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AbstratDespite major e�orts the proess of aging is one of the least understood phenomena in biology. This workmakes use of two important �ndings in the �eld of aging researh: First of the onlusion that alterations inthe proliferation of stem ells might be linked to the aging proess, seond that alori restrition is a powerfulintervention to extend life-span and delay aging assoiated diseases. In the �rst part we analysed a shRNAbased sreening experiment to identify genes involved in the proliferation of stem ells and undertook �rst stepstowards establishing a �ow ytometry based proliferation assay to validate andidates. Seondly we meta-analysedmiroarray data on di�erent experiments testing gene expression hanges assoiated with alori restrition. Weidenti�ed andidate genes enrihed for di�erential expression in the datasets by employing a binomial-test basedvalue ounting approah. By inluding datasets from di�erent organisms, tissues, ages, et. we aimed at detetingrobust and generalizable andidates. We further used di�erent approahes to assign funtional ategories andommon features in terms of their role in signaling networks to the andidate genes. In general the obtained163 andidate genes and 340 ategories overlap with previous �ndings in the �eld suh as the Ghr gene andategories related to lipid metabolism, insulin signaling, ollagen or immunity and therefore suggest biologialmeaningfulness of the approah. On the other hand also novel and so far mainly negleted funtions like xenobiotimetabolism, iradian lok, retinol metabolism and opper ion detoxi�ation emerged, that are promising tofollow up on in the future. Some of the signi�ant genes might play major roles as regulators of importantsignaling pathways, as for example Nfkbia, Airn (Igf2R antisense RNA) and the noth o-ativator Zfp64.



Chapter 11. The role of stem ells in aging andalori restrition1.1 The role of adult stem ells in agingMany adult tissues as for example the skin, the intestine or the blood require extensive renewal and replaementof ells throughout life time. The soure for the generation of new ells is likely to be adult stem ells whih ouldbe isolated from various tissues (Watt 2000) (Whitehead et al. 1999) (Weissman 2000). The renewal proess isexpeted to go through ommitted progenitor ells whih themselves further proliferate and di�erentiate into therequired ells. The important property of self-renewal, i.e. the generation of at least one daughter ell identialto the mother ell is however harateristi only for stem ells.Very early experiments showing that transplanted hematopoieti stem ells (HSCs) ould serial repopulateup to 5 mie suggested a extremely long self-renewal apability of stem ells (Siminovith et al. 1964). Notehowever that after about the third serial transplant the host HSCs displayed a ompetitive advantage over theserially passaged donor ells (Ogden & Mikliem 1976).Other studies proposed the idea of stem ell aging by indiating that stem ells of aged individuals produe lessprogeny or progeny biased towards proliferation to ertain di�erentiated ell types (Wright et al. 2003). HSCsof aged individuals for example seem to be biased towards the myeloid lineage, while less lymphoid progenitorells are produed (Rossi et al. 2005). Consistent with dereased numbers or funtion of HSCs is the well-knowninreased inidene of anaemia in the elderly (Lipshitz et al. 1981).Enwere et al. (Enwere et al. 2004) reported dereased olfatory neurogenesis in aged mie. Maslov et al.(Maslov et al. 2004) ompared neural stem ell populations in the subventriular zones of the brains of young(2-4 months) and old (24-26 months) mie and deteted an about twofold redution in the older mie. Thenumber of neurospheres reovered in ulture from old relative to young animals di�ered to a similar extent.Further bone marrow mesenhymal stem ells isolated from older donors show dereased prodution of progenitorells and are limited in their di�erentiation potential. They also have been shown to age in vitro (Baxter et al.2004).Evidene if numbers of stem ells derease with age or not is ontraditory for satellite ells (Gibson & E. Shultz1983) (Conboy et al. 2003) (Brak et al. 2005) and some studies on hematopoieti stem ells even reported aninrease in their number (Rossi et al. 2005) (Peare et al. 2007). However these studies were based on ell surfaemarkers to identify stem ell populations, while a loss of funtion does beome evident e.g. in transplantationassays (Ogden & Mikliem 1976).One of the most striking experiments in respet to the impat of aging on stem or progenitor ells was doneby Conboy et al. (Conboy et al. 2005) showing that irulatory oupling of old and young mie transferred bothsatellite ells and hepatoytes in the old mouse to a more youthful state with profound hanges on their geneexpression levels. This suggests that hanges ourring with age in theses ells an be reversed by the exposureto one or some serum fators. Note however that �ndings on satellite ells are not neessarily transferable to allstem ells.The age assoiated hanges in stem ells may be attributed to aumulating DNA-damage, hanges in theirnihes, telomere shortening, ell senesene e.g. ause by inreased p53 ativity and / or other reasons (Sharpless& DePinho 2007). Rossi et al. (Rossi et al. 2007) demonstrated loss of funtional apaity of hematopoieti ells1



in di�erent DNA damage repair defetive mouse mutants with age under stress. They further showed that DNAdamage aumulates with age in wild-type stem ells. Regarding ellular senesene it is interesting to note thatp16INK4a-de�ient mie show a signi�antly lower deline in subventriular zone proliferation, olfatory bulbneurogenesis and the frequeny and self-renewal potential of multipotent progenitors. The protein produt ofp16INK4a is a yline dependent kinase inhibitor linked to senesene. However no signi�ant hanges in thisrespet were found in progenitor funtion in the dentate gyrus or enteri nervous system (Molofsky et al. 2006).Further it has been suggested that Bmi-1 prevents the premature senesene of neural stem ells by repressingp16INK4a and p19Arf, a p53 ativator (Molofsky et al. 2005). Nonetheless despite a onstant expression of Bmi-1 p16INK4a and p19Arf are found to steadily inrease in expression throughout life (Bruggeman et al. 2005)(Molofsky et al. 2006). In another study it was found that deletion of the ell yle inhibitor p21, whih getsativated by telomere shortening, an prolong the life-span of telomerase de�ient mie. At the same time theproliferation of intestinal progenitor ells and repopulation apaity and self-renewal of hematopoieti stem ellswas restored (Choudhury et al. 2007).With respet to repliative senesene it is interesting that for mie expressing an ative form of p53 andshowing a premature aging phenotype it has been proposed that this is aused by repliative senesene ofstem ells (de Magalhães & Faragher 2008) (Tyner et al. 2002). Similarly Halashek-Wiener and Brooks-Wilson(Halashek-Wiener & Brooks-Wilson 2007) argue for a role of stem ell exhaustion in Huthinson-Gilford progeria(HGP), one of the most severe premature aging disorders. Possibly onsistent with this idea may be the growthretardation of HGP patients in their �rst years of life (Cox & Faragher 2007). Similarly for two other importantpremature aging syndroms, Cokayne and Werner syndrom, this retardation is also found in early life and pubertyrespetively (Henning et al. 1995) (Martin & Oshima 2000). However ellular senesene in these diseases isprobably not limited to stem ells and stem ell exhaustion in HGP might also be driven by inreased apoptosis.Therefore it might rather be the inability of stem ells to ensure tissue homeostasis due to inreased seneseneand apoptosis of other ells, than spei� alterations in the stem ells themselves.In summary, even though it is not lear if or for whih stem ell types there is a derease in their amount withage, there is growing evidene for funtional hanges in these ells. The term �stem ell hypothesis of aging� hasbeen oined and also tries to explain age assoiated onditions like atheroslerosis, type 2 diabetes and frailty(Sharpless & DePinho 2007).1.2 The in�uene of alori restrition on stem ellsSine alori restrition (CR) is a powerful intervention to extend life-span and delay aging assoiated diseases ina wide range of organisms (see �3.1.1 The potential of alori restrition to delay aging�) it is obvious to assumean in�uene of CR on stem ells if you aept the stem ell hypothesis of aging. However not many studies havebeen onduted in this diretion so far.One of the few was done by Kumar et al. (Kumar et al. 2009) reporting a signi�ant inrease in the proliferationrate of neuronal progenitor ells in the brain of alori restrited rats. Another study demonstrated that loweringgluose onentrations in the medium for ulturing mesenhymal stem ells lowered apoptosis and inreased theproliferation rate as well as the number and size of �broblasti olonies in the olony-forming unit assay (Stolzinget al. 2006). Interestingly studies by Yoshida et al. (Yoshida et al. 2006) and Shmuk et al. (Shmuk et al.2010) desribed a derease in hematopoieti progenitor ells and adipose tissue derived mesenhymal stem ellsrespetively with CR in vivo.Therefore, even though e�ets of alori restrition on adult stem ells have been observed the nature of itsin�uene is but poorly understood. In this work we addressed both the underlying geneti mehanisms of stemell proliferation and CR by two di�erent approahes. In the next hapter we present a shRNA library sreeningapproah to identify key players involved in stem ell proliferation and �rst attempts towards on�rming promisingandidates. Sine ell ulture work with adult stem ells is not well established we employed an embryoni stemell line for these experiments. Even though results obtained on this system still have to be tested for theirappliability in adult stem ells the important self-renewal apability is ommon between both embryoni andadult stem ells and shared underlying mehanisms are expeted.In hapter 3, whih aounts for the major part of this work, we meta-analysed existing gene expression data todetermine genes altered in their expression due to CR.The two parts therefore start o� from two di�erent sides, one experimentally addressing the stem ell hypothesisof aging, the other omputationally exploring the life-span extending e�et of alori restrition. However bothdemonstrate data-driven approahes to inrease the knowledge and generate hypotheses about the riddle of aging.2



Chapter 2Determining genes impliated in stem ellproliferation2.1 Finding andidate genes responsive to oxidative stress and assoi-ated to proliferation of stem ells by shRNA library sreeningThe following sreening experiment and preliminary analysis were performed by J.P. de Magalhaes and G. Jansensand are only desribed in brief here.2.1.1 Experimental designTo �nd andidate genes whih are involved in the proliferation or ability of embryoni stem ells to survive underoxidative stress the following experiment was performed in our group: 6 repliates of ells of the mouse embryonistem ell line CCE were virally transfeted by adding a mixture of lentiviruses ontaining DNA representing apart of the Hannon-Elledge shRNA whole-genome library (6144 shRNAs) (Chang et al. 2006). Sine it ontainedmore than one shRNA per gene, around 2000 to 3000 genes were targeted. The genes targeted by this so alled�fous library� were hosen with fous on aner researh (i.e. targeting genes involved in signaling, ell yle,et., as retrieved from gene ontology (GO) databases, and suh genes where a phenotype was expeted fromtheir knok-down). The shRNA sequenes were predited omputationally and most had not yet been validatedexperimentally. The mixture of plasmids ontaining these di�erent shRNAs was obtained from S. Elledge. Viruseswere produed as desribed in �2.2.2 Materials and Methods�, but with this omplex mixture of plasmids insteadof one single type of plasmid. The transfetion was done as desribed in 2.2.2.1 week after the transfetion DNA was isolated from an aliquot of the ells while the rest of them were keptin ulture. PCR with limited yle number was performed on the isolated DNA using primers binding to the�anking regions of the shRNA enoding DNA and expeted to yield ampli�ation produts of the di�erent shRNAenoding sequenes (in the following also simply alled �shRNA sequenes� or �shRNA genes�) in proportion tothe amount this sequene was present in the population. Cy3 was inorporated during the PCR so that theprodut was labelled with green �uoresent dye. By ulturing the ells for 1 week before the start of the assay itwas expeted that ells rendered in-viable by the e�et of a shRNA were already largely diminished and shRNAsfound in the following assay were indeed a�eting proliferation rate rather than ell survival. 3 of the repliateswere ultured as desribed in �2.2.2 Materials and Methods� (ontrol), the other 3 were subjeted to oxidativestress by addition of hydrogen peroxide. After 2 weeks DNA was extrated and PCR performed as above, butusing Cy5 instead of Cy3 for red �uoresent labelling of the PCR produt.A miroarray experiment was performed, adding the PCR produts from the beginning of the experiment andfrom after 2 weeks to a ustom made spotted DNA miroarray platform, ontaining two probes per shRNA(stritly speaking one of them is a onatenation of twie the same sequene as the other, however they arereferred to as �idential probes� in the following) in the library.The green and red signal were deteted and ln(Er

Eg
) (in the following also alled �ln-ratio�) alulated, where E isthe signal of emission (g in green and r in red).The logi of this experiment was that the ratio of shRNAs knoking-down genes that have a positive e�et on3



Figure 2.1: Outline of the sreening experiment to �nd genes assoiated with stem ell proliferation and handlingof oxidative stress; �3 + ox. stress�: 3 of the 6 samples were subjeted to oxidative stress; see text for detailsproliferation will diminish due to this e�et, while of shRNAs knoking down genes with a negative e�et onproliferation will inrease. Therefore the e�et of the shRNA ontrols in whih amount this shRNA will bepresent in the population after two weeks.For genes involved in oxidative stress however the ratio of shRNA after two weeks to shRNA in the beginningwill be di�erent between stressed samples and ontrols. An outline of the experiment is shown in �g. 2.1.2.1.2 Preliminary analysisFor a preliminary analysis to �nd genes di�erentially expressed due to di�erent survival under oxidative stressthe average value of ln(Er

Eg
) over three ontrols was subtrated from the average for the stressed samples. Genesorresponding to probes with high values were assumed to have a negative, with low values to have a positivee�et on stress resistane.E.g. assuming the ln-ratio is positive for stressed and unstressed ells, but higher for stressed, the di�erene ispositive sine the ratio of the shRNA inreased more in the stressed ells. I.e. ells survive oxidative stress betterwhen the orresponding gene is knoked-down and the gene is therefore assumed to have a negative e�et on stressresistane. To determine genes for whih knok-down had either a bene�ial or detrimental e�et on proliferation1(independent of oxidative stress) the mean value of the ln-ratio was alulated. Genes orresponding to highvalues indiated a negative, to a low value a positive e�et on proliferation.Sine results appeared to be muh learer for the testing of proliferation than oxidative stress it was deidedto test the following andidates for their e�et on proliferation: Wnk2, Map3k13 and Dr1 for whih shRNAswere enrihed in the sreen and Psma1, Zfp828, Tf23 and Pak1 for whih shRNAs were depleted in the sreen.2.1.3 Previous attempts to experimentally validate andidatesThe following approah was used by G. Jansens to test the e�et of these andidates on stem ell proliferation:CCE ells were transfeted with the plasmid pHAGE ontaining the sequene of a andidate or ontrol shRNAas desribed in �2.2.2 Materials and Methods�. In ontrol lines the shRNA targets the �re�y gene (FFL) whih isnot present in mouse. Cells were plated at equal onentrations and allowed to grow for 4 days without splitting.(Splitting (subulturing) is avoided in these proliferation experiments sine it is onsidered a soure of variation).Then a single ell suspension was obtained by trypsinization and ells ounted using an automati ell ounter(Casey). The experiment was repeated with a growth period of 3 instead of 4 days. It was alulated whihperentage of the initial ell number was present after 3 or 4 days respetively. During this period the expetedred �uoresene from turboRFP enoded on pHAGE was found in all ell lines expet for the ones where pHAGEontained the shRNA targeting Ot4 or Psma1. This suggests that these tow lines are either outgrown by1To be preise at this point we annot distinguish if the value was e.g. lower due to a prolonged ell yle time, due to a lowersurvival rate or another ause. Therefore we de�ne proliferation here as what is measured, when omparing the number of ellsgenerated after a ertain time to a starting number of ells. 4



untransfeted ells whih are left in the population or they silene the transript for the shRNA and turboRFP.As a result no signi�ant di�erene in proliferation was found between the ontrol FFL-ell line and any of theother lines. Also the tendeny for many lines was not onsistent between experiments and often not onsistentwith the predition from the sreen.Therefore we deided on two ways to improve �nding andidates truly involved in ell proliferation:1. Improving the andidate seletion by a more sophistiated analysis of the sreening data to �nd andidatesmore likely to be linked to proliferation2. Improving the method for validating andidates: The problem so far was that for meaningful results theells still have to be in their exponential proliferation phase when ounted. Splitting the ells during thisproedure would however disturb the analysis sine it an only be done with limited auray (i.e. thenumber of ells dieing during trypsinization may vary). Therefore if subulturing was to be avoided, ellsould not be allowed to proliferate longer than 3 or 4 days even though a longer proliferation time wouldmost likely lead to more signi�ant results if ells ould be kept in exponential growth. Therefore wedeided to do an assay where shRNA lines are mixed with wild-type (wt) ells as an internal standard andmonitor their ratio over a longer time. When having an internal standard the matter of inaurate splittingis not expeted to be a problem any more sine the error appears to the same extent for both lines. Thisapproah will be desribed in �2.2 Experimental validation of andidate genes by proliferation assays�2.1.4 Statistial proedureAs explained the main riterion for seleting andidates impliated in stem ell proliferation or handling ofoxidative stress should be the di�erene found in the miroarray experiment in the beginning to end ratio or ratiobetween stressed and non-stressed samples of DNA oding for the shRNA targeting a partiular gene. Furtherriteria were the assoiation of a gene to gene ontology (GO) terms onsidering these GO terms´ enrihmentamong potential andidates and potential role in proliferation.Beause of the large number of genes tested ompared to the small number of repliates we deided not to usea t-test for the analysis of di�erential detetion of PCR produt between beginning and end of the experiment:Considering the number of genes hanes are high that for some genes values measured for the amount at thebeginning are very lose together as well as for the ones in the end by random hane. This would suggest highstatistial signi�ane even if there is only a small di�erene between the means of beginning and end and mighttherefore lead to false positives with no true di�erene between the means of the population.Instead we preferred an analysis that for eah probe ounts the number of times the ln(Er

Eg
) exeeds a ertainpositive or negative threshold and obtains the probability that this or a higher number would be found by hane.Therefore in ontrast to the t-test this test is based on a fold-hange riterion. The false disovery rate (FDR)for all probes is then estimated using a srambling approah. A disadvantage of this method ompared to aombination of a t-test and an e�et size (fold-hange) uto� is that we do not aount for the dispersion ofmeasured values, i.e. if there is a high or low variation. An advantage is the insensitivity of this test to outliersompared to a t-test (sine no mean values are alulated).2.1.5 Finding genes assoiated with stem ell proliferationIn a �rst step we onentrated on �nding shRNAs over- / underrepresented after two weeks ignoring the fatthat some samples were under oxidative stress and the others were not. This is supposed to detet andidates forgenes assoiated with stem ell proliferation as detailed above. Later we used further information like funtionalategories assoiated with the genes or their role in the network of andidate genes to selet the andidates forexperimental testing.2.1.5.1 Finding genes over-/ underrepresented after 2 weeks2.1.5.1.1. Exluding low-signal data and annotation The starting point for this analysis were bakgroundsubtrated normalized intensities from the two olor miroarrays.To remove data for whih no su�ient amount of shRNA oding DNA integrated into ellular genomes, forwhih the PCR produt did not bind with su�ient a�nity to the probe or for whih the signal at t = 0 wasonsistently low for other reasons we removed probes for whih the signal of the green hannel (in the following:�green signal�) was ≤ 200 (arbitrary units) in at least 3 of 6 repliates. (The 6 miroarrays are onsidered5



�repliates� in this approah even though the samples on 3 of them were exposed to stress and of 3 were not; themaximum value for the green signal was around 295 000, the median around 1300.)The program over200_annot.pl (supplement1) extrats those probes from a �le (all_arrays.txt in supple-ment1) for whih the signal is > 200 for at least 4 of the 6 signals at the beginning of the experiment (greenhannel). After this seletion 8845 of the original 12 288 probes were left. For these probes the gene symbol,gene name, NCBI Entrez Gene ID and NCBI aession number is added from another �le (Mm.ALL.b.txt insupplement1) by the same program. The �le mathing these annotations to the probe names was downloadedfrom Codex (http://anan.shl.edu/gi-bin/Codex/Codex.gi) earlier, but the download was not available anymore at the time of this analysis. Annotations for some of the probes ould not be found in the mentioned �le.Therefore the probe names not found were uploaded to the old version of odex2 (Aug 2009), whih in ontrastto the new version allows searhes for probe names. 3 Annotation was obtained and added to the probes forwhih it was not found before. The 24 probes for whih annotation still ould not be found were disarded fromthe analysis.Probes mathing more than one shRNA sequene were removed from the analysis sine we wanted to avoid ob-taining andidates for whih the measured expression value was atually aused by another shRNA. The numberof probes exluded during this proedure was 214.2.1.5.1.2. Collapsing probes targeting the same shRNA Sine there were two probes per shRNA onthe miroarray (pre�xes: HH_ and mmFous_) the two (if both passed the intensity threshold) were ollapsedby alulating the mean for eah repliate. This is done by ollapse_two-probes.pl (supplement1).In the next step the �le was onverted to a .xls and mean value and standard deviation (STDEV) for the ln(Er

Eg
)of eah experiment over all probes alulated by the orresponding Exel funtions. (Means were -0.09 to -0.04,standard deviations 0.98 to 1.16.)Even though there were di�erent shRNAs targeting the same gene for some genes, these were not ollapsed sinedi�erent shRNAs were expeted to perform di�erently. Collapsing might therefore obsure the e�et of the bettershRNA by averaging with values of the worse.The �le ontaining probes seleted by the signal intensity riteria mentioned above, annotated and ollapsedan be found in supplement1: two-ol.txt.2.1.5.1.3. Finding shRNAs over- and underrepresented after 2 weeks A shRNA gene was termedoverrepresented if the ln(Er

Eg
) was above a ertain threshold for a ertain number of repliates and underrepresentedif this number of repliates was below a ertain threshold. (If in the following we talk about gene X being over- /underrepresented this means the shRNA targeting this gene was over- / underrepresented.) As threshold for eahrepliate mean + standard deviation (STDEV) over all probes and mean � STDEV respetively were hosen. Indi�erent runs those probes for whih (at least) 4, 5 or 6 of 6 values for ln(Er

Eg
) were above / below the mentionedthresholds were seleted by the program mult_aboveSTDEV.pl (supplement1). The ourrenes of the numberof di�erent probes for the same gene were ounted with probes_per_gene.pl (supplement1).2.1.5.1.4. Estimation of p-values and false disovery rate The probability p to �nd any probe above /below mean +/- STDEV was alulated by dividing the mean number of probes found per sample by the numberof probes tested (p = 0.13 for any probe found above mean +/- STDEV, p = 0.14 for below mean +/- STDEV).The probability P to �nd a probe at least 4, 5 or 6 times respetively above / below mean +/- STDEV (alled�4of6�, �5of6� and �6of6� riterion) by random hane was alulated using the binomial distribution:

P = 1−

k−1
∑

x=0

(nx) ∗ p
x
∗ (1− p)(n−x) (2.1)withp= probability to �nd a random gene above / below mean +/- STDEV (see above),k= 4, 5 or 6 respetively,2http://katahdin.shl.org:9331/rnai/repository/sripts/newmain.pl3By the time of writing the old odex is not online anymore. Therefore the �le obtained for the not found probes is attahed insupplement1: odex_found.txt 6



# andidates P-value FDRoverrep.: 4of6 117 3.84E-03 0.158overrep.: 5of6 23 2.29E-04 0.050overrep.: 6of6 6 5.76E-06 0.005underrep.: 4of6 216 4.95E-03 0.100underrep.: 5of6 60 3.18E-04 0.024underrep.: 6of6 10 8.62E-06 0.003Table 2.1: Number, P-values and FDRs of andidate shRNAs found over- or underrepresented after 2 weeks atdi�erent riteria. P-values were alulated using the binomial distribution and FDRs by omparing the found tothe expeted number of andidates.n= 6.P orresponds to the P-value for �nding a probe at the given riterion. Multiplying this probability with thenumber of probes in the assay (giving the number expeted to be found for this riterion by hane) and dividingit by the found number for eah riterion gives the FDR. The number and P-values for probes found at eahondition and orresponding FDRs are shown in table 2.1. The number of over- or underrepresented shRNAandidates losely resembles the number of andidate target genes, sine only very few genes (7 for the 4of6overrepresented, 8 for 4of6 underrepresented, 1 for 5of6 over- and underrepresented eah and 0 for the others)met the riteria with more than one shRNA.Sine we aimed at a FDR <0.05 the 5of6 riterion appears to be the appropriate one to hose the andidatesto experimentally validate.2.1.5.2 Relationship of proliferation assoiated andidate genes to agingThe initial idea of �nding genes involved in stem ell proliferation or stress response was motivated by �ndinggenes involved in aging (see �1 The role of stem ells in aging and alori restrition�). Therefore we tested ifour andidates ould be found in GenAge (http://genomis.senesene.info) (de Magalhães & Toussaint 2004),a database of genes assoiated with human longevity or that modulate aging in model organisms. A list of allthose genes and their human homologs was downloaded and is_gene_in_list_mod_aseinsens.pl (supplement1) was used to searh for our andidates seleted by the 5of6 riterion in this list. Sine mouse homologues werenot available, we made use of the rule of thumb that the mouse homologue of a human gene annotated as XXX11would be Xxx11 and the identi�ers would therefore be equal in a ase-insensitive searh. We are aware that thismight miss genes in a few speial ases.There was no overlap found between our andidates with the 5of6 riteria and the genes listed in GenAge.2.1.5.3 Funtional analysis: Finding over- / underrepresented funtional ategoriesWe employed and ompared di�erent ways to �nd funtional ategories ommon to shRNAs assoiated with stemell proliferation. One analysis was done using a binomial test employing ustom made Perl ode, the otherswere based on the freely available GSEA and DAVID tools.2.1.5.3.1 Finding enrihed GO-ategories by a binomial test The �rst funtional analysis was done bysearhing for gene ontology (GO) terms that were represented signi�antly higher among over- / underrepresentedgenes than expeted by hane.GO analysis was done on shRNA genes deteted to be over- or underrepresented (in the following alled �over-or underrepresented genes�) by a method similar to the one desribed above. However to avoid ounting genesrepresented by two shRNAs twie ollapsing was done using ombine-selet-highest_withTest.pl (supplement 1).This program �rst ollapses signals orresponding to idential shRNAs by alulating the mean, then selets ofshRNAs targeting the same gene only the shRNA with the average ln(Er

Eg
) over all repliates whih is furthestfrom 0 (i.e. the shRNA that is most over- / underrepresented). This is beause the silening e�et di�ers fromshRNA to shRNA and this approah selets the one with the most marked e�et. The program prints warningsif the mean ln-ratio of one shRNA is strongly in the other diretion than another shRNA for the same gene.Spei�ally if for a gene the average ln(Er

Eg
) for a shRNAs is above mean+STDEV and for another it is below7



mean-STDEV or vie versa a warning is printed. After manual inspetion all probes with warnings were removed.Starting from this �le over- and underrepresented genes were determined as above (�2.1.5.1 Finding shRNAs over-and underrepresented after 2 weeks�) for the same riteria as desribed above.To add GO ategories to the orresponding gene a list mapping GO identi�ers to all genes was downloadedfrom NCBI4 (25/08/2009) and all non-mouse genes were disarded. Sine in this �le eah gene was repeatedlylisted for eah GO identi�er a new �le was reated with one gene and all its GO identi�ers per row. All GOidenti�ers were added to the list of probes for over- and for underrepresented genes. A small number (10 forover-, 34 for underrepresented) of probes ould not be found in the GO-list (and also not searhing the databaseby hand).It was ounted howmany overrepresented and howmany underrepresented genes were found for eah GO identi�erand how many for the omplete list of all genes after ollapsing. Only GO identi�ers with at least 3 orrespondinggenes over- / underrepresented were used for further analysis. These steps were performed by GO_masterprog.pl(supplement 1).The probability P that an equal or higher number of genes than the atual is found over- or underrepresentedfor a GO identi�er by hane was alulated using a binomial test:
P = 1−

k−1
∑

x=0

(nx) ∗ p
x
∗ (1− p)(n−x)wherek is the number of times a GO identi�er was found assoiated with the over-/underrepresented genes,n is the number of times the GO identi�er was found assoiated with all genes andp the probability that GO identi�ers are found over-/underrepresented.Therefore p is alulated by dividing the sum of the number of times all GO identi�ers are found assoiated withover- / underrepresented genes by the sum of the number of times they are found assoiated with all genes afterollapsing.The GO terms were added to the orresponding GO identi�ers by using addGO_terms_mult-�les.pl (in supple-ment1).To assess the signi�ane of the found GO terms and �nd an appropriate uto� for P onsidering multiplehypothesis testing we srambled the ln-ratios of eah repliate with respet to eah other repliate manually afterwe had �ltered out low intensity data. The analysis was repeated as with the unsrambled �les. Di�erent uto�values for P were tested to �nd reasonably low FDRs (FDR is the number of GO identi�ers found signi�antat the hosen P on srambled divided by the number on atual data; FDR_al2_over-underount-in1�le.pl insupplement1). Sine we srambled only one the FDR is a rough estimate. The GO identi�ers and terms for the4of6 riterion at the P-value of 0.005 (FDR = 0.08 and 0.06 for over- and underrepresented genes respetively)are shown in table 2.2. Note that some of the GO terms appear for both over- and underrepresented genes. Thismay biologially make sense depending on whih genes of the GO terms are represented in eah and how theyinterat with eah other.2.1.5.3.2. Using GSEA to �nd enrihed gene sets2.1.5.3.2.1. Introdution to GSEA GSEA (Gene Set Enrihment Analysis) is a program that evaluatesmiroarray data at the level of gene sets. It is freely available at http://www.broadinstitute.org/gsea. The goalof GSEA is to determine whether members of a gene set S tend to our toward the top (or bottom) of a datasetranked in a ertain way, in our ase by ln-ratio. Gene sets are de�ned based on prior biologial knowledge,e.g. genes enoding produts in the same metaboli pathway, loated in the same ytogeneti band, or sharingthe same GO ategory. A variety of gene sets to test for an be found at the Moleular Signature Database(MSigDB).The GSEA algorithm omprises the three following steps:4ftp://ftp.nbi.nih.gov/gene/DATA/gene2go.gz 8



overrep. underrep.GO:0000287 magnesium ion binding GO:0000287 magnesium ion bindingGO:0003674 moleular funtion GO:0001843 neural tube losureGO:0003676 nulei aid binding GO:0003676 nulei aid bindingGO:0004672 DNA binding GO:0003677 DNA bindingGO:0004674 protein kinase ativity GO:0003700 transription fator ativityGO:0004713 protein serine/threoninekinase ativity GO:0003713 transription oativatorativityGO:0004721 protein tyrosine kinaseativity GO:0004842 ubiquitin-protein ligaseativityGO:0004725 phosphoproteinphosphatase ativity GO:0005515 protein bindingGO:0005509 protein tyrosinephosphatase ativity GO:0005622 intraellularGO:0005515 alium ion binding GO:0005634 nuleusGO:0005524 protein binding GO:0005829 ytosolGO:0005737 ATP binding GO:0005839 proteasome ore omplexGO:0005739 ytoplasm GO:0006350 transriptionGO:0005794 Golgi apparatus GO:0008270 zin ion bindingGO:0006468 protein amino aidphosphorylation GO:0045449 regulation of transriptionGO:0006810 transport GO:0046872 metal ion bindingGO:0006915 apoptosis GO:0051603 proteolysis involved inellular protein ataboliproessGO:0007165 signal transdutionGO:0007243 protein kinase asadeGO:0007275 multiellular organismaldevelopmentGO:0007399 nervous systemdevelopmentGO:0016301 kinase ativityGO:0016740 transferase ativityGO:0030145 manganese ion bindingGO:0030154 ell di�erentiationTable 2.2: GO-identi�ers and terms enrihed after two weeks for over-/underrepresentation at FDR< 0.08 and0.06 respetively.
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Figure 2.2: Example of the running sum method used by GSEA; bottom: ranking of genes aording tosignal-to-noise ratio (in our ase ln-ratio); middle: genes in the tested gene set are shown by vertial linesat their rank position; top: running sum; Enrihment sore is the maximum deviation from 0; piture fromhttp://www.broadinstitute.org/gsea.1. An enrihment sore is alulated by walking down the ranked list of genes, inreasing a running-sumstatisti when a gene of a gene set is enountered and dereasing it when enountering genes not in thegene set. The enrihment sore is the maximum deviation from zero found in the random walk. See �g.2.2.2. A P-value is estimated by omparing the enrihment sore to an enrihment sore alulated from a per-mutation of the ranked list of genes.3. Sine normally more than one gene set is tested multiple hypothesis testing is done. For this the enrihmentsore is normalized by dividing by the number of genes in the given gene set and a false disovery rate isestimated by omparing the normalized enrihment sore to normalized enrihment sores alulated froma permuted list of genes (Subramanian et al. 2005).2.1.5.3.2.2. GSEA to �nd gene sets enrihed in proliferation assoiated genes We started from a�le where probes for eah gene were ollapsed to the probe with the mean of ln(Er

Eg
) furthest from 0 as desribedabove. To reate a ranked gene list the means of the ln-ratio over the 6 repliates for eah gene were alulatedand written in a tab-delimited table with the orresponding gene symbols. For GSEA to be able to reognizethe gene symbols all letters had to be hanged to apitals. For the resulting �le the .txt extension was hangedto .rnk.As gene sets we downloaded msigdb.v2.5.symbols.gmt from MSigDB (Subramanian et al. 2005) whih omprisedall available gene sets (7/9/09).The ranked gene list .rnk �le and the gene sets were loaded into the GSEA desktop appliation and theanalysis was run using the GseaPreranked tool. The �ollapse dataset to gene symbols� option was set to false,otherwise default settings were used.As result we found no gene set enrihed for underrepresented (enrihment sore < 0) genes below a FDRof 0.05. For overrepresented genes (enrihment sore > 0) we found 5 sets for FDR <0.05: PHOSPHO-RIC_ESTER_HYDROLASE_ACTIVITY, PROTEIN_AMINO_ACID_DEPHOSPHORYLATION, PHOSPHO-PROTEIN_PHOSPHATASE_ACTIVITY, DEPHOSPHORYLATION and KERATINOCYTEPATHWAY).10



User Genes GenomeIn Pathway 3-1 40Not In Pathway 297 29960Figure 2.3: Example for a ontingeny table reated by the DAVID Funtional annotation tool; from the DAVIDIntrodution �le (http://david.ab.nifrf.gov/helps/funtional_annotation.html#EXP2)2.1.5.3.3. Using DAVID to �nd enrihed biologial themes and pathways2.1.5.2.3.1. Introdution to DAVID The Funtional Annotation Tool of DAVID (Database for An-notation, Visualization and Integrated Disovery) is based on a proedure similar to Fisher´s exat test. A 2x2ontingeny table ontaining how many of the genes of interest and how many of the given bakground (genome)assoiate with a funtional term (or pathway) and how many do not is reated (see �g. 2.3). To be onservative1 is subtrated from the number of genes of interest assoiated with the term. The probability of a number of atleast this many genes assoiated with the ategory given the marginal distribution is alulated.Funtional terms here do not only inlude GO terms, but are also based on protein�protein interations, pro-tein funtional domains, disease assoiations, biologial pathways, sequene features, homology, gene funtionalsummaries, gene tissue expression and literature. The annotation ategories an be �exibly inluded or exludedfrom the analysis by the user.2.5.1.3.3.2. DAVID to �nd enrihed biologial themes and pathways We made use of the Databasefor Annotation, Visualization and Integrated Disovery (DAVID) to �nd enrihed biologial themes and pathwaysin our andidates for proliferation assoiated genes. In partiular we used the Funtional Annotation algorithmaessible at http://david.ab.nifrf.gov/summary.jsp.We separately uploaded the overrepresented and underrepresented andidates for the 4of6 riterion. As a bak-ground for the analysis we loaded all genes represented on the miroarray. We ran the program and obtained theFuntional Annotation Clusters one for the default themes and one by seleting all pathway options only.For overrepresented genes we obtained ategories related to phosphate, ATP and phosphorylation, for underex-pressed the proteasome below a FDR of 5% when searhing for default ategories. Searhing for pathways MAPKsignaling was found for overrepresented genes below a FDR of 5%, the proteasome again for underrepresented.2.5.1.3.4. Comparison of results from GO analysis, GSEA and DAVID While the numbers of sig-ni�ant ategories found with GSEA and DAVID are of omparable size the GO-terms found by the binomialanalysis is learly higher. This might partially be due to the slightly more relaxed FDR-uto� (0.08 and 0.06)used owing to the disrete nature of the uto� thresholds (4of6, 5of6 or 6of6), but is most likely due of inherentdi�erenes between the methods.The results of the GSEA and DAVID analysis both emphasize the role of phosphate in signalling for overrep-resented genes, however, while in GSEA mainly results in terms related to dephosphorylation, DAVID detetsphosphorylation. The binomial analysis detets among others ategories related to both phosphorylation anddephosphorylation. The most onrete pathway, MAPK signaling, was disovered by DAVID analysis fousingon pathways only.While GSEA gives no signi�ant ategory for underrepresented genes DAVID only detets the proteasome at aFDR < 0.05. Again among other ategories the binomial test also lists the �proteasome ore omplex�, �prote-olysis involved in ellular protein ataboli proess� and �ubiquitin-protein ligase ativity�.2.1.5.4 Mapping andidate genes to the STRING networkSTRING is a database of physial and funtional protein interations and an be employed to build a networkfrom a gene list based on this information. We used STRING 8.3 at default settings on a ombined list of genesover- or underrepresented at the 4of6 riterion. See supplement 1 for a �gure of the network. It an learly beseen that while many proteins are not or weakly onneted there are two distint dense parts of the network,one built around Tf4, Pparg and inluding edges to Hda2 and Hda3 and another around Psma1 and Psma5,strongly linked to Pak1. We assumed that a high degree of a gene in the network represents further evidene forthe importane of this gene in mehanisms related to stem ell proliferation.11



2.1.5.5 Deision on whih andidates to test experimentallySine only about 10 andidates ould be experimentally tested for the e�et of their knok-down on the pro-liferation rate the most promising ones had to be hosen. We �rst demanded that the andidates were over- /underrepresented at the 5of6 riterion (FDR <0.05) giving lists of 23 and 60 genes respetively. For the furtherdeision we took into aount if a gene was also signi�ant at the 6of6 riterion or signi�ant at the 5of6 riterionwith more than one probe, if it was assoiated with �meaningful� funtional ategories, espeially if they wereenrihed in the funtional analyses and if the gene was highly onneted in the network of the andidate genes.As a meaningful GO-ategory we understand one that desribes a distint ellular proess, not a funtion thatan be found in many di�erent pathways. Enrihed meaningful funtional ategories were �ell di�erentiation�,�apoptosis� or suh related to proteasome funtion. If the ategory was not enrihed we required that a possiblelink between the ategory and proliferation existed as for example for the GO-term �positive regulation of ellproliferation� or ategories related to the ell ylus, et. Therefore at this point we departed from a purelydata-driven andidate seletion approah.For overrepresented andidates we seleted Rnf31, Pkn2, Map4k5, Csnk1a1 and Ppp3r2 sine they all ful�lledthe 6of6 riterion, Clk1 beause it was found signi�ant by two probes and Map3k1 for its entral role in thenetwork (6 onnetions) and its funtional assoiation with �apoptoti mitohondrial hanges�.For andidates for whih the shRNA was underrepresented after 2 weeks we hose Edd1, Hda3, Phf17, Sqstm1,Mbd2 and Zxda sine they all were signi�ant at the 6of6 riterion and assoiated with meaningful funtionalategories. Psma5 was hosen, beause it was found signi�ant for two probes, for its role in proteasome funtionand high degree (7 onnetions) in the network.We made sure not to selet genes that had already been seleted in the preliminary analysis (�2.1.2 Preliminaryanalysis�) and for whih plasmids had already been obtained. Interestingly only few of the andidates seletedthere appeared also promising in this proedure. Wnk2 was deteted at the 6of6 riterion for overrepresented,Tf23 and Pak1 for underrepresented shRNAs. Pak1 appeared to be a good andidate also in this approah dueto its high degree in the network.2.1.5.6 Determining the expression of andidate genes in early embryoni stages and stem elllinesIn a last step we heked the expression of the seleted andidates in early embryoni stages and stem ell linesaording to publi datasets to assess if their knok-down ould be the reason for slower growth of these ells or ifthe gene of interest is not even expressed in stem ells. Note that our original miroarray sreen did not test theexpression of the shRNA target genes but only the level of shRNAs. Changes in their amount ould also be randomor due to o�-target e�ets. In a �rst step we tested the expression in the Theiler Stage 4 (TS4) (Blastoyst, Innerell mass apparent, 2-4 days post oitum (dp)) and TS5 (Blastoyst (zona-free), 3-5.5 dp) embryoni stagesaording to the Mouse Genome Informatis website (http://www.informatis.jax.org/expression.shtml) (Bult etal. 2008) (Smith et al. 2007). In the next we heked the number of expressed sequene tags (ESTs) at theUnigene website (http://www.nbi.nlm.nih.gov/unigene) (Pontius, Wagner, Shuler 2003) for our genes in theblastoyst stage and if not found there in the morula and other embryoni tissues. We also heked the andidatelist for their expression values in the miroarray datasets GDS2666 and GDS2667, GDS2668 and GDS2669 aswell as GDS2905 and GDS2906 at the Gene Expression Omnibus (GEO). GDS2666 and GDS2667 (Hailesellasseet al. 2007) ompare the gene expression in ells of the embryoni stem ell line R1 at di�erent time pointstowards di�erentiation to embryoid bodies, GDS2668 and GDS2669 do the same for line J1 (Hailesellasse et al.2007). GDS2905 and GDS2906 ompare gene expression in J1 stem ells and embryoid bodies.If the expression of a gene (more preisely: its perentile rank within the sample) was at a low level for t = 0 / forundi�erentiated ells and the level at other time points / in the embryoid body were learly higher we onsideredthis gene as not expressed in stem ell lines, if it was at bakground level for most of the time points / also forthe embryoid body we did not diretly assumed this gene not expressed in embryoni stem ells without furtherhints from other analyses.Expression information for none of the genes in our narrower andidate list exept for Phf17 was found atthe Moue Genome Informatis website. Phf17 was indiated to be expressed at TS4. The results for the otherexpression analyses (from Unigene and GEO) are shown in table 2.3.For all genes exept Ppp3r2 and Zxda there was at least one evidene of expression in embryoni stem ells,either by ESTs or miroarray data. Even though the data do not prove that Ppp3r2 and Zxda are not expressedin stem ells we exluded these genes from the list of our andidates sine none of our analyses gave evidene for12



Unigene:Transripts permillion inblastoyst further Unigeneresults GDS2666 andGDS2667(lineR1) GDS2668 andGDS2669 (lineJ1) GDS2905 andGDS2906(lineJ1)Csnk1a1 71 >75% >75% >75%Map4k5 486 >25% >25% >25%Pkn2 100 >75% >75% >75%Ppp3r2 0 0 in embryonitissue most low most low most lowRnf31 0 13 in embryonitissue; 3 inleavage stage ormorula >75% >75% most lowClk1 28 >75% >75% >75%Sqstm1 271 >75% >75% >75%Psma5 142 >75% >75% >75%Phf17 185 >75% >75% >75%Mbd2 14 human: 0 undi�erentiatedlow undi�erentiatedlow undi�erentiatedlowEdd1 no unigene entry >75% >75% >75%Hda3 14 >75% >75% >75%Map3k1 0 13 in embryonitissue; 0 inleavage stage ormorula >50% >25% >50%Zxda no unigene entry most low most low most lowOt4 285 >75% >75% >50%Psma1 371 >75% >75% not foundTable 2.3: Expression levels of seleted andidate genes in the blastoyst or if not deteted there in the morula andembryoni tissues aording to Unigene and perentile position in ertain GEO datasets omparing embryoniells to di�erentiated ells; �human�: information for human homologue; �most low� means that the gene waslowly (<�<25%) expressed in both di�erentiated and stem ells; �undi�erentiated low� means the expression ofthe gene was low in stem ells and learly higher in di�erentiated ells; genes in red were exluded from theanalysis; > x% means all repliates of at least one probe targeting this gene were deteted at a higher perentilethan x
13



Table 2.4: Candidate genes for whih the shRNAs targeting these genes was signi�antly over- or underrepresentedafter two weeks whih were hosen for experimental validation.their expression in embryoni stem ells. To ompensate for the elimination of these two genes we inluded Hda2into our list sine it performed well for our seletion riteria and the above analyses suggested its expression inembryoni stem ells (e.g. it was onsistently above the 50th perentile for GDS2668, et).For a �nal list of andidate genes see table 2.4.2.1.6 Finding andidate genes involved in di�erential proliferation under stressompared to non-stress onditionsAs detailed above the original aim of the shRNA sreening assay was not to detet shRNAs a�eting stem ellproliferation in general, but suh over- or underrepresented in ells grown under stress vs. non-stress onditions.In this approah we searhed for shRNAs for whih stressed samples exeeded a ertain di�erene to the meanfold-hange of ln(Er

Eg
) over all genes while unstressed did not. Or, in simpler words, we searhed for shRNAswithout e�et under normal, but with detrimental or bene�ial e�et under stress onditions. This means thatthey make ells more suseptible or protet them from stress.For the analysis of the e�ets of shRNAs under stress we started with data proessed as desribed above, i.e.after removal of probes with low signal intensity at t = 0 and ollapsing of probes targeting the same shRNAsequene.We determined probes whih had a signal above mean + STDEV for at least two stressed samples and belowfor at least two ontrols (alled overrepresented) or below mean - STDEV for at least two stressed and abovefor at least two ontrols (alled underrepresented). To determine false disovery rates (FDRs) we srambled thevalues obtained for the probes within eah sample. Sine we only aimed at a rough estimation of the FDR thissrambling was only done one. FDRs were estimated by omparing the number of genes found after sramblingto the number found for the unsrambled data.Sine the FDR for this analysis turned out to be too high we also tried di�erent riteria: We varied the requirednumber of stressed samples that had to be above / below mean +/- STDEV and of ontrols that at the sametime had to be below / above mean -/+ STDEV. Instead of mean +/- STDEV we tried mean +/- 1.5 STDEVand mean +/- 2 STDEV as alternative thresholds. The number of shRNAs found over- and underrepresentedwith the di�erent riteria and their FDR are shown in table 2.5.None of the seleted thresholds and no riteria allowed us to �nd shRNAs over- or underrepresented withstress at a FDR < 0.10, exept for the one overrepresented gene at threshold = mean+1.5 and the 3s3 riterion,whih would most likely give a higher FDR if srambling was done several times. This might indiate that 3repliates are too few for the experimental design and the number of shRNAs tested here.We therefore deided to fous on testing andidate genes for assoiation with stem ell proliferation instead of14



Table 2.5: Number of shRNAs found with ln-ratios as indiated for the given number of ontrol and stressedrepliates (e.g. 2s3: two ontrol, 3 stressed repliates).for assoiation with stress response.2.2 Experimental validation of andidate genes by proliferation assay2.2.1 IntrodutionEven though our primary interest in the shRNA sreen was to �nd genes assoiated with stress response inembryoni stem ells the muh higher statistial signi�ane for the analysis for only proliferation (while ignoringthe fat that 3 of the samples were stressed) made us deide to onentrate on validation of andidates forproliferation. The reason that more genes were found signi�ant by the proliferation assay is most likely thehigher number of repliates (n=6) ompared to the analysis of stressed samples (n=3).Previous analyses had been done by G. Jansens by plating ells on 6-well plates and omparing the number ofells plated to the number of ells after about 3-5 days. The fold hange of ells for the 9 shRNA-transfeted linesover this period was ompared to that of untransfeted ells using 3 repliates for eah. These 9 lines inludedone expressing Fire�y (FFL) shRNA as a negative and Ot4 and Psma1 shRNA as positive ontrols.No signi�ant hanges in the proliferation rate between the lines ould be deteted.2.2.2 Materials and Methods2.2.2.1 Cloning of plasmidsCloning of shRNA sequenes into pHAGE was done with ontribution of E. Hesketh of our lab.Cloning was done to transfer sequenes oding for andidate shRNAs (see table 2.4) from pSM2 (Silva et al.2005) as kindly provided by the Elledge lab into the plasmid pHAGE-Mir2 (H. Pan et al. 2008), whih is in thefollowing alled pHAGE for simpliity. The shRNA sequene was loned behind the Human Elongation Fator1 alpha promoter (EF1a promoter) in a miroRNA environment. The pHAGE plasmid ontains turboRFP asa �uoresent marker, onstitutively expressed on the same transript as the shRNA hairpin and was reportedto be superior in the knok-down e�et (Elledge lab, personal ommuniation). The plasmid ontains genes forampiillin and puromyin resistane for seletion in bateria and eukaryoti ells respetively. By restritionwith MluI and HpaI pSM2 and pHAGE gave the shRNA sequene and the pHAGE-bakbone without shRNAsequene respetively with ompatible restrition sites. We alled pHAGE after inserting a shRNA targetinggene X pHAGE-X.TransformationThe One Shot TOP10 Chemially Competent E. oli transformation kit (Invitrogen) was used to transformoriginally obtained plasmids or ligation produts aording to the manufaturer´s instrutions. Negative ontrols15



from ligation reations (see below) were inluded as negative ontrols for the transformation.Baterial ulturesE.oli ontaining pSM2-plasmids with the shRNAs of interest were inoulated in LB medium with 50 µg/mlhlorampheniol. E.oli with (modi�ed) pHAGE plasmids were inoulated in LB medium with 100 µg/ml ampi-illin. Bateria were grown for about 16h at 37°C, shaking at 170 rpm.Plasmid preparationPlasmids were extrated using the QIAprep Spin Miniprep Kit (QIAGEN) aording to manufaturer´s in-strutions.Measurement of DNA onentrationsDNA onentrations were measured via Nanodrop (Thermo Sienti�).RestritionsDi�erent pSM2 plasmids, eah ontaining a spei� shRNA, were digested with HpaI and Mlul restritionendonuleases (New England Biolabs (NEB)) in a double digest to obtain shRNA sequenes. To obtain theplasmid bakbone pHAGE was digested with the same ombination of enzymes. The bakbone is alled pHAGE-HpaI_MluI in the following. For details on restrition setups see table 2.6.Digestion reations were heat inativated at 65°C for 20 min and ooled on ie for 10 min. A 5 µl aliquot of thepHAGE-HpaI_MluI digest was run on a 1% agarose gels to on�rm omplete digestion. A 10 µl aliquot of thepSM2 digest was run on a 1.5% gel.DephosphorylationThe pHAGE-HpaI_MluI plasmid bakbone was dephosphorylated by addition of 0.5 U CIP (alf intestinalphosphatase; NEB) per 1 µg DNA and inubation at 37°C for 1.5 h.DNA preiptiationTo redue the volume pHAGE-HpaI-MluI was preipitated by adding 10 µl 3M NaA and 250 µl EtOH to100 µl. The mixture was inubated at -20°C for at least 20 min and entrifuged at 4°C and 14000 rpm for 15min. The supernatant was taken o� and the pellet washed by addition of 500 µl EtOH and entrifugation at4°C and 14000 rpm for 10 min. The supernatant was taken o�, the pellet dried and resuspended in 30 µl TE-bu�er.Gel extrationThe dephosphorylated vetor bakbone was run on 1% agarose gels, the band at the expeted size ( around9kb) was ut out and gel extrated using the QIAquik Gel Extration Kit (QIAGEN) aording to manufa-turer´s instrutions.Clean-up of digestions to obtain shRNAs was not required sine E.oli taking up reannealed pSM2 plasmidswould not grow under the ampiillin seletion whih was performed on bateria transformed with the pHAGE-HpaI-MluI � shRNA ligation (see below).Ligation5 µl of the pSM2 digestion reation and 100 ng of the gel extrated, dephosphorylated pHAGE-HpaI-MluIbakbone were mixed with 1µl T4-ligase bu�er, 1 µl T4-ligase (NEB) and �lled up with water to a 10 µl reationvolume. Ligation was arried out at 16°C over night.Negative ontrols for ligation reations ontained water instead of the pSM2 digestion reation.Bateria transformed with the ligation produt were grown on LB-agar plates ontaining 100 µg/ml ampi-illin, then in liquid ulture as desribed above. Plasmids were extrated as desribed above.Restrition analysisRestrition analysis on 400 ng aliquots of loned plasmids was performed with MluI and HpaI. Digests wererun on 1% agarose gels to on�rm suessful ligations.Sequening 16



Table 2.6: Setup of restritions for loning of pHAGE-shRNA plasmidsThe inserts of loned plasmids were Sanger sequened by the University of She�eld Core Genomis Failitysequening servie. The primer sequene used was 5'-CACGAGATGGCTGTGGCCAAG-3'. The resulting se-quene was aligned with the expeed sequene as provided by the Elledge group using the Needle-algorithmuso�ered by the EBI (http://www.ebi.a.uk/Tools/emboss/align/index.html) (Needleman & Wunsh 1970). If thesequenes mathed over the omplete shRNA the sample was aepted as loned orretly. The shRNAs target-ing the following genes were suessfully loned: Edd1, Hda3, Map3k1, Mbd2, Pkn2 and Map4k5. Even thoughfor all others baterial olonies were also obtained after transformation none of the plasmids sequened so farontained the orret sequene.2.2.2.2 ES ell ultureMouse embryoni stem ells of the CCE line at around 50-70 passages were grown in ES-DMEM, whih ontainsper 500 ml:� 410 ml KO-DMEM (knok-out Dulbeo's modi�ed Eagle's medium)(Gibo)� 75 ml HyClone fetal bovine serum (FBS) (ES-quali�ed) (Thermo Sienti�)� 5 ml GlutaMAX 200 mM (Gibo)� 5 ml Non-essential amino aids (Gibo)� 2.5 ml Peniillin/Streptomyin (50 U/ml Pen, 50 ug/ml Strep)� 1 ml β-meraptoethanol 50 mM (Gibo)� 50 µl leukemia inhibitory fator (LIF) 50 mMCells were grown in in T25 ell ulture �asks or 6-well plates (Greiner) in a volume of 5 or 1 ml ES-DMEMrespetively in a 37°C and 5% CO2 inubator. Cells were split (see below) about every other days and medium17



hanged every day in between. Cells were regularly heked for signs of di�erentiation or infetion under aninverted light mirosope.SplittingCells were split at about 80% on�uene: Medium was taken o�, ells were washed twie with phosphatebu�ered saline (PBS; pH 7.2; Gibo) prewarmed to 37°C, trypsinized with about 100 (per well of a 6-well plate)to 300 µl (T25 �ask) 0.05% trypsin-EDTA (Invitrogen) for about 2 min at 37°C and resuspended in ES-DMEMby pipetting up and down several times. About 1/8 to 1/6 of this suspension was transferred to a new �ask /well that had been overed with 0.1% gelatin (Millipore) for at least 20 min and whih was removed immediatelybefore. Flasks / wells were �lled up to 5 / 1 ml with ES-DMEM and shaken gently.FreezingFor storage ells were trypsinized as desribed above, resuspended in about 3 ml ES-DMEM and entrifugedat 1000 rpm for 5 min. They were resuspended in 1ml pre-ooled freezing medium (50% FBS, 40% ES-DMEM,10% DMSO) and frozen in pre-ooled ryo-tubes at -80°C.ThawingFrozen ells were thawed quikly at 37°C and the ell suspension in 1 ml freezing medium transferred intoabout 5 ml KO-DMEM (Gibo). Cells were entrifuged for 5 min at 1000 rpm, resuspended in an appropriateamount of ES-DMEM and plated on gelatinized ell ulture �asks / 6-well plates.2.2.2.3 TransfetionTransfetion of pakaging ell lineThe 293T pakaging (produer) ell line was transfeted with vetors enoding virus partiles and pHAGE-shRNA by lipofetion with the TransIT-293 Transfetion Reagent (Mirus) aording to manufaturer´s instru-tions. We aimed at a ell density of 70% before transfetion. We transfeted plasmids at ratios of pHAGE-shRNA: PM2 : Rev : Tat : VSVG = 10 : 1 : 1 : 1 : 2, where PM2, Rev, Tat and VSVG stand for a expression plasmidsoding for viral Gag-Pol, Rev, Tat and G-protein of the vesiular stomatitis virus (VSVG).Medium was hanged the next day to DMEM-F12 (Gibo) with 10% FBS, peniillin and streptomyin. Oneday later if ells appeared to be red due to the expression of turboRFP and (nearly) on�uent apart fromsome plaques the supernatant was taken o� and used for transfetion of ES ells. The supernatant ontainedrepliation-inompetent lentivirus as desribed by Pan (H. Pan et al. 2008).Viral transfetion of embryoni stem ellsTo virally transfet ES ells the supernatant from produer ells was entrifuged at 1000 rpm for 3 min andthe supernatant taken to get rid of remaining 293T ells. 10 mg/ml polybrene was diluted 1:10 with PBS and 9µl of this were mixed with viral supernatant of one well of a 6-well plate (2 ml).ES ells were trypsinized and resuspended in ES-DMEM. 100 000 ells (in 2 ml ES-DMEM) aording to ountingwith Coulter Counter Z1 (Bekman Coulter) were mixed with the viral supernatant in a gelatinized 6-well plate.The plate was entrifuged at 2000 rpm at 25°C for 50 min. Cells were inubated at 37°C over night. Then themedium was hanged to ES-DMEM the next day and to ES-DMEM with 2 mg/ml puromyin the day after.Cells were then ultured as desribed keeping them on ES-DMEM with 2 mg/ml puromyin for about one weektill su�ient �uoresene intensities were reahed.About 3 days after the end of antibioti seletion transfeted ells were mixed with untransfeted ones as de-sribed below. The 3 day interval was hosen to on the one hand allow ells to reover from the stress induedby puromyin seletion, but on the other hand to not allow too muh loss of �uoresene by either silening ofthe transgene or outgrowth of untransfeted ells remaining after seletion. The extended ulturing time aftertransfetion is also a means not to detet shRNA funtion that renders ells in-viable instead of suh slowingtheir proliferation in the following assay.Di�erent ell lines were reated this way eah ontaining one kind of pHAGE-shRNA vetor for all andidateshRNAs we suessfully loned: Edd1, Hda3, Map3k1, Mbd2, Pkn2 and Map4k5 (see �2.2.2.1 Cloning of plas-mids�). As a negative ontrol pHAGE-FFL was used sine shRNA targeting FFL does not have a target inmurine ells. As positive ontrols we used pHAGE-Ot4 and pHAGE-Psma1 whih had previously been shownin our lab to signi�antly redue stem ell proliferation.18



2.2.2.4 Proliferation assay by �ow ytometrySine splitting omes inherently with a relatively high error in the number of viable ells transferred to the newplate we deided to use a di�erent assay whih employs untransfeted ells as an internal standard and thereforeallows splitting. This method is supposed to be robust to slightly di�erent treatment of samples, for examplethat plating ells at di�erent densities may lead to di�erent di�erentiation rates of stem ells. When mixingtransfeted ells with untransfeted ells the di�erentiation whih is not due to the e�et of the siRNA is ex-peted to be the same for both and proliferation ratios between them are therefore omparable even if di�erentrepliates were not plated at exatly the same density. Also the ratio of ells dying due to the splitting proedureis expeted to be the same for both.To use untransfeted ells as an internal standard is possible beause the plasmid ontaining the shRNA alsoontains a gene for turboRFP whih allows to distinguish transfeted from untransfeted ells. Furthermorethe shRNA and the �uoresent protein are expressed on the same transript so that silening of the shRNAwould automatially lead to loss of the �uoresene even though the kinetis of loss of the knok-down e�et and�uoresene might be somewhat di�erent.Mixing of ellsTo ompare growth rates of transfeted ells to that of an internal standard of untransfeted ells we aimedat mixing them after trypsinization and resuspension at a ratio of 1:1. We aimed at obtaining a mixture ofabout 700 000 ells. The onentrations of ells in the resuspensions were determined by ounting with a CoulterCounter Z1 (Bekman Coulter). For this resuspended ells were diluted 1:20 in PBS. The lower threshold forpartile size was set to 0.8 µm. Mixtures were obtained in tripliate.Flow ytometryFor �ow ytometry ells were trypsinized as desribed and resuspended in about 2 ml of KO-DMEM. Toobtain a single ell suspension ells were pipetted up and down vigorously several times. Flow ytometry wasdone on FACSCALIBUR (Beton, Dikinson (BD)) ontrolled by the Cell Quest Pro software. In a �rst runa side satter threshold separating presumably intat ells from debris was identi�ed and the same thresholdapplied in all further runs. 10000 ells above this threshold were measured per sample. The parameters sidesatter (SSC), forward satter (FSC) and FL2 �uoresene (i.e. red �uoresene) were reorded. Before and aftereah run the instrument was �ushed with FACS rinse (BD) and water.Flow ytometry data were analysed with WinMDI version 2.9. On a dot plot of SSC vs. FSC the ell populationontaining presumed living, single ells and exluding dead ells and debris was gated. The same gate was appliedfor di�erent samples measured on the same day, but the best gate was seleted at every day of measurement sothat they might di�er slightly between time points. For the gated ells on a histogram displaying ell ountsvs. �uoresene intensity levels positive and negative populations were separated at the minimum between bothpeaks. The intensity value for the border between the peaks was hosen one and kept for all further analysesand always oinided well with the minimum between the peaks. The perentage of positive to negative ells wasgiven bak by the program.2.2.2.5 Proliferation assay by �uoresene mirosopyDespite the lak of a proper negative ontrol (see �2.2.3.1 Flow ytometry results�) �ow ytometry showed amuh stronger derease of �uoresent ells in the ell line transfeted with pHAGE-Edd1 than in all other elllines. Therefore the �uoresene level of ells transfeted with pHAGE-Edd1 and pHAGE-FFL was observedover two weeks by S. Silva of our group using �uoresene mirosopy.2.2.3 Results2.2.3.1 Flow ytometry resultsResults from one-olor �ow ytometry obtained from mixes of ell lines with pHAGE-shRNA plasmids anduntransfeted ells were inonlusive. Cells with shRNAs targeting Ot4 and Psma1, whih were expeted tohave a strongly negative e�et on stem ell proliferation did not show any signi�ant di�erene to other lines inmany oasions. This ould possibly be attributed to the fat that high transformation levels were never reahedfor plasmids oding for these shRNAs at the time of mixing. This is probably due to the averse e�ets of theseshRNAs on the ells. On the other hand we noted hanges of the �uoresene ratio of lines transfeted with19



Figure 2.4: Example illustrating the trend of inreased proliferation rate in the pHAGE-FFL line. The ratioof red (transfeted) to non-red (untransfeted) ells is depited on the y-axis. Di�erent olors indiate di�erentrepliates. In another experiment the same line showed a trend towards a dereased proliferation rate.pHAGE-FFL for whih no e�et was expeted. These hanges appeared to be not random �utuations, but aderease of �uoresene in one, an inrease over time (p-value for null hypothesis that no hange: 0.05) in anotherexperiment (see �g. 2.4). A derease of �uoresene ould be explained by silening of the turboRFP gene andby general negative e�ets of transformation and an ative RNAi mahinery on proliferation rate. However wedid not �nd a reasonable explanation why proliferation should be inreased in the transfeted ells.One onern about this approah was that untransfeted ells ould not be distinguished from transfeted ellsthat silened the turboRFP transgene. Furthermore omparing �uoresent to non-�uoresent ells is sensitive topossible day-to-day �utuations in the sensitivity of the �ow ytometer.Therefore replaing the turboRFP gene in pHAGE-FFL by GFP and employing ells transfeted with this vetoras new internal standard might solve this problem and allow omparing �uoresent with �uoresent ells. Mixingthe andidate lines with a green �uoresent line instead of a untransfeted line has the advantage, that the samee�et of the transformation proess and an ative RNAi mahinery is expeted in both lines in the mixture.Further if day-to-day �utuations in the sensitivity of the �ow ytometer are laser (olor) independent thesewould a�et both ell lines in the same way. Therefore the ratio between the number red and green �uoresentells should stay onstant in ases where the shRNAs in the orresponding vetors have no or both the samee�et on proliferation.This kind of experiments were not �nished at the time of this writing.2.2.3.2 Fluoresene mirosopy resultsDespite the lak of a proper negative ontrol �ow ytometry showed a muh stronger derease of �uoresent ellsin the ell line transfeted with pHAGE-Edd1 than in all other ell lines (see �g. 2.5). This �nding ould beveri�ed by S. Silva of our group by following the �uoresene loss of the pHAGE-Edd1 line ompared to the20



Figure 2.5: Fluoresene ratio (log2-transformed) of Edd1 (blue) and FFL (blak) ell lines over time; di�erentmeasurement of the FFL line than shown in �g. 2.4; di�erent symbols represent di�erent repliatespHAGE-FFL line using �uoresene mirosopy (unpulished).2.3 SummaryFrom a shRNA library sreen we ould identify 23 / 60 shRNA genes for whih ln(Er

Eg
) was above mean + STDEV/ below mean - STDEV over all shRNAs for 5 of 6 repliates, where Eg is the amount of shRNA oding DNAin the population at the beginning and Er at the end of two weeks of growth aording to miroarray analysis.This orresponds to FDRs < 0.05. By their assoiation to (enrihed) funtional ategories, the number of probesby whih they were found and their degree in the network of all genes targeted by these 83 shRNA we seleted13 andidates for whih to validate their role in stem ell proliferation.Unfortunately further work is still neessary in establishing a �ow ytometry based assay in whih the �uoresentto non-�uoresent ell ratio of pHAGE-FFL transfeted and untransfeted ells stays at a stable level. Onepossible way to improve the ontrol may be the use of ells transfeted with pHAGE-GFP-FFL as internalstandard instead of untransfeted ells.The detetion of signi�antly higher loss of �uoresene in pHAGE-Edd1 than in pHAGE-FFL transfeted ellssimply by �uoresene mirosopy suggests suess in seleting at least one or some promising andidates.
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Chapter 3Meta-analysis of alori restritiondatasets3.1 Introdution3.1.1 The potential of alori restrition to delay agingCalori restrition (CR; also alled alorie restrition or dietary restrition) is de�ned as the redution of aloriintake below ad libitum level without malnutrition (ad libitum: an organism eats as muh as it wants). It hasbeen desribed to extend (mean and median) life-span in a wide range of organisms from yeast (Lin et al. 2002)to C. elegans (Klass 1977) and D.melanogaster (Loeb, & Northrop 1917) to rodents (MCay et al. 1989) andsome dog breeds (Kealy et al. 2002). The length by whih life-span an be extended by CR di�ers betweenorganisms: 3-fold extension was found in yeast, 2-3 fold in worms, 2-fold in �ies and still 30-60% in rodents.In general life-span extension is more pronouned in females (Fontana et al. 2010). Studies on primates arestill ongoing, but intermediary results from a study on rhesus monkeys indiated that they lived on average 32years on CR while ontrols lived 25 years (Bodkin et al. 2003). The degree of food restrition in CR studies ofmammals is normally around 10-50% below ad libitum level (Fontana et al. 2010).CR is the only known non-geneti intervention that robustly extends life-span in mammals (Bishop & Guarente2007a). In addition to life-span extension it has been shown to delay signs of aging and the onset and progressionof age-related diseases like ardiovasular disease and stroke (Mattson & Wan 2005), aner (Klebanov 2007),neurodegenerative diseases (Maswood et al. 2004) and diabetes (Anson et al. 2003) as well as to redue saropeniaand grey matter atrophy of the brain (Anderson et al. 2009) (Colman et al. 2009). One study reported thataround 30% of rats on CR did not show any obvious organ pathology at the time of death ompared to 6% ofmie fed ad libitum (Shimokawa et al. 1993). 1Notably it has been shown that alori restrition exerts its bene�ial e�ets even in older animals (Spindler2005) (Rae 2004). E�ets on life-span in Drosophila seem to our immediately after the swith to the low-alorie dietary regime (Mair & Dillin 2008) (Giannakou et al. 2008).Despite the e�et of CR in many speies it does not appear to extend the lifespan of the house�y (Cooper etal. 2004). It was also reported that no aging delaying e�et of CR was found in some mouse strains (Forsteret al. 2003). In partiular, CR does not appear to extend average lifespan in wild-derived mie, even though itprotets against aner to a ertain degree as observed in other mouse strains (Harper et al. 2006).A possible explanation for the life extending e�et of CR in terms of evolution is that it may be preferablefor animals under onditions of limited food to delay growth and reprodution and enter a stage of low energyrequirement (like the Dauer stage in C.elegans) or to shift energy alloation towards body maintenane. Asdetailed below there is growing evidene for onserved pathways working as anti-aging systems. Not surprisinglyredued fertility was observed in animals under CR (Fontana et al. 2010).Other frequently observed side e�et of CR are dereased wound healing (Reed et al. 1996) and immune funtionsrendering CR animals more suseptible to infetions, although the age-dependent deay of some immune funtionsappears to be slowed down by CR (Kristan 2008).1Side note: Curiously fasting was shown to redue the adverse e�ets of hemotherapy, seemingly by onferring inreased stressresistane to normal ells while not proteting aner ells (Ra�aghello et al. 2008) (Safdie et al. 2009)22



Alternative dietary regiments exept reduing overall food intake without malnutrition have been tested in theirpotential to delay aging and extend life-span. One of these is protein restrition, where a ertain amount ofthe protein ontent of the normal diet is replaed with arbohydrates and fat, i.e. not altering the alorie level(López-Torres & Barja 2008). Di�erent studies on protein restrition obtained di�erent results as to its ability toextend life-span (Goodrik 1978) (Leto et al. 1976) (Miller & Payne 1968) (Min & Tatar 2006) (Yu et al. 1985).The majority of these studies indiated the existene of a life-span extending e�et however another study evenshowed an inrease in mortality under this diet (Ross & Bras 1973). Restritions in only individual amino-aidslike tryptophan (Segall & Timiras 1976) or methionine (Orentreih et al. 1993) are also tested.Some studies in Drosophila and C. elegans demonstrated that the smell of food alone an redue the e�et ofCR (Smith et al. 2008) (Libert et al. 2007).Another dietary setup involving the redution of alories is intermittent fasting. In ontrast to lassial CR wherethe amount of alories is ontinuously low here periods of low alori diet alter with periods of ad libitum intake.In studies on intermittent fasting the degree of restrition is often similar to that in CR and time-spans of fastingand ad libitum feeding are similar, normally in the range of days to a few weeks. Even though studies reportedredued tumor formation in mouse tumor-models (Cleary et al. 2007) (Bonorden et al. 2009) and health bene�tsin humans (Halberg et al. 2005) (Heilbronn et al. 2005) e�ets on life-span are still unlear. These alternativedietary regiments will however not be the subjet of this study.A number of ompounds are urrently studied in the hope to �nd CR-mimetis, drugs that invoke similar e�etsas CR. Among these are 2-deoxy-d-gluose (Ingram et al. 2006), rapamyin (Harrison et al. 2009), resveratrol(Howitz et al. 2003) (Wood et al. 2004) and the diabetes drug metformin (Anisimov et al. 2003).3.1.1.1 Physiologial hanges indued by CRCR indues alterations in the physiology of many organ systems in mammals however it is not lear whih of thesehanges are ausal for the e�et of CR (Koubova & Guarente 2003). As expeted one important physiologialhange assoiated with CR is high insulin-sensitivity, whih is partiularly noteworthy sine aging is generallyaompanied by elevated insulin-resistane (Anderson & Weindruh 2010).The redution of body weight under CR is usually proportional to the level of CR (i.e. 30% food restrition leadsto ∼30% weight loss). The tissue displaying most loss of weight is normally white adipose tissue (Anderson &Weindruh 2010). This is aompanied by size-redution of adipoytes in mie. Due to the negative orrelationof fat mass to adiponetin levels the level of this hormone rises during CR in the adipose tissue and so does itsserum onentration (Zhu et al. 2004), espeially of the high moleular weight form (Shinmura et al. 2007). Thishormonal hange omes along with inreased fatty aid oxidation in fat tissue and redued lipid aumulation inother tissues (Zhu et al. 2007). Further positive e�ets of adiponetin, in partiular in mouse models for diabetesare known, like inreased insulin-sensitivity and redued hyperglyemia, hypertriglyeridemia and adipose tissuemarophage levels (Wang et al. 2006).Further hormonal hanges inlude the redution of triiodothyronine, testosterone and insulin. Redutions ofblood holesterol, C-reative protein, blood pressure and intima-media thikness of the arotid arteries, whihare risk fators for ardiovasular disease were likewise observed (Fontana & Klein 2007) (Fontana et al. 2004).An overview of tissue-spei� hanges with CR is given in table 3.1.A study on Rhesus monkey musle tissue using immunogold eletron mirosopy and biohemial assaysreported signi�antly redued oxidative damage (redued 4-hydroxy-2-nonenal-, nitrotyrosine- and arbonyl-modi�ed proteins) in the CR group (Zainal et al. 2000). A redution in in�ammation (Anderson et al. 2009)and ore body temperature (Mattison et al. 2003) was observed as well.Another physiologial e�et of CR observed in rats is the redued aumulation of advaned glyation endproduts(AGEs) (Teillet et al. 2000). AGEs are reated by the ombination of gluose and proteins and aumulatingwith age (Bunn et al. 1978). Notably another study found that a diet enrihed in preformed AGEs abolishedthe bene�ial e�ets of CR (Cai et al. 2008).3.1.1.2 The geneti basis of CRLittle is understood by now about the hanges on moleular levels going on during CR. However some �ndingsin the last years are starting to shed light on its mehanisms.A way to gain knowledge about whih proesses ourring during aging on the moleular level are prevented orounterated by CR is to test whih gene expression hanges with aging in ad libitum (AL) animals are not found23



Table 3.1: E�ets of CR on individual tissues and the whole mammalian organism. From Bishop, 2007.under CR.It is not yet lear if CR ats by reversing age assoiated transriptional hanges, sine some studies reportedglobal or partial prevention of age-related hanges by CR, while others did not �nd a signi�ant suh e�et (Leeet al. 1999) (Kayo et al. 2001) (Dhahbi et al. 2006) (Park & Prolla 2005). It seems however save to assume thatCR at least ounterats hanges in some aging related transriptional modules (Swindell 2009). In partiularalterations in the expression of omponents of the eletron transport hain, whih in an aross-speies study wasfound to be the only age-related alteration ourring in �ies, worms, mie and humans (Zahn et al. 2007), areopposed by CR (Anderson & Weindruh 2007). It is generally important to note that (mitohondrial) energymetabolism is dysregulated with age and that energy metabolism pathways are a�eted by the alterations dueto CR, espeially in heart, skeletal musle and white adipose tissue in mammals.It was observed that respiratory apaity per isolated mitohondrion is lower in mitohondria of older mie (18vs. 3 months old) and -probably as a ompensatory mehanism- the number of mitohondria is inreased in olderanimals (observed in skeletal musle) (Figueiredo et al. 2009). Most likely this is losely linked with elevatedlevels of oxidative damage that may be a ause of the aging phenotype.An alteration of metaboli state is invoked by CR whih involves a shift from fat anabolism to atabolismand hanges in the prodution of reative oxygen speies (ROS). Notably unoupling protein 2 UCP3 whih ispresumably important for lowering ROS levels is overexpressed in CR (Asami et al. 2008).A ommon regulatory system for the expression of unoupling proteins, elements of fatty aid metabolism andtransport (e.g. by the transporter CPT1) may be provided by AMPK-signalling ((Anderson & Weindruh 2010);see �3.1.1.2� and �3.1.1.2�).Another ommon way of deteting genes related to the life-span prolonging e�et of CR is by searhing for genesthat alter (inrease or derease) this e�et when mutated, deleted, knoked-down or overexpressed.In this way many proteins that were already known to extend life-span when altered in their expression levelor funtion were linked to CR. In partiular dereased insulin / insulin-like signalling, dereased TOR and /or inreased AMPK and inreased ativity of sirtuins were among the geneti alterations to extend life-span(Bishop & Guarente 2007a). Evidene of relation of these and some other (mainly nutrient sensing) pathways toCR in di�erent model organisms will be disussed, starting with yeast and then examining in how far homologousmehanisms in higher animals exist.3.1.1.2.1 Genes involved in CR mediated life-span extension in yeastLife-span in yeast an be measured in two di�erent ways: repliative life-span is the number of daughter ellsa mother ell an produe before senesing and hronologial life-span is the duration of viability of stationaryphase ells. It has been suggested that repliative lifespan is a better model of ageing for mitotially ative animal2unoupling proteins are proteins that lower the proton gradient over the inner mitohondrial membrane24



ells and that hronologial lifespan is a better model for postmitoti animal ells (Bishop & Guarente 2007a).Both moderate (0.5% gluose medium) and severe CR (0.05% gluose) inrease repliative life-span in yeast.In yeast moderate CR (0.5% gluose instead of 2%) has been shown to inrease repliative life-span through apathway dependent on shifting metabolism from anaerobe to aerobi (Lin et al. 2002). Contributing evidene tothis �nding is the fat that deletion of ytohrome C1 (CYT1 ) or LAT1 (a pyruvate dehydrogenase subunit) whihin both ases suppresses respiration abolishes the life-span inrease with moderate CR. In addition overexpressionof LAT1 inreases yeast life-span under 2%, but not under 0.5% gluose onditions. The anaerobe to aerobishift inreases the NAD+/NADH ratio whih has been shown to be neessary and su�ient for an inreasein life-span. Interestingly high levels of NAD+ ativate the (histone) deaetylase SIR2 and its homologues,whih are known to drive life-span extension (Lin et al. 2004). If however the triple deletion of SIR2 and itshomologues HST1 and HST2 is su�ient to suppresses longevity aused by moderate CR is still a matter ofdebate (Longo & Kennedy 2006). In yeast reombination between rDNA repeats an lead to exision of self-repliating extrahromosomal rDNA irles, whih aumulate in the aging mother-ell, a proess that is toxifor the ells (Sinlair & Guarente 1997). The ability of Sir2 to suppress reombination (by leading to higherdensity hromatin paking) and therefore limiting this proess is one important mehanism by whih it extendslife-span (Lin et al. 2000). Even though this proess was not found to our in other organisms Sir2 homologuesare still linked to longevity in higher organisms (Guarente 2005).The mehanism of severe (0.05% gluose) CR seems to be distint from that of moderate CR and has beenreported to neither involve the eletron transport hain nor SIR2 or its homologues (Tsuhiya et al. 2006).Unlike for moderate CR SIR2 deletion does not seem to abolish the e�ets of severe CR (Lamming et al. 2005),but on the ontrary to even enhane them (Kaeberlein et al. 2004) and severe CR does not invoke suh a stronginrease in the NAD+/NADH ratio (Easlon et al. 2007).Instead the Akt homologue SCH9 and TOR1 have been proposed to be involved in the proess, sine theirdeletion leads to life-span extension that annot further be improved by severe CR (Kaeberlein et al. 2005).Both proteins at in the S. ervisiae amino aid sensing pathway and transription fator Gis1 was reportedto be essential for the life-span extension by redued Tor1-signalling (Wei et al. 2009) (Fabrizio et al. 2001).In general mutations ativating the severe CR response also prolong hronologial life-span in stationary yeastells with no aess to nutrients, whih is not true for genes extending repliative life-span under moderate CR(Powers et al. 2006).It is interesting that the inrease of life-span both under moderate and severe CR seems to require the pyruvatedehydrogenase subunit Lat1 espeially sine a funtional eletron transport hain is not required in severe CR(Easlon et al. 2007).It is not yet lear if indeed two di�erent pathways are underlying moderate and severe CR in yeast. If so, thefat that worms and mie under CR also show inreased respiration (Nisoli et al. 2005) might indiate that themehanism of moderate CR in yeast more losely resembles that in higher organisms, whereas severe CR mightrather resemble survival mehanisms triggered by famine (Bishop & Guarente 2007a).Another nutrient sensing pathway linked to life-span regulation in several studies is the Ras-AC-PKA pathway(Fabrizio et al. 2001) (Medvedik et al. 2007). This pathway is largely homologous to the insulin / insulin-likegrowth fator signalling pathway in higher organisms (Fontana et al. 2010).Downstream e�ets of redued ativity of the Tor1/Sh9 and the Ras-AC-PKA are the ativation of oxidativestress protetive enzymes like Mn-SOD (superoxide dismutase) via transription fators as Gis1 (Wei et al.2008). This would suggest an easy explanation for the anti-aging e�et of redued signalling via these pathways,espeially sine it was found that superoxide levels rise during yeast aging. However overexpression of bothsuperoxide dismutases or atalase only lead to a minor inrease in life-span (Fabrizio et al. 2001) (Fabrizio et al.2005), so that their inreased ativity is most likely only one e�et of CR.Another downstream e�et of redued signalling via both pathways mentioned is the expression of PNC1, whihby inreasing NAD+/NADH and reduing niotinamide in turn ativates Sir2 (Medvedik et al. 2007) (Kaeberleinet al. 2007).3.1.1.2.2 Genes involved in CR mediated life-span extension in metazoaProbably the most important genes assoiated with life-span in C.elegans are genes of the insulin signallingpathway, espeially the insulin reeptor homologue daf-2 and FOXO homologue daf-16 ating downstream inthis pathway. Mutants in daf-2 are well-established to be long-lived, however this longevity is abolished in doube-mutants with daf-16 (Kenyon et al. 1993). The fat that CR was shown to inrease life-span in daf-16 mutantsto a similar extent than in wild type worms suggests that CR does not at via the insulin signalling pathway25



in worms (Houthoofd et al. 2003) (Lakowski & Hekimi 1998). However a more reent study assaying di�erentCR-regiments onluded that daf-16 is neessary in some and not in others (Greer & Brunet 2009). Interestinglyit is neessary for suh regiments in whih also AMPK is required. However deletion of the homologous proteinin Drosophila, dFOXO, shortens life-span and these �ies ontinue to respond to CR (Giannakou et al. 2008) (Minet al. 2008). Another forkhead family transription fator, PHA-4, has been found to be required for life-spanextension by CR in C. elegans (Panowski et al. 2007). This gene is an orthologue of the mammalian FOXAgenes that are involved in the prodution of gluagon and in gluoneogenesis during fasting.Insulin / insulin-like growth fator signalling was also found to ontrol life-span in �ies and mammals (Kenyon2005). The signalling fators in Drosophila are alled Drosophila insulin like peptides (dilps) and the geneexpression level of one of the seven known dilps, dilp5, an be modulated by diet (Min et al. 2008). The hiogene is a homologue to insulin reeptor substrate genes and the hio1 mutation both inreases life-span andredues insulin signalling (Clany et al. 2001). CR was found to gradually inrease life-span with inreasinglevels of food restrition up to a ertain point where it starts to derease probably due to starvation. Observingthis dose-response urve in hio1 mutants showed that it was shifted towards higher nutrient levels omparedto the wild type (Clany et al. 2002). Therefore an overlap between the mehanisms of CR and redued insulinsignalling was suggested, even though a CR response that is normal apart for the mentioned shift in a mutantbakground would argue against the role of the mutated gene in CR (Bishop & Guarente 2007a).Experimental results in mie of testing the link between CR and the growth hormone (GH) � insulin-like growthfator 1 (IGF1) axis, disruption of whih leads to inreased life-span (Flurkey et al. 2001), are onfusing. On theone hand mie with a redued prodution of GH due to a mutation in Prop1 show an inreased life-span (Brown-Borg et al. 1996) that ould be further prolonged by CR (Bartke et al. 2001), on the other hand longevitydue to disruption of the GH reeptor (Coshigano et al. 2000) was not further extended by CR (Bonkowskiet al. 2006). The �rst �nding argues against, the seond for an overlap between genes involved in the CRresponse and the GH-IGF1 axis. A derease in GH was linked to elevated levels of antioxidant enzymes andstress response (Brown-Borg 2007). It was also found that IGF1 levels in the blood were lowered by CR in mie(18% restrition, 24 weeks) (Hu�man et al. 2008), whereas no hanges were deteted in humans (20%, 1 year)unless dietary protein levels were strongly redued (Fontana et al. 2008).Heterozygous mutations in IGF1-reeptor (Suh et al. 2008) and polymorphisms related to redued plasma IGF1levels (Bonafè et al. 2003) are overrepresented among long-lived humans. Also human geneti variants of daf-16homologous FOXO genes were also assoiated with life-span (Kuningas et al. 2007).Another regulatory system most likely involved in CR-dependent life-span extension is built around AMPK. Avery simpli�ed view of this network is shown in �g. 3.1.AMPK, a important protein for sensing energy levels in worms and a homologue in yeast have been shown tobe impliated in longevity (Apfeld et al. 2004) (Ashra� et al. 2000). Deletion of a AMPK subunit gene (aak-2 )in worms did not alter the e�et of CR on life-span (Curtis et al. 2006), whih however may be attributed toredundany of this protein.AMPK diretly ativates PGC-1α by phosphorylation and also through its indiret positive in�uene on theNAD+/NADH ratio whih in turn enhanes the ativity of SIRT1, the enzyme that deaetylates and therebyativates PGC-1α (Cantó et al. 2009). PGC-1α , a master-regulator of nulear enoded mitohondrial genes,itself was found to be upregulated with CR in skeletal musle (Civitarese et al. 2007). Overexpression of PGC-1αalso promotes signalling through HIF-1α (O'Hagan et al. 2009) whih is downregulated in adipose tissue of mieupon CR (Yoshikazu Higami et al. 2006) and a C.elegans homologue of whih is assoiated with CR and longevity(Chen et al. 2009).AMPK an also ativate eNOS in response to adiponetin (Kondo et al. 2009) whih is impliated in mitohondrialbiogenesis and SIRT1 expression in CR. Consistently eNOS knok-out mie were found not to undergo the normalmetaboli shift assoiated with CR (Nisoli et al. 2005) and the life extending e�et of CR is abolished in miein whih eNOS is inhibited (whih also prevents ativation of SIRT1). SIRT1 in turn is an ativator of PGC-1α,whih is onsistent with the reported upregulation of PGC-1α oiniding with the upregulation of eNOS uponCR in many tissues (Nisoli et al. 2005).NAMPT is a protein involved in the depletion of niotinamide and therefore similar to yeast PNC1. As PNC1it is expeted to favour ativation of SIRT1 by hanging the NAD+/NADH ratio and dereasing niotinamidelevels.Homologues of yeast SIR2 also play roles in CR in metazoa. Sir2 in Drosophila is required for longevity ausedby CR (Rogina & Helfand 2004) and Sirt1 in mammals for the inrease in spontaneous movement observed inanimals under CR, suggesting a neuronal impliation (Chen et al. 2005). Knok-out mie of Sirt1 are short lived26



Figure 3.1: Simplisti model of the AMPK signalling pathway with a entral role in CR; adapted from Anderson& Weindruh, 2010; A: aetyl group; numbers indiate referenes for the interation: 1: Civitarese, et al. 2006,2: Canto, et al. 2009, 3: Andrews, et al. 2008, 4: Kondo, et al. 2009, 5: Nisoli, et al. 2005, 6: Gwinn, et al.2008, 7: Anderson & Weindruh, 2010
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and do not respond to CR (Boily et al. 2008), are however of limited informative value due to the vast numberof pathologies aused by this knok-out. The levels of SIRT1 are inreased in mouse fat tissue during CR (Cohenet al. 2004), but there is disagreement on the impat of CR on SIRT1 in liver and skeletal musle (Chen et al.2008) (Cohen et al. 2004) (Shinmura et al. 2008). SIRT1 ativation in mie on a diet rih in fat supports lipidoxidation and the expression of genes of the eletron transport hain (Feige et al. 2008).Even though the impliation of sir2-1, the only of four SIR2 homologues in worms tested for its role in CR,remains ontroversial (Lamming et al. 2005) sir2 homologues were reported as life-span regulators also ininvertebrates (Longo & Kennedy 2006)(Tissenbaum & Guarente 2001).AMPK, a sensor of ellular energy levels, inhibits mTOR (Complex I) via TSC2 or raptor (Gwinn et al. 2008).It should however be emphasized that mTOR also reeives inputs from the insulin / Igf-pathway. As in yeastredued TOR-signalling leads to an extension in life-span of worms and �ies that annot be further enhaned byCR so that an overlap in the mehanisms is likely (Vellai et al. 2003). A hint towards the mehanism of life-spanextension by redution in TOR-signalling may be that it dereases ribosomal biogenesis. This is interesting, sinelower expression of ertain ribosomal genes is assoiated with longevity in yeast and worms (M. Kaeberlein et al.2005). Disruption of the mTOR pathway in mie leads to longevity assoiated with redued insulin resistaneand age-related pathologies (Bartke 2005) (Harrison et al. 2009) (Selman et al. 2009). However sine in miethe inreased expression of genes of the eletron transport hain, as observed in skeletal musle in CR, appearsunlikely when mTOR ativity is redued Anderson proposed di�erent tissue-spei� e�ets of CR on mTOR, withdereased signalling in liver, but not some other tissues. Downstream mTOR positively regulates the expressionof PGC-1α (Anderson & Weindruh 2010) and importantly it inhibits autophagy. Autophagy is the proessof digestion of ellular omponents by so alled phago-lysosomes and was reported to be neessary for life-spanextension (Hansen et al. 2008). Other targets indiretly transriptonally regulated by mTOR-signalling in mouseare heat shok proteins, proteins involved in ER-stress and apoptosis and in xenobiotis metabolism (Amador-Noguez et al. 2007). The detoxi�ation proess of xenobiotis beame a target of CR related researh after it wasdisovered that long-lived �y, worm and mouse mutants in the insulin / IGF-signalling showed altered expressionof genes of this system and proved largely resistant to xenobiotis. Furthermore upregulation of transriptionfators involved in xenobiotis metabolism invoked longevity of worms and �ies (Piper et al. 2008) (Tullet et al.2008) (MElwee et al. 2007).A further important hange with age that is ounterated by CR is the inreased ativity of the tumor-suppressorp53 (Edwards et al. 2007). Even though it is not lear how this relates to CR and aging, a link between p53and mitohondrial metabolism is provided by the fat that de�ieny of p53 in mie leads to a redution inmitohondrial ontent, a swith from respiration to anaerobi metabolism and inreased ROS levels (Matoba etal. 2006) (Saleem et al. 2009).3.1.1.2.3 The role of neurons in CRSome urious reent �ndings have linked the life-span extending CR response to neurons in invertebrates: InDrosophila and Caenorhabditis elegans it was observed that the odour of food is su�ient to redue the longevityresulting form CR and in Drosophila the mutation of OR83B, a neuronal hemoreeptor, was reported to in-rease life-span and render CR less e�ient in this mutant bakground (Libert et al. 2007) (Smith et al. 2008).Further it was shown that neuron-spei� overexpression of human UCP2 in �ies leads to longevity (Fridell et al.2005). Even though the link between UCP2 and CR is largely unknown it is interesting that in humans UCP2 isinvolved in nutrient sensing and that a related �y protein, UCP5, is neessary in neurons to adapt to low nutrientlevels (Sánhez-Blano et al. 2006). Deletion of 3 of 7 Drosophila insulin like peptides in neuroendorine brainells resulted in longevity (Grönke et al. 2010). In C.elegans the transription fator gene skn-1 was shown toplay a role in ASI neurons in CR-related inreased respiration and life-span extension (N. A. Bishop & LeonardGuarente 2007b). These two neurons are important in regulating fat metabolism in adult worms in response tonutrient levels and energy status and CR-related longevity is not invoked in worms in whih the ASI neurons areablated (Bargmann & Horvitz 1991b) (Bargmann & Horvitz 1991a).It is intriguing to assume that CR related longevity in metazoans may be aused in a similar way as in yeast witha entral role for energy sensing neurons. Diret sensing of extraellular gluose onentrations e.g. by G-proteinoupled reeptors in yeast would be replaed by the input of sensory neurons in higher organisms. Intraellularenergy levels may be deteted in a similar way involving AKT- and TOR-homologues, supplemented by systemisignals from other ells in metazoans. The output would di�er in the way that yeast ells would only respondto nutrient levels in a ell-intrinsi way, while neurons in higher organisms have to send appropriate signals toother ells (Bishop & Guarente 2007a). 28



The brain region orresponding to the energy sensing neurons in invertebrates is the hypothalamus in mammalswhih senses and responds to energy availability by nervous and hormonal signals. Indeed many homologues ofthe genes desribed as involved in longevity in lower organisms have impliations in energy sensing in the hy-pothalamus (e.g. TOR, AMPK, AKT) (Bishop & Guarente 2007a). Note that growth hormone (GH) mentionedabove is a signal triggered by the hypothalamus via the pituitary gland.Even though there is no diret evidene of the role of the hypothalamus in CR one study has provided a link be-tween the hypothalamus and life-span: Unoupling protein UCP2 was overexpressed spei�ally in the so alledorexigeni hyporetin (appetite-stimulating) neurons of the hypothalamus of mie. This did not only lead to aore body-temperature redution and mild hyperphagia, but also to an inrease in mean and maximum life-span(12% in males and 20% in females) (Conti et al. 2006).3.1.1.2.4 Rationale for an unbiased ross-tissue analysisEven though miroarray data omparing samples from individuals of di�erent age indiated that aging relatedgene expression hanges are mainly tissue-spei� it has also been shown that the rate of aging of all tissuestested seems to be oordinated, whih agrees with the idea of a set of ommon underlying hanges in all tissues(Zahn et al. 2007). In this ase besides all the tissue-spei� hanges a ommon aging delaying e�et of CR onall tissues would also be expeted.As detailed the knowledge about important players and pathways as e�etors of CR is growing. However tounderstand the underlying mehanisms many more omponents of the omplete piture will have to be deteted.Espeially an explanation of whih mehanisms downstream of nutrient sensing pathways lead to life-span extend-ing proesses is largely unknown. Sine muh researh was foused so far on andidates known to be involvedin nutrient sensing it seems to be advisable to also inlude unbiased high-throughput studies. Studies so faronduted and deposited to this end used miroarrays.3.1.2 Meta-analysis of miroarray dataMeta-analysis is here de�ned as the quantitative review and synthesis of the results of related but independentstudies (Normand, 1999). Meta-analyses an be used to assess the variability between studies or more ommonly�as here is the ase- to failitate �nding genes di�erentially expressed between two onditions by integratingdi�erent studies.Miroarray results are well-known to be assoiated with a relatively low signal-to-noise ratio and �nding signi�antresults is made di�ult by the large number of variables ompared to the relatively low number of repliates.Sine miroarrays beame a more and more ommon tool over the last years there are results for several miroarrayanalyses available for many biologial questions, even though the experimental setup of the individual studies maybe more or less di�erent. These di�erenes an however not only be seen as a problem in omparing the analyses,but also as a hane sine genes found di�erentially expressed under similar, but not idential onditions anbe onsidered more reliable in their assoiation with the tested variable, sine they are a�eted under di�erentirumstanes. Therefore the �generalizeability� (Ramasamy et al. 2008) of a andidate gene is shown whenit is found in more than one tissue, organism, strain, diet omposition, for di�erent durations of CR and agesof animals, but also miroarray platforms and even di�erent ways of handling samples in di�erent laboratories.Meta-analyses are therefore likely to eliminate false-positives of individual studies. To determine genes showingthat kind of robustness is the aim of our meta-analysis. It is a matter of debate if mehanisti andidate genesfor CR are expeted to be generalizable aross tissues, but as detailed above we argue there should be at leastsome.Besides that meta-analyses eliminate the idiosynrasies of the di�erent analyses, they are also a valuable tool toinrease statistial power and �nd genes with small, but onsistent di�erential expression that are not found inthe individual analyses.3.1.2.1 Methods for meta-analysis of miroarray experimentsSeveral meta-analysis tehniques have been applied to miroarray data (Rhodes et al. 2002) (Rhodes et al. 2004)(Choi et al. 2003) (Choi et al. 2004) (Lottaz et al. 2006) (Smid et al. 2003) (Stuart et al. 2003) (Parmigiani etal. 2004) (Warnat et al. 2005) (Yang et al. 2005) (Aggarwal et al. 2006) (DeConde et al. 2006) (Wang et al.2006) (Zintzaras & Ioannidis 2008).Aording to Ramasay (Ramasamy et al. 2008) the statistial approahes an be lassi�ed by the single-studystatistis they use for ombining the studies: Ranks, p-values, e�et sizes or ounts, i.e. the number of studies29



in whih a signi�ane threshold is passed.Three typial methods out of the �rst three ategories were reviewed by Hong and Breitling (F. Hong & Breitling2008): A t-based approah, a non-parametri rank produt method and Fisher´s inverse hi-square method usingP-values from either the t-based or rank-produt method. These and other approahes are brie�y introdued inthe next setions:In the following T stands for treatment and C for ontrol ondition and i = 1,. . . ,I numbers individual datasets.
niT and niC are the number of repliates for the i-th dataset of the treatment and ontrol ondition. Tij /
Cij represents the (logged) gene expression of a given gene for study i and repliate j. The terms �dataset� and�study� are used interhangeably in this sub-hapter.3.1.2.1.1 Combining e�et-sizes: t-based (hierarhial modeling) approah A standardized meandi�erene for a given gene in study i an be alulated as an e�et-size measure di =

T̄i−C̄i

Sp
where Sp indiatesthe estimated variation. By means of an e�et size model the overall (i.e. over all studies) e�et size andthe orresponding variane an be estimated (Hong & Breitling 2008) (DerSimonian & Laird 1986). A z-sorean be derived from these to alulate the standardized average treatment e�et for eah gene aross datasets.Permutation z-sores are alulated by olumn-wise permutation within eah study. These an be used toestimate a false disovery rate (FDR) (by dividing the mean number of genes found by srambling by the numberfound for the real data for a given z-sore) and a P-value representing the probability that a gene is found moredi�erentially expressed by srambling than in the real analysis. (P values ould also be alulated from thestandard normal distribution, but srambling better aounts for small sample size and avoids violation of theassumption of normality). This t-test based method was for example used by Choi (Choi et al. 2003).3.1.2.1.2 Combining ranks: Rank produt approah In this approah fold-hanges are alulated foreah gene in eah study, pairwise for eah treatment with eah ontrol repliate for one-hannel arrays. For twohannel arrays the fold hanges are alulated as treatment to ontrol ratios for eah array. These fold hangesare ranked and rgik denotes the rank of the fold-hange of gene g in study i and pairwise omparison k. Thenfor eah gene the rank-produt is alulated as RPg = (
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Kwith K = K1 +K2. To assess the signi�ane of these values rank-produts are alulated in the same wayafter srambling data within eah array several times. Similarly as above p-values for a ertain rank produtare omputed as the average ratio of genes with a rank at least this high in the srambled data and FDRs bydividing the number of genes with a rank at least this high in the srambled data by that in the atual data.To test for overexpression with treatment fold-hanges are alulated by dividing the treatment by the ontrolexpression value, for underexpression the other way round.Another method meta-analyzing data by their rank was proposed and implemented in the bioondutor pakageOrderedList by Lottaz (Lottaz et al. 2006).3.1.2.1.3 Combining p-values: Fisher´s inverse hi-square method Fisher´s inverse hi-square method(also alled Fisher´s sum of logs method; (Fisher 1925)) alulates a ombined statisti S = −2 log(

∏

i Pi) withi= 1,...,n from the p-values of the individual studies. S follows a hi-square distribution with 2n degrees of freedomunder the joint null-hypothesis and therefore allows the alulation of a ombined p-value. Sine the t-based andrank-produt approah an also be used on single datasets, single study p-values from these methods an be usedto alulate the ombined statisti. The Fisher´s inverse hi-square method has to be applied testing for over-and underexpression separately.Variations of this method inlude weighting single study p-values by their reliability (Good 1955) or alulatingthe ombined statisti only from single-study p-values below a ertain uto� (trunated produt method; (Zaykinet al. 2002)). The FDR an for example be ontrolled by introduing experiment spei� p-value uto�s aordingto e.g. the Benjamini-Hohberg method (Pyne et al. 2006) (Benjamini & Hohberg 1995).Suh a p-value based meta-analysis approah was presented by Rhodes et al. determining p-values by om-parison of the atual with srambled data (Rhodes et al. 2002).In the �rst step the p-value for eah gene in eah study was alulated by a random permutation t-test, i.e. theyobtained the p-value as the fration of t-statistis obtained by randomly permuting sample labels that are greaterthan the atual t-statisti.They then determined a p summary statisti for eah gene in eah possible ombination of studies, i.e. omparingstudy A to study B, but also omparing studies A and B to C or B to C, et.. Summary statistis were alulated30



for eah gene appearing in all studies from the individual-study p-values and were the higher, the smaller all p-values and vie versa. The summary statisti p-values were again obtained by omparing the summary statistisfrom the atual data to suh from data srambling p-values over genes in eah study.To determine an appropriate summary statisti p-value uto� aounting for multiple testing genes were rankedand a q-value (FDR) was de�ned as the p-value divided by the fration of genes with a lower or equal p-value.This is sensible sine a FDR is the number of genes that would be found by hane divided by those atuallyfound, whih is the same as dividing the probability of �nding a gene by hane (FDR) by the fration of genesfound.Finally the lowest q-value of all ombinations was taken for eah gene.This approah has the advantages that using srambling no assumptions like normal distribution of data need tobe made and that p-values of individual studies are ombined without the need of setting a threshold on them.The problem however is that alulating summary statistis for eah ombination of studies is omputationallyintensive. It is feasible for meta-analyses like this one, inluding 4 studies, but might not be for larger ones.By working with p-values it is not possible in this method to estimate the mean magnitude of di�erential expres-sion.3.1.2.1.4 Limitations of methods ombining e�et-sizes, p-values and ranks All three of the presentedmethods (at least if no trunation for single study p-values is used in Fisher´s hi-square approah), as well asother methods ombining ranks, p-values or e�et-sizes do not seem very likely to detet genes di�erentiallyexpressed in only a subset of datasets with large variations as they might appear in a ombination of a ross-platform, ross-speies and ross-organism approah. For example they seem not apt to detet a gene di�erentiallyexpressed in some tissues, but not in others from datasets from di�erent tissues. This is beause the e�et-sizeestimate over all studies and the between-study variane in the t-test based approah, the rank-produt in therank-produt approah and the ombined statisti in the Fisher´s inverse hi-square method are sensitive to the(few) ases where the gene is not di�erentially expressed.On the other hand ombining only some of the ranks, p-values or e�et-sizes (e.g. only suh found signi�ant)and ignoring others may be hard to justify.To overome this problem thresholding on the single-study statisti and ounting how often the threshold is passedwould be useful. This is the proedure applied by vote / value ounting approahes (Ramasamy et al. 2008).The disadvantage of these approahes is that statistial values have to be lassi�ed as to if they are above orbelow a hosen rank-, e�et-size, or p-value-uto� and all further information is lost. Therefore the big advantageof ounting a gene as only di�erentially expressed or not in eah study, whih prevents strong ontribution ofstudies where a gene is learly non signi�ant is at the same time the probably biggest disadvantage of not allowingstudies to ontribute with di�erent weights for that gene. Therefore if a gene is found extremely signi�ant inone study it will only ontribute with one ount, as does a gene with signi�ane lose to the set threshold.3.1.2.1.5 Value-ounting approahes Rhodes et al. (Rhodes et al. 2004) presented one suh value-ountingapproah termed �omparative meta-pro�ling�. The aim of this analysis was to �nd a meta-signature ommonto di�erent kinds of aner and therefore to develop a strategy that does not detet genes only di�erentiallyexpressed in one or very few datasets, but �nd those di�erentially expressed in more datasets than expeted byhane. By this they hoped to �nd a meta-signature typial for aner per se, not a ertain type of aner.Comparing statistial measures for eah dataset rather than gene expression measures was supposed to helpoveroming the hallenges of omparing data from di�erent miroarray platforms. In the �rst step di�erentialexpression in individual datasets was assayed by a t-test. The genes of eah set were sorted by the p-value and aQ-value alulated as the number of expeted di�erentially expressed genes (p-value) divided by the number ofatually di�erentially expressed genes (number of genes in the ranking with lower or equal p-value). The Q-valuewas used for omparing the datasets.For both over- and underexpression the number of datasets in whih eah gene was present below a Q-value thresh-old of 0.1 was ounted and the number of genes in eah possible number of datasets tallied (N0, N1, N2, ..., Ns).(S is the total number of datasets). The same steps were repeated on datasets with srambled Q-values, obtaininga tally (E0, E1, E2, ..., ES). A minimium meta-false disovery rate was alulated as mFDRmin = Min( (Ei+1)
Ni

)for i= 0..S.If themFDRmin > 0.1 the analysis was repeated with the Q-value threshold lowered by 50% until amFDRmin ≤

0.1 is reahed or the number of genes below the Q-value threshold is 0 for at least 2 datasets. In the seond asethe meta-analysis is de�ned not to have found a signi�ant overlap between di�erentially expressed genes in the31



datasets. This proedure assures that the highest possible, but still su�iently low Q-value threshold is hosen.If a mFDRmin ≤ 0.1 is found, genes enrihed for over- / underexpression (meta-signature) were de�ned asthe number of genes appearing in at least i datasets below the Q-value threshold, where i is the same used foralulating this mFDRmin.The major drawbak of this approah is that it is unlikely to detet genes only tested in a subset of the datasets.This is beause the number of datasets in whih a gene has to be found below a ertain Q-value is determined byonsidering all genes also suh that were tested in a di�erent number of datasets. An alternative value-ountingapproah to overome this problem uses a binomial test to both take the number of times the single-study statis-ti for a gene exeeds a threshold and the number of studies its gene-expression was measured into aount (deMagalhães et al. 2009).Sine the soures for our datasets were very diverse, i.e. di�erent tissues, organisms, ages, durations of CR,miroarray platforms, et. we deided to employ a value ounting approah. Beause the miroarray experimentswere performed over the ourse of some years, while annotation of the genomes of model organisms improvedand therefore probes for newly disovered genes were inluded on the platforms over time (and for other reasons)we expeted that not eah gene was represented in a similar number of studies so that we found the binomialapproah best suited for our meta-analysis.Another advantage of using a value-ounting approah is that we ould inlude datasets for whih only lists ofdi�erentially expressed genes were available (Ramasamy et al. 2008).Ramasamy´s onern that the results of value-ounting approahes are rather granular ompared to those ob-tained by other tehniques was not onsidered a major problem, sine ranking the �nal results was of lessimportane to us than lassifying them as signi�ant or not.Last but not least Magalhaes showed that in a situation with similar aims (i.e. �nding genes robustly di�eren-tially expressed in di�erent organisms, tissues, et.) a binomial value ounting approah performed better thanFisher´s hi-square method in terms of the number of genes identi�ed. For the top genes of both approahesthere was strong overlap (de Magalhães et al. 2009).3.1.3 Other meta-analyses of gene expression data for CR3 important meta-analyses of alori restrition gene expression data were existent at the time of this writing:Hong 2010, Swindell 2008a (further analysed in Swindell 2008b) and Swindell 2009. These will be brie�y intro-dued here and their results ompared to ours in the disussion-setion (�3.4.2 Comparison with results fromother meta-analyses�).3.1.3.1 Swindell, 2008aIn �Comparative analysis of miroarray data identi�es ommon responses to alori restrition among mousetissues� Swindell reated 23 ontrasts omparing alori restrition to ontrol samples from 13 studies on mouse(Swindell 2008a). For two studies only information in supplemental data were used. In the data used the age ofmie at time of killing were 4 to 31 months (or unknown for two studies), duration of CR 2 days to 24 months(or unknown for one study), the level of CR 10-66% (or unknown for one study) and data were from 10 di�erenttissues.Method: Swindell started o� with raw data, proessed them by normalization by Robust Multihip Average(RMA) (Irizarry et al. 2003), determined di�erentially expressed genes using the Bioondutor Limma pakage(Smyth 2004) and adjusted P-values by the Benjamini-Hohberg method (Benjamini & Hohberg 1995). Asigni�ane level of 0.05 was used to identify di�erentially expressed genes in eah study. The number of di�erenttissues in whih a gene was di�erentially expressed was ounted. This study therefore emphasizes robustnessof di�erential expression over di�erent tissues. The approah is a value ounting approah with the problem ofignoring that di�erent genes may have been tested in di�erent numbers of studies.A di�erential expression signature was reated for eah dataset by assigning -1 to downregulated, 0 to non-signi�antly di�erentially expressed and 1 to upregulated genes. A similarity sore for eah pair of datasets wasalulated by
s =
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data. The alulated P-value was adjusted by the Benjamini-Hohberg method and the threshold set at p =0.05.Funtional analysis was performed based on GO-terms by a method implemented in the GOstats pakage(Falon & Gentleman 2007): GO-terms overrepresented among di�erentially expressed genes were determined andpooled for ontrasts of the same tissues. The number of tissues for whih a GO-term was found overrepresentedwas ounted. Additionally GO-terms overrepresented among the genes identi�ed as di�erentially expressed in 5or more tissues were determined.Only for liver-datasets genes were determined that were signi�antly di�erentially expressed in at least 3datasets and di�erentially expressed with aging in the other diretion in at least 1 out of 5 independent liver-datasets on aging.Results: Swindell found that CR in most ases had an e�et on less than 5% of genes, with the maximum foundto be 23% in one study.Clustering showed that the datasets in �rst instane lustered aording to tissue type, but also di�erent datasetsfrom the same study were likely to luster (even when from di�erent tissues). The intersetion between di�eren-tially expressed gene sets was around 30% or less, however ommonly greater than expeted by hane.Among all tissue types examined, CR most ommonly led to upregulation of genes involved in lipid metabolismand metal ion response, and downregulation of genes assoiated with immunity and protein folding.16 genes were found over- and 12 underexpressed in 5 or more di�erent tissues. Among the overexpressedwere two metallothionein genes (Mt1 and Mt1 ) involved in stress response (Thirumoorthy et al. 2007) andtwo period homologues (Per1 and Per2 ) reognized for their role in manipulating the biologial lok, butthat also exhibit tumor suppression ativity (Cheng Chi Lee 2006). Two proollagen (Col1a1 and Col3a1 )genes were found among the underexpressed. GO-terms enrihed among these were nitri oxide mediated signaltransdution (GO:0007263), zin ion homeostasis (GO:0006882) and iradian rhythm (GO:0007623) for over- andresponse to heat (GO:0009408), unfolded protein (GO:0006986), bioti stimuli (GO:0009607), hemial stimuli(GO:00042221) and response to pest, pathogen and parasite (GO:0009613) for underrepresented genes.Igf1 and mTOR eah were only found di�erentially expressed in three ontrasts and Sirt1 in none.GO-terms enrihed among genes di�erentially expressed with CR and in the opposite diretion for aging inliver were eletron transport (GO:0006118) and ellular metabolism (GO:0044237).3.1.3.1.1 Further analysis by Swindell, 2008b Swindell´s publiation �Genes regulated by alori restri-tion have unique roles within transriptional networks� (Swindell 2008b) is a ontinuation of the study presentedin Swindell, 2008a, in whih 16 genes were identi�ed as onsistently up- and 12 as downregulated.Overrepresentation of transription fator binding sites in the genes enrihed for di�erential expression withCR were determined by sequene analysis of the 500 bp upstream promoter region using the CisView database(http://lgsun.gr.nia.nih.gov/isview/) (Sharov et al. 2006).Furthermore a o-expression analysis was performed eah: In brief, o-expression of eah gene was determinedfrom a large number of miroarray measurements by Pearson orrelation oe�ients for eah pair of gene. Foreah gene the magnitude of its absolute orrelation oe�ients indiated its onnetivity strength. Loal (strong)onnetivity patterns were alulated as an average over the top absolute orrelation oe�ients for eah gene,non-loal (weak) onnetivity patterns as the orrelation oe�ient at a ertain high perentile.Results: Enrihed transription fator binding sites in mouse were:� for overexpressed genes:� TF_MIF, TF_STAT, TF_ZIC, TF_HEN1, TF_HNF4, TF_SREBP, TF_OLF1, ADD_MTF1A,ADD_MTF1B, MIT_051TATA, TF_MYB, ADD_PAX8 for metallothioneins� for underexpressed genes:� ADD_PAX8, TF_NFY, TF_MAZR, TF_MZF, MIT_013LEF for immunity related genes� TF_MAF, TF_MYB, TF_MEIS, TF_NFKB for ollagen related genesSwindell also showed that in mie the onnetivity of genes determined as enrihed for downregulation with CRwas high for loal network regions, however for those for upregulation it was low for both loal and non-loalnetwork regions. 33



3.1.3.2 Swindell, 2009In his 2009 study �Genes and gene expression modules assoiated with alori restrition and aging in the labo-ratory mouse� Swindell meta-analysed miroarray data on CR of 17 di�erent mouse tissues from 40 experiments(Swindell 2009). Most of the datasets used in this study plus some additional were also used in our meta-analysis.GSE11845 was not used in our study, sine it is based on intermittent fasting, not lassial CR. The LIMMApakage for linear model analysis (Smyth 2004) was employed to determine the p-values for di�erential expressionof eah probe within the datasets. Fisher´s inverse hi-square approah was used for eah gene to �rst ombinedi�erent datasets of the same tissue (if more than one dataset present) and again to ombine the p-values ob-tained from this over all tissues. Due to the large number of genes found this way a threshold for the number oftissues in whih a gene had to be di�erentially expressed was set for further analysis (GO-analysis, mapping toKEGG-pathways). This introdues a value-ounting omponent into the analysis.Co-expression analysis was performed similar to that in Swindell, 2008b and genes lustered by their o-expressioninto modules of 2, 3, 5, 10, 20 and 40 genes. Eah module was then sored for the di�erential expression of thegenes ontained based on their single-study p-values and the signi�ane assessed by srambling.Results: Overall 29.7% (6330) of the genes were up- and 27.6% (5884) downreguated over di�erent tissues. Thegene signi�antly upregulated in most tissues was Sgk1. As in Swindell´s previous meta-analysis (Swindell 2008)Mt2 was found up- and Serpinh1 downregulated when ombining evidene from di�erent tissues.Genes most strongly inreased by CR aross tissues were assoiated with the KEGG-pathways fatty aid metabolism,itrate yle, PPAR signalling, oxidative phophorylation, amino aid degradation and metabolism, iradianrhythm, renal ell arinoma, fatty aid elongation in mitohondria and the insulin signalling pathway . Genesommonly down regulated by CR were assoiated with foal adhesion, antigen proessing and presentation, ECM-reeptor interation, DNA repliation, MAPK signalling, ell ommuniation, VEGF signalling and natural killerell mediated ytotoxiity (P < 0.01).A total of 3, 5, 22, 39 and 28 signi�ant CR-responsive modules with 3, 5, 10, 20 and 40 genes, respetively, wereidenti�ed.3.1.3.3 Hong, 2010In �Revealing system-level orrelations between aging and alorie restrition using a mouse transriptome� Hongperformed GO-, o-expression and transription fator binding site analyses (Hong, S. et al. 2010).Datasets from 6 di�erent studies, omprising 5 tissues were used. Within single studies di�erentially expressedgenes were identi�ed by unpaired two-lass analysis using signi�ane analysis for miroarray (SAM) (Tusheret al. 2001). No analysis was onduted to detet enrihment of di�erentially expressed genes over the studies,but all genes found di�erentially expressed in any study were onsidered as �CR-transriptome�. The numberof times a GO-ategory was found assoiated with the genes di�erentially expressed with CR was ompared tothe number it was found assoiated with any of the genes in the study using hi-square analysis. Co-expressionanalysis was based on orrelation oe�ients alulated from 131 miroarrays from GEO and transription fatorbinding site analysis was performed using TRANSFAC (Hinrihs et al. 2006). The relevane of the determinedtransription fators was assessed by testing if they were signi�antly o-expressed with genes found di�erentiallyexpressed with CR.Results: GO-terms found enrihed in the CR-transriptome (up- and downregulated genes) were immune re-sponse, lipid metabolism, response to stimulus, ell proliferation, gluose atabolism, holesterol metabolism,angiogenesis, ell adhesion, ell yle, eletron transport, musle development, ytoskeleton organization, hemo-taxis, amino aid metabolism and as for ompartments extraellular spae, lysosome, mitohondrion and endo-plasmi retiulum. The o-expression modules from the aging transriptome showed strong orrelations with theCR-results in both metabolism (e.g., itrate yle and lipid metabolism) and the immune response. Binding sitesfor 12 transription fators were found overrepresented in upregulated genes (v-Myb, HNF-4α, TAL1, E4BP4,HLF, CCAAT box, FOXO1, MAZ, VBP, Tal-1alpha:E47, HNF-3β (FOXA2), Max) and 5 in downregulated(IRF-1, Pax, PAX6, YY1, NKX3A) however non of these was signi�antly o-expressed with its target genes.3.1.4 Overview of our study � value-ounting approahIn order to better understand the individual steps of our meta-analysis desribed further below a short overviewof the onept is given here: In large our meta-analysis follows the 7 step approah proposed by Ramasamy(Ramasamy et al. 2008): 34



Figure 3.2: Simpli�ed overview of the meta-analysis work-�ow. See text for details.1. Identify suitable miroarray studies2. Extrat the data from studies3. Prepare the individual datasets4. Annotate the individual datasets5. Resolve the many-to-many relationship between probes and genes6. Combine the study-spei� estimates7. Analyze, present, and interpret resultsThe statistial analysis of our meta-analysis is based on a value-ounting approah, i.e. we ounted the numberof times a gene is found over- / underexpressed in di�erent datasets and determine the probability that this isdue to random hane using a binomial test. The threshold for the p-values of the binomial test is determinedby repeating the analysis on srambled data and hosen so that the assoiated false disovery rate (FDR= meannumber of genes signi�ant at this uto� after srambling / number of signi�ant genes on unsrambled data) isaeptably low. The priniple of the study is therefore similar to that in Magalhaes 2009.Datasets for our meta-analysis are mainly reated from probe-level miroarray data from whih CR � AL pairsfor the same o-variates are extrated. Di�erential expression for eah gene is determined by an unpaired studentt-test. Sine for a non-negligible number of studies expression data ould not be obtained we also inluded theinformation on di�erential expression for lists of genes determined by the original studies.See �g. 3.2 for a simpli�ed work-�ow of the meta-analysis.
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3.1.5 Aims of our studyAs for other meta-analyses of miroarray data this study aims to �nd genes whih are deteted as signi�antlydi�erentially expressed with the inreased sample size after ombining studies, but are not found in the individualstudies. For example Choi et. al (Choi et al. 2003) de�ne integration driven disovery (IDD) as �nding a genedi�erentially expressed in the meta-analysis, but in none of the underlying studies. The integration drivendisovery rate (IDR) is the number of suh genes divided by the total number of disoveries and is about 44-63%in their study. IDD-genes are therefore suh with small but onsistent di�erential expression for whih the samplesizes in individual studies was too low for them to be deteted to be signi�ant. Therefore the statistial powerof the meta-analysis is inreased ompared to the single studies (the false negative rate is lower) at the same falsepositive rate. On the other hand the higher statistial power would also inrease the signi�ane threshold andtherefore redue the Type I error.Admittedly in a value-ounting approah the level of di�erential expression in the original study must be highenough that the gene is found di�erentially expressed in the �rst plae, however thresholds in our study forde�ning a gene as di�erentially expressed are more relaxed here than in the original studies.By inluding data on a wide range of organisms, tissues and other o-variates we eliminate idiosynrasies betweenstudies and aim to detet genes di�erentially expressed with CR under di�erent onditions (even though asu�ient number of detetions an also be reahed from one frequent organism or tissue). It was shown byDhabi (Dhahbi et al. 2004) that di�erent genes hange their expression after di�erent time-spans of CR. Sinewe also inlude data from experiments using a wide range of time-spans our analysis is likely to identify genesthat hange their expression quikly and stably.The genes enrihed for over- / underexpression serve as andidate genes for further studies, an be examined foran already known role in CR or aging or an be searhed for enrihment of transription fator binding sites.The network of genes an be extended by determining genes o-expressed with them.Information on funtional ategories assoiated with CR an then be retrieved by both deteting enrihment ofsuh ategories among the andidate genes or by repeating the desribed analysis on funtional terms insteadof genes. A term would in this ase be onsidered over- / underexpressed if the assoiated gene is over- /underexpressed.3.2 Materials and methods3.2.1 Miroarray studies used in the meta-analysisTo obtain high-throughput data on alori restrition we searhed the databases �Gene Expression Omnibus�(GEO; from NCBI), �ArrayExpress� (from EBI) and �Gene Aging Nexus� (GAN) for the terms �alori restri-tion�, �alorie restrition� and �dietary restrition�. We further heked other meta-analyses of CR for furtherdatasets for whih we requested expression data from the authors of the studies.For studies for whih gene expression data from none of these soures was available we attempted to retrievepublished lists of genes di�erentially expressed aording to the statistial riteria in the original study.The only high-throughput data found were from miroarray experiments. Sine almost no non-mammalian datawere among the studies found and mammalian data are more likely to resemble the situation in humans wedeided to fous this meta-analysis only on data from mammals. Data were furthermore exluded if we ould notextrat data from one group being on CR a orresponding one on AL or high alori, but otherwise omparablediet with no other di�erenes between the groups. CR is here de�ned as restrition in the amount of aloriesonsumed without malnutrition. One study omparing humans before and after bariatri surgery (GSE9157) wasexluded sine it was not lear how muh nutrient uptake was restrited by this measure and if it ould thereforebe de�ned as CR. Another study on humans (GSE11975) omparing gene expression data from people duringdiet and the following weight-maintainane period was also exluded sine the dietary setups ould not learlybe de�ned as AL vs CR. Finally datasets were not used if the experiment was aompanied by the appliationof drugs or infetion of the animals (GSE15344).We further heked that the miroarray platforms used in all studies were a unbiased representation of the tran-sriptome and not e.g. representing only seleted pathways.
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3.2.1.1 Studies for whih expression data ould be obtainedFor the 23 studies shown in table 3.2, expression datasets ould be obtained. That means the preproessed (i.e.bakground subtrated and normalized) miroarray signals for the onditions of interest were given for all probeson the array exept when exluded for low quality.Subsets used organism duration (end)age tissue amount of foodGEOGDS1261;(Tsuhiya,2004) Ames dwarf andnormal mie Musmusu-lus 4 months 6months liver 90% of the AL intake* ofanimals of the samegenotype for 1 wk, to80% for the next week,and to 70% for the rest(*average amountonsumed daily by ALmie during thepreeding week);GDS1808;(Dhahbi,2005) CR8-AL andLTCR-AL; haveCON in ommon Musmusu-lus CR8:2month;LTCR: 17months 22months liver CON 93kal/wk; LTCR:52.2; CR8: 77 for 2weeks, 52.2 for 6 weeksGDS2612;(Edwards,2007) 25 months old Musmusu-lus 23.5months ~25months skeletalmusle CON 84kal/wk, CR26% less (62kal/wk)GDS2681;(Someya,2007) 15 months old;exluded: 4months: CRmissing Musmusu-lus 3 months 15months ohlea CON 84kal/wk, CR26% less (62kal/wk)GDS2961 +GDS2962;(Lustig,2007) 6, 16 and 24months old;exluded: 1months old: CRmissing Musmusu-lus 11, 41and 83weeks 6.5,13.5,24months thymus Up to 13 weeks of age,100% regular feed,followed by 90% forti�edfeed for 1 week, 75% for1 week, then 60%forti�ed feed after thatuntil the age at whihthe mie were sari�edGDS355 +GDS356;(Kayo, un-published) >30 months old;exluded: 5months old; CRmissing Musmusu-lus ? > 30months kidney ?GSE11244;(Estep,2009) FHC-CR,TAL-CR; haveCR in ommon Musmusu-lus 14 days 9.5months liver true ad libitum: as muhas wanted (about125kal/wk); CR:73kal/wk; �xed highal: 110 kal/wkGSE11291;(Barger,2008) 3 tissues;exluded: 5months: CRmissing Musmusu-lus 16months 30months Heart,neoortex,gastrone-mius CON: 84 kal/week, CR:63 kal/weekGSE14202;(Padovani,2009) exerise andnon-exerise Musmusu-lus 6 weeks 4months mammarygland 30% restrition
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GSE18297;(Saito, un-published) 1 week or 1month CR; 5, 10,20, 30% foodrestrition; sameontrols fordi�erentrestrition levels
Rattusnorvegi-us one weekor onemonth 1.5 or~2months liver 5, 10, 20, 30% restrition

GSE6110;(Chen,2007) 24 months old;exluded: 4months old: CRmissing Rattusnorvegi-us 22.5months 25months kidney CR begins at 10 wk, 10%restrition until 15 wkwhere it is inreased to25 and to 40% at 4monthsGSE6718;(Linford,2007) 2 tissues;exluded: 4months Rattusnorvegi-us 20months 24months Heart andAdiposeTissue 60% of ALGSE7502;(Sharov,2008) 2 tissues; ages: 6,16, 24 months;exluded: 1month: CRmissing Musmusu-lus 2.5, 12.5,20.5months 6, 16,24months Testis andOvary 40% restrition
GSE8426;(Xu, 2007) 5 tissues; 6, 16, 24months; exluded:~1mo samples:CR missing Musmusu-lus 2.5, 12.5,20.5months 6, 16,24months Cerebellum,Hippoam-pus, SpinalCord,Striatum,Cortex at 14 weeks of age at10% restrition, andthen hanged to 25% at15 weeks and 40%restrition at 16 weeksonwardGSE9917;(Larrouy,2008) no subsets Homosapiens 4-wkvery-low-aloriediet, a3�6-wklow-aloriediet, anda 4-wkweight-maintenane

~27-48years skeletalmusle 4 weeks: 3.3 MJ/d, 3-6weeks: 4�5 MJ/d, 4week: 5.8 MJ/d
GSE17309;(Fernández,unpub-lished) no subsets Sussrofa 211 days ~7months? liver 25% restritionGSE12853;(Connor,2010) timepoint 1dbeforerealimentation Bostaurus 12 weeks;8 weeksrealimen-tation 11months liver 60-70% of AL
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GSE241;(Massaro,2004) 2, 4, 12h CR;exluded: othertimepoints: missontrols Musmusu-lus 2-96h;time-points>12hmissontrols;there is a14/15dtimepointin thepaper,but notin the �le
adult lung redution by 66%

GSE9121;(Pohjan-virta,2008) adipose tissue: 10d CR; liver: 4 and10 d CR (ontrolsfor timepointspooled) Rattusnorvegi-us liver: 4 or10 days;WAT: 4days ~3-4months liver,adiposetissue restrited: 4 day:18�12�9�6 g; 10 day: adlibi-tum�16�14�11�8�6�4�4�2�1gGSE904;(Beker, un-published) ~170 d old;exluded: 17dold: no CR Musmusu-lus ? ? liver ?GANExpressionPro�le ofAging andCRRetardation,Neoortex;(Lee, 2000)
30 months old,Neoortex;exluded:Hippoampus:CR missing, 5months: CRmissing

Musmusu-lus 28months 30months neoortex 26% less than AL
ArrayExpressE-MEXP-748;(Selman,2006) 4 tissues Musmusu-lus 16 days ~4months liver,skeletalmusle,olon,hypothala-mus redued to 90% of ALmie at 14 wk, 80% at 15wk, and 70% at 16 wk ofageProvided byHu; (Wu,P., 2008) no subsets Musmusu-lus 4 months 8months forebrain 70% less than AL

Two of the studies were exluded in the ourse of the meta-analysis as desribed later. From eah study oneto �fteen datasets / subsets were extrated, so that we obtained a total of 61 datasets. Data in eah subsetsonsisted of AL and CR samples from animals of the same age and CR setup and of the same tissue. Theonly o-variate for whih we did not split data into di�erent datasets was sex, sine we did not expet a large39



di�erene in the e�et of alori restrition between male and female animals and we did not want to reduerepliate numbers of eah dataset more than neessary. Also the number of subsets of individual studies shouldnot get too large, sine this study would gain too muh in�uene in the meta-analysis.The vast majority of 48datasets was from mouse (Mus musulus), 12 from rat (Rattus norvegius) and one from pig (Sus srofa). Theseinlude di�erent strains of mie and rats. The biggest group for the tissue o-variate was liver (18) and brain wasrepresented by many di�erent tissues. In the list of 19 di�erent tissues 6 are represented by only one dataset.The duration of CR ranged from less than one day (5 datasets) to 23.5 months and the ages at whih tissues wereobtained from 1.5 to over 30 (exat age unknown) months for mouse and 1.5 to 24 months for rats. Histogramsof the distribution of datasets over these o-variables after inluding datasets for whih expression measurementsould not be obtained are shown in �g. S.1.3.2.1.2 Studies for whih expression measurements ould not be obtainedFor the following studies the miroarray signal intensities for all probes was not available, but rather lists of genesfound di�erentially expressed by the statistial method used in the original study. For some of them p-valuesand / or e�et-sizes were given. We requested expression data from the (orresponding) authors of these studies,but were not able to obtain them. Some of the studies were eventually not used for the reasons desribed.(Fu et al. 2006): Genes di�erentially expressed aording to a t-test assuming equal varianes at a Benjamini-Hohberg FDR adjusted p-value <0.05 in heart, liver and hypothalamus ould be obtained from the supple-mentary materials of the orresponding publiation. The data are from 4-6 months old male mie in whih CRanimals were restrited to 60% of alori intake of AL-animals for 2.5 to 4.5 months.(Wu, P. et al. 2009): A list of di�erentially expressed genes in the hypothalamus of alori-restrited vs. adlibitum fed animals was kindly provided to us by the authors. This dataset had to be exluded later on due toannotation problems (see: �3.2.3 Proessing gene lists from studies for whih expression data were not obtained).(Higami et al. 2004): Data from Higami were not used sine only seleted genes di�erentially expressed withCR ould be found in the paper or its supplement. Allowing lists of genes seleted for partiular riteria wouldintrodue bias to our work.(Cao et al. 2001): Data for genes di�erentially expressed with CR at a 1.7-fold hange riterion were listed in theorresponding publiation. Only data for genes di�erentially expressed in CR, but not di�erentially expressedwith age in the opposite diretion in the same study were used for reasons desribed in �3.2.2.5 Exluding genesdi�erentially expressed with age�. Furthermore we only used data for long term CR, but exluded data for shorttime CR sine the ontrol used in the paper was not age mathed. Data were given for liver of 7 and 27 monthsold female mie of the long lived strain C3B10RF1 whih had been on CR for 6 or 26 months respetively.(Dhahbi et al. 2004): CR data from livers of male mie of the long lived F1 hybrid strain B6C3F1 were obtainedfrom the orresponding publiation. Data were obtained for 2, 4 and 8 weeks as well as 27 months of CR. CRof 77kal/week for 2 weeks and 52.2 kal/week afterwards (exept mie on 2 week CR, whih were one week on77kal/week and one week on 52.2 kal/week) ompared to 93 kal/week for ontrol animals was indued at anage so that mie were 34 months old at time of killing. Data from CR-mie were ompared to data from 34months old ontrols and a 1.5-fold hange was onsidered signi�ant.(Corton et al. 2004): CR data from livers of mie on a SV129 bakground, alori-restrited for 5 weeks wereavailable in the supplement of the orresponding publiation. Calories were redued to 90% of the AL group forone week and 65% for another 4 weeks. All data of mie treated with hemials were ignored. The thresholdfor signi�ane was set at p <=0.001 with Bonferroni orretion and a at least 1.5-fold hange in expression wasrequired.(Lu et al. 2007): Data from Lu were exluded sine mie were treated with TPA, a diaylglyerol mimeti andtumor promoting substane.Data from Wong, 2002 omparing gene expression in the liver of male C57BL/6 ad libitum fed mie to suhrestrited to 60-70% of their alori intake ould not be obtained from the orresponding publiation or supple-mentary data. A link in the paper that is supposed to diret to the expression data was not funtional.(Kayo et al. 2001): Kayo provided data on di�erential gene expression in skeletal musle of rhesus monkeyson CR for 9 years and sampled at an age of around 20 years. The threshold was seleted so that the averagefold-hange had to exeed 1 standard error from a 1.3-fold hange.Eleven gene lists were reated from these studies in addition to the 63 reated by analysing gene expressionmeasurements by ourselves. After ombining these data more than half of the now 74 datasets were from mieand more than one third from liver. The distribution of the number of datasets over di�erent o-variates is shown40



in �g. 3.2.
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3.2.2 Analysing gene expression data from omplete datasets3.2.2.1 Obtaining and assembling miroarray data �les3.2.2.1.1 Obtaining �les from GEO3.2.2.1.1.1 Downloading �les and seleting samples GDS (GEO dataSet) and GSE (GEO series)�les were obtained from NCBI Gene Expression Omnibus (GEO) (http://www.nbi.nlm.nih.gov/geo/; (Barrettet al. 2009)) and proessed in a similar way using R (R Development Core Team 2009). In supplement2metaan_R_GDS.txt and metaan_R_GSE.txt examples for seleting and proessing samples from normal (asopposed to Ames dwarf) mie for GDS1261 and heart tissue samples for GSE11291) are attahed. All GEO �lesexist in a preproessed form, i.e. they are bakground subtrated and normalized. The �les were downloadedfrom GEO and onverted to ExpressionSet objets using the GEOquery Bioondutor pakage (Gentleman etal. 2004) (Sean & Meltzer 2007). Samples that di�er only in alorie intake (i.e. alori restrition vs. ontrolonditions) but keeping all other observed variables onstant (e.g. only from one tissue type or age group) wereseleted by pattern mathing on the �desription�- or �title�-variable (or in rare ases also other variables like�age�) of the ExpressionSet reated from GDS or GSE �les respetively.The only other variable (exept alorie intake) for whih we did not split the data in di�erent �les aording tothe value of the variable was the sex of the animals. We did not make a di�erene between samples from malesor females, but heked that the distribution between male and female for CON and CR within eah dataset didnot di�er signi�antly.In GSE9121 data for liver samples after 4 or 10 days of alori restrition were given together with data fortheir ontrols. We reated data sets for 4 and 10 days of CR, however used a ombination of the ontrols for bothtime points for both of them to inrease statistial power. We onsidered this justi�ed sine we did not expetmajor gene expression hanges due to a 6 day di�erene of age for rats whih are 11-15 weeks old. In all otherases CR datasets of one time point would only be ompared to CON datasets of the same time point.If available the Entrez Gene ID, Ref. Seq. Transript ID and Gene Bank aession number for eah probe were42



obtained from the GPL-�le for the miroarray platform used in the orresponding experiment. A tab-delimited�le was reated appending the expression value olumns to these three annotation olumns. The olumn namesfor all ontrol samples were �CON� and CR-samples were �CR�.Most experiments of this study used one-olor miroarrays, so that separate values for ontrols and alorirestrition (CR)-samples were given. For the only miroarray where CON and CR samples were measured onthe same (two-olor) array, GSE9917, data were given as ratios of Cy5:Cy3. Relevant values were extrated andstored in this form. Unfortunately this dataset had to be exluded subsequently due to annotation problems(see: �3.2.2.2 Mapping non-mouse Entrez IDs to mouse Entrez IDs�).3.2.2.1.1.2 Binding annotation with di�erent number of lines to expression values In most asesthe number of probes in the GSE �les mathed the number of probes in the orresponding GPL-�le sine the GSE�les ontained all probes inluding those with low signal et. In the ase of GSE7502 probes were exluded fromthe GSE-�le, but the annotation ontained all probes of the array. Therefore a table ontaining the annotationand another ontaining the expression values were saved in �les and expression values bound to their annotationvia the ommon identi�er �ID� using Perl (vlookup_mod4_3.pm and use_vlookup_mod4.pl in supplement 2).3.2.2.1.1.3 Combining �les separated into di�erent list elements In the ases of GSE7502 andGSE904 the GSE-�le was downloaded to R as a list with two instead of only one element, beause di�erentmiroarray platforms (GPL2552 and GPL4358) or parts of the same platform (GPL738 and GPL782) were used.For GSE7502 di�erent versions of a miroarray hip were used. The same number of CON-samples as CR-sampleswas tested on eah platform, so that we did not expet a bias from the use of di�erent platforms.In this ase we bound the annotation in the orresponding GPL-�le to eah list element, wrote these tables to�les and further proessed them in Perl by ombining values with idential Entrez ID or if no Entrez ID wasgiven for a probe by GeneBank aession number. Sine by manual inspetion we did not �nd any ase in whiha di�erent number of probes for one gene existed in one than the other array (and would therefore lead to lineswith values for only some samples, whih would most likely lead to disarding the line in further analysis) we didnot are whih probe of one gene is linked with whih probe for the same gene on the other platform. Due to theway ollapsing of probes targeting the same gene was done later it would not ause trouble if olumns of di�erentprobes targeting the same gene were linked here (see �3.2.2.3 Collapsing probes targeting the same gene�).This linking was done with all samples relevant for our analysis and samples orresponding to the same CON� CR pair (e.g. one pair for 6 months alori restrited animals versus their ontrols another for 16 monthsrestrited animals versus their ontrols) were extrated to one �le eah manually using Exel.For GSE904 the list of probes in the �rst �le was ontinued in a seond one. Eah �le was therefore treatedas an independent one and then both ombined by binding the rows together. In the ase of GSE8426 four listelements were obtained sine the probes were distributed to two di�erent platforms (GPL738 and GPL782) andfor eah of those the samples were distributed to two �les eah. Therefore the samples divided to di�erent �leswere ombined by binding the olumns together as for GSE7502 and the probes from the di�erent platforms bybinding the rows as for GSE904 after adding the orresponding annotation.3.2.2.1.1.4 Deteting and reversing transformation of data Sine the values in some of the datasetswere transformed (mainly log-transformed ), but were not in others and we wanted to alulate omparable e�et-size measures for all the datasets the transformation of transformed data was reversed: To determine if valuesin the GEO data �les were transformed the value of the value_type �eld of GDS �les or the data_proessing�eld of GSM �les orresponding to GSE �les were obtained. The value_type �ount� tells that there was notransformation done on the data, the value_type �transformed ount� indiates some kind of transformation. Thedata_proessing �eld gives information by whih algorithm/software the data were proessed so that in doubtit an be found out if this method applies transformation. Furthermore the mean of all samples was alulatedfor eah probe and the median value of these means used as an estimate. E.g. if it was above 10 this supportedthat there was no log-transformation. For further indiations we used the histogram of the sample means, whihe.g. indiate log-transformation if values below 0 appear. (For GDS �les these further riteria were only used ifvalue_type did not give bak �ount�). In doubt we heked if it was likely to obtain the given values the waydesribed in the GEO-�les from the raw data without log-transformation or ontated the authors.3.2.2.1.1.5 Handling non-globally normalized data We aimed at reating �les with untransformedvalues whih were between-array normalized by global normalization, i.e. adjusting the median (or mean) of all43



signals to the same value for all arrays. We did not expet that di�erent ways of normalization would ritiallyimpat our p-value and e�et size alulation, however there were ases when normalization was intermingled withlog-transformation, so that log-transformed ould not be reversed easily. For GDS2961/GDS2962 and GSE8426data were �rst log10 transformed, then normalized to a mean of 0 by subtration and then the z-sore of theprobe in the distribution of all probe signals was alulated (z-sore normalization; (Cheadle et al. 2003)).Sine in this ase also �RAW� values were given in the separate GSM-�les, these �les were downloaded andthe �RAW� (bakground subtrated and within-array normalized) values of eah sample divided by the meanexpression value over all probes and multiplied by the grand mean (mean of the means over all samples relevantfor our analysis), whih resembles global normalization.In GSE11244 the Cy3-signal was normalized to the Cy5-signal of Stratagene Universal Mouse Referene RNA ina two-olor hybridization and the result log2 transformed. We reversed the log2 transformation by raising thevalue to the power of 2, but we aepted this way of normalization and expeted similar p-values and e�et sizesthan for globally normalized arrays, even though the values in this �le were lower (distributed around a mean of1). 3.2.2.1.1.6 Combining datasets orresponding to the same experiment In ases where two �les fora single experiment existed (the probes of one miroarray were divided to these �les; e.g. GDS2961 + GDS2962and GDS355 + GDS356) we ombined the �les before ontinuing the analysis in Perl.3.2.2.1.2 Obtaining data from Gene Aging Nexus (GAN) In GAN (http://gan.us.edu/publi/index.jsp;(Pan et al. 2007)) �Expression Pro�le of Aging and CR retardation, Hippoampus� and �Expression Pro�le ofAging and CR retardation, Neoortex� were the only studies on CR not found in GEO. Unfortunately theHippoampus entry only ontained data from ontrols and was therefore of no use for us. The Neoortex datawere downloaded manually for 30 months old animals only sine for 5 months old no CR group existed. Columnnames were hanged to �CON� and �CR�.3.2.2.1.3 Obtaining data from ArrayExpress E-MEXP748 was the only �le that had to be obtained fromArrayExpress (http://www.ebi.a.uk/miroarray-as/ae/; (Parkinson et al. 2009)), sine no dataset orrespondingto this study was found in GEO. We used the ArrayExpress Bioondutor pakage (Kau�mann et al. 2009) forobtaining these data. In ontrast to most GEO-�les the annotation in the .adf �le was not in the same orderas the probes in the �le ontaining the expression values, so that the olumns of the �les ould not be diretlybound together. Instead both �les were sorted aording to the olumn ontaining the probe IDs before bindingannotation olumns to the expression values.3.2.2.1.4 Obtaining and proessing data diretly from authors For all CR miroarray studies we knewabout that ould not be found in one of the databases we ontated the (orresponding) author and requestedthe data. Unfortunately Hu was the only one to provide these (Wu et al. 2008). (For another study (Wu, P. etal. 2009), for whih they ould not supply the original data we obtained a list of di�erentially expressed genes.We tried to inlude it in �3.2.3 Proessing gene lists from studies for whih expression data were not obtained�,but had to drop it due to annotation problems).For all studies for whih we ould not obtain expression data we searhed for lists of di�erentially expressed genesin the orresponding publiations and supplementary materials (see 3.2.3).3.2.2.2 Annotating data with identi�ers ommon between all data �les3.2.2.2.1 Aim and overview To integrate di�erent datasets we needed the same kind of annotation for allof them. The annotation found in the gene expression databases (e.g. the GPL �les in GEO) varies betweendatabase entries. Many of our datasets were annotated with Entrez IDs, for others e.g. only GeneBank aessionnumbers and Unigene IDs were available.Sine by far most of the datasets in this analysis were from mouse we aimed at displaying our results annotatedwith mouse Entrez IDs. We expeted Entrez IDs to failitate the mapping between di�erent organisms, e.g.ompared to Unigene IDs. We therefore onduted a gene-entered rather than a transript entered analysis(whih would be done i.e. when using Unigene IDs) and aepted to loose information from probes targetingsequenes that do not orrespond to annotated genes (or expressed sequene tags (ESTs)) or for whih no ho-mology mapping between the organism of the study and mouse existed (as of April 2010).44



For this annotation with identi�ers ommon between all data �les we needed at several stages a programthat looked up the given annotation in another �le that mathes this annotation to another one. We useduse_vlookup_mod4.pl together with vlookup_mod4_3.pm (supplement 2).vlookup_mod4_3.pm is a subroutine whih takes harater strings (ommon identi�er) of a spei�ed olumn of�le 1, searhes an exat math of this string in a user-spei�ed olumn of �le 2 and adds the value in anotherspei�ed olumn of the same line to �le1 (�g. 3.3).If the strings you searh for are omma-separated lists of elements the user an speify if he/she wants tosearh for the omplete string or eah element of the string individually. In the seond ase all found strings areombined to a omma-separated one. If the same string is found twie it will our only one in this list. Thislist is added to �le1 as the found string.If a ommon identi�er mathes to more than one value in the seond �le, the user an hoose if he/she wantsto ombine all found elements in a omma-separated list, reate a new line for eah or treat this situation as ifnothing was found.For all values in �le 1 for whih no orresponding value in �le 2 is found the user an speify other olumns ofommon identi�ers several times. The program an be run on multiple �les at one.3.2.2.2.2 Adding Entrez IDs to mouse datasets where missing For some mouse data sets Entrez IDswere not available in the platform annotation. Annotation �les mathing mouse GenBank aession numbersand MGI Automati Gene Symbol (or if appropriate other identi�ers like Ensembl Gene ID, Unigene ID, RefSeqDNA ID, et.) to Entrez IDs were downloaded from Ensembl (BioMart: Ensembl Genes 57: Mus musulus genes(NCBIM37); April 2010) (http://www.ensembl.org/; (Hubbard et al. 2009)). Entrez IDs were added by searhingthem in the annotation �le by looking up whih one mathed the GenBank aession number (GB_ACC) inour data �les and if not found, other identi�ers. For this proess we used use_vlookup_mod4.pl together withvlookup_mod4_3.pm. For probes annotated with more than one GB_ACC we obtained all available EntrezIDs. In later steps however we preferred signals mapped to Entrez IDs unambiguously to those with more thanone Entrez ID (see: �3.2.2.3 Handling probes targeting more than one gene�).A ertain number of lines in the data�les (8926 of 19200) were lost during this proess, e.g. for genes, whih werenot yet annotated with Entrez IDs.3.2.2.2.3 Mapping non-mouse Entrez IDs to mouse Entrez IDs For data�les from speies other thanmouse we added the Entrez IDs of the homologue mouse gene by searhing for the given non-mouse En-trez IDs to obtain uniform annotation for all �les. To do this we downloaded the HomoloGene data �le(ftp://ftp.nbi.nih.gov/pub/HomoloGene/urrent : homologene.data from 08/08/09) mathing annotation ofhomologue genes between di�erent organisms (Sayers et al. 2010).Files were reated ontaining onlyMus musulus or the organism of interest´s data. We used use_vlookup_mod4.plwith vlookup_mod4_3.pm to �rst math all Mus musulus Entrez IDs with the annotation of the organism ofinterest into the same line using the homology group ID as ommon identi�er and then again to add the mouseEntrez ID to the organism of interest´s data�le using this organism´s Entrez ID as ommon identi�er. Again ifmore than one identi�er was mathed to a probe in the original �le a omma-separated string of all orrespond-ingly found mouse Entrez IDs was added. In later steps however we preferred signals mapped to Entrez IDsunambiguously to those with more than one Entrez ID (see: �3.2.2.3 Handling probes targeting more than onegene� and �g. 3.4)Sine we did not want any non-mouse gene in our analysis with homology to more than one mouse geneand therefore reating ambiguity, we deleted all homology groups omprising more than one gene in the mouseannotation �le using only_one_allowed.pl (supplement 2). We however aepted if Entrez IDs of the organismof interest were in more than one homology group, i.e. if more than one of them mathed to only one mouseEntrez ID.This proedure was highly ine�etive for the bos taurus dataset GSE12853 and would have lost all but oneprobe. Therefore we annotated this �le in a di�erent way that is desribed below (�3.2.2.2 Speial annotationproedure for GSE12853�). For GSE6110 rat Entrez IDs were not given in the data �le and the given UnigeneIDs were not part of the HomoloGene �les. Therefore the mouse Entrez ID was added �rst by looking upthe orresponding rat Entrez ID in a rat BioMart �le (BioMart: Ensembl Genes 57:/ Rattus norvegius genes(RGSC3.4)) (as desribed for mouse in �3.2.2.2 Adding Entrez IDs to mouse datasets where missing�) and45



Figure 3.3: Work�ow of the vlookup_mod4_3.pm subroutine with options used in this study. SF are olumnsontaining values to searh for, CID (ommon identi�er) represents the orresponding value in the �le to addfrom. AE is the element to add. The general �ow is from top to bottom; First SF1 from the �Add-to� �leis looked up in the �Add-from� �le. For lines for whih SF1 is not found SF2 is looked up. The results ofboth searhes are ombined; green arrowheads indiate examples for speial situations: 1, ommon identi�ersmathed to di�erent values to add: these values will be ignored; 2, omma-separated lists of elements to searhfor: individual elements of omma-separated lists are searhed; *x*[number℄ is a marker for multiple lines reatedfrom one probe; these will be ombined again to their orresponding probes; see text for details.
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Figure 3.4: Example for the pipeline for adding mouse Entrez IDs to non-mouse expression values and proessingof data. The way values are displayed does not resemble their real format. For larity non-mouse and mouseEntrez IDs were depited in di�erent formats. Mouse Entrez IDs are added to the data�les via non-mouse EntrezIDs as ommon identi�ers employing the subroutine vlookup_mod4_3.pm. AA�>A indiates that two identialidenti�ers in one line are merged. Lines orresponding to the same gene are ollapsed and p-values alulated asdesribed in the text using meta-analysis_v3.2.pl. �Expression values� represents lists of expression values bothfor CON and CR in eah line.
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using this to �nd the mouse Entrez ID in the HomoloGene �le. Similarly for GSE9917 the annotation in the�le (GB_ACC) was not given in the �le obtained from HomoloGene. Therefore we downloaded the BioMartannotation �le for homo sapiens (BioMart: Ensembl Genes 57: / Homo sapiens genes (GRCh37)) intending to�rst add the human Entrez ID, whih then should have been used to �nd the mouse Entrez ID. However onlytwo of the GB_ACCs given in the data�le ould be found in the BioMart �le. We also were not able to obtainfurther annotation from the authors and therefore had to exlude the dataset.Annotation of GSE17309 was more omplex sine this ontained data from sus srofa, for whih no homology �lewas available at HomoloGene. Therefore we obtained homology information from BioMart in whih however onlyEnsembl IDs (Ensembl Gene ID, Ensembl Transript ID, et.) were available. Therefore we also obtained theneessary BioMart annotation �les on mouse and pig and �rst mapped the given pig-identi�ers to pig EnsemblGene ID, from there to mouse Gene Ensembl ID and �nally to mouse Entrez ID. All but 357 of original 24123(mainly poorly annotated) probes were lost during this proess.3.2.2.2.4 Speial annotation proedure for GSE12853 Sine we were not able to map mouse Entrez IDsto the steer data GSE12853 for the given annotation (GB_ACC, probe ID and Gene name) diretly via �les fromHomoloGene, we tried to obtain Bos Taurus Entrez IDs �rst and map these to mouse Entrez IDs similar to whatis desribed above for GSE6110 and GSE9917. However for no probe we �rst found bovine Entrez ID and thenalso the orresponding mouse Entrez ID. This was probably to the poor annotation of Bos Taurus GB_ACCsand Gene names with Entrez IDs.To overome this problem the authors (Erin Connor et al.) kindly provided us with further and more reentannotation. See �g. 3.5 for the annotation proess using this �le: Sine this annotation only ontained nuleotideRefSeq IDs and the HomoloGene �le only protein RefSeq IDs a �le was downloaded from BioMart mathing bostaurus nuleotide to protein RefSeqIDs. The nuleotide RefSeq IDs were added to the HomoloGene �le ontainingbos taurus protein RefSeqIDs mapped to mouse Entrez IDs (vlookup_homologeneSteer.txt) using a modi�ationof vlookup_mod4_3.pm and the �le was now alled vlookup_vlookup_homologeneSteer.txt. (The modi�ationof the program was neessary sine RefSeqIDs ontained version numbers in one �le, but not the other).The annotation provided by the authors was mapped to the experiment data via probe IDs spei� for this ex-periment so that the data were annotated with nuleotide RefSeqID and GB_ACC identi�ers (vlookup_vlookup_GSE12853.txt). Finally mouse Entrez IDs were added to this �le from vlookup_vlookup_homologeneSteer.txtvia the ommon nuleotide RefSeq ID identi�er. Even with this proedure not more than one gene ould beannotated. The same is true when searhing for GB_ACC additionally to nuleotide RefSeq ID. Therefore thedataset was exluded form the analysis.3.2.2.3 Proessing datasets, performing a t-test and alulating e�et sizesAfter annotation the dataset �les were further proessed and t-test p-values and e�et-sizes for the CR � CONomparison were alulated. These steps were done in bath-mode for all datasets using meta-analysis_v3.2.pl(supplement 2).3.2.2.3.1 Handling missing values and annotation In eah individual miroarray experiment lines thatontained more than 30% missing values or for whih no Entrez ID annotation was found were eliminated. Tofailitate subsequent analysis all remaining missing values were replaed by the row mean, i.e. alulated fromvalues for ontrol and CR samples. This proedure in general lowers the hane to �nd this gene di�erentiallyexpressed, re�eting the doubts about it due to the missing value.3.2.2.3.2 Collapsing probes targeting the same gene Probes targeting transripts of the same gene(and i.e. having the same Entrez ID) were ollapsed by using the mean over eah probe (employing the Statis-tis::Desriptive CPAN pakage by Colin Kuskie and Shlomi Fish). That probes with higher value thereforeontribute more strongly to the �nal result is justi�ed by the assumption that probes with higher values are morereliable sine they probably bind transripts with higher a�nity and their signal to noise ratio is higher. Thisproedure is therefore more onservative than e.g. the one used by Swindell (Swindell, 2009) whih selets themost di�erentially expressed probe.
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Figure 3.5: Annotation proedure for GSE12853. File desriptions or names are in bold print. See text fordetails.
Figure 3.6: Illustration of ollapsing of probes. Left table: before, right: after ollapsing; eah line represents aprobe. The expression value of Entrez ID �1� is �a� sine this is the only unambiguous mapping of a probe to�1�. Sine no probe is mapped unambiguously to �3�, its expression value is the mean over the values of bothprobes mapping to it. Symbols do not resemble true formats.3.2.2.3.3 Handling probes targeting more than one gene If probes mapped to more than one EntrezID we ignored them if other probes existed whih only mapped to this Entrez ID, but ollapsed them if no suhprobes existed (Fig. 3.6). We preferred unambiguous probes sine the expression values for a gene would not bedisturbed by the expression values of other genes. On the other hand we preferred to use ambiguous values ifthere was no other option to loosing genes from our analysis, espeially suh with high homology to others, sothat no unique probe for them existed.This approah is therefore more onservative than expanding every entry to all its identi�ers before ollapsingas suggested by Ramasamy (Ramasamy et al. 2008).3.2.2.3.4 Performing a t-test and alulating e�et sizes For eah gene the p-value of an unpairedstudent t-test assuming equal varianes was alulated using the Statistis::Distributions CPAN pakage byMihael Kospah and Matthias Trautner Kromann. As an e�et size measure we alulated the fold hange bydividing the mean of CR by the mean of CON values.For the two datasets that onsisted of only one repliate (GSE904 and data from Hu on forebrain (Wu et al.2008)) we only alulated e�et-sizes. 49



3.2.2.4 Quality ontrol3.2.2.4.1 Extrating quality ontrol parameters A �le ontaining ertain harateristi values for eahdataset was built to ontrol the quality of the original data and the quality of proessing (The full table is foundin tab. 3.3):�Probes before proessing� is the number of probes after obtaining and annotating �les for individual exper-iments. �Genes after proessing� is the number of genes for an experiment after proessing it as desribed in�3.2.2.3 Proessing datasets, performing a t-test and alulating e�et sizes�. �CON-samples� and �CR-samples�are the numbers of miroarray samples (repliates) for ontrol and CR animals. �mean_CON� and �mean_CR�are the mean expression values over all probes of ontrol and CR samples respetively and �STDEV_CON� and�STDEV_CR� the orresponding standard deviations over the probes (not to be mixed up with STDEVs overrepliates). �perent overexpressed� and �perent underexpressed� give the number of genes over- and underex-pressed at a p-value <0.05 aording to the t-test and �e�et size at 1-perentile� and �e�et-size at 99-perentile�are the 1. and 99. perentile of the e�et size. The experiment names inlude the GEO-, ArrayExpress or ab-breviated GAN-aession of the the reord, they were reated from and the seleted experimental onditions ifmore there was more than one in the study.The quality was heked by searhing the list for outliers. The number of probes on the arrays was betweenabout 9000 and 45000 and was lowered to a number of genes after proessing whih was about half of it, pre-sumably mainly due to di�erent probes targeting the same gene. Repliate numbers were between 1 an 11 andabout the same for ontrol and CR samples in eah dataset. The average expression value was between about100 and 10000. Exeptions are the two datasets of the GSE11244 study whih is beause the expression valueswere normalized to internal standard RNA values. In the dataset of the GSE6110 study expression values werenormalized to 1 so that the average is also lower than for the other studies here. The STDEV over the signal ofall probes normally was about two to three times the average signal. Between 1 and 25% of genes were founddi�erentially expressed at a p-value uto� of 0.05 with the e�et-size at the 1-perentile being about 0.9 to 0.5(i.e. downregulation by 1/10 to ½) and at the 99-perentile about 1.1 to 3.0 with the exeption of GSE904 forwhih these values were more extreme. This is probably due to the fat that there is only one repliate andoutliers have a higher impat on these values. For the other study with only one repliate by Hu this is not thease, probably beause the study was done on pooled samples whih redues variation.3.2.2.4.2 Comparison to genes found di�erentially expressed in the original study To further hekagainst any �aws in our analysis we heked the genes found against those published as di�erentially expressedin eah orresponding study. 100% overlap was however not expeted sine the studies often used di�erent sta-tistial approahes from ours.To ompare �ndings we downloaded lists of genes desribed as di�erentially expressed from tables in the orre-sponding publiations or their supplementary materials.For Dhahbi, 2005 and Edwards, 2007 no list of di�erentially expressed genes from the original study ould befound. For some other studies only di�erentially expressed genes for some onditions (e.g. ages) ould be ob-tained. In these ases we tried to extrat information on genes found di�erentially expressed form the text of theoriginal publiation. Studies for whih no information at all about genes di�erentially expressed with alori re-strition was given are GSE904, GSE6110, GSE18297, GSE14202, GSE17309, GDS355+GDS356 and GDS2612.This analysis was done taking about 4 random genes published to be di�erentially expressed and heking themagainst the p-values and e�et sizes found in our study. Considering that the statistial approah between theoriginal and our study di�ered we only required about 2 or 3 of these genes to be statistially signi�ant or nearlystatistially signi�antly expressed in the same diretion and aepted 1 or 2 genes not found signi�ant in ouranalysis.We investigated the ase more losely if genes were found statistially signi�ant in the other diretion (up ordown) than in the original study, whih was the ase for GDS1808 (Dhahbi, 2005) where 4 of 10 genes mentionedin the paper were found statistially signi�antly di�erentially expressed in the other diretion in our study. Theauthors of the original study kindly provided us the original data and these were onsistent with our �ndingsalulated from the GEO data rather than the results presented in the publiation. Therefore we kept our resultsfor further steps.All other studies were of satisfying onsisteny with our results.50



Table 3.3: Table listing harateristis for eah dataset for quality ontrol. See text for details.
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3.2.2.5 Exluding genes di�erentially expressed with ageSine CR is a mehanism known to ounterat the e�ets of aging it is expeted that some of the gene expressionhanges by CR in older organisms are due to the reversal of hanges normally ourring with age, e.g. whilethe expression of a ertain gene goes down with age in ad libitum fed animals, it does not in CR fed animals.This gene would then be found di�erentially expressed between old CR and AL-animals (Fig. 3.7). We aim atdistinguishing those genes from others found di�erentially expressed with CR whih are supposed to provide amehanisti explanation for the e�ets of CR rather than are a onsequene of it.We therefore deided to remove all genes found di�erentially expressed between older and younger AL animalsfrom the genes di�erentially expressed with CR in the opposite diretion in the older animals. This was doneusing exlude_on_riteria_v2.1.pl (supplement 2). The younger animals (mie or rats) hosen for the omparisonwere normally about 4 months old and from the same study. If the study did only ontain old animals no genesdi�erentially expressed with age were exluded, sine it is nearly impossible to �nd other studies on hanges withaging under the same onditions (same strain, age, et). We hose about 4 months old animals as a ontrol evenif younger animals were available, so that the results were not disturbed by hanges between non-fully grown andadult animals.The t-test for the old vs. young omparison was done the same way and applying the same uto�s as the one forthe CR vs. AL omparison, following the logi that if the gene is signi�antly di�erentially expressed in CR onlybeause of ameliorating hanges in age dependent gene expression, then these age dependent hanges should besigni�ant at the same threshold, given that the sample sizes are similar. This was the ase for all datasets. Theperentages of genes di�erentially expressed in opposite diretion with age and CR (at p <0.05 and e�et size >1.5-fold) and therefore exluded is given in table 3.4.For more information on the number of genes di�erentially expressed with CR, age and with CR and age inopposite diretion see �3.2.5 Relationship between di�erential expression with CR and age�.3.2.3 Proessing gene lists from studies for whih expression data were not ob-tainedFor studies for whih we ould not obtain expression data, but only lists of genes di�erentially expressed aordingto the statistial test in the original study, we downloaded these lists plus any statistial parameter (e.g. e�et-size) if available. Sine these lists were extrated from publiations or espeially orresponding supplementarymaterial these studies are also alled �supplemental studies� and orresponding genes �supplemental genes� inthe following.Using expression data is preferable to these data sine they are obtained by di�erent statistial methods andriteria and data on non-di�erentially expressed genes are missing.Annotation to mouse Entrez IDs was done as for the raw data. For the only non-mouse dataset on rhesus monkeytransripts, assayed on a human miroarray platform (Kayo, 2001), human Entrez IDs were added �rst usingannotation from BioMart and those mapped to mouse Entrez IDs using mapping �les from HomoloGene. MouseEntrez IDs were added to all other �les by looking up mouse Entrez IDs orresponding to the GBACCs (andif given Gene Symbols) in BioMart mapping �les using use_vlookup_mod4.pl with vlookup_mod4_3.pm (See�3.2.2.2 Annotating data with identi�ers ommon to all data �les� and sub-hapters for details).For lists of genes di�erentially expressed in hypothalamus provided by Hu ((Wu, P. et al. 2009); note: these aredi�erent data than the raw data provided by Hu on forebrain (Wu et al. 2008) mentioned above) the only givenidenti�ers were Gene Names and A�ymetrix probe IDs. We were not able to map any of them to Entrez IDs.Therefore datasets from this study had to be exluded from further analysis.Sine p-values -if given- were determined by di�erent statistial tests, some of them multiple testing orreted,others not, we replaed -or added- them as p = 0.001, i.e. a signi�ant p-value and therefore only evaluatedthe genes by their e�et-sizes and the fat that they were stated as over- or underexpressed. (If e�et sizesfor underexpresed genes were given as negative values, e.g. -2 we onverted them to the orresponding valuesbetween 0 and 1, e.g. −
1

(−2) = 0.5. We aepted that supplement genes may have been hosen with striter orless strit statistial riteria than in our analysis. For attempts to assimilate our statistial riteria to those usedfor supplemental data see �3.2.4.2 Combining expression data prepared from raw data and supplemental lists ofdi�erentially expressed genes�. 52



Figure 3.7: (Dummy �gure) Example demonstrating the reasoning, why genes di�erentially expressed withage were exluded. a, No di�erential expression with age, but with CR; this gene is expeted to ontribute asmehanisti reason to the e�et of CR; b, Di�erene between old AL and old CR, beause the gene is di�erentiallyexpressed with age under AL, but not CR onditions; this gene is expeted to be di�erentially expressed only asan e�et of CR 53



CR data total genes % exludedGSE8426Cortex24months.txt 8265 0GSE8426Spinal.ord16months.txt 8265 0GSE8426Hippoampus24months.txt 8265 0GSE8426Striatum24months.txt 8265 0GSE8426Cerebellum24months.txt 8265 0GSE8426Striatum16months.txt 8265 0GSE8426Spinal.ord24months.txt 8265 0GSE8426Cortex16months.txt 8265 0GSE8426Hippoampus16months.txt 8265 0.01GSE8426Cerebellum16months.txt 8265 0.04GSE7502testis16months.txt 10217 0.04GSE7502ovary16months.txt 12163 0.04GSE6718heart.txt 11834 0.08GSE7502ovary24months.txt 12163 0.18GSE7502testis24months.txt 10217 0.26GSE11291neoortex.txt 23339 0.32GAN_Expr_Pro�le_Aging_CR_Retar-dation_Neoortex_30months.txt 9257 0.86GDS2681.txt 23339 1.00GDS355_356.txt 7089 1.18GDS2961_2962_24months.txt 8265 1.56GSE11291gastronemius.txt 23339 1.73GDS2612.txt 15253 1.86GSE11291heart.txt 23339 1.90GSE6110.txt 7653 2.21GSE6718wat.txt 11834 4.69Table 3.4: Number of genes exluded beause of di�erential expression with age in opposite diretion. For alldatasets for whih data on younger AL-animals existed genes were exluded that were di�erentially expressedwith age in AL-animals in opposite diretion of di�erential expression with CR in the older animals. The totalnumber of genes in the dataset and perentage of genes exluded are given.
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3.2.4 Estimating the signi�ane of the number of studies in whih genes weredi�erentially expressedTo determine if a gene was found di�erentially expressed in more studies than expeted by hane we �rstounted for eah gene in how many studies its expression was measured and in how many it was found over-or underexpressed at a p-value of p <0.05 and a fold-hange of at least 1.5 (see �3.2.4.1 Determining t-testp-value and e�et-size uto�� on how these uto�s were hosen). We obtained the probability of �nding a geneover- / underexpressed at least this often by random hane (binomial p-value) from the umulative binomialdistribution:
P = 1−

k−1
∑

x=0

(nx) ∗ p
x
s ∗ (1 − ps)

(n−x) (3.1)For this we used the suess probability (ps) alulated by dividing the number of genes appearing over- /underexpressed in all studies by the total number of appearanes of genes in all studies (i.e. a gene di�erentiallyexpressed / tested more than one is ounted for eah time it was di�erentially expressed / tested).3To �nd an appropriate uto� for the binomial p-value we repeated the binomial test 100 times on srambleddata. By dividing the mean of the number of genes found with srambling below a ertain binomial p-value bythe number of genes found below it on the real data we obtained a FDR estimate. We alulated the FDR forsome di�erent binomial p-values and deided on a uto� of 0.0005 whih orresponds to a FDR of 0.041 for over-and 0.062 for underexpressed genes. These alulations were done using CR_binomial_UN_srambled_v3.1.pl(supplement 2).Two important deisions had to be made for the binomial test:1. How to hoose the t-test p-value and e�et size uto�.2. How to ombine the genes from supplemental data with those for whih the t-test was performed.3.2.4.1 Determining t-test p-value and e�et-size uto�In order to determine whih genes to onsider over- and underexpressed we needed uto� values for the t-testp-value and / or the e�et-size. Note that the riterion for the �nal results of our analysis is not the t-testombined with e�et-sizes, but are the p-values of a binomial test performed on the number of studies in whih agene is found under- / overexpressed by the t-test and / or e�et-sizes in relation to the total number of studiesin whih the gene was tested. Therefore there was no need to selet the t-test p-value uto� in the ommon way,e.g. as p <0.05 after multiple testing orretion. Instead the binomial test is expeted to bu�er the hoie of thet-test p-value and e�et-size uto�s, i.e. if the thresholds are set relaxed, the suess probability (ps in formula3.1) in the binomial test will be higher, so the number of times a gene is found di�erentially expressed (k) inrelation to tested (n) has to be high to be signi�ant for the tested gene. If on the other hand strit uto�s areseleted ps will be low, so that the k may be smaller in relation to n and still be signi�ant in the binomial test.Nonetheless, as onsidering extreme ases shows, the hoie of these uto�s is not ompletely deliberate.If hoosing extremely relaxed uto�s ps might get so low that (nk ) with low n (e.g. (

4
3

)) may not be meaningfuland not signi�ant, while e.g. (76) will be signi�ant, therefore disriminating against genes tested less often andinreasing false negative rates. It would be preferable to �nd uto�s so that (nk ) with low (but not too low) nare meaningful. If however extremely strit uto�s are hosen �nding a gene di�erentially expressed in only oneor two studies might su�e for onsidering it signi�ant. This would ontradit the aim of the meta-analysis. Itwould allow false positives in the original studies to also beome false positives in the meta-analysis whih is tobe avoided. This may be one of the reasons why rather relaxed uto�s were hosen in Magalhaes, 2009.The hoie of t-test p-value and e�et-size thresholds is therefore a way to determine if the signi�ant results ofthe meta-analysis should rather be suh that were found very reliable in only a few studies or suh that werefound under more relaxed onditions in a higher number of studies. For our aims the emphasis is on the seondpoint whih suggests the use of relatively relaxed uto�s. However as mentioned above the analysis should stillbe sensitive enough to detet genes only tested in a relatively low number of studies.A means to ontrol for false positives is the FDR, alulated by dividing the number of genes below a ertain3A more aurate mathematial proedure would inlude using the hypergeometri instead of binomial distribution. However asn is small ompared to the total number of genes the use of the binomial distribution is justi�ed.55



binomial p-value uto� found on srambled data by the number found on the real data. To assay di�erent uto�riteria we examined the FDRs for three given binomial p-value uto�s (0.0001, 0.0005 and 0.001) for di�erentt-test p-value and e�et-size pairs (0.05,2; 0.1,2; 0.05,1.5; 0.1,1.5; 0.1,1), to see whih settings in general lead tohigher or lower FDRs and to maximise the number of genes found di�erentially expressed at a given FDR (i.e.Type II error for a given Type I error rate). As depited in �g.. there is no lear trend over the di�erent binomialp-values that either the strit or relaxed ones of our uto�s are preferential as to their FDR or number of genesfound. This supports the argumentation that the binomial test is rather robust to the hosen t-test p-value ande�et-size uto�.Importantly however we had to onsider that this study inludes lists of genes obtained from publiations orsupplements, for whih the analysis was not done by ourselves and therefore statistial tests with di�erent uto�swere applied. If we wish that all studies ontribute with a similar weight to the meta-analysis, we had to makesure uto�s were hosen in our study that resemble those as losely as possible. We expeted that to ahievethis, the perentage of genes found over- or underexpressed should be similar. For the studies obtained fromliterature we alulated these numbers from the numbers of genes given as di�erentially expressed and the totalnumber of genes on eah partiular array. We used the number of genes given as di�erentially expressed beforeannotation sine there was no way of estimating the total number of genes in the datasets after annotation (i.e.how many of the total genes would have been lost during annotation). We assumed a similar probability of lossof a gene during annotation for the omplete dataset as for the di�erentially expressed genes.For our own study the perentage of over- and underexpressed genes in eah dataset was alulated from thenumber of genes found di�erentially expressed and the total number of genes after annotation.We used datasets with more than one repliate (all but two datasets), beause a t-test is not possible ondatasets with only one repliate.Results are shown in �g. 3.8. It was found that the perentages of genes from literature found over- orunderexpressed resemble perentages we obtained with rather strit uto� settings.Even though the numbers of genes di�erentially expressed at a t-test p-value uto� of 0.05 and an e�et-size uto�of 2 would better �t the results of the supplemental data, we hose 0.05 for the p-value and 1.5 for the e�et size.This is beause of the argument above that with very low suess probabilities a gene an be found signi�antin the binomial test even when only over-/underexpressed in very few studies. The aim of the meta-analysis ishowever to �nd genes onsistently di�erentially expressed over several studies (and onditions). For the 0.05, 2seletion the average perentage of di�erentially expressed genes (= suess probability * 100) is around 0.85%before and 1.0% after inluding supplemental data, for the 0.05, 1.5 seletion about 2.0% before and 2.4% afteradding supplemental data. (Suess probabilities rise when inluding supplemental data sine these only onsistof di�erentially expressed genes.)Two datasets (data from Hu on Hypothalamus and GSE904) were based on unrepliated samples. Thereforeno t-test ould be performed and i.e. no p-value uto� used for seleting over- or underexpressed genes. Sinegenes would be seleted in a less strit way if only using the same e�et-size uto� as for the other data, wedeided that a striter e�et-size threshold should be hosen. The way to �nd an appropriate threshold was tohoose it in a way that a similar number of genes would be found over-/underexpressed as in the other studies.However the perentage of genes found di�erentially expressed for di�erent thresholds in the two datasets wasalways muh higher for GSE904, espeially for overexpressed genes. The fat that data from Hu were from poolsof 3 hypothalami, while the data in GSE904 were not pooled suggests higher reliability of the �rst and the useof di�erent uto�s for the two datasets. We deided on an e�et-size uto� of 1.7 for the data from Hu, at whih2.1% of genes are overexpressed and 1.4 underexpressed and of 4.0 for GSE904, at whih 3.9% are over- and 0.6are underexpressed.3.2.4.2 Combining expression data prepared from raw data and supplemental lists of di�erentiallyexpressed genesThe issue of how to ombine lists of genes on the one hand reated by alulating e�et sizes and t-test p-valuesfrom expression data and on the other hand obtained diretly as a list of di�erentially expressed genes frompubliations and supplements (�supplemental genes�) is not trivial.It is essential for the binomial analysis not only to have data of di�erentially expressed genes, but also on non-di�erentially expressed ones, so that both the �number of suesses� (k) and of �trials� (n) (in 3.1) for eah genean be given. The data of non-di�erentially expressed genes were however not available from published lists.There are several possibilities to ombine the data, all with their own drawbaks:56



Figure 3.8: FDRs (red olumns) and perentages of genes found (a,) over- or (b,) underexpressed in signi�antly more studies than expeted by hane.Di�erent olumns show, when genes are seleted at di�erent t-test p-value and e�et size uto�s (0.05,2; 0.1,2; 0.05,1.5; 0.1,1.5; 0.1,1). Di�erent panelsshow di�erent binomial test p-value uto�s. Created from studies with at least 2 repliates
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1. The di�erentially expressed supplemental genes are added to the genes from raw data, ignoring that otherunknown genes were tested in the supplemental studies. This is therefore an analysis as if no other genesthan those given in the lists were studied. The suess probability ps in the binomial test is the numberof over- / underexpressed genes in these ombined data divided by the size of the data. The probability
ps is therefore greater than the probability of �nding a gene di�erentially expressed in a miroarray study.The binomial probability annot be interpreted as the probability of �nding the gene at least this oftendi�erentially expressed by hane, when tested in the given number of studies. As a onsequene thebinomial p-value rises for genes not in the supplemental data, when inluding supplemental genes. Howeverthe FDR is estimated by srambling the same data, so that the binomial p-value uto� will be higher atthe same FDR ompared to when supplemental data are not inluded.2. Sine the total number of genes tested in supplemental studies an be found in the literature, the analysisin 1. an be modi�ed: Instead of ps as desribed above, a ps an be used whih is the number of genesfound over- / underexpressed divided by the number of genes tested in all studies. Therefore ps is smallerthan the frequeny of di�erentially expressed genes in the ombined list, whih is used for srambling. Thisinterpretation of ps aounts for the fat that more genes were tested in the supplemental data than thosegiven as di�erentially expressed. However sine we do not know whih genes were tested in the supplementalstudies and found non-di�erentially expressed, their binomial p-value would be alulated too low using thelower ps (i.e. this approah is inonsistent in that ps aounts for the unknown non-di�erentially expressedgenes, but n annot). However, as in 1., hoosing the p-value uto� from a FDR alulated by sramblingwill ameliorate the problem of generally underestimated binomial p-values.So far srambling was always done on a list, that is enrihed in di�erentially expressed genes, beause itdoes not ontain the unknown non-di�erentially expressed genes from the supplemental data. Consideringthe existene of these genes might lead to generally lower FDRs. Two possibilities are:3. Lists from supplemental data are �lled up with Entrez ID substitutes with non signi�ant e�et sizes.Beause they are not signi�ant, they will have binomial p-values = 1 in the analysis and at as non-signi�ant genes in the srambling proess. However this is an approah assuming that all unknown genesin the supplemental data are di�erent from the genes in the other studies. In reality probably most are thesame as in the other studies. Therefore this approah inreases the number of non-di�erentially expressedgenes, but it does not aount for the fat that these might be the same as other genes in the analysis.Therefore this approah does not �t for this situation.4. In order to overome the problem of 3. the inomplete lists of supplemental data has to be �lled withrandom Entrez IDs, already existing in the lists of obtained data, with non-signi�ant e�et-sizes. Howeverthis would introdue randomness already at the level of unsrambled data and is therefore to be avoided.The problems in 3. and 4. show that it is not feasible to inlude the non-di�erentially expressed genes of thesupplemental studies as long as they are not known.We deided that the auray and interpretation of the binomial p-values is of minor importane for our study, aslong as the FDR an be orretly estimated (in ontrast to the drawbaks of 3. and 4.) and used to deide on anappropriate p-value uto�. Sine 2. assumes that more than the given number of tests were done (dereasing ps),but annot inrease the number of times ertain genes were tested (inreasing n) we hoose 1. as more onsistentwithin itself and de�ned ps as the probability of a gene being di�erentially expressed within the ombined data.3.2.5 Relationship between di�erential expression with CR and ageThe importane of CR omes from its ability to extend life-span in several organisms. Therefore we examinedthe relationship between di�erential expression with CR and age. In partiular we tested if more genes aredi�erentially expressed in opposite diretion with age and CR than expeted by hane in eah dataset. Weargued that a gene will be di�erentially expressed between AL and CR in old animals if di�erential expressionwith age in AL animals is ameliorated by CR. Di�erential expression will be in opposite diretions in this ase.See �3.2.2.5 Exluding genes di�erentially expressed with age� for a detailed explanation. Note that this approahdoes not draw onlusions from negative results, as it is the ase when looking for genes that are di�erentiallyexpressed with age under AL, but not under CR onditions.For eah gene in an annotated dataset we did a t-test for alori restrition vs. ad libitum fed for old animals58



and another t-test for young vs. old AL-animals. For p < 0.05 (without multiple testing orretion) and a fold-hange of at lest 1.5 we extrated genes found di�erentially expressed in both tests and for whih the diretionof di�erential expression was opposite, so that therefore the expression in an old animal under CR resemblesthat of a young animal. (See �3.2.4.1 Determining t-test p-value and e�et-size uto�� for an explanation whybinomial test proedures are robust for the hoie of uto� values.) The genes obtained here are the same asthose exluded from the meta-analysis of CR in �3.2.2.5 Exluding genes di�erentially expressed with age�. Seethis setion for details.We found that for our settings depending on the dataset between 0 and 67% of genes di�erentially expressed withCR were di�erentially expressed in opposite diretion with age. (However only up to 4.69% of all studied geneswere di�erentially expressed with CR and age in opposite diretions. See �4.2.2.5. Exluding genes di�erentiallyexpressed with age� and table 3.4 therein).We alulated the probability of obtaining an overlap at least this great by random hane by using the umulativebinomial distribution, taking the number of genes over- / underexpressed with CR and di�erentially expressedin opposite diretion with age as suessful trials, the number of genes over- / underexpressed with CR alone astrials and the probability of a gene being under- / overexpressed with age as the probability of suess. For thesealulations we used exlude_on_riteria_v2.1.pl (supplement).P-values obtained were <0.005 in most ases (table. 3.5). The number of studies is not high enough to drawonlusions e.g. in whih tissues expression hanges are most ameliorated with age, et. sine eah tissue wasonly tested a few times and there are other variables that vary between the studies. Nonetheless the data suggestthat there is indeed a CR-e�et on the level of gene expression for all tissues exept some brain tissues. Howeverit should be noted that the number of genes hanging expression with age in these brain tissues is generallylow so that there is little need for CR ation. Interestingly the CR-e�et is also less marked in the two ovarydatasets. A possible interpretation might be that many genes hanging expression in these datasets may do soin a tissue-spei� programmed way whih is not ounterated by CR.Note however that this short setion on the relationship between di�erential expression with CR and age isonly meant to give a rough idea what an be ahieved from suh a study and must still be done in a more indepth way.3.2.6 Funtional analyses3.2.6.1 Determining funtional ategories enrihed in the meta-analysis datasets - GO-analysisIn ontrast to determining funtional ategories in whih determined andidate genes were enrihed (as in �3.2.6.2Putting genes found di�erentially expressed with CR into funtional ategories - DAVID-analysis�) we here askedif the funtional (gene ontology (GO)) ategories themselves, as the basi units of the binomial test, were foundoverrepresented (for over- or underexpression) more often than expeted by random hane. We therefore om-pared the number of times a GO-ategory is found assoiated with an over- / underexpressed gene in the datasetsto the number of times it is found assoiated with any gene:A table mathing GO-IDs to genes was prepared the following way: A �le mapping eah Entrez ID to orre-sponding GO-IDs with one GO-ID per line was downloaded from the NCBI FTP4 (19/07/10). We reated a �lemapping eah Entrez ID to a omma-separated list of all orresponding GO-IDs using GOparser_modi�ed.pl andCR_GO_UN_srambled_v1.2.pl (supplement 2). Independently from this we reated a list of only those genesappearing in the data�les using CR_binomial_UN_srambled_v3.1.pl (supplement 2) and added the GOs tothis list with vlookup_mod4.3.pm (supplement 2).We ounted a GO-ID eah time it appeared assoiated with any over- / underexpressed genes in any dataset(ounting it twie if the same gene assoiated with this GO was found in di�erent studies). Then we ounted thenumber of times it appeared assoiated with any gene studied. We performed a binomial test on those numbers(see 3.1), alulating probabilities (p-values) that a gene would be found over- / underexpressed at least this often(k) by random hane. The number of trials (n) was the total number the GO appeared assoiated with any genein the datasets and the suess probability (ps) the ratio of GO-IDs assoiated with over- / underexpressed genesto GO-IDs assoiated with any gene. The uto�s for over- / underexpression were the same as in �3.2.4.1 Deter-mining t-test p-value and e�et-size uto��. This proess was done using CR_GO_UN_srambled_v1.2.pl.FDRs as a riterion for deiding on uto�s for the binomial p-value were alulated by dividing the mean number4ftp://ftp.nbi.nih.gov/gene/DATA/gene2go.gz 59



CR data total genes CR up agingdown CR up,agingdown CR up,agingdown /agingdown p-value CRdown agingup CR down,aging up CR down,aging up/aging up p-valueGSE11291heart.txt 23339 2015 673 239 0.36 <0.001 974 660 204 0.31 <0.001GSE6718WAT.txt 11834 876 616 374 0.61 <0.001 316 545 181 0.33 <0.001GDS2612.txt (skeletal musle) 15253 693 427 183 0.43 <0.001 448 230 101 0.44 <0.001GSE11291neo- ortex.txt 23339 431 267 31 0.12 <0.001 1175 293 43 0.15 <0.001GSE7502testis24mo.txt 10217 45 37 10 0.27 <0.001 64 85 17 0.20 <0.001GDS2961_2962_24mo.txt(thymus) 8265 304 115 63 0.55 <0.001 97 278 66 0.24 <0.001GSE11291gastro- nemius.txt 23339 4150 685 351 0.51 <0.001 1119 368 52 0.14 <0.001GDS2681.txt (ohlea) 23339 1445 111 50 0.45 <0.001 3651 275 184 0.67 <0.001GSE6110.txt (kidney) 7653 176 900 59 0.07 <0.001 354 566 110 0.19 <0.001GDS355_356.txt (kidney) 7089 196 168 28 0.17 <0.001 193 200 56 0.28 <0.001GAN_Expr_Pro�le_Aging_CR_Retardation_ Neoortex_30mo.txt 9257 683 169 31 0.18 <0.001 637 229 49 0.21 <0.001GSE7502testis16mo.txt 10217 31 6 2 0.33 <0.001 10 57 2 0.04 0.001GSE8426Hippoampus16mo.txt 8265 23 1 1 1.00 0.003 2 0 0 / /GSE6718heart.txt 11834 7 203 1 0.00 0.11 12 574 9 0.02 <0.001GSE7502ovary16mo.txt 12163 32 458 3 0.01 0.12 57 302 2 0.01 0.42GSE7502ovary24mo.txt 12163 26 651 2 0.00 0.41 74 302 20 0.07 0.00GSE8426Spinal.ord16mo.txt 8265 2 6 0 0.00 1 2 3 0 0.00 1GSE8426Cerebellum24mo.txt 8265 8 7 0 0.00 1 3 270 0 0.00 1GSE8426Spinal.ord24mo.txt 8265 1 39 0 0.00 1 15 55 0 0.00 1GSE8426Cerebellum16mo.txt 8265 3 8 0 0.00 1 7 35 3 0.09 <0.001GSE8426Cortex24mo.txt 8265 3 0 0 / / 0 0 0 / /GSE8426Hippoampus24mo.txt 8265 0 1 0 0.00 / 1 0 0 / /GSE8426Striatum24mo.txt 8265 0 0 0 / / 0 2 0 0.00 /GSE8426Striatum16mo.txt 8265 0 1 0 0.00 / 2 0 0 / /GSE8426Cortex16mo.txt 8265 0 1 0 0.00 / 1 1 0 0.00 1.00Table 3.5: Number of genes hanging expression with CR, aging and 'aging and CR in opposite diretion'. Ratios of genes hanging in opposite diretionof all genes hanging with age and probabilities (p-value), that at least this many would be found by hane are also shown. "/" indiates ases in whiha binomial test is not reasonable sine either the number of trials or the suess probability is 0.
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of GOs found over- / underexpressed by srambling 100 times by the number found for the unsrambled data.We seleted a binomial p-value threshold of 0.001 whih orresponded to a FDR of 0.023 for GOs for over- and0.029 for GOs for underexpressed genes.While the enrihment analysis on andidate genes (see next setion) tries to lassify the genes found in themeta-analysis and therefore to �nd a possible explanation, why they might have been found, this one might �ndategories important for the mehanism of CR whih might exhibit their ation through di�erent members ofthis ategory in di�erent irumstanes. E.g. while gene A might be overexpressed with CR in liver, gene B ofthe same ategory might be overexpressed with CR in kidney.3.2.6.2 Putting genes found di�erentially expressed with CR into funtional ategories - DAVID-analysisSine the relative large lists of genes di�erentially expressed with CR are hard to interpret, we used the FuntionalAnnotation Tool of the Database for Annotation, Visualization and Integrated Disovery (DAVID) (Dennis etal. 2003) to put them into funtional ategories (21/07/10)(see also �2.1.5.3 Introdution to DAVID�).We separately uploaded the lists of genes enrihed for overexpression and underexpression (binomial p-value <0.0005) and a list of all genes used in the studies in the form of mouse Entrez IDs and ran the analysis underdefault settings.We obtained the �Funtional Annotation Chart�, a list of funtional ategories enrihed in the input genes, and�Funtional Annotation Clustering�, lusters of those ategories aording to the genes they have in ommon.We aquired them by running the program �rst on the databases (e.g. for GO-terms, pathways, diseases, tissueset.) seleted by default and then spei�ally for KEGG and BIOCARTA pathways.3.2.7 Determining tissues ontributing to enrihment of genes for over- or under-expressionAs already mentioned there are several ovariates, varying between the di�erent datasets in our meta-analysis, asfor example organism and strain, age, CR regime and duration of CR. Our meta-analysis provides an opportunityto explore how genes overrepresented for over- or underexpression are assoiated with those variables. Of par-tiular interest is the ovariate tissue. This is on the one hand beause the meta-analysis aimed at �nding genesdi�erentially expressed with CR under multiple onditions and, due to the high number of datasets from liver, itis a onern that genes may be found signi�ant, even though only di�erentially expressed in liver. On the otherhand it may also be interesting if genes only found di�erentially expressed in one tissue in this meta-analysisindeed exert a tissue-spei� CR e�et. In fat the liver would be a good andidate for harbouring tissue spei�e�ets of CR due to its important role in metabolism.We pursued the following approah to shed light on the tissue expression of the genes found signi�ant in themeta-analysis:We used reate_table.pl (supplement 2) to reate a table with the genes in the rows and the datasets in theolumns and eah �eld displaying the t-test p-value and e�et-size of the gene in this dataset. Using mark_�elds.pl(supplement 2) on the part of the table that ontained signi�ant results of the meta-analysis, we indiated �eldswith t-test p-values and e�et-size values that orresponded to over- or underexpression aording to the relaxedthresholds used in the meta-analyses (p <0.05, e�et-size: 1.5 fold-hange). The identi�ed �elds were manuallyolor oded red for over- and green for underexpression and the olumn-header was olor oded aording to thetissue the orresponding dataset was obtained from. We then identi�ed genes that were over- (for genes enrihedfor overexpression) or underexpressed (for genes enrihed for underexpression) in only one, two or more than twodi�erent tissues (Fig. 3.10).3.2.8 DAVID-analysis on presumably tissue-independent and liver-spei� andi-datesBeause we found that a large number of genes in our �nal result were di�erentially expressed only in liverdatasets or in datasets from only liver and one other tissue, we repeated the DAVID-analysis on genes di�erentiallyexpressed at least in 3 di�erent tissues to �nd the funtional ategories behind genes important for the mehanismof CR in a truly tissue independent manner. We also ran DAVID on these andidates only di�erentially expressedin liver to �nd truly liver-spei� mehanisms of CR. 61



3.2.9 Co-expression analysis of CR-assoiated genesBesides determining funtional ategories of genes assoiated with a ertain trait it is often useful to determinegenes signi�antly more strongly o-expressed with the genes of interest than with other genes. These detetedgenes may therefore be important upstream regulators or downstream targets of the studied proess.The o-expression analysis of the genes assoiated with CR was done with software developed by S. van Dammof our group (unpublished). In brief, from a large number of miroarray datasets on mouse in GEO for eahgene, similarity sores to the expression of all other genes were alulated and genes ranked by these sores. Thetop 5% of genes with highest similarity for eah gene were onsidered o-expressed with this gene.Eah mouse gene gi was then tested for overrepresentation in the number of times it was found o-expressed(i.e. in the top 5%-list) with a ertain-subset of genes, ompared to the number of times it was o-expressedwith all mouse genes. In our ase this subset was one genes enrihed for overexpression with CR and one forunderexpression. More preisely a binomial test 3.1 was done with the number of tests (n) being the numberof genes in the subset and the number of hits (k) being the number of times gi is o-expressed with genes ofthis subset. The suess probability (ps) of gi being o-expressed with any gene was ps = number of times gi iso-expressed with any gene / number of all genes.The genes were ranked by their p-values of the binomial test and a FDR estimated (as in (Rhodes et al. 2002))as the number of genes found divided by the number of genes expeted at eah p-value, whih is the ratio ofgenes found with smaller or equal p-value divided by the p-value itself.Sine a large number (1576 and 1069; given in supplement 2) of genes were found o-expressed with genes enrihedfor over- and underexpression we performed DAVID-analysis under default settings on them.3.2.10 Transription fators regulating expression of andidate genesTo detet enrihed transription fator (TF) binding sites in our andidate genes we used WebMOTIFS5 (Romeret al. 2007). This program ats as an interfae to the motif disovery programs MEME (Bailey & Elkan 1994),AlignACE (Hughes et al. 2000), MDsan (Liu et al. 2002), Weeder (Pavesi et al. 2004) and THEME (Maisaaet al. 2006). The downside of using this program was that input genes had to be given as RefSeq-IDs. Theonversion proess lead to loss of about 20 genes eah for over- and underexpressed andidates. However weexpet that the lost genes represented rather poorly annotated ones, so that not muh information was expetedform them anyway. Sequene motifs were searhed between 1000 bp downstream to 200 bp upstream with anexpeted motif length of <12 bp, strit signi�ane �ltering and trying all initial hypotheses for the searh inTHEME.3.2.11 Deteting overlap with CR-essential genes, their orthologues and interationpartnersGenes experimentally identi�ed to be essential for the e�et of CR to indue life-span extension in di�erent modelorganisms were reently extrated from literature and summarized in the database GeneDR by D. Wuttke ofour group (unpublished). Essential here means that manipulation of the transription levels of the genes (e.g.knok-out by deletion, knok-down via RNAi or transposition, or overexpression) signi�antly modi�ed the e�etof CR on life-span extension.The only mouse gene known to be essential for CR-indued life-span extension in this database was Ghr (Growthhormone reeptor; Entrez ID: 14600) and this gene was found enrihed for downregulation in our meta-analyses.The following further omparisons between the results of the meta-analysis and genes in GeneDR, undertakenby D. Wuttke, are only desribed in brief:1. The results of the meta-analysis were also ompared to murine orthologues of genes essential for CR in S.erevisiae and C.elegans.2. A network of murine CR-essential gene orthologues and Ghr was built aording to information on physialprotein-protein and geneti interations retrieved and integrated from IntAt (Hermjakob et al. 2004), DIP(Xenarios et al. 2000), MINT (Zanzoni et al. 2002), BIND (Bader et al. 2001), BioGRID (Stark et al.2006), MPACT (Güldener et al. 2006), DroID (Jingkai Yu et al. 2008), Reatome (Stein 2004), HPRD(Prasad et al. 2009), PDZBase (Beuming et al. 2005), CORUM (Ruepp et al. 2008), iRefIndex (Razik5http://fraenkel.mit.edu/webmotifs 62



et al. 2008), PhosphoSitePlus (Hornbek et al. 2004), PhosphoGRID (Stark et al. 2010), I2D (Brown &Jurisia 2007), InteroPor (Mihaut et al. 2008), InterologFinder (Wiles et al. 2010), MiMI (Jayapandianet al. 2007) and PINA (Wu, J. et al. 2009), extended by diret interation partners and analyzed usingCytosape (Shannon et al. 2003). The spei�ity of an interation partner was de�ned as the numberof this protein`s interations with CR-essential genes as perentage of its total number of interations. Ap-value for the spei�ity was alulated using a binomial test 3.1, alulating the by hane probabilityfor this many interations with CR-essential genes (k) at the given number of interations (n). Interationpartners signi�antly overlapping with results of the meta-analysis were extrated.3.2.12 Testing the assoiation of individual datasets to the meta-signature of CRGenes di�erentially expressed under a ertain ondition are often de�ned as the signature of this ondition. Genesenrihed for di�erential expression in these datasets an be alled the orresponding meta-signature (Rhodes etal. 2004). To test how well the individual datasets in our analysis assoiate with the �nal meta-signature weemployed a hi-square test. To reate ontingeny tables for eah dataset speifying how many genes are in themeta-signature and how many are not and how many genes are di�erentially expressed and how many not weused metasignature_test_v1.2.pl (supplement 2).The hi-square test therefore assesses if genes of eah dataset are signi�antly more likely to be di�erentiallyexpressed, when they are in the meta-signature. To hek that the p-value of the hi-square test indiates genesto be more, not less likely to be di�erentially expressed, when they are in the meta signature we alulated
”#diff. exp., inmeta−signature”

”#not diff. exp.,inmeta−signature”

”#diff. exp., not inmeta−signature”
”#not diff. exp., not inmeta−signature”and heked that the result was >1.3.3 Results3.3.1 Genes enrihed in the number of studies they are found over- / underex-pressed97 and 65 genes were found over- and underexpressed respetively in more datasets than expeted by hanebelow a threshold of the binomial p-value of 0.0005. (In the following these are alled �genes enrihed for over-/ underexpression� or sometimes simply �over- / underexpressed genes�). The full lists of genes are displayed intable 3.6 and 3.7.MGISymbol MGI Desription EntrezID total overexp. underexp.p_overexp.Mt2 metallothionein 2 Gene 17750 59 14 5 1.85E-10Adh1 alohol dehydrogenase 1 (lass I) Gene 11522 42 12 0 3.50E-10Per2 period homolog 2 (Drosophila) Gene 18627 44 12 1 6.38E-10Por P450 (ytohrome) oxidoredutase Gene 18984 61 13 0 3.41E-9Inmt indolethylamine N-methyltransferase Gene 21743 33 10 4 5.51E-9Dbp D site albumin promoter binding proteinGene 13170 34 10 4 7.63E-9Nat8 N-aetyltransferase 8 (GCN5-related,putative) Gene 68396 26 9 0 8.53E-9Ehhadh enoyl-Coenzyme A,hydratase/3-hydroxyayl Coenzyme Adehydrogenase Gene 74147 39 10 0 3.30E-8Mt1 metallothionein 1 Gene 17748 61 12 2 3.54E-8Cyp2j6 ytohrome P450, family 2, subfamily j,polypeptide 6 Gene 13110 30 9 0 3.56E-863



Abg5 ATP-binding assette, sub-family G(WHITE), member 5 Gene 27409 30 9 0 3.56E-8Fam107a family with sequene similarity 107,member A Gene 268709 22 8 0 3.73E-8Klf15 Kruppel-like fator 15 Gene 66277 32 9 0 6.68E-8Sds serine dehydratase Gene 231691 25 8 0 1.18E-7Fkbp5 FK506 binding protein 5 Gene 14229 59 11 1 2.34E-7Zbtb16 zin �nger and BTB domain ontaining 16Gene 235320 19 7 0 2.46E-7Angptl4 angiopoietin-like 4 Gene 57875 37 9 2 2.64E-7Usp2 ubiquitin spei� peptidase 2 Gene 53376 60 11 0 2.79E-7Cobll1 Cobl-like 1 Gene 319876 28 8 0 3.17E-7Fmo3 �avin ontaining monooxygenase 3 Gene 14262 29 8 0 4.28E-7Cyp7a1 ytohrome P450, family 7, subfamily a,polypeptide 1 Gene 13122 39 9 2 4.30E-7Ablim3 atin binding LIM protein family, member3 Gene 319713 21 7 1 5.42E-7Nr1i3 nulear reeptor subfamily 1, group I,member 3 Gene 12355 40 9 0 5.43E-7Cyp4a14 ytohrome P450, family 4, subfamily a,polypeptide 14 Gene 13119 32 8 0 9.80E-7Sult1d1 sulfotransferase family 1D, member 1Gene 53315 45 9 3 1.57E-6Herpud1 homoysteine-induible, endoplasmiretiulum stress-induible, ubiquitin-likedomain member 1 Gene 64209 45 9 2 1.57E-6LOC100047583 similar to apolipoprotein D 100047583 5 4 0 1.96E-6Ctgf onnetive tissue growth fator Gene 14219 35 8 0 2.05E-6Sl37a4 solute arrier family 37(gluose-6-phosphate transporter),member 4 Gene 14385 35 8 0 2.05E-6Ten1 tensin like C1 domain-ontainingphosphatase Gene 209039 60 10 0 2.41E-6Wee1 WEE 1 homolog 1 (S. pombe) Gene 22390 37 8 2 3.22E-6Klf9 Kruppel-like fator 9 Gene 16601 51 9 0 4.70E-6Ppara peroxisome proliferator ativated reeptoralpha Gene 19013 40 8 1 5.99E-6Trp53i13 transformation related protein 53induible protein 13 Gene 216964 29 7 1 6.10E-6Irs2 insulin reeptor substrate 2 Gene 384783 29 7 1 6.10E-6Fam195a family with sequene similarity 195,member A Gene 68241 20 6 0 7.23E-6Aot4 ayl-CoA thioesterase 4 Gene 171282 30 7 0 7.78E-6Ntf3 neurotrophin 3 Gene 18205 42 8 0 8.79E-6Tmem218 transmembrane protein 218 Gene 66279 21 6 0 9.91E-6Aldh1a1 aldehyde dehydrogenase family 1,subfamily A1 Gene 11668 56 9 2 1.05E-5Gm6957 predited gene 6957 Gene 629219 13 5 0 1.09E-5Pim3 proviral integration site 3 Gene 223775 57 9 0 1.21E-5Klf9 Kruppel-like fator 9 Gene 70273 14 5 0 1.67E-5Aqp6 aquaporin 6 Gene 11831 23 6 2 1.77E-564



Cyp2b13 ytohrome P450, family 2, subfamily b,polypeptide 13 Gene 13089 23 6 1 1.77E-5Der2 2-4-dienoyl-Coenzyme A redutase 2,peroxisomal Gene 26378 24 6 0 2.30E-5Cry1 ryptohrome 1 (photolyase-like) Gene 12952 49 8 0 2.87E-5Ts22d3 TSC22 domain family, member 3 Gene 14605 26 6 0 3.77E-5Cbr1 arbonyl redutase 1 Gene 12408 38 7 0 4.04E-5Rgs16 regulator of G-protein signaling 16 Gene 19734 27 6 2 4.75E-5Hal1 2-hydroxyayl-CoA lyase 1 Gene 56794 27 6 0 4.75E-5Sult12 sulfotransferase family, ytosoli, 1C,member 2 Gene 69083 27 6 1 4.75E-5Gys2 glyogen synthase 2 Gene 232493 27 6 0 4.75E-5Cyp2e1 ytohrome P450, family 2, subfamily e,polypeptide 1 Gene 13106 39 7 0 4.82E-5Plin5 perilipin 5 Gene 66968 17 5 1 4.83E-5Cpt1a arnitine palmitoyltransferase 1a, liverGene 12894 53 8 1 5.16E-5Igfbp2 insulin-like growth fator binding protein2 Gene 16008 40 7 1 5.72E-5Arrd2 arrestin domain ontaining 2 Gene 70807 40 7 0 5.72E-54833417J20Rik 4833417J20Rik RIKEN DNA 4833417J20gene 74604 4 3 0 6.24E-54432414F05Rik 4432414F05Rik RIKEN DNA4432414F05 gene 77027 4 3 0 6.24E-5Agxt2l1 alanine-glyoxylate aminotransferase 2-like1 Gene 71760 18 5 0 6.55E-5St3gal5 ST3 beta-galatosidealpha-2,3-sialyltransferase 5 Gene 20454 41 7 1 6.74E-5Sl25a25 solute arrier family 25 (mitohondrialarrier, phosphate arrier), member 25Gene 227731 41 7 0 6.74E-5Lpin1 lipin 1 Gene 14245 29 6 1 7.30E-5Gpr146 G protein-oupled reeptor 146 Gene 80290 31 6 0 1.08E-4Ady1 adenylate ylase 1 Gene 432530 11 4 0 1.15E-4Ifrd1 interferon-related developmental regulator1 Gene 15982 45 7 0 1.25E-4Mat1a methionine adenosyltransferase I, alphaGene 11720 60 8 0 1.28E-4Aot12 ayl-CoA thioesterase 12 Gene 74156 32 6 0 1.31E-4Nfkbia nulear fator of kappa light polypeptidegene enhaner in B-ells inhibitor, alphaGene 18035 61 8 0 1.44E-4Epb4.1 erythroyte protein band 4.1 Gene 269587 61 8 1 1.44E-4Hsd17b2 hydroxysteroid (17-beta) dehydrogenase 2Gene 15486 46 7 5 1.44E-4Sun2 Sad1 and UNC84 domain ontaining 2Gene 223697 34 6 1 1.86E-4Mgp matrix Gla protein Gene 17313 48 7 1 1.89E-4Aldh1a7 aldehyde dehydrogenase family 1,subfamily A7 Gene 26358 35 6 2 2.19E-4Sult3a1 sulfotransferase family 3A, member 1Gene 57430 23 5 1 2.32E-4Niar1 niain reeptor 1 Gene 80885 13 4 0 2.38E-465



BC089597 DNA sequene BC089597 Gene 216454 13 4 0 2.38E-4Dusp1 dual spei�ity phosphatase 1 Gene 19252 36 6 0 2.57E-4Klf10 Kruppel-like fator 10 Gene 21847 36 6 0 2.57E-4Rhbdd2 rhomboid domain ontaining 2 Gene 215160 51 7 0 2.79E-4Sult1a1 sulfotransferase family 1A,phenol-preferring, member 1 Gene 20887 37 6 0 3.01E-4Der1 2,4-dienoyl CoA redutase 1,mitohondrial Gene 67460 37 6 0 3.01E-4Cd163 CD163 antigen Gene 93671 14 4 1 3.27E-4Plxd3 phosphatidylinositol-spei�phospholipase C, X domain ontaining 3Gene 239318 14 4 0 3.27E-4Bnip3 BCL2/adenovirus E1B interating protein3 Gene 100042570 14 4 0 3.27E-4Fzd1 frizzled homolog 1 (Drosophila) Gene 14362 38 6 2 3.50E-4Per1 period homolog 1 (Drosophila) Gene 18626 38 6 1 3.50E-4Enpep glutamyl aminopeptidase Gene 13809 25 5 0 3.51E-4Sall1 sal-like 1 (Drosophila) Gene 58198 25 5 0 3.51E-4Sl25a42 solute arrier family 25, member 42 Gene 73095 25 5 1 3.51E-4Zfp354a zin �nger protein 354A Gene 21408 54 7 0 4.00E-4Pla2g12a phospholipase A2, group XIIA Gene 66350 39 6 1 4.04E-4Map3k6 mitogen-ativated protein kinase kinasekinase 6 Gene 53608 26 5 0 4.25E-4Rbp7 retinol binding protein 7, ellular Gene 63954 26 5 3 4.25E-4Rhobtb1 Rho-related BTB domain ontaining 1Gene 69288 26 5 0 4.25E-4Crym rystallin, mu Gene 12971 15 4 0 4.37E-4Plin4 perilipin 4 Gene 57435 15 4 0 4.37E-4LOC100044830 similar to ayl-CoA thioesterase 100044830 15 4 0 4.37E-4Smo1 SPARC related modular alium binding1 Gene 64075 55 7 0 4.48E-4Tob1 transduer of ErbB-2.1 Gene 22057 40 6 0 4.66E-4
MGISymbol MGI Desription EntrezIDtotal overexp. underexp.p_underexp.Sl6a6 solute arrier family 6 (neurotransmittertransporter, taurine), member 6 Gene 21366 60 1 12 7.66E-9Car3 arboni anhydrase 3 Gene 12350 49 0 11 8.86E-9Cyp2j5 ytohrome P450, family 2, subfamily j,polypeptide 5 Gene 13109 25 0 8 4.64E-8Dhr7 7-dehydroholesterol redutase Gene 13360 49 0 10 1.11E-7Arntl aryl hydroarbon reeptor nuleartransloator-like Gene 11865 63 3 11 1.41E-7Zfp64 zin �nger protein 64 Gene 22722 34 1 8 6.52E-7Srebf1 sterol regulatory element bindingtransription fator 1 Gene 20787 60 1 10 8.13E-7Es31 esterase 31 Gene 382053 25 1 7 9.14E-766



Gk gluokinase Gene 103988 41 1 8 2.98E-6Col15a1 ollagen, type XV, alpha 1 Gene 12819 32 1 7 5.58E-6G0s2 G0/G1 swith gene 2 Gene 14373 33 3 7 6.95E-6Insig1 insulin indued gene 1 Gene 231070 33 1 7 6.95E-6C9 omplement omponent 9 Gene 12279 36 1 7 1.28E-5Phlda1 plekstrin homology-like domain, familyA, member 1 Gene 21664 39 1 7 2.23E-5Hspa5 heat shok protein 5 Gene 14828 69 0 9 2.27E-5Irgm1 immunity-related GTPase family Mmember 1 Gene 15944 28 0 6 3.00E-5Dpp9 dipeptidylpeptidase 9 Gene 224897 28 0 6 3.00E-5Alas2 aminolevulini aid synthase 2, erythroidGene 11656 58 3 8 4.28E-5Tmem132d transmembrane protein 132D Gene 243274 4 0 3 4.34E-5Irf7 interferon regulatory fator 7 Gene 54123 30 1 6 4.56E-5Fabp5 fatty aid binding protein 5, epidermalGene 16592 59 3 8 4.85E-5Tnfsf10 tumor nerosis fator (ligand) superfamily,member 10 Gene 22035 19 0 5 4.89E-5Aly ATP itrate lyase Gene 104112 60 2 8 5.49E-5Sly selenoysteine lyase Gene 50880 31 1 6 5.54E-5C4bp omplement omponent 4 binding proteinGene 12269 20 0 5 6.40E-5I�27l2a interferon, alpha-induible protein 27 like2A Gene 76933 20 0 5 6.40E-5Cas5 aner suseptibility andidate 5 Gene 76464 11 1 4 7.14E-5Serpinh1 serine (or ysteine) peptidase inhibitor,lade H, member 1 Gene 12406 63 4 8 7.83E-5I�h1 interferon indued with heliase C domain1 Gene 71586 33 0 6 8.03E-51110051M20Rik RIKEN DNA 1110051M20 gene Gene 228356 33 0 6 8.03E-5Ttll12 tubulin tyrosine ligase-like family, member12 Gene 223723 21 0 5 8.25E-5Aqp8 aquaporin 8 Gene 11833 34 1 6 9.56E-5Cldn1 laudin 1 Gene 12737 34 1 6 9.56E-5Nr1d1 nulear reeptor subfamily 1, group D,member 1 Gene 217166 34 3 6 9.56E-5Ghr growth hormone reeptor Gene 14600 65 0 8 9.82E-5R3hdm2 R3H domain ontaining 2 Gene 71750 49 0 7 1.02E-4Hipk2 homeodomain interating protein kinase 2Gene 15258 36 0 6 1.33E-4Rs1a1 regulatory solute arrier protein, family 1,member 1 Gene 69994 13 0 4 1.49E-4Cyp2f2 ytohrome P450, family 2, subfamily f,polypeptide 2 Gene 13107 37 0 6 1.56E-4Cxl9 hemokine (C-X-C motif) ligand 9 Gene 17329 37 0 6 1.56E-4Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3beta- and steroid delta-isomerase 2 Gene 15493 24 0 5 1.63E-4Mup4 major urinary protein 4 Gene 17843 24 0 5 1.63E-4Extl1 exostoses (multiple)-like 1 Gene 56219 24 1 5 1.63E-467



S5d sterol-C5-desaturase (fungal ERG3,delta-5-desaturase) homolog (S. erevisae)Gene 235293 38 0 6 1.82E-4G6pdx gluose-6-phosphate dehydrogenaseX-linked Gene 14381 54 2 7 1.92E-4Srt1 srath homolog 1, zin �nger protein(Drosophila) Gene 170729 25 0 5 2.00E-4Ptprj protein tyrosine phosphatase, reeptortype, J Gene 668629 14 1 4 2.05E-4Psmb8 proteasome (prosome, maropain)subunit, beta type 8 (largemultifuntional peptidase 7) Gene 16913 39 0 6 2.11E-4Sl10a2 solute arrier family 10, member 2 Gene 20494 39 0 6 2.11E-4Atg1 atin, gamma, ytoplasmi 1 Gene 11465 55 1 7 2.15E-4Comt1 atehol-O-methyltransferase 1 Gene 12846 55 2 7 2.15E-4Ntn3 netrin 3 Gene 18209 15 0 4 2.75E-42900086B20Rik RIKEN DNA 2900086B20 gene 73074 15 0 4 2.75E-4Sta3 SH3 and ysteine rih domain 3 Gene 237611 15 0 4 2.75E-4Mmp15 matrix metallopeptidase 15 Gene 17388 27 0 5 2.93E-4Gtf2ird1 general transription fator II I repeatdomain-ontaining 1 Gene 57080 27 0 5 2.93E-4Phf19 PHD �nger protein 19 Gene 74016 27 0 5 2.93E-4Inhbe inhibin beta E Gene 16326 42 2 6 3.20E-4Col3a1 ollagen, type III, alpha 1 Gene 12825 59 1 7 3.35E-4Cd42ep2 CDC42 e�etor protein (Rho GTPasebinding) 2 Gene 104252 28 1 5 3.50E-41110054M08Rik RIKEN DNA 1110054M08 gene 68841 16 1 4 3.60E-42810051F02Rik RIKEN DNA 2810051F02 gene 72704 7 0 3 3.61E-4Gm13768 predited gene 13768 627525 7 0 3 3.61E-4Gm7450 predited gene 7450 665017 7 0 3 3.61E-4LOC677259 similar to Ornithine dearboxylase (ODC) 677259 7 0 3 3.61E-4LOC100045005 similar to Deltex3 100045005 7 0 3 3.61E-4Dnase1l2 deoxyribonulease 1-like 2 Gene 100047816 7 0 3 3.61E-4LOC100048733 similar to WAP four-disul�de ore domain2 100048733 7 0 3 3.61E-4D0H4S114 DNA segment, human D4S114 Gene 27528 60 0 7 3.72E-4Litaf LPS-indued TN fator Gene 56722 60 0 7 3.72E-4Pdia3 protein disul�de isomerase assoiated 3Gene 14827 62 0 7 4.56E-4Ly6e lymphoyte antigen 6 omplex, lous EGene 17069 62 2 7 4.56E-4Hspb7 heat shok protein family, member 7(ardiovasular) Gene 29818 30 1 5 4.89E-4
Besides providing researhers with a list of well-known genes, for some giving a �rst hint towards assoiation68



with CR, for others ontributing to the already existing evidene for suh assoiation, the aim of our meta-analysisis also to �nd interesting behaviour of sequenes with unknown funtion, often annotated as ESTs or pseudogenes.To this end we found LOC100047583 (Entrez ID: 100047583, similar to apolipoprotein D), 4833417J20Rik (74604,RIKEN DNA 4833417J20 gene) and 4432414F05Rik (77027, RIKEN DNA 4432414F05 gene) among the genesenrihed for overexpression, whih are lassi�ed as protein oding genes, but are on RefSeq status �model� orwithout any, miss annotation on the referene assembly and generally seem to be studied little (22/07/10). Alsofound among the genes enrihed for overexpression was the pseudogene LOC100044830 (100044830, similar toayl-CoA thioesterase).Similarly among genes enrihed for underexpression we deteted 1110051M20Rik (67829, meanwhile replaedby 228356, RIKEN DNA 1110051M20 gene), 2900086B20Rik (73074, RIKEN DNA 2900086B20gene), 1110054M08Rik (68841, RIKEN DNA 1110054M08 gene), LOC677259 (677259, similar to Ornithinedearboxylase (ODC)), LOC100045005 (100045005, similar to Deltex3) and LOC100048733 (100048733, similarto WAP four-disul�de ore domain 2). These �ndings might assign interesting funtions as transribed genes tothese sequenes, however note that the detetion of expression of (pseudo)genes similar to other genes might alsoresult from the lak of spei�ity of the miroarray probe to distinguish between the two sequenes. We alsofound 2810051F02Rik (72704, RIKEN DNA 2810051F02 gene) among the genes enrihed for underexpression,whih is meanwhile replaed by the validated NCBI entry �antisense Igf2r RNA� (Airn, 104103), whih mighttherefore be an interesting non-oding RNA ontributing to the mehanism of CR.Table 3.86 presents the 10 genes most signi�antly enrihed for over- / underexpression, a desription of theirfuntion and indiations of known relationships with CR.Most of these genes are somehow assoiated with andidate GOs as found in the funtional analysis (�3.3.2Funtional ategories of genes di�erentially expressed with CR�), espeially iradian lok, lipid metabolism andxenobioti metabolism. Some of these genes have important regulatory funtions in these ategories, in partiularPer2 as master-regulator and Dbp as another transription fator regulating the iradian lok and Srebf1 as atransription fator regulating sterol metabolism.Transriptional levels of Per2 osillate diurnally in the suprahiasmati nuleus (SCN) of the hypothalamus andare supposedly set by light (Lamont et al. 2007). The timing of osillators in peripheral tissues is ontrolledby the SCN when food is available ad libitum. If feeding is however temporally limited the time of feeding is amore important regulator for peripheral osillators (Girotti et al. 2009). If additionally the level of food intake isaltered also the timing of lok gene expression in the SCN hanges, arguing for metaboli regulation. Thereforeboth the hanged amount of food, but also the fat that CR might also hange the timing of food availabilityompared to AL might have an important in�uene on hanged expression levels of lok genes. Srebf1 is aninteresting andidate, sine it has been linked to the mehanism, by whih resveratrol ould inrease life-span inobese mie (Wang, G. et al. 2009). Its expression levels also have been already studied in the ontext of CR,showing that, while its liver spei� expression does not hange in the �rst week of CR (Mulligan et al. 2008),its levels are in�uened by CR and refeeding in adipose tissue (Stelmanska et al. 2004).Zfp64, as a little understood o-ativator in the noth pathway, also has the potential to be an interestingandidate onerning the mehanism of CR.All of the top 10 genes enrihed for overexpression were overexpressed in more than 3 di�erent tissues, while manyof the underexpressed were only found underexpressed in one or two tissues. This may however also have to dowith the fat that they were generally underexpressed in less datasets than the overexpressed were overexpressed.That Gk was found underexpressed in liver only makes sense, sine this gene is assumed to be liver and beta-ellspei� and panreas was not tested in our datasets.It is also noteworthy that many of the top overexpressed genes were found underexpressed in a onsiderablenumber of datasets and vie versa, even though among all signi�ant genes the number of datasets of oppositedi�erential expression is rather low (on average around 1). This might mean that the top genes are highlyregulated.6Table 3.8: The 10 genes most signi�antly enrihed for over- and underexpression and desription of their funtion; it is givenwhih enrihed funtional ategory, as determined in the funtional analysis (�3.3.2. Funtional ategories of genes di�erentiallyexpressed with CR�) they are related to. (This does not neessarily mean that they are diretly lassi�ed with a GO-term exatlylike this). The number of di�erent tissues they are over- / underexpressed in is shown. Information not from stated referenes isfrom www.geneards.org; referenes: 1: (Waddington Lamont et al. 2007), 2: (Girotti et al. 2009), 3: (Kranendonk et al. 2008), 4:(H. Saito et al. 2008), 5: (Sakamoto et al. 2008), 6: (Guang-Li Wang et al. 2009), 7: (Mulligan et al. 2008), 8: (Stelmanska et al.2004)
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a, GeneSymbol Gene Name Funtion related andidate GOs #tissues omment ref.Mt2 metallothionein 2 Gene binds various metals ellular opper ion homeostasis 7 most signi�ant gene; also reportedby Swindell, 2008 and 2009;underexpressed in 5 tissuesAdh1 alohol dehydrogenase 1 (lass I) Gene metabolizes besides ethanol alsoretinol, et. 5Per2 period homolog 2 (Drosophila) Gene master regulator of iradian lok iradian lok 6 transriptional levels osillatediurnally 1,2Por P450 (ytohrome) oxidoredutase Gene transfers eletrons from NADPH toamong others P450 and hemeoxigenase xenobioti metabolism 4 3Inmt indolethylamine N-methyltransferaseGene N-methylation of indoles (endogenousand xenobioti) xenobioti metabolism 4 underexpressed in 4 datasetsDbp D site albumin promoter binding proteinGene transription fator that modulateslok-output genes iradian lok 4 lok-ontrolled gene;underexpressed in 4 datasets 4Nat8 N-aetyltransferase 8 (GCN5-related,putative) Gene not yet lear 3Ehhadh enoyl-Coenzyme A,hydratase/3-hydroxyayl Coenzyme Adehydrogenase Gene part of the peroxisomalbeta-oxidation pathway lipid metabolism 4Mt1 metallothionein 1 Gene binds various metals opper ion binding 4 also reported by Swindell, 2008;underexpressed in 2 datasetsCyp2j6 ytohrome P450, family 2, subfamily j,polypeptide 6 Gene arahidoni and linolei aid andretinoid metabolism lipid metabolism, retinolmetabolism 4b, GeneSymbol Gene Name Funtion related andidate GOs #tissues omment ref.Sl6a6 solute arrier family 6(neurotransmitter transporter,taurine), member 6 Gene transports both taurine and beta-alanine 2 most signi�ant gene; overexpressed in1 datasetCar3 arboni anhydrase 3 Gene atalyze the reversible hydration of arbondioxide only inliverCyp2j5 ytohrome P450, family 2,subfamily j, polypeptide 5 Gene arahidoni aid epoxygenase lipid metabolism 2Dhr7 7-dehydroholesterol redutaseGene Prodution of holesterol by redution of C7-C8double bond of 7-dehydroholesterol lipid metabolism;holesterol metabolism 3Arntl aryl hydroarbon reeptornulear transloator-like Gene heterodimer with Clok is transription fatorthat regulates Per1 and other lok-gens iradian lok 4 overexpressed in 4 datasetsZfp64 zin �nger protein 64 Gene oativator of Noth; regulates di�erentiation 4 overexpressed in 1 dataset 5Srebf1 sterol regulatory elementbinding transription fator 1Gene transription fator that regulates genesinvolved in sterol biosynthesis lipid metabolism, sterolmetabolism 2 resveratrol inhibits expr. of SREBP1in ell model of steatosis; hange inSrebf-1 levels in adip. tissue during CRand refeeding; overexp. in 2 datasets 6�8Es31 esterase 31 Gene hydrolysis of esters and amide bonds; involvedin detoxi�ation of xenobiotis and maybe inlipid metabolism xenobioti metabolism 2 overexpressed in 1 datasetGk gluokinase Gene atalyzes initial step of gluose utilization bythe beta-ell and liver; e�etive when gluose isabundant only inliver overexpressed in 1 datasetCol 15a1 ollagen, type XV, alpha 1 Gene strutural protein, espeially stabilizingmirovessels and musle ells 4 overexpressed in 4 datasetsTable 3.8: see footnote 6
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3.3.2 Funtional ategories of genes di�erentially expressed with CR3.3.2.1 GO-terms enrihed in studies in whih assoiated genes are found over- / underexpressed- GO-analysis187 and 153 GO-terms were found enrihed for studies in whih their assoiated genes were over- and underex-pressed respetively aording to the analysis desribed in �3.2.6.1 Determining funtional ategories enrihed inthe meta-analysis datasets - GO-analysis� (binomial p-value < 0.001). These GO-terms are shown in table 3.9and 3.10.GO term GO total overexp. underexp. p_overexp.lipid metaboli proess GO:0006629 8255 352 216 8.01E-24rhythmi proess GO:0048511 899 73 27 6.52E-19monooxygenase ativity GO:0004497 2803 147 96 8.69E-18iradian rhythm GO:0007623 1025 72 45 2.15E-15detoxi�ation of opper ion GO:0010273 181 26 8 3.77E-13retinol metaboli proess GO:0042572 298 33 5 5.46E-13ellular_omponent GO:0005575 219270 5771 4906 6.54E-13moleular_funtion GO:0003674 232675 6087 4986 4.46E-12NADPH-hemoprotein redutase ativity GO:0003958 149 22 0 1.34E-11mirosome GO:0005792 10612 366 316 1.57E-11ayl-CoA metaboli proess GO:0006637 749 51 9 6.73E-11oxidoredutase ativity GO:0016491 20263 630 469 1.21E-10nitri oxide mediated signal transdution GO:0007263 307 30 9 1.35E-10oxidation redution GO:0055114 19926 620 461 1.49E-10aetaldehyde biosyntheti proess GO:0046186 42 12 0 2.03E-10retinoi aid metaboli proess GO:0042573 456 37 11 2.27E-10extraellular region GO:0005576 42731 1227 1102 2.51E-10fatty aid metaboli proess GO:0006631 3408 143 83 3.03E-10atalyti ativity GO:0003824 28555 850 617 3.43E-10biologial_proess GO:0008150 237351 6151 5091 4.41E-10ellular zin ion homeostasis GO:0006882 306 29 10 5.55E-10metaboli proess GO:0008152 22860 694 523 6.80E-10tyrosine-ester sulfotransferase ativity GO:0017067 82 15 3 1.08E-9nitri oxide ataboli proess GO:0046210 61 13 0 1.92E-9�avin-ontaining monooxygenase ativity GO:0004499 132 18 1 3.44E-9amine N-methyltransferase ativity GO:0030748 33 10 4 3.49E-9iron ion binding GO:0005506 4581 175 145 3.74E-9alkane 1-monooxygenase ativity GO:0018685 54 12 1 4.82E-9benzaldehyde dehydrogenase (NAD+) ativity GO:0018479 91 15 4 4.85E-9retinoid metaboli proess GO:0001523 185 21 2 5.25E-9arboxylesterase ativity GO:0004091 1170 63 30 5.60E-9late reombination nodule GO:0005715 26 9 0 5.63E-92,4-dienoyl-CoA redutase (NADPH) ativity GO:0008670 61 12 0 2.10E-8intrinsi to endoplasmi retiulum membrane GO:0031227 480 34 10 3.47E-8palmitoyl-CoA hydrolase ativity GO:0016290 368 29 3 3.52E-8ethanol ataboli proess GO:0006068 81 13 0 7.03E-8DNA photolyase ativity GO:0003913 84 13 1 1.10E-7ethanol binding GO:0035276 118 15 2 1.74E-7negative regulation of lipoprotein lipase ativity GO:0051005 37 9 2 1.76E-7MDM2 binding GO:0070215 88 13 1 1.92E-7aryl sulfotransferase ativity GO:0004062 136 16 4 2.03E-7lyase ativity GO:0016829 4802 173 128 2.04E-7drug metaboli proess GO:0017144 249 22 6 2.13E-7steroid metaboli proess GO:0008202 2076 89 73 2.33E-7dodeenoyl-CoA delta-isomerase ativity GO:0004165 155 17 0 2.38E-7holesterol 7-alpha-monooxygenase ativity GO:0008123 39 9 2 2.88E-7regulation of bile aid biosyntheti proess GO:0070857 39 9 2 2.88E-771



positive regulation of bile aid biosynthetiproess GO:0070859 39 9 2 2.88E-7ellular response to holesterol GO:0071397 39 9 2 2.88E-7extraellular spae GO:0005615 18369 548 484 2.91E-7eletron arrier ativity GO:0009055 3478 132 96 3.79E-7L-serine ammonia-lyase ativity GO:0003941 52 10 0 3.93E-7L-threonine ammonia-lyase ativity GO:0004794 52 10 0 3.93E-7aromatase ativity GO:0070330 711 41 31 4.05E-7ellular metal ion homeostasis GO:0006875 161 17 4 4.11E-7transporter ativity GO:0005215 7159 239 192 4.78E-7regulation of holesterol metaboli proess GO:0090181 222 20 3 5.45E-7peroxisome GO:0005777 4072 149 76 5.72E-7ayl-CoA thioesterase ativity GO:0016291 265 22 1 6.17E-7fatty aid (omega-1)-hydroxylase ativity GO:0008393 32 8 0 6.84E-7iosanoid biosyntheti proess GO:0046456 32 8 0 6.84E-7behavioral response to ethanol GO:0048149 186 18 2 6.97E-7myeloid progenitor ell di�erentiation GO:0002318 151 16 0 8.49E-7pyridoxal phosphate binding GO:0030170 1959 83 60 9.06E-7gluose-6-phosphate transport GO:0015760 134 15 5 9.18E-7histone phosphorylation GO:0016572 152 16 3 9.28E-7oxidoredutase ativity, ating on paired donors,with inorporation or redution of moleularoxygen, redued �avin or �avoprotein as onedonor, and inorporation of one atom of oxygen GO:0016712 534 33 26 1.18E-6ethanol oxidation GO:0006069 120 14 2 1.27E-6gluose-6-phosphate transmembrane transporterativity GO:0015152 35 8 0 1.43E-6negative regulation of hemokine prodution GO:0032682 35 8 0 1.43E-6ytosoli alium ion transport GO:0060401 35 8 0 1.43E-6positive regulation of ardia musle ontration GO:0060452 35 8 0 1.43E-6extraellular matrix onstituent seretion GO:0070278 35 8 0 1.43E-6positive regulation of G0 to G1 transition GO:0070318 35 8 0 1.43E-6holesterol ataboli proess GO:0006707 176 17 2 1.44E-6steroid hormone reeptor ativity GO:0003707 1859 79 40 1.45E-6ellular homeostasis GO:0019725 60 10 0 1.57E-6multiellular organismal homeostasis GO:0048871 60 10 0 1.57E-6methionine adenosyltransferase ativity GO:0004478 123 14 0 1.71E-6S-adenosylmethionine biosyntheti proess GO:0006556 123 14 0 1.71E-6heme binding GO:0020037 3600 132 111 2.15E-63-hloroallyl aldehyde dehydrogenase ativity GO:0004028 266 21 5 2.44E-6ligand-dependent nulear reeptor ativity GO:0004879 1889 79 41 2.60E-6nerve development GO:0021675 204 18 3 2.64E-6positive regulation of holesterol esteri�ation GO:0010873 78 11 3 2.65E-6thiolester hydrolase ativity GO:0016790 314 23 1 2.97E-6insulin-like growth fator binding GO:0005520 886 45 28 3.45E-6symporter ativity GO:0015293 3572 130 100 3.63E-6regulation of fatty aid oxidation GO:0046320 82 11 1 4.37E-6long-hain fatty aid metaboli proess GO:0001676 443 28 7 4.75E-6response to gluoortioid stimulus GO:0051384 1021 49 16 6.09E-6neurotrophin reeptor binding GO:0005165 42 8 0 6.20E-69-is-retinoi aid metaboli proess GO:0042905 56 9 2 7.13E-6alohol dehydrogenase (NAD) ativity GO:0004022 159 15 2 7.79E-6linolei aid metaboli proess GO:0043651 87 11 1 7.84E-6glyogen (starh) synthase ativity GO:0004373 57 9 1 8.28E-6opti up morphogenesis involved inamera-type eye development GO:0002072 88 11 2 8.76E-6lauri aid metaboli proess GO:0048252 46 8 2 1.26E-572



9-is-retinoi aid biosyntheti proess GO:0042904 207 17 4 1.28E-5arbon-arbon lyase ativity GO:0016830 60 9 1 1.28E-5amino aid binding GO:0016597 1110 51 16 1.29E-5nitrate transmembrane transporter ativity GO:0015112 23 6 2 1.35E-5nitrate transport GO:0015706 23 6 2 1.35E-5fatty aid beta-oxidation GO:0006635 834 41 7 1.91E-5arnitine O-palmitoyltransferase ativity GO:0004095 172 15 2 2.00E-5holesterol homeostasis GO:0042632 1160 52 22 2.05E-5leg morphogenesis GO:0035110 36 7 0 2.06E-5retinol dehydrogenase ativity GO:0004745 330 22 0 2.09E-5growth fator ativity GO:0008083 4826 162 112 2.16E-5water transport GO:0006833 508 29 22 2.20E-5positive regulation of lipid metaboli proess GO:0045834 65 9 2 2.48E-5protein homotetramerization GO:0051289 1146 51 23 2.93E-515-hydroxyprostaglandin dehydrogenase(NADP+) ativity GO:0047021 38 7 0 2.98E-5prostaglandin-E2 9-redutase ativity GO:0050221 38 7 0 2.98E-5water hannel ativity GO:0015250 363 23 19 3.06E-5etoplasm GO:0043265 27 6 0 3.63E-5progesterone reeptor signaling pathway GO:0050847 85 10 1 3.79E-5latosyleramide alpha-2,3-sialyltransferaseativity GO:0047291 41 7 1 4.99E-5regulation of ell growth GO:0001558 1295 55 38 5.13E-5brown fat ell di�erentiation GO:0050873 1236 53 34 5.44E-5suinate transmembrane transporter ativity GO:0015141 107 11 4 5.60E-5suinate transport GO:0015744 107 11 4 5.60E-5NADP or NADPH binding GO:0050661 1152 50 21 6.44E-5neutrophil homeostasis GO:0001780 75 9 1 7.85E-5drug binding GO:0008144 1877 72 41 1.03E-4arahidoni aid monooxygenase ativity GO:0008391 96 10 2 1.08E-4ytoplasmi sequestering of NF-kappaB GO:0007253 97 10 0 1.18E-4phosphatidate phosphatase ativity GO:0008195 373 22 11 1.27E-4male germ-line stem ell division GO:0048133 63 8 0 1.30E-4endorine panreas development GO:0031018 429 24 9 1.44E-4polysaharide binding GO:0030247 430 24 21 1.49E-4arahidoni aid metaboli proess GO:0019369 352 21 12 1.52E-4protein homooligomerization GO:0051260 2177 80 50 1.72E-4negative regulation of astroyte di�erentiation GO:0048712 208 15 10 1.73E-4amine sulfotransferase ativity GO:0047685 23 5 1 1.85E-4positive regulation of adiponetin seretion GO:0070165 13 4 0 1.98E-4niotini aid reeptor ativity GO:0070553 13 4 0 1.98E-43-hydroxyayl-CoA dehydrogenase ativity GO:0003857 308 19 1 2.01E-4interleukin-6-mediated signaling pathway GO:0070102 124 11 3 2.11E-4response to steroid hormone stimulus GO:0048545 496 26 14 2.18E-4sulfate assimilation GO:0000103 168 13 5 2.31E-44-nitrophenol metaboli proess GO:0018960 37 6 0 2.32E-43'-phosphoadenosine 5'-phosphosulfate binding GO:0050656 37 6 0 2.32E-4sulfation GO:0051923 37 6 0 2.32E-4panreati ribonulease ativity GO:0004522 214 15 1 2.36E-4positive regulation of ollagen biosynthetiproess GO:0032967 193 14 5 2.64E-4short-hain fatty aid metaboli proess GO:0046459 53 7 2 2.66E-4indutive ell-ell signaling GO:0031129 25 5 0 2.81E-4nuleolar fragmentation GO:0007576 54 7 0 2.99E-4glutathione transferase ativity GO:0004364 890 39 17 3.15E-4ellular amino aid metaboli proess GO:0006520 741 34 15 3.27E-4enoyl-CoA hydratase ativity GO:0004300 245 16 1 3.30E-473



gluose homeostasis GO:0042593 1562 60 42 3.48E-4negative regulation of epidermal growth fatorreeptor ativity GO:0007175 56 7 0 3.76E-4response to testosterone stimulus GO:0033574 178 13 1 4.04E-4lipid ataboli proess GO:0016042 2862 98 78 4.12E-4detetion of mehanial stimulus involved inequilibrioeption GO:0050973 57 7 1 4.20E-4nerve growth fator binding GO:0048406 75 8 1 4.40E-4regulation of insulin seretion GO:0050796 607 29 27 4.54E-4sodium ion transport GO:0006814 3788 124 94 4.59E-4thiosulfate transmembrane transporter ativity GO:0015117 58 7 2 4.68E-4malate transmembrane transporter ativity GO:0015140 58 7 2 4.68E-4seondary ative transmembrane transporterativity GO:0015291 58 7 2 4.68E-4thiosulfate transport GO:0015709 58 7 2 4.68E-4malate transport GO:0015743 58 7 2 4.68E-4urea transport GO:0015840 181 13 3 4.73E-4holesterol esteri�ation GO:0034435 42 6 3 4.74E-4proline raemase ativity GO:0018112 28 5 0 4.90E-4endosomal lumen aidi�ation GO:0048388 59 7 0 5.20E-4mitohondrial inner membrane GO:0005743 12407 355 162 5.42E-4FMN binding GO:0010181 388 21 11 5.54E-4ligand-regulated transription fator ativity GO:0003706 97 9 4 5.58E-4negative regulation of thymoyte apoptosis GO:0070244 78 8 2 5.74E-4aonitate hydratase ativity GO:0003994 118 10 1 5.79E-4glyerol transport GO:0015793 118 10 3 5.79E-4ammonia assimilation yle GO:0019676 98 9 0 6.02E-4aldehyde dehydrogenase (NAD) ativity GO:0004029 446 23 8 6.06E-4sensory pereption of hemial stimulus GO:0007606 163 12 11 6.18E-4response to musle ativity GO:0014850 119 10 1 6.19E-4positive regulation of fatty aid beta-oxidation GO:0032000 141 11 2 6.34E-4nuleotide-binding oligomerization domainontaining 1 signaling pathway GO:0070427 80 8 0 6.80E-4photoreeptor outer segment GO:0001750 928 39 17 6.93E-4response to stress GO:0006950 4085 131 113 7.07E-4NF-kappaB binding GO:0051059 214 14 2 7.41E-4haperone-mediated protein folding GO:0061077 64 7 1 8.53E-4negative regulation of B ell apoptosis GO:0002903 65 7 2 9.37E-4photoreeptor ativity GO:0009881 324 18 6 9.85E-4
GO term GO total overexp. underep. p_underexpsterol biosyntheti proess GO:0016126 1091 29 59 5.57E-10plasma membrane GO:0005886 68511 1690 1722 6.14E-9beta-alanine transmembrane transporterativity GO:0001761 60 1 12 6.32E-9beta-alanine transport GO:0001762 60 1 12 6.32E-9taurine transmembrane transporter ativity GO:0005368 60 1 12 6.32E-9taurine:sodium symporter ativity GO:0005369 60 1 12 6.32E-9taurine transport GO:0015734 60 1 12 6.32E-974



taurine binding GO:0030977 60 1 12 6.32E-9holesterol biosyntheti proess GO:0006695 1022 31 53 1.59E-8innate immune response GO:0045087 3356 85 125 1.80E-8response to sterol depletion GO:0006991 68 3 12 2.80E-8steroid biosyntheti proess GO:0006694 2298 65 93 2.97E-8extraellular region GO:0005576 42731 1227 1102 3.84E-8mirosome GO:0005792 10612 366 316 7.15E-87-dehydroholesterol redutase ativity GO:0047598 49 0 10 9.43E-8response to virus GO:0009615 1706 46 73 1.06E-7positive regulation of transription via sterolregulatory element binding GO:0035104 92 2 13 1.17E-7pheromone binding GO:0005550 164 9 17 1.52E-7ISG15-protein onjugation GO:0032020 132 2 15 2.42E-7lipid biosyntheti proess GO:0008610 4030 121 139 2.50E-7ollagen �bril organization GO:0030199 856 24 44 3.11E-7regulation of heart rate by hemial signal GO:0003062 60 1 10 6.95E-7sterol response element binding GO:0032810 60 1 10 6.95E-7gluose 6-phosphate metaboli proess GO:0051156 250 12 20 8.76E-7positive regulation of glyolysis GO:0045821 148 3 15 1.07E-63-beta-hydroxy-delta5-steroid dehydrogenaseativity GO:0003854 283 7 21 1.59E-6fatty aid biosyntheti proess GO:0006633 2216 72 84 1.74E-6itrate metaboli proess GO:0006101 309 8 22 1.80E-6ell ortex part GO:0044448 41 1 8 2.63E-6detetion of gluose GO:0051594 41 1 8 2.63E-6endoplasmi retiulum GO:0005783 30121 749 778 2.64E-6antigen proessing and presentation GO:0019882 1004 10 46 3.77E-6omplement ativation, lassial pathway GO:0006958 853 15 41 3.96E-6ellular response to myophenoli aid GO:0071506 74 0 10 5.01E-6negative regulation of steroid biosynthetiproess GO:0010894 110 5 12 5.79E-6reatine metaboli proess GO:0006600 133 0 13 8.12E-6reatinine metaboli proess GO:0046449 133 0 13 8.12E-6positive regulation of holesterolbiosyntheti proess GO:0045542 197 5 16 8.60E-6modi�ation-dependent protein ataboliproess GO:0019941 97 1 11 9.66E-6sugar binding GO:0005529 5415 112 167 1.19E-5iron ion binding GO:0005506 4581 175 145 1.24E-5iradian rhythm GO:0007623 1025 72 45 1.37E-5holesterol metaboli proess GO:0008203 2037 69 75 1.56E-520-alpha-hydroxysteroid dehydrogenaseativity GO:0047006 68 1 9 1.76E-5allantoin metaboli proess GO:0000255 144 1 13 1.92E-5gluokinase ativity GO:0004340 86 1 10 1.95E-5ativation of signaling protein ativityinvolved in unfolded protein response GO:0006987 69 0 9 1.98E-5FasL biosyntheti proess GO:0045210 39 1 7 1.99E-5monooxygenase ativity GO:0004497 2803 147 96 2.02E-5syndean binding GO:0045545 105 3 11 2.06E-5immune response GO:0006955 4261 110 135 2.29E-5defense response to virus GO:0051607 451 11 25 2.94E-5extraellular spae GO:0005615 18369 548 484 3.11E-575



positive regulation of fatty aid biosynthetiproess GO:0045723 177 8 14 4.10E-5positive regulation of triglyeridebiosyntheti proess GO:0010867 201 3 15 4.35E-5holine binding GO:0033265 156 10 13 4.45E-5gluose binding GO:0005536 464 17 25 4.65E-5ytokine reeptor ativity GO:0004896 1148 30 47 4.94E-5selenoysteine lyase ativity GO:0009000 31 1 6 5.03E-5positive regulation of histone deaetylation GO:0031065 204 5 15 5.15E-5steroid delta-isomerase ativity GO:0004769 117 3 11 5.66E-5regulation of transforming growth fatorbeta reeptor signaling pathway GO:0017015 232 4 16 6.35E-5arbohydrate phosphorylation GO:0046835 283 11 18 6.56E-5ollagen biosyntheti proess GO:0032964 63 4 8 6.94E-5ollagen GO:0005581 626 16 30 7.52E-5steroid metaboli proess GO:0008202 2076 89 73 8.26E-5extraellular matrix GO:0031012 3665 104 116 8.37E-5growth hormone reeptor ativity GO:0004903 65 0 8 8.71E-5growth hormone reeptor signaling pathway GO:0060396 65 0 8 8.71E-5ranial suture morphogenesis GO:0060363 192 5 14 9.87E-5isoleuine metaboli proess GO:0006549 195 2 14 1.16E-4naphthalene metaboli proess GO:0018931 37 0 6 1.42E-4trihloroethylene metaboli proess GO:0018979 37 0 6 1.42E-4aetyl-CoA biosyntheti proess GO:0006085 175 9 13 1.43E-4positive regulation of programmed ell death GO:0043068 152 4 12 1.44E-4C-5 sterol desaturase ativity GO:0000248 38 0 6 1.66E-4holesterol biosyntheti proess vialathosterol GO:0033490 38 0 6 1.66E-4lathosterol oxidase ativity GO:0050046 38 0 6 1.66E-4oxidoredutase ativity, ating on paireddonors, with inorporation or redution ofmoleular oxygen, redued �avin or�avoprotein as one donor, and inorporationof one atom of oxygen GO:0016712 534 33 26 1.70E-4
NADP biosyntheti proess GO:0006741 54 2 7 1.72E-4integral to membrane GO:0016021 133096 3156 3104 1.78E-4protein disul�de isomerase ativity GO:0003756 335 3 19 1.87E-4positive regulation of homoysteinemetaboli proess GO:0050668 55 2 7 1.94E-4proteinaeous extraellular matrix GO:0005578 8619 238 239 1.94E-4defense response to Gram-positive baterium GO:0050830 1018 24 41 1.99E-4alium ion transport GO:0006816 3675 94 114 2.03E-4regulation of angiogenesis GO:0045765 423 8 22 2.10E-4misfolded protein binding GO:0051787 183 2 13 2.23E-4ellular response to gluose starvation GO:0042149 137 2 11 2.32E-4membrane GO:0016020 176738 4222 4083 2.35E-4seond-messenger-mediated signaling GO:0019932 75 2 8 2.40E-4endoplasmi retiulum lumen GO:0005788 1061 25 42 2.40E-4basement membrane GO:0005604 2976 76 95 2.56E-4NADPH oxidase omplex GO:0043020 188 1 13 2.89E-4protein seretion GO:0009306 239 2 15 2.95E-4purinergi nuleotide reeptor ativity,G-protein oupled GO:0045028 376 7 20 2.97E-476



heme binding GO:0020037 3600 132 111 3.00E-4ollagen type III GO:0005586 59 1 7 3.02E-4aromatase ativity GO:0070330 711 41 31 3.02E-4oxidoredutase ativity, ating on paireddonors, with oxidation of a pair of donorsresulting in the redution of moleularoxygen to two moleules of water GO:0016717 240 13 15 3.08E-4integral to plasma membrane GO:0005887 10052 278 272 3.26E-4atehol O-methyltransferase ativity GO:0016206 60 2 7 3.35E-4phosphoinositide 3-kinase asade GO:0014065 79 3 8 3.43E-4negative regulation of epinephrine seretion GO:0032811 121 3 10 3.49E-4nikel ion binding GO:0016151 168 1 12 3.64E-4epinephrine seretion GO:0048242 62 2 7 4.11E-4hexokinase ativity GO:0004396 171 3 12 4.27E-4polyspei� organi ation transmembranetransporter ativity GO:0015354 82 0 8 4.43E-4positive regulation of ativated T ellproliferation GO:0042104 303 3 17 4.47E-4mRNA modi�ation GO:0016556 331 5 18 4.47E-4response to ethanol GO:0045471 1337 42 49 4.50E-4mitoti ell yle G2/M transition DNAdamage hekpoint GO:0007095 172 2 12 4.50E-4organi ation transmembrane transporterativity GO:0015101 125 1 10 4.53E-4ellular response to interferon-alpha GO:0035457 63 2 7 4.53E-4frutose 2,6-bisphosphate metaboli proess GO:0006003 223 11 14 4.60E-4JAK-STAT asade GO:0007259 795 12 33 4.67E-4ell adhesion GO:0007155 14943 360 388 4.73E-4taurine metaboli proess GO:0019530 277 12 16 4.74E-4negative regulation of ell-matrix adhesion GO:0001953 149 10 11 4.77E-4leukemia inhibitory fator reeptor ativity GO:0004923 46 0 6 4.84E-4establishment or maintenane oftransmembrane eletrohemial gradient GO:0010248 46 0 6 4.84E-4epinephrine transport GO:0048241 46 0 6 4.84E-4water hannel ativity GO:0015250 363 23 19 5.04E-4regulation of insulin seretion GO:0050796 607 29 27 5.26E-4proton-dependent oligopeptide seondaryative transmembrane transporter ativity GO:0005427 47 0 6 5.45E-4erebellar Purkinje ell layer development GO:0021680 281 2 16 5.53E-45-aminolevulinate synthase ativity GO:0003870 106 6 9 5.58E-4protein import into nuleus, transloation GO:0000060 310 14 17 5.78E-4holinesterase ativity GO:0004104 107 8 9 5.98E-4substrate-bound ell migration GO:0006929 66 0 7 6.03E-4polysaharide binding GO:0030247 430 24 21 6.50E-4positive regulation of natural killer ellproliferation GO:0032819 33 0 5 7.13E-4response to interleukin-15 GO:0070672 33 0 5 7.13E-4left-handed Z-DNA binding GO:0003692 68 0 7 7.23E-4elevation of ytosoli alium iononentration GO:0007204 2698 73 85 7.54E-4osteoblast di�erentiation GO:0001649 1264 26 46 7.55E-4dopamine transport GO:0015872 158 2 11 7.78E-477



dopamine transmembrane transporterativity GO:0005329 111 2 9 7.80E-4ytolysis GO:0019835 721 24 30 7.88E-4regulation of neuron di�erentiation GO:0045664 529 10 24 7.91E-4ylin binding GO:0030332 263 6 15 7.96E-4hemokine ativity GO:0008009 1024 31 39 8.00E-4negative regulation of female reeptivity GO:0007621 184 6 12 8.17E-4female pregnany GO:0007565 531 14 24 8.33E-4positive regulation of prostaglandinbiosyntheti proess GO:0031394 266 5 15 8.92E-4membrane attak omplex GO:0005579 137 3 10 9.25E-4phosphatidylholine biosyntheti proess GO:0006656 353 9 18 9.38E-4regulation of natriuresis GO:0003078 35 1 5 9.40E-4V1B vasopressin reeptor binding GO:0031895 35 1 5 9.40E-4multiellular organismal water homeostasis GO:0050891 35 1 5 9.40E-4ayl arrier ativity GO:0000036 114 2 9 9.44E-4organi ation transport GO:0015695 138 1 10 9.78E-4blood vessel development GO:0001568 2009 43 66 9.98E-4
Suh a large number of signi�ant GO-terms is di�ult to interpret as to their role in CR. Therefore wefoused on ategories represented by similar GO-terms (at di�erent levels of spei�ity) and GO-terms that werefound with lowest p-values or were already known to be assoiated with CR. The possible use of these liststherefore exeeds what is desribed here by allowing to also investigate the relevane in respet to CR of all theother GO-terms not expliitly desribed here as.The top GO-term for overexpressed genes with a highly signi�ant p-value of p <10−23 is �lipid metaboliproess�. Also other, more spei� GO-terms related to lipid metabolism like �ayl-CoA metaboli proess� or�fatty aid metaboli proess� were found. Some similar funtional ategories (�fatty aid metaboli proess�,�lipid metabolism�, et.) were also obtained in the DAVID analysis (�3.2.6.2 Putting genes found di�erentiallyexpressed with CR into funtional ategories � DAVID-analysis�) with low p-values, however not signi�ant afterBenjamini-Hohberg orretion (p-values before / after orretion: ~0.005 / ~0.3). Interestingly 3 of the 6 genesassoiated with �fatty aid metaboli proess� in the DAVID-analysis were also assoiated with peroxisomes.These 6 genes are� enoyl-Coenzyme A, hydratase/3-hydroxyayl Coenzyme A dehydrogenase,� 2-hydroxyayl-CoA lyase 1,� ayl-CoA thioesterase� arnitine palmitoyltransferase 1a, liver,� ayl-CoA thioesterase 12 and� peroxisome proliferator ativated reeptor alpha, knok-out of whih was reported to protet mie fromhigh-fat-diet indued insulin resistane (Cha et al. 2007).Interestingly Hong (Hong, S. et al. 2010) found genes of the GO-ategory �lipid metabolism� enrihed fordownregulation with aging in a meta-analysis of miroarray data on aging.For underexpressed genes the top GO-term is �sterol biosyntheti proess� with a p-value of <10−9. Also relatedto lipid synthesis �holesterol biosyntheti proess� and �lipid biosyntheti proess� itself are among the top GO-terms. Interestingly also �response to sterol depletion� is deteted, represented by insulin indued gene 1 Gene(Entrez ID 231070) among the signi�ant genes. Also among the most signi�ant GO-terms for upregulated genesare �rhythmi proess� and �iradian rhythm�, the seond of whih was also found for downregulated genes. A78



GO term GO total overexp. underexp. p_overexp. p_underexpmonooxygenase ativity GO:0004497 2803 147 96 8.69E-18 2.02E-5iradian rhythm GO:0007623 1025 72 45 2.15E-15 1.37E-5mirosome GO:0005792 10612 366 316 1.57E-11 7.15E-8extraellular region GO:0005576 42731 1227 1102 2.51E-10 3.84E-8iron ion binding GO:0005506 4581 175 145 3.74E-9 1.24E-5steroid metaboli proess GO:0008202 2076 89 73 2.33E-7 8.26E-5extraellular spae GO:0005615 18369 548 484 2.91E-7 3.11E-5aromatase ativity GO:0070330 711 41 31 4.05E-7 3.02E-4oxidoredutase ativity, atingon paired donors, withinorporation or redution ofmoleular oxygen, redued �avinor �avoprotein as one donor,and inorporation of one atomof oxygen
GO:0016712 534 33 26 1.18E-6 1.70E-4

heme binding GO:0020037 3600 132 111 2.15E-6 3.00E-4water hannel ativity GO:0015250 363 23 19 3.06E-5 5.04E-4polysaharide binding GO:0030247 430 24 21 1.49E-4 6.50E-4regulation of insulin seretion GO:0050796 607 29 27 4.54E-4 5.26E-4Table 3.11: GO-terms enrihed in the number of studies both in whih their assoiated genes were found over- andunderexpressed. The total number of times genes were found assoiated with eah GO-term, the numbers in whihthey were over- and underexpressed and the binomial p-values for the enrihment of over- and undererexpressionare shown.link between iradian rhythm and both CR and aging has already been notied in several instanes (see e.g.(Froy & Miskin 2010)).Several ategories related to immune response were found for downregulated genes: �innate immune response�,�antigen proessing and presentation�, �omplement ativation, lassial pathway�.Even though the GO-term �xenobioti metabolism� itself was not enrihed among our andidate genes, enzymeativities related to this proess were represented by monooxygenase ativity (for up- and downregulated genes)and NADPH-hemoprotein redutase ativity (up). Some of the genes found in ategories related to oxidationand redution fall into this ategory. Xenobioti metabolism (see e.g. (Gourley & C. J. Kennedy 2009)) and inpartiular monooxygenases (Shmuker et al. 1991) have been previously assoiated with CR, even thought theirexat role remains unlear.�Positive regulation of ollagen biosyntheti proess� was among the enrihed terms for over- and �ollagen�,�ollagen type III�, �ollagen �bril organization� and �ollagen biosyntheti proess� for underexpressed genes. Ithas been shown previously that alori restrition to a ertain degree prevents ollagen aumulation and ollagenaging (see (Frey 2004)).The �ndings of �growth hormone reeptor ativity� and �growth hormone reeptor signaling pathway� for down-regulated genes and �regulation of insulin seretion� for both up- and down-, as well as �insulin-like growth fatorbinding� for upregulated genes argues for involvement of the growth fator and insulin / IGF signalling pathwaysin CR.�Retinol metabolism�, whih was found enrihed for upregulated genes, has been linked to CR in a broader senseby a study reporting the derease of retinol during fasting in humans (Söderlund et al. 2003).Of the top 10 ategories for overexpression to our knowledge no known link exists between CR and �opper iondetoxi�ation�. The GO-ategory �beta-alanine transmembrane transporter ativity�, found for downregulatedgenes, ontains only 1 gene, Sl6a6. 5 other of the top 10 GO-ategories for underexpressed genes were also founddue to this single gene, found downregulated 12 of 60 times it was studied. To our knowledge this gene has notyet been assoiated with CR.Out of the GO-terms shown there are 13 whih meet the seletion riteria for both over- and underexpressedgenes. These are shown in table 3.11.Sine these terms are relatively broad it seems aeptable that their ativities are hanged by upregulation ofsome of their members and downregulation of others. Interestingly �steroid metaboli proess� appears amongthose, while �steroid biosynthesis� is one of the top GO-terms for underexpressed genes and is only found at a79



binomial p-value of 0.1 for overexpressed genes, i.e. muh less emphasized. This suggests that while genes in-volved in steroid metabolism an be both up- or downregulated by CR, the ones responsible for the biosynthesistend more towards downregulation.Note that �steroid hormone reeptor ativity� and �response to steroid hormone stimulus� appear among thesigni�ant GO-terms for upregulated genes. This suggests that the alteration of steroid hormone levels and thee�et of this alteration on ells is an important mehanism of CR.Even though a single GO-ategory related to sterol / holesterol metabolism is not found for both up- anddownregulated genes, there are di�erent suh ategories in both ases (e.g. �holesterol 7-alpha-monooxygenaseativity� and �regulation of holesterol metaboli proess� for over- and �sterol biosyntheti proess� and �holes-terol biosyntheti proess� for underexpressed genes).3.3.2.2 Funtional lassi�ation of genes enrihed in the number of studies they are found over-/ underexpressed - DAVID-analysisWe used the DAVID Funtional Annotation tool to group genes enrihed in studies in whih they were foundover- / underexpressed into funtional ategories. We obtained groups of suh (often similar) ategories lusteredaording to genes whih they had in ommon (funtional annotation lusters).These lusters for the overexpressed genes ontaining at least one ategory with a Benjamini-Hohberg FDRbelow 0.05 ontained ategories related to sulfotransferase-ativity, NAD(P) involving proesses, oxidoredutases-of whih a large fration was also assoiated with endoplasmati retiulum- and to biologial rhythms. Eventhough not signi�ant after multiple-testing orretion the �nding of the GO-term �response to nutrient levels�at a Benjamini-Hohberg orreted FDR of 0.16 ats as a prove of onept for suessfully deteting funtionalategories determined by feeding levels. This term was represented by the genes: ATP-binding assette, sub-family G (WHITE), member 5 (Entrez ID: 27409), alohol dehydrogenase 1 (lass I)(11522), angiopoietin-like 4(57875), matrix Gla protein (17313), peroxisome proliferator ativated reeptor alpha (19013) and solute arrierfamily 37 (gluose-6-phosphate transporter), member 4 (14385).The only funtional annotation luster with ategories below a Benjamini-Hohberg FDR of 0.05 for underex-pressed genes was related to endoplasmi retiulum.A problem about the DAVID proedure under default options seems to be that so many hypotheses are testedthat extremely low p-values are neessary for ategories to remain signi�ant after Benjamini-Hohberg orre-tion. The number of signi�ant funtional ategories was muh lower than that found in the GO-analysis.One signi�ant Bioarta and 3 KEGG (Kanehisa et al. 2010) pathways were found below a Benjamini-HohbergFDR of 0.05 for genes enrihed for overexpression, none for those enrihed with underexpression. (The analysisonly for Bioarta and KEGG pathways tests less hypotheses as for all default ategories and allows therefore path-ways to be signi�ant that were not, when testing more hypotheses). The Bioarta pathway �Nulear Reeptorsin Lipid Metabolism and Toxiity� is shown in �g. 3.9, the illustrations of the KEGG pathways �PPAR signalingpathway�, �Arahidoni aid metabolism� and �Retinol metabolism in animals� an be found in supplement 2.3.3.2.3 Overlap between GO-analysis on original data and DAVID funtional analysis on resultgenesThere is strong overlap between the funtional ategories found using DAVID on the genes found in the meta-analysis and meta-analysing GO-terms themselves. For example the signi�ant DAVID funtional lusters relatedto sulfotransferase-ativity, NAD(P) involving proesses, oxidoredutases and biologial rhythms are representedby some of the most highly signi�ant GO-terms, e.g. �tyrosine-ester sulfontransferase ativity�, �NADPH-hemprotein redutase ativity�, �oxidoredutase ativity�, �rhythmi proess�, �iradian rhythm� and others.�Endoplasmi retiulum� whih is found in the DAVID analysis for underexpressed genes is also found signi�-ant for the GO-analysis, even though not among the very top genes. �Sterol metabolism� is found among thetop GO-terms and also among the top DAVID ategories, even when not signi�ant after Benjamini-Hohbergorretion.Note that a profound di�erene between meta-analysis on the level of GO-terms and DAVID-analysis on thesigni�ant results of meta-analysis on gene level is that a single gene found in many datasets an lead to signif-iane of its GO-terms, while a GO-term has to be assoiated with di�erent signi�ant genes to be signi�antin the DAVID-analysis. GO-analysis is in theory able to detet funtional ategories assoiated with CR, eventhough no single gene of the ategory is itself signi�antly enrihed for over- or underexpression. A strong overlap80



relevant legend:
Figure 3.9: Bioarta pathway "Nulear Reeptors in Lipid Metabolism and Toxiity", found assoiated withgenes enrihed for overexpression by the DAVID funtional analysis tool. Genes enrihed for overexpression areindiated by red arrows. For further information see http://www.bioarta.om/genes/index.asp.
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between the GO-terms and the DAVID ategories however implies a strong overlap of the GO-terms with genesfound signi�antly enrihed, sine DAVID is based on these genes.3.3.3 Tissues ontributing to enrihment of a gene for over- or underexpressionAs desribed in �3.2.7 Determining tissues ontributing to enrihment of genes for over- or underexpression�, wedetermined if the enrihment of a gene for over- / underexpression was due to its over- / underexpression in one,two or more than two tissues. Complete matries showing the tissue spei� di�erential-expression pro�les ofthese genes are shown in Fig. 3.10.It an be seen, that di�erent datasets ontribute to a di�erent extent to the number of genes found enrihed forover- / underexpression, espeially liver-datasets (partiularly GSE18297) an be found to ontribute more andbrain-tissue datasets less strongly. This is surprising in the sense that the brain-datasets ontributing least arefrom GSE8426, a study among the highest in terms of the number of repliates.13% and 16% of genes enrihed for over- and underexpression respetively were found over- or underexpressedonly in liver and 34% and 49% in less than three tissues (and mainly in liver and one other tissue). Sineliver-spei� signatures might mask tissue-independent ones we performed funtional analysis (using DAVID)besides for the omplete list of signi�ant genes also for the list subtrated of genes over- / underexpressed in lessthan 3 tissues. Looking for liver-spei� signatures we did the analysis for genes only over- / underexpressed inliver. The proedure is desribed in �4.7.1. Putting genes found di�erentially expressed with CR into funtionalategories�.
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3.3.4 Results of the analysis of non-liver and liver-only datasetsTo determine genes di�erentially expressed on the one hand in a tissue tissue-independent manner, on theother hand liver spei�ally we repeated the DAVID-analysis �rst on genes found over- / underexpressed inat least 3 di�erent tissues then on suh found over- / underexpressed in liver-datasets only. For the seond noategories were found at a Benjamini-Hohberg FDR < 0.05. Categories determined for genes enrihed for over- /underexpression in at least 3 di�erent tissues ompared to these found for andidates resulting from the all-tissuemeta-analysis are shown in tab. 3.12.While funtional ategories related to sulfotransferase, vesiular transport, retinol and arahidoni aidmetabolism were enrihed for overexpressed genes and to endoplasmati retiulum for underexpressed genes,these were not found enrihed among the genes found over- / underexpressed in at least 3 di�erent tissues. Thisdoes however not neessarily mean that these ategories annot be assoiated with CR ross-tissues, but mightmean that by restriting to genes over- / underexpressed in > 2 di�erent tissues the statistial power is simplytoo redued to detet this assoiation.On the other hand this analysis showed that ategories related to �NADP� and �iradian rhythm� were alsofound for only genes di�erentially expressed in at least 3 di�erent tissues and an therefore be assumed to betruly tissue-independent. Interestingly two ategories, �metal binding� and �vesiular transport� that were notsigni�antly enrihed among all genes were found signi�ant for genes di�erentially expressed in at least 3 di�er-ent tissues.Note that some ategories (like lipid metabolism) deteted by the GO-analysis were not found by the DAVID-analysis on all-tissue andidates and it is therefore not possible to draw onlusions about their tissue-spei�ityor tissue-independene by this method.3.3.5 Co-expression analysis of CR-assoiated genesGenes enrihed in the o-expression with genes overrepresented for up- / downregulation are given in supplement.2. Sine a large number of genes (1576 for over- and 1069 for underexpression) were found, we performed DAVID-analysis under default settings on them.Interestingly we found that the funtional ategories obtained for upregulated genes were en large the same as fordownregulated genes. Some of the most signi�ant funtional ategories retrieved for both up- and downregulatedgenes were related to extraellular spae, lipid metabolism, amino aid atabolism, in�ammation / immunity,peroxisomes, steroid / sterol / holesterol metabolism, endopeptidase inhibitor ativity, lipoprotein partiles,response to hormons, mitohondria, xenobiotis metabolism / ytohrome P450, blood oagulation.Therefore, after we had already deteted some funtional ategories that appeared assoiated both with genesoverrepresented for over- and underexpression, we found this overlap even more pronouned on the level of theirinteration partners. This might also have to do with the inreased statistial power due to the large numberof genes in this test. It suggests that pathways important for the e�et of CR are upregulated in some anddownregulated in other genes.3.3.6 Transription fators regulating expression of andidate genesTransription fator (TF) binding sites enrihed for our andidate genes were searhed using WebMotifs whihats as an interfae to di�erent TF-binding site detetion softwares. The only one that obtained signi�ant resultswas THEME whih uses reported transription fator binding sites and optimizes them to �t best �t to our data.The optimized sequenes found signi�antly enrihed for overexpressed genes were derived from binding sites forCBFB_NFYA (CCAAT-binding transription fator subunit B), CUT and PBC domains (Fig. 3.10). Aording85



all genes di�. exp. in >2 di�. tissuessulfotransferase +endoplasmati retiulum -iradian rhythm + +xenobioti metabolism / oxidoredutase ativity +arahidoni aid metabolism +retinol +metal binding +NADP + +vesiular fration +vesiular tra� +Table 3.12: This table shows under whih onditions ertain funtional ategories are enrihed for genes overex-pressed (+) or underexpressed (-) aording to DAVID-analysis on all andidate genes from the meta-analysisand on suh over- / underexpressed in more than two di�erent tissues.

Figure 3.10: WebLogos (Crooks et al. 2004) of binding sites and orresponding TF-domains / domain familiesenrihed in our andidate over- and underexpressed genes.to PFAM CBFB_NFYA binds to a CCAAT motif in the promoters of a wide variety of genes, inluding type Iollagen (pfam.sanger.o.uk).For underexpressed genes we deteted binding sites for bZIP (Basi Leuine Zipper), RFX (Regulatory Fatorbinding to X box), zf-C4 (Zin �nger, C4 type/Nulear Hormone Reeptor; for whih two optimized sequeneswere found), CUT and My_N-term (My animo-terminal region) (Fig. 3.10). My forms a heterodimer withMax, and this omplex regulates ell growth through diret ativation of genes involved in ell repliation. Anespeially interesting andidate domain is zf-C4 sine it appears in steroid hormone reeptors (aording toPFAM). It therefore �ts well with our funtional analysis in whih steroid metabolism and regulation by steroidhormones were reurrent topis.3.3.7 Overlap with CR-essential genes, their orthologues and interation partnersThe only mouse gene in the database for genes experimentally identi�ed to be essential for CR, GeneDR, is Ghr(Growth hormone reeptor; Entrez ID: 14600). It was shown that mutating this gene anels out the life-spanextension e�et of CR (Coshigano et al. 2003) (Bonkowski et al. 2006). In our meta-analysis this genes wasenrihed for underexpression, whih is both a onvining argument for the biologial meaningfulness of our results86



and for the impliation of Ghr in the mehanism of CR.Further 4 of our andidates have CR-essential gene orthologues in lower model orgainsms: Of the genes enrihedfor overexpression these were Irs2 (insulin-reeptor substrate 2; an ortholog of hio in Drosophila melanogaster)and Mat1α (methionine adenosyltransferase I, alpha; the ortholog of sams-1 in Caenorhabditis elegans) and forthose enrihed for downregulation Gk (Gluokinase) and S5d (sterol-C5-desaturase) whih are orthologues ofHXK2 and ERG3 in S. erevisiae, respetively (Clany et al. 2002) (Hansen et al. 2005) (Lin, S. J. et al. 2000)(Tang et al. 2008). Note than the detetion of genes assoiated with CR in these organisms in a meta-analysisof mammalian datasets suggests at least some degree of onservation in the mehanism of CR from yeast tomammals.Additional 42 genes were diret interation partners of murine CR-essential gene orthologues as determined bythe proedure desribed in �3.2.11 Deteting overlap with CR-essential genes, their orthologues and interationpartners�. The omplete list of these genes with their spei�ity measure and p-value is shown in table 3.13.Moreover, 3 of these 47 genes were also impliated in aging aording to the GenAge database (de Magalhães& Toussaint 2004): Ghr, Irs2 and Arntl (aryl hydroarbon reeptor nulear transloator-like Gene), an importantiradian lok transription fator (Coshigano et al. 2000) (Kondratov et al. 2006) (Taguhi et al. 2007).3.3.8 Assoiation of individual datasets to the meta-signature of CRThe p-values obtained in the hi-square test assessing the assoiation between eah dataset and the meta-signatureof CR as desribed in �3.2.12 Testing the assoiation of individual datasets to the meta-signature of CR� aregiven in table 3.14. The test was not done for datasets obtained form literature and supplements, sine they onlyprovide di�erentially expressed genes.It an be seen, that many datasets show a strong assoiation with the meta-signature. This is espeiallytrue for liver datasets, while for many of the brain-tissue datasets no gene in the meta-signature was founddi�erentially expressed. However the orrelation between the strength of the assoiation and the study fromwhih the datasets ame from seems relatively strong. Therefore, for tissues that only ontain datasets fromone or a few studies (e.g. most brain tissues are from GSE8426) it is hard to onlude if they are espeiallywell / weakly represented by the meta-signature or if the orresponding study (studies) show strong / weakassoiation(s) for other reasons. Beause liver was tested by many individual studies and for most low p-valuesin the hi-square test were obtained, it appears save to onlude that at least the e�et of CR on liver is wellrepresented by our meta-signature.3.4 Disussion3.4.1 Summary and interpretationCR is the most promising non-geneti intervention to extend life-span and delay aging assoiated diseases in arange of organisms. To understand the geneti basis of CR we aimed at determining robust hanges in geneexpression linked to CR by meta-analysing miroarray data on CR with wide variation in di�erent experimentalvariables. To on the one hand �nd genes di�erentially expressed under di�erent onditions, but on the otherhand to also allow transription levels not to be a�eted or to be a�eted in opposite diretion under a fewirumstanes we hose a value-ounting approah. To aount for the fat that di�erent genes were tested in adi�erent number of datasets we hose a binomial test.As miroarray analyses themselves also this meta-analysis of miroarray data in the �rst plae provides asoure of andidate genes and funtional ategories that may be impliated in the CR-proess. The found genesand ategories an be broadly divided into suh providing further evidene for genes and funtions alreadyassoiated with CR and suh not yet tested for their role in CR. Genes and ategories for whih we are aware oftheir relation to CR will be disussed in the following as will the most outstanding novel ones. For all others werefer you to the omplete lists as provided in tables 3.6, 3.7, 3.9, 3.10.It is interesting to note that onsidering all experiments less genes were found under- than overexpressed.Even though this dereases the suess probability (ps) in the binomial test (eqation3.1)7, also less genes / GOswere found enrihed in studies in whih they / their assoiated genes were found over- than underexpressed. Thisresult is somewhat expeted if you assume that CR indues a transriptional response, e.g. to more stronglypronoune alternative metaboli pathways.7A lower pS requires a lower number of hits (k) for the same number of trials (n) to give the same binomial p-value87



EntrezID GeneSym-bol MGI Desription spei�ity(%) spei�ityp-value omment11833 Aqp8 aquaporin 8 Gene 41 1.48E-0611831 Aqp6 aquaporin 6 Gene 37 3.58E-06232493 Gys2 glyogen synthase 2 Gene 17 5.61E-05384783 Irs2 insulin reeptor substrate 2 Gene 13 8.07E-05 CR-assoiatedortholog,aging-assoiated15982 Ifrd1 interferon-related developmental regulator 1 Gene 27 0.0114381 G6pdx gluose-6-phosphate dehydrogenase X-linked Gene 13 0.0358198 Sall1 sal-like 1 (Drosophila) Gene 25 0.0329818 Hspb7 heat shok protein family, member 7 (ardiovasular) Gene 100 0.0411668 Aldh1a1 aldehyde dehydrogenase family 1, subfamily A1 Gene 8 0.0512846 Comt1 atehol-O-methyltransferase 1 Gene 15 0.0811865 Arntl aryl hydroarbon reeptor nulear transloator-like Gene 11 0.09 aging-assoiated22390 Wee1 WEE 1 homolog 1 (S. pombe) Gene 7 0.1270807 Arrd2 arrestin domain ontaining 2 Gene 25 0.1415258 Hipk2 homeodomain interating protein kinase 2 Gene 9 0.1426358 Aldh1a7 aldehyde dehydrogenase family 1, subfamily A7 Gene 7 0.1518035 Nfkbia nulear fator of kappa light polypeptide gene enhaner inB-ells inhibitor, alpha Gene 6 0.1557080 Gtf2ird1 general transription fator II I repeat domain-ontaining 1Gene 14 0.2467460 Der1 2,4-dienoyl CoA redutase 1, mitohondrial Gene 13 0.26235293 S5d sterol-C5-desaturase (fungal ERG3, delta-5-desaturase)homolog (S. erevisae) Gene 6 0.27 CR-assoiatedortholog100042570Bnip3 BCL2/adenovirus E1B interating protein 3 Gene 11 0.29235320 Zbtb16 zin �nger and BTB domain ontaining 16 Gene 5 0.31269587 Epb4.1 erythroyte protein band 4.1 Gene 5 0.33223697 Sun2 Sad1 and UNC84 domain ontaining 2 Gene 5 0.3414600 Ghr growth hormone reeptor Gene 6 0.39 CR-assoiated,aging-assoiated14828 Hspa5 heat shok protein 5 Gene 4 0.40103988 Gk gluokinase Gene 5 0.41 CR-assoiatedortholog12406 Serpinh1 serine (or ysteine) peptidase inhibitor, lade H, member 1Gene 7 0.4414229 Fkbp5 FK506 binding protein 5 Gene 4 0.4713170 Dbp D site albumin promoter binding protein Gene 6 0.4819013 Ppara peroxisome proliferator ativated reeptor alpha Gene 5 0.5011465 Atg1 atin, gamma, ytoplasmi 1 Gene 4 0.55215160 Rhbdd2 rhomboid domain ontaining 2 Gene 4 0.6018627 Per2 period homolog 2 (Drosophila) Gene 4 0.6218626 Per1 period homolog 1 (Drosophila) Gene 4 0.6614827 Pdia3 protein disul�de isomerase assoiated 3 Gene 3 0.6720787 Srebf1 sterol regulatory element binding transription fator 1 Gene 3 0.78104112 Aly ATP itrate lyase Gene 3 0.78668629 Ptprj protein tyrosine phosphatase, reeptor type, J Gene 2 0.8154123 Irf7 interferon regulatory fator 7 Gene 2 0.8513360 Dhr7 7-dehydroholesterol redutase Gene 2 0.8715493 Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroiddelta-isomerase 2 Gene 2 0.8871586 I�h1 interferon indued with heliase C domain 1 Gene 2 0.8869288 Rhobtb1 Rho-related BTB domain ontaining 1 Gene 1 0.9811720 Mat1a methionine adenosyltransferase I, alpha Gene 1 0.98 CR-assoiatedortholog13809 Enpep glutamyl aminopeptidase Gene 1 1.0080885 Niar1 niain reeptor 1 Gene 1 1.0073074 Cxl9 RIKEN DNA 2900086B20 gene 1 1.00Table 3.13: Genes found in the meta-analysis that are interation partners of genes experimentally assoiatedwith CR. See text (�3.2.11 Deteting overlap with CR-essential genes, their orthologues and interation partners�)for de�nition of spei�ity and spei�ity p-value. Analysis by D. Wuttke.88



Table 3.14: Assoiation of individual datasets with the meta-signature of CR. Datasets are sorted aording totissue; datasets of di�erent studies are separated from those of another study within tissue entries; �0 in MS�:none of the genes in the meta-signature was found di�erentially expressed in this dataset; �suppl.�: dataset fromliterature or supplement.
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We also deteted that many of the top funtional ategories appear enrihed for both over- and underexpressedgenes, e.g. ategories related to lipid, steroid, sterol / holesterol metabolism, iradian lok and xenobiotimetabolism. We expet that espeially in these rather broad ategories overexpression of some and underex-pression of other genes might lead to the same outome (e.g. if an ativator of a gene is up- and a suppressordownregulated this both leads to ativation of the gene). Of ourse this assumption has to be further validatedby loser examination of the underlying signalling networks.The appearane of many lipid metabolism and sterol biosynthesis related GO-terms among the ones of highestsigni�ane �ts well with the idea of di�erent metaboli states of AL and CR animals. It is not at all surprisingthat lipid metabolism and related ategories emerge as results sine it is expeted that animals with signi�antlyredued alori intake rather atabolize than anabolize fat. Besides the intuitive understanding that alori re-strition alters lipid metabolism there is plenty of literature linking lipid metabolism with possible mehanismsof CR. For an overview see e.g. (Pua et al. 2008). It has also been reported that CR prevents age relatedhanges in holesterol metabolism (Martini et al. 2008). S5d (sterol-C5-desaturase) was one of the andidatesfor downregulation involved in sterol metabolism and is a homologue of ERG3, whih is important for life-spanextension by CR in S. erevisiae. Also �nding the endoplasmi retiulum as a ategory signi�ant for bothover- and underexpressed genes is in agreement with this idea sine this is an important ompartment for lipidsynthesis (Hong, S. et al. 2010).Our funtional analysis deteted ategories related to the growth hormone and insulin / IGF-signalling path-ways, mutations in whih have e�ets on longevity and the life-span extending e�et of CR. Ghr (growth hormonreeptor) is the only known mouse gene that anels out the life-span extending e�et of CR upon mutation(Bonkowski et al. 2006). This gene was enrihed for underexpression in our analysis. Irs2 (insulin-reeptorsubstrate 2) was found for overexpression and is an ortholog of hio in Drosophila melanogaster, whih wasexperimentally assoiated with aging and CR. In this respet one of our most interesting andidates enrihed forunderexpression is Airn (antisense Igf2r RNA), whih might be a nRNA with an important role in the regulationof insulin / IGF-signalling. Note that this gene until reently was annotated as a RIKEN DNA gene and thattherefore others of our andidate genes with unknown funtion might also promise interesting roles in the CRmehanism. In general the role of nRNAs in the ontext of CR is widely unknown.We determined ategories related to iradian rhythm and xenobioti metabolism both for over- and underex-pressed genes, whih had both already been assoiated with CR (Froy & Miskin 2010) (Gourley & Kennedy2009) (Shmuker et al. 1991), however for whih deeper understanding of their role in CR remains elusive. Twoof our andidate genes, Arntl (aryl hydroarbon reeptor nulear transloator-like Gene) and Dbp (albumin Dsite-binding protein), are important iradian lok transription fators of whih the �rst was already assoiatedwith the aging proess, while Dbp has not yet reeived muh attention with respet to aging or CR.One of the major side e�ets of CR is the repression of immune funtions and an important physiologial hangewith aging is inreased in�ammation and alterations in ollagen deposition. Therefore it is noteworthy that ourmeta-analysis also established relations between CR and these funtional ategories.A proess less well established as to its role in CR is retinol metabolism and to our knowledge no reports onopper ion detoxi�ation exist in respet to CR. Still both proesses were found among the most signi�antlyenrihed for genes overexpressed with CR. Espeially sine many of the funtional ategories deteted are mean-ingful in the light of existing knowledge we also believe in the relevane of these terms.Note that even though not found in the ontext of an enrihed funtional ategory Nfkbia, whih was found en-rihed for overexpression is suh a entral moleule in NfkB-signalling, that it might by itself render this pathwayimportant for the mehanism of CR. Zfp64 as a little understood o-ativator in the noth pathway also has thepotential to be an interesting andidate onerning the mehanism of CR.When extending the number of genes by obtaining genes signi�antly o-expressed with the determined an-didates and therefore inreasing the power of the approahes determining underlying funtional ategories, wenoted that basially all these ategories were found for both over- and underexpressed genes. Some of the ad-ditional ategories found this way were �mitohondria� and �peroxisomes� as subellular loations, �response tohormones� and others. �Xenobioti metabolism� was found expliitly as a GO-term as well as ategories relatedto P450.Due to the overrepresentation of liver-datasets in our analysis we annot laim that all genes found in themeta-analysis over all tissues are assoiated with CR in a tissue-independent manner. However is seems saveto assume that out of these genes those found over- / underexpressed in at least three di�erent tissues aretruly tissue-independent. Nonetheless, even when tissue-spei�, we expet that genes found in the (all-tissue)meta-analysis are robustly assoiated with CR due to the large variation in di�erent o-variates (e.g. organism,90



duration of CR, . . . ) between the original studies. Of the funtional ategories found in the DAVID-analysisof the all-tissue andidates �iradian rhythm� and �NADP� related ategories an be strongly assumed to betissue-independent, sine they were also found signi�antly enrihed among genes found overexpressed in at least3 di�erent tissues.3.4.2 Comparison with results from other meta-analysesThe other meta-analyses on CR presented in �3.1.3 Other meta-analyses of gene expression data for CR� weresomewhat di�erent from ours as far as the aim was onerned. While our fous was on determining genes with amehanisti e�et in CR other studies set out to �nd any genes di�erentially expressed with CR, no matter if dueto the role of the gene in the mehanism of CR or due to the e�et of CR on the expression of the gene. Hong(Hong, S. et al. 2010) even expliitly reported genes and modules for whih di�erential expression was oppositeof the hange found with aging. Their expression hanges are more likely to be an e�et than a ause of themehanism of CR. Even though in this kind of analysis there is of ourse no way to determine if a gene reallymehanistially ontributes to CR we expeted to make this more likely by exluding genes, whih we suspetedwere only found di�erentially expressed with CR in old animals due to the lak of the normal expression hangewith age as an e�et of CR (see �3.2.2.5 Exluding genes di�erentially expressed with age�). Even though weould only do this for studies on old animals that also provided miroarray data from young AL animals this isone of the major di�erenes of our analysis to these of others.A summary of other meta-analyses of CR miroarray data in omparison with our meta-analysis is shown intable 3.15.Sine our study is more reent than the other ones mentioned, we were able to inlude more datasets into themeta-analysis. This makes espeially a di�erene ompared to Swindell, 2008a and Hong, 2010, while Swindell,2009 inluded a omparable number of studies. Importantly while all meta-analyses (in at least part of thestudy) used data from di�erent tissues all but ours foused only on data from mouse. In this respet we have toadmit that also the fast majority of datasets in our study was from mie and that in some ases data-loss duringannotation with mouse gene identi�ers limited the ontribution of non-mouse studies. While we expet that theuse of di�erent organisms strengthened the robustness of our �ndings we annot laim all determined andidatesto be organism-independent.Our meta-analysis was not so foused on tissue-independene of the �ndings as Swindell, 2008a. WhileSwindell aepted to loose information by only ounting if a gene was di�erentially expressed in any dataset of aertain tissue and ignoring in how many of these datasets it was deteted, we ounted ourrenes of di�erentialexpression independently of the tissue arguing that variability in other ovariates introdued su�ient robustness.As for the statistial proedure we used a value-ounting approah as did Swindell, 2008a. Sine this studyounted the number of tissues in whih a gene was over- / underexpressed, but did not aount for the numberof datasets in whih a gene was studied a bias for deteting genes studied more often is introdued. We tried tooverome this problem by employing a binomial test. Swindell, 2009 used Fisher´s inverse hi-square approahwhih is, sine it is based on p-values, relatively sensitive to single datasets not �tting a ertain di�erentialexpression trend in other datasets. This might e.g. lead to not deteting a gene that is robustly di�erentiallyexpressed over many studies in animals up to a ertain age, but not any more in very old animals. Sine it isnot sure if CR exerts its e�et over all the life, every tissue, et. it seems to be reasonable to want to �nd suha gene signi�ant. Therefore we hose a value-ounting approah whih is not sensitive to these ases. Hong,2010 simply pooled genes found in di�erent studies and then e.g. searhed for enrihed funtional ategories.Therefore this an be understood as a meta-analysis on the level of e.g. the funtional ategories, but not ongene level.Surprisingly many genes were found di�erentially expressed in Swindell, 2009. For many of the top genes therewas ontraditing evidene (upregulation in some, downregulation in other datasets) rather than indiating someof them as non-signi�ant. The number of non-signi�ant results was generally very low. It appears likely thatthe high number of signi�ant results in the individual studies, rather than muh higher power of the Fisher´shi-square over the value-ounting approah lead to the large number of deteted genes.As Swindell (Swindell, 2008a) we found Per1, Per2, Mt1, Mt2, Fkbp5, Sult1a1 (and additionally Sult12, Sult1d1and Sult3a1 ), Ppara and Nfkbia enrihed for overexpression and Col3a1 (but not Col1a1, however Col5a1 ), forunderexpression. We did not �nd Hsp10 for underexpression, but Hsp5 and Hsp7, not I�27, but I�27l2α(interferon, alpha-induible protein 27 like 2A Gene). The overlap with the genes he found overrepresented foroverexpression was therefore muh bigger than with those he found for underexpression. Note that �nding similar91



meta-analysis Swindell, 2008a Swindell, 2009 Hong, 2010 thismeta-analysisnumber ofstudies 13 21 6 23number oftissues 10 17 5 19organism(s) mouse mouse mouse mouse, rat, pig,rhesus monkeymeta-analysistehnique value ounting Fisher´s inversehi-square pooling di�.exp. genes value ountingnumber ofsigni�antgenes 28 12114 N.A. (pool: 586) 175omment seperately for liver seperately forliver, heart andmusle seperately forliver and all butliverTable 3.15: Comparison of di�erent meta-analyses of miroarray studies on CR. Sine Hong, 2010 only pooledthe data from di�erent studies and performed analyses on those, this an be understood as a meta-analysis onthe level of underlying ategories, but not on gene level.genes ould result from not unambiguously mathing probes as well as from that the genes may have similarfuntions.Overall there was good agreement between the funtional ategories determined in our and the other meta-analyses. Espeially all of them reported lipid metabolism or similar ategories to be among of the most signi�-ant �ndings. Apart from that Swindell, 2009 mentioned �iradian rhythm� as another important result. As forsubellular loalization the lysosome, mitohondria and endoplasmati retiulum were enrihed among genes dif-ferentially expressed with CR. On the other hand the studies also displayed di�erenes to one another. Apparentlyno other study than ours assigned an important role to opper-ion detoxi�ation and retinol metabolism.3.4.3 PerspetiveThis meta-analysis provides a large number of andidate genes that are robustly di�erentially expressed withCR and funtional ategories assoiated with suh genes. These genes and ategories range from suh alreadyextensively studied for their role in CR, whih suggests that our results are biologially meaningful, to suh thatreeived less attention and some that were not at all assoiated with CR before. For further studies on therelationship of these ategories with CR the andidates assoiated within them, their o-expressed genes andtransription fators regulating their expression an serve as a starting point.Meta-analyses are already a powerful and inexpensive method to draw information from already existing data. Weexpet that meta-analyses on high throughput studies will beome even more valuable one e.g. next generationsequening and proteomis data are added to the miroarray data already deposited in publi databases.For meta-analyses on CR inreasing availability of studies on invertebrates might allow a better understandingof evolutionary onserved pathways ating during CR.Meta-analyses like this would be more powerful if raw data from all studies performed would be provided indatabases or at least by the researhers upon request, so that there is no need to inlude supplemental data,requiring many ompromises in the approah.
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ZusammenfassungTrotz gröÿerer Anstrengungen is der Alterungsprozess eines der am wenigsten verstandenen Phänomene der Bi-ologie. Diese Arbeit bedient sih zweier bedeutenden Erkentnisse der Altersforshung: Zum einen der Shlussfol-gerung, dass Veränderungen der Stammzell-Proliferation mit dem Alterungsprozess gekoppelt sein könnten,zum anderen dass Calorishe Restriktion eine wirksame Maÿnahme zur Verlängerung der Lebensspanne undzur Verzögerung alters-assoziierter Krankheiten darstellt. Im ersten Teil dieser Arbeit analysieten wir einshRNA-basiertes Sreening-Experiment um Gene zu identi�zieren, die eine Rolle in der Stammzell-Proliferationspielen und unternahmen erste Shritte zur Etablierung eines Durh�uss-Cytometrie basierten Proliferations-Tests um Kandidaten zu validieren. Zweitens meta-analysierten wir Miroarray-Daten aus vershiedenen Ex-perimenten, die die Änderungen der Genexpression in Folge von Calorisher Restriktion untersuhten. Wiridenti�zierten mit Hilfe einer Binomial-Test basierenden Abzähl-Methode (�value ounting approah�) Kan-didatengene, die hinsihtlih di�erentieller Expression in den Datensätzen angereihert waren. Wir zieltendurh die Verwendung von Datensätzen von vershiedenen Organismen, Geweben, Altern, usw. darauf ab ro-buste und generalisierbare Kandidaten zu �nden. Wir verwendeten ferner vershiedene Vorgehensweisen umden Kandidaten zugrunde liegende funktionelle Kategorien und Gemeinsamkeiten hinsihtlih ihrer Rolle inSignaltransduktions-Netzwerken zu detektieren. Im Ganzen überlappen die 163 gefundenen Kandidaten-Geneund 340 Kategorien mit früheren Erkenntnissen auf diesem Gebiet, wie zum Beispiel das Ghr Gen und Kategorienaus dem Bereih Lipid-Sto�wehsel, Insulin-Signalwege, Kollagen oder Immunität und suggerieren daher einenbiologishen Bedeutunggehalt unserer Methode. Andererseits traten auh neue und bisher vernahlässigte Funk-tionen wie Fremdsto�-Metabolismus, Biorhythmus, Retinol-Metabolismus und Kupfer-Ionen-Entgiftung zumVorshein, welhe vielversprehende Gegenstände zukunftiger Forshung sein könnten. Einige der signi�kan-ten Gene spielen mögliherweise eine tragende Rolle als Regulatoren wihtiger Signalwege, wie z.B. Nfkbia, Airn(Igf2R antisense RNA) und der Noth Co-Aktivator Zfp64.
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