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ABSTRACT 
 

T. verrucosus shows at least three different multicellular cutaneous gland types, embedded in 

the dermis with ducts that open through the epidermis to the exterior. Mucous glands (MG) 

are the smallest glands, homogenously distributed throughout the body. They are responsible 

for producing an assortment of mainly neutral mucopolysaccharids. MGs are build up by a 

layer of secretory cells, encircling a central lumen and provide the secretions of the slippery 

mucus film that covers the body, generally participated in several crucial functions. The latter 

two gland types are serous in nature and differ in several morphological and histostaining 

properties from MGs. They are big and especially enlarged in areas of glandular 

accumulations, most conspicuous in the parotoids and the tail dorsum. Notably these areas 

with enlarged granular gland concentrations are used against aggressor in defensive postures 

and can be regarded as antipredator adaptations.  

In the skin of T. verrucosus two different types of GGs were identified. GG1s are present 

throughout the skin whereas GG2s are restricted to the tail, reaching giant diameters up to 

1550 µm. Based on the findings of this study, added to the findings from the literature, both 

granular gland types are supposed to produce noxious to toxic chemicals deployed during 

encounter behavior to repel predators. 

Morphological and histostaining findings of both mucous and granular glands indicated their 

particular functionalities. Mucous glands mainly release their secretion in a merocrine way, 

due to the constant necessity of a surface covering mucus film. MGs are similar in juveniles 

and adults and probably have a regular regeneration process. In this process, cells 

continuously proliferate from apical to basal and replace dying cells. In contrast to MGs, the 

appearance of granular glands differs between juveniles and adults. Their maturation is 

characterized by long biosynthetic and maturational processes during the growth of granular 

glands. Mature granular glands are huge organelle-poor structures pointing to a state of 

suspended activity. They are build up by several huge cells, filled with secretion and the 

glandular contents are stored ready for expulsion. A fast expulsion, for effective defense, is 

provided by muscular contraction of a well-developed myoepithelial sheath, encircling the 

gland, a conspicuous characteristic of granular glands in T. verrucosus.  
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ABSTRACT 
 

T. verrucosus besitzt mindestens drei unterschiedliche Typen von multizellulären Hautdrüsen. 

Diese Drüsen liegen eingebettet in die Dermis und besitzen Ausführgängen, die durch die 

Epidermis reichen und sich nach außen hin öffnen. Schleimdrüsen sind die kleinsten aller 

Hautdrüsen und homogen über den Körper verteilt. Sie sind verantwortlich für die Produktion 

von einem Gemisch aus vor allem neutralen Mukopolysacchariden. Das zentrale Lumen ist 

von einem einschichtigen sekretorischen Epithel umgeben, welches die Sekrete für den 

schlüpfrigen Schleimfilm bereitstellt, der den Amphibienkörper bedeckt und mehrere 

wichtige Funktionen übernimmt. 

Die übrigen zwei Hautdrüsentypen zählen zu den seröse Drüsen und werden auch als 

Giftdrüsen bezeichnet. Sie unterscheiden sich von Schleimdrüsen in mehreren 

morphologischen Kriterien und in ihren histologischen Färbungseigenschaften. An manchen 

Körperstellen, besonders in den Parotoiden und im dorsalen Schwanzbereich treten solche 

Giftdrüsen sehr konzentriert und stark vergrößert auf. Als Anpassung im Zuge der 

Feindabwehr werden durch spezielle Körperhaltungen gerade jene Bereiche Feinden 

entgegengestellt.  

In der Haut von T. verrucosus konnten zwei unterschiedliche Typen von Giftdrüsen 

identifiziert werden. Typ 1 (GG1) ist am gesamten Körper zu finden, während Typ 2 (GG2) 

auf den Schwanzbereich begrenzt ist und gigantische Drüsendurchmesser von 1550 µm 

erreichen kann. Basierend auf Ergebnisse dieser Studie in Kombination mit Erkenntnissen aus 

der Literatur kann man davon ausgehen, dass beide Typen gesundheitsschädliche bis giftige 

Chemikalien produzieren, die bei einem Zusammentreffen mit Feinden eingesetzt werden um 

diese abzustoßen. 

Morphologische Erkenntnisse von Schleim- und Giftdrüsen und Ergebnisse histologischer 

Färbungen gaben Aufschluss über ihre möglichen Funktionsweisen. In Folge der konstanten 

Notwendigkeit eines oberflächendeckenden Schleimfilms entlassen Schleimdrüsen ihre 

Sekrete fortwährend auf eine vor allem merokrine Art und Weise. Sie sind bei Juvenilen und 

Adulten gleich ausgeprägt und besitzen vermutlich einen regelmäßigen und ständig 

ablaufenden Regenerationszyklus. In diesem Prozess vermehren sich Zellen von apical nach 

basal und ersetzen dabei absterbende Zellen. Im Gegensatz zu Schleimdrüsen, ist die 

Ausprägung von Giftdrüsen bei Juvenilen und Adulten unterschiedlich. Deren Reifung ist 

durch lang dauernde biochemische Prozesse charakterisiert. Reife Giftdrüsen sind generell aus 

sehr vielen, großen Zellen aufgebaut, die gefüllt sind mit Sekret. Ausgereifte Giftdrüsen sind 
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organellenarme Strukturen, die auf einen Zustand eingestellter Aktivität hinweisen. Folglich 

stehen in reifen Drüsen die Sekrete fertig bereit um bei Bedarf ausgestoßen zu werden. Ein 

deutlich ausgeprägtes und gut entwickeltes Myoepithel, welches die gesamte Drüse umgibt ist 

bei T. verrucosus vorhanden. Dessen Muskelkontraktionen gewährleisten eine schnelle 

Ausscheidung der Drüseninhalte, als effektiven Schutz gegen Fressfeinde.  
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INTRODUCTION 
 

One of the most conspicuous features of living amphibians involves their skin. As interface 

between organism and environment, this organ is a complex, elaborate, dynamic and highly 

organized structure involved in a great variety of functions (Fox, 1994; Stebbins and Cohen, 

1997). The multiple roles performed by the skin in amphibians include amongst others larval 

adhesion, chemo- electro- and mechanoreception, ion transfer, excretion, respiration, water 

retention, protection against abrasion, pathogens or predators (e.g. Fox, 1994; Brizzi et al., 

2002). One of the main components of amphibian skin is the glandular tissue, whose products 

are involved in a variety of functions (Duellman and Trueb, 1994; Fox, 1994). Two types of 

dermal glands – granular and mucous – are believed to be present in all adult extant 

amphibians (Dawson, 1920; Noble and Noble, 1944; Le Quang Trong, 1967; Le Quang 

Trong, 1973; Duellman and Trueb, 1994; Houck and Sever, 1994; Fontana et al, 2006). They 

are responsible for producing skin secretions released onto the body surface (Delfino, 1976; 

Hoffman and Dent, 1978; Alvarez et al., 2005; Arifulova et al., 2007 and others). Skin 

secretions can be used for protective purposes: to make the surface slippery to facilitate 

escape from aggressors (Stebbins and Cohen, 1997) or to make it sticky to completely 

immobilize a predator (Duellman and Trueb, 1994) or be unpleasant tasting, irritating or even 

toxic, making the amphibian unpalatable to predators (Brandon et al., 1979; Brodie, 1983; 

Heiss et al., 2009). Accordingly, amphibians produce a remarkable diversity of bioactive 

substances in their skin glands: more than 100 bioactive peptides, 30 bioactive amines 

(Erspamer, 1994) and over 800 alkaloids (Daly et al., 2005) have been isolated from 

amphibian skin secretions to date. 

Mucous and granular glands can be distinguished by morphological and histostaining 

properties. Mucous glands are smaller than granular glands and widely distributed throughout 

the integument. They are thought to secrete their contents in a merocrine manner continuously 

onto the skin (Hoffman and Dent, 1978). The mucous glands have a central lumen and the 

secretory cells are positioned around it. Mucous glands are mainly responsible for producing 

the slimy and slippery amphibian mucus. There has been disagreement concerning the 

mucous gland surrounding myoepithelium, as in some urodeles and anurans, such a 

contractile sheath was reported to be absent (Fox, 1994; Duellman and Trueb, 1994). 

However, the mucous secretion plays an important role as it regulates water loss, acts as 

barrier against pathogens, is an important lubricant, reduces friction under water and 

minimizes mechanical damage to the skin out of the water (Fontana et al, 2006). 



Introduction 

10 

Granular glands, the second type of amphibian skin glands, are large in size and produce a 

mainly proteinaceous product (Le Quang Trong, 1973; Reyer et al., 1992; Fontana et al., 

2006; Heiss et al., 2009). They are found throughout the skin but in some areas concentrations 

of enlarged granular glands can emerge (Brodie, 1977; Brodie et al., 1984; Duellman and 

Trueb, 1994). The granular glands are built up by giant cells containing granular material and 

often fuse to syncytia. These glands are capable of synthesizing and secreting mainly 

bioactive substances such as amines, peptides and alkaloids (Erspamer, 1994) and are thought 

to be the site of skin toxin production (Noble, 1931; Stuhr, 1936; Quay, 1972; Delfino, 1976; 

Nowak and Brodie, 1978; Neuwirth et al., 1979; Daly, 1995; Toledo and Jared, 1995; Alvarez 

et al., 2005; Daly et al., 2005; Arifulova et al., 2007.) 

The granular glands have a distinct myoepithelium, used for fast expulsion of glandular 

contents onto the body surface (Duellman and Trueb, 1994). The material is thought to be 

discharged through an apical pore in a holocrine manner (Quay, 1972; Reyer et al., 1992). 

The nature of granular gland secretions can vary significantly among amphibian species. In 

most amphibians, the granular gland products are - if not poisonous - at least harsh and 

irritating to mucous membranes of potential predators (Hoffman and Dent, 1977). The 

granular gland secretions of most salamandrids in fact are noxious to toxic, able to truly harm 

or even kill a would-be predator (Brodie, 1977; Brodie, 1983; Brodie and Smatresk, 1990; 

Erspamer, 1994; Daly, 1995; Delfino et al., 1995; Tsuruda et al., 2002; Heiss et al., 2009). 

Noxious skin secretions have been considered to be the most important “tools” to repel 

predators in terrestrial salamanders and most other antipredator adaptations are dependent 

upon these secretions. Antipredator posturings, where concentrations of granular glands are 

positioned toward a threatening stimulus, increase the likelihood that a predator contact will 

occur with the most noxious part of the salamander (Nowak and Brodie, 1978). This causes 

the predator to learn to avoid the salamander after initial contact. Recent work by Heiss et al. 

(2009) on the salamandrid Pleurodeles waltl show not only enormous glandular 

concentrations but also two kinds of granular glands. Both granular gland types are 

presumably involved in defensive behavior and their occurrence diverges regionally. 

Similarly, Brodie et al. (1984) reported distinct antipredator posturings after threatening 

stimulation in T. verrucosus, a closely related species to P. waltl. Even if T. verrucosus has 

been reported to be one of the most poisonous salamandrids (for overview see Brodie et al., 

1984), little is known on the structure of its skin glands and their functional role. 

Therefore, a detailed analysis on the integument in T. verrucosus is provided in the present 

study - with special emphasis on the cutaneous glands. This study provides new data on 
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morphology and function of the different gland types. The findings are then discussed in the 

light of antipredator adaptations with the aim of providing a possible interpretation of the 

adaptive and functional role of the different gland types. As this study includes two age 

groups - postmetamorphic juveniles and sexually mature adults - additionally developmental 

relevant aspects of the different gland types are generated. 
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MATERIAL AND METHODS 
 

Systematics 
Salamanders of the family Salamandridae are informally subdivided into two major 

subgroups, the “true salamanders” and the newts. Analysis of the combined morphological 

and molecular characters gives strong support to the monophyly of the true salamanders 

(includes genera Chioglossa, Lyciasalamandra, Mertensiella and Salamandra) and to 

monophyly of a group containing all remaining extant newts except Salamandrina terdigitata 

(Steinfartz et al., 2006; Weisrock et al., 2006). Within the newt clade the genera Tylototriton 

and Echinotriton are monophyletic and together form a clade with the genus Pleurodeles (Fig. 

1.), sister to the remaining newts, except Salamandrina (Steinfartz et al., 2006; Weisrock et 

al., 2006). 

 

 

 
Fig. 1. Phylogenetic relationships of extant salamandrids. Modified after Steinfartz et al., 2006 and Weisrock et 

al., 2006. 
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Natural distribution 
The family Salamandridae has a holarctic distribution and is well represented in Europe, Asia, 

and North America. T. verrucosus itself has a large distribution area, ranging from India and 

eastern Nepal through the Kachin and Shan Hills of Myanmar to southwestern Yunnan, China 

and scattered mountains in northern Thailand (Fig. 2). The terrestrial habitats are largely 

moist forests or sites where mountain forests previously existed. The animals live in high 

altitudes up to 2250 m and are closer confined to water than allied species and generally 

remain in or close to water (Seglie et al, 2003). 

 

 

 
Fig. 2. Natural distribution area of T. verrucosus. Modified after © 2006 IUCN, Conservation International and 

NatureServe. 
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Experimental animals 
Four female and two male T. verrucosus were examined for the present study. Three 

metamorphosed juvenile individuals (two female, one male) were 6 months old. Total body-

length ranging from 78 mm to 93 mm and bodyweight ranging from 3.2 g to 5.8 g. Three 

adult individuals (two female, one male), having already reached sexual maturity were 12 

months old. Total body-length ranging from 115 mm to 130 mm and bodyweight ranging 

from 12.4 g to 18.2 g.  

The examined individuals were colored uniformly dark-brown to black. Head, tail and soles 

of the extremities were lighter brown than the body. Especially parts of the parotoids, the 

rows of dorso-lateral warts and the underside of the tail were colored contrasting to the body 

base color in different shades of light brown to orange (Fig. 21).  

The newts were obtained commercially and kept in a 250-liter tank with 12h light / 12h dark 

frequency. They were fed twice a week with earthworms, bloodworms and fish pieces. For 

investigations the newts were anesthetized with dissolved MS222 and decapitated. Skin 

samples from the head, the parotoid region, the back, the lateral trunk, the belly region as well 

as the dorsal and ventral part of the tail were removed and immersed in fixation solution. 

 

Scanning electron microscopy (SEM) 
For scanning electron microscopic investigations samples were fixed in Bouin’s-solution 

(Romeis, 1989) for 4 weeks, rinsed in 70% ethanol and dehydrated in a graded ethanol series. 

Subsequently the samples were transferred into acetone and dried in a critical point drying 

machine (Polaron: Watford, UK). The dried samples were then coated with gold in an AGAR 

B7340 Sputtercoater and observed in a Philips XL-20 scanning electron microscope. (for 

more details please see Tab. 4 and Tab.10 in appendix).  

 

Light microscopy (LM) 
Light microscopy analysis included paraffin based histological investigations as well as 

investigations of semi thin sections.  

For paraffin-based histological investigations samples were fixed in Bouin’s solution 

(Romeis, 1989) for 4 weeks. After fixation, samples were rinsed in 70% ethanol, dehydrated 

in a graded ethanol series, immersed in Isopropanol and embedded in Paraffin (for more 

details please see Tab. 1 and Tab. 10 in the appendix). After polymerization, 7 μm-thick cross 

sections were cut on a Reichert-Jung 2030 rotary microtome (Reichert-Jung, Bensheim, GER) 

and mounted on glass slides and, after removing the paraffin, stained with Haematoxylin - 
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Eosin (HE), Azan, alcian blue (AB) at pH 2.5, periodic acid Schiff (PAS) and Coomassie 

Brilliant blue (all standard staining procedures after Romeis, 1989; Kiernan, 2003). Detailed 

staining reports are listed in the appendix (Tab. 5-8). Observations and photographic 

documentations were made using a Nikon Eclipse 800 light microscope.  

 

For semi thin sectioning, two fixation and embedding methods were used. For the first 

procedure, samples were fixed in Bouin‘s solution (Romeis, 1989), rinsed in 70% ethanol, 

dehydrated in a graded ethanol series and embedded in LR white resin (TED PELLA, INC.) 

which was polymerized at 60°C. More detailed reports are listed in appendix (Tab. 2).  

For the second procedure, samples were fixed in modified Karnovsky-solution (Karnovsky, 

1965) (2.5% glutaraldehyde and 2% formaldehyde in 0.1 M cacodylate buffer). After rinsing 

in 0.5% cacodylate buffer, samples were postfixed for 2 h in buffered 1% osmium tetroxide at 

room temperature. This was followed by dehydration in a graded ethanol and acetone series, 

embedding in Agar 100 Resin (Agar Scientific) and polymerization at 65°C for 15 h. (for 

more details please see Tab. 3, Tab. 9 and Tab.11 in the appendix) 

 

The embedded and polymerized samples from both methods were then cut into 1 µm thin 

sections on a Reichert Ultracut S microtome (Leica) using diamond histo-knives (Diatome). 

The semithin sections were mounted on glass slides, stained with Toluidine blue and 

documented as described above for histological sections. 

 

Transmission electron microscopy (TEM) 
For ultra thin sectioning samples were fixed in modified Karnovsky-solution (Karnovsky, 

1965) (2.5% glutaraldehyde and 2% formaldehyde in 0.1 M cacodylate buffer) and adjacent 

treated like described above in the second procedure for semithin sectioning. After 

polymerization at 65°C for 15 h, ultrathin (60–70 nm) sections were made on a Reichert 

Ultracut S microtome (Leica) using histo- and ultra diamond knives (Diatome). Ultrathin 

sections were collected with copper grids 3.05mm. Observations and digital photographic 

documents were made using a Philips EM 208  
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Behavioral experiments 
For behavioral experiments, the reactions of ‘predator-like stimulations’ were tested and 

documented using a Canon EOS 350D digital camera. The animals were prodded repeatedly 

but gently with dull probes or pinched lightly with forceps, to simulate a predator attack, until 

they showed defensive behavior. The animals recovered rapidly after the experiments and all 

showed natural behavior such as feeding immediately after the experiments. 
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RESULTS 
 

1. Scanning electron microscopic (SEM) findings  
Scanning electron microscopic investigations included the examination of the skin surface as 

well as observations of skin cross sections. In connection with light- and transmission electron 

microscopic findings, scanning electron microscopy enabled greater comprehension of the 

construction of the skin and its glandular tissue. 

The epidermis itself was stratified and consisted of several layers whereof a sheath of 

irregularly shaped keratinocytes coated the skin surface (Fig. 3). Numerous pores of 

cutaneous glands were clearly visible at the body surface (Fig. 4). Higher magnification 

revealed that the gland ducts, traversing the epidermis and connecting the secretory unit and 

the exterior, were lined by flattened keratinocytes (Fig. 4).  

Examining cross sections it became apparent that high densities of large cutaneous glands 

were present in the dermis. All cutaneous glands consisted of an excretory duct traversing the 

epidermis and a secretory unit embedded in the dermis. The secretory cells itself were 

indicated by the multiplicity of vesicles (Fig. 3). 

Besides cutaneous glands of ordinary size, distributed throughout the skin, high 

concentrations of enlarged glands could be detected in certain regions. The most impressive 

concentrations were found in the parotoid-area and the tail dorsum (Fig. 5).  
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Fig. 3. Scanning electron micrograph showing a cross section through the skin of the dorsal trunk of a juvenile T. 

verrucosus. The entire skin is densely interspersed with cutaneous glands embedded in the dermis, with ducts 

that open onto the body surface. The stratified epidermis becomes clearly apparent by the multitude of big cell 

nuclei. The outermost epidermal layer consists of irregularly shaped keratinocytes. de, dermis; du, duct; ep, 

epidermis; gg, granular gland; kc, keratinocyte; n, nucleus. 
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Fig. 4. Scanning electron micrographs showing the excretory ducts in the integument of T. verrucosus. A: 

Overview of the skin surface illustrates the presence of numerous gland pores. B: Higher magnification reveals 

that the ducts are lined by keratinocytes. C: A cross section of the skin shows a truncated duct. The ducts 

traverse the epidermis and hence allow the transport of synthesized secretions onto the body surface. du, duct; 

ep, epidermis, kc, keratinocyte; p, pore; su, secretory unit.  

A   
 
 
 
 

 
B 
 
 
 
 
 
C 
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Fig. 5. Scanning electron micrographs showing accumulations of enlarged granular glands in adult T. 

verrucosus. A: Cross section through the parotoid region and (B) cross section through the tail dorsum. Note the 

concentrations of enormous glands in special areas of the body that almost fill in the entire dermis. Both the 

parotoids and the tail dorsum contain the largest glands in highest concentration in T. verrucosus. de, dermis; 

egg, enlarged granular gland; m, muscularity; vc, vertebral column  

 

A   
 
 
 
 
 
 
 
 
 
 

B 
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2. Light microscopic (LM) findings 

2.1 General structure of the skin in T. verrucosus 

Like all vertebrate integument, the skin of T. verrucosus consisted of two distinct 

components, an outer stratified layer, the epidermis and an underlying connective tissue layer, 

the dermis (Fig. 6). In the interface between epithelium and connective tissue layed the 

basement membrane: a thin extracellular layer separating the epithelium and the loose 

connective tissue (Fig. 7, Fig. 8).  

The epidermis was stratified and in adult individuals mostly composed of 5 to 7 epithelial cell 

layers, which could be assigned, from proximal to distal to four strata: the innermost stratum 

germinativum or stratum basale, the stratum spinosum, the stratum granulosum and the 

outermost stratum corneum (Fig. 7). The innermost cell layer, called the stratum 

germinativum, lied above the basement membrane and was arranged by tall, cuboidal to 

columnar cells with round to oval, central located nuclei. The cells of this basal layer 

proliferated to the overlying layer, the stratum spinosum. During distal cell migration, cell 

plasma percentage increased while the nuclei size was reduced. In the stratum granulosum the 

cells appeared rather flattened and their nuclei became pycnotic. The overlying, outermost 

stratum corneum was build up by a single layer of flattened keratinocytes which lacked their 

nuclei. 

The epidermis also included further different types of cells like the characteristic flask cells, 

which were expanded vertically and reached beneath the layer of keratinized cells. Light 

microscopic investigations revealed the presence of neuromast organs, the epithelial sensory 

receptors of the lateral-line system. Each neuromast consisted of a pear-shaped group of cells, 

comprising mantle cells and sensory cells, embedded in the epidermis and resting on the 

basement membrane, innervated by nerve fibers (Fig. 9). Chromatophores stuffed with 

pigment granules, as well as scattered pigment granules, were located either in the epidermis 

and the superficial layers of the dermis.  

As mentioned above, the epidermis was separated from the dermis by the basement 

membrane. The basal cells of the epidermis showed connections to the underlying lamina 

propria by periplasmatic protrusions (Fig. 8). The dermis itself consisted of two layers, the 

outer stratum spongiosum, build up by loose connective tissue and the underlying stratum 

compactum, composed of compactly arranged tight collagenous fibers (Fig. 6). The dermis 

showed regional variation in the proportions and extensions of these layers. Embedded into 

the dermis there were prominent acinar glands with ducts opening to the skin surface. While 
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the smaller mucous glands were completely enclosed by the stratum spinosum the bigger 

granular glands often reached into the stratum compactum. 

The dermis was well supplied with blood vessels and showed a huge amount of capillaries 

forming an extensive network especially in the superficial dermal layers immediately 

subjacent to the epidermis. Furthermore, the dermis contained structures such as nerve fibers 

and muscle fibers as well as various types of cells, including pigment-bearing 

chromatophores. 
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2.2 Skin glands in T. verrucosus  

The skin of T. verrucosus showed a great amount of cutaneous glands, which were scattered 

throughout the dermis (Fig. 14, Fig. 15). All cutaneous gland types shared some common 

features as they were multicellular and acinar in shape. They were located in the dermis and 

opened to the skin surface with an excretory duct, lined by keratinocytes.  

Three clearly distinguishable multicellular gland types were identified and characterized by 

structural and histostaining properties. They could be divided into the main cutaneous glands: 

mucous and granular.  

The first glandular type described is the mucous gland (MG): small acinar glands with wide 

lumina and homogeneously distributed throughout the body surface. MGs were the smallest 

cutaneous glands in T. verrucosus, with maximal diameters up to 130 µm. They were 

completely enclosed by the stratum spongiosum. Mucous glands were roundish in shape and 

had a wide lumen, which was continuous with the excretory duct of the gland (Fig. 10, Fig. 

11). The wide lumen, which was a characteristic feature for this gland type, was encircled by 

low to moderately tall epithelial cells filled with granular contents. Apical located cells were 

smallest, increased in size in the lateral walls and were biggest in the basal part of the gland 

(Fig. 11). Basally located secretory cells were tall pyramidal to cuboidal shaped with round 

nuclei that were regularly arranged in the basal cell pole. These cells contained large granules 

of secretory products distributed throughout their cytoplasm. Within a given gland the 

staining of sectretory granules often varied from cell to cell (Fig. 11). Myoepithel cells, 

surrounding the gland entity, were present. The ducts of mucous glands were lined by 

keratinocytes (Fig. 10).  

In general most of the cells within the mucous gland stained strongly PAS positive: pink to 

purple (Fig. 11). Some cells within the mucous glands reacted slightly positive to the alcian 

blue test at pH 2.5 (Fig. 15). The glandular lumen usually contained secretions staining 

slightly PAS positive. All mucous glands reacted negatively to the Coomassie blue test for 

proteins. 

 

The second cutaneous gland type in T. verrucosus was the granular gland. Almost the entire 

skin was densely interspersed with this second type of gland. They were roundish, large in 

size and could extend through the stratum spinosum into the stratum compactum of the 

dermis. Within granular glands, two subtypes could be distinguished based on structural 

differences. The first subtype, termed here granular gland type 1 (GG1), was found in all skin 

samples examined, whereas the second subtype was restricted to the dorsal and ventral tail 
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edges. This second subtype is named here granular gland type 2 (GG2) and treated separately 

in this study. 

   GG1s were present throughout the skin (Fig. 14, Fig. 15). In general these glands appeared 

roundish and big but in regions with concentrations of granular glands where available 

vertical space in the stratum spinosum of the dermis was scarce, they could become oval-

shaped. GG1s lacked a distinct lumen in the common sense but an exiguous cavity could 

sometimes be visible beneath the neck region. The neck region represented the intercalated 

tract between secretory unit and duct and had a thick wall of undifferentiated cells. The duct 

itself was lined by keratinocytes and opened to the exterior. GG1 were build up by densely 

packed, big secretory cells that filled in the entire gland with remarkable amounts of dense 

granules (Fig. 12, Fig. 13). The secretory unit of GG1 was transformed during the secretory 

cycle and hence the appearance of this gland type varied, depending on the different stages of 

the secretory cycle. During maturational processes the secretory cells within the same gland 

could differ dramatically, mainly due to the different appearance of their granules. The 

granules could differ in size, shape, density and staining properties (Fig. 12). The mature 

glands were composed of single secretory cells with homogenous appearance and with flat 

nuclei positioned in the gland periphery. The secretory cells were filled with similarly sized 

and shaped granules. No cellular fusions to syncytia could be observed (Fig. 13). GG1 

possessed a distinct myoepithelial sheath that encircled the gland. In general, the GG1 were 

eosinophilic, reacted negatively to the alcian blue test at pH 2.5 and stained slightly positive 

for PAS (Fig. 12, Fig. 14, Fig. 15). 

Whereas the entire skin was interspersed with relatively ordinary sized GG1, some areas in T. 

verrucosus exhibited concentrations of much enlarged GG1. These areas with enlarged GG1 

included the bony ridge of the head, starting at the tip of the snout over the eyes passing on to 

the distinct parotoid region. Enlarged GG1 were also found arranged in longitudinal rows 

lateral to the mid-dorsal ridge, starting at the posteriormost part of the head and extending to 

the tail base, as well as in the lateral warts (Fig. 21). These enlarged GG1 had an increased 

number of secretory cells, but the general design did not differ to that of ordinary GG1. 

However, the highest density and the largest diameters of GG1 were measured in the 

parotoids. Toward the areas of enlarged granular gland accumulations, the granular glands in 

general featured a gradual increase of size. 

   GG2 were only found in samples taken from the dorsal and ventral tail edges and were 

biggest and most abundant in the dorsal edge of the tail. In general, they appeared oval and in 

relation to the skin surface they were horizontally oriented (Fig. 16). Mature GG2s lacked a 
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distinct lumen but a small cavity could sometimes be visible beneath the neck region. This 

exiguous cavity was continuous with the excretory duct of the gland, the connection between 

the glandular unit and the exterior. The secretory unit was arranged by a great amount of 

densely packed single secretory cells that filled in the entire glandular volume, separated by 

clearly visible cell membranes. The secretory cells of mature glands did not differ 

morphologically from each other. Their secretory granules were all similar in shape and size 

but were not distributed homogenously throughout the cell. They were rather restricted to 

certain areas that formed granular patches (Fig. 13). Furthermore it was noticeable, that the 

granules of GG2 were significantly smaller than those of GG1s of ordinary size. 

GG2, like all other granular glands, possessed a distinct myoepithelial sheath that encircled 

the gland, followed by a tight layer of collagen fibers. In general GG2s were eosinophilic, 

reacted negatively for the alcian blue test at pH 2.5 and slightly positive for PAS. The positive 

Coomassie brilliant blue staining further evidenced the presence of proteinaceous secretory 

content. 

 

2.2.1 Particulars of skin glands in juveniles  

The general structural design of mucous glands in juveniles was similar to the MGs described 

for T. verrucosus in general but they featured particular histostaining properties. Most of the 

secretory cells within this gland type were positive for PAS but none of the mucous glands of 

juveniles was positive for alcian blue at pH 2.5 (Fig. 11).  

The general structural design of granular glands in juveniles was for the same as described 

above. A conspicuous attribute was that predominantly immature granular glands of several 

maturational stages could be found in the skin of juveniles. During maturational processes the 

gland size itself was differing and the appearance of the secretory cells within one gland could 

differ due to varying size, shape, density and staining properties of their granules (Fig. 12).  

The granular glands of juveniles could be divided into the two described subtypes: GG1s and 

GG2s. The two types were distributed like mentioned above and concentrations of enlarged 

glands were present in similar areas. Interestingly, the biggest glands at all in juveniles were 

measured in the parotoid area among enlarged GG1s, reaching maximal diameters of up to 

1020 µm.  

The biggest glands among GG2s were found in the dorsal tail edges and reached maximal 

diameters of up to 478 µm. GG2s in general were different in shape compared to GG1s and 

grew in a horizontally elongated manner, in relation to the skin surface (Fig. 16). GG2s were 
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the only glands in juvenile T. verrucosus with an increased positive staining for the 

Coomassie blue reaction. 

 

2.2.2 Particulars of skin glands in adults 

In adult individuals granular glands during maturational processes could be found but 

predominantly mature granular glands were present. Mature granular glands were big and 

composed of a high amplitude of single secretory cells with homogenous appearance. All 

granular glands observed in adults were bigger than granular glands observed in juveniles of 

equivalent body areas.  

Interestingly not GG1s but GG2s represented the biggest cutaneous glands in adult T. 

verrucosus, extending to maximal diameters of up to 1550 µm. The giant GG2s of adult 

individuals were densely packed, leading to a situation where almost the entire tail was 

stocked with these glands. The biggest GG1s in adults were measured in the parotoids 

reaching maximal diameters of up to 1140 µm.  
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Fig. 6. Light micrograph showing a semi thin cross section of the skin of a lateral region of the tail of juvenile T. 

verrucosus. The skin is composed of a stratified epidermis and an underlying dermis, separated into a stratum 

spongiosum and a stratum compactum. The proportions and extensions of epidermis, dermis and the underlying 

muscles exhibit regional variations. Note the mucous gland, representative for cutaneous glands embedded in the 

dermis. ep, epidermis; de, dermis; mg, mucous gland; mu, muscles; sc, stratum compactum; ss, stratum 

spongiosum. Toluidine blue staining. 

mg 
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Fig. 7. Light micrograph showing in detail the epidermis of a lateral region of the tail of juvenile T. verrucosus. 

The epidermis rests on the lamina propria and consists in most of its parts of 5-7 cell layers. The proximal 

stratum basale is build up by tall, columnar cells; the following stratum spinosum can be composed of several 

cell layers. The stratum granulosum exhibits flattened cells with pycnotic nucleus and the outermost single-

layered stratum corneum is arranged by much flattened, keratinocytes which have lost their nucleus. Note the 

flattening of the cells and the reduction of the nuclei during proximal to distal cell migration. bm, basement 

membrane; bv, blood vessel; de, dermis; lp, lamina propria; nu, nucleus; sb, stratum basale; sc, stratum corneum; 

sg, stratum granulosum; ss, stratum spinosum. Toluidine blue staining. 
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Fig. 8. Light micrograph showing in detail the basal epidermal layers of a dorsal region of the tail of juvenile T. 

verrucosus. Note that the epithelium is connected basally to the lamina propria through numerous periplasmatic 

protrusions (pp). These periplasmatic protrusions are especially prominent in the tail. bm, basement membrane; 

epc, epidermal cell; de, dermis; lp, lamina propria; pp, periplasmatic protrusions. Toluidine blue staining. 
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Fig. 9. Light micrograph from a lateral part of the head of juvenile T. verrucosus showing a neuromast organ, the 

sensory receptors of the lateral-line system. The pear-shaped mantle cells and sensory cells of the organ are 

clearly visible. Neuromast organs are present in both juvenile and adult individuals and underline the 

predominantly aquatic mode of life of T. verrucosus. ep, epidermis; de, dermis; mc, mantle cells; no, neuromast 

organ; sc, sensory cells; AB-PAS staining 
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Fig. 10. Light micrograph showing a cross-section of the apical area of a mucous gland. All cutaneous glands 

exhibit an excretory duct, lined by keratinocytes. Note the neck region (nr) that provides regenerative stem cells, 

which develop both secretory and myoepithelial cells. ep, epidermis; de, dermis; du, duct; gl, gland lumen; kc, 

keratinocytes; mc, myoepithelial cell; nr, neck region; sc, secretory cell. Toluidine blue staining. 
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Fig. 11. Light micrographs showing mucous glands in juveniles. A: Most of the secretory cells of mucous glands 

react strongly positive to PAS and none of the cells in juveniles stain with alciane blue. Note that within the 

same gland the staining of secretory granules often varies from cell to cell, pointing to the content of different 

components within one gland. B: Mucous glands are small, roundish glands with wide lumen, encircled by 

vesicle-filled secretory cells. These secretory cells proliferate from apical to basal, where they increase in size 

and synthesize a great amount of secretions. Note the content in the glandular lumen, visible in both sections. de, 

dermis; ep, epidermis; gl, gland lumen; mg, mucous gland; sc, secretory cell. A: PAS-AB staining; B: Toluidine 

blue staining 
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Fig. 12. Light micrographs showing cross-sections of GG1s in juveniles. Note that the appearance of GG1s is 

dependent upon the stage of maturation. Juveniles possess predominantly immature granular glands of several 

maturational stages. A: GG1s react slightly positive to PAS and negative to alciane blue. Note the diverse 

staining properties of the single secretory cells of this immature gland. B: Note the large size of secretory cells in 

GG1s. During maturation, the single secretory cells within the same gland differ from one another due to size, 

shape and density of their granules. ep, epidermis; de, dermis; igg, immature granular gland; sc, secretory cell. 

A: AB-PAS staining; B: Toluidine blue staining. 

 

A                               B
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Fig. 13. Light micrographs showing the distribution of secretory granules within the different multi-cellular 

granular glands in an adult T. verrucosus. A: Ordinary GG1 from the trunk. The secretory cells contain a great 

amount of large, densely arranged granules which almost fill in the entire glandular volume. B: Enlarged GG1 

from the parotoids. The secretory cells of enlarged GG1s exhibit smaller granules which are loosely distributed 

(compare with A). C: GG2 from the tail dorsum. The single secretory cells of this maximum gland type contain 

very small granules that characteristically form granular patches and are restricted to certain areas. All granular 

glands consist of single secretory cells, separated from each other by clearly visible cell membranes (arrows). 

Toluidine blue staining.  
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Fig. 14. Light micrograph showing the glandular distribution representative for the skin of a juvenile T. 

verrucosus. Predominantly immature granular glands (GG1s) of several maturational stages can be found in the 

skin of juvenile individuals. During maturation the granular glands expand and histostaining properties of their 

secretory cells change. Note the difference in size and different histostaining properties of the two main 

cutaneous gland types: mucous and granular glands. Granular glands show a positive reaction to eosin whereas 

mucous glands don’t. mg, mucous gland; mgg, maturing granular gland. HE staining. 
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Fig. 15. Light micrographs showing the general glandular distribution representative for the skin of an adult T. 

verrucosus. Predominantly mature granular glands (GG1s) can be found in the skin of adult individuals. Note the 

different histostaining properties of the two main cutaneous gland types: mucous and granular glands. Mucous 

glands show a strong positive reaction to PAS and slightly to alciane blue. Granular glands (GG1s) slightly react 

positively to PAS and do not stain with alcian blue. gg, granular gland; mg, mucous gland. AB-PAS staining.  

 

 

 



  Results 

  39 

 
Fig. 16. Light micrographs showing cross-sections of the tail dorsum of (A) juvenile and (B) adult T. verrucosus. 

Note the distinct characteristics of granular glands type 2 (GG2) in juvenile and adult T. verrucosus. A: GG2s in 

juveniles are much smaller (maximal diameters up to 478 µm) than in adults (maximal diameters up to 1550 

µm). They have an oval appearance and are horizontally elongated relative to the skin surface. B: GG2s in adults 

are huge glands that fill in the entire dermal layer. The picture only shows the dorsalmost third of the adult tail 

edge. Note the patchy distribution of the granules in the GG2s, a characteristic attribute for mature GG2s. 

Toluidine blue staining.  
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3. Transmission electron microscopic (TEM) findings 
In the course of this research skin samples from adult individuals were used for ultrastructural 

investigations to provide additional information on the cellular organization of the two main 

cutaneous gland types – mucous and granular glands. 

     Mucous glands consisted of secretory cells encircling a central lumen. The cells from the 

apical pole were smallest and increased in size toward the basal gland pole. The apical cells 

contained a large number of organelles, mainly mitochondria, rough endoplasmatic reticula 

and Golgi apparati (Fig. 19) as well as densely packed vesicles: rather small in size compared 

with the vesicles from the basally located secretory cells. The secretory cells from the basal 

gland pole were the biggest cells within the mucous glands. They exhibited round-oval 

shaped, basally located nuclei and were filled with big, round vesicles. Organelles, including 

endoplasmatic reticulum and Golgi apparatus appeared very frequently and were especially 

concentrated around the nucleus. Mitochondria were scattered throughout the few vesicle-free 

areas and appeared most frequently in the apical areas close to the cell boarders. The surfaces 

of the secretory cells toward the lumen bore microvilli what provided an enlarged surface area 

(Fig. 20). The mucous glands were enclosed by a network of myoepithelial cells, followed by 

a tight layer of dermal collagen fibers. Secretory cells and myoepithelial cells were connected 

to each other by intervening periplasmatic protrusions.  

     Mature GG1s and GG2s consisted of large cells with a great amount of abundant round 

vesicles, distributed through their cytoplasm (Fig. 17). The vesicles were densely arranged in 

the central parts of the gland and less frequently in the periphery. The cell nuclei were 

positioned basally where most of the organelles were present. Rough endoplasmatic reticula 

and Golgi apparati could be found in close proximity to the nucleus, whereas mitochondria 

were found everywhere in the cytoplasm. In general mature GG1s and GG2s in T. verrucosus 

were organelle-poor structures but densely crowded with vesicles. All secretory cells were 

separated from each other by clearly visible cell membranes (Fig. 17) and were connected 

together by meshing periplasmatic protrusions. A distinct myoepithelial sheath enclosed the 

gland (Fig. 18). The myoepithelial cells possessed elongated flattened nuclei and a large 

number of mitochondria. The myoepithelial cells were connected to each other and to the 

secretory cells by meshing periplasmatic protrusions of their cell membranes. Adjacent to the 

myoepithelial sheath, a thick wall of tight collagen fibers encircled the glandular unit (Fig. 

18).  
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Fig. 17. Transmission electron micrograph showing parts of the secretory unit of a mature GG1. Mature granular 

glands are build up by huge secretory cells filled with vesicles. Apart from vesicles that are stored ready for 

expulsion, mature granular glands are organelle-poor structures, pointing to a state of suspended activity. Note 

the distinct cell border, indicating the absence of syncycial fusion in T. verrucosus. cb, cell boarder; sv, secretory 

vesicle.  
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Fig. 18. Transmission electron micrographs showing the myoepithelial sheath of a GG2. The granular gland 

possesses a contractile myoepithelial sheath, responsible for fast expulsion of glandular contents. A: The nuclei 

of myoepithelial cells are flattened. The myoepithelial sheath encircling the granular gland is distinct visible and 

followed by a tight layer of dermal collagen fibers B: The interdigitating periplasmatic protrusions (arrows) from 

the myoepithelial- and the secretory cells provide adhesion. cf, collagen fibrils; mc, myoepithelial cell; mn, 

myoepithelial cell nucleus; sc, secretory cell; 
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Fig. 19. Transmission electron micrographs showing the organelle-rich facilities of mucous glands. A: Note the 

presence of Golgi apparati, endoplasmatic reticula, mitochondria and secretory granules in the highly active, 

apically located mucous gland cells. B: Detail of a Golgi apparatus with delivering vesicles (indicated by 

arrows). cn, cell nucleus; er, endoplasmatic reticulum; Ga, Golgi apparatus; mt, mitochondrium; 
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Fig. 20. Transmission electron micrographs showing the apical regions of basal located secretory mucus gland 

cells. A: The surface of a secretory cell to the lumen bears microvilli. Note the high number of mitochondria in 

the apical portion of the cells. B. Single vesicles can merge together before fusing with the cell membrane and 

discharging their contents into the lumen. fv, fusing vesicles; mt, mitochondria; mv, microvilli; v, vesicle. 
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4. Anti-predator behavioral findings 
When animals were prodded repeatedly, they displayed several defensive behavior patterns. 

Most of the defensive postures in T. verrucosus could be related to the presence of skin 

secretions. Dependent upon the site of the stimulus, the body was always orientated in the 

way to present concentrations of enlarged granular glands towards the stimulus (Fig. 21; Fig. 

22). Within seconds, secretions of glandular contents could be visible, as white, milky fluids 

covering the surface of the body (Fig. 22). 

T. verrucosus exhibited a great diversity of antipredator postures when being stressed and the 

characteristics are listed.  

At the beginning of predator simulation, most of the animals tried to escape by moving away 

from the threatened stimulus. If stimulation continued and an escape was prohibited, the 

response was immobility. In the following, several postures were displayed during defensive 

behavior. Sometimes the body was arched, the legs were extended and the midbody was 

elevated off the ground. The ribs could be erected and elevated the lateral warts. As the mid-

dorsal ridge as well as the lateral warts exhibited concentrations of enlarged granular glands 

(see Fig. 21), this would increase the likelihood of predator contact with these glandular 

concentrations.  

Especially the tail, which was stocked with giant granular glands, was used intensively during 

defensive behavior. The tail was either undulated and moved in a sinuous manner vertically or 

wagged, whereby the tail was raised off the substrate and swung from side to side. This leads 

the attention to the most dispensable part of the body, the glandular tail. 

During posturing, the head and tail in general were often coiled toward the attack. Especially 

juveniles exerted the head in antipredator postures, as the glandular parotoid region was 

swung into the attacking stimulus, accompanied by body coiling and tail positioning over the 

body. 
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Fig. 21. Photographs of T. verrucosus and schematic demonstration of enlarged granular gland accumulations of 

examined individuals. Several body areas exhibit concentrations of enlarged granular glands, marked yellow in 

this figure. These areas include the dorso-lateral bony ridges of the head, the parotoids, the mid-dorsal ridge, the 

dorso-lateral rows of warts and almost the entire tail. Head and tail exhibit the greatest accumulation of 

enormous, enlarged granular glands and especially these areas are deployed during defensive behavior. dr, mid-

dorsal ridge; lr, dorso-lateral ridge of the head; lw, lateral wart; p, parotoid; t, tail. 



   

  49 

 

   
Fig. 22. Anti-predator behavior of T. verrucosus. Various antipredator postures were displayed in response to 

mild threatening stimuli. Depending on location and intensity of stimuli, various patterns were performed. A: 

The tail was coiled if animal was touched from lateral. B: White, milky excretions became visible in close 

proximity to threatened stimuli. Note the single beads of secretion released from single glands. C: Especially 

head and tail (see also A) were involved in defensive behavior. Both regions contained concentrations of 

enlarged granular glands providing a great amount of noxious secretion.  
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DISCUSSION 
Amphibians may appear to be rather defenseless animals. Many are small in size, move 

slowly or tire after rather short bursts of activity. Most lack protective armors like claws, and 

powerful teeth and jaws are generally unsuited for defense against animals larger than 

themselves. As the skin is involved in respiration in most species, it lacks thickenings that 

might provide a mechanical protection against predators (Stebbins and Cohen, 1997). 

However, terrestrial salamanders from the families Hynobiidae, Ambystomatidae, 

Salamandridae and Plethodontidae have independently evolved elaborate combinations of 

antipredator mechanisms in response to the predatory pressure on land (Brodie, 1977). 

Morphological, physiological, and behavioral features have evolved, which alone or in 

combination provide protection from potential predators. T. verrucosus is a member of the 

salamandrids, the family showing the greatest diversity of antipredator mechanisms of any 

urodele family (Brodie, 1983). Most salamanders have skin secretions that can repulse 

predators. Others, such as Notophthalmus viridescens, Taricha granulosa, Salamandra 

salamandra and Tylototriton verrucosus not only have repulsive secretions, but noxious and 

toxic ones as well to truly harm any would-be predator (Brodie, 1983; Brodie et al., 1990). 

Noxious skin secretions, warning coloration and behavior are the primary defense of many 

amphibians (Stebbins and Cohen, 1997). The antipredator arsenal of T. verrucosus is based on 

such noxious skin secretions (in accordance to Brodie et al., 1984), which is considered to be 

the most important means of repelling predators within terrestrial salamanders. Most other 

antipredator adaptations, such as color and posture are dependent upon the presence of these 

secretions (Brodie, 1977; Nowak and Brodie, 1978). 

 

The class Amphibia is the phylogenetic oldest tetrapod class, and in many ways amphibians 

are transitional between fishes and reptiles (Porter, 1972; Westheide and Rieger, 2004). The 

integument of modern amphibians performs several functions and the main evolutionary 

advance of the amphibian skin over the ones of fishes is the presence of large numbers of 

multicellular alveolar skin glands. Single secretory cells, embedded in the epidermis, are still 

widely distributed in bony fishes, but became arranged into complex multicellular organs in 

amphibians. In amphibians, they considerably increased secretory activity and gained several 

new important functions (Delfino et al, 2002; Porter, 1972). Originally engaged in regulative 

functions, serous/granular glands were later employed in defensive strategies, playing a role 

in repellent or toxin production (Delfino et al, 2002; Duellman and Trueb, 1994). Toads and 
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salamanders have been considered noxious creatures for centuries and indeed many 

amphibians produce a remarkable diversity of antipredator substances in their skin glands. 

 

Tylototriton verrucosus, is supposed to be one of the most toxic salamanders; more toxic than 

Cynops pyrrhogaster, Paramesotriton honkongensis, Notophthalmus viridescens (eft and 

adult) or Pleurodeles waltl (Brodie et al., 1974; Nowak and Brodie, 1978) – and more or less 

as toxic as Taricha rivularis and Taricha torosa (Brodie et al., 1984). When placed together 

with shrews, T. verrucosus was being attacked but never seriously injured, as shown in a 

study of Brodie et al. (1984). The shrews however, chewing or eating bits of the skin of T. 

verrucosus started to regurgitate within seconds and when macerated skin of T. verrucosus 

was injected intraperitoneally into mice, they exhibited toxic symptoms and died within 

minutes (Brodie et al., 1984). These experiments showed that the secretions of the skin glands 

of T. verrucosus have the potential to truly harm or even kill would-be predators. Although 

the newts may suffer wounds and smaller injuries during the encounter behavior, the toxic 

skin secretions seem to be an effective protective factor that prevents being eaten by most 

potential predators. 

 

The present study comprises the findings of two age groups, juveniles and adults. All 

examined individuals were completely metamorphosed and the major morphological and 

physiological changes of the larval skin were fulfilled.  

The general constitution of the skin in both age groups was alike. In general the skin of T. 

verrucosus showed several adaptations associated with the amphibious life and the close 

connection to an aquatic environment. The secretion of cutaneous glands ensures the various 

tasks performed by the skin. The skin of T. verrucosus is a poorly keratinized organ, 

composed of a few cell layers, whereof only the outermost cell layer is keratinized. As the 

amphibian skin is water permeable and important in respiration and osmoregulation (Fox, 

1994; Stebbins and Cohen, 1997; Clarke, 1997; Fontana et al., 2006), protective thickening or 

other modifications of the skin which would provide a mechanical protective barrier, are 

limited. The secretions of cutaneous glands are an advantage as they make the skin of 

amphibians quite slippery and therefore decrease lesions by abrasion and promote escape 

from aggressors (Stebbins and Cohen, 1997). T. verrucosus inhabits both terrestrial and 

aquatic habitats, but is more closely confined to water than allied species (Seglie et al, 2003). 

This is also reflected in the organization of the skin, as neuromast organs of the lateral-line 

system are present in all stages of life of T. verrucosus, even in adult individuals. Neuromasts 
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function as mechanoreceptors, sensitive to water currents, and are therefore present only in 

aquatic animals. They are known among amphibians in aquatic larvae, aquatic adult urodels, 

adult pipid frogs and adult salamandrids that are aquatic after a terrestrial stage (Duellman 

and Trueb, 1994). Additionally the skin of T. verrucosus is well supplied with capillaries 

forming an extensive network of blood vessels. This underlines the role of the skin as a 

respiratory organ in T. verrucosus.  

The entire skin of juvenile and adult T. verrucosus was interspersed with the main cutaneous 

glands: mucous and granular. Whereas granular glands are thought to be the site of skin toxin 

production and associated with defence (Noble, 1931; Stuhr, 1936; Quay, 1972; Delfino, 

1976; Nowak and Brodie, 1978; Neuwirth et al., 1979; Daly, 1995; Toledo and Jared, 1995; 

Alvarez et al., 2005; Daly et al., 2005; Arifulova et al., 2007) mucous glands are generally 

participated in several crucial functions.  

The cutaneous glands of amphibians have received considerable attention from 

morphologists. All adult extant amphibians are believed to posses two main types of dermal 

glands: mucous and serous/granular glands (Duellman and Trueb; 1994, Fontana et al, 2006; 

Fox, 1994; Houck and Sever, 1994). Helf and Stark (1941) raised the question whether the 

two types of glands develop from separate “nests” or if granular glands represent simply a 

further differentiation of the mucous type. In the past there has been controversy concerning 

this question but the results of Helf and Stark (1941) as well as of Delfino et al. (1982) are 

very clear. The mucous and granular glands arise from distinctly separate glandular nests and 

no transition stages or other indications of glandular transformation from one type to the other 

have been observed. Mixed glands, with mucous and granular units, are reported in the 

literature as a constant feature for some Urodela (Delfino et al., 1982; Brizzi et al, 2002). This 

poses the question whether the mixed glands represent transformations of mucous and/or 

granular glands or are separate gland lines that have evolved independently in several species 

and exhibit special functions. The study of Delfino et al. (1982) evidence that the mixed units 

represent a further independent gland line. Giovanni Delfino is one of the leading experts in 

amphibian exocrine glands of and a lot of his work concerns the development and 

organization of the glandular tissue in amphibians. His analyses of development of cutaneous 

glands in Salamandrina terdigitata show that previous Anlagen are formed by blastocytes in 

the epidermis and evolve into complex functional units. The anlagen can be identified by the 

presence of the secretory elements, even before secretion occurs.  

However, T. verrucosus shows at least three different acinar, multicellular cutaneous gland 

types: mucous glands (MG) and two different types of granular glands (GG1 and GG2). The 
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identified granular glands differ in several morphological and histostaining properties from 

MGs. 

Mucous glands in amphibians are involved in fundamental physiological activities. During the 

transition from water to land in tetrapod evolution, multicellular mucous glands presumably 

arose to keep the skin moist to avoid dehydration in the new environment (Toledo and Jared, 

1995). Mucous glands in T. verrucosus are widely distributed on the body and mainly 

responsible for producing mucopolysaccharides and mucoproteoglycans, the main 

components of the slippery amphibian mucus. Mucous glands in adult T. verrucosus reacted 

mainly positively to PAS and slightly to alciane blue, indicating the presence of primarily 

neutral carbohydrates but acidic carbohydrates as well. In the mucous glands of amphibians, a 

mixture of acidic and neutral mucopolysaccharides is common. For instance, some species of 

Aneides and Plethodon (Staub and Paladin, 1997; Hecker et al, 2003) as well as Eurycea 

(Sever, 1989) secrete both, neutral and acidic mucus. However, in T. verrucosus as well as in 

the closely related species P. waltl most of the mucous gland cells show a strong reaction to 

the PAS-test, pointing to a majority of neutral mucosubstances (according to Quay, 1972; 

Bueno et al., 1981; Fox, 1994; Heiss et al., 2009).  

Interestingly, the mucous glands in juvenile T. verrucosus, though resembling those in adults, 

exhibit no acidic carbohydrates. Nevertheless, goblet cells und multicellular glands that open 

into the oral cavity of the investigated juvenile T. verrucosus do contain acidic carbohydrates. 

Presumably the necessity of acidic mucus is only given in adult T. verrucosus and therefore 

not developed in juveniles. The functional differences between acidic and neutral mucus are 

uncertain and not properly studied yet. Getchell et al. (1984) proposed in a work of 

salamander oral mucosa, that neutral mucus forms a thin watery surface layer, whereas acidic 

mucus comprises a thicker surface layer. It may be beneficial to produce a diluted, watery 

surface film during the growth process of T. verrucosus, whereas tough mucus may have 

more advantages in adult stages. As discussed above the composition of the mucus can 

definitely be modified within the mucous glands during life. The potential of changing the 

mucous composition as an adaptation to certain conditions may be advantageous in respect of 

changing environmental conditions. 

Mucous glands of T. verrucosus are typically small glands and feature a central lumen, which 

is continuous with the excretory duct that opens through a pore to the exterior. Light 

microscopic findings of mucous glands of T. verrucosus are very similar to the mucous glands 

of other amphibians (e.g., Bueno et al., 1981; Delfino et al., 1982; Brizzi et al, 2002; Hecker 

et al., 2003; Fontana et al., 2006; Heiss et al., 2009). All functions of mucous glands, usually 
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involved in fundamental physiological activities, may account for their uniform appearance 

and homogeneity throughout the class (Brizzi et al., 2002). Nonetheless, present findings of 

mucous glands of T. verrucosus indicate, that besides age-related variations there are regional 

ones as well. It could be assumed that on different parts of the body, mucous glands can 

provide different secretions that may result various functions. This paints a wider 

morphofunctional scenario and the adaptive potential of mucous glands may have more 

biological importance as previously thought. 

 

Secretory cells encircling a central lumen build up the mucous gland. As shown by LM, the 

cells in the apical gland pole are smallest and increase in size towards the basal pole. 

Ultrastructural investigations revealed that the smallest cells, located in the apical pole, are 

especially organelle-rich. They exhibit great amounts of endoplasmatic reticula, Golgi 

apparati and mitochondria, which are necessary for the great amount of secretory granules 

they produce. Towards the basal gland pole, the number and size of vesicles within the 

secretory cells increase. The basalmost located cells are stocked with big sized vesicles, still 

display organelles in the few vesicle-free areas. Such observations lead to the hypothesis that 

apical cells reflect an immature status of development whereas advanced stages of maturation 

are represented in cells of the basal gland pole. Therefore it seems likely that secretory cells 

within mucous glands proliferate from apical to basal (in accordance to Heiss et al., 2009).  

Glandular secretion filling in the mucous gland lumen was seen in nearly all sections 

observed. While the secretory product within the glandular cells is stored in vesicles, such 

vesicles were mostly lacking in the MG-lumen. It seems likely, that mucous secretion is 

largely merocrine. As the lumen of the gland is continuous with the excretory duct, we can 

assume that mucus reaches the body surface permanently, resulting from luminal pressures 

generated by continuous exocytosis activity of the secretory cells. Hoffman and Dent (1978) 

argued that mucous glands secrete their contents in a merocrine manner continuously onto the 

skin and that phasic gland stimulation seems likely.  

In the past, there has been uncertainty about the presence of a distinct myoepithelial sheath in 

mucous glands. Some authors reported that a myoepithelial sheath is absent or, if present, 

poorly developed (Dawson, 1920; Quay, 1972; Reyer et al., 1992; Brizzi et al., 2002). Brizzi 

et al. (2002) suggested that a myoepithelium directly innervated is a feature, generally not 

found in mucous units.  

In T. verrucosus, a distinct myoepithelium which surrounds the mucous gland is present. This 

pattern is also observed in the closely related species Pleurodeles waltl (Heiss et al., 2009). 
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The myoepithelial sheath of mucous glands is thin and hardly visible using light microscopy 

but clearly recognizable with transmission electron microscopy. Studies which included 

electron microscopic findings in general revealed the presence of a mucous gland 

myoepithelium (e.g., Voute, 1963; Ernst, 1973). Several recent findings indicate that a 

myoepithelial sheath is a consistent feature of amphibian mucous glands. Hoffman and Dent 

(1978) postulated that a MG-myoepithelium of the red-spotted newt is rather vestigial and 

without functional significance, because of its thin appearance. The MG-myoepithelium in T. 

verrucosus is clearly thinner than that of GGs but is has to be mentioned that MGs are much 

smaller as well than GGs. In any case, it seems likely that muscular contraction on mucous 

glands can lead to glandular discharge and it is supposed here that the MG-myoepithelium 

features an important biological role.  

Secretory cells of mature mucous glands are probably regularly exchanged by a continuous 

proliferation from apical to distal and exhausted basally located secretory cells are replaced. 

Once developed, mucous glands are characterized by continuous exocytosis activity of their 

secretory cells, a glandular discharge mechanism that fits the main function of primarily 

keeping the skin moist. Based on the present findings, it is suggested that a constant 

merocrine secretion of mucus into the glandular lumen and consequently onto the body 

surface is true in T. verrucosus. Additionally a luminal discharge of a greater amount of 

mucus all at once seems possible, due to the presence of a well-developed myoepithelial 

sheath.  

 

Granular glands are the second main cutaneous gland type in T. verrucosus. As in other 

amphibians (Quay, 1972; Toledo and Jared, 1995), they are much larger than mucous glands 

and in contrast to the latter, they produce mainly proteinaceous components (in accordance to 

Le Quang Trong, 1973; Reyer et al., 1992; Fontana et al., 2006; Heiss et al., 2009). 

Amphibians are known for the wide range of bioactive substances they produce in their 

granular glands, including amines, peptides and a great number of alkaloids (Daly, 1995; Daly 

et al., 2005). Probably most granular glands were originally used for regulative functions and 

gained later a multiplicity of aims, producing diverse bioactive substances, including toxins 

(Duellman and Trueb, 1994). Granular glands of T. verrucosus share some common features 

with mucous glands as they are multicellular, acinar glands located in the dermis, that open to 

the skin surface by an excretory duct. They are build up by a neck region containing 

regenerative stem cells, a secretory unit containing the secretory cells, and the surrounding 

myoepithelium as the contractile sheath.  
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While MGs in juveniles have the same size and general organization as in adults, the 

appearance of granular glands differs from juveniles to adults. Most conspicuous is the 

difference in size and the maturation state. Granular glands in juveniles are much smaller than 

in adults, compared in equivalent body areas and many show an immature state, whereas 

adults feature predominantly mature granular glands. This is applicable for all granular glands 

observed, most conspicuous for the GG2s of the dorsal edge of the tail and less discernable 

for the GG1s of the parotoid area. Maturing glands become apparent, as the single secretory 

cells within one gland differ from one another pertaining to their granule appearance and 

partially staining properties. Fully developed GGs are big and assigned by organelle-poor 

secretory cells, still separated by cell membranes. They comprise a great amount of granules, 

featuring all approximately the same size and shape in every secretory cell. The small quantity 

of organelles present in mature granular glands leads to a state of suspended activity and 

advanced maturation.  

In granular gland history the gland is presumably emptied by contraction of the 

myoepithelium and the broken secretory cells are then renewed and mature to become 

functional again. In contrast to mucous glands, secretory cells of granular glands are 

supposably not regularly exchanged by continuous proliferation from apical to distal. 

Granular glands are rather characterized by long biosynthetic and maturational processes 

where a great amount of secretory cells develop and mature. This process seems to progress 

very slowly indicating that the production of secretions, repulsive to predators is extensive 

and complex. Like loaded weapons, ready for expulsion, the specific bioactive secretions are 

stored within the granular glands. The rapid contraction of the myoepithelial sheath leads to 

the expulsion of the granular contents in a holocrine way (Navas et al., 1982; Delfino et al., 

1995). A distinct, directly innervated myoepithelial sheath that regulates secretions of 

granular products is present in T. verrucosus and has been consistently observed in the 

granular glands of both Anurans and Urodeles (Hoffman and Dent, 1977; Hoffman and Dent, 

1978; Reyer et al., 1992; Brizzi et al., 2002).  

 

T. verrucosus possess two distinct types of granular glands: GG1s and GG2s. As described in 

detail in the results, GG2s in T. verrucosus differ in several histostaining and morphological 

characters from GG1s. Summarized, GG2s are only present in restricted areas of the skin: the 

dorsal and ventral edges of the tail. Different substances are present in the secretory cells of 

GG2s as they stain differently with Coomassie brilliant blue compared to GG1s. This is 

evident both during gland development as well as in mature GG2s. In contrast to ordinary 
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GG1s the secretory granules of mature GG2s are smaller and distributed rather patchy 

throughout the gland and do not fill up in the entire gland. This distinct patchy distribution of 

granules in GG2s is a conspicuous characteristic for this type of gland. Further differences to 

ordinary GG1s, distributed elsewhere concern their large size, their oval appearance and their 

horizontal elongation, in relation to the skin surface. Only ontogenetic analysis of the skin 

glands would ascertain if GG2s represent a different gland line but all findings so far support 

the theory that serous gland polymorphism is true for T. verrucosus.  

Delfino et al. (1998) suggests that the presence of different serous gland types within one 

species can be regarded as a characteristic feature for at least some species of hylids and 

bufonids. Likewise Heiss et al. (2009) reported serous gland polymorphism in the Salamndrid 

P. waltl, where the granular glands in the tail resemble a distinct type of granular glands, 

similar to T. verrucosus.  

It seems likely that the presence of different types of granular glands is a common feature 

within the amphibians. The types of biologically active substances found in amphibians 

appear to have phylogenetic significance (Daly, 1995; Delfino et al., 1994). Delfino et al. 

(2002) emphasize the phylogenetic importance of ultrastructural similarities between serous 

products in anurans. He suggests that closely related species manufacture serous granules 

with similar or identical morphological traits, providing the derivation from comparable 

secretory pathways. The GG2s in the closely related Salamandrids T. verrucosus and P. waltl 

share several structural and histostaining similarities and hence the occurrence of GG2s is 

maybe an ancestral characteristic representative for the monophylum Tylototriton, 

Echinotriton and Pleurodeles. The literature contains no histological findings about the 

glandular tissue of Echinotriton to verify or falsify this hypothesis. However, the GG2s in the 

tail in both species represent a distinct granular gland type. 

The presence of enlarged granular glands in the tail is a feature commonly found in some 

urodels. Some authors state the occurrence of these glands as an important antipredator 

adaptation (Brodie et al., 1984; Duellman and Trueb, 1994). Others speculate that they fulfill 

a dual function: nutrient storage and predator deterrence. Williams and Larson (1986) provide 

evidence that the caudal glands of Ambystoma macrodactylum columbianum stores both, 

toxins and nutritive proteins. The proteins are stored to be used as an energy source avoiding 

starvation. Hecker et al. (2003) describe modified serous glands in the caudal integument of 

Plethodon cinereus which are used for scent marking. Moreover caudal sexually dimorphic 

glands (hedonic glands) are mentioned for some members of the Plethodontidae. These 

enlarged glands are supposed to produce pheromones as a source of female attraction and 
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hence are involved in courtship behavior (Brizzi et al., 1996; Sever, 1989; Staub and Paladin, 

1997). 

GG2s in the tail of T. verrucosus are similar in occurrence in both males and females. As 

there is no sexual dimorphism in T. verrucosus, the role of GG2s in courtship behavior seems 

unlikely. Most probably, the presence of these glands is associated with defensive behavior. 

T. verrucosus uses the tail actively during defensive postures and several morphological 

features, especially the presence of a well developed myoepithelial sheath adapted for fast 

expulsion of glandular contents, underline the function in repelling would-be predators. 

Similar to the GG1s, which are definitely assigned as poison glands (Quay, 1972; Delfino, 

1976; Neuwirth et al., 1979; Duellman and Trueb, 1994; Daly, 1995; Stebbins and Cohen, 

1997; Toledo and Jared, 1995; Alvarez et al., 2005; Arifulova et al., 2007), it’s suggested that 

GG2s have similar functions. 

 

Like mentioned, in addition to granular glands of ordinary size distributed homogenously 

throughout the skin, some regions exhibited concentrations of enlarged granular glands. 

Tylototriton verrucosus bears large and distinct parotoids, a glandular mid-dorsal ridge on the 

trunk, rows of lateral warts and dorsal and ventral tail edges with concentrations of such 

enlarged granular glands (in accordance to Brodie et al., 1984). In this study, the highest 

density of granular glands and the largest glands in adults were found in the dorsal edge of the 

tail. Almost the entire tail was stocked with enormous GG2s. They could reach maximum 

diameters of up to 1550 µm and therefore can be added to the largest skin glands ever found 

in terrestrial salamanders. They differ in size only little from Salamandra salamandra, who is 

supposed to have the largest skin glands of any terrestrial salamander, with maximum 

diameters ranging between 1500-1800 µm (Phisalix, 1922). 

Like T. verrucosus, many terrestrial salamanders have concentrations of enlarged granular 

glands along the tail dorsum, in the parotoid region or in lateral warts (Brodie, 1983). Several 

members of Ambystomatidae like Ambystoma gracile and A. maculatum as well as members 

of the genus Salamandra, such as S. salamandra and S. atra exhibit glandular parotoids. A lot 

of species of the Ambystomatidae have concentrations of granular glands along the tail 

dorsum and members of Salamandra exhibit concentrations of granular glands in rows along 

the body (Brodie, 1977). Such clusters of granular glands are known to be important in 

defense against predators (Duellman and Trueb, 1994). Most species with concentrations of 

granular glands use defensive postures to display these glandular regions to the aggressor. 

This behavior increases the likelihood that first predator contact would occur with the most 
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unpalatable parts of the body and therefore the avoidance would be most rapid and intense. 

Probably, this causes the predator to learn to avoid similar prey after initial contact (Nowak 

and Brodie, 1978; Brodie, 1983). Furthermore, such anti-predator posturing also serves to 

increase the apparent size of the salamander to intimidate or distract the potential predator 

(Brodie, 1977).  

When tapped or touched in experiments, T. verrucosus exhibits various antipredator postures 

and secretions on the body surface can appear within seconds. The first response to a 

threatening stimulus is often immobility. According to Brodie (1977), immobility could be a 

precursor to several antipredator displays. In addition, immobility might reduce the intensity 

of further predator attacks and the potential of injuries. 

Further anti-predator postures in T. verrucosus include body arching in connection with 

extension of the limbs and erection of the ribs (Brodie et al., 1984 and this study). This is 

beneficial as it increases the likelihood of a predator contacting the unpalatable glandular 

concentrations of the mid-dorsal ridge and of the lateral warts. 

The tail, which is studded with huge GG2s, is intensively deployed during defensive behavior 

in adult T. verrucosus. During these defensive postures, the body often keeps still while the 

tail is held in an elevated position, wagged and undulated or even swung forcibly into the 

attacking stimulus. A similar behavior is also found in other salamandrids with presumably 

noxious or toxic skin secretions of the tail (Brodie, 1977). Moving the tail may confuse the 

predator by changing the characteristic shape of the salamandrid and the predator’s attention 

is attracted to this most noxious, moving part of the salamander (according to Brodie, 1977). 

In sum the body of T. verrucosus was always orientated in the way to display each of the 

glandular regions with concentrations of enlarged granular glands towards the attacking 

stimulus. 

 

Morphological features are closely associated with defensive behavior to enhance the survival 

rate, as demonstrated above. The coloration of many amphibians is often closely integrated in 

protective mechanisms either by avoiding detection by camouflage or by signaling to 

predators to be unpleasant or dangerous through aposematic coloration (Stebbins and Cohen, 

1995; Duellman and Trueb, 1994). Usually, amphibians that have noxious or toxic skin 

secretions tend to have aposematic coloration, often displayed during anti-predator-posturing 

as visual warning. A predator will associate the aposematic coloration with the distasteful 

properties of the prey and will refrain from such colored prey in the future. 
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The light brown to orange coloration of the individuals of T. verrucosus examined in the 

present study is associated with concentrations of enlarged granular glands. Since there is 

often a relationship between the presence of bright colors and skin toxins, it is generally 

assumed that such colors function as a warning signal to potential predators (Stebbins and 

Cohen, 1995). This seems to be applicable for T. verrucosus. Especially during defensive 

postures the tail is elevated to display bright ventral colors: a warning signal. Besides the 

warning function of aposematic coloration, bright colors on the other hand might draw the 

attention of the aggressor, without experience with similar prey, to the most noxious parts of 

the salamander. However, T. verrucosus exhibits predominantly dark brown coloration 

offering good camouflage on the moist forest floors and pools, this species naturally inhabits. 

The pigmentation of T. verrucosus makes it cryptic on the dorsal surface and the aposematic 

colors only become visible when the animal assumes one of the defensive postures. Colors 

that tend to match those of the substrates on which the animals live are important to their 

avoidance of visual recognition by predators. 

 

The existence of two distinct color morphs assigned to T. verrucosus has not been generally 

recognized and overlooked in the past. In 1995, a taxonomic review of T. verrucosus was 

published by Nussbaum and co-workers. Primarily, based on differences in coloration, T. 

shanjing was separated from T. verrucosus, as a discrete species. Until this time, most, if not 

all authors considered T. verrucosus and T. shanjing to be the same species and publications 

until that time did not distinguish between these two species. Nowadays, T. verrucosus is 

restricted to the brown form with bright orange coloration mainly on the ventral edge of the 

tail. T. shanjing is considered as the orange-patterned form.  

The distinct color patterns in T. shanjing and T. verrucosus are specially interesting if set in 

relation with granular gland concentrations. While T. verrucosus is mainly uniformly brown, 

exactly all regions of the enlarged granular gland concentrations shown in this study display a 

bright orange aposematic coloration in T. shanjing. The genetic and taxonomic relationships 

are not fully resolved but these two highly distinctive forms obviously have evolved along 

independent trajectories (Nussbaum et al., 1995). Zhang et al (2007) supposed that the genetic 

difference of these two species is low and it therefore seems likely to me, that granular gland 

occurrence, distribution and toxicity are similar in both species. I suppose that the closely 

related species T. shanjing and T. verrucosus mainly rely on two different antipredator 

strategies. T. verrucosus, a highly aquatic species, relies mainly on cryptic coloration to avoid 

visual recognition. By contrast, T. shanjing is a predominantly terrestrial species and uses 
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pronounced aposematic coloration to warn about its noxious properties. A potential 

interpretation is that living on land involves being faced with a greater amount of predators. 

Clearly pointing to the noxious properties by aposematic warning coloration may avoid 

predator attack and enhance the survival rate on land. 

 

Beside the presence of clusters of enlarged skin glands, associated defensive postures and 

related coloration the closely allied salamandrid genera Pleurodeles and Echinotriton feature 

another unique anti-predator adaptation. Being attacked, these newts protrude their sharply 

pointed and elongated ribs through their skin to use them as ”stinging tools” to injure 

predators. This behavior clearly decreases palatability and increases survival rate (Novak and 

Brodie, 1978; Brodie, 1983; Brodie et al., 1984; Heiss et al., 2008, 2010). The use of the ribs 

as ‘concealed’ weapons’ however is only known from these two phylogenetically closely 

related salamander genera. It is generally accepted that the two sister taxa Tylototriton and 

Echinotriton, together with Pleurodeles, represent a monophyletic branch within the 

salamandrids (Weisrock et al., 2006). Interestingly, while Pleurodeles and Echinotriton 

protrude their ribs, Tylototriton does not. It has elongated ribs, associated with the lateral 

warts. Erection of the ribs leads to expansion of the warts, but the ribs are blunt and not able 

to penetrate the skin. However, some Tylototriton fossils are known to have had long sharp 

ribs with elongated epipleural processes (Nussbaum and Brodie, 1982). So possibly, extinct 

species of Tylototriton were able to protrude their ribs as well. It seems, therefore, that the use 

of ribs as ‘concealed’ weapons within this monophyletic clade is rather ancestral than derived 

and only Tylototriton has lost this ability through time (Heiss et al., 2010). If comparing the 

glandular tissue in the skin of P. waltl and in T. verrucosus, it becomes apparent that the 

glandular tissue in T. verrucosus is much more developed as in P. waltl. It is likely that this 

feature in T. verrucosus resembles the compensation to the loss of skin protruding ribs. 

 

Salamanders of the Salamandridae have evolved a remarkable variety of antipredator 

adaptations that help them avoid being eaten by predators. Most adaptations are dependent 

upon the presence of noxious skin secretions which is probably the most important means of 

repelling predators within terrestrial salamanders. 

In fact little is known on the exact mode of regeneration and discharge properties of poison 

glands as well as on the reorganization of the myoepithelial sheath after expulsion. Future 

studies will focus on this topic, combined with ontogenetic analysis of the skin glands. 
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APPENDIX 
 

 

 

Tab. 1. Embedding in Paraffin. 

Operating procedure/solution Duration 
Fixation: Bouin’s solution 1month 
Rinsing: 70% alcohol 1day 
Dehydration: 70%  alcohol 2h 
 80%  alcohol 2h 
 90%  alcohol 2h 
 96%  alcohol 2h 
 100% alcohol 1h 
Infiltration: isopropyl alcohol 3 days 
Resin infiltration: soft paraffin (48°) 9h 
Resin infiltration: paraffin (60°) 18h 

 

 

 

 
Tab. 2. Embedding in LR white resin. 

Operating procedure/solution Duration 
Fixation: Bouin’s solution 1month 
Rinsing: 70% alcohol 1day 
Dehydration: 70%  alcohol 2h 
 80%  alcohol 2h 
 90%  alcohol 2h 
 96%  alcohol 2h 
 100% alcohol 1h 
Resin infiltration: 100% alcohol:100%LR white 2h 
 100% LR white 12h 
Polymerization:    100% LR white (60°) 20h 
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Tab. 3. Embedding in Agar Low Viscosity Resin (LV). 

Operating procedure/solution Duration
Prefixation : Karnovsky-solution 12h 
Rinsing with Wash-solution 30min 
Postfixation: Osmium-solution 2h 
Rinsing with Aq. Bidest. 30min 
Dehydration:    70%  alcohol 2h 
    80%  alcohol 2h 
    90%  alcohol 2h 
    96%  alcohol 2h 
   100% alcohol 1h 
Rinsing with acetone 30min 
Rinsing with acetonitrile  30min 
Infiltration:   acetonitrile:LV = 1:1 2h 
   acetonitrile:LV = 1:3 3h 
   100% LV 16h 
Prepolymerization: 100% LV (40°) 3h 
Polymerization:      100% LV (60°) 16h 

 

 

 

 

Tab. 4. Treatment for scanning electron microscopic investigations. 

Operating procedure/solution Duration
Fixation: Bouin’s solution 1month 
Rinsing: 70% alcohol 1day 
Dehydration:  70%  alcohol 1h 
  80%  alcohol 1h 
  90%  alcohol 1h 
  96%  alcohol 1h 
 100% alcohol 1h 
Infiltration: 100% alcohol:100% acetone = 1:1 1h 
Infiltration: 100% acetone 1h 
Critical point drying  6h 
Gold-plating 250sec 
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Tab.5: Staining procedure for Alciane blue-PAS 

staining; modified after Romeis (1989) 

Dye/ Chemical Duration 
Xylene 5min 
Xylene 5min 
Isopropyl alcohol 5min 
Isopropyl alcohol 5min 
Alcohol 90% 3min 
Alcohol 80% 3min 
Alcohol 70% 3min 
Aqua dest. 3min 
Azocarmine 4min 
Aniline alcohol 3sek 
Acetic acid alcohol 30sek 
Tungsten acid 20min 
Tungsten acid 20min 
Tungsten acid 20min 
Aqua dest. 3min 
Aniline blue 8min 
Aqua dest. 3min 
Alcohol 96% 3min 
Alcohol 96% 3min 
Alcohol 96% 3min 
Alcohol 100% 3min 
Alcohol 100% 5min 
Isopropyl alcohol 5min 
Xylene 5min 
Xylene 5min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab.6: Staining procedure for Azan staining after 

Heidenhain; modified after Romeis (1989) 

Dye/ Chemical Duration 
Xylene 5min 
Xylene 5min 
Isopropyl alcohol 5min 
Isopropyl alcohol 5min 
Alcohol 90% 3min 
Alcohol 80% 3min 
Alcohol 70% 3min 
Aqua dest. 3min 
Acetic acid 3% 3min 
Alciane blue 8GX 2,5% 13min 
Acetic acid 3% 3min 
Aqua dest. 5min 
Periodic acid 1% 10min 
Aqua font.  5min 
Aqua dest. Rinse 
Schiff’s reagent 15min 
Sulfite solution 2min 
Sulfite solution 2min 
Sulfite solution 2min 
Aqua font.  5min 
Aqua dest. Rinse 
Alcohol 70% 3min 
Alcohol 80% 3min 
Alcohol 90% 3min 
Alcohol 100% 3min 
Alcohol 100% 5min 
Xylene 5min 
Xylene 5min 
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Tab.7: Staining procedure for Haemalaune-Eosine 

staining after Mayer; modified after Romeis (1989) 

Dye/ Chemical Duration 

Xylene 5min 

Xylene 5min 

Isopropyl alcohol 5min 

Isopropyl alcohol 5min 

Alcohol 90% 3min 

Alcohol 80% 3min 

Alcohol 70% 3min 

Aqua dest. 3min 

Haemalaune 13min 

Aqua font.  10sek 

Aqua dest. rinse 

Eosine 5min 

Aqua dest. rinse 

Alcohol 70% rinse 

Alcohol 80% rinse 

Alcohol 90% 3min 

Alcohol 100% 3min 

Alcohol 100% 5min 

Isopropyl alcohol 5min 

Xylene 5min 

Xylene 5min 
 

 

 

 

 

 

 

 

 

 

 

 

 

Tab.8: Staining procedure for Coomassie brilliant 

blue staining; modified after Kiernan (2003). 

Dye/ Chemical Duration 

Xylene 5min 

Xylene 5min 

Isopropyl alcohol 5min 

Isopropyl alcohol 5min 

Alcohol 96% 3min 

Alcohol 96% 3min 

Alcohol 100% 5min 

Coomassie brilliant blue  15min 

Acetic ethanol  5min 

Alcohol 96% rinse 

Alcohol 100% 3min 

Alcohol 100% 3min 

Isopropyl alcohol 5min 

Xylene 5min 

Xylene 5min 
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 Tab. 9. Formula for 0,1 M buffered Karnovsky-solution; 

modified after Karnovsky (1965). 

 

0,1 M buffered Karnovsky-solution 
 

A. 10 ml 25% glutaraldehyde 

B. 20 ml 10% formaldehyde 

C. 50 ml buffered solution 

D. 20 ml Aq. bidest. 

E. add muriatic acid until pH = 7,4 

 

0,2 M buffered solution (Karnovsky) 

A. 6,42 g CaCo 

B. 6 g sugar 

C. 150 ml Aq. bidest. 

D. add muriatic acid until pH = 7,4 

 

0,1 M wash solution (Karnovsky) 

A. 50 ml buffered solution 

B. 50 ml Aq. bidest. 

 

1% Osmium solution in 0,1 M buffered solution (Karnovsky) 

A. 0,1g Osmium tetroxide mixed with 

B. 5ml Aq. bidest.; rest over night and add 

C. 5ml Buffered solution (Karnovsky) the next day 
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Tab. 10. Formula for Bouin`s-solution (Romeis, 1989). 
 

Bouin`s-solution 
 

A. 15 ml saturated diluted picric acid solution 

B. 5 ml  35% formaldehyde 

C. 1 ml glacial acid 

 

 

 

 

 

 

 

 

 

Tab. 11. Formula for Agar Low Viscosity Resin (LV)-hard. 

 

Agar Low Viscosity Resin (LV)-hard 
 

A. 48g   LV Resin 

B. 8g    VH1 Hadener 

C. 44g  VH2 Hadener 

D. 2,5g  LV Accelerator 

 

 

 


