical cavity,

which is driven by a laser beam.

The total Hamiltonian of a harmonic oscillator coupled to thermal bath and laser

field within a driven optical cavity is [1]:

H =
p2

2M
+

1

2
MΩ2q2 +

∑

n

(
p2

n

2mn

+
1

2
mnω

2
nq2

n) + q
∑

n

Cnqn

+~ωca
†a − ~g0a†aq + i~E(a†e−iω0t − aeiω0t) (6.1)

a and a† are annihilation and creation operators of the laser field,

g0 = ωc/L is coupling constant of the mechanics to the laser field, where ωc is the

resonance frequency of the cavity with length L and decay rate κ,

|E| =
√

2Pκ/~ω0 where P is the input power of laser with frequency ω0.

Heisenberg equations of motion written in the interaction picture with respect to

~ω0a†a are:

q̇ =
p

M
(6.2)

ṗ = −MΩ2q −
∑

n

Cnqn + ~g0a†a (6.3)

ȧ = −(κ + i∆0)a + ig0aq + E +
√

2κain (6.4)

q̇n =
pn

mn

(6.5)

ṗn = −mnω
2
nqn −Cnq (6.6)

with ∆0 = ωc − ω0.
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Exactly as in section (2) by solving the last two equations we can find qn(q(t))

and insert it in equation for ṗ. The result is:

q̈(t) + Ω2q(t) +
2

M

∫ t

0

dsη(t − s)q(s) =
f (t)

M
+
~g0

M
a†a (6.7)

ȧ = −(κ + i∆0)a + ig0aq + E +
√

2κain

If we are interested in a time-local form we can proceed exactly as in subsec-

tion (4.1) but substituting
f (t)

M
+
~g0

M
a†a for

f (t)

M
:

(6.7) ⇔ q̈(t) + γ(t)q̇(t) + Ω′2(t)q(t) =

=
f̄ ′(t)

M
+ (∂2

t + γ(t)∂t + Ω
′2(t))

∫ t

0

G(t − s)
~g0

M
a†(s)a(s)ds (6.8)

Note, that the Green function G(t) and therefore γ(t) andΩ′2(t) are not affected

by the presence of the coupling to the light field.

So in case time-local coefficients converge, the entire optomechanical system

for t → ∞ is described by:

q̈(t) + γq̇(t) + Ω′2q(t) =

=
f ′(t)

M
+ (∂2

t + γ∂t + Ω
′2)

∫ t

0

G(t − s)
~g0

M
a†(s)a(s)ds (6.9)

ȧ(t) = −(κ + i∆0)a(t) + ig0a(t)q(t) + E +
√

2κain(t) (6.10)

The term (∂2
t + γ∂t +Ω

′2)
∫ t

0
G(t − s)

~g0

M
a†(s)a(s)ds in (6.9) describes modified

radiation pressure force. I want to consider two special cases:

1). If the coupling of the mechanics to the laser field is small and therefore ra-

diation pressure effects can be neglected, this term can be ignored completely.

Then the dynamics of the mechanics is independent of that of the optics and can

be solved as described in previous sections. Equation (6.10) then describes a cav-

ity mode which acts as a readout apparatus.

2). Untill the end of the section we will deal with the second case: arbitrary

optomechanical coupling but weak coupling of the mechanical oscillator to the
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thermal bath, described by conditions in subsection (4.5). Under those the ap-

proximation is true:

G̃(ω) ≈ 1

−ω2 + iωγ + Ω′2
(6.11)

and therefore for any function or operator F(t) (given for t ∈ [0,∞]):

(−ω2 + iωγ + Ω′2)G̃(ω)F̃(ω) ≈ F̃(ω) (6.12)

⇔ (∂2
t + γ∂t + Ω

′2)

∫ t

0

G(t − s)F(s)ds ≈ F(t) (6.13)

So in the bath-weak-coupling regime equations (6.9) and (6.10) turn into:

q̈ = −γq̇ −Ω′2q +
f (t)

M
+
~g0

M
a†a (6.14)

ȧ = −(κ + i∆0)a + ig0aq + E +
√

2κain(t) (6.15)

From now on I will write all formulas in dimensionless units in order to make

it easier to compare the results with those of [1]. Dimensionless units are defined

by:

qdimensionless : =
q

l

pdimensionless : =
p l

~
(6.16)

l : =

√

~

M ωm

⇒ [qdimensionless, pdimensionless] = i (6.17)

and define:

ωm := Ω′ (6.18)

G0 = g0l (6.19)

ξ(t) = f (t)
l

~
(6.20)

The equations of motion in dimensionless units are (omitting the subindex

”dimensionless”):
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q̇ = ωm p (6.21)

ṗ = −γp − ωmq + ξ(t) +G0a†a (6.22)

ȧ = −(κ + i∆0)a + iG0aq + E +
√

2κain(t) (6.23)

Comparing this set of equations with (2a)-(2c) in [1], the only difference lies

in ξ(t) which here describes thermal force of a general thermal bath as opposed to

an Ohmic one in the mentioned paper.

So we can proceed exactly as in [1] by calculating mean values in a steady state:

qs := 〈q(t)〉t→∞ =
G0|αs|2

ωm

(6.24)

αs := 〈a(t)〉t→∞ =
E

κ + i∆
(6.25)

〈p(t)〉t→∞ = 0 (6.26)

with

∆ = ∆0 −
G2

0
|αs|2

ωm

(6.27)

Then equations of motion for δq := q − qs, δp := p, δa := a − αs can be

linearized under condition |αs| ≫ 1 [1]:

δq̇ = ωmδp (6.28)

δ ṗ = −ωmδq − γδp +GδX + ξ (6.29)

δẊ = −κδX + ∆δY +
√

2κXin (6.30)

δẎ = −κδY − ∆δX +Gδq +
√

2κY in (6.31)

with δX ≡ (δa + δa†)/
√

2, δY ≡ (δa − δa†)/i
√

2 and Xin = (ain + ain,†)/
√

2,

Y in = (ain − ain,†)/i
√

2.

G ≡ G0αs

√
2 =

2ωc

L

√

Pκ

Mωmω0(κ2 + ∆2)
(6.32)

is the effective optomechanical coupling.
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This set of equations for Heisenberg operators can be written in the following

form:

u̇(t) = Au(t) + n(t) (6.33)

with

u(t) =































δq(t)

δp(t)

δx(t)

δy(t)































n(t) =

































0

ξ(t)√
2κXin(t)√
2κY in(t)

































A =































0 ωm 0 0

−ωm −γ G 0

0 0 −κ ∆

G 0 −∆ −κ































(6.34)

The Fourier transform of (6.33) produces:

iωũ(ω) = Aũ(ω) + ñ(ω)

⇔ (iω − A)ũ(ω) = ñ(ω)

⇔ Bũ(ω) = ñ(ω)

⇔ ũ(ω) = B−1ñ(ω) (6.35)

with

B := iω − A (6.36)

Now we are interested only in the first component of ũ(ω):

δq̃(ω) = ũ(ω)1 =

4
∑

k=1

B−1
1k (ω)ñk(ω)

=:
∑

k

bk(ω)ñk(ω)

⇒ δq̃(ω)δq̃(ω′)∗ =
∑∑

bi(ω)bk(ω
′)∗ñi(ω)ñk(ω

′)∗

=
∑

k

bk(ω)bk(ω
′)∗ñk(ω)ñk(ω

′)∗ +
∑

i

∑

k,i

bi(ω)bk(ω
′)∗ñi(ω)ñk(ω

′)∗

⇒ 〈δq̃(ω)δq̃(ω′)∗〉 =
∑

k

bk(ω)bk(ω
′)∗〈ñk(ω)ñk(ω

′)∗〉 +

+b3(ω)b4(ω′)∗〈ñ3(ω)ñ4(ω′)∗〉 + b4(ω)b3(ω′)∗〈ñ4(ω)ñ3(ω′)∗〉

Other mixed summands vanish, because stochastic force of the mechanics is

uncorrelated with vacuum radiation input noise of the light field.

The spectrum of the Brownian stochastic force in Fourier space can be ob-

tained using (4.12) by multiplying with ( l
~
)2 = 1

Mωm~
:
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〈

ξ̃(ω)ξ̃(ω′)∗
〉

= (2π)2
I(ω)

(

coth(
~ωβ

2
) − 1

)

2Mωm

δ(ω − ω′) (6.37)

Correlation functions for the vacuum radiation input noise can be easily cal-

culated using the fact, that in a good approximation for ~ωc

kBT
≫ 1 the only nonzero

correlation function of ain and ain,† 1 is:

〈

ain(t)ain,†(t′)
〉

= δ(t − t′) (6.38)

After applying the definition Xin = ain+ain,†
√

2
and Y in = ain−ain,†

i
√

2
and performing

the Fourier transform we obtain:

〈

Xin(t)Xin(t′)
〉

=
〈

Y in(t)Y in(t′)
〉

=
δ(t − t′)

2

⇒
〈

X̃in(ω)X̃in(ω′)∗
〉

=
〈

Ỹ in(ω)Ỹ in(ω′)∗
〉

= πδ(ω − ω′)
⇒ 〈ñ3(ω)ñ3(ω′)∗ 〉 = 〈ñ4(ω)ñ4(ω′)∗ 〉 = 2πκδ(ω − ω′) (6.39)

and:

〈

Xin(t)Y in(t′)
〉

=
〈

Y in(t)Xin(t′)
〉∗
= −δ(t − t′)

2i
⇒ 〈ñ3(ω)ñ4(ω′)∗ 〉 = − 〈ñ4(ω)ñ3(ω′)∗ 〉 = i2πκδ(ω − ω′) (6.40)

1the exact formula is

〈

ain(t)ain,†(t′)
〉

= [N(ωc) + 1]δ(t − t′)
〈

ain,†(t)ain(t′)
〉

= N(ωc)δ(t − t′)
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So for the mechanical spectrum S ∆q (ω) we get:

〈δq̃(ω)δq̃(ω′)∗〉 = (2π)2δ(ω − ω′)
(

b2(ω)b2(ω′)∗
I(ω)

(

coth(
~ωβ

2
) − 1

)

2Mωm

+ (6.41)

+b3(ω)b3(ω′)∗
κ

2π
+ b4(ω)b4(ω′)∗

κ

2π
+

+b3(ω)b4(ω′)∗
iκ

2π
− b4(ω)b3(ω′)∗

iκ

2π

)

= (2π)2δ(ω − ω′)
(

|b2(ω)|2
I(ω)

(

coth(
~ωβ

2
) − 1

)

2Mωm

+
κ

2π
|b4(ω) + ib3(ω)|2

)

=: 2πδ(ω − ω′)S ∆q (ω) (6.42)

After calculating the matrix B with Mathematica and inserting its elements in

(6.42) we arrive at:

〈δq(t)δq(t′)〉 =
∫ ∞

−∞

dω

2π
S ∆q (ω)eiω(t−t′) (6.43)

=

∫ ∞

−∞

dω

2π
|χ∆e f f (ω)|2[S th(ω) + S rp(ω,∆)]eiω(t−t′) (6.44)

=

∫ ∞

−∞

dω

2π
|b2(ω)|2

















πI(ω)
(

coth(
~ωβ

2
) − 1

)

Mωm

+ κ
|b4(ω) + ib3(ω)|2

|b2(ω)|2

















eiω(t−t′)

with

S th(ω) =
πI(ω)

Mωm

(

coth(
~ωβ

2
) − 1

)

S rp(ω,∆) =
κ G2

∆2 + κ2 + ω2 + 2∆ω

χ∆e f f (ω) = ωm

(

ω2
m + iγω − ω2 − G2∆ωm

∆2 + (κ + iω)2

)−1

(6.45)

Apart from the obviously different thermal noise spectrum S th(ω) compared

to [1], the radiation pressure noise spectrum S rp(ω,∆) differs as well. The reason

is, that we have calculated 〈δq(t)δq(t′)〉 as opposed to 〈δq(t)2〉 in [1], where only

the symmetric part of the whole S ∆q (ω) survives.
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We also get immediately 〈δp(t)δp(t′)〉:

δq̇ = ωmδp

⇒ iωδq̃(ω) = ωmδ p̃(ω)

⇒ δ p̃(ω) = i
ω

ωm

δq̃(ω)

⇒ 〈δ p̃(ω)δp̃(ω′)∗ 〉 = ωω
′

ω2
m

〈δq̃(ω)δq̃(ω′)∗ 〉

=
ω2

ω2
m

〈δq̃(ω)δq̃(ω′)∗ 〉

In the last step we again use the fact that 〈q̃(ω)q̃(ω′)∗ 〉 has δ(ω − ω′) as a

multiplicative factor.

⇒ 〈p(t)p(t′)〉 =
∫ ∞

−∞

dω

2π

ω2

ω2
m

S ∆q (ω)eiω(t−t′) (6.46)

We want to test the formula for S th(ω) in the Ohmic case:

I(ω) = cω

⇒ ν(t) = cπδ(t)

⇒ η(t) = cπδ̇(t) (6.47)

⇒ γ = γ(t) = cπ

M

⇒ c =
Mγ

π

⇒ I(ω) =
Mγω

π

⇒ S th(ω) =
γω

ωm

(

coth(
~ωβ

2
) − 1

)

, the symmetric part of which is exactly the formula for S th(ω) in [1].

Another test is setting the optomechanical coupling G to 0. Then 〈δq(t)δq(t′)〉
becomes (5.9), which is correlation function of the oscillator’s position in a ther-

mal bath in the absence of laser field.
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7 Measuring the optical spectrum of the optome-

chanical system

In this section I want to discuss the measurement of the optomechanical sys-

tem and how the information about the motion of the mechanics can be obtained.

As we will see homodyne measurement of the optical quadratures provides direct

access to the spectral density I(ω). As in the previous section, coupling of the

mechanical system to thermal bath should be weak in the sence that I′(ω) ≈ I(ω).

In case ∆ = 0, which means that the effective (i.e. measurable) detuning between

the cavity and the laser driving the cavity is 0, equations for the phase quadrature

of light (6.31) is:

δẎ = −κδY +Gδq +
√

2κY in (7.1)

So in this case measurement of the phase quadrature can be used to get information

about the mechanics. In real experiments ∆ = 0 would never be exactly achieved.

Additionally stability conditions are more likely violated if ∆ > 0. Thats why one

usually makes ∆ slightly smaller then 0 in order to avoid instability. However if

|∆| ≪ κ we will see that (7.1) is still a good approximation. Combining (6.30) and

(6.31) one gets:

δẌ + 2κδẊ + (κ2 + ∆2)δX = κ
√

2κXin +
√

2κẊin + ∆
√

2κY in + ∆Gδq (7.2)

δŸ + 2κδẎ + (κ2 + ∆2)δY = κ
√

2κY in +
√

2κẎ in − ∆
√

2κXin + κGδq +Gq̇

So for |∆| ≪ κ these equations are well approximated by:

δẌ + 2κδẊ + κ2δX = κ
√

2κXin +
√

2κẊin + ∆Gδq (7.3)

δŸ + 2κδẎ + κ2δY = κ
√

2κY in +
√

2κẎ in + κGδq +Gq̇ (7.4)

The last equation is a sum of κ(7.1) and ∂t(7.1). Therefore equations for quadra-

tures of light for small detunings read:

δẌ + 2κδẊ + κ2δX = κ
√

2κXin +
√

2κẊin + ∆Gδq (7.5)

δẎ = −κδY +Gδq +
√

2κY in (7.6)

To examine the dependence of δY on δq we regard the Fourier transform of (7.1):

⇔ δY = δq
G

iω + κ
+

√
2κ

iω + κ
Y in (7.7)
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If κ ≫ ωm ≫ γ then iω + κ ≈ κ for ω where the spectrum of the mechanics is

situated and therefore:

δY = δq
G

κ
+

√

2

κ
Y in (7.8)

The output quadrature δYout is related to δY through the usual input-output rela-

tion. If the detector has quantum efficiency η < 1, the relation for the measured

output quadrature can be generalized [1] to:

δYout =
√
η(
√

2κδY − Y in) −
√

1 − ηYυ (7.9)

=

√

2η

κ
Gδq +

√
ηY in −

√

1 − ηYυ (7.10)

Here Yυ is delta-correlated noise, which is uncorrelated with other noise operators

introduced before. It arises due to the fact that some part of the output light gets

lost because of η < 1 in the experiment.

Going into the Fourier space we obtain:

δỸout(ω) =

√

2η

κ
Gδq̃(ω) +

√
ηỸ in(ω) −

√

1 − ηỸυ(ω) (7.11)

The dynamics of the mechanics for ∆ ≪ κ is described by (6.28),(6.29) and (7.3):

δq̇ = ωmδp (7.12)

δṗ = −ωmδq − γδp +GδX + ξ (7.13)

δẌ + 2κδẊ + κ2δX = κ
√

2κXin +
√

2κẊin + ∆Gδq (7.14)

and therefore independent of Y in. This means that δq and Y in are uncorrelated. So:

〈δỸout(ω)δỸout(ω′)∗〉 = 2η

κ
G2〈δq̃(ω)δq̃(ω′)∗〉 + η〈Ỹ in(ω)Ỹ in(ω′)∗〉 + (1 − η)〈Ỹυ(ω)Ỹυ(ω)∗〉

= 2π(
2η

κ
G2 S ∆q (ω) +

1

2
)δ(ω − ω′) (7.15)

In the last step we used (6.42) and (6.39).

Measured spectrum S f (ω) of an observable f [7] is given by:
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〈 f̃ (ω) f̃ (ω′)〉 = 2πS f (ω)δ(ω − ω′) (7.16)

⇒ S δYout(ω) =
2η

κ
G2 S ∆q (ω) +

1

2
(7.17)

=
2η

κ
G2 |χ∆e f f (ω)|2{S th(ω) + S rp(ω,∆)} + 1

2
(7.18)

In our case of κ ≫ ωm ≫ γ, κ ≫ ∆

S rp(ω,∆) =
κ G2

∆2 + κ2 + ω2 + 2∆ω
(7.19)

≈ G2

κ
(7.20)

χ∆e f f (ω) ≈ ωm[ωm
2
e f f − ω2 + iωγe f f ] (7.21)

ωm
2
e f f := ω2

m −
G2∆ωm

κ2
≈ ω2

m (7.22)

γe f f := γ +
2G2∆ωm

κ3
≈ γ (7.23)

The last two approximations set two more conditions, which will be mentioned in

the end of the section.

If light radiation pressure noise spectrum is negligible, i.e.

S rp(ω,∆) ≪ S th(ω) (7.24)

⇔ G2

κ
≪ πI(ω)

Mωm

(

coth(
~ωβ

2
) − 1

)

(7.25)

≪ ≈ πI(ωm)

Mωm

(

coth(
~ωmβ

2
) − 1

)

(7.26)

≪ ≈ γ
(

coth(
~ωmβ

2
) − 1

)

(7.27)

the mechanical spectrum S ∆q (ω) is the same as in case of a harmonic oscillator

coupled to a thermal bath only:

S ∆q (ω) = |χ∆e f f (ω)|2{S th(ω) + S rp(ω,∆)} (7.28)

≈ |χ0
e f f (ω)|2S th(ω) (7.29)

≈ S q(ω) :=
πωm

M

I(ω)
(

coth(
~ωβ

2
) − 1

)

(ω2
m − ω2)2 + (γω)2

(7.30)

≈ 2πωm

M~β

I(ω)/ω

(ω2
m − ω2)2 + (γω)2

(7.31)
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In the last step we applied the high temperature limit
~ωβ

2
≪ 1. So summing

up we can state that under conditions of weak mechanics-to-bath coupling (i.e.

I(ω) ≈ I′(ω)) and additionally large cavity bandwidth κ, small optomechanical

coupling G, small cavity detuning ∆ and high temperature T , expressed by:

κ ≫ ∆ (7.32)

κ ≫ ωm ≫ γ (7.33)

G2

κ
≪ 2γ

~ωmβ
(7.34)

G2∆

κ2
≪ ωm (7.35)

2G2∆ωm

κ3
≪ γ (7.36)

~ωmβ

2
≪ 1 (7.37)

the spectrum of the measured phase quadrature reads:

S δYout(ω)dimensionless units ≈
4π ηG2ωm

M~ β κ

I(ω)/ω

(ω2
m − ω2)2 + (γω)2

+
1

2
(7.38)

≈ 4π ηG2ωm

M~ β κ

I(ω)/ω

(ω2
m − ω2)2 + (γω)2

(7.39)

We will see, that for all reasonable parameters present in the experiment the addi-

tive constant ” 1
2
” can be ignored completely in the frequency interval around ωm,

which we will analyze. We will use this formula for fitting the experimental data,

as the voltage at the output of the homodyne detection is proportional to δYout.
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8 Experimental setup

The whole experimental setup is illustrated on (Fig 2). Our harmonic oscilla-

tor is a Si3N4 100 µm × 50 µm × 1 µm micromechanical resonator, which carries

a high-reflectivity Bragg mirror (Fig 1). It serves together with a fixed macro-

scopic input mirror (IM) as the end mirror of a 25 mm Fabry-Perrot cavity, which

is kept under pressure of 10−7 mbar. The beam of tunable 1064 nm Nd:YAG

laser is split at a polarizing beamsplitter (PBS) into a strong field acting as lo-

cal oscillator (LO) and a 200µW weak one, the signal. The signal is fed through

an electro-optical modulator (EOM) to generate a Pound-Drever-Hall error signal

for locking the laser to a resonance frequency of the cavity. The signal passes

through a PBS and λ/4 waveplate before entering the cavity in order to separate

the input from the output signal. The phase quadrature of the latter is measured in

a homodyne detection scheme. The phase (Φ) of the local oscillator is stabilized

by a proportional-integral-derivative controller (PID). The sum of the outputs of

both detectors is multiplied with the electronical sinusoidal signal created by a

function generator (FG) and driving the EOM. The resulting voltage is the error

signal which passing through a further PID controller locks the laser to the cavity.

The difference of the detector outputs is proportional to the phase quadrature of

the signal δYout, which is proportional to the excitation of the micromechanical

resonator. Its spectrum is monitored by a spectrum analyzer (SA).

Essential experimental parameters are:

• cavity length L = 25 ∗ 10−3m

• free cavity frequency and the cavity driving frequency ωc ≈ ω0 ≈ 3∗1014Hz

• input laser power P = 200 ∗ 10−6W

• cavity decay rate i.e. half width at half maximum κ = 2π ∗ 30 ∗ 106 Hz

• effective mass of the mechanical resonator (depending on the exact position

of the laser beam on the mechanical oscillator) M = 200 ∗ 10−9kg

• effective cavity detuning with respect to laser freqency ∆ = −2100 Hz

• ωm ≈ 2π ∗ 942000 Hz

• γ ≈ 3200 Hz

Using (6.32) we find: G = 1312 Hz
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One can easily check that conditions (7.32)-(7.37) necessary for derivation of the

formula for the measured spectrum of the homodyning output (7.39) are satis-

fied. The only condition which could be improved to achieve better validity of

approximations, is κ/ωm ≫ 1, which in our case is ≈ 30. Additionally analyzing

the experimental data one will have to make sure that the assumption of weak

bath coupling leading to I′(ω) ≈ I(ω) is justified, as this assumption is put in the

derivation of (7.39) too. Justification of this assumption is presented in the next

section.
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Figure 1: Our harmonic oscillator: a Si3N4 100 µm × 50 µm × 1 µm microme-

chanical resonator carrying a high-reflectivity Bragg mirror [15]
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Figure 2: The micromechanical oscillator serves together with a fixed macro-

scopic input mirror (IM) as the end mirror of a Fabry-Perrot cavity. The laser

beam is split at a polarizing beamsplitter (PBS) into a strong field acting as local

oscillator (LO) and a weak one, the signal. The signal is fed through an electro-

optical modulator (EOM) to generate a Pound-Drever-Hall error signal for lock-

ing the laser to a resonance frequency of the cavity. The signal passes through

a PBS and λ/4 waveplate before entering the cavity in order to separate the in-

put from the output signal. The phase quadrature of the latter is measured in a

homodyne detection scheme. The phase (Φ) of the local oscillator is stabilized

by a proportional-integral-derivative controller (PID). The sum of the outputs of

both detectors is multiplied with the electronical sinusoidal signal created by a

function generator (FG) and driving the EOM. The resulting voltage is the error

signal which passing through a further PID controller locks the laser to the cavity.

The difference of the detector outputs is proportional to the phase quadrature of

the signal δYout, which is proportional to the excitation of the micromechanical

resonator. Its spectrum is monitored by a spectrum analyzer (SA).



Figure 3: Experimental data and fits with different spectral densities, data were

measured by Mag. Simon Groeblacher

9 Fitting the experimental data

Red points in (Fig 3) are the logarithmic plot of the power spectrum of the out-

put voltage of homodyne detection. They were obtained after performing digital

Fourier transform on the data in time domain. In the parameter regime present in

the experiment we have shown that the spectrum of the measurement data is given

by (7.39), if the assumption of weak mechanics-to-bath coupling is justified.

We want to find out under the assumption of weak coupling, which spectral den-

sity I(ω) from a parametric class of spectral densities fits best with the data points.

For this purpose we assume a power law

Ik(ω) ∝ ωk (9.1)

with parameter k.

First we try to find a fit for k = −1, 1, 2. It turns out that all three fit curves are

nearly undistinguishable and fit well with the data. They are marked on (Fig 3)
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with different colours, the curves however overlap. This fact, that the data fits well

with a Lorentzian multiplied by a correction function ∝ ωk−1 i.e. fits well with a

function of type (7.39), I use as justification for the weak coupling assumption.

Additionally I will present a proposal for a more rigorous test for this assumption

in the next section.

Although different models for I(ω) don’t seem to change the power spectrum of

the mechanical displacement such that it can be seen with bare eye, it is still pos-

sible to discriminate different bath models with a technique well known in math-

ematical statistics called ”Bootstrapping” [6]. Its main idea is as follows:

Our data consist of a set of N data points. Randomly N points are chosen from the

whole set with repitition, which means that some points appear more than once.

The chosen points are fitted with the formula:

log[a2 ωk−1

(ω2
m − ω2)2 + (γω)2

] (9.2)

with free parameters {a, k, ωm, γ}. Fitting parameters are found by minimizing the

sum of squares of the distance between the data points and the fitted curve. In this

step it is important to find a global, not a local minimum. After the fitting is per-

formed, the parameter k is recorded. The procedure of chosing points randomly,

fitting by minimization and finding k is repeated several times. The result is a list

of numbers for k. This list is plotted in form of a histogramm (4) , the mean value

and the standard deviation of which can be calculated.

We are interested in the slope of I(ω) i.e. ∂ωI(ω) ∝ kωk−1 around ωm.

Using the relation ∂ωI(ω)|ω=ωm
= I(ωm) k

ωm
we find:

∂ωI(ω)|ω=ωm
∝ −2 ± 1, 5 (9.3)

which means a negative slope of the spectral density within the error bars.

The bootstrapping procedure was implemented in mathematica (5) by Dr.

Konrad Kieling (Universitt Potsdam).
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Figure 4: Histogramm for k (I(ω) ∝ ωk) [by Dr.Konrad Kieling]: The probability

distribution has a peak located in the area with negative k (dashed area). This

corresponds to a negative slope of spectral density.
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10 Summary and outlook

In the last section we have analyzed the behaviour of the spectral density I(ω)

of the thermal bath in the frequency region around the resonance frequency of the

mechanics. The result was a negative slope of the spectral density in the analyzed

interval. This is a contradiction to the usual assumption of an Ohmic spectral den-

sity i.e. I(ω) = cω, c > 0. This contradiction wasn’t observed in experiments

till now, because the measurable power spectrum of the mechanical displacement

is hardly influenced by the shape of I(ω) in the weak coupling regime of the

mechanical device. This weak dependence however can be measured by the sta-

tistical methods, which we applied.

As the dependence is small, there exist loopholes for possible unconsidered

experimental factors, which may lead to a slight distortion in the measurement

outcome and therefore to a wrong estimation of the spectral density. Additionally

a lot of approximations were made in the derivation of the function used for fitting

the experimental results. The problem can be posed this way: We assume that

force with correlation function given by (3.6) or in other words with spectrum

∝ I(ω)/ω is acting on the mechanics. After performing the experiment, one gets

an estimation for the slope of I(ω). How can this estimation be tested?

A good test for the correctness of this estimation is to drive the mechanics with

a known external mechanical force with spectrum J(ω)/ω, where J(ω) has the

same slope as the estimated one of I(ω) but higher amplitude, such that the ther-

mal force can be neglected. In addition one should vary the slope of J(ω) slightly

and check, if the bootstrapping technique provides correct results for slightly vary-

ing slopes of J(ω). Then one could assure himself that the procedure of estimation

of the force spectrum acting on the mechanics is correct. This would also be a test

for the validity of the weak coupling assumption in the sence that I′(ω) ≈ I(ω), as

non-weak coupling leads to renormalization of any force acting on the mechanics.

The external ”test force” could be e.g. excitation of a piezoelectric crystal, on

which the micromechanical oscillator could be mounted. In this case the excita-

tion of the piezo is proportional to the voltage applied on it.

The technique of probing the oscillator’s spectral density presented in this

work is an important step towards characterization of the heat-bath environment

in the view of the fact that different thermal baths may lead to a dramatically

different behaviour of the oscillator in the quantum regime. [14]
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Figure 5: Mathematica file used for bootstrapping [Dr. Konrad Kieling]: page 1
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Figure 6: Mathematica file used for bootstrapping [Dr.Konrad Kieling]: page 2
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