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"By providing �nancial protection against the major 18th and

19th century risk of dying too soon, life insurance became the

biggest �nancial industry of that century, growing pro�tably world-

wide for more than 150 years, i.e. until 1914. Providing �nancial

protection against the new risk of not dying soon enough may well

become the next century´s major and most pro�table industry."

Peter Drucker in:

Financial Services, The Economist, Sept. 25th 1999
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1 Introduction

Pension systems in developed countries su¤er more and more from the in-

teraction of a decreasing birth rate on the one hand and a increasing life

expectancy on the other hand. Hence governments are confronted with mas-

sive �nancial problems on both sides, i.e. revenue and expenditure. The

increasing longevity of retirees and the decreasing birthrate, lead, a con-

stant labour force participation rate and a unchanged pension entrance age

supposed, to a increasing number of retirees and to a decreasing number

of contributors, see Leinert und Wagner (2001). The arising problems a¤ect

not only governments, the problems a¤ect also employers retirement plans as

well as private insurance companies and last but not least every individual.

The impact of one determinant, i.e. the increasing life expectancy, on

private insurance business and the di¤erent ways to transfer this risk to the

capital markets is the underlying subject of this master thesis. The regional

focus of this thesis is the Austrian market, further it is structured in an

historical overview and an empirical part to verify the usefulness of such

instruments.

The aim of this thesis was at �rst to introduce the reader in this new

market through a historical refurbishment. The second task was to model

the mortality rates of 65 year old Austrian males and sample them afterwards

5000 times through a Monte Carlo simulation. The 5000 simulated mortality

rates of 65 year old Austrian males should then be the dataset for all further

calculations.

Third, the usefulness of two di¤erent hedging tools should be evaluated.

To analyze those instruments the calculus of Net Present Values was chosen,

whereas a conditional probability was introduced to calculate the so called

Expected Net Present Value. As both instruments delivers a future payment

or payments this decision seems reasonable to verify the usefulness of those

instruments..

The thesis is structured in the following way. The �rst chapter gives an

general overview over the topic of longevity risk. The impact of longevity on

pension schemes and private insurance business is brie�y discussed. Further
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the participants and their role in the market of mortality linked securities

and derivatives are introduced.

The second chapter gives an overview from historical to recent develop-

ments to tackle longevity risk. Especially the hedging possibilities via capital

markets as well as traditional methods are explained here. The main focus is

on two instruments. The �rst with a bond like structure, in fact the European

Investment Bank (EIB) bond, and second, one similar to a zero coupon swap,

called q-forward and provided by JP-Morgan. The third chapter provides an

brief overview of mortality linked indices.

With the fourth chapter starts the empirical part, where at �rst some

stylized facts on longevity in Austria are introduced and afterwards fore-

casting and sampling of mortality rates is treated. As excess to this topic,

the Lee-Carter Model (Lee and Carter 1992) is introduced. Constitutive

on Lee-Carter, the "Functional Data Approach" to model mortality rates

is discussed in this chapter. In fact the functional data model provided by

Hyndman and Ullah (2006) was used, as the mean squared forecasting error

of this model is superior to Lee and Carter, see Hyndman and Ullah (2006).

In chapter �ve and six the two hedging instruments was applied to the

simulated dataset. In the former the longevity bond of the European In-

vestmentbank (EIB), designed for 65 year old British ans Welsh males, was

analyzed. The reason therefore was; it was the �rst publicly announced

longevity instrument, however it was drawn back from the market through a

lack of interest. Thus chapter �ve should give an answer whether the bond

would have been a good choice for Austria or not.

The latter was JP-Morgans q-forward as counterpart. The reason there-

fore was that trades with a q-forward happend, unlike to the EIB-bond. In

fact the �rst hedge with a q-forward took place in February 2008, see Bi¢ s

and Blake 2009. The analysis should also give an answer to the question,

whether the q-forward is a reasonable hedging tool for 65 year old Austrian

males or not In chapter seven the �ndings of the analysis are concluded.

Appendix A gives a brief introduction in the calculation of mortality tables

and appendix B shows a fraction of the R-Code.
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1.1 Pension Schemes

Overall the pension schemes could be classi�ed into two major types, funded

or unfunded schemes, depending on the determination of the retirement pay-

ments. A funded scheme requires for every employed an individual capital

account to accumulate contributions during the time employed and to dis-

tribute the contributions during retirement. The contributions are invested

in di¤erent assets, thus the retirement payment depends on the performance

of the assets chosen. Obviously the height of the retirement payment is not

known in advance, hence there exists no guarantee that obtained bene�ts

will match the necessary amount of money to keep welfare during retirement

at an appropriate level.

The unfunded scheme, used in Austria, is also known as "pay as you go"

scheme (PAYGO), "generations contract" or as "Bismarck Type". Bismarck

invited this system in 1889 at which the pension payments for todays retirees

are immediately �nanced by todays labourers. In fact this means, that the

younger generation is ruled by law to provide pension payments for the elder

generation. The unfunded schemes contributions depends only on the height

of the employees salary. The height of the bene�ts, if retired, depends thus

on the contribution, the duration of employment and the underlying legal

requirements to determine the bene�ts, see Felbinger et al. (2007).

1.2 Life Insurance products

There are three main types of contracts to distinguish: the term insurance,

the pure endowment and the annuity contract. Obviously more complex

contract designs are possible by combining these three types among each

other as discussed below. Further it is possible to con�ne bene�t payments

to predetermined conditions, for instance a lifelong annuity if occupational

invalidity occurs or death bene�ts only for predetermined causes of death.

� The term insurance contract of duration n is an agreement to pay the

sum insured if the insured, a life aged x, dies at any time during x+n,

i.e. the term of the policy, with payment to be made within the year

10



death happens. The sum insured is predetermined at the contracts

inception, only the time of death, i.e. the date of payment is random,

see Gerber (1986). The increasing life expectancy is a welcome e¤ect for

the term insurance business because the risk for the insurance company

arises if the policy holder dies within the term of the policy, hence a

insured surviving the whole term period minimizes this inherent risk.

� The pure endowment is the second type discussed. This type of contract
pays a predetermined sum insured at the end of n policy years, if the

policyholder initially aged x survives to age x + n. This contract is

rather simple since neither the time of payment nor the amount is

uncertain.

The major part of contracts in action are endowments. An endowment

is a combination of a term insurance and a pure endowment, thus

paying the sum insured if the life aged x dies within the term of the

policy or otherwise at the end of the n-the year, see Gerber (1986).

Obviously the endowment is a¤ected by longevity in the same way

as the term insurance, hence an increasing life expectancy increases

the probability that contributions are paid over the whole term of the

policy.

� The annuity contract is an agreement to pay a scheduled payment to the
policyholder at a predetermined date within a year, usually as long the

annuitant is alive. The payments are �xed at the contracts inception

and stop with the random time of death. Concerning annuity contracts,

their are two types to distinguish, namely the deferred annuity and the

immediate annuity. In case of the former the policy holder has the

possibility to contribute to the contract within the deferred term or

in the case of the latter the annuitant pays a lump sum before the

inception to receive scheduled payments afterwards, see Gerber (1986).

Further there exists the possibility to use this contracts for employment

based pensions ( - or for �nancial precaution of the bereaved), called "Be-

triebliche Altersvorsorge" (BAV) ( - or "Betriebliche Hinterbliebenen Vor-
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sorge") in Austria. As incentive for employers and employees to set up such

additional plans, the government created tax advantages. For the employee

the advantage is that the contribution to the capital account happens before

the income tax appears, thus double taxation (income tax and capital gains

tax) is avoided. For the employer the advantage is the reduction of the non

wage labour costs. The gross salary is the calculation basis for the non wage

labour costs and is thus reduced by the amount, contributed to the individual

capital account. Further counts the contribution as running cost and is thus

minimizing the employers income tax, see Felbinger (2006).

1.3 About the risk

The PAYGOs inherent principle requires a su¢ cient level of contributors to

the PAYGO scheme. In Austria there was , 435 retired persons per 1000

contributors, in 1966 and 621 retired persons per 1000 contributors in 20061.

This number suggests that PAYGO schemes provided by governments enter

into �nancial di¢ culties. However, the level of contributors is only related

to PAYGO schemes. The second determinant, i.e. the increasing longevity,

is far more widespread. The increasing longevity combined with a declining

labour force creates a steadily increasing shortage between contributions and

bene�ts. In 1990 there was a shortage of 3.82 billion Euros followed by

a shortage of 6.78 billion Euros in 20042. Obviously this shortages must

be �nanced with other tax money. To overcome this development Austrias

government started pension reforms in 2003, 2004 and 2005. The aim was to

reduce the new number of retirees, i.e. expand the duration employed and

further decrease in the long term the bene�ts. The shortage in 2005 was

5.23 billion Euros and in 2006 5.36 billion Euros3. The numbers suggest that

the reforms work, at least in the short term. But whether this shortages are

�nanceable in the long run or not, might at this time nobody to answer.

This development creates a shift to private pension prevention to keep the

monetary welfare during retirement at an appropriate level and/ or to permit

1Source: Hauptverband der Sozialversicherungsträger
2Source: Hauptverband der Sozialversicherungsträger
3Source: Hauptverband der Sozialversicherungsträger
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an earlier retirement age. Thus the private insurance industry is more and

more confronted by individuals trying to hedge their own longevity exposure

to the insurer, i.e. the lifelong annuity provider.

Hence the risk for the insurance industry lies in the mortality rates qx,

which are part of the formulas determining the lifelong annuity payment

�xed at inception. In fact the inherent risk of annuity contracts is that the

increasing longevity, i.e. decreasing qx, creates a uncertainty whether realized

future mortality rates fall below the mortality rates anticipated by annuity

providers in the past, or not. If the future mortality rates are far more lower

than anticipated in the past, than the actual expenditures will overshoot the

aggregated premiums.

In recent literature this kind of risk is called longevity risk. This uncer-

tainty in future developments constitutes an enormous risk factor for involved

institutions because the outstanding annuities are not less than liabilities for

the enterprises. If an enterprise applies the IFRS accounting rules the changes

in market value of the liabilities have to go through the income statement.

Obviously this liability item makes the balance sheet vulnerable. The corol-

lary in the sense of the shareholder value maximization principle is that

a¤ected enterprises seek to get rid o¤ this items.

The funded schemes, as mentioned above, are only a¤ected by longevity

risk and not by the declining labour force. This is obvious as every employee

pays on his own capital account. In fact the problem is the calculation of

the right height of bene�t payments, because nobody knows his residual

lifetime. Hence the accumulated contributions will be enough for the entire

retirement period if one overestimates his residual life time or there will be

a shortage if one underestimates his residual lifetime. In the latter case the

individual is a victim of longevity. Further the impact of high in�ation rates

is far more greater. The PAYGO pensions are usually indexed to in�ation,

but the individual payment from the capital account not. One possibility to

overcome this problems is to buy a lifelong annuity with the accumulated

contributions from the private insurance industry.
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1.4 First impacts of longevity risk

In December 2000 this topic aroused public interest after the world´s oldest

life insurer the Equitable Life Assurance Society (ELAS), was forced to close

for new business. During the period of 1957 and 1988 ELAS had sold with

pro�t pension annuities with �guaranteed annuity rates��xed by reference

to speci�c assumptions regarding interest rates and life expectancy. These

guarantees became very valuable in the 1990s due to a combination of falling

interest rates and a decreasing mortality rate, and it was the rise in the

values of this guarantees that led to ELAS �nancial di¢ culties. These could

have been avoided if ELAS had hedged its exposure to both interest rate risk

and longevity risk, but for years ELAS failed to appreciate the extent of its

�nancial exposure. The failure of ELAS to do so bespeaks of the poor state

of interest rate and longevity risk management in the Society. However, even

if it had anticipated the problem, it still lacked good instruments to hedge

its exposure to both risks, particularly longevity (see Blake et al., 2006).

Bowe (et al., 2006) �gured out that in Germany the improvement of the

actuarial reserve fund due the adoption of new mortality tables (DAV1994R)

in the year of 1995 showed the German Life insurers, the more or less un-

expected risk of longevity. The actuarial reserve fund mVx is de�ned as the

di¤erence between the present value of future bene�t payments E(Zbm) and

the present value of future premium payments E(Zcm) calculated at the be-

ginning of year m, given that the customer has survived this date:

mVx = E(Z
b
m)� E(Zcm) (1)

Because of the young stock and the calculation with the former actuarial

interest rate of 4% the reserve improvement was quite moderate. Also the

possible extension over a period of eight years helped the insurers to overcome

the adoptions without big di¢ culties.

At the adoption of a new actuarial basis on the new mortality table

DAV2004R a reserving requirement of 8 billion Euro for the whole insurance
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sector became apparent. In the face of the down melted surpluses and small

interest pro�ts this volumina, would had been only �nanceable, for a few

insurers within one business year. Finally this yielded to an extension of the

reserving procedure over 20 years.

Additionally the new regulatory regime for insurance companies operating

in the European Union (EU), Solvency II, which will be introduced in 2012,

can make the situation even more acute if longevity risk cannot be hedged

e¤ectively or marked to market4 as Blake, Boardman and Cairns (2010)

proposed. However, if the current Solvency II proposals will be adopted,

insurers will be required to hold signi�cant additional capital to back their

annuity liabilities thus an additional increase in mVx, i.e. the reserves, will

be required.

4A measure of the fair value of accounts that can change over time, such as assets
and liabilities. Mark to market aims to provide a realistic appraisal of an institution�s or
company�s current �nancial situation, i.e. the �nancial statement date
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1.5 Who participates in markets for mortality �linked

securities ?

Obviously it is necessary or helpful to know something about the markets

participants before examining the products developed. For that reason I will

brie�y introduce the stakeholders of these markets, see Blake et al. (2006).

1.5.1 The Hedgers

Like in other markets ( i.e. currency or interest market ), the Hedgers are the

main component. In the market for mortality linked securities the Hedgers

are exposed to longevity risk and search for possibilities to lay o¤ that risk.

One way to handle this risk for parties with unwanted exposure to longevity

risk is to pay a premium to a counterparty in order to lay o¤ a part of

this risk. For life insurance companies two ways come into consideration:

reinsurance, or transferring the risk to the capital markets.

Reinsurer usually take over excess exposure to several risks from insurers.

The reason therefore is that they get a bigger diversi�cation if they deal

with many primary insurers when they lay o¤ their risks to the reinsurer.

Keeping the "Law of large numbers" in mind, it is obvious that the reinsurer

is able to calculate the premiums more precisely. Reinsurers thus cover the

excess liability or cover the full risk of contracts. Given the higher number

of contracts, reinsurer understand the covered risks better than the primary

insurer. They have the capability to study several exposures to be aware of

losses. Probably that�s the reason why reinsurers are longevity averse, i.e.

cover long term longevity risk. If one thinks about the development of gene

technology this behavior is not devious5.

1.5.2 Speculators and Investors

The market for mortality linked securities might attract speculators and in-

vestors. Speculators trade under the purpose of generating pro�ts out of the

price �uctuations of securities. Investors instead miss the trading purpose,

5http://media.swissre.com/documents/rethinking_ageing_longevity_life_insurance
_in_light_of_discovery_of_genes_controlling_longevity_en.pdf
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they decide to buy a security under the preassigned claim on future interest

- or dividend payments. Thus the buy is not related to trade for investors

but entirely on the intrinsic value of the share, i.e. it is geared to the regular

income from investment, see Schumpeter (1954).

The active participation of speculators is necessary for liquidity, essen-

tially in futures and options market. Overall they guarantee the permanent

possibility to buy and sell in any market. The expected returns from mortal-

ity linked securities have a low correlation with standard �nancial products,

hence they might provide an attractive opportunity to diversify a portfolio of

potential investors like hedge funds or investment banks. Despite this facts

the market is actually too small for speculators. In particular there exists no

standardized market for mortality linked securities until know.

1.5.3 Regulators

In Austria the � Finanzmarktaufsicht - FMA6 � is the ruling authority con-

cerning �nancial markets. The aims are :

i) Guarantee the stability of the Austrian Financial Market

ii) To strengthen con�dence in a well functioning Austrian Financial Mar-

ket

iii) To protect creditors, investors and consumers under the actual rule of

law

iv) To act preventive concerning the compliance of supervisory norms, and

to avoid o¤ences

The major step to keep up the liquidity of annuity payers the FMA7

asked the insurer to foster reserves for all liquid annuities. They have to be

su¢ ciently funded on the basis of the annuity table AVOE 2005M/F. Ad-

ditionally a lump sum reserve for existing accrued future annuity rights of

6Mission statement of the �Finanzmarktaufsicht��www.fma.gv.at
7Rundschreiben der FMA zur Nachreservierung von Rentenverträgen (GZ 9 000 110/7-

FMA-II/1/05)
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the closed annuity-generation was build and �tted on the 31 of December

2008 to the corresponding stock development. This action of the government

seems to make sense. It protect the consumers, but for the annuity payers the

strengthening of reserves could be very jeopardizing. Thus the government

creates a hedge to the advantage of the consumer side and imposes the whole

risk to the annuity payers. Figure 4 shows the development of the annuity

tables the reader could draw his own conclusions on the development of the

necessary reserving. Obviously annuity payers search for ways to get rid o¤

this risk. Out of this we can conclude that longevity risk can a¤ect annuity

payers in two di¤erent ways, some are a¤ected through the additional reserv-

ing, i.e. insurances, and some are a¤ected through the increasing duration

of payments, i.e. the government.

Figure 1: Di¤erent annuity tables compared to the 2000/02 mortality table
Data: AVOE and Statistik Austria
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2 The "Life Market"

2.1 Standard solutions to bear the risk

This chapter gives an overview of currently known possibilities to bear the

risk. It is based on Blake et al., (2006) and Bi¢ s and Blake, (2009). Further it

is expanded to meet the Austrian legislation body for insurances and �nancial

intermediaries.

i) A naive method would be to accept the risk as a part of the business

engaged in, and hopefully understand it well enough to be prepared for

future events.

ii) Concerning di¤erent products a insurance group can seek to exploit

the opposite e¤ects of running life insurance contracts and pure annu-

ity business, this is also called natural hedging, see Cox and Lin (2005).

Through their de�ned bene�t pension liabilities, pension funds are so

called short longevity, as their liabilities rise with longevity. Instead

the life insurance is long longevity as their liabilities fall with mor-

tality. Natural hedging uses this windfall pro�ts to balance aggregated

liability cash�ows. For Austria there must be mentioned that the FMA

request the insurers to pay a certain amount of the pro�t out of the

capital insurance business to the policy holder8. In fact there must be

a payment of 85 percent of the obtained pro�ts to the policy holder.

Thus the amount available for natural hedging is 15 percent of the ob-

tained capital insurance pro�ts. Further capital insurance and annuity

business are handled as di¤erent balance sheet items in life insurance

business. Aggregated overall Austrian insurance companies and aver-

aged over 2007 up to 2009, the insurance sum of the annuity business

is about 47 percent of the capital insurance business9. A increasing

longevity anticipated, the direction of the subventions is clear; the cap-

ital insurance would support the annuity business with much bigger

8Gewinnbeteiligungs-Verordnung�FMA(2006)-398
9Source: Jahresbericht 2009, Versicherungsverband Österreich
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subventions as vice versa. This was reason enough for the FMA to

prohibit cross subventions between this di¤erent balance sheet items.

Hence, as long as this unequilibrium exists, natural hedging is at least

for Austria a more or less theoretical concept.

iii) Huge companies often run their own pension plan as additional bene�t

for their employees. If the plan members residual lifetime increases

more than once expected, the plan or even the whole company will

enter into �nancial problems. Obviously companies seek to get rid o¤

this commitments, Bi¢ s and Blake (2206) describes the pension buyout

in the following way:" A typical example is represented by a company

with assets A and liabilities L, valued by the plan actuary. When

the plan�s assets are insu¢ cient to cover the liabilities, i.e. A < L,

the company recognizes a de�cit of L � A. When A > L instead, the
company�s plan has a surplus of A�L. Life insurers are usually required
to value liabilities under more prudent assumptions (on future mortality

improvements, in�ation rates, and market yields) than pension plans,

resulting in a valuation ~L > L for the liabilities. This increases reported

de�cits or reduces reported surpluses when a company approaches an

insurer for transferring its pension assets and liabilities. In the case of a

de�cit, a company borrows the amount ~L�A and pays it to an insurer
to buyout its pension assets and liabilities. The transaction allows the

employer to o¤-load the pension liabilities from its balance sheet. This

means that the volatility of assets and liabilities associated with the

pension plan accounts, the payment of management fees on the plan�s

assets, and any levies charged for members�protection insurance10 can

be avoided. If buyout costs are �nanced by borrowing, a regular loan

replaces pension assets and liabilities on the balance sheet. From the

point of view of the plan members, the pensions are secured in full,

subject, of course, to the solvency of the life insurer." For instance the

"Financial Times" reports in February 2010, that the BMW Group

wants to transfer 2.8 billion EUR out of their british pension fund to

10E.g., the Pension Protection Fund (PPF) in the UK.
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"Abbey Life", the corresponding division of "Deutsche Bank", and to

the London based insurer "Paternoster".
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2.2 First steps towards capital markets

In this chapter I will introduce the �rst steps towards capital markets to

hedge longevity risk. The �rst instruments had all a bond11 like structure.

Blake and Burrows (2001) were the �rst to introduce this proposal. They

argue that bonds whose future coupon payments depends on the development

of mortality could ease the insurance exposure to longevity risk. For a bond

issued in x and maturity in x+n, for example, the coupons in x+n depends

on the fraction of people survived the n� th year.
Swiss Re, a global reinsurance company, dared the �rst move in 2003,

and launched a mortality catastrophe bond which will be described in the

following subchapter as well as the long term bond of the European Invest-

ment Bank (EIB) and BNP Paribas12 in 2004. Even tough the Swiss Re

bond is not a classical longevity bond, it is described here because of his role

as an pioneer in the life market. A quite easy modi�cation of this bond to �t

the requirements of annuity payers is also included. This two instruments,

with their strengths and weaknesses provide an instructive basis for further

developments.

2.2.1 "Vita I" - the Swiss Re Mortality catastrophe bond

In December 2003, Swiss Re issued "Vita I", the �rst �oating rate bond

with a principal payment linked to a mortality index. The maturity of the

bond was the 1st January 2007, i.e. a duration of three years. Blake, Cairns

and Dowd (2008) stated that such short-dated mortality bonds are market-

traded securities whose payments are linked to a mortality index. They are

similar to catastrophe bonds. As such, they are designed to hedge brevity

risk, rather than hedge longevity risk (the principal concern of this paper),

but as an important successful example of a life market instrument, they are

11Blake(2006) explained in "Pension Finance": Bonds are capital-market securities and
as such have maturities in excess of one year. They are negotiable debt instruments.
There are many di¤erent types of bonds that can be issued. The most common type is the
straight bond. This is a bond paying a regular (usually semi-annual), �xed coupon over
a �xed period to maturity or redemption, with the return of principal (thatis, th epar or
nominal value of the bond) on th ematurity date. All other bonds are variations on this.
12A French Investment Bank
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included in this article.

Vita I was designed to hedge the reinsurers exposure to catastrophic mor-

tality risks such as the Spanish �u in 1918 or terrorist attacks far greater than

the attack on the World Trade Center in 2001. The issue size was $400 mil-

lion. The coupon payment for investors was set at three month U.S.Dollar

LIBOR + 135 basis points (see Blake et. al. 2006). Cairns et. al.(2005)

argued that for primary insurers and pension plans, the bond was only a

hedge against one particular form of extreme short-term mortality risk. Pen-

sion funds which would be the bene�ciaries of such an event because their

pension liabilities would show a sudden drop after such signi�cantly higher

death rates, were , nevertheless prepared to buy the bond because it reduced

variability in the asset-liability ratio and because the bond o¤ered an attrac-

tive return relative to conventional bonds. Blake et al. (2006) describes the

bond as follows:

"The principal is unprotected and depends on what happens to a specif-

ically constructed index of mortality rates across �ve countries: the United

States of America, U.K., France, Italy and Switzerland. The principal is

repayable in full if the mortality index does not exceed 1.3 times the 2002

base level during any of the three years of the bond�s life.
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Figure 2: Swiss Re mortality bond payo¤ schedule Source: Blake et al.,2006

The principal is reduced by 5% for every 0.01 increase in the mortality

index above this threshold and is completely exhausted if the index exceeds

1.5 times the base level. The payo¤ schedule of the bond is shown in Figure

3 and Figure 4.
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Figure 3: Terminal payo¤ of Swiss Re mortality bond to investors. Source:
Blake et al., 2006

Figure 4: The structure of Swiss Re mortality bond. Source: Blake et al.,
2006
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The bond was issued via a special purpose vehicle (SPV) called Vita Cap-

ital (VC). VC invested the $400m principal in high-quality bonds and swaps

the income stream on these for a LIBOR-linked cash �ow. VC distributes

the quarterly income to investors and any principal repayment at maturity.

This structure is shown in Figure 2. The bene�ts of using an SPV in this

context are that the cash �ows are kept o¤balance sheet (which is good from

Swiss Re�s point of view) and that credit risk is reduced (which is good from

the investors�point of view).

According to its 2004 annual report, life reinsurance is Swiss Re�s primary

source of business revenue, accounting for 30% of revenues, implying that

pro�tability is negatively correlated with mortality rates. However, as the

world�s largest provider of life and health reinsurance, Swiss Re faces the

potential di¢ culty of �nding a su¢ cient number of counterparties on whom

it can o¤-load this risk, and this has implications for its regulatory capital

requirements. The bond therefore helps Swiss Re to unload some of the

extreme mortality risk that it faces. It is also likely that Swiss Re was

mindful of its credit rating and wanted to reassure rating agencies about

its mortality risk management. Further, by issuing the bond themselves,

Swiss Re are not dependent on the creditworthiness of other counterparties

should an extreme mortality event occur. Thus, the bond gives Swiss Re

some protection against extreme mortality risk without requiring that the

company acquire any credit risk exposure in the process.

Investors in the bond take the opposite position and receive an enhanced

return if an extreme mortality event does not occur. Some indication of

how well compensated they were for taking on this extreme mortality risk

arises from the work of Beelders & Colarossi (2004). They valued the bond

using extreme value theory, assuming a generalized Pareto distribution for

mortality. Recognizing that the terms of the bond are equivalent to a call

option spread on the mortality index, with a lower strike price of 1:3q0 and an

upper strike price of 1:5q0, Beelders and Colarossi estimated the value of the

probability of attachment (prob [qt > 1:3q0]) at 33 basis points and the value

of the probability of exhaustion (prob [qt > 1:5q0]) at 15 basis points. The

expected loss on the bond was estimated to be 22 basis points, less than the
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135 basis points of compensation on o¤er initially to Investors. Beelders and

Colarossi concluded that the bond appeared to be a good deal for investors

and in June 2004 the bond was trading at LIBOR+100 basis points. However,

we should keep in mind that their �gures are only estimates based on a

model that ignores parameter uncertainty: plausible alternative parameter

estimates can produce much higher values for the basis point compensation

received by investors. Thus, we cannot be sure how good a deal the investors

actually got. By November 2005 the mid-market price of the bond was

equivalent to LIBOR+123 basis points. It is plausible (although we have no

evidence for this) that this increase re�ected the increased probability of a

bird-�u pandemic in 2006.

The Swiss Re bond issue was fully subscribed and press reports sug-

gest that investors were happy with it (e.g. Euroweek, 19 December 2003).

These investors included a number of pension funds. These would have been

attracted, in part, by the higher coupons being o¤ered. They would also

have been attracted by the hedging opportunities o¤ered by the fact that

the mortality risk associated with the bond is correlated with the mortality

risk associated with active members of a pension plan. Speci�cally, consider

an event that would trigger a reduction in the repayment of the Swiss Re

bond. The large number of extra deaths would presumably extend to active

members of the pension plan. Since death bene�ts are typically less than

the pension liability for an individual member, the reduction in the value of

the pension plan�s Swiss Re bond investment would be matched by a reduc-

tion in the value of their plan liabilities. In the meantime, the bond o¤ers a

considerably higher return than similarly rated �oating-rate securities. The

bond�s reception in the marketplace also suggests that investors believed the

135 basis points to represent a good deal.

In April 2005, Swiss Re announced that it had issued a second lifecatastro-

phe bond with a principal of $362m, using a new SPV called VitaCapital II.

The maturity date is 2010 and the bond was issued in three trenches: Class

B ($62m), Class C ($200m) and Class D ($100m). The principal is at risk if,

for any two consecutive years before maturity, the combined mortality index

exceeds speci�ed percentages of the expected mortality level (120% for Class
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B, 115% for Class C, and 110% for Class D). The bond was fully subscribed."

2.2.2 Modi�cation of the Swiss Re Bond to hedge longevity risk.

As discussed in the introduction, the strengthening of reserves, required by

the authorities, if longevity increases too much, jeopardizes the liquidity of

insurers eminently. Hence insurers seek for ways to hedge this increase in

policy reserves. A possibility could be a bond, build on the basis of the Swiss

Re "Vita I" bond. The Swiss Re bonds structure reduces the principal by

5% for every 0.01 increase in the mortality index above this threshold and is

completely exhausted if the index exceeds 1.5 times the base level.

Inspired by this mechanism a insurer could o¤er an bond where the re-

payment of the principal is linked to the di¤erence between the mortality

rates of the actual annuity table qactualx and the mortality rates calculated

out of the next population census qfuturex . Like the Swiss Re bond "VitaI"

two mortality thresholds qax and q
b
x, q

a
x > q

b
x are �xed below q

actual
x at the con-

tracts conclusion, i.e. qactualx > qax > q
b
x. In Austria the new tables are usually

computed after a population census, hence the insurer knows more or less the

date when the strengthening of reserves will happen or not. Obviously the

insurer should set the maturity date of the bond align with this policy action.

To make this bond interesting for investors the principal is invested in several

AAA-ranked bonds and the income stream of this bonds is swapped for a

LIBOR-linked cash�ow like the �Vita I�Bond. At maturity the development

of the mortality rates decides what happens to the principal:

i) If qfuturex > qax the principal is fully paid back,

ii) If qfuturex is in between [qax; q
b
x] the paid back principal reduces for a

pre-de�ned percentage rate,

iii) If qfuturex < qbx the whole principal goes to the insurer.

Ideally the amount required by the authorities to foster reserves equals the

deducted principal, so the insurer could get rid o¤ longevity risk. However

the investment risk still remains. One way to tackle investment risk would
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be to divide it into a number of single risks, in this case the insurer should

invest in several AAA-bonds instead of one.

2.2.3 The EIB/ BNP-Pariba longevity bond

In November 2004 , one year on from the issue of the Swiss Re bond, BNP

Paribas announced that it had arranged for the EIB to issue a longevity bond

that goes a very long way towards providing a solution for �nancial institu-

tions looking for instruments to hedge their long-term systematic mortality

risks. The total value of the issue is £ 540 million, an is primarily aimed at

UK pension funds. The concept and usefulness of longevity bonds have been

discussed for a number of years see Cox et al. (2000) and Blake & Burrows

(2001). But it has taken time for the capital markets to develop the �ner

implementation details of these contracts ( even tough here the detail is rel-

atively simple), and for both potential issuers and investors to decide that

the time is right, see Cairns et al. (2005).

The bond itself was withdrawn after one year of marketing because it

generated not enough demand. But it was the pioneering �rst step to deal

with long-term longevity risk and it o¤ers the opportunity to learn out of its

shortcomings for future developments. The following description is based on

Blake et al. (2006).

"2.2.3.1 This security was to be issued by the European Investment Bank

(EIB), with BNP Paribas as the designer and originator and Partner Re as the

longevity risk reinsurer. The face value of the issue was £ 540 million and the

bond had a 25-year maturity. The bond was an annuity (or amortizing) bond

with �oating coupon payments, and its innovative feature was to link the

coupon payments to a cohort survivor index based on the realized mortality

rates of English and Welsh males aged 65 in 2002. The initial coupon was

set at £ 50 million.

2.2.3.2 In the absence of credit risk, the contract cash �ows are simple

to specify. For simplicity we will refer to 31 December 2004 as time t = 0,

with t = 1 representing 31 December 2005 etc. Now let m(y; x) represent

the crude central death rate for age x published by the O¢ ce for National
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Statistics in the year y. We then construct a survivor index S(t) as follows:

S(0) = 1

S(1) = S(0)� (1�m(2003; 65))

S(t) = S(0) � (1 �m(2003; 65)) � (1 �m(2004; 66) � ::: � (1 �
m(2002 + t; 64 + t)):

At each time t = 1; 2; :::; 25, the bond pays a coupon of £ 50

million � S(t).

2.2.3.3 These cash �ows are illustrated in Figure 3. As far as investors

are concerned, they make an initial payment of around £ 540 million (i.e. the

issue price) and receive in return an annual mortality-dependent payment of

£ 50 million � S(t) in each year t for 25 years.

Figure 5: Cash �ows from the EIB/BNP Bond, as viewed by investors.
Source: Blake et al., 2006

2.2.3.4 Although the bond was never launched, the issue price was deter-

mined by BNP Paribas as follows:

i) Ignoring for the moment the £ 50 million multiplier, the contract spec-

i�es a set of anticipated cash�ows S(t) based on the Government Ac-

tuary�s Department�s 2002-based projections of mortality.

ii) Each projected cash�ow is priced by discounting at LIBOR minus 35

basis points. The EIB curve typically stands about 15 basis points
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below the LIBOR curve, so that investors in the longevity bond are

being asked to pay 20 basis points to hedge their longevity risk. For

further discussion of this risk premium, the reader is referred to Cairns,

Blake, Dawson & Dowd (2005) and Cairns, Blake & Dowd (2005).

2.2.3.5 The details given above describe the cash �ows from the point of

view of the investors. However, there are also issues of credit risk to consider,

and these lead to some complex background details. These details and the

involvement of BNP Paribas and Partner Re are represented in Figure 4.

Figure 6: Cash �ows from the EIB/BNP bond. Source: Blake et al. (2006)

The longevity bond is actually made up of 3 components. The �rst is

a �oating rate annuity bond issued by the EIB with a commitment to pay

in euros (e). The second is a cross-currency interest-rate swap between the

EIB and BNP Paribas, in which the EIB pays �oating euros and receives

�xed sterling. These �xed payments, bS(t), might be, but do not have to be,
equal to the S(t). (The �xed rate, bS(t), has to be set to ensure that the
swap has zero value at initiation. Typically, this would require the �xed rate
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to be close but not equal to S(t). From the EIB�s perspective, this converts

the �rst element, the �oating-rate bond, into a �xed-rate £ bond. The third

and most distinctive component is a mortality swap between the EIB and

Partner Re, in which the EIB exchanges the �xed sterling bS(t) for the �oating
sterling S(t) at each of the payment dates, t = 1; 2; :::; 25. Strictly speaking,

the third component is an OTC deal between BNP and Partner Re. The

second component then becomes a commitment from BNP to pay £ S(t) to

the EIB, rather than £ S(t), in return for �oating e. For this reason, we see

in Figure 6 that the mortality-swap cash �ows are directed through BNP.

Ignoring credit risk, the result of the two swaps from the perspective of the

EIB is to convert �oating e into £ S(t). The intermediate swap of �oating

e for �oating £ bS(t) does not (as noted above) require that bS(t) = S(t): the
price agreed for this swap will, however, depend on what level the bS(t) are
set at. Similarly the price for the mortality swap will depend on the bS(t).
2.2.3.6 Note that the second component implies that EIB and BNP have

potential credit exposures to each other, and such exposures would become

manifest if underlying random factors change and the swap value moves away

from 0 (in which case the swap would become an asset to one party and a

liability to the other). The third component implies that BNP has a credit

exposure to Partner Re. The parties concerned might (or might not) wish to

take out some form of insurance on these various credit exposures.

2.2.3.7 It is important to appreciate what is going on here in plain lan-

guage. In a nutshell, the bond is issued by the EIB, and investors only

face a credit exposure to the EIB. The EIB has a commitment to make

mortality-linked payments in sterling, and then engages in a swap with BNP

to exchange this commitment for a commitment to make �oating euro pay-

ments. In entering into this swap, BNP takes on mortality exposure, which

it then hedges with Partner Re. Thus, if Partner Re defaults, that is BNP�s

problem, and if BNP defaults, that is the EIB�s problem. However, EIB is

still committed to pay investors regardless of whether Partner Re or BNP

default or not.

2.2.3.8 For their part, investors have the protection of the EIB�s commit-

ment to repay, backed by the EIB�s AAA credit rating. For its part, the EIB
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has the protection of BNP�s commitment to take on the bond�s longevity

risk exposure, and this commitment is backed by BNP�s AA credit rating

and by the knowledge that BNP has reinsured that risk with Partner Re.

For its part, BNP has the protection of the reinsurance provided by Partner

Re, whose rating is also AA.

2.2.3.9 The EIB/BNP longevity bond has some attractive features:

1.) Its cash �ows are designed to help pension plans hedge their exposure

to longevity risk. To be more precise, they provide an ideal hedge

against a notional annuity provider who is committed to providing

level annuity payments to the reference population over a horizon of 25

years.

2.) The survivor index S(t) is calculated with reference to crude death rates

published by the ONS13. These death rates are a reliable and easily ob-

tainable public source. This helps reassure investors that they would

have full access to the data and would not lose out as a result of insur-

ance companies manipulating their reported death rates. The use of

crude death rates also avoids arguments over smoothing methodologies.

3.) Trends in national mortality should provide a reasonable match for

trends in annuitants�mortality, and thus help to reduce basis risk in an

annuity book that might be hedged by an investment in the longevity

bond.

2.2.3.0 As noted earlier, the EIB/BNP longevity bond was only partially

subscribed and was later withdrawn for redesign. There seem to be a number

of reasons for its slow take up and perhaps lessons can be learned for future

contract design:

1.) It is likely that a bond with a 25 year horizon provides a less e¤ective

hedge than a bond with a longer horizon. (Evidence to this e¤ect is

provided by Dowd, Cairns & Blake, 2005.) Similarly, the bond might

prove to be a less e¤ective hedge for pension liabilities linked to di¤erent

13O¢ cial national statistics department
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age cohorts or to females. This means that the EIB bond might not be

a particularly e¤ective hedge for the kind of annuity book for which it

was designed, and this consideration might have discouraged annuity

providers from investing in it.

2.) The amount of capital required is high relative to the reduction in

risk exposure. This makes the BNP bond capital-expensive as a risk

management tool.

3.) The degree of model and parameter risk is quite high for a bond of

this duration (see, for example, Cairns, Blake & Dowd, 2005), and

this degree of uncertainty might make potential investors and issuers

uncomfortable. Thus, even if the bond provides a perfect hedge, there

will be uncertainty over what the right price to pay or charge should

be.

4.) Potential hedgers might feel that the level of basis risk is too high

relative to the price being charged. For example, basis risk can arise

because annuitants are likely to experience more rapid mortality im-

provements than is re�ected in the population-wide index on which

the payments are determined. Basis risk can also arise because the

longevity bond speci�es level annuity payments, whereas most real-

world pension schemes allow for escalating (i.e. in�ation-linked) pay-

ments. A further cause for basis risk is inaccuracy in the estimates of

number of deaths (e.g. people dying while on holiday, slow noti�cation

of pensioner death) or in the number exposed to risk (e.g. the number

exposed to risk is based on population projections from the last census

date), or a failure to ensure these correspond.

5.) The underlying index is calculated with reference to public mortality

death rates. However, the use of public death rates means that S(t)

will underestimate the true proportion of the cohort that survive. A

more natural de�nition for the survivor index, which avoids this bias,

would make reference to mortality rates: that is, S(t) = S(0) � (1 �
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q(2003; 65))� (1� q(2004; 66)� :::� (1� q(2002+ t; 64+ t)) where the
q(y; x) are mortality rates for age x in year y."
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2.3 Recent Developments

If a new market evolves Investment banks need not much time to create �-

nancial instruments to participate. Usually Investmentbanks o¤er di¤erent

variations of derivatives to hedge or just to speculate. Derivatives means that

the value of a �nancial instrument is derived out of an underlying, event or

condition. In our case a longevity or mortality index. Longevity and mortal-

ity derivatives are hence no contracts of insurance, they are capital market

instruments with payo¤s linked to the value of an pre-de�ned underlying

index.

Bi¢ s and Blake (2009) argue that mortality and longevity swaps attract

the greatest attention from insurers and investment banks. For instance the

EIB bond as described in Section 2.2.3 has also a derivative component, i.e.

a longevity swap, since �xed payments from investors in the bond were in-

tended to be swapped for coupons linked to the annual number of survivors

in the relevant cohort. In April 2007 SwissRe agreed to act as the �oat-

ing rate payer, i.e. the risk taker per contra to the �xed rate payer, in a

swap contract with Friends Provident, a UK life insurer, in exchange for an

undisclosed premium, see Bi¢ s and Blake(2009). The £ 1.7 billion contract

was the �rst which was publicly announced Bowe et al. (2006) describes

two common reinsurance models, the longevity swap and the quote-share-

reinsurance. Whereas the quote share reinsurance is just a longevity swap

plus a hedge against the investment risk. In 2.3.1 and 2.3.2 the swaps are

explained, see Bowe et al. (2006).

2.3.1 The longevity swap

The longevity swap is especially developed for closed annuity portfolios in

the annuity �reference �time. Simpli�ed could be stated, that a predicted

or expected cash �ow of annuities is swapped against a actual cash �ow of

annuities, i.e. a Swap. The primary insurer ceded a well de�ned propor-

tion of his running annuities to the reinsurer. He pays a yearly or during

the period reinsurance premium, de�ned before the inception of treaty. This

premium equals exactly the expected annuity payments of the single years ,
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calculated on the basis of a jointly agreed mortality table. The underlying

mortality table of the reinsurance contract is �tted to the reinsured port-

folio. The reinsurance premium of the cedent include the annuity payment

and the expense loadings of reinsurer. Are they once �xed, the reinsurance

premiums, i.e. the expected annuity payments, will be unaltered until the

expiry of the treaty. Hence the cedent have a plan reliability over the rein-

sured portfolio. In return the cedent gets as service from the reinsurer all

actual annuity payments until the last reinsured policy is expired. Finally

the primary insurer has only to bear the investment risk for the reinsured

portfolio, whereas the longevity risk is completely swapped to the reinsurer.

Figure 7 should illustrate the procedure.

Figure 7: Diagram of the longevity swap. Source: Analyse und Absicherung
der Risiken im Lebensversicherungsgeschäft, Bowé et.al., 2006

Alongside guaranteed annuities which are paid since the beginning of the

reinsurance, contractual increases of annuities could also be hedged against

a suitable premium.

2.3.2 The quote �share �reinsurance

The quote �share �reinsurance is nothing else than a longevity swap plus a

hedge against the investment risk. Obviously a third party is required to bear

the investment risk, for instance a bank or a other �nancial institution. The

third party gets a single premium from the cedent to �nance the investment

risk and to pay the expected annuity to the reinsurer. The reinsurer pays

in turn the actual annuity to the cedent. Unlike to the longevity swap, the

primary insurer gets for a single premium and not for a running premium,

the actual annuities. To realize this modi�ed longevity swap a �special �

purpose �vehicle�(SPV) has to be founded. This action is comparable to a
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securitization because there is also a SPV required. The purpose of the SPV

is the hedge of the contract partner against a default of other contract parties.

Obviously the costs increase with complexity of the reinsurance construction.

Therefore is this extended version of a longevity swap only adequate for huge

portfolios with running annuities. Figure 8 shows the corresponding scheme.

Figure 8: Diagram of the quote - share - reinsurance. Source: Analyse und
Absicherung der Risiken im Lebensversicherungsgeschäft, Bowé et.al., 2006

The longevity swap is a transparent reinsurance model, which allows a

clear distinction between the �nancial �and the longevity risk and it o¤ers

the primary insurer the possibility to cede the single risks at a adequate

premium to the co - contractor.

2.3.3 JP Morgans q-forward

Bi¢ s and Blake (2009) states that a swap could be synthesized by combin-

ing together several mortality forwards. This kind of contracts have been

marketed by JP Morgan since July 2007, under the name of q-forwards (see

Coughlan et al.(2007) and Loeys et al. (2007)). To relieve the understand-

ing of a q-forward, the idea behind a common forward contract should be
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explained shortly. Forward contracts have seldom standards and are most

of the time traded �Over the Counter�(OTC), i.e. not traded on regulated

exchanges. The principle is to �lock-in�a price for a commodity, exchange

rate or similar goods at the initial trade date. It is a obligation to buy or

sell a �nancial instrument or to make a payment at some point in the future,

the details of which were settled privately between the two counterparties.

Forward contracts generally are arranged to have zero mark-to-market value

at inception. The mark-to-market accounting is nothing else than a revalua-

tion of a �nancial instrument at regular intervals. Examples include forward

foreign exchange contracts in which one party is obligated to buy foreign

exchange from another party at a �xed rate for delivery on a pre-set date.

Coughlan et al. (2007) a member of JP Morgans Pension Advisory Group

introduces the q-forward as a agreement between two parties to exchange at

a future date (the maturity of the contract) an amount proportional to the

realized mortality rate of a given population (or subpopulation), in return

for an amount proportional to a �xed mortality rate that has been mutu-

ally agreed at inception. In other words, a q-forward is a zerocoupon swap

that exchanges �xed mortality for realized mortality at maturity. This is

illustrated in Figure 9. The reference rate for settling the contract is the

realized mortality rate as determined by the appropriate index, such as the

LifeMetrics Index.

Figure 9: A q-forward contract to hedge the longevity risk of a pension plan
(or an annuity book). Source: Coughlan et al., (2007)

In a fair market, the �xed mortality rate at which the transaction takes

place de�nes the "forward mortality rate" for the population (or subpopula-

tion) in question. If the q-forward is fairly priced, no payment changes hands
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at the inception of the trade. At maturity, however, a net payment will be

made by one counterparty or the other. Figure 10 gives an example term

sheet for a q-forward transaction, where the reference population corresponds

to 65-year-old males in England & Wales.

Figure 10: An illustrative term sheet for a single q-forward to hedge longevity
risk. Source: Coughlan et al., 2007

The q-forward payout is determined by the value of the LifeMetrics Index

for this subpopulation at the maturity of the contract. This transaction is

a 10-year q-forward contract initiated on 31 December 2006 and maturing

on 31 December 2016. It re�ects part of a longevity hedge provided to a

UK pension plan. At maturity the hedge provider (the �xed-rate payer)

pays to the pension plan an amount proportional to a �xed mortality rate of

1.2000%. In return the pension plan pays to the hedge provider an amount

determined by the reference rate at maturity, which corresponds to the most
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recent value of the LifeMetrics Index re�ecting the realized mortality rate for

65-year-old males in England & Wales. Because of the ten-month lag in the

availability of o¢ cial data, settlement on 31 December 2016 will be based on

the LifeMetrics Index level for the reference year 2015.

The settlement that takes place at maturity is based on the net amount

payable and is proportional to the di¤erence between the �xed mortality

rate (the transacted forward rate) and the realized reference rate. Figure

14 shows the settlement calculation for di¤erent potential outcomes for the

realized reference rate. If the reference rate in the reference year is below

the �xed rate (i.e., lower mortality) then the settlement is positive, and the

pension plan receives the settlement payment to o¤set the increase in its

liability value. If, on the other hand, the reference rate is above the �xed

rate (i.e., higher mortality) then the settlement is negative and the pension

plan pays the settlement payment to the hedge provider, which will be o¤set

by the fall in the value of its liabilities.

Figure 11: An illustration of q-forward settlement for various outcomes of the
realized reference rate. A positive(negative) settlement means the �xed-rate
receiver receives (pays) the net settlement amount. Source: Coughlan et al.,
2007

Concerning the pricing, Loeys (2007) states that there are more agents

in the economy who are short longevity (i..e., are �nancially hurt by unex-

pected rises in longevity) than those who are long. The market is thus net

short longevity. To transfer this risk, it needs to attract investors who require

compensation to take on this risk. A pension fund that hedges its longevity

risk expects to be paid by the investors if mortality falls by more than ex-

pected and is willing to pay if mortality ends up higher, because its own
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cash out�ows will then be less. As a result, the longevity forward that will

attract investors into this market must lie above the expected mortality rate,

see Figure 12. This discount, therefore, constitutes the expected return to

the investors of taking on mortality risk. And this return needs to provide a

su¢ cient return to risk to be competitive with other assets the investor could

buy. To adept more about the pricing of a q-forward contract the interested

reader is referred to chapter 6 and further to "Longevity: a market in the

making", Loeys et al. (2007) or Bauer et al. (2008) who gives a more general

overview on the pricing of mortality linked securities. However a simulation

of a hedge through a swap is presented in chapter 6.

Figure 12: Term Premium, Forward Rate and Expected Short Rate of a q-
forward. Source: Loeys, et al. (2007): Longevity: a market i the making;JP-
Morgan

The �rst hedge of longevity risk takes place at January 2008, between Lu-

cida plc and JPMorgan. Lucida plc, a new insurance company involved in the

pension buyout market, formed to take on longevity risk and corporate pen-

sion schemes, recently announced a deal with JPMorgan to hedge longevity
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risk through a derivative contract linked to the LifeMetrics Longevity Index.

The contract, the �rst of its kind involving an Insurer, signals continued

progress in the development of what many believe to be a signi�cant new

market. (see lucidaplc.com, press release).

2.3.4 Longevity futures and options

Blake et al. (2006) gives an extensive description of the possible constructions

concerning the futures and options market. Bi¢ s and Blake (2009) argues

that at current time no futures or options markets on mortality linked securi-

ties are active to date. However considerable e¤ort is being spent by reinsur-

ers and investment banks to explore opportunities for innovation. Natixis,

for example, has launched a longevity-driven collar14.

14Combination of options, i.e. call or put
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3 Longevity Indices

In order to enter into a contract based on a standardized portfolio of lives,

a suitable longevity index is needed. Sweeting (2010) distills in his paper 13

criteria for longevity indices out of the foregone work of Bailey (1992):"

� unambiguous �the reference population on which the indices are based
should be de�ned in detail, including details of how individuals can

enter and leave the index (other than through death);

� transparent �the methods used to graduate mortality rates should be
clear;

� objective �graduation methods should have as little subjective input
as possible;

� measurable �the mortality experience of the reference population should
be capable of being measured;

� timely �the mortality experience of the reference population should be
available shortly after the e¤ective date of that experience;

� regular � the indices should be produced in accordance with a pre-
arranged timetable;

� appropriate �the indices should re�ect the composition of the popula-
tions requiring hedging;

� popular �the indices should be few enough that securities, derivatives
and swaps based on them will be liquid;

� relevant �the variability of the liabilities being hedged relative to the
indices should be signi�cantly lower than their volatility relative to

population longevity;

� highly correlated �the correlation between Li�Lt and Lp�Lt should
be strongly positive, where Lt is the value of the �oating leg a longevity

swap based on the total population, Li is the value of the �oating leg
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of the more speci�c index-based longevity swap, and Lp is the value of

a pension scheme�s liabilities;

� re�ective of current hedging needs �the structures of the indices should
re�ect the needs of those using them to hedge;

� stable �the criteria used to construct indices should change only infre-
quently; and

� speci�ed in advance �the indices should be de�ned in advance as far as
possible, and there should be an independent committee to deal with

issues when this is not possible."

3.1 Existing Indices

Longevity indices calculated out from mortality tables, whose main purpose

is to value actuarial liabilities or mortality linked securities and derivatives

do exist. The indices launched are discussed below:

3.1.1 Life Metrics

JP Morgan provides longevity indices for the United States, Germany, the

Netherlands, and England and Wales in its LifeMetrics suite, developed with

the assistance of the Pensions Institute at Cass Business School and Watson

Wyatt. For all of the regions mentioned, rates are based on mortality of the

entire population. For England and Wales, LifeMetrics takes raw data from

the UK Statistics Authority (formerly the O¢ ce for National Statistics) and

applies a pre-de�ned smoothing algorithm. This index ful�ls many of the

criteria described above. However, since the population used is the entire

England and Wales population, the relevance of this data to a speci�c group

of lives such as a pension scheme or a book of annuitants is questionable, see

Sweeting(2010) and the technical document of the LifeMetrics indices.15.

15http://www.jpmorgan.com/cm/cs?pagename=JPM/DirectDoc&urlname=lifemetrics_technical.pdf
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3.1.2 Xpect

Xpect from Deutsche Börse AG produces monthly mortality data for Ger-

many. How the data for the monthly calculation of rates is collected is not

explained, see the factsheet of the Xpect Indices16.

3.1.3 QxX

Finally, Goldman Sachs developed the QxX index, which it o¤ered until

December 2009. This was a longevity index covering medically underwritten

US lives. This had the advantage of being objectively calculated, as with

the indices above, and was calculated more frequently (on a monthly basis).

The number of lives covered was small (46,290 at outset), and the class of

business was not necessarily relevant for the hedging of pensions (it covered

the life settlements market), though it was perhaps more appropriate than an

index based on a national population. However, as indicated above, Goldman

Sachs decided in December 2009 to wind down its life settlements index, see

Sweeting (2010).

Longevity indices could serve a useful role in facilitating the hedging of

longevity risk in pension schemes. The characteristics of good indices are nu-

merous, and whilst the criteria for good benchmarks as discussed by Sweet-

ing (2010) are useful, the nature of longevity indices means that additional

considerations are needed. In particular, the scope for subjectivity and the

construction of the indices could have a major impact on the success of in-

dices. Longevity indices do exist, but since they are based largely on national

population data, their relevance is perhaps limited. This suggests that new,

more focussed indices would be a useful addition for those wishing to hedge

longevity. Good hedging results can be achieved using a relatively small

number of swap contracts at key combinations of age and term. Such an

approach would help to develop a liquid market in such swaps, see Sweeting

(2010).

16http://www.xpect-index.com/�les/pdf/Factsheet%20Xpect%20Data%20e.pdf
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4 Empirical Part

4.1 Stylized facts on longevity and mortality

To value the underlying risk and the expected future pro�ts of �nancial

instruments which are linked to mortality rates it is necessary to know some

basic facts about past changes in longevity. For that reason the reader should

be versant with the basic terminology of mortality rate measures, if not

they are explained in Appendix A. To �gure out stylized facts, Austrian

Mortalitytables was used17. (for US and UK see Loeys et al., 2007):

i) Mortality rises with age. This is not surprising, the older you are the

higher the probability you will die in a given year. The expected resid-

ual lifetime ex, i.e. the number of years you are still expected to live ,

falls with age. Further the mortality rate qx rises approximately expo-

nentially with age. However, one can see in Figure 13 the logarithmic

mortality rates. The variance increases with respect to high ages due

the lack of data from the age of 95 on.

17Source: MHD - Mortality Human Database
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Figure 13: Austrian total logarithmic mortality rates 1947(upper) -
2008(lower), own calculation. Data: MHD

ii) The life expectancy of females is higher, but the gap becomes narrower

over the years. In 1950 the qx for 60 year old Austrian males was 2; 22%

and for females 1; 36%, hence the di¤erence was 0; 86 Percentage Points.

In 2008 the rates for males improved to 1; 06% and for females to 0; 48%

that´s a gap of 0; 58 Percentage Points, see Figure 14.
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Figure 14: Austrian male and female mortality rates (1947-2008). Data:
Statistik Austria

iii) The changes in mortality rates have been quite volatile over time. The

volatility of the YoY percentage change of the mortalityrate qx of 60

year old Austrian males from 1947 to 2008 was 7; 59%,see Fig.15. Fur-

ther the trend line is descending, what implies a decreasing mortality

over time.
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Figure 15: % - change of mortality rates, with trendline, of 60 year old
Austrian male, own calculation. Data: Statistik Austria

Overall one can see that this stylized facts con�rm the e¤orts taken to

create a new market. The upward trend of the survival probability with

respect to time should su¢ ce a hedge anyway.
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4.2 Forecasting and sampling of mortality rates

The demographic change caused much e¤ort to develop forecasting models

for mortality rates during the last two decades. Reviews and comparisons are

given in Cairns et al. (2008) and Booth et al. (2006). Booth et al. describes

the Lee-Carter Model (Lee and Carter 1992) as a milestone in forecasting

mortality rates. Lee and Carter modeled the yearly American mortality

rates from 1900 - 1987 as

ln(tqx) = ax + bxkt + �t;x or tqx = eax+bxkt+�t;x (2)

Essentially Lee and Carter describes the logarithmically transformed age-

speci�c mortality rate tqx at age x in year t, as the sum of an age speci�c

component that is independent of time ax, and the product of a time varying

parameter kt (also known as the mortality index) that summarizes the general

level of mortality and an additional age-speci�c component bx which describes

the way mortality varies at the age of x as a reaction to the change of the

level of the mortality index kt . The �nal term �t;x is the residual at age x

and time t.

Constraints are imposed to obtain a unique solution:

1. the ax are set equal to the arithmetic means over time of ln(tqx)

2. the bx sum to unity

3. the kt sum to zero.

As all parameters of the right hand side of the equation are unobserv-

able �tting the model by ordinary least squares (OLS) is not possible. To

handle this problem, Lee and Carter(1992), used a two stage estimation pro-

cedure to compute the parameters. Thus they �rst applied singular value

decomposition (SVD) to the matrix of

[ln(tqx)� ax] (3)
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to obtain estimates of bx and kt. In the second stage estimation, the

ax and bx from the �st step are taken as given and the time series of kt is

reestimated by solving for kt such that

D(t) =
X
x

�
N(x; t) eax+bxkt+�t;x

�
; (4)

where D(t) is the total number of deaths in time t, for a given population

age distribution N(x; t). Thereby a new estimate of kt was found, such

that for each year, given the actual population age distribution, the implied

number of deaths will equal the actual number of deaths. This is to ensure

that the mortality schedules �tted over the sample years will reconcile the

total number of deaths and the population age distributions. Further an

autoregressive integrated moving-average (ARIMA) model is used to model

the dynamics of kt. The Box and Jenkins (1976) approach often is employed

to obtain a �tted ARIMAmodel from the empirical kt data. It usually proved

to be adequate a random walk with drift ARIMA(0; 1; 0), see Lee and Carter

(1992), Lazar (2004) and Li and Chan (2005).

4.3 The forecasting model

To forecast and sample mortality rates I followed the work from Hyndman

and Ullah (2006) - "Robust forecasting of mortality and fertility rates: A

functional data approach". Whereas the �rst author provides an R-package

which implements the methodology. The package is called "demography" and

could be downloaded on the authors homepage18.

4.3.1 What is Functional Data

Functional domain supports many recent methodologies for statistical analy-

sis of data coming from measurements concerning continuous phenomena;

18http://robjhyndman.com/
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such techniques constitute nowadays a new branch of statistics named func-

tional data analysis, see Ramsay and Silverman (1997, 2002). Functional

data are essentially curves and trajectories. The basic rationale is that we

should think of observed data functions as single entities rather than merely

a sequence of individual observations. Even though functional data analysis

often deals with temporal data, its scope and objectives are quite di¤erent

from time series analysis. While time series analysis focuses mainly on mod-

eling data, or in predicting future observations, the techniques developed

in FDA are essentially exploratory in nature: the emphasis is on trajec-

tories and shapes; moreover unequally-spaced and/or di¤erent number of

observations can be taken into account as well as series of observations with

missing values. From a practical point of view, functional data are usually

observed and recorded discretely. Let f!1; :::; !ng be a set of n units and let
yi = (yi(t1); :::; yi(tp)) be a sample of measurements of a variable Y taken at

p times t1; :::; tp 2 T = [a; b] in the i-th unit !i; (i = 1; :::; n). As remarked
above, such data yi(i = 1; :::; n) are regarded as functional because they are

considered as single entities rather than merely sequences of individual ob-

servations, so they are called raw functional data; indeed the term functional

refers to the intrinsic structure of the data rather than to their explicit form.

In order to convert raw functional data into a suitable functional form, a

smooth function xi(t) is assumed to lie behind yi which is referred to as the

true functional form; this implies, in principle, that we can evaluate x at any

point t 2 T . The set �T = fx1(t); :::; xn(t)gt2T is the functional dataset, see
Ingrassia and Costanzo (2005).

4.3.2 Functional Principal Component Analysis

Principal component analysis (PCA) is a standard approach to the explo-

ration of variability in multivariate data. PCA uses an eigenvalue decompo-

sition of the variance matrix of the data to �nd directions in the observations

space along which the data have the highest variability. For each principal

component, the analysis yields a loading vector or weight vector which gives

the direction of variability corresponding to that component. In the func-
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tional context, each principal component is speci�ed by a principal compo-

nent weight function or eigenfunction �(t) de�ned of the same range of t as

the functional data. The aim of PCA is to �nd the weight function �j(t) that

maximizes the variance function of the principal component scores zi, i.e.

the orthogonal decomposition of the variance function, see Daniele(2006):

v(s; t) =
1

n� 1

nX
i=1

fzi(s)� z(s)gfzi(t)� z(t)g; (5)

(which is the counterpart of the covariance matrix of a multidimensional

dataset) in order to isolate the dominant components of functional variation,

see e.g. also Pezzulli (1994). In analogy with the multivariate case, the

functional PCA problem is characterized by the following decomposition of

the variance function:

v(s; t) =
X
j

�j�j(s)�(t) (6)

where �j,�j satisfy the eigenequation:



v(s; ); �j

�
h
= �j�j(t): (7)

and the eigenvalues:

�j :=

Z
T

�j(s)v(s; t)�j(t)dsdt (8)

are positive and non decreasing while the eigenfunctions must satisfy the

constraints: Z
T

�2j(t)dt = 1

Z
T

�j(t)�i(t)dt = 0 8i; j i < j (9)

The �j are usually called principal component weight functions. Finally

the principal component scores (of �(t)) of the units in the dataset are the

values !i given
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by:

w
(j)
i :=



zi; �j

�
=

Z
T

�(t)zi(t)dt: (10)

The decomposition (7) de�ned by the eigenequation (8) permits a reduced

rank least squares approximation to the covariance function v. Thus, the

leading eigenfunctions de�ne the principal components of variation among

the sample functions zi, see Ingrassia and Costanzo (2005) and Daniele

(2006).

The principal components analysis of functional data is often enhanced by

the use of smoothing, see Silverman (1996). To obtain a smoothed functional

PCA, we have to control the size of �, but also its roughness. In practice,

the constraints are replaced by the following onesZ
�2(t)dt+ �

Z
f�"(t)g2dt = 1 (11)

Z
�j(t)�i(t)dt+ �

Z
�"i (t)�

"
j(t) = 0 8i; j i 6= j: (12)

The smoothing parameter � � 0 controls the amount of smoothing in-

herent in the procedure. The smoothing parameter choice is usually a conse-

quence of empirical subjective considerations together with a cross-validation

criterion, see Daniele (2006).

4.3.3 The model used

Hyndman and Ullah show in their article that the MSE of their model is

superior to four di¤erent models as shown in Figure 16.

The superior performance of this approach arise for the following reasons:

(1) They allow more complex dynamics than other methods by settingK > 1

(Lee and Carter (1992) K = 1), thus allowing more than one principal com-

ponent; (2) nonparametric smoothing reduces the observational noise; (3)

the use of robust methods avoids problems of outlying years, i.e. �u pan-

demic, world wars. Further, it has added advantage of providing interesting
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Figure 16: m = 1959, . . . , 2000. Forecast period: m + 1, . . . , min(2001,m
+ 20). Source: Hyndman and Ullah (2006)

historical interpretation of dynamic changes by separating out the e¤ects of

several orthogonal components.

They de�ne the model in the following way. Let yt(x) denote the log of

the observed mortality or fertility rate for age x in year t. We assume there is

an underlying smooth function ft(x) that we are observing with error and at

discrete (and possibly sparse) points of x. Our observations are fxi; yt(xi)g,
t = 1; :::; n; i = 1; :::; p where

yt(xi) = ft(xi) + �t(xi)"t;i; (13)

"t;i is an iid standard normal random variable and �t(xi) allows the

amount of noise to vary with x. Typically x1; :::; xp are single years of age

(x1 = 0; x2 = 1; :::) or denote 5-year age groups. We are interested in fore-

casting yt(x) for x 2 [x1; xp] and t = n+ 1; :::; n+ h. Note that the data are
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not directly of a functional nature, but that we assume there are underlying

functional time series which we are observing with error at discrete points.

The �nal approach of Hyndman and Ullah is summarized below.

(1) Smooth the data for each t using a nonparametric smoothing

method to estimate ft(x) for x 2 [x1; xp] from fxi; yt(xi)g; i =
1; 2; :::; p:

(2) Decompose the �tted curves via a basis function expansion

using the following model:

ft(x) = �(x) +
KX
k=1

�t;k�k(x) + et(x); (14)

where �(x) is a measure of location of ft(x); f�k(x)g is a set of
orthonormal basis functions and et(x) � N(0; v(x)).

(3) Fit univariate time series models to each of the coe¢ cients�
�t;k
	
; k = 1; :::; K.

(4) Forecast the coe¢ cients
�
�t;k
	
; k = 1; :::; K, for t = n +

1; :::; n+ h using the �tted time series models.

(5) Use the forecast coe¢ cients with (3) to obtain forecasts of

ft(x); t = n + 1; :::; n + h. From (1), forecasts of ft(x) are also

forecasts of yt(x).

(6) The estimated variances of the error terms in (2) and (1) are

used to compute prediction intervals for the forecasts.

One important point is obviously to �nd the right number of basis func-

tions, i.e. �nd the order K of the model. To �nd the order K of the model,

the integrated squared forecast error (ISFE) is minimized on a rolling hold

out sample, whereas

ISFEn(h) =

Z
x

e2n;h(x)dx: (15)
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That is, we �t the model to data up to time t and predict the next m

periods to obtain ISFEt(h); h = 1; :::;m: Then we choose K to minimize
n�hP
t=N

mP
h=1

ISFEt(h) where N is the minimum number of observations used to

�t the model.

5 The EIB - Bond, would it have been a good

choice?

5.1 Fitting the model

The EIB bond was designed to hedge a annuity book of 65 year old british

and welsh males in 2003. For the further analysis the data from 65 year old

Austrian males, provided by the Mortality Human Database, was taken. The

data are printed in Figure 17. To value the bond the point of view is 2003,

even tough actual data until 2008 exists. As explained in the stylized facts

part, the variance increases with ages above 95 years, hence �tting the full

range would add too much noise. But through the nonparametric smoothing

with weighted penalized regression splines with a monotonicity constraint,

based on Wood (1994), the variance decreases. For the year 2008 were most

datapoints exists the variance decreases for instance from 66% to 2:2%. The

smoothed function is shown in Figure 18.

To �nd the right order, i.e. the right number of basis functions �k(x);

the �tted curves was decomposed via a basis function expansion using (3).

10 di¤erent models was �tted, i.e. with 10 di¤erent orders, K = 1; :::; 10; to

the periods from 1947 up to 1983. Next a forecast with each model for 25

years, means up to 2008 where we have actual data was done. After that,

the values of the forecasts was compared to the actual data what gave the

ISFE�s as follows:

(1) 305.0344, (2) 305.0344, (3) 305.0773, (4) 293.5922, (5) 292.9019, (6)

285.9849, (7) 285.9849, (8) 285.9849, (9) 285.9849, (10) 285.9849, leading to

a model with order 6 as the 6th ISFE is lowest.
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Figure 17: Logarithmic mortality rates of Austrian males 1947(upper) -
2009(lower), own calculation. Data:MHD

Figure 19 shows the main e¤ect and the �tted b�k(x) in the �rst row and
the �tted coe¢ cients b�t;k in the second row. The model is �tted from 1947

up to 2002 for ages 0 up to 110 years.
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Figure 18: Smoothed mortality rates of Austrian males, own calculation.
Data:MHD

To �nd robust functional principal components the two-step algorithm for

functional principal components as proposed by Hyndman and Ullah (2006)

was used. However the six basis functions explains in sum 98:2033% of the

variance in the data. The �rst 89:20%, the second 3:72%, the third 2:91%,

the fourth 1:39%, the �fth 0:54% and the sixth explains barely 0.42%. Figure

19 shows top left the mean of the data, the other twelve pictures are the basis

functions (top) with the corresponding coe¢ cients (down). Out of Figure 19

it seems apparent that the basis functions are modelling di¤erent movements

in mortality rates: b�1(x) models primarily the mortality changes for ages up
to 20 years but most in childrens age, b�2(x) models primarily the changes
of the very old, b�3;5;6(x) models primarily the changes in between the young
and the old ages, b�4(x) models the di¤erence between the young and the
old. The mortality in younger years, i.e. up to 20 years, decreased over the

whole period more than the mortality for the ages above. For the very old

it is volatile over the whole period, the ages between the young and the very
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Figure 19: Basis function and coe¢ cients of the �tted model. Austrian males,
1947 - 2002

old shows since 1980 a steady decrease in mortality whereas the di¤erence

between young and olds decreased since the 1960´s.

5.2 The simulation

Next the coe¢ cients from the �tted object are forecast using an exponential

smoothing method. The forecast coe¢ cients are then multiplied by the basis

functions to obtain a forecast demographic rate curve. Based on this a Monte

Carlo Simulation with 5.000 iterations out of the �tted model was done,

Figure 20 shows the sample path with the mean plotted in red and the

actual values from 2003 up to 2008 nearby the mean as black dots (same in

all following simulations). Hence the simulation seems plausible from todays

point of view as the actual data are in the fan chart.

The next step was to compute the Index S(t); t = 1; 2; :::; 25 out of the

simulated mortality rates (qsx) as explained in 2.2.3.2. Through the fore-
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Figure 20: "Monte Carlo Simulation" of male mortality rates. Own calcu-
lation

going Monte Carlo Simulation 5.000 di¤erent paths of the index rates was

computed. Out of the index rates the coupon rates c(t) = S(t) � $50m;
t = 1; 2; :::; 25 was simulated as shown in Figure 21.
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Figure 21: EIB-bond coupon payments, own calculation.

To decide wether this bond gives positive or negative returns if it is seen as

a pure investment, the Net Present Value (NPV) for every single simulation

was computed. As discount rate the "secondary market rate for all emit-

tents" for the year 2002, provided by the Austrian Nationalbank (4.44%)

was chosen. Out of this simulation 1.136 negative NPV out of 5.000 sim-

ulations was the result. The density, including a 95% con�dence interval

with range [�13:707:629; 31:158:720] and the mean with 8:725:545 is shown
in Figure 22.

63



Figure 22: Density of the NPVs including 95% con�dence intervall and mean,
own calculation.

The QQ-plot of the NPVs, as shown in Figure 23, suggests that the NPVs

are similar to a normal distribution in the middle, the left tail shows about 27

NPVs, around 0.5%, which are not following the normal distribution. This

values should not be neglected.
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Figure 23: QQ-Plot of the NPVs, own calculation

As a second criteria the Internal Rate of Return (IRR) was chosen. The

IRR states how much percent one unit of invested money grows per period

on average, thus it is independent on the interest rate assumption unlike

the NPV. The IRR was computed for every coupon stream. The density

curve of the rates including the 95% con�dence interval in the range of

[0:03701628; 0:04768879]; the mean(orange) 0:04235254 and a line(blue) for

the chosen interest rate of 0:0444; to discount the coupons for the NPV,

was plotted in Figure 24. The IRR suggests that the EIB-bond is a good

investment since in�ation is below.
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Figure 24: Density of the Internal Rate of Return from the EIB-bond. Own
calculation.

5.2.1 The Valuation

To �nd out, whether the EIB-bond is useful as hedging instrument or not, the

calculus of Net Present Value (NPV) was chosen. Actually a annuity contract

is nothing more than a investment from the insurance companies point of

view thus this method seems plausible as incoming (i.e., the contribution)

and outgoing (i.e., the bene�ts) payments are given. The di¤erence from

the EIB bond to others is that the coupons are linked to a mortality index.

Usually the coupon of a bond is the amount of interest paid per year expressed

as a percentage of the face value of the bond. It is the interest rate that a

bond issuer will pay to a bondholder, see Sullivan and She¤rin (2003). This

means the bondholder knows ex ante the interest rate, i.e. the value of

the coupon. To overcome this di¤erence, the coupon streams of the EIB

bond was modeled and sampled as explained above. The sampling of the

coupon rates should help to get rid of this lack of information concerning
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the coupons. For the further analysis the simulated coupon streams c(t) was

scaled. This means that all simulated c(t); t = 1; :::25 was divided by the

principal payment (540m) of the EIB bond. This method provides thus the

coupon stream c(t) if one purchases one unit of the EIB bond.

Further should be mentioned that the only observed kind of cost in this

analysis is the principal payment of the bond, all others are neglected. The

reason therefore is that costs of administration, distribution and marketing

are to widespread among insurance companies. The capital required (CR) is

the amount of money a insurance needs as contribution to follow its liability,

i.e. the annuity payment. Based on the AVOE2005R annuity table and fol-

lowing the equivalence principle in (1), the CR = 12; 61. Thus the annuity

provider is able to buy 12 units, as only integer values are allowed, this is

called Initial Payment (IP ); IP = 0; :::12. The following analysis comprises

the hedge with 0 up to 12 units of the EIB-bond. The analysis is �rst done

without any probabilities included, in the second step a conditional probabil-

ity is introduced. Usually NPV calculations are done without probabilities

like in capital budgeting, but in insurance business probabilities, i.e. mortal-

ity or survival rates, are included in NPV calculation. Thus leading to the

so called "Expected Net Present Value" (E(NPV )), see Gerber (1986).

5.2.2 Deriving the Net Present Values

The discount factor is given by

vk =
1

(1 + i)k
(16)

the discounted yearly annuity is given by

Zb =
45X
k=0

vk � 1 (17)

including the contribution (CR) and the (IP) in 2002, i.e. period 0, gives

the NPV
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NPV bond = (CR� IP )�
45X
k=0

vk � 1 +
25X
k=0

vk � c(k): (18)

One should pay attention to the limited bond-duration of 25 years. As

criteria to check the hedging value of the bond the scenario IP = 0 is com-

pared to the scenarios IP = 1; :::12 in Figure 26 and 27. The scenario IP = 0

is given by the orange line, it depends in this part of the analysis not on any

probability, it should be interpreted as reference line. The topleft graphic is

the hedge through one unit bond increasing up to 12 units in bottomright.

Both graphs suggests that only the hedge with one unit of bond extends the

duration with 100%. In Figure 26 the NPVs are plotted with respect to time,

the broad bands show the values out of the simulation as the bond depends

on mortality rates (5.000 NPV for each scenario).

Figure 25: NPV of the cash�ow stream, own calculation
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In Figure 27 the densities of the NPV s are plotted. The colored broad

bands shows the 5.000 possible NPV bond densities out of the simulation for

each scenario, i.e. IP = 1; :::; 12, compared to the density of the NPV ,

orange line.

Figure 26: Densities of the cash�ows, own calculation

The extension of the NPV is superior in the �rst picture. But to decide

whether the bond is a good opportunity or not it is necessary to introduce

the E(NPV ).
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5.2.3 Deriving the Expected Net Present Values, with the under-
lying conditional probability

The usual qx gives the probability of a person aged x to die before x+1. But

to value this bond, several survival scenarios of the underlying annuitant are

necessary. This aim could be reached by the introduction of a conditional

mortality probability (kphx), which is based on the simulated mortality rates

(qsx ), the superscript ( :
s) indicates for all rates that they are out of the fore-

gone simulation. To calculate this probability the unconditional probabilities

need to be introduced:

1. psx = 1� qsx is the probability to survive until x+ 1:

2. kpx = psx � psx+1 � � � psx+k�1 is the k year survival probability.

The indices are in the range: x = 65, k = 0; :::; 45 and h = 0; :::; 45.

Finally the conditional probability is given through

kp
h
x =

kpx

hpx
i¤ k > h and kp

h
x = 1 i¤ k � h: (19)

It is the probability that a life aged x survives up to x + k given the

surviving at least to x + h. The index h is thus the value which indicates

longevity, for example if h = 30 and k = 30 the person reached the age of 95

for sure, i.e. 30p3065 = 1.

Including kp
h
x in (18) gives thus the Eh(NPV ) for each scenario h =

0; :::; 45:

Eh(NPV ) = (CR� IP )�
45X
k=0

vk � 1 �k phx +
25X
k=0

vk � ck , h = 0; :::; 45: (20)

For the interpretation it must be mentioned that this probability in com-

bination with the di¤erent buying scenarios leads to a explosion of the data.
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This means in fact that for every scenario h = 0; :::; 45, a subscenario, de-

termined by the value of IP = 0; :::; 12 is simulated. To keep it clear, the

result for every h is a matrix with 5000 rows (depending on the 5000 kp
h
x)

and 13 columns (depending on the 13 IPs). To value the usefulness of the

EIB bond, it is necessary to de�ne longevity. In the case of a 65 year old

Austrian male, it should be de�ned in that way: A life aged 65 surviving

the expected residual lifetime e(65) out of the 2003 mortality table from the

Statistik Austria. In our case e(65) is about 17 years, thus, if h > 17 we

speak from longevity.

The analysis gives surprising results. The means of the Eh(NPV ) , IP >

0 are all better of than the means of Eh(NPV ) , IP = 0. This suggests

that the purchase of the bond is in every scenario superior. The value of

the means itself increases with increasing IP for all scenarios h. Using the

means of Eh(NPV ) as decision criteria, the purchase of twelve units of the

bond, i.e. IP = 12, would be superior, see graphic 27.

TheEh(NPV ) , IP = 0 turns negative for h = 6. The negativeEh(NPV )

could be extended for one period if and only if IP = 12, it should be noted

that for h = 7, E7(NPV ) = �0:01 is rather close to zero. At h = 17, the

prede�ned border to longevity, the E17(NPV ) , IP = 0 is 16:25% worse o¤

than the E17(NPV ) , IP = 12 ; if the Austrian man reaches the age of 100,

i.e. h = 35, the E35(NPV ) , IP = 0 is 5:86% worse o¤ than the E35(NPV )

, IP = 12.

The boxplots in Figure 28-35 shows the distribution of the Eh(NPV ) for

h = 0; :::; 45 and IP = 0; :::; 12. The boxplots con�rm the foregone analysis.

The median, i.e. the central line in the box, is in all scenarios better o¤,

if one buys at least one unit of the bond, i.e. IP > 0. The superior rank

of IP = 12 is also con�rmed by the boxplots. If IP = 12, even the boxes,

i.e. the lower and upper quartile of the distribution, are better of than the

median of Eh(NPV ) , IP = 0.

It should be mentioned that the Eh(NPV ) would be probably more better

o¤ for a real annuity stock. The adverse selection suggests that the qx out of

a real annuity stock are lower than the whole population mortality rates used

in this analysis. One should keep in mind that only a healthy and cautious
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human being would sign a annuity contract.

This all suggests that the bond would have been a good choice, at least

for 65 year old Austrian males.
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Figure 27: EIB-bond: Ranking of the means from theEh(NPV ), h = 0; :::; 45
and IP = 0; :::; 12
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Figure 28: Boxplots of the Eh(NPV ), h = 0; :::; 5 and IP = 0; :::; 12 on the
x�axis. Mean(blue),Min(red) andMax(green) values of IP = 0 included.
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Figure 29: Boxplots of the Eh(NPV ), h = 6; :::; 11 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 75



Figure 30: Boxplots of the Eh(NPV ), h = 12; :::; 17 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 76



Figure 31: Boxplots of the Eh(NPV ), h = 18; :::; 23 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 77



Figure 32: Boxplots of the Eh(NPV ), h = 24; :::; 29 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 78



Figure 33: Boxplots of the Eh(NPV ), h = 30; :::; 35 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 79



Figure 34: Boxplots of the Eh(NPV ), h = 36; :::; 41 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 80



Figure 35: Boxplots of the Eh(NPV ), h = 42; :::; 46 and IP = 0; :::; 12 on
the x � axis. Mean(blue), Min(red) and Max(green) values of IP = 0
included. 81



6 Simulating a hedge with a q-forward

6.1 Deriving the price

In section 2.3.3 the mechanisms behind a q-forward contract are explained

in detail. In this chapter the focus is on comparing a q-forward contract in

contrast to the EIB-bond as hedging instrument. The mortality rates are the

same, i.e. a 65 year old Austrian male. Further the simulation started from

2003 on, as it was done with the EIB bond. As �rst step it is necessary to

derive the forward rate of such a contract, i.e. the price. Loeys et al. (2007),

from JP-Morgans "Global Market Strategy", gives in his article a distinctive

instruction how this is performed by JP-Morgan. As a reference point, Loeys

et al. (2007) consider the historical volatility �(qx) of the relative changes in

mortality rates and the forecasts produced by the Lee-Carter model. Since

longevity risk is virtually uncorrelated with other market risks, Loeys et

al. (2007) argue that the required Sharpe ratio on q-forwards should be

lower than the one available for riskier assets classes such as equities, but

high enough to attract investors to the market. They suggest an annualized

Sharpe ratio of 0:25, see Bi¢ s and Blake (2009). This description was taken

as given and applied to Austrian data in the following way:

� JP-Morgan requires an annualized Sharpe-Ratio of 0:25, whereas the
Sharpe-Ratio19 is de�ned as

S =
E(R�Rf )p
var(R�Rf )

(21)

where R is the asset return and Rf is the risk free rate of return (benchmark).

In this version, the ratio indicates the expected di¤erential return per unit

of risk associated with the di¤erential return, see Sharpe (1966 and 1975).

� The annualized risk is given through

Ra = �(qx) � qex, where qex denotes the expected future mortality. (22)

19also kown as Reward-to-Variability-Ratio
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� The risk at maturity is represented by

Rm = (�(qx) �
p
T ) � qex , where T denotes the number of years. (23)

� The annualized expected return is given by

E(Returna) =
qforward � qex

T
: (24)

� The annualized Sharpe ratio is given by

Sa =
E(Returna)

Ra
: (25)

Out of this it is straightforward to solve the equations for the forward rate,

i.e.

qforward = (1� T � Sa � �(qx)) � qex: (26)

The de�nition of longevity, concerning a 65 year old Austrian male is the

same as before; if x > 81 the life aged x is a longevity type. Therefore the

simulated q-forward contract has a duration of 17 years, i.e. maturity at the

age of 81 in the year 2017. To �nd the �xed rate (qsex) , anticipated in 2017

at inception by the two counterparties, the median of the 5:000 simulated qs
81

out of the foregone Monte Carlo Simulation was chosen. The reason therefore

is that the median simply divides the simulation in two parts, with each 2:500

rates and equal likelihood. Hence the value for the �xed rate is qsex = 0:1116

as shown in Figure 36.
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Figure 36: Realized (green - dots), �xed (blue - dashed) and forward rate
(red) of q(81). Own calculation.

The volatility �(qx) of the q81 from t = 1947; :::; 2003 is 0:0225, leading

to a Ra of 0:0025 and to a Rm of 0:0020. As the Sa is set to 0:25 the

derived qsforward is equal to 0:1179, hence leading to a termpremium (tp), i.e.

tp = qsforward-q
s
ex, of 0:0062. That is, the q

s
forward needs to be around 0:6%

above the expected future mortality qsex (11:2%) to produce an expected

return to risk of 0:25 for JP-Morgan, see Figure 36. Keeping this course

of action in plain words, the hedge will pay out to the annuity provider an

amount that increases as mortality rates fall to o¤set the correspondingly

higher value of pension liabilities. So, a annuity provider wishing to hedge

longevity risk would receive �xed (and pay realized) mortality rates in a q-

forward contract, see (Coughlan et al., 2007). Figure 36 suggests that the

annuity provider receives at maturity the not�100�qsex, i.e. the median of qs81.
JP-Morgan instead gets from the annuity provider the not� 100� (qs

81
+ tp),

i.e. the realized mortality rate in 2017 plus the termpremium, see (Figure

9). The notional (not) is like the annuity set to 1 in this analysis, it could be

seen as leverage to �t the payments to the capital at risk. The net settlement
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payment (nsp) is thus just the di¤erence between

nsp = (not� 100� qsex)� (not� 100� (qs81 + tp)): (27)

Figure 37 shows the possible cash�ow streams at maturity, including a

95% con�dence interval (dashed lines), i.e.[�3:7094; 2:1275]. The outcome of
the nsp calculation is rather disappointing as only 1554 nsp > 0 and 3446

nsp < 0.

Figure 37: Anticipated Net Settlement Payment of a q-forward for Austrian
males aged 81 in 2017. Own calculation.

6.2 Simulation of the E(NPV)

To simulate the development of the Eh(NPV forward) the same conditional

probability (kphx) as in the foregoing EIB-bond analysis was included. The

Eh(NPV
forward) de�nition is here a little bit changed because there exists

no continuous coupon stream. Thus the q-forward is a zero coupon swap,
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i.e. one payment at maturity. However, the Eh(NPV forward) is de�ned as

the Eh(NPV ) plus the discounted net settlement payment (nsp) at k = 17,

Eh(NPV
forward) =

 
45X
k=0

vk � 1 �k phx

!
+ v17 � nsp , h = 0; :::45: (28)

The graphics 38 to 39 include for every scenario h a boxplot of the

Eh(NPV ) on the left hand side and a boxplot of the Eh(NPV forward) on

the right hand side. The mean (blue), min (red) and max( green) values of

the Eh(NPV ) are included as dashed lines.
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Figure 38: Boxplots of the Eh(NPV ) , h = 0; :::; 23, left of each pic-
ture. Compared to Eh(NPV forward) , h = 0; :::; 23, right of each picture.
Mean(blue), Min(red) and Max(green) values of Eh(NPV ) included.
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Figure 39: Boxplots of the Eh(NPV ) , h = 24; :::; 45, left of each pic-
ture. Compared to Eh(NPV forward) , h = 0; :::; 23, right of each picture.
Mean(blue), Min(red) and Max(green) values of Eh(NPV ) included.
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The results of the simulated longevity risk hedge through a q-forward are

rather disappointing. The boxplots suggests that every mean ofEh(NPV forward)

for each scenario h is well below the corresponding mean of Eh(NPV ). It

is only possible to hedge peak risk, i.e. a very sharp decline in qx , as the

outliers in the boxplots show. In fact there are about 25% of the simulated

Eh(NPV
forward) bigger than the Eh(NPV ), for each h Using the mean as

decision criteria, the values for each scenario h are concluded in graphic 40.

Figure 40: Ranking of the E(NPV ) means for each scenario h, with and
without q-forward.

The boxplots and the ranking of the means suggests that the term pre-

mium (tp), i.e. JP-Morgans pro�t, is too high, making the product unattrac-

tive for hedgers. The �xed rate is negotiated by the two counterparties, thus

there is no leeway as both parties try to enforce their own interests. The

remaining question is the fair value of the term premium. The fair value of

the term premium is the equilibrium of equation (17), i.e. nsp = 0, for given

qs
81
and qsex. If nsp = 0 their exists no allocation of the value of tp such that

at least one is better o¤ without making any other worse o¤, thus the hedge

would be "Pareto E¢ cient".
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The qsex are �xed values, so the fair value of the term premium depends

on the values of qs
81
. In fact every single realization of qs

81
; s = 1; :::; 5000

requires a corresponding tp to set nsp = 0: Obviously JP-Morgan accepts

only positive values of tp. The di¤erent densities are plotted in Figure 41.

The second and fourth plot from the top shows that the fair value of the term

premium decreases with increasing qs
81
, and vice versa. The term premium

used in this analysis was set at 0:0062. This would be the fair value if the

qs
81
realizes at 0:1053.
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Figure 41: Densities of the term premium and the corresponding qs
81
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7 Conclusion

The two variants of mortality linked securities examined in this thesis shows

quite di¤erent results. Both instruments have their advantages and disad-

vantages which are concluded below.

7.1 Concerning the EIB-bond the analysis suggests:

7.1.1 Advantages

� The Eh(NPV ) improves with respect to the Initial Payment (IP =

0; :::; 12; the price for the bond) for every scenario h = 0; ::; 45 as shown

in the ranking of the means, Figure 27 and the boxplot graphics, see

Figure 28 up to 35; thus hedging longevity risk is possible, at least for

65 year old Austrian males.

� The coupon stream is not correlated with other asset classes. Bonds

are usually correlated with the interest rate or shares or vice versa. But

longevity is independent of this asset classes

� The coupon stream delivers a yearly capital income until maturity like
usual bond constructions. The simulated coupon streams are shown in

Figure 21.

� If one hedges a portfolio of annuity contracts some people will die before
the bonds maturity. But once the bond is signed the coupons are

guaranteed until maturity and create thus additional capital in�ow.

� One should keep in mind that the bond was originally designed for
British and Welsh males and not for Austrian males. It was sentenced

as too expensive by Bi¢ s and Blake (2001). For Austria this statement

is not guilty, as the Expected Net Present Value analysis suggests.

Buying 12 units of the bond, IP = 12, delivers for all scenarios better

results, see Section 5.6.3..
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7.1.2 Disadvantages

� Buying a portfolio of bonds is capital intensive. Nearly the whole capi-
tal in�ow must be paid for a bond to get the best hedging results. This

could a¤ect liquidity of the insurance in the short term.

� The 25 year horizon provides probably too less capital in�ows to hedge
longevity above one hundred and beyond, this should be rethinked in

further constructions.

� The adverse selection was not included in the index construction, the
mortality index used was based on aggregated data. Obviously, people

signing annuity contracts, believe to become very old. Thus the results

should be interpreted with care, as the index probably underestimates

the mortality rates of the annuity stock. Thus every insurer should

add a individual security level to the index, based on the longevity

improvements in his own stock of annuity contracts.

� The single age cohort of only 65 year old males is too less to hedge an
annuity stock. Every annuity stock consists of several individuals, thus

there must be a broader o¤er for ages and of course gender.

Overall one can argue that the disadvantages of this very �rst version of

a longevity bond was not able to reject it as hedging tool under the assump-

tions of this analysis. The analysis shows that the primary goal, to lift the

E(NPV ) in higher ages, is possible, at least for 65 year old Austrian males.

7.2 Concerning JP-Morgans q-forward the analysis sug-

gests:

7.2.1 Advantages

� It is easier to include di¤erent age cohorts, because there are only two
counterparties negotiating and no capital �ow is required at inception.
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� The maturity is more �exible, i.e. one age group more than one ma-
turity dates. This should probably reduce the costs, i.e. the term

premium.

� If people die before maturity, the negative NSP (if qx increases) is

o¤set, because the liabilities for the involved contracts are reduced.

� The underlying mortality rates are easier to agree because of the bilat-
eralism. For instance o¢ cial mortality data or mortality data out of

the annuity stock.

� Presence of asymmetric information could be a advantage for the holder
of longevity exposure, because he knows more about his annuity stock

7.2.2 Disadvantages

� Under the ruling assumptions of this analysis, the q-forward failed. The
mean of the E(NPV ) was lower as without hedge. However there was

some outliers suggesting that only the hedge of peak risk is possible,

i.e. a very sharp decline in qx. But this is rather implausible, as the

sampling of the rates suggests, see Figure 20.

� The outcome depends on the counterparties agreement of the �xed rate
at inception. Hence the model used to forecast is from importance.

At the moment there is no commonly accepted model for determining

expectations about mortality improvements over time, see Bi¢ s and

Blake(2009).

� The term premium (tp) , i.e. the price, is the crucial parameter. The

fair value of the term premium could only be calculated if the realized

future mortality rate is known.

The hedge through a q-forward depends strongly on the agreements at

inception, thus it is di¢ cult to analyze without an concrete underlying port-

folio. But the foregone analysis gives an general overview how this instrument

works and what the important points of a q-forward contract for an annuity
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provider are. One publicly announced deal was for instance between Canada

Life20 and JP Morgan with an value of £ 500m and a duration of 40 years in

October 2008.

20Life&Pensions Oct.2008
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A Mortality tables

In insurance mathematics the basis for further calculations is the correspond-

ing mortality table. The numbers collected by the census are out of an open

population hence they are impacted by migration. Such databases deliver

so called crude rates because the data are unadjusted. This mortality ta-

bles shows for younger ages a random variability because of missing data.

However this data are often smoothed across ages to reduce the in�uence of

outliers, the rates are then called graduated mortality rates. For Austria the

mortality table 2000/2002 is the last graduated one out of the population

census ( see Statistik Austria, Demographische Maßzahlen).

The key variables of mortality tables are21:

� Survivors in the age of x: l(x)

� Number of deaths in [x; x+ 1]: d(x) = l(x)� l(x+ 1)

� Death probability in [x; x+ 1]: q(x) = d(x)=l(x)

� Average Survivors in [x; x+ 1]: L(x) = (l(x) + l(x+ 1))=2

� Aggregated residual lifetime of a cohort in the age of x: T (x) = L(x)+
L(x+ 1) + :::+ L(100)

� Average residual lifetime in the age of x: e(x) = T (x)=l(X).

21http://www.lebenserwartung.info/index-Dateien/sterbetafel.htm
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B R-Code

1: #read austrian data

2: library(demography)

3: library(xlsReadWrite)

4: library(Hmisc)

5: library(�nancial)

6: setwd("C:/Dokumente und Einstellungen/Roger/Desktop/Final Code")

7: qx<-read.demogdata("rates.txt", "population.txt",type="mortality" ,

8: label="Austria", skip=2,popskip=2,max.mx = 10,0)

9: #plot total rates

10: plot(qx,series="male",xlim=c(0,115),ylim=c(-11,2))

11: axis(1,at=(seq(0,110,10)))

12: axis(2,at=(seq(-10,3,1)))

13: abline(h=0,col="darkgrey",lty=2)

14: abline(v=100,col="darkgrey",lty=2)

15: legend("topleft",c("red = 1947","violet = 2008"),

16: text.col=c("red","violet"),bty="n")

17:

18: ##

19: # smooth demogdata

20: #variance of raw and smoothed data for year=2000

21: #raw

22: va<-extract.years(qx,2008)

23: na<-which(is.na(va$rate$male))

24: va$rate$male[na]<-0

25: va<-va$rate$male

26: var(va[95:110])*100

27: #smooth

28: qx<-smooth.demogdata(qx,method="mspline")

29: #smoothed data

30: va2<-extract.years(qx,2008)

31: na2<-which(is.na(va2$rate$male))
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32: va2$rate$male[na2]<-0

33: va2<-va2$rate$male

34: var(va2[95:110])*100

35:

36: #extract age groups

37: #mortality modeling of 65 year old austrian males - verify the usefullness of

38: #the EIB bond

39:

40: # 1) TEST THE ACCURACY OF FORECAST THROUGH MSE & ISE, CHOOSE THE

ORDER K OF THE

41: # MODELL

42: iter<-(1:10)

43: qx.isesum<-0

44: qx.msesum<-0

45: for (i in iter) {

46: qx.test<-extract.years(qx,years=1947:1983)

47: qx.�t<-fdm(qx.test,order=i,series="male",method="M",lambda=3)

48: qx.error<-compare.demogdata(qx,forecast(qx.�t,25),interpolate=TRUE)

49: qx.isesum[[i]]<-sum(qx.error$int.error[,3])

50: qx.msesum[[i]]<-sum(qx.error$mean.error[,3]) }

51: qx.isesum

52: qx.msesum

53:

54: # errors are lowest with order 6, this leads to the following modell

55: # for males

56: #forecast whole sample

57: # FOR 25 years, i.e. the duration of the EIB bond!!!

58: qx.eib<-extract.years(qx,years=1947:2002)

59: qx.fdm<-fdm(qx.eib,series="male",order=6,method="M",lambda=3,max.age=110)

60:

61: #explained variance

62: qx.fdm$varprop

63: qx.fdm$varprop*100
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64: #forecast ets

65: qx.fcst<-forecast(qx.fdm,h=25,method="ets")

66: qx.sim<-simulate(qx.fcst,nsim=5000)

67: #read qx -> diagonale start with 65 years

68: # ACHTUNG!!!! nsim == nrow == sim == iter !!!!!!!!!!!!

69: simvalues <- matrix(nrow = 5000, ncol = 25)

70: ro<-66:90

71: colu<-1:25

72: male65<-NULL

73: sim<-1:5000

74: meansimu<-NULL
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75: mediansimu<-NULL

76: for ( si in sim) {

77: for (co in colu) for (r in ro) { if (r-co==65) male65[co]

78: <-qx.sim[r,co,si]}

79: simvalues[si,]<-male65 }

80: for (co in colu) meansimu[co]<-mean(simvalues[,co])

81:

82: write.xls(simvalues,�le="simvalues",sheet=1,from=1)

83: iter<-1:5000

84: period<-2003:2027

85: plot(period,simvalues[1,],xaxt="n",type="l",ylim=c(0.000,0.35),

86: ylab="qx(65,2003) up to qx(89,2027)",xlab="Year")

87: legend("topleft",c("mean","actual values"),cex=0.8,�ll=c("red","black"),

88: col=c("red","black"))

89: title("Simulation of qx (Austrian males aged 65-89)")

90: for (i in iter) lines(period,simvalues[i,],col=i,type="l")

91: lines(period,meansimu,type="l",col="red",lwd=3.5)

92: #include actual values in graphic

93: qx.actual<-diag(qx$rate$male[66:71,57:62])

94: per<-2003:2008

95: points(per,qx.actual,col="black",pch=19,lwd=0.1)
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96: axis(1,at=seq(2003,2027,1))

97: # histogram of simulated rates

98: d<-(density(simvalues[,25]))

99: hist(simvalues[,25],freq=FALSE)

100: lines(d, col="red")

101:

102: ##

103: #Payo¤/ Cash�ow Simulation

104: #

105: #COUPONS

106: indexvalues<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnn

107: Final Codennindexvalues.xls")

108: initial<-50000000

109: coupons <- matrix(nrow = 5000, ncol = 25)

110: iter<-1:25

111: simul<-1:5000

112: coupon<-NULL

113: for (j in simul) { for (i in iter) (coupon[i]<-indexvalues[j,i]*initial)

114: coupons[j,]<-coupon}

115: write.xls(coupons,�le="coupons",sheet=1,from=1)

116:

117: #mean Coupons

118: meancoupons<-NULL

119: colu<-1:25

120: for (co in colu) meancoupons[co]<-mean(coupons[,co])

121: #PLOT Coupons

122: iter<-1:5000

123: period<-2003:2027

124: plot(period,coupons[1,],xaxt="n",type="l", ylim=c(2000000,50000000),

125: ylab="Coupons",xlab="Year")

126: legend("topright",c("mean","actual values"),cex=0.8,�ll=c("red","black"),

127: col=c("red","black"))

128: title("EIB/ Bond - Coupon Simulation - in million Pounds")
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129: for (i in iter) lines(period,coupons[i,],col=i,type="l")

130: lines(period,meancash,type="l",col="red",lwd=3.5)

131: per<-2003:2008

132: points(per,act*50000000,col="black",pch=19,lwd=0.1)

133: axis(1,at=seq(2003,2027,1))

134:

135:

136: # 95% KI Mean forecast +/- 2*SD

137: KIo<-mean(coupons[,d]) + 1.96*sqrt(var(coupons[,d]))

138: KIu<-mean(coupons[,d]) - 1.96*sqrt(var(coupons[,d]))

139: abline(v=KIo,col="green",lwd="1.8",lty=2)

140: abline(v=KIu,col="red",lwd="1.8",lty=2)

141: axis(1,at=c(mean(coupons[,d]),KIo,KIu)) }

142:

143: ##

144: #coupons if one buys for 1,2,3,...,11,12

145:

146: coupons<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnmortalitynn

147: coupons.xls")

148: unitcoupons<-(coupons/540000000)*12.6052047902006 #coupons if one buys
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149: for one unit

150: simu<-1:5000

151: notional<-12.6052047902006

152: irr<-0.0444

153: year<-1:25

154: discounted<-matrix(nrow = 5000, ncol = 25)

155: unitnpv<-vector( length=5000)

156: v<-NULL

157:

158: for (si in simu) { for (y in year) v[y]<-unitcoupons[si,y]/((1+irr)^y)

159: discounted[si,]<-v

160: unitnpv[si]<-notional-sum(discounted[si,])}
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161: #mean

162: meanunitnpv<-mean(unitnpv)

163: sigma<-sqrt((sum(unitnpv^2)/10000 - mean(unitnpv)^2))

164: KIu<-qnorm(0.025,mean(unitnpv),sigma)

165: KIo<-qnorm(0.975,mean(unitnpv),sigma)

166: ##

167: #buying simu of npv

168: #plot(npv,k_pi_x, col="red",lwd="2")

169: #densities

170: par(mfrow=c(4,3))

171: iter<-1:12

172: for (i in iter) { plot(npv,k_pi_x, col="orange",type="l",ylab="probabilities")

173: unitcoupons<-(coupons/540000000)*i

174: ro<-1:5000

175: jter<-2:45

176: b<-matrix(nrow=1,ncol=45)

177: pension<-1

178: npv2<-matrix(nrow=5000,ncol=45)

179: zer<-matrix(c(0:0),nrow=5000,ncol=20)

180: unitcoupons<-cbind(unitcoupons,zer)

181: for (r in ro ) { b[1]<-12.6052047902006-i

182: for ( j in jter)

183: (b[j]<-(b[j-1]-pension*v[j]+unitcoupons[r,j]*v[j]))

184: npv2[r,]<-b }

185: for (r in ro){

186: lines(npv2[r,],k_pi_x[1:45],col=i,type="l")}

187: lines(npv,k_pi_x, col="orange",lwd="2",type="l")}

188:

189: #lines

190: period<-1:45

191: par(mfrow=c(4,3))

192: iter<-1:12

193: for (i in iter) { plot(period,npv[1:45], col="orange",type="l",ylab="npv")
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194: unitcoupons<-(coupons/540000000)*i

195: ro<-1:5000

196: jter<-2:45

197: b<-matrix(nrow=1,ncol=45)

198: pension<-1

199: npv2<-matrix(nrow=5000,ncol=45)

200: zer<-matrix(c(0:0),nrow=5000,ncol=20)

201: unitcoupons<-cbind(unitcoupons,zer)

202: for (r in ro ) { b[1]<-12.6052047902006-i

203: for ( j in jter)

204: (b[j]<-(b[j-1]-pension*v[j]+unitcoupons[r,j]*v[j]))

205: npv2[r,]<-b }

206: for (r in ro){

207: lines(period[1:45],npv2[r,],col=i,type="l")}

208: lines(period[1:45],npv[1:45], col="orange",lwd="2",type="l")}

216: #buying simu of irr

217: coupons<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnmortalitynn

218: coupons.xls")

219:

220: zer<-matrix(c(0:0),nrow=10000,ncol=20)

221: unitcoupons<-cbind(as.matrix(unitcoupons),zer)

222: simu<-1:10000

223: jter<-1:12
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224: b<-matrix(nrow=1,ncol=45)

225: irr<-matrix(nrow=10000,ncol=12)

226: pension<-1

227: for (j in jter) { for (si in simu) {

228: npv0<-function(co,r) {

229: 12.6052047902006-j+sum((co/(1+r)^(seq(along=co))))-

230: sum((1/(1+r)^(seq(along=co))))}

231: co<-unitcoupons[si,]

232: irr[si,j]<-uniroot(npv0,c(0,1),co=co)$root}}
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234: ##

235: # secondary market rate (all Emittents) 2003 riskless interest rate

236: # MRR = 4.44%

237: # NPV calculation

238: simu<-1:5000

239: notional<-540000000

240: irr<-0.0444

241: year<-1:25

242: discounted<-matrix(nrow = 10000, ncol = 25)

243: npv<-vector( length=5000)

244: v<-NULL

245:

246: for (si in simu) { for (y in year) v[y]<-coupons[si,y]/((1+irr)^y)

247: discounted[si,]<-v

248: npv[si]<-notional-sum(discounted[si,])}

249:

250: length(which(npv<0))

251: qqnorm(npv)

252: qqline(npv)

253: length(which(npv<(-20000000)))

254:

255: #net present values of coupons plot

256: par(mfrow=c(1,1))

257: dnpv<-density(npv)

258: hist(npv,freq=FALSE)

259: lines(dnpv,col="black",lwd=2)

260: #standardabweichung

261: sigma<-sqrt((sum(npv^2)/5000 - mean(npv)^2))

262:

263: KIu<-qnorm(0.025,mean(npv),sigma)

264: KIo<-qnorm(0.975,mean(npv),sigma)

265: abline(v=KIo,col="green",lwd=1.8)

266: abline(v=KIu,col="red",lwd=1.8)
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267: abline(v=mean(npv),col="orange",lwd=1.8)

268: abline(v=0,col="blue",lty=2,lwd=2.2)

269: #positv values in KI

270: length(which(npv>0 & npv<31158720))

271:

272: ##

273: #IRR of EIB

274:

275: simu<-1:5000

276:

277: npv<-function(co,r) {

278: -540000000+sum((co/(1+r)^(seq(along=co))))}

279: for (si in simu) { co<-coupons[si,]

280: irr[si]<-uniroot(npv,c(0,1),co=co)$root}

281:

282: #plot iir density with 95% con�dence intervall

283: sigma<-sqrt((sum(irr^2)/10000 - mean(irr)^2)) # mean 0.04235254

284: KIu<-qnorm(0.025,mean(irr),sigma) #0.03701628

285: KIo<-qnorm(0.975,mean(irr),sigma)#0.04768879

286: den<-density(irr)

287: hist(irr,freq=FALSE,main="density of the IRR",ylim=c(0,160),

288: xlim=c(0.028,0.055))

289: lines(den, col="black",lwd="2")

290: abline(v=KIu,col="red",lwd="1.8")

291: abline(v=KIo,col="green",lwd="1.8")

292: abline(v=mean(irr),col="orange",lwd="1.8")

293: abline(v=0.0444,col="blue",lwd="1.8",lty=2)

296: ##

297: #qx FOR 46 years 0,...,45

298: qx.eib<-extract.years(qx,years=1947:2002)
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299: qx.fdm<-fdm(qx.eib,series="male",method="M",lambda=3,max.age=110)

300: qx.fcst2<-forecast(qx.fdm,h=46,method="ets")
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301: qx.sim2<-simulate(qx.fcst2,nsim=5000)

302: #qx auslesen -> diagonale start mit 65 jahren

303: # ACHTUNG!!!! nsim == nrow == sim == iter !!!!!!!!!!!!

304: #ACHTUNG qx only up to 110 years available, AVOE2005R 120 years

305: simvalues2 <- matrix(nrow = 5000, ncol = 46)

306: ro<-65:110

307: colu<-1:46

308: male652<-NULL

309: sim<-1:5000

310: # meansimu<-NULL

311: # mediansimu<-NULL

312: for ( si in sim) {

313: for (co in colu) for (r in ro) { if (r-co==64) male652[co]<-

314: qx.sim2[r,co,si]}

315: simvalues2[si,]<-male652 }

316:

317: write.xls(simvalues2,�le="simvalues2",sheet=1,from=1)

318:

319: # set maximum value of qx to 1

320: ro<-1:5000

321: colu<-1:46

322: for ( r in ro) { for (co in colu) if (simvalues2[r,co]>1) simvalues2[r,co]<-1}

323: write.xls(simvalues2,�le="simvalues2_1",sheet=1,from=1) #sim2smoothed1->qx<=1,

324: because of outliers in raw data set to 1

327: #slope for px

328: #

329: simvalues2_1<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal

330: Codennsimvalues2_1.xls")

331: ro<-1:5000

332: iter<-1:46

333: px<-matrix(nrow=5000,ncol=46)

334: for (i in iter ) {

335: for ( r in ro)
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336: px[r,i]<-1-simvalues2_1[r,i]}

337: write.xls(px,�le="px",sheet=1,from=1)

338:

339: #slope for kpx

340: #

341: simvalues2_1<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal

342: Codennsimvalues2_1.xls")

343: px<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal Codenn

344: px.xls")

345: ro<-1:5000

346: iter<-1:45

347: kpx<-matrix(nrow=5000,ncol=46)

348: for (r in ro ) { kpx[r,1]<-px[r,1]

349: for ( i in iter)

350: kpx[r,i+1]<-(kpx[r,i]*px[r,i+1])}

351: write.xls(kpx,�le="kpx",sheet=1,from=1)

352:

353: ##

354: #slope for kpix

355: #

356: simvalues2_1<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal

357: Codennsimvalues2_1.xls")

358: kpx<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal Codenn

359: kpx.xls")

360: ro<-1:5000

361: iter<-1:46

362: kpix<-matrix(nrow=5000,ncol=46)

363: for (r in ro ) { for ( i in iter)

364: kpix[r,i]<-(kpx[r,i]*(simvalues2_1[r,i]))}

365: write.xls(kpix,�le="kpix",sheet=1,from=1)

366:

367: ##

368: #The conditional probabilities
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370: kter<-2:46

371: hter<-1:46

372: iter<-1:5000

373: condprob<-matrix(nrow=5000,ncol=46)
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374: condprob[,1]<-1

375: #ha is to set manuel

376: for (ha in hter) {

377: for (i in iter) for (k in kter) {

378: if (k<=ha) {condprob[i,k]<-1} else{ condprob[i,k]<-px[i,k]*condprob[i,k-1]}

379: }}

380:

381: write.xls(condprob,�le="h_ha",sheet=1,from=1)

382:

383: ##

384: # computing the coupons

385: #

386: simvalues<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal

387: Codennsimvalues.xls")

388: coupons <- matrix(nrow = 5000, ncol = 25)

389: sim<-1:5000

390: year<-2:25

391: index<-1

392: for (si in sim){ for (y in year) (index[y]<-index[y-1]*(1-simvalues[si,y]))

393: coupons[si,]<-index}

394: write.xls(coupons,�le="coupons",sheet=1,from=1)

395:

396: ##

397: #boxplots

399:

400: iter<-(46:48)

401: par(mfrow=c(3,1))

402: for (i in iter){
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403: x<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal Codenn

404: ENPV_bond.xls",sheet=i)

405: colnames(x)<-c(0:12)

406: boxplot(x,yaxt="n",ylim=c(min(x)-0.5,max(x)+0.5))

407: title(main=(i-1))

408: axis(2,at=(round(median(x[,1]),2)))

409: #axis(4,at=(round(min(x[,1]),0)))

410: # axis(4,at=(round(max(x[,1]),0)))

411: abline(h=(median(x[,1])), col="blue",lty=2)

412: abline(h=(max(x[,1])), col="green",lty=2)

413: abline(h=(min(x[,1])), col="red",lty=2)

414: }

415:

416: ##

417: #ranking of the means

419: ranking<- matrix(nrow = 46, ncol = 13)

420: iter<-1:46

421: jter<-1:13

422: for ( i in iter ) {

423: x<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnnFinal Codenn

424: ENPV_bond.xls",sheet=i)

425: for ( j in jter) { ranking[i,j]<-mean(x[,j])} }

426:

427: write.xls(ranking,�le="ranking",sheet=1,from=1)

431: ##

432: # Q-FORWARD SIMULATION

433:

434:

435: #read austrian data

436: library(demography)

437: library(xlsReadWrite)

438: library(Hmisc)

439: library(�nancial)

109



440: library(sm)

441: setwd("C:/Dokumente und Einstellungen/Roger/Desktop/Final Code")

442: qx<-read.demogdata("rates.txt", "population.txt",type="mortality" ,

443: label="Austria", skip=2,popskip=2,max.mx = 10,0)

444:

445: actualq65<-qx$rate$male[66,57] #actual q65=0.016059

446: sim2smoothed1<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnn

447: Final Codennsimvalues2_1.xls")

448: q81<-sim2smoothed1[,21] #simulated q81
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449: mediq81<-median(q81) # mediq81=0.1116578 �xed rate

450: meanq81<-mean(q81) # meanq81=0.1124574

451: minq81<-min(q81) # minq81=0.06917058

452: maxq81<-max(q81) # maxq81=0.1738903

453: avoeq81<-0.054634909756875

454: d81<-density(q81)

455: plot(hist(q81),freq=FALSE,xlab="q(81)",main="Simulated q(81)",xaxt="n",

456: ylim=c(0,30),xlim=c(0.05,0.20))

457: lines(density(q81),lwd=2,col="red")

458: axis(1,seq(0.05,0.20,0.025))

459: abline(v=mediq81,col="blue",lty=2,lwd=2)

460:

461: #volatility of q81

462: q81rates<-qx$rate$male[82,1:57] #actual rates over time

463: volq81<-sd(q81rates) #0.02251644

464: annualrisk<-volq81*mediq81 #0.002514136

465: gena_vola<-volq81*sqrt(16)

466: risk_maturity<-volq81*gena_vola #0.00202796

467: annual_sharpe_ratio<-0.25

468: forwardrate<-(annual_sharpe_ratio*volq81*10+1)*mediq81 #0.1179431

469: termpremium<-forwardrate-mediq81 #0.00628534

470: discount<-1-mediq81/forwardrate # 0.05329127

471:
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472: #percentage changes of mortality from q65 to 5000 simulatedq75

473: perc<-vector(length=5000)

474: iter<-1:5000

475: for (i in iter) { perc[i]<-q81[i]/actualq65*100}

476: percd<-density(perc)

477: sigma<-sqrt((sum(perc^2)/5000 - mean(perc)^2))

478: KIu<-qnorm(0.025,mean(perc),sigma)

479: KIo<-qnorm(0.975,mean(perc),sigma)

480: plot(percd,lwd=2)

481: abline(v=KIu,col="green",lty=3)

482: abline(v=KIo,col="darkred",lty=3)

483: abline(v=mediq81/actualq65*100,col="blue",lwd=2)

484: abline(v=forwardrate/actualq65*100,col="red",lty=2,lwd=2)

485:

486:

487: #net settlement if expected is the median

488: netset<-matrix(nrow=5000,ncol=1)

489: jter<-1 # notional = 1

490: iter<-1:5000

491: for (j in jter){

492: for ( i in iter)

493: netset[i,j]<-(j*mediq81*100-j*(q81[i]+termpremium)*100)

494: }

495: write.xls(netset,�le="netset",sheet=1,from=1)

496: length(which(netset>0)) #1554

497: length(which(netset<0)) #3446

498: length(which(netset>-3.709404&netset<0)) #3344

499:

500: ##

501: #fair value

502: #**

503: qx<-read.demogdata("rates.txt", "population.txt",type="mortality" ,

504: label="Austria", skip=2,popskip=2,max.mx = 10,0)
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505: actualq65<-qx$rate$male[66,57] #actual q65=0.016059

506: sim2smoothed1<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnn

507: Final Codennsimvalues2_1.xls")

508: q81<-sim2smoothed1[,21] #simulated q81

509: mediq81<-median(q81) # mediq81=0.1116578 expected rate

510: tp<-vector(length=5000) # term premium vector

511: qex<-vector(length=5000)

512: qex[1:5000]<-mediq81 #expected rate vector

513: q81<-as.vector(q81) # simulated rate vector

514: tp<-qex-q81

515: length(which(tp>0)) #2500

516: par(mfrow=c(4,1))

517: d<-density(tp)

518: plot(d,col="black",xlab="term premium",main="Density of the term

519: premium",lwd=2)

520: abline(v=0,col="green",lwd=1.8,lty=2)

521: abline(v=max(tp),col="red",lwd=1.8,lty=2)

522: tp2<-tp[tp>0] #positiv tp

523: d<-density(tp2)
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524: plot(d,col="black",xlab="term premium",main="Density of the term

525: premium > 0",lwd=2)

526: abline(v=0,col="green",lwd=1.8,lty=2)

527: abline(v=max(tp),col="red",lwd=1.8,lty=2)

528: plot(density(q81),col="black",xlab="q(81)",

529: main="Density of the simulated q(81)",lwd=2)

530: c<-which(tp>0)

531: a<-q81[c]

532: plot(density(a),col="black",xlab="q(81)",

533: main="Density of the simulated q(81)

534: corresponding to term premium>0",lwd=2)

535: ##

536: #plot realized, �xed and forward
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537: #**

538: par(mfrow=c(1,1))

539: plot(density(q81+termpremium),col="red",xlab="q(81)",main="realized,�xed and

540: forward q(81)",ylim=c(0,30),xlim=c(0.05,0.2),lwd=2)

541: lines(density(q81),col="green",lwd=2,lty=3)

542: abline(v=mediq81,col="blue",lwd=2,lty=2)

543: #plot net settlement payment of a q-forward

544: plot(density(netset[,1]),col="black",lwd=2,xlab="net settlement",main="Net

545: Settlement Payment of a q-foraward")

546: abline(v=qnorm(0.025,mean(netset[,1]),sd(netset[,1])),col="red",

547: lty=2) #-3.709404

548: abline(v=qnorm(0.975,mean(netset[,1]),sd(netset[,1])),col="green",

549: lty=2) # 2.127586

550:

551: ##

552: #boxplots

553: #*

554:

555: enpvnsp<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnn

556: Final CodennENPV+NSP.xls",sheet=3)

557: odd<- read.xls("C:nnDokumente und EinstellungennnRogernnDesktopnn

558: Final CodennENPV+NSP.xls",sheet=4)

559: iter<-as.vector(odd[37:46,1])

560: par(mfrow=c(3,4))

561: for (i in iter){

562: boxplot(cbind(enpvnsp[,i],enpvnsp[,i+1]),yaxt="n",

563: xaxt="n")#ylim=c(min(enpvnsp)-0.5,max(enpvnsp)+0.5))

564: title(main=odd[i,2])

565: axis(2,at=(round(median(enpvnsp[,i]),2)))

566: axis(4,at=(round(min(enpvnsp[,i]),0)))

567: axis(4,at=(round(max(enpvnsp[,i]),0)))

568: abline(h=(median(enpvnsp[,i])), col="blue",lty=2)

569: abline(h=(max(enpvnsp[,i])), col="green",lty=2)
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570: abline(h=(min(enpvnsp[,i])), col="red",lty=2)
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C Abstract-German

Die ex post unterschätzte Entwicklung der Sterblichkeitsraten bringt für

die Pensionsfonds und Rentenversicherer, im privaten wie im ö¤entlichen

Bereich, eine zunehmende Kapitalintensivierung mit sich. Die negativen

Auswirkungen auf die Bilanzen und die Liquidität der Unternehmen sowie des

Staatshaushaltes regten in der vergangenen Dekade die Suche nach Auswe-

gen an. Blake und Burrows (2001) waren die ersten die einen Transfer

des Langlebigkeitsrisikos in Richtung Kapitalmarkt befürworteten. Invest-

mentbanken und Versicherer konstruierten daraufhin die ersten Finanzin-

strumente um das Langlebigkeitsrisiko zu hedgen. In dieser Diplomarbeit

sollen die verschieden Instrumente aufgezeigt werden und durch stochastische

Modellierung der möglichen zukünftigen Sterblichkeitsraten, von 65 jährigen

Österreichern, auf ihre Tauglichkeit als Hedge Instrument getest werden. Als

Entscheidungskriterium wurde der Net Present Value herangezogen welcher

mit einer bedingten Überlebenswahrscheinlichkeit gewichtet wurde, i.e ein

sogenannter Expected Net Present Value. Die Analyse zeigte, dass ein hedge

des Langlebigkeitsrisikos mit der Anleihe der Europäischen Investmentbank

aus 2003 möglich gewesen wäre, zumindest für 65 jährige Österreicher. Die

Expected Net Present Values waren in allen Szenarien durch den Kauf der

Anleihe höher als jene ohne hedge. Als zweite Möglichkeit wurde ein zero

coupon swap, JP Morgans q-forward, herangezogen. Diese Analyse brachte

enttäuschende Ergebnisse mit sich. Unter den Annahmen dieser Arbeit, er-

gab die Analyse, dass der q-forward zu teuer gewesen wäre. Die Expected

Net Present Values waren alle niedriger, als jene ohne hedge.

D Abstract

The ex-post underestimated development of mortality rates leads to a sig-

ni�cant increase of the liabilities for pension funds and annuity providers.

The overall negative e¤ects on the balance sheet and thus the liquidity of

enterprises and governments stressed in past decades the search for back

door solutions. Blake and Burrows (2001) was the �rst to propose a transfer
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of longevity risk to capital markets. Investmentbanks and Insurers followed

this idea and begun to construct the �rst hedging tools for longevity. The

claim of this thesis is to give at �rst a general overview which instruments

was developed in the past and second to test the usefulness through a sto-

chastic simulation of possible future mortality rates of 65 year old austrian

males. As decision criteria the calculus of Net Present Value, weighted with

an conditional survival probability, was chosen, i.e. a so called Expected Net

Present Value.The analysis suggests that the hedge with the European In-

vestmentbank longevity bond, from 2003, would have been possible, at least

for 65 year old Austrian males. The Expected Net Present Values was all

better o¤ through the purchase of the bond. As second possibility, the hedge

through a zero coupon swap, called q-forward and provided by JP-Morgan,

was chosen. The results was rather disappointing. The analysis suggests

that the price would have been too high, concerning the ruling assumptions

of this analysis. The Expected Net Present Values was all worse o¤ through

the hedge as without.
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