
DISSERTATION

Titel der Dissertation

Matheuristic Algorithms for Solving Multi-objective/Stochastic
Scheduling and Routing Problems

Verfasser

Mag. Peter Reiter Bakk.

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2010

Studienkennzahl lt. Studienblatt: A 786 175
Studienrichtung lt. Studienblatt: Wirtschaftsinformatik
Betreuer: Ao. Univ.-Prof. Mag. Dr. Walter J. Gutjahr

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

1. Introduction 1

2. Basics 5
2.1. Multi-objective Optimization . 5

2.1.1. Pareto-Optimal Solutions . 7
2.2. Simulation . 13
2.3. Performance Assessment . 14

2.3.1. Sample Transformations . 16
2.3.2. Statistical Testing . 20
2.3.3. Running Performance Metrics . 21

2.4. Algorithms . 22
2.4.1. Adaptive Pareto-Sampling Algorithm 22
2.4.2. Nondominated Sorting Genetic Algorithm II 23
2.4.3. Pareto Ant Colony Optimization . 25
2.4.4. Adaptive ε-Constraint Algorithm . 29

3. Application to Project Portfolio Selection 31
3.1. Problem Description . 31

3.1.1. Related Literature . 32
3.2. Model Formulation . 34

3.2.1. Project Portfolios . 34
3.2.2. Employee Allocation . 35
3.2.3. Competence Dynamics and Learning 37
3.2.4. Objective Functions . 37
3.2.5. Mathematical Programming Formulation 38
3.2.6. Pareto-optimal Solutions . 40
3.2.7. Linear Asymptotic Approximation 41

3.3. Stochastic Extension . 43
3.3.1. Stochastic Model Formulation . 43

iii

Contents

3.4. Solution Techniques . 50
3.4.1. General Approach . 53
3.4.2. NSGA-II . 54
3.4.3. P-ACO . 55
3.4.4. Importance Sampling . 56

3.5. Test Instances . 58
3.5.1. Synthetic Test Cases . 59
3.5.2. Real-World Test Cases . 60
3.5.3. Test Cases for the Stochastic Problem 62

3.6. Results . 63
3.6.1. Results for Synthetic Test Cases . 63
3.6.2. Results for the Real-World Application 70
3.6.3. Results for the Stochastic Problem 73

3.7. Concluding Remarks . 77

4. Application to Vehicle Routing 81
4.1. Problem Description . 81
4.2. Model Formulation . 83
4.3. Solution Techniques . 85

4.3.1. General Approach . 85
4.3.2. Branch-and-Cut . 88
4.3.3. NSGA-II . 95
4.3.4. Implementation Details . 97

4.4. Test Instances . 99
4.5. Results . 100
4.6. Concluding Remarks . 105

5. Conclusion 107

A. Work in Progress 109
A.1. Problem Description . 109
A.2. Model Formulation . 110
A.3. Solution Techniques . 112

A.3.1. General Approach . 112
A.3.2. NSGA-II . 113
A.3.3. Importance Sampling . 115

A.4. Preliminary Concluding Remarks . 117

iv

Contents

B. Additional Results 119
B.1. Vehicle Routing . 119

B.1.1. Pareto Optimal Solutions . 120
B.1.2. Runtimes . 123
B.1.3. Average Runtime Difference . 129

C. Acknowledgment 131

Bibliography 133

Abstract 145

Abstract in German 147

v

List of Figures

2.1. Mapping between decision and objective space 6
2.2. Example solutions and corresponding image points in the objective space Z . 7
2.3. Weighted sum approach on a convex Pareto-optimal front 11
2.4. Weighted sum approach on a non-convex Pareto-optimal front 11
2.5. Weighted metric method p = 1 . 12
2.6. Weighted metric method p = ∞ . 12

3.1. Comparision of the standard deviation of the estimator σh̃ 57
3.2. Pareto front and 50% attainment functions for synthetic test instance. 67
3.3. Solution proposed by SchedSA . 68
3.4. Hypervolumes for a test case with an increasing number of objectives. 69
3.5. Proposed Pareto-optimal solutions for real-world test case 1. 72
3.6. k%-approximation sets for test instance 3. 75

4.1. OX Crossover . 96
4.2. Performance measures for NSGA-II on test instance A-n32-k5. 98
4.3. Pairwise relative dominance count differences. 101
4.4. Average runtime difference of the hybrid algorithms. 103
4.5. Pareto front and extreme solutions for test case A-n37-k5. 105

vii

List of Tables

2.1. Preference relations . 15
2.2. Preference relations on Pareto front approximations 15

3.1. Performance measures for the small synthetic test cases. 65
3.2. Performance measures for the large synthetic test cases. 66
3.3. Performance measures for a test case with an increasing number of objectives. 69
3.4. Performance measures for test cases with p = 1 and q = 2. 70
3.5. Performance measures for real-world test cases. 70
3.6. Performance measures for real-world test cases. (increased runtime) 71
3.7. Performance measures for stochastic test cases. 74
3.8. Performance measures for stochastic test cases, and quadratic fc (y, x). 76
3.9. Pareto-optimal solutions for stochastic test case 6. 77
3.10. Estimation errors . 77

4.1. Number of solved instances. 100

B.1. Pareto-optimal solutions for test instances (set A) 120
B.2. Pareto-optimal solutions for test instances (set B) 121
B.3. Pareto-optimal solutions for test instances (set E) 122
B.4. Runtime for the three algorithms and 54 test instances 128
B.5. Average runtime difference . 129

ix

List of Algorithms

2.4.1.Adaptive Pareto Sampling (APS) . 23
2.4.2.Nondominated Sorting Genetic Algorithm II (NSGA-II) 24
2.4.3.Pareto Ant Colony Optimization (P-ACO) 28
2.4.4.Bi-Objective Adaptive ε-Constraint Method 29

4.3.1.Lower bound on the number of vehicles . 91
4.3.2.Procedure for finding infeasible paths . 94

xi

1. Introduction

Optimization problems appear in many practically relevant areas of our life. Typical ap-

plication areas are project scheduling and staffing, production planning, transportation,

investment planning and many more. Improvements in solution often have a direct impact

on costs and other important factors like customer satisfaction. It is well known that only

special classes of optimization problems (like linear optimization problems) can be effi-

ciently solved by polynomial time algorithms. Many real world problems are hard to solve

due to additional requirements e.g. the problem may have a combinatorial structure,

non-linearities are present or uncertainty needs to be considered. Considering complex

real-world applications the list of difficulties can be arbitrarily extended and each applica-

tion is in some way unique. In this work we consider in general computationally difficult

combinatorial optimization problems (COPs). To solve such problems a large number of al-

gorithmic solution approaches exist. These approaches can be classified into two main cat-

egories (i) exact and (ii) heuristic algorithms, each class having its assets and drawbacks.

Exact approaches like branch-and-bound, dynamic programming, constraint programming,

and the large class of integer linear programming techniques (e.g. branch-and-cut, branch-

and-price, branch-and-cut-and-price (Nemhauser and Wolsey 92 , Papadimitriou and Stei-

glitz 94)) are guaranteed to find an optimal solution and provide a guarantee that the

solution is indeed optimal. In general the run-time often increases dramatically with

instance sizes, therefore only small/moderately sized instances can be solved (within rea-

sonable run-times).

On the other hand heuristic algorithms, that trade optimality for run-time are applicable

to larger instances. Especially metaheuristics have proven to be highly useful in practice.

This class includes, among others, variable neighborhood search, simulated annealing,

various population based methods (e.g. evolutionary algorithms), and estimation of dis-

tribution algorithms (e.g. ant colony optimization) (Glover and Kochenberger 48 , Hoos

and Stützle 65).

The assets and drawbacks of the two classes can be seen as complementary, there-

fore combining ideas from both streams appears to be natural. Hybrid algorithms com-

bining elements of both streams, have proven to be more efficient in terms of run-time

1

1. Introduction

and/or solution quality. Such hybrid algorithms are called matheuristics. Various models

of combinations exist, examples are given in (Dumitrescu and Stützle 38 , Puchinger and

Raidl 100 , Raidl 101) and a classification if provided in (Talbi 116). In this work we will

consider two different combinations (i) an exact algorithm is used to solve a subproblem

within a heuristic framework (see Chapter 3) and (ii) heuristic algorithms are used to

boost the performance of exact algorithms (see Chapter 4).

The first application that is considered in this thesis, the Multi-objective Project Selec-

tion, Scheduling and Staffing with Learning problem (short MPSSSL) (Chapter 3), arises

from the field of management in research-centered organizations. Given a set of project

proposals the decision makers have to select the “best” subset of projects (a project port-

folio) and set these up properly (schedule them and provide the necessary resources). This

problem is hard to solve for different reasons: (i) selecting a subset of projects considering

limited resources is a knapsack-type problem that is known to be NP-hard,

and (ii) to determine the feasibility of a given portfolio, the projects have to be sched-

uled and staff must be assigned to them. As in this problem the assignment of workers

is influenced by the decision which portfolio should be selected, the decision maker has

to consider goals of different nature. Some objectives are related to economic goals (e.g.

return of investment), others are related to the competence development of the workers.

Competence oriented goals are motivated by the fact that competencies determine the

attainment and sustainability of strategic position in market competition. In general the

objectives can not be combined to a single objective, therefore methods for solving multi-

objective optimization problems are used. In practice uncertainty is another typically

encountered aspect. Different parameters of the problem can be uncertain (e.g. benefits

of a project, or the time and effort required to perform the single activities required by a

project). To determine the “best” portfolio, methods are needed that are able to handle

uncertainty in optimization. For abbreviation we refer to the stochastic extension as the

SMPSSSL problem.

The second problem, the Bi-objective Capacitated Vehicle Routing Problem with Route

Balancing (short CVRPB) (Chapter 4) arises from the field of vehicle routing. Given a set

of customers, the decision makers have to construct routes for a fixed number of vehicles,

each starting and ending at the same depot, such that the demands of all customers can

be fulfilled, and the capacity constraints of each vehicle are not violated. The traditional

objective of this problem (known as the Capacitated Vehicle Routing Problem (CVRP)1)

is minimizing the total costs of all routes. A problem that may arise by this approach is

that the resulting routes can be very unbalanced (in the sense of drivers workload). To

1As the CVRP is an extension of the well known Traveling Salesman Problem the CVRP is NP-hard.

2

overcome this problem a second objective function that measures the balance of the routes

of a solution is introduced.

Both application share the factor that multiple objectives are present. In the first ap-

plication also uncertainty on different model parameters are considered. These are two

common aspects that characterize many real-world problems. Although methodologies

to treat these features exist, these issues are still in a developing phase. Especially the

combined consideration of multi-objective and stochastic features in combinatorial opti-

mization problems must be characterized as widely unexplored (cf. Fu 45).

In this work different ways on how to solve the considered problems are presented.

Various hybrid methods that combine exact, meta-heuristic and (in the stochastic case)

simulation approaches have been developed.

Meta-heuristic methods capable to solve multi-objective combinatorial optimization

problems based on the Nondominated Sorting Genetic Algorithm II (NSGA-II) by Deb

et al. 33 , and the Pareto Ant Colony (P-ACO) algorithm by Doerner et al. 35 combined

with an linear programming solver as a subordinate have been implemented to treat the

MPSSSL problem. To solve the stochastic extension SMPSSSL we implemented an algo-

rithm that combines the aforementioned NSGA-II algorithm with a method by Gutjahr 54

that handles the interplay between multi-objective optimization and simulation called

Adaptive Pareto Sampling (APS). APS uses a sampling approach for the estimation of

expectations, that is based on Monte-Carlo simulation. To reduce the computational bur-

den of the sampling approach without losing accuracy of the estimator we improve the

simulation process by using importance sampling (IS) (see Rubinstein and Kroese 107).

For the CVRPB problem, we use the adaptive ε-constraint method by Laumanns

et al. 81 in combination with a branch-and-cut algorithm and two genetic algorithms (GAs),

namely a single-objective GA and the multi-objective NSGA-II (Deb et al. 33), to solve the

considered problem. In general the adaptive ε-constraint method determines the Pareto

set by solving a sequence of constrained single-objective problems. In our implementation

this requires an efficient branch-and-cut algorithm capable of solving distance-constrained

CVRP (DCVRP). Instead of a straightforward three-index problem formulation providing

a special index for the vehicle under consideration, we apply a more efficient two-index for-

mulation proposed by Laporte et al. 78,79 for the DCVRP. We have implemented different

separation procedures to identify violated inequalities related to the distance constraints.

These procedures require the computation of valid and efficient lower bounds for a mul-

tiple traveling salesman problem, therefore we apply generalized Held-Karp bounds for

this purpose. To improve the performance of this exact approach, the GAs are applied to

generate good incumbent candidates for the branch-and-cut algorithm in order to speed

3

1. Introduction

up the search process. They are called either in a sequential way (NSGA-II) or in an

interactive way (single-objective GA).

The remainder of this thesis is organized as follows: In Chapter 2 an introduction to

multi-objective optimization and simulation is provided. The used performance assess-

ment methods and algorithms are briefly described. Chapter 3 presents the MPSSSL and

SMPSSSL problem. A problem description, the corresponding mathematical models as

well as a description of the problem specific parts of the algorithms are presented. At the

end of Chapter 3, computational results and a problem specific conclusion are presented.

In Chapter 4, the CVRPB problem and the corresponding solution procedures are stated,

and computational results and conclusions are presented. Finally Chapter 5 provides a

summary of the insights obtained during the development of the solution methods needed

to solve the considered optimization problems.

This thesis is built on the results of two research projects funded by the Austrian

Science Fund (FWF) grant L264-N13 and P20342, and related works Gutjahr and Reiter 55 ,

Gutjahr et al. 57,58 , Reiter and Gutjahr 105 , Reiter et al. 106 .

4

2. Basics

2.1. Multi-objective Optimization

This chapter is based on the introduction to multi-objective optimization given in Deb 29 .

Multi-objective optimization problems (MOOP) deal with more than one objective func-

tion. Due to the lack of suitable solution methods in the past, a MOOP has been trans-

formed and solved as a single objective problem. In single objective optimization the goal

is to find one solution (or in special cases multiple optimal solutions). In multi-objective

optimization it is not sufficient to find an optimal solution for each objective function. In

the following, the general form of a MOOP is shown.

(MOOP) min/max fk (x) k = 1, 2, . . . , t, (2.1)

s.t. gj (x) ≥ 0 j = 1, 2, . . . , m̄,

hj (x) = 0 j = m̄+ 1, . . . ,m,

xLi ≤ xi ≤ xUi i = 1, 2, . . . , n.

A “solution” x is a vector of n decision variables: x = (x1, x2, . . . , xn)
T . The decision

variable space (decision space) X is bounded by the last set of constraints, where xLi and

xUi are lower, upper bounds for the decision variables xi. A solution that does not satisfy

all constraints and variable bounds is called an infeasible solution all others are called

feasible solutions. The set of all feasible solutions is called feasible region S̃ ⊆ X.

A MOOP has t objective functions f (x) = (f1 (x) , f2 (x) , . . . , ft (x))
T , each of them either

can be minimized of maximized. According to the duality principle maximization problem

can be transformed into minimization problems and vice versa. The biggest difference

between single- and multi-objective optimizations is that in multi-objective optimization

the objective functions constitute a multi-dimensional space (objective space Z). Each

solution x maps to a point z in the objective space, where f (x) = z = (z1, z2, . . . , zt)
T .

The mapping transfers an n-dimensional solution vector into an t-dimensional objective

vector.

5

2. Basics

Figure 2.1.: Mapping between decision and objective space

Classical Methods

According to Deb 29 , classical methods are methods used to solve multi-objective opti-

mization problems without the use of an evolutionary approach. Hwang and Masud 67

and Miettinen 90 suggested the following classification.

• No-preference methods: No information about the importance of objectives is used,

but a heuristic approach to find a single optimal solution. These methods do not try

to find multiple solutions, e.g. Method of Global Criterion, Multi-objective Proximal

Bundle Method, etc.

• Posteriori methods: A set of Pareto-optimal solutions is generated by an algorithm

and then presented to the decision maker who selects the most preferred solution,

e.g. Method of Weighted Metrics (a special case is the Weighted Sum Method),

ǫ-Constraint Method, etc.

• A priori methods: A priori methods use information, decided in advance to generate

solutions that correspond to the hopes of the decision maker, e.g. Value Function

Method, Lexicographic Ordering, Goal Programming, etc.

• Interactive methods: The decision maker is part of the solution generating process.

The preference structure of the decision maker is determined in an interactive way.

The basic steps are: -find a feasible solution, interact with the decision maker, obtain

a new solution. If a solution is accepted by the decision maker then the process stops,

otherwise additional solutions are generated, e.g. Interactive Surrogate Worth Trade-

Off Method, Geoffrion-Dyer-Feinberg Method, Chebyshev Method, etc.

6

2.1. Multi-objective Optimization

For the remainder of this work we consider both classical and metaheuristic methods that

rely on the concept of Pareto-optimal solutions.

2.1.1. Pareto-Optimal Solutions

When conflicting objectives are included in the MOOP so called Pareto-optimal solutions

have to be found. As it can be seen in Figure 2.1 it is clear that not all solutions in the

solution space S are feasible. Solutions in the space S can be mapped to a point in the

objective space Z. So each point x in the left graph corresponds to a point z in the right

graph. Therefore a comparison of any two solutions x(1) and x(2) with respect to their

objective function values is possible. For some of these pairs, it can be observed that

solution x(1) is at least equally good as x(2) with respect to all objective functions, and

better than x(2) with respect to at least one objective function. In that case one solution

dominates the other solution. If none of the two compared solutions dominates the other,

the solutions are called non-dominated solutions. A solution x∗ is called Pareto-optimal,

if there is no feasible solution that dominates x∗. The set of all image points z∗ ∈ Z of

Pareto-optimal solutions x∗ is called the Pareto-optimal/efficient frontier. The following

example illustrates both cases (we want to minimize f1 and maximize f2).

Solution f1 f2

A 0 0
B 2 1.5
C 5 3
D 4 3.5
E 3 1.5

Figure 2.2.: Example solutions and corresponding image points in the objective space Z

7

2. Basics

When each two pairs of the four given solutions are compared it can be seen that solution

D dominates the solution C and solution B dominates solution E. The other solution

{A,B,D} form the set of non-dominated solutions. This curve is called the Pareto-optimal

front all points on this curve are optimal solutions. Mathematical dominance and Pareto-

optimality are defined as follows. To cover minimization and maximization problems the

operator ⊲ is used to compare solutions. i⊲j denotes that solution i is better than solution

j on a particular objective function. E.g. if the objective function should be minimized

i ⊲ j would mean “i ≤ j”.

Definition 2.1.1. A solution x(1) is said to dominate the other solution x(2), if the following

conditions are true:

1. The solution x(1) is no worse than x(2) in all objectives, or

fj
(

x(1)
)

⋫ fj
(

x(2)
)

∀j = 1, 2, ..., t.

2. The solution x(1) is strictly better than x(2) in at least one objective, or

fj
(

x(1)
)

⊳ fj
(

x(2)
)

for at least one j = 1, 2, ..., t.

If one of the above defined conditions is not true, then the solution x(1) does not domi-

nate solution x(2). Mathematically we write x(1) � x(2) if solution x(1) dominates solution

x(2). Therefore either x(1) dominates x(2), or x(1) is non-dominated by x(2) or x(1) is non-

inferior to x(2). In Cormen 27 the binary relation properties of the dominance operator

are discussed. (i) Reflexive: The dominance relation is not reflexive, since any solution

x(1) does not dominate itself. (ii) Symmetric: The dominance relation is not symmetric,

because x(1) � x(2) does not imply x(2) � x(1). The opposite is true. If x(1) dominates

x(2), then x(2) does not dominate x(1). The dominance relations is asymmetric. (iii) An-

tisymmetric: Since the dominance relation is not symmetric it cannot be antisymmetric.

(iv) Transitive: The dominance relation is transitive. If x(1) � x(2) and x(2) � x(3), then

x(1) � x(3).

In addition to the Definition 2.1.1 a second definition for dominance relationships exists.

The relationship defined above is sometimes referred to as a weak dominance relation. A

strong dominance relationship can be defined as follows.

Definition 2.1.2. A solution x(1) is said to strongly dominate the other solution x(2), if

solution x(1) is strictly better than solution x(2) in all t objectives.

fj
(

x(1)
)

⊳ fj
(

x(2)
)

∀j = 1, 2, ..., t.

The definitions above can be used to define two different non-dominated sets. The

strongly and the weakly non-dominated set.

8

2.1. Multi-objective Optimization

Definition 2.1.3. Strongly non-dominated set: Among a set of solutions P , the strongly

non-dominated set of solutions P ′ are those that are not weakly dominated by any member

of set P .

Definition 2.1.4. Weakly non-dominated set: Among a set of solutions P , the weakly non-

dominated set of solutions P ′ are those that are not strongly dominated by any member

of set P .

Considering the example in Figure 2.2 it can be seen that solution B weakly dominates

solution E and solution D strongly dominates solution C. The strongly non-dominated is

{A,B,D},{A,B,D,E} is the weakly non-dominated set. From examples and definitions,

it can be seen that a weakly non-dominated set contains all solutions of the strongly non-

dominated set, therefore the cardinality of the weakly non-dominated set is greater or

equal to the cardinality of the strongly non-dominated set.

It is important that the feasible objective space not only contains non-dominated solu-

tions. By using pair-wise comparison any finite set of solutions P can be divided into the

non-dominated set P1 and the set of dominated solution P2. For the non-dominated set

P1 the following conditions hold: (i) any two solutions of P1 must be non-dominated with

respect to each other, and (ii) any solution not belonging to P1 is dominated by at least

one solution in P1. If the set P is the entire feasible search space, the non-dominated set

P1 is called Pareto-optimal set.

Definition 2.1.5. The non-dominated set of the entire feasible search space S̃ is the globally

Pareto-optimal set.

As in single-objective optimization, global and local optimal solutions can be identified.

In multi-objective optimization, they are called global and local Pareto-optimal sets. For

simplicity, we refer to the globally Pareto-optimal set as the Pareto-optimal set. A locally

Pareto-optimal set can be defined as follows:

Definition 2.1.6. If for every member x(1) in a set P there exists no solution x(2) (in the

neighborhood of x(1) such that ||x(2)−x(1)||∞ ≤ ǫ, where ǫ ∈ R+) dominating any member

of the set P , then solutions of the set P constitute a locally Pareto-optimal set.

Objectives in Multi-Objective Optimization

The main goal in multi-objective optimization is to find a set of solutions that approximates

the Pareto-optimal set as well as possible. As stated above, if conflicting objectives exist,

usually the Pareto-optimal set contains more than one solution. If higher-level preference

information is absent, all Pareto-optimal solutions are equally important. Therefore it is

9

2. Basics

important to find as many Pareto-optimal solutions as possible. Therefore the two goals

of multi-objective optimization are: (i) To find a set of solutions as close as possible to the

Pareto-optimal front, and (ii) to find a set of solutions as diverse as possible. The first goal

corresponds to the goal in single-objective optimization. Different measures are available

to measure the distance between the Pareto-optimal front and the solutions found.

The second goal is specific to multi-objective optimization. In addition to being converged

close to the Pareto-optimal front, the solutions found must be sparsely spaced in the

Pareto-optimal region. A diverse set of solutions assures a good set of trade-off solutions.

“Diversity” can be defined in the decision space X and the objective space Z, usually

diversity in one space means diversity in the other space. If this is not the case, the task is

to find a set of solutions having good diversity in the desired space. Also for this objective

different measures are available.

An overview of possible measures for the quality of the approximation of the Pareto-

optimal set is given in Section 2.3 Performance Assessment.

Weighted Metric Method The weighted metric method scalarizes a set of objective by

using weighted Minkowski distances of an of any solution x to the ideal point z∗. One

problem of this approach is the definition of the weights of the objectives. These distances

can be minimized as follows:

min lp (x) =

(

t
∑

k=1

wk|fk (x)− z∗k|p
)1/p

k = 1, 2, . . . , t, (2.2)

s.t. gj (x) ≥ 0 j = 1, 2, . . . , m̄,

hj (x) = 0 j = m̄+ 1, . . . ,m,

xLi ≤ xi ≤ xUi i = 1, 2, . . . , n,

where wk (and in most cases ∈ [0, 1]) is the weight for the k-th objective. It is the usual

practice that the sum of weights equals one. The parameter p can take a value between 1

and ∞. This parameter influences the measure that is used. The following list provides

an overview of commonly used values for p and the resulting optimization problems.

• p = 1: the problem is equivalent to the standard weighted sum approach

• p = 2: a weighted Euclidean distance is minimized

• p = ∞: the weighted Chebyshev problem, the largest deviation |fk (x) − z∗k| should
be minimized.

10

2.1. Multi-objective Optimization

Let us discuss two the two cases (i) p = 1 and (ii) p = ∞.

(i) Weighted sum approach p = 1: two interesting properties of the problem shown in

(2.2) and reproduced from Miettinen90 are:

Theorem 2.1.7. The solution to the problem represented by (2.2) is Pareto-optimal if the

weight is positive for all objectives.

This is true for each MOOP but does not imply that any Pareto-optimal solution can

be found by using a positive weight vector. This is only true for convex problems. For the

proof of the following problem refer to Miettinen90.

Theorem 2.1.8. If x∗ is a Pareto-optimal solution of a convex multi-objective optimiza-

tion problem, then there exists a non-zero positive weight vector w such that x∗ is a solution

to the problem given by equation (2.2).

The following two figures represent two cases of minimization problems with two objec-

tive functions. Figure 2.3 represents a convex optimization problem, Figure 2.4 shows a

non-convex optimization problem.

2

f1

f

a b

Feasible objective space

A

c

Pareto−optimal front

Figure 2.3.: Weighted sum approach on a con-
vex Pareto-optimal front

2

f1

f

A

B

C
a

b

Feasible objective space

Figure 2.4.: Weighted sum approach on a non-
convex Pareto-optimal front

For convex optimization problems all points on the Pareto-optimal front can be found

by using a weighted sum approach. The contour lines ‘a’,‘b’,‘c’ represent the objective

function F . As F is a linear combination of the objectives f1 and f2, every point on the

contour line will have the same value for F . The slope of the contour lines is related to

the weights w1, w2, the location depends on the value for F . The minimum value can be

found at point ‘A’. Different weight vectors will yield different optimal solutions, these

would always lie on the Pareto-optimal front.

11

2. Basics

For non-convex MOOP the weighted sum approach cannot find certain Pareto-optimal

solutions. In Figure 2.4 the points ‘A’, ‘B’, and ‘C’ found by using weights that yield the

contour lines ‘a’ and ‘b’, will correspond to Pareto-optimal solutions. But there will not be

any weight vector that will create a contour line that is a tangent to any point between ‘B’

and ‘C’, such that this contour line will not be a tangent to another better point (point with

smaller value for F) in the objective space. Therefore the weighted sum approach only can

find solutions that lie on the convex hull of the feasible objective space. These solutions

are called supported. But in general not all Pareto-optimal solutions are supported. To

overcome the problem of the weighted sum approach the weighted Chebyshev distance can

be used.

(ii) p = ∞Weighted Chebyshev approach: The following figures illustrate the differences

of weighted metric methods with p = 1 and p = ∞, optimal solutions for two different

weight vectors are shown.

Figure 2.5.: Weighted metric method p = 1 Figure 2.6.: Weighted metric method p = ∞

Figure 2.5 shows that, as already mentioned no solution in the region BC can be found

using a weighted sum approach. However, as illustrated in Figure 2.6, any Pareto-optimal

solution can be found by using the weighted Chebyshev metric. One problem that arises

if large p values are used is that the problem becomes nondifferentiable, therefore most

times gradient-based methods can not be used to find the minimum solution.

By using weighted metric methods multi-objective optimization problems can be trans-

fered into different (depending on the chosen weights) single-objective optimization prob-

lems. A multi-objective optimizer can therefore obtain either the Pareto-optimal set or

at least an approximation of it, by solving a sequence of single-objective optimization

12

2.2. Simulation

problems with varying weight vectors, e.g. Ralphs et al. 104 present an iterative method

that determines the Pareto-optimal set of bi-objective mixed integer linear optimization

problems by using weighted Chebyshev distances.

2.2. Simulation

Let a stochastic optimization problem

max {f (x) |x ∈ S} (2.3)

with f(x) = E(f(x, ω)) be given, where S is a finite decision space, and ω denotes the

influence of randomness. Already in this simplest form of a stochastic problem the eval-

uation of the function f(x) can be quite complicated. The reason is that in general the

problem is one of numerical integration in high dimensions corresponding to the random

variables ω (cf. (Birge and Louveaux 19)). This general problem requires some form of

approximation. One possible approach is the use of Monte Carlo (MC) simulation, which

has favorable properties for higher dimensions. By using MC, confidence intervals on the

results can be obtained. For getting an estimate of E(f(x, ω)), we use sampling by drawing

N random scenarios ω1, . . . , ωN independently from each other, each scenario ων consists

of a vector of U (ν) =
(

U
(ν)
1 , . . . , U

(ν)
m

)

of i.i.d. random numbers U
(ν)
i distributed according

to a density hi (·) (i = 1, . . . ,m) that can take values in the space A. Then, the sample

average estimate of f(x) = E(f(x, ω)) is given by

f̂(x) =
1

N

N
∑

ν=1

f(x, ων) ≈ E(f(x, ω)).

Evidently, the sample average estimate is an unbiased estimator for f(x). Denoting the

standard deviation of f(x, ω) by σ(x), the standard deviation of f̂(x) (σf̂(x) =
σ(x)√

N
) can

be approximated by using the sample variance

ŝ2(x) =
1

N − 1

N
∑

ν=1

(

f(x, ων)− f̂(x)
)2

≈ σ2(x).

An approximation for the standard deviation of the estimator f̂(x) is given by

ŝf̂(x) =
ŝ(x)√
N
.

13

2. Basics

Which can be used to define confidence intervals for the estimator f̂(x) of f(x). A possible

solution to reduce the variance of f̂(x) would be to increase the sample size N , but

computational efforts would increase quadratically (e.g. to decrease the standard deviation

by a factor 10, sample sizes would have to increase by a factor 100). To reduce the the

variance of f̂(x) without paying the costs of increased sample sizes, importance sampling

(see, e.g.107) (IS) can be used. The basic idea of importance sampling consists in changing

the distribution hi (·) of the random variable(s) on which the sampling is based to a

distribution hi
∗ (·), such that the more interesting events (events that have a large influence

on the estimator) can be observed more frequently. To compensate for the change of the

distributions, weighing each output by the so-called likelihood ratio, which is given as the

quotient of true probability (or density) and changed probability(or density), is used to

ensure that the procedure preserves the unbiasedness of the estimator.

E(f(x, ω)) =

∫

A
f (x, ω)h (ω) dω =

∫

A
f (x, ω)L (ω)h∗ (ω) dω,

where L (ω) = h(ω)
h∗(ω) denotes the likelihood ratio.

In general (cf. Fishman 42) h∗ (ω) should be chosen as proportional to f (x, ω)h (ω) as

possible for each ω ∈ A.

2.3. Performance Assessment

In this section, methods for the comparison of the performance of stochastic multi-objective

optimizers (MOO) over several runs, as well as methods used to obtain quantitative and

statistically sound inferences are presented (based on Knowles et al. 75). Performance of

a MOO involves the quality of the solutions found and the time needed to generate these

solutions. In the case of stochastic optimizers the relation between time and quality is

not fixed but can be described by a probability density function. Therefore every state-

ment about the performance is probabilistic. Furthermore the outcomes of a MOO are

usually not single values but a set of trade-offs. This two questions (i) how to define the

quality of the solutions and (ii) how to represent the outcomes of multiple runs in terms

of probability density functions. As stated before each MOO returns a set of mutually in-

comparable solutions. It is not guaranteed that this solution set is the true Pareto-optimal

set of the optimization problem, therefore this set is called a Pareto front approximation

or approximation set.

14

2.3. Performance Assessment

In section 2.1.1 Pareto-optimal solutions, weak and strong Pareto dominance and some

preference relations are defined. A finer grained listing of preference relationships between

two points in the objective space is shown in Table 2.1 below.

relation interpretation in objective space

strictly dominates z(1) ≺≺ z(2) z(1) is better than z(2) in all objectives

dominates z(1) ≺ z(2) z(1) is not worse than z(2) in all objectives and better
in at least one objective

weakly dominates z(1) � z(2) z(1) is not worse than z(2) in all objectives

incomparable z(1)‖z(2) neither z(1) � z(2) nor z(2) � z(1)

indifferent z(1) ∼ z(2) z(1) has the same value as z(2) in all objectives

Table 2.1.: Preference relations (Knowles et al. 75)

The preference relations of solutions defined in Table 2.1 above can be extended to Pareto

set approximations. In the following Table 2.2 the selected relations are shown.

relation interpretation in objective space

strictly dominates A ≺≺ A every z(2) ∈ B is strictly dominated by at least one
z(1) ∈ A

dominates A ≺ B every z(2) ∈ B is dominated by at least one z(1) ∈ A

better A ⊳ B every z(2) ∈ B is weakly dominated by at least one
z(1) ∈ A and A ≁ B

weakly dominates A � B every z(2) ∈ B is weakly dominated by at least one
z(1) ∈ A

incomparable A‖B neither A � B nor B � A
indifferent A ∼ B A � B and B � A

Table 2.2.: Selected preference relations on Pareto front approximations, where A and B are two different
Pareto front approximations (Knowles et al. 75)

Quality assessment in the context of multi-objective optimizers is usually done in objec-

tive space; the aim of an MOO is to find a Pareto set approximation as “close” as possible

to the “true” Pareto front of the optimization problem and to, a certain extent the spread

of the solutions across the objective space. The quality assessment process has two stages

(i) sample transformation: the samples of approximation sets are first transfered into an-

other representation (e.g. a sample of indicator values (quality indicators), an empirical

attainment function, or a sample of ranks), and (ii) statistical testing is used to answer

the question, whether the approximation set distribution of optimizer A is better than the

15

2. Basics

approximation set distribution of optimizer B.

2.3.1. Sample Transformations

Quality Indicators: In general a unary quality indicator I is defined as a mapping of all

approximation sets Ω to the set of real numbers. I establishes an order on Ω that repre-

sents the quality of approximation sets. The difference between I (A) and I (B) reveals a

difference in the quality of the two sets. This information goes beyond Pareto dominance;

additional knowledge (preference information) can be represented. It is possible that if

two different indicators I1 and I2 are used the following result may arise: I1 (A) better

than I1 (B) and I2 (B) better than I2 (A). This shows that all comparisons of MOO’s

are not restricted to benchmark problems and parameter settings only but also to the

considered quality indicators. An important property of quality indicators is whether or

not they are Pareto compliant. If an indicator is Pareto compliant, then whenever a set

A is preferred to a set B with respect to weak Pareto dominance, then I (A) is at least

as good as I (B). More information can be found in Knowles et al. 75 . In addition to the

unary quality indicators, indicators that can take an arbitrary number of approximation

set as arguments can be designed. In this work we also use binary quality indicators that

assign real numbers to pairs of approximation set.

(1) The hypervolume IH measure (see Zitzler and Thiele 127 , Zitzler et al. 128,129) which

is defined as the volume of the objective space dominated by an approximation set. For

the calculation of IH , the objective space must be bounded; if this is not the case then a

bounding reference point must be used. In addition to the (absolute) hypervolume, one

can also compute the relative hypervolume I−H which is defined as the difference between

the (absolute) hypervolume of the reference set and that of the approximation set. The

relative hypervolume is small in the case of a good approximation set. When a normal-

ization (described below) of the objectives is used, then the higher the hypervolume, the

better the approximation set. The hypervolume indicator has some desirable theoretical

properties: Whenever A ⊳ B, then IH (A) > IH (B) therefore from IH (A) < IH (B), one

can infer that A cannot be better than B.

(2) The epsilon indicators I1ǫ+ resp. I1ǫ (see Zitzler and Thiele 127 , Zitzler et al. 128,129)

give the minimum term ǫ resp. the minimum factor ǫ by which each point of an approx-

imation set B in the objective space can be shifted by component-wise addition resp. by

component-wise multiplication, such that the resulting set is weakly dominated by a ref-

erence set A. The smaller an epsilon indicator, the better is the approximation set. The

16

2.3. Performance Assessment

set of Pareto-optimal solutions has Iǫ+ = 0 and Iǫ = 1.

Iǫ (A,B) = inf
ǫ∈R

{

∀z(2) ∈ B ∃z(1) ∈ A : z(1) �ǫ z
(2)
}

,

where in the case of a minimization problem the multiplicative ǫ-dominance relation is

defined as:

z(1) �ǫ z
(2) ⇔ ∀i ∈ 1, . . . , n : z

(1)
i ≤ ǫ · z(2)i

The additive epsilon indicator Iǫ+ , is defined using the additive ǫ-dominance.

z(1) �ǫ z
(2) ⇔ ∀i ∈ 1, . . . , n : z

(1)
i ≤ ǫ+ z

(2)
i

The unary versions I1ǫ and I1ǫ+ can be defined by using a reference set R:

I1ǫ = Iǫ (A,R)

Both indicators should be minimized. I1ǫ < 1 or I1ǫ+ < 0 implies that A strictly dominates

the reference set R. Whenever A⊳B, than I1ǫ (A) ≤ I1ǫ (B) respectively I1ǫ+ (A) ≤ I1ǫ+ (B).

If the hypervolume and the ǫ-indicators return opposite preference orderings, then the sets

are incomparable.

(3) The spacing ISP measure (measure Q5 in Jaszkiewicz 69) which quantifies the quality

of the distribution of the proposed efficient solutions in objective space and is the lower,

the better this distribution is.

ISP (A) =

√

1

|A| − 1

∑

z∈A

(

d̄− d (z)
)2
,where d (z) = min

ź∈A

{

n
∑

i=1

|zi − źi|
}

(4) The coverage ICO measure (measure Q6 in Jaszkiewicz 69). It is a binary indicator;

ICO (A,B) gives the share of solutions in set B that are dominated by the solutions in set

A.

ICO (A,B) =
|
{

z(2) ∈ B
}

|∃z(1) : z(1) � z(2)|
|B|

Considering computational experiments where multiple (k) runs were performed for each

test case and each algorithm, we computed the average ICO (1) of all k2 coverage values

ICO (Ai, Bj) for i, j = 1, . . . , k and the average ICO (2) of all coverage values ICO (Bi, Aj)

17

2. Basics

for i, j = 1, . . . , k, where Ai and Bi denotes the solution set provided by the ith run of the

first and of the second considered algorithm, respectively. If ICO (1) > ICO (2), the first

algorithm is better than the second, and vice versa.

An advantage of quality indicators is that comparative studies are easy to accomplish

because the samples of approximations are transformed into samples of real values for

which standard statistical testing procedures exist. Quantitative statements are possible.

A drawback of this approach is the loss of generality because every indicator represents a

specific preference information.

Empirical Attainment Function: Attainment functions take into account that meta-

heuristics for multi-objective problems are usually stochastic algorithms, i.e., in general,

they produce different solutions at each run. These results ca be described by the distri-

bution of an outcome set A =
{

a(i) ∈ Rn, i = 1, 2, . . . ,M
}

with cardinality M . In order

to capture this aspect in formal terms, one defines for each point z (called goal) in the

objective space Z = Rn the probability αA (z) that the optimizer attains goal z in a single

run. A goal (objective vector) is attained if it is weakly dominated by the approximation

set. In formal terms z is attained by approximation set A if a � z for at least one a ∈ A.

Using the notation A � {z} iff there exists an a ∈ A such that a � z, one can write

αA (z) = P (A � {z}). The function αA (z) is called the attainment function. An estimate

for the attainment function is obtained by performing N runs of the algorithm and setting

αN (z) = (1/N)
∑N

ν=1 I(Aν � {z}), where Aν is the approximation set of run ν of the

optimizer, and I (.) is an indicator function that evaluates to one if the argument of the

function is true and else to zero. The function αN (z) is called the empirical attainment

function (EAF). The EAF gives the relative frequency for each objective vector that was

attained. By using the EAF it is possible to visualize i.e. all goals that have been attained

in at least 50 % of the runs. The k % approximation set of the EAF is defined as the set of

all goals z that are attained in at least k % of the N runs. Formaly a k%-approximation

A set is defined as:

A = {∀z ∈ Z : αN (z) ≥ k/100} (2.4)

The attainment surface defined as the union of the tightest goals that are known to

be attainable by an approximation set A, formally {z ∈ Z : A � z ∧ ¬A ≺≺ z}. The p%

attainment surface represents the border of the area of all those points in the plane for

which α(z) is at least p%. Thus, the 100% attainment surface gives the border of the

points dominated by the proposed solution sets of each run, etc. These surfaces can

18

2.3. Performance Assessment

be used for visualizing the the outcomes of multiple runs of the optimizer. Attainment

functions therefore allow to visually judge whether a metaheuristic algorithm is stable with

respect to the influence of the different streams of random numbers in different runs. The

advantage of using the attainment function approach is, that less information is lost than

when quality indicators or dominance ranking are used. This is achieved by the fact that

the transformed samples are multidimensional. Visualization allows a deeper insight into

the strengths and weaknesses of an optimizer. A major drawback is that this approach is

computationally expensive. More information on the attainment function can be found in

the papers by Fonseca et al. 43 , Grunert da Fonseca et al. 50 , Zitzler and Thiele 127 , Zitzler

et al. 128,129 .

Reference Points and Sets For some quality measures, a reference point z+ or a reference

set is needed. For example for the hypervolume metric the dominated region has to be

bounded by a reference point. All generated approximations A1, A2, . . . , Ar have to be

dimension-wise worse than the reference point:

∀i = 1 . . . r ∀z ∈ Aj ∀j = 1 . . . n : zj ⊲ z
+
j

For some approaches a reference set is needed, e.g. epsilon indicators. The best reference

set would be the “true” Pareto front. However in most cases the Pareto front cannot be

computed in reasonable time. In this case two methods are recommended by Knowles

et al. 75 . (i) The reference set is the non-dominated set of the union of all approximation

sets. (ii) The reference set is the set that dominates 50% of solutions in the search space.

This can be generated by, for example creating 1000 points randomly (each representing

one outcome of a random search strategy) and then taking the 50% attainment surface as

the reference set.

Normalization Pareto dominance in general is independent of scales and normalization.

For some of the indicators (e.g. IH , and I1ǫ+) normalization is necessary to allow equal

contribution of the different objectives. To obtain comparable magnitudes of values for

the objective functions, we rescaled both objective function values to the interval [1, 2]1.

The following equation is used:

z′i =
zi − z

(min)
i

z
(max)
i − z

(min)
i

+ 1, (2.5)

1The interval [1, 2] is used instead of [0, 1] in order to facilitate the calculation of I1ǫ (to avoid divisions
by zero)

19

2. Basics

where z
(min)
i and z

(min)
i are the corresponding minimum and maximum values of objective

i. These can be obtained from the reference set.

2.3.2. Statistical Testing

To describe and determine if an approximation set distribution of an optimizer is bet-

ter than another, statistical methods are used. Descriptive statistics are convenient to

summarize random samples from distributions. First order moments, e.g. mean, median

and mode, describe the location of the distribution on the real number line. Second-order

moments, e.g. variance, standard deviation and inter-quartile range, describe the spread

of the data. Box-plots or tables of mean and standard deviation provide a good overview.

Descriptive statistics do not provide enough information to decide if the approximation set

distribution of one optimizer is better than another. Statistical inference methods must

be used.

The fact that only a limited number of samples is available, prohibits definitive judgments.

Statistical tests test how likely a certain null hypotheses (H0) is true. An example for a

H0 is: “samples A and B are drawn from the same distribution”. The result of a statis-

tical test is called p-value. The significance level (often α) defines the largest acceptable

p-value. This threshold is user defined. If the p-value is lower than the significance level,

then this indicates that the H0 can be rejected. An alternative hypothesis HA can be

chosen at a significance level α. In tests where it is assumed that the samples are drawn

from a distribution that closely approximates a known distribution e.g. normal distribu-

tion defined by its parameters, are called parametric statistical tests. These tests although

potentially powerful, mostly can not be used for stochastic optimizer outputs because the

samples are usually too small. To solve this problem nonparametric tests e.g. rank tests

and permutation tests can be used.

To test single quality indicators, standard univariate statistical tests can be used, for

the comparison of two optimizers: e.g. Man-Whitney rank sum test, Fischer’s permu-

tation test and for more than two optimizers the Kruskal-Wallis test. As the EAF is

a generalization of a empirical univariate cumulative distribution function (ECDF). The

Kolmogorov-Smirnov (KS) test can be used to determine if two ECDF’s are different.

This test only reveals if there is a difference between the EAF’s; in order to probe specific

difference between EAF’s visualization methods should be used. More information can be

found in Knowles et al. 75 .

20

2.3. Performance Assessment

2.3.3. Running Performance Metrics

The aforementioned metrics can be used to compare the results of two or more MOO

purely on the basis of the results that have been obtained at the end of a simulation run.

Interesting information on the internal behavior of a MOO (how the MOO generates the

final result), is not captured by these measures. In most single-objective studies (using

heuristics) analyze the internal behavior of the optimizer by using measures that show how

the solution quality evolves with time. Deb and Jain 31 demonstrate the use of two running

performance metrics to investigate the internal behavior of multi-objective optimizers.

This information provides an insight to the working of the optimizer and facilitates to

decide if a problem is easy or difficult for the considered optimizer. Considering the goals

in multi-objective optimization two metrics are interesting: (i) one for measuring the

convergence of the solutions of the current non-dominated set P (t) to the Pareto-optimal

front P ∗ (or a reference set R) and (ii) a measure to describe the diversity of solutions.

(i) Convergence (Distance), can be easily assessed by the average normalized Euclidean

distances of each point of the current non-dominated set P (t) to the closest point in the

reference set R.

IC

(

P (t)
)

=

∑

z∈P (t) d (z)

|P (t)| ,where d (z) = min
ź∈R

√

√

√

√

n
∑

i=1

(

zi − źi

z
(max)
i − z

(min)
i

)2

z
(min)
i and z

(min)
i are the corresponding minimum and maximum values of objective i in

the reference set R. Usually IC
(

P (t)
)

is normalized to keep the metric within [0, 1] by

dividing by its maximum value ĪC
(

P (t)
)

= IC
(

P (t)
)

/maxTt=0 IC
(

P (t)
)

.

(ii) Diversity is assessed by projecting the current non-dominated points on a suitable

hyper-plane. Each hyper-plane is divided into several small grids. Depending on which

grids contain a non-dominated point, a diversity metric is defined. The best possible

diversity measure value is achieved if each intervals is represented by at least one point.

If this is not the case, a moving window is used to define the balance of the distribution

of empty and non-empty intervals. A detailed description of this measure is given in Deb

and Jain 31 .

21

2. Basics

2.4. Algorithms

2.4.1. Adaptive Pareto-Sampling Algorithm

In the following, we shortly recapitulate the Adaptive Pareto-Sampling (APS) approach

by Gutjahr 54 for multi-objective stochastic combinatorial optimization problems. Let a

multi-objective stochastic combinatorial optimization problem

max
(

f (1) (x) , . . . , f (p) (x)
)

(2.6)

s.t. x ∈ S

with f (ϑ)(x) = E(f (ϑ)(x, ω)) (ϑ = 1, . . . , p) be given, where S is a finite decision space,

and ω denotes the influence of randomness. For getting an estimate of E(f (ϑ)(x, ω)), we

use sampling by drawing N random scenarios ω1, . . . , ωN independently from each other.

Then, the sample average estimate of f (ϑ)(x) = E(f (ϑ)(x, ω)) is given by

1

N

N
∑

ν=1

f (ϑ)(x, ων) ≈ E(f (ϑ)(x, ω)). (2.7)

As stated in Section 2.2, the sample average estimate is an unbiased estimator for f (ϑ)(x).

An approximation to the solution of the given problem (2.6) can be computed by solving

a related problem where the expectations forming the objective functions are replaced by

sample average estimates with some sample size N . In this way, we obtain the following

deterministic multi-objective problem:

max

(

1

N

N
∑

ν=1

f (1)(x, ων), . . . ,
1

N

N
∑

ν=1

f (p)(x, ων)

)

(2.8)

s.t. x ∈ S

We call problem (2.8) the bicriteria sample average approximation (BSAA) problem cor-

responding to the original problem (2.6).

In Algorithm 2.4.1, we present the pseudocode of the APS algorithm. The algorithm

is iterative and works with a current solution set L(κ) which is updated from iteration

to iteration. In each of these iterations, first of all a corresponding deterministic BSAA

problem is solved in order to obtain a proposal for the solution set. After that, the

elements of the solution of the BSAA problem are merged with those contained in L(κ−1),

the elements in the union of both sets are evaluated based on independent samples for

22

2.4. Algorithms

each solution and each objective function, and dominated elements (w.r.t. the evaluation

results) are eliminated. This yields the new solution set. The sample sizes are controlled

by sequences (sκ) and (s̄κ) of positive integers (κ = 1, 2, . . .).

Algorithm 2.4.1: APS

initialize the solution set L(0) as the empty set;
for iteration κ = 1, 2, . . . do

(a) “solution proposal”:
draw a sample {ω1, . . . , ωsκ} of sκ scenarios;

for the drawn sample, determine the Pareto-optimal set S(κ) of the BSAA
problem with sample size sκ;

(b) “solution evaluation”:

foreach x ∈ L(κ−1) ∪ S(κ) and each ϑ = 1, . . . , p do
draw an independent sample {ω1(x, ϑ), . . . , ωs̄κ(x, ϑ)} of s̄κ;

based on this sample, determine an estimate of f (ϑ)(x) ;

end

obtain L(κ) as the set of Pareto-optimal solutions in L(κ−1) ∪ S(κ) according
to the objective function estimates just determined;

end

Output: set of Pareto-optimal decision vectors L(κ)

The determination of the Pareto-optimal set S(κ) in part (a) of APS can either be

performed by an exact algorithm (e.g., if the deterministic problem has the structure of

a bi-objective integer linear program, the algorithm by Chalmet et al. 24 or (adaptive)

ε-constraint method by Haimes et al. 59 , Laumanns et al. 81 can be applied for this pur-

pose), or alternatively by a (multi-objective) metaheuristic. For a general discussion of

convergence properties of the proposed method see Gutjahr 54 .

2.4.2. Nondominated Sorting Genetic Algorithm II

Nondominated Sorting Genetic Algorithm II (NSGA-II) by Deb et al. 33 is a genetic algo-

rithm searching for an approximation to the Pareto set of a multi-objective optimization

problem by the successive computation of a series of generations of solutions. In each

iteration, the algorithm computes a new generation from the current one by using three

algorithmic components: (i) fast-non-dominated-sort, which is an efficient algorithm for

partitioning a set of solutions into so-called non-dominated fronts (the first non-dominated

is the set of non-dominated solutions, the second non-dominated front is the set of non-

23

2. Basics

dominated solutions after removal of the first non-dominated front, etc.), (ii) a rank as-

signment method assessing the quality of a solution with respect to the aim that points on

the approximated Pareto front should be well-distributed, and (iii) the genetic operators

crossover, mutation, and selection.

In Algorithm 2.4.2, we present the pseudocode of the NSGA-II algorithm. Basically,

NSGA-II works as follows: In the initialization phase, a population P0 of M0 solutions

is generated. All solutions are evaluated with respect to the objective functions. Then,

fast-non-dominated sort is applied to P0, and the genetic operators crossover and mutation

are used to derive an offspring population Q0 of size M0. In each iteration µ = 0, 1, . . .,

the following operations are applied until a termination criterion is fulfilled. The two

sub-populations Pµ and Qµ are joined to a population Rµ of size 2M0. The new parent

population Pµ+1 is created by first performing non-dominated-sort to Rµ and then succes-

sively copying the solutions to Pµ + 1 in the order given by the obtained non-dominated

fronts, until Pµ + 1 is full, i.e., contains M0 elements. For the last non-dominated front

that can be taken into account before Pµ + 1 is full, the choice of the solutions is based

on the rank indices obtained from the rank assignment method. Finally, crossover and

mutation are applied to the current parent population Pµ + 1 in order to generate the

offspring population Qµ+1.

Algorithm 2.4.2: NSGA-II

P0 = create-initial-parent-pop ();
F = fast-nondominated-sort (P0);
Q0 = make-new-pop (F);
µ = 0;
repeat

Rµ = Pµ ∪Qµ;
F = fast-nondominated-sort (Rµ);
Pµ+1 = select-new-parents (F);
Qµ+1 = make-new-pop (Pµ+1);
µ = µ+ 1;

until termination;
Rµ = Pµ ∪Qµ;
F = fast-nondominated-sort (Rµ);
Output: set of Pareto-optimal decision vectors F0

Constraint handling. In general, constraints divide the search space into feasible and

infeasible regions, therefore all Pareto-optimal solutions must be feasible. Different ways

exists to handle constraints, e.g. ignoring infeasible solutions by excluding them from

24

2.4. Algorithms

the search process, repair mechanism, penalty function approaches and the constrained

tournament method (cf. Deb 29). In this work we apply two different approaches to handle

constraints. In the first application we use a repair mechanism. In the second application

the constrained tournament method (Deb et al. 32) is used. Considering a given solution

x and constraints of the form gj (x) ≥ 0 (j = 1, . . . , J), the constraint violation ωj (x)

is defined as ωj (x) = |gj (x) | if gj (x) < 0, and as ωj (x) = 0 otherwise. To calculate

the overall constraint violation Ω (x) of a solution x, the constraint violations for the

(normalized) constraints are added: Ω (x) =
∑J

j=1 ωj (x).

The relation of constrain-domination is defined in Deb et al. 32 as follows. For two

solutions xi and xj , solution xi is said to constrain-dominate solution xj , if one of the

following conditions is satisfied: (i) Solution xi is feasible and solution xj is not. (ii)

Both solutions xi, xj are infeasible, and Ω
(

xi
)

< Ω
(

xj
)

. (iii) Both solutions xi, xj are

feasible, and solutions xi dominates solution solutions xj in the usual sense. During the

non-dominated sorting procedure of NSGA-II, a solution xi that constrain-dominates a

solution xj is preferred to xj .

2.4.3. Pareto Ant Colony Optimization

The Pareto Ant Colony Optimization (P-ACO) algorithm is a multi-objective metaheuris-

tic introduced in Doerner et al. 34,35 . The P-ACO algorithm generalizes the Ant Colony

Optimization (ACO) metaheuristic (see Dorigo and Stützle 36) for single-objective prob-

lems to the case of several objective functions, determining approximations to the set of

Pareto-efficient solutions. The special variant of P-ACO (adopted from Gutjahr 51) used

in this work is slightly different from that in the original papers Doerner et al. 34,35 . ACO

is a nature-inspired metaheuristic where solutions are constructed randomly and step-by-

step. To encode a solution all ACO algorithms use a construction graph C. In general

construction steps that have turned out as part of good solutions in previous iterations of

the construction process are favored via “pheromone values” during the current iteration.

As stated before ACO constructs solutions x iteratively. Each solution is represented by

a feasible walk through the construction graph. The construction process stops if there is

no feasible unvisited successor node available. The computational agent that constructs a

solution is called an ant.

The decision as to which feasible successor node l of a node k should be included in the

walk, depends on the pheromone value τkl, and the visibility ηkl. The pheromone value

is a memory that stores the suitability of step (k, l) in previous runs; the visibility repre-

sents a pre-evaluation based on a problem specific heuristic. The visibility may depend

25

2. Basics

on the partial walk u that the ant has performed so far. The probability pkl that an ant

chooses the edge (k, l) is proportional to [τkl]
α [ηkl (u)]

β , where α and β are parameters,

determining the relative influence of the pheromone trail and the heuristic information.

Generally in each iteration of an ACO algorithm a certain number of random walks of

ants are performed; these walks form a round. Depending on the implementation, either

the round winner, the global best solution or a number of ants may deposit pheromone

on the walks they performed. The algorithm stops if a certain criterion is fulfilled. This

criterion may, for example, take the solution quality or a certain runtime into account.

More information on ACO can be found in the book “Ant Colony Optimization” by Dorigo

and Stützle 36 . In the following paragraph, special features of the P-ACO algorithm are

described.

In the multi-objective context, P-ACO extends ACO (i) by an additional outer itera-

tion called periods in which random weights for each objective function are chosen, (ii)

by checks whether a newly found solution is non-dominated by candidate solutions in a

current solution set and vice versa, and (iii) by an objective-specific pheromone handling

mechanism. For the selection of promising solutions in each step of the inner iteration

(called rounds), P-ACO needs a scalarizing function. Different approaches (aggregation

methods) can be used, e.g. weighted sums or a weighted Chebyshev distance function to

an ideal point of the problem, i.e., a point each component of which is an upper bound

of the corresponding objective function values (cf. Ralphs et al. 104). The scalarization by

weighted averages is a simple, intuitive approach to reduce multi-objective problems to

single-objective ones; it assumes that the utility function of the decision maker is a linear

function. A disadvantage of this type of scalarization is that not every Pareto-optimal

solution can be represented as an optimal solution with respect to some weighted average.

Optimization with respect to weighted Chebyshev distances (which is less intuitive) does

not have this disadvantage, it can “reach” every Pareto-optimal solution.

The single objective functions f (1) (x) , . . . , f (p) (x) are aggregated according to the cho-

sen method. At the beginning of each period, the weights w(1), . . . , w(p) are drawn ran-

domly. In each period the solutions are gradually improved with respect to the current

aggregated objective function f (x).

A separate pheromone matrix τ (ϑ) =
(

τ
(ϑ)
kl

)

is assigned to each objective function f (ϑ).

The guiding pheromone matrix τkl is calculated as the weighted sum of objective specific

pheromone values τ
(ϑ)
kl , using the weights w(1), . . . , w(p). The main differences between

the original algorithm and our implementation are, that in the original works each ant

has each own weight vector to aggregate the individual pheromone matrices to guide the

construction process, whereas our implementation follows an iterative weighted metric ap-

26

2.4. Algorithms

proach. All ants during one period share the same weight vector, therefore the each period

corresponds to solving a single-objective optimization problem.

27

2. Basics

Algorithm 2.4.3: P-ACO

τ
(ϑ)
kl = 1 for all (k, l) and for all ϑ = 1, . . . , p;
initialize the solution set X as the empty set;
for period π = 1, . . . ,Π do

draw weights w =
(

w(1), . . . , w(p)
)

randomly;

τ =
∑p

ϑ=1w
(ϑ)τ (ϑ);

for round m = 1, . . . ,M do
for ant γ = 1, . . . ,Γ do

set k equal to start node of C;
set u equal to the empty set;
while a feasible continuation (k, l) of u exists do

select successor node l with probability;

pkl =







0, if (k, l) is infeasible
[τkl]

α[ηkl(u)]
β

∑
(k,r) [τkr]

α[ηkr(u)]
β

;

the sum being over all feasible (k, r) ;
k = l, and append l to u;

end
xγ = u;

end

f (x) = aggregate
(

f (1), . . . , f(p);w
)

;

select the best walk x out of x1, . . . , xΓ;
if m = 1 then

x̂ = x
else

if f (x)− f (x̂) ≤ 0 then
x̂ = x

end

end

evaporation: τ (ϑ) = (1− ρ) τ (ϑ) for all ϑ;

global-best reinforcement: τ
(ϑ)
kl = τ

(ϑ)
kl + c1w

(ϑ) for all (k, l) ∈ x̂ and all ϑ;

round-best reinforcement: τ
(ϑ)
kl = τ

(ϑ)
kl + c2w

(ϑ) for all (k, l) ∈ x and all ϑ;

τ =
∑R

r=1wrτ
(r);

if x̂ nondominated by X then
add x̂ to X and remove dominated elements from X

end

end

end
Output: set of Pareto-optimal decision vectors X

28

2.4. Algorithms

2.4.4. Adaptive ε-Constraint Algorithm

As the traditional ε-constraint method (Haimes et al. 59), also the adaptive ε-constraint

method (Laumanns et al. 81) works by choosing one of m objectives of a multi-objective

problem as the only objective and the remaining m− 1 objective functions as constraints.

For a bi-objective optimization problem where both objectives should be minimized, the

constrained problem has the following form:

lex min f (x) = (f1 (x) , f2 (x)) (2.9)

s.t. f2 (x) < ε2,

x ∈ X,

where “lex min” denotes the lexicographic minimization of the two objectives.

In general, the “lex min” operator is needed to solve the technical complication that

arises if solutions are possible that are weakly Pareto-optimal but not Pareto-optimal2.

In the bi-objective case, however, the “lex min” operator is not needed, provided that

an auxiliary procedure, eliminating weakly Pareto-optimal solutions that are not Pareto-

optimal, is applied to the result set of the adaptive ε-constraint method. In this case, the

objective function of (2.9) reduces to f (x) = f1 (x). In the remainder of this work, we

assume that such an auxiliary procedure is used, and always assume f (x) = f1 (x).

Suppose we have a procedure opt (f, ε2) returning the optimal solution x of the con-

strained problem or null if the problem is infeasible. Algorithm 3.1 shows the pseudocode

of the adaptive ε-constraint method for a bi-objective minimization problem.

Algorithm 2.4.4: Bi-Objective Adaptive ε-Constraint Method

P := ∅, ε2 = ∞;

repeat

x := opt (f , ε2);

if x 6= Null then

P := P ∪ {x};
ε2 := f2 (x);

end

until x = Null;

Output: set of Pareto-optimal decision vectors P

When the algorithm starts, no bound for the second objective function is set. In each

2 A solution x(1) is called weakly Pareto-optimal if there is no other solution x(2) that is strictly better
than x(1) in all objectives.

29

2. Basics

iteration, the constrained single objective problem is solved. If a new solution is found, the

solution is added to the Pareto set. The upper bound for the second objective function is

set to the current objective function value. The algorithm stops as soon as the constrained

single objective problem turns out as infeasible.

As the used MIP solver does not support inequalities of the form f (x) < K, such

constraints must be replaced by inequalities of the form f (x) ≤ K −∆. Therefore, in our

implementation, the constraint f2 (x) < ε2 is replaced by f2 (x) ≤ ε2 −∆.

30

3. Application to Project Portfolio Selection

3.1. Problem Description

To ensure their success, companies or organizations in competitive environments need to

manage their resources such that they are used in the most effective way. Almost every

organization, institution or company is faced with the question of what to do, and how to

do what needs to be done, considering the limited resources. Managers need to identify the

“best” subset of projects (a project portfolio) to be pursued among a sometimes large set

of project proposals and set these up properly (schedule them and provide the necessary

resources). Providing the necessary resources includes assigning employees with proper

competencies to the selected projects. For various reasons these tasks are challenging:

(i) selecting a subset of projects considering limited resources is a knapsack-type problem

that is known to be NP-hard, and (ii) to determine the feasibility of a given portfolio, the

projects have to be scheduled and staff must be assigned to them, two (sub-) tasks that

are difficult themselves. Furthermore the staffing decision determines the development of

the employees’ competence levels, which influences their ability to work in later projects.

By implementing the selected projects, the assigned employees obtain new skills, that

contribute to the (then extended) competence resources. The considered problem, is

therefore characterized by a set of incomparable and conflicting objectives, that may be

roughly classified as economic objectives and competence-oriented objectives. Economic

objectives (e.g., return of investment), that are are functions of the project portfolio alone

are common in literature. The explicit consideration of competence-oriented objectives is

motivated by the fact that competencies (i.e., pragmatic knowledge in the sense of “know

how”) increasingly determine the attainment and sustainability of strategic positions in

market competition. Companies may choose for a internal development of competencies for

different reasons: (i) specific competencies are not easily available at any given time in the

required quality/and or capacity on the (job) market, and (ii) integrating new employees

in a established team of workers may be costly (e.g. communication and coordination

efforts may increase). On the other hand, the in-house “production” of competencies

may also be fairly costly and time-consuming. Considering the assets and drawbacks of

31

3. Application to Project Portfolio Selection

in-house “production” of competencies, the decision on which competencies to develop to

which degree is therefore of high managerial relevance. Considering both economic and

competence-oriented objectives at the same time, yields a multi-objective optimization

problem. As the objectives are incomparable and conflicting, the problem will have an

efficient frontier consisting of several, pairwise incomparable (Pareto-optimal) solutions.

In this work we present different methods to identify these solutions.

Identifying the set of Pareto-optimal solutions is a nontrivial task. The available meth-

ods for multi-criteria decision-making can be roughly classified by two complementary

families: (i) mathematics-based multiple objective programming (MOP) and (ii) decision

maker-driven multiple criteria decision analysis (MCDA). In this work we consider the

MOP-part of the competence-oriented project portfolio selection problem, we develop a

mathematical program as well as suitable solution procedures to identify Pareto-optimal

solutions. The results of the developed solution procedures can then be used by an interac-

tive system that incorporates the decision makers’ judgments and preferences to identifying

their individually “best” solution (which would constitute the MCDA part).

Another typically encountered aspect in practical project portfolio management is un-

certainty. Benefits from projects can be uncertain, there can be the risk that a project

for which a decision has been made will not come about, and, maybe most importantly,

the amount of time and effort required to complete a project is often uncertain to a large

extent. In this work, we will focus on the last type of uncertainty, but also include the

first one into the model.

3.1.1. Related Literature

As already stated our model integrates project portfolio selection and scheduling and

staffing decisions. These problems (and their combinations) have already found consider-

able interest, therefore numerous articles dealing with such problems exist. Articles that

use linear, integer or dynamic programming techniques to support the single-objective

portfolio selection decision appeared already in the 60s of the last century Asher 10 , Beged-

Dov 15 , Hess 64 . Later complicating factors arising from practical applications were incor-

porated, adding more realism to the models. The use of mathematical models and software

solvers to support the decision of managers, showed that decision makers are rarely willing

to accept the “optimal” portfolio, but they are seeking for computer support to reduce the

numerous number of numerous possible portfolios to a candidate set of reasonable port-

folios. Decision maker can then evaluate and discuss these portfolios, and the final choice

remains within their responsibility. Multi-objective project portfolio selection methods,

32

3.1. Problem Description

such as goal programming (e.g.,Badri et al. 13 , Khorramshahgol and Gousty 74), scoring

models (e.g., Henriksen and Traynor 63 or the Analytic Hierarchical Process (e.g., Gabriel

et al. 47 , Greenberg and Nunamaker 49 , Suh et al. 115), or techniques for the determination

of Pareto-optimal solutions ,(e.g., Doerner et al. 34,35 , Medaglia et al. 88 , Stummer and

Heidenberger 111 , Stummer and Sun 112) facilitate such decision processes.

More realism is added to project portfolio selection by taking the time structure and

the personnel requirements of projects into account. Part of the literature emphasizes

the scheduling view, that led to the development of models and solution procedures for

the resource-constrained project scheduling problem Kolisch and Hartmann 76 . The other

group of articles, where the staff assignment (the assignment of work packages of a project

to employees or workers) view prevails, typically also include the question of varying

skills (competencies) within the employees Alba and Francisco Chicano 2 , Eiselt and Mar-

ianov 39 , Gutjahr 52 , Yoshimura et al. 126 . Examples for competence models are given in

Mansfield 87 , Shippmann et al. 108 . As in general, a person develops over time, competen-

cies are not fixed, on the on hand competencies may be trained but also may deteriorate

if not kept “up to date” on the other hand. This raises the question of competence de-

velopment. Articles that treat competence development in quantitative models are e.g.

Armbruster et al. 6 , Chen and Edgington 25 , Heimerl and Kolisch 61 , Pendharkar and Sub-

ramanian 97 , Suer and Tummaluri 114 , Wu and Sun 125 .

In practical project portfolio management, also aspects such as uncertainty, robustness

or the dynamics of the portfolio selection exist. These aspects are investigated in e.g.

Gabriel et al. 47 , Kavadias and Loch 73 , Liesiö et al. 83 , Loch and Kavadias 84 , Medaglia

et al. 88 . Especially uncertainty is typically part of practical project portfolio management.

Many parameters of project portfolio selection models can be uncertain, e.g. benefits can

be uncertain, some projects that are included in the portfolio will not come about, and,

maybe most importantly, the amount or resources (time, effort) to complete a project

is often uncertain to a large extent. None of the mentioned articles, however, integrates

portfolio selection, staff assignment, uncertainty and learning of competencies in a holistic

model.

The remainder of this chapter essentially based on the articles Gutjahr and Reiter 55 ,

Gutjahr et al. 58 and is organized as follows: Section 3.2 provides the formulation of the

multi-objective mathematical programming model and provides linear asymptotic approx-

imations as well as a description of the stochastic extension. Section 3.4 decomposes the

problem into two subproblems and introduces solution procedures for the deterministic

and stochastic model. Next, Section 3.5 describes the test instances that are used for

the computational experiments. Section 3.6 describes experiments with synthetically-

33

3. Application to Project Portfolio Selection

generated and real-life test cases to illustrate the performance of our solution techniques

for the deterministic and stochastic models. Conclusions, as well as an outlook for further

research, are presented in Section 3.7.

3.2. Model Formulation

Our multi-objective models are based on the single-objective Project Selection, Scheduling

and Staffing with Learning problem (short: PSSSL problem) Gutjahr et al. 57 . In the

following sections, we recapitulate the essential elements of the PSSSL model, and extend

the model by adding multiple objective functions. We abbreviate the multi-objective

model by MPSSSL. The considered problem belongs to the class of multi-objective mixed-

integer optimization problems. iFurthermore we introduce the stochastic extension of the

multi-objective problem that we abbreviate by SMPSSSL.

3.2.1. Project Portfolios

We assume that n project candidates (opportunities) i = 1, . . . , n are given. Each project

consists of one or more tasks. We label the tasks by k = 1, . . . ,K. The assignment of tasks

to projects is given by constant indicator variables cik, where cik = 1 if project i contains

task k, and cik = 0 otherwise. Since each task belongs to exactly one project, the numbers

cik satisfy
∑n

i=1 cik = 1 for all k. Our aim is to provide decision support for the selection

of a subset of projects, that is, a so-called project portfolio. The decision which candidate

project is to be realized is represented by decision variables yi (i = 1, . . . , n), where yi

takes the value 1 if project i is included in the portfolio, and the value 0 otherwise. Note

that we only allow 0-1-decisions about projects, that is, we do not consider the possibility

of funding projects only partially.

A fixed time interval consisting of T periods is considered. Periods are indexed by

t = 1, . . . , T . (Typically, a period consists of one month.) Period t starts at time t− 1 and

ends at time t. We restrict ourselves to a static version of the decision problem where it is

assumed that the decision on the projects to be selected has to be made at time t = 0, the

start time of period 1, and remains invariant until the end of the time horizon (time T).

Furthermore, we assume that for each task k, the following numbers are given: (i) the

ready time ρk ∈ {1, . . . , T} of task k, and (ii) the due date δk ∈ {1, . . . , T} of task k. The

ready time ρk and the due date δk are defined as the first and the last period, respectively,

where work in task k is possible; that is, work in task k can start not earlier than at time

point ρk − 1 and must be completed not later than at time point δk.

34

3.2. Model Formulation

3.2.2. Employee Allocation

Our analysis will be carried out not on the aggregated level of the entire working team,

but on the individual level of employees, which is much more realistic in several aspects

(concerning work assignment and competence growth) than an aggregated consideration.

The employees are indexed by j = 1, . . . ,m. It is assumed that the free working capacity

of each employee j in each period t is given as the number ajt (j = 1, . . . ,m, t = 1, . . . , T).

We measure all work times in multiples of the standard work time in one period (e.g., the

regular work time within one month in a full-time job). In particular, also the capacities

ajt are expressed in multiples of this unit, such that they are typically numbers between 0

and 1. Also we suppose that the set of employees is fixed during the entire planning interval

[0, T]. In other words, extensions of the staff, terminations of employment, outsourcing

etc. are not taken into account.

The different fields of knowledge, education, skills etc. in which the employees can

have abilities (relevant for the company) are called competencies. We index competencies

by r = 1, . . . , R. The degree to which an employee j possesses a certain competency r at

time t is quantified by a real (possibly also negative) value zjrt which we call the competence

score. It is assumed that by learning, zjrt grows when employee j works in a task requiring

competency r, and that zjrt diminishes by the so-called knowledge depreciation effect when

employee j is not active in competency r. Initial values zjr1 of the competency scores in

period 1 are assumed as given. Methods for measuring competence scores will not be

discussed in this paper; as to this subject, we refer to the literature on labor psychology.

The efficiency of employee j in competency r, denoted by γjrt, is defined as the share of

work performed in one time unit by employee j on a task requiring only competency r, if

the entire task takes one time unit for an employee with “perfect ability” in competency r

(cf., e.g., Wu and Sun 125). An efficiency value of γrjt = 1 means that employee j is “fully

competent” in competency r and will be able to perform parts of tasks that require this

competency in the minimum possible time. If 0 < γrjt < 1, we assume that employee j is

in principle able to work on a part of a task requiring competency r, but delivers per time

unit only a share γrjt of the performance of an employee with efficiency 1. Thus, work

in competency r that requires one period for an employee with efficiency 1 will take two

periods if assigned to an employee with efficiency 0.5. We say that real work time of one

time unit in competency r, invested by an employee with efficiency γrjt, will contribute

to the completion of the task by an amount of effective work time of only γrjt time units.

Employees j with efficiency γrjt = 0 in competency r cannot contribute to parts of a task

requiring this competency.

35

3. Application to Project Portfolio Selection

Although it can be expected that in general, the efficiency value will be an increasing

function of the competence score, the exact functional relation depends on the way the

competency score has been measured. For our purposes, we assume that γjrt can be

obtained from zjrt by applying some (in general non-linear) increasing function ϕr, which

may depend on the specific competency r. The function ϕr maps the set of reals into

the interval [0, 1]. 1 A viable approach to approximate ϕr is to consider a parametrized

class of functions suggested by theoretical considerations, and to estimate the parameters

from empirical data. In the present paper, a logistic function (cf. Chen and Edgington 25 ,

Ngwenyama et al. 93) was utilized to transform the competence score to an efficiency value,

i.e., we specified the function ϕr(z) as ϕr(z) = [1 + a exp(−bz)]−1.

Task k is assumed to require an overall effective work time of dkr in competency r

(k = 1, . . . ,K; r = 1, . . . , R). The effective work time dkr is the time required by an

employee with maximal efficiency γjrt = 1 for completing that part of the task that is

related to competency r. We call this part the work package with index (k, r). As the

unit for work times, we take the overall maximum possible work time in one period. In

the deterministic model of this work, the (real) numbers dkr are assumed as deterministic

and known in advance.

In some cases, it is not realistic to assume that all work of a certain work package can

be done “at once”, but rather work has to be extended over a larger interval of time (an

example are support activities). To be able to model this situation, we introduce upper

bounds bkr for the expected effective work time invested per period into work package

(k, r). If there is no such bound for a work package, we set bkr = ∞.

To describe (i) the scheduling of the selected projects over time with respect to their

required work times, ready times and due dates, and (ii) the assignment of staff to the

tasks of the selected projects with special attention given to the required competencies,

we introduce real-valued decision variables xkjrt ∈ [0, 1], where xkjrt denotes the real time

employee j works within period t in competence r of task k (k = 1, . . . ,K; j = 1, . . . ,m;

r = 1, . . . R; t = 1, . . . , T). As in the case of effective work times and capacities, time is

again measured in multiples of the overall maximum possible work time in one period.

The amount of effective work time contributed by real work time xkjrt of employee j in

competency r and period t is then given as γjrt xkjrt. In total, the variables xkjrt form

the (4-dimensional) work time array x.

1Our model allows negative values of the competence score. This does not mean, however, that the
efficiency in the corresponding competence can fall below zero.

36

3.2. Model Formulation

3.2.3. Competence Dynamics and Learning

To represent learning, the competence score of an employee j in competency r is assumed

to increase in each period where employee j has worked during an amount x of (real) time

in competency r by an increment of size ηr · x, where the factor ηr is a constant that

can depend on r. Similarly, we assume that the competency score of an employee j in

competency r is reduced by the amount βr in each time period by knowledge depreciation.

Evidently, this loss can be over-compensated by the gain achieved by activity in compe-

tency r provided that βr < ηr. The parameters ηr and βr are called the learning rate and

the depreciation rate of competency r, respectively.

3.2.4. Objective Functions

For defining our objective functions, quantities describing the gains from projects are

needed. We distinguish two classes of gains:

(i) Economic gains such as return, turnover etc. Whatever types of economic gains are

chosen for formulating the objectives, it can be assumed that gains are assigned to projects,

more specifically, that they result from the completion of projects that have been included

in the portfolio. By w(π) = (w
(π)
1 , . . . , w

(π)
n) (π = 1, . . . , p), we denote the economic benefits

resulting from the inclusion of project i in the portfolio (i = 1, . . . , n). For example, w
(1)
i

can measure profit contribution and w
(2)
i turnover contribution, respectively, achieved

from project i (i = 1, . . . , n). Often, there are positive or negative interactions between

different projects (called synergy resp. cannibalization effects): If two projects i and s are

included in the portfolio, their common gain can exceed w
(π)
i +w

(π)
j or fall below this sum.

We take account of this phenomenon by adding, for each pair (i, j) of projects contained

in the portfolio, a corresponding term w
(π)
ij that can be positive, negative or zero, to the

overall gain. 2

(ii) Strategic gains. They result from the strategic development of the organization or

firm into desirable directions, taking probable future changes in the market situation into

account. It is important to include gains of this type in the model as well, since other-

wise, optimization would exclusively concentrate on short-term financial gains, neglecting

the long-term competitiveness of the firm. The tradeoff between short-term and long-

term goals is well-known in the strategic management literature and should be addressed

by an adequate model. In order to formulate strategic goals quantitatively, we build on

the list of competencies and assume that for κ = 1, . . . , q, vectors v(κ) = (v
(κ)
1 , . . . , v

(κ)
R)

2Another way to deal with synergy and cannibalization would be to introduce dummy projects (cf. Liesiö
et al. 83).

37

3. Application to Project Portfolio Selection

of competence weights for competencies 1 to R are given. Each vector v(κ) represents a

(desired) competence profile. Different competence profiles 3 can reflect different strate-

gic viewpoints or aims of different stakeholders. (Allowing multiple weight vectors is in

agreement with classical approaches in decision analysis, cf. Arbel 4 , Weber 124 .) The κ-th

strategy weight v
(κ)
r quantifies the importance of competency r with respect to competence

profile κ. Engaging in projects that involve competencies with high v
(κ)
r makes the firm

more competitive in future market scenarios, whereas investing into projects that involve

competencies with low v
(κ)
r (i.e., competencies that may become obsolete) may result in

short-term profits, but at the cost of long-term stability. The degree of engagement in a

competency is measured by the total amount of expected (real) work time invested during

the planning interval into work packages assigned to this competency. The competence-

oriented objectives refer to the end of the planning horizon, that is, the situation in (the

beginning of) period T + 1. In the multi-objective decision approach, it is not necessary

that the competence weights v
(κ)
r are scaled in a specific way in relation to the economic

benefits w
(π)
i .

3.2.5. Mathematical Programming Formulation

For the arrays x = (xkjrt) and y = (yi) of decision variables, we define two sets of objective

functions:

f (π)(y) =
n
∑

i=1

w
(π)
i yi +

∑

i<j

w
(π)
ij yiyj (π = 1, . . . , p) (3.1)

and

g(κ)(x) =
R
∑

r=1

v(κ)r

m
∑

j=1

(γj,r,T+1 − γjr1) (κ = 1, . . . , q). (3.2)

The first set (3.1) of objective functions represents the economic benefits from the selected

projects. The objective function f (π)(y) in this set measures the economic benefit accord-

ing to the values w
(π)
i assigned to the single projects. The second set (3.2) of objective

functions represents the competence benefits obtained from the increments of the efficien-

cies γjrt over the planning horizon. The objective function g(κ)(x) in this set measures the

total increment of weighted efficiencies, cumulated over employees, where the efficiency

value corresponding to competency r is weighted by the importance value v
(κ)
r . Contrary

3The weights v
(κ)
r for each competency r of a competence profile κ indicate to which degree this compe-

tency will be required in the future market situation.

38

3.2. Model Formulation

to (3.1), the objective functions (3.2) do not depend on the portfolio decision vector y in

a direct way, but only indirectly via the work time array x.

The problem MPSSSL is then defined as follows:

(MPSSSL) max
(

f (1)(y), . . . , f (p)(y), g(1)(x), . . . , g(q)(x)
)

(3.3)

s.t. (3.1), (3.2) and

γjrt = ϕr(zjrt) (3.4)

zjrt = zjr1 − βr(t− 1) + ηr

K
∑

k=1

t−1
∑

s=1

xkjrs ∀j, r, t (3.5)

K
∑

k=1

R
∑

r=1

xkjrt ≤ ajt ∀j, t (3.6)

δk
∑

t=ρk

m
∑

j=1

γjrtxkjrt = dkr

n
∑

i=1

cikyi ∀k, r (3.7)

m
∑

j=1

γjrtxkjrt ≤ bkr ∀k, r, t (3.8)

(t− ρk)xkjrt ≥ 0 and (δk − t)xkjrt ≥ 0 ∀k, j, r, t (3.9)

xkjrt ≥ 0 ∀k, j, r, t, (3.10)

yi ∈ {0, 1} ∀i. (3.11)

Constraints (3.4) specify the dependence of the efficiency values γjrt on the competence

scores zjrt. Constraints (3.5) represent the evolution of the competence scores by knowl-

edge depreciation and by learning. Note that we assume that the competence score remains

fixed during a period, which is only a valid approximation if the period length is chosen as

comparably short. Constraints (3.6) bound the invested real work time of each employee

by her or his capacity limit. Constraints (3.7) ensure that the real work time of each em-

ployee in a competency r within a given task k, multiplied by her or his efficiency (which

gives the effective work time), and cumulated over all employees and over the runtime of

the task, must yield the overall required effective work time dkr for work package (k, r),

if the project to which task k belongs is selected in the portfolio, and zero otherwise.

Constraints (3.8) bound the effective work times in each work package by the maximum

allowed amount per period. Constraints (3.9) ensure that before the ready time and af-

ter the due date of a task, no work is spent to this task. Constraints (3.10) restrict the

39

3. Application to Project Portfolio Selection

decision variables to their allowed ranges.4

As it can be seen, the formulation above allows it to distinguish different categories of

economic gains and to represent them as different objectives. Similarly, different “strategic

lines” for competence development, each represented by a weight vector v(κ), can be taken

into account in the form of separate objectives.

The elicitation of the weights v
(κ)
r may be supported by a variety of methods (for an

overview, cf. Belton and Stewart 17). A natural choice would be to rely on the prefer-

ence comparison methods of Multiattribute Utility Theory (MAUT), applying an additive

model which is generally quite robust Butler et al. 22 and is consistent with our linear

problem formulation. Also applying the Analytical Hierarchy Process (for an example,

cf. Arbel 4) may be a promising approach. When eliciting the weights, the assessment of

each vector v(κ) can be based on a separate stakeholder group.

Even in the special case where the functions ϕr are linear, the MPSSSL problem is

a non-linear multi-objective problem: The variables γjrt, which depend on the decision

variables xkjrt by (3.4) – (3.5), are multiplied by the variables xkjrt in (3.7).

3.2.6. Pareto-optimal Solutions

Because of the multi-objective nature of our problem formulation, the decision maker can-

not be provided with a single “optimal” solution. Instead, we determine (an approximation

to) the set of Pareto-optimal solutions. The decision variable, that is, the “solution” to the

problem, is denoted by u in the definitions below. In the case of our problem MPSSSL,

u is given by the pair (y, x), where y is the (binary) project portfolio vector, and x is the

(real-valued) work time array. The objective functions (to be maximized) are written as

Ψ1, . . . ,ΨD below; in the MPSSSL case, these D objective functions consist of the two

groups f (1), . . . , f (p) and g(1), . . . , g(q), such that D = p+q. As seen from Gutjahr et al. 57 ,

already the single-objective version PSSSL of the MPSSSL problem is hard to solve, which

is not surprising in view of the nonlinear and mixed-integer problem characteristics. For

this reason, it cannot be expected that real-world instances of the MPSSSL problem can

be solved exactly within reasonable computation time. Instead, we shall propose the ap-

plication of multi-objective metaheuristics in order to obtain suitable approximations to

the set of Pareto-optimal solutions.

4 By a very small extension of the model, also formal training of employees, e.g., courses where specific
skills are acquired, could be represented. We omit the details for the sake of brevity.

40

3.2. Model Formulation

3.2.7. Linear Asymptotic Approximation

To transform the originally nonlinear problem formulation (3.1) – (3.10) into a linear one,

which is somewhat easier to solve, we assume that usually, both learning rates ηr and

depreciation rates βr are small compared to unity.5 Even in cases of not very small rates

ηr and βr, the solution obtained by the asymptotic linearization might be used as an initial

solution for a local search where the decision is fine-tuned in the nonlinear context. For

the single-objective case, a corresponding asymptotic approximation has been presented

in Gutjahr et al. 57 , and the multi-objective situation is described in Gutjahr et al. 58 .

Therefore we keep our presentation short and refer the reader to Gutjahr et al. 57,58 for

technical details.

Mathematically, the assumption of small learning rates ηr and small depreciation rates

βr can be represented by setting

ηr = η̄r · ǫ and βr = β̄r · ǫ, (3.12)

where η̄r and β̄r are constants, and ǫ ≪ 1. By combining (3.4) and (3.5) to a single

equation and inserting (3.12), we obtain

γjrt = γjrt(ǫ) = ϕr

(

zjr1 − β̄rǫ(t− 1) + η̄rǫ
K
∑

k=1

t−1
∑

s=1

xkjrs

)

= ϕr (zjr1 + ǫhjrt)

where

hjrt = −β̄r(t− 1) + η̄r

K
∑

k=1

t−1
∑

s=1

xkjrs.

By Taylor expansion at ǫ = 0, we get

γjrt = ϕr(zjr1) + hjrt · ϕ′(zjr1) · ǫ+
(hjrt)

2

2
· ϕ′′(zjr1) · ǫ2 +O(ǫ3).

In a first-order approximation, we neglect already terms of order O(ǫ2), such that

γjrt (ǫ) ∼ ϕr(zjr1) + hjrt · ϕ′(zjr1) · ǫ. (3.13)

First of all, note that the objective functions f (π)(y) in (3.1) do not depend on ǫ (and

5Note that the typical length of a period is one month. Over the entire planning horizon T , small
increments/decrements by learning may nevertheless cumulate to crucial differences. This does not
hold anymore for terms that are small of second order, i.e., the O(ǫ2) terms in the expansion below.

41

3. Application to Project Portfolio Selection

are already linear), so nothing has to be done there.

The objective function g(κ)(x) in (3.2) can be approximated by

R
∑

r=1

v(κ)r

m
∑

j=1

(hj,r,T+1−hjr1)ϕ′
r(zjr1) ǫ = ǫ·

R
∑

r=1

v(κ)r

m
∑

j=1

ϕ′
r(zjr1)

{

−β̄rT + η̄r

K
∑

k=1

T
∑

s=1

xkjrs

}

.

It is easy to see that by transforming an objective function in a multi-objective optimiza-

tion problem by an increasing transformation function, the set of Pareto-optimal solutions

does not change, since the dominance relations between solutions remain invariant. Ob-

serve that ǫ, v
(κ)
r , ϕ′

r(zjr1) and β̄rT do not depend on the decision. Therefore, instead of

maximizing the expression approximating g(κ)(x) above, one can also maximize the expres-

sion obtained by dividing the original expression by ǫ > 0 and by adding then the constant
∑R

r=1 v
(κ)
r
∑m

j=1 ϕ
′
r(zjr1) · β̄rT . This yields the following transform of the approximated

objective function:

ḡ(κ)(x) =
R
∑

r=1

v(κ)r η̄r

m
∑

j=1

ϕ′
r(zjr1)

K
∑

k=1

T
∑

s=1

xkjrs (κ = 1, . . . , q) (3.14)

Let us now consider the constraints. We have already dealt with (3.4) – (3.5). Constraint

(3.6) is linear. There remain constraints (3.7) – (3.8), containing the efficiencies γjrt. From

(3.13) we see that a first order-approximation for
∑m

j=1 γjrtxkjrt is given by

m
∑

j=1

γjrtxkjrt ∼
m
∑

j=1

ϕr(zjr1)xkjrt =
m
∑

j=1

γjr1xkjrt. (3.15)

Considering also the O(ǫ) approximation term from (3.13) in (3.7) or (3.8) would cause an

influence of order O(ǫ) on the variables xkjrt, which would add a correction term to the

objective function (3.14) that is already negligible compared to the main term. Hence, also

the approximated constraints are linear in the decision variables xkjrt, and the first-order

42

3.3. Stochastic Extension

approximation problem of MPSSSL (LMPSSSL) is then defined as follows:

(LMPSSSL) max
(

f (1)(y), . . . , f (p)(y), ḡ(1)(x), . . . , ḡ(q)(x)
)

(3.16)

s.t. (3.1), (3.14), (3.7) and

δk
∑

t=ρk

m
∑

j=1

γjr1xkjrt = dkr

n
∑

i=1

cikyi ∀k, r (3.17)

m
∑

j=1

m
∑

j=1

γjr1xkjrt ≤ bkr ∀k, r, t (3.18)

(3.9), (3.10), (3.11)

3.3. Stochastic Extension

As mentioned in Section 3.1 some articles models for portfolio selection incorporate un-

certainty. Therefore we present in this section a stochastic extension of our deterministic

multi-objective model described in 3.2.

We will use an additional objective function that measures the robustness of the portfolio

by capturing expected surplus costs due to overtime or external work. We assume that the

first set of objective functions (measuring economic and strategic gains) are deterministic

whereas the robustness objective is given as the expected value of a random quantity. In

the following section we start with the description of the generalization of the stochastic

model formulated in Gutjahr and Reiter 55 , taking into account several economic and/or

strategic objective functions.

3.3.1. Stochastic Model Formulation

In Section 3.2.2 we denote a part of task k that requires competency r by the work

package (k, r) (k = 1, . . . ,K, r = 1, . . . , R). In addition to the deterministic model we now

assume that the effective work time which is required by a certain work package (k, r) is

subject to uncertainty. Therefore we model this amount as a random variable with known

mean dkr. We suppose that the random fluctuations around dkr are project-specific. This

can be expressed by introducing random variables Ui (i = 1, . . . , n) corresponding to the

projects, and assuming that the (random) work time in a work package (k, r) assigned to

project i is given by Ui dkr. For example, if project i requires by 20 percent more time than

estimated in advance, then the random variable Ui takes the value 1.2, and the additional

20 percent of required effective work time are assumed to distribute proportionally over all

43

3. Application to Project Portfolio Selection

work packages of which project i consists. The random variables Ui can be independent

or dependent.

If it turns out that the required amount of work in a project i has been underestimated,

we suppose that the manager sticks nevertheless to the original work plan, and that the

needed additional work is provided – as far as necessary – by overtime, i.e., by work

exceeding the regular capacities ajt of the employees.6 This is of course an essential

restriction, since it excludes the possibilities of shifting the due dates of tasks or of allowing

tardiness. The assumption is certainly adequate for branches of business where a “just-

in-time” philosophy has been established, such that due dates are always “hard”, but we

think that it can also serve as an approximation for cases of soft due dates.

As mentioned in Section 3.3.1, we aim at judging the robustness of project plans with

respect to wrong effort estimates, and the expected overtime cost can serve as a measure

of (un-)robustness also in cases where it is possible to be tardy. In order to define the

measure quantitatively, we consider numbers gj as given, where gj represents the wage per

time unit for overtime of employee j (j = 1, . . . ,m).

More specifically, we assume that the additional workload resulting from estimation

errors is distributed over the employees and periods in proportion to the planned workload

assignments. This assumption only approximates reality, since often the need for extra

work becomes known only gradually during the execution of the project. However, for

a rough estimate, the assumption makes sense, since overtime underestimation for a late

stage of one project may be compensated by overtime overestimation for an early stage of

another project, to which the same employee is assigned, such that, to some degree, the

overtime estimation error is averaged over the periods.

As mentioned in Section 3.1 we also assume that the economic gains can be subject

considerable uncertainty, partially caused by lacking information on the availability of

buyers or customers, but also stemming from other sources. We take account of the

uncertainty by treating w
(π)
i (economic gains) and w

(π)
ij (interaction effect) as random

variables as well, and assume their distributions to be known. In this work, we suppose the

decision maker to be risk-neutral in the sense that s/he aims at maximizing the expected

value of the gain, neglecting higher moments of the gain distribution. The expected

6Two alternative assumptions are to suppose that in this case, (i) external work is used, i.e., parts of
the work are outsourced, or (ii) capacity overflows are handled by means of internal re-assignments of
employees. We shall discuss these alternatives at the end of this subsection.

44

3.3. Stochastic Extension

economic gain can be expressed as

f (π)(y) = E





n
∑

i=1

w
(π)
i yi +

∑

i<j

w
(π)
ij yiyj



 (3.19)

=
n
∑

i=1

E
(

w
(π)
i

)

yi +
∑

i<j

E
(

w
(π)
ij

)

yiyj (π = 1, . . . , p)

The numbers E(w
(π)
i) (i = 1, . . . , n) and E(w

(π)
ij) (1 ≤ i < j ≤ n) are n(n + 1)p/2

parameters that have to be estimated. (In the absence of synergies and cannibalization

effects, it suffices to estimate the np expected gains E(w
(π))
i .)

Using these assumptions, a first version of our multi-objective stochastic optimization

problem can be formulated as follows:

(SMPSSSL) max
(

f (1) (y) , . . . , f (p) (y) , g(1) (x) , . . . , g(q) (x) , h (x)
)

(3.20)

s.t. (3.2), (3.19), and

h (x) = −E





m
∑

j=1

gj

T
∑

t=1

[

K
∑

k=1

R
∑

r=1

n
∑

i=1

cikUi xkrjt − ajt

]+


 (3.21)

(3.4) – (3.11) (3.22)

Constraints (3.2), (3.19) and (3.21) define the objective functions of the multi-objective

problem. Constraints (3.19) are the expected economic gains from the selected projects.

(3.2) represents the expected strategic gain: Note that
∑K

k=1

∑m
j=1

∑T
t=1 xkrjt is the ex-

pected real work time invested into work belonging to competency r. It is important

to observe that objective functions f (π) (y) , π = 1, . . . , p are in fact deterministic, since

E(w
(π)
i) and E(w

(π)
ij) are parameters that can be estimated in advance.

Constraint (3.21) defines the expected total overtime cost (the negative sign has been

introduced in order to maximize with respect to both objective functions): With i(k)

denoting the project to which task k is assigned, observe that replacing the planned

work time xkrjt by Ui(k)xkrjt =
∑n

i=1 cik Ui xkrjt, i.e., distributing the actual workload

proportionally to the planned workload, yields an overtime for employee j in period t

equal to the expression [. . .]+ in (3.21). Summation over all periods, multiplication by gj

(overtime wage for employee j per time unit) and summation over all employees gives the

total overtime cost. It should be observed that our model assumes fixed basic personnel

costs (which need not to enter into the model, because they form a decision-independent

constant) irrespectively of whether the assigned workload requires the entire regular work

45

3. Application to Project Portfolio Selection

time or whether the workload can be covered in a shorter time; thus, “undertime” has no

effect, but only overtime leads to an additional cost term. Therefore, only the positive

part of the difference between work time and capacity enters into objective function h (x).

As the constraints of the stochastic model (SMPSSSL), are basically the same as in the

deterministic model (MPSSSL) the stochastic situation can be treated similarly; thus we

keep our presentation short and focus on the main differences. The main difference is that

we assume that the constraints of the SMPSSSL model have to be fulfilled in the in the

expected situation (i.e., the situation described by the replacement of all random variables

by their expectations). Therefore constraint (3.7) ensures that in the expected situation,

the required effort for each work package is covered by the work plan, and constraint (3.6)

ensures that in the expected situation, the capacities of the employees are sufficient for the

work plan to be executable without overtime. Constraint (3.7) also guarantees coverage of

the required effort for each stochastic scenario: By our policy described above, we replace

xkrjt by Ui(k)xkrjt in the stochastic case. If the last expression is inserted instead of xkrjt

on the left hand side of (3.7), we obtain, assuming that (3.7) is satisfied:

δk
∑

t=ρk

m
∑

j=1

γrj Ui(k) xkrjt = Ui(k)

δk
∑

t=ρk

m
∑

j=1

γrj xkrjt = Ui(k) dkr

n
∑

i=1

cikyi = Ui(k) dkryi(k),

and the last expression just gives the required work time for work package (k, r) in the

stochastic situation, provided that the portfolio contains project i(k), and zero otherwise.

Constraint (3.8) ensures that the upper bounds bkr for the expected effective work time

invested per period into work package (k, r) are respected. Constraints (3.9) – (3.11)

ensure that work in task k before its ready date and after its due date is excluded, work

times xkrjt have to be nonnegative reals, and the decision variables yi on portfolios are

binary integers.

Problem (3.20) – (3.22) is a mixed-integer, nonlinear, multi-objective stochastic program

with feasible set (decision space) {0, 1}n × RKRmT .

Note that in the model above, the evaluation of the stochastic objective function h (x)

cannot be isolated from the employee-task-assignment problem, although uncertainty is

only associated with entire projects. One might guess that it would be enough to estimate

the total work time that each project needs in average and to make these figures random

in order to estimate overtime. This is possible indeed for the total effective work time

required for a set of selected projects. However, in order to compute h (x), we need the

real work time required by each employee instead, and real work time (which is related to

effective work time by the factor γjr) depends on the employee-task assignment. Therefore,

46

3.3. Stochastic Extension

already in the deterministic boundary case where all Ui are equal to unity, the employee-

task assignment problem has to be solved. The presence of noise cannot dispense us from

the additional complexity introduced by the varying competencies of employees.

As stated before the solution concept for multi-objective optimization problems used

in this work is that of Pareto-optimal solutions. For (3.20) – (3.22), the efficient frontier

is a continuous curve in R2. The combination of non-linearity, stochasticity and mixed-

integer decision variables makes this problem computationally difficult to solve, at least

for instances of practically relevant size (note that the number K ·R ·m · T of continuous

decision variables is typically very large!). For this reason, we will consider a simplified

model in the next subsection.

Subcontractors: Let us shortly discuss possible extensions of the model (3.20) – (3.22)

to the case where part of the workload can be outsourced to subcontractors or to external

personnel. We distinguish two essentially different situations: (i) Already at the beginning

of the planning interval, certain activities or sub-projects are outsourced to subcontractors

in order to reduce the risk of overtime in advance. (ii) Outsourcing takes place if and

when it becomes necessary, i.e., if it turns out that in a certain period t, one or several

employees are not able to cope with their workload, freelancers with the same qualification

are searched on the labor market and paid for performing the necessary extra work on the

basis of a short-term contract. Situation (i) can be dealt with by a very simple extension

of our model: Assume that by a possible subcontract with another firm, part or all of

the activities required for project i can be outsourced, such that from the viewpoint of

internal work, the project is reduced to a project i′ with decreased efforts d′kr ≤ dkr for its

work packages. The compensation p(c) to be paid to the subcontractor reduces e.g. the

expected profit π = 0 of project i from E(w
(0)
i) to E(w

(0)
i′) with w

(0)
i′ = w

(0)
i − p(c). Now,

it suffices to include both project i and project i′ in the problem instance and to add the

additional constraint yi+yi′ ≤ 1 ensuring that only one of the two alternative projects (or

none of them) is selected. Note that in the case of a subcontract closed in advance, the

subcontractor bears the risk of possibly overtime in his/her part of the work, such that

the real effort required for this part does not matter. Also situation (ii) can be treated

by an extension of our model. Suppose that the competence profiles of employees can be

classified into certain qualification types, such that employees j of the same qualification

type have the same efficiencies γrj in each competency r. Then, in the case where in a

certain period t, the capacity ajt of employee j is exceeded by the actual workload L, one

may look for some external worker ℓ = ℓ(j) of the same qualification type on the labor

market to employ her/him for the remainder of the work (L − ajt)
+. Of course, this is

47

3. Application to Project Portfolio Selection

only advantageous if the regular wage ḡℓ per hour of the stepping-in worker ℓ is smaller

than the overtime wage gj per hour of employee j. All we have to change in the model

is to replace in (3.21) the coefficients gj with g̃j = min(gj , ḡℓ(j)). Often, however, the

decision maker cannot be sure about the availability of external workers at the time when

they will be needed.7 It is easily possible to represent uncertainty on the availability of

external workers within the model. We show this for the simpler case where a substitute

for employee j is either available in all required periods or in none; by a slight modification,

also the case where availability depends on the period can be treated. Let Vj the indicator

variable for the random event that a substitute ℓ(j) for employee j will be available. We

replace the coefficients g̃j introduced above by Vj g̃j +(1−Vj)gj . Assuming that the event

of availability of a substitute is independent of the random work time factors Ui (which is

a reasonable assumption for most cases), we can apply the product rule for independent

random variables and rewrite the extended constraint (3.21) as

h (x) = −E





m
∑

j=1

(ηj g̃j + (1− ηj)gj)
T
∑

t=1

[

K
∑

k=1

R
∑

r=1

n
∑

i=1

cik Ui xkjrt − ajt

]+


 , (3.23)

where ηj is the probability that a substitute for j will be available.

Employee Re-Assignments: A second possible model extension considers re-assignments

of employees to tasks as soon as capacity bottlenecks become known during the execution

of the projects. This alternative necessitates a dynamic planning process which is com-

putationally much more complex than the static planning considered in our basic model.

Although the main features of the model could be preserved in such an extension, the so-

lution space would have to be enlarged from static decisions to a very large set of dynamic

policies. We consider such an extension as a topic of future research (see Conclusions). In

practice, dynamic personnel re-assignment is often considered as undesirable for account-

ability reasons, since repeated re-assignment of employees to different work packages tends

to make a transparent assessment of individual contributions very difficult. Moreover, the

familarization of an employee with a new task takes extra time and can even slow down the

completion of the task (cf. Brooks Jr 21), such that this option has to be used with much

caution. (Clearly, the same limitation also holds for ad hoc subcontracting.) Therefore, al-

ready the static model makes sense from the viewpoint of applications. Nevertheless, also

in cases where the decision maker uses the possibility of dynamic re-assignments whenever

7This does not hold for the availability of subcontractors in situation (i), because whether or not a
subcontract can be made in advance can be judged immediately at the time of the planning decision.

48

3.3. Stochastic Extension

it is advantageous, our model in its present form is still applicable: one has only to change

the interpretation of objective function h (x) from “expected total overtime cost” to a

conservative estimate of this cost.

49

3. Application to Project Portfolio Selection

Linear Asymptotic Approximation

Analogously to the linear asymptotic approximation of the deterministic model described

in Section 3.2.7 a similar model can be obtained for the stochastic model. Which can be

formulated as follows:

(LSMPSSSL) max
(

f (1) (y) , . . . , f (p) (y) , g(1) (x) , . . . , g(q) (x) , h (x)
)

(3.24)

s.t. (3.2), (3.19), (3.21) and

(3.17), (3.18), (3.9), (3.10) (3.11)

3.4. Solution Techniques

The MPSSSL problem as well as the SMPSSL problem admits a natural decomposition

into two subproblems: The master problem consists in the portfolio selection, i.e., in the

choice of the binary vector y. The slave problem that consists in the scheduling-and-staff-

assignment decision, i.e., in the choice of the work time array x, given a fixed portfolio y.

But the decompositions are slightly different for the deterministic respectively stochastic

case. Thus we give a brief description of the two decomposition approaches in the following

paragraphs.

(i) Deterministic problem In the deterministic case the master problem (MP) is a dis-

crete multi-objective optimization problem with the set {0, 1}n of binary vectors of length n

as the search space, and p+ q objectives.

(MPdet) max
(

f (1) (y) , . . . , f (p) (y)
)

(3.25)

s.t. f (π)(y) =
n
∑

i=1

w
(π)
i yi +

∑

i<j

w
(π)
ij yiyj (π = 1, . . . , p) (3.26)

yi ∈ {0, 1} ∀i. (3.27)

Considering a special fixed portfolio y, the values of these p+ q objectives are (in general)

not yet completely determined; instead, the solution of the slave problem described below

assigns to the given y a (possibly empty) set of solutions corresponding to a set of points

in the objective space.

In general contrary to the master problem, the slave problem (SP) is a continuous multi-

50

3.4. Solution Techniques

objective optimization problem. Its search space consists of the feasible work time arrays x

for the given fixed portfolio y (this search space can also be empty). Since for fixed y,

the first p objective functions in (3.3) become fixed, the slave problem has actually only q

objectives.

If the linear approximations of Subsection 3.2.7 are applied, the slave problem reduces

to a multi-objective Linear Program (LP).

(SPdet) max
(

ḡ(1) (x) , . . . , ḡ(q) (x)
)

(3.28)

s.t. ḡ(κ)(x) =
R
∑

r=1

v(κ)r η̄r

m
∑

j=1

ϕ′
r(zjr1)

K
∑

k=1

T
∑

s=1

xkjrs (κ = 1, . . . , q) (3.29)

(3.9) – (3.11), (3.17), (3.18) (3.30)

We shall focus on the special case q = 1 where the slave problem has actually only one

objective, such that it consists in the solution of an ordinary (single-objective) LP.

The case q > 1 is considerably harder to treat computationally, since in this case,

Pareto-optimal solutions are of mixed-integer type. Note that to each portfolio y that

occurs in the set of Pareto-optimal solutions, the solution of the slave problem consists of

a composition of (q−1)-dimensional facets in the q-dimensional space. These solutions can

be determined by means of suitable algorithms (cf. Armand and Malivert 5 , Steuer 109), but

their composition over all possible y (omitting dominated parts) is very difficult. A more

viable technique consists in solving also the slave problem only heuristically, approximating

the continuous Pareto front for fixed y by a discrete (finite) number of points. 8

(ii) Stochastic problem To obtain a bi-objective formulation for the stochastic problem

described in Subsection 3.3.1 we focus on the special case where one objective function

representing economic gains (p = 1) and one objective that addresses strategic gains

(q = 1) is present. Furthermore we assume that the weights v
(1)
r are normalized in such a

way that the strategic objective function is comparable to the economic objective function.

In this way the two objective function can be simply added instead of being combined by

a weighted average to obtain our first objective function for the stochastic problem. The

second objective function (3.21) addresses expected total overtime cost. Again considering

the linear approximations of Subsection 3.2.7 the modified model can be formulated as

follows:

8 We also tested a greedy heuristic for solving the slave problem approximately. The solution quality of
the obtained results, however, turned out as not too good. We leave an improvement of heuristics for
approximately solving the slave problem as a topic of future research.

51

3. Application to Project Portfolio Selection

(MPstoch) max
(

fc (y, x) =
(

f (1) (y) + ḡ(1) (x)
)

, h (x)
)

(3.31)

s.t. f (1) (y) =
n
∑

i=1

E
(

w
(1)
i

)

yi +
∑

i<j

E
(

w
(1)
ij

)

yiyj (3.32)

ḡ(1)(x) =
R
∑

r=1

v(1)r η̄r

m
∑

j=1

ϕ′
r(zjr1)

K
∑

k=1

T
∑

s=1

xkjrs (3.33)

h (x) = −E





m
∑

j=1

gj

T
∑

t=1

[

K
∑

k=1

R
∑

r=1

n
∑

i=1

cikUi xkrjt − ajt

]+


 (3.34)

x = solution of the subproblem (SPstoch) to given y (3.35)

yi ∈ {0, 1} ∀i. (3.36)

(SPstoch) max ḡ(1) (x) (3.37)

s.t. ḡ(1)(x) =
R
∑

r=1

v(1)r η̄r

m
∑

j=1

ϕ′
r(zjr1)

K
∑

k=1

T
∑

s=1

xkjrs (3.38)

(3.9) – (3.11), (3.17), (3.18) (3.39)

Let us discuss some properties of the modified stochastic model described above. For a

fixed portfolio y, the work plan x maximizing the first objective function fc (x, y) is ob-

tained by maximization of
∑R

r=1 v
(1)
r η̄r

∑m
j=1 ϕ

′
r(zjr1)

∑K
k=1

∑T
s=1 xkjrs over all x = (xkrjt)

that are feasible in combination with the given y. Let us denote this work plan by x∗(y).

If we would have only a single feasible portfolio y, the solution (y, x∗(y)) would be guaran-

teed to be Pareto-optimal. Of course, in view of h (x), it would (in general) not be the only

Pareto-optimal solution corresponding to y, and if there exist also other feasible y′, it could

even be that (y, x∗(y)) is dominated by some (y′, x′). Nevertheless, the Pareto-optimal

solutions amongst all solutions of the type (y, x∗(y)) are evidently good candidates for

approximating the set of Pareto-optimal solutions of (3.20) – (3.22). Therefore, we modify

our basic model by restricting ourselves to solutions of this type, imposing the additional

constraint on (y, x) that x ∈ argmaxx′ h(y, x′).

The problem remains a bi-objective problem in this way, since the elements of the set

52

3.4. Solution Techniques

{(y, x∗(y)) | y ∈ {0, 1}n} have to be evaluated with respect to both objective functions

fc (y, x) and h (x) and Pareto-optima have to be determined, but the decision space is

now reduced to the discrete finite set {0, 1}n. For the evaluation of each y ∈ {0, 1}n, an
auxiliary problem, optimizing x to the given y, has to be solved.

In this way, we obtain a similar hierarchical decomposition of the overall problem into a

bi-objective discrete stochastic optimizationmaster problem of determining Pareto-optimal

portfolios y, and a single-objective continuous (and even linear) deterministic subproblem

of determining the best work plan x to given portfolio y.

3.4.1. General Approach

As the structure of the deterministic and stochastic problems share many properties the

basic solution procedures are very similar. In the following paragraphs we describe the

common features of the solution procedures for both cases.

Since the subproblem is an LP, its computational solution does not cause difficulties:

it can be solved even for a very large number KRmT of variables. Nevertheless, the

subproblem has to be solved each time a solution y of the master problem is to be evaluated.

Therefore, it is important that the subproblem is solved as efficiently as possible. We use

CPLEX version 11.0 for this purpose.

Contrary to the subproblem, the master problem belongs to a computationally hard

class of problems. It is immediately seen that already the deterministic, single-objective

special case contains the well-known knapsack problem, which is NP-hard. The bi(multi)-

objective situation and in the stochastic case the presence of uncertainty further increase

the complexity. To obtain an approximate solution of the master problem we apply two

multi-objective metaheuristics: the Nondominated Sorting Genetic Algorithm II (NSGA-

II) by Deb et al. 33 , and the Pareto Ant Colony (P-ACO) algorithm by Doerner et al. 35 (a

brief description of the algorithms is given in Section 2.4). The solution x returned by the

procedure for the slave problem to the given portfolio y is either unique or empty. If a non-

empty solution x = x(y) has been obtained for some y, the full vector of objective function

values can be determined by the master procedure. Otherwise, the given portfolio y does

not admit a feasible work time array x. Thus, any multi-objective metaheuristic can be

applied in the master procedure in a standard way, with the only exception that one has

to take care of the case where to some y, no feasible x is found.

In the stochastic case for most distributions of Ui, a direct evaluation of h (x) by numeri-

cal methods is costly or even impossible: Determining the expected value of the expression

[. . .]+ directly would require the computation of a convolution product of up to n distribu-

53

3. Application to Project Portfolio Selection

tions. For this reason, we resort to Monte-Carlo simulation to obtain an estimate of h (x)

for each given x. To improve the variance of the estimate, we shall use the importance

sampling technique (an introduction is given in Section 2.2).

Since we do not obtain exact evaluations of h (x) in this way, but only stochastic esti-

mates, there arises the question how the interplay between optimization and simulation

should be handled in an efficient way. As the literature on the field called Simulation-

Optimization shows (see, e.g., Pflug 98), this is a highly nontrivial question. In our case,

we are confronted with the additional complication that the optimization problem is bi-

objective. Up to now, only few papers have addressed multi-objective discrete simulation-

optimization problems and presented methods that could be used to tackle with such

problems efficiently.

In this work, we apply a technique called Adaptive Pareto Sampling (APS) (cf. Sub-

section 2.4.1) developed in Gutjahr 54 in combination with the NSGA-II algorithm for the

solution of stochastic multi-objective combinatorial optimization problems. A detailed dis-

cussion of convergence of the proposed approach and the considered application is given

in Gutjahr and Reiter 55 .

3.4.2. NSGA-II

In our application, where a solution consists of a binary vector (y1, . . . , yn), lends itself

very well to the application of a genetic algorithm. Application dependent parts of the

NSGA-II algorithm are implemented in a similar way as in the single objective case (see

Gutjahr et al. 57).

(1) Encoding of a solution. Each solution generated during the execution of the NSGA-

II algorithm is encoded as a simple binary vector (y1, . . . , yn).

(2) Generation of the initial population. The initial population of chromosomes is gen-

erated with each chromosome y consisting of n bits that are chosen uniformly at random.

(3) Crossover. For crossover, we use a standard one-point crossover, which is applied to

a fraction of the chromosomes of the population.

(4) Mutation. Mutation is implemented bit-wise by an independent random flip of each

bit in each chromosome with a certain probability.

54

3.4. Solution Techniques

(5) Constraint Handling. In general crossover and mutation operations will generate

solutions that may not be feasible, to cope with the situation when a solution is not

feasible different approaches exist (for a brief introduction see 2.4.2). In the relevant

literature on knapsack-type problems several repair mechanisms have been proposed to

deal with the infeasibility of solutions. Greedy repair is reported to provide the best results

(see Michalewicz and Arabas 89). But in our application the complex constraints make it

impossible to compute an analogue to the “weight”of an item in a knapsack problem. As

greedy repair relies on benefit/weight ratios it is not applicable. To solve this problem

we implemented a simpler repair mechanism, removing randomly selected projects from

portfolio y by setting the corresponding genes yi to zero, until feasibility is achieved.

(6) Elite-preserving procedure. As selection operator we use the standard elite-preserving

procedure used by Deb et al. 33 .

3.4.3. P-ACO

In this work we apply a variant of the P-ACO algorithm, where we use a pheromone

update strategy of a MAX-MIN Ant System (Stützle et al. 113).

(1) Construction graph. As in our application the search space is S = {0, 1}, each a so-

lution consists of a binary vector (y1, . . . , yn), therefore we use a very simple construction

graph, the so-called chain construction graph introduced in Gutjahr 53 . A single construc-

tion step corresponds to the assignment of a value 0 or 1 to one of the binary variables yi.

These values are assigned from left to right, i.e., for bit 1, 2, . . . , n.

(2) Constraint handling. In order to guarantee feasibility of the obtained solution, the

following problem-dependent rule is used for our application: If up to now, the first i− 1

decisions variables have been set to the values y1, . . . , yi−1, then the next variable yi is only

allowed to be set to the value 1 if the project portfolio (y1, . . . , yi, 0, . . . , 0) has a feasible

work time array x. Whether this is the case or not is judged by the slave procedure. If it

is the case, both values 0 and 1 are feasible for the current variable yi; otherwise, only the

value 0 is feasible.

(3) Pheromone update. In our experiments we use an iteration-best (round-best) pheromone

update mechanism (see Dorigo and Stützle 36). To avoid stagnation situations that can

arise from the chosen pheromone update strategy, we use pheromone limits, as proposed

by the MAX-MIN Ant System (Stützle et al. 113).

55

3. Application to Project Portfolio Selection

(4) Scalarization function As shown in Section 2.4.3 P-ACO needs a scalarizing func-

tion. Different approaches (aggregation methods) can be used (see Section 2.1). The

scalarization by weighted averages is a simple, intuitive approach to reduce multi-objective

problems to single-objective ones; it assumes that the utility function of the decision maker

is a linear function. In this work we use weighted Chebyshev distances which overcome

the problems of the weighted averages approach. In a previous work Gutjahr et al. 57 we

made experiments with both approaches, the achieved performance turned out as about

the same for both choices in our experiments.

3.4.4. Importance Sampling

In our experiments, the random variables Ui have been assumed as independent and

modeled by triangular distributions ∆(Bi,Mi,Wi), where Bi, Mi and Wi are best case,

most likely and worst case estimates (Bi < Mi < Wi). To estimate objective function

h (x), a sample of s scenarios ω1, . . . , ωs is drawn, where each scenario ων consists of

a vector U (ν) = (U
(ν)
1 , . . . , U

(ν)
n) of i.i.d. random numbers U

(ν)
i distributed according to

∆(Bi,Mi,Wi) (i = 1, . . . , n). According to (2.7), the estimator h̃ (x) for h (x) is given by

h̃ (x) =
1

s

s
∑

ν=1

h
(

x, U (ν)
)

(3.40)

where (cf. (3.34))

h(x, U (ν)) = −
m
∑

j=1

gj

T
∑

t=1

[

K
∑

k=1

R
∑

r=1

n
∑

i=1

cik U
(ν)
i xkrjt − ajt

]+

. (3.41)

To reduce the variance of the estimator h (x) without paying the cost of increasing sam-

ple size, we use importance sampling (IS) in our experiments (see, e.g., Rubinstein and

Kroese 107). In our case, for estimating h (x), we are only interested in events where the

capacity ajt of some employee in some period is exceeded: if this is not the case, the term
[

∑

k

∑

r

∑

i cik U
(ν)
i xkrjt − ajt

]+
in (3.41) is zero. This suggests to shift the distribution

∆(Bi,Mi,Wi) of Ui to ∆(Bi,M+
i ,Wi) with some M+

i satisfying Mi < M+
i < Wi, such

that the above-mentioned event occurs more frequently during sampling. The correspond-

ing likelihood ratio is

λ(u; Bi,Mi,M+
i ,Wi) = χ(u; Bi,Mi,Wi) / χ(u; Bi,M+

i ,Wi),

56

3.4. Solution Techniques

where χ(u; B,M,W) denotes the probability density of the triangular distribution ∆(B,M,W)

in point u. Note that the distributions ∆(Bi,Mi,Wi) and ∆(Bi,M+
i ,Wi) have the same

support. By the assumed independence of the random variables Ui, we can multiply the

likelihood ratios corresponding to the single variables Ui to obtain the overall weight.

Thus, we can replace (3.41) by

hIS
(

x, U (ν)
)

= −





m
∑

j=1

gj

T
∑

t=1

[

K
∑

k=1

R
∑

r=1

n
∑

i=1

cik U
(ν)
i xkrjt − ajt

]+




(

n
∏

ℓ=1

λ(U
(ν)
ℓ ; Bℓ,Mℓ,M+

ℓ ,Wℓ)

)

,

(3.42)

where U
(ν)
i is now sampled from ∆(Bi,M+

i ,Wi) instead of ∆(Bi,Mi,Wi) (i = 1, . . . , n).

To shift the distribution, a parameter α is used to determine M̄+
i = B̄i + α(W̄i − B̄i) for

each project i. We choose the parameter α as identical for each project.

Computational experiments confirmed that the amount of variance reductions is influ-

enced by the parameter α. In Figure 3.1, the results obtained by using different α values

for a fixed work plan x and fixed working capacities ajt are shown. Let σh̃ denote the

standard deviation of the sample average estimate (3.40). As it can be seen from Figure

3.1, there is an optimal value α∗ of α leading to the minimum standard deviation of the

estimator. In the example of Figure 3.1, the optimal value of α is α∗ ≈ 0.6.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

σ
h̃
(x

)

α

IS sample size = 1000
SdS sample size = 1000

Figure 3.1.: Standard deviation of σh̃ for s = 1000 and different α values (SdS: standard sampling), IS:
importance sampling).

57

3. Application to Project Portfolio Selection

The optimal value α∗ = α∗
i (y, x) of α for a given project i depends in a rather compli-

cated way on the parameters of the model, and there seems to be no chance to compute

it in advance by means of some closed-form expression. Therefore, we tried to develop

a heuristic rule for determining a suitable constant value αc that can be used for α in

all projects, effecting variance reduction in the case of each single project, although at

different degrees. The intuition behind our heuristic rule is that the relation between

work capacity and required work time plays a role for an appropriate choice of α: If the

available capacity is low compared to the required work time, then the event that the

required work time exceeds capacity will be frequent during simulation, such that no im-

portance sampling (or only a small probability shift) will be necessary. If, on the other

hand, the available capacity is high compared to the required work time, then the event

that the required work time exceeds capacity is a rare event, which makes a considerable

probability shift for importance sampling advisable. In formal terms, we define the actual

working capacity

A (y, x) =

m
∑

j=1

T
∑

t=1

ajtI

(

K
∑

k=1

R
∑

r=1

xkrjt > 0

)

, (3.43)

with I denoting the indicator function, as the total capacity of all employees in all periods

in which they actually do some work. To normalize the value of A(y, x), we introduce

the relative actual working capacity as Arel (y, x) = [A (y, x)− B̄ (y)] / [W̄ (y)− B̄ (y)],

where B̄ (y) =
∑n

i=1 B̄iyi and W̄ (y) =
∑n

i=1 W̄iyi. In the most interesting situation (but

not necessarily always), in the best case, the actual working capacity A (y, x) is sufficient

to perform the projects of the portfolio y, such that A (y, x) ≥ B̄(y), and in the worst

case, it is not sufficient for that purpose, such that A (y, x) ≤ W̄ (y). In such a situation,

0 ≤ Arel (y, x) ≤ 1. By some pre-tests, we found that setting αc (y, x) = 0.5·Arel (y, x)+0.5

produces a (project-independent) αc (y, x) that can be used as a good surrogate for the

unknown, project-dependent optimal values α∗
i (y, x). This yielded variance reductions

that were only by 7 – 12 % below those achieved by the optimal α∗
i .

3.5. Test Instances

To evaluate the performance of the proposed methods we use two sets of test instances:

randomly generated synthetic test cases of different size and type, as well as real-world

instances provided by the E-Commerce Competence Center Austria (see Section 3.5.2).

In the following section we describe the different test instances for the deterministic model

58

3.5. Test Instances

as well as for the stochastic model.

3.5.1. Synthetic Test Cases

In the synthetically generated test cases9 , we chose only one economic and one competence

objective function, i.e., we set p = 1 and q = 1. We varied three factors that might influence

the results of the used metaheuristics.

(1) Instance size: Since our standard real-world test instance consists of 18 candidate

projects, we generated instances of this size also in the synthetic tests. For being able

to give a comparison with exact solutions, we also studied a set of smaller instances.

This gives the two instance classes: “small instances”: 12 candidate projects, and “large

instances”: 18 candidate projects.

(2) Tightness of capacity constraints: We generated different project sizes, where the

size ζi of project i is defined as the overall effective work time required by project i. First,

an average project size ζ was calculated as ζ = Tmµ/n, where T is the number of periods,

m is the number of employees, and n is the number of projects. The multiplier µ was

used to define whether the capacity constraints are tight or loose: (i) tight: µ = 1.25,

(ii) loose: µ = 1.00. Then for each project i = 1, . . . , n, a random number ξi was drawn

from a uniform distribution on [0, 1], and ζi was determined as ζi = (ζnξi) /
(

∑n
j=1 ξj

)

.

Finally, the project sizes ζi were split randomly into the effective work times dkr required

by competency r in task k assigned to project i. In the synthetically generated test

instances, we identified projects and tasks, i.e., we let each project consist of only one

task. Economic benefits w
(1)
i were determined as ζi · (const + noisei), where noisei is a

random noise term with uniform distribution and mean zero.

(3) Distribution of the competence weights: We chose R = 20 competencies and in-

vestigated two distribution models: (i) Random: To each competence, a weight v
(k)
r was

assigned by drawing from a uniform distribution on [0, 1]. (ii) Counter-economic: In order

to study the tradeoff between economic and competence benefits, we used the following

rule to generate the competence weights. First, the projects were split into two groups

9 In default of comparable integrated models, we cannot test our procedures on available benchmarks.
There are test instances for special parts of our model. E.g., in Medaglia et al. 88 , test cases for multi-
objective project selection problems are obtained using Steuer’s Steuer 110 ADBASE code. However,
for our purposes, information on competence scores of employees, competence requirements of projects,
learning rates etc. would have to be filled in, such that we found it more appropriate to generate our
test cases from scratch.

59

3. Application to Project Portfolio Selection

with comparably low resp. high economic benefit. A competence weight v
(1)
r drawn from

a uniform distribution on [0, 1] was assigned to competencies that were strongly required

by the low-benefit group. The competence weights of other competencies were set to zero.

The possible combinations of levels for these three factors yield eight different types of

test cases. For each type, ten independent test cases were generated randomly, leading us

to obtain 80 test cases in total.

The other parameters were generated as follows:

• (a) Ready times and due dates: The values ρk and δk for each task k were determined

by drawing two uniformly distributed random numbers ξ(1) and ξ(2) from [0, 1],

multiplying them by T , and rounding to integers. The smaller resulting number

determines the ready time, the larger determines the due date.

• (b) Efficiencies: Initial efficiency values γjr1 for each employee j and each competency

r in period 1 were drawn from a uniform distribution on [0, 1]. The initial competence

scores zjr1 were obtained by applying the inverse function ϕ−1
r to ϕr.

• (c) Capacities: The capacities ajt were determined based on a uniformly distributed

random variable on [0.5, 1].

• (d) Rates: Learning rates ηr and deprecation rates βr for each competency r were

drawn from uniform distributions, using different scales with a factor of 800 between

the maximum values of ηr and βr, respectively.

3.5.2. Real-World Test Cases

The Electronic Commerce Competence Center (EC3) Austria, a public-private partner-

ship institution funded by the Austrian Federal Ministry of Economic Affairs and the City

of Vienna as well as by twelve private enterprises was chosen as a real-world application

case. The EC3 develops innovative technology within a cooperation network consisting of

(i) the three major universities in Vienna (the University of Vienna, the Vienna Univer-

sity of Technology, and the Vienna University of Economics and Business Administration)

and (ii) the twelve business partners. The EC3’s goal is to support a fast transfer of

knowledge between academic institutions and business partners. Covered research areas

encompass such topics as methods of information access and information visualization,

designs and mechanisms of Web-based systems, empirical business analysis by quantita-

tive methods, and the evaluation of business ideas and models by market research. The

following description of the data collection process is based on the article Gutjahr et al. 58 .

60

3.5. Test Instances

According to the mathematical formulation of the optimization problem in Subsection

3.2.5, the EC3 was confronted with an extensive data requirement.A catalogue of relevant

competencies as well as a competence scoring model had to be developed first. A draft

for the catalogue included competencies from all four principal competence classes ac-

cording to the categorization in Erpenbeck and Heyse 40 , viz. personal, activity-oriented,

social-communicative, and professional/methodological competence. Based on the results

of an e-mail survey among EC3’s researchers, this draft underwent several adaptations.

Ultimately, only the professional and methodological competencies were kept. The final

version consists of R = 80 competencies, these are structured into nine groups, viz. data

analysis and business analytics, data organization including warehousing, digital econ-

omy and society, e-business components and foundations, functional business domains,

symbol processing, digital technologies, economic activity categories, and methodological

competence.

Objective and subjective evidences were used as competence indicators (cf. HR-XML

Consortium 66). The former distinguish formal qualifications in terms of certificates, diplo-

mas, or publication records, and professional experience. The latter include the ratings

of a researcher’s competencies by him-/herself, by the scientific director, as well as by the

peers in and by the head of the respective research group. The contribution of each objec-

tive evidence to each competence was specified based on background information such as

curricula or journal citation indices. The subjective evidence was measured on a six-item

ordinal scale according to the skill acquisition model in Dreyfus et al. 37 . Objective and

subjective evidence was collected by surveying via e-mail m = 28 employees. , including

the six heads of the research groups into which EC3 is structured, as well as the scientific

director and six freelancers, in addition to the institution’s 15 full- or part-time permanent

researchers.

From the data gathered, the competence score zjrt was computed by taking the sum of

the contributions of all objective evidence assigned to a researcher and adding an adjusted

score obtained from the subjective competence ratings. Learning rates ηr and knowledge

depreciation rates βr were defined based on expert guesses. The knowledge depreciation

rate was fixed at a rather optimistic level. Most competencies received the same learning

and depreciation rates, except for several methodological competencies that were supposed

to grow and diminish more slowly. The parameters a and b of the logistic function ϕr(z)

were chosen as identical for all competencies r, based on expert guesses.

For the majority of our test cases, a set of descriptions of n = 18 potential projects was

used (data were extracted from projet plans). Three different measures of economic project

benefit were provided, viz. the amount of third-party funding (ranging from approximately

61

3. Application to Project Portfolio Selection

200,000 Euro to no external funding at all), the overall rate of co-financing (covering the

full interval from 0 to 100%), and the utility generated for business partners measured by

means of an EC3-internal intellectual performance analysis. The projects included in the

test data yield utility values up to 50.

Various settings of the competence weights v
(κ)
r of the competencies were devised. Five

competence profiles embarking on different strategies, e.g. the orientation towards techno-

logical projects, towards data analytic and empirical projects, or towards projects in the

area of mobile business, were described. Moreover, several “opportunistic” competence

profiles that primarily focus on those competencies that are required in many projects, an

“indifferent” competence profile with equal relative importance assigned to all competen-

cies, as well as an “ignorant” competence profile accounting only for those competencies

not required in any project were designed.

3.5.3. Test Cases for the Stochastic Problem

As described in Paragraph 3.4.4, the random variables Ui have been modeled by triangular

distributions ∆(Bi,Mi,Wi), where Bi, Mi and Wi are best case, most likely and worst

case estimates (Bi <Mi <Wi).

To obtain these values, we start by estimating the best case work time B̄i, the most

likely work time M̄i and the worst case work time W̄i for each project i. The expected

value of a ∆(B̄i, M̄i, W̄i) distribution is given as (B̄i + M̄i + W̄i)/3, which has to be equal

to the expected required effective work time
∑

k

∑

r cikdkr of project i. Therefore, we set

dtotali = (B̄i + M̄i + W̄i)/3 and partition this estimated effort into effort estimates dk for

the tasks k assigned to project i, and after that, we further partition each estimate dk

into effort estimates dkr for the work packages assigned to task k. The parameters of the

distribution of Ui result then as Bi = B̄i/d
total
i , Mi = M̄i/d

total
i , Wi = W̄i/d

total
i , which

gives E(Ui) = (Bi +Mi +Wi)/3 = 1 as required.

To evaluate the performance of the proposed methods ten different test instances (de-

rived from the real-world instances) are used. The deterministic parameters of the test

instances were derived from a real-world application case (E-Commerce Competence Cen-

ter Austria). This application as well as the way the necessary parameters have been

obtained is already described in Subsection 3.5.2, so we do not give details here, but focus

on the additional parameter choices required for the stochastic extension of the model.

We used test instances with n = 12 candidate projects, m = 20 employees, R = 20

competencies and a planning horizon of T = 24 periods. Projects consist of 1 to 3 tasks.

As described in Subsection 3.5.1, we varied (among others) two main factors that may in-

62

3.6. Results

fluence the results of the used metaheuristics: (i) the tightness of the capacity constraints,

and (ii) the joint distribution of the expected economic gains E(w
(1)
i) and the strategic

gains v
(1)
r . Synergy and cannibalization effects did not play a role in the described appli-

cation, so E(w
(1)
is) was chosen as zero for all i, s. For each of the two factors, two levels

were defined: tight and loose capacity constraints; no correlation resp. negative correlation

between economic and strategic gains.

Two different groups of test instances are considered. In five test instances, the dis-

tributions of the random variables Ui are the same for each project i. The other five

test instances consider varying distributions of the random variables Ui, this may be used

to model projects that are more risky than others. The possible combinations of levels

for factors (i) and (ii) yield four different types of test instances. In each group, one

test instance of each type is included, plus one extra test instance of the (most interest-

ing) type “tight capacity constraints” and “negatively correlated gains”. The parameters

for the distribution of the random variable Ui for each project i were determined as fol-

lows: For W̄i, a uniformly distributed random number from w̄i ∈ [1.5, 2.0] was drawn, W̄i

was then calculated as W̄i = w̄id
total
i . For M̄i, again a random number m̄i ∈ [0.5, 1.0]

was drawn to calculate M̄i = (3 − w̄i)m̄id
total
i . Finally, B̄i was calculated as follows:

B̄i = (3− w̄i)(1− m̄i)d
total
i . In this way, dtotali = (B̄i + M̄i + W̄i)/3 is always satisfied, as

required. For the test instances that use the same distribution for each project i, only one

set of parameters was created, which was then used for each project.

In Table 3.7 in Subsection 3.6.3 the first two columns give a survey on the resulting

test instances. The second column encodes the instance type according to the following

scheme: The first character represents the distribution (e equal, v varying), the second

character the constraints (t tight, l loose), and the third character the gains (c correlated,

u uncorrelated).

3.6. Results

3.6.1. Results for Synthetic Test Cases

For each of the 80 test cases, we performed ten runs of our metaheuristics with different

seeds. For the test cases of small instance size (n = 12), we compared the results of the

metaheuristics with a procedure where on the master problem level, the multi-objective

metaheuristic was replaced by complete enumeration (CE) and determination of the exact

Pareto front. These runs required about 4.1 hours per test case. We gave the metaheuris-

tics 5 % of the runtime of the CE runs, i.e., each metaheuristic was given 12 minutes

63

3. Application to Project Portfolio Selection

computation time. Some preliminary experiments with different instance sizes showed

that by allowing the runtime for the metaheuristics to increase quadratically in n, the

algorithms scaled reasonably, such that we decided to execute the metaheuristics on the

test cases with large instance size (n = 18) using 12 · (18/12)2 = 27 minutes runtime.

For the evaluation of the quality of the solution sets delivered by the multi-objective

metaheuristics, we chose three measures: the hypervolume measure, the spacing measure

and the coverage measure (a detailed description of the measures is given in Section 2.3).

Tables 3.1 and 3.2 show the experimental results for the 80 test instances. For the com-

parison between P-ACO and NSGA-II with respect to hypervolume and spacing measure,

a two-sided Mann-Whitney test was used to judge statistical significance of superiority

results. Significantly superior entries were marked by stars. For the coverage and spacing

measures, no significance tests were performed because the condition of independent ba-

sic variables is not satisfied for the indicated aggregations. In the case of the small test

instances (Table 3.1), we also present the hypervolumes of the exact solutions, obtained

by solving the master problem by CE.

From Table 3.1, it can be seen that for the small test instances, P-ACO and NSGA-II

are comparable in their performance with respect to hypervolume and spacing measure,

but NSGA-II is better than P-ACO with respect to the coverage measure in 35 of 40 cases.

For the large synthetic test instances, Table 3.2 shows that NSGA-II clearly outperforms

P-ACO. For the small instances where exact solutions are known, we see that in most

cases, the hypervolume values achieved by the metaheuristics deviate from those of the

exact solutions by less than 10 percent.

64

3.6. Results

t.c. Exact P-ACO NSGA-II

IH µ (IH) µ (ISP) µ (ICO) µ (IH) µ (ISP) µ (ICO)

1 0.9339 0.8578 0.0524 0.1703 0.8394 0.0505 0.5409
2 0.9502 0.8981 0.0653 0.2856 0.9044 0.0708 0.5085
3 0.9293 0.8509 0.0576 0.1746 0.8720 0.0470 0.4752
4 0.9287 0.8513 0.0740 0.2225 0.8687 0.0652 0.4850
5 0.9497 0.8829 0.0611 0.2402 0.8901 0.0493 0.5320
6 0.9546 0.8560 0.0493 0.1291 0.9057∗∗ 0.0518 0.7828
7 0.9149 0.8372 0.0804 0.3083 0.8426 0.0921 0.4835
8 0.9214 0.8410 0.0595 0.2514 0.8379 0.0462 0.5060
9 0.8979 0.8217∗ 0.0515 0.2442 0.7679 0.0683 0.3888
10 0.9116 0.8132 0.0631 0.1688 0.8357 0.0566 0.5884
11 0.9429 0.8404 0.0460∗∗ 0.2433 0.8230 0.0816 0.4794
12 0.9391 0.8956∗∗ 0.0603 0.2987 0.8462 0.1073 0.2238
13 0.9220 0.8629∗∗ 0.0602 0.3609 0.8172 0.0871 0.2882
14 0.9680 0.8785 0.0541 0.1746 0.8783 0.0668 0.5643
15 0.9470 0.8710∗∗ 0.0625 0.1707 0.8080 0.0624 0.3638
16 0.9580 0.8659 0.0541 0.2355 0.8402 0.0723 0.3449
17 0.9335 0.8523∗ 0.0542 0.2478 0.8224 0.0821 0.3389
18 0.9355 0.8337 0.0616 0.1867 0.8342 0.0835 0.3912
19 0.9366 0.8510∗ 0.0572 0.2819 0.8236 0.0475 0.4091
20 0.9585 0.8696 0.0598 0.2649 0.8668 0.0785 0.4500
21 0.9652 0.8995 0.0532 0.3701 0.8927 0.0510 0.4287
22 0.9245 0.8219 0.0721 0.1652 0.8528∗∗ 0.0506∗ 0.6234
23 0.9370 0.8403 0.0717 0.2039 0.8676 0.0608 0.5854
24 0.9396 0.8735∗ 0.0457 0.6572 0.8354 0.0613 0.2380
25 0.9411 0.8745 0.0634 0.3852 0.8710 0.0581 0.3733
26 0.9261 0.8442 0.0585 0.2714 0.8537 0.0351∗ 0.4750
27 0.9386 0.8454 0.0455 0.3471 0.8418 0.0439 0.5374
28 0.9390 0.8440 0.0557 0.2893 0.8625 0.0630 0.4702
29 0.9166 0.8671 0.0543 0.3048 0.8556 0.0568 0.3831
30 0.9447 0.8611 0.0780 0.3175 0.8720 0.0481∗ 0.4923
31 0.9348 0.8437 0.0622 0.2624 0.8709∗∗ 0.0642 0.6225
32 0.9548 0.8771 0.0404 0.2565 0.8953 0.0346 0.5069
33 0.9430 0.8477 0.0575 0.1708 0.8889∗∗ 0.0435 0.6402
34 0.9269 0.8666 0.0583 0.2137 0.8755 0.0432 0.5373
35 0.9308 0.8699 0.0583 0.3067 0.8783 0.0563 0.4568
36 0.9054 0.8042 0.0615 0.1077 0.8501∗∗ 0.0445 0.7046
37 0.9126 0.8805∗∗ 0.0501 0.4391 0.8575 0.0471 0.3686
38 0.9176 0.8809 0.0442∗ 0.4706 0.8515∗ 0.0685 0.2968
39 0.9489 0.8618 0.0521 0.2844 0.8793 0.0459 0.5050
40 0.9299 0.8366 0.0712 0.3102 0.8519 0.0626 0.4781

Table 3.1.: Mean values of the hypervolume, the spacing measure and the coverage measure over 10 runs
for the small synthetic test cases. Stars * resp. ** indicate statistically significant superiority
at level α = 0.05 resp. 0.01.

65

3. Application to Project Portfolio Selection

t.c. P-ACO NSGA-II

µ (IH) µ (ISP) µ (ICO) µ (IH) µ (ISP) µ (ICO)

1 0.8548 0.0869 0.1425 0.8634 0.0466 0.5719
2 0.8348 0.0563 0.1132 0.8569∗ 0.0616 0.6450
3 0.7799 0.0598 0.0838 0.8280∗∗ 0.0639 0.6543
4 0.8181 0.0657 0.0963 0.8204 0.0484 0.5563
5 0.8306 0.0678 0.0943 0.8868∗∗ 0.0660 0.6417
6 0.8347 0.0486 0.0747 0.9082∗∗ 0.0504 0.8260
7 0.8250 0.0668 0.0334 0.8750∗∗ 0.0630 0.8172
8 0.8414 0.0575 0.1064 0.8641∗∗ 0.0496 0.6022
9 0.7850 0.0700 0.0802 0.8395∗∗ 0.0629 0.7313
10 0.8298 0.1006 0.0384 0.9228∗∗ 0.0469∗ 0.8317
11 0.8501 0.0430 0.1342 0.8680 0.0390 0.4926
12 0.8126 0.0786 0.0964 0.8730∗∗ 0.0468∗ 0.6471
13 0.8245 0.0721 0.1366 0.8464 0.0515 0.5562
14 0.8068 0.0457 0.0514 0.8656∗∗ 0.0402 0.6953
15 0.8543 0.0564 0.0900 0.8952∗∗ 0.0351 0.5802
16 0.8809 0.0530 0.1253 0.8795 0.0359 0.5275
17 0.8592 0.0547 0.1091 0.8920∗∗ 0.0432 0.5880
18 0.8474 0.0473 0.1211 0.8649∗ 0.0511 0.5350
19 0.8625 0.0410 0.0858 0.8856∗ 0.0554 0.6454
20 0.8260 0.0566 0.0616 0.8662∗∗ 0.0390 0.6987
21 0.8305 0.0731 0.1626 0.8522 0.0710 0.5152
22 0.7786 0.0451 0.0908 0.7834 0.0615 0.6260
23 0.8185 0.0823 0.1156 0.8698∗∗ 0.0476∗ 0.7280
24 0.7662 0.0766 0.0545 0.8381∗∗ 0.0511 0.7566
25 0.7804 0.0651 0.1209 0.8728∗∗ 0.0492 0.7260
26 0.8239 0.0553 0.1670 0.8341 0.0470 0.6088
27 0.8189 0.0452 0.2303 0.8337 0.0364 0.5622
28 0.7704 0.0496 0.1032 0.8136∗∗ 0.0679 0.6922
29 0.8207 0.0674 0.1725 0.8825∗∗ 0.0525 0.7262
30 0.7939 0.0720 0.1315 0.8363 0.0571 0.6962
31 0.8557 0.0453 0.1590 0.8777∗∗ 0.0398 0.5388
32 0.8078 0.0485 0.0983 0.8645∗∗ 0.0469 0.7617
33 0.8384 0.0514 0.0741 0.8735∗∗ 0.0425 0.6560
34 0.8797 0.0432 0.2601 0.8774 0.0304∗ 0.5222
35 0.8393 0.0517 0.1211 0.8543 0.0404 0.5854
36 0.8099 0.0635 0.1368 0.8499∗∗ 0.0426∗ 0.6332
37 0.7917 0.0665 0.1108 0.8704∗∗ 0.0330∗ 0.7114
38 0.8237 0.0645 0.0793 0.8744∗∗ 0.0561 0.7243
39 0.7934 0.0475 0.1155 0.8371∗∗ 0.0510 0.6429
40 0.7962 0.0579 0.0779 0.8479∗∗ 0.0423 0.7024

Table 3.2.: Mean values of the hypervolume, the the spacing measure and the coverage measure over 10
runs for the large synthetic test cases. Stars as in Table 3.1.

66

3.6. Results

An interesting question is whether there is any pattern of the hypervolume lost between

the solutions proposed by the metaheuristics and the exact Pareto front. A good way to

judge this visually is to look at a plot of the attainment function (see Section 2.3.1) because

it comprises several test runs. In Figure 3.2, this is illustrated for a selected (small) test

instance. The 50 % attainment function of each of the two heuristic algorithms (i.e., the

border of the area of points in the plane dominated by the proposed solution sets of at

least 50 % of the runs) is compared to the attainment function of the exact Pareto front.

Obviously, the extreme solution optimizing objective 2 is approximated a little bit better

than the extreme solution optimizing objective 1. We observed the same trend also for

the other test instances.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1
rescaled f (1)

re
sc

a
le

d
g
(1

)

50% - att. func. NSGA-II
50% - att. func. P-ACO

exact Pareto front

Figure 3.2.: Pareto front and 50 % attainment functions of the P-ACO and the NSGA-II solutions for a
selected synthetic test instance.

We were interested in analyzing how well the LP solution approach performs compared

to the solution of the slave problem by a heuristic. For this purpose, the algorithms were

run again on the set of small artificial instances, with the LP solver for the solution of the

slave problem replaced by a simple greedy heuristic (called SchedSA) for scheduling and

staff assignment, developed in Gutjahr et al. 57 for a single-objective version of our model

and described there in detail.

The results showed that in the case of two objectives, the greedy approach performed not

too well; SchedSA sometimes produced hypervolumes lying by 40 % or more below that of

the exact Pareto front. Figure 3.3 illustrates the performance of the greedy heuristic for

a run of a special test instance. In the left picture, the image points in objective space of

the portfolios proposed by SchedSA are shown. The right picture shows the true Pareto

67

3. Application to Project Portfolio Selection

front (squares). Moreover, for the portfolios proposed by SchedSA, we also computed those

objective function values they could achieve if the slave problem was solved optimally; this

increases the value of the competence-related objective function 2. The resulting points

are the crosses in the right picture.10 Even then, however, we see that the points achieved

by SchedSA are still rather far from the Pareto front.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

re
sc

a
le

d
g
(1

)

rescaled f (1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

re
sc

a
le

d
g
(1

)

rescaled f (1)

Figure 3.3.: Left picture: solution (in objective space) proposed by SchedSA. Right picture: exact Pareto
front (filled squares), and solution (in objective space) corresponding to the portfolios proposed
by using the greedy heuristic, evaluated with optimally solved sub-problem (crosses).

To compare the performance of the two algorithms in the case of more than two objec-

tives, additional economic objective functions have been added to the first large synthetical

test case. Note that in this first test case (with only two objectives), NSGA-II has turned

out as slightly superior (cf. Table 3.2). As seen from Table 3.3, with growing number

of objectives, P-ACO becomes superior with respect to hypervolume. Figure 3.4, where

the case of two objectives from Table 3.2 has been added as the leftmost pair of points,

visualizes this trend. With respect to the spacing measure, on the other hand, NSGA-II

preserves its superiority also for a higher number of objective functions.

10The rationale behind this analysis is that after a portfolio has been selected with the help of the decision
support system, an experienced manager could fine-tune both schedule and staff assignment for this
portfolio, solving in this way the sub-problem almost optimally.

68

3.6. Results

nb. objectives P-ACO NSGA-II

µ (IH) µ (ISP) µ (ICO) µ (IH) µ (ISP) µ (ICO)

2 0.8548 0.0869 0.1425 0.8634 0.0466 0.5719
3 0.8239∗∗ 0.0973 0.2191 0.7106 0.1263 0.1627
4 0.6753∗ 0.0949 0.1936 0.6087 0.1291 0.0867
5 0.5771∗∗ 0.1110 0.2565 0.5001 0.1489∗ 0.1413
6 0.5654∗∗ 0.1412 0.2499 0.4092 0.1551 0.0843
7 0.4941∗∗ 0.1476 0.2205 0.3682 0.1578 0.1030
8 0.4848∗∗ 0.1377 0.2334 0.3249 0.1614 0.0602

Table 3.3.: Mean values of the hypervolume, the spacing measure and the coverage measure over 10 runs
for the first large synthetical test case with an increasing number of economic objectives (q =
1, p = 1 . . . 7). Stars as in Table 3.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8
number of objective functions

m
e
a
n

h
y
p
e
rv

o
lu

m
e

P-ACO
NSGA-II

Figure 3.4.: Comparison of the mean hypervolumes over 10 runs for the large synthetical test case with an
increasing number of economic objectives.

69

3. Application to Project Portfolio Selection

For dealing with the case q > 1, also the slave problem was solved heuristically, as

outlined before. The results for ten random test instances with p = 1 and q = 2 are

given below. As one can see, the GA-based approach turns out as superior. However,

the reservations indicated before concerning the reduced solution quality in the case of a

heuristic solution of the subproblem have to be kept in mind.

t.c. P-ACO NSGA-II

µ (IH) µ (ISP) µ (ICO) µ (IH) µ (ISP) µ (ICO)

1 0.7419 0.0270 0.0092 0.9621∗∗ 0.0381 0.9143
2 0.8246 0.0435 0.0760 0.8786∗ 0.0559 0.5151
3 0.7792 0.0439 0.1149 0.8004 0.0503 0.6426
4 0.7610 0.0545 0.0157 0.9278∗∗ 0.0489 0.9064
5 0.6597 0.0833 0.0701 0.7773∗∗ 0.0692 0.6929
6 0.8187 0.0136 0.0295 0.9956∗∗ 0.0351∗ 0.9867
7 0.8037 0.0560∗ 0.0365 0.8002 0.0392 0.5008
8 0.8095 0.0570 0.1198 0.8293 0.0464 0.4862
9 0.6909 0.0543 0.0771 0.8096∗∗ 0.0575 0.5157
10 0.7055 0.0760 0.0812 0.8447∗∗ 0.0536 0.5959

Table 3.4.: Mean values of the hypervolume, the spacing measure and the coverage measure over 10 runs
for 10 random test instances with p = 1 and q = 2. Stars as in Table 3.1.

3.6.2. Results for the Real-World Application

t.c. P-ACO NSGA-II

µ (IH) µ (ISP) µ (ICO) µ (IH) µ (ISP) µ (ICO)

1 0.6182∗ 0.0511 0.5323 0.5693 0.0459 0.1707
2 0.8323∗∗ 0.0964 0.7901 0.6011 0.1192 0.0993
3 0.8681∗ 0.0813 0.7153 0.6834 0.1033 0.1277
4 0.9076∗∗ 0.1108 0.8604 0.6922 0.1555 0.0679
5 0.8872∗∗ 0.1543 0.5971 0.7343 0.0946 0.0710
6 0.8229∗∗ 0.0550 0.7011 0.6503 0.1142 0.1865
7 0.9068∗∗ 0.1164∗ 0.8946 0.6242 0.1788 0.0294
8 0.7172 0.1692 0.2700 0.8162∗ 0.1075 0.5945
9 0.5599 0.0787 0.5568 0.5050 0.0711 0.1950
10 0.6031 0.0444 0.4705 0.5794 0.0518 0.2361

Table 3.5.: Mean values of the hypervolume, the spacing measure and the coverage measure over 10 runs
for the real-world test cases. Stars as in Table 3.1.

70

3.6. Results

Table 3.5 provides the results of the comparison between P-ACO and NSGA-II. Sur-

prisingly, we can observe that P-ACO seems to outperform NSGA-II now. A first intuitive

explanation for this phenomenon is that although we increased the runtime for the real-

world test cases from 27 to 120 minutes, compared to the large synthetic cases, this seems

not to have compensated for the increment of the number of competencies from 20 to 80

and of the number of objectives from 2 to 3. As a consequence, the given runtime in the

real-instance case may still be too low for NSGA-II to deploy its full strengths. (Note that

P-ACO can partially compensate for low computation time by its more “greedy” constraint

handling mechanism. For larger runtime, this advantage turns into a disadvantage.) To

test this hypothesis, we further increased the runtime for the real-world instances from

2 to 4 hours. In this case, P-ACO and NSGA-II performed almost equally well, perhaps

even with a slight advantage for NSGA-II.

The following table contains the results for the real-world test cases, if, compared to

Table 3.5, the runtime for each of the algorithms is increased from 2 to 4 hours per run of

a test case.

t.c. P-ACO NSGA-II

µ (IH) µ (ISP) µ (ICO) µ (IH) µ (ISP) µ (ICO)

1 0.8156∗ 0.0215 0.7000 0.6665 0.0527 0.2000
2 0.8226 0.0528 0.0000 0.9353∗∗ 0.0610 0.7850
3 0.8177 0.0440 0.0601 0.9669∗∗ 0.0634 0.3917
4 0.8351 0.0207 0.0200 0.9789∗∗ 0.0420 0.5917
5 0.8519 0.0296 0.0000 0.9865∗∗ 0.0329 0.5067
6 0.8565 0.0553 0.0702 0.9515∗∗ 0.0726 0.4283
7 0.8594 0.0910 0.0933 0.9559∗∗ 0.0379∗ 0.6150
8 0.8239 0.0009 0.4750 0.7917 0.0076 0.3833
9 0.8942∗∗ 0.0411 0.6933 0.7033 0.0634 0.1350
10 0.7860∗∗ 0.0204 0.4833 0.6831 0.0427 0.1200

Table 3.6.: Mean values of the hypervolume, the spacing measure and the coverage measure over 10 runs
for the real-world test cases with 4 hours computation time per run. Stars as in Table 3.1.

71

3. Application to Project Portfolio Selection

A second factor possibly disadvantaging NSGA-II in the (three-objective) real-world test

cases may be the property observed in Wagner et al. 123 that NSGA-II is especially strong

in the bi-objective case. In order to study the influence of the number of objectives on the

solution quality, we took the first large synthetic test case (cf. Table 3.2) and successively

increased the number objectives from 2 to 8 (cf. Table 3.2, Figure 3.4). Indeed, it turned

out that whereas NSGA-II dominated P-ACO for two objectives, P-ACO was significantly

better than NSGA-II for the cases of three to eight objectives, with a slightly increasing

gap.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
rescaled f (1) (“partner utility”)

re
sc

a
le

d
f

(2
)

(“
th

ir
d
-p

a
rt

y
fu

n
d
in

g
”
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
rescaled f (1) (“partner utility”)

re
sc

a
le

d
g
(1

)
(“

c
o
m

p
e
te

n
c
e

d
e
v
e
lo

p
m

e
n
t”

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
rescaled f (2) (“third-party funding”)

re
sc

a
le

d
g
(1

)
(“

c
o
m

p
e
te

n
c
e

d
e
v
e
lo

p
m

e
n
t”

)

Figure 3.5.: Proposed Pareto-optimal solutions for real-world test case 1, projected in objective space to
the three planes given by two of the axes. Filled squares: P-ACO. Crosses: NSGA-II.

For test case 1, we show the solutions proposed by P-ACO and NSGA-II from different

views: The plots in Figure 3.5 present projections of the proposed Pareto-optimal solutions

in objective space to the planes defined by the three possible pairs of objective functions.

Objective function 1 gives partner utility, objective function 2 represents third-party fund-

ing, and objective function 3 indicates the competence gain. The objective function values

have been normalized by mapping the obtained range of values to the interval [0, 1].

72

3.6. Results

One can see that on the (proposed) Pareto front, objective functions 1 and 2 are nega-

tively correlated (higher partner utility is associated with lower third-party funding), the

same holds for objective functions 1 and 3 (higher partner utility is associated with lower

competence gain). Objective functions 2 and 3 are positively correlated (higher third-party

is associated with higher competence gain).

Finally, in order to test whether our approach is still computationally feasible when the

number of projects is increased, we extended the standard test instances just described

by 22 additional candidate project descriptions. This produced a test case with a total

number of 40 projects. P-ACO and NSGA-II performed almost equally well for this test

instance, with a hypervolume of 0.2503 for P-ACO and of 0.2394 for NSGA-II.

3.6.3. Results for the Stochastic Problem

For our instances, complete enumeration combined with simulation using a sample size of

104 can be performed within reasonable time to get a reference set approximating the set

of Pareto-optimal solutions sufficiently well.

The following parameters of the APS algorithm were used for the tests: (i) The number

of iterations for the APS algorithm was set to 100. (ii) A fixed sample size for solution

proposal s1 = 100 was used. (iii) The sample size for solution evaluation was increased

according to the scheme s̄κ = 1000 + 90 · κ (κ = 1, . . . , 100). Thus, in the last iteration,

the sample size was 104.

For each of the ten test cases, we performed ten independent runs of our metaheuristic.

We compared the results with a reference set that was derived by complete enumeration

(CE) on the level of the master problem with sample size 104. These runs required about

three hours per test instance. Each run of our heuristic was given 100 sec, which is about

1 % of the runtime of the CE runs. Table 3.7 shows the experimental results for the 10

test instances. In the third column of the table, the hypervolume value of the reference

set B obtained by CE is shown.11 We see that in nine of the ten test instance, APS

yields very good solutions, although spending only 1 % of the runtime of CE. For test

instance 9, APS achieves (in the average) a hypervolume which is about 1.6 % below that

of the reference set. Even this deviation may be still acceptable for practice. In Figure

3.6, the 10%, 50% and 100%-approximation sets for test instance 3 are plotted. It can

11It can be observed that for test instance 2, the hypervolume of the solutions delivered by the APS
algorithm is slightly larger in the average than that of the reference set B. If B would be the exact
Pareto front, this would not be possible, but it should be noted that during the determination of B by
CE, objective function values for h (x) have been estimated by sampling as well (although with a large
sample size), such that neither all points in B need to be Pareto-optimal indeed, nor is it guaranteed
that the objective function estimates are exact.

73

3. Application to Project Portfolio Selection

t.c. type B APS

IH µ (IH) µ
(

I−H
)

µ
(

I1ǫ+
)

µ
(

I1ǫ
)

1 etc 0.2850 0.2849 0.0002 0.0023 1.0020
2 elc 0.3845 0.3847 -0.0002 0.0024 1.0019
3 elu 0.2842 0.2838 0.0004 0.0039 1.0036
4 etc 0.3056 0.3054 0.0002 0.0040 1.0036
5 etu 0.2415 0.2409 0.0006 0.0030 1.0027
6 vtc 0.6248 0.6247 0.0002 0.0019 1.0015
7 vlc 0.1446 0.1445 0.0001 0.0024 1.0016
8 vlu 0.3925 0.3921 0.0003 0.0031 1.0025
9 vtc 0.3212 0.3162 0.0050 0.4684 1.3517
10 vtu 0.4676 0.4669 0.0007 0.0026 1.0019

Table 3.7.: Mean values of selected performance measures over 10 runs for 10 random test instances.

be seen that the worst-case performance is close to the best-case performance. Thus, the

algorithm is stable with respect to the random decisions made during optimization at this

test instance.

The decision maker can use the Pareto-optimal set of a problem to identify the solution

that fits his needs. As an example, in Table 3.9, we present the solution set of test

instance 6. Now, the objective function values are given in their original (not re-scaled)

form; h (x) is multiplied by −1 to make the values positive. The elements of the solution

set are indexed by 0 to 8. Solution 8 maximizes the weighted average fc (y, x) of strategic

and economic gains, but this comes at the price of a relative high expected overtime cost

h (x), which indicates that this portfolio is not robust. Solutions 1 to 7 may be interesting

portfolios for a more risk-averse decision maker. S/he can consider the detailed properties

of each of these portfolios and make then a final choice. Solution 0 is the empty portfolio

which is not of practical interest.

74

3.6. Results

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.5 1.6 1.7 1.8 1.9 2
rescaled fc (y, x)

re
sc
al
ed

h
(x
)

10% - att. func.
50% - att. func.
100% - att. func.

Figure 3.6.: k%-approximation sets for test instance 3.

Synergies and Cannibalization. In general synergies and cannibalization effect between

different projects may occur. Synergy means that the benefit yielded by the implementa-

tion of two or more projects together is larger than the sum of the single benefits, whereas

in the case of cannibalization the benefit of combinations of projects is smaller than the

than the sum of the single benefits. As stated above, in our special real-world application,

synergy and cannibalization effects did not play a role, such that E(w
(1)
is) was set to zero.

In order to test our procedure also for the situation of non-vanishing quadratic terms in

the objective function fc (y, x), we modified the ten test cases described above by intro-

ducing (positive or negative) terms E(w
(1)
is) in the following way: For each i < s, a random

factor ζ was drawn from a uniform distribution on [−1, 2], and E(w
(1)
is) was set to the

value ζ · (E(w(1)
i) + E(w

(1)
s). Computationally, the extension to terms that are quadratic

in the yi variables does not cause any difficulties as the master problem is solved by the

NSGA-II algorithm which does not require linearity. The result is shown in Table 3.8. It

can be observed that the achieved solution quality is comparable to that in the linear case

(Table 3.7).

75

3. Application to Project Portfolio Selection

t.c. B APS

IH µ (IH) µ
(

I−H
)

µ
(

I1ǫ+
)

µ
(

I1ǫ
)

1 0.6639 0.6637 0.0001 0.0012 1.0007
2 0.6588 0.6588 0.0000 0.0008 1.0005
3 0.7202 0.7196 0.0006 0.0014 1.0008
4 0.6527 0.6523 0.0004 0.0021 1.0013
5 0.6878 0.6874 0.0004 0.0010 1.0006
6 0.8459 0.8459 0.0000 0.0011 1.0006
7 0.8481 0.8477 0.0004 0.0009 1.0005
8 0.8397 0.8378 0.0019 0.1583 1.0859
9 0.7237 0.7239 -0.0003 0.0021 1.0013
10 0.8655 0.8656 -0.0001 0.0015 1.0008

Table 3.8.: Mean values of selected performance measures over 10 runs for 10 random test instances, with
quadratic fc (y, x).

Sensitivity Analysis. Our model requires the estimation of a considerable number of

parameters, which raises the question of robustness with respect to the accuracy of pa-

rameter estimates. Let us mention that a good part of these parameters (e.g.: expected

gains, required efforts, ready dates, due dates, etc.) have to be determined or estimated

also in a traditional form of project management. Whatever method of project planning

the decision maker applies, the quality of the derived project portfolio and work plan will

largely depend on the appropriateness of the estimates of these crucial parameters, and

concerning them, the proposed model does not introduce any additional difficulty. Never-

theless, there are some new parameters in our model that do not occur in current planning

methods, and it is an interesting question how sensitive the provided solutions are with

respect to their estimates. We generated an additional test instance (with synergy and

cannibalization terms) and performed a sensitivity analysis to determine the influences

of the parameters V ar (Ui) and γrj . First, we varied the variances V ar (Ui) of the ran-

dom variables Ui, multiplying the variance of each Ui by a factor uniformly drawn from

[0.8, 1.2]. This was repeated ten times, such that we obtained ten “mutants” of the “true”

test instance. In this way, a situation is modelled where the decision maker is able to

provide an unbiased estimate of the effort, but is inaccurate with her/her his estimation

of the degree of randomness. (We did not consider changes of the expected values of the

efforts, since each planning technique must necessarily be sensitive with respect to a bias

in effort estimates.) It turned out that a change of the variance of this magnitude left the

solution rather robust: in the average over the ten mutants, 68% of the efficient portfo-

lios remained invariant, while, of course, the corresponding h (x) values slightly changed.

76

3.7. Concluding Remarks

label y fc (y, x) h (x) 95% confidence interval for h (x)

0 000000000000 0.00 0.00 [0.00, 0.00]
1 100110000001 239.92 70.95 [70.79, 71.10]
2 100110100010 294.68 73.89 [73.76, 74.02]
3 100110100011 303.59 73.95 [73.83, 74.07]
4 100010110011 321.98 76.95 [76.80, 77.11]
5 010100110011 353.55 77.01 [76.85, 77.17]
6 100100110011 373.20 78.97 [78.79, 79.15]
7 100101110011 376.29 80.08 [79.94, 80.22]
8 000101110011 383.32 188.73 [188.28, 189.17]

Table 3.9.: Set of Pareto-optimal solutions of test instance 6.

Similarly, if (in each of ten mutants) each of the values γrj was multiplied by a factor

randomly selected from [0.8, 1.2], in the average, 72% of the efficient portfolios remained

invariant.

Table 3.10 shows the effect of the estimation errors measured by hypervolumes and

epsilon indicators. Column IH of B contains the hypervolume of the true efficient frontier,

determined by complete enumeration for the original test instance. In columns µ(IH) etc.

for CE, the complete enumeration solutions for the ten mutated instances are treated as

if they were proposed-efficient solutions delivered by a heuristic for the original instance,

and evaluated by the metrics used in Tables 3.7 and 3.8. We see that the fit is still rather

good despite of the assumed estimation errors. The solution quality appears to be more

sensitive with respect to estimation errors concerning effort variances compared to errors

concerning employee efficiency values.

disturbed parameter B CE

IH µ (IH) µ
(

I−H
)

µ
(

I1ǫ+
)

µ
(

I1ǫ
)

V ar (Ui) 0.66160 0.66124 0.00033 0.00565 1.00353
γrj 0.66160 0.66149 0.00008 0.00091 1.00056

Table 3.10.: Estimation errors measured by selected performance measures over 10 runs for 10 random test
instances.

3.7. Concluding Remarks

In this Chapter we presented a multi-objective model for project portfolio selection that

considers both economic and competence-oriented goals, and a bi-objective version of the

77

3. Application to Project Portfolio Selection

model under uncertainty. Competency gains along certain desirable profiles are used to

formulate competence-oriented goals. In addition to the different skill sets of employees’,

learning and knowledge depreciation effects are included. In the stochastic version of the

model a third type of objectives is considered that measures the robustness of a certain

portfolio in terms of expected surplus costs due to overtime or external work. We devel-

oped a linear (stochastic) (mixed-integer) multi-objective program, that approximates the

original problem. The approximation allows the exact solution of the problem related to

the the assignment of available personnel to work packages of the selected projects over

time, i.e., over the single periods of a planning interval, by using an LP solver. For the

solution of the “rich” discrete portfolio optimization master problem we propose to apply a

multi-objective metaheuristic technique. In the deterministic setting we have investigated

two metaheuristics for the described purpose: the NSGA-II algorithm that builds on the

Genetic Algorithms paradigm, and the P-ACO algorithm that makes use of the Ant Colony

Optimization approach. We tested our proposed methods on two sets of test instances:

randomly generated synthetic test cases of different size and type, as well as a real-world

application delivered by the E-Commerce Competence Center Austria. In our synthetic

test instances, the NSGA-II approach outperformed P-ACO. For the real-world instances,

a slight superiority of P-ACO and of NSGA-II in the case of lower and of higher invested

computation times, respectively, could be stated. Both techniques provided reasonable

solutions from a practical point of view.

To solve the stochastic problem we designed a procedure based on the APS (Adaptive

Pareto Sampling) technique in combination with the aforementioned NSGA-II algorithm,

and obtained experimental results on a series of test instances derived from a real-world

application case. Well-known performance indicators for the evaluation of multi-objective

heuristics have been used to assess the quality of the results. For all test instances except

one, the proposed technique turned out to perform practically equally well as an approach

combining complete enumeration with extensive simulation, although consuming only 1%

of the runtime of the last-mentioned approach; even in the case of the exceptional test

instance, the deviation of the solution quality is less than 1.6%. Concluding from these

results, we anticipate that our technique is well-suited also for solving test instances for

which complete enumeration is not a feasible option anymore.

Our work has shown the desirability of future research in several directions. Let us out-

line six topics where future research will be particularly helpful. First, collecting data for

determining the model parameters has proved as a rather time-consuming task. Suitable

tools and integrated semi-automatized systems should be developed to support this pro-

cess. Moreover, also methodological questions concerning the estimation of competence

78

3.7. Concluding Remarks

scores and the relation of such scores to efficiencies deserve further attention.

Secondly, the model in Section 3.2 does not involve precedence relations between tasks

or projects. For the single-objective version of the model, it has been shown in Gutjahr

et al. 57 that the addition of precedence relations between tasks of a project does not

violate the LP structure of the linearized problem. The same holds for our multi-objective

problem formulation, and probably this observation can also be generalized to precedence

relations between tasks of different projects or between projects. Therefore, the exact

solutions for small instances can be determined as in Section 100 also in the case of

precedence relations.

Third, the envisaged planning time horizon in our model is rather the medium term than

the long term. For long term strategic planning (sometimes already for shorter planning

periods), aspects as changes of personnel or possible subcontracting or outsourcing play

a role. Our model could be extended by including these aspects. E.g., external costs by

subcontracting or outsourcing could be treated along the lines of the approach in Heimerl

and Kolisch 60 .

Fourth, our model is static, i.e., it presupposes a fixed time horizon and a decision

to be made only at the beginning of the considered period.12 This planning paradigm

excludes adaptive policies, and it is susceptible to end-of-horizon effects. An extension

of the presented approach to a situation where the assignment of personnel to tasks over

time is done in a dynamic way, depending on actual work times as they become gradually

known during the execution of the selected projects would be as interesting as challenging.

Some preliminary results (using dynamic-stochastic project scheduling approaches from

the literature, cf., e.g., Möhring and Stork 91) have been outlined in Gutjahr et al. 56 , Reiter

et al. 106 , but much remains still do be done.

Fifth, attempts to solve instances of the considered deterministic problem by suitable

exactmethods should be made. In this context, Lagrangian duality approaches for problem

decomposition (see, e.g., Lassiter et al. 80) and hierarchical decomposition techniques for

large-scale multi-objective systems, as developed in Caballero et al. 23 , Tarvainen and

Haimes 117 , might be explored in future research.

Finally, we have presented the APS technique here within the context of a particular

SMOCO (stochastic multi-objective combinatorial optimization) problem. However, it can

be used with only slight adaptations also within a large class of other problems of SMOCO

type. Future research should explore this potential. In principle, the consideration of

12 In practice, it is often the case that portfolio planning is done in a rolling-horizon manner. In such a
situation, our analytic approach can be applied anew each time a new decision is to be made, based
on the currently available information. This “iterated static” decision process, however, is not yet a
dynamic decision process that anticipates re-planning by changes.

79

3. Application to Project Portfolio Selection

more than two objective functions is possible as well, based on the same algorithmic

framework. The application of the NSGA-II algorithm as an auxiliary procedure for

providing APS with solution set candidates has turned out as successful in our experiments,

but of course also other (metaheuristic or mathematically oriented) methods can be used

for this purpose.

80

4. Application to Vehicle Routing

4.1. Problem Description

In this Chapter, we present a bi-objective extension of the classical capacitated vehicle

routing problem (CVRP) and exact algorithms for solving the considered problem. In

addition to the traditional objective, (i) minimization of total travel cost, we also consider

a second objective, (ii) minimization of the length of the longest route. The CVRP can

be defined as follows. The objective is to find optimal routes for a fleet of K identical

vehicles serving a set of n customers and based at a single depot. Each customer i =

1, . . . , n has a deterministic demand qi, that is known in advance. The fleet of vehicles

is homogeneous, each vehicle having a maximum capacity Q it can deliver. A feasible

solution for the CVRP is represented by a set of routes, each starting and ending at

the depot and satisfying the conditions that (i) each customer is visited exactly once

and (ii) the total demand of the customers on each route is at most Q. Nonnegative

costs cij , representing the travel cost needed to drive from customer i to customer j, are

associated with each pair of customers (i, j). The objective is minimize the total cost,

while serving all customers. As a generalization of the traveling salesman problem (TSP),

the CVRP is NP-hard. A vast literature dealing with the CVRP exists, including articles

presenting a large number of solution methods in the fields of exact methods, problem-

specific heuristics and meta-heuristic algorithms. An overview has been given in Toth

and Vigo 118 . Considering exact methods, branch-and-cut algorithms are among the best

currently available solution techniques for the CVRP (see, e.g., Baldacci et al. 14 , Fukasawa

et al. 46 , Lysgaard et al. 86). Taking into account real-life application, total travel cost is

often not the only measure to assess the quality of a solution. Different other aspects

are present. Especially the distribution of the driver workload, i.e., the balance of route

lengths, is another important measure. To deal with the requirement of “sufficiently

balanced” routes, two different approaches are possible: (i) introducing hard constraints, or

(ii) an additional objective function taking account of balance. From the second approach,

we obtain bi-objective problem, denoted as CVRP with route balancing (CVRPB). (An

overview on multi-objective vehicle routing problems is given in Jozefowiez et al. 72 .) To

81

4. Application to Vehicle Routing

express the route balancing objective, different formulations can be used. Natural choices

are e.g. (i) minimization of the length of the longest route or (ii) minimization of the

difference between the lengths of the longest and the shortest route (cf. Jozefowiez et al. 70,

71 , Pasia et al. 95,96). Several heuristic solution methods exist to solve CVRPBs (see

Jozefowiez et al. 72), but, to our knowledge, no algorithm that determines the exact Pareto

front has been described up to now.

Among the aforementioned variants we address the first formulation, where the length

of the longest route represents the second objective function. In general, there will be no

single solution that attains the optimum of both objectives at the same time. Therefore,

it is desirable to compute the set of Pareto-optimal (or: efficient) solutions (short Pareto

set).1 Classical methods for determining the Pareto set are, e.g., extensions of the weighted

sum method, ε-constraint methods or weighted metric methods.2

We use the adaptive ε-constraint method by Laumanns et al. 81 in combination with

a branch-and-cut algorithm and two genetic algorithms (GAs), namely a single-objective

GA and the multi-objective NSGA-II (Deb et al. 33), to solve the considered problem.

The adaptive ε-constraint method determines the Pareto set by solving a sequence of con-

strained single-objective problems. In our implementation, the second objective function

is treated as a constraint. This leads to a distance-constrained CVRP (short: DCVRP).

An efficient branch-and-cut algorithm is used to solve the DCVRP. The GAs are applied to

generate good incumbent candidates for the branch-and-cut algorithm in order to speed

up the search process. They are called either in a sequential way (NSGA-II) or in an

interactive way (single-objective GA).

Instead of a straightforward three-index problem formulation providing a special index

for the vehicle under consideration, we apply a more efficient two-index formulation pro-

posed by Laporte et al. 78,79 for the DCVRP, which, however, is not linear anymore in

the case of the CVRPB. Nevertheless, by the specific way we organize the ε-constraint

algorithm, the resulting subproblems of DCVRP type become linear. The problem formu-

lation requires the computation of valid and efficient lower bounds for a multiple traveling

salesman problem. We apply generalized Held-Karp bounds for this purpose (a technique

that could also be used in the single-objective DCVRP case). Moreover, our algorithm

ensures that cuts that are applied in the branch-and-cut solution process in one of the

iterations remain valid in the subsequent iterations, which can be exploited to improve

performance.

1A solution x(1) is called Pareto-optimal if there is no other solution x(2) that has is at least as good as
x in all objectives, and strictly better than x in at least one objective.

2An introduction to multi-objective optimization is given in Section 2.1.

82

4.2. Model Formulation

This chapter is organized as follows. Section 4.2 presents the mathematical model of

the problem. In Section 4.3.1, we specify the different components of our algorithms. In

Section 4.5, the efficiency of the new algorithm on a set of standard CVRP benchmark

instances from the TSPLIB is assessed. Section 4.6, finally, gives concluding remarks.

4.2. Model Formulation

This section describes our model for the CVRPB. It can be seen as an extension of the

model used by Laporte et al. 78,79 and by Achuthan et al. 1 for the DCVRP. We assume that

travel time matrix and cost matrix coincide and denote this matrix by C. It is assumed that

C is symmetric and that no service times are present. The elements of C are supposed to

fulfill the triangle inequality (i.e., the distance function is a metric). The CVRPB with (i)

minimization of the total cost and (ii) minimization of the distance of the longest route can

then be formulated as follows. The problem is defined on a undirected graph G = (V,E),

where V = {0, 1, . . . , n} is the set of vertices, and E = {{i, j} : i, j ∈ V, i < j} is the

set of edges. Index 0 denotes the depot, where K vehicles of capacity Q and maximum

allowable route length D are located. The set of customers is given as V0 = V \ {0}. Each
customer i has a nonnegative demand qi. Furthermore, to each edge e ∈ E, a cost value ce

is associated, which can also be interpreted as the travel time or as the length of edge e.

For abbreviation, δ (S) denotes the set of edges in G with exactly one end-vertex in S,

i.e., δ (S) = {{i, j} ∈ E : i ∈ S, j ∈ V \S}, and δ({i}) is shortly written as δ(i). Moreover,

γ (S) is the set of edges with both ends in S, i.e., γ (S) = {{i, j} ∈ E : i, j ∈ S}. Finally,
(

S : S̄
)

denotes the set of edges with one end vertex in S and the other in S̄. For each

edge e, the decision variable xe is defined as the multiplicity of edge e being used as part of

a route, where xe ∈ {0, 1} if e is not incident with the depot, and xe ∈ {0, 1, 2} otherwise.

The considered CVRPB is given by the following nonlinear bi-objective optimization

problem, which extends the DCVRP formulation in Laporte et al. 78,79 to the bi-objective

case. The problem formulation contains the expression r̄(S,D) which will be defined

below.

83

4. Application to Vehicle Routing

(CVRPB) min

(

∑

e∈E
cexe, D

)

(4.1)

s.t.
∑

e∈δ(i)
xe = 2 ∀i ∈ V0, (4.2)

∑

e∈δ(0)
xe = 2K, (4.3)

∑

e∈δ(S)
xe ≥ 2r̄ (S,D) ∀S ⊆ V0, |S| ≥ 2, (4.4)

xe ∈ {0, 1} ∀e /∈ δ (0) ,

xe ∈ {0, 1, 2} ∀e ∈ δ (0) ,

D ≥ 0. (4.5)

Equation (4.1) defines the two objective functions to be minimized. Equations (4.2) and

(4.3) assure that exactly two edges are incident to each customer vertex and that exactly

2K edges are incident to the depot vertex.

The capacity cut constraints (4.4) impose that each route is connected to the depot,

and that for each route, capacity restrictions as well as distance restrictions are respected.

Therein, the expression r̄ (S,D) denotes a lower bound on the number of vehicles needed

to serve all the customers in S in the optimal solution of the entire problem. This number

is calculated as the maximum of two expressions r1 (S) and r2 (S,D) which are defined as

follows:

r1 (S) is the optimal solution to the Bin Packing Problem (BPP) with capacity Q and

item sizes given by the demands qi of the customers i ∈ S. It is well-known that in capacity

cut constraints, r1 (S) can be replaced by the trivial BPP lower bound k1 (S) = ⌈q (S)/Q⌉,
where q (S) is the total demand of all customers in S.

r2 (S,D) is the minimal integer v that satisfies the equation

v =

⌈

Hv (S)

D

⌉

, v = 1, . . . , |S|, (4.6)

where Hv (S) is the optimal value of the multiple traveling salesman problem (m-TSP)

solution with a fixed number v of salesmen visiting all customers in the set S and starting

and ending at the depot.

Eq. (4.6) is a fixed-point equation, and defining r2 (S,D) as the smallest integer satisfy-

ing (4.6) it is only correct if it is guaranteed that (4.6) has at least one solution. To show

84

4.3. Solution Techniques

this, let us set ϕ(v) = ⌈Hv(S)/D⌉ and ψ(v) = ϕ(v)−v, and assume HK({1, . . . , n}) ≤ KD

(which is a necessary condition for the feasible set being nonempty). Then we obtain

ϕ(1) ≥ 1 and ϕ(K) ≤ K or ψ(1) ≥ 0 and ψ(K) ≤ 0. Using the triangle inequality, one

verifies that ϕ(v) is nondecreasing in v, such that ψ(v+1) ≥ ψ(v)− 1 for all v. Therefore,

ψ must have a root v, i.e., an argument value v where ψ(v) = 0. In total, this ensures

that the smallest root of ψ exists, i.e., that r2(S,D) is well-defined.

The m-TSP is known to be NP-hard, but it can be shown that it is allowed to use a

lower bound for the m-TSP solution value instead of r2(S,D) (see section 4.3.2).

By fixing D, it is easy to see that (4.4) is a valid inequality for each Pareto-optimal

solution of (CVRPB). Furthermore, note that eq. (4.4) excludes routes of a length larger

than D. We show this by contradiction: Assume that in a Pareto-optimal solution of (4.2)

– (4.5), a route with a length larger than D occurs. Let S be the set of customers on

this route. The route must already be of minimal length on S, because otherwise, by a

re-arrangement of the customers on the route, the first objective function value could be

reduced without reducing the second objective function value, such that the solution would

not be Pareto-optimal. Thus, since H1(S) is the optimal solution value of the ordinary

TSP with customer set S, the considered route has length H1(S). Therefore, H1(S) > D

or ⌈H1(S)/D⌉ > 1, and hence r2(S,D) ≥ 2 by eq. (4.6). However, for the considered

set S, the l.h.s. of (4.4) is equal to 2, which yields the contradiction 2 ≥ 4.

Equations (4.5), finally, restrict the values of the decision variables to their feasible

ranges.

In view of the definition of r2(S,D) by eq. (4.6), the problem (CVRP) is nonlinear, con-

sidering that D is a decision variable. We shall remove this nonlinearity by the algorithmic

approach described in the next section, where bounds on D will be introduced.

Let us emphasize that by constraint (4.3), the number of routes is always fixed to the

pre-defined value K, i.e., we assume that a fixed fleet size is given and each vehicle has to

be used.

4.3. Solution Techniques

4.3.1. General Approach

For identifying all Pareto-optimal solutions of the problem (CVRPB) defined above, an

exact algorithm capable of solving multi-objective combinatorial optimization (MOCO)

problems within reasonable time is required. Most algorithms for multi-objective op-

timization problems use a sequence of parametrized single-objective problems to find

85

4. Application to Vehicle Routing

Pareto-optimal solutions. Such algorithms select a scalarization method producing single-

objective subproblems, provide an appropriate scheme to vary the parameters of the scalar-

ization, and apply a solver that guarantees to find the optimal solutions of the subprob-

lems. Although MOCO problems have a finite number of Pareto-optimal solutions, some

of the traditional algorithms are not capable of generating all solutions. For example,

the weighted sum approach only guarantees to find supported solutions (solutions that

lie, in the objective space, on the convex hull of the Pareto front). Algorithms based on

weighted metrics overcome this problem e.g. the WCN algorithm by Ralphs et al. 104 . The

traditional ε-constraint method (Haimes et al. 59) uses a predefined grid over the objec-

tive space. The complete Pareto set can only be identified if each cell contains at most

one Pareto-optimal solution. The adaptive ε-constraint method Laumanns et al. 81 over-

comes this disadvantage by varying the parameters of a single-objective problem in such

a way that all Pareto-optimal solutions can be found by solving O(κd−1) single-objective

problems, where d is the number of objectives and κ is the cardinality of the Pareto set.

To ensure that the solution of the single-objective subproblem is optimal, we use a

branch-and-cut algorithm. Different branch-and-cut algorithms were successfully applied

to CVRP problems, e.g., the algorithm implemented by Lysgaard et al. 86 . The separation

routines of their implementation are available at (Lysgaard 85). Despite the large interest in

exact algorithms for the CVRP, exact methods for the DCVRP received comparably little

attention in the literature. To our knowledge, no new exact algorithm for the DCVRP

has been presented since the articles by Laporte et al. 78,79 . In our implementation of

a branch-and-cut algorithm for the DCVRP, we use the separation routines proposed

in (Lysgaard 85 , Lysgaard et al. 86) to treat the capacity constraints, and, in addition, we

have implemented separation routines to identify violated distance constraints.

For branch-and-cut algorithms, finding feasible solutions at early stages of the solution

process plays a major role. The overall computational effort can be reduced in this way,

and the search is guided to promising regions of the solution space. We apply meta-

heuristic algorithms for identifying good feasible solutions. Two different hybridizations

with heuristic algorithms are possible: (i) a sequential combination, or (ii) an interac-

tive combination. In the sequential combination, a multi-objective optimizer (MOO) is

run before the adaptive ε-constraint method starts. In each iteration of the adaptive ε-

constraint method, a solution of the non-dominated set proposed by the MOO is used as

an incumbent candidate. In the interactive combination, in each iteration of the adap-

tive ε-constraint method, a single objective optimizer is called to generate an incumbent

candidate.

In the sequential combination, we use the multi-objective genetic algorithm NSGA-II

86

4.3. Solution Techniques

for two reasons: First, NSGA-II belongs to the currently best-performing multi-objective

metaheuristics. Secondly, an NSGA-II based algorithm has already been successfully ap-

plied to the CVRPB by Jozefowiez et al. 70,71 . Let us mention that good results in the

heuristic solution of the CVRPB have also been obtained by Population-Based Local

Search (Pasia et al. 95) and by Pareto Ant Colony Optimization (Pasia et al. 96); an exten-

sion of our approach to these techniques is easily possible. In the sequel, the combination

of the ε-constraint method with NSGA-II will be denoted by EPSN. In the interactive

combination, a single-objective GA capable of solving DCVRPs is used to generate in-

cumbent candidates. This combination is denoted by EPSS. A general description of the

ε-constraint method, as well as of the NSGA-II algorithm is given in Section 2.4.

For our test instances, we set ∆ = 1, which is allowed since all objective function

coefficients in these instances are integer 3. In our case, the vector x of decision variables

is given by (x,D), where x contains the variables xe. Moreover, f2(x,D) = D, such that

the first constraint in (2.9) becomes D ≤ ε2−∆. The set X consists of all elements (x,D)

satisfying the constraints (4.2) – (4.5).

We show that the solution of min f1(x) under the constraints D ≤ ε2 −∆ and (4.2) –

(4.5) is equivalent to the solution of

min f1(x) (4.7)

s.t.
∑

e∈δ(S)
xe ≥ 2r̄(S, ε2 −∆) ∀S ⊆ V0, |S| ≥ 2 and

(4.2), (4.3) and (4.5).

In this formulation, we have replaced the D in eq. (4.4) by the upper bound ǫ2−∆ that the

ǫ-constraint algorithm fixes for D in a current iteration. This is only allowed if it can be

ensured that the function r2(S,D), and therefore also the function r̄(S,D), is nonincreasing

in D; otherwise, it could happen that for some D smaller than ǫ2 − ∆, constraint (4.4)

would be weaker for this D than for ǫ2 − ∆, with the effect that problem (4.7) would

over-estimate the true minimum. In the sequel, we show that this cannot occur: Assume

S as fixed, and let ψD(v) = ⌈Hv(S)/D⌉ − v. If D′ ≥ D, we obtain ψD′(v) ≤ ψD(v).

Therefore, the smallest value v for which the function ψD′ vanishes is smaller or equal

to the smallest value of v for which ψD vanishes. This shows r2(S,D
′) ≤ r2(S,D). As

a consequence, the validity of (4.4) for D implies the validity of (4.4) for D′, i.e., with

XD denoting the set of all x such that (4.2) – (4.5) hold for fixed D, we have XD ⊆ XD′

3In cases where the greatest common divisor of all coefficients is larger than one, ∆ can be set to this
larger value, cf. Bérubé et al. 18 .

87

4. Application to Vehicle Routing

and therefore minx∈XD′
f1(x) ≤ minx∈XD

f1(x). Thus, the minimum value for f1(x) is

obtained by making D as large as possible, i.e., by setting D = ε2 −∆.

The optimization problem (4.7) is a DCVRP. The expression r̄(S, ε2 −∆) is a constant

now, which means that an integer linear program has been obtained.

4.3.2. Branch-and-Cut

Branch-and-cut solves a sequence of linear programming (LP) relaxations of an integer

program (IP). After solving the LP relaxation, if the current node cannot be pruned,

cutting planes are added to the problem. If no violated cuts are found and the current

solution is not integer feasible, new nodes are created by branching. The performance of

a branch-and-cut algorithm depends on the quality of the bounds needed to prune nodes,

the procedures to find violated cuts (separation procedures), and the branching strategy.

In our experiments, it turned out as advantageous to start the branch-and-cut algorithm

with an LP relaxation including only the degree constraints (4.2) and (4.3). Violated cuts

induced by the capacity and distance restrictions are added as needed.

Separation Procedures related to Capacity Constraints

To introduce cuts concerning capacity constraints, we use the CVRPSEP package (Lysgaard 85).

This package includes separation routines for capacity, framed capacity, strengthened

comb, multistar, partial multistar, generalized multistar and hypotour cuts described in

Lysgaard et al. 86 .

Separation Procedures related to Distance Constraints

To find violated cuts for the distance constraints, we implemented a method to get a lower

bound for the m-TSP and four specific separation procedures building on it.

For further use, let us start with the following definitions. Let x∗ be the current LP

solution, then G∗ = (V,E∗) with E∗ = {e ∈ E : x∗e > 0} is the so-called support graph.

By G∗
0 = (V0, E

∗
0), we denote the graph obtained from G∗ by removing the depot and the

edges incident with the depot.

A violated distance cut is found if for a subset S ⊆ V0, the function

f (S) =
∑

e∈δ(S)
x∗e − 2v0 (4.8)

takes a negative value, where v0 is any lower bound on r2(S,D) (note that in this case,

eq. (4.4) cannot be satisfied anymore). As shown by Achuthan et al. 1 , the bound v0 =

88

4.3. Solution Techniques

⌈

∑

e∈δ(S∪{0}) cexe/D
⌉

used in Laporte et al. 78,79 may fail when some capacity constraints

are violated and/or the current solution is not integer feasible. Achuthan et al. suggest

to use a valid lower bound for the objective function value of the corresponding m-TSP,

but they do not carry out this approach in Achuthan et al. 1 . We adopt their suggestion

by generalizing the well-known Held-Karp lower bound (Held and Karp 62) for the TSP to

case of the m-TSP, applying the Held-Karp bound to an extended graph. This will yield

a lower bound χv(S) for Hv(S). Although the estimate constitutes a valid lower bound

for the r.h.s. of (4.4) and can therefore be added as a cut, it may eventually be too weak

to exclude routes that violate the distance constraint (as shown in section 4.2, the exact

m-TSP solution does exclude such routes). Therefore, we have to rely on an additional

separation procedure described below (separation of infeasible paths) which ensures the

validity of the solutions by guaranteeing that the distance constraint is satisfied.

(I) Lower Bound for the m-TSP In order to extend the Held-Karp bound to the m-TSP,

we apply a well-known reduction of the m-TSP to the TSP based on the introduction of

pseudo-depots. The symmetric m-TSP is defined on a graph G = (V,E), where V =

{0, 1, . . . , n} is the set of vertices, and E = {{i, j} : i, j ∈ V, i < j} is the set of edges.

Index 0 denotes the depot, where m vehicles are located. To edge e ∈ E, a cost (or travel

time) value of ce is associated. The m-TSP consists in finding routes for all vehicles, each

starting and ending at the depot and visiting each customer exactly once, such that the

total cost of visiting all nodes is minimized. (An overview on techniques to solve the

m-TSP is given in Bektas 16 .) The m-TSP is reduced to a TSP on an extended graph

Ḡ =
(

V̄ , Ē
)

as follows: Add a set of m − 1 vertices Ṽ = {n+ 1, n+ 2, . . . , n+m− 1}
to the vertex set of graph G to obtain vertex set V̄ = V ∪ Ṽ . The new nodes are

considered as copies of the depot 0 or as “pseudo-depots”. Extend the set of edges by

setting Ē = E ∪
{

{i, j} : i ∈ V, j ∈ Ṽ
}

. Assign to each new edge {i, j} (i ∈ V, j ∈ Ṽ) a

cost as follows: An edge between the depot 0 and one of the new nodes receives cost ∞.

To an edge {i, j} that connects a customer node i to a new node j, the cost value of the

edge {0, i} is assigned. Then, the m-TSP on G is equivalent to the TSP on Ḡ.

For Ḡ, we calculate a lower bound Γ(Ḡ) for the Held-Karp bound, using the algorithm

proposed by Valenzuela and Jones 121 . By the consideration above, Γ(Ḡ) is then also a

lower bound for the m-TSP solution value on G.

The algorithm by Valenzuela and Jones is based on the iterative estimation approach

by Held and Karp62, a Lagrangian relaxation method working with 1-trees and applying a

perturbation determined by a set of weights πi that are assigned to the vertices i = 0, . . . , n

89

4. Application to Vehicle Routing

of the complete graph. The weights are used to force the vertex degrees dTi of an 1-tree4

T to a value of 2.The algorithm iteratively produces minimum 1-trees which increasingly

resemble routes5. Given original edge lengths ce, a modified length of an 1-tree is calculated

by summation over the modified edge lengths ĉe = ce + πi + πj , where i, j are the indices

of the vertices incident with edge e. Let Ĉ = (ĉe). Denoting the set of all 1-trees by U

and the set of all routes by U0, we have U0 ⊆ U , as every route is a 1-tree. With L(C, T)

and L(Ĉ, T) representing the length of the 1-tree T under C and Ĉ, respectively, it is

immediately seen that L(Ĉ, T) = L (C, T) +
∑n

i=0 d
T
i πi. In particular, if T is a route,

then L(Ĉ, T) = L (C, T) +
∑n

i=0 2πi. In the case of a minimal-length route T ∗, for every

π = (π0, . . . , πn),

min
T∈U

L(Ĉ, T) ≤ min
T∈U0

L(Ĉ, T) = L(Ĉ, T ∗)

or

min
T∈U

{

L(C, T) +
n
∑

i=0

dTi πi

}

≤ L(C, T ∗) +
n
∑

i=0

2πi,

which yields

Γπ = min
T∈U

{

L (C, T) +
n
∑

i=0

(

dTi − 2
)

πi

}

≤ L (C, T ∗) .

Thus, Γπ is a lower bound for L (C, T ∗). The Held-Karp bound results as maxπ Γπ.

In the iterative framework, iterations m = 0, . . . ,M are performed, where in each iter-

ation the weights πi are changed. In our implementation, we used a schema proposed by

Volgenant and Jonker 122 :

π
(m+1)
i =

{

π
(m)
i , if dT

(m)

i = 2,

π
(m)
i + b t(m)(dT

(m)

i − 2) + (1− b) t(m)(dT
(m−1)

i − 2), otherwise.
(4.9)

Therein, π(0) = (0, . . . , 0), the symbol T (m) = T (π(m)) denotes the minimum 1-tree for the

weight vector π(m), the constant b ∈ [0, 1] is a parameter, and t(m) is the step length in

the m-th iteration. As suggested by Valenzuela and Jones, the step length in iteration 0 is

calculated as t(0) = L (C, T) / (2n), i.e., it is related to current average edge length. The

value of t(0) is updated each time a better value for Γπ is found. In iteration m, the step

length is computed as follows:

t(m) = (m− 1)

(

2M − 5

2 (M − 1)

)

t(0) − (m− 2) t(0) +
(m− 1) (m− 2)

2 (M − 1) (M − 2)
t(0). (4.10)

4A 1-tree is a minimum spanning tree on vertices 1, . . . , n plus the two lowest cost edges connecting this
tree with vertex 0.

5A route is a 1-tree with all vertex degrees equal to 2.

90

4.3. Solution Techniques

If the algorithm happens to generate a route, it is possible to use the corresponding L (C, T)

value as an upper bound and to stop the procedure as soon as the current lower bound

exceeds this upper bound. If this does not occur, the procedure is stopped after the M -th

iteration. This yields a lower bound Γπ = Γ(Ḡ) for the m-TSP solution value.6

In total, we obtain the procedure described in Algorithm 4.3.1 for computing a lower

bound w on the smallest integer v = r2(S,D) satisfying equation (4.6). To simplify

notation, in Algorithm 4.3.1, we write G instead of Ḡ.

Algorithm 4.3.1: Procedure to calculate a lower bound on the number of vehicles

needed to serve a set of costumers, considering distance constraints

Input: set of customers S ⊆ V0, maximum distance D

initialize graph G induced by set S;

set w = 1 and stop = 0;

repeat

u =
⌈

Γ(G)
D

⌉

;

if u > w then

add u− w pseudo-depots to G, and set w = u;

else

stop = 1;

end

until stop = 1;

Output: lower bound w on smallest integer v satisfying (4.6)

Let us verify that Algorithm 4.3.1 provides us with a lower bound on r2(S,D) indeed.

First, note that by virtue of the reduction of the m-TSP to the TSP outlined above,

Γ(G) computes a lower bound χw(S) for the w-TSP solution value Hw(S) on the graph

induced by S. By adding only one depot (instead of u − w depots) in each execution

of the “then” branch in the algorithm, we would simply calculate the smallest (integer)

root w of w = ⌈χw(S)/D⌉. This would provide us with a lower bound on the solution

of (4.6), since, with ψ(w) = ⌈Hw(S)/D⌉ − w and ψ̄(w) = ⌈χw(S)/D⌉ − w, we have

ψ(w) ≥ ψ̄(w) for all w, such that the smallest root of ψ̄ cannot be larger than the smallest

root of ψ. All that remains to show is that whenever the obtained minimum number

u = ⌈Γ(G)/D⌉ = ⌈χw(S)/D⌉ of required vehicles turns out as larger than the currently

applied fleet size w, it is allowed to increase w not only by one, but by u−w, skipping the

values w + 1, w + 2, . . . , u − 1, as none of these values can be a root of ψ. We show this

by contradiction: Assume that there exists some u′ with w < u′ < u such that (already)

6In our implementation, we chose M = 300 and b = 0.6.

91

4. Application to Vehicle Routing

u′ is the solution of (4.6), i.e., the smallest root of ψ. Then, since Hw(s) is nondecreasing

in w in the considered case of a metric distance function,

u′ =

⌈

Hu′(S)

D

⌉

≥
⌈

Hw(S)

D

⌉

≥
⌈

χw(S)

D

⌉

= u,

which contradicts u′ < u.

(II) Specific Separation Procedures To identify candidate sets of customers S ⊆ V0, we

use the following four procedures.

Procedure 1: Check of Violated Capacity Cuts. The first procedure checks all

sets S of customers for which the capacity cut separation routine of the CVRPSEP package

indicated a violated capacity cut. For each of the these sets, the inequality

∑

e∈δ(S)
xe ≥ 2max

(⌈

q (S)

Q

⌉

, w

)

(4.11)

is added to the problem, where w is the distance-related bound for S calculated by Algo-

rithm 3.2. Obviously, this cut strengthens a cut formulation only relying on the capacity

constraints, i.e., on the first argument of the “max” function above.

Procedure 2: Connected Components. The implementations of this and the two

following procedures are based on the separation routines used by Augerat et al. 12 . First,

in order to improve the performance of the procedure, we apply a shrinking procedure

to the graph G∗. Each edge with x∗e = 1 is shrunk in the following way: The end nodes

i, j of e are replaced by a super-vertex k with demand dk = di + dj . Edges {i, ℓ} and

{j, ℓ} are replaced by a single edge {k, ℓ} with edge value x∗{k,ℓ} = x∗{i,ℓ} + x∗{j,ℓ}. The

shrinking procedure stops if no candidate edge for which x∗e = 1 can be found. In each

shrinking step, for the currently generated super-vertex, the Valenzuela-Jones bound for

the value (4.6) is calculated by Algorithm 3.2, where S is chosen as the set of original

vertices contained in the super-vertex. With the obtained value w, a corresponding cut of

the form (4.4) is added.

After this preparatory step, the connected-components procedure computes the con-

nected components S1, . . . , St of the resulting “shrunk” graph G∗
0. For each i = 1, . . . , t,

we check the distance constraint for Si as well as for V0\Si. In the case of violation, a cut

of the form (4.4) is added.

Procedure 3: Greedy Randomized Search. The third procedure, which is only

applied if no cut could be found by the former, is a simple greedy randomized search

heuristic. It starts with a random initial set S and adds, in each iteration, a customer k

92

4.3. Solution Techniques

to S until S contains all customers of the graph. Customer k is chosen as the vertex k

for which
∑

e∈(S:{k}) x
∗
e is maximum. For each set S where

∑

e∈γ(S) x
∗
e − |S| + K > 0,

constraint (4.4) is checked.

As suggested by Augerat et al., if during the search a set S is found for which pD ≥
χv (S) ≥ (p− ε)D, where p > 0 and ε with 0 < ε < 1 are parameters, eq. (4.8) is checked

for all sets S ∪ {v}, where v is adjacent to at least one node of S in G∗.

Procedure 4: Separation of Infeasible Paths. In addition to the capacity cut

constraints, cuts related to infeasible paths can be identified. This is a common technique

used in branch-and-cut algorithms for routing problems, where the feasibility of the prob-

lem depends on the order of visits, e.g., routing problems with time windows Ascheuer

et al. 8,9 and/or with packing constraints Tricoire et al. 119 . For convenience, a path P

consisting of edges {e = {ji, ji+1} |i = 1, . . . , k − 1} is also written as P = (j1, j2, . . . , jk).

We assume that a path P is always open and simple, i.e., ji 6= jℓ for i 6= ℓ. By |P |, we
denote the number of edges on path P . We call a path P infeasible if the length of the

path plus the two distances of the start node and the end node, respectively, to the depot

gives a value larger than the maximum allowed distance D. Formally, a path P with start

node j1 and end node jk is infeasible if the expression

f (P) =
∑

e∈P
cexe + c{0,j1} + c{0,jk} −D (4.12)

is larger than zero. For each infeasible path P , we can add the following constraint to the

model in order to break P :

∑

e∈P
xe ≤ |P | − 1. (4.13)

To identify infeasible paths, we use breadth-first search on the graph G∗, starting from

each customer node. Algorithm 4.3.2 provides the pseudo-code of this search procedure.

Therein, P + {j} denotes the path obtained by appending, to path P , an edge from the

last node of P to node j. A similar algorithm is used by Tricoire et al. 119 . Evidently, if a

solution contains a route violating the distance constraint, it must also contain an infeasible

path, which will be recognized by the procedure above. Thus, the just-described procedure

ensures the feasibility of the obtained solutions with respect to the distance constraint.

Additionally, for each infeasible path we also check if the corresponding constraint (4.4)

(using the Valenzuela-Jones lower bound) is violated. If a violation is found, we add (4.4)

instead of the infeasible path constraint.

93

4. Application to Vehicle Routing

Algorithm 4.3.2: Procedure for finding infeasible paths

Input: a graph G∗ representing the current LP solution
set Q = ∅ and infPaths = ∅;
forall the i ∈ V0 do

Q = Q ∪ {i}, Paths [i] = {(i)};
end
while Q 6= ∅ do

i = select (Q), Q = Q\ {i};
forall the P ∈ Paths [i] ∧ ¬processed (P) do

if f (P) > 0 then
infPaths = infPaths ∪ {P};

else
forall the j ∈ neighbors (i) do

if
(

∑

e∈P x
∗
e + x∗{i,j} > |P |

)

∧ (j /∈ P) then

Paths [j] = Paths [j] ∪ {P + {j}};
Q = Q ∪ {j}

end

end

end
setprocessed (P)

end

end
Output: a set of infeasible paths infPaths, if such a path exists, and the empty

set otherwise

94

4.3. Solution Techniques

4.3.3. NSGA-II

This section describes or implementation of NSGA-II for the CVRPB. The description of

the single-objective GA for the DCVRP is omitted, since it is basically a simplified version

of the NSGA-II7 implementation.

(1) Encoding of a solution. We use a giant tour representation to encode a solution.

Assume a route plan with M different routes is given. Each route Rm contains a subset of

customer nodes and two copies of the depot node. Formally, Rm =
(

0, im1 , i
m
2 , . . . , i

m
pi , 0

)

,

m ∈ {1, 2, . . . ,M}, pi ∈ N0 and imp ∈ V0 ∀p ∈ {1, 2, . . . , pi}. Then the corresponding giant

tour uses M + 1 copies of the depot and is defined as

x =
(

01, i
1
1, . . . , i

1
p1 , 02, i

2
1, . . . , i

2
p2 , . . . , 0M , i

M
1 , . . . , i

M
pM
, 0M+1

)

.

(2) Generation of the initial population. For obtaining good initial solutions, we use

a randomized savings algorithm Pasia et al. 96 . The traditional savings algorithm for

the CVRP starts with routes each servicing only one customer. Iteratively, the partial

routes are combined by selecting the two routes producing the maximum savings value

s (i, j) = c{0,i} − c{i,j} + c{j,0}, where only combinations (i, j) leading to feasible routes

are considered. This is repeated until no routes can be merged anymore. The random-

ized savings algorithm developed in Pasia et al. 96 maintains a candidate list C of the

feasible combinations with the |C| best saving values, and selects one of them with equal

probability.

(3) Crossover. We apply the crossover operator suggested by Prins 99 . Let two parent

solutions π1 and π2 be given. First, we remove all trip delimiters from the encodings

of the parent solutions. Then, an order crossover (OX) is performed on the parents to

generate two children. OX constructs children γ1 and γ2 as follows: First, select two

cutting points i and j in the first parent π1. Then, copy the genes (π1 [i] , . . . , π1 [j]) into

the first child γ1, which gives (γ1 [i] , . . . , γ1 [j]). The remaining positions of γ1 are then

filled, starting at position j+1, by considering the genes in the order in which they appear

in the second parent π2 (if the end of the chromosome is reached, continue from the start).

Duplications of genes are avoided by skipping elements that have already occurred. The

second child is created analogously, changing the role of the parents. In order to partition

the obtained string into different routes, a least-cost splitting procedure is used. This

procedure is based on an exact shortest-path algorithm (Bellman’s algorithm). First, the

7A general description is given in section 2.4.2.

95

4. Application to Vehicle Routing

minimum number of routes λ is determined that is needed to split the given permutation of

customers into routes such that each route fulfills the capacity restrictions and the distance

restrictions. If this number is smaller than the number of available vehicles K, we split

the given permutation into K, otherwise into λ routes. The splitting is accomplished by

a procedure similar to the algorithm that is used to determine the minimum number of

required vehicles. For detailed information on these algorithms, see Chu et al. 26 , Prins 99 .

In the example in Figure 4.1, cutting points are chosen as i = 3 and j = 5.

Figure 4.1.: OX Crossover and Split. 0 indicates trip delimiter; the cutting points are chosen as i = 3 and
j = 5.

(4) Mutation. We use two simple mutation operators. Operator (i) exchanges two ran-

domly chosen customers within one route by means of a 2-opt move. Operator (ii) ex-

changes a random number of customers between two different routes: Independently from

each other, each customer is selected as an exchange candidate with a certain probabil-

ity. For each exchange candidate, a random position in another route is chosen. Then

the exchange candidate and the customer occupying the selected position in the other

route change places. The choice between the application of operator 1 or 2 is performed

randomly, governed by a probability which is a parameter of our implementation.

(5) Constraint Handling. We still have to describe how to handle the constraints of

the multi-objective model during the execution of the NSGA-II, concerning (i) maximum

number of vehicles (note that by the least-cost splitting procedure, a variable number of

vehicles can result), and (ii) maximum capacity of the vehicles. Our operators applied

to generate new solutions may create solutions that violate one or both of the mentioned

constraints. Instead of relying on problem-specific repair functions to generate feasible

solutions, we use the constrained tournament method8 by Deb et al. 32 , which is a kind of

8A description is given in section 2.4.2.

96

4.3. Solution Techniques

penalty function method implemented within the context of NSGA-II.

(6) Elite-preserving procedure. We used controlled elitism in our NSGA-II implementa-

tion (see Deb and Goel 30). In contrast to the standard selection operator, where the new

parent population Pµ is generated by successively copying all solutions of the i-th non-

dominated front of Rµ to Pµ, controlled elitism restricts the number of individuals that can

be copied from the i-th front of Rµ to Pµ. As suggested in Deb and Goel 30 , a geometric dis-

tribution has been applied: The maximum number of allowed individuals in the i-th front

in the new parent population Pµ of sizeM0 is calculated asMi =M0 (1−r) ri−1 / (1−rK)

(i = 1, 2, . . .K), where 0 < r < 1. In combination with the constrained tournament

method, not only feasible solutions are selected as parents, but also some solutions that

are “slightly” infeasible, which helps to create diversity among the solutions of the Pareto

set.

4.3.4. Implementation Details

(1) General. All algorithms were implemented in C++ and compiled by gcc version 4.3.2

with all optimization options enabled. We used the branch-and-cut framework of CPLEX

11.2. All tests were performed on a PC with 3.2 GHz.

(2) Caching. As the calculation of the lower bound for the m-TSP is very time con-

suming, unnecessary recalculations have been avoided by implementing a caching feature.

Each set of customers for which the lower bound for the m-TSP has been calculated was

stored in a C++ map where a field representing the set of customers and the number m

of the vehicles was used as a key in order to quickly find the corresponding lower bound.

(3) Separation strategy. We followed the strategy by Lysgaard et al. 86 and treated

the root node differently from the other nodes. With regard to the separation routines

that address capacity constraints, we implemented the strategy in Lysgaard et al. 86 . For

the separation routines that consider distance constraints, we used the following scheme.

At the root node, separation stops if no new distance cut with a distance cut violation

> 0.001 or infeasible path with violation > 0.001 for three subsequent LP re-optimizations

was found. When separating distance constraints, the graph shrinking procedure is called

first, then the connected components are checked for violated distance constraints and the

separation routine for infeasible paths is called (at the root node the maximum number

of infeasible paths is set to 1000, for the other nodes 10). If none of the aforementioned

routines finds a violated constraint, the greedy randomized search is run. At non-root

97

4. Application to Vehicle Routing

nodes, one run of the separation routines is performed, except of the greedy randomized

search that is again only called if no violated constraints are found.

(4) Branching. If the separation routines do not find any violated constraints and the

solution is not integer, we branch. Therefore, we use the strong branching feature of

CPLEX.

(5) Parameter choice for the metaheuristics. For the heuristic algorithms NSGA-II and

the single-objective genetic algorithm (SOGA), the following parameter settings obtained

by computational experiments on selected test instances are used. We apply a crossover

probability of 0.9 and a mutation probability of 0.1. For the mutation operators, the

selection probability of each customer is set to 0.01, leading to mutations where only a

small number of customers are exchanged. A fixed number of iterations (200) is used as

the termination criterion. Population sizes are calculated dependent on the number of

customers: population size = 100 ⌈number of customers/10⌉.
In Figure 4.2, the performance of the NSGA-II algorithm for a medium-sized selected

test instance (A-n32-k5), including 32 customers and 5 vehicles, is shown.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rescaled f1

re
sc

a
le

d
f
2

10 % - att. func.
50 % - att. func.

100 % - att. func.
(1.02) 10% - att. func.

(a) Attainment functions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

m
e
tr

ic
s

generation number

Distance to the Pareto front
Diversity

(b) Running performance measures

Figure 4.2.: Performance measures for NSGA-II on test instance A-n32-k5 (cutoff factor ∞ for f1).

In Figure 4.2(a), plots of the attainment functions9 are shown for the selected test

instance A-n32-k5 and 10 runs. The Figure shows that the worst-case front (100% attain-

ment function, dotted curve) is very close to the best-case front (10% attainment function,

solid curve; since we have 10 runs, this curve gives the border of the points that are dom-

inated by at least one proposed solution). It can be concluded that for this instance, the

9A description is provided in Section 2.3.

98

4.4. Test Instances

algorithm is stable with respect to the random influence. In the figure, the values of f1

and f2 have been re-scaled to 0 for the minimum and 1 for the maximum value on the

Pareto front; without re-scaling, the differences between the attainment functions are even

smaller than they appear from the figure. To illustrate this, we have added the (1.02) 10%

attainment function (dot-dashed curve) which represents the area that is dominated by

the solutions of the best-case front, given that all objective function values of the solutions

are multiplied by a factor 1.02. This shows that the worst-case front is always within a

2% gap to the best-case front.

Figure 4.2(b) plots two important runtime-related characteristics of multi-objective op-

timizers: (i) distance of points to the Pareto front, and (ii) diversity evolution of points10.

Figure 4.2(a) and Figure 4.2(b) show that (i) for providing the exact branch-and-cut

approach with good incumbents, it is sufficient to perform one run of NSGA-II, and that

(ii) the chosen number of iterations is sufficiently high to guarantee stable results. Similar

observations have been obtained for other test instances. The parameter choices for the

SOGA have been assessed similarly.

4.4. Test Instances

To assess the performance of the algorithms, tests on a set of standard CVRP benchmark

instances from the TSPLIB are used. For each of the test instances and each algorithm, we

performed one run with different upper cutoff values for the distance objective function

f1 and two different maximum runtimes (4h, 8h). The upper cutoff values for f1 are

obtained by multiplying the minimal possible f1 value by factors 1.05, 1.10, 1.15, 1.2 and

∞, respectively. This procedure has been chosen because in applications, the decision

maker is usually not interested in solutions where the f1 value (expressing transportation

cost) is considerably higher (say, by 20% or more) than the best-possible value: the tradeoff

to route balance is only of interest within a certain reasonable bandwidth of expenditure

increments over the cheapest solution. This aspect is of special importance since, as it

turns out, it is just the computation of the rightmost part of the Pareto front the which

causes the largest computational effort. Thus, in applications, it makes sense to truncate

the Pareto front at the right end by some pre-defined percentage of the optimal f1 value.

Of course, the relation between computational effort and width of the Pareto front window

is of methodological interest; for this reason, we report on the results with the five factors

(including ∞) indicated above. We selected 54 instances, covering problem sizes between

16 and 57 customers and 2 to 9 vehicles. As the locations of the customers are given as

10Descriptions of the used measures are given in Section 2.3.3.

99

4. Application to Vehicle Routing

coordinates in the plane,the distance between each pair of customers has been calculated

as the Euclidean distance between the given points in the plane. This value has then been

rounded to the nearest integer value, and finally an all-pairs shortest path algorithm has

been run on the distances to ensure that the triangle inequalities are fulfilled.

4.5. Results

Table 4.1 shows the number of instances that each algorithm was able to solve within a

given runtime limit. An instance is considered as solved if the algorithm is able to find all

Pareto-optimal solutions within the given bound for f1 and prove that there does not exist

another solution within this bound. Results for two different maximum runtime limits (4h

and 8h) are presented. In all tables, EPS denotes the pure ε-constraint method, EPSN

denotes EPS + NSGA-II, and EPSS denotes EPS + SOGA.

Bound: 1.05 1.10 1.15 1.20 ∞
Runtime: 4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

Total Solved 37 39 28 28 20 21 15 18 9 10
EPS 36 38 28 28 20 20 15 17 8 9
EPSN 37 39 28 28 20 21 15 17 9 9
EPSS 37 38 28 28 20 20 15 15 9 10

% of runtime (a) 43 40 51 49 57 57 64 62 65 65
% of runtime (b) 74 67 72 70 71 71 73 70 73 72

Table 4.1.: Number of solved instances, % of runtime: shows the average percentage of runtime that is
used to prove that the Pareto set is complete (a) for all instances, (b) for not solved instances.

It is clear that as the bound for f1 gets larger, the instances become harder to solve.

Given tight bounds for f1, about 68% of the instances were solved by each of the algorithms

within 4h. This value rapidly decreases as the bound increases. An explanation for the

high number of unsolved instances in the absence of a f1 bound is that proving that

there does not exist another feasible solution given a bound for f2 (i.e., showing that a

DCVRP with D = f2 −∆, where f2 is the value of the second objective function of the

last found solution, is infeasible), is a hard problem that cannot be alleviated anymore

by determining bounds from incumbent solutions. As a consequence, the search tree of

the branch-and-cut algorithm quickly grows in this situation, as there is no upper bound

available that allows to prune certain subtrees; the only case where a subtree can be

discarded occurs if the LP relaxation at the current node is infeasible. As ∆ has the value

1 in our implementation we are right at the border (in terms of D of the DCVRP) where

100

4.5. Results

the instance is solvable for (f2) respectively infeasible for D = f2 − 1. On average over

all instances and algorithms, more than 40% of the provided runtime has been used to

prove that the complete Pareto set has already been found. As seen from Table 4.1, this

value increases as the bound for f1 increases, but considering only the instances that were

not solved by any algorithm, the value remains rather constant at about 72%. We take

account of the effect that such a large amount of runtime is needed to prove completeness

of the Pareto set by providing separate evaluations for “runtime until finding the front”

and “runtime until proving completeness of the front” in the following comparisons of the

algorithms.

For the comparisons, we define that an algorithm A is better than an algorithm B,

written as A ⊳b B, if either algorithm A is able to produce a larger number of Pareto-

optimal solutions than algorithm B within the given runtime limit, or algorithm A is able

to produce the same number of Pareto-optimal solutions within a shorter runtime than

algorithm B. In Figures 4.3(a) and 4.3(b), we show the quotient (N(A ⊳b B) − N(B ⊳b

A))/N tot, where N tot and N(event) denotes the total number of instances and the number

of instances for which event holds, respectively. The quotient is plotted for different pairs

of algorithms and in dependence of different bounds for f1, based on a maximum runtime

of 4h. Figures 2(a) and 2(b) differ by the exact interpretation of “producing solutions

within a shorter runtime” in the definition of A ⊳b B: In Figure 4.3(a), the runtime to

identify the last solution is used, whereas in Figure 4.3(b), the runtime needed to prove

that the complete Pareto set (within the given f1 bound) has been found is used as the

comparison criterion.

-60

-40

-20

 0

 20

 40

 60

1.05 1.10 1.15 1.20 ∞
bound for f1

%
o
f
to

ta
l
n
u
m

b
e
r

o
f
in

st
a
n
c
e
s

EPS - EPSN
EPS - EPSS

EPSS - EPSN

(a) Dominance based on runtime until last found
solution

-60

-40

-20

 0

 20

 40

 60

1.05 1.10 1.15 1.20 ∞
bound for f1

%
o
f
to

ta
l
n
u
m

b
e
r

o
f
in

st
a
n
c
e
s

EPS - EPSN
EPS - EPSS

EPSS - EPSN

(b) Dominance based on runtime until proven
complete

Figure 4.3.: Pairwise relative dominance count differences between the two hybrid algorithms and the
adaptive ε-constraint method

101

4. Application to Vehicle Routing

Figure 4.3(a) shows that for instances where the bound for f1 is tight, the hybridization

with the heuristics does not improve (or even worsens) the performance of the algorithm.

Here, the time needed to heuristically generate incumbent candidates is not compensated

by the achieved runtime reduction for the branch-and-cut algorithm. For larger bounds,

one can see that it is useful to apply the heuristic algorithms to generate good incumbent

candidates: For the three largest ones among the five considered bounds, the hybrid

algorithms perform better than EPS. In a comparison between the two hybrid algorithms

EPSN and EPSS, it is not clear which algorithm performs better; for the medium range

of bounds, a slight superiority of EPSN can be recognized, but the effect is weak. Figure

4.3(b) demonstrates that the advantage of the hybrid algorithm diminishes if the runtime

to prove completeness is used as the comparison criterion. This can be explained by the

effect shown in Table 4.1 that proving completeness requires a large share of the runtime,

together with the fact that for proving completeness, the hybrid algorithms possess no

special advantage anymore since the heuristics can only provide an incumbent solution

candidate if the problem is solvable.

To get a better insight into the possible runtime decrease achieved by the hybrid algo-

rithms versus EPS, Figure 4.4(a) and Figure 4.4(b) show the runtime differences of the

hybrid algorithms compared to EPS. For this analysis, we do not consider the five instances

where the hybrid algorithms were able to identify a larger number of Pareto-optimal so-

lutions than the EPS algorithm. Within each bound for f1, the remaining instances were

sorted in increasing order of the runtime needed by the EPS algorithm (representing the

difficulty of the instances). Based on this sorted list, we created four groups (each of size

9 or 10) of instances and calculated the average runtime difference between the hybrid

algorithms and the EPS algorithm. The figures show these differences for the three harder

groups of instances, as in the first (easy) group, the EPS algorithm clearly outperforms

the hybrid algorithms.

Figure 4.4(a) shows the performance of the hybrid algorithms compared to the EPS

algorithm with respect to the runtime needed to identify the last found solution. As

observed in Figure 4.3(a), the advantage of the hybrid algorithms increases as the bound for

f1 gets larger. It is important to notice that although in general EPS is the better algorithm

when the bound for f1 is tight, the performance of the hybrid algorithms compared to EPS

tends to improve as the instances become more difficult to solve. In Figure 4.4(b), the

influence of the comparably large runtime needed to prove completeness can be observed

again. It is seen that with respect to the runtime until proven completeness, the advantage

of the hybrid algorithms decreases. As before, for more difficult instances and f1 bounds

larger than 5%, the hybrid algorithms may have an advantage over the EPS algorithm, and

102

4.5. Results

-60

-40

-20

 0

 20

 40

 60

1.05 1.10 1.15 1.20 ∞
bound for f1

a
v
e
ra

g
e

d
iff

e
re

n
c
e

(i
n

%
)

EPSN - EPS
EPSS - EPS

(a) Average difference in runtime until last found
solution (in % of the runtime needed by EPS)

-10

-5

 0

 5

 10

 15

 20

1.05 1.10 1.15 1.20 ∞
bound for f1

a
v
e
ra

g
e

d
iff

e
re

n
c
e

(i
n

%
)

EPSN - EPS
EPSS - EPS

(b) Average difference in runtime until proven
complete (in % of the runtime needed by EPS)

-50

 0

 50

 100

 150

 200

 250

 300

1.05 1.10 1.15 1.20 ∞
bound for f1

a
v
e
ra

g
e

d
iff

e
re

n
c
e

(i
n

%
)

EPSN - EPSS till last
EPSN - EPSS till proven complete

(c) Average difference in runtime (in % of the run-
time needed by EPSN)

Figure 4.4.: Average runtime difference of the hybrid algorithms to the adaptive ε-constraint method

103

4. Application to Vehicle Routing

are at least not worse. Figure 4.4(c) illustrates the runtime differences between the hybrid

algorithms EPSN and EPSS. In this figure, all four groups of instances are shown for each

bound for f1, as well as both comparisons (runtime until last found solution, runtime until

proven complete). It can be observed that EPSS outperforms EPSN for easy instances,

whereas for harder instances, no significant difference between the two algorithms can be

noticed.

Finally, we present the complete Pareto front and the extreme solutions for a selected

test case (A-n37-k5). In Figure 4.5(a), the Pareto front for the instance is shown (crosses).

Comparing the leftmost and the rightmost point, we see that in this instance, it would be

possible to decrease the length of the longest route by 28% at the expense of an increase

in the total cost of about 10%. Such an analysis may be of interest if e.g. it is prefered

that all vehicles return to the depot at the same time, but it is not known how to quantify

this preference beforehand. Figure 4.5(b) presents the two extreme solutions of the given

instance. The left figure shows the routes that have to be performed if only total cost is

taken into account. As one can see, in this case, the routes are rather unbalanced (two

long routes, one of medium length, one very short). The right figure shows the optimally

balanced solution; here the lengths of all routes are almost the same.

It may be interesting to see what happens in the case where customer demands do not

vary. The filled circles in Figure 4.5(a) show the Pareto front in the case where all demands

have been set to the average of their values in the original instance. It can be observed that

in both settings, the optimal solutions with respect to f1 (total cost) have the nearly the

same value of f2 (maximum route length), but the optimal f1 value is considerably reduced

if the variance in the demand distribution is removed. This is intuitively plausible since

the maximum route length is stronger influenced by the location of the customers than by

their demands: a lower bound of the maximum route length (which can be tight in some

instances) is given by twice the longest distance of a customer to the depot, independently

of the demand. This consideration does not hold for the optimal total route length f1,

which is much more sensitive with respect to the vehicle capacity.

104

4.6. Concluding Remarks

 150

 160

 170

 180

 190

 200

 210

 220

 650 660 670 680 690 700 710 720 730 740
f1

f
2

Pareto front for A-n37-k5 with unequal demands

Pareto front for A-n37-k5 with equal demands

(a) Pareto front for test case A-n37-k5 (crosses).
The circles show the changed Pareto front if cus-
tomer demands are made equal by averaging.

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(b) Extreme solutions for test case A-n37-k5 (left:
solution with minimal f1, right: solution with min-
imal f2). Observe that both the left and the right
solution contain five routes.

Figure 4.5.: Pareto front and extreme solutions for test case A-n37-k5.

4.6. Concluding Remarks

We developed exact hybrid algorithms for solving a bi-objective vehicle routing problem

that does not only take minimization of total travel costs into account, but also consid-

ers the balance of routes as a second objective function. Our approach is based on the

adaptive ε-constraint method for multi-objective combinatorial optimization problems and

combines this method with two different metaheuristic algorithms (NSGA-II and a single-

objective GA) in order to improve the performance. In the application of the adaptive

ε-constraint method to our problem, an efficient exact algorithm is needed to solve the

arising subproblems. In our implementation, the subproblems are DCVRPs, therefore we

designed an efficient branch-and-cut algorithm for solving DCVRPs. A novel approach for

treating the distance constraints by means of Held-Karp-type bounds was implemented.

We tested our proposed algorithms on a set of 54 CVRP benchmark instances from

the TSPLIB. The computational experiments show that the implemented methods are

capable of solving small to medium-sized instances to optimality. For harder instances, the

hybrid algorithms perform distinctly better than the pure adaptive ε-constraint method,

if the runtime to find the last Pareto-optimal solution is considered as the performance

measure. This advantage decreases to some extent if the runtime to prove that the Pareto-

set is complete is considered. Comparing the two different hybridization approaches, a

sequential approach using NSGA-II and an interactive one using an ordinary GA, no

significant differences between the two approaches could be observed.

Future research in several directions is possible; let us outline topics where such research

105

4. Application to Vehicle Routing

will be particularly helpful. First, our experiments showed that efficiently proving the

completeness of the Pareto set is a crucial issue for possible further improvements of the

method. For the problem considered in this chapter, proving by a branch-and-cut approach

that the last identified Pareto-optimal solution is the last existing Pareto-optimal solution

is computationally very expensive, which suggests the application of other techniques for

this purpose. Secondly, our branch-and-cut implementation could be substituted by a

branch-and-price or a branch-and-cut-and-price algorithm. Third, the development of

efficient separation algorithms for finding violated distance constraints might considerably

improve the performance of the solution algorithms. Fourth, our approach could also be

applied to different other variants of CVRP problem, e.g., the CVRP with time windows.

Results can then be used as reference solution for evaluating different heuristic approaches.

Fifth, other metaheuristics could be applied to generate incumbent candidates for the

exact subproblem solver, these can either be multi-objective or single-objective algorithms.

Sixth, from the modelling viewpoint, let us recall that in this chapter, we consider the fleet

size K as fixed. Of course, the user can solve the presented model for different candidate

values ofK and compare the Pareto fronts, but a final picture cannot be obtained by simply

superimposing the fronts, since acquiring or leasing an additional vehicle (and occupying

one more driver) incurs additional expenses. Thus, an extension of the model making K

to a decision variable would be interesting. Finally, as in the project portfolio selection

application, another typically encountered aspect in practical applications is uncertainty

e.g. travel costs or the demands of customers are uncertain. This and the extension of the

planning horizon, from one to several days, leads to a stochastic periodic vehicle problem,

which we investigate at the moment. A brief description of the considered model, as well

as a description of the proposed solution process is given in Section in the appendix.

106

5. Conclusion

In this thesis we presented different hybrid approaches for solving two different optimiza-

tion problems in the field of multi-objective and stochastic multi-objective combinatorial

optimization problems.

For the first application, the Multi-objective Project Selection, Scheduling and Staffing

with Learning problem, we have developed a multi-objective model for project portfolio

selection with respect to both economic and competence-oriented goals, and a bi-objective

version of the model under uncertainty. The models also include different skill sets for the

employees as well as learning and knowledge deprecation effects.

The stochastic version extends the deterministic model by including a third type of ob-

jectives that measures the robustness of portfolios in terms of expected surplus costs due

to overtime work. We have implemented different solution approaches that rely on the de-

composition of the model into two problems: (i) a discrete portfolio optimization problem

as the master problem and (ii) a staffing problem, that is used to determine the assignment

of available personnel to work packages as the subproblem. To solve the subproblem an

approximation is presented by using a linear (mixed-integer, possibly stochastic) multi-

objective program. In our implementation this linear subproblem is solved by a commercial

solver (CPLEX). To solve the master problem we have implemented and investigated two

metaheuristics based on the NSGA-II algorithm and the P-ACO algorithm. We assessed

the performance of the algorithms on two different sets of test instances: (i) a set of

randomly generated synthetic test cases of different size and type, and (ii) a real-world

application delivered by the E-Commerce Competence Center Austria. Our computational

studies showed that both hybrid algorithms provide reasonable solutions from a practical

point of view.

To deal with the stochastic problem we implemented a procedure based on the APS

(Adaptive Pareto Sampling) technique in combination with the aforementioned NSGA-

II algorithm, and performed a computational study on a series of test instances derived

from the real-world application indicated above. We compared the proposed technique

to a complete enumeration approach with extensive simulation. Although our technique

only consumed 1% of the runtime of the combined enumeration-simulation approach, the

107

5. Conclusion

deviation of the solution quality was less than 1.6%. Concluding from these results, we

anticipate that our technique will be well-suited also for solving test instances for which

complete enumeration is not a feasible option anymore.

For the second application, the Bi-objective Capacitated Vehicle Routing Problem with

Route Balancing, we developed and implemented exact hybrid algorithms for solving a bi-

objective vehicle routing problem that does not only take minimization of total travel costs

into account, but also considers the balance of routes as a second objective function. The

presented approach is based on the adaptive ε-constraint method for multi-objective com-

binatorial optimization problems and combines this method with two different metaheuris-

tic algorithms (NSGA-II and a single-objective GA) in order to improve the performance.

In our application the adaptive ε-constraint method requires an efficient branch-and-cut

algorithm for solving distance-constrained CVRPs, therfore we implemented a novel ap-

proach for treating the distance constraints by means of Held-Karp-type bounds. We

performed computational experiments on a set of CVRP benchmark instances from the

TSPLIB. These experiments show that the implemented methods are capable of solving

small to medium-sized instances to optimality. For harder instances, the hybrid algorithms

perform distinctly better than the pure adaptive ε-constraint method, if the runtime to

find the last Pareto-optimal solution is considered as the performance measure. This ad-

vantage decreases to some extent if the runtime to prove that the Pareto-set is complete

is considered. No significant difference between the different hybridization approaches

could be observed. Our experiments showed that efficiently proving the completeness of

the Pareto set is a crucial issue for possible further improvements of the method. For

the considered problem, proving by a branch-and-cut approach that the last identified

Pareto-optimal solution is the last existing Pareto-optimal solution is computationally

very expensive, which suggests the application of other techniques for this purpose.

From a scientific point of view the hybrid approaches used in this thesis provide new

methods to solve the considered problems. Especially in the first application where a linear

problem is part of the considered optimization problem, the hybrid approach combining

a heuristic procedure to solve the combinatorial part of the problem, and a LP solver to

tackle the linear parts of the problem, provides much better results in terms of solution

quality than a pure heuristic approach. In the second application where we want to deter-

mine the exact Pareto-front of a multi-objective optimization problem, hybrid approaches

outperform pure exact methods in the case of “hard” problem instances.

108

A. Work in Progress

A.1. Problem Description

In this chapter, we present a brief description of an hybrid heuristic algorithm for solving

a bi-objective stochastic periodic vehicle routing problem. The considered problem is a

stochastic and bi-objective extension of the periodic vehicle routing problem with service

choice (PVRP-SC) by Francis et al. 44 . Let us shortly recall the definition of the PVRP-

SC. Its objective is to find optimal routes that are constructed for a period of time. In the

classical periodic vehicle routing problem (PVRP) customers are visited a preset number

of times over the period, the visit schedules for each customer are chosen from a fixed

set of visit combinations. Each schedule represents a set of days on which a customer is

visited. In the PVRP-SC the visit frequency of a customer is not a preset parameter of

the model. For each customer a minimum number of visits per period is given, but higher

frequencies are allowed. Francis et al. 44 describe the benefits of higher service frequencies

in general as the customer’s willingness to pay for more frequent service. In contrast to the

inventory routing problem (IRP), in the PVRP-SC, the amount delivered to a customer is

determined by the assigned schedule (the accumulated deterministic demand till the next

visit). The IRP treats the amount to deliver as a separate decision from service frequency.

The objective of the PVRP-SC is to find optimal routes for a fleet of K identical vehicles

(each with maximum capacity Q) for each day over a period of time that minimizes an

objective of total travel costs minus service benefit, subject to operational constraints

(i) the total demand of customers on each route is at most Q, (ii) the minimum service

frequency for each customer is fulfilled, (iii) each customer is visited exactly once at the

day a visit is required, (iv) each route at each day starts and ends at the depot and (v) no

split deliveries are allowed.

As a generalization to the classical PVRP-SC we treat the demands qi of customers

i = 1, . . . , n as uncertain values, and split the objective into two conflicting objectives:

(i) the minimization of total travel costs as the first objective and (ii) the minimization

of the total expected stockout of all customers as the second objective. This highlights

the trade-off between travel costs and robustness of the assigned visit schedules. We also

109

A. Work in Progress

include that for each vehicle a maximum driving distance D is given.

As in the application to project portfolio selection, for solving the resulting bi-objective

stochastic optimization problem we apply Adaptive Pareto Sampling APS (cf. Section

2.4.1), combined with the Nondominated Sorting Genetic Algorithm II (NSGA-II)

This chapter is organized as follows: In Section A.2, we formulate the bi-objective

stochastic extension of the PVRP-SC and introduce basic definitions. Section A.3 briefly

explains the proposed solution techniques, i.e., the algorithms APS and NSGA-II as well

as their interplay.

A.2. Model Formulation

This section describes our model for the stochastic bi-objective PVRP-SC. It can be seen

as an extension of the model used by Francis et al. 44 for the PVRP-SC. We assume

that the travel time matrix and cost matrix coincide (this matrix is denoted by C) and

that no service times are present. The elements of C are supposed to fulfill the triangle

inequality (i.e., the distance function is a metric). The stochastic bi-objective PVRP-

SC with (i) minimization of the total cost and (ii) minimization of the total expected

stockout can then be formulated as follows. The problem is defined on a directed graph

G = (V,A), where V = {0, 1, . . . , n} is the set of vertices, and A = {{i, j} : i, j ∈ V }
is the set of arcs. Index 0 denotes the depot, where a set K of vehicles of capacity Q

and maximum allowable route length D are located. The set of customers is given as

V0 = V \ {0}. The set T = {1, . . . , t} represents the set of days, where t represents the

length of the period. Each customer i has an random nonnegative demand at each day

d ∈ T that is represented by a random vector qi (ω) = [qi1 (ω) , . . . , qit (ω)], where ω denotes

the influence of randomness. In the following the average demand E (qid (ω)) of a customer

i is the same for each day d; we denote this average demand by q̄i. (A generalization to

varying average demands for different days is easily possible.) The minimum number of

visits for each customer i is denoted by fi. By the matrix C, to each arc (i, j) ∈ A, a cost

value cij is associated, which can also be interpreted as the travel time or as the length of

arc (i, j). S = {1, . . . , |S|} denotes the set of all service schedules, where each s ∈ S is a

subset of T . Each s is represented by a vector as indexed by d ∈ T , where asd = 1, if d ∈ T

is in schedule s ∈ S, otherwise asd = 0. The variable γs denotes the service frequency

for schedule s ∈ S. In contrast to the traditional PVRP-SC formulation we do not use

a single value βs (estimated as the maximum number of days between visits on schedule

s) as the demand accumulation adjustment factor but use a vector βs indexed by d ∈ T .

The elements of βs represent the numbers of days between two consecutive deliveries and

110

A.2. Model Formulation

can be calculated by the following equation.

βsd =











0, asd = 0

min
{

d′|d′ > d, asd′ = 1
}

− d, ∃d′ > d : asd′ = 1

t− d+min
{

d′|asd′ = 1
}

, otherwise

(A.1)

E.g. if we consider a planning period of five days, then one possible schedule s could be

represented by as = [0, 1, 0, 0, 1] or equivalently by βs = [0, 3, 0, 0, 2]. To formulate the

stochastic bi-objective PCVRP-SC as a stochastic mixed integer program (MIP), we define

binary variables ysi equal to 1 if and only if visit combination s ∈ S is assigned to customer

i, and xsdijk equal to 1 if and only if vehicle k visits customer j immediately after customer

i during day d and a given schedule s ∈ S. Variables zdi (ω) represent the inventory of

customer i at the end of day d. We omit the constraint of the classical PVRP-SC that each

customer needs to be visited by the same vehicle each time. The stochastic bi-objective

PVRP-SC (SB-PVRP-SC) can be formulated as follows.

min (f1 (x, y) , f2 (y)) (A.2)

f1 (x, y) =
∑

d∈T

∑

k∈K

∑

s∈S

∑

(i,j)∈A
cijx

sd
ijk, (A.3)

f2 (y) =− E





∑

i∈V0

∑

d∈T

[

zdi (ω)
]−


 , (A.4)

zdi (ω) =z
d−1
i (ω) +

∑

s∈S
βsdq̄iy

s
i − qid (ω) ∀i ∈ V0, d ∈ T\

{

0,min
{

d′|asd′ysi = 1
}}

, (A.5)

zdi (ω) =z
t
i (ω) +

∑

s∈S
βsdq̄iy

s
i − qid (ω) ∀i ∈ V0, d ∈ {0} \min

{

d′|asd′ysi = 1
}

, (A.6)

zdi (ω) =z
init
i (ω) +

∑

s∈S
βsdq̄iy

s
i − qid (ω) ∀i ∈ V0, d = min

{

d′|asd′ysi = 1
}

, (A.7)

s.t.
∑

s∈S
γsysi ≥ fi ∀i ∈ V0, (A.8)

∑

k∈K

∑

j∈V
xsdijk = asdy

s
i ∀i ∈ V0, s ∈ S, d ∈ T, (A.9)

∑

j∈V
xsdijk =

∑

j∈V
xsdjik ∀i ∈ V, s ∈ S, d ∈ T, k ∈ K, (A.10)

∑

s∈S

∑

j∈V0

xsd0jk ≤ 1 ∀d ∈ T, k ∈ K, (A.11)

∑

s∈S

∑

j∈V
βsdq̄ix

sd
ijk ≤ Q ∀i ∈ V0, d ∈ T, k ∈ K, (A.12)

111

A. Work in Progress

∑

s∈S

∑

(i,j)∈A
cijx

sd
ijk ≤ D ∀d ∈ T, k ∈ K, (A.13)

∑

i∈V ′

∑

j∈V ′

xsdijk ≤ |V ′| − 1 ∀V ′ ⊆ V0, V
′ 6= ∅, s ∈ S, d ∈ T, k ∈ K, (A.14)

ysi ∈ {0, 1} ∀i ∈ V0, s ∈ S,

xsdijk ∈ {0, 1} ∀i, j ∈ V, s ∈ S, d ∈ T, k ∈ K,

zdi (ω) ∈ R ∀i ∈ V0, d ∈ T,

ziniti (ω) ∈ R ∀i ∈ V0.

(A.3) is the classical objective of minimizing the total travel costs, (A.4) in combination

with the inventory balance equations (A.5) - (A.7) form the second objective function:

minimization of total expected stockout1. Constraint (A.8) defines that only schedules

that fulfill the minimum visit frequency are allowed. (A.9) guarantees that each customer

is visited exactly once on the days corresponding to the assigned visit combination. (A.10)

impose that if a vehicle enters a node i at day d the vehicle also leaves the node at day

d. Constraints (A.11) specify that each vehicle is used at most one a day. (A.12) and

(A.13) are the constraints that limit the capacity and duration of each route. And (A.14)

are the standard subtour elimination constraints. Using constraint (A.8) some xsdijk and ysi
can be fixed to value 0 in advance. If a schedule is not feasible with respect to constraint

(A.8) for customer i, ysi can be fixed to ysi = 0. The same can be done for variables xsdijk,

where schedule s is not feasible with respect to constraint (A.8) for customer i or j. Also

variables xsdijk where the corresponding values asd = 0 can be fixed to xsdijk = 0.

A.3. Solution Techniques

A.3.1. General Approach

The proposed approach to solve SB-PVRP-SC problems is very similar to the method

already successfully applied to the project portfolio selection problem of Chapter 3. In

general the SB-PVRP-SC belongs to a computationally hard class of problems. It is

immediately seen that already the deterministic, single objective special case obtained by

removing the second objective f2 (A.4) and the related inventory balance equations (A.5)

- (A.7) is a generalization of the well known PVRP which is known to be NP-hard. The

presence of the f2 term and the bi-objective situation further increase the complexity. For

1We are aware that zdi (ω) of the current week may be different than the week before. But we assume
that our formulation provides a sufficient approximation.

112

A.3. Solution Techniques

most distributions of qid, a direct evaluation of f2 by numerical methods is costly or even

impossible. For this reason, we resort to Monte-Carlo simulation to obtain an estimate

of f2 for each given x. Since we do not obtain exact evaluations of f2 in this way, we

apply APS in combination with a variant of the well known NSGA-II algorithm to solve

the problem.

A.3.2. NSGA-II

In this section we describe the components of the NSGA-II algorithm that are customized

for the considered optimization problem.

(1) Encoding of a solution. Considering a discrete time period T of t days. Each

customer is visited ui (fi ≤ ui ≤ t) times, but at most once per day. The total number of

visits in T is then the sum of all visits (ns (T) =
∑

i∈V0
ui). Any solution for the PVRP-

SC is a sequence of ns (T) customers, divided into t sublists. Each sublist represents the

routes that have to be executed at a given day. To represent the the routes of a given day

d we use a giant tour representation. In general a giant tour represents a set of routes R

by combining the routes to one large tour that visits |R| times the depot node (see, e.g.68).

The repeated visits of the depot node in giant tour are represented by |R| copies of the

depot node. In the remaining work they are called trip delimiters. A solution is feasible

if each customer i appears at least fi times in fi distinct giant tours, according to one

allowed schedule in S. All sub-paths of giant tours between two consecutive depot nodes

need to represent feasible routes and the limited fleet size constraints must be fulfilled.

(2) Generation of the initial population. For obtaining good initial solutions, we ran-

domly assign a feasible service schedule s ∈ S that fulfills γs ≥ fi to each customer

i ∈ V0. After the service schedules are fixed we know which customers need to be visited

at day d and the demands for each customer. To generate the routes for each day we use

a randomized savings algorithm (Pasia et al. 95). The traditional savings algorithm for

the CVRP starts with routes each servicing only one customer. Iteratively, the partial

routes are combined by selecting the two routes producing the maximum savings value

s (i, j) = c{0,i} − c{i,j} + c{j,0}, where only combinations (i, j) leading to feasible routes

are considered. This is repeated until no routes can be merged anymore. The random-

ized savings algorithm developed in (Pasia et al. 95) maintains a candidate list C of the

feasible combinations with the |C| best saving values, and selects one of them with equal

probability.

113

A. Work in Progress

(3) Crossover. We apply a variant of the crossover suggested by Lacomme et al. 77

adapted for the case that the service frequency for each customer is not fixed to a cer-

tain value but a minimum visit frequency is given. Let two parent solutions π1 and π2

be given. In the encoding of a solution, the routes driven by the vehicles at a certain

day are represented by giant tours including trip delimiters. In general a periodic linear

order crossover (PLOX) (Lacomme et al. 77) is performed on the parents to generate two

children. To perform the PLOX operator we first eliminate all trip delimiters from the

giant tours, and combine the sequences of the single days to one long sequence, and define

a target frequency tfi for each customer i. Then PLOX constructs children γ1 and γ2 as

follows: First, select two cutting points i and j in the first parent π1. Then, copy the

customers (π1 [i] , . . . , π1 [j]) into the first child γ1, while keeping their service days and

order, and update the the target frequencies of the customers that are copied from π1 as

follows: tfi = min (fi, occurrence of i in the copied sequence). The remaining positions

of γ1 are then filled, starting at the beginning of π2, by considering the customers in the

order they appear in π2. For the customers that are not copied from π1 we define the

target frequency as tfi = min (fi, occurrence of i in π2). PLOX only copies a customer

from π2 only if its target frequency is not yet satisfied and tries to keep the services days

of a customer i in π2. Given that there are not enough visits for customer i in γ1 there

are two possible cases for the current customer i of π2:

(i) i is appended to the customers of the same day, if there is a compatible feasible service

schedule available and i is not already inserted at the current day.

(ii), Otherwise, i is appended to the earliest day compatible with any feasible service

schedule.

In the way we defined the target frequencies it is always guaranteed that the minimum

service frequency of each customer i is fulfilled and feasible service schedules exist. To

decompose a coding without trip delimiters into giant tours with trip delimiters we use a

least-cost splitting procedure for each day. The least-cost splitting procedure is an adap-

tion of the procedures used in (Chu et al. 26 , Lacomme et al. 77 , Prins 99). We adapted

them to the case that the number of vehicles is not fixed and distance constraints are

present.

(4) Mutation. We use one simple mutation operator. The operator exchanges a number

of randomly chosen customers within one randomly chosen giant tour. Independently from

each other, each customer is selected as an exchange candidate with a certain probability.

For each exchange candidate, a random position is chosen. Then the exchange candidate

and the customer occupying the selected position in the change places. The number of

114

A.3. Solution Techniques

possible exchanges is controlled by a parameter that represents a selection probability.

(5) Primary Local Search. After each genetic operator we apply a local search proce-

dure if the considered solution is feasible. For each day of the solution we apply a local

search algorithm based on a first improvement strategy. In this algorithm we consider the

well known 2-opt∗ and 2-opt neighborhoods and use sequential search procedures to find

improving neighbors. A detailed description of sequential search algorithms as well as a

comparison to traditional lexicographic search is given in (Irnich et al. 68).

(6) Constraint Handling. As in the application to vehicle routing (Chapter 4) we use the

constrained tournament method2 by Deb et al. 32 to handle the following constraints: (i)

maximum number of vehicles (note that by the least-cost splitting procedure, a variable

number of vehicles can result), (ii) maximum capacity of the vehicles, and (iii) maximum

allowed route distances.

(7) Elite-preserving procedure. Again we use controlled elitism in our NSGA-II imple-

mentation (see Deb and Goel 30 and Section 4.3.3).

A.3.3. Importance Sampling

In our experiments, we assume the random variables qid (ω) to be independent and mod-

eled by poison distributions Pois (q̄i) where q̄i is the average demand of customer i. To

estimate objective function f2 (y), a sample of s scenarios ω1, . . . , ωs is drawn, where each

scenario ων consists of a matrix Q(ν) =
[

q
(ν)
11 , . . . , q1t

(ν); . . . ; q
(ν)
n1 , . . . , q

(ν)
nt

]

of i.i.d. random

numbers q
(ν)
id distributed according to Pois (q̄i) (i = 1, . . . , n, d = 1, . . . , t). According to

(2.7), the estimator f̃2 (y) for f2 (y) is given by

f̃2 (y) =
1

s

s
∑

ν=1

f2

(

x,Q(ν)
)

(A.15)

where (cf. (A.4) and (A.5) - (A.7))

f2(y,Q
(ν)) =−

∑

i∈V0

∑

d∈T

[

zdi
(ν)
]−
, (A.16)

zdi
(ν)

=zd−1
i

(ν)
+
∑

s∈S
βsdq̄iy

s
i − q

(ν)
id ∀i ∈ V0, d ∈ T\

{

0,min
{

d′|asd′ysi = 1
}}

, (A.17)

2A description is given in section 2.4.2.

115

A. Work in Progress

zdi
(ν)

=zti
(ν)

+
∑

s∈S
βsdq̄iy

s
i − q

(ν)
id ∀i ∈ V0, d ∈ {0} \min

{

d′|asd′ysi = 1
}

, (A.18)

zdi
(ν)

=ziniti
(ν)∑

s∈S
βsdq̄iy

s
i − q

(ν)
id ∀i ∈ V0, d = min

{

d′|asd′ysi = 1
}

. (A.19)

To reduce the variance of the estimator f̃2 (y) without paying the cost of increasing sam-

ple size, we use importance sampling (IS) in our experiments (see, e.g., Rubinstein and

Kroese 107). In our case, for estimating f2 (y), we are only interested in events where the

inventory zdi
(ν)

of some customer at some day is less than zero: if this is not the case, the

term
[

zdi
(ν)
]−

in (A.16) is zero. This suggests to shift the distribution Pois (q̄i) of qid (ω) to

Pois (q̄i
+) with some q̄i

+ satisfying q̄i < q̄i
+, such that the above-mentioned event occurs

more frequently during sampling. The corresponding likelihood ratio is

λ(3)
(

u; q̄i, q̄i
+
)

=
χ (u; q̄i)

χ (u; q̄i+)
= exp

(

−u ln
(

q̄i
+
)

+ q̄i
+ + u ln (q̄i)− q̄i

)

,

where χ (u; q̄i) denotes the probability density of the poison distribution Pois (q̄i) in point u.

Note that the distributions Pois (q̄i) and Pois (q̄i
+) have the same support. By the assumed

independence of the random variables qid (ω), we can multiply the likelihood ratios corre-

sponding to the single variables qid (ω) to obtain the overall weight. Thus, we can replace

(A.15) - (A.16) by

f̃2
IS

(y) =
1

s

s
∑

ν=1

f IS2

(

x,Q(ν)
)

, (A.20)

and

f IS2

(

y,Q(ν)
)

=
∑

i∈V0

∑

d∈T
λ
(

q
(ν)
id ; q̄i, q̄i

+, d
) [

zdi
(ν)
]−
, (A.21)

λ
(

q
(ν)
id ; q̄i, q̄i

+, d
)

=







∏d
d′=d̂

λ(3)
(

q
(ν)
id′ ; ·

)

, d ≥ d̂ = min
{

d′|asd′ysi = 1
}

∏t
d′=d̂

λ(3)
(

q
(ν)
id′ ; ·

)

∏d
d′=1 λ

(3)
(

q
(ν)
id′ ; ·

)

, d < d̂ = min
{

d′|asd′ysi = 1
}

,

(A.22)

(A.17)− (A.19),

where q
(ν)
id is now sampled from Pois (q̄i

+) instead of Pois (q̄i) (i = 1, . . . , n, d = 1, . . . , t).

To shift the distribution, a parameter α is used to determine q̄i
+ = αq̄i for each customer

i.

116

A.4. Preliminary Concluding Remarks

A.4. Preliminary Concluding Remarks

The model and the proposed solution method as well as some preliminary results have

been presented at the Matheuristics 2010 conference in Vienna (June 2010). At the mo-

ment computational experiments to assess the performance of the proposed method and

the model are still going on.

The preliminary experiments show that the parameter α influences the amount of variance

reductions, and that the optimal value α∗
i = α∗

i (q̄i, t) of α for a given customer i depends

in a rather complicated way on the parameters q̄i and t of the model, and there seems

to be no chance to compute it in advance by means of some closed-form expression. By

using a precomputed α∗
i variance reductions of about 60 % compared to standard sam-

pling could be observed. Research is going on in several directions; let us outline topics

that are investigated at the moment. First, we want to show how the performance (in

terms of runtime) of the proposed method increases by using importance sampling instead

of the trivial standard sampling approach. Second, a deeper understanding of the APS

method should be obtained by using the running performance measures of Section 2.3.3

to investigate the influences of different update function of the sample sizes used in the

solution proposal and solution evaluation stages of the APS algorithm. Third, the overall

performance of the proposed algorithm will be assessed by using performance metrics for

multi-objective optimizers described in Section 2.3, and a set of adapted standard test

instances for the PVRP. Finally, we want to investigate the capabilities of the proposed

model from the view point of a decision maker, especially we want to highlight the differ-

ences of solutions which could be obtained by changing the following parameters of the

model: (i) changes in the minimum visit frequency fi of the customers (e.g. using fixed

frequencies, no minimum frequency, etc.) and (ii) changes in the tightness of the capacity

constraints.

117

B. Additional Results

B.1. Vehicle Routing

In Section B.1.1, the points of the Pareto sets of the considered test instances are shown.

Section B.1.2 lists all results of our computational experiments. In section B.1.3, an

aggregated view on the results of the computational experiments is given. This information

is the basis for figures 4.4(a), 4.4(b), and 4.4(c) and the corresponding descriptions in

Section 4.5.

119

B
.
A
d
d
itio

n
a
l
R
esu

lts

B.1.1. Pareto Optimal Solutions

Testcase Solutions

A-n32-k5 (783,267) (784,254) (796,236) C (829,234) (844,229) (852,224) (857,220) CC (907,219) (915,218) (920,215) (924,209) CO

A-n33-k5 (661,185) (671,169) (678,167) (684,163) C (705,161) (716,160) (717,158) C (728,157) COO

A-n33-k6 (741,172) (754,170) (766,158) (769,155) C (781,154) (788,151) CO (830,150) OO

A-n34-k5 (778,188) (783,185) (785,177) (804,175) (805,173) C (836,172) OOOO

A-n36-k5 (799,226) (831,225) (833,224) C (841,222) (852,216) (865,215) (877,214) C (892,213) CCC

A-n37-k5 (669,211) (670,210) (673,192) (678,191) (680,190) (685,186) (687,185) (692,182) (697,181) C (703,179) (709,178) (714,177)

(715,175) (718,174) (728,166) (730,165) (735,154) C (737,152) CCC

A-n37-k6 (949,250) (955,247) (969,239) (970,232) (985,228) (995,226) C (1001,224) (1007,223) (1016,218) (1017,216) (1034,214) C

(1061,210) COO

A-n38-k5 (730,184) (735,181) (758,178) (761,176) (762,172) C (770,170) (785,164) COOO

A-n39-k5 (822,212) (857,200) (858,199) (862,198) C (893,197) OOOO

A-n39-k6 (830,220) (833,209) (834,203) (842,202) (858,201) C (874,200) (898,199) (900,190) C (923,189) (942,188) OOO

A-n44-k6 (936,247) (938,244) (940,241) (943,237) (950,235) (954,228) (956,219) (959,218) (964,215) (971,206) (975,203) C (986,202) C

(1038,201) (1048,200) OOO

A-n45-k6 (944,204) (969,203) (979,202) (983,197) (984,196) C (1010,193) OOOO

A-n45-k7 (1145,229) (1146,221) (1147,220) (1160,219) (1161,217) (1164,214) (1167,212) (1177,209) OOOOO

A-n46-k7 (913,197) (919,195) (927,194) (928,192) (946,188) (951,187) (955,186) C (962,184) (983,183) (989,182) C (1035,181) (1045,180)

ccO

A-n48-k7 (1073,206) (1080,205) OOOOO

A-n53-k7 (1010,225) (1011,219) (1016,205) (1019,203) (1024,202) (1027,200) (1029,199) (1036,198) COOOO

A-n54-k7 (1167,228) (1170,227) OOOOO

A-n55-k9 (1072,176) (1075,171) (1099,170) C (1128,169) (1148,166) OOOO

Table B.1.: Pareto-optimal solutions for the considered test instances, for each bound on f1 a delimiter is used to indicate the border of the Pareto-
set that lies within the given bound. C,c indicates that it was possible to prove that the set within the given bound is complete within
4h respectively 8h, O denotes that it is not known whether the set is complete or not. Bold fonts indicate solutions that could be found
within 8h of runtime.

120

B
.1
.
V
eh
icle

R
o
u
tin

g

Testcase Solutions

B-n31-k5 (672,189) CCCCC

B-n34-k5 (788,212) (789,202) OOOOO

B-n35-k5 (955,247) (989,245) (997,244) c (1004,243) OOOO

B-n38-k6 (804,211) (806,210) (811,197) (814,195) (822,184) (827,183) (828,176) CC (912,174) CCC

B-n39-k5 (549,196) CCOOO

B-n41-k6 (829,187) (842,185) (865,170) (866,169) CCCCC

B-n43-k6 (742,171) (754,170) (758,169) (759,168) (762,167) (763,166) (765,165) (769,162) (772,161) (775,160) OOOOO

B-n44-k7 (909,212) (924,199) (927,171) (949,170) (951,168) C (985,167) CC (1078,166) CC

B-n45-k5 (751,215) (752,213) (758,212) (786,206) (787,205) c (792,201) (793,200) OOOO

B-n45-k6 (678,156) (679,154) (710,146) OOOOO

B-n50-k7 (741,151) C (807,146) (812,144) (814,141) CCOO

B-n50-k8 (1309,242) OOOOO

B-n51-k7 (1032,215) (1045,198) (1048,197) OOOOO

B-n52-k7 (747,214) (753,155) (760,153) (784,151) COOOO

B-n56-k7 (707,202) (710,188) (713,187) (724,186) (741,183) C (743,182) CCCC

B-n57-k7 (1153,202) OOOOO

B-n57-k9 (1598,249) (1602,248) OOOOO

Table B.2.: Pareto-optimal solutions for the considered test instances, for each bound on f1 a delimiter is used to indicate the border of the Pareto-
set that lies within the given bound. C,c indicates that it was possible to prove that the set within the given bound is complete within
4h respectively 8h, O denotes that it is not known whether the set is complete or not. Bold fonts indicate solutions that could be found
within 8h of runtime.

121

B
.
A
d
d
itio

n
a
l
R
esu

lts

Testcase Solutions

E-n22-k4 (375,113) CC (414,112) (421,110) Ccc

E-n23-k3 (569,289) (570,283) (595,280) C (600,260) (619,258) C (637,253) (653,247) CC (687,245) (688,242) O

E-n30-k3 (534,216) (542,210) (544,209) (547,206) (549,196) (550,195) (551,192) (560,191) OOOOO

E-n30-k4 (503,184) (511,177) (515,174) (521,172) C (548,170) C (558,165) C (589,164) CO

E-n33-k4 (835,265) (839,262) (843,260) (846,259) (857,257) (860,256) (865,255) (869,254) C (882,251) (883,249) (888,247) (890,245)

(913,244) COOO

E-n51-k5 (521,117) (527,113) (528,112) (533,111) OOOOO

P-n16-k8 (450,68) CCCCC

P-n19-k2 (212,114) CCCCO

P-n20-k2 (216,118) (218,112) CCCOO

P-n21-k2 (211,117) (217,116) (220,112) CCCcO

P-n22-k2 (216,117) (223,112) CCCcO

P-n22-k8 (602,109) (613,108) (629,107) C (635,106) (654,105) (660,104) CCCC

P-n23-k8 (529,90) C (563,89) CCCC

P-n40-k5 (458,98) COOOO

P-n45-k5 (510,117) (513,113) (514,111) (525,109) (526,108) COOOO

P-n50-k7 (554,118) (555,116) (557,103) (558,101) (560,97) (563,93) (572,92) (573,91) (580,90) (581,87) COOOO

P-n55-k7 (568,117) OOOOO

P-n55-k8 (588,121) (589,105) (590,98) (593,97) (594,96) (597,90) (612,89) cOOOO

Table B.3.: Pareto-optimal solutions for the considered test instances, for each bound on f1 a delimiter is used to indicate the border of the Pareto-
set that lies within the given bound. C,c indicates that it was possible to prove that the set within the given bound is complete within
4h respectively 8h, O denotes that it is not known whether the set is complete or not. Bold fonts indicate solutions that could be found
within 8h of runtime.

122

B
.1
.
V
eh
icle

R
o
u
tin

g

B.1.2. Runtimes

T.c. Ag. 1.05 1.10 1.15 1.20 ∞

4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

An32k5 E 255; 435 255; 435 1349; 1405 1349; 1401 1597; 2444 1597; 2440 5957; 8808 5957; 8778 8735;14400 8735;28800

EN 361; 500 361; 500 1053; 1369 1053; 1364 1059; 1926 1059; 1926 5589; 6309 5589; 6314 5603;14400 5603;28800

ES 267; 504 267; 503 1152; 1466 1155; 1464 1157; 2136 1160; 2132 5097; 5467 5097; 5462 5101;14400 5101;28800

An33k5 E 291; 404 291; 403 623; 699 623; 699 709; 848 709; 847 764;14400 764;28800 904;14400 904;28800

EN 370; 450 369; 449 721; 761 721; 761 772; 874 771; 873 775;14400 774;28800 778;14400 777;28800

ES 361; 496 360; 495 769; 875 768; 873 790; 939 790; 939 791;14400 791;28800 793;14400 793;28800

An33k6 E 190; 272 190; 271 388; 1296 388; 1294 418;14400 419;28800 482;14400 0;28800 0;14400 0;28800

EN 277; 311 276; 310 472; 4369 472; 4302 473;14400 473;28800 473;14400 19115;28800 474;14400 19306;28800

ES 359; 453 357; 452 585; 2287 585; 2263 586;14400 586;28800 587;14400 28719;28800 588;14400 28719;28800

An34k5 E 286; 467 286; 466 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800

EN 339; 520 339; 520 7512;14400 7523;28800 7512;14400 7531;28800 7512;14400 7538;28800 7512;14400 7546;28800

ES 395; 636 395; 635 0;14400 25117;28800 0;14400 25117;28800 0;14400 25117;28800 0;14400 25117;28800

An36k5 E 1198; 1297 1198; 1298 10900;12515 10900;12529 11398;12442 11451;12442 11451;13781 11468;14562 12344;14221 12344;14223

EN 919; 1039 921; 1041 6045;14400 6105;22135 6197; 6247 6230; 6250 6257; 6657 6349; 6608 6368;10238 6377;10296

ES 786; 1006 785; 1005 12476;14400 12602;13747 12514;14400 12737;14436 12519;13689 12749;13487 12535;13534 12764;13466

An37k5 E 877; 995 877; 996 2756; 3356 2756; 3350 3258; 3295 3258; 3280 3307; 6298 3307; 6301 4250;14400 4351;28800

EN 921; 987 920; 987 2268; 3872 2513; 3858 2513; 2931 2888; 2928 2521; 4082 2537; 4083 2547;14400 3850;28800

ES 1098; 1228 1098; 1228 2875; 4009 2875; 4001 3536; 4343 3535; 4327 3544; 7174 3543; 7185 3558;14400 3556;28800

An37k6 E 2112; 2300 2112; 2300 3901; 4085 3901; 4086 5925;14400 5925;28800 12013;14400 12013;28800 13997;14400 13997;28800

EN 2716; 2844 2713; 2841 4057; 4202 4055; 4201 6217;14400 6216;28800 6247;14400 6368;28800 6286;14400 6196;28800

ES 2576; 2767 2574; 2765 3884; 4133 3886; 4136 5909;14400 5910;28800 5993;14400 5994;28800 6084;14400 6083;28800

An38k5 E 570; 641 570; 633 9152;14400 9149;28800 9149;14400 9149;28800 10723;14400 10727;28800 10873;14400 10727;28800

EN 448; 491 448; 490 9065;14400 9084;28800 9065;14400 9084;28800 9065;14400 9074;28800 9065;14400 9069;28800

ES 380; 484 382; 486 10000;14400 9986;28800 10000;14400 9986;28800 10000;14400 9986;28800 10000;14400 9986;28800

An39k5 E 758; 935 758; 934 3145; 3541 3214; 3546 4213;14400 4251;28800 5260;14400 5260;28800 5260;14400 5260;28800

EN 858; 984 856; 983 2125; 2637 2125; 2681 2134;14400 2134;28800 2097;14400 2098;28800 2057;14400 2059;28800

ES 820; 1028 819; 1027 2155; 2503 2145; 2494 2166;14400 2167;28800 2183;14400 2184;28800 2211;14400 2211;28800

An39k6 E 471; 608 471; 608 7764;10453 7805;10462 7764;14400 19663;28800 7764;14400 19663;28800 9815;14400 19663;28800

EN 592; 677 592; 678 8061;12273 8130;12276 8061;14400 18689;28800 8061;14400 18689;28800 8061;14400 18689;28800

ES 546; 698 546; 698 9021;10279 9030;10337 9021;14400 16499;28800 9021;14400 16499;28800 9021;14400 16499;28800

Continued on next page

123

B
.
A
d
d
itio

n
a
l
R
esu

lts

T.c. Ag. 1.05 1.10 1.15 1.20 ∞

4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

An44k6 E 4292; 4508 4292; 4505 7109; 7314 7109; 7315 0;14400 14924;28800 0;14400 14924;28800 0;14400 14924;28800

EN 5082; 5194 5082; 5176 5140; 5290 5140; 5283 13856;14400 13856;28800 13856;14400 13856;28800 13856;14400 13856;28800

ES 4073; 4487 4073; 4517 6318; 6550 6318; 6565 12528;14400 12528;28800 12528;14400 12528;28800 12528;14400 12528;28800

An45k6 E 0;10660 0;10662 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800

EN 7260; 7302 7255; 7314 7248;14400 7247;28800 7254;14400 7250;28800 7256;14400 7253;28800 7248;14400 7242;28800

ES 7289; 7609 7283; 7451 7285;14400 7278;28800 7286;14400 7286;28800 7283;14400 7258;28800 7285;14400 7278;28800

An45k7 E 0;14400 23333;28800 0;14400 23930;28800 0;14400 24289;28800 0;14400 0;28800 0;14400 0;28800

EN13114;14400 13112;28800 13120;14400 13118;28800 13129;14400 13140;28800 13146;14400 13152;28800 13163;14400 13168;28800

ES 0;14400 25874;28800 0;14400 25869;28800 0;14400 25862;28800 0;14400 25852;28800 0;14400 25836;28800

An46k7 E 3201; 4142 3201; 4127 10433;10618 10433;24321 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800

EN 2864; 3752 2864; 3748 8702; 8808 8702; 8810 11932;14400 11922;18192 11919;14400 11926;14069 11923;14400 11914;28800

ES 3009; 3785 3009; 3788 6676;14400 6679; 6893 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800

An48k7 E 306;14400 306;28800 884;14400 884;28800 884;14400 884;28800 1185;14400 1185;28800 1185;14400 1185;28800

EN 654;14400 654;28800 654;14400 654;28800 654;14400 654;28800 654;14400 654;28800 654;14400 654;28800

ES 433;14400 433;28800 433;14400 433;28800 433;14400 433;28800 462;14400 461;28800 462;14400 461;28800

An53k7 E 0;14400 0;17088 0;14400 11609;28800 11609;14400 11609;28800 11609;14400 11632;28800 14108;14400 14108;28800

EN 6450; 9127 6450; 9203 6450;14400 6450;28800 6450;14400 6450;28800 6450;14400 6450;28800 6450;14400 6450;28800

ES 8819;11588 8819;11630 8819;14400 8819;28800 8819;14400 8819;28800 8819;14400 8819;28800 8819;14400 8819;28800

An54k7 E 11356;14400 23865;28800 11802;14400 23865;28800 11912;14400 23865;28800 12064;14400 26112;28800 12064;14400 26112;28800

EN 6174;14400 18429;28800 6203;14400 18519;28800 6174;14400 18429;28800 6203;14400 18519;28800 6174;14400 18429;28800

ES 8190;14400 26426;28800 8230;14400 26558;28800 8190;14400 26426;28800 8230;14400 26558;28800 8190;14400 26426;28800

An55k9 E 1257; 2174 1257; 2176 4381;14400 0;28800 4580;14400 0;28800 4620;14400 22780;28800 5643;14400 25757;28800

EN 1625; 2787 1625; 2785 4390;14400 21813;28800 4410;14400 21792;28800 4390;14400 21802;28800 4410;14400 21812;28800

ES 1618; 2902 1618; 2902 3225;14400 17447;28800 3241;14400 17534;28800 3225;14400 17447;28800 3241;14400 17534;28800

Bn31k5 E 1; 1 1; 1 1; 1 1; 1 1; 12 1; 12 1; 11 1; 11 1; 13 1; 368

EN 47; 48 47; 47 47; 47 47; 47 47; 47 47; 47 47; 48 47; 47 47; 47 47; 47

ES 7; 16 7; 16 7; 22 7; 22 7; 29 7; 28 7; 27 7; 27 7; 30 7; 35

Bn34k5 E 213;14400 213;28800 233;14400 233;28800 244;14400 244;28800 245;14400 245;28800 250;14400 250;28800

EN 197;14400 197;28800 197;14400 197;28800 197;14400 197;28800 197;14400 197;28800 197;14400 197;28800

ES 225;14400 225;28800 226;14400 226;28800 225;14400 225;28800 226;14400 226;28800 225;14400 225;28800

Bn35k5 E 3397;14400 3397;28800 8600;14400 8600;28800 8636;14400 21435;28800 8636;14400 21435;28800 8636;14400 21435;28800

EN 2419;14400 2542;28800 2430;14400 2554;28800 2419;14400 14797;28800 2430;14400 14806;28800 2419;14400 14804;28800

Continued on next page

124

B
.1
.
V
eh
icle

R
o
u
tin

g

T.c. Ag. 1.05 1.10 1.15 1.20 ∞

4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

ES 3653;14400 3653;28800 3671;14400 3671;28800 3653;14400 23050;28800 3671;14400 23040;28800 3653;14400 23048;28800

Bn38k6 E 670; 757 670; 755 736; 849 736; 848 1007; 1062 1007; 1061 1057;11660 1057;11652 11656;11661 11656;11666

EN 747; 776 747; 775 750; 778 750; 777 991; 1032 991; 1032 995; 1541 995; 1542 991; 2214 991; 2210

ES 695; 736 695; 737 698; 956 698; 955 987; 991 987; 1019 991; 1304 991; 1300 987; 1572 987; 1685

Bn39k5 E 1; 2 1; 2 1; 96 1; 95 1;14400 1;28800 1;14400 1;28800 1;14400 1;28800

EN 98; 112 98; 112 98; 138 98; 138 98;14400 98;28800 98;14400 98;28800 98;14400 98;28800

ES 14; 33 14; 33 14; 133 14; 133 14;14400 14;28800 14;14400 14;28800 14;14400 14;28800

Bn41k6 E 437; 519 437; 518 438; 536 438; 536 456; 570 456; 569 506; 542 506; 544 519; 611 519; 613

EN 515; 585 515; 586 517; 593 517; 593 515; 575 515; 575 517; 562 517; 561 515; 630 515; 631

ES 505; 543 505; 542 507; 651 507; 650 505; 633 505; 633 507; 683 507; 681 505; 640 505; 651

Bn43k6 E 0;14400 27796;28800 0;14400 27806;28800 0;14400 27945;28800 0;14400 27806;28800 0;14400 27945;28800

EN13137;14400 13137;28800 13202;14400 13202;28800 13137;14400 13137;28800 13202;14400 13202;28800 13137;14400 13137;28800

ES 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800

Bn44k7 E 681; 776 681; 776 790; 880 790; 882 859; 963 859; 962 1072; 1075 1072; 1074 1286; 1289 1286; 1328

EN 876; 943 876; 943 952; 977 952; 978 956; 996 956; 996 1068; 1075 1068; 1075 1072; 1087 1072; 1087

ES 707; 835 707; 835 997; 1342 997; 1338 1001; 1180 1001; 1183 1224; 1237 1224; 1238 1230; 1273 1230; 1237

Bn45k5 E 300;14400 0;28800 338;14400 0;28800 712;14400 0;28800 1024;14400 0;28800 2293;14400 0;28800

EN 473;14400 473;18818 474;14400 474;28800 473;14400 473;28800 474;14400 23330;28800 473;14400 23446;28800

ES 392;14400 0;28800 393;14400 0;28800 392;14400 0;28800 393;14400 0;28800 392;14400 0;28800

Bn45k6 E 1647;14400 28286;28800 2601;14400 28286;28800 2697;14400 28286;28800 3314;14400 28286;28800 10528;14400 28286;28800

EN 3026;14400 25828;28800 3034;14400 25950;28800 3037;14400 26052;28800 3038;14400 26024;28800 3046;14400 26041;28800

ES 3025;14400 25819;28800 3029;14400 25760;28800 3026;14400 25712;28800 3019;14400 25649;28800 3006;14400 25662;28800

Bn50k7 E 1; 7 1; 7 9168;12834 9168;12862 11071;12136 11071;12148 11071;14400 11071;28800 12699;14400 12699;28800

EN 43; 92 43; 92 6062; 6963 6062; 6966 6091;14400 6091;15910 6062;14400 6062;28800 6091;14400 6091;28800

ES 32; 90 32; 90 6210; 7078 6210; 7073 6241;11189 6241;11165 6210;14400 6210;28800 6241;14400 6241;28800

Bn50k8 E 9821;14400 9827;28800 9820;14400 9826;28800 9822;14400 9819;28800 9811;14400 9815;28800 9821;14400 9828;28800

EN 9783;14400 9784;28800 9783;14400 9792;28800 9788;14400 9797;28800 9788;14400 9791;28800 9799;14400 9794;28800

ES 9723;14400 9713;28800 9712;14400 9707;28800 9706;14400 9699;28800 9705;14400 9711;28800 9706;14400 9712;28800

Bn51k7 E 12;14400 26017;28800 19;14400 26017;28800 19;14400 26017;28800 19;14400 26017;28800 20;14400 26017;28800

EN 181;14400 15351;28800 181;14400 15351;28800 181;14400 15341;28800 181;14400 15351;28800 181;14400 15365;28800

ES 40;14400 0;28800 40;14400 0;28800 40;14400 0;28800 40;14400 0;28800 40;14400 0;28800

Bn52k7 E 1416; 1850 1416; 1850 1416;14400 1416;28800 2475;14400 2475;28800 4096;14400 4096;28800 4096;14400 4096;28800

Continued on next page

125

B
.
A
d
d
itio

n
a
l
R
esu

lts

T.c. Ag. 1.05 1.10 1.15 1.20 ∞

4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

EN 1194; 1517 1194; 1519 1199;14400 1199;28800 1194;14400 1194;28800 1199;14400 1199;28800 1194;14400 1194;28800

ES 1191; 1739 1191; 1744 1196;14400 1196;28800 1191;14400 1191;28800 1196;14400 1196;28800 1191;14400 1191;28800

Bn56k7 E 1138; 1393 1138; 1394 1145; 1513 1145; 1506 1405; 1442 1405; 1440 1439; 1508 1439; 1503 1510; 1608 1510; 1607

EN 1056; 1205 1056; 1204 1280; 1364 1280; 1364 1285; 1358 1285; 1356 1280; 1365 1280; 1362 1285; 1358 1285; 1352

ES 1457; 2024 1457; 2022 1599; 1710 1599; 1710 1606; 1710 1606; 1705 1599; 1705 1599; 1702 1606; 1798 1606; 1799

Bn57k7 E 105;14400 105;28800 111;14400 111;28800 122;14400 122;28800 128;14400 128;28800 1648;14400 1648;28800

EN 343;14400 343;28800 343;14400 343;28800 343;14400 343;28800 343;14400 343;28800 343;14400 343;28800

ES 135;14400 135;28800 135;14400 135;28800 135;14400 135;28800 135;14400 135;28800 135;14400 135;28800

Bn57k9 E 3926;14400 3942;28800 3944;14400 3954;28800 3936;14400 3949;28800 3938;14400 3951;28800 3938;14400 3936;28800

EN 3360;14400 3348;28800 3335;14400 3344;28800 3332;14400 3322;28800 3337;14400 3324;28800 3316;14400 3320;28800

ES 3742;14400 3733;28800 3725;14400 3738;28800 3731;14400 3718;28800 3722;14400 3709;28800 3696;14400 3704;28800

En22k4 E 1; 2 1; 2 1; 14 1; 14 47; 65 47; 65 79; 249 79; 249 104;14400 104;28800

EN 47; 48 47; 48 47; 48 47; 48 77; 78 77; 79 77; 124 77; 124 77;14400 77;28800

ES 8; 20 8; 20 8; 35 8; 35 53; 88 53; 87 53; 148 53; 150 53;14400 53;14413

En23k3 E 13; 15 13; 15 102; 160 102; 160 241; 296 241; 296 409; 3664 409; 3664 0;14400 0;28800

EN 50; 55 50; 55 138; 181 138; 180 272; 311 272; 310 273; 2275 273; 2282 8088;14400 8086;28800

ES 40; 50 40; 49 156; 224 156; 223 305; 371 305; 370 306; 1646 306; 1646 10396;14400 10396;28800

En30k3 E 1954;14400 28210;28800 1954;14400 28210;28800 3903;14400 28210;28800 5222;14400 28210;28800 7929;14400 28210;28800

EN 2601;14400 18996;28800 2613;14400 19090;28800 2601;14400 18996;28800 2613;14400 19090;28800 2601;14400 18996;28800

ES 2358;14400 24699;28800 2369;14400 24822;28800 2358;14400 24699;28800 2369;14400 24822;28800 2358;14400 24699;28800

En30k4 E 67; 117 67; 117 212; 267 212; 267 250; 327 250; 326 504; 1379 504; 1379 930;14400 930;28800

EN 107; 136 107; 135 176; 213 176; 213 244; 294 244; 294 422; 1070 422; 1070 423;14400 423;28800

ES 112; 172 112; 171 233; 316 233; 314 267; 359 267; 359 403; 1168 403; 1168 405;14400 405;28800

En33k4 E 743; 810 743; 810 2814; 5484 2814; 5492 2814;14400 2814;28800 2814;14400 2814;28800 4241;14400 4241;28800

EN 826; 853 826; 852 2672; 5207 2669; 5181 2662;14400 2665;28800 2677;14400 2665;28800 2670;14400 2679;28800

ES 924; 1005 924; 1004 2736; 5332 2741; 5333 2747;14400 2733;28800 2744;14400 2732;28800 2723;14400 2724;28800

En51k5 E 2324;14400 2324;28800 5348;14400 5348;28800 7527;14400 7527;28800 7527;14400 7527;28800 7527;14400 7527;28800

EN 1176;14400 1177;28800 1172;14400 1169;28800 1168;14400 1167;28800 1165;14400 1167;28800 1168;14400 1164;28800

ES 2074;14400 2072;28800 2062;14400 2052;28800 2050;14400 2040;28800 2038;14400 2028;28800 2021;14400 2026;28800

Pn16k8 E 73; 76 73; 76 74; 76 74; 76 76; 76 76; 76 76; 75 76; 76 78; 76 80; 76

EN 99; 105 99; 105 99; 105 99; 105 99; 104 99; 105 99; 105 99; 104 99; 104 99; 104

ES 81; 93 81; 93 81; 93 81; 94 81; 94 81; 94 81; 93 81; 94 81; 94 81; 94

Continued on next page

126

B
.1
.
V
eh
icle

R
o
u
tin

g

T.c. Ag. 1.05 1.10 1.15 1.20 ∞

4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

Pn19k2 E 2; 3 2; 3 2; 3 2; 3 2; 241 2; 240 2;13445 2;13434 2;14400 2;28800

EN 15; 16 15; 16 15; 16 15; 16 15; 221 15; 221 15;14400 15;20995 15;14400 15;28800

ES 2; 8 2; 8 2; 8 2; 8 2; 212 2; 212 2;12736 2;12701 2;14400 2;28800

Pn20k2 E 1; 2 1; 2 1; 47 1; 46 1; 4063 1; 4056 1;14400 1;28800 1;14400 1;28800

EN 17; 18 17; 18 17; 58 17; 57 17; 3956 17; 3960 17;14400 17;28800 17;14400 17;28800

ES 7; 16 7; 15 7; 58 7; 58 7; 4118 7; 4112 7;14400 7;28800 7;14400 7;28800

Pn21k2 E 1; 2 1; 2 1; 5 1; 5 1; 116 1; 116 1;14400 1;14400 1;14400 1;28800

EN 17; 20 17; 20 17; 18 17; 20 17; 118 17; 118 17;14400 17;24244 17;14400 17;28800

ES 8; 13 8; 13 8; 26 8; 25 8; 125 8; 124 8;14400 8;28800 8;14400 8;28800

Pn22k2 E 1; 2 1; 2 1; 13 1; 12 1; 1325 1; 1324 1;14400 1;14400 1;14400 1;28800

EN 35; 46 35; 46 35; 46 35; 46 35; 1204 35; 1206 35;14400 35;28800 35;14400 35;28800

ES 13; 23 13; 22 13; 31 13; 31 13; 1273 13; 1272 13;14400 13;28800 13;14400 13;28800

Pn22k8 E 255; 382 255; 382 530; 601 530; 601 601; 784 601; 783 670; 879 670; 879 706;14400 706; 1505

EN 293; 399 293; 399 587; 636 587; 636 589; 732 589; 732 587; 1255 587; 1266 589;12885 589; 1639

ES 284; 422 284; 421 597; 676 597; 676 599; 781 599; 780 597; 824 597; 823 599; 1614 599; 1734

Pn23k8 E 2; 164 2; 163 237; 724 237; 725 529; 532 529; 532 721; 2399 721; 2404 2397; 2410 2397; 2408

EN 43; 191 43; 190 183; 337 183; 336 183; 299 183; 299 183; 2332 183; 2342 183; 2352 183; 2356

ES 10; 167 10; 167 528; 754 528; 754 530; 540 530; 540 528; 2381 528; 2384 530; 2396 530; 2393

Pn40k5 E 1; 54 1; 54 1;14400 1;28800 1;14400 1;28800 1;14400 1;28800 1;14400 1;28800

EN 81; 97 81; 97 81;14400 81;28800 81;14400 81;28800 81;14400 81;28800 81;14400 81;28800

ES 18; 95 18; 95 18;14400 18;28800 18;14400 18;28800 18;14400 18;28800 18;14400 18;28800

Pn45k5 E 1005; 4798 1005; 4825 1541;14400 1541;28800 6115;14400 6115;28800 6115;14400 6115;28800 6115;14400 6115;28800

EN 1758; 5625 1758; 5627 1766;14400 1766;28800 1758;14400 1758;28800 1766;14400 1766;28800 1758;14400 1758;28800

ES 1143; 5007 1143; 5019 1148;14400 1148;28800 1143;14400 1143;28800 1148;14400 1148;28800 1143;14400 1143;28800

Pn50k7 E 1925; 2026 1925; 2031 2611;14400 2611;28800 3994;14400 3994;28800 4744;14400 4744;28800 8952;14400 8952;28800

EN 2540; 2555 2540; 2552 2551;14400 2551;28800 2540;14400 2540;28800 2551;14400 2551;28800 2540;14400 2540;28800

ES 2371; 2508 2371; 2508 2382;14400 2382;28800 2371;14400 2371;28800 2382;14400 2382;28800 2371;14400 2371;28800

Pn55k7 E 13767;14400 13777;28800 13779;14400 13845;28800 13846;14400 13777;28800 13772;14400 13767;28800 13777;14400 14075;28800

EN14393;14400 14393;28800 14463;14400 14463;28800 14393;14400 14393;28800 14463;14400 14463;28800 14393;14400 14393;28800

ES 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800 0;14400 0;28800

Pn55k8 E 12556;14400 12549;22630 12548;14400 12611;28800 12606;14400 12549;28800 12559;14400 12611;28800 12549;14400 12549;28800

EN12446;14400 12446;23441 12507;14400 12507;28800 12446;14400 12446;28800 12507;14400 12507;28800 12446;14400 12446;28800

Continued on next page

127

B
.
A
d
d
itio

n
a
l
R
esu

lts

T.c. Ag. 1.05 1.10 1.15 1.20 ∞

4h 8h 4h 8h 4h 8h 4h 8h 4h 8h

ES 12515;14400 22461;24336 12558;14400 22573;28800 12542;14400 22461;28800 12506;14400 22573;28800 12494;14400 22461;28800

Table B.4.: Runtime (in seconds) for the three algorithms and 54 test instances, 5 different bounds for f1 and different maximal runtime (4h,8h
). Runtime till last found solution and till it is proven that the Pareto-set is complete are shown, 0 indicates that the corresponding
algorithm could not find the last point found by any other algorithm (E = EPS, EN = EPSN, ES = EPSS)

128

B
.1
.
V
eh
icle

R
o
u
tin

g

B.1.3. Average Runtime Difference

Bound 4h 8h

EPSN to EPS EPSS to EPS EPSN to EPSS EPSN to EPS EPSS to EPS EPSN to EPSS

1.05 3242.51;1420.37 831.40;614.07 293.92; 66.65 3134.04;1412.01 813.45;605.79 266.80; 67.52

1.05 51.47; 7.64 26.34; 15.47 20.82; -5.00 44.81; 7.79 20.92; 15.59 20.54; -4.99

1.05 15.82; 4.07 11.32; 9.43 5.93; -3.47 15.64; 4.24 10.86; 10.06 5.49; -3.91

1.05 -2.79; 0.00 1.47; 0.00 -5.75; 0.00 -15.30; -2.89 3.97; 0.00 -13.43; -2.89

1.10 2713.90; 454.53 538.04;244.24 276.98; 15.76 2632.24; 460.20 527.88;244.49 234.55; 16.53

1.10 4.95; 12.61 21.52; 11.63 -6.11; -2.96 19.01; 12.23 21.95; 11.49 5.03; -3.01

1.10 -3.42; -3.98 -7.42; 0.49 5.69; -3.37 -15.50; -2.75 -13.22; -8.91 -3.47; 7.28

1.10 -26.07; 0.00 -15.79; 0.00 -13.62; 0.00 -22.18; 0.00 -2.72; 0.00 -13.29; 0.00

1.15 2345.90; 22.44 479.22; 20.80 232.82; -4.02 2280.31; 22.68 470.72; 20.31 201.37; -3.57

1.15 7.63; -6.75 1.58; 3.60 8.56; -8.35 10.26; -5.64 5.13; 3.59 6.86; -7.13

1.15 -20.78; 0.00 -17.67; 0.00 -1.51; 0.00 -30.36; -3.07 -25.01; 0.00 -3.92; -3.07

1.15 -29.69; 0.00 -21.11; 0.00 -9.60; 0.00 -19.55; 0.00 0.83; 0.00 -13.42; 0.00

1.20 2340.80; 11.40 475.71; -0.57 232.82; 7.18 2275.21; 10.79 467.21; -0.52 196.93; 6.97

1.20 -3.86; -3.72 -9.45; -0.50 4.75; -3.19 -3.90; 14.17 -10.29; 15.60 6.45; -0.13

1.20 -28.86; 0.00 -28.16; 0.00 3.34; 0.00 -37.02; -4.26 -33.47; 0.00 -2.29; -4.26

1.20 -35.16; 0.00 -26.68; 0.00 -9.56; 0.00 -20.43; 0.00 -2.30; 0.00 -10.61; 0.00

∞ 2335.00; 12.28 476.92; 6.04 224.43; 3.18 2274.90; -14.01 469.33; -10.08 191.79; 0.45

∞ -28.41; 0.00 -31.29; 0.00 20.12; 0.00 -33.05; 0.00 -31.69; 0.00 10.23; 0.00

∞ -55.80; 0.00 -52.63; 0.00 -6.56; 0.00 -49.92; 0.00 -45.72; -4.16 -2.49; 8.32

∞ -39.14; -0.88 -32.68; -7.40 -6.96; 58.19 -22.97; 0.00 -8.79; 0.00 -7.04; 0.00

Table B.5.: Average runtime difference (in %), shown for 4 groups of instances within each bound for f1. Groups are created by sorting the instances
within each bound in increasing order of the runtime needed by the EPS algorithm, and than partitioning them into groups of equal
sizes. Average runtime differences till last found solution and till it is proven that the Pareto-set is complete are shown

129

C. Acknowledgment

I want to thank

• everyone who made it possible for me to complete my education thus enabling me

to write this thesis; especially my family for their support and encouragement; my

mother Brigitte Schnellrieder, my father Manfred Reiter, my stepfather Mag. Franz

Schnellrieder for all the skills they taught and handed on to me; for the freedom to

make my own decisions and the moral support of them; my girlfriend Mag. Susanne

Mayr for her understanding and good discussions.

• Ao. Univ.-Prof. Mag. Dr. Walter Gutjahr for supervising this thesis and sparking

my interest in operations research/decision support.

• my friends and colleagues at university for their contributions to my studies.

The results of this thesis were obtained by projects funded by the Austrian Science Fund

(FWF) grant L264-N13 and P20342.

131

Bibliography

1. N.R. Achuthan, L. Caccetta, and S.P. Hill. A new subtour elimination constraint for

the vehicle routing problem. European Journal of Operational Research, 91:573–586,

1996.

2. E. Alba and J. Francisco Chicano. Software project management with GAs. Infor-

mation Sciences, 177(11):2380–2401, 2007.

3. F. Almeida, M.J. Blesa Aguilera, C. Blum, M. J. Moreno-Vega, M. Pérez Pérez,

A. Roli, and Sampels M., editors. Hybrid Metaheuristics, Third International Work-

shop, HM 2006, Gran Canaria, Spain, October 13-15, 2006, Proceedings, volume

4030 of Lecture Notes in Computer Science, 2006. Springer. ISBN 3-540-46384-4.

4. A. Arbel. Approximate articulation of preference and priority derivation. European

Journal of Operational Research, 43(3):317–326, 1989.

5. P. Armand and C. Malivert. Determination of the efficient set in multiobjective

linear programming. Journal of Optimization Theory and Applications, 70(3):467–

489, 1991.

6. D. Armbruster, E.S. Gel, and J. Murakami. Bucket brigades with worker learning.

European Journal of Operational Research, 176(1):264–274, 2007.

7. D. Armbruster, E.S. Gel, and J. Murakami. Bucket brigades with worker learning.

European Journal of Operational Research, 176(1):264–274, 2007.

8. N. Ascheuer, M. Fischetti, and M. Grötschl. A Polyhedral Study of the Asymmetric

Traveling Salesman Problem with Time Windows. Networks, 36(2):69–79, March

2000.

9. N. Ascheuer, M. Fischetti, and M. Grötschl. Solving the Asymmetric Travelling Sales-

man Problem with time windows by branch-and-cut. Mathematical Programming,

90:475–506, 2001.

133

Bibliography

10. D.T. Asher. A linear programming model for the allocation of R and D efforts. IRE

Transactions on Engineering Management, 9(4):154–157, 1962.

11. P. Augerat, J.M. Belenguer, E. Benavant, A. Corberán, D. Naddef, and G. Rinaldi.

Computational results with a branch and cut code for the capacitated vehicle routing

problem. Technical Report RR040-M, Université Joseph Fourier, Grenoble, France,

1995.

12. P. Augerat, J.M. Belenguer, E. Benavant, A. Corberán, and D. Naddef. Seperating

capacity inequalities in the CVRP using tabu search. European Journal of Opera-

tional Research, 106:546–557, 1999.

13. M.A. Badri, D. Davis, and D. Davis. A comprehensive 0-1 goal programming model

for project selection. International Journal of Project Management, 19(4):243–252,

2001.

14. R. Baldacci, Hadjiconstantinou, and A. Mingozzi. An exact algorithm for the capac-

itated vehicle routing problem based on a two-commodity network flow formulation.

Operations Research, 52(5):723–738, 2004.

15. AG Beged-Dov. Optimal assignment of R&D projects in a large company using

an integer programming model. IEEE Transactions on Engineering Management.

EM-12, pages 138–142, 1965.

16. T. Bektas. The multiple traveling salesman problem: an overview of formulations

and solution procedures. Omega, 34(3):209–219, 2006.

17. V. Belton and T.J. Stewart. Multiple criteria decision analysis: an integrated ap-

proach. Springer, 2001.

18. J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin. An exact ǫ-constraint method for

bi-objective combinatorial problems: application to the traveling salesman problem

with profits. European Journal of Operational Research, 194:39–50, 2009.

19. J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Verlag,

1997.

20. U. Blassum and W. Hochstättler. Application of the branch and cut method to

the vehicle routing problem. Technical Report ZPR2000-36. Technical report, ZPR,

Universität zu Köln, 2000. Available at http://www.zaik.uni-koeln.de/paper.

134

Bibliography

21. F.P. Brooks Jr. The mythical man-month (anniversary ed.). Addison-Wesley Long-

man Publishing Co., Inc. Boston, MA, USA, 1995.

22. J. Butler, D.J. Morrice, and P.W. Mullarkey. A multiple attribute utility theory

approach to ranking and selection. Management Science, 47(6):800–816, 2001.

23. R. Caballero, T. Gomez, M. Luque, F. Miguel, and F. Ruiz. Hierarchical generation

of pareto optimal solutions in large-scale multiobjective systems. Computers and

operations research, 29(11):1537–1558, 2002.

24. L. Chalmet et al. An algorithm for the bi-criterion integer programming problem.

European Journal of Operational Research, 25(2):292–300, 1986.

25. A.N.K. Chen and T.M. Edgington. Assessing value in organizational knowledge

creation: considerations for knowledge workers. Management Information Systems

Quarterly, 29(2):6, 2005.

26. F. Chu, N. Labadi, and C. Prins. A scatter search for the periodic capacitated arc

routing problem. European Journal of Operational Research, 169(2):586–605, 2006.

27. T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

28. G. Dantzig and J. Ramsey. The truck dispatching problem. Management Science, 6:

80–91, 1959.

29. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley

Sons, LTD, 2001.

30. K. Deb and T. Goel. Controlled elitist non-dominated sorting genetic algorithms

for better convergence. In First International Conference on Evolutionary Multi-

Criterion Optimization (EMO-2001), 2001.

31. K. Deb and S. Jain. Running performance metrics for evolutionary multi-objective

optimization. KanGAL Report, 2002004, 2002.

32. K. Deb, A. Pratap, and T. Meyarivan. Constrained Test Problems for Multi-

Objective Evolutionary Optimization. In First International Conference on Evo-

lutionary Multi-Criterion Optimization, pages 284–298. Springer Verlag, 2000.

33. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2):

182 – 197, 2002.

135

Bibliography

34. K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Ant Colony

Optimization in Multiobjective Portfolio Optimization. In 4th Methaheuristic Inter-

national Conference, pages 243–248, 2001.

35. K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Pareto ant

colony optimization: A metaheuristic approach to multiobjective portfolio selection.

Annals of Operations Research, 131(1):79–99, 2004.

36. M. Dorigo and T. Stützle. Ant colony optimization. the MIT Press, 2004.

37. H.L. Dreyfus, T. Anthanasiou, and S.E. Dreyfus. Mind over machine: The power of

human intuition and expertise in the era of the computer. Simon & Schuster, 2000.

38. I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms.

Applications of Evolutionary Computing, pages 57–68, 2003.

39. HA Eiselt and V. Marianov. Employee positioning and workload allocation. Com-

puters and Operations Research, 35(2):513–524, 2008.

40. J. Erpenbeck and V. Heyse. Kompetenzbiographie–Kompetenzmilieu–

Kompetenztransfer. Zum biographischen Kompetenzerwerb der mittleren

Führungsebene, nachgeordneten Mitarbeitern und Betriebsräten. QUEM-report.

Schriften zur beruflichen Weiterbildung, 62, 1999.

41. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47,

2003.

42. G.S. Fishman. Monte Carlo: concepts, algorithms, and applications. Springer, 1996.

43. C. M. Fonseca, V. Grunert da Fonseca, and L. Paquete. Exploring the performance

of stochastic multiobjective optimisers with the second-order attainment function.

In C. C. Coello, A. H. Aguirre, and E. Zitzler, editors, Evolutionary Multi-criterion

Optimization (EMO 2005), volume 3410 of Lecture Notes in Computer Science, pages

250–264. Springer Verlag, 2005.

44. P. Francis, K. Smilowitz, and M. Tzur. The period vehicle routing problem with

service choice. Transportation Science, 40(4):439–454, 2006.

45. M.C. Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal on

Computing, 14(3):192–215, 2002.

136

Bibliography

46. R. Fukasawa, H. Longo, J. Lysegaard, M. Poggi de Aragao, M. Reis, E. Uchoa, and

R. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing

problem. Mathematical Programming, 106(3):491–511, 2006.

47. S.A. Gabriel, S. Kumar, J. Ordóñez, and A. Nasserian. A multiobjective optimiza-

tion model for project selection with probabilistic considerations. Socio-Economic

Planning Sciences, 40(4):297–313, 2006.

48. F. Glover and G.A. Kochenberger. Handbook of metaheuristics. Springer, 2003.

49. R.R. Greenberg and T.R. Nunamaker. Integrating the analytic hierarchy process

(AHP) into the multiobjective budgeting models of public sector organizations. Socio-

Economic Planning Sciences, 28(3):197–206, 1994.

50. V. Grunert da Fonseca, C.M. Fonseca, and A.O. Hall. Inferential performance assess-

ment of stochastic optimisers and the attainment function. Lecture notes in computer

science, pages 213–225, 2001.

51. W. Gutjahr. Two metaheuristics for multiobjective stochastic combinatorial op-

timization. Stochastic Algorithms: Foundations and Applications, pages 116–125,

2005.

52. W.J. Gutjahr. Optimal dynamic portfolio selection for projects under a competence

development model. OR Spectrum, pages 1–34.

53. W.J. Gutjahr. On the finite-time dynamics of ant colony optimization. Methodology

and Computing in Applied Probability, 8(1):105–133, 2006.

54. W.J. Gutjahr. A provably convergent heuristic for stochastic bicriteria integer pro-

gramming. Journal of Heuristics, 15(3):227–258, 2009.

55. W.J. Gutjahr and P. Reiter. Bi-objective project portfolio selection and staff assign-

ment under uncertainty. Optimization, 59(3):417–445, 2010.

56. W.J. Gutjahr, S. Katzensteiner, and P. Reiter. A VNS algorithm for noisy problems

and its application to project portfolio analysis. Lecture notes in computer science,

4665:93, 2007.

57. W.J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk. Competence-

driven project portfolio selection, scheduling and staff assignment. Central European

Journal of Operations Research, 16(3):281–306, 2008.

137

Bibliography

58. W.J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk. Multi-

objective decision analysis for competence-oriented project portfolio selection. Euro-

pean Journal of Operational Research, 2010.

59. Y. Haimes, L. Lasdon, and D. Wismer. On a bicriterion formulation of the problems

of integrated system identification and system optimization. IEEE Transactions on

Systems, Man, and Cybernetics, 1:296–297, 1971.

60. C. Heimerl and R. Kolisch. Work assignment to and qualification of multi-skilled

human resources under knowledge deprecation and company skill level targets. Tech-

nical report, TUM Business School; Technical University Munich, 2008.

61. C. Heimerl and R. Kolisch. Scheduling and staffing multiple projects with a multi-

skilled workforce. OR Spectrum, pages 1–26, 2008.

62. M. Held and R.M. Karp. The Traveling Salesman Problem and Minimum Spanning

Trees. Operations Research, 18:1135–1162, 1970.

63. A.D. Henriksen and A.J. Traynor. A Practical R & D Project-Selection Scoring Tool.

IEEE Transactions on Engineering Management, 46(2):158–170, 1999.

64. S.W. Hess. A dynamic programming approach to R and D budgeting and project

selection. IRE Transactions on Engineering Management, 9:170 – 179, 1962.

65. H.H. Hoos and T. Stützle. Stochastic local search: Foundations and applications.

Morgan Kaufmann, 2005.

66. HR-XML Consortium. Competencies (Measurable Characteristics) Recommendation

2006-02-28. URL http://ns.hr-xml.org.

67. C.-L. Hwang and A. S. M. Masud. Multiple Objective Decision Making - Methods

and Applications: A State-of-the-art Survey. Springer-Verlag, Berlin, 1979.

68. S. Irnich, B. Funke, and T. Gr

”unert. Sequential search and its application to vehicle-routing problems. Computers

and Operations Research, 33(8):2405–2429, 2006.

69. A. Jaszkiewicz. Evaluation of multiple objective metaheuristics. Metaheuristics for

Multiobjective Optimisation, 535:65–89, 2004.

70. N. Jozefowiez, F.Semet, and E.G. Talbi. Parallel and hybrid models for multi-

objective optimization: Application to the vehicle routing problem. In J. Guervos,

138

http://ns.hr-xml.org

Bibliography

editor, Parallel Problem Solving from Nature - PPSN VII, LNCS. Springer-Verlag,

Granada, Spain, 2002.

71. N. Jozefowiez, F. Semet, and E.G. Talbi. Enhancements of NSGA-II and its ap-

plication to the vehicle routing problem with route balancing. In E. Talbi, editor,

Proceedings of the 7th International Conference Artificial Evolution-EA 2005, num-

ber 3871 in LNCS, pages 131–142. Springer-Verlag, 2006.

72. N. Jozefowiez, F. Semet, and E.G. Talbi. Multi-objective vehicle routing problems.

European Journal of Operational Research, 189(2):293 – 309, 2008.

73. S. Kavadias and C. Loch. Project selection under uncertainty: dynamically allocating

resources to maximize value. Kluwer Academic Pub, 2004.

74. R. Khorramshahgol and Y. Gousty. Delphic Goal Programming(DGP)- A multi-

objective cost/benefit approach to R & D portfolio analysis. IEEE Transactions on

Engineering Management, 33:172–175, 1986.

75. J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment of

Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and

Networks Laboratory (TIK), ETH Zurich, February 2006.

76. R. Kolisch and S. Hartmann. Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Re-

search, 174(1):23–37, 2006.

77. P. Lacomme, C. Prins, and W. Ramdane-Cherif. Evolutionary algorithms for periodic

arc routing problems. European Journal of Operational Research, 165(2):535–553,

2005.

78. G. Laporte, M. Desrochers, and Y. Nobert. Two exact algorithms for the distance

constrained vehicle routing problem. Networks, 14:161–172, 1984.

79. G. Laporte, H. Mercure, and Y. Nobert. An exact algorithm for the asymmetrical

capacitated vehicle routing problem. Networks, 16, 1986.

80. J.B. Lassiter, M.M. Wiecek, and K.R. Andrighetti. Lagrangian coordination and

analytical target cascading: solving ATC-decomposed problems with Lagrangian du-

ality. Optimization and Engineering, 6(3):361–381, 2005.

139

Bibliography

81. M. Laumanns, L. Thiele, and E. Zitzler. An efficient, adaptive parameter variation

scheme for metaheuristics based on the epsilon-constraint method. European Journal

of Operational Research, 169(3), March 2006.

82. J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and schedul-

ing problems. Networks, 11:221–227, 1981.

83. J. Liesiö, P. Mild, and A. Salo. Preference programming for robust portfolio modeling

and project selection. European Journal of Operational Research, 181(3):1488–1505,

2007.

84. C.H. Loch and S. Kavadias. Dynamic portfolio selection of NPD programs using

marginal returns. Management Science, 48(10):1227–1241, 2002.

85. J. Lysgaard. CVRPSEP: A package of seperations routines for the capacitated vehicle

routing problem. http://www.hha.dk/ lys.

86. J. Lysgaard, A. N. Letchford, and R. W. Eglese. A New Branch-and-Cut Algorithm

for the Capacitated Vehicle Routing Problem. Mathematical Programming, 100:2004,

2003.

87. R.S. Mansfield. Building competency models: Approaches for HR professionals.

Human Resource Management, 35(1):7–18, 1996.

88. A.L. Medaglia, S.B. Graves, and J.L. Ringuest. A multiobjective evolutionary ap-

proach for linearly constrained project selection under uncertainty. European Journal

of Operational Research, 179(3):869–894, 2007.

89. Z. Michalewicz and J. Arabas. Genetic algorithms for the 0/1 knapsack problem.

Methodologies for Intelligent Systems, pages 134–143, 1994.

90. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer, Boston, 1999.

91. R.H. Möhring and F. Stork. Linear preselective policies for stochastic project schedul-

ing. Mathematical Methods of Operations Research, 52(3):501–515, 2000.

92. G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley

New York, 1999.

93. O. Ngwenyama, A. Guergachi, and T. McLaren. Using the learning curve to maximize

IT productivity: A decision analysis model for timing software upgrades. Interna-

tional Journal of Production Economics, 105(2):524–535, 2007.

140

Bibliography

94. C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and

complexity. Dover Pubns, 1998.

95. J.M. Pasia, K. F. Doerner, R. F. Hartl, and M. Reimann. A population-based local

search for solving a bi-objective vehicle routing problem. volume 4446 of LNCS,

pages 166–175. EvoCOP 2007, 2007.

96. J.M. Pasia, K.F. Doerner, R.F. Hartl, and M. Reimann. Solving a bi-objetive vehicle

routing problem by pareto-ant colony optimization. volume 4638 of LNCS, pages

187–191. SLS 2007, 2007.

97. P.C. Pendharkar and G.H. Subramanian. An empirical study of ICASE learning

curves and probability bounds for software development effort. European Journal of

Operational Research, 183(3):1086–1096, 2007.

98. G.C. Pflug. Optimization of stochastic models. Kluwer, 1996.

99. C. Prins. A simple and effective evolutionary algorithm for the vehicle routing prob-

lem. Computers & Operations Research, 31:1985 – 2002, 2004.

100. J. Puchinger and G.R. Raidl. Combining metaheuristics and exact algorithms in

combinatorial optimization: A survey and classification. Artificial Intelligence and

Knowledge Engineering Applications: a Bioinspired Approach, pages 41–53, 2005.

101. G. Raidl. A unified view on hybrid metaheuristics. Hybrid Metaheuristics, pages

1–12, 2006.

102. G. R. Raidl. A Unified View on Hybrid Metaheuristics. In Hybrid Metaheuristics,

pages 1–12, 2006.

103. T.K. Ralphs, L. Kopmann, W.R. Pulleyblank, and L.E. Trotter. On the capacitated

vehicle routing problem. Mathematical Programming, 94:343–359, 2003.

104. T.K. Ralphs, M.J. Saltzman, and M.M. Wiecek. An improved algorithm for solving

biobjective integer programs. Annals of Operations Research, 147(1):43–70, 2006.

105. P. Reiter and W.J. Gutjahr. Exact hybrid algorithms for solving a bi-objective vehicle

routing problem. Central European Journal of Operations Research, pages 1–25.

106. P. Reiter, W.J. Gutjahr, S. Katzensteiner, and C. Stummer. Multiobjective stochastic

project portfolio selection and scheduling using metaheuristics. In Proceedings of the

Metaheuristics International Conference 2007, 2007.

141

Bibliography

107. R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo method. Wiley-

Interscience, 2008.

108. J.S. Shippmann, R.A. Ash, M. Battista, L. Carr, L.D. Eyde, B. Hesketh, J. Kehoe,

K. Pearlman, E.P. Prien, and J.I. Sanchez. The practice of competency modeling.

personnel psychology, 53(3):703–740, 2000.

109. R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.

Wiley, 1986.

110. R.E. Steuer. Multiple Criteria Decision Making, chapter The ADABASE Multiple

Objective Linear Programming Package, pages 1–6. SCI-TECH, Windsor, England,

1995.

111. C. Stummer and K. Heidenberger. Interactive R&D portfolio analysis with project

interdependencies and time profiles of multiple objectives. IEEE Transactions on

Engineering Management, 50(2):175–183, 2003.

112. C. Stummer and M. Sun. New multiobjective metaheuristic solution procedures for

capital investment planning. Journal of Heuristics, 11(3):183–199, 2005.

113. T. Stützle, H.H. Hoos, et al. MAX-MIN ant system. Future Generation Computer

Systems, 16(8):889–914, 2000.

114. GA Suer and RR Tummaluri. Multi-period operator assignment considering skills,

learning and forgetting in labour-intensive cells. International Journal of Production

Research, 46(2):469–493, 2008.

115. C.K. Suh, E.H. Suh, and K.C. Baek. Prioritizing telecommunications technologies

for long-range R&D planning to the year 2006. IEEE transactions on engineering

management, 41(3):264–275, 1994.

116. E.G. Talbi. A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(5):541–

564, 2002.

117. K. Tarvainen and Y.Y. Haimes. Coordination of hierarchical multiobjective systems:

theory and methodology. IEEE Transactions on Systems, Man and Cybernetics, 12

(6):751–764, 1982.

118. P. Toth and D. Vigo, editors. The Vehicle Routing Problem, volume 9 of SIAM

Monographs on Discrete Mathematics and Applications. SIAM, 2001.

142

Bibliography

119. F. Tricoire, K.F. Doerner, R.F. Hartl, and M. Iori. Heuristic and Exact Algorithms

for the Multi-Pile Vehicle Routing Problem. Submitted to OR Spectrum.

120. TSPLIB. URL http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

121. C. L. Valenzuela and A. J. Jones. Estimating the Held-Karp lower bound for the

geometric TSP. European Journal of Operational Research, 102(1):157–175, 1997.

122. T. Volgenant and R. Jonker. A branch and bound algorithm for the symmetric trav-

eling salesman problem based on 1-tree relaxation. European Journal of Operational

Research, 9:83–89, 1982.

123. T. Wagner, N. Beume, and B. Naujoks. Pareto-, aggregation-, and indicator-based

methods in many-objective optimization. In Evolutionary Multi-Criterion Optimiza-

tion, pages 742–756. Springer, 2007.

124. M. Weber. Decision making with incomplete information. European Journal of

Operational Research, 28(1):44–57, 1987.

125. M.C. Wu and S.H. Sun. A project scheduling and staff assignment model considering

learning effect. The International Journal of Advanced Manufacturing Technology,

28(11):1190–1195, 2006.

126. M. Yoshimura, Y. Fujimi, K. Izui, and S. Nishiwaki. Decision-making support system

for human resource allocation in product development projects. International journal

of production research, 44(5):831–848, 2006.

127. E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithmsA

comparative case study. In Parallel Problem Solving from NaturePPSN V, pages 292–

301. Springer, 1998.

128. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Transactions

on Evolutionary Computation, 7(2):117–132, 2003.

129. E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On

the design of pareto-compliant indicators via weighted integration. In S. Obayashi,

K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion

Optimization (LNCS 4403), pages 862–876, Berlin, 2007. Springer.

143

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Abstract

The research goals of this thesis are the development of algorithms to solve multi-objective

and stochastic optimization problems in the field of scheduling and routing problems.

In practice decision problems often include different goals which can hardly be aggre-

gated to a single objective for different reasons. In the field of multi-objective optimization

several objective functions are considered. As in single objective optimization a solution

has to satisfy all constraints of the problem. In general the goals are conflicting and there

will be no solution, that is optimal for all objectives. Algorithms for multi-objective opti-

mization problems provide the decision maker a set of efficient solutions, among which she

or he can choose the most suitable alternative. In multi-objective optimization efficiency

of a solution is expressed as Pareto-optimality. Pareto-optimality of a solution is defined

as the property that no other solution exists that is better than the proposed one in at

least one objective and at least equally good in all criteria.

The first application that is considered in this thesis, the Multi-objective Project Se-

lection, Scheduling and Staffing with Learning problem (MPSSSL) arises from the field

of management in research-centered organizations. Given a set of project proposals the

decision makers have to select the “best” subset of projects (a project portfolio) and set

these up properly (schedule them and provide the necessary resources). This problem is

hard to solve for different reasons: (i) selecting a subset of projects considering limited

resources is a knapsack-type problem that is known to be NP-hard, and (ii) to determine

the feasibility of a given portfolio, the projects have to be scheduled and staff must be as-

signed to them. As in this problem the assignment of workers is influenced by the decision

which portfolio should be selected, the decision maker has to consider goals of different

nature. Some objectives are related to economic goals (e.g. return of investment), others

are related to the competence development of the workers. Competence oriented goals are

motivated by the fact that competencies determine the attainment and sustainability of

strategic positions in market competition. In general the objectives cannot be combined

to a single objective, therefore methods for solving multi-objective optimization problems

are used. To solve the problem we use two different hybrid algorithms that combine meta-

heuristic algorithms, (i) the Nondominated Sorting Genetic Algorithm (NSGA-II), and (ii)

145

Abstract

Pareto Ant Colony (P-ACO) algorithm with a linear programming solver as a subordinate.

In practice, uncertainty is another typically encountered aspect. Different parameters

of the problem can be uncertain (e.g. benefits of a project, or the time and effort re-

quired to perform the single activities required by a project). To determine the “best”

portfolio, methods are needed that are able to handle uncertainty in optimization. To

solve the stochastic extension (SMPSSSL) of the MPSSSL problem we present an algo-

rithm that combines the aforementioned NSGA-II algorithm with the Adaptive Pareto

Sampling (APS) algorithm. APS is used to handle the interplay between multi-objective

optimization and simulation. The performance of the simulation process is increased by

using importance sampling (IS).

The second problem, the Bi-objective Capacitated Vehicle Routing Problem with Route

Balancing (CVRPB) arises from the field of vehicle routing. Given a set of customers, the

decision makers have to construct routes for a fixed number of vehicles, each starting and

ending at the same depot, such that the demands of all customers can be fulfilled, and

the capacity constraints of each vehicle are not violated. The traditional objective of this

problem (known as the Capacitated Vehicle Routing Problem (CVRP)) is minimizing the

total costs of all routes. A problem that may arise by this approach is that the resulting

routes can be very unbalanced (in the sense of drivers workload). To overcome this prob-

lem a second objective function that measures the balance of the routes of a solution is

introduced. In this work, we use the Adaptive ε-Constraint Method in combination with

a branch-and-cut algorithm and two genetic algorithms (i) a single-objective GA and (ii)

the multi-objective NSGA-II, to solve the considered problem.

Prototypes of different algorithms to solve the problems are developed and their per-

formance is assessed by using state of the art performance measures. The computational

experiments show that the developed solution procedures will be well suited to solve the

considered optimization problems. The hybrid algorithms combining metaheuristic and

exact optimization methods, turned out to be crucial to solve the problem (application

to project portfolio selection) or to improve the performance of the solution procedure

(application to vehicle routing).

146

Abstract in German

Ziel dieser Arbeit ist die Entwicklung von Optimierungsalgorithmen, mit denen Mehrziel-

und stochastische Mehrziel-Optimierungsprobleme gelöst werden können.

In der Praxis beinhalten Optimierungsprobleme oft unterschiedliche Ziele, welche opti-

miert werden sollen. Oft ist es nicht möglich die Ziele zu einem einzelnen Ziel zusammen-

zufassen. Mehrzieloptimierung beschäftigt sich damit, solche Probleme zu lösen. Wie in

der Einzieloptimierung muss eine Lösung alle Nebenbedingungen des Problems erfüllen.

Im Allgemeinen sind die Ziele konfligierend, sodass es nicht möglich ist eine einzelne Lösung

zu finden welche optimal im Sinne aller Ziele ist. Algorithmen zum Lösen von Mehrziel-

Optimierungsproblemen, präsentieren dem Entscheider eine Menge von effizienten Alter-

nativen. Effizienz in der Mehrzieloptimierung ist als Pareto-Optimalität ausgedrückt. Eine

Lösung eines Optimierungsproblems ist genau dann Pareto-optimal wenn es keine andere

zulässige Lösung gibt, welche in allen Zielen mindestens gleich gut wie die betrachtete

Lösung ist und besser in mindestens einem Ziel.

In dieser Arbeit werden Mehrziel-Optimierungsprobleme aus zwei unterschiedlichen

Anwendungsgebieten betrachtet. Das erste Problem, das Multi-objective Project Selection,

Scheduling and Staffing with Learning Problem (MPSSSL), entstammt dem Management

in forschungsorientierten Organisationen. Die Entscheider in solchen Organisationen ste-

hen vor der Frage welche Projekte sie aus einer Menge von Projektanträgen auswählen

sollen, und wie diese Teilmenge von Projekten (ein Projektportfolio) mit den benötigten

Ressourcen ausgestattet werden kann (dies beinhaltet die zeitliche und personelle Planung).

Aus unterschiedlichen Gründen ist dieses Problem schwer zu lösen, z.B. (i) die Auswahl von

Projekten unter Beachtung der beschränkten Ressourcen ist ein Rucksackproblem (und ist

damit NP-schwer) (ii) ob ein Projektportfolio zulässig ist oder nicht hängt davon ab ob,

man dafür einen Zeitplan erstellen kann und genügend Mitarbeiter zur Verfügung stehen.

Da in diesem Problem die Mitarbeiterzuordnung zu den einzelnen Projekten einbezogen

wird, muss der Entscheider Ziele unterschiedlicher Art berücksichtigen. Manche Ziele sind

öknomischer Natur, z.B. die Rendite, andere wiederum beziehen sich auf die Kompetenz-

entwicklung der einzelnen Mitarbeiter. Ziele, die sich auf die Kompetenzentwicklung

beziehen, sollen sicherstellen, dass das Unternehmen auch in Zukunft am Markt be-

147

Abstract in German

stehen kann. Im Allgemeinen können diese unterschiedlichen Ziele nicht zu einem ein-

zigen Ziel zusammengefasst werden. Daher werden Methoden zur Lösung von Mehrziel-

Optimierungsproblemen benötigt. Um MPSSSL Probleme zu lösen werden in dieser

Arbeit zwei unterschiedliche hybride Algorithmen betrachtet. Beide kombinieren nämlich

Metaheuristiken (i) den Nondominated Sorting Genetic (NSGA-II) Algorithmus, und den

(ii) Pareto Ant Colony (P-ACO) Algorithmus, mit einem exakten Algorithmus zum Lösen

von Linearen Programmen kombinieren.

Unsicherheit ist ein weiterer wichtiger Aspekt der in der Praxis auftaucht. Unter-

schiedliche Parameter des Problems können unsicher sein (z.B. der aus einem Projekt

erzielte Gewinn oder die Zeit bzw. der Aufwand, der benötigt wird, um die einzelnen

Vorgänge eines Projekts abzuschließen). Um in diesem Fall das “beste” Projektportfolio zu

finden, werden Methoden benötigt, welche stochastische Mehrziel-Optimierungsprobleme

lösen können. Zur Lösung der stochastischen Erweiterung (SMPSSSL) des MPSSSL Prob-

lems zu lösen, präsentieren wir eine Methode, die den zuvor genannten hybriden NSGA-II

Algorithmus mit dem Adaptive Pareto Sampling (APS) Algorithmus kombiniert. APS

wird verwendet, um das Zusammenspiel von Simulation und Optimierung zu koordinieren.

Zur Steigerung der Performance des Simulationsprozesses, verwenden wir Importance Sam-

pling (IS).

Das zweite Problem dieser Arbeit, das Bi-Objective Capacitated Vehicle Routing Prob-

lem with Route Balancing (CVRPB), kommt aus dem Bereich Logistik. Wenn man eine

Menge von Kunden zu beliefern hat, steht man als Entscheider vor der Frage, wie man

die Routen für eine fixe Anzahl von Fahrzeugen (mit beschränkter Kapazität) bestimmt,

sodass alle Kunden beliefert werden können. Die Routen aller Fahrzeuge starten und

enden dabei immer bei einem Depot. Die Einziel-Variante dieses Problems ist als Capac-

itated Vehicle Routing Problem (CVRP) bekannt, dessen Ziel es ist die Lösung zu finden,

die die Gesamtkosten aller Routen minimiert. Dabei tritt jedoch das Problem auf, dass

die Routen der optimalen Lösung sehr unterschiedliche Fahrtzeiten haben können. Unter

bestimmten Umständen ist dies jedoch nicht erwünscht. Um dieses Problem zu umgehen,

betrachten wir in dieser Arbeit eine Variante des (bezeichnet als CVRPB) CVRP, welche

als zweite Zielfunktion die Balanziertheit der einzelnen Routen einbezieht. Zur Lösung von

CVRPB Problemen verwenden wir die Adaptive ε-Constraint Method in Kombination mit

einem Branch-and-Cut Algorithmus und zwei unterschiedlichen Genetischen Algorithmen

(GA), (i) einem Einziel-GA und (ii) dem NSGA-II.

In dieser Arbeit werden Optimierungsalgorithmen präsentiert, welche es erlauben,

Mehrziel- und stochastische Mehrziel-Optimierungsprobleme zu lösen. Unterschiedliche

Algorithmen wurden implementiert und basierend auf aktuellen Performance-Maßen ver-

148

glichen.

Experimente haben gezeigt, dass die entwickelten Methoden gut geeignet sind, die be-

trachteten Optimierungsprobleme zu lösen. Die hybriden Algorithmen, welche Meta-

heuristiken mit exakten Methoden kombinieren, waren entweder ausschlaggebend um das

Problem zu lösen (im Fall des Project Portfolio Selection Problems) oder konnten die

Performance des Lösungsprozesses signifikant verbessern (im Fall des Vehicle Routing

Problems).

149

Peter Reiter
Karl Schönherrstr. 29

6300 Wörgl
B peter.reiter[AT]univie.ac.at

Personal data

citizenship Austrian
date of birth February 7, 1982 in Oberndorf (Sbg), Austria

Education

Mar. 2008 - present Doctoral Program of Technical Sciences, Business Informatics, Univer-
sity of Vienna, Vienna, Austria.

Oct. 2005 - Feb. 2008 Master Program in Business Informatics, University of Vienna, Vienna,
Austria.

Oct. 2002 - Jul. 2005 Bachelor Program in Business Informatics, University of Vienna, Vienna,
Austria.

PhD Thesis
title Matheuristic Algorithms for Solving Multi-objective/Stochastic Scheduling

and Routing Problems
supervisor Walter J. Gutjahr

Master Thesis

title The Next Release Problem: An extended model formulation and the compari-
son of two algorithms for stochastic multi-objective combinatorial optimization
problems

supervisor Walter J. Gutjahr
Bachelor thesis

title Implementierung, Parametrisierung & Vergleich von Heuristiken: Simulated
Annealing & Genetischer Algorithmus

supervisor Walter J. Gutjahr
title BS 15000: Übersicht, Anwendungen und Modelle

supervisor Harald Kuehn

Experience
Vocational

Jan. 2008 - present Research Assistant, Project: “Matheuristics: Hybride Algorithmen für
Transportprobleme”, Department of Statistics and Decision Support Systems
(ISDS), University of Vienna, Vienna.

1/3

mailto:peter.reiter[AT]univie.ac.at

Dec. 2006 - Dec. 2007 Research Assistant, Project: “Kompetenzgesteuerte Projektanalyse”, De-
partment of Statistics and Decision Support Systems (ISDS), University of
Vienna, Vienna.

Oct. 2006 - Feb. 2007 Tutor, Grundlagen Decision Support and Software-Einsatz im Operations Re-
search I, Department of Statistics and Decision Support Systems (ISDS), Uni-
versity of Vienna, Vienna.

Teaching
summer term Operations Research II, University of Vienna, Stochastic optimization,

Queuing theory, Inventory models.
OR-Methoden in Produktion und Logistik I, University of Vienna, Branch
& Bound, Dynamic Programming, Facility Location Problems, Vehicle Routing
Problems, Network Flow Problems, Scheduling Problems.

winter term Operations Research I, University of Vienna, Linear Programming and Mod-
eling, Sensitivity Analysis, Duality, Nonlinear Programming and Modeling.
Computational Techniques, University of Vienna, Combinatorial Optimiza-
tion, Integer Linear Programming, Branch & Bound, Branch-and-Cut, Greedy
Algorithms, Metaheuristics, NP-complete Problems.

Publications and Reports

W.J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk. Multi-
objective decision analysis for competence-oriented project portfolio selection.
European Journal of Operational Research, 2010.

W.J. Gutjahr and P. Reiter. Bi-objective project portfolio selection and staff
assignment under uncertainty. Optimization, 59(3):417–445, 2010.

P. Reiter and W.J. Gutjahr. Exact hybrid algorithms for solving a bi-objective
vehicle routing problem. Central European Journal of Operations Research,
pages 1–25, 2010.

W.J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk.
Competence-Driven Project Portfolio Selection, Scheduling and Staff Assign-
ment. Central European J. of Operations Research, 16:281–306, 2008.

W.J. Gutjahr, S. Katzensteiner, and P. Reiter. A VNS algorithm for noisy
problems and its application to project portfolio analysis. In J. Hromkovic
et al., editor, Proc. SAGA 2007 (Stochastic Algorithms: Foundations and
Applications), volume 4665 of Springer Lecture Notes in Computer Science,
pages 93 – 104, 2007.

Talks & Presentations
2010 Reiter P. and Gutjahr W.J. (2010): “Hybrid Algorithms for Solving a Bi-

objective Stochastic Periodic Vehicle Routing Problem”, Matheuristics 2010:
third international workshop on model-based metaheuristics, Vienna, Austria

2009 Reiter P. and Gutjahr W.J. (2009): “An exact and a matheuristic algorithm
for the Vehicle Routing Problem with Route Balancing”, Annual Conference
Italien Operational Research Society, Siena, Italy

2/3

2008 Reiter P. (2008): “The Next Release Problem”,ÖGOR 30th Anniversary Meet-
ing and General Meeting 2008 , Vienna, Austria

2007 Reiter P., Gutjahr W.J., Katzensteiner S., and Stummer C. (2007): “Multi-
objective Stochastic Project Portfolio Selection and Scheduling Using Meta-
heuristics”, Metaheuristic International Conference ‘07, Montreal, Canada

Languages
german mother tongue
english fluent in written

and spoken

Computer skills
programming C++, Java, PHP, SQL,

HTML
math packages Scilab, R, SPSS

optimization Cplex, XpressMP, SCIP datamining SPSS Clementine

3/3

	Dissertation.pdf
	Dissertation.pdf
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Basics
	Multi-objective Optimization
	Pareto-Optimal Solutions

	Simulation
	Performance Assessment
	Sample Transformations
	Statistical Testing
	Running Performance Metrics

	Algorithms
	Adaptive Pareto-Sampling Algorithm
	Nondominated Sorting Genetic Algorithm II
	Pareto Ant Colony Optimization
	Adaptive ε-Constraint Algorithm

	Application to Project Portfolio Selection
	Problem Description
	Related Literature

	Model Formulation
	Project Portfolios
	Employee Allocation
	Competence Dynamics and Learning
	Objective Functions
	Mathematical Programming Formulation
	Pareto-optimal Solutions
	Linear Asymptotic Approximation

	Stochastic Extension
	Stochastic Model Formulation

	Solution Techniques
	General Approach
	NSGA-II
	P-ACO
	Importance Sampling

	Test Instances
	Synthetic Test Cases
	Real-World Test Cases
	Test Cases for the Stochastic Problem

	Results
	Results for Synthetic Test Cases
	Results for the Real-World Application
	Results for the Stochastic Problem

	Concluding Remarks

	Application to Vehicle Routing
	Problem Description
	Model Formulation
	Solution Techniques
	General Approach
	Branch-and-Cut
	NSGA-II
	Implementation Details

	Test Instances
	Results
	Concluding Remarks

	Conclusion
	Work in Progress
	Problem Description
	Model Formulation
	Solution Techniques
	General Approach
	NSGA-II
	Importance Sampling

	Preliminary Concluding Remarks

	Additional Results
	Vehicle Routing
	Pareto Optimal Solutions
	Runtimes
	Average Runtime Difference

	Acknowledgment
	Bibliography
	Abstract
	Abstract in German

	Lebenslauf2010.pdf
	Personal data
	Education
	PhD Thesis
	Master Thesis
	Bachelor thesis
	Experience
	Publications and Reports
	Talks & Presentations
	Languages
	Computer skills

