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Abstract

We prove that it is consistent relative to a Mahlo cardinal that all sets of reals
de�nable from countable sequences of ordinals are Lebesgue measurable, but
at the same time, there is a ∆1

3 set without the Baire property. To this end,
we introduce a notion of strati�ed forcing and strati�ed extension and prove
an iteration theorem for these classes of forcings. Moreover we introduce a
variant of Shelah's amalgamation technique that preserves strati�cation. The
complexity of the set which provides a counterexample to the Baire property
is optimal.
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Chapter 1

Preliminaries

Forcing Facts

In this section we introduce the notions of strong projection, strong sub-order
and independence, all of which we �nd very useful. The �rst two are practical
in understanding how amalgamation is a strati�ed extension (see sections 3
and 4). The third is handy in proving lemma 5.4 (p. 95), via the notion
of �remoteness� and lemma 3.33 (see below for further discussion, especially
section 3.5).

After that we �x our terminology dealing with forcing iterations and terms
such as �Cohen over V �.

Strong projections and strong Sub-orders.

De�nition 1.1. Let Q, P be forcing posets. We say π : P → Q is a projection
if and only if

1. p ≤ p′:π(p) ≤ π(p′),

2. ran(π) = P ,

3. if q ∈ Q and q ≤ π(p), there is p̄ ∈ P such that π(p̄) ≤ q.

The following de�nition occurs, e.g., in [Abr00]. We call π a strong projection
if and only if it satis�es the �rst two requirements above and the following
strengthening of the third requirement:

3′. If q ≤ π(p), there is p̄ ≤ p such that

a. π(p̄) = q,

b. for any r ∈ P , if r ≤ p and π(r) ≤ q then r ≤ p̄.

7



8 CHAPTER 1. PRELIMINARIES

This uniquely determines p̄, and we denote it by q · p.

Remark 1.2. These de�nitions don't seem to be totally standardized, e.g.
[Abr00] gives a de�nition of (ordinary) projection as above, but replaces 3.
by the stronger: if q ≤ π(p), there is p̄ ≤ p such that π(p̄) = q. This seems
stronger than the notion of projection used here, but weaker than strong
projection.

If π : P → Q is a projection, π[G] generates a Q-generic Filter whenever
G is a P -generic Filter. Thus r.o.(Q) is a complete sub-algebra of r.o.(P ). If
π : P → Q is a strong projection, the map i sending q ∈ Q to i(q) = q · 1P is
a complete embedding and we can assume that Q is a subset of P . Observe
that it follows from 3′b. that

∀p ∈ P p ≤ i(π(p)). (1.1)

De�nition 1.3. Let Q be a complete sub-order of P . We say q ∈ Q is a
reduction (to Q) of p ∈ P if and only if for all q′ ∈ Q, if q′ ≤ q then q′ and
p are compatible.

Lemma 1.4. Let Q be a complete sub-order of P and let π be the canonical
projection π : r.o.(P ) → r.o.(Q). Say p ∈ P and q ∈ Q is a reduction of p
such that q ≥ p; then q = π(p). If π̄ : P → Q is a strong projection, then π̄
coincides with the canonical projection on P .

Proof. Firstly, say we have q ∈ Q, a reduction of p such that q ≥ p. We
immediately infer q ≤ π(p) (this is equivalent to q being a reduction of p).
On the other hand, π(p) ≤ q holds as p ≤ q and by the de�nition of π.
Secondly, let π̄ : P → Q be a strong projection. For every p ∈ P , π̄(p) is
a reduction of p and π̄(p) ≥ p by (1.1). By the previous, π̄ and π must

coincide. ©

Observe that if π : r.o.(P ) → r.o.(Q) is the canonical projection, then π �P
is a strong projection if and only if for every p ∈ P and q ∈ Q such that
q ≤ π(p) we have p · q ∈ P . All of the above gives us the following de�nition
and lemma:

De�nition 1.5. We say Q is a strong sub-order of P if and only if Q is a
complete sub-order of P and for every p ∈ P and q ∈ Q such that q ≤ π(p),
q · p ∈ P .

Lemma 1.6. The following are equivalent:

• Q is a strong sub-order of P .
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• There is a strong projection π : P → Q.

• The restriction of the canonical projection π : r.o.(P ) → r.o.(Q) to P
is the unique strong projection from P to Q.

Independent sub-orders.

Lemma 1.7. Say Q0 and Q1 are complete sub-orders of P and π0 : P → Q0

is a strong projection. The following are equivalent:

1. ∀(q0, q1) ∈ Q0 ×Q1, q0 · q1 6= 0;

2. π0[Q1] = {1P}.

Proof. This is obvious from the de�nition of the canonical projection:

π0(q1) =
∑

{q0 ∈ Q0 | ∀q′0 ≤ q0 q′0 · q1 6= 0}

©

Imagine an iteration R = (Q0 × Q1) ∗ Q̇2. Then in an extension by Q0,
the pre-order Q1 is a complete sub-order of the tail R : Q0 = Q1 ∗ Q̇2. In
general, if Q0 and Q1 are arbitrary complete sub-orders of a forcing R, it will
not be the case that after forcing with Q0, the pre-order Q1 is a complete
sub-order of R : Q0. In the next lemma, we give a handy su�cient condition
for this to be the case.

Lemma 1.8. Let Q and C be complete sub-orders of P and say πQ : P → Q
and πC : P → C are strong projections. Assume for all c ∈ C and p ∈ P
such that c ≤ πC(p), we have πQ(p · c) = πQ(p). Then 1Q forces that C is a
complete sub-order of P : Q and πC is a strong projection.

Proof. First observe that considering the assumption of the lemma for the
special case p = 1P yields

πQ[C] = {1Q}, (1.2)

and so 1Q  Č ⊆ P : Q.
Let q ∈ Q, p ∈ P such that q  p ∈ P : Q, i.e. q ≤ πQ(p). We show

q  πC(p) is a reduction of p. So let c ∈ C and q′ ∈ Q be arbitrary such that
q′ ≤ q and q′ Q c ≤ πC(p) in P : Q (by the �rst paragraph, q′ Q c ∈ P : Q
holds for trivial reasons). In other words,

q′ · c ≤ πC(p). (1.3)
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We claim that q′ ≤ πQ(p · c) and so q′  p · c ∈ P : Q. As q′ was arbitrary,
we are done.

To this end, observe that (1.3) implies πC(q′ · c) ≤ πC(p). By (1.2) and
by lemma 1.7, we have πC [Q] = {1C} and so πC(q′ · c) = c · πC(q′) = c. We
conclude c ≤ πC(p). By assumption, it follows that πQ(p) = πQ(p · c), so as

q′ ≤ q ≤ πQ(p) by choice of q′, we �nally obtain q′ ≤ πQ(p · c). ©

For later reference, we shall give a name to this special relationship of Q
and C described above:

De�nition 1.9. Let Q and C be sub-orders of P with strong projections

πQ : P → Q

πC : P → C.

We say C is independent over Q in P if and only if for all c ∈ C and p ∈ P
such that c ≤ πC(p), we have πQ(p · c) = πQ(p).

For a P -name Ċ, we say Ċ is independent in P over Q if and only if Ċ is
a name for a generic of an independent complete sub-order of P ; i.e. there is
a complete sub-order RC of P (with a strong projection πC : P → RC) such
that RC is a dense in 〈Ċ〉r.o.(P ) and RC is independent in P over Q.

Lemma 1.10. If Ċ is a P -name which is independent over Q, then Ċ is not
in V Q.

Proof. This should be clear; for the skeptic, here's a proof: Fix a complete
sub-order RC of P such that RC is dense in 〈Ċ〉r.o.(P ) and RC is remote in P
over Q. Say G is generic for Q. By lemma 1.8, RC is a complete sub-order
of P : Q, which implies that RC is dense in 〈RC〉r.o.(P :Q) by the following
argument:

For any antichain X ⊆ RC we can �nd X∗ which is a maximal antichain
in P : Q such that X ⊆ X∗ ⊆ RC . Therefore B = {

∑
X | X ⊆ RC} is

closed under Boolean complement and thus is equal to r.o.(RC). But RC is
dense in B.

Now let B = 〈Ċ〉r.o.(P ). By lemma 1.20, which we shall prove below,

Q ∗ 〈RC〉r.o.(P :Q) = 〈Q ∪RC〉r.o.(P ) =

〈Q ∪B〉r.o.(P ) = Q ∗ 〈B/Ġ〉r.o.(P :Q).

Thus, in V [G], the Boolean algebra 〈B/G〉r.o.(P :Q) has RC as a dense subset.
But if Ċ is in V Q, we can assume B/G = (〈Ċ〉r.o.(P ))V /G is the trivial
Boolean algebra. This contradicts the assumption that RC is a non-trivial
forcing. ©
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We can't resist and give a nice proof of the following fact:

Lemma 1.11. Say Q is a complete sub-order of P and P is a complete sub-
order of R. Then Q P : Q is a complete sub-order of R : Q. Moreover, if
πP : R → P is a strong projection, Q forces πP �P : Q is a strong projection
from P : Q to R : Q.

Proof. Let πQ : r.o.(R) → r.o.(Q) and πP : r.o.(R) → r.o.(P ) denote the
canonical projections. Show Q forces that for each r ∈ R : Q, the condition
πP (r) is a reduction of r to P . It follows that Q R : Q is a complete sub-
order of R : Q. So let r ∈ R, p ∈ P and q ∈ Q be arbitrary such that
p ≤ πP (r) and q  r ∈ R : Q and p ∈ P : Q, i.e. q ≤ πQ(r) · πQ(p). Observe
that πQ(p · r) = πQ(πP (p · r)) = πQ(p · πP (r)) = πQ(r). Thus q ≤ πQ(p · r),
whence q  r and p are compatible in R : Q. This proves that Q forces that
πP (r) is a reduction of r. Moreover, if p · r ∈ R, q  p · r ∈ R : Q, so πQ is

forced to be a strong projection. ©

Iterations. Contrary to popular belief, the meaning of �iteration� is not
the same to everyone. Below we specify how we understand this notion, �x
some convenient terminology and state two trivial lemmas.

De�nition 1.12. We say Q̄θ = (Pι, Q̇ι)ι<θ is an iteration (of length θ) if and
only if for each i < θ,

1. Pι Q̇ι is a pre-order

2. Pι consists of sequences p such that dom(p) = ι and for each ν < ι,
p(ν) is a Pν-name such that

1Pν  p(ν) ∈ Q̇ν . (1.4)

3. The ordering of Pι is given by:

r ≤ p ⇐ : ∀ν < ι r �ν Pν r(ν) ≤Q̇ν
p(ν). (1.5)

For the following, �x an iteration Q̄θ+1.

De�nition 1.13. 1. We call a sequence p with dom(p) = θ a thread
through (or in) Q̄θ if and only if it satis�es (1.4). The set of threads
through Q̄θ we shall sometimes denote by

∏
Q̄θ. It is endowed with

the ordering given by (1.5) (for r, p ∈
∏

Q̄θ).

2. For any pair ι ≤ ῑ ≤ θ we denote the strong projection from Pῑ to Pι by
πι (in this case, it is allowed to identify maps with di�erent domains).
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3. We also use the term thread in a second, related sense: if p̄ ∈
∏

η<ι<θ Pι

for some η < θ�i.e p̄ = (pι)ι∈(η,θ) and for each ι ∈ dom(p̄) we have
pι ∈ Pι�we say p̄ forms or de�nes or simply is a thread (through Q̄θ)
if and only if

∀ι, ῑ ∈ dom(p̄) ι ≤ ῑ:πι(pῑ) = pι. (1.6)

Note that a sequence p̄ ∈
∏

η<ι<θ Pι is a thread in the sense of item 3 of
1.13 if and only if

⋃
η<ι<θ p̄ι is a thread in the sense of item 1 of 1.13�i.e if

and only if
⋃

η<ι<θ p̄ι ∈
∏

Q̄θ. In practice, we often identify p̄ and
⋃

η<ι<θ p̄ι.
Conditions 2 and 3 of de�nition 1.12 just say that Pι consists of threads. The
following is rather trivial.

Lemma 1.14. Say p̄ = (pξ)ξ<ρ is a sequence of threads through Q̄θ. Assume
for each ι < θ, the sequence p̄ι = (πι(pξ))ξ<ρ has a greatest lower bound qι

such that the sequence q = (qι)ι<θ is a thread through Q̄θ ( i.e. for ι < ῑ < θ,
πι(q

ῑ) = qι). Then q is a greatest lower bound of p̄ in Pθ.

Proof. Left to the reader. ©

Lemma 1.15. Say p̄ = (pι)ν<ι<θ is such that for ι ∈ (ν, θ), pι ∈ Pι and p̄ is
a thread. Let pθ =

⋃
p̄. Then (pι)ι≤θ is a thread in Q̄θ+1 and in r.o.(Pθ) we

have (the product sign denotes Boolean meet)

pθ =
∏
ι<θ

pι.

Proof. Left to the reader. ©

Unbounded, Random, Cohen... If c is a Borel-code, we write Bc for
the Borel set coded by c. Of course given two models of set theory, both
containing a Borel code c, it may be that c codes a di�erent set in each
model.

De�nition 1.16. Say r.o.(Q) is a complete sub-algebra of r.o.(P ). Let İ be
a P -name for an ideal on the Borel sets in the extension via P . For a P -name
ṙ and p ∈ P , we say is p forces ṙ is İ-generic over V Q, just if p P ṙ ∈ R
and for every Q-name for a Borel code ċ,

p P Bċ ∈ İ:ṙ 6∈ Bċ.

We say p forces ṙ is fully İ-generic over V Q if and only if p forces ṙ is
İ-generic over V Q and in addition, for every Q-name ċ such that π(p) Q ċ
is a Borel code,

p P ṙ 6∈ Bċ:p P Bċ ∈ İ .
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In other words, p does not force anything non-trivial about ṙ. We say ṙ is
(fully) I-generic just if 1P forces ṙ is (fully) I-generic.

• If İ is a name for the ideal of Borel sets with measure zero, instead of
� İ-generic�, we say Random over V Q.

• If İ is a name for the ideal of meager Borel sets, instead of � İ-generic�,
we say Cohen over V Q.

• If İ is a name for P(RV [G]), where G is Q-generic over V , we say ṙ 6∈ V Q

or ṙ is not in V Q instead of � ṙ is İ-generic�.

• If İ is a name for the ideal of Borel sets which are bounded by a
real in the ground model in the sense of eventual domination, we say
unbounded over V Q instead of � İ-generic�.

The terms p forces ṙ is fully Random over V Q and fully Cohen over V Q are
to be understood analogously.

Lemma 1.17. Let P and Q be arbitrary partial orders and let ṙ be a P -name
for a real. If ṙ is unbounded over V , viewing ṙ as a P × Q name via the
natural embedding, ṙ is unbounded over V Q.

Proof. We take the proof from [JR93, lemma 3.3, p. 392]. Assume for a
contradiction that ṙ is not unbounded over V Q. Let ṡ be a Q-name for a real
and (p, q) ∈ P ×Q such that (p, q)  ∀k ∈ ω ṙ(k) ≤ ṡ(k). For each i ∈ ω,
�nd y(i) ∈ ω and qi ∈ Q such that qi ≤ q and (p, qi)  ṡ(i) = y(i). As P ṙ
is unbounded over V , we can �nd n ∈ ω and p′ ∈ P such that p′ ≤ p and
p′  ṙ(n) > y(n). Thus (p′, qn) ≤ (p, q) forces both ṙ(n) ≤ ṡ(n) = y(n) and

ṙ(n) > y(n), contradiction. ©

Boolean algebra facts

We revisit some Boolean algebra facts which are usually taken for granted.
We do this in order to �x notation and in order to be able to prove lemma
5.4 much later on page 95, for which lemma 1.20 is a prerequisite (see below
for further discussion of its role).

Let A be a complete Boolean algebra, B be a regular sub-algebra of A,
and let π : A → B denote the canonical projection map,

π(a) =
∏
{b ∈ B | b ≥ a} = ‖∀b ∈ G b · a 6= 0‖ = ‖[a]Ġ 6= 0‖.
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Let G be B-generic. In V [G], consider A/G, the quotient of A modulo G,
that is, A modulo the equivalence relation ≡G where

a ≡G a′ ⇐ :
[
(a4a′) · b = 0 for some b ∈ G

]
.

As G is a �lter, A/G is a Boolean algebra (with the operations inherited from
A). The equivalence class of a ∈ A modulo ≡G we denote by [a]G. Setting

IG = {a ∈ A | ∃b ∈ G a · b = 0} = −G◦,

where G◦ denotes the upward closure of G, we also write A/IG. Observe that
IG is an ideal. The generic G is complete with respect to the ground model,
in the sense that whenever (aν)ν∈I ∈ V , where aν ∈ G for each ν ∈ I, then∏

ν∈I aν ∈ G. A dual property holds for IG: Let {aν}ν∈I be a set of elements
of A, aν ∈ IG for each ν ∈ I. Then for each ν ∈ I, there is b ∈ G such that
aν · b = 0, so π(aν) · b = 0 and thus −π(aν) ∈ G; so

−
∑
ν∈I

π(aν) =
∏
ν∈I

−π(aν) ∈ G,

whence
∑

ν∈I π(aν) ∈ IG. Observe, by the way,∑
{b ∈ B | b ≤ a} = ‖[a]G = 1‖.

We denote by A : B a B-name for A/G, i.e.

‖A : B = A/Ġ‖B = 1.

As usual, A ∗ A : B denotes the class of B-names ẋ such that

‖ẋ ∈ A : B‖B = 1,

modulo the following equivalence relation: ẋ ∼ ẏ just if

‖ẋ = ẏ‖B = 1.

There is no need to distinguish between ẋ and its equivalence class. Clearly,
A ∗ A : B is a set (i.e. not a proper class). A ∗ A : B carries the Boolean
algebra-operations given by the operations on A : B: for example, let −ẋ be
some ẏ such that

‖−ẋ = ẏ‖B = 1;

similarly for the remaining operations.

Fact 1.18. A is isomorphic to B ∗ A : B and A : BG is a complete Boolean
algebra in V [G].
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Proof. We begin with a lemma.

Lemma 1.19. Let ẋ be a B-name such that ‖ẋ ∈ A : B‖B = 1. Then there
is a uniquely determined a ∈ A such that

‖[a]Ġ = ẋ‖B = 1B.

Proof of lemma. Let ẋ be given as above. We may assume that

‖ẋ = [ȧ]Ġ‖
B = 1

for some B-name ȧ. Let K be an antichain in B deciding ȧ, that is, for each
b ∈ K there is ab such that b  ȧ = ab. Since b  ab ≡Ġ ab ·b, we may assume
ab ≤ b.

Finally, let

a =
∑

{ab | b ∈ K}.

Then for b ∈ K, b · a = ab, whence b  a ≡Ġ ab and b  ȧ = ab. As K was a
maximal antichain,

‖a ≡Ġ ȧ‖B = 1B.

The following observation is not essential, but interesting. We can in fact
pick K so that for each b ∈ K, either ab = 0 or π(ab) = b. For we can pick
K such that for each b ∈ K, either

b ≤ ‖ȧ ≡Ġ 0‖

or
b ≤ −‖ȧ ≡Ġ 0‖.

We may assume ab = 0A whenever the �rst is the case. In the second case,
π(ab) = b: for say π(ab) < b and chose b′ ∈ A such that b′ ≤ b, b′ · ab = 0.
Then b′  ȧ = ab ≡Ġ 0.

It remains to prove a is unique. Towards a contradiction say we have
a 6= a′ such that both

‖[a]Ġ = ẋ‖B = 1B

and
‖[a′]Ġ = ẋ‖B = 1B.

However this contradicts

‖a 6≡Ġ a′‖B = π(a4a′) > 0.

©
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For a ∈ A, let i(a) be the (unique) element of B ∗B : A such that

‖i(a) = [ǎ]Ġ‖
B = 1.

The map i : A → B ∗ A : B is an isomorphism of Boolean algebras: in the
previous lemma we showed that for every x ∈ B ∗ B : A there is exactly
one a ∈ A such that i(a) = x, so i is a bijection. We can now show that i
preserves suprema, and at the same time we show

‖A : B is complete‖ = 1.

Say we have a B-name Ẋ such that

‖Ẋ ⊆ A : B‖B = 1.

In V , we can pick B-names {ẋν}ν∈I such that such that

‖{ẋν}ν∈I = Ẋ‖ = 1,

whence of course for each ν we have

‖ẋν ∈ A : B‖B = 1,

i.e. ẋν ∈ A∗A : B. By the lemma, we may �nd aν ∈ A such that i(aν) = ẋν ,
for each ν ∈ I. Let a =

∑A
ν∈I aν .

1 We shall show that ‖[a]G =
∑A:B Ẋ‖ = 1.

To this end, let G be B-generic and write X = ẊG. We have X ⊆ A/G =
A : BG; we must show [a]G is the least upper bound of X in A/G. As aν ≤ a
for each ν ∈ I,

ẋG
ν ≤ [a]G;

thus [a]G is an upper bound. Given any B-name ẋ such that ẊG ≤ ẋG,
assume without loss of generality that

‖ẋ ∈ A : B‖B = 1,

and pick x ∈ A such that [x]G = ẋ. For every ν ∈ I,

‖ẋν ≤ [x]Ġ‖ ∈ G,

so aν − x ∈ IG, for each ν ∈ I. By completeness with respect to V of IG,∑
ν∈I(aν − x) = a− x ∈ IG, so

[a]G ≤ [x]G = ẋ.

1Of course, a does not depend on the choice of {ẋν}ν∈I : given {ẋ′ν}ν∈I′ and letting a′

be obtained as above, we shall see −(a4a′) = ‖
∑

ν∈I′ ẋ′ν =
∑

ν∈I ẋν‖ = 1.
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So �rstly, ẊG has a supremum in A/G, whence A/G is a complete Boolean
algebra.

In fact, as G was arbitrary, we have just shown

‖[a]Ġ =
A:B∑

Ẋ =
A:B∑
ν∈I

[aν ]Ġ‖ = 1.

In other words, i(a) =
∑

i(aν) in A ∗ A : B. Thus, secondly, i preserves

suprema. ©

Let X ⊂ A. We denote by 〈X〉 (or 〈X〉A when A is not clear from the
context) the algebra generated by X in A, that is smallest complete sub-
algebra of A containing X as a subset. We obtain 〈X〉 by closing of under
Boolean operations: Set

∑A
0 (X) = X and de�ne

∑A
α (X) by induction on α,

as the set of all elements a such that a =
∑

Y where for all y ∈ Y , either y
or −y is in

∑A
β (X), for some β < α. Then

〈X〉 =
⋃

α∈On

A∑
α

(X).

In fact it would be enough to take the union over all α < sat(A), where the
latter denotes the least cardinal λ such that A has no antichain of size λ.
Also, when X ⊆ A we write −X for {−x | x ∈ X}.

The following lemma was vital in understanding amalgamation (discussed
in section 4), but it is explicitly used only in the proof of 1.10, dealing with
independence (itself a rather minor point which nevertheless has a vital role
in proving lemma 5.4 on page 95, mediated by the notion of �remoteness�
and lemma 3.33).

Lemma 1.20. Let B ⊆ X ⊆ A and let Ċ be a B-name such that

‖Ċ = 〈X/Ġ〉A:B‖B = 1,

where X/Ġ denotes {[x]Ġ | x ∈ X} (and Ġ is a name for a B-generic
�lter). Then B ∗ Ċ is isomorphic to 〈X〉A. Letting i denote the isomorphism
constructed in the proof of fact 1.18,

i[〈X〉A] = 〈i[X]〉B∗Ċ = B ∗ Ċ.

In fact, B ∗ (〈X〉A : B) is the same as B ∗ 〈X/Ġ〉A:B.
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Proof. Clearly, B∗Ċ is a complete sub-algebra of A∗A : B. So C = i−1[B∗Ċ]
is a complete sub-algebra of A, and since X ⊆ C, 〈X〉A ⊆ C. It remains to
show that C ⊆ 〈X〉A, or equivalently, B ∗ Ċ ⊆ i[〈X〉A]. If ċ is a B-name and

‖ċ ∈ 〈X/Ġ〉A:B‖ = 1,

then for some α,

‖ċ ∈
A:B∑
α

(X/Ġ)‖B = 1, (1.7)

So it su�ces to prove by induction on α that for ċ satisfying (1.7), we have
ċ ∈ i[〈X〉A].

For a start, let α = 0, and let ċ be such that ‖ċ ∈ X‖B = 1. From the
previous lemma, ċ = i(a), for some a ∈ A, and in fact the proof showed
a ∈ 〈X〉A.

Now let α > 0. We may �nd {ẋν}ν∈I such that

1B  ċ =
∑
ν∈I

ẋν ,

and for each ν ∈ I

1B  ẋν ∈
⋃
β<α

(
∑

β

(X) ∪ −
∑

β

(X)).

In fact, we can assume that for each ν ∈ I there is β < α such that

1B  ẋν ∈
∑

β

(X) ∪ −
∑

β

(X);

for we may always write each ẋν as a sum of Boolean values who appear
at a �xed stage β (from the viewpoint of the ground model). By induction

hypothesis, each ẋν ∈ i[〈X〉A]; thus, as i preserves sums, ċ ∈ i[〈X〉A]. ©



Chapter 2

Strati�ed Forcing

In this section we assume V = L[A] for some class A. We de�ne strati�ed
partial orders, show such orders preserve co�nalities, give some examples
and show that strati�cation is preserved under composition. We also de�ne
diagonal support and state that iterations whose components are strati�ed
are themselves strati�ed. The proof is left out, since we prove a slightly more
general theorem in section 3 where we deal with iterations with strati�ed
initial segments but where the components aren't necessarily strati�ed. Most
of these de�nitions are heavily inspired by [Fri94]; see also [Fri00].

We present the de�nition of strati�cation in two parts: the �rst we dub
quasi-closure. We treat this �rst part separately from the remaining axioms
of strati�cation for the following reasons: �rstly, the proofs that each of
these two groups of axioms is preserved in iterations are not only di�erent
but virtually independent of each other.

Secondly, we hope that the reader will agree that quasi-closure is in-
teresting in its own right. This view is in stark contrast to the fact that
quasi-closure alone is not a very useful property� in fact, every partial order
is quasi-closed. One should think of it as an incomplete notion, to which
some other property has to be added in order to render it non-trivial. Strat-
i�cation is one example of this, closely connected to the notion of centered
forcing. There may be other examples, as well.

Before we de�ne quasi-closure, we introduce pre-closure systems; analo-
gously we will de�ne pre-strati�cation systems. We can reuse these notions
when we de�ne quasi-closed and strati�ed extension; see section 3, p. 34.

Throughout, let 〈R,≤〉 be a pre-order. We want to allow for R to collapse
some cardinals, while preserving co�nalities greater than some �xed regular
λ0. This explains the role of the otherwise super�uous parameter λ0 in many
of the following de�nitions; e.g. we talk about R being strati�ed above λ0.

19
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2.1 Quasi-Closure

We now make a few convenient de�nitions that facilitate the treatment of
quasi-closed partial orders, which we de�ne afterward.

De�nition 2.1. We say s = (F, 4λ)λ≥λ0 is a pre-closure system for R above
λ0 if and only if

F : Reg×V ×R → R

is a function de�ned by a ∆A
1 formula and for every λ ∈ Reg \λ0,

(C 1) The relation 4λ is a preorder on R and p 4λ q:p ≤ q.

(C 2) For (λ, x, p) ∈ dom(F) we have F(λ, x, p) 4λ p.

(C 3) If p ≤ q ≤ r and p 4λ r then p 4λ q.

(C 4) If λ̄ ∈ Reg \λ then q 4λ̄ p:q 4λ p.

As a notational convenience, de�ne 40 to mean ≤R. Clause (C 3) can
be dropped if one is not interested in iterations. Observe that by (C 3),
4λ is well-de�ned with respect to equivalence modulo ≈ (remember we say
p ≈ q ⇐ : p ≤ q and q ≤ p).

Think of each of the relations 4λ as a notion of direct extension, as it
is often called in the case of e.g. Prikry-like forcings. Intuitively, p 4λ q
expresses that p extends q but some part �below λ� is left unchanged. Think
of F as a kind of strategy. Together, this additional structure on R allows
us to express that certain sequences have lower bounds in R. The missing
ingredient and distinct �avor of quasi-closure is the condition that these
sequences be de�nable in a sense.

For the next two de�nitions, �x R and a pre-closure system s for R above
λ0. All the notions in the next de�nition have their meaning with respect to
s.

De�nition 2.2. 1. Let p̄ = (pξ)ξ<ρ be a sequence of conditions in R. We
say p̄ is (λ, x)-strategic if and only if,

(a) ρ ≤ λ.

(b) For each ξ < ρ, there is a regular cardinal λ′ such that

pξ+1 ≤ F(λ′, x, pξ)

and pξ+1 4λ′ pξ.

(c) For ξ < ξ̄ < ρ, we have pξ̄ 4λ pξ.
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(d) For limit ordinals ξ̄ < ρ, pξ̄ is a greatest lower bound of (pξ)ξ<ξ̄.

2. If p̄ is (λ, x)-strategic and in addition, p̄ is ∆A
1 -de�nable with parameters

from λ ∪ {x}, we say p̄ is (λ, x)-adequate.

3. If p̄ is (λ, x)-adequate for some x we say p̄ is λ-adequate.

De�nition 2.3. We say 〈R, s〉 is quasi-closed above λ0 if and only if for each
regular λ ≥ λ0

(C I) If λ̄ is regular and p 4λ̄ 1R, then F(λ, x, p) 4λ̄ 1R.

(C II) Every λ-adequate sequence p̄ = (pξ)ξ<ρ in R has a greatest lower bound
p in R and for all ξ < ρ, p 4λ pξ. If λ̄ is regular and for each ξ < ρ,
pξ 4λ̄ 1R, then p 4λ̄ 1R.

We also use the expression R is quasi-closed as witnessed by s. If we omit s
and no pre-closure system can be deduced from the context, we mean that
there exists a pre-closure system s such that 〈R, s〉 is quasi-closed.

Clause (C I) and the last sentence of clause (C II) are useful regarding
in�nite iterations of quasi-closed forcings.

Remark 2.4. For arbitrary R, just de�ne p 4λ q if and only if p = q and
F(λ, x, p) = p for all regular λ ≥ λ0 and all x. Then R is quasi-closed.
Quasi-closure becomes non-trivial under the additional hypothesis that cer-
tain questions about the generic extension can be decided by strengthening
a condition in the sense of 4λ, for some λ. Strati�ed forcing satis�es such a
hypothesis.

Remark 2.5. Say R is λ+-closed; then R trivially satis�es all the conditions
of 2.3 for this one λ. The same is true if R is λ+-strategic: for if σ : R → R
is a strategy for R, de�ne F(λ, x, p) = σ(p). F is clearly ∆A

1 ({σ}). We can
de�ne 4λ to be the same as ≤. Of course then every strategic (and thus
every adequate) sequence has a greatest lower bound.

This is not vacuous. In fact, every sequence p̄ of length less than λ+ which
adheres to σ is λ-adequate: For �x p̄ of length less than λ+. By re-indexing,
assume the length of p̄ is λ. Since p̄ is ∆A

1 ({p̄}), and since F does not depend
on x at all, p̄ is (λ, {p̄})-adequate.

These are our �rst examples of forcings which non-trivially satisfy the
de�nition of quasi-closed (albeit for just one �xed λ), since any statement
about the generic can be decided by extending in the sense of 4λ.
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2.2 A word about de�nability and set forcing

The concept of quasi-closure was devised in a class forcing context. Since
we only apply it for set forcing, we can make do with restricting the realm
of adequate sequences to those which are ∆A

1 (in certain parameters), as we
have done above. We also circumvent any use of Πn-uniformisation, which
is necessary in a class context (see [Fri00], proof of theorem 8.17, p. 178, for
details).

Think of x as a tuple of constants which can be used in in the de�nition
of an adequate sequence p̄. Observe that we can restrict the notion of λ-
adequate sequences by demanding that they be (λ, x)-adequate for some x
containing some given, �xed set of constants. We can, for example, freely
assume that any parameters needed in the de�nition of F are among those
constants. We can and will assume that some large enough Lµ[A] is among
the constants given by x, as well as predicates for the well-ordering of Lµ[A]
and the co�nality and cardinality function restricted to Lµ[A]. This allows us
to bound quanti�ers of certain statements and argue that they are ∆A

1 ({x}∪
λ).

Intuitively, this is analogous to the use of a large structure with predicates
in the context of proper forcing. If you feel we are waving our hands to much,
formally keep track of what parameters we use: augment the de�nition of
pre-closure system so that s = (F,~c, 4λ)λ≥λ0 where ~c is a tuple such that F is
∆A

1 (~c)-de�nable and in the de�nition of a (λ, x)-adequate sequence, demand
that x be a tuple containing all the constants from ~c. Clearly, if R is quasi-
closed as witnessed by s, R is also quasi-closed with respect to any pre-closure
system s′ which is obtained from s by adding some more constants to ~c. We
come back to these points when we discuss iterations.

2.3 Strati�cation

De�nition 2.6. We say S = (F, 4λ, 2λ,Cλ)λ≥λ0 is a pre-strati�cation sys-
tem for R above λ0 if and only if (F, 4λ)λ≥λ0 is a pre-closure system for R
above λ0 and for every λ ∈ Reg \λ0 the following conditions are met:

(S 1) The binary relation 2λ on R satis�es p ≤ q:p 2λ q.

(S 2) If p ≤ q 2λ r then p 2λ r.1

1Note that we don't assume 2λ to be transitive, since this does not seem to be preserved
by composition. If 2λ were transitive, condition (S 2) would follow from (S 1). We need
(S 2) for lemma 2.9. We need that 2λ is re�exive (i.e. p 2λ p for all p) for 3.18(Cs4). In
the context of (S 2), re�exivity is the same as the last part of (S 1).
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(S 3) If λ ≤ λ̄ and λ̄ ∈ Reg then p 2λ q:p 2λ̄ q.

(S 4) Density: Cλ ⊆ R × λ is a binary relation such that dom(Cλ) is dense
in R. Moreover, if λ > λ0, for any regular λ′ ∈ [λ0, λ) and p ∈ R, there
is q 4λ′ p such that q ∈ dom(Cλ).

The last part of condition (S 1), all of (S 3) and and the �moreover� part
of (S 4) can be dropped if one is not interested in in�nite iterations. Don't
think that 2λ is a pre-order or well-de�ned on the separative quotient of R,
although (S 2) guarantees some regularity with respect to ≈.

For the moment, �x R and a pre-strati�cation system S for R above λ0.
The following de�nition is relative to S.

De�nition 2.7. We say a pre-order 〈R,≤〉 is strati�ed above λ0 if and only
if 〈R,4λ,F〉λ≥λ0 is quasi-closed and for each λ ∈ Reg \λ0 the following con-
ditions hold:

(S I) Continuity : If λ′ is regular such that 2 λ0 ≤ λ′ < λ and p is a greatest
lower bound of the λ′-adequate sequence p̄ = (pξ)ξ<ρ and for each
ξ < ρ, pξ ∈ dom(Cλ), then p ∈ dom(Cλ). If in addition q̄ is another λ′-
adequate sequence of length ρ and for each ξ < ρ, Cλ(pξ)∩Cλ(qξ) 6= ∅,
then for a greatest lower bound q of q̄ we have Cλ(p) ∩Cλ(q) 6= ∅.

(S II) Expansion: If p 2λ d and d 4λ 1R, then in fact p ≤ d.

(S III) Interpolation: If d ≤ r, there is p 4λ r such that p 2λ d. In addition,
whenever λ̄ is regular and d 4λ̄ 1R, then also p 4λ̄ 1R.

(S IV) Centering : If p 2λ d and and Cλ(p) ∩ Cλ(d) 6= ∅ then p and d are
compatible. In fact, there is w such that for any regular λ′ ∈ [λ0, λ),
w 4λ′ p and w 4λ′ d.

We also say R is strati�ed as witnessed by S. If we omit S and no pre-
strati�cation system can be deduced from the context, we mean that there
exists a pre-strati�cation system S witnessing that R is strati�ed.

Conditions (S I) and (S II) are important to preserve strati�cation in
(in�nite) iterations. The second part of (S IV) was introduced to allow
for amalgamation (see section 4), but is also useful to control the diagonal
support in iterations (see below).

Finally, we can discuss preservation of co�nalities and the GCH.

2in our application, we could ask this for all regular λ′, not just those in the interval
[λ0, λ).
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De�nition 2.8. In the following, we �x a regular cardinal λ ≥ λ0 and drop
the superscripts on C, 4 and 2.

1. Let D, D∗ ⊆ R, and r ∈ R. We say r λ-reduces D to D∗ (often, we
don't mention the pre�x λ) exactly if

(a) D∗ ⊆ dom(C) and |D∗| ≤ λ;

(b) for each d ∈ D∗, r 2 d;

(c) for any q ∈ dom(C) ∩ D, if q ≤ r, there is d ∈ D∗ such that
C(q) ∩C(d) 6= 0.

2. Let α̇ be a name for an element in the ground model V , and let r ∈
R. We say α̇ is λ-chromatic below r just if there is a function H
with dom H ⊆ λ such that if q ≤ r decides α̇ and q ∈ dom(C), then
C(q) ∩ dom(H) 6= 0 and for all χ ∈ C(q) ∩ dom(H), q  α̇ = H(χ) (to
be pedantically precise, we mean the �standard name� for H(χ)). We
call such H a λ-spectrum (of α̇).

3. If ṡ is a name and p  ṡ : λ → V , then we say ṡ is λ-chromatic
(with λ-spectrum (Hξ)ξ<λ) below p if and only if for each ξ < λ, ṡ(ξ̌) is
chromatic with spectrum Hξ below p.

For notational convenience, we say ẋ is 0-chromatic below p if for some
x, p R ẋ = x̌.

Observe that if for some ground model set x, p  α̇ = x̌ (i.e. α is 0-
chromatic), then α̇ is in fact λ-chromatic for every regular λ, and the function
with domain λ and constant value x is a λ-spectrum.

Lemma 2.9. Say R is strati�ed above λ. For each ξ < λ, let Dξ be an open
dense subset of R. Let

X = {q ∈ R | ∃D∗ ∀ξ < λ q λ-reduces Dξ to D∗}.

Then X is dense in 〈R,4λ〉 and open in 〈R,≤〉.
If ṡ is a name such that p  ṡ : λ → V , the set of q such that ṡ is

λ-chromatic below q is dense in 〈R(≤ p), 4λ〉 and open.

Proof. We �rst show that the set of q such that for a single D, q reduces
D is dense in 〈R,4λ〉: Given D open dense and p ∈ R, inductively build
sequences of conditions p̄ = (pξ)ξ<λ and D∗ = {dξ | ξ < λ} in R, such that p̄
is λ-adequate and p0 4λ p. In the end, pλ will reduce D to D∗, where pλ is
a greatest lower bound of p̄.
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We now give a de�nition of p̄ from parameters in {x} ∪ λ. Observe that
we can chose x in such a way that this de�nition is ∆A

1 in λ ∪ {x}: let

x = 〈p0, 4
λ, 2λ,Cλ,≺, R, D, y〉,

where ≺ is a well-ordering on R (or on some large enough Lµ[A], if you prefer)
and y contains any parameters needed in the de�nition of F.

The de�nition of p̄ and D∗ is by induction. Before we begin, choose
d∗ ∈ R as a convenient default value when we cannot �nd an appropriate dξ:
let d∗ be the ≺-least element of dom(Cλ) ∩D such that d∗ ≤ p0.

Firstly, let p0 be the ≺-least conditions such that p0 4λ p and p0 2λ d∗.
Secondly, say ξ is a limit ordinal, and we have already constructed (pν)ν<ξ.
Let pξ be a greatest lower bound of (pν)ν<ξ.

Finally, say pξ is already de�ned; we will now construct pξ+1 and dξ.
Assume for the moment that there is d ≤ F(λ, x, pξ) such that ξ ∈ C(d) and
d ∈ D. Set dξ to be the ≺-least such d; let pξ+1 be the ≺-least condition in
R such that pξ+1 4 F(λ, x, pξ) and pξ+1 2 d. If such d cannot be found, set
dξ = d∗ and pξ+1 = pξ.

We show that pλ reduces D to D∗. So say we are given q ≤ pλ in
dom(C) which decides α and such that ξ ∈ C(q). As q witnesses that there
is w ≤ F(λ, x, pξ) such that ξ ∈ C(w) and w ∈ D, we have dξ ∈ D such that
ξ ∈ C(dξ) and pλ ≤ pξ+1 2 dξ. By 2.7(S 2), pλ 2λ dξ, and so pλ reduces D
to D∗.

Now for the second claim of lemma 2.9. If we have a sequence D̄ =
(Dξ)ξ<λ of dense open subsets of R, build a sequence as before: let

x = 〈p0, 4
λ, 2λ,Cλ,≺, R, D̄, y〉.

At successor steps ξ, let pξ be the ≺-least p such that p 4λ F(λ, x, pξ−1)
and such that we can pick D∗

ξ such that pξ reduces Dξ to D∗
ξ . As before, a

greatest lower bound pλ exists and for each ξ < λ, pλ reduces Dξ to
⋃

ξ<λ D∗
ξ .

Let p  ṡ : λ → V . Let Dξ be the set of conditions p ∈ R which decide
ḟ(ξ). Find q reducing all Dξ to D∗. We now �nd a spectrum for ṡ: For
χ < λ, if w ≤ q decides ṡ(ξ) and χ ∈ Cλ(w), there is also d ∈ D∗ which
decides ṡ(ξ) and such that χ ∈ Cλ(d). Fix z such that d  f(ξ) = ž. Then
we may set Hξ(χ) = z. It is easy to check that for each ξ < λ, Hξ is a
spectrum for ṡ(ξ) (and thus (Hξ)ξ<λ is a spectrum for ṡ): Say w ≤ q decides
ṡ(ξ) and �x some χ ∈ Cλ(w). Then there is d ∈ D∗ with χ ∈ Cλ(d) such
that d  s(ξ) = Hξ(χ). As d ∈ D∗, q 2λ d. So as χ ∈ Cλ(w)∩Cλ(d), w and

d are compatible and thus w  s(ξ) = Hξ(χ). ©

Corollary 2.10. Co�nalities greater than λ remain greater than λ after forc-
ing with R and (2λ)V = (2λ)V [G] for any R-generic V .
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We illustrate de�nition 2.7 with some examples.

Example 2.11. A simple observation is that for any pre-order R, R is strati-
�ed above |R|. A little more generally, if R is λ0-centered, then R is strati�ed
above λ0: for if λ ≥ λ0, we can simply de�ne p 4λ q just if p = q. Similarly,
F(λ, x, p) = p for all p ∈ R. Thus, quasi-closure and continuity become vac-
uous. Moreover, let g : R → λ0 be a a function such that if g(p) = g(q) then
p and q are compatible. Set Cλ(p) = {g(p)} for any p ∈ R. Lastly, de�ne
p 2λ q to hold for any pair p, q. Then the only non-vacuous condition in
the de�nition of strati�cation is centering, which holds for every λ ≥ λ0 since
g witnessed that R was centered.

This example has a corollary:

Corollary 2.12. If a pre-ordered set R is strati�ed, we can always assume
that for λ ≥ |R|, F, 4λ, 2λ and Cλ take the simple form discussed above in
example 2.11.

Observe that (C 4) and (S 3) remain valid if we modify a given pre-strati�cation
system in such a way as to ensure that the above assumption holds. A more
interesting example:

Example 2.13. Say R = P ∗ Q̇ where P is (λ0)
+-centered and (λ0)

+-closed
and P Q̇ is λ0-centered and λ0-closed. Then R is strati�ed�ignoring (S I).
If the centering functions for P and Q̇ξ in the extension are continuous in
the sense of (S I)�and it seems that for many centered forcings, this is the
case�R is actually strati�ed.

De�ne F as in the previous example. For λ < λ0, de�ne 4λ to be identical
to ≤R. De�ne p 2λ q if and only if p = q and C(p) = λ for every p ∈ R. Then
Interpolation and centering hold at λ for trivial reasons, and quasi-closure at
λ expresses the fact that R is closed under sequences of length at most λ. For
λ = λ0, �x a name for a centering function ġ; set (p, q̇) 4λ (p′, q̇′) if and only
if (p, q̇) ≤ (p′, q̇′) and q̇ = q̇′; set (p, q̇) 2λ (p′, q̇′) if and only if p ≤P p′. Let
χ ∈ Cλ(p, q̇) if and only if p  ġ(q̇) = χ̌. Lastly, R has a subset R′ which is
(λ0)

+ centered and 4λ0-dense. This allows us to de�ne a strati�cation above
(λ0)

+, in a similar way to the previous example.

2.4 Composition of strati�ed forcing

In the main theorem of this section, theorem 2.14 below, we show strati�-
cation is preserved by composition. In the proof, we use �guessing systems�,
which we shall motivate now, before we state and prove the theorem.
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Say P is strati�ed and Q̇ is forced by P to be strati�ed, and let λ be
�xed. We know P has a centering function C and Q̇ is forced to have a
centering function Ċ in the extension. Similar to the proof that composition
of centered forcing stays centered, we want to gain some control over Ċ in the
ground model. If we ignore the requirements 2.6(S 4) density and 2.7(S I)
continuity, we could de�ne C̄ on P ∗ Q̇ in the following way:

(χ, ξ) ∈ C̄(d, ḋ) ⇐ : χ ∈ C(d) and d  ξ̌ ∈ Ċ(ḋ)

Then dom(C̄) is dense and 2.7(S IV) centering holds.
The following de�nition also satis�es 2.6(S 4) density : let

(χ, X) ∈ C̄(d, ḋ) ⇐ :
(
χ ∈ C(d) and for some ξ̇ and λ′ ∈ Reg∩[λ0, λ),

X is a λ′-spectrum for ξ̇ below d and d  ξ̇ ∈ Ċ(ḋ)
)
. (2.1)

Let's check 2.6(S 4) density holds: Given a condition p̄ = (p, ṗ) and λ′ ∈
Reg∩[λ0, λ), we can �nd d̄ = (d, ḋ) such that d̄ 4̄λ′

p̄, d ∈ dom(C) and d 
ḋ ∈ dom(Ċ). Moreover, we can assume that for some name χ̇, d  χ̇ ∈ Ċ(ḋ)
and χ̇ is λ′-chromatic. We have d̄ ∈ dom(C̄). Let's also check that 2.7(S IV)

centering holds: say d̄ 2̄λ
p̄ and (χ, X) ∈ C̄(p̄) ∩ C̄(d̄). First, observe that

p and d are compatible. Fix χ̇0, χ̇1 such that both p  χ̇0 ∈ Ċ(ṗ) and
d  χ̇1 ∈ Ċ(ḋ) and X is a spectrum for χ̇0 below p and for χ̇1 below d. As
p · d  χ̇0 = χ̇1 ∈ Ċ(ḋ) ∩ Ċ(ṗ), by centering for Q̇ in the extension, p · d  ḋ
and ṗ are compatible, whence d̄ and p̄ are compatible.

To show strati�cation is preserved at limits, we will have to use Continuity
of the centering function; Unfortunately, the approach described above does
not yield a continuous centering function in the sense of (S I). For say
d̄ξ = (dξ, ḋξ) form a λ′-adequate sequence of length ρ, and for each ξ < ρ,
dξ  χ̇ξ ∈ Ċ(ḋξ) and Xξ is a λξ-spectrum for χ̇ξ below dξ. By Continuity for
the components of the forcing, if (d, ḋ) is a greatest lower bound, we know
d  ḋ ∈ dom(Ċ); but there is no reason to assume that there exists a P -name
γ̇, such that d  γ̇ ∈ Ċ(ḋ) and γ̇ is λ′′-chromatic for some λ′′ < λ.

The solution to this problem is to allow a more general set of values for
C̄(d̄): in the situation described above, e.g. the sequence (Xξ)ξ<ρ be used in
much the same way as the single spectrum X. This leads to the notion of a
guessing system, which will be precisely de�ned in 2.15.

Theorem 2.14. Say P is strati�ed above λ0 and Q̇ is forced by P to be
strati�ed above λ0. Then P̄ = P ∗Q is strati�ed (above λ0).

Proof. Say strati�cation of P is witnessed by F,Cλ, 4λ, 2λ for each regular

λ ≥ λ0, and we have names Ḟ and Ċλ, 4̇
λ
, 2̇

λ
for λ regular which are forced



28 CHAPTER 2. STRATIFIED FORCING

by P to witness the strati�cation of Q̇. We now de�ne F̄λ, C̄λ, 4̄λ
and 2̄λ

for regular λ ≥ λ0 to witness strati�cation of P ∗ Q̇.

The auxiliary orderings

Let λ ≥ λ0 be regular. We say (p, q̇)4̄λ
(u, v̇) if and only if p 4λ u and

p P q̇4̇
λ
v̇. This de�nes a pre-order stronger than the natural ordering on

P ∗Q̇ (i.e. 2.1(C 1) holds). De�ne p̄ 2̄λ
q̄ if and only if p 2λ q and if p ·q 6= 0,

p · q P ṗ 2λ q̇.

The ordering axioms

Let p̄ = (p, ṗ), q̄ = (q, q̇) and r̄ = (r, ṙ) be conditions in P̄ .

We check that 2.1(C 3) holds: Say p̄ ≤P̄ q̄ ≤P̄ r̄ and p̄ 4̄λ
r̄. Then p 4λ r

by 2.1(C 3) for P . Moreover, p forces 2.1(C 3) for Q̇ as well as ṗ ≤ q̇ ≤ ṙ

and ṗ4̇
λ
ṙ. So p P ṗ4̇λq̇, and we conclude p̄ 4̄λ

q̄.
Check that 2.6(S 2) holds: Say p̄ ≤P̄ q̄ 2̄λ

r̄. By (S 2) for P , p 2λ r. If
p · r 6= 0,

p · r P ṗ ≤Q̇ q̇ 2λ ṙ,

and so p · r P ṗ 2λ ṙ. Thus p̄ 2̄λ
r̄.

Next, check 2.6(S II). Say p̄ 2̄λ
q̄ and q̄ 4̄λ

1P̄ . By (S II) for P , p ≤ q.

So p  ṗ2̇
λ
q4̇

λ
1Q̇, so by (S II) applied in the extension, p  ṗ ≤Q̇ q̇, whence

p̄ ≤P̄ q̄. We leave it to the reader to check 2.1(C 4) and 2.7(S 3).

Quasi-Closure

De�ne F̄(λ, x, (p, q̇)) = (F(λ, x, p), q̇∗), where q̇∗ is the ≺-least P -name such
that 1P P q̇∗ = Ḟ(λ, x, q̇).

Why is this de�nable by a ∆A
1 formula? This involves an essential use of

parameters, as discussed in 2.2. We assume that either P or some Lµ[A] for
µ such that P ⊂ Lµ[A], as well as ≺ restricted to P or Lµ[A] are among the
constants in x.3 Then the following formula witnesses that F̄ is ∆A

1 (λ∪{x}):

(p∗, q̇∗) = F̄(λ, x, (p, q̇)) ⇐ :
[
p∗ = F(λ, x, p) and

1P P q̇∗ = Ḟ(λ, x, q̇) and

∀q̇′ ∈ Lµ[A]
(
q̇′ ≺ ṗ′: 6P q̇′ = Ḟ(λ, x, q̇)

)]
3We could, but do not need to assume that P is available as a parameter, since this

relation is ∆A
1 if restricted to ∆A

1 formulas of the forcing language.



2.4. COMPOSITION OF STRATIFIED FORCING 29

Clearly, (C 2) is satis�ed. Now say (pξ, q̇ξ)ξ<ρ is (λ, x)-adequate. We
show this sequence has a greatest lower bound. We can immediately infer
that (pξ, q̇ξ)ξ<ρ is (λ, x)-strategic. Fix a ∆A

1 (λ ∪ {x}) formula Φ(x, y) such
that

Φ(x, ξ) ⇐ :
(
ξ < δ and x = (pξ, q̇ξ)

)
.

Then

∃q ∈ Lµ[A] Φ((p, q), ξ)

is a ∆A
1 (λ ∪ {x}) de�nition of (pξ)ξ<ρ, if we assume that P ⊆ Lµ[A] and

Lµ[A] is among the constants in x. So (pξ)ξ<ρ is (λ, x)-adequate and thus
has a greatest lower bound pρ.

By a similar argument, pρ P �(q̇ξ)ξ<ρ is (λ, x)-adequate�. Here we also
use Lµ[A] has a simple de�nition, as the ∆A

1 (λ ∪ {x}) de�nition of r̄ was
relative to the ground model (alternatively, we could assume ∆1 formulas are
absolute for Lµ[A]). So we can �nd q̇ρ such that pρ P � q̇ρ is a greatest lower
bound of (q̇ξ)ξ<ρ�, whence (pρ, q̇ρ) is a greatest lower bound of the original
sequence. Leaving the last sentence of (C II) to the reader, we conclude that
〈P ∗ Q̇, 2̄λ, F̄〉 is λ-quasi-closed above λ0.

To de�ne C̄λ, we �rst de�ne the notion of a guessing system. Roughly
speaking, a guessing system consists of conditions which are organized in
levels; the conditions on the bottom have a C̄λ-value in the sense of (2.1).
Conditions on higher levels are greatest lower bounds of conditions on the
levels below, and we have some control over their Ċλ-value by continuity for
Q̇.

De�nition 2.15. Say (p, q̇) ∈ P ∗ Q̇ and λ is regular and uncountable. A
λ-guessing system for q̇ below p is a quadruple (Tg, Hg, λg, qg) such that

1. Tg is a tree, Tg ⊆ <ωγ, where γ = width(T ) < λ and C (initial segment)
is reversely well founded on Tg. The root of Tg is ∅ (i.e. the empty
sequence).

2. For s ∈ Tg, ρg(s) = {ξ | ŝ ξ ∈ Tg} is an ordinal. Write T 0
g for the set of

C-maximal s ∈ Tg, i.e. T 0
g = {s ∈ Tg | ρg(s) = 0}.

3. qg is a function from Tg into the set of P -names for conditions in Q̇ and
λg : Tg → λ ∩ Reg.

4. For s ∈ Tg \ T 0
g , {qg(ŝ ξ)}ξ<ρg(s) is a λg(s)-adequate sequence and p

forces that qg(s) is a greatest lower bound of {qg(ŝ ξ)}ξ<ρg(s).

5. dom(Hg) = T 0
g .
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6. For s ∈ T 0
g , there is a P -name χ̇ such that p P χ̇ ∈ Cλ(qg(s)) and

Hg(s) is a λg(s)-spectrum of χ̇ below p.

7. qg(∅) = q̇.

Now we are ready to de�ne C̄λ: let s ∈ C̄λ(p, q̇) if and only if either

(a) s ∈ Cλ(p) and p  q̇4̇
λ
1Q̇ holds or else

(b) if λ > λ0, s = (χ, Tg, Hg, λg) where χ ∈ Cλ(p) and for some qg,
(Tg, Hg, λg, qg) is a λ-guessing system for q̇ below p.

(c) if λ = λ0, s = (χ, ξ), where χ ∈ Cλ(p) and p P ξ̌ ∈ Ċλ(q̇).

It is straightforward to check that ran(C̄λ) has size at most λ. Thus we may
assume C̄λ ⊆ (P ∗ Q̇)× λ, although this is not literally the case.

We have �nally de�ned the strati�cation of P̄ = P ∗ Q̇. Let's check the
remaining axioms.

Continuity

Say λ′ ∈ [λ0, λ) is regular, both p̄ = (pξ, ṗξ)ξ and q̄ = (qξ, q̇ξ)ξ are λ′-adequate
sequences of length ρ and for each ξ < ρ, C̄λ(pξ, ṗξ) ∩ C̄λ(qξ, q̇ξ) 6= ∅. More-
over, let (p, ṗ) and (q, q̇) denote greatest lower bounds of p̄ and q̄, respectively.

First, by Continuity for P , we can �nd χ ∈ Cλ(p) ∩ Cλ(q). For each
ξ < ρ, �x (T ξ

g , Hξ
g , λ

ξ
g) such that for some χ′,

(χ′, T ξ
g , Hξ

g , λ
ξ
g) ∈ C̄λ(pξ, ṗξ) ∩Cλ(qξ, q̇ξ).

and �nd pξ
g such that (T ξ

g , Hξ
g , λ

ξ
g, p

ξ
g) is a guessing system for ṗξ below pξ.

Now construct a guessing system (Tg, Hg, λg, pg) for ṗ below p, showing
(p, ṗ) ∈ dom(C̄λ). It will be clear from the construction that Tg, Hg and λg

do not depend on the sequence of pξ
g, ξ < ρ. Let s ∈ Tg if and only if s = ∅

or ξ ŝ ∈ T ξ
g . Let λg(∅) = λ′, and of course pg(∅) = ṗ. Now let s ∈ Tg \ {∅}

be given and de�ne λg(s), pg(s) and, in the case that s ∈ T 0
g , also de�ne

Hg(s). Find s′ such that s = ξ ŝ′. Let λg(s) = λξ
g(s

′) and let Hg(s) = Hξ
g (s

′)
if s ∈ T 0

g (or equivalently, if s′ ∈ (T ξ
g )0). Let pg(s) = pξ

g(s
′).

To check that (Tg, Hg, λg, pg) is a guessing system, �rst observe that C is
reversely well-founded on Tg. Moreover, ρg(∅) = ρ is an ordinal and λg(∅) <
λ. Also, clause 4. holds for s = ∅, by construction. The rest of the conditions
are straightforward to check; they hold by construction and because for each
ξ < λ′, (T ξ

g , Hξ
g , λ

ξ
g, p

ξ
g) is a guessing system.

If we carry out the same construction for (q, q̇), we obtain qg such that
(Tg, Hg, λg, qg) is a guessing system for q̇ below q. Thus,

(χ, Tg, Hg, λg) ∈ C̄λ(p, ṗ) ∩ C̄λ(q, q̇).
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Interpolation

Say (d, ḋ) ≤P̄ (r, ṙ). First �nd p ∈ P such that p 2λ d and p 4λ r. If

p · d 6= 0, then p · d P ḋ ≤Q̇ ṙ, so we can �nd ṗ such that p · d P ṗ2̇
λ
ḋ and

p P ṗ4̇
λ
ṙ.

Centering

Say p̄ 2̄λ
d̄, where p̄ = (p, ṗ) and d̄ = (d, ḋ), and assume C̄λ(p̄) ∩ C̄λ(d̄) 6= ∅.

First assume we can �nd (χ, Tg, λg, Hg) ∈ C̄λ(p̄) ∩ C̄λ(d̄) (i.e. (b) holds in
the de�nition of C̄λ). As χ ∈ Cλ(p)∩Cλ(d), by centering for P there exists
w such that for all regular λ′ ∈ 0 ∪ [λ0, λ), both w 4λ′ p and p 4λ′ d.

Now �x pg and dg such that (Tg, λg, Hg, pg) is a guessing system for ṗ
below p and (Tg, λg, Hg, dg) is a guessing system for ḋ below d. We show by
induction on the rank of s (in the sense of the reversed C-order) that for
each s ∈ Tg,

p · d P Ċλ(pg(s)) ∩ Ċλ(dg(s)) 6= 0. (2.2)

First, let s ∈ T 0
g . By de�nition 2.15, 6. we can �nd P -names α̇ and β̇ such

that both have spectrum Hg(s) below p and d, respectively, and moreover:

p P α̇ ∈ Ċλ(pg(s))

and
d P β̇ ∈ Ċλ(dg(s)).

Thus, as α̇ and β̇ have a common spectrum below p · d, (2.2) holds.
For s of greater rank, we may assume by induction that for each ξ < ρg(s),

p · d P Ċλ(pg(ŝ ξ)) ∩ Ċλ(dg(ŝ ξ)) 6= 0. (2.3)

As p forces that

{pg(ŝ ξ)}ξ<ρg(s) is a λg(s)-adequate sequence and pg(s) is a
greatest lower bound of {pg(ŝ ξ)}ξ<ρg(s),

(2.4)

and as d forces the corresponding statement for dg(s) and {dg(ŝ ξ)}ξ<ρg(s),

Continuity for Q̇ in the extension allows us to infer (2.2) for this s. This
�nishes the inductive proof on the rank of s.

Finally, (2.2) holds for s = ∅, so as pg(∅) = ṗ and dg(∅) = ḋ, by centering
for Q̇ in the extension, w  there exists ẇ such that for all regular λ′ ∈
0 ∪ [λ0, λ), both ẇ4̇

λ′
ṗ and ẇ4̇

λ′
ḋ. Then w̄ = (w, ẇ) is as desired.

Now secondly assume we have χ ∈ C̄λ(p̄) ∩ C̄λ(d̄) and (a) holds in the
de�nition of C̄λ. In this case χ ∈ Cλ(p) ∩ Cλ(d). Let w ∈ P such that
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w 4<λ p and w 4<λ d. By assumption, w  ḋ4̇
λ
1Q̇ and ṗ2̇

λ
ḋ. By expansion

(S II) for Q̇, we conclude w  ṗ ≤ ḋ. We claim w̄ = (w, ṗ) is the desired

lower bound: w̄ 4̄<λ
p̄ holds because 4̇

λ
is a pre-order. We show w̄ 4̄<λ

d̄:

we have w  ṗ ≤ ḋ ≤ 1Q̇ and by assumption w  ṗ4̇
λ
1Q̇. So by (C 3), we

conclude w  ṗ 4̇
<λ

ḋ and are done.

Density

Let (p0, q̇0) ∈ R̄. First, assume λ0 < λ and �x a regular λ′ ∈ [λ0, λ). By
Density for Q̇ in the extension, we can �nd P -names χ̇ and q̇1 such that

P � q̇14̇
λ′

q̇1 and χ̇ ∈ Cλ(q̇1)�. By lemma 2.9, we can �nd p1 4λ′ p0 such that
χ̇ is λ′-chromatic below p1, and by Density for P we can �nd p2 4λ′ p1 and
ζ such that ζ ∈ Cλ(p2).

Let Tg = {∅}, qg(∅) = q̇1, λg(∅) = λ′ and let Hg(∅) be a λ′-spectrum of χ̇
below p2. Thus (Tg, λg, Hg, qg) is a guessing system for q̇1 below p2�the only
non-trivial clause is (6.), which holds as Hg(∅) is a λ′-spectrum of χ̇ below

p1 and p2 ≤P p1. So (ζ, Tg, λg, Hg) ∈ C̄λ(p2, q̇1), and (p2, q̇1)4̄
λ′

(p0, q̇0).
It remains to show dom(Cλ) is dense in the case that λ0 = λ. Find

(p1, q̇1) ≤R̄ (p0, q̇0) such that for some ordinals ζ, χ < λ, ζ ∈ Cλ(p) and

p1 P χ̌ ∈ Ċλ(q̇1). Then (ζ, χ) ∈ C̄λ(p1, q̇1). ©

2.5 Strati�ed iteration and diagonal support

We now proceed to show the notion of strati�ed forcing is iterable, if the right
support is used. To this end, let's de�ne strati�ed iteration with diagonal
support.

To motivate this, imagine we want to take a product of forcings Pξ ∗ Q̇ξ,
of the type of example 2.13. The present approach to showing these forcings
preserve co�nalities makes use of the fact that Pξ is closed under sequences
of length λ0 while Q̇ξ has a (strong form of) (λ0)

+-chain condition. If we
want to preserve the latter, we should use support of size less than λ0; if we
want to preserve the �rst, our choice would be to use support of size λ0. This
calls for a kind of mixed support: i.e. de�ne

Πd
ξ<λ0

(Pξ ∗ Q̇ξ)

to be the set of all sequences (p(ξ), q̇(ξ))ξ<λ0 ∈ Πξ<λ0(Pξ ∗ Q̇ξ) such that for
all but less than λ0 many ξ,

p(ξ) P q̇(ξ) = 1̇ξ. (2.5)
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Using the strati�cation of P ∗ Q̇, (2.5) may be written as

(p(ξ), q̇(ξ)) 4λ0 1Pξ∗Q̇ξ
.

The use of the term �diagonal� is motivated by the intuition that we allow
large support on Pξ, which we regard as the �upper� part, and small support
on Q̇ξ, which we regard as the �lower� part of the forcing Pξ ∗ Q̇ξ.

De�nition 2.16. 1. We say the iteration Q̄θ = 〈Pν ; Q̇ν ,≤ν , 1̇ν〉ν<θ has
strati�ed components if and only if for every ν < θ, Q̇ν is a Pν-name
and Pν forces Q̇ν is a strati�ed partial order as witnessed by the system
of Pν-names

S̄ = (4̇λ
ν , 2̇

λ
ν , Ḟν , Ċν)λ∈Reg,ν<θ.

(which is called its strati�cation). Moreover, we demand that for all
regular λ there is θλ < λ+ such that for all ι ∈ [θλ, θ) and all p ∈ Pθ we

have p� ι Pι p(ι)4̇
λ
1Q̇ι

.

2. Pθ is the diagonal support limit of the iteration with strati�ed compo-
nents Q̄θ with strati�cation S̄ if and only if Pθ is the set of all threads
though Q̄θ such that the following support condition is met: for each
regular λ, suppλ(p) has size less than λ, where suppλ(p) is de�ned as

suppλ(p) = {ξ | p�ξ 6ξ p(ξ)4̇ξ1̇ξ}.

3. We say Q̄θ is an iteration with diagonal support if for all limit ν < θ,
Pν is the diagonal support limit of Q̄ν.

We omit the proof of the following theorem, since it will follow from
theorem 3.23 and lemma 3.20 as corollary 3.26. In the proof of the main
theorem, we will need to use these stronger lemmas, theorem 2.17 does not
su�ce.

Theorem 2.17. Say Q̄ = 〈Pν , Q̇ν〉ν<θ is an iteration with strati�ed compo-
nents and diagonal support. Then Pθ is strati�ed.
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Extension and iteration

The proof of the main result makes it necessary to consider iterations Q̄θ such
that each initial segment Pι is strati�ed above a regular cardinal λι, but it is
not forced that Q̇ι be strati�ed for all ι < θ. We deal with this di�culty by
introducing the concept of (Pι, Pι+1) being a strati�ed extension. With the
right support, this ensures that the initial segments are su�ciently coherent
so that we can conclude that Pθ is strati�ed. This coherency provided by
extension is vital: e.g. an iteration whose proper initial segments are all
σ-strategically closed can add a real (see [KS10]).

To further complicate things, λι is not the same �xed cardinal throughout
the iteration.

We treat quasi-closed and strati�ed extension separately (sections 3.1
and 3.2). Each axiom of strati�ed (or quasi-closed) extension corresponds
to an axiom of strati�cation (or quasi-closure)�in fact, interestingly, P is
strati�ed if and only if ({1P}, P ) is a strati�ed extension. To prove the
iteration theorem, we also have to add some additional axioms concerning
the interplay of the pre-strati�cation (pre-closure) systems on Pι and Pι+1;
see de�nitions 3.1 and 3.18.

In section 3.3 we show products of strati�ed forcings are strati�ed ex-
tensions. Finally, we introduce the stable meet operator in section 3.4 and
remote sub-orders in section 3.5.

3.1 Quasi-closed extension and iteration

In this section, we show that composition of quasi-closed forcing is a special
case of quasi-closed extension. We give a su�cient condition which makes
sure that if (P0, P1) is a quasi-closed extension, then P1 is quasi-closed. We
prove that the relation of being a quasi-closed extension is transitive. Finally,

34
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we formulate and prove an iteration theorem for quasi-closed forcing.
Let P0 be a complete sub-order of P1 and let π : P1 → P0 be a strong

projection. Moreover, assume we have a system si = (Fi, 4λ
i )λ≥λ0 for i ∈

{0, 1} such that Fi : Reg \λ0 × V ×Pi → Pi is a (de�nable) function and for
every λ ≥ λ0, 4λ

i is a binary relation on Pi.

De�nition 3.1. We write s0 C s1 to mean

(Cc1) For all p, q ∈ P0, p 4λ
0 q:p 4λ

1 q.

(Cc2) For all p, q ∈ P1, p 4λ
1 q:π(p) 4λ

0 π(q).

(Cc3) π(F1(λ, x, p)) = F0(λ, x, π(p)).

Observe that if s0Cs1 we can drop the subscripts on 4λ
0 , 4

λ
1 and just write 4λ

without causing confusion. By the way, note that (Cc3) has to be loosened
in a class forcing context.

De�nition 3.2. We say the pair (P0, P1) is a quasi-closed extension above
λ0, as witnessed by (s0, s1) if and only if s0 witnesses that P0 is quasi-closed
above λ0, s1 is a pre-closure system on P1, s0 C s1 and for λ, λ̄ ∈ Reg such
that λ0 ≤ λ ≤ λ̄, the following conditions hold:

(EcI) If p 4λ̄ π(p), then F1(λ, x, p) 4λ̄ π(F1(λ, x, p)).

(EcII) If p̄ = (pξ)ξ<ρ is a sequence of conditions in P1 such that for some
q ∈ P0

(a) q is a greatest lower bound of the sequence (π(pξ))ξ<ρ and for all
ξ < ρ, q 4λ π(pξ),

(b) p̄ is (λ, x)-strategic and ∆A
1 ({x} ∪ λ̄)-de�nable,

(c) either λ = λ̄ or pξ 4λ̄
1 π(pξ) for each ξ < ρ,

then p̄ has a greatest lower bound p in P1 such that for each ξ < ρ,
p 4λ pξ and π(p) = q. Moreover, if pξ 4λ̄

1 π(pξ) for each ξ < ρ, then
also p 4λ̄

1 π(p).

As before, if we say (P0, P1) is a quasi-closed extension and don't mention
either of s0, s1 or λ0, the entity we forgot to mention is either clear from the
context or we are claiming that one can �nd such an entity.

We will grow tired of repeating all the conditions p̄ has to satisfy in (EcII),
so we issue the following de�nition:

De�nition 3.3. We say p̄ is (λ, λ̄, x)-adequate if and only if λ and λ̄ are
regular such that λ0 ≤ λ ≤ λ̄ and p̄ satis�es conditions (EcIIb) and (EcIIc)
above. We say q is a π-bound if and only if (EcIIa) holds.
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Of course, the obvious example for quasi-closed extension is provided by
composition of forcing notions:

Lemma 3.4. If P is quasi-closed above λ0 and P Q̇ is quasi-closed above
λ0, then (P, P ∗ Q̇) is a quasi-closed extension above λ0.

To be more precise, let s0 denote the pre-quasi-closure system witnessing
that P is quasi-closed and let s1 = (F̄, 4̄λ

)λ≥λ0 be the pre-quasi-closure system
constructed as in the proof of 2.14, where we showed that P ∗ Q̇ is strati�ed.
Then (s0, s1) witnesses that (P, P ∗ Q̇) is a quasi-closed extension above λ0.

We give the proof after we prove the following simple lemma, which will be
useful in several contexts.

Lemma 3.5. Say R carries a pre-closure system s above λ0 and p̄ = (pξ)ξ<ρ

is (λ, x)-strategic and ∆A
1 (λ̄∪{x})-de�nable. If for all ξ < ρ, pξ 4λ̄ 1R, then

p̄ is in fact (λ̄, x)-adequate.

Proof of lemma 3.5. For arbitrary ξ < ξ̄ < ρ, by 2.1(C 3), as pξ̄ ≤ pξ ≤ 1R

and pξ̄ 4λ̄ 1R, we have pξ̄ 4λ̄ pξ. Thus p̄ is (λ̄, x)-strategic. ©

Proof of lemma 3.4. Just by looking at the de�nition of 4̄λ
and F̄, it is

immediate that s0 C s1 and that s1 is a pre-closure system. To check that
s1 is a pre-closure system, observe 2.1(C 3) has already been checked in the
proof of theorem 2.14. The other conditions we leave to the reader.

Condition 3.2(EcI) holds since P forces 2.3(C I) for Q̇: Say (p, ṗ)4̄λ̄
(p, 1Q̇).

That is,

p P ṗ4̇
λ̄
1Q̇.

Then
p  Ḟ(λ, x, ṗ)4̇

λ̄
1Q̇,

and consequently,

F̄(λ, x, (p, ṗ))4̄λ̄
(p, 1Q̇).

Now to the main point, that is 3.2(EcII): Say p̄ = (pξ, ṗξ)ξ<ρ is sequence of
conditions in P1 which is (λ, λ̄, x)-adequate�i.e. (EcIIb) and (EcIIc) hold�
and assume q ∈ P0 is a π-bound�i.e. (EcIIa) holds.

Under suitable assumptions about x, q forces that (ṗξ)ξ<ρ is ∆A
1 ({x}∪ λ̄)-

de�nable (this is the same argument as in the proof of theorem 2.14). If
λ = λ̄, we may immediately conclude that q forces that (ṗξ)ξ<ρ is λ-adequate
in Q̇. Thus we may pick a P -name q̇ such that q forces q̇ ∈ Q̇ is the greatest
lower bound of (ṗξ)ξ<ρ in Q̇. Then (q, q̇) is the greatest lower bound of p̄ and
we are done with the proof of 3.2(EcII) in this case.
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If on the other hand, λ < λ̄, we may assume that for all ξ < ρ, (pξ, ṗξ) 4λ̄
1

(pξ, 1Q̇). We claim that q forces that (ṗξ)ξ<ρ is λ̄-adequate in Q̇. To this end,
we �rst check that q forces (ṗξ)ξ<ρ is (λ, x)-strategic. Let ξ < ρ be given and
�x λ′ such that

(pξ+1, ṗξ+1)4̄
λ′

(pξ, ṗξ)

and
(pξ+1, ṗξ+1) ≤ F̄(λ′, x, (pξ, ṗξ)).

Clearly, q forces both ṗξ+1 4λ′ ṗξ and ṗξ+1 ≤ F(λ′, x, ṗξ). Thus, q forces

(ṗξ)ξ<ρ is (λ, x)-strategic. Observe that for each ξ < ρ, q P ṗξ4̇
λ̄
1Q̇. Also,

q forces that (ṗξ)ξ<ρ is ∆A
1 ({x}∪ λ̄)-de�nable, whence by lemma 3.5 we have

that q forces (ṗξ)ξ<ρ is λ̄-adequate, as claimed. Thus q also forces that this
sequence has a lower bound, for which we may �x a name q̇. By quasi-closure
for Q̇ in the extension and since for all ξ < ρ we have

q  ṗξ4̇
λ̄
1Q̇,

we conclude that for any ξ < ρ we have

q  q̇4̇
λ̄
q̇ξ.

Thus (q, q̇) is a greatest lower bound of p̄ and

(q, q̇)4̄λ̄
(q, 1Q̇).

©

We now embark on a series of lemmas culminating in the insight that the
second forcing of a quasi-closed extension (P0, P1) is itself quasi-closed. Thus,
we obtain a second proof that P ∗ Q̇ is quasi-closed (under the assumptions
of the previous lemma). This makes use of the fact that the projection map
π0 : P ∗ Q̇ → P is de�nable. In general, we shall see that we have to assume
that the strong projection map from P1 to P0 is among the parameters ~c, in
the sense of 2.2.

Lemma 3.6. Assume for i ∈ {0, 1}, Pi carries a pre-closure system si above
λ0 and s0Cs1. If p̄ = (pξ)ξ<ρ is a sequence of conditions in P1 which is (λ, x)-
strategic with respect to s1, then (π(pξ))ξ<ρ is (λ, x)-strategic with respect to
s0.

Proof. Suppose we are given p̄ as in the hypothesis. If ξ < ξ̄ < ρ, since pξ 4λ
1

pξ̄, by 3.1(Cc2), π(pξ) 4λ
0 π(pξ̄). Let ξ < ρ be arbitrary. Fix a regular λ′ such

that pξ+1 4λ′
1 pξ and pξ+1 ≤ F1(λ, x, pξ). By 3.1(Cc2), π(pξ+1) 4λ′

0 π(pξ) and

by 3.1(Cc3), π(pξ+1) ≤ F0(λ, x, π(pξ)), �nishing the proof. ©
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Lemma 3.7. Assume (Pi, si), i ∈ {0, 1} are as in lemma 3.6. Further,
assume that the strong projection map π : P1 → P0 is ∆A

1 (λ ∪ {x}) and that
some large enough Lµ[A] is among the parameters in x, where Lµ[A] ⊇ P .
If p̄ = (pξ)ξ<ρ is a sequence of conditions in P1 which is (λ, x)-adequate with
respect to s1, then (π(pξ))ξ<ρ is (λ, x)-adequate with respect to s0.

Proof. By the previous lemma, (π(pξ))ξ<ρ is (λ, x)-strategic. By assump-
tion (π(pξ))ξ<ρ is ∆A

1 ({x} ∪ λ), since having Lµ[A] ∈ x available as a pa-
rameter bounds the additional quanti�er resulting from the projection from
p̄ to (π(pξ))ξ<ρ. Without it, the natural de�nition of (π(pξ))ξ<ρ would be

∆A
2 (λ ∪ {x}). ©

The following is useful e.g. when we show a condition has legal support.
Here lies one of the reasons for asking (C 3).

Lemma 3.8. Assume (Pi, si), for i ∈ {0, 1} are as in lemma 3.6. For any
p ∈ P1 and any regular λ ≥ λ0 we have:

(∃q ∈ P0 p 4λ
1 q) ⇐ : p 4λ

1 π(p) (3.1)

Proof. One direction is clear, so say p 4λ
1 q for some q ∈ P0. Apply 2.1(C 3):

As π is a strong projection, p ≤ π(p) ≤ q and so p 4λ
1 π(p). ©

The intuition behind de�nition 3.2 is that P0 and P1 are both quasi-closed,
not independently of each other, but in a very coherent way. That P1 is quasi-
closed is almost implicit in de�nition 3.2�it depends on a further assumption
about the de�nability of π (this is responsible for the distinct �avor of quasi-
closure, setting it apart from the other axioms of strati�cation):

Lemma 3.9. If (P0, P1) is a quasi-closed extension above λ0 and π is ∆A
1 (λ0),

then P1 is quasi-closed above λ0.

Before we give the proof, note that this assumption on π is not entirely trivial:
in an iteration, the canonical projection π : Pθ → Pι is ∆0 in the parameter
ι; it is not in general ∆A

1 (λ0). Also we would like to note in passing that
in fact P is quasi-closed exactly if ({1P}, P ) is a quasi-closed extension; the
same will be true for strati�ed forcing.

Proof. First check 2.3(C I): let p ∈ P1 and say p 4λ̄
1 1. By lemma 3.1,

p 4λ̄
1 π(p), so by 3.2(EcI) and 3.1(Cc3)

F1(λ, x, p) 4λ̄
1 F0(λ, x, π(p)).
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By 2.1(Cc2), we have π(p) 4λ̄
0 1, and so

F0(λ, x, π(p)) 4λ̄
0 1.

Using 3.1(Cc1) and the fact that 4λ̄
1 is transitive, we �nally conclude

F1(λ, x, p) 4λ̄
1 1,

�nishing the proof of 2.3(C I).
It remains to check 2.3(C II), so say p̄ = (pξ)ξ<ρ is λ-adequate, as wit-

nessed by x. By assumption, π is ∆A
1 (λ0), so by lemma 3.7, (π(pξ))ξ<ρ is

also (λ, x)-adequate. Since P0 is quasi-closed, (π(pξ))ξ<ρ has a greatest lower
bound q. Thus, applying 2.3(C II) for λ̄ = λ, we conclude that p̄ has a

greatest lower bound. ©

The next lemma will be used in 3.12 when we show that if the initial segments
of an iterations form a chain of quasi-closed extensions, then the limit is
itself a quasi-closed extension. It says that the relation of being a quasi-
closed extension is transitive. Let P0, P1 and P2 be pre-orders such that for
i ∈ {0, 1}, Pi is a strong sub-order of Pi+1.

Lemma 3.10. Say π1 : P2 → P1 and π0 : P2 → P0 are strong projection maps
and π1 is ∆A

1 (λ0). If both (P0, P1) and (P1, P2) are quasi-closed extensions
above λ0, then (P0, P2) is also a quasi-closed extension above λ0.

Proof. Let (s0, s1) and (s1, s2) witness that (P0, P1) and (P1, P2) are quasi-
closed extensions.

We now check all the conditions of 3.2 for (P0, P2) and (s0, s2). That s2

is a pre-closure system holds by assumption, and that s0 C s2 is obvious.
Observe that by 3.1(Cc1), we don't need to distinguish between 4λ

0 , 4λ
1

and 4λ
2 and therefore we drop the subscripts in what follows.

We check 3.2(EcI): Say p ∈ P2 and

p 4λ̄ π0(p). (3.2)

By lemma 3.8, it follows that p 4λ̄ π1(p). Thus

F2(λ, x, p) 4λ̄ π1(F2(λ, x, p)). (3.3)

By 3.1(Cc3) for (P1, P2), we have

π1(F2(λ, x, p)) = F1(λ, x, π1(p)), (3.4)
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Equation (3.2) and 3.1(Cc2) imply π1(p) 4λ̄
1 π0(p), and so

F1(λ, x, π1(p)) 4λ̄ π0(F1(λ, x, π1(p))). (3.5)

Equations (3.3), (3.4) and (3.5) yield

F2(λ, x, p) 4λ̄ π0(F1(λ, x, π0(p))).

Using 3.1(Cc3) twice, we have

π0(F1(λ, x, π1(p))) = F0(λ, x, π0(p)) = π0(F2(λ, x, p)).

So �nally,
F2(λ, x, p) 4λ̄ π0(F2(λ, x, p)).

It remains to check 3.2(EcII). So let p̄ = (pξ)ξ<ρ be a λ-strategic sequence
of conditions in P2 which is ∆A

1 (λ̄∪{x}), and let q0 be a greatest lower bound
of (π0(pξ))ξ<ρ as in the hypothesis. Since π1 is ∆A

1 (λ̄ ∪ {x}), the sequence
q̄ = (π1(pξ))ξ<ρ is ∆A

1 (λ̄ ∪ {x})-de�nable, and by lemma 3.6, it is λ-strategic
with respect to s1. Moreover, if it is the case that λ̄ > λ, then

∀ξ < ρ pξ 4λ̄ π0(pξ). (3.6)

By 2.1(Cc2), we have that

∀ξ < ρ π1(pξ) 4λ̄ π0(pξ). (3.7)

Thus q̄ satis�es the hypothesis of 3.2(EcII) for (P0, P1) and we may �nd a
greatest lower bound q1 ∈ P1 as in the conclusion of 3.2(EcII) for (P0, P1).
In particular,

π0(q1) = q0. (3.8)

Thus p̄ satis�es the hypothesis of 3.2(EcII) for (P1, P2), and so we may �nd
a greatest lower bound q as in the conclusion of 3.2(EcII). In particular,
π1(q) = q1 and so π0(q) = q0. If λ < λ̄, lemma 3.8 and (3.6) yield

∀ξ < ρ pξ 4λ̄ π1(pξ). (3.9)

So �nally, as q 4λ π1(q) by (3.9), and since π1(q) = q1 and q1 4λ̄ π0(q1) by

(3.7), we conclude q 4λ̄ π0(q) by (3.8). ©
De�nition 3.11. Say θ is a limit ordinal, and Q̄θ is an iteration such that for
each ι < θ, Pι carries a pre-closure system sι above λι, where the sequence
λ̄ = (λι)ι<θ is a non-decreasing sequence of regulars. All of the following
de�nitions are relative to these pre-closure systems and to λ̄.

1. For a thread p through Q̄θ, let

suppλ(p) = {ι < θ | λ < λι and πι+1 64λ
ι+1 πι(p)},

and let σλ(p) be the least ordinal σ such that suppλ(p) ⊆ σ.
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2. Let λ∗ be regular such that λ∗ ≥ λι for all ι < θ. We say Pθ is the
λ∗-diagonal support limit of Q̄θ if and only if Pθ consists of all threads
p through Q̄θ such that for each regular λ ≥ λ∗, suppλ(p) has size less
than λ and σλ∗(p) < θ.

3. We de�ne the natural system of relations on Pθ as follows

(a) p 4λ
θ q ⇐ : ∀ι < θ πι(p) 4λ

ι πι(q);

(b) Fθ(λ, x, p) is the thread (Fι(λ, x, πι(p)))ι<θ.

We shall see in the proof of theorem 3.12 that under natural assump-
tions the natural system of relations is a pre-closure system.

4. We say Q̄θ is a λ̄-diagonal support iteration if and only if for any limit
ι < θ, Pι is the λι-diagonal support limit of Q̄ι.

Theorem 3.12. Let Q̄θ be an iteration such that for each ι < θ, Pι carries
a pre-closure system sι above the regular cardinal λι, where the sequence
λ̄ = (λι)ι<θ is non-decreasing. Moreover, let λθ = min(Reg \ supι<θ λι) and
assume

1. For all ι < θ, (Pι, Pι+1) is a quasi-closed extension above λι+1.

2. If ῑ < θ is limit, sῑ is the natural system of relations on Pῑ above λι

and Q̄ι is a λ̄� ι-diagonal support iteration.

Let Pθ be the λθ-diagonal support limit of Q̄θ. Then Pθ is quasi-closed above
λθ.

In the proof of the theorem, we need the following lemmas 3.13�3.16, showing
that the notion of λ-support behaves as we expect. So �x an iteration Q̄θ+1

and pre-closure systems as in the hypothesis of the theorem. These lemmas
are somewhat technical but straightforward to show.

Lemma 3.13. For each regular λ ≥ λθ and p ∈ Pθ,

suppλ(p) =
⋃
ι<θ

suppλ(πι(p)).

Proof. First, prove ⊇: Say ξ is a member of the set on the right. Thus there
is some ι < θ such that

πξ+1(πι(p)) 64λ πξ(πι(p)). (3.10)
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We consider two cases: �rst, assume ι ≤ ξ. Then πξ+1(πι(p)) = πι(p) =
πξ(πι(p)), and so as 4λ is a pre-order, (3.10) is false. Thus this case never oc-
curs, and we can assume ι > ξ. Then πξ+1(πι(p)) = πξ+1(p) and πξ(πι(p)) =
πξ(p), so (3.10) is equivalent to πξ+1(p) 64λ πξ(p). We infer that ξ ∈ suppλ(p).

All of the above inferences can be reversed, so ⊆ holds as well. ©

Lemma 3.14. If λ, λ̄ are regular such that λθ ≤ λ ≤ λ̄ and p 4λ̄ q, then
suppλ(p) ⊆ suppλ(q).

Proof. Left to the reader. ©

Observe though that ⊇ does not necessarily hold: in a two-step iteration

P ∗ Q̇, we could have and (p, 1Q̇) 4̄λ
(q, q̇) but q 6P q̇4̇

λ
1Q̇ (say e.g. p  q̇ =

1Q̇). In this example we have suppλ(p, 1Q̇) = {0} 6⊇ suppλ(q, q̇) = {0, 1}.

Lemma 3.15. Fix ῑ < θ. If p ∈ Pθ and λ, λ̄ are regular such that λθ ≤ λ ≤ λ̄
and p 4λ̄ πῑ(p), then

suppλ(p) = suppλ(πῑ(p)).

Proof. A short proof: ⊇ holds by lemma 3.13 and ⊆ is a consequence of
lemma 3.14. We also give a direct proof: If ι < ῑ, πι(πῑ(p)) = πι(p), so for
such ι,

ι ∈ suppλ(p) ⇐ : ι ∈ suppλ(πῑ(p)).

If ι ≥ ῑ, we have πι+1(p) ≤ πι(p) ≤ πῑ(p). By assumption and by 3.1(Cc2)
for (Pι+1, Pθ), we have πι+1(p) 4λ̄ πῑ(p). So by lemma 3.8, πι+1(p) 4λ πι(p).

We conclude that for ι ≥ ῑ, we have ι 6∈ suppλ(p). ©

Lemma 3.16. Let λ1 be the maximum of cf (θ) and λθ. Say q = (qι)ι<θ is a
thread through Q̄θ and say there is w ∈ Pθ such that for all ι < θ, qι 4λ1 w.
Then q has legal support, i.e. q ∈ Pθ.

Proof. Let λ be regular. First consider the case λθ ≤ λ ≤ λ1. As q 4λ1 w, by
lemma 3.14, suppλ(q) ⊆ suppλ(w), which satis�es the requirement of diagonal
support by assumption. Now say λ > λ1 and �x a sequence (θ(ζ))ζ<cf (θ)

which is co�nal in θ. By lemma 3.13

suppλ(q) =
⋃

ζ<cf (θ)

suppλ(qθ(ζ)),

and by assumption the right hand side is a union over bounded subsets of λ.
Thus suppλ(q) is a bounded subset of λ. ©
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Finally we prove the theorem.

Proof of theorem 3.12. Observe we must make the assumption that Lµ[A] is
large enough so that Q̄θ ∈ Lµ[A] and x includes the parameters Lµ[A] and
≺, where ≺ is a well-order of Lµ[A]. Moreover, we assume that µ ≥ θ+ (to
make sure we can talk about cf (θ) in Lµ[A]).

We will show by induction on θ that for each pair ι < ῑ ≤ θ, (Pι, Pῑ) is
a quasi-closed extension. Thus (P0, Pθ) is a quasi-closed extension and so
by lemma 3.9, Pθ is quasi-closed. The inductive hypothesis thus says that
for each pair ι < ῑ < θ, (Pι, Pῑ) is a quasi-closed extension as witnessed by
(sι, sῑ). We may assume θ is limit: For if θ is a successor ordinal, πθ

θ−1 is a
∆1-de�nable function and thus by induction hypothesis and lemma 3.10, for
any ι < θ, (Pι, Pθ) is a quasi-closed extension.

So assume θ is limit and let sθ be the natural system of relations on the
diagonal support limit Pθ. Fix an arbitrary ι∗ < θ. We show that (Pι∗ , Pθ) is
a quasi-closed extension witnessed by (sι∗ , sθ). By de�nition of sθ, we have
sι∗ C sθ. It is straightforward to show that sθ is a pre-closure system (as
de�ned in 2.1, p. 20). Take a moment to make sure Fθ is ∆A

1 : Find a ∆A
1

formula Φ and c̄ = (cι)ι<θ such that for each ι < θ and each p ∈ Pι,

q = Fι(λ, x, p) ⇐ : Φ(cι, q, λ, x, p).

There is no need to assume that the Fι be uniformly de�nable in ι since we
may always use a universal ∆A

1 -truth predicate1 (or, in fact we could use a
set fragment of each Fι as a parameter and recall corollary 2.12). Thus Φ
and c̄ witness that Fθ is ∆A

1 ({c̄}): for q = Fθ(λ, x, p) is equivalent to

∀ι ∈ dom(p) Φ(cι, πι(q), λ, x, πι(p)).

Note that dom(p) = θ, which is not necessarily the same as the support of
p. We �nish the proof that sθ is a pre-closure system by proving 2.1(C 3), as
the remaining conditions have similar proofs: Say p ≤θ q ≤θ r and p 4λ

θ r.
Fixing an arbitrary ι < θ, we have πι(p) ≤ι πι(q) ≤ι πι(r) and πι(p) 4λ

ι πι(r).
Thus, by 2.1(C 3) for Pι, πι(p) 4λ

ι πι(q). As ι < θ was arbitrary, p 4λ
θ q

holds. So as mentioned earlier, the natural system of relations is a pre-closure
system.

Being extremely careful, we check 3.2(EcI). Say p ∈ Pθ and p 4λ̄
θ πι∗(p).

For arbitrary ι ∈ [ι∗, θ), by de�nition of 4λ̄
θ�or by 3.1(Cc2)�we have

πι(p) 4λ̄
ι πι∗(p); by 3.2(EcI) for (Pι∗ , Pι), it follows that Fι(λ, x, πι(p)) 4λ̄

ι

πι∗(Fι(λ, x, πι(p))). Thus by de�nition of Fθ and 4λ
θ ,

Fθ(λ, x, p) 4λ̄
θ πι∗(Fθ(λ, x, p)).

1By the way, this remains true in a class-forcing context.
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Now to 3.2(EcII), the main point of the argument. Say p̄ = (pξ)ξ<ρ is a
(λ, λ̄, x)-adequate sequence of conditions in Pθ; then λ and λ̄ are both regular,
λθ ≤ λ ≤ λ̄ and p̄ is λ-strategic and ∆A

1 ({x} ∪ λ̄)-de�nable. Moreover, let q∗

be a greatest lower bound of the sequence (πι∗(pξ))ξ<ρ. Let

σ = sup
ξ<ρ

σcf (θ)(pξ).

Our �rst goal is to �nd a greatest lower bound of (πσ(pξ))ξ<ρ in Pσ. Say
cf (θ) ≤ λ̄ and λ < λ̄. Then by assumption, for each ξ < ρ we have
pξ 4λ̄ πι∗(pξ). By lemma 3.15, suppcf (θ)(pξ) ⊆ ι∗ for all ξ < ρ, and so σ ≤ ι∗.
If, on the other hand cf (θ) ≤ λ̄ and λ = λ̄, since p̄ is λ-strategic we infer by
lemma 3.14 that

σ ≤ σcf (θ)(p0)

and so as σcf (θ)(p0) < cf (θ) we have σ < θ. Thus we can use 3.2(EcII)
for (Pι∗ , Pσ) to get a lower bound q0 of (πσ(pξ))ξ<ρ such that πι∗(q

0) = q∗.
Finally, if λ̄ < cf (θ), as ρ ≤ λ̄ and σcf (θ)(pξ) < cf (θ) for each ξ < ρ, we have

sup
ξ<ρ

σcf (θ)(pξ) < cf (θ)

and so σ < θ and thus once more we may use 3.2(EcII) for (Pι∗ , Pσ) to get a
lower bound q0 as in the previous case.

In all three cases, we can assume we have ι′ such that

σ = sup
ξ<ρ

σcf (θ)(pξ) ≤ ι′ (3.11)

and there is a greatest lower bound q0 ∈ Pι′ of (πι′(pξ))ξ<ρ. By (3.11) we
have

∀ξ < ρ pξ 4cf (θ) πι′(pξ). (3.12)

Let (θ(ζ))ζ≤cf (θ) be the ≺-least increasing continuous sequence such that
θ(0) = ι′ and θ(cf (ζ)) = θ. By induction on ζ, we now construct a lower
bound qθ(ζ) ∈ Pθ(ζ) of the sequence (πθ(ζ)(pξ))ξ<ρ for each ζ ≤ cf (θ). We
have already constructed qθ(0). Now assume we have qθ(ζ) and show how to
�nd qθ(ζ+1). Firstly, letting λ̄1 denote the maximum of λ̄ and cf (θ), notice
(πθ(ζ+1)(pξ))ξ<ρ is ∆A

1 (λ̄1 ∪ {x})-de�nable (as usual, assuming some large
enough Lµ[A] is among the parameters given by x). Observe that if λ < λ̄
or λ̄ ≤ cf (θ), by assumption and by (3.12) we have

∀ξ < ρ πθ(ζ+1)(pξ) 4λ1 πθ(ζ)(pξ). (3.13)

We also used (Cc2) and lemma 3.8 here. So in this case, the sequence
{πθ(ζ+1)(pξ) | ξ < ρ} is (λ, λ̄1, x)-adequate in (Pθ(ζ+1), Pθ(ζ)). In the other
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case, when λ = λ̄ and cf (θ) < λ, this sequence is ∆A
1 (λ∪ {x})-de�nable and

hence by assumption, it is (λ, λ, x)-adequate in (Pθ(ζ+1), Pθ(ζ)). In any case,
by 3.2(EcII) we obtain a greatest lower bound qθ(ζ+1) ∈ Pθ(ζ).

Now let ζ ≤ θ be limit. By construction and by (EcII), the qθ(ζ′), for
ζ ′ < ζ form a thread. De�ne qθ(ζ) to be this thread. By construction, for
each ζ, we have qθ(ζ) 4cf (θ) qθ(0). So lemma 3.16 allows us to infer that
qθ(ζ) has legal support, and thus is a condition in Pθ(ζ) and a πθ(ζ)-bound of
p̄ (in the sense of de�nition 3.3; we tacitly used fact 1.14 here). The �nal
condition qθ(cf (θ)) is a greatest lower bound of (pξ)ξ<ρ and for all ξ < ρ,
qθ(cf (θ)) 4λ pξ. Lastly, consider the case that for all ξ < ρ, pξ 4λ̄ πι∗(pξ). By
3.2(EcII) and by induction, we have qθ(ζ) 4λ̄ qι∗ for each ζ < cf (θ), and so

q 4λ̄ qι∗ = πι∗(q). ©

We conclude this section with an observation about the support of a
greatest lower bound of an adequate sequence.

Lemma 3.17. Say p̄ = (pξ)ξ<ρ is a (λ, x)-adequate sequence with greatest
lower bound p. Then for any regular λ̄,

suppλ̄(p) ⊆
⋃
ξ<ρ

suppλ̄(pξ).

Proof. Assume ι < θ and ι 6∈
⋃

ξ<ρ suppλ̄(pξ). We may assume ι < λ̄ (since

p has diagonal support). Then as πι+1 is ∆A
1 (λ̄), the sequence (πι+1(pξ))ξ<ρ

is ∆A
1 (λ̄∪ {x})-de�nable, and for all ξ < ρ, πι+1(pξ) 4λ̄ πι(pξ). Therefore we

can apply 3.2(EcII) applied for (Pι, Pι+1) (see 3.2, p. 35). We conclude that

πι+1(p) 4λ̄ πι(p) and so ι 6∈ suppλ̄(p). ©

3.2 Strati�ed extension and iteration

In this section, we show that composition of strati�ed forcing is a special
case of strati�ed extension. We show that the second forcing in a strati�ed
extension is strati�ed. Finally we prove an iteration theorem for strati�ed
forcing.

Let P0 be a complete sub-order of P1 and let π : P1 → P0 be a strong
projection. Moreover, assume for i ∈ {0, 1}, we have a system

Si = (Fi, 4
λ
i , 2

λ
i ,C

λ
i )λ≥λ0

such that F : Reg \λ0 × V × Pi → Pi is a (de�nable) function, and for every
λ ≥ λ0, 4λ

i and 2λ
i are binary relations on Pi and Cλ

i ⊆ Pi × λ.
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De�nition 3.18. We write S0 CS1 if and only if in addition to (Cc1), (Cc2)
and (Cc3) (see 3.1, p. 35), the following hold:

(Cs1) If q, q′ ∈ P0 and p, p′ ∈ P1 are such that q′ 4λ
0 q ≤ π(p′) and p′ 4λ

1 p,
then q′ · p′ 4λ

1 q · p.

(Cs2) For all p, q ∈ P0, p 2λ
0 q:p 2λ

1 q.

(Cs3) For all p, q ∈ P1, p 2λ
1 q:π(p) 2λ

0 π(q).

(Cs4) If w ≤ π(d), π(r) and d 2λ r then w · d 2λ w · r.

(Cs5) If Cλ
1(p) ∩Cλ

1(q) 6= 0 then Cλ
0(π(p)) ∩Cλ

0(π(q)) 6= 0.

Observe that if S0 C S1, we can drop the subscripts on 2λ
0 , 2λ

1 and just
write 2λ without causing confusion. Observe also that by corollary 2.12, we
can assume that r 4|P1| p holds exactly if p = r. This implies2

∀p ∈ P1

(
p 4|P1| π(p) ⇐ : p ∈ P0

)
. (3.14)

As 3.2(EcI) together with (3.14) and 3.1(Cc3) imply that F0 = F1 �P0, we
don't have to distinguish between F1 and F0 and we can just write F without
causing confusion. Moreover, we could also assume that Cλ

0 = Cλ
1 ∩ P0 × λ.

For if not, simply replace Cλ
1 by the following relation Cλ

∗ : s ∈ Cλ
∗(p) if and

only if s ∈ ≤2λ such that s(0) ∈ Cλ
0(π(p)) and if p 6∈ P0 then 1 ∈ dom(s) and

s(1) ∈ Cλ
1(p) (now in fact we get Cλ

0(p) = {s�1 | s ∈ Cλ
1(p)} for p ∈ P0). To

sum up, we could in principle completely eliminate any mention of S0 from
the de�nition of strati�ed extension.3

Replacing (Cs1)by the following two conditions yields an equivalent ver-
sion of the above de�nition:

(CsA) w 4λ
0 π(p):w · p 4λ

1 p.

(CsB) If w ≤ π(p′) and p′ 4λ p then w · p′ 4λ w · p.

Sometimes it is more convenient to check both of these rather than (Cs1),
which is concise but cumbersome to show. Further notice that (CsB) implies

(Csb) If w ≤ π(p) and p 4λ π(p) then w · p 4λ w.

2Interestingly, (3.14) also follows just from the assumption that for any r, p ∈ P1,
r 2|P1| p, together with (EsII) coherent expansion

3If you want to generalize these notions to class forcing, this will not hold; in that
context, F0 is not the restriction of F1 to P0.
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This is weaker than (CsB). We note in passing that we could do entirely with
(CsA) and (Csb) and without (CsB). Neither condition (Cs1) nor any of its
variants were included in 2.1, the de�nition of a pre-closure system simply
because they are not needed to preserve quasi-closure in iterations�rather
we need (Csb) to preserve coherent centering, and (CsA) helps to preserve
density at limits; see below.

We �x some convenient notation: If d ≤ r, we say p λ-interpolates d and
r to mean that p 2λ d and p 4λ r. We say p 4<λ q to mean that for all
regular λ′ such that λ0 ≤ λ′ < λ, we have p 4λ′ q.

De�nition 3.19. We say the pair (P0, P1) is a strati�ed extension above λ0,
as witnessed by (S0,S1) if and only if S0 witnesses that P0 is strati�ed above
λ0, S1 is a pre-strati�cation system on P1 and S0 C S1; Moreover, for all
λ ∈ Reg \λ0 we have that (EcI), (EcII) and all of the following conditions
hold:

(EsI) Coherent Continuity : Let p̄ = (pξ)ξ<ρ and q̄ = (qξ)ξ<ρ be (λ∗, λ̄, x)-
adequate sequences of conditions in P1 and say λ̄ < λ. In other words,
let λ∗, λ̄ be regular cardinals such that λ0 ≤ λ∗ ≤ λ̄ < λ and assume

(a) p̄ is (λ∗, x)-strategic and ∆A
1 ({x} ∪ λ̄)-de�nable,

(b) either λ∗ = λ̄ or for each ξ < ρ, pξ 4λ̄
1 π(pξ).

Likewise for q̄. Moreover, say p̄ has a greatest lower bound p and q̄
has a greatest lower bound q, and in case λ∗ < λ, we have Cλ

0(π(p)) ∩
Cλ

0(π(q)) 6= ∅. Then if for each ξ < ρ, Cλ
1(pξ) ∩Cλ

1(qξ) 6= ∅ , we have
both p, q ∈ dom(Cλ

1) and Cλ
1(p) ∩Cλ

1(q) 6= ∅.

(EsII) Coherent Expansion: For p, d ∈ P1, if p 2λ d, d 4λ π(d) and π(p) ≤
π(d), we have that p ≤ d.

(EsIII) Coherent Interpolation: Given d, r ∈ P1 such that d ≤ r and p0 ∈ P0

such that p0 λ-interpolates π(d) and π(r) we can �nd p ∈ P1 which
λ-interpolates d and r such that π(p) = p0. If moreover λ̄ is regular
and d 4<λ̄ π(d), we can in addition assume p 4<λ̄ π(p) · r.

(EsIV) Coherent Centering : Say d, p ∈ P1, d 2λ p and Cλ
1(d) ∩ Cλ

1(p) 6= ∅.
Given w0 ∈ P0 such that both w0 4<λ π(d) and w0 4<λ π(p), we can
�nd w ∈ P1 such that w 4<λ p, d and π(w) = w0.

We �nd it relieving to notice that P is strati�ed exactly if ({1P}, P ) is a
strati�ed extension. Again, if we don't mention S0, S1 or λ0 we are either
claiming that they can be appropriately de�ned or they can be inferred from
the context.
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Lemma 3.20. If P is strati�ed above λ0 and P Q̇ is strati�ed above λ0,
then (P, P ∗ Q̇) is a strati�ed extension above λ0.

To be more precise, let S0 denote the pre-strati�cation system witnessing
that P is strati�ed and let S1 = (F̄, 4̄λ

, 2̄λ
, C̄λ)λ≥λ0 be the pre-strati�cation

system constructed as in the proof of 2.14, where we showed that P ∗ Q̇ is
strati�ed. Then (S0,S1) witnesses that (P, P ∗ Q̇) is a strati�ed extension
above λ0.

Proof. We have already checked (Cc1), (Cc2), (Cc3), (EcI) and (EcII)�i.e.
that (P,P ∗ Q̇) is a quasi-closed extension�in lemma 3.4. We showed that
S1 is a pre-strati�cation system when we proved theorem 2.14. It's technical
but straightforward to check that S0 C S1 (see de�nition 3.18, p. 45):

Fix p̄ = (p, ṗ) ∈ P ∗ Q̇ and w ∈ P , w ≤ p. For (CsA), say w 4λ p.

Then as p  ṗ4̇
λ
p, we have (w, p) 4̄λ

p̄. For (CsB), �x another condition

q̄ = (q, q̇) ∈ P ∗ Q̇ such that p̄ 4̄λ
q̄. Then p  ṗ4̇

λ
q̇, whence w  ṗ4̇

λ
q̇ and

so (w, p) 4̄λ
(w, 1Q̇), done. For (EsII) and (Cs4), let r̄ = (r, ṙ) ∈ P ∗ Q̇ and

say p̄ 2̄λ
r̄, i.e. p 2λ r and if p · r > 0 then p · q  ṗ2̇

λ
ṙ. To check (EsII)

coherent expansion, assume r̄ 4̄λ
(r, 1Q̇) and p ≤ r. Then p  ṗ2̇

λ
ṙ. As P

forces expansion for Q̇, p  ṗ ≤ q̇ and we are done with (EsII). To check

(Cs4), say w ≤ p. Then w · r ≤ p · r, and so if w · r > 0, it forces ṗ2̇
λ
ṙ. Since

w 2λ w, we infer that (w, ṗ) 2̄λ
r̄. The remaining (Cs2), (Cs3) and (Cs5)

are immediate by the de�nition.
Now we check the conditions of 3.19 (see p. 47). For (EsIII) coherent

interpolation, just look at how we found an interpolant in the proof of the-
orem 2.14. Do the same for (EsIV) coherent centering. It remains to check
(EsI) coherent continuity. So �x p̄ = (pξ, ṗξ)ξ<ρ and q̄ = (qξ, q̇ξ)ξ<ρ with
greatest lower bounds (p, ṗ) and (q, q̇) respectively, satisfying the hypothesis
of (EsI)coherent continuity. Assume

∀ξ < ρ C̄λ(pξ, ṗξ) ∩ C̄λ(qξ, q̇ξ) 6= 0.

The case λ∗ = λ̄ reduces to ordinary continuity for P ∗ Q̇ and thus was
treated in the proof of 2.14. So assume λ∗ < λ̄. By assumption, we have
χ ∈ Cλ(p) ∩Cλ(q).

Look at the proof of theorem 3.4. On page 36, when we show 3.2(EcII),
we argue that p forces that (ṗξ)ξ<ρ is λ̄-adequate. Now argue exactly as we
did when we showed continuity for P ∗ Q̇ in theorem 2.14, p. 30: For each
ξ < ρ, �x (T ξ

g , Hξ
g , λ

ξ
g) such that for some χ′,

(χ′, T ξ
g , Hξ

g , λ
ξ
g) ∈ C̄λ(pξ, ṗξ) ∩Cλ(qξ, q̇ξ).
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Exactly as we did in the proof just mentioned, we construct Tg,Hg and λg

such that

(χ, Tg, Hg, λg) ∈ C̄λ(p, ṗ) ∩ C̄λ(q, q̇),

�nishing the proof. ©

The following is the analogue of 3.9 for quasi-closed extension:

Lemma 3.21. If (P0, P1) is a strati�ed extension above λ0 and π is ∆A
1 (λ0),

then P1 is strati�ed above λ0.

Proof. The proof is a straightforward consequence of the de�nition and lemma
3.9. We leave it to the reader. ©

De�nition 3.22. Say Q̄θ is an iteration such that each initial segment Pι

carries a pre-strati�cation system Sι above λι and let Pθ be its λθ-diagonal
support limit, where λθ ≥ λι for each ι < θ. We now add to the de�nition of
the natural system of relations on Pθ. Let λ ≥ λθ. The relations 4λ and F
are de�ned as in 3.11, p. 40. Let

1. p 2λ
θ q ⇐ : ∀ι < θ πι(p) 2λ

ι πι(q);

2. p ∈ dom(Cλ) if and only if for all ι < σλ(p), πι(p) ∈ dom(Cλ
ι );

3. s ∈ Cλ
θ (p) if and only if s : σλ(p) → λ and for all ι < dom(s), we have

s(ι) ∈ Cλ
ι (p).

As before, the above yields a pre-strati�cation system under natural assump-
tions, as we shall see in the proof of theorem 3.23.

Theorem 3.23. Let Q̄θ be an iteration such that for each ι < θ, Pι carries
a pre-strati�cation system Sι above λι, where λ̄ = (λι)ι<θ is a non-decreasing
sequence of regular cardinals. Moreover, let λθ = min(Reg \ supι<θ λι) and
assume

1. For all ι < θ, (Pι, Pι+1) is a strati�ed extension above λι.

2. If ῑ < θ is limit, Sῑ is the natural system of relations on Pῑ and Pῑ is
the λῑ-diagonal support limit of Q̄ῑ.

3. For each regular λ ≥ λθ there is ι < λ+ such that for all p ∈ Pθ we
have suppλ(p) ⊆ ι.

Let Pθ be the λθ-diagonal support limit of Q̄θ. Then Pθ is strati�ed above λθ.
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Remark 3.24. In our particular application we will have that for each reg-
ular λ, there is ι < λ+ such that λ < λι. Observe that by the de�nition of
suppλ(p), this implies that the last clause of the above is satis�ed.

Of course, the following proof can be easily adapted to show that under the
same hypothesis, for every ι < θ, (Pι, Pθ) is a strati�ed extension above λθ;
while this approach facilitated the inductive proof in the case of quasi-closure,
it would serve no purpose in the present context.

Proof of theorem 3.23. By lemma 3.21, we may assume θ is limit. That Pθ

is strati�ed above λθ is witnessed by the natural system of relations Sθ,
as de�ned in 3.22. The proof of the following lemma is a straightforward
induction, which we leave to the reader:

Lemma 3.25. For any ι < ῑ ≤ θ, Sι C Sῑ.

Next, we check that Sθ is a pre-strati�cation system (see 2.6 p. 22): Condi-
tions (S 1), (S 2) and (S 3) are immediate by the de�nition of 2λ

θ and the
fact that for each ι < θ, Sι is a pre-strati�cation system. The proofs resemble
that of (S II), see below.

The non-trivial condition is 2.6(S 4), Density. First we must check that
ran(Cλ

θ ) has size at most λ: this is because by the last assumption of the
theorem and by diagonal support, suppλ(p) ∈ [ι]<λ for some ι < λ+.

For the more interesting part of the argument, we use density and conti-
nuity for the initial segments Pι, ι < θ together with quasi-closure. Observe
that by theorem 3.12, for any ι < ῑ ≤ θ, (Pι, Pθ) is a quasi-closed extension
above λθ. Say we are given p ∈ Pθ. Let σ = σλ(p). We may assume that
σ = θ, for otherwise we can use induction and Density for Pσ and are done.
Thus we can assume λθ < λ, for otherwise, since Pθ is a diagonal support
limit, suppλ(p) is bounded below θ.

So say we are given λ′ ∈ [λθ, λ). We must �nd q 4λ′ p such that q ∈
dom(Cλ). Let δ = cf (θ) and assume without loss of generality λ′ ≥ δ
(otherwise we may increase λ′). Fix a normal sequence (σ(ξ))ξ≤δ such that
σ(δ) = θ. We inductively construct a λ′-adequate sequence (pξ)ξ<δ such that
p0 = p and for any ν, ξ such that ν < ξ < δ,

πσ(ν)(pξ) ∈ dom(Cλ
σ(ν)). (3.15)

As always, �rst �x a parameter x such that the de�nition we are about to
give is ∆A

1 (λ ∪ {x}). Let p0 = p. Now assume we have pξ, we will show
how to construct pξ+1. Find q ∈ Pσ(ξ) such that q 4λ′ πσ(ξ)(F(λ′, x, pξ)) and
q ∈ dom(Cλ

σ(ξ)), using Density for Pσ(ξ). Set pξ+1 = q · F(λ′, x, pξ). Since
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Sσ(ξ) C Sθ, by 3.18(CsA), pξ+1 4λ′ F(λ′, x, pξ). So of course also pξ+1 4λ′ pξ.
Moreover, by 3.18(Cs5), for any ν ≤ ξ,

πσ(ν)(pξ+1) ∈ dom(Cλ
σ(ν)).

At limit stages ξ̄ ≤ δ, let pξ̄ be a greatest lower bound in Pθ of the sequence
constructed so far. It exists by quasi-closure for Pθ. We show

πσ(ξ̄)(pξ̄) ∈ dom(Cλ
σ(ξ̄)). (3.16)

Let ν < ξ̄ be arbitrary. As (Pσ(ν), Pθ) satis�es (C II),

πσ(ν)(pξ̄) =
∏

ξ∈(ν,ξ̄)

πσ(ν)(pξ). (3.17)

We want to apply (S I) for Pσ(ν). Since we may assume (σ(ξ))ξ≤δ is ∆A
1 ({x}∪

λ′), (πσ(ν)(pξ))ξ∈(ν,ξ̄) is a λ′-adequate sequence; and so all the hypotheses of
(S I) for Pσ(ν) are satis�ed. Now by induction hypothesis, (3.15) holds for
all ξ ∈ (ν, ξ̄) and so by (S I) we have πσ(ν)(pξ̄) ∈ dom(Cλ

σ(ν)). As ν < ξ̄

was arbitrary and by de�nition of Cλ
σ(ξ̄)

we conclude that (3.16) holds. In

particular, for the last stage of our construction, we set ξ̄ = δ in (3.16)
and conclude pδ ∈ dom(Cλ

θ ), �nishing the proof of Density. So Sθ is a pre-
strati�cation system.

Quasi-closure was shown in lemma 3.12. Now we check conditions (S I)�
(S IV) of 2.7, strati�cation (see p. 23). We defer (S I) Continuity to the
end. Expansion (S II) is trivial: If d 2λ

θ r and r 4λ
θ 1, then for all ι < θ,

πι(d) 2λ
ι πι(r) and πι(r) 4λ

ι 1. By induction, we may assume expansion
holds for each Pι, ι < θ. Thus d ≤ r.

We show interpolation (S III) holds. So �x d, r ∈ Pθ such that d ≤ r holds.
We construct the interpolant p by induction on its initial segments p � ι, for
ι < θ. Say we have already constructed p � ι. Use coherent interpolation for
(Pι, Pι+1) to obtain p� ι + 1 interpolating πι+1(d) and πι+1(r): demand that

p� ι + 1 4<λ̄(ι) πι+1(r) · p� ι, (3.18)

where λ̄(ι) is the maximal λ̄ with the property that πι+1(d) 4<λ̄ πι(d).4 We
claim that for any γ ∈ Reg \λθ,

ι 6∈ suppγ(d) ∪ suppγ(r):p� ι + 1 4γ p� ι. (3.19)

4actually, it would su�ce to demand this whenever ι ≥ σλ(d)
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So �x γ ∈ Reg and assume the hypothesis of (3.19). As d � ι + 1 4γ d � ι, by
2.1(C 4) and by de�nition of λ̄(ι), we have γ < λ̄(ι). Thus, (3.18) yields

p� ι + 1 4γ πι+1(r) · p� ι. (3.20)

Since r � ι + 1 4γ r � ι, by 3.18(Csb) we infer

πι+1(r) · p� ι 4γ p� ι. (3.21)

From (3.20) and (3.21) we get p� ι + 1 4γ p� ι.
At limit stages ῑ ≤ θ of the construction of the interpolant p, (3.19) holds

for all ι < ῑ, and so p � ῑ satis�es the support requirement. This completes
the proof of interpolation.

Now for centering (S IV). Say p 2λ d and �x s ∈ Cλ
θ (p) ∩Cλ

θ (d).
Write σ for dom(s). By de�nition of Cλ

θ , σ = σλ(p) = σλ(d). First,
assume σ = θ. In this case, we have λ > λθ by de�nition of diagonal support.
We construct w by induction on its initial segments w � ι, for ι < σ. To start,
use centering for P1 to obtain w �1. Assume we have w � ι; just use coherent
centering for (Pι, Pι+1) to obtain w � ι + 1. At limits ι ≤ σ, use lemma 3.16
and the fact that cf (σ) < λ and so w0 � ι 4cf (σ) πι(d).

Secondly, if σ < θ, we can use centering for Pσ to obtain a lower bound
w0 of πσ(p) and πσ(d) with the desired properties. We claim that w = w0 · d
is the desired condition, i.e. w 4<λ p, d. The proof is of course by induction
on ι ≤ θ. For limit ι, just use the induction hypothesis and the de�nition of
4<γ

ι . For the successor case, write

d∗ = πι+1(d),

p∗ = πι+1(p),

w∗
0 = w0 · πι(d)

and let π denote πι. We may assume by induction that w∗
0 4<λ π(d∗), π(p∗).

In the following, use that Sι+1 is a pre-strati�cation system, Sι C Sι+1 and
3.18(EsII), coherent expansion.

Firstly, since d∗ 4λ π(d∗) and w∗
0 ≤ π(d∗), by 3.18(Csb), we have

w∗
0 · d∗ 4λ w∗

0. (3.22)

In the same way, we can argue that

w∗
0 · p∗ 4λ w∗

0. (3.23)

Equation (3.22) and w∗
0 4<λ π(d∗) give us w∗

0 · d∗ 4<λ π(d∗), and together
with w∗

0 · d∗ ≤ d∗ ≤ π(d∗) and 2.1(C 3) we infer that w∗
0 · d∗ 4<λ d∗.
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Since d∗ 2λ p∗ and w∗
0 ≤ π(d∗), π(p∗), we may conclude by Sι C Sι+1 and

3.18(Cs4) that
w∗

0 · d∗ 2λ w∗
0 · p∗.

This together with (3.23), by coherent expansion 3.18(EsII) yields

w∗
0 · d∗ ≤ w∗

0 · p∗.

Thus w∗
0 · d∗ ≤ p∗ ≤ π(p∗) while at the same time w∗

0 · d∗ 4λ w∗
0 4<λ

π(p∗). Another application of 2.1(C 3) yields w∗
0 · d∗ 4<λ p∗. This ends the

successor step of the inductive proof that w 4<λ p, d, and we are done with
coherent centering. Finally, check (S I)Continuity : Fix regular λ∗, λ such
that λθ ≤ λ∗ < λ. Say p̄ and q̄ are (λ∗, x)-adequate sequences of length ρ
with greatest lower bound p and q respectively. Further, say for each ξ < ρ,
Cλ

θ (pξ) ∩ Cλ
θ (qξ) 6= ∅. We show that p ∈ dom(Cλ

θ ) (and the same of course
then holds for q); at the same time we show that Cλ

θ (p) ∩ Cλ
θ (q) 6= ∅. Let

σ = σλ(p), and let δ = cf (σ).
The proof is simpler if we assume that σ ≤ λ∗. Then for each ι < σ, πι

is ∆A
1 (λ∗) and so by lemma 3.7, (πι(pξ))ξ<ρ is λ∗-adequate. Fix ι < σ. For

each ξ < ρ, we have πι(pξ), πι(qξ) ∈ dom(Cλ
ι ) and

Cλ
ι (πι(pξ)) ∩Cλ

ι (πι(qξ)) 6= ∅,

by de�nition of Cλ
θ (or by 3.18(Cs5) for (Sι, Sθ)). Using continuity for Pι

(and the fact that (Pι, Pθ) is a quasi-closed extension), we infer

Cλ
ι (πι(p)) ∩Cλ

ι (πι(q)) 6= ∅. (3.24)

As ι was arbitrary, (3.24) holds for all ι < σ. So by de�nition of Cλ
θ , (3.24)

also holds for ι = θ. This �nishes the proof under the assumption that
σ ≤ λ∗.

It is easy to generalize the above proof for the case δ = cf (σ) ≤ λ∗:
At the beginning, setting δ = cf (σ), let σ(ν)ν<δ be the ≺-least sequence
which is co�nal in σ. Observe that assuming x contains a predicate for a
large enough Lµ[A], we conclude that for each ν < δ, both σ(ν) and πσ(ν) are
∆A

1 (λ∗ ∪ {x}). By lemma 3.7, the sequence (πσ(ν)(pξ))ξ<ρ is (λ∗, x)-adequate
for each ν < δ. Now argue as before.

To �nally prove continuity (EsI) in the full, that is without the restriction
that cf (σ) < λ∗, we have to use (EsI) for initial segments, of course. The
argument is now a mixture of the last part of the proof of theorem 3.12 and
the argument we just gave.

So now assume λ∗ < cf (σ) and write δ = cf (σ). Let σ(ν)ν<δ be de�ned
as before, except that we now ask σ(0) = σδ(p). Since p ∈ Pθ we have of
course δ ≤ θ, and so as σδ(p) < δ we conclude σ(0) < θ.
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Fix ν such that 0 < ν < δ. The sequences (πσ(ν)(pξ))ξ<ρ and (πσ(ν)(qξ))ξ<ρ

satisfy the hypothesis of (EsI), for (Pσ(0), Pσ(ν)): they are (λ∗, x)-strategic
and ∆A

1 (δ ∪ {x})-de�nable, and for each ξ < ρ, both πσ(ν)(pξ) 4δ πδ(pξ)
and πσ(ν)(pξ) ∈ dom(Cλ

σ(ν)). Analogously, for the projection to Pσ(ν) of the

sequence q̄. By (EsI) for (Pσ(0), Pσ(ν)), we conclude that (3.24) holds for
ι = σ(ν). As ν was arbitrary, (3.24) holds for co�nally many ι < σ. As in
the previous case, we conclude that (3.24) holds for ι = θ, and we are done
with the proof of continuity.

©

Corollary 3.26. Theorem 2.17 holds.

Proof. By theorem 3.23 and lemma 3.20. ©

3.3 Products

So far, strati�ed extension has only given us an overly complicated proof that
iterations with strati�ed components are strati�ed. Here is a �rst non-trivial
application: as a consequence of the next lemma, one can mix composition
and products of strati�ed forcing freely in iterations with diagonal support,
and the resulting iteration will be strati�ed.

Lemma 3.27. If P and Q are strati�ed above λ0, (P, P ×Q) is a strati�ed
extension (above λ0).

Proof. The proof is entirely as you expect. Fix pre-strati�cation systems
SP = (FP , 4λ

P , 2λ
P ,Cλ

P )λ≥λ0 and SQ = (FQ, 4λ
Q, 2λ

Q,Cλ
Q)λ≥λ0 . We now de�ne

a strati�cation system S̄ = (F̄, 4̄λ
, 2̄λ

, C̄λ)λ≥λ0 on P ×Q in the most natural
way: let F̄(λ, x, (p, q)) = (FP (λ, x, p),FQ(λ, x, q)) and let

(p, q) 4̄λ
(p̄, q̄) ⇐ : p 4λ

P p̄ and q 4λ
P q̄

(p, q) 2̄λ
(p̄, q̄) ⇐ : p 2λ

P p̄ and q 2λ
P q̄

s ∈ C̄λ(p, q) ⇐ :
[
s ∈ Cλ

P (p) and q 4λ 1Q

]
or

[
s = (χ, ζ)

where χ ∈ Cλ
P (p) and ζ ∈ Cλ

Q(q)
]
.

That S̄ is a pre-strati�cation system requires but a glance at the de�nitions
(see 2.1, p. 20 and 2.6, p. 22). The same holds for (Cc1), (Cc2) and (Cc3)
(see p. 45 for the de�nition of SP C S̄, and see p. 35 for (Cc1), (Cc2) and
(Cc3). For the following, let (p, q) ∈ P ×Q, w ∈ P . For your entertainment,
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we check 3.18(CsA) (see page 46). Say w 4λ
p p. Then clearly (w, q) 4̄λ

(p, q),

done. Now 3.18(Csb): say w ≤ p and (p, q) 4̄λ
(p, 1Q). This means q 4λ

Q 1Q

and so (w, q) 4̄λ
(w, 1Q), which is what we wanted to prove.

For the next two conditions, let d̄ = (d, d∗), r̄ = (r, r∗) ∈ P × Q satisfy

d̄ 2̄λ
r̄. We jump ahead and check (EsII) of 3.19 (see p. 47): say d ≤ r and

r̄ 4̄λ
(r, 1Q). Then r∗ 4λ

Q 1Q and d∗ 2λ
Q r∗ by assumption, so by 2.6(S II) for

Q, d∗ ≤ r∗ and thus d̄ ≤ r̄.

Let's check (Cs4)). Say w ≤ d and w ≤ r. By 2.6(S 1) for P , w 2λ
P w

and so (w, d∗) 2̄λ
(w, r∗). We omit the rest of 3.18 and conclude that SP C S̄.

The most interesting part of the present proof is that of quasi-closed
extension (de�nition 3.2, see p. 21), of which we check (EcII) , leaving (EcI)
to the reader. So say (pξ, qξ)ξ<ρ is (λ, x)-strategic and ∆A

1 (λ̄ ∪ {x}), and
(pξ)ξ<ρ has a greatest lower bound p. Firstly, since we can assume x contains
a parameter X such that P ⊆ X, we conclude that q̄ = (qξ)ξ<ρ is ∆A

1 (λ̄∪{x})
(by lemma 3.7). If λ = λ̄, we are done as q̄ is λ-adequate and Q is quasi-
closed. If on the other hand, λ < λ̄, we have that for all ξ < ρ, qξ 4λ̄

Q 1Q. By

lemma 3.5, q̄ is λ̄-adequate. Moreover, if q is a greatest lower bound of q̄, by

quasi-closure for Q, we have q 4λ̄
Q 1Q. So (p, q)4̄λ̄

(p, 1Q) and we are done.

To conclude that (P, P × Q) is a strati�ed extension, we check the re-
maining conditions of 3.19 (see p. 47). Coherent interpolation, 3.19(EsIII)
and Coherent centering, 3.19(EsIV) are identical to interpolation and center-
ing for Q in this context. Coherent continuity, 3.19(EsI) di�ers little from the
proof of quasi-closed extension above, except for an application of continuity
for P and Q at the end. ©

3.4 Stable meets for strong sub-orders

In the next section, we introduce the operation of amalgamation and show
that the amalgamation of a strati�ed forcing P is strati�ed. In that proof,
we must show that a certain dense subset of P is closed under taking meets
with conditions from a particular strong sub-order Q (see lemma 4.15, p. 72).
This will be facilitated by the so-called Q-stable meet operation p∧Qr, which
we introduce in the present section. In boolean algebraic terms�and also in
most iterations�this is a simple operation (see below). What makes it useful
is the following: if r is �a direct extension on the tail P : Q� of a condition p,
then p∧Q r is a de-iure direct extension of p, and moreover r can be obtained
straightforwardly from p ∧Q r.

We now give a formal de�nition of such an operation, and then show that
we can always de�ne an operation ∧ on products and compositions. Then we
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show how to de�ne ∧ for in�nite iterations. In the next section we shall see
we also have a stable meet operator for amalgamation. We take this formal,
inductive approach (rather than de�ning ∧ directly on the iteration used in
the main theorem) since amalgamation necessarily introduces an element of
recursion into the de�nition of this operation.

Let Q be a strong sub-order of P , and let π : P → Q be the strong
projection. Say we have a tuple of relations S = (. . . , 4λ, . . .) such that
4λ⊆ P 2, for λ ∈ Reg \λ0.

De�nition 3.28. We call ∧ a Q-stable meet operator on P with respect to
S or a stable meet on (Q, P ) if and only if

1. ∧ : (p, r) 7→ p ∧ r is a function with dom(∧) ⊆ P 2 and ran(∧) ⊆ P .

2. dom(∧) is the set of pairs (p, r) ∈ P 2 such that r ≤ p and

∃λ ∈ Reg \λ0 r 4λ π(r) · p (3.25)

3. Whenever r ≤ p and r 4λ π(r) · p, the following hold:

p ∧ r 4λ p (3.26)

π(p ∧ r) = π(p) (3.27)

π(r) · (p ∧ r) ≈ r (3.28)

As usual, if we don't mention S�or just (4λ)λ∈Reg \λ0�then either it is to
be inferred from the context or we mean that an appropriate S exists.

A few remarks are in order to clarify this de�nition.

• We certainly don't have p ∧ r = r ∧ p.

• The gist of (3.25) is that we try to express that π(r) forces that in
P : Q, the �tail� of r is a direct extension (in the sense of 4λ) of p;
(3.25) captures the essence of this even when P : Q is not strati�ed.

• Observe that r ≤ p implies π(r) ≤ π(p) and so π(r) ·p ∈ P ; thus (3.25)
makes sense.

• By π(r) ·(p∧r) ≈ r we mean that π(r) ·(p∧r) ≤ r and π(r) ·(p∧r) ≥ r.
Admittedly, we are very careful here.
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• Observe that there could be more than one map ∧ satisfying the de�-
nition. Intuitively, this is because (3.26) is not strong enough to fully
determine p∧ r on π(p)−π(r). If we add to the above the requirement
that −π(r) · (p∧ r) = p hold in r.o.(P ), this uniquely determines ∧. In
fact this entails

p ∧ r = r + (p− π(r)) (3.29)

in r.o.(P ). 5 For our purposes, this point is moot.

To understand the concept of stable meet operators, it is best to consider
an instance of such an operator.

Lemma 3.29. Say P̄ = Q0 × Q1, and say for each regular λ ≥ λ0, 4̄λ
is

obtained from 4λ
0 and 4λ

1 as in the proof of 3.27 (where of course 4λ
i⊆ (Qi)

2).

Then there is a stable meet operator on (Q0, P̄ ) with respect to 4̄λ
.

Proof. Let π denote the projection to the �rst coordinate. De�ne dom(∧) to
be the set of pairs prescribed in de�nition 3.28. Say r = (r0, r1) ∈ Q0 × Q1

and p = (p0, p1) ∈ Q0 ×Q1 are such that (r, p) ∈ dom(∧). De�ne

(p0, p1) ∧ (r0, r1) = (p0, r1).

As (r, p) ∈ dom(∧), we can �x λ such that (r0, r1) 4̄λ
π(r) · p = (r0, p1), and

so r1 41 p1. Thus (p0, r1) 4̄λ
(p0, p1). To check the other properties is left to

the reader. ©

Lemma 3.30. Say P̄ = Q ∗ Ṙ, and say for each regular λ ≥ λ0, 4̄λ
is

obtained from 4λ and 4̇
λ
as in the proof of 2.14. Then there is a stable meet

∧ on (Q0, P ) with respect to 4̄λ
.

Proof. Let π denote the projection to the �rst coordinate. Again, de�ne
dom(∧) to be the set of pairs prescribed in de�nition 3.28. Say r̄ = (r, ṙ) and
p̄ = (p, ṗ) are such that (r̄, p̄) ∈ dom(∧). De�ne p̄ ∧ r̄ = (p, ṙ∗), where ṙ∗ is

such that r  ṙ∗ = ṙ and −r  ṙ∗ = ṗ. Say we have (r, ṙ) 4̄λ
π(r̄) · p̄ = (r, ṗ),

and so r  ṙ4̇
λ
ṗ. Then (p, ṙ∗) 4̄λ

(p, ṗ), since r  ṙ∗ = ṙ4̇
λ
ṗ and p − r 

ṙ∗ = ṗ4̇
λ
ṗ. To check the other properties is left to the reader. ©

The stable meet operator behaves very nicely in iterations:

Lemma 3.31. Let Q̄θ+1 be an iteration with diagonal support and say for
each ι < θ, Pι carries a pre-strati�cation system Sι above λ0 and

1. For all ι < θ, we have Sι C Sι+1.

5In all the applications we have in mind, the natural de�nition of ∧ satis�es (3.29)�
provided we work with the separative quotient of P .
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2. If ῑ ≤ θ is limit, sῑ is the natural system of relations on Pῑ.

Moreover, say for each ι < θ, there is a stable meet operator ∧ι+1
ι on (Pι, Pι+1)

with respect to Sι+1. Then for each ι < θ such that ι > 0 there is a Pι-stable
meet operator on Pθ.

Proof. By induction on θ, we show that for each pair ι, η such that 0 < ι <
η ≤ θ, there is a stable meet operator ∧η

ι for (Pι, Pη). For ι, η as above and
for p, r ∈ P such that r ≤ p and (3.25) hold, de�ne

p ∧η
ι r =

∏
ι≤ν<η

πν+1(p) ∧ν+1
ν πν+1(r). (3.30)

We prove by induction on θ that

1. For ι, η such that 0 < ι < η ≤ θ and for (p, r) ∈ dom(∧θ
ι ),

πη(p ∧θ
ι r) = πη(p) ∧η

ι πη(r). (3.31)

That is, the sequence of πν(p)∧ν
ι πν(r), for ν ∈ (ι, θ] determines a thread

in Pθ, in the sense of de�nition 1.13.

2. For ι and η as above, ∧η
ι is a stable meet operator on (Pι, Pη).

Fix ι < θ. Let (p, r) ∈ dom(∧θ
ι ) be arbitrary and let λ be an arbitrary

witness to (3.25). For the rest of the proof let tζν denote πζ(p) ∧ζ
ν πζ(r), for

ι ≤ ν < ζ ≤ θ.
First assume θ is limit. By induction hypothesis, (tηι )η∈(ι,θ) is a thread

through Q̄θ; let it be denoted by t̄. By (3.30) and lemma 1.15, t̄ = p∧θ
ι r = tθι .

It follows immediately that (tηι )η∈(ι,θ] is a thread through Q̄θ+1 (see also lemma
1.15). We must show that t̄ has legal support. It su�ces to show that for
each γ ∈ Reg \λ0, suppγ(t̄) ⊆ suppγ(p) ∪ suppγ(r). So �x γ as above and
ξ < θ such that we have

πξ+1(p) 4γ πξ(p), (3.32)

πξ+1(r) 4γ πξ(r). (3.33)

As r ≤ πι(r) · p ≤ π(r) by assumption, by (Cc2) for πξ and by (C 3) in
connection with (3.33) yields πξ+1(r) 4γ πι(r) · πξ+1(p). By de�nition of t̄
and since ∧ξ+1

ι is a stable meet operator, we have

πξ+1(t̄) = πξ+1(p) ∧ξ+1
ι πξ+1(r) 4γ πξ+1(p).

By (3.32) and lemma 3.8, we conclude πξ+1(t̄) 4γ πξ(t̄), i.e. ξ 6∈ suppγ(t̄),
�nishing the proof that t̄ has legal support. It is straightforward to prove
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equations (3.26), (3.27) and (3.28) for tθι = p ∧θ
ι r, assuming by induction

that for each η < θ, ∧η
ι is a stable meet operator (tθι is a thread whose initial

segments satisfy these equations). We leave this to the reader.
Now let θ = η +1. To see that (tνι )ν≤θ is a thread, it su�ces to show that

πη(t
θ
ι ) = tηι . In order to show this, observe

πη(t
θ
ι ) = tηι · πη(t

θ
η) = tηι · πη(p) = tηι ,

where the last equation holds since by induction, tηι ≤ πη(p). It follows by
the induction hypothesis that (tνι )ν≤θ is a thread.

It remains to show that ∧θ
ι is a Pι-stable meet on Pθ, i.e we must show

(3.26), (3.27) and (3.28). Firstly, by induction,

tηι 4λ πη(p),

and as ∧θ
η is a Pη-stable meet on Pθ,

πη(p) = πη(t
η+1
η ).

By 3.18(CsA), this entails

tηι · tη+1
η 4λ tη+1

η .

As ∧θ
η is a Pη-stable meet on Pθ, we have tη+1

η 4λ p, whence tθι = tηι ·tη+1
η 4λ p,

proving (3.26). Secondly,

πι(t
θ
ι ) = πι(t

η
ι · πη(t

η+1
η )) = πι(t

η
ι ) = πι(p).

The �rst equality of (3.4) is trivial. The second holds since tηι ≤ πη(p) by
induction hypothesis and since by the assumption that ∧η+1

η is a Pη-stable
meet, we have πη(p) = πη(t

η+1
η ). The last equality of holds by induction.

Finally, we prove (3.28). We have

πι(r) · tθι = πι(r) · tηι · tη+1
η = πη(r) · tη+1

η = r,

where the �rst equation holds by de�nition, the second by induction hypoth-
esis, and the last one since ∧η+1

η is a Pη-stable meet. We are done with the
successor case of the induction, and thus with the inductive proof of the
lemma. ©

By the lemma, if Q̄θ is an iteration as in the hypothesis of the lemma and
ι < η < θ, the map ∧η

ι is the same as ∧θ
ι � (Pη)

2. So as we do for strong
projections, we just write ∧ι and we speak of the Pι-stable meet operator
(without specifying the domain). Moreover, we can formally set p ∧0 r = r
and p ∧ι r = p for ι ≥ θ.
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3.5 How to obtain a complete sub-order of the

tail

Let C be a complete sub-order of P , and say πC : P → C is a strong pro-
jection. To avoid confusion let the strong projection π : P → Q be denoted
by πQ for the present discussion. We want to �nd a su�cient condition to
ensure that C is a complete sub-order of P : Q, after forcing with Q. In our
application C will just be κ-Cohen forcing of L, for κ the least Mahlo. Our
iteration will be of the form P = Q ∗ (Q̇0 ×C) ∗ Q̇1, so after forcing with Q,
C is a complete sub-order of P : Q = (Q̇0 × C) ∗ Q̇1. We want the same to
hold for Φ[C] (where Φ is a member of a particular family of automorphisms
of P which we construct using the technique of amalgamation); this helps to
ensure �coding areas� don't get mixed up by the automorphisms, see lemma
5.4 and lemma 6.2. So we have to introduce a property su�cient for C to be
a complete sub-order of P : Q, in such a way that this condition is inherited
by Φ[C]. For this, we use of course the strati�cation of P .

Fix a pre-order P which is strati�ed above λ0. The following de�nition
is, as usual, relative to a particular pre-strati�cation system.

De�nition 3.32. We say C is remote in P over Q (up to height κ) if and
only if for all c ∈ C and p ∈ P such that c ≤ πC(p), we have

1. p · c 4λ p for every λ ∈ [λ0, κ);

2. πQ(p · c) = πQ(p).

Observe that if we drop the �rst clause, this just says that C is independent
in P over Q (see de�nition 1.8).

For a P -name Ċ, we say Ċ is remote in P over Q if and only if it is a name
for a generic of a remote complete sub-order of P ; i.e. there is a complete
sub-order RC of P (with a strong projection πC : P → RC) such that RC is
dense in 〈Ċ〉r.o.(P ) and RC is remote in P over Q.

Lemma 3.33. If Ċ is a P -name which is remote over Q, then Ċ is not in
V Q.

Proof. An immediate consequence of lemma 1.10 ©



Chapter 4

Amalgamation

Amalgamation is a technique to build iterations which admit a homomor-
phism. We need two types of amalgamations: using type-1 amalgamation,
we make sure a stage of our iteration has an automorphism extending an
isomorphism of two complete sub-algebras B0, B1 of the previous stage of
the iteration. Using type-2 amalgamation, we take care that we can extend
automorphisms of initial segments (e.g. those created by type-1 amalgama-
tion). The technique presented here di�ers substantially from that of [She84]
(described also in [JR93]) in two important (and related) aspects: �rstly, it
has a �full support� �avour rather than a ��nite support� �avour; secondly,
additional �ne tuning was needed to allow for amalgamation to preserve
strati�cation (most instances are discussed in detail below).

In 4.1, we de�ne the forcing P Z
f which will be put to use when we de�ne

either type of amalgamation. Before issuing this de�nition, we pause to
analyze P Z

f and �nd that it can be decomposed as a product after forcing
with B0 (section 4.2). In section 4.3 we de�ne type-1 amalgamation (denoted
by Am1) and show it preserves strati�cation, and in section 4.4 we do the
same for type-2 amalgamation (denoted by Am2). In the last section, we
construct a stable meet operator for amalgamation and discuss remote sub-
orders.

4.1 Basic amalgamation

Let P be a forcing, Q a complete sub-order of P such that π : P → Q is
a strong projection (see 1.6, p. 8 and the preceding discussion). For i ∈
{0, 1}, let Ḃi be a Q-name such that Q Ḃi is a complete sub-algebra of
P : Q. Moreover, say we have a Q-name ḟ such that Q ḟ : Ḃ0 → Ḃ1 is an
isomorphism of Boolean algebras.

61
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Our task is to �nd P ′ containing P as a complete sub-order, carrying
an automorphism Φ: P ′ → P ′ which extends the isomorphism of Ḃ0 and
Ḃ1 (in the extension by Q) and which is trivial on Q. Moreover, we want to
preserve strati�cation: if (Q, P ) is a strati�ed extension above λ0, we want λ1

(possibly strictly) greater than λ0 such that (P ′, P ) is a strati�ed extension
above λ1.

We �rst make some observations: Let r.o.(Q) ∗ Ḃi be denoted by Bi.
This is a complete sub-algebra of B = r.o.(P ), consisting Q-names (or if you
prefer, r.o.(Q)-names) ḃ such that 1Q Q ḃ ∈ Ḃi. Keep in mind that we can
canonically identify the partial order Q∗(Ḃi\{0}) with the set of b ∈ B0 such
that πQ(b) ∈ Q. Also, don't confuse this with the set of b ∈ B0 such that
πQ(b) = 1�or, equivalently, 1Q Q [b]Ġ > 0, which is called the term-forcing,
usually denoted by (Ḃi \ {0})Q.

Let πi denote the canonical projection from P to Bi. Then πi coincides
with π on Q (by 1.4). Moreover, ḟ can be viewed as an isomorphism f of B0

and B1 (mapping names to names). We have

π ◦ f = f ◦ π = π. (4.1)

In fact, for any pair of sub-algebras B0, B1 of r.o.(P ) such that Q ⊆ B0 ∩B1

and an isomorphism f : B0 → B1, equation (4.1) holds if and only if f
generates an isomorphism of the pair Q ∗ (Bi : Q), i ∈ {0, 1}. Thus instead
of starting with ḟ and Ḃ0, Ḃ1 as in the �rst paragraph, we could also have
started with f , B0 and B1 as above, satisfying (4.1).

In a �rst step, we de�ne P Z
f , the amalgamation of P over f . P Z

f contains
P as a complete sub-order and has an automorphism Φ extending f .

Remark 4.1. If we want to preserve strati�cation of P , we have to be more
careful: we must carefully pick a dense subset D of P , such that P ′ = DZ

f

is strati�ed. The partial order DZ
f is in general not equivalent to P Z

f , but
solves the problem described in the �rst paragraph. Finally, we will de�ne a
forcing Am1 which is equivalent to DZ

f , and moreover (P,Am1) is a strati�ed

extension. Let's postpone these complications, and �rst look at P Z
f .

Amalgamation is not a canonical operation. Firstly, if D is a dense subset
of P , we cannot infer that DZ

f is dense in P Z
f . This in combination with the

fact that strati�cation is also not canonical is the main obstacle in this proof.
Secondly, even the weaker statement fails: if r.o.(P ) = r.o.(R), we cannot
conclude r.o.(P Z

f ) = r.o.(RZ
f ).

Without precautions, we cannot even preclude P Z
f = ∅, although this

pathology does not arise if we ask B0 ∪ B1 ⊆ P . On the other hand, we
cannot simply work with r.o.(P ); for although r.o.(P ) has a dense strati�ed
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subset (namely P ), this doesn't mean that r.o.(P )Z
f will have a dense strati�ed

subset. Therefore, we want to stick as closely to P as possible, but still have
B0, B1 ⊆ P , so we de�ne a �hybrid�:

De�nition 4.2. Consider the set P ×B0×B1, i.e. the set of triples (p, ḃ0, ḃ1)
where p ∈ P and Q ḃi ∈ Ḃi for i ≤ 2. Order this set by (p, ḃ0, ḃ1) ≤ (p′, b′0, b

′
1)

if and only if p ≤ p′ and p · b0 · b1 ≤ p′ · b′0 · b′1 in r.o.(P ). We call P̂ = P̂ (Q, f)
the set of (p, ḃ0, ḃ1) ∈ P ×B0 ×B1 such that

π(p)  p · ḃ0 · ḃ1 6= 0, (4.2)

or equivalently,

π(p · ḃ0 · ḃ1) = π(p). (4.3)

For p̂ ∈ P̂ , when we refer to the components of p̂, we use the notation
p̂ = (p̂P , p̂0, p̂1). When appropriate, we identify p̂ with p̂P · p̂0 · p̂1, i.e. the
meet of the components in r.o.(P ). In particular, if g is a function such that
dom(g) = r.o.(P ), we write g(p̂) for g(p̂P · p̂0 · p̂1).

Clearly, P is isomorphic to the subset of P̂ where the two latter compo-
nents are equal to 1r.o.(P ), and this set is in turn dense in P̂ . So P can be

considered a dense subset of P̂ . Thus, the separative quotient of P̂ is the
completion under · of P ∪ B0 ∪ B1 in r.o.(P ) (leaving aside the 0 element).

Observe, moreover, that if D ⊆ P is dense in P , then {p̂ ∈ P̂ | p̂P ∈ D} is

the same as D̂, and we shall often use this fact tacitly. Lastly, observe that

p̂ ≤ q̂ ⇐ :
[

p̂P ≤ q̂P and πj(p̂) ≤ πj(q̂) for j ∈ {0, 1}
]

(4.4)

and p̂ ≈ (p̂P , π0(p̂), π1(p̂)).1 These two observations together would make

for an equivalent, more strict de�nition of P̂ , yielding separative P̂ pro-
vided P is separative. Notwithstanding, we �nd the current de�nition more
convenient�if less elegant. In the following, we identify P with {p̂ ∈ P̂ | p̂0 =
p̂1 = 1}.

Much of the following would work if we replace (4.3) by the weaker p ·
ḃ0 · ḃ1 6= 0. The advantage of asking (4.3) is that it makes the projection
π̄ : P Z

f → P take a simple form. Also, when we show the amalgamation of a
strati�ed forcing is strati�ed, we need to apply F to every coordinate; if we
allow π(p̄(i)) < π(p̄(i)P ), we don't know if F(. . . , p̄(i)P ) and π(p̄(i)) are even
compatible; this seems to make it impossible to de�ne an operator analogous
to F on the amalgamation.

1We may regard (p̂P , π0(p̂), π1(p̂)) the canonical representative of p̂ if P is separative.
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De�nition 4.3. We de�ne P Z
f to consist of all sequences p̄ : Z → P̂ that

satisfy

f(π0(p̄(k + 1)P · p̄(k + 1)0 · p̄(k + 1)1)) = π1(p̄(k)P · p̄(k)0 · p̄(k)1),

or, simply
f(π0(p̄(k + 1))) = π1(p̄(k)). (4.5)

for all k ∈ Z. The ordering on P Z
f is given by r̄ ≤ p̄ if and only if for all k,

r̄(k) ≤ p̄(k) in P̂ . We de�ne a map Φ: P Z
f → P Z

f by:

Φ(p̄)(i) = p̄(i + 1) for i ∈ Z.

Obviously, Φ is one-to-one and onto, and Φ(p̄) ≤ Φ(q̄) ⇐ : p̄ ≤ q̄.

Observe that (4.1) together with (4.5) and (4.3) imply that for all i ∈ Z,

π(p̄(i)) = π(p̄(0)) = π(p̄(0)P ). (4.6)

Let F : P̂ → B1 be de�ned by F (x) = f(π0(x)) and let G : P̂ → B0 be
de�ned by G(x) = f−1(π1(x)).

It may seem more natural to replace (4.5) by the weaker requirement that
f(π0(p(k + 1))) and π1(p(k)) be compatible; however, I'm not sure how to
show P is a complete sub-order in this case. Moreover, we need (4.6) to be
able to even de�ne F̄ witnessing that the amalgamation is quasi-closed when
P is (see the discussion preceding de�nition 4.9).

We now de�ne a complete embedding e : P̂ → P Z
f and a strong projection

π̄ : P Z
f → P̂ . For û ∈ P̂ de�ne e(û) : Z → P̂ by

e(û)(i) =


(π(ûP ), Gi(û), 1) for i > 0,

û for i = 0,

(π(ûP ), 1, F i(û)) for i < 0.

For p̄ ∈ P Z
f , de�ne π̄(p̄) ∈ P̂ by π̄(p̄) = p̄(0).

Lemma 4.4. The map π̄ is a strong projection, that is: if ŵ ≤ π̄(q̄) in P̂ ,
we may �nd e(ŵ) · q̄ ∈ P Z

f .

Proof. Let ŵ ≤ π̄(p̄). We de�ne w̄ by induction, as follows:

w̄(0) = ŵ

Assume w̄(i) ∈ P̂ has already been de�ned. We know π(w̄(i)) = π(w̄(i)P ).
Assume by induction that π(w̄(i)P ) = π(ŵP ). Also, assume by induction
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that w̄(i) ≤ p̄(i) and w̄(i) ≤ e(ŵ)(i) in P̂ . To inductively de�ne w̄ on the
positive integers, assume i ≥ 0 and de�ne:

w̄(i + 1) = (π(ŵ) · p̄(i + 1)P , p̄(i + 1)0, p̄(i + 1)1 · F (w̄(i))).

The de�nition of w̄ on the negative integers is also by induction. Assum-
ing i ≤ 0, we set:

w̄(i− 1) = (π(ŵ) · p̄(i− 1)P , p̄(i− 1)0 ·G(w̄(i)), p̄(i− 1)1)

For i ≥ 0, as w̄(i) ≤ p̄(i), we have

f(π0(w̄(i))) = F (w̄(i)) · f(π0(p̄(i)))

= F (w̄(i)) · π1(p̄(i + 1))

= π1(π(ŵP ) · p̄(i + 1) · F (w̄(i))

where the second equation holds as (4.5) holds for p̄, and the last equation
follows from F (w̄(i)) ≤ π(w̄(i)) = π(ŵP ). We conclude, by de�nition of
w̄(i + 1), that

f(π0(w̄(i))) = π1(w̄(i + 1)). (4.7)

Applying π to (4.7), we see π(w̄(i + 1)) = π(w̄(i)), and so

π(w̄(i + 1)) = π(ŵP ) =

π(π(ŵP ) · p̄(i + 1)P ) = π(w̄(i + 1)P ),

where the �rst equation follows from the induction hypothesis and the second
follows from

π(ŵP ) ≤ π(p̄(0)P ) = π(p̄(i + 1)P ).

Thus, w̄(i + 1) ∈ P̂ , π(w̄(i)) = π(ŵP ) and by construction, both w̄(i + 1) ≤
p̄(i + 1) and w̄(i + 1) ≤ e(ŵP )(i + 1) hold.

Replacing F by G in the above, we obtain a similar argument for the
inductive step from i ≤ 0 to i− 1; we leave the details to the reader. Finally
we have that w̄(i) ∈ P̂ and (4.7) holds for all i ∈ Z, whence w̄ ∈ P Z

f . We
have already shown w̄ ≤ p̄ and w̄ ≤ e(ŵ).

We now show w̄ ≥ e(ŵ) · p̄: Say r̄ ∈ P Z
f such that r̄ ≤ e(ŵ) · p̄. Clearly

r̄(0) ≤ w̄(0) = w. Now assume by induction that r̄(i) ≤ w̄(i). Then by (4.5),

r̄(i + 1) ≤ π1(r̄(i + 1)) ≤ F (w̄(i))

so as r̄(i + 1) ≤ p̄(i + 1), we have r̄(i + 1) ≤ w̄(i + 1).
A similar argument shows r̄(i − 1) ≤ w̄(i − 1), so we we've shown by

induction that r̄ ≤ w̄. So �nally, w̄ = e(ŵ) · p̄. ©



66 CHAPTER 4. AMALGAMATION

For i ∈ Z, we write ei for Φi ◦ e and π̄i for π̄ ◦ Φi.

Corollary 4.5. For each i ∈ Z, the map ei is a complete embedding of P̂ into
P Z

f . It is well-de�ned and injective on the separative quotient of P̂ . The map

π̄i : P Z
f → P̂ is a strong projection. The map ei �P is a complete embedding

of P into P Z
f . Letting R = {p̄ ∈ P Z

f | p̄(i)0 = p̄(i)1 = 1}, R is dense in P Z
f ,

we have ei[P ] ⊆ R and π̄i �R : R → P is a strong projection.

Proof. The �rst claim is an obvious corollary of the lemma. The rest follows
straightforwardly from elementary properties of e and π̄. ©

From now on, we identify P̂ with e[P̂ ] and accordingly P with {e(p, 1, 1) | p ∈
P}.

Corollary 4.6. Φ is an automorphism of P Z
f extending f .

Proof. Let b ∈ B0. We may assume π(b) ∈ Q (this holds for a dense set of

conditions in B0). Thus b ∈ P̂ (to be precise, we should write (π(b), b, 1)
instead of b). Now as F n(f(b)) = F n+1(b) and Gn+1(f(b)) = Gn(b),

Φ(e(b)) = Φ((. . . , G2(b), G(b),

0
↓
b, f(b), F 2(b), . . .)) =

(. . . , G2(b), G(b), b,

0
↓

f(b), F 2(b), . . .) = e(f(b))

So since Φ and f agree on a dense set of conditions in B0, they are equal on
B0. ©

4.2 Factoring the amalgamation

Interestingly, we can factor the amalgamation over a generic for B0. We
will put this to use when we investigate the tail Am1 : P . In particular, it
enables us to show that if ṙ is a P -name which is unbounded over V Q, Φ(ṙ)
will be unbounded not just over V Q but over V P . This will play a crucial
role in the proof of the main theorem, ensuring that when we make the set
without the Baire property de�nable, the coding (ensuring its de�nability)
doesn't con�ict with the homogeneity a�orded by the automorphisms. The
main point of the present section is lemma 4.8; it is used in section 5.3 on
p. 95, to prove lemma 5.4. This is in turn used in section 6 to prove the
crucial lemma 6.2.
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For an interval I ⊆ Z, let P I
f be the set of p̄ : I → P̂ such that whenever

both k ∈ I and k + 1 ∈ I, (4.5) holds. In other words

P I
f = {p̄�I | p̄ ∈ P Z

f }.

It is clear that for each k ∈ I, the map eI
k : P̂ → P I

f , de�ned by eI
k(p) =

ek(p) � I is a complete embedding. Similarly, there is a strong projection

πI
k : P I

f → P̂ .

Lemma 4.7. Let G0 = GQ ∗H0 be Q ∗ Ḃ0-generic. Then in V [G0], there is
a dense embedding of P Z

f : G0 into[
P

(−∞,0]
f : (GQ ∗H0)

]
×

[
P

[1,∞)
f : (GQ ∗ f [H0])

]
and another one into[

P
(−∞,−1]
f : (GQ ∗ f−1[H0])

]
×

[
P

[0,∞)
f : (GQ ∗H0)

]
.

Proof. We only show how to construct the �rst embedding; the second part
of the proof is only di�erent in notation. Let R0 denote P

(−∞,0]
f and R1

denote P
[1,−∞)
f , let H1 = f [H0] and G1 = GQ ∗ H1. In V , let S denote the

obvious map S : P Z
f → R0 ×R1: S(p̄)0 = p̄�(−∞, 0] and S(p̄)1 = p̄� [1,∞).

Let S∗ = S � (P Z
f : G0). We show that the range of S∗ is dense in

(R0 : G0) × (R1 : G1). Since S(p̄) ≤ S(q̄) ⇐ : p̄ ≤ q̄, this implies that
S∗ is injective on the separative quotient of its domain and thus is a dense
embedding.

To show that ran(S∗) is dense, let p̄0, p̄1 be given such that p̄i ∈ Ri : Gi,
for i ∈ {0, 1}. Fix i ∈ {0, 1} for the moment. Without loss of generality,

p̄i(i) ∈ P (and not just in P̂ ). Let bi = πi(p̄i(i)) ∈ Ḃ
GQ

i . Then as p̄i ∈ Ri : Gi,
bi ∈ Hi. Find q ∈ GQ and a Q-name ḃ such that q ≤ πQ(p̄0), πQ(p̄1) and q
forces that

ḃ = b0 · f−1(b1) > 0 in (Ḃ0)
GQ . (4.8)

We have that q  ḃ· p̄0(0) 6= 0 and f(ḃ)· p̄1(1) 6= 0, or in other words, q · ḃ ∈ P̂ ,
q · ḃ ≤ π̄(p̄0) and q · f(ḃ) ≤ π̄(p̄1). So we can de�ne p̄∗0 = e(q · ḃ) · p̄0 and
p̄∗1 = e1(q · f(ḃ)) · p̄1. As

q ∈ GQ and ḃGQ ∈ H0, (4.9)

we have p∗0 ∈ R0 : G0 and p∗1 ∈ R1 : G1. De�ne p̄∗:

p̄∗ = (. . . , p̄0(−1), p̄0(0), p̄1(1), p̄1(2), . . .)
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Then πQ(p̄∗) = q and by (4.8), q forces that the following hold in (Ḃ0)
GQ :

f(π0(p̄
∗
0(0))) = f(π0(q · p̄0(0) · ḃ)) = f(ḃ)

π1(p̄
∗
1(1)) = π1(q · p̄1(1) · f(ḃ)) = f(ḃ).

Thus p̄∗ ∈ DZ
f , and again by (4.9), p̄∗ ∈ DZ

f : G0. As S∗(p̄∗) = (p̄∗0, p̄
∗
1) ≤

(p̄0, p̄1), we are done. ©

Let Ṙi be a Q ∗ Ḃ0-name for Ri, for each i ∈ {0, 1}. We just showed that
Q ∗ Ḃ0 forces that there is a dense embedding from P Z

f : G0 into Ṙ0× Ṙ1. So

there is a dense embedding of P Z
f into Q ∗ Ḃ0 ∗ (Ṙ0 × Ṙ1). Since the latter

is equivalent to P
(−∞,0]
f ∗ Ṙ for some Ṙ, we �nd that P

(−∞,0]
f is a complete

sub-order of P Z
f . The same is true for P

[0,∞)
f (or more generally, for P I

f , where
I is any interval in Z). In fact, it's easy to show that the natural embedding
and projection witness this.

The previous lemma a�ords insight concerning the action of the automor-
phism Φ. E.g. it enables us to show that if ẋ is a P -name which is not in
V B0 (and hence also not in V B1), then for all i ∈ Z \ {0}, Φ(ẋ) 6∈ V P . In
fact, for the proof of the main theorem, we shall need something a bit more
speci�c:

Lemma 4.8. Assume that ṙ0, ṙ1 be P -names for reals random over V Q, and
assume Q Ḃi = 〈ṙi〉P :Q (as is the case in our application). If ṙ is a P -name
for a real such that ṙ is unbounded over V Q, then for any i ∈ Z \ {0}, Φi(ṙ)
unbounded over V P .

Proof. Firstly, ṙ is unbounded over V Bi , for each i ∈ {0, 1}, since the random
algebra does not add unbounded reals. For a start, let's assume i = 1.

Let G1 = GQ ∗f [H0] be Q∗ Ḃ1-generic and work in W = V [G1]. We have
that ṙ is a P : G1 name for a real which is unbounded over W (in the sense of
de�nition 1.16�in any P : G1-generic extension of V [G1], the interpretation
of ṙ will be unbounded over V [G1]. Let R0, R1 be de�ned as in the previous
proof, i.e.

R1 = P
[1,∞)
f : G1,

R0 = P
(−∞,0]
f : (GQ ∗H0),

let Ṙi be a Q ∗ Ḃ0-name for Ri, for each i ∈ {0, 1}, and let I = [1,∞). As
P : G1 is a complete sub-order of R1 (the skeptic is referred to lemma 1.11,
p. 11), eI

1(ṙ) is an R1-name which is unbounded over W . By lemma 1.17,
viewing eI

1(ṙ) as a R0 × R1-name, it is unbounded over WR0 . As G1 was
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arbitrary, eI
1(ṙ) is a Q ∗ Ḃ0 ∗ (Ṙ1 × Ṙ0)-name unbounded over V Q∗Ḃ0∗Ṙ0 . By

the previous theorem this means that e1(ṙ) is a P Z
f -name unbounded over

V Q∗Ḃ0∗Ṙ0 = V P
(−∞,0]
f and hence over V P , since S ◦ e0 = eI

0 shows that P is a
complete sub-order of Q ∗ Ḃ0 ∗ Ṙ0.

For arbitrary i ∈ Z such that i > 0: We just showed that e1(ṙ) is a

P Z
f -name unbounded over V P

(−∞,0]
f . Since eI

−i+1[P ] is a complete sub-order of

P
(−∞,0]
f , we know e1(ṙ) is unbounded over V e−i+1[P ]. Apply Φi−1 to see Φi(ṙ)

is unbounded over V e0[P ], as e0 = Φi−1 ◦ e−i+1. For i < 0, argue exactly as
above but use the second dense embedding mentioned in lemma 4.7. ©

4.3 Strati�ed type-1 amalgamation

We now turn to the matter of strati�cation. Assume (Q,P ) is a strati�ed
extension above λ0, as witnessed by SQ = (FQ, 4λ

Q, 2λ
Q,Cλ

Q)λ≥λ0 and SP =
(F, 4λ, 2λ,Cλ)λ≥λ0 . We never need to mention 4λ

Q, 2λ
Q, Cλ

Q and FQ as we
can always use the corresponding relation from SP (see the remark following
de�nition 3.18, p. 45). Moreover, assume Q |Ḃ0| ≤ λ0.

The main problem with strati�cation and amalgamation is quasi-closure:
Firstly, if p and q are compatible, F(p) and F(q) needn't be (in fact, it's easy
to show there has to be a counterexample if F is non-trivial). This is why
we asked the somewhat strict (4.6) in the de�nition of amalgamation and
(Cc3) in the de�nition of strati�ed extension�although there might be more
subtle ways to circumvent this issue.

Secondly, consider two sequences (pξ)ξ<ρ and (qξ)ξ<ρ such that pξ and qξ

are compatible for every ξ < ρ, with greatest lower bounds p and q respec-
tively. In general, p and q don't have to be compatible. A similar problem
occurs with regard to the de�ning equation (4.5) of amalgamation: say we
have a sequence of conditions p̄ξ ∈ Am1 and for each i ∈ Z, p̄(i) is a greatest
lower bound of (p̄ξ(i))ξ. Even though (4.5) holds for every p̄ξ, it could fail
for p̄.

The solution to this problem is to thin out to a dense subset of P where
πi is stable with respect to�direct extension�, before we amalgamate. That is,
on this dense subset, πi doesn't change (in a strong sense) when conditions
are extended in the sense of 4λ, for λ ≥ λ0.

De�nition 4.9. Let D = D(Q, P, f, λ0) be the set of p ∈ P such that for all
q ∈ P , if q 4λ0 p we have

∀(b0, b1) ∈ B0 ×B1

(
π(q) · p · b0 · b1 6= 0

)
:
(
q · b0 · b1 6= 0

)
(4.10)
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Observe that (4.10) is equivalent to:

∀j ∈ {0, 1} π(q) Q ∀b ∈ Ḃ1−j πj(q · b) = πj(p · b), (4.11)

and also to the following:

∀j ∈ {0, 1} ∀b ∈ B1−j πj(q · b) = π(q) · πj(p · b). (4.12)

Lemma 4.10. D is open dense in 〈P, 4λ0〉.

Proof. Let p0 be given. We inductively construct an adequate sequence of
pξ, 0 < ξ ≤ λ0 with pλ0 ∈ D. First �x x such that the following de�nition
is ∆A

1 in parameters from x. Fix Q-names ḃj such that Q ḃj : λ0 → Ḃj is
onto, for j = 0, 1, and let ξ 7→ (αξ, βξ, ζξ) be a surjection from λ0 onto (λ0)

3.
For limit ξ, let pξ be the greatest lower bound of the sequence constructed

so far. Say we have constructed pξ, we shall de�ne pξ+1. Let's �rst assume
there are p∗, p̄ such that p̄ 4λ0 F(λ0, x, pξ), p∗ ≤ p̄ and

1. π(p∗)  p̄ · ḃ0(αξ) · ḃ1(βξ) = 0,

2. ζξ ∈ Cλ0(p∗).

In this case pick pξ+1 such that pξ+1 4λ0 p̄ and pξ+1 2λ0 p∗ (using interpola-
tion). If, on the other hand, no such p̄, p∗ exist, let pξ+1 = pξ.

We now show (4.11) holds for the �nal condition pλ0 : say, to the contrary,
we can �nd j ∈ {0, 1} and ḃ ∈ B1−j together with q̄ 4λ0 pλ0 such that

π(q̄) 6Q πj(q̄ · ḃ) = πj(pλ0 · ḃ).

Without loss of generality say j = 0. We can �nd q∗ ≤ q̄ such that for some
α, β < λ0

(i) π(q∗)  π0(pλ0 · ḃ)− π0(q̄ · ḃ) = ḃ0(α) 6= 0,

(ii) π(q∗)  ḃ = ḃ1(β),

(iii) q∗ ∈ dom(Cλ0).

Find ξ < λ0 so that α = αξ, β = βξ and ζξ ∈ Cλ0(q∗). By construction,
at stage ξ of our construction we had p̄ and p∗ satisfying (1) and (2). As
Cλ0(p∗) ∩Cλ0(q∗) 6= 0 and q∗ ≤ pξ+1 2λ0 p∗, we can �nd w ≤ p∗, q∗. But by
(i), π(w)  pλ0 ·ḃ0(α)·ḃ1(β) 6= 0 while since w ≤ p∗, π(w)  pλ0 ·ḃ0(α)·ḃ1(β) =
0, contradiction.

Now we show D is open: For any r 4λ0 q, j = 0, 1 and ḃ ∈ B1−j, since
r 4λ0 p, we have π(r)  πj(r · ḃ) = πj(p · ḃ). Since π(q)  πj(q · ḃ) = πj(p · ḃ)
and r ≤ q, π(r)  πj(r · ḃ) = πj(q · ḃ). So q ∈ D. ©
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Having Q ⊆ D helps in many circumstances, in particular we like to have
1P ∈ D. To this end we introduce the notion of B0, B1 being λ0-reduced.

De�nition 4.11. We say the pair B0, B1 is λ-reduced over Q if and only if
whenever p ∈ P , p 4λ q for some q ∈ Q and b ∈ Bj for j = 0 or j = 1, we
have

π1−j(p · b) = π(p) · π(b).

Henceforth assume B0, B1 is a λ0-reduced pair. We will later see that
this is a very mild assumption, see lemmas 4.13 and 5.3.

Lemma 4.12. If p 4λ0 q for some q ∈ Q and j ∈ {0, 1} we have

π(p)  ∀b ∈ Ḃ1−j \ {0} πj(p · b) = 1,

and moreover, p ∈ D. In particular, we have Q ⊆ D.

Proof. Fix p as in the hypothesis. Say r ∈ Q, r ≤ π(p) and b ∈ B0 such that
r  b ∈ Ḃ0 \ {0}. Then r ≤ π(b). So as B0, B1 is λ0-reduced, r ≤ π1(p · b),
whence r  π1(p · b) = 1. This proves the �rst statement for j = 1, and in
the other case the proof is the same.

We now show p ∈ D: Say p′ 4λ0 p. Since also p′ 4λ0 q, we have

π(p′)  ∀b ∈ Ḃ1−j \ {0} πj(p
′ · b) = 1 = πj(p · b),

and thus p ∈ D. ©

In fact, the �rst statement of lemma 4.12 is equivalent to B0, B1 being a
reduced pair (this is really just a slight variation of lemma 4.13).

The following provides a hint as to how we can assume that B0, B1 is
λ0-reduced:

Fact 4.13. Assume that ṙ0, ṙ1 are P -names for reals random over V Q, and
assume Q Ḃi = 〈ṙi〉P :Q (as is the case in our application). Say j = 0 or
j = 1. The following are equivalent (interestingly, in (2), there is no mention
of j):

1. Whenever p ∈ P , p 4λ q for some q ∈ Q and b ∈ Bj, we have

π1−j(p · b) = π(p) · π(b).

2. Whenever p ∈ P , p 4λ q for some q ∈ Q and b0, b1 are Q-names for
Borel sets such that for some w ≤ π(p), w Q� both b0 and b1 are not
null�, there is p′ ≤ p such that p′ P ṙ0 ∈ b0 and ṙ1 ∈ b1.
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Proof. First, assume (2). We carry out the proof for j = 0 (the other case
is exactly the same). Let p ∈ P such that for some q ∈ Q, p 4λ0 q and
let b0 ∈ B0. As for any r ∈ r.o.(P ), r ≤ πj(r) ≤ π(r) holds, we have
πj(p · b0) ≤ π(p) · π(b0). We now show πj(p · b0) ≥ π(p) · π(b0). It su�ces to
show that whenever b1 ∈ B1 is compatible with π(p) · π(b0), it is compatible
with p · b0. So �x b1 ∈ B1. We have π(b1) · π(b0) · π(p) 6= 0, so we may pick
w ≤ π(b1) · π(b0) · π(p). For j = 0, 1, let ḃj be a Q-name for a Borel set such
that bj = ‖ṙj ∈ ḃj‖r.o.(P ). The last inequality means w  ḃ0 and ḃ1 are not
null. So by assumption, we can �nd p′ forcing ṙj ∈ ḃj for both j = 0, 1. In
other words, p′ ≤ p · b0 · b1, whence b1 is compatible with p · b0.

For the other direction, assume (1) and again assume j = 0, �x p as
above, and say ḃ0, ḃ1 are Q-names such that w  ḃ0, ḃ1 ∈ Borel+ for some
w ≤ π(p). Let bj = ‖ṙj ∈ ḃj‖r.o.(P ). As π(b0) ·π(b1) ·π(p) 6= 0, b1 is compatible
with π(b0) · π(p) = π1(p · b0). Thus b1 is compatible with p · b1. So we may

pick p′ ∈ P , p′ ≤ p · b0 · b1. ©

De�nition 4.14. Under the assumptions of the previous lemma, we also say
the pair ṙ0, ṙ1 is λ-reduced.

We shall need the next lemma to show that P completely embeds into
Am1 (see 4.17). Observe that the next lemma does not make the assumption
that B0, B1 is a λ0-reduced pair obsolete, i.e. by itself the lemma does not
imply Q ⊆ D.

Lemma 4.15. Assume that there exists a Q-stable meet operator ∧Q on P
with respect to S. Then Q ·D ⊆ D. More precisely, if p ∈ D and q ∈ Q are
such that q ≤ π(p), we have q · p ∈ D. Moreover, if (p, r) ∈ dom(∧Q) and
p ∈ D, for any j ∈ {0, 1} and b ∈ B1−j we have πj((p ∧Q r) · b) = πj(p · b).

Proof. Let p ∈ P , q ∈ Q and q ≤ π(p). We check that q · p ∈ D. So let

r 4λ0 q · p, (4.13)

and �x j ∈ {0, 1} and b ∈ B1−j. To prove that q · p ∈ D, it su�ces to show

πj(r · b) = π(r) · πj(q · p · b). (4.14)

Observe that (4.13) implies that r 4λ0 π(r) · p�for by 3.1(Cc2), π(r) 4λ

π(q · r) = q; now use 3.18(CsA). Thus (p, r) ∈ dom(∧Q) and p ∧Q r 4λ0 p.
Thus p ∧Q r ∈ D and

πj((p ∧Q r) · b) = π(p ∧Q r) · πj(p · b) = πj(p · b),

where the last equation holds because π(p ∧Q r) = π(p) ≥ πj(p · b). Note in
passing that this proves of the �moreover� clause of the lemma. We continue
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with the proof of the remaining part of the lemma. By the previous, as
r = π(r) · (p ∧Q r),

πj(r · b) = π(r) · πj((p ∧Q r) · b) = π(r) · πj(p · b) = π(r) · πj(q · p · b).

The last equation holds as π(r) ≤ q. This �nishes the proof of the lemma.

©

From now on, assume we have a Q-stable meet ∧Q on P .

While it is true that (D̂,DZ
f ) is a strati�ed extension, this is not quite

the partial order we use in the main theorem: for this construction would
require to repeatedly thin out to a dense set. As a consequence, we would
need the main iteration theorem 3.23 not just for iterations but rather for
sequences (Dξ)ξ<θ where (Dξ, Dξ+1) is a strati�ed extension, but we do not
have strong projections from Dξ̄ to Dξ for ξ < ξ̄ ≤ θ. Moreover, we would
need to prove that the limits in this directed system of partial orders are
what we expect them to be (in particular, that each Dξ is embedded in this
limit as a complete sub-order).2 Instead, we have a much simpler solution.

De�nition 4.16 (Type-1 amalgamation). Let Am1 = Am1(Q, P, f, λ) be

the set of p̄ : Z → P̂ such that the following conditions are met.

1. For all i ∈ Z, π(p̄(i)P ) = π(p̄(0)P ).

2. For all i ∈ Z\{−1, 0}, f(π0(p̄(i))) = π1(p̄(i+1)) � that is, (4.5) holds.

3. p̄(0) ∈ P , i.e. p̄0(0) = p̄1(0) = 1 and

f(π0(p̄(−1))) ≥ π1(p̄(0)), (4.15)

f(π0(p̄(0)) ≤ π1(p̄(1)). (4.16)

4. For i ∈ Z \ {0}, p̄(i)P ∈ D(Q, P, f, λ).

Observe we can replace (4.15) and (4.16) by

p̄(0)P ≤ f(π0(p̄(−1))) · f−1(π1(p̄(1))). (4.17)

and obtain an equivalent de�nition. Thus, p̄ ∈ Am1 if and only if the
following conditions are met:

1. p̄(0) ∈ P ,

2It seems plausible that theorem 3.23 would go through in this broader case. This
provided, it is possible, but lengthy to show that limits contain the Dξ's.
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2. p̄� [1,∞) ∈ D
[1,∞)
f and p̄�(−∞,−1] ∈ D

(−∞,−1]
f

3. for both j ∈ {−1, 1} we have π(p̄(0)) = π(p̄(j)) and (4.17) holds.

Let a : P → Am1 be de�ned by a(p)(0) = (p, 1, 1) and a(p)(i) = (π(p), 1, 1)
for all i ∈ Z \ {0}. As before, let π̄(p̄) = p̄(0)P (we see no problem in using
the same designation as for the projection from DZ

f to D�see the remark
after the next lemma).

Lemma 4.17. The map a : P → Am1 is a complete embedding and

π̄ : Am1 → P

is a strong projection.

Proof. Let p̄ ∈ Am1, w ∈ P , and w ≤ p̄(0). De�ne p̄′ by

p̄′(i) =

{
w for i = 0,

(π(w) · p̄(i)P , p̄(i)0, p̄(i)1) for i ∈ Z \ {0}.

Clearly p̄′ ∈ Am1, p̄′ ≤ a(w) and p̄′ ≤ p̄. Moreover, for arbitrary q̄ ∈ Am1,
if q̄ ≤ a(w) and q̄ ≤ p̄, clearly q̄ ≤ p̄′; so p̄′ = a(w) · p̄. This shows that π̄ is

a strong projection and accordingly, a is a complete embedding. ©

In what follows, we identify P and a[P ]�except when we feel this would
hide the point of the argument. Next we show that in fact, Am1 and DZ

f are
presentations of the same forcing.

Lemma 4.18. The set D∗ = {p̄ ∈ DZ
f | p̄(0)0 = p̄(0)1 = 1} is dense in both

DZ
f and Am1.

Proof. First, we notice that D∗ ⊆ Am1 and that the ordering of DZ
f and

that of Am1 coincide on D∗. Observe that since we identify D with a subset
of D̂, we may write π̄−1[D] = D∗ (this holds no matter if we consider π̄ to

have domain Am1 or DZ
f ). As D̂ is a complete sub-order of DZ

f and D is

dense in D̂, D∗ = π̄−1[D] is dense in DZ
f . In other words, given p̄ ∈ DZ

f , �nd
d ∈ D such that d ≤ p̄(0)P · p(0)0 · p(0)1; clearly, d · p̄ ∈ D∗.

Now let p̄ ∈ Am1. We �nd w̄ ≤ p̄, such that w̄ ∈ D∗. Find d ∈ D
such that d ≤ p̄(0). First let I = (−∞, 0] and construct w̄− = w̄ � I. Let
b0 = f(π0(p̄(−1))) and de�ne p̄− ∈ DI

f by

p̄− = (. . . , p̄(i), . . . , p̄(−1), b0),
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where of course we identify b0 and (π(b0), 1, b0) ∈ D̂. Since d ≤ p̄(0) ≤ b0

and b0 = π̄I
0(p̄

−), we can let w̄− = d · p̄− ∈ DI
f . Observe that π̄I

0(w̄
−) = d.

Now let I = [0,∞). In an analogous fashion, de�ne w̄+ ∈ DI
f such that

w̄+ ≤ p̄�I and πI
0(w̄

+) = d. Letting

w̄(i) =

{
w̄−(i) for i < 0,

w̄+(i) for i ≥ 0,

we conclude w̄ ∈ Am1. Moreover, π̄(w̄) = d ∈ D whence w̄ ∈ D∗, and w̄ ≤ p̄

in Am1. ©

Thus, although Φ is not an automorphism of Am1, since it is an auto-
morphism of DZ

f , it gives rise to an automorphism of the associated Boolean
algebra. We call Φ the automorphism resulting from the amalgamation, and
we refer to Q as the base of the amalgamation or, interchangeably, the base
of Φ.

That r.o.(Am1) = r.o.(DZ
f ) justi�es that we use the same notation for

the strong projections π̄ : Am1 → P and π̄ : DZ
f → D�as we know a strong

projection coincides with the canonical projection on (the separative quotient
of) its domain. The next lemma clari�es the role of D.

Lemma 4.19. Let p̄ ∈ Am1 and say q̄ : Z → P × B0 × B1 satis�es the
following conditions:

1. for each i ∈ Z, π(q̄(i)P ) = π(q̄(0)P ).

2. q̄(0)0 = q̄(0)1 = 1.

3. ∀i ∈ Z \ {0} q̄(i)P 4λ0 p̄(i)P .

4. ∀i ∈ Z \ {0} πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i))

Then q̄ ∈ Am1.

Proof. First, let I = [1,∞) and show q̄ �I ∈ DI
f . Let i ∈ I be arbitrary. By

4 above, we have
πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i)) (4.18)

for j ∈ {0, 1}. Since by 1 we have π(q̄(i)P ) = π(q̄(0)P ) ≤ π(p̄(0)P ) = π(p̄(i)),
applying π to (4.18) yields

π(q̄(i)) = π(q̄(i)P ) · π(p̄(i)) = π(q̄(i)P ), (4.19)

which means
q̄(i) ∈ P̂ . (4.20)
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Since p̄ ∈ Am1 and since (4.18) holds, we have

f(π0(q̄(i))) = π(q̄(0)) · f(π0(p̄(i))) = π(q̄(0)) · π1(p̄(i + 1)) = π1(q̄(i))

Thus q̄ � I ∈ DI
f . Repeat the argument above to show p̄ � (−∞,−1] ∈

D
(−∞,−1]
f . As q̄(0)0 = q̄(0)1 = 1 by assumption, (4.20) holds for i = 0. Let

b = f(π0(p̄(−1))) · f−1(π1(p̄(1))). As q̄(0) ≤ p̄(0) ≤ b, clearly

q̄(0) ≤ π̄(q̄(0)) · b = f(π0(q̄(−1))) · f−1(π1(q̄(1))).

Thus, �nally q̄ ∈ Am1. ©

Finally, we are ready to state and prove the main theorem of this section:

Theorem 4.20. (P,Am1) is a strati�ed extension above (λ0)
+.

Proof. We proceed to de�ne a strati�cation of Am1. Am1 is going to be
strati�ed above (λ0)

+, but in general not above λ0. For notational conve-

nience, we de�ne q̄ 4̄λ
p̄ for arbitrary Z-sequences q̄, p̄ ∈ Z(P ×B0×B1) and

for λ ≥ λ0: q̄ 4̄λ
p̄ exactly if for every i ∈ Z, q̄(i)P 4λ p̄(i)P and for every

i ∈ Z \ {0} we have π(q̄(i)P ) Q πj(q̄(i)) = πj(p̄(i))�or equivalently,

πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i)) (4.21)

for both j ∈ {0, 1}.

Corollary 4.21. Using this notation we can state lemma 4.19 in the follow-
ing way: If for some regular λ ≥ λ0, p̄ ∈ Am1 and q̄ : Z → P × B0 × B1

satisfy q̄ 4̄λ
p̄ and moreover q̄(0) ∈ P and for all i ∈ Z, π(q̄(i)P ) = π(q̄(0)P )

holds, then q̄ ∈ Am1.

Lemma 4.22. Observe that if q̄ : Z → P × B0 × B1 and p̄ ∈ Am1 satisfy
q̄(i)P 4λ p̄(i)P for all i ∈ Z and q̄(i)j = p̄(i)j for all i ∈ Z\{0} and j ∈ {0, 1},
then q̄ 4̄λ

p̄.

Proof. For i ∈ Z \ {0} and j ∈ {0, 1}, we have

πj(q̄(i)) = p̄(i)j · πj(q̄(i)
P · p̄(i)1−j)

= p̄(i)j · π(q̄(i)P ) · πj(p̄(i)P · p̄(i)1−j) = π(q̄(i)P ) · πj(p̄(i)).

where the second line is equal to the �rst as p̄(i)P ∈ D and q̄(i)P 4λ p̄(i)P .

Thus, q̄ 4̄λ
p̄. ©
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Now let p̄, q̄ ∈ Am1 and say λ is regular and λ > λ0. De�ne

F̄(λ, x, p̄)(i) = (F(λ, x, p̄P (i)), p̄(i)0, p̄(i)1).

We say q̄ 2̄λ
p̄ exactly if

∀i ∈ Z q̄(i)P 2λ p̄(i)P .

Next we de�ne C̄λ. Fix a name Ḃ such that

P Ḃ : Ḃ0 ∪ Ḃ1 → λ̌0 is a bijection.

Let dom(C̄λ) be the set of all p̄ ∈ Am1 such that for each i ∈ Z, we have
p̄(i)P ∈ dom(Cλ) and if i 6= 0, there is λ′ < λ such that for j ∈ {0, 1} we
have that Ḃ(πj(p̄(i))) is λ′-chromatic below π(p̄(i)P ). If p̄ ∈ dom(C̄λ), we
de�ne C̄λ(p̄) to be the set of all (c(i), λ′(i), H0(i), H1(i))i∈Z such that for
all i ∈ Z, c(i) ∈ Cλ(p̄(i)) and for all i ∈ Z \ {0} and j ∈ {0, 1}, Hj(i) is
a λ′(i)-spectrum of Ḃ(πj(p̄(i))) below π(p̄(0)P ). Observe that λ′(0), H0(0)
and H1(0) can be chosen arbitrarily�they merely serve as place-holders to
facilitate notation. This �nishes the de�nition of the strati�cation of DZ

f .

First we check that F̄ and (4̄λ
)λ∈Reg \λ0 give us a pre-closure system, see

2.1, p. 20. That F̄ is ∆A
1 is immediate (without any further assumptions on

the parameter x). For the following, let p̄, q̄, r̄ ∈ Am1, λ ∈ Reg \λ0 and x
be arbitrary.

Observe that w̄ = F̄(λ, x, p̄) satis�es all the requirements of 4.19, and

so w̄ ∈ Am1. For (C 1), we must prove transitivity, so say p̄ 4̄λ
q̄ 4̄λ

r̄

and show p̄ 4̄λ
r̄. Fix i ∈ Z and j ∈ {0, 1}. Clearly, p̄(i)P 4λ r̄(i)P . As

π(p̄(i)P ) Q πj(p̄(i)) = πj(q̄(i)) and πj(q̄(i)) = πj(r̄(i)), we get π(p̄(i)P ) Q

πj(p̄(i)) = πj(r̄(i)) and so as i, j were arbitrary, p̄ 4̄λ
r̄. It remains to show

that p̄ 4̄λ
q̄:p̄ ≤ q̄. So assume p̄ 4̄λ

q̄ and �x i ∈ Z. Firstly, p̄(i)P ≤ q̄(i)P ;
moreover, (4.21) implies πj(p̄(i)) ≤ πj(q̄(i)) for j ∈ {0, 1}, and so as i ∈ Z
was arbitrary and by (4.4), we infer p̄ ≤ q̄. For (C 2), simply observe that

F̄(λ, x, p̄) 4̄λ
p̄ holds by de�nition and by remark 4.22. (C 3): Say p̄ ≤ q̄ ≤ r̄

and p̄ 4̄λ
r̄. Let i ∈ Z be arbitrary; clearly p̄(i)P 4λ q̄(i)P . Let j ∈ {0, 1} be

arbitrary; as

πj(p̄(i)) ≤ π(p̄(i)P ) · πj(q̄(i)) ≤ π(p̄(i)P ) · πj(r̄(i))

and the terms on the sides of the equation are equal, we conclude p̄ 4̄λ

q̄. Condition (C 4) is left to the reader (it requires only a glance at the
de�nition).
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We continue by checking the remaining conditions of 2.6, i.e. that we
have a pre-strati�cation system on Am1. The �rst, (S 1) is immediate by
the de�nition. The conditions (S 2) and (S 3) are immediate by de�nition,
and we leave checking them to the reader. Finally, we prove (S 4):

Lemma 4.23. Density holds; i.e for p̄ ∈ Am1 and λ′ ∈ [λ0, λ) there is

q̄ ∈ Am1 such that q̄ ∈ dom(C̄λ) and q̄ 4̄λ′
p̄.

Proof. First, look through the following de�nition and �nd a set of parame-
ters x such that it is ∆A

1 in parameters from x. We de�ne conditions pn
i ∈ P

for n ∈ N and i ∈ Z and qn ∈ Q for n ∈ N. We do so by induction on n, in
each step using induction on i. First, as Q is strati�ed we can �nd q0 ∈ Q
such that q0 4λ′ π(p̄(0)P ) and for all i ∈ Z and both j ∈ {0, 1}, πj(p̄(i)) is
λ′-chromatic below q0.

Set p0
i = p̄(i)P , for i ∈ Z.

Now say we have already de�ned a Z-sequence (pn
i )i∈Z of conditions in

P and qn ∈ Q. We �rst �nd pn+1
i ∈ P for i ∈ Z, by induction on i. Find

pn+1
0 4λ′ F(λ′, x, qn · p̄n

0 ) such that pn+1
0 ∈ dom(Cλ). Assume by induction

that for all i ∈ Z, qn 4λ′ π(pn
i ), whence also π(pn+1

0 ) 4λ′ qn 4λ′ π(pn
i ).

Continue by induction, choosing, for each i ∈ N \ {0}, a condition pn+1
i such

that
pn+1

i 4λ′ F(λ′, x, π(pn+1
i−1 ) · pn

i ) (4.22)

and pn+1
i ∈ dom(Cλ). By induction hypothesis, π(pn+1

i−1 ) 4λ′ qn 4λ′ π(pn
i ), so

π(pn+1
i−1 ) · pn

i is a well de�ned condition in P and π(pn+1
i−1 ) · pn

i 4λ′ pn
i . Thus we

have de�ned pn+1
i for i ≥ 0. Before we consider the case i < 0, observe that

for any i ∈ N \ {0}, by (4.22), 3.1(Cc2) and (Cc3), we have

π(pn+1
i ) ≤ π(F(λ′, x, π(pn+1

i−1 ) · pn
i )) = F(λ′, x, π(pn+1

i−1 )).

For the second equality we also use that by construction, π(pn+1
i−1 ) ≤ qn+1 ≤

π(pn
i ). Thus, (π(pn+1

i ))i∈N is (λ′, x)-strategic and we may assume by choice of
x that it is (λ′, x)-adequate. Let q∗ be a greatest lower bound for (π(pn+1

i ))i∈N.
Now we de�ne pn+1

i , by induction on i for i < 0: Find pn+1
−1 ∈ P such that

pn+1
−1 4λ′ F(λ′, x, q∗ · pn

−1)

such that pn+1
−1 ∈ dom(Cλ). Again, continue by induction, choosing for each

i ∈ N, i > 1 a condition pn+1
−i 4λ′ F(λ′, x, pn

−i · π(pn+1
−i+1)) such that pn+1

−i ∈
dom(Cλ). Finally, let qn+1 be a greatest lower bound of (π(pn+1

−i ))i∈N.
For each i ∈ Z, (pn

i )n∈N is a λ′-adequate sequence and thus has a great-
est lower bound which we call q̄(i)P . By lemma 3.7 and by choice of x,
{π(pn

i )}n∈N is a λ′-adequate sequence in Q. By quasi-closure for Q, π(q̄(i)P )
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is a greatest lower bound of this sequence. As for each n ∈ N, qn+1 4λ′

π(pn
i ) 4λ′ qn, (qn)n∈N also has greatest lower bound π(q̄(i)P ), whence for all

i ∈ Z, π(q̄(i)P ) = π(q̄(0)P ). Set q̄(i)j = p̄(i)j for j = 0, 1 and observe that

q̄4̄λ′
p̄. Thus as λ′ ≥ λ0, we see q̄ satis�es the hypothesis of lemma 4.19 and

thus q̄ ∈ Am1. Lastly, as q̄(i)P is a greatest lower bound of {pn
i }n∈N, we

conclude q̄(i)P ∈ dom(Cλ). For each i ∈ Z, �x c(i) ∈ Cλ(q̄(i)P ).

Fix i ∈ Z \ {0} and j ∈ {0}. At the beginning, we chose q0 such that
πj(p̄(i)) is λ′-chromatic below q0. So we may �x a λ′-spectrum Hj(i) of

πj(p̄(i)) below q0�and hence also below π(q̄(0)P ) ≤ q0. As q̄ 4̄λ′
p̄ we have

πj(q̄(i)) = π(q̄(i)P ) · πj(p̄(i)). Thus, as i ∈ Z \ {0} and j ∈ {0, 1} were
arbitrary,

(c(i), λ′, H0(i), H1(i))i∈Z ∈ C̄λ(q̄).

©

Now we check that the pre-strati�cation system on Am1 extends that of
P . We start with 3.18, i.e. the conditions necessary for the preservation of
quasi-closure. Clearly, if p, q ∈ P and q 4λ p, by (Cc2) for (Q, P ) we have

a(q) 4̄λ
a(p). So (Cc1) holds. If p̄ 4λ q̄, of course p̄(0)P 4λ q̄(0)P , so (Cc2)

holds. By the de�nition of F̄, π̄(F̄(λ, x, p̄)) = F(λ, x, p̄(0)P ), i.e. (Cc3) holds.
We continue with the conditions of 3.18. For (Cs1), it su�ces to check (CsA)
and (CsB).

(CsA): Say q ∈ P and p̄ are such that q 4λ π̄(p̄). Let i ∈ Z \ {0}. By
(CsA) for (Q, P ) we have π(q) · p̄(i)P 4λ p̄(i)P . Moreover, πj(p̄ · q(i)) =

π(q) · πj(p̄(i)), so as p̄ · q(0) = q 4λ p̄(0)P , we conclude p̄ · q 4̄λ
p̄.

(CsB): Say q ∈ P and p̄, r̄ ∈ Am1 are such that q ≤ π̄(r̄) and r̄ 4̄λ
p̄.

Let i ∈ Z \ {0}. By (CsB) for (Q,P ) we have π(q) · r̄(i)P 4λ π(q) · p̄(i)P .
Moreover,

πj(r̄ · q(i)) = π(q) · πj(r̄(i))

= π(q) · π(p̄(0)P ) · πj(p̄(i)) = π(q) · πj(p̄(i)) = πj(p̄ · q(i)),

so as r̄ · q(0) = q = p̄ · q(0), we conclude r̄ · q 4̄λ
p̄ · q. Conditions (Cs2),

(Cs3) and (Cs5) are left to the reader. Being cautious, we check (Cs4). Say

w ∈ P , d̄, r̄ ∈ Am1 and w ≤ π̄(d̄) while d̄ 4̄λ
r̄. By (Cs4) for (Q,P ), we

have w · d̄(i)P 2λ w · r̄(i)P . As d̄ · w(0) = w = r̄ · w(0), we conclude that
w · d̄ 2λ w · r̄.

We check 3.2, i.e. that (P,Am1) is a quasi-closed extension. (EcI): Say

p̄ 4̄λ̄
π̄(p̄), that is, p̄ 4̄λ̄

a(p̄(0)P ). Write p0 = p̄(0)P , and p′0 = F(λ, x, p(0)P ).
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Fix i ∈ Z \ {0} and j ∈ {0, 1}. We have

p̄(i)P 4λ̄ π(p0) (4.23)

πj(p̄(i)) = π(p0) · πj(a(p0)(i)). (4.24)

Since π(p′0) ≤ π(p0) and F(λ, x, p̄(i)P 4λ p̄(i)P ∈ D and by (4.24), we infer

πj(F(λ, x, p̄)(i)) = πj(F(λ, x, p̄(i)P ) · p̄(i)0 · p̄(i)1)

= π(F(λ, x, p̄(i)P )) · πj(p̄(i))

= π(p′0) = π(p′0) · πj(a(p′0)(i)).

(4.25)

The next to last equation holds as πj(a(p0)(i)) = π(p0) and the last equa-
tion holds as πj(a(p′0)(i)) = π(p′0). By (4.23) we infer F(λ, x, p̄(i)P ) 4λ̄

π(F(λ, x, p̄(i)P )). Finally, as i ∈ Z \ {0} and j ∈ {0, 1} were arbitrary, this

together with (4.25) allows us to infer F̄(λ, x, p̄) 4̄λ̄
a(p′0) and we are done.

We prove (EcII): So say λ̄ < λ and ¯̄p = (p̄)ξ<ρ is a (λ∗, λ̄, x)-adequate
sequence in Am1 with a π̄-bound p ∈ P . Fix i ∈ Z \ {0}. By de�nition

of F̄ and 4̄λ
, the sequence {p̄ξ(i)

P}ξ<ρ is (λ∗, λ̄, x)-adequate in P . Since
{π(p̄ξ(0)P )}ξ<ρ is the same as {π(p̄ξ(i)

P )}ξ<ρ, the condition π(p(0)P ) =
π(p(i)P ) ∈ Q is a π-bound of the latter sequence. Thus by (EcII) for (Q, P ),
the sequence {p̄(i)P}ξ<ρ has a greatest lower bound pi ∈ P such that for all
ξ < ρ, pi 4λ∗ p̄ξ(i)

P and π(pi) = π(p̄(0)P ). Moreover, if λ∗ < λ̄, we have
pi 4λ̄ π(pi). For each i ∈ Z, let p̄(i)P = pi and for j ∈ {0, 1} let p̄(i)j = p̄0(i)

j.

By corollary 4.21, p̄ ∈ Am1 and p̄ 4̄λ∗
p̄0. We must check that for all ξ < ρ,

p̄ 4̄λ∗
p̄ξ. This is clear as for every i ∈ Z we have p̄(i)P 4λ∗ p̄ξ(i)

P by
construction, and for every i ∈ Z \ {0} and j ∈ {0, 1} we have

πj(p̄(i)) = π(p̄(i)P ) · πj(p̄0(i)) = π(p̄(i)P ) · πj(p̄ξ(i)),

where the �rst equation holds since p̄ 4̄λ∗
p̄0 second equation holds since

π(p̄(i)P ) = π(p) ≤ π(p̄ξ(i)
P )

and p̄ξ 4̄λ∗
p̄0 gives us

πj(p̄ξ(i)) = π(p̄ξ(i)
P ) · πj(p̄0(i)).

We check the remaining conditions of 3.19, showing that (P,Am1) is a strat-
i�ed extension above (λ0)

+.
(EsI): Say ¯̄p = (p̄)ξ<ρ and ¯̄q = (q̄)ξ<ρ are both (λ∗, λ̄, x)-adequate for

λ̄ < λ, such that
∀ξ < ρ C̄λ(p̄ξ) ∩ C̄λ(q̄ξ) 6= ∅. (4.26)
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Say the sequence ¯̄p = (p̄)ξ<ρ has a greatest lower bound p̄, the sequence
¯̄q = (q̄)ξ<ρ has a greatest lower bound q̄ and say

Cλ(p̄(0)P ) ∩Cλ(q̄(0)P ) 6= ∅. (4.27)

We show
C̄λ(p̄) ∩ C̄λ(q̄) 6= ∅. (4.28)

Fix c(0) ∈ Cλ(p̄(0)P ) ∩ Cλ(q̄(0)P ), and let λ′(0), H0(0) and H1(0) be arbi-
trary. Fix i ∈ Z \ {0}. By (4.27) and as π(p̄(i)P ) = π(p̄(0)P )) (analogously
for q̄) we have

Cλ(π(p̄(i)P )) ∩Cλ(π(q̄(i)P )) 6= ∅. (4.29)

Moreover, as in the previous proof, {p̄ξ(i)
P}ξ<ρ and {q̄ξ(i)

P}ξ<ρ are (λ∗, λ̄, x)-
adequate and so by (EsI) for (Q, P ) we can �nd c(i) ∈ Cλ(p̄(i)P )∩Cλ(q̄(i)P ).
We have now constructed c(i) for i ∈ Z which together with appropriate
λ′(i), H0(i), H1(i) will witness (4.28). Fix (c0(i), λ

′
0(i), H

0
0 (i), H1

0 (i))i∈Z ∈
C̄λ(p̄0) ∩ C̄λ(q̄0). We shall now check that

(c(i), λ′0(i), H
0
0 (i), H1

0 (i))i∈Z ∈ C̄λ(p̄) ∩ C̄λ(q̄). (4.30)

This is clear by de�nition: �x i ∈ Z \ {0} and j ∈ {0, 1}. Firstly, p̄ 4̄λ
p̄0

and so
πj(p̄(i)) = π(p̄(i)P ) · πj(p̄0(i)).

Moreover, by choice of λ′0(i) and Hj
0(i) there is bj ∈ Bj such that we have

πj(p̄0(i)) = π(p̄0(i)
P ) · bj.

and Hj
0 is a λ′0(i)-spectrum for bj below π(p̄(i)P ). The last two equations

together yield
πj(p̄(i)) = π(p̄(i)P ) · bj,

and so (4.30) holds. This �nishes the proof of (EsI).

(EsII), coherent expansion: Assume q̄ 2̄λ
p̄ and p̄ 4̄λ

ā(p̄(0)). Moreover,
assume q̄(0) ≤ p̄(0). We show q̄ ≤ p̄. Let i ∈ Z\{0} be arbitrary. As q̄(i)P 2λ

p̄(i)P and p̄(i)P 4λ a(p̄(0)P )(i)P = π(p(i)P ), and as π(q̄(0)P ) ≤ π(p̄(0)), we
have p̄(i)P ≤ q̄(i)P by (EsII) for (Q, P ). Say i 6= 0 and j ∈ {0, 1}. Then

πj(p̄(i)) ≤ π(p̄(i)) = π(p̄(0)P ) ≤ π(q̄(0)P ) = π(q̄(i)) = πj(q̄(i)),

where the last equality holds as q̄(i)P 4λ π(q̄(0)P ) ∈ Q ⊆ D. Thus we have
q̄(i)X ≤ p̄(i)X for X ∈ {0, 1, P} and each i ∈ Z, whence by (4.4), q̄ ≤ p̄, and
we are done.
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We show coherent interpolation (EsIII): Let d̄, r̄ ∈ Am1 be such that

d̄ 4̄λ
r̄, and say p ∈ P interpolates π̄(d̄) and π̄(r̄). We �nd p̄ ∈ Am1 such

that p̄ 4̄λ
r̄ and p̄ 2̄λ

d̄ and moreover π̄(p̄) = p. For i ∈ Z\{0}, use coherent
interpolation for (Q, P ) to �nd pi ∈ P such that pi 4λ r̄(i)P and pi 2λ d̄(i)P

and moreover π(pi) = π(p). Now we de�ne a sequence p̄ : Z → P ×B0 ×B1.
Set p̄(0) = (p, 1, 1) and set p̄(i) = (pi, r̄(i)

0, r̄(i)1) for i ∈ Z \ {0}. Clearly,

p̄ 4̄λ
r̄ and so p̄ ∈ Am1. By construction, p̄ 2̄λ

d̄ and π̄(p̄) = p̄(0)P = p.
It remains to demonstrate (EsIV):

Lemma 4.24. Coherent centering holds: Say λ > λ0, p̄ 2̄λ
d̄ and C̄λ(p̄) ∩

C̄λ(d̄) 6= ∅. Say further we have w0 ∈ P such that w0 4<λ p̄(0)P and
w0 4<λ d̄(0)P . Then there is w̄ ∈ Am1 such that π̄(w̄) = w0 and both

w̄ 4̄<λ
p̄ and w̄ 4̄<λ

d̄.

Proof. Fix p̄, d̄ and w0 as in the hypothesis. Fix i ∈ Z \ {0} for the moment.
Observe we have Since Cλ(p̄(i)P ) ∩ Cλ(d̄(i)P ) 6= ∅, by coherent centering
for (Q, P ) we can �nd w̄i ∈ P such that π(wi) = π(w0). If the additional
assumption at the end of the lemma holds, we may assume wi 4<λ p̄(i)P and
wi 4<λ d̄(i)P . For i ∈ Z, set

w̄(i) = (wi, p̄(i)0, p̄(i)1).

Since w̄ 4̄λ0 p̄ and π(w̄(i)P ) = π(w0) for each i ∈ Z, by lemma 4.19, w̄ ∈
Am1.

Now say the additional assumption holds. By construction, w̄(i)P 4<λ p̄
for each λ′ ∈ [λ0, λ). Fix i ∈ Z. Since C̄λ(p̄) ∩ C̄λ(d̄) 6= ∅, p̄(i)j and d̄(i)j

have a common λ-spectrum below π(w0), and so

π(w0) Q p̄(i)j = d̄(i)j. (4.31)

Thus for each i ∈ Z,

w̄(i) = w(i)P · d(i)0 · d(i)1 ≤ d̄(i)

whence w̄ ≤ d̄. In fact, as w̄(i)P 4λ′ d̄(i)P and (4.31) holds, w̄ 4̄λ′
d̄ for each

λ′ ∈ [λ0, λ). ©

©

Corollary 4.25. (P,Am1) is a strati�ed extension above λ+
0 .
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4.4 Strati�ed type-2 amalgamation

We now consider the simpler case when we want to extend an automorphism
already de�ned on an initial segment of the iteration. Let P be a forcing,
Q a complete sub-order, f an automorphism of Q and π : P → Q a strong
projection. Assume λ0 is regular and (Q, P ) is a strati�ed extension above
λ0. We denote the strati�cation on Q by 4λ

Q, 2λ
Q, . . . and write 4λ, 2λ, . . .

for the strati�cation of P .

Further we assume that for each regular λ and q, r ∈ Q,

1. q 4λ
Q r ⇐ : f(q) 4λ

Q f(r);

2. q 2λ
Q r ⇐ : f(q) 2λ

Q f(r);

3. for each k, f(FQ(λ, x, q)) = F(λ, f(q));

4. Cλ
Q(q) ∩Cλ

Q(r) 6= ∅ ⇐ : Cλ
Q(f(q)) ∩Cλ

Q(f(r)) 6= ∅.

We de�ne the type-2 amalgamation Am2(Q,P, f) (or just Am2 where the
context allows) as the set of all p̄ : Z → P such that for all i ∈ Z,

f(π(p̄(i))) = π(p̄(i + 1)). (4.32)

The ordering is p̄ ≤ q̄ if and only if for each i ∈ Z, p̄(i) ≤ q̄(i).

De�ne π̄ : Am2 → P by π̄(p̄) = p̄(0). The map ē : P → Am2 is de�ned
by ē(p)(0) = p and ē(p)(i) = π(p) for all i ∈ Z, i 6= 0.

It is straightforward to check that ē is a complete embedding and π̄ is the
restriction of the canonical projection from r.o.(Am2) to r.o.(ē[P ]). More-
over, if q ∈ P , p̄ ∈ Am2 and q ≤ π̄(p̄), then q · p̄ ∈ Am2.

We now de�ne the strati�cation of Am2, consisting of C̄
λ, F̄λ, 4̄λ

, 2̄λ
for

each regular λ ≥ λ0. We say q̄ 4̄λ
p̄ exactly if for every i ∈ Z, q̄(i) 4λ p̄(i),

and q̄ 2̄λ
p̄ exactly if for every i ∈ Z, q̄(i) 2λ p̄(i). De�ne F̄λ(p̄, k)(i) =

F(λ, x, p̄(i)). For p̄ such that for each i ∈ Z, p̄(i) ∈ dom(Cλ), we de�ne
C̄λ(p̄) to be the set of all c : Z → λ such that for each i ∈ Z, c(i) ∈ Cλ(p̄(i)).

Lemma 4.26. (P,Am2) is a strati�ed extension above λ0.

Proof. The proof is a slight modi�cation of the argument for type-1 amalga-
mation. Therefore, we only point out the main points, and leave the rest to
the reader.

Lemma 4.27. (P,Am2) is a quasi-closed extension above λ0.
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Proof. Let (p̄ξ)ξ<θ be λ-adequate. Fix i ∈ Z and let p̄(i) be the greatest lower
bound of the λ-adequate sequence (p̄ξ(i))ξ<θ. By coherency, (π(p̄ξ(i)))ξ<θ is
also adequate and its greatest lower bound is π(p̄(i)). As f is an automor-
phism, for each i ∈ Z, f(π(p̄(i))) is a greatest lower bound of (qξ(i))ξ<θ,
where q̄ξ(i) = f(π(p̄ξ(i))). As the latter is equal to π(p̄ξ(i − 1)), we obtain
(4.32) for p̄. So p̄ ∈ Am2; it is straightforward to check it is a greatest lower

bound of (p̄ξ)ξ<θ. ©

Let λ > λ0.

Lemma 4.28. Coherent interpolation holds, i.e whenever r̄, d̄ ∈ Am2, d̄ ≤ r̄
and p0 ∈ P such that p0 4λ π̄(r̄) and p0 2λ π̄(d̄), there is p̄ ∈ Am2 such that

p̄ 4̄λ
r̄, p̄ 2̄λ

d̄ and π̄(p̄) = p0.

Proof. Given r̄, d̄ and p0 as above, �rst set p̄(0) = p0. As π(r̄(i)) = π(r̄(0))
and π(d̄(i)) = π(d̄(0)), p0 2λ π(d̄(i)) and p0 4λ π(r̄(i)), for all i ∈ Z.
Coherent interpolation for (Q, P, π) allows us to �nd, for each i ∈ Z, i 6= 0 a
condition p̄(i) ∈ P such that π(p̄(i)) = π(p0), p0 2λ d̄(i) and p0 4λ r̄(i). As

for each i ∈ Z, π(p̄(i)) = π(p0), p̄ ∈ Am2. ©

Lemma 4.29. Coherent centering holds. That is: Say p̄ 2̄λ
d̄ and either of

the following holds: C̄λ(p̄)∩ C̄λ(d̄) 6= ∅ or for some q ∈ Q, p̄ 4̄λ
q or d̄ 4̄λ

q.
Say further w0 ∈ D such that for each regular λ′ ∈ [λ0, λ), w0 4λ′ π̄(p̄) and
w0 4λ′ π̄(d̄). Then there is w̄ ∈ Am2 such that for each regular λ′ ∈ [λ0, λ),

w̄ 4̄λ′
p̄, w̄ 4̄λ′

d̄ and π̄(w̄) = w0.

Lemma 4.30. If p̄ ∈ Am2 and λ′ ∈ [λ0, λ) there is q̄ ∈ Am2 such that

q̄ ∈ dom(C̄λ) and q̄ 4̄λ′
p̄.

Proof. We de�ne a sequence (qi)i∈Z of conditions in P , by induction on i.
As usual, read through the following de�nition and pick x such that it is
∆A

1 with parameters in x. First, �nd q0 4λ′ p̄(0)P such that q0 ∈ dom(Cλ).
Continue by induction, choosing, for each n ∈ N \ {0}, a condition qn 4λ′

p̄(n) · F(λ, x, π(qn−1)) such that qn ∈ dom(Cλ). Let q∗1 be a greatest lower
bound for (π(qk))k∈N; it exists by quasi-closure for Q. Find q1 4λ′ q∗1 · p̄(1)
such that q1 ∈ dom(Cλ). Again, continue by induction, choosing for each
n ∈ N \ {0, 1}, a condition q−n 4λ′ p̄(−n)· = F(λ, x, π(q−n+1)) such that
qn ∈ dom(Cλ). Finally, let q be a greatest lower bound of (π(q−k))k∈N. For
each i ∈ Z, q 4λ′ π(qi), so q · qi 4λ′ qi 4λ′ p̄(i). Observe that by coherent
strati�cation, q · qi ∈ dom(Cλ) for each i ∈ Z. Setting q̄(i) = q · qi, we have

π(q̄(i)) = q, for all i ∈ Z. Thus q̄ ∈ Am2, q̄ 4̄λ′
p̄ and q̄ ∈ dom(C̄λ). ©



4.5. REMOTE SUB-ORDERS, AND A STABLE MEET OPERATOR 85

We leave the rest of the proof that (P,Am2) is a strati�ed extension

above λ0 to the reader. ©

4.5 Remote sub-orders, and a stable meet op-

erator

The following lemma helps to ensure �coding areas� don't get mixed up by
the automorphisms, as we shall see in lemmas 5.4 and 6.2. Also see the
discussion at the beginning of section 3.5.

Lemma 4.31. Say C is remote in P over Q (up to some height κ, where
κ ≥ λ0). Then Φk[C] is remote in Am1 over P (up to the same height) for
any k ∈ Z \ {0}.

Proof. Let D∗ = π̄−1[D] ⊆ Am1 ∩ DZ
f as in lemma 4.18. Let j ∈ {0, 1}

arbitrary. If p̂ ∈ D̂, c ∈ C and c ≤ πC(p̂P ), by the de�nition of D,

πQ(p̂ · c)  πj(p̂ · c) = πj(p̂),

that is, πj(p̂ · c) = πj(p̂) · πQ(p̂P · c), so as C is independent over Q and thus
πQ(p̂P · c) = πQ(p̂P ), we have πj(p̂ · c) = πj(p̂). In fact, if we have p̂P ∈ D, we

have c · p̂ ∈ D̂. Observe further that for any c ∈ C, πj(c) = 1, and moreover,
C ⊆ D. Thence, C ⊆ D∗ ⊆ dom(Φk). Moreover, Φk(c)(0) = ek(c)(0) =
(1, 1, 1) and so Φk(c) ∈ D∗ ⊆ Am1.

We now show Φk[C] = ek[C] is independent in Am1 over P : Let c ∈ C,
p̄ ∈ Am1 and say c ≤ (π̄k ◦ πC)(p̄) = πC(p̄(k)).

Since πj(c · p̄(k)) = πj(p̄(k)), for every i ∈ Z,

i 6= k:ek(c) · p̄(i) = p̄(i). (4.33)

Thus ek(c) · p̄ ∈ Am1. This �rstly shows that π̄k ◦ πC is a strong projection
from Am1 to C. Moreover π̄(p̄ · ek(c)) = p̄(0) = π̄(p̄), and we are done with
the proof that Φk[C] = ek[C] is independent in Am1 over P .

It follows that Φk[C] is remote in Am1 over P , by de�nition of 4̄λ
: let

λ ∈ [λ(P ), κ). Say c ≤ π̄k(p̄). Then ek(c) · p̄(k) = (p̄(k)P · c, p̄(k)0, p̄(k)1) and

p̄(k)P ·c 4λ p(k)P , by clause (1) of de�nition 3.32. So by (4.33), ek(c)· p̄ 4̄λ
p̄,

and we are done. ©

The last lemma of this section is the counterpart of lemmas 3.29 and
3.30. Together these lemmas make sure that in the iteration used in our
application, we have stable meet operators for every initial segment.

Lemma 4.32. There is a P -stable meet operator ∧P on Am1.
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Proof. Of course we set

dom(∧P ) = {(p̄, r̄) | ∃λ ∈ Reg \λ0 r̄ 4̄λ
π̄(r̄) · p̄}.

Say we have p̄, r̄ ∈ Am1 such that (p̄, r̄) ∈ dom(∧P ). This means we can �x
a regular λ ≥ λ0 such that for each i ∈ Z\{0}, r̄(i)P 4λ π(r̄(i)P ) · p̄(i)P . Let
wi = p̄(i)P ∧ r̄(i)P for i ∈ Z \ {0} and set

p̄ ∧P r̄ =

{
(wi, p̄(i)0, p̄(i)1) for i ∈ Z \ {0}
p̄(0) for i = 0.

Let p̄ ∧P r̄ be denoted by w̄. By lemma 4.15, for i ∈ Z \ {0} and j ∈ {0, 1}
we have

πj(w̄(i)) = p̄(i)j · πj(wi · p̄(i)1−j)

= p̄(i)j · πj(p̄(i)P · p̄(i)1−j) = πj(p̄(i)).
(4.34)

In particular, as wi 4λ p̄(i)P and i was arbitrary, we have

p̄ ∧P r̄ 4̄λ
p̄. (4.35)

Moreover, π(wi) = π(p̄(i)P ) = π(p̄(0)) = π(w̄(0)). So w̄ satis�es the hypoth-
esis of lemma 4.19 and therefore w̄ ∈ Am1. Clearly, π̄(p̄ ∧P r̄) = p̄(0). It
remains to see that π̄(r̄) · (p̄ ∧P r̄) ≈ r̄; we have

π̄(r̄) · w̄ =

{
(π(r̄(0)P ) · wi, p̄(i)0, p̄(i)1) for i ∈ Z \ {0}
r̄(0) for i = 0.

Write ū = π̄(r̄) · w̄ and write v̄ = π̄(r̄) · p̄. For arbitrary i ∈ Z \ {0} and
j ∈ {0, 1} we have

πj(ū(i)) = π(r̄(0)P ) · πj(w̄(i)) = π(r̄(0)P ) · πj(p̄(i)) by (4.34),

= π(r̄(0)P ) · πj(v̄(i)) = πj(r̄(i)) as r̄ 4λ v̄.

Thus by (4.4), ū(i) ≈ r̄(i). As i ∈ Z \ {0} was arbitrary and as ū(0) = r̄(0),
we conclude ū ≈ r̄, �nishing the proof that ∧P is a P -stable meet on Am1.

©



Chapter 5

Projective measure without Baire

We begin with the assumption V = L and �x κ, the least Mahlo. The
�rst step is to force with T̄ =

∏<κ
ξ<κ T (ξ), the product with supports of

size less than κ of κ-many independent, κ-closed κ+-Suslin trees. In fact,
T̄ is itself a κ+-Suslin tree (with the product order). This adds a sequence
of branches B̄ = (B(ξ))ξ<κ, where B(ξ) denotes the branch through T (ξ).
As a notational convenience, we often assume the sequence of trees (resp.
branches) is indexed by elements of J = <κ2 × ω × 2 × 2 rather than by
ordinals in κ, that is as B(s, n, i, j) and T (s, n, i, j) for s ∈ <κ2, n ∈ N and
i, j ∈ {0, 1}.

We now work in W = L[B̄]. Since T̄ is κ-closed and has the κ+-chain
condition, W has the same cardinals and the same subsets of κ as L and the
GCH still holds in W . In particular, L and W have the same reals.

We now de�ne an iteration Q̄κ+1 = (Pξ)ξ≤κ, by induction on ξ. We
construct this iteration to deal with the following tasks:

Task 1 Add a set of reals Γ0 such that Pκ forces that the Baire-property
fails for Γ0;

Task 2 For each real r added by Pκ, make sure that Pκ forces r ∈ Γ0 ⇐
: Ψ(r, 0) ⇐ : ¬Ψ(r, 1), where Ψ(x, y) is Σ1

3.

Task 3 Make sure every projective set of reals is Lebesgue-measurable in
the extension by Pκ.

Task 4 To make the construction more uniform, we force with a Levy-
collapse at certain stages.

We force with the Levy-collapse for two reasons: �rstly, when we amalgamate,
whether we collapse the continuum depends on factors beyond our control.
So we always make sure we collapse the current continuum at the next stage

87



88 CHAPTER 5. PROJECTIVE MEASURE WITHOUT BAIRE

after amalgamation. Secondly, for the purpose of task 2 (which involves
Jensen coding), we want to make sure CH holds all the time.

Task 2 requires the sophisticated technique of Jensen coding, which made
its �rst appearance in [BJW82] and has since undergone a long development
culminating in [Fri00]. In a little more detail: to tackle task 2, we will make
the real r (along with information about its membership in Γ) de�nable by
coding a subset of our set of branches B̄ by a real s, where s is generic for
Jensen coding. Say we have iterated for ξ steps and are in L[B̄][Gξ]. Call the
set of branches we �code� at the ξ + 1-th step B̄+ = {B(ξ) | ξ ∈ I}, where
I ⊆ κ.

Why do we use a subset of size κ? Since a real carries only a countable
amount of information, one would think that a countable set of branches
would su�ce. The point here is that the automorphisms that arise from
amalgamation (task 3) will make any such coding �unreadable� (see section
6). This is not surprising since by [She84], a de�nable well-ordering of a
set of reals of length ω1 yields a de�nable non-measurable set. In fact, if the
present construction is altered so that each real is coded using a block of trees
of length ω, we must fail since this would add such a well-order (since the set
of trees is of course well-ordered). It is also easy to see how such a coding is
made unreadable: if the trivial condition forces that the real ṙ is coded using
the branches indexed by the block [ξ, ξ + ω), for any automorphism Φ, also
Φ(ṙ) will be coded on the same block. See section 6 for the solution.

Now pick a set A ⊆ κ+ such that Hκ = Lκ[A ∩ κ] and {B(ξ) | ξ ∈ I}
is de�nable in some simple recursive fashion from A. We should force to
obtain a real s such that A ∈ L[s] and moreover the following is true in the
extension:

for all α, β < κ if Lβ[s] is a model of ZF− and of �α is the
least Mahlo and α+ exists� then:
I ∩ α ∈ Lβ and Lβ[s] |=�∀ξ ∈ I ∩ α Tα(ξ) has a branch,�

(5.1)

where Tα denotes the outcome of the construction of T̄ carried out in Lβ.
This can be done using the forcing described in [Fri99] or [Fri00][section

6.2, pp. 129], a variant of Jensen coding using the so-called �David's trick�,
devised in [Dav82]. We shall use the notation from [Fri00][6.2] and [Fri00][4.2]
when we speak about this forcing from now on. Observe that (5.1) already
holds for α = κ, so we don't have to restrict Sκ as in section 6.2 of [Fri00],
leaving the forcing at κ looking more like the one in section 4.2 of [Fri00]
(a version of Jensen coding without using David's trick). Also observe that
since the cardinals in L and L[B̄][Gξ] are the same above (ω1)

L[B̄][Gξ], we
don't have to worry about reshaping at all.
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Yet further care has to be taken: in order to make lemma 5.7 below go
through, we want that for any inaccessible α < κ, the set of β < α such
that pβ 6= ∅ has size less than α. That is, we require �Easton support�. It is
a historical coincidence that Jensen's earliest version of the forcing to code
the universe by a real used this kind of support; unfortunately no published
account of this early work is available. An Easton supported variant of
Jensen coding was devised in [SS95] in a much more general setting (that is, in
purely combinatorial terms, without mentioning the constructible hierarchy).
Lastly, we would like to be able to �speed up the coding� in the sense that
we want to be able to promise that extensions of a condition will only use
restraints of the form bs \ η which are subsets of a club speci�ed by this
promise. This essential but unproblematic prerequisite for the proof of lemma
5.7 is achieved using a diamond in L on the set of inaccessibles below κ.

For the sake of the present argument we will simply use the following:

Fact 5.1. There is a forcing J(A) which adds a real s such that A ∈ L[s],
(5.1) holds and J(A) is strati�ed above ω1 (of L[B̄][Gξ]). Moreover, J(A) is
Easton supported; i.e. the set of β < α such that pβ 6= ∅ has size less than α
for any inaccessible α < κ.

There are 4 types of forcing involved, so we �x a simple and convenient
partition E0, . . . , E3 of κ: let En, for 0 ≤ n ≤ 3, denote the set of ordinals
ξ < κ such that for some limit ordinal η and k ∈ ω, ξ = η + k and k ≡ n
(mod 4). For an ordinal ξ < κ, let En(ξ) denote the ξ-th element of En.
Also �x, for each ρ < κ, a sequence ᾱρ = (αζ

ρ)ζ<κ of ordinals > ρ co�nal in
κ; e.g. let αζ

ρ = G(ζ, ρ), where G is the Gödel pairing function.
As we have to tackle certain tasks for every real of the extension, our

de�nition will make use of two book-keeping devices, s̄ = (ṡξ)ξ<κ and r̄ =
(ῑ(ξ), ṙ0

ξ , ṙ
1
ξ)ξ<κ. We de�ne s̄ to list all reals which end up in the complement

of Γ0, in order to handle task 2 for each of these. To make sure all projective
sets of reals are measurable (task 3) we shall de�ne r̄ to list all reals added
by Pκ which are random over an initial segment�random over W Pῑ(ξ) , to be
precise. These book-keeping devices should be de�ned inductively, simulta-
neously with the Pξ; nonetheless, we shall �rst proceed with the de�nition
of the iteration, and after that argue that a book-keeping with the requisite
properties can be de�ned at the same time.

We de�ne a sequence λ̄ = (λξ)ξ≤κ by induction:

λξ =


min

(
Reg \

⋃
ν<ξ λν

)
if ξ is limit,

(λξ−1)
+ if ∃ρ s.t. ξ − 1 = E3(α0

ρ),

λξ−1 otherwise.

(5.2)
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When we de�ne Pξ, we will also de�ne some auxiliary sets Dξ. At stages
where we do type-1 amalgamation, they are similar to D of section 4.3; at
other stages Dξ = Pξ. At all limit stages ξ ≤ κ, we de�ne Pξ to be the
λ̄-diagonal support limit of the iteration up to that point.

For the inductive de�nition of the Pξ etc. to make sense, we need to
prove the following crucial facts, by induction on ξ (simultaneously with our
de�nition of the iteration).

Lemma 5.2. 1. For all ξ < κ, (Pξ, Pξ+1) is a strati�ed extension above
λξ+1 (witnessed by the pre-strati�cation systems stemming from the con-
structions in lemmas 3.20, 3.27 and theorem 4.20 of course). Moreover,
if ξ is not of the form E3(α0

ρ) for some ρ, we have that Pξ+1  |λξ+1| =
ω.

2. For all ξ < κ, Pξ is strati�ed above λξ.

3. For each ξ < κ, Pξ  GCH.

4. If ν < ξ, ξ ∈ κ∩E1 and p ∈ Pξ, there is a Pξ-name ṙ such that p forces
ṙ is fully random over W Pν .

We now de�ne Pξ, by induction. We generally write Bξ = r.o.(Pξ) for
ξ ≤ κ. In the inductive de�nition of the iteration, we also de�ne

1. A sequence c̄ = (ċξ)ξ<κ of names for reals where each ċξ is Cohen over
W Pξ .

2. A sequence (Cξ)ξ<κ of so-called coding areas, where each Cξ ∈ κ2 is
generic over W Pξ but has constructible initial segments.

3. Maps Φζ
ρ, for ρ, ζ < κ, where Φζ̄

ρ extends Φζ
ρ for ζ < ζ̄. Finally,

⋃
ζ<κ Φζ

ρ

uniquely determines an automorphism Φρ of r.o.(Pκ) such that Φρ(ṙ
0
ρ) =

ṙ1
ρ and Φρ � Pῑ(ρ) is the identity. For a more uniform notation, we
also write Φκ

ρ for Φρ. We call any stage of the iteration Pξ+1 such
that ξ = E3(αζ

ρ) for some ζ < κ and thus such that Φκ
ρ extends Φζ

ρ,
associated to Φρ.

4. The sequence (Dξ)ξ<κ.

5.1 The successor stage of the iteration

For the successor stage, assume by induction that we have already de�ned
Pξ for ν < ξ and ṙ0

ν , ṙ
1
ν , ṡν for ν ≤ ξ. Fix k such that ξ ∈ Ek and η such
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that ξ = Ek(η). We now de�ne Pξ+1. (We also de�ne Dξ as well as ċν , Cν .
In case ξ ∈ E3(αζ

ρ), we also de�ne Φζ
ρ.) In any case except when ξ ∈ E3(α0

ρ),
for some ρ < κ�that is, ξ is a stage where we do type-1 amalgamation�we
let Dξ = Pξ. Let Gξ denote a generic for Pξ.

k = 0 At this stage we make sure that ω1 = (ωL
ξ+1) and the GCH holds (task

4). This needn't be the case: in a previous stage, amalgamation may or
may not have collapsed ω1, depending happenstantially on the partial
isomorphism that we wanted to extend at that stage. Also, when ξ is
limit, it is not clear if Pξ collapses min

(
Reg \

⋃
ν<ξ λν

)
. Let

Pξ+1 = Pξ ∗ Q̇ξ,

where
ξ Q̇ξ = Coll(ω, λξ).

Since the Cohen algebra completely embeds into Coll(ω, γ), we can
pick a Pξ+1-name which is fully Cohen over Pξ, and de�ne ċη to be this
name.

k = 1 Let Pξ+1 = Pξ × (Add(κ))L. We denote by Cη the characteristic func-
tion of the set added by Add(κ)L over W [Gξ] (and let Ċη denote its
canonical Pξ+1-name). This will be the generic �coding area� used in
the next step.

k = 2 We take care of task 2, making sure Ψ(c, j), holds for some real c
given to us by book-keeping (j = 0, 1 indicates whether c ∈ Γ0). Let
Pξ+1 = Pξ ∗ Q̇ξ where Q̇ξ is de�ned in the extension:

If η is a limit or η = 0, let c denote ċ
Gξ
η (the Cohen real de�ned at

stage E0(η)), and let j = 0 (indicating that c will be in Γ0). If η is a

successor, let c denote ṡ
Gξ

η−1, and let j = 1 (indicating that c will not be
in Γ0).

We wish to code a branch through T (s, n, i, j) if and only if s is an
initial segment of C = Cη (the coding area from the previous step) and
c(n) = i. That is, we let

B(C, c, j) = {B(s, n, i, j) | s C C, c(n) = i}

be the set of branches to code, and represent it in a ∆1 way as a subset
of κ:

B#(C, c, j) = {#(s, n, i, j, t) | s C C, c(n) = i, t ∈ B(s, n, i, j)}
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where #x denotes the constructible code for x. Finally, we de�ne

Q̇ξ = J(B#(C, c, j)),

the forcing from fact 5.1 to code B#(C, c, j) by a real.

k = 3 Say η = αζ
ρ. We �rst treat the case where ζ = 0: By induction the

book-keeping device r̄ gives us r̄(ρ) = (ῑ(ρ), ṙ0
ρ, ṙ

1
ρ), where ῑ(ρ) < η and

the pair of names reals ṙ0
ρ, ṙ

1
ρ is fully random over W Pῑ(ρ) and λξ-reduced

over Pξ (over Pῑ(ρ) would su�ce).

Let f be the automorphism of the complete Boolean algebras generated
by ṙ0

ρ and ṙ1
ρ in Bξ and let Pξ+1 be the type-1 amalgamation of Pξ over

f and Pῑ(ρ):
Pξ+1 = Am1(Pῑ(ρ), Pξ, f, λξ).

Set Dξ = D(Pῑ(ρ), Pξ, f, λξ). The resulting automorphism of Pξ+1 we
denote by Φ0

ρ.

Observe that, in general, this automorphism need not extend to an
automorphism of Bκ. Also observe that by induction and theorem 4.20
(Pξ,Am1(Pῑ(ρ), Pξ, f, λξ)) is a strati�ed extension above λξ+1.

In the second case, when η = αζ
ρ and ζ > 0, we make sure Φ0

ρ is extended
by an automorphism of Pξ+1. So we let

Pξ+1 = Am2(dom(Φ), Pξ, Φ),

where Φ is (an extension of) Φ0
ρ, constructed at an earlier stage of the

iteration:

If ζ is a successor ordinal, at a previous stage E3(αζ−1
ρ ), we de�ned

Φζ−1
ρ extending Φ0

ρ. Set Φ = Φζ−1
ρ .

If ζ is a limit, we have a sequence (Φν
ρ)ν<ζ , forming an increasing chain,

and all extending Φ0
ρ. Letting δ =

⋃
ν<ζ αν

ρ < ξ, there is a unique auto-
morphism of Pδ, extending each of them. Let Φ be this automorphism.

The resulting automorphism of Pξ+1 we denote by Φζ
ρ. In both cases

we say ξ + 1 or Pξ+1 is an amalgamation stage associated to Φζ
ρ.

It's now easy to show lemma 5.2.

Proof of lemma 5.2. The �rst item holds by induction and lemmas 3.20, 3.27
and theorem 4.20; and since we force with Coll(ω, λξ) after limit and type-1
amalgamation stages. The second item holds by theorem 3.23. The third
one is a corollary of the previous ones and lemma 2.9. The last one is again
true since we collapse λξ at the right stage. ©
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5.2 A word about book-keeping

We give a recipe for cooking up a de�nition of r̄ = (ῑ(ρ), ṙ0
ρ, ṙ

1
ρ)ρ<κ. The

de�nition is given by induction �on blocks�. For a moment, �x a pair ι < ξ,
assuming r̄ �ξ has been de�ned (or, for the induction start, assume ξ = ι = 0).
We shall now de�ne r̄ and ῑ on [ξ, (λξ)

+)�the �next block�. We can assume
by induction that ξ ∈ E0 is a limit ordinal.

Let β = (λξ)
+. We can enumerate all the reals in W Pξ which are random

over V Pι in order type β. In other words, �nd names Pξ-names (ẋι
ν)ν<β such

that
Pξ  R \ Ṅ = {ẋι

ν}ν<β,

where Ṅ is a name for the union of the Borel null sets with code in W Pι .
Observe that as Pξ is strati�ed above λξ and Pξ+1 collapses λξ, we have

Pξ+1  |R ∩W [Gξ]| = ω. (5.3)

For each ν, ν ′ < β, apply the lemma 5.3 below, with ẋ0 = ẋι
ν and ẋ1 = ẋι

ν′ ,
and with θ = β (you can let θ = (λι)

+ if you want; it doesn't matter) and
λ = λξ. You obtain a set Y = Y (ν, ν ′, ι) of size β consisting of pairs which
are λξ-reduced over Pξ. If there are no reals in W Pξ which are random over
W Pι , let Y be any set of pairs of random reals which are λξ-reduced over Pξ

(such a set always exist�if in doubt, look at the proof of lemma 5.3).
Now de�ne r̄ �β and ῑ�β (using a bijection of β with ξ×β3) in such a way

that all pairs obtained in this way are listed, i.e. for each ι < ξ, each pair
and ν, ν ′ < β and each y ∈ Y (ν, ν ′, ι) there is ρ ∈ [ξ, β) such that ῑ(ρ) = ι
and (ṙ0

ρ, ṙ
1
ρ) = y.

Note that our construction relies on lemma 5.7, which will allow us to
conclude that we catch our tail and r̄ enumerates all the pairs of random
reals of the �nal model W [G] (see lemma 5.13).

Lemma 5.3. Let ι < ξ, where ξ ∈ E0, assume Pξ+1 is strati�ed above λ
and Pξ+1 collapses the continuum of W [Gξ] to ω. Say 1Pξ

forces ẋ0, ẋ1 are
Pξ-names random over W Pι. Then there is a set Y = {(ẏ0

ν , ẏ
1
ν)}ν<θsuch that

1  (ẋ0, ẋ1) ∈ {(ẏ0
ν , ẏ

1
ν)}ν<θ

and each pair in Y is λ-reduced over Pξ.

Proof. Find {q̇ζ}ζ<θ such that ξ {q̇ζ}ζ<θ is a maximal antichain in Q̇ξ =
Coll(ω, θ). Note that {(1Pξ

, q̇ζ)}ζ<θ is maximal antichain in Pξ+1. Fix a map

b : ζ 7→ (ḃ0(ζ), ḃ1(ζ))
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such that ξ b : θ → (Borel+)2 is onto (Borel+ denotes the set of Borel sets
with positive measure). For each ζ < θ and j = 0, 1 pick R0

ζ , R
1
ζ such that

(1Pξ
, q̇ζ) forces Rj

ζ is random over W Pξ and Rj
ζ ∈ ḃj(ζ) for both j = 0, 1. This

is possible by (5.3). Fix ν < θ for the moment, in order to de�ne ẏ0
ν , ẏ

1
ν : for

both j = 0, 1, pick ẏj
ν such that (1Pξ

, q̇ν)  ẏj
ν = ẋj and for each ζ ∈ θ \ {ν}

we have (1Pξ
, q̇ζ)  ẏj

ν = Ṙj
ζ .

As {(1Pξ
, q̇ζ)}ζ<θ is maximal, 1Pξ

forces ṙj is random over W Pι . For each

ν < θ, the pair ẏ0
ν , ẏ

1
ν is λ-reduced over Pξ: Let p 4λ q ∈ Pξ, let ḃ0, ḃ1 be

Pξ-names and �x w ≤ πξ(p) such that w ι ḃ0 and ḃ1 are positive Borel sets.
Find w′ ∈ Pξ and ζ < θ, such that w′ ≤ w, ζ 6= ν and

w′  ḃj(ζ) ⊆ ḃj for j = 0, 1. (5.4)

We can ask ζ 6= ν because we are content with ⊂ instead of = in (5.4).

As w′  p(ξ)4̇
λ

ξ 1, w′ · p is compatible with (1Pξ
, q̇ζ). If p′ ≤ w′ · p and

p′ ≤ (1Pξ
, q̇ζ), we have p′  ẏj

ν ∈ ḃj(ζ) ⊆ ḃj. Lastly, as {(1Pξ
, q̇ζ)}ζ<θ is

maximal and (1Pξ
, q̇ν)  ẋj = ẏj

ν ,

1  (ẋ0, ẋ1) ∈ {(ẏ0
ν , ẏ

1
ν)}ν<λ.

©

We now de�ne Γ0
ξ , an approximation of Γ0 at stage ξ < κ of the iteration.

Let Γ0
ξ be the smallest superset of {ċη | E0(η) < ξ and η is limit or η = 0}

(for limit η of course E0(η) = η, but never mind) closed under all of the
functions F = Φζ

ρ, (Φ
ζ
ρ)
−1 such that dom F ⊆ Pξ, i.e. closed under functions

in
{Φζ

ρ, (Φ
ζ
ρ)
−1 | E3(αζ

ρ) ≤ ξ}
Let

Γ̇0
ξ = {(1Pξ

, ċ) | ċ ∈ Γ0
ξ},

that is, Γ̇0
ξ is the canonical choice for a name whose interpretation consists

of the interpretations of the elements of Γξ.
When de�ning s̄ at stage ξ, we need to make sure that all Pξ-names for

reals ṡ which have the following property are listed (in the course of the
iteration) by s̄: for any ṙ ∈ Γ0

ξ , Pξ
ṙ 6= ṡ. We can easily make sure this is

the case using arguments as above. As Pξ forces |R| < κ (in fact ≤ κ would
su�ce), we can �nd ḟξ such that

ξ ḟξ : κ → R \ Γ̇ξ is onto.

We may assume (by induction hypothesis) we have such ḟν for ν < ξ. Pick
ṡξ such that for ξ = G(η, ζ), ξ ṡξ = ḟη(ζ).
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Later (see lemma 5.5), we show that s̄ lists exactly the reals of the �nal
model W [G] which are not in Γ0 (which we are about to de�ne). This con-
cludes the de�nition of (Pξ)ξ≤κ, c̄, (Cξ)ξ<κ, Φζ

ρ for ζ ≤ κ and ρ < κ, r̄, and s̄,

as well as that of Γ0
ξ and Γ̇0

ξ .

5.3 Cohen reals, coding areas and the sets Γ0

and Γ1

Let Γ0 be the least superset of

{ċξ | ξ < κ, ξ limit ordinal or ξ = 0}.

closed under all functions Φξ, (Φξ)
−1, ξ < κ and let Γ̇0 be the Pκ-name Γ0 ×

{1Pκ}. Recalling Γ0
ξ from the previous subsection (de�ned in the discussion

of the coding device s̄), note that
⋃

ξ<κ Γ0
ξ ⊆ Γ0; that the two sets are in fact

equal, if not clear, follows from the next lemma. The lemma also helps to see
that Γ0 and Γ1 (de�ned below) give rise to disjoint sets in the extension, as
intended. Lastly, the lemma also is important to show that the coding areas
Cν behave in the same way as do the reals cν , and this will be used in 6.2 to
show that the coding does not con�ict with the automorphisms coming from
amalgamation.

Let Γ1 = {ṡξ | ξ < κ} and let Γ̇1 be the Pκ-name Γ1 × {1Pκ}. Let ẋν

denote either ċν or Ċν . Say ẏ is of the following form:

ẏ = (Φξm)km ◦ . . . ◦ (Φξ1)
k1(ẋν)

where ν, ξ1 . . . ξm < κ and ki ∈ Z for 1 ≤ i ≤ m. For 1 ≤ i ≤ m, write

ẏi = (Φξi
)ki ◦ . . . ◦ (Φξ1)

k1(ẋν),

and write ẏ0 for ẋν . Note that we can trivially assume that ξi+1 6= ξi, for
i such that 1 ≤ i < m. We can also assume 6Pκ ẏi+1 = ẏi for such i. We
then call ν, ξ0, . . . ξm,k0, . . . , km an index sequence of ẏ . Observe that every
ẏ ∈ Γ0 can be written in the form above.

Lemma 5.4. There are ρ0, . . . ρm < κ such that

1. ν < ρ0 < . . . < ρm,

2. if 0 < i ≤ m, Pρi+1
is an amalgamation stage associated to Φξi

,

3. if 0 ≤ i ≤ m, ẏi is a Pρi+1
-name not in W Pρi . Moreover, ẏi is either

unbounded over W Pρi (if ẏ0 = ċν) or remote over Pρi
up to height κ (if

ẏ0 = Ċν).
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Moreover, for ẏ, ẏ′ ∈ Γ0, either Pκ ẏ = ẏ′ or Pκ ẏ 6= ẏ′. If ẏ and ẏ′

have di�erent index sequences, the latter holds.

Proof. By induction on m. For m = 0, since ẏ0 = ẋν , we pick ρ0 so that Q̇ρ0

adds ẋν (over W [Gρ0 ]). Then all of the above holds.

Now assume by induction the above holds for i ≤ m. Let ρm+1 be the
least ρ < κ such that Pρ+1 is an amalgamation stage associated to Φξm+1 ,
and ẏm is a Pρ+1-name. Since by induction, ẏm is forced to be di�erent from
any element of W Pρm , ρm ≤ ρm+1. Moreover, ρm < ρm+1, for otherwise,
ξm = ξm+1, contrary to assumption.

We have that either Pρm+1+1 = Am1(Pζ , D, ṙ0, ṙ1) (for some ζ, D a dense
subset of Pρm+1 , and some ṙ0, ṙ1), or Pρm+1+1 = Am2(Pζ , Pρm+1 , Φ) (for
some Φ and ζ). We prove the lemma assuming the �rst holds; very similar
arguments work for the other alternative, which we leave to the reader.

Observe that ẏm is not a Pζ-name, as otherwise, contrary to assumption,

Pκ ẏm+1 = Φξm+1(ẏm) = ẏm.

We have to consider two cases: If ẋν = ċν , we can assume by induction that
ẏm is unbounded over W Pζ and thus also over W Pζ∗Ḃ(ṙi) for i = 0, 1. Thus
by lemma 4.8 applied for P = D, ẏm+1 is unbounded over W Pρm+1 and we
are done. If on the other hand, ẋν = Ċν , we can assume by induction that
ẏm is remote over Pζ up to height κ and κ > λξm+1 . So by lemma 4.31, ẏm+1

is remote over Pρm+1 . In either sub-case, we conclude that ẏm+1 is not in
W Pρm+1 (for the second case, using lemma 3.33).

Lastly, say ν, ξ0, . . . , ξm,k0, . . . , km is an index sequence of ẏ and say
ν ′, ξ′0, . . . , ξ

′
m,k0, . . . , km is an index sequence of ẏ′. Assume 6Pκ ẏ = ẏ′;

we show Pκ ẏ 6= ẏ. Let ρ0, . . . ρm and ρ′0, . . . ρ
′
m be obtained as above for ẏ

and ẏ′ respectively. Let l be least such ξl 6= ξ′lk, if such exists. Then also
ρl 6= ρ′l, whence

Pκ ẏk 6= ẏ′k.

Apply Φkm
ξm
◦ . . . Φ

kl+1

ξl+1
to this to obtain

Pκ ẏ 6= ẏ′.

If no l as above exists, the index sequences for ẏ and ẏ′ are identical except
possibly in the �rst coordinate. Now observe that Pκ ẏ0 = ẏ′0 if ν = ν ′ and

Pκ ẏ0 6= ẏ′0 if ν 6= ν ′. Apply Φkm
ξm
◦ . . . Φk0

ξ0
and we're done. ©

Lemma 5.5. Pκ Γ̇0 = R \ Γ̇1.
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It would be easier to show this in the following way: Show by induction
on the number of applications of automorphisms that all names ċ in Γ0 \ Γ0

ξ

have the following property: there is ρ ≥ ξ such that ċ is in W Pρ+1 but not
in W Pρ . This would make the slightly more complicated proof of lemma 5.4
unnecessary.

Proof. First we show Pκ Γ̇0 ∪ Γ̇1 = R. Let r 6∈ (Γ̇0)G. Find ξ < κ such that

r ∈ W [Gξ]. As r 6∈ (Γ̇0
ξ)

Gξ , s̄ was de�ned to list a name for ṙ, so r ∈ (̇Γ1)G.
Now let ċ ∈ Γ0 and ṡ ∈ Γ1, and show Pκ ṡ 6= ċ. Fix ξ < κ so that ṡ is

a Pξ-name and Pξ
ṡ 6∈ Γ0

ξ . Let v, ρ1, . . . , ρn be obtained as in the previous
lemma from an index sequence for ċ and write ρ = ρn. By the last lemma ċ
is a Pρ+1 name not in W Pρ . If ρ+1 ≤ ξ, we are clearly done, for then ċ ∈ Γ0

ξ .

Otherwise, if ρ ≥ ξ, ċ is not in W Pρ ⊇ W Pξ , so in any case, Pκ ċ 6= ṡ. ©

5.4 The κ-stage of the iteration

The iteration preserves cardinals and co�nalities greater than κ:

Lemma 5.6. Pκ is strati�ed above κ.

Proof. This is a consequence of theorem 3.23 and lemma 5.2. ©

Lemma 5.7. In W , let θ ≤ κ, let (α̇ξ)ξ<κ be a sequence of Pθ-names for
ordinals below κ and let p ∈ Pθ. Then for any β0 < κ there is an inaccessible
α ∈ (β0, κ) and a condition p′ ≤ p such that for all ξ < α, p′  α̇ξ < α.
Moreover if θ = κ, there is a sequence of Pα-names (α̇′

ξ)ξ<α such that for
each ξ < α, p′  α̇ξ = α̇′

ξ.

The �moreover� clause is of course meaningless if θ < κ. Before we treat the
lemma, we draw two corollaries.

Corollary 5.8. 1. If r ∈ L[B̄][Gκ] is a real, there is α < κ such that
r ∈ L[B̄][Gα]. In particular, κ remains uncountable in L[B̄][Gκ] (i.e.
κ = ω1 in the �nal model).

2. If θ < κ, κ remains Mahlo in L[B̄][Gθ].

Proof. For the �rst corollary, �x a real r ∈ L[B̄][Gκ] and working in W =
L[B̄], let α̇n be a Pκ-name for r(n), for each n ∈ N. The lemma shows we
can �nd p′ ∈ Gκ, α < κ and a sequence of Pα-names {α̇′

n | n ∈ N}, where
α < κ, such that for each n ∈ N, p′  α̇n = α̇′

n. Obviously, r ∈ L[B̄][Gα].
For the second, say θ < κ and �x a Pθ-name Ċ for a closed unbounded

subset of κ. Let α̇ξ be a name for the least element of Ċ above ξ. By the
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lemma, we may �nd an inaccessible α ∈ (λθ, κ) and p′ ∈ Gθ such that for
each ξ < α, p′  α̇ξ < α. Thus, p′  α̌ ∈ Ċ. Now observe that as Pθ is

strati�ed above λθ, α is inaccessible in L[B̄][Gθ]. ©

In order to prove lemma 5.7, we de�ne some dense subsets of Pκ, dubbed
D∗

α and DΣ
α for each regular α ≤ κ. In fact, DΣ

α is a concrete presentation
of a variant of dom(Cα); for we shall need a more detailed account than the
relatively abstract treatment of Cα given in previous chapters a�ords. For
notational convenience, we shall also de�ne operators ↑, Kα, Rδ on Pκ, for
regular α < κ and δ < κ and a pre-order ≤∗ on Pκ.

Let α ≤ κ be regular and let σ < α. First, de�ne Dσ
α ⊆ Pκ, by induction

on the length of a condition. For the successor step, say p ∈ Pν+1. We let
p ∈ Dσ

α if and only if πν(p) ∈ Dσ
α and the following hold:

1. in case ν ∈ E0 (i.e. Q̇ν is Coll(ω, λν)), we require that πν(p) 
ran(p(ν)) ⊆ σ,

2. in case ν ∈ E2 (i.e. Q̇ν is Jensen coding), we require that πν(p)  for
all δ ∈ supp(p(ν)) ∩ α, |p(ν)δ| < σ.

3. in case ν ∈ E3 (i.e. Pν+1 is an amalgamation), we require that for all
i ∈ Z \ {0} we have p(i)P ∈ Dσ

α (it would be redundant to require this
also for i = 0).

For p ∈ Pν where ν ≤ κ is a limit ordinal, let p ∈ Dσ
α if and only if for all

ν ′ < ν, πν′(p) ∈ Dσ
α. Finally, de�ne p ∈ DΣ

α if and only if there is σ < α such
that p ∈ Dσ

α. Also, for any p ∈ DΣ
α , let σ2

α(p) be the least σ < α such that
p ∈ Dσ

α and suppα(p) ∩ α ⊆ σ.
The sets D∗

α are de�ned in a similar fashion. Formally, they are binary
relations,

Dα ⊆ { sequences of length ≤ κ} × Pκ;

that is, for any such sequence H, D∗
α(H) ⊆ Pκ.

So let α ≤ κ be regular. The de�nition of D∗
α(H) is by induction on the

length of conditions: for the successor step, assume we have already de�ned
Dα on

{ sequences of length ≤ ν} × Pν .

Fix an arbitrary sequence H. Assume p ∈ Pν+1 and let p ∈ D∗
α(H) if and

only if πν(p) ∈ D∗
α(H �ν) and either p 4α πν(p) or the following hold:

1. H = (H(ξ))ξ<ν+1 is a sequence of length ν + 1,

2. p ∈ DΣ
α ,



5.4. THE κ-STAGE OF THE ITERATION 99

3. in case ν ∈ E0, we require that p(ν) (a collapsing condition) is β-
chromatic below πν(p), for some β < α, with spectrum H(ν),

4. in case ν ∈ E2, we require that H(ν)(δ) is de�ned for each for each
cardinal δ < σ2

α(p(ν)) and for each such δ, p(ν)(δ) is β-chromatic below
πν(p), for some β < α, with spectrum H(ν)(δ).

5. in case ν ∈ E3, we require that H(ν) = (H̄P
i , H̄0

i , H̄1
i )i∈Z\{0} and for all

i ∈ Z \ {0}, p(i)P ∈ D∗
α(H̄P

i ) and for j ∈ {0, 1}, p(i)j is β-chromatic
with spectrum H̄j

i below πι(p(0)P ) for some β < α�where ι is chosen
so that Pι is the base of the amalgamation Pν+1 (see p. 75 for the
de�nition of base).

Observe in the case ν ∈ E2, we lightheartedly wrote �p(ν)(δ) is β-chromatic�;
we mean here to identify in some convenient way those consituents of the
tuple p(ν)(δ) = (p(ν)δ, . . .) which are in Hδ with a single function f : [δ, ζ) →
2, for some ζ < δ+.

For p ∈ Pν where ν ≤ κ is a limit ordinal, let p ∈ D∗
α(H) if and only if

for all ν ′ < ν, πν′(p) ∈ D∗
α(H �ν ′). Finally, de�ne p ∈ D∗

α if any only if there
is H such that p ∈ D∗

α(H); any such H we call an α-spectrum of p.
Observe that by de�nition, we may assume without loss of generality that

if p ∈ D∗
α(H) and ν 6∈ suppα(p), H(ν) is either unde�ned or equal to ∅. We

shall always make this assumption from now on. Thus, if p ∈ D∗
α(H), we

can assume that H is a sequence of length sup{δ + 1 | δ ∈ suppα(p) ∩ α}.
It is straightforward to check that this also implies H ∈ Hα. Also observe
that since suppα(p) ∩ α is a bounded subset of α, if p ∈ D∗

α(H), and α is
inaccessible, then there is β < α such that for each γ ∈ [β, α], we have
p ∈ D∗

γ(H).

Lemma 5.9. For θ ≤ κ and λ, α regular such that λ < α ≤ κ, both DΣ
α and

D∗
α are dense in 〈Pθ, 4λ〉. If p ∈ D∗

α and q 4α p, we have q ∈ D∗
α; likewise

for DΣ
α .

Proof. The proof is by induction; the successor case should be clear. The
limit case works exactly as the proof that dom(Cα) is dense, see the proof of

3.23, p. 50. ©

For every p ∈ Pκ, we de�ne a condition p↑ ∈ Pκ, which one should think
of as �the upper part of p with respect to κ.� Again, the de�nition is by
induction on the length of p, so assume we have de�ned q↑ for all q ∈ Pν

and for all such q, we have q↑ 4<κ 1Pν . Let p ∈ Pν+1 be given. If ν ∈ E3

(an amalgamation stage), de�ne p↑ to be the sequence i 7→ (p∗i , 1, 1), for
i ∈ Z, where p∗i = (p(i)P )↑. Observe that since we always amalgamate over
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κ-reduced reals, π0(p
∗
i ) = π1(p

∗
i ) = 1 and so this de�nes a condition in the

amalgamation Pν+1.
For ν 6∈ E3, set πν(p

↑) = (p�ν)↑ and �nd p↑(ν) as follows: If ν ∈ E0 (i.e.
Q̇ν is a collapse), we let p↑(ν) = 1Q̇ν

. For ν ∈ E1 (i.e. Qν is κ-Cohen forcing

of L), let p↑(ν) = p(ν). Now assume ν ∈ E2 (a Jensen coding stage of the
iteration). Let p↑(ν) be a Pν-name q for a function on Card∩κ+1 such that

1Pν ν q(κ) = p(ν)(κ)

and
∀α ∈ κ ∩ Card 1Pν ν q(α) = ∅.

Observe that this is (forced by Pν to be) a condition in Jensen coding. This
concludes the de�nition of p↑. The following fact is a straightforward con-
sequence of the de�nition: Simply put, it says that if a condition r ∈ Pθ is
trivial below κ after some stage δ of the iteration, then r is equivalent to r↑

after δ.

Fact 5.10. Say p∗, r ∈ Pκ and w ∈ Pδ are such that r  p∗ = r↑, w ≤
πδ(r), πδ(p

∗) and r 4<κ πδ(r). Then w · r ≈ w · p∗.

An explanation is in order regarding what is meant by �r  p∗ = r↑�. We
would like to express that whenever appropriate, p∗ and r should be consid-
ered as names. That is, whenever ν ∈ E0 ∪ E2 (where the iteration is given
by composition), πν(r)  p∗(ν) = r↑(ν); when ν ∈ E1, p∗(ν) = r↑(ν) (where
the iteration is given by a product); and when ν ∈ E3 (amalgamation), for
each i ∈ Z \ {0}, r(i)P  p∗(i)P = r↑(i)P � in the sense of an inductive
de�nition. Nevertheless, we �nd this choice of notation both adequate and
intuitive and refrain from a formal, inductive de�nition of, say, a new relation
on Pκ.

Proof of fact 5.10. By induction on ν ∈ [δ, κ). Say we already know

πν(w · r) ≈ πν(w · p∗).

If ν ∈ E0, clearly πν(r)  p∗(ν) = ∅. As r 4<κ πδ(r), also πν(r)  r(ν) = ∅.
So πν(w · r)  p∗(ν) = r(ν), and by induction, so does πν(w · p∗). If ν ∈ E1,
by the assumption that r  p∗ = r↑ and by convention, we have r(ν) = p∗(ν).
If ν ∈ E2, πν(r)  r(ν) � κ = ∅ and thus πν(r) forces p∗(ν) = r↑(ν) = r(ν).
In all three cases we have w · πν+1(r) ≈ w · πν+1(p

∗). Now say ν ∈ E3 and
Pν+1 is a type-1 amalgamation (we leave the other case to the reader, as it
is similar). Write p̄ = πν+1(p

∗), r̄ = πν+1(r) and let Pι be the base of the
amalgamation. By convention r  p∗ = r↑ means that for each i ∈ Z,

r̄(i)P  p̄(i)P = (r̄(i)P )↑. (5.5)
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As r̄ 4<κ e0(πδ(r)), we have

r̄(i)P 4<κ πι(πδ(r)) (5.6)

and thus r̄(i)P 4<κ πι(r̄(i)
P ) by lemma 3.8. For v = πι(w · r) we have

v ≤ πι(r̄(i)
P ), πι(p̄(i)P ), so by induction, v · r̄(i)P ≈ v · p̄(i)P and so

πι(w) · r̄(i)P = v · r̄(i)P ≈ v · p̄(i)P ≈ πι(w) · p̄(i)P .

The last part holds as by induction, πι(w · r) ≈ πι(w · p∗). Observe that
r̄(i)j = 1 for j ∈ {0, 1}. So we conclude w · r̄ ≈ w · p̄, �nishing the inductive

proof. ©

Let p be a condition in Jensen coding, δ < κ, and let α < κ be regular.
Let Rδ(p) denote the condition obtained from p by increasing the ordinal in
ṗκ to ensure that in all further extension, restraints will start above δ. Let
Kα(p) be the condition extending p such that all further extensions will have
restraints starting above α at all inaccessible cardinals larger that α (i.e. put
α into the support of p).

We now de�ne operators on Pκ, also denoted by Rδ and Kα (this will not
cause confusion), by induction on the length of a condition. Assume ν < κ
and p ∈ Pν+1. If ν ∈ E2, i.e. at a coding stage, let Rδ(p) � ν = Rδ(πν(p))
and choose Rδ(p)(ν) so that ν Rδ(p)(ν) = Rδ(p(ν)). If ν ∈ E3, i.e. at an
amalgamation stage, let Rδ(p) be the sequence

i 7→ (Rδ(p(i)P ), p(i)0, p(i)1).

At all other cases, let πν(Rδ(p)) = Rδ(πν(p)) and let Rδ(p)(ν) = p(ν). The
operator Kα : Pκ → Pκ is de�ned analogously.

For a condition in Jensen coding p, we write p<α for
⋃

δ∈Card∩α pδ. For
two arbitrary conditions q ≤ p in Pκ we write q ≤∗ p if and only if

∀ν < θ 1Pν  q(ν) ≤Q̇ν
p(ν)

Proof of lemma 5.7. For the �rst part of the proof, we must work in L and
show 1T̄ forces that the statement holds (this is because T̄ introduces a new
subset of κ, see below for an explanation). So �x β0 < κ, let t0 ∈ T̄ arbitrary,
let θ ≤ κ, let (α̇ζ)ζ<κ be T̄ ∗ Pθ-names and (t0, p0) ∈ T̄ ∗ Pθ so that t0 forces
the hypothesis of the lemma holds. Let the map S : ξ 7→ 〈(ξ)1, (ξ)2〉 be such
that for any cardinal α ≤ κ and every ~x ∈ α2 we have

|{ξ < α | S(ξ) = ~x}| = α.
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Also, �x an enumeration (h(ξ))ξ<κ of Hκ. We inductively construct a se-
quence (tξ, pξ)ξ<κ, starting with (t0, p0). At the same time, we shall de�ne
a sequence of ordinals (αξ)ξ<κ and another sequence of conditions (qξ)ξ<κ.
Assume we already have (tξ, pξ). First, assume there is (t, q) ≤ (tξ, pξ) such
that for some σ < ξ+,

1. t T̄ σκ
2 (q) = σ̌,

2. t T̄ q ∈ D∗
ξ+(ȟ((ξ)1)).

3. (t, q) decides α̇(ξ)2 .

We let σκ
2 (q) denote σ in the following, slightly abusing notation. Let αξ be

the ordinal such that (t, q)  α̇(ξ)2 = α̌ξ and let qξ = q. To de�ne (tξ+1, pξ+1),
�rst �nd a T̄ name for a condition p∗ ∈ Pθ such that

i. (t, qξ)  p∗ = qξ
↑,

ii. t T̄ p∗ ≤∗ pξ,

iii. t T̄ p∗ 4<κ 1Pθ
.

It should be clear how to �nd p∗, as we may inductively assume that t T̄

pξ 4<κ 1Pθ
and so (t, qξ)  qξ

↑ ≤ pξ. Let pξ+1 be a name such that t T̄

pξ+1 = Rτ (p
∗), where τ = supζ≤ξ(supp(qζ) ∩ κ) and let tξ+1 = t. Thus if

(t′, q′) extends (t, pξ+1),

for every ν ∈ κ ∩ E2, (t, πν(q)) forces that restraints for the
coding from κ+ into κ in q′(ν)·κ \ pξ+1(ν)·κ are forced by πν(q)
to start above supζ≤ξ(supp(qζ) ∩ κ).

(5.7)

If on the other hand, (t, q) as above does not exist, simply let (tξ+1, pξ+1) =
(tξ, pξ) (in this case, we leave qξ and αξ unde�ned).

At limits ξ, we can set p(ξ) to be the greatest lower bound of the p(ν),
for ν < ξ. This is because we don't have to do David's trick at κ and since
we can always take the union of less than κ many restraints at κ. Moreover,
κ-Cohen forcing of L at every stage as well as T̄ are κ-closed.

Let C ⊆ κ be a club consisting of cardinals such that for any α ∈ C and
any ξ < α:

1. Hα = {h(ν) | ν < α},

2. ξ+ < α,

3. σκ
2 (qξ) < α and αξ < α.
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Find an inaccessible α < κ such that α ∈ C and so that

∀ξ ∈ C ∩ α ∀s ∈ Sα [ξ+, ξ+C) ∩ bs = ∅ (5.8)

Observe that there are unboundedly (in fact, stationarily) many such α, so
we can assume α > β0. This is where we implicitly use that we are working in
L, since inaccessible restraints are part of a diamond sequence of L and not
L[B̄]�for if we use a diamond of L[B̄], it is not clear to me how to decode.
Moreover, in the de�nition of our coding forcing, we don't want to use all of
B̄�see section 6 dealing with the preservation of the coding.1

Let p′ be a T̄ -name such that tα  p′ = Kα(pα). Thus tα forces that for
all q ≤ p′

for all inaccessible cardinals β ∈ (α, κ] and all ν ∈ κ ∩ E2,
πν(q) forces that restraints for the coding from β+ into β in
q(ν)·β start above α.

(5.9)

We claim that (tα, p′) is the condition we are looking for. Fix ζ < α.

Claim 5.11. The condition tα forces that {qξ | ξ < α, (ξ)2 = ζ, qξ is de�ned}
is pre-dense in Pθ below p′.

By construction, (ξ)2 = ζ implies that (tα, qξ) T̄∗Pθ
α̇ζ = α̌ξ in L. Moreover,

as α ∈ C, αξ < α. So this proves that p′ Pθ
α̇ζ < α̌ in L[B̄], the �rst part

of the lemma.
To prove the claim, we work in L[B̄′], where B̄′ is T̄ generic and tα ∈ B̄′.

It then su�ces to show that the following set is pre-dense in Pθ below p′:

{qξ | ξ < α, (ξ)2 = ζ, qξ de�ned }

So let q ≤ p′ be arbitrary. We may assume that q decides α̇ζ . We can also
assume that q ∈ D∗

α ∩DΣ
κ (this set is dense by the previous lemma). Let H

be an α-spectrum for q. Find ξ < α such that

ξ > σα
2 (q) (5.10)

and H is a ξ+-spectrum of q. Without loss of generality, (ξ)2 = ζ and
h((ξ)1) = H (we can assume the latter since H ∈ Hα and α ∈ C). Observe
that q ∈ D∗

ξ+(H) and so witnesses that at stage ξ of the construction, we
found tξ and qξ ∈ D∗

ξ+(H) so that (tξ, qξ) T̄∗Pθ
α̇ζ = αξ, whence of course qξ

forces the same in L[B̄]. Moreover observe that

σκ
2 (qξ) < ξ+C . (5.11)

1alternatively, we could have used trees on κ++. These trees do not add a subset to κ
and there is no di�erence between a diamond of L and a diamond of W below κ.
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We claim that qξ and q are compatible, by induction on the length of these
conditions. For the sake of the inductive argument, we prove the following
claim. We will apply this claim for r = qξ; we introduce an additional
parameter w to carry out the induction at amalgamation stages, where we
have to �go back in construction� for i 6= 0 and start again at the length of
the base of the amalgamation (see below).

Claim 5.12. Let r, q ∈ Pθ, u ∈ Pδ and H be given such that u ≤ πδ(q), πδ(r)
and πζ(u) 4α πζ(r), where ζ = min(α, δ), and moreover

(a) σ2
κ(r) < ξ+C (let σ = σ2

κ(r) in the following),

(b) H is a ξ+-spectrum of r,

(c) either H is a ξ+-spectrum of q and σα
2 (q) < ξ, or q 4α πδ(q),

(d) there is a condition p∗ such that q ≤ Kα(Rσ(p∗)), p∗ 4<κ 1Pθ
and

r  p∗ = r↑;

then there is w ∈ Pθ such that πδ(w) = u, w ≤ q, r and moreover, πζ(w) 4α

πζ(r).

As all of the hypotheses of claim 5.12 are satis�ed when we set r = qξ,
δ = 0 and u = 1P this su�ces to see that q and qξ are compatible. Note
that the second possibility of item (c) is necessary to carry the induction
through amalgamation stages ν 6∈ suppα(q), where for i 6= 0 we are faced
with conditions of length ν which have no spectrum at all. We proof the
claim by induction on ν > δ, assuming we have found πν(w) such that
πν(w) ≤ πν(q) and if ν ≤ α, πν(w) 4α πν(qξ). We split into cases:

Collapsing stages: Assume ν ∈ E0. If both r and q are in D∗
ξ+(H), r(ν)

and q(ν) have a common spectrum below πν(w) whenever ν < ξ. Thus
πν(w) ν r(ν) = q(ν) in this case. If ν ∈ [ξ, α) or if H is not a spectrum of q
and hence, by (c), q 4α πν(q) holds, we have πν(w) forces that q(ν) = ∅ by
(5.10). In both cases, we can set w(ν) = r(ν). Observe πν+1(w) 4α πν+1(r).
If ν ≥ α, πν(w)  r(ν) = ∅, so we can set w(ν) = q(ν).

Stages adding a κ-Cohen: If ν ∈ E1, Pν+1 = Pν × Qν , where Q is κ-
Cohen forcing of L. As q ≤ p∗ and p∗(ν) = r↑(ν) by (d) and by convention,
and as r↑(ν) = r(ν) by de�nition of ↑, we have that q(ν) ≤ r(ν). So we can
set w(ν) = q(ν). Observe that if ν < α, the induction hypothesis gives us
πν+1(w) 4α πν+1(r) (as Qν lies entirely in the �upper part� with respect to
α).
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Coding stages: Assume ν ∈ E2. If ν < α, let w(ν) be a Pν-name such
that w(ν) �α = r(ν) �α and w(ν) � [α, κ] = q(ν) � [α, κ]. We shall show that
w(ν) is forced by πν(w) to be a condition in Jensen coding.

First observe that by (b) and (c) we have that one of the following holds:

• For every cardinal δ < ξ+, r(ν)(δ) and q(ν)(δ) have a common spectrum
below πν(w), so πν(w)  r(ν)�ξ+ = q(ν)�ξ+. Observe also that πν(w)
forces q(ν)δ = ∅ for δ ∈ [ξ+, α), since σα

2 (q) < ξ+.

• πν(w)  q(ν)δ = ∅ for δ ∈ α ∩ Card.

Thus, in either case πν(w) forces that q(ν)�α is an initial segment of r(ν)�α.
Moreover, by (a) and (5.8), πν(w) forces that r(ν)<α does not violate any of
the restraints in q(ν)·α.

It is also forced by πν(w) that r(ν)<κ does not violate any restraints from
any (q(ν))·δ for cardinals δ ∈ (α, κ): for by (d), as p∗ 4<κ and q ≤ Kα(p∗),
all such restraints must start above α.

Lastly, πν(w) forces that r(ν)<κ does not violate any of the restraints
in q(ν)·κ: As q ≤ Rτ (p

∗) for some τ > σκ
2 (r), restraints in q(ν)·κ \ p∗(ν)·κ

start above σκ
2 (r). Moreover, as πν(w)  p∗(ν)·κ = r(ν)·κ (by (d) and the

de�nition of the ↑-operator)�observe that we de�ned inaccessible coding
so that r(ν)<κ obeys all restraints in r(ν)·κ� r(ν)<κ does not violate any
restraints in p∗(ν)·κ.

So we conclude that πν(w) forces that r(ν) � α end-extends q(ν) � α and
(r)<α does not violate any restraints in q(ν) or r(ν). Since q ≤ p∗, and since
by (d) and the de�nition of the ↑-operator we have πν(w) ν p∗(ν)(κ) =
r(ν)(κ), we see that πν(w) ν q(ν)(κ) ≤ r(ν)(κ). Finally, we conclude that
w(ν) is forced by πν(w) to be a condition in Jensen coding, we have πν(w)
forces that w(ν) ≤ q(ν), r(ν), and moreover, πν+1(w) 4α πν+1(r). This
�nishes the case ν < α.

If ν ≥ α, πν(w)  r(ν)�κ = ∅ and q(ν)(κ) ≤ r(ν)(κ). So in this case, we
may set w(ν) = q(ν).

Amalgamation stages: If ν ∈ E3, write q̄ for πν+1(q) and r̄ for πν+1(r)
and let Pι be the base of the amalgamation. Again, we assume Pν+1 is
a type-1 amalgamation and leave the case of type-2 amalgamation to the
reader.

First, assume that ν < α and the second alternative of (c) obtains, i.e.
we have q 4α πδ(q). Then by lemma 3.8 we have q ≤α πν(q), whence
q̄ 4α e0(πν(q)) and thus for all i ∈ Z \ {0}, q̄(i)P 4α πι(q̄(i)

P ) and for
j ∈ {0, 1}, q̄(i)j = 1 (observe λν < α as α is inaccessible). Use induction
with u = πι(w) to �nd wi ∈ Pν so that wi ≤ q̄(i)P , wi 4α r̄(i)P and of course
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πι(wi) = πι(w). Setting w̄(i) = (wi, r̄(i)
0, r̄(i)1), we see w̄ 4α r̄ and so by

corollary 4.21, w̄ is a condition in the amalgamation; clearly, w̄ ≤ q̄. Set
wν+1 = w̄.

Next, consider the case ν < α and the �rst alternative of (c) obtains.

Note we may assume that ν < σα
2 (q) = σξ+

2 (q) (otherwise, q 4α πν(q), which
is handled by the previous case). It is straightforward to check that for each
i ∈ Z \ {0}, r̄(i)P and q̄(i)P satisfy the induction hypotheses, when we set
u = πι(w), so we may �nd wi as in the previous case. Also de�ne w̄ as in the
previous case, again observing that w̄ 4α r̄. As by assumption, for i ∈ Z\{0}
and j ∈ {0, 1}, q̄(i)j and r̄(i)j have a common ξ+-spectrum below πι(w), we
conclude that w̄ ≤ q̄.

Lastly, assume ν ≥ α. By (a), r̄ 4<κ πν(r̄). Moreover, by convention
and by (d), r̄  p̄∗ = r̄↑, where p̄∗ = πν+1(p

∗). Finally, πν(w) ≤ πν(p̄) and
πν(w) ≤ πν(r), so by fact 5.10, πν(w) · r̄ ≈ πν(w) · p̄∗. Thus, as q ≤ p∗

holds by (d), we have πν(w) · q̄ ≤ πν(w) · p̄∗ ≈ πν(w) · p̄, and we can set
πν+1(w) = πν(w) · q̄. This �nishes the proof of claim 5.12 and thus the proof
that p′  α̇ζ < α.

It remains to �nd a T̄ ∗ Pα-name α̇′
ζ . Still working in L[B̄′], �nd α̇′

ζ so
that:

for all ξ such that (ξ)2 = ζ and qξ is de�ned, πα(qξ)  α̇′
ζ = α̌ξ.

By claim 5.11, this de�nes a name below p′ provided we can show that if
αξ 6= αξ′ and (ξ)2 = ζ, πα(qξ) and πα(qξ′) are incompatible. Assume otherwise
and let w ≤ πα(qξ), πα(qξ′). Assume ξ < ξ′; we claim that w · qξ′ ≤ w · qξ, a
contradiction, as qξ and qξ′ force di�erent values for α̇ζ . To prove the claim, it
su�ces to observe that by construction, there is p∗ such that qξ  p∗ = (qξ)

↑

and qξ′ ≤ p∗. By construction, σκ
2 (qξ) < α and so q 4κ πα(q). By fact 5.10,

we conclude that w · p∗ ≈ w · qξ and so w · qξ′ ≤ w · qξ. We have thus proved
that α̇ζ is a well-de�ned Pα-name. It is clear that (tα, p′)  α̇ζ = α̇′

ζ , and we

are done with the proof of lemma 5.7 ©

It is crucial that by lemma 5.7, the book-keeping devices r̄ and s̄ �catch�
all the relevant reals in the �nal extension by Pκ:

Lemma 5.13. If ι < κ, ṙ0, ṙ1 are Pκ-names for reals and p ∈ Pκ forces ṙ0, ṙ1

are random over W Pι, there is q ≤ p and ν < κ such that ῑ(ν) = ι

q  ṙj = ṙj
ν .

If ṡ is a Pκ-name for a real and p ∈ Pκ, there is q ≤ p and ξ < κ such that
either q  ṡ = ṡξ, or q  ṡ ∈ Γξ.
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Proof. By lemma 5.7 there is q ≤ p, ξ < κ and Pξ-names ẋ0, ẋ1 such that
q  ṙj = ẋj. As Pκ adds a random real below every condition (lemma 5.2, 4),
we may assume 1Pκ forces ẋj is random over W Pν . Using the notation from
lemma 5.3, �nd ν, ν ′ and q′ ≤ q such that q′  ẋ0 = ẋν and q′  ẋ1 = ẋν′ ,
and �nd q′′ ≤ q′ and y ∈ Y (ν, ν ′) such that q′′  (ẋ0, ẋ1) = y. Thus, by
construction of r̄, we may �nd ν such that ῑ(ν) = ι and y = (ṙ0

ν , ṙ
1
ν), and we

have q′′  ṙ0 = ṙ0
ν and ṙ1 = ṙ1

ν .
The second claim follows immediately from lemmas 5.7, 5.5 and the def-

inition of s̄. ©

5.5 Every projective set of reals is measurable

Let G be a generic for Pκ (and let Gξ be the resulting generic on Pξ, for
ξ < κ).

Lemma 5.14. For any ν < κ,
⋃

N∗
ν is a null set, where

N∗
ν = {N ∈ W [Gν ] | W [Gν ] |= N ⊂ R has measure zero}

Proof. Every null set N ∈ W [Gν ] is covered by a null Borel set whose Borel
code is also in W [Gν ]. The set C∗ of Borel codes for null sets in W [Gν ] is
countable in W [G], so

⋃
N∗

ν , which is equal to the union of all the Borel sets

with code in C∗, is a countable union of null sets in W [G]. ©

The following, together with the last lemma, su�ces to show that in the
extension by Pκ, every projective set of reals is measurable.

Lemma 5.15. Let ν < κ. There is a name ṙ∗ which is fully random over
W Pν such that the following hold:

1. Let Ḃ(ṙ∗) be a Pν-name for the complete sub-algebra of Bκ : Pν gener-
ated by ṙ∗ in W [Gν ] and let B0 = Pν ∗ Ḃ(ṙ∗). For any b ∈ Bκ \ B0,
there is an automorphism Φ of Bκ such that Φ(b) 6= b and Φ�B0 = id.

2. For any Pκ-name ṙ which is random over W Pν and any p ∈ Pκ there
is q ≤ p and an automorphism Φ of Bκ such that q  ṙ = Φ(r∗) and
πν ◦ Φ = Φ ◦ πν = πν.

Proof. For ṙ∗ we may use any ṙ0
η (from our list r̄) such that ῑ(η) ≥ ν (i.e. its

fully random over W Pν ).
Let π be the canonical projection π : Bκ → B0, where B0 is as in the

hypothesis of item 1 of the lemma. Pick ξ < κ such that

1. πξ(b) 6∈ B0; this holds for large enough ξ since b 6∈ B0;
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2. r∗ is a Pξ-name, i.e. B0 is a complete sub-algebra of Bξ.

3. Pξ+1 = Am1(Pι, Dξ, r∗, r∗), where ι ≥ ν.

Let b0 denote πξ(b). Clearly, there is p ∈ Dξ, p ≤ b0 such that π(p) 6≤ b0:
for otherwise, the set

X = {d ∈ B0 | d ≤ b0}

would be predense in Pξ below b0, and thus b0 =
∑

X ∈ B0, contradiction.
So pick p as above and let q ∈ Dξ, q ≤ π(p) such that q · b0 = 0.

Let b1 = π(q). Look at the condition p̄ ∈ (Dξ)
Z
f such that p̄(−1) = q,

p̄(0) = b1 · p and for i ∈ Z \ {−1, 0}, p̄(i) = b1. Then we have p̄ ∈ (Dξ)
Z
f ,

p̄ ≤ p ≤ b0. Letting Φ denote the automorphism of Bκ resulting from Pξ+1,
we have Φ(p̄) ≤ q whence Φ(p̄) · b0 = 0. So as p̄ ≤ πξ(b) and Φ(p̄) · b = 0,
it follows that Φ(b) 6= b; for otherwise since p̄ ≤ πξ(b), we have p̄ · b 6= 0 but
Φ(p̄ · b) = Φ(p̄) · b = 0.

The second claim is clear from the construction, as Φρ(ṙ
0
ρ) = ṙ1

ρ for each
ρ < κ.

©

Finally, we show in W [G]:

Lemma 5.16. Say s ∈ [On]ω, φ a formula. If X = {r ∈ R | φ(r, s)}, X is
measurable.

Proof. Let X, s be as above, and say s = ṡG. Without loss of generality, ṡ
is a Pν-name, where ν < κ and ν ṡ ∈ [On]ω (by lemma 5.7). Fix ṙ∗ as in
the previous lemma. Let Ḃ(ṙ∗) be a Pν-name for the complete sub-algebra
of Bκ : Pν generated by ṙ∗ in W [Gν ].

Claim. ‖φ(ṙ∗, ṡ)‖Bκ ∈ r.o.(Pν) ∗B(ṙ∗).

Proof of Claim. Write B0 = Pν ∗ Ḃ(ṙ∗) and b = ‖φ(ṙ∗, ṡ)‖Bκ . Towards a
contradiction, assume b 6∈ B0. By lemma 5.15, (1), there is an automorphism
Φ of Bκ such that Φ(b) 6= b while Φ(ṡ) = ṡ and Φ(ṙ) = ṙ. This is a
contradiction, as we infer

b = ‖φ(ṙ∗, ṡ)‖Bκ = ‖φ(Φ(ṙ∗), Φ(ṡ))‖Bκ = Φ(b).

©

Let N∗ denote⋃
{N ∈ W [Gν ] | W [Gν ] |= N has measure zero},
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and let Ṅ∗ be a Pν-name for this set. N∗ is null in W [G].
We �nd a Borel set B such that for arbitrary r 6∈ N∗, we have r ∈ X ⇐

: r ∈ B. Then X \N∗ = B \N∗ is measurable, �nishing the proof. We may
regard B(ṙ∗) as identical to the Random algebra in W [Gν ], so we may write
‖φ(ṙ∗, ṡ)‖Bκ:Bν = [B]n for a Borel set B.

To show B is the Borel set we were looking for, let r 6∈ N∗ be arbitrary.
Find ṙ and p ∈ G such that ṙG = r and p  ṙ 6∈ Ṅ∗, i.e. p forces ṙ is random
over W Pν . By 2 of the previous lemma, there is an automorphism Φ of Pκ

and q ∈ G such that q  Φ(ṙ∗) = ṙ, and thus Φ(ṙ∗)
G = ṙ

Φ−1[G]
∗ = ṙG.

Work in W [Gν ]. Since πν ◦Φ = Φ◦πν = πν , Φ generates an automorphism

Φ̄ of Bκ : Bν , and ṙ
Φ̄−1[G]
∗ = ṙG. We have

φ(ṙG, ṡG) ⇐ : ‖φ(ṙ, ṡ)‖ ∈ G ⇐ :

⇐ : Φ̄−1(‖φ(ṙ, ṡ)‖) ∈ Φ̄−1[G] ⇐ :

⇐ : ‖φ(Φ̄−1(ṙ), ṡ)‖ ∈ Φ̄−1[G] ⇐ :

⇐ : ‖φ(ṙ∗, ṡ)‖ ∈ Φ̄−1[G] ∩B(ṙ∗) ⇐ : ṙΦ̄−1[G]
∗ ∈ B

As ṙ
Φ̄−1[G]
∗ = ṙG, we are done. ©



Chapter 6

The set Γ0 is ∆1
3

We now check that Γ0 is in fact ∆1
3. By [Bar84], this is optimal, since under

the assumption that all Σ1
2 sets are Lebesgue-measurable, all Σ1

2 sets do have
the property of Baire.

Let Θ(r, s, α, β) be the sentence

Lβ[r, s] is a model of ZF− and of �α is the least Mahlo and
α+ exists�.

De�nition 6.1. For an ordinal α and C ∈ α2, write σ CC to express σ is an
initial segment of C, i.e. for some ρ < α, σ = C �ρ. Let φ(x) be a formula.
When we write ∀∗σ C Cφ(σ), we mean there exists ζ < α such that for all
ρ ∈ (ζ, α), φ(C �ρ) holds. In other words, for almost all initial segments σ
of C, φ(σ) holds.

For j ∈ {0, 1}, let Ψ(r, j) denote the formula

∃s ∈ ω2 ∀α, β < κ if θ(r, s, α, β) then:
Lβ[r, s] |=�∃C ∈ α2 ∀∗σ C C ∀(n, i) ∈ ω × 2
(r(n) = i):Tα(σ, n, i, j) has a branch.�

Lemma 6.2. For j ∈ {0, 1} and any real r,

r ∈ (Γ̇j)G ⇐ : Ψ(r, j).

Proof. For ξ ≤ κ, let Fξ be the smallest set closed under (relational) com-
position and containing all functions F = Φζ

ρ, (Φ
ζ
ρ)
−1 such that dom F ⊆ Pξ.

In other words, Fξ is the closure under relational composition of

{Φζ
ρ, (Φ

ζ
ρ)
−1 | E3(αζ

ρ) < ξ}.

110
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First assume r ∈ (Γ̇j)G and show Ψ(r, j) holds. If j = 0, by de�nition of
Γ̇0 we can �nd η < κ and Φ ∈ Fκ such that r = (Φ(ċη))

G. If j = 1, we �x
η < κ such that r = (ṡη−1)

G. Let ṙ0 denote ċη if j = 0 and let ṙ0 denote ṡη−1

if j = 1 and let r0 = (ṙ0)
G .

In either case, at stage ξ = E2(η) we force with Jensen coding, adding a
real s0 such that

for all α, β < κ, if θ(r0, s0, α, β) then Cη �α, r0 ∈ Lβ[s0] and
Lβ[s0] |= �∀σ such that σ C Cη � α and for all n, i such that
r0(n) = i, Tα(σ, n, i, j) has a branch�.

So
1Pκ  Ψ(ṙ0, j),

which completes the proof in case j = 1. For j = 0, apply Φ to get

1Pκ  Ψ(Φ(ṙ0), j),

and we are done as (Φ(ṙ0))
G = r.

Now assume Ψ(r, j) and show r ∈ (Γ̇j)G: Fix s to witness Ψ(r, j). It must
be the case that

L[r, s] |= ∃C ∈ κ2 ∀∗σ C C ∀(n, i) ∈ ω × 2
(r(n) = i):T (σ, n, i, j) has a branch .

(6.1)

For let Lβ[r, s] be isomorphic to an elementary sub-model of Lκ++ [r, s] which
contains r and s, and let α be the least Mahlo in Lβ[r, s]. Then as θ(r, s, α, β)
holds, by Ψ(r, j),

Lβ[r, s] |= ∃C ∈ α2 ∀∗σ C C ∀(n, i) ∈ ω × 2
(r(n) = i):Tα(σ, n, i, j) has a branch .

So by elementarity, (6.1) holds.
Fix ξ < κ such that r, s ∈ W [Gξ] and �x C witnessing (6.1). Pick ζ < κ

such that

for Φ ∈ Fξ and ν, ν ′ < ξ such that Φ 6= id and ν 6= ν ′ we have
Φ(Cν)�ζ 6= Cν′ �ζ.

(6.2)

This is possible by lemma 5.4. As (6.1) holds, we can also assume ζ to be
large enough so that whenever r(n) = i, and ρ ≥ ζ, T (C � ρ, n, i, j) has a
branch in L[r, s].

Since r, s ∈ W [Gξ], lemma 6.3 below gives us: for any n and i, if the
tree T (C � ζ, n, i, j) has a branch in L[r, s] then there is Φ ∈ Fξ and η < ξ
such that C � ζ C Φ(Cη). By (6.2), Φ and η are unique and do not depend
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on n and i, so let Φ and η be �xed. By the way, it follows that C = Φ(Cη)
(which we do not use in the following). More importantly, whenever r(n) = i,
T (Φ(Cη)�ζ, n, i, j) has a branch in L[r, s].

Moreover, lemma 6.3 yields that whenever T (C � ρ, n, i, j) has a branch
in L[r, s],

1. if j = 0 then η is a limit and (Φ(ċη))
G(n) = i

2. if j = 1 then η is a successor and (Φ(ṡη−1))
G(n) = i.

Thus, in the �rst case, r = Φ(cη) and so r ∈ (Γ̇0)G. In the second case,
r = (Φ(ṡη−1))

G. As (ṡη−1)
G ∈ (Γ̇1)G and (Γ̇1)G is closed under all the auto-

morphisms {Φ∗
ρ | ρ < κ} (by lemma 5.5), r ∈ (Γ̇1)G. ©

For ξ ≤ κ, let Iξ be the set of triples (σ, n, i, j) such that for some η < ξ
and Φ ∈ Fξ, σ C Φ(Cη) and

1. if η is limit ordinal, Φ(cη)(n) = i and j = 0

2. if η is a successor ordinal, Φ(sη−1)(n) = i and j = 1.

Lemma 6.3. Say ξ < κ and let u an arbitrary real in L[B̄][Gξ]. Then
T (σ, n, i, j) has a branch in L[u] only if (σ, n, i, j) ∈ Iξ.

Proof. Fix ν ∈ I, ξ0 < κ and p0 ∈ Pξ0 such that p0  ν̌ 6∈ İξ0 in L[B̄]. Let
B̄− denote {B̄(ξ)}ξ∈I\{ν}.

We will show in a moment that Pξ0(≤ p0) is equivalent to a forcing P ∗
ξ0
∈

L[B̄−], whence T̄ ∗ Pξ0(≤ p0) is equivalent to[( <κ∏
ζ∈I\{ν}

T (ζ)
)
∗ P ∗

ξ0
(≤ p0)

]
× T (ν).

Assuming this for the moment, we can prove the lemma thus: As T (ν) doesn't
add reals, any real u ∈ L[B̄][Gξ0 ] is actually an element of L[B̄−][Gξ0 ], and
as T (ν) is Suslin in L[T̄−] and P ∗

ξ0
is κ-centered, T (ν) remains Suslin in

L[B̄−][Gξ0 ] and thus in L[u]. It remains to see that Pξ0(≤ p0) is equivalent to
a forcing which is an element of L[B̄−]. For the purpose of carrying out the
inductive proof, we prove a stronger statement, in the claim below. First,
note that for ξ < ξ̄ ≤ ξ0, as Iξ ⊆ Iξ̄,

‖ν 6∈ İξ̄‖ ≤ ‖ν 6∈ İξ‖,

and so
πξ(‖ν 6∈ İξ̄‖) ≤ ‖ν 6∈ İξ‖
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Let bξ denote ‖ν 6∈ İξ‖Bξ , for ξ < ξ0.

Claim 6.4. For each ξ ≤ ξ0, there is an isomorphism1

jξ : Pξ(≤ bξ) → P ∗
ξ ,

such that

for ξ < ξ̄ ≤ ξ0 and p ∈ Pξ̄(≤ bξ), jξ(πξ(p)) = πξ(jξ̄(p)). (6.3)

Moreover, P ∗
ξ ∈ L[B̄−] and P ∗

ξ = Pξ(≤ bξ) ∩ Lκ+ [B−].

Remark 6.5. 1. There is no need to distinguish between Gξ and jξ[Gξ],
we write Gξ for either one.

2. The argument is slightly more elegant if we work with trees on κ++,
as then T̄ is κ++-distributive, and this entails H(κ++)L[B̄] = H(κ++)L.
Our T̄ , a (sequence of) tree(s) on κ+, is not κ+-distributive, but T (ν)
is κ+-distributive. So we have

H(κ+)L[B̄] = H(κ+)L[B̄−] = Lκ+ [B̄−]. (6.4)

At heart, the claim is a consequence of this simple observation:

Fact 6.6. If P has the κ-chain condition and p  ẋ ∈ H(κ+), there is
ẋ′ ∈ H(κ+) such that p  ẋ = ẋ′.

Proof. Use nice names. ©

The induction splits into cases. For the successor case, assume jξ is al-
ready de�ned and de�ne jξ+1. Observe that by induction, T̄ ∗Pξ is equivalent
to [( <κ∏

ζ∈I\{ν}

T (ζ)
)
∗ P ∗

ξ

]
× T (ν),

and since T (ν) is κ+-distributive in L[B̄−][Gξ] (because it is still Suslin in
that model),

H(κ+)L[B̄][Gξ] ⊆ L[B̄−][Gξ], (6.5)

1By isomorphism, we mean of course jξ is injective on the separative quotient of its
domain.



114 CHAPTER 6. THE SET Γ0 IS ∆1
3

Easiest Case: As a warm up, assume ξ ∈ E1. Thus Pξ+1 = Pξ × Q for
Q ∈ L. Of course, P ∗

ξ ×Q ∈ L[B̄−]. We can set jξ+1(p, q) = (jξ(p), q).

Observe that the claim asks for an isomorphism of P ∗
ξ+1 with Pξ∗Q̇ξ(≤ bξ),

not Pξ(≤ bξ) ∗ Q̇ξ. So to formally satisfy the claim � and to make the
induction work in the next step � restrict jξ to Pξ+1(≤ bξ+1). We should
check P ∗

ξ ×Q(≤ bξ+1) ∈ L[B̄−], though:
Lightheartedly identify Pξ+1 names and P ∗

ξ × Q-names and assume (by

fact 6.6 and (6.4)) that İξ ∈ L[B̄−]. Then for p ∈ P ∗
ξ ×Q,

p  ν ∈ İξ+1

is absolute between L[B̄] and L[B̄−], so P ∗
ξ × Q(≤ bξ+1) ∈ L[B̄−]. So set

P ∗
ξ+1 = P ∗

ξ ×Q(≤ bξ+1).

Jensen Coding (and another easy case): Now, assume ξ ∈ E2, i.e.
Pξ+1 = Pξ ∗ Q̇ξ where Q̇ξ is a name for Jensen coding. Now it is crucial
that we work below bξ = ‖ν 6∈ İξ‖Bξ : Work in L[B̄][Gξ] for now, where Gξ

is P ∗
ξ -generic over L[B̄]. Then ν 6∈ (İξ)

Gξ , so the set of branches we code

at this stage does not contain B(ν). Thus Q̇
Gξ

ξ is a subset of H(κ+) (of the

extension), which is de�nable over 〈H(κ+), B̄−〉. By (6.5), Q̇
Gξ

ξ ∈ L[B̄−][Gξ].
This immediately implies that Pξ+1 is equivalent to a forcing which is an
element of L[B̄−], but in order to carry out the inductive proof at limits, we

need (6.3). For this, let φ(x) be a formula de�ning membership in Q̇
Gξ

ξ over

〈H(κ+), B̄−〉 in L[B̄][Gξ]. Set

P ∗
ξ+1 = {(p, q̇) | p ∈ P ∗

ξ , q̇ ∈ H(κ+) is a P ∗
ξ -name, P ∗

ξ  φ̇(q)H(κ+)} (6.6)

As P ∗
ξ has the κ+-chain condition, any x ∈ H(κ+)L[B̄][Gξ] has a P ∗

ξ -name in

H(κ+)L[B̄]. Therefore, by (6.4),

P ∗
ξ  φ̇(q)H(κ+)

is absolute between L[B̄] and L[B̄−] and thus (6.6) witnesses that P ∗
ξ+1 ∈

L[B̄−]. For (p, q̇) ∈ Pξ+1, we can now de�ne jξ+1(p, q̇). Since

P ∗
ξ  jξ(q̇) ∈ jξ(Q̇ξ) ⊆ H(κ+)

using fact 6.6, we can �nd a P ∗
ξ -name q̇′ ∈ H(κ+) such that P ∗

ξ  jξ(q̇) = q̇′.
Let jξ+1(p, q̇) = (jξ(p), q̇′).

Clearly, jξ(p, q̇) ∈ P ∗
ξ+1. It is straightforward to check that jξ+1 preserves

the ordering and is onto. It is injective on the separative quotient of Pξ+1.
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Again, as in the previous case, restrict jξ to Pξ+1(≤ bξ+1) to formally satisfy
the claim. The case ξ ∈ E0 can be treated in an analogous � but simpler �
way.

Remark 6.7. Observe, by the way that for any P ∗
ξ name Q̇ such that P ∗

ξ 

Q̇ = jξ(Q̇ξ),
P ∗

ξ+1 = (P ∗
ξ ∗ Q̇) ∩H(κ+).

In particular, it follows by induction that P ∗
ξ+1 = Pξ+1 ∩H(κ). Moreover, if

Q̇ ∈ L[B̄−] then

P ∗
ξ+1 = ((P ∗

ξ ∗ Q̇) ∩H(κ+))L[B̄−].

If Q̇ξ is chosen reasonably (e.g. in the most obvious way), in fact j(Q̇ξ) ∈
L[B̄−]. 2 This means that we could �nd P ∗

ξ by interpreting the de�nition of
Pξ in L[B−] if we commit to using only names which have size at most κ.

Amalgamation: Now let ξ ∈ E3 and say ξ = E3(α0
ρ), i.e. Pξ+1 =

Am1(Pι, Pξ, f, λξ), where f is the isomorphism of the algebras generated
by some Pξ-names ṙ0 and ṙ1, and let πi denote the canonical projection from
Pξ to the domain and range of f . Let Φ be the resulting automorphism.

Let R denote the set of p̄ ∈ Pξ+1 such that for all i 6= 0, p̄(i) ∈ D̂ξ(≤ bξ)
and p̄(0) ∈ Pξ(≤ bξ). We show Pξ+1(≤ bξ+1) ⊆ R and that (the separative
quotient of) R is in L[B̄−].

For the �rst, it is crucial that İξ+1 is closed under Φ. Say p̄ ∈ Pξ+1(≤ bξ+1),
that is, p̄  ν 6∈ İξ+1. By the de�nition of İξ+1, for each i ∈ Z,

Φi(p̄) Pξ+1
ν 6∈ İξ+1,

and so
p̄(i) = π̄(Φi(p̄)) cPξ

ν 6∈ İξ,

where π̄ denotes the canonical projection from Pξ+1 to P̂ξ. Thus, p̄ ∈ R.
By induction, Pξ(≤ bξ) is isomorphic to P ∗

ξ . A little care is needed to see

D̂ξ(≤ bξ) (or, to be precise, its separative quotient) is in L[B̄−]: D̂ξ(≤ bξ) is

not the same as ̂Dξ(≤ bξ) in general. The two orderings are equivalent, but
once more, this doesn't mean that we can use them interchangeably in the
de�nition of R. At the same time, (p, ḃ0, ḃ1) ∈ D̂ξ(≤ bξ) does not imply that
p ≤ bξ, and so p needn't be in the domain of jξ.

So we have to check that in fact, B∗
ξ = r.o.(P ∗

ξ ) ∈ L[B̄−]. This is because
we may regard B∗

ξ the collection of regular open cuts which are given by

2It would be tempting to de�ne jξ+1(p, q̇) = (jξ(p), jξ(q̇)), but we do not know if
jξ(q̇) ∈ L[B̄−].
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antichains in P ∗
ξ . As P ∗

ξ has the κ+-chain condition all such antichains and
hence all regular cuts are in L[B̄−] (once more by (6.4)). So B∗

ξ ∈ L[B̄−]
and jξ can be viewed as an isomorphism of Bξ with B∗

ξ . Thus, as we have

assumed ṙ0, ṙ1 are in L[B̄−], we can de�ne B(ṙi)
B∗

ξ and canonical projections
from B∗

ξ to P ∗
ι ∗ (〈ṙi〉B

∗
ξ :P ∗ι ) in L[B̄−]. In fact,

P ∗
ι ∗ (〈ṙi〉B

∗
ξ :P ∗ι ) = j[C],

where C is the algebra obtained from Pι ∗ (〈ṙi〉Bξ:Pι) by factoring through

the ideal of elements below −bξ. Thus also D∗
ξ = jξ[D̂ξ(≤ bξ)] ∈ L[B̄−] (it is

a subset of B∗
ξ+1 with a su�ciently absolute de�nition). We leave it to the

reader to check that this su�ces to �nd an isomorphic copy R∗ of R in L[B̄−].
Finally, let Pξ+1 = R∗(≤ bξ+1) and let jξ+1 be de�ned by jξ+1(p̄)(i) = jξ(p̄(i)).
A very similar but simpler argument works if ξ = E3(αζ

ρ) for ζ > 0 and
Pξ+1 = Am2(dom(Φ), Pξ, Φ) for some Φ. This completes the successor cases.

For ξ limit, check that the λξ-diagonal limit is absolute between L[B̄−] and
L[B̄]. So let P ∗

ξ be the λξ-diagonal limit of the sequence constructed so far,
inside L[B̄−], restricted to conditions below bξ. By (6.3), the isomorphisms
constructed at earlier stages can be glued together to form jξ. This �nishes

the proof of the claim. ©
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Zusammenfassung

Wir zeigen: unter der Annahme der Konsistenzstärke einer Mahlo-Kardinal-
zahl ist es konstistent, dass alle projektiven Mengen Lebesgue-messbar sind,
jedoch eine ∆1

3-Menge ohne die Baire-Eigenschaft existiert. Damit ist das
Thema der vorliegenden Arbeit die Frage, wie unabhängig die Struktur des
Ideals der Nullmengen von der Struktur des Ideals der mageren Mengen ist.
Die Frage nach ihrer Unabhängigkeit wird im Hinblick darauf untersucht, auf
welcher Stufe der projektiven Hierarchie die erste irreguläre Menge auftritt;
irregulär heiÿt dabei eine Menge die nicht Borel modulo des jeweils betra-
chteten Ideals ist.

Klassische Arbeiten von Gödel und Solovay haben gezeigt, dass in Bezug
auf jedes dieser beiden Ideale eine irreguläre Menge schon auf sehr niedriger
Ebene der projektiven Hierarchie auftreten kann, dass andererseits aber auch
alle projektiven Mengen regulär sein können. Auch mithilfe von Woodin-
Kardinalzahlen lassen sich ähnliche Resultate zeigen. Dabei treten jedoch
in all den erwähnten Modellen die irregulären Mengen in beiden Idealen
auf der selben Stufe auf, weshalb diese Modelle nicht dazu geeignet sind,
Unabhängigkeit dieser Ideale nachzuweisen. Tatsächlich gibt es überaschen-
derweise auf niedrigen Stufen der projektiven Hierarchie auch keine Unab-
hängigkeit (siehe [Bar84]).

In [She84] wurde gezeigt, dass es möglich ist, dass sehr einfache Mengen
nicht-messbar sind, während alle projektiven Mengen die Baire-Eigenschaft
besitzen. Komplementär dazu zeigt [She85], dass es möglich ist, dass alle pro-
jektiven Mengen messbar sind, während gleichzeitig eine Menge ohne Baire-
Eigenschaft existiert; in letzterem Modell ist die irreguläre Menge jedoch
nicht projektiv.

Der Beweis, dass diese Menge auch projektiv sein kann stützt sich auf
die Kombination einer Weiterentwicklung der Amalgamations-Technik aus
[She85] mit Jensens Forcing, welches das Universum durch eine reelle Zahl
kodiert. Letzteres wurde in [Dav82] schon verwendet, um eine Menge projek-
tiv zu machen. Wesentlich für diese Zusammenführung ist der hier entwick-
elte Begri� von strati�ed forcing, der erlaubt zu zeigen, dass nicht unerwün-
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schterweise Kardinalzahlen kollabieren. Gleichzeitig muss die Amalgamation
so bescha�en sein, dass sie die Eigenschaft, strati�ed zu sein, erhält. Dass im
letzten Limesschritt der Forcing-Iteration keine Kardinalzahl kollabiert wird,
verwendet wesentlich die Existenz einer Mahlo-Kardinalzahl. Bis jetzt ist
nur bekannt, dass das vorliegende Resultat eine unerreichbare Kardinalzahl
vorraussetzt (siehe [She84]); ob die Annahme der Konsistenz einer Mahlo-
Kardinalzahl notwendig ist, bleibt o�en. Die Komplexität der Menge ohne
die Baire Eigenschaft ist nach [Bar84] optimal.
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Veröffentlichungen

2/2007 Lightface Σ1
2-indescribable cardinals, in: Proceedings of the American

Mathematical Society



Vorträge
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