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1. Introduction 

 

1.1 Cupiennius salei  

 

 

1.1.1 Taxonomy 

 

The hunting spider Cupiennius salei belongs to the family of wandering spiders 

(Ctendiae). As many other spiders Cupiennius salei has eight eyes. The arrangement of 

the eyes is also found in Thalassiinae. The genus Cupiennius can be identified by the 

position and the circular shape of all eight eyes. Up to now, nine species could be 

described (Lachmuth et al. 1984; Revision in Barth and Cordes 1998).  

 

 

1.1.2 Habitat and activity patterns of Cupiennius salei 

 

The spatial distribution includes Central America and regions of northern South-

America. Cupiennius salei is a nocturnal hunting spider, which uses different plants like 

Amaryllidaceae, Araceae, Bromeliaceae, Liliaceae and Musaceae as a dwelling during 

the day. At night these plants are also used as an area for mating, prey catching and 

moulting.  

The active phase starts about an hour after sunset at an illumination level of 15 lx. Prey 

catching starts after nightfall at an illumination of 0.01 lx (Seyfarth 1980; Schmitt et al. 

1990).  
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1.2 The eyes of Cupiennius salei 

 

1.2.1 Morphology 

 

There are four pairs of lens eyes in Cupiennius salei, which are arranged median 

respectively lateral in two rows on the prosoma. Therefore the different eyes are called 

AM-eyes (antero-median), AL-eyes (antero-lateral), PM-eyes (postero-median) and PL-

eyes (postero-lateral) (Fig.1). The AM-eyes are called the principal eyes, while the other 

three pairs are known as secondary eyes (Foelix and Choms 1992). All eyes have a 

similar shape, while the size of the eyes differs noticeable: The PM eyes are the largest, 

the PLs are slightly smaller, followed by the AM eyes and finally the ALs. The 

arrangement of the eyes is shown in Fig.1 (Land and Barth 1992). The secondary eyes 

are specialized for viewing movement of objects, whereas the principal eyes are 

especially suitable for the detection of shape and texture (Schmid 1998; Neuhofer et al. 

2009). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. REM – Picture of the eyes of an adult Cupiennius salei. The eyes are arranged in two strongly 

curved rows, the AM and AL eyes in front of the PM and PL eyes. AL – antero-lateral, AM – antero-

median, PL – postero-lateral, PM – postero-median (after Zopf 2010).  
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The origin of the AM eyes is found in a previously existing pair of simple eyes (Paulus 

1979). The principal eyes have everse photoreceptor cells, the rhabdoms are faced 

towards light incidence (Fig.2). The retina of the AM eyes is the only one which is 

movable because of the dorsal and ventral eye muscles. Hence, a deflection of the visual 

field of 15° is possible. (Barth 2001). The principal eyes lack a tapetum, a reflecting 

layer behind the receptors which is present in the secondary eyes (Fig.2) (Land 1985).  

The secondary eyes descend from splitting up of the ancestral compound eyes. These 

eyes have inverse photoreceptor cells, the rhabdoms are averted from light incidence. 

To maximize the light efficiency these eyes have a tapetum, which consists of several 

layers of guanine crystals (Fig.2) (Paulus 1979). The retinae of the secondary eyes are 

immobile (Land 1985). 

 

All eyes have a cuticle cornea and lens, and moreover a cellular glass body. The retina 

consists of a single layer of photoreceptor cells. The axons of these cells merge and 

form the visual nerves that leave the eye cup and proceed to the visual ganglia (Fig.2) 

(Grusch et al. 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The different eye types of Cupiennius salei. A schematic organization of the principal eyes (AM) 

and the secondary eyes (PM, PL, AL) is shown. The rhabdoms of the secondary eyes are averted, those 

from the principal eyes are inverted. The secondary eyes have a tapetum, which reflects the incoming 

light. Both types have a lens and vitreous cells. Axons of the photoreceptor cells form the visual nerves 

(after Grusch et al. 1997). 
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1.2.2 Retinal resolution and Neuroanatomy 

 

The resolution of the eye is determined by the inter-receptor angle as well as the lens 

diameter. The bigger the diameter of the lens the smaller the diameter of the airy disk 

(Land 1985).  

The image is of good quality in all eyes. The principal eyes (AM eyes) have an inter-

receptor angle of 2.9°. The three secondary eyes (AL, PM and PL eyes) all have 

gridiron tapeta with the receptors arranged in rows. Here the inter-receptor angle is 

between 0.9° (PM) and 3.6° (AL) between the rows and 2.3° (PM) and 9.2° along the 

rows, respectively (Land and Barth 1992).  

 

The structure of the AM retina is different from that of the other three eyes. The 

receptor cells are about 90 µm long and 14 µm wide, each receptor has rhabdomeres on 

three or four sides (Land and Barth 1992), whereas the receptor cells of the secondary 

eyes form only two rhabdomeres (Barth 2001).  

All receptor cells of one eye form the optic nerve, which runs to the first optic neuropile 

(Land and Barth 1992).  

 

The two types of eyes each have their own visual pathway, with two separate sets of 

neuropil regions (Barth 2001).  

The optic nerves of the secondary eyes each end in the first optic neuropile, the lamina, 

which is comparable to the lamina of insects. This lamina is connected through 

interneurons with the second optic neuropile, the medulla. All secondary eyes converge 

to a third optic neuropile, the so called ‘mushroom body’ (Strausfeld and Barth 1993). 

In the principal eyes the visual pathways process a similar way as those in the 

secondary eyes. The so called ‘central body’ describes the third common optic neuropile 

of the principal eyes (Strausfeld et al. 1993). 
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1.2.3 Visual fields of Cupiennius salei 

 

Fig. 3 shows the visual fields of Cupiennius salei. The visual fields of AM and PM eyes 

overlap nearly completely. The visual fields of the PM and PL eyes cover almost the 

whole upper hemisphere, and down to 40° below the horizontal plane.  

Barth and Land (1992) tested two spiders and found a gap of 5-20° between the visual 

fields of the PM and PL eyes in both animals. They presumed that this is not an artefact 

of the method, because no such gap was found between the two PM fields at the frontal 

section. A second small gap was found at the rear of the animal where the abdomen is 

situated.  

The PM eyes seem to have an elongated field while the field of the PL eyes is rather 

orbital. The AL eyes field is small and downward-pointing, looking at the region just in 

front of the spiders chelicerae. It overlaps the lower areas of the fields of view of both 

the PM and PL eyes (Land and Barth 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visual fields of the principal (AM) and secondary (PM, PL, AL) eyes of Cupiennius salei. The 

fields are plotted onto a globe with the spider at the centre, and the projection used depicts the whole of 

that globe, marked off at 90°, 30° and 5° intervals. The visual fields of AM and PM eyes almost overlap 

completely. Fields of PM and PL allow vision almost over the whole upper hemisphere. The small field 

of the AL eyes points downwards to the spiders chelicerae (after Land and Barth 1992).  

PL 

PL 
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1.2.4 Eye musculature 

 

 

The AM eyes of Cupiennius salei possess two eye muscles each, a dorsal and a ventral 

one, which are used to move the retina (Kaps and Schmid 1996). A scheme of the 

arrangement of the eye muscles in the prosoma is shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

Fig. 4. Muscles of the AM eyes (principal eyes) of Cupiennius salei. Inside view of anterior region of 

prosoma; dorsal and ventral eye muscles attach on the AM eyes. AM - antero-median eyes, doM – dorsal 

muscle, PL - postero-lateral eyes, PM - postero-median eyes, veM - ventral muscle (Kaps and Schmid 

1996). 

 

 

The dorsal eye muscle arises dorso-laterally on the AM eye tube and attaches at the 

dorso-median carapace between the PM eyes. It is 600 µm long and consists of 15-18 

striated fibres. It varies in breath from 50 µm at its dorsal insertion point to 300 µm in 

the ventral region.  

The ventral eye muscle consists of 20-22 striated fibres and is 650 µm long. It is 

attached to the ventro-lateral surface of the eye tube and inserts at the carapace on the 

ventral internal surface of the clypei. It is 75 µm wide at its ventral insertion point and 

widens to 300 µm at the insertion area in the eye tube (Kaps and Schmid 1996).  

 

The muscles of the two AM eyes are not active synchronously, neither the occurrence 

nor the direction of the movements of both eyes are correlated.  
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At simultaneous activity of both muscles in one eye, the eye tube can be deflected 

between dorso-median and ventro-median directions, the visual field therefore can only 

be shifted laterally (Fig. 5). The retina is shifted in a direction determined by the vector 

sum of the forces generated by them. The binocular visual fields cannot be enlarged 

(Kaps and Schmid 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Deflection of the eye tube caused by activity of the eye muscles. Black arrows mark deflection 

course of activity either of dorsal or ventral eye muscle. Grey arrows are examples of possible moving 

directions if both eye muscles contract simultaneously. ON – optic nerve, D – dorsal, M – medial, V – 

ventral, L – lateral (Kaps and Schmid 1996). 

 

 

Two kinds of retinal movements can be distinguished: 

 

Spontaneous microsaccades continuously ‘vibrate’ the retinae of unstimulated spiders. 

These short retinal movements are produced by the dorsal eye muscle only and might 

avoid visual adaptation.  

 

Induced movements of the retina can be performed by both eye muscles, either dorsal 

or ventral. This causes a deflection of the visual field of the AM eye. Hence, moving 

objects, which are detected by the secondary eyes, can come in the spiders’ visual field 

of the AM eyes and be identified. Perception of moving stimuli is therefore correlated 

with eye muscle activity (Kaps and Schmid 1996).  

dorsal eye 
muscle 

ventral eye 
muscle 
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1.2.5. Motion sensitivity 

 

To verify previous findings in jumping spiders (Land 1971; Duelli 1977) that the 

secondary eyes are responsible for motion detection, Neuhofer (2009) did several 

electrophysiological masking experiments with Cupiennius salei. When the principal 

eyes of the spider were masked with black colour, the animal still reacted to moving 

targets with an increase of eye muscle activity, while masking the secondary eyes 

eliminated the increase in muscle activity. It is shown that there might be a neuronal 

crosstalk between the secondary and the principal eyes in the visual system.  

This clearly indicates the relevance of the secondary eyes in movement detection, 

whereas the principal eyes are not motion sensitive (Neuhofer et al. 2009) but 

responsible for target discrimination (Schmid 1998).  

 

 

1.3 Brightness discrimination 

 

 

In Cupiennius salei, a nocturnal hunting spider, vision is a highly developed sensory 

system. Cupiennius can see in extremely dim light at an illumination level between 15 

lx after sunset and 0.01 lx during the night (Seyfarth 1980; Schmitt et al.; 1990Barth 

2001).  

As Orlando (2005) has shown, Cupiennius salei seems not to be able to see colors 

although there are three types of photoreceptor-cells with maximum sensitivities at 520 

nm, 480 nm and 340 nm (Walla et al. 1996).  

To date, neither there are investigations about the brightness discrimination ability in 

Cupiennius salei, nor is much known about brightness discrimination in animals in 

general.  
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Studies on brightness discrimination involve only a handful of species, predominantly 

mammals: humans (Cornsweet and Pinsker 1965; Griebel and Schmid 1997, Dain and 

Ling 2009), the harbour seal (Phoca vitulina) (Scholtyssek et al. 2008), the West Indian 

manatee (Trichechus manatus) (Griebel and Schmid 1997), two species of the South 

African fur seal (Arctocephalus pusillus and Arctocephalus australis), dogs (Pretterer et 

al. 2004), the macaque monkey (Huang et al. 2002) and horses (Geisbauer et al. 2004).  

 

Investigations concerning brightness discrimination in invertebrates have been 

performed by Tiedemann (1993) in the jumping spider Menemerus bivittatus.  

 

From such a small sample, there is no basis to draw conclusions about differences 

between diurnal, arrhythmic and nocturnal species (Pretterer et al. 2004). By calculating 

the Weber fraction it is roughly possible to compare the different species.  

 

 

1.3.1 Weber’s law 

 

Weber’s law states that the difference between two stimuli that is just noticeable 

depends on the magnitude of the starting stimulus. It is found that the greater the 

magnitude of the starting stimulus, the greater is the just noticeable difference (Griebel 

and Schmid 1997) 
 

∆I/I=k 

where I is the intensity, ∆I is the absolute intensity difference threshold and k is the 

relative difference threshold, i.e. the Weber fraction. Weber’s law does not apply to 

very low and very high stimulus intensities. 
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1.3.2 Brightness discrimination in humans and monkeys 

 

Hendley (1948) demonstrated that the visual acuity of humans depends on the contrast 

between object and background. He showed that increasing the contrast above the 

threshold improves the identification of details to some extend.  

Psychophysical studies on humans adapted to the respective light level showed that 

their brightness discrimination threshold decreases in increasing light intensity. At high 

luminance values this decline becomes smaller until it reaches a relatively steady value 

(Craik 1938, Hendley 1948). Dain and Ling (2009) showed that children aged 5-12 are 

able to order series of 15 different shades of grey from lightest to darkest in the correct 

order. This ability increases in humans in precision as they grow older. 

 

Different investigations about brightness discrimination in humans have been made 

with calculated Weber fractions of 0.11 (Griebel and Schmid 1997) and 0.14 

(Cornsweet and Pinsker 1965). Huang et al. (2002) found, that the macaque monkey 

(Macaca mulatta) is quite similar to humans both in its visual physiology and in 

perception.  

 

The calculated Weber fractions were 0.11 and 0.18 for two macaque monkeys. Other 

researchers found values of ~0.1 in the Rhesus monkey (Crawford 1935) and Brooks 

(1966) computed ~0.2 in the squirrel monkey. So the brightness discrimination ability 

of humans and monkeys seems to be quite similar.  
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1.3.3 Other species and their ability in brightness discrimination 

 

Harbor seal (Phoca vitulina) and South African fur seal (Arctocephalus pusillus and 

Arctocephalus australis) 

 

In experiments with the harbor seal (Phoca vitulina) Scholtyssek et al. (2008) 

determined a mean Weber fraction of 0.14, which indicates a comparable brightness 

discrimination ability to that of humans.  

The brightness discrimination ability of the South African fur seal Arctocephalus 

pusillus and Arctocephalus australis were investigated by Busch and Dücker (1987). 

Griebel and Schmid (1997) calculated a Weber fraction of 0.3 for both species, which 

means that the brightness discrimination ability of the fur seal is approximately half as 

good as that of the harbor seal. 

 

 

West Indian Manatee (Trichechus manatus) 

 

The results of a twofold single-choice test showed that manatees are able to discriminate 

a 2.8% difference in relative reflection in a very dark range of grey stimuli, with a 

calculated Weber fraction of 0.35 (Griebel and Schmid 1997). 

 

 

Haflinger Horse (Equidae) 

 

Even though horse eyes are among the largest in the vertebrates, their visual capabilities 

are considered to be poor, based on a low ganglion cell density and a low count of cones 

in the retina (Geisbauer et al. 2004).  

Geisbauer et al. (2004) tested two horses, which had to choose the lighter of two grey 

panels. The experiment showed that brightness discrimination is rather moderate in 

horses in comparison with other mammals, with calculated Weber fractions of 0.42 and 

0.45.  
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German Shepherd, Belgian shepherd, Fox Terrier (Canidae) 

 

Dogs are arrhythmic animals, active during both day and night. It is suggested that all 

canids might have a very similar dichromatic color vision system (Pretterer et al. 2004). 

A twofold simultaneous-choice test has been constructed and with the results Weber 

fractions of 0.22 (German Shepherd) and 0.27 (Belgian Shepherd) were calculated. The 

brightness discrimination ability seems to be about 2 times better in humans than in 

dogs (Pretterer et al. 2004). An earlier investigation of Stone (1921) on the brightness 

discrimination ability in two young fox terriers revealed a lower difference threshold. 

Only one standard intensity was tested, but the results he obtained were consistent for 

the two subjects with Weber fractions of 0.12 and 0.10, respectively. 

The relatively high brightness discrimination threshold found by Pretterer et al. (2004) 

appears to be a consequence of the experimental methods. Therefore the brightness 

discrimination ability tested by Pretterer et al. (2004) may have been underestimated 

while the lower values obtained by Stone (1921) are more realistic (Scholtyssek et al. 

2008).  

 

It could therefore be suggested, that the brightness discrimination ability of dogs is as 

good as of humans.  

 

 

Jumping Spider (Menemerus bivittatus, Salticidae) 

 

The visual system of jumping spiders (Salticidae) is highly developed when compared 

to other families of spiders. The most specialized eyes are the AM eyes, which are 

capable of color vision. The secondary eyes’ function is primarily to detect movement 

and to elicit orientation towards a target (Land 1971). Tiedemann (1993) showed in a 

behaviour experiment that the jumping spider Menemerus bivittatus has a high contrast 

discrimination ability.  

 

The spider showed a rapid increase in response as the stimulus gets darker compared to 

the background. This rapid change in respond was not shown when the stimulus was 

lighter than the background (Tiedemann 1993). Unfortunately, only behavioural 

responses were registered and there where no Weber fractions calculated.  
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1.4 Aim 

 

Cupiennius has a highly developed visual system. Three types of photoreceptors have 

been identified, however, colour vision seems to be impossible for the spiders (Orlando 

2005), therefore the brightness discrimination ability should be investigated to indicate 

an alternative use of this three receptor types.  

 

In this research an experimental set up to test the ability of brightness discrimination of 

Cupiennius salei was developed. Moveable stimuli in 24 different shades of grey - from 

white to black - were presented in front of five different backgrounds, which also varied 

from white to black.  

 

By extracellular recording of the eye muscle activities with a single-channel telemetric 

transmitter a significant change in frequency should show when the spider is able to 

discriminate between stimulus and background. If there is no change in frequency, the 

stimulus is not visible for the spider and should therefore not be discriminated.  

Thereby conclusions on the brightness discrimination ability of Cupiennius salei should 

be allowed.  
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2. Material and Methods 
 

 

2.1. Experimental animal 

 

Adult females of the Central American hunting spider Cupiennius salei Keys (Ctenidae) 

were used. They were bred at the Department of Neurobiology, Vienna, Austria, and 

kept under a 12/12 hour circadian rhythm. Once per week they were fed on flies 

(Calliphora erythrocephala). The temperature (22-28° C) and relative humidity (70-80 

%) were similar to those of their natural habitat, the Central American forest. Each 

animal was kept individually in a glass jar.  

 

 

2.2. Single-channel telemetric transmitter device 

 

A single-channel telemetric transmitter was used in the experiments and was developed 

by Dipl.Ing. R. Machan at the electronic laboratory at the Department of Neurobiology, 

Vienna, Austria. A circuit diagram is shown in Fig. 6.  

 

 

Fig. 6. Circuit diagram of the telemetric single-channel transmitter. There are eight resistors (R), five 

capacitors (C), an inductor and three transistors. The signal is recorded and then amplified. After 

amplitude modulation the signal is sent to a wide band receiver. A battery acts as a voltage source (after 

Orlando 2005, modified). 
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The three subunits – amplifier, modulator and sender - consisted of eight resistors (R), 

five capacitors (C), three transistors and one inductor.  

A recording electrode and a reference electrode were attached to the transmitter. As a 

voltage source acted a battery (Maxell, 319 Silver 1.55V), which delivered electricity 

approximately for three hours.  

 

The recording electrode was made of isolated manganin-wire with a diameter of 30 µm 

(628.3 Ω/m; Isabellenhütte, Dillenburg, Germany), the reference electrode consisted of 

silver-wire with 250 µm diameter.  

The signal was enhanced by the factor of about 120-fold, amplitude-modulated and sent 

through the inductor, which was made of isolated copper-wire, to a wide band receiver 

(CONRAD Voyager RY-630, Conrad Electronics, Hirschau, Germany). The amplitude-

modulation enabled a transfer of the eye-muscle-potentials over the carrier frequency, 

which was about 135 MHz and generated by the inductor. The weight of the transmitter 

- battery included – was 650 mg.  

 

 

2.3. Visual Stimulation 

 

To detect the ability of brightness discrimination in Cupiennius salei, 24 paperstripes in 

different shades of grey (from black to white) with a size of 41 cm length and 5 cm 

width were used as stimuli. These stimuli could be moved in front of a background, 

which was replaceable and available in nine different shades of grey.  

The 24 grey-steps from white to black were printed on „matt coated paper“ (180 g/m²) 

in a professional print office. The backgrounds were printed on papers in size A1, the 

foregrounds on size A2. The papers were cut into their final size, then the 24 stripes 

were stuck with an aerosol fixative (3M Display Mount) on 1 mm stiff cardboard.  

The relative reflectance of the single papers, compared to a white-standard (white paper, 

same series), was measured by using a radiometer (IL 1700 Research 

Radiometer/Photometer, Newburyport, England) for a wavelength range of 530 – 730 

nm. For the required illumination for the measurements a daylight lamp (Radium 

Parabol R95, 75 Watt, matt) was used. The data for the 24 stimuli is shown in Tab.1.  
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Tab. 1. Relative reflectance in percent (R [%]) of the 24 stimuli. Stripe number 1 = white, stripe number 

24 = black. Also shown is the course of the greyshading from white to black.  

 
 

Number of 

paperstripe 

 

 

R [%] 

 

 

Greyshading 

1 99,98 

2 93,39 

3 90,86 

4 84,85 

5 82,79 

6 75,51 

7 71,75 

8 64,36 

9 58,82 

10 55,29 

11 52,05 

12 49,64 

13 44,61 

14 41,67 

15 36,57 

16 34,98 

17 31,46 

18 27,08 

19 24,92 

20 22,72 

21 20,73 

22 19,37 

23 18,68 

24 15,22 
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2.3.1. Illumination Level  

 

The ambient light level in the arena was measured with a Multimeter (MT-51 Multi-

Tester, Voltcraft, Hirschau, Germany) and varied from 1186 lx at background 1 to 486 

lx at background 9 (Tab. 2).  

 

 

Tab. 2. Measured illumination level in the experimental arena in Lux [lx] for each used background. 

 

 

 

 

 

 

 

 

 

 

 

2.4. Stimuli – Paperstripes 

 

The 24 stripes had a length of 41cm and a width of 5 cm and were stuck on 1 mm stiff 

cardboard to guarantee stability. To fix them on a movable bar in the setup, two stripes 

of magnetic adhesive tape (Magnetoplan, 19 mm x 5 m) were stuck on the backside of 

each stripe. Therefore also on the movable bar two magnetic stripes were applied. Then 

the stimulus could be attached without any difficulty in the experimental setup and 

could also be changed quickly.  

 

 

No. of 

Background 

Measured Illumination 

Level in Lux [lx] 

1 1186 

4 732 

5 600 

7 523 

9 486 
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15,12 9 ≙≙≙≙ 24 

18,31 8 ≙ 23 

20,26 7 ≙≙≙≙ 21 

23,60 6 ≙ 19 

30,96 5 ≙≙≙≙ 17 

48,28 4 ≙≙≙≙ 12 

64,95 3 ≙ 8 

80,83 2 ≙ 5 

99,98 1 ≙≙≙≙ 1 

R [%] Greyshading 
Number of background and 

according stripe 

 

2.5. Backgrounds 

 

The grey papers which acted as backgrounds had a size of 50cm width and 59,1cm 

height. They were printed in nine different shades of grey from white to black (Tab. 3). 

The backgrounds could be fixed with two clips on the frontal part of the setup, hence 

the background-papers could be replaced easily (Fig. 9). Five of the nine backgrounds - 

1, 4, 5, 7 and 9 - were used in the experiment (Tab. 3). At these five backgrounds the 

relative reflectance showed percentaged distinctions, which seemed to be most suitable 

for the investigation. The differences in relative reflectance are approximately 50 % 

between background 1 and 4, nearly 20 % between 4 and 5, 10 % between 5 and 7 and 

about 5 % between background 7 and 9.  

 

Tab. 3. Relative reflectance in percent (R [%]) of the nine backgrounds. Background number 1 = white, 

background number 9 = black. The second numbers point to the according stimuli in Tab. 1. The used 

backgrounds for the experiment are marked bold. Also shown is the course of greyshading from white to 

black.  
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Telemetric transmitter  
 

Parafilm 

Specimen holder 

 

2.6. Preparation of the experimental animal 

 

To immobilize the animal and to arrange it for preparation, the spider was cooled down 

in a refrigerator for 45-60 minutes at 4° C. After that the animal could be placed on a 

specimen holder and be fixed with Parafilm (Fig. 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 7. Lateral view of a prepared Cupiennius salei with the telemetric transmitter. The animal was fixed 

on a specimen holder with parafilm. The transmitter was placed on the spiders’ prosoma with heated bees 

wax.  

 

 

For an easier implantation of the electrodes, the hair between AM and PM eyes and on a 

small area on the lateral prosoma was removed. A battery was inserted into the 

transmitter which now could be attached on the prosoma by using heated bees wax. The 

reference electrode was implanted in the lateral prosoma subsequently (Fig. 8). Then the 

insertion of the recording electrode followed, either in the muscle of the left or the right 

AM eye. The cuticle at the injection site was perforated with an electrolytically tapered 

tungsten-electrode first, then the recording electrode could be implanted (Fig. 9). By 

moving the electrode carefully it was possible to localize the eye-muscle. The signal 

was received by the antenna of the wide band receiver and was viewable on the 

oscilloscope. 
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Antenna Battery 

Parafilm 

Reference electrode 

Recording electrode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Frontal view of a prepared Cupiennius salei with the telemetric transmitter device. The reference 

electrode is implanted in the lateral prosoma, the recording electrode is inserted in the muscle of the left 

AM eye. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Position of the recording electrode in the left dorsal eye muscle (arrow) between the PM and AM 

eyes of Cupiennius salei (after Orlando 2005).  
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It was important that the signal-to-noise-ratio was at least 4:1, otherwise it was hard to 

distinguish between spikes and noise in the analysis.  

As soon as the signal remained constant on the oscilloscope the preparation was 

finished and the animal could be placed in the experimental setup. 

 

 

2.7. Experimental setup 

 

The setup was located in a faraday cage on a vibration-isolated table (TMC micro-g, 

Technical Manufacturing Inc., Peabody, USA). Figure 10 shows a schematic 

description. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Scheme of the experimental setup. An arena (Ar) is hanging in the Faraday cage (FC). In the middle the 

prepared spider (S) is placed. A daylight lamp acts as a light source (LS). Trough an open window in the arena 

the spider can see the movable bar (MB) rotating around the arena. This bar is driven by a motor (M) beneath 

the arena. Also two lightbarriers (LB) are installed, to register the stimulus on-and-off-set. The components 

which are independent of the arena stand on a steel plate (SP) to reduce vibration. On the front side of the cage 

the changeable background (CB) is fixed with hinges (H) and can be moved in front of the window (arrow). A 

receiver (R) with an antenna (A) is placed on the cage. The signal is transferred to a Filter, an oscilloscope 

(Osc) and an analog-digital converter (CED). At last it is transmitted to a PC, where the signal can be recorded. 

All components are earthed by an edge-connector (EC).  
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The animal was placed in the middle of the arena, which was suspended with thread 

rods on the ceiling of the faraday cage. The spider was placed in a way in the arena, that 

the visual fields of the prepared AM-eye and the associated secondary eyes were 

orientated to the middle of the background. The distance of the spider to the background 

was always 25 cm.  

 

The arena had a diameter of 50 cm, a height of 34 cm and an open window with a width 

of 43 cm at the front-side. The inside of the arena was covered with light grey paper and 

not changeable.  

A bar made of plastic, acted as a holder for the stimuli-stripes and could be moved 

around the arena clockwise and was powered by a motor beneath it (Fig. 10). The bar 

had a length of 43 cm, the width was 3 cm and the thickness 5 mm.  

 

Two light barriers indicated the moments of stimulus onset (bar became visible) and 

stimulus offset (bar disappeared), this time was determined as ‘stimulus-time’. The rest 

of the time was described as ‘interstimulus-time’. The signal of the light barrier was 

shown on the oscilloscope and on the monitor of the PC. One rotation lasts about 11.5 s. 

This corresponds to an angular velocity of 31.3 °/s or a velocity of 0.145 m/s. The 

stimulus time was 4.3 s, whereas the interstimulus time was 7.2 s (Fig. 11).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Visibility of the movable bar is determined as ‚stimulus time’ S and takes 4.3 s. Rest of rotation-

time is called ‘interstimulus time’ IS and takes 7.2 s. Voltage signal (5V) of the light barriers is shown on 

the ordinate.  
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When these adjustments had been completed, one of the grey-paper backgrounds was 

fixed on the semicircular holder, which could be shoved on a guardrail to the 

experimental arena to almost close it. The bar with the stimulus now directly moved 

clockwise in front of the grey background through the visual field of the spider. A lamp 

(Radium, Parabol R95, 75 Watt, matt) was placed in the upper background of the arena 

and acted as a light source in the setup (Fig. 10). By using this kind of wide field lamp, 

shadows between background and stimulus should be reduced. Illumination values are 

shown in Tab. 2.  

 

 

2.7.1. Signal processing 

 

The signal from the transmitter was received by a wide band receiver (CONRAD 

Voyager RY-630, Conrad Electronics, Hirschau, Germany) and relayed to a filter to 

reduce noise and to amplify the signal 10 times. To make the signal visible it was 

conducted to an oscilloscope. To analyse the analog signal it was A/D converted by an 

analog-digital converter (CED micro1401 mkII, Science Park, Cambridge, England). 

Now it could be recorded with the program Spike 2 version 6.10 (Cambridge Electronic 

Design, Cambridge, England) on the PC. The whole equipment was earthed by an edge 

connector (Fig. 10).  

 

 

2.8. Experimental procedure  

 

When the animal was placed in the experimental setup, a background was fixed on the 

semicircular holder and then the arena was closed. The stimulus was fixed on the 

movable bar and the recording started. The stimuli were presented from 1 to 24 and 

each stimulus rotated at least 8 times around the spider.  

Therefore, for each stimulus eight ‘stimulus-‘ and ‘interstimulus-times’ could be 

recorded at least. When all 24 stimuli were presented to one spider, the experimental 

procedure was finished and the animal was released. To evaluate the data statistically, 6 

animals were tested for each background minimum.  
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Although it was tried to avoid shadows in the arena, a control before each experiment is 

necessary. Therefore the white and the black stimulus were tested with the white 

background. With the white stimulus there should be no changes in frequency, with the 

black stimulus a reaction of the spider should be shown. Unfortunately it was not 

possible to analyse the results without doing the statistics because change in frequency 

was not discernable during the ongoing experiment with the naked eye.  

 

 

 

2.9. Analysis 

 

2.9.1. Eye muscle activity  

 

The activity of the eye muscles of the several animals was not always correlated with 

the presentation of the stimulus. Different activity-situations are shown in Fig. 12, 13 

and 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Part of a record. Continuous eye muscle activity and a disturbance in the recording sequence are 

shown. The disturbance is recorded as a noise and is caused by movements of the spider or reactions on 

stimuli from outside. Stimulus time – S, Interstimulus Time – IS.  
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If there was continuous eye muscle activity, the test-session started. Sometimes the 

record was disturbed by a stimulus from outside (wind, vibrations) on which the spider 

reacted with increased eye muscle activity or a movement of the whole body. This was 

visible as an activity increase in the record (Fig. 12). Then the record was stopped and 

was started again, when the spider once more showed a normal activity. If such noisy 

parts were recorded, they were later excluded from the analysis.  

 

A record, which could be used for the analysis is shown in Fig. 13. The spider had a 

continuous eye muscle activity and showed an increase of eye muscle activity when the 

stimulus was presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Part of a record. An increase of the eye muscle activity is shown only during the stimulus time 

(S). Interstimulus time – IS.  

 

 

Only records of continuous eye muscle activity and an evaluable signal-to-noise ratio 

were taken for the analysis.  
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2.9.2. Frequency analysis 

 

As written above, each spider was shown all 24 stimuli in front of one background. For 

one background, 6 or 7 animals were tested. Each stimulus was presented at least 8 

times. 

 

Since the durations of stimulus time and interstimulus time were not equal, an analysis-

area was determined for both. This area amounts to a duration of 2.2 s both for 

stimulus- and interstimulus time (Fig. 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Part of a record of continuous eye muscle activity during the stimulus- (S) and the interstimulus 

time (IS) without a reaction. The analysis-area between cursor 2 and 3 for the stimulus time and between 

cursor 4 and 5 for the interstimulus time is shown. 
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Each usable value of the rotations was implicated in the statistical analysis.  

 

Therefore, the difference between stimulus and interstimulus frequency of each rotation 

was calculated. This happened for all animals and all stimuli at each background. 

Hence, the frequency increase is regarded.  

 

When the tests for one background were done, the 6 or 7 difference-values for each of 

the 24 stimuli were averaged. The program ‘MatLab R2006a’ (The MathWorks, Inc., 

Natick, Massachusetts, USA) was used for the analysis of the statistical significance. 

The difference-values for all stimuli were imported in the program, which analysed the 

statistical significance with the ‚Wilcoxon signed rank test for zero median’. The level 

of significance was 5 % (p<0.05).  

 

This process was repeated for each background.  
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3. Results 

 

 

3.1. Eye muscle potentials 

 

As the position of reference and recording electrode always varies, there are distinct 

kinds of signal forms with different durations. Also dielectric characteristics of muscle 

and connective tissue can be responsible for variations in the signals. The figures 15 – 

17 show such examples.  

 

Figure 15 shows a tri-phasic muscle potential which lasts 1.7 ms. Noise of the 

transmitter is bordered by horizontal cursors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 15. Single tri-phasic eye muscle potential. Between the horizontal cursors the course of noise is 

shown. The different phases are marked with numbers. Duration of the potential is 1.7 ms.  

 

 

Time [s] 

1.7 ms 

2 

1 3 

E
y
e
 m

u
s
c
le

 a
c
ti

v
it

y
 [

V
] 

 



 

29 

 

Figure 16 shows a tetra-phasic eye muscle potential, which lasts 2.7 ms. Noise of the 

transmitter is bordered by horizontal cursors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16. Tetra-phasic eye muscle potential. Between the horizontal cursors the course of noise is shown. 

The different phases are marked with numbers. Duration of the potential is 2.7ms.  

 

 

Figure 17 shows a penta-phasic eye muscle potential, which lasts 4.3 ms. Noise of the 

transmitter is bordered by horizontal cursors.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.17. Penta-phasic eye muscle potential. Between the horizontal cursors the course of noise is shown. 

The different phases are marked with numbers. Duration of the potential is 4.3 ms.  
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If the position of the recording electrode did not change, the signal remains the same 

during one recording session. The duration of a signal was not necessarily correlated 

with the number of phases.  

 

All these different types of signals were used for the analysis. For this investigation, the 

form of a signal was not the determining factor, but the frequency. Nevertheless it is 

also important to know how variable muscle potentials can be for a better understanding 

of the method.  

 

 

 

3.2. Main Experiments  

 

As performing a control experiment was not possible (see above), the experiments were 

started with the white background (1).  

 

 

3.2.1. Background 1  

 

Six spiders were tested here, each animal was shown every stimulus 8 times minimum. 

All recordings were analysed and then combined for interpretation. Fig. 18 shows the 

frequency modulation of all 24 stimuli (mean values with standard deviation) for 

background 1. 

 

For more clearness, also the median values for all stimuli at background 1 are shown in 

Fig. 19. By the median values a clearer tendency is displayed.  

Stimulus 1 has the same relative reflectance as background 1, namely 99.98 %.  
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Fig. 18. Mean values with standard deviations of the frequency modulation of the 24 stimuli presented to 

6 animals in front of background 1. An increase of frequency indicates discrimination between stimulus 

and background. Stimulus 1 (encircled) has the same relative reflectance as the background. 

 

 

At stimuli, which are not discriminated, a frequency modulation of about 0 should be 

shown. If there is an increase in frequency, a discrimination of the stimulus is to be 

assumed. Both figures (18 and 19) show an increased frequency for the lighter stimuli 

and especially stimulus 2, which shows a very high increase.  

When the stimuli become darker (at about stimulus 10), brightness discrimination 

ability increases (stimulus 10 and 11). A small decrease of frequency can be registered 

at stimulus 12 – 15 and again at 21 – 24. Remaining stimuli show a frequency increase 

of 4-5 Hz (Fig. 19). 

Therefore, a tendency for brightness discrimination ability cannot be registered for this 

background.  
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Fig. 19. Median values of frequency modulation of the 24 stimuli presented to 6 spiders in front of 

background 1. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 1 (encircled) has the same relative reflectance as the background. 

 

 

For a better demonstration of brightness discrimination ability, the range of significance 

of all spiders (N = 6) and all 24 stimuli at background 1 is shown in Fig. 20. If p-value 

is < 0.05 the stimulus is discriminated significantly from the background.  

As Fig. 20 shows, the both lightest stimuli (1 and 2) are discriminated significantly. 

Further significantly discriminated stimuli are: 9, 10, 12, 15, 16, 17, 19, 20 and 24. The 

remaining stimuli are not discriminated significantly from background 1. The stimulus, 

which has the same relative reflectance as the background, stimulus number 1, is 

significantly discriminated.  
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Fig. 20. Range of significance for background 1. On the x-axis the 24 stimuli are plotted, N = 6. The 

ordinate shows the p-values. Every value below 0.05 is significantly discriminated and marked green. Red 

values are not significant and the stimulus cannot be distinguished. Stimulus 1 has the identical relative 

reflectance as the background. 

 

 

 

 

3.2.2. Background 4  

 

Again six spiders were tested for this background. Every stimulus was shown at least 8 

times. All recordings were analysed and then combined for interpretation. Fig. 21 shows 

the frequency modulation of all 24 stimuli (mean values with standard deviation) for 

background 4. 

 

As for background 1 the median values for all stimuli at background 4 are shown in Fig. 

22 for better clarity. By the median values a clearer tendency is displayed.  
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Fig. 21. Mean values with standard deviation of frequency modulation of the 24 stimuli presented to 6 

spiders in front of background 4. An increase of frequency indicates discrimination between stimulus and 

background. Stimulus 12 (encircled) has the same relative reflectance as background 4.  

 

 

For the lighter stimuli (1 – 12) no high frequency modulation is registered. Stimulus 12 

has the same relative reflectance as the background (49.64 %) and should therefore not 

be discriminated. As Fig. 21 and 22 indicates an increase in frequency about 3 Hz is 

recorded for this stimulus. Fig. 23 points out, that this stimulus is in fact significantly 

distinguished.  

From stimulus 15 on, a steady increase in frequency from about 2 to 7 Hz and thus 

brightness discrimination is shown. A frequency modulation about 4 Hz can be recorded 

mostly. A straight ascent in brightness discrimination just can be registered for the 

darker stimuli (Fig. 21, 22).  
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Fig. 22. Median values of frequency modulation of the 24 stimuli presented to 6 spiders in front of 

background 4. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 12 (encircled) and background 4 have the same relative reflectance.  

 

 

For a better demonstration of brightness discrimination ability, the range of significance 

of all spiders (N = 6) and all 24 stimuli at background 4 is shown in Fig. 23. If p-value 

is < 0.05 the stimulus is discriminated significantly from the background.  

As Fig. 23 shows, the lighter stimuli are not significantly discriminated till stimulus 8. 

Further significantly discriminated stimuli are: 9, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23 

and 24. The remaining stimuli are not significantly discriminated from background 4.  
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Fig. 23. Range of significance for background 4. On the x-axis the 24 stimuli are plotted, N = 6. The 

ordinate shows the p-values. Every value below 0.05 is significantly discriminated and marked green. Red 

values are not significant and the stimulus cannot be distinguished. Stimulus 12 has the identical relative 

reflectance as the background.  

 

 

The stimulus, which has the same relative reflectance as background 4, stimulus number 

12, is significantly discriminated.  

 

Again, a meaningful result cannot be given for this background. A tendency of 

increased brightness discrimination ability is shown at the darker range of stimuli (20 – 

24).  

 

 

3.2.3. Background 5  

 

Seven spiders were tested for this background. Again every stimulus was shown at least 

8 times. All recordings were analysed and then combined for interpretation. Fig. 24 

shows the frequency modulation of all 24 stimuli (mean values with standard deviation) 

for background 5. The identical stimulus to background 5, stimulus 17, has a relative 

reflectance of 31.46 %.  
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As for the other backgrounds the median values for all stimuli at background 5 are 

shown in Fig. 25 for better clarity.  
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Fig. 24. Mean values with standard deviation of frequency modulation of the 24 stimuli presented in front 

of background 5. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 17 (encircled) has the same relative reflectance as background 5. Seven animals were tested.  

 

Till stimulus 13 an increased frequency modulation of approximately 3 Hz can be 

registered. A sharp decline is shown at stimuli 14 and 15. As Fig. 25 shows, the 

frequency modulation at stimulus 14 drops nearly to zero. Stimulus 17 has the same 

relative reflectance as the background and should therefore not be discriminated. But as 

Fig. 24 and 25 show, again a frequency increase is recorded for this stimulus. Fig. 26 

points out, that this stimulus is in fact significantly distinguished.  

From stimulus 16 to 19, a steady increase, especially at stimulus 18 (5 Hz), in frequency 

and thus brightness discrimination is shown. With stimulus 20 an outlier with a 

frequency modulation about zero is found in all three figures (Fig. 24, 25 and 26). 

However, stimuli 21-24 are well discriminated.  
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A straight ascent in brightness discrimination can be registered for the lighter stimuli till 

stimulus 13 and for stimuli 21 to 24 (Fig. 24, 25). This fact is also shown in Fig. 26, 

where the significances for all stimuli are applied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 25. Median values of frequency modulation of the 24 stimuli presented to 7 spiders in front of 

background 5. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 17 (encircled) and background 5 have the same relative reflectance.  

 

 

For clarification of brightness discrimination ability at background 5, the range of 

significance of all spiders (N = 7) and all 24 stimuli at background 5 is shown in Fig. 

26. If p-value is < 0.05 the stimulus is significantly discriminated from the background.  

As Fig. 26 shows, all stimuli are significantly discriminated except stimuli 14, 15 and 

20. Those stimuli were not significantly discriminated from background 5.  
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Fig. 26. Range of significance for background 5. On the x-axis the 24 stimuli are plotted, N = 7. The 

ordinate shows the p-values. Every value below 0.05 is significantly discriminated and marked green. Red 

values are not significant and the stimulus cannot be distinguished. Stimulus 17 has the same relative 

reflectance as the background.  

 

 

Despite the better results for background 5, the stimulus with the same relative 

reflectance as background 5 (number 17) is again significantly discriminated, just as the 

stimuli around the same relative reflectance of the background (16 and 18).  

Given these results no clear conclusion about the brightness discrimination ability at 

background 5 can be made.  

 

 

3.2.4. Background 7  

 

Six spiders were tested for this background. As before, every stimulus was shown at 

least 8 times. All recordings were analysed and then combined for interpretation. Fig. 

27 shows the frequency modulation of all 24 stimuli (mean values with standard 

deviation) for background 7. The identical stimulus to background 7 was stimulus 21, 

with a relative reflectance of 20.73 %. As for the other backgrounds, also the median 

values for all stimuli at background 7 are shown in Fig. 28 for better clarity.  
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Fig. 27. Mean values with standard deviation of frequency modulation of the 24 stimuli presented in front 

of background 7. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 21 (encircled) has about the same relative reflectance as background 7. Six animals were tested.  

 

 

Till stimulus 14 a heightened frequency modulation between 2 and 4 Hz can be 

registered, except for stimulus 15. A sharp decline is shown from stimuli 17, which is 

converged near zero (Fig. 27). A mean ascent is shown at stimulus 21. Stimulus 24, 

however, increases highly with frequency, namely at about 7 Hz (Fig. 27 and 28).  

Stimulus 21 has the same relative reflectance as the background and should therefore 

not be discriminated. But as Fig. 27 and 28 show, a frequency increase is recorded for 

this stimulus. Fig. 29 points out, that this stimulus is in fact significantly distinguished.  

A relative straight ascent in brightness discrimination can be registered for the lighter 

stimuli till stimulus 14 and again for stimuli 24 (Fig. 27 and 28). The more meaningful 

significances for all stimuli at background 7 are applied in Fig. 29.  
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Fig. 28. Median values of frequency modulation of the 24 stimuli presented to 6 spiders in front of 

background 7. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 21 (encircled) and background 7 have the same relative reflectance.  

 

 

For clarification of brightness discrimination ability at background 7, the range of 

significance of all spiders (N = 6) and all 24 stimuli at background 7 is shown in Fig. 

29. If p-value is < 0.05 the stimulus is significantly discriminated from the background.  

As Fig. 29 shows, all stimuli from 1 to 8 are significantly discriminated. Further 

significant discriminated stimuli are 11, 12, 18 and 21.  
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Fig. 29. Range of significance for background 7. On the x-axis the 24 stimuli are plotted, N = 6. The 

ordinate shows the p-values. Every value below 0.05 is significantly discriminated and marked green. Red 

values are not significant and the stimulus cannot be distinguished. Stimulus 21 has the identical relative 

reflectance as the background.  

 

 

Again the stimulus (stimulus 21) with the same relative reflectance as the background is 

significantly discriminated, but the stimuli around are not (except stimulus 18). For the 

first time, also the darkest stimulus, 24, is not significantly discriminated from the 

background.  

 

A tendency of brightness discrimination ability for the lighter stimuli is obvious, but 

again, no clear conclusion about the brightness discrimination ability at background 7 

can be made based on these results.  
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3.2.5. Background 9  

 

Seven spiders were tested for the last background, number 9 (black). As before, every 

stimulus was shown 8 times at least. All recordings were analysed and then combined 

for interpretation. Fig. 30 shows the frequency modulation of all 24 stimuli (mean 

values with standard deviation) for background 9. The identical stimulus to background 

9 was stimulus 24, with a relative reflectance of 15.22 %.  

 

As for the other backgrounds, also the median values for all stimuli at background 9 are 

shown in Fig. 31 for better clarity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30. Mean values with standard deviation of frequency modulation of the 24 stimuli presented in front 

of background 9. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 24 (encircled) has the same relative reflectance as background 9. Seven animals were tested.  
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There is a continuous frequency modulation between 2.5 and 5 Hz registered from 

stimulus 1 to stimulus 15. From stimulus 16 to 21 the frequency varies only between 2 

and 2.5 Hz. At stimulus 22 a very low modulation in frequency is recorded (~ 1 Hz). At 

stimuli 23 and 24 it increases about 1.5 Hz (Fig. 30 and 31).  

 

Stimulus 24 has the same relative reflectance as the background and should therefore 

not be discriminated. Fig. 32 indicates that this stimulus is not significantly 

distinguished. The statistical significances for all stimuli at background 9 are applied in 

Fig. 32.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Median values of frequency modulation of the 24 stimuli presented 7 spiders in front of 

background 9. An increase of frequency indicates discrimination between stimulus and background. 

Stimulus 24 (encircled) and background 9 have the same relative reflectance.  

 

 

For clarification of brightness discrimination ability at background 9, the range of 

significance of all spiders (N = 7) and all 24 stimuli at background 9 is shown in Fig. 

32. If p-value is < 0.05 the stimulus is significantly discriminated from the background.  

As Fig. 32 shows a significant discrimination of stimuli 1 to 19 is given. A further 

discriminated stimulus is 21, which is, with a value of 0.04688, barely under 

significance level. The stimuli 20, 22, 23 and 24 are not distinguished from the 

background. 
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Fig. 32. Range of significance for background 9. On the x-axis the 24 stimuli are plotted, N = 7. The 

ordinate shows the p-values. Every value below 0.05 is significantly discriminated and marked green. Red 

values are not significant and the stimulus cannot be distinguished. Stimulus 24 has the same relative 

reflectance as the background.  

 

 

For the first time, the stimulus with the same relative reflectance as the background 

cannot be significantly discriminated.  

A tendency of brightness discrimination ability for the lighter stimuli can be clearly 

seen, but with the significant discrimination of stimulus 21, a clear conclusion about the 

brightness discrimination ability is again hard to draw.  

 

 

To sum up, the results of all five backgrounds do not point to a clear conclusion relating 

to brightness discrimination ability in Cupiennius salei. Furthermore, it makes little 

sense to calculate the Weber fractions for these results.  
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4. Discussion 

 

 

In this thesis the brightness discrimination ability of Cupiennius salei should be 

investigated. First, the different assets and drawbacks of telemetry will be discussed. 

Second part of the discussion will be the consideration of the results of brightness 

discrimination ability. A future prospect on possible continuative investigations 

regarding brightness discrimination ability in Cupiennius salei will be proposed.  

 

 

4.1. Telemetry 

 

By using single-channel telemetry it is possible to investigate animal behaviour under 

naturalistic conditions. With this method it was shown in Cupiennius salei that there 

exists a dependence between state of eye muscle activity and experimental conditions.  

Kaps and Schmid (1996) found, that the state of activity depends on the experimental 

terms. If the animal is fixated, there is a continuous spontaneous activity of the dorsal 

eye muscle of about 12 Hz. Kaps (1998) showed, when the spiders’ motility was limited 

by running on a styrofoam globe, that there was variability in frequency modulation 

from a high level decreasing to a temporarily total absence of the action potential-

frequency to zero.  

In freely moving spiders, the eye muscle activity is correlated with the running direction 

and depends on the state of activity (Trischler 2003).  

 

For this investigation the spiders were fixed on a specimen holder. Nevertheless, there 

occurred various problems with the transmission of the signal. The movable part of the 

experimental setup, where the backgrounds can be fixated, was made of metal and 

although the movable bar for the stimuli was made of plastic, electromagnetic 

interferences appeared.  



 

47 

 

Combined with the impossibility of placing the recording electrode always at the same 

position to the antenna of the wide band receiver and other interference factors like the 

electronic equipment (CED, PC, light source), the signal transmission was disturbed and 

a signal recording was not possible.  

 

To work against these problems, the prepared spider was shifted marginally in the arena 

till the signal was good enough to record. If thereby no bettering could be registered, the 

spider was released and the experimental session was stopped. Not only the electronic 

equipment caused problems in recording. Some spiders did not show continuous eye 

muscle activity or even totally stopped their muscle activity. These recordings were not 

useable for the analysis. Such spiders were released and a new preparation-run with 

another spider was started.  

 

 

 

4.2. Brightness discrimination ability  
 

 

4.2.1. The idea behind this work 

 

There are only a few studies on brightness discrimination ability in animals and most of 

them have dealt with mammals (Cornsweet and Pinsker 1965; Griebel and Schmid 

1997; Huang et al. 2002; Geisbauer et al. 2004; Pretterer et al. 2004; Scholtyssek et al. 

2008; Dain and Ling 2009).  

In invertebrates, the jumping spider Menemerus bivittatus was tested for its ability in 

brightness discrimination (Tiedemann 1993). This work was a behavioural experiment, 

without an electrophysiological component. Tiedemann (1993) found, that these 

jumping spiders are able to discriminate sperical shaped stimuli in different shades of 

grey from a background (black, white or grey). In summary, the spiders react the better 

the more attractive the stimulus is. But there is no indication from which point on the 

spiders can actually discriminate the stimulus from the background.  
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This was the aim of this thesis. Using the electrophysiological method with single 

channel telemetry it was examined how good a nocturnal hunting spider, Cupiennius 

salei, can discriminate different grey stimuli from a variable background in different 

shades of grey.  

 

However, the main outcome of this work does not indicate a clear conclusion about the 

brightness discrimination ability in Cupiennius salei.  

 

 

4.2.2. The brightness discrimination ability of Cupiennius salei 

 

Because the receptor-cell mosaic of Cupiennius salei is relatively coarse-grained, the 

resolution is not nearly as good as in humans. The calculated minimal distance of an 

object at which the spider eye still forms a sharp image is about 4 mm for the principal 

eyes (AM eyes) and 7-19 mm for the PM eyes (Barth 2002).  

In the experimental setup of this thesis, the spider was placed 25 cm away from the 

moving stimulus. According to that fact, the spiders should have not resolved edges of 

the stimuli. But because of the high illumination level, it would be obvious that the 

animals detected either the edges of the stimuli or even shadows, which the 

experimenter did not discover. As written above, the high illumination level was 

selected because of prevention of shadows. Before starting the experiments, several 

checks had been carried out with other lamps and the best solution was found with a 75 

W lamp.  

 

Reactions on mechanical stimuli like switching the movable bar on or off could be 

recorded, but only at the beginning of a recording session. This part of the record was 

not analysed and can therefore be excluded as an influencing factor. Also ‘click’ sounds 

of the light barriers did not irritate the spiders since increases in frequency could not be 

detected. Eventual external disturbances like door slams etc. were filtered out and were 

not analysed. Summing up, aforesaid stimuli could not have effects on the present 

results.  
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Results of the five tested backgrounds do not allow to draw a clear conclusion. The least 

meaningfull results were shown at the lightest background (number 1). There are no 

indications for concrete brightness discrimination ability or a tendency for it. Especially 

the significant discrimination of stimulus 1 and 2 support this fact (Fig. 20) and lead to 

the idea of edge-recognition. Here, the illumination level was highest with 1186 lx and a 

relative reflectance of 99.98 % was measured at this background.  

 

The other light background (number 4) displays a slightly different result. Here, when 

looking at Fig. 21 to 23, the tendency for brightness discrimination ability increases, but 

still the stimulus with the same relative reflectance is discriminated with statistical 

significance (Fig. 23). This finding again supports the theory of edge-recognition, 

although the relative reflectance is decreased about a half from 99.98 to 48.28 % and 

illumination level was diminished from 1186 lx to 732 lx.  

 

By decreasing the illumination level to 600 lx (30.96 % relative reflectance) at 

background 5, a tendency in brightness discrimination ability for the lighter stimuli 

(Fig. 25) can be demonstrated. Here the illumination is not as bright as for the previous 

backgrounds but there is repeatedly the problem of significant discrimination between 

the related stimulus (number 17) and the background (Fig. 26). Although the results are 

quite good for the lighter stimuli, a concrete conclusion cannot be made. Presumably 

there is again the problem of edge-recognition.  

 

With background 7, which had a relative reflectance of 20.26 % and an illumination 

level of 523 lx, the results were significant for the lighter stimuli (1 – 8) but not 

meaningful for the darker ones (Fig. 28 and 29). Though the tested stimulus was 

identified significantly, this finding again suggests that edge-recognition has an 

influence even at this slightly lower illumination level.  
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For the black background (number 9) a constant significant discrimination range at the 

lighter stimuli till stimulus 19 (Fig. 32) is shown. Here, the first non-significant value 

for the identical stimulus (number 24) can be displayed. Coevally, the best results 

regarding to brightness discrimination ability could be achieved for this background. 

This could be explained by the low relative reflectance (15.12 %) and the illumination 

level (486 lx). Nevertheless, the darkest stimuli results in a significant value that cannot 

be explained. This fact could again point to edge-recognition and does not allow a 

concrete conclusion. However, with decreasing illumination level the results became 

clearly better.  

 

Diverse outliers (i.e. in Fig. 19 stimulus 2; stimulus 18 in Fig. 24 and 25; stimulus 24 in 

Fig. 28) cannot be explained and could potentially be avoided by raising the number of 

experimental animals.  

 

In the work of Orlando (2005) a very similar experimental setup was used. Only 

illumination level discerned from the existent setup. Orlando used three lamps to avoid 

shadows and created an ambient illumination level of 350 lx. It is suggested that this 

constant illumination led to more conclusive findings than were found in the present 

study.  

 

Besides edge-recognition the daily patterns of Cupiennius salei potentially had an 

influence on the results. Cupiennius is only active during the night. Activity phase starts 

at about 15 lx, hunting even happens at 0.01 lx (Seyfarth 1980). In this study, spiders 

were tested only during their day-phase at much higher illumination levels. Therefore, it 

is possible that the experimental animals were irritated by the high illumination.  

 

Given these inconclusive results, further studies are necessary to examine brightness 

discrimination ability in Cupiennius salei. Furthermore, a new concept of the 

experimental setup would be required. First of all, the high illumination level has to be 

decreased. If the illumination level is low enough, i.e. about 10 lx, the remaining setup 

could be used for further recording sessions.  
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A next step would be the total modification of the experimental setup. A screen could 

replace the paper stimuli and also the backgrounds and there would then be no more 

motor sounds or other mechanical disturbances. Additionally, more spiders should be 

tested for a more significant result.  

 

To sum up, it would be worthwhile to further investigate the interesting field of 

brightness discrimination ability in Cupiennius salei.  
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5. Summary 

 

The Central American ctenid spider Cupiennius salei, a nocturnal hunter, has four pairs 

of eyes, which are arranged in two rows. Because of their morphology, they are 

classified in principal eyes and secondary eyes. Due to their location on the prosoma the 

principal eyes are called AM-eyes (anterior-median), whereas the secondary eyes are 

divided in PM-eyes (posterior-median), PL-eyes (posterior-lateral) and AL-eyes 

(anterior-lateral). The AM-eyes are discerned from the secondary eyes also because of 

their functionality. The principal eyes are especially suitable for the detection of shape 

and texture, whereas the secondary eyes are specialized for detecting the movement of 

objects.  

Only the retina of the AM-eyes is movable. These eyes possess a dorsal and a lateral 

eye muscle each, which allow a lateral deflection of the visual field.  

The retinal resolution is limited by the retina mosaic, with inter-receptor angles between 

0.9° and 9.2°. All eyes have about the same light sensitivity; with the absolute 

sensitivity being about 0.01 lx. In Cupiennius salei three types of photoreceptor-cells 

with maximum sensitivities at 520 nm, 480 nm and 340 nm are found.  

As previous studies showed, colour vision in association with moving targets is not 

possible for Cupiennius salei. This thesis investigated the brightness discrimination 

ability of Cupiennius.  

24 stimuli, grey-shaded from white to black, were presented in front of five replaceable 

backgrounds, which also ranged from white to black. The activity of the eye muscles, 

which change when a moving stimulus crosses the visual field of the secondary eyes, 

was registered by extracellular recordings through a telemetric transmitter. If the spider 

is able to discriminate a stimulus from the background, the frequency of eye-muscle 

activity should increase. Stimuli which have the same relative reflectance as the 

background should not be distinguished by the subjects. Paperstripes with a length of 41 

cm and a width of 5 cm were used as stimuli. They moved clockwise in front of one of 

the backgrounds through the visual field of the spider.  

It was the aim to find out which difference of brightness between stimulus and 

background is sufficient to elicit a significant discrimination.  
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The present results do not allow to draw a clear conclusion in terms of the brightness 

discrimination ability in Cupiennius salei. A significant discrimination between 

background and related stimulus was found in four out of five backgrounds. When 

using the black background the spiders could not significantly discriminate between the 

background and the related stimulus.  

 

Especially the lighter backgrounds do not allow a clear conclusion. But there seems to 

be at least a tendency for brightness discrimination ability at the darker backgrounds.  

Due to the high illumination level in the experimental arena it is likely that the spiders 

detected either the edges of the stimuli or shadows which the experimenter did not 

discover. Particularly the result of the lighter backgrounds would support this theory.  

 

Given these poor results, a clear conclusion cannot be made and further studies will be 

necessary to evaluate brightness discrimination ability in Cupiennius salei.  
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6. Zusammenfassung 

 

Die zentralamerikanische Kammspinne Cupiennius salei, ein nachtaktiver Jäger, besitzt 

vier Paar Augen, die in zwei Reihen angeordnet sind. Aufgrund ihrer Morphologie 

werden sie in Haupt- und Nebenaugen unterteilt. Wegen ihrer Lage am Prosoma spricht 

man bei den Hauptaugen von AM-Augen (anterior-median), während sich die 

Nebenaugen in PM-Augen (posterior-median), AL-Augen (anterior-lateral) und PL-

Augen (posterior-lateral) unterteilen. Auch aufgrund ihrer Funktionalität werden die 

Haupt- von den Nebenaugen unterschieden. Während die AM-Augen der statischen 

Wahrnehmung und der Objektdetektion, sowie ihrer Unterscheidung dienen, sind die 

Nebenaugen für die Bewegungsdetektion verantwortlich. Nur die Retinae der 

Hauptaugen sind beweglich, und verfügen über je einen dorsalen und einen lateralen 

Augenmuskel, wodurch das Gesichtsfeld in lateraler Richtung verschoben werden kann. 

Das optische Auflösungsvermögen wird durch das Retina-Mosaik begrenzt, die 

Interrezeptorwinkel liegen zwischen 0,9° und 9,2°. Alle Augen sind in etwa gleich 

lichtempfindlich, die absolute Empfindlichkeit liegt bei 0,01 lx.  

Bei Cupiennius salei sind drei Typen von Photorezeptorzellen bekannt. Diese zeigen 

Empfindlichkeitsmaxima bei 520 nm, 480 nm und 340 nm.  

Wie aber in vorangegangenen Studien gezeigt werden konnte, ist Farbwahrnehmung 

über den Bewegungskanal bei Cupiennius salei nicht möglich. Die vorliegende Arbeit 

untersuchte deshalb das Graustufenunterscheidungsvermögen von Cupiennius.  

Dazu wurden 24 Stimuli, abgestuft von weiß bis schwarz, vor fünf Hintergründen 

unterschiedlicher Graustufen, ebenfalls von weiß bis schwarz, präsentiert. Die Aktivität 

der Augenmuskeln, die reagieren, sobald ein bewegtes Objekt das Gesichtsfeld der 

Nebenaugen durchquert, wurde mittels extrazellulärer Ableitung erfasst und 

telemetrisch aufgezeichnet. Kann die Spinne einen Stimulus vom Hintergrund 

unterscheiden, sollte sich die Frequenz der Augenmuskelaktivität erhöhen. Bei einem 

Stimulus, der die gleiche relative Reflektanz wie der Hintergrund aufweist, sollte keine 

Reaktion gezeigt werden. Papierstreifen von 4 cm Breite und 50 cm Länge stellten die 

Teststimuli dar.  
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Diese bewegten sich vor einem der fünf Hintergründe durch das Gesichtsfeld der 

Spinne. Ziel war es herauszufinden, wie groß die Helligkeitsunterschiede zwischen 

Stimulus und Hintergrund sein müssen, damit Cupiennius sie noch signifikant 

voneinander unterscheiden kann.  

 

Die vorliegenden Ergebnisse lassen jedoch keine klare Schlussfolgerung über die 

Graustufenunterscheidungsfähigkeit von Cupiennius salei zu. Bei vier von fünf 

Hintergründen kam es zu einer signifikanten Unterscheidung zwischen Hintergrund und 

jeweiligem zugehörigen Stimulus. Nur bei dem dunkelsten Hintergrund (schwarz) 

konnten die Spinnen nicht signifikant zwischen Hintergrund und zugehörigem Stimulus 

unterscheiden.  

 

Vor allem bei den hellen Hintergründen ist keine klare Aussage möglich. Erst bei den 

dunkleren Hintergründen lässt sich eine Tendenz in Richtung Graustufenunterscheidung 

erkennen. Die hohe Beleuchtungsstärke in der Versuchsarena legt daher die Vermutung 

nahe, dass trotz intensiver Versuche Schattenbildung zu vermeiden, die Versuchstiere 

dennoch Schatten oder noch wahrscheinlicher, die Kanten der Stimuli wahrgenommen 

haben. Vor allem die Ergebnisse der hellen Hintergründe unterstützen diese Theorie.  

 

Die nicht signifikanten Ergebnisse lassen keine klare Aussage zur 

Graustufenunterscheidungsfähigkeit von Cupiennius salei zu, weshalb weitere 

Untersuchungen auf diesem Gebiet notwendig wären. 
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