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General introduction  4 

1. General introduction 

1.1. The role of seagrass ecosystems 

Tropical seagrass beds are nutrient-poor habitats (Vonk et al., 2008) that support high a 

floral and faunal biomass, biodiversity and productivity (Parrish, 1989; Gullström et al., 

2002; Duffy, 2006; MacArthur & Hyndes, 2007). All over the world, seagrass beds 

contribute substantially to shallow coastal marine and estuarine areas (Gullström et al., 

2002; Nakamura et al., 2003; Gillanders, 2006), making them among the most 

widespread coastal ecosystems (Duffy, 2006). In the tropics, they are often located 

adjacent to coral reefs (Nakamura & Sano, 2003). Since they are structurally highly 

complex, they provide shelter from predation and important feeding grounds for both 

invertebrates and fish (Dorenbosch et al., 2005; Nakamura et al., 2003; Unsworth et al., 

2007b; Vonk et al., 2008), but also for higher vertebrates such as mammals and reptiles 

(e.g. Parrish, 1989; Baelde, 1990; Edgar & Shaw, 1995; Duarte & Chiscano, 1999; Beck 

et al., 2001; Gullström et al., 2002). Furthermore, seagrass beds interact strongly with 

adjoining coral reefs, mangroves or sandy sea bottoms, for example via animal 

migrations for foraging, spawning or related to ontogenetics (Ogden & Buckman, 1973; 

Ogden & Quinn, 1984; Pollard, 1989; de la Morinière et al., 2002; Dorenbosch et al., 

2006; Verwej et al., 2006).  

South-East Asia is a biodiversity hotspot due to its enormous species richness and 

exceptionally high number of endemic organisms (Sodhi et al., 2004). Indonesian coasts, 

at the heart of the so-called ´coral triangle´, harbor an exceptionally high fish diversity. 

Nonetheless, scientific work on seagrass ecosystems and their fish assemblages has 

focussed mostly on the Caribbean (summarized by Unsworth et al., 2007). Few studies 
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studies have examined the fish assemblages of Indo-Pacific seagrass beds (Erftemeijer & 

Allen, 1993; Hutomo & Martosewojo 1977; Pet-Soede et al., 2001; Nakamura & Sano, 

2004; Unsworth et al., 2007; Vonk et al., 2010). Most of the few publications on 

Indonesian seagrass beds suggest a high number of around 80 species of fish in the 

associated fish assemblages (Hutomo & Martosewojo, 1977; Kuriandewa et al., 2003; 

Unsworth et al., 2007a). The inconsistent methodology, however, suggests that many 

more species are present. The Spermonde Archipelago in the Indonesian province South 

Sulawesi (Sulawesi Selatan) has intensively studied in the last decades, with the focus on 

a variety of invertebrate taxa such as corals (Cleary et al., 2005; Knittweis et al., 2009), 

sponges (Cleary et al., 2005; de Voogd et al., 2006), foraminiferans (Cleary et al., 2005) 

or holothurians (Massin, 1999). Publications on fish assemblages in seagrass beds are 

scarce (Erftemeijer & Allen, 1993; Pet-Soede et al., 2001; Vonk et al., 2008, 2010).  

 

1.2. The Indonesian Spermonde Archipelago 

The Spermonde Archipelago is situated along the west coast of the Indonesian province 

South Sulawesi (Sulawesi Selatan) and consists of a number of small coral islands on the 

shelf area (Fig. 1). It is 200 km long and 40 km wide. The distance of the islands from 

Makassar ranges between 2 km (Laelae) and about 60 km (Kapoposang). The islands 

chosen for the present study were Barrang Lompo and Bone Batang (14 and 15 km off 

Makassar). The island of Barrang Lompo is easily accessible by ferry boat (daily); this 

island is about 0.5 km! in size and has a population of 5000 people. The human impact on 

the surrounding seagrass beds and coral reefs is high due to exploitation of marine 

resources, invasive fishing techniques (blast fishing, cyanide fishing, gill nets) and 
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sewage water, which is released directly into the sea. Bone Batang consists only of a 

small emerged sandbank surrounded by a vast reef flat and inter- and subtidal seagrass 

beds and macroalgae field. To the west, there is a small coral reef and intertidal reef flat 

with a seagrass bed, algae patch and rubble zone; the east consists of a subtidal sandy 

area. The seagrass beds on both islands are multiple-species stands with varying 

proportions of the different seagrass species and thus different canopy architecture; each 

seagrass bed is comprised by three to six species (Hydrocharitaceae: Enhalus acoroides, 

Thalassia hemprichii, Halophila ovalis; Cymodoceaceae: Cymodocea rotundata, 

Halodule uninervis, Syringodium isoetifolium).  
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Fig. 1. Location of Sulawesi and the city of Makassar in Indonesia (above) and of the two 

coral islands in the Spermonde Archipelago off South Sulawesi (adapted from Liu et al., 

2008).  

 

1.3. Fish assemblages in different types of seagrass beds 

Worldwide, most studies comparing fish assemblages in different seagrass beds focussed 

on monospecific stands (Middleton et al., 1984; Rotherham & West, 2002; Hyndes et al., 

2003; Nakamura & Sano, 2004a,b). Nonetheless, many studies emphasize that fish 

abundance increases with increasing seagrass bed complexity (e.g. Heck & Orth, 1980; 

Bell & Westoby, 1986; Nakamura & Sano, 2004b) and that multiple-species seagrass 

beds might support enormous fish diversity. Only a few authors focussed on mixed-

species seagrass habitat (e.g. Martin & Cooper, 1981; Blaber et al., 1992). Most of those 



General introduction  8 

studies focussing on differences between fish assemblages in different types of seagrass 

meadows reported highly differing effects of canopy structure on fish assemblages 

depending on seagrass bed (Martin & Cooper, 1981; Kiswara et al., 1991; MacArthur & 

Hyndes, 2001; Nakamura & Sano, 2004b; Unsworth et al., 2010; Vonk et al., 2010). A 

smaller number of studies do not find significant differences for total fish abundance 

between seagrass beds (Middleton et al., 1984, Loneragan, 1998), but for the abundance 

of single fish species (e.g. Rooker & Holt, 1997). Blaber et al. (1992) did not find any 

differences for mixed tall dense and short seagrass beds.  

 Typical fish families in Indonesian seagrass beds are Apogonidae (e.g. Apogon 

margaritiphorus), Atherinidae, Labridae, Gerridae, Siganidae, Gobiidae, and 

Monacanthidae. Although seagrass beds can be extraordinarily species-rich, only a small 

number of fish species are considered to be permanent residents and typical for seagrass 

environments. These include Syngnathoides biaculeatus (Syngnathidae), Novaculoides 

spp. (Labridae), Pervagor spp. (Monacanthidae) and Centrogenys vaigiensis 

(Centrogenyidae). Other species that are quite common in seagrass beds can also be 

found in other habitats such as adjacent algal beds; these include the labrids Halichoeres 

argus and Cheilio inermis (Kuriandewa et al., 2003). 
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1.4. Trophic relationships in seagrass beds 

1.4.1. Food web analysis 

Although South-East Asian seagrass beds support a high fish diversity and many species 

are at least of local commercial interest, little information is available on fish 

assemblages and only a few studies on trophic relationships have been published 

(Unsworth et al., 2007b, Kneer et al., 2008; Vonk et al., 2008). Both the structure and 

functioning of a fish assemblage relies partially on the trophic status and relationships of 

the component species (Carassou et al., 2008). The trophic relationships of fish 

communities are fundamental tools for fisheries and ecosystem management (Blaber, 

1997; Hajisamae & Ibrahim, 2008). Information on food webs can be gained by a range 

of methods. Two of the most common ones to describe food webs are gut content 

analysis and stable isotope analysis. Gut content analysis yields representative 

information on food items consumed at the time of sampling or a few hours earlier 

(Pinnegar & Polunin, 2000; Carassou et al., 2008); this represents a mere snapshot of the 

dietary spectrum of a species. The taxa resolution of food items, however, is high and can 

provide insights into the commonly preferred food species. Unfortunately, gut contents 

provide no information on what food items are digested and assimilated (Melville & 

Conolly, 2003; Lugendo et al., 2006). Nor can it be assumed that all food items are 

digested at the same rate (Pinnegar & Polunin, 2000). For example, zooplankton is 

digested much faster than other food items (Post, 2002). This also leads to 

interpretational problems in fish taxa that grind food items, such as labrids (Pinnegar & 

Polunin), or in herbivores, such as some partially or predominantly herbivorous members 

of the family Hemirhamphidae. Members of the latter, such as Hyporhamphus 
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melanochir (cf. Klumpp & Nichols, 1983; Robertson & Klumpp, 1983) or 

Hemirhamphus far (pers. obs.), macerate plant food items. 

In contrast, applying stable isotope analysis on consumers (e.g. fish species), 

primary producers (e.g. algae, phytoplankton or seagrass) and primary consumers yields 

information on food web-structure and long-term energy flow (Pinnegar & Polunin, 

1999; Post, 2002; Carassou et al., 2008). The combination of stable or heavy carbon 

(!13C) and stable or heavy nitrogen (!15N) is a very common approach to modelling or 

describing food webs and the relationships within (Kruitwagen et al., 2010). Stable 

isotope analysis is based on the accumulation of stable carbon and nitrogen within the 

food web, i.e. on actual food assimilation of organisms (Davenport & Bax, 2002; 

Cocheret de la Morinière et al., 2003; Abed-Navandi & Dworschak, 2005; Vonk et al., 

2008; Kruitwagen et al., 2010): stable isotope ratios are mainly determined by consumed 

and digested food items (Marguilier et al., 1997). Enrichment of stable nitrogen takes 

place at a rate of "3.4 ‰ relative to dietary organisms, allowing an estimate of the trophic 

position of the consumer (Peterson & Fry, 1987; Pinnegar & Polunin, 2000; Post, 2002). 

Enrichment of stable carbon is much lower, with an average gain of about "0.4 ‰ 

(maximum 1 ‰) per trophic level; thus, stable carbon values change little with trophic 

transfer. Nonetheless, since stable carbon values vary strongly among primary producers, 

depending on the photosynthetic pathway a plant uses (C3, C4, CAM), they are a 

powerful tool in determining the source of assimilated food items (Marguilier et al., 

1997; Post, 2002; Layman, 2007). When there are significant differences between the 

primary producers of a seagrass bed, the contribution of each group of primary producers 

can be identified as a diet of a herbivore (Yamamuro, 1999; Vonk et al., 2008). In 
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terrestrial systems, large-scale (e.g. continental) patterns of stable carbon can also 

indicate the geographic origin of migratory organisms (Hobson et al., 1999). Compared 

to gut content analysis, stable isotope analysis provides only an average estimate of 

preferred groups of food items (Peterson & Fry, 1987; Vonk et al., 2008). It cannot give a 

detailed picture of an organism’s diet: the resolution on the food spectrum is low. Thus, 

temporal bias is reduced compared to gut content analysis, and food types such as detritus 

and epiphytes can be recognised as a food source in isotope signatures of the consumer. 

These sources are difficult to quantify by gut content analysis (Pinnegar & Polunin, 1999; 

Pinnegar & Polunin, 2000).  

 

 1.4.2. Herbivory in seagrass beds  

Herbivory in seagrass beds was an early focus in marine ecology and was long 

considered to be of minor importance. However, in contrast to temperate seagrass beds, 

where fish herbivory on seagrasses is low (cf. Pollard, 1984; Pinnegar & Polunin, 2000; 

Heck & Valentine, 2006), in the tropics the consumption of seagrasses and their 

epiphytes by fishes can be substantial (e.g. Kirsch et al., 2002; MacArthur & Hyndes, 

2007; Liu et al., 2008; Vonk et al., 2008). Some authors consider that the extent of 

herbivory in seagrass beds is still underestimated (Valentine & Duffy, 2006; Unsworth et 

al., 2007b).  
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1.5. Aims of the study 

The present study has two central topics: the diversity of fish assemblages in different 

types of Indonesian seagrass beds, and trophic relationships within multiple-species 

seagrass beds. In the framework of the first topic, the following hypotheses are tested: (1) 

fish density is correlated with seagrass shoot density; (2) seagrass beds with different 

canopy structures do not differ significantly in fish diversity, species composition and 

abundance; (3) fish diversity is lowest at the most impacted sites. The second topic is 

designed to describe the food web of a multiple-species seagrass bed of the island of 

Barrang Lompo, and to compare the outcomes of stable isotope and food web analysis. 

This study also focuses on the distribution of feeding guilds of different types of seagrass 

beds at four sampling sites at the islands of Barrang Lompo and Bone Batang, based on 

visual census data.   
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Abstract. Seagrass meadows are known to support high abundances and diversity of fish 

assemblages. However, studies on the effects of seagrass beds with distinctly different 

plant canopy on associated fish fauna remain scarce. In the present study, fish 

assemblages were investigated by an underwater visual census at five study sites with 

varying seagrass species composition and shoot density at two small coral islands in the 

Spermonde Archipelago, Indonesia. The present study revealed that 1) fish abundance did 

not correlate with seagrass shoot density, 2) seagrass beds differ distinctly from each 

other by means of fish species composition and total diversity, although the basic 

composition of fish assemblages was similar and 3) fish diversity was highest at the most 

impacted site. There was no difference for total abundance between study sites, but for 
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six common species. Species accumulation curves for local gamma diversity, each study 

site and the two most diverse fish families (Labridae, Pomacentridae) were not saturated, 

thus suggest high likelihood that local fish diversity might be much higher. Differences in 

fish assemblages might be due to the different canopy structures, water depth, and high 

proportions of single records due to spillover effects from adjacent coral reefs. The 

outcome of the present study gives implications for both socioeconomic and conservation 

issues. 

 

Key words: seagrass; fish assemblages; visual census; Southeast Asia; Indonesia; 

Spermonde Archipelago. 

 

 

1. Introduction 

Seagrass beds support high floral and faunal diversity, abundance and biomass and are 

crucial habitats for economically important fish and invertebrate species (Parrish, 1989; 

Gullström et al., 2002; Duffy, 2006; MacArthur & Hyndes, 2007; Vonk et al., 2008). 

They are considered to be structural highly complex habitats, offering shelter from 

predation, nursery areas and feeding grounds for diverse fish assemblages (Parrish, 1989; 

Dorenbosch et al., 2005; Nakamura et al., 2003; Unsworth et al., 2007b; Vonk et al., 

2010). Seagrass beds are widely open and dynamic habitats at different scales (Duffy, 

2006; Duarte et al., 2006; Valentine & Duffy, 2006) and strongly interact with adjacent 

coral reefs and mangroves (reviewed by Parrish, 1989; Nakamura & Sano, 2004b; 
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Unsworth et al., 2007b; Unsworth et al., 2010), e.g. by different types of fish migration 

(Ogden & Quinn, 1984). 

Southeast Asian coasts comprise the world’s highest numbers of fish species, 

especially in the heart of the ‘coral triangle’ region, which is comprised by the 

Philippines, Indonesia and Papua New Guinea (Fenner, 2007). In Indonesia, seagrass 

beds cover a substantial part of coastline and off-shore islands, and harbour up to ten 

seagrass species (McKenzie et al., 2007) and around 80 or more fish species (Hutomo & 

Martosewoto, 1997; Unsworth et al., 2007b) within a single meadow. Playing a crucial 

role as a habitat for a high number of fish species, seagrass beds are of major interest for 

local fisheries. However, increasing human population and demands for food result in 

overexploitation of the seagrass beds, a serious threat for their fish communities (Duffy, 

2006; Unsworth et al., 2010).  

  The majority of studies dealing with fish communities in seagrass meadows have 

been conducted in the Caribbean but seagrass beds in Southeast Asia have a distinctly 

higher faunal diversity (summarized in Unsworth et al., 2007b). Therefore processes 

influencing fish assemblages are possibly different. In spite of this fact, research on fish 

communities in Southeast Asian seagrass meadows is scarce (Nienhuis et al. 1989; 

Erftemeijer & Allen, 1993; Unsworth et al. 2007a,b; Vonk et al. 2008, 2010). The 

Southeast Asian Spermonde Archipelago is well investigated with respect to benthic 

organisms, such as sponges (e.g. Cleary et al., 2005; de Voogd et al., 2006), 

foraminiferans (e.g. Cleary et al., 2005), holothurians (e.g. Massin, 1999), or corals (e.g. 

Cleary et al., 2005; Knittweis et al., 2009), but few studies focussed on fish assemblages 

(Erftemeijer & Allen, 1993; Pet-Soede et al., 2001; Vonk et al., 2008, 2010).  



Manuscript: Fish assemblages in different types of tropical Indo-Pacific seagrass meadows 26 

!

Although earlier publications suggested increasing fish density with increasing 

complexity of seagrass beds (e.g. Heck & Orth, 1980; Bell & Westoby, 1986; Nakamura 

& Sano, 2004b), and that variations in seagrass habitats influence associated fish 

assemblages (Heck & Orth, 1980; Unsworth et al., 2007b), few studies emphasize the 

importance of mixed-species seagrass beds with most complex canopy structures on fish 

assemblages (e.g. Martin & Cooper, 1981; Blaber et al., 1992). Generally the effect of 

seagrass and seagrass bed structure on fish species composition may vary distinctly 

between seagrass beds (Martin & Cooper, 1981; Middleton et al., 1984; Kiswara et al., 

1991; MacArthur & Hyndes, 2001; Nakamura and Sano, 2004b; Unsworth et al., 2010; 

Vonk et al., 2010), while several studies have found no significant differences for total 

fish abundance between different seagrass beds (Middleton et al., 1984; Loneragan et al., 

1998), but for single species (e.g. Rooker & Holt, 1997). No such differences have been 

found for mixed tall dense and short seagrass beds by Blaber et al. (1992).  

       In the present study we investigated fish assemblages in five extremely diverse 

offshore seagrass beds with varying canopy architecture in the Spermonde archipelago, 

South Sulawesi, Southeast Asia. Following null hypotheses were tested: (1) fish density 

shows a correlation with seagrass shoot density; (2) seagrass beds with different canopy 

structures do not differ significantly in diversity, species composition and abundance of 

associated fish assemblages; (3) diversity is lowest at the most impacted sites. Results 

may reflect the importance of different types of seagrass beds for local fish populations, 

thus may have crucial implications for conservational and socioeconomical issues.  
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2. Material and methods 

2.1. Site description  

All fieldwork was conducted in the Spermonde Archipelago, Indonesia. The archipelago 

is about 200 km long and 400 km wide and comprised by numerous coral islands along 

the continental shelf off the west coast of South Sulawesi (Fig. 1). As study sites, the 

islands Barrang Lompo (lat. 4°85’S, long. 119°20’E) and Bone Batang (lat. 4°90’S, long. 

119°18’E) were chosen.  The islands are situated 14 and 15 km off the coast. Both islands 

consist of an intertidal sandbank, surrounded by reef flat and a small barrier reef, and are 

fringed by intertidal and subtidal seagrass beds comprised by different species of seagrass 

or seagrass communities. While Barrang Lompo is heavily populated, Bone Batang is 

uninhabited. Local population lives mainly of marine resources, using different fishing 

techniques (blast fishing, gill nets, cyanide fishing). Sewage water and garbage are 

released directly into the sea. For Bone Batang, limited anthropogenic impact can be 

assumed, though fishermen from Barrang Lompo and other places nearby fish around the 

island occasionally (pers. obs. C.P.). Overall, five study sites for the survey have been 

chosen: at Barrang Lompo South (BLS), at Bone Batang North (BBN), East (BBE), West 

(BBW) and South (BBS).  

 

2.2. Seagrass densities 

The seagrass meadows in the present study were comprised by Enhalus acoroides, 

Thalassia hemprichii, Cymodocea rotundata, Halodule uninervis, Syringodium 

isoetifolium and Halophila ovalis in varying shoot densities, indicating varying stages of 

succession. The different seagrass and canopy architectures displayed by each study site 
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are shown in a scheme below (Fig. 2). At BLS and BBW, single small coral of the genera 

Porites and Pocillopora as well as various sponges were scattered scarcely across the 

seagrass beds.           

To assess seagrass shoot densities, a frame with side length of 0.5 m was thrown 

to randomly choose patches within the transects to assess seagrass shoot density. The 

frame was subdivided into 16 smaller quadrates, each with a side length of 125 mm. 

Within the frame, all shoots of E. acoroides were counted; for other seagrass species, 

three quadrates of the grid within the frame were randomly chosen and for each species 

all shoots of all species within these three quadrates were counted.  

 

2.3. Fish densities 

Fish diversity and abundance were assessed during daytime hours by using a rapid visual 

census (Harvey et al., 2004) in belt transects. This technique was chosen because it is 

known as rapid, non-destructive and inexpensive; transects can be resurveyed over time 

and the data gained are highly comparable (Nagelkerken et al., 2000), since visual censi 

are widely applied for ecological fish studies (Khalaf & Kochzius, 2002). Transects were 

25 m in length and 6 m in width, each transect covering an area of 150 m2. Transects 

where apart at least 15 m and directed parallel to the shore line. Number of permanent 

transects per study sites was depending on the size of the seagrass beds (2 each for BBW 

and BBN; 5 each for BBE and BBS). For each site at Bone Batang, 30 replicates were 

conducted (= 120 transects in total). For BLS, four permanent transects were pegged out. 

Each was replicated 15 times (= 60 transects in total). All sites were within 200 m of a 

fringing reef. 
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      To reduce differences in accuracy in estimation of numbers by the observers and 

to reduce attraction or repellence of fish, the survey has been conducted snorkelling by 

one single observer (C. P.). Care was taken not to count any fish twice moving into, 

within and out of the transect. Cryptobenthic species, such as gobies were recorded when 

observed, but it was not actively looked for them. After transect setup, the observer 

waited for at least five minutes to minimize fish disturbance, then slowly swam in a 

zigzag pattern along the transect line, recording data. Recorded data contained taxa and 

number per taxon as well as water depth. Observed fauna was identified up to species 

level. Other taxonomic units were used when identification up to species level was not 

possible. Surveys were conducted throughout the day from 05:30 to 16:30, randomized at 

different water depths to control for possible time or day effects (Gratwicke & Speight, 

2005). Off Bone Batang, surveys were conducted at a minimum water depth of 0.4 m in 

the subtidal seagrass beds and at a minimum water depth of 0.2 m in the intertidal area. 

Off Barrang Lompo, the shallowest transects were conducted at a minimum water depth 

of 0.2 m. Visual census data on both islands were conducted during October and 

November 2009, a period of time which marks the transitional period between dry and 

wet season. 

       

2.4. Data analysis 

Seagrass shoot densities and fish abundances are presented as mean ± SD (m-2 for shoot 

densities and 100 m-2 for fish abundances). To test for a correlation between seagrass 

shoot density and fish abundance, a multiple regression was conducted. To test for 

significance between different habitats in terms of fish species and species abundance and 
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the most abundant fish species found a non-parametric Kruskal-Wallis test were 

performed. All tests were conducted using Statistica 7.0 (StatSoft, Inc., 2007). To 

evaluate alpha diversity, Shannon Index (H’) was calculated. To assess species 

heterogeneity of each study site, Pielou Evenness (J’) was calculated (Magurran, 2004).  

Analysis of differences in fish assemblage structure was conducted using 

multivariate non-Metric Multidimensional Scaling ordination (MDS) and Bray-Curtis 

cluster analysis using the computer package PRIMER 6 (Clarke and Warwick, 1994). 

The Bray-Curtis similarity index was applied on square-root transformed data to down-

weigh the influence of rare and extremely abundant species, and then converted into a 

MDS ordination and a cluster (Clarke, 1993). To assess global differences, SIMPROF 

analysis was applied. SIMPER analysis was used to determine the relative contribution of 

individual fish species to differences between groupings (Rotherham & West, 2002). 

  For analysis of species accumulation and saturation for habitats (Gamma 

diversity) as well as for selected fish families, data were entered into a spreadsheet 

program to obtain species x site matrices. Further analysis were conducted using the 

computer package EstimateS 7.5.2. (Colwell, 2006). As estimators of total species 

richness, the Incidence-Based Coverage Estimator (ACE) and the Chao 1 Estimator were 

used.  
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3. Results 

3.1. Seagrass shoot densities 

The following species of seagrass were found at the different study sites: Enhalus 

acoroides, Thalassia hemprichii, Halophila ovalis, Halodule uninervis, Cymodocea 

rotundata, Syringodium isoetifolium. With the exception of E. acoroides and S. 

isoetifolium, all species were observed at all study sites (E. acoroides lacking at BBE and 

BBN, S. isoetifolium lacking at BLS and BBN). Seagrass shoot density differed among 

the study sites and mean shoot density (± SD m-2) ranged between 463 ± 639 at BLS and 

1365 ± 474 (Table 1). Epiphyte growth was most remarkable on leaves of E. acoroides 

and S. isoetifolium, while it was observed only moderately on the other seagrasses.  

 

3.2. Fish species 

For the visual census, 180 transects have been conducted, 60 off Barrang Lompo and 30 

for each site off Bone Batang. Allover, 39 families and 120 taxa from have been found at 

all study sites (Table 2), 30 families and 89 species off Barang Lompo and 36 families 

and 107 species off Bone Batang. The four study sites of Bone Batang reveal: About 27 

families and 58 species of BBS, 26 families and 45 species off BBE, 16 families and 38 

species of BBW and 15 families and 31 species off BBN. 

The most speciose families were wrasses (Labridae; 20 species), damselfish 

(Pomacentridae; 17 species) and threadfin breams (Nemipteridae; 8 species), followed by 

gobies (Gobiidae; 6 species). Fish species that were more abundant than 10 individuals 

100 m-2 at all or certain study sites were Atherinomorus lacunosus (Atherinidae), Cheilio 

inermis, Halichoeres argus, H. chloropterus (all Labridae), Pentapodus bifasciatus, P. 
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trivittatus (both Nemipteridae) and Siganus canaliculatus (Siganidae). Fish species 

occurring at all study sites were A. lacunosus, C. inermis, H. argus, H. chloropterus, P. 

trivittatus, Pomacentridae sp. 1 and Tylosurus crocodilus (Belonidae). 61 species were 

recorded on a single occasion or rarely (A.1), 25 additional taxa were found at study sites 

outside transects (A.2). The wrasse H. argus was the dominant species at BLS, BBN and 

BBW followed by S. canaliculatus, A. lacunosus and D. chrysopoecilus at BLS and H. 

chloropterus at BBN and BBW where D. chrysopoecilus (BBN) or P. trivittatus (BBW) 

occupied the third rank. At BBE and BBS A. lacunosus was the most abundant species 

followed by Lethrinus obsoletus at BBE and Sphyraena obtusata at BBS. At BBE, C. 

inermis, S. canaliculatus and P. bifasciatus were also found in abundances higher than 10 

individuals 100 m-2, while at BBS the latter two species were found in abundances higher 

than 6 individuals 100 m-2 (Table 2). 

There were no significant differences for fish abundance between study sites 

(Kruskal-Wallis test, H(4, N = 254) = 2.49556; p = 0.6454). There were significant 

differences for species composition between BLS and BB (Kruskal-Wallis test, H(4, N = 

630) = 53.38589; p = 0.000; for BLS vs. BBE: p = 0.001358; for BLS vs. BBN: p = 

0.000000; for BLS vs. BBS: p = 0.032441; for BLS vs. BBW: p = 0.000005), but no 

significant differences between the four different sites off BB (all p-values > 0.05). 

 Nevertheless for the most abundant eight fish species occurring at Barang Lompo 

and the different sites of Bone Batang, significant differences of abundance for six 

species were found: H. far (Kruskal-Wallis test, H (3, N = 53) = 18.33157; p = 0.0004), 

C. inermis (H (4, N = 112) = 68.45746; p = 0.0000), H. argus (H (4, n = 124) = 46.26580, 

p = 0.0000), H. chloropterus (H (4, N = 115) = 41.26183, p = 0.0000), P. trivittatus (H 
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(4, N = 123) = 42.63372, p = 0.0000) and S. canaliculatus (H (3, N = 90) = 15.08231, p = 

0.0017), but not for A. lacunosus (H (3, N = 54) =  0.604691; p = 0.4567) and T. 

crocodilus (H (3, N = 29) = 2.005531; p = 0.5713). None of the tested fish species 

showed significant differences between all study sites, but for at least in one case (S. 

canaliculatus: BBS vs. BLS, p = 0.003473) up to seven cases (e.g. C. inermis; Table 3). 

       Both Shannon Index and Evenness were highest for BBN and BBW (H’ = 2.45 

each; JBBN’ = 0.71; JBBW’ = 0.67) and lowest for BBS (H’ = 1.88; J’ = 0.47).  

 There was no general correlation between seagrass shoot density and total fish 

abundance (Spearman correlation; R = 0.61729199; F(1,3) = 1.8469; p < 0.26729). 

 

3.3. Site similarity   

A cluster analysis of site similarity with abundance-based fish species data showed that 

the study sites are significantly different from each other (Fig. 3A). Two distinct groups 

with a similarity level of 34.5 % (SIMPROF; " = 18.88; p < 0.1) are apparent, the 

subtidal (BBE, BBS) and intertidal seagrass beds (BLS, BBW, BBN). BLS and BBW 

appear to be more similar to each other than to BBN. The MDS ordination plot clearly 

distinguished the different seagrass beds (Fig. 3B). 

       The cluster analysis based on the shoot density of each seagrass species shows the 

same groups as for the fish species abundance-based data (subtidal vs. intertidal), but the 

similarity level of 63.9 % (" = 12.93; p = 0.9) is much higher than for the fish abundance-

based clusters, and there is no significant dissimilarity (all p-values # 0.5). However, 

clusters show a trend towards dissimilarity for the clusters of intertidal seagrass beds (see 
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below). Within the subtidal beds, BBW and BBN appear to be more similar to each other 

than to BLS (Fig. 4).   

    The SIMPER analysis revealed an average dissimilarity between intertidal and 

subtidal seagrass beds of 65.5 %. Average similarity for intertidal seagrass beds was 48.2 

%. The most representative fish species of intertidal seagrass beds were the labrids H. 

chloropterus (13.4 % contribution), H. argus (11.9 %) and C. inermis (7.8 %) as well as 

the pomacentrid D. chrysopoecilus (11.3 %) and the nemipterid P. trivittatus (9.2 %). For 

subtidal seagrass beds average similarity was 58.0 % and C. inermis (10.2 % 

contribution), P. bifasciatus (8.0 %) and S. canaliculatus (7.6 %) were the most 

representative species. 

 

3.4. Species accumulation curves 

All randomized species accumulation (Sobs MauTao, ACE, Chao 1 estimator) for gamma 

diversity across all study sites exhibit a strong increase and do not reach saturation. The 

picture does not change when splitting up the data set into the different study sites: 

species accumulation curves remain with a steep slope. Overall, most species were found 

at BLS, even at the smallest common sample size (n = 30). The lowest species number 

was recorded at BBN. The species number recorded for BBS, BBE and BBW was 

intermediate between the ones of the sites at BLS and BBN. This pattern was also found 

when comparing all five habitats at the smallest common sample size (30 transect counts) 

(Fig. 5A,B).  

       Species accumulation curves for the three most speciose families (Labridae, 

Pomacentridae, Nemipteridae) at all study sites still show a strong increase for both the 
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Labridae and the Pomacentridae. For the Nemipteridae the curve shows saturation: it does 

not exhibit any slope, and the upper and lower boundaries of the 95 % confidential 

interval are decreasing towards zero at a sample size of n = 160 (Fig 5C). For Labridae 

and Pomacentridae, the boundaries of the confidential interval do not behave that way. 

Species numbers for Labridae and Pomacentridae were similar (20 for Labridae and 17 

for Pomacentridae), and lowest for Nemipteridae (8 species). The lower bound of 95 % 

confidential interval of the Sobs (MauTao) of Labridae is overlapping with the upper 

bound of the Sobs (MauTao) of Nemipteridae; the lower bound of the confidential interval 

of Pomacentridae is overlapping with the upper bound of the Sobs (MauTao) of 

Nemipteridae until up to 40 samples (Fig. 5C). 

 

4. Discussion 

The present study of five diverse seagrass beds showed no significant correlation of the 

investigated fish density with seagrass shoot density. Investigated types of seagrass beds 

dominated by different seagrass species harbour distinct fish assemblages: fish diversity 

and species composition are evidently different between all study sites, i.e. between the 

islands, intertidal and subtidal habitats and different types of seagrass beds. Total fish 

abundance differ between seagrass beds, except for a few common species. The site that 

is mostly impacted by human activity, BLS, has the highest species number of all sites 

observed, though both Shannon Index and Pielou Evenness are intermediate for this site. 
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4.1. Correlation of seagrass shoot densities and fish abundance 

Seagrass shoot densities appear low in this study compared to recent literature (e.g. 

Erftemeijer & Herman, 1994; Loneragan et al., 1998; Gullström et al., 2002); Vonk et al., 

2008, 2010). This may have two reasons: Erftemeijer & Herman (1994) found strong 

seasonal variation of both seagrass shoot densities and biomass, caused by emergence, 

during spring tides at noon from August to December and leading to ‘burning’ and 

massive die-off of more than 50 % of the seagrass. This effect may mask the correlation 

between seagrass shoot density and the abundance of associated fishes. Recently, Vonk et 

al. (2010) compared the fish fauna of an offshore mixed-species seagrass meadow at 

Bone Batang. They found that beds with significantly different seagrass shoot density and 

aboveground biomass had similar infauna densities between the two beds, but epifauna 

and fish abundance was significantly higher in the seagrass beds with higher seagrass 

density for most species. In addition due to a severe el Niño Southern Oscillation, the 

monsoon came late in the season during which the present study was conducted, not 

allowing the seagrasses to recover from insolation stress. This may also contribute to the 

lack of correlation between shoot densities and fish abundance. 

 

4.2. Fish assemblages in different types of seagrass beds 

In the present study, fish assemblages do not differ significantly by means of total fish 

abundance, but for few most common fish species and total species composition, because 

the seagrass beds are in different stages of succession. Further, it must be assumed that 

other parameters such as patch size, current, water depth or distance to adjacent coral 

reefs are factors affecting fish assemblages.  



37 Manuscript: Fish assemblages in different types of tropical Indo-Pacific seagrass meadows 

      Most studies focussing on fish assemblages in seagrass beds focus on 

monospecific beds (e.g. Middleton et al., 1984; Rotherham & West, 2002; Hyndes et al. 

2003; Nakamura & Sano, 2003). However, seagrass beds in the tropical Indo-Pacific 

often are comprised by multiple species. Altough earlier publications suggested 

increasing fish density with increasing complexity of seagrass beds (e.g. Heck & Orth, 

1980; Bell & Westoby, 1986; Nakamura & Sano, 2003), and that variations in seagrass 

habitats influence associated fish assemblages (Heck & Orth, 1980; Unsworth et al., 

2007), few studies emphasize the importance of multiple species seagrass beds with most 

complex canopy structures on fish assemblages (e.g. Martin & Cooper, 1981; Blaber et 

al., 1992), and even fewer studies focussed on fish fauna in different types of seagrass 

beds in the same region as the present study (e.g. Erftemeijer & Allen, 1993; Vonk et al., 

2010). Earlier studies had mixed conclusions about the effect of seagrass and seagrass 

bed structure on fish assemblages, which might be due to differences in geographical 

latitude and/or the variety of applied methods (.Martin & Cooper 1981; Middleton et al. 

1984; Blaber et al. 1992). Erftemeijer & Allen (1993) surveyed two different types of 

seagrass beds in South Sulawesi: one at Barrang Lompo, and the other at Gusung Tallang 

at the mouth of the Tallo river. Although the two beds did not differ in diversity, none of 

the recorded fish species were common at both study sites. The fish assemblages at 

Gusung Tallang was clearly typical for estuarine and brackish environments, while the 

assemblage at Barrang Lompo was similar to the present study, though not as diverse. 

Nakamura and Sano (2004) found significantly higher fish diversity and abundance in 

seagrass beds dominated by the large Enhalus acoroides than in the short T. hemprichii. 

The authors suggest that the more structured Enhalus-dominated seagrass bed is more 
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attractive for fishes. This was confirmed in the present study where the most structured 

beds of BBS and BLS showed the highest number of fish species. 

 

4.3. Habitat utilization 

Cluster analysis showed a distinct grouping into intertidal and subtidal seagrass beds. 

Abundant species were either pelagic species (e.g. A. lacunosus, T. crocodilus, H. far) 

that might not necessarily respond to changes in seagrass bed architecture, or demersal 

species with high plasticity that not only can be found in all types of seagrasses, but even 

in other habitats, such as unvegetated area or reef environments (Labridae, 

Nemipteridae). An early assessment of fish assemblages at the island of Barrang Lompo 

by Erftemeijer & Allen (1993) accounted for fewer species than in the present study, 

which might be due to the applied methods (27 species from 15 families were collected 

with a chemical ichthyocide). However, despite differences in methodology, basic fish 

assemblags are similar: only a few of the recorded species in the present study can be 

considered typical residents of seagrass beds, for example the highly camouflaged 

Acreichthys tomentosus (Monacanthidae), Syngnathoides biaculeatus (Syngnathidae) or 

Novaculoides macrolepidotus (Labridae). However, according to Kuriandewa et al. 

(2003), permanent residents are defined by the presence of all life history stages within 

the seagrass bed. Juveniles were found for more than 32 taxa. Some of these species were 

found exclusively as juveniles (e.g. Chaetodontidae Haemulidae, Platax teira 

(Ephippidae)) of reef associated species that might utilize adjacent seagrass beds as a 

nursery, while for some abundant species, both adults and juveniles were regularly found 

in the seagrass environments (e.g. C. inermis, H. argus, H. chloropterus, P. trivittatus, 
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Apogon margaritiphorus, Pomacentridae). The first group thus could be considered to be 

temporary residents, while the latter could be considered to be permanent residents, with 

the exception of H. argus, since this species is known to spawn outside seagrass habitats; 

the same applies to S. biaculeatus (Kuriandewa et al., 2003). However, not all species 

identified as residents were restricted to seagrass habitats. For example, some species can 

not only be found in seagrass beds, but in macrophyte stands and sandy sea bottoms, such 

as different species of wrasses (H. chloropterus, H. scapularis, C. inermis or Cheilinus 

spp.) or of pomacentrids (D. chrysopoecilus, D. fasciatus, D. perspicillatus, P. 

tripunctatus). Most taxa including single records are characteristic of reef environments, 

e.g. nemipterids, labrids (H. melanurus, Thalassoma lunare), pomacentrids (Amphiprion 

ocellaris; Stegastes lividus; Abudefduf spp.) and chaetodontids (Chaetodon spp.). More 

than half of the species in the present study are rare, which is a common pattern for many 

ecological communities (Magurran & Henderson, 2003 (fehlt in references); Unsworth et 

al., 2007b; Nakamura & Sano 2004b). These visitors can be referred to as occasional 

trespassing migrants from other habitats. Most of the remaining species do occur 

regularly, but not in high abundances, and can be referred to as temporary visitors.  

 The most abundant species in intertidal beds is H. argus, while A. lacunosus 

shows the highest abundances for subtidal sites. One reason for the distribution of H. 

argus might be the structurally extremely rich canopy architecture of BLS and BBW 

(short and long seagrasses intermingled forming various storeys) as well as the short 

vicinity to coral reefs, rubble and macroalgal zone (BBN). This species predominantly 

inhabitats highly structured phytal zones and reef flats (pers. obs. C.P.), and does not 

seem to prefer seagrass beds with either short and/or evenly long plant leaves, as at BBS 



Manuscript: Fish assemblages in different types of tropical Indo-Pacific seagrass meadows 40 

!

(dense Enhalus bed) and BBE (dense bed of Cymodocea and Halophila), not allowing 

storeys, but a uniform canopy. For larger zoobenthivorous species, there was no clear 

sites preference. Pentapodus bifasciatus was found only at subtidal sites, while H. 

chloropterus was rare at these sites and showed higher abundances at subtidal sites. Vonk 

et al. (2010) found that zoobenthivores preferred seagrasses with open canopy (low 

seagrass leaf biomass), except for C. inermis preferring closed canopy (high seagrass leaf 

biomass). In the present study, leaf biomasses were not calculated to account for an 

“open” or “closed” canopy. However, the highest abundances of C. inermis were found at 

BBE, where leaves of C. rotundata form a dense bed like a lawn, and at BBS. This 

coincides with the study of Vonk et al. (2010). The common siganid S. canaliculatus is 

strongly abundant at BLS, BBE and BBS. This species can often be observed  feeding on 

the dense epiphyte layer on the leaves of E. acoroides (Tomascik et al. 1997).  

 

4.4. Influence of sites on fish diversity 

A total of 120 fish taxa was recorded from seagrass beds of the islands of Barrang Lompo 

and Bone Batang in the Spermonde Archipelago. Generally it is expected that the less 

disturbed ecosystem is more species-rich. However, distinctly more species were found at 

BLS than at any of the other sites (89 species BLS, less than 60 for each of the Bone 

Batang sites), even at the smallest common sampling size (n = 30). This is surprising, 

since the densely inhabited island of Barrang Lompo and its surrounding marine 

environment is impacted stronger by human activities than the uninhabited island of Bone 

Batang. There might be several explanations for this outcome. First, the seagrass bed at 

BLS is in close vicinity to adjacent rubble zones and a coral reef, and thus might 
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experience spill-over effects. Second, the moderate disturbance of an ecosystem or 

habitat might alter and even increase species diversity, since it can offer space and 

resources for “alien” species that do not occur or occur only rarely in the undisturbed 

habitat. Furthermore, BLS is not only impacted by exploitation by the local populations 

of the island, but also by sewage water and waste that may not have a negative affect on 

all species. This may add to the diet of many opportunistic organisms, thus possibly 

enhancing species richness. Third, the seagrass bed at BLS is highly structured by long 

Enhalus-leaves intermingled with shorter species. However, since this is also the case for 

BBW and BBS and the species richness is considerably lower, the enormous diversity at 

BLS might be more likely due to a combination of all factors mentioned. 

       Species numbers for BBN and BBW might occur low compared to other sites, but 

randomized species accumulation curves suggest a high likelihood that recorded fish 

diversity does not cover the total diversity: although the steep of the slope is lowest for 

BBN, none of the species accumulation curves is saturated, implicating that with higher 

sampling effort or enhanced methods more fish species might be recorded, especially for 

e.g. the Gobiidae, Labridae and Pomacentridae. Furthermore, the present study applied a 

daytime visual census. Unsworth et al. (2007b) recorded a similar species number (81 

species) for a seagrass bed in the Wakatobi Marine National Park in Sulawesi, 

comparable to BLS, but with different methods and diurnal sampling. In their study, 

mean fish abundance increased by 45 % and diversity by 35 % from day to night. If the 

case is similar for BLS or BB, it can be assumed that with diurnal sampling methods up 

to a third more species could be yielded.  
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       Most speciose fish families in the present study were Labridae, Pomacentridae 

and Nemipteridae. While randomized species accumulation curves for Labridae and 

Pomacentridae were strongly increasing, the curve for Nemipteridae showed saturation. It 

is not very likely to increase recorded species diversity for this family by increasing 

sampling effort, while it can be expected to yield more labrid and pomacentrid species. In 

the present study, most abundant fish species belonged to the Labridae, Siganidae, 

Atherinidae, Pomacentridae and Nemipteridae and varied for different study sites, with 

H. argus being most abundant species for intertidal and A. lacunosus the most abundant 

species for subtidal sites. In contrast, the most abundant familiy found by Unsworth et al. 

(2007b) were Apogonidae including four species, and the most abundant species was A. 

lacunosus, which might be due to the diurnal sampling method. Most abundant families 

found by Nakamura & Sano (2004b) in a seagrass bed simliar to BLS in the present study 

were Labridae, Gobiidae and Scaridae.  

 

5. Conclusion 

Seagrass beds at small coral islands in the Indonesian Spermonde Archipelago with 

different canopy architecture harbor distinct fish assemblages and have high fish diversity 

at very small scale. Species numbers found in the present study are similar to (e.g. 

Nakamura & Sano, 2004b; Unsworth et al., 2007b) or higher than in recent studies (cf. 

Erftemeijer & Allen, 1993; Vonk et al., 2008, 2010). Fish abundance did not correlate 

with shoot density of seagrasses, but different types of seagrass beds showed different 

fish assemblages and species composition. The species richness was highest at the most 

impacted site, probably due to a combination of the habitat heterogeneity and the higher 
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nutrient loading by human sewage. However, diurnal sampling methods may improve the 

recording of actual species numbers. Additionally, a long-term monitoring might increase 

our knowledge of seasonal fluctuations in fish abundance and species composition. 

Considering small patch size of the study site, high diversity, distinct variability of fish 

assemblages and value for indigenous fishery, there is need for conservational efforts to 

maintain or enhance fish diversity to assure a sustainable and rich socioeconomic use and 

preserve marine diversity.  
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Figures 

 

Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4.  
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Fig. 5.!
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Figure captions 

 

Fig.1. Study area, showing the location within Indonesia (A) and the islands of the 

Spermonde Archipelago (B) (both adapted from Liu et al., 2008) and overviews of the 

islands Barrang Lompo (lat. 4°85’S, long. 119°20’E) (C) and Bone Batang (lat. 4°90’S, 

long. 119°18’E) (D). Asterisks indicate transect positions. C) Grey shaded area indicates 

the island; solid line indicates sand and reef flat; dotted lines refer to the ranges of 

seagrass meadows. D) Grey shaded area indicates intertidal sand; solid line indicates reef 

flat and coral; dotted lines refer to the ranges of the seagrass meadows. 

 

Fig.2. Schematic diagram showing the different seagrass and meadow structures of the 

selected study sites. Bone Batang South (BBS) is dominated by Enhalus acoroides and 

Cymodocea rotundata; Barrang Lompo South (BLS) and Bone Batang West (BBW) are 

dominated by Enhalus acoroides and Thalassia hemprichii; Bone Batang East (BBE) 

consists mostly of the smaller seagrasses Halodule uninervis and Cymodocea rotundata; 

Bone Batang North (BBN) was still in an early stage of succession, with mainly 

Halophila ovalis. 

 

Fig.3. Similarity of the study sites based on fish abundance and fish species composition 

(data square root transformed). BBE = Bone Batang East; BBN = Bone Batang North; 

BBS = Bone Batang South; BBW = Bone Batang West; BLS = Barrang Lompo South. A. 

Cluster analysis with SIMPROF (S17 Bray Curtis similarity). All study sites are 
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distinctly different from each other and can be divided into two groups (intertidal and 

subtidal seagrass beds). B. Non-metric scale ordination (MDS) of permanent transects per 

study site. Both transects and study sites form distinct groupings that do not overlap. The 

same clustering into intertidal and subtidal seagrass beds as in A. are evident.  

 

Fig.4. Similarity of the study sites based on seagrass shoot densities (data square root 

transformed). Cluster analysis with SIMPROF (S17 Bray Curtis similarity). Study sites 

can be divided into intertidal and subtidal seagrass beds. Intertidal seagrass beds differ 

distinctly from each other, while subtidal seagrass beds are significantly similar to each 

other (bold cluster). BBE = Bone Batang East; BBN = Bone Batang North; BBS = Bone 

Batang South; BBW = Bone Batang West; BLS = Barrang Lompo South. 

 

Fig.5. Fish species accumulation curves for study area. A. Randomized species 

accumulation curve of all fish species and for all 5 sampling sites (Gamma diversity). The 

solid line shows the sum of all species observed (Sobs (Mau Tao)) the dashed line shows 

the Abundance-Based Coverage Estimator (ACE), and the dotted line the Chao 1 

estimator of total expected species richness. B. Randomized species accumulation curves 

for the five sampled habitats indicating the Sobs (Mao Tau) for all species: Solid curve 

Barrang Lompo South; dotted curve Bone Batang South; dashed curve Bone Batang East; 

dashed curve interrupted by single dots Bone Batang West; dashed curve interrupted by 

double dots Bone Batang North. C. Randomized species accumulation curves (Sobs (Mao 

Tau)) for fish species of the families Labridae, Pomacentridae and Nemipteridae for all 
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habitats. Solid curves indicate accumulated observed species numbers (Sobs (MaoTau)), 

long-dashed curves indicate upper and lower boundaries of 95 % confidential intervals of 

Labridae, dotted curves indicate upper and lower bounds of the 95 % confidential interval 

of Pomacentridae, and short-dashed curves indicate upper and lower boundaries of 95 % 

confidential intervals of Nemipteridae. Nemipteridae are saturated, while curves for 

Labridae and Pomacentridae are still increasing. 
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Tables 

Table 1 

  BBE BBS BLS BBN BBW 
Enhalus acoroides  0 ± 0 10 ± 17 19 ± 9 0 ± 0 5 ± 6 
Thalassia hemprichii 49 ± 60 178 ± 148 315 ± 161 498 ± 308 334 ± 148 

Halophila ovalis 686 ± 624 333 ± 216 49 ± 133 196 ± 203 35 ± 69 
Halodule uninervis 32 ± 70 27 ± 39 11 ± 41 108 ± 330 15 ± 26 
Cymodocea rotundata 540 ± 551 10 ± 24 69 ± 187 61 ± 116 242 ± 309 
Syringodium isoetifolium 59 ± 192 61 ± 99 0 ± 0 0 ± 0 21 ± 80 
Total 1365 ± 474 610 ± 140 463 ± 639 863 ± 301 652 ± 173 
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Table 2 
  Abundance   

Family Species BBE BBN BBS BBW BLS 

Apogonidae Apogon angustatus   0.0 ± 0.2   

 Apogon chrysopomus 2.7 ± 8.7    0.0 ± 0.1 

 Apogon margaritiphorus     0.1 ± 0.6 

 Cheilodipterus quinquelineatus   0.1 ± 0.7 0.1 ± 0.7 0.0 ± 0.1 

 Cheilodipterus sp. 1 1.9 ± 10.2    0.0 ± 0.2 

Atherinidae Atherinidae Gen. sp. 1 97.2 ± 226.1 1.9 ± 7.3 66.1 ± 80.2  16.6 ± 48.2 

Balistidae Balistoides viridescens 0.1 ± 0.2 0.1 ± 0.2   0.1 ± 0.1 

 Rhinecanthus verrucosus 0.1 ± 0.2 0.1 ± 0.3 0.0 ± 0.2  0.1 ± 0.3 

Belonidae Strongylura incisa     2.32 ± 11.07 

 Tylosurus crocodilus 2.8 ± 6.2 0.0 ± 0.2 0.8 ± 1.3 0.0 ± 0.3  

Blenniidae Salarias fasciatus  0.2 ± 0.5   0.0 ± 0.1 

Callionymidae Synchiropus ocellatus     0.0 ± 0.1 

Centriscidae Aeoliscus strigatus 1.3 ± 2.5  0.1 ± 0.3   

Chaetodontidae Chaetodon melannotus     0.1 ± 0.3 

 Chaetodon rafflesi     0.0 ± 0.1 

 Chaetodon vagabundus     0.0 ± 0.2 

 Chaetodon sp.     0.0 ± 0.1 

Dasyatidae Taeniura lymma 0.0 ± 0.2 0.1 ± 0.2 0.0 ± 0.2  0.0 ± 0.1 

Diodontidae Diodon holocanthus 0.2 ± 0.4  0.1 ± 0.2   

Ephippidae Platax teira   0.1 ± 0.2   

Gerreidae Gerres oyena 2.0 ± 6.1  1.6 ± 3.1  0.2 ± 1.8 

Gobiesocidae Diademichthys lineatus   0.2 ± 0.4   

Gobiidae Amblygobius phalaena 0.0 ± 0.2     

 Cryptocentrus cinctus   0.2 ± 0.8  0.1 ± 0.3 

 Cryptocentrus sp. 0.0 ± 0.2  0.4 ± 0.9 0.5 ± 0.7 0.0 ± 0.2 

 Amblygobius bynoensis  0.7 ± 1.2    

 Asterropteryx striatus  0.2 ± 0.6  0.4 ± 0.8  

 Valenciennea muralis   0.1 ± 0.3    

Haemulidae Plectorhinchus vittatus 0.1 ± 0.2     

 Plectorhinchus lessoni    0.1 ± 0.3 0.1 ± 0.2 

Hemirhamphidae Hemirhamphus far 5.2 ± 7.2 0.3 ± 0.6 4.3 ± 7.7  0.1 ± 0.3 

Labridae Cheilinus chlorourus 0.1 ± 0.3   0.1 ± 0.2 0.1 ± 0.4 

 Cheilinus trilobatus  0.2 ± 0.4 0.2 ± 0.4 0.8 ± 0.9 0.9 ± 1.8 

 Cheilio inermis 15.4 ± 8.6 0.4 ± 0.7 4.9 ± 4.7 1.6 ± 2.0 1.0 ± 1.7 

 Choerodon anchorago   0.1 ± 0.2  0.3 ± 0.7 

 Coris pictoides   0.1 ± 0.4   

 Halichoeres argus 1.7 ± 3.0 6.8 ± 7.4 1.0 ± 1.7 17.6 ± 8.3 21.8 ± 24.6 

 Halichoeres chloropterus 0.4 ± 0.8 6.7 ± 6.5 0.4 ± 0.6 9.6 ± 6.1 3.4 ± 4.2 

 Halichoeres melanurus    0.0 ± 0.2 0.0 ± 0.2 

 Halichoeres nigrescens     0.0 ± 0.2 

 Halichoeres scapularis  1.2 ± 3.1 0.1 ± 0.3 0.2 ± 0.9 0.2 ± 0.8 

 Stethojulis bandanensis  0.3 ± 0.4 0.3 ± 0.4  1.3 ± 3.7 
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 Stethojulis interrupta   0.1 ± 0.2   

 Stethojulis strigiventer   0.6 ± 1.3 5.7 ± 5.2 0.0 ± 0.1 

 Stethojulis sp.  0.9 ± 1.7   0.0 ± 0.2 

 Stethojulis trilineata  0.0 ± 0.2  0.0 ± 0.2 0.2 ± 1.0 

 Labridae Gen. sp. 1 0.0 ± 0.2     

 Novaculichthys macrolepidotus 0.1 ± 0.2  0.1 ± 0.2   

 Pteragogus enneacanthus   0.1 ± 0.2   

 Thalassoma lunare 0.2 ± 0.5  0.2 ± 0.4   

 Wetmorella albofasciata     0.0 ± 0.1 

Lethrinidae Lethrinus harak   0.1 ± 0.3  0.2 ± 0.8 

 Lethrinus obsoletus 24.6 ± 21.5  0.3 ± 0.5  0.3 ± 1.3 

 Lethrinus variegatus 2.1 ± 3.7    1.1 ± 2.8 

Lutjanidae Lutjanus ehrenbergi 0.1 ± 0.7    0.0 ± 0.1 

 Lutjanus decussatus     0.1 ± 0.4 

Monacanthidae Acreichthys tomentosus   0.0 ± 0.2 0.0 ± 0.2 0.1 ± 0.3 

 Aluterus scriptus     0.0 ± 0.1 

Mugilidae Mugilidae Gen. sp.   0.1 ± 0.6  0.1 ± 0.4 

Mullidae Parupeneus barberinoides 0.3 ± 0.5  0.1 ± 0.3   

 Parupeneus barberinus 0.2 ± 0.7  0.1 ± 0.2 0.0 ± 0.2 0.6 ± 1.5 

 Parupeneus indicus 0.1 ± 0.3     

 Upeneus tragula 0.9 ± 1.7  0.1 ± 0.2  0.1 ± 0.4 

Muraenidae Siderea picta     0.0 ± 0.1 

Nemipteridae Pentapodus bifasciatus 10.3 ± 7.9  6.3 ± 4.2  0.2 ± 0.7 

 Pentapodus paradiseus   0.1 ± 0.4 0.0 ± 0.2  

 Pentapodus trivittatus 7.7 ± 9.3 0.9 ± 1.3 0.8 ± 1.5 8.6 ± 3.9 2.3 ± 2.8 

 Scolopsis affinis 0.6 ± 1.6  0.0 ± 0.2   

 Scolopsis bilineatus     0.0 ± 0.2 

 Scolopsis margaritifer 0.0 ± 0.2   0.0 ± 0.2 0.3 ± 0.8 

 Scolopsis monogramma 4.2 ± 7.1     

 Scolopsis trilineata     0.1 ± 0.5 

Ophichthidae Leiuranus versicolor 0.0 ± 0.2 0.0 ± 0.2    

Ostraciidae Lactoria cornuta 0.1 ± 0.2     

Pinguipedidae Parapercis cylindrica  0.6 ± 1.2    

 Parapercis sp. 1  0.0 ± 0.2    

Platycephalidae Sunagocia carbunculus  0.1 ± 0.2   0.0 ± 0.1 

 Cymbacephalus beauforti     0.0 ± 0.1 

Plotosidae Plotosus lineatus 6.2 ± 16.4     

Pomacentridae Abudefduf lorenzi     0.0 ± 0.1 

 Abudefduf sexfasciatus     0.1 ± 0.6 

 Abudefduf vaigiensis     0.0 ± 0.2 

 Amblypomacentrus clarus 0.2 ± 0.6 0.7 ± 1.4    

 Amphiprion clarkii 0.3 ± 0.8  0.1 ± 0.4   

 Amphiprion ocellaris    0.0 ± 0.2 0.1 ± 0.6 

 Amphiprion polymnus   0.2 ± 0.8   

 Pomacentridae Gen. sp. 1 1.4 ± 1.9 0.8 ± 1.2 1.6 ± 1.6 2.8 ± 2.4 0.7 ± 2.6 
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 Pomacentridae Gen. sp. 2   1.2 ± 2.2 0.7 ± 2.0  

 Chromis analis     0.2 ± 0.6 

 Dascyllus aruanus   0.2 ± 0.4   

 Dischistodus chrysopoecilus  2.8 ± 3.3  5.0 ± 4.1 7.2 ± 7.6 

 Dischistodus fasciatus  1.6 ± 1.5  1.0 ± 1.5 0.0 ± 0.1 

 Dischistodus perspicillatus    0.1 ± 0.4 0.4 ± 1.2 

 Pomacentrus simsiang  0.1 ± 0.3 0.2 ± 0.5  0.6 ± 1.3 

 Pomacentrus tripunctatus   0.0 ± 0.2 4.5 ± 3.8 2.8 ± 3.3 

 Stegastes lividus     0.1 ± 0.5 

Pseudochromidae Congrogadus subducens     0.0 ± 0.1 

 Manonichthys paranox     0.1 ± 0.2 

Scaridae Hipposcarus sp.     0.1 ± 0.7 

 Leptoscarus vaigiensis 0.2 ± 0.5  1.0 ± 1.3 0.9 ± 2.2 0.1 ± 0.7 

 Scarus ghobban  0.1 ± 0.3    

 Scarus sp.     0.4 ± 1.9 

Scorpaenidae Dendrochirus zebra  0.0 ± 0.2  0.1 ± 0.3  

 Parascorpaena picta     0.0 ± 0.1 

Serranidae Cephalopholis cyanostigma     0.0 ± 0.1 

 Epinephelus argus     0.0 ± 0.1 

 Epinephelus ongus     0.2 ± 0.5 

 Epinephelus quoianus 0.0 ± 0.2 0.1 ± 0.2 0.1 ± 0.4   

 Epinephelus sp.   0.2 ± 0.3  0.04 ± 0.18 

Siganidae Siganus canaliculatus 10.5 ± 10.0  6.8 ± 6.7  18.6 ± 37.8 

 Siganus doliatus 0.1 ± 0.3  0.2 ± 0.5   

 Siganus spinus     0.0 ± 0.4 

 Siganus virgatus     0.0 ± 0.2 

Sphyraenidae Sphyraena barracuda 0.0 ± 0.2    0.0 ± 0.2 

 Sphyraena obtusata   26.4 ± 47.2   

Synanceiidae Synanceia horrida   0.0 ± 0.1  0.0 ± 0.1 

Synodontidae Synodus dermatogenys 0.0 ± 0.2  0.1 ± 0.2   

Tetraodontidae Arothron manilensis  0.3 ± 0.5  0.2 ± 0.4 0.1 ± 0.2  

 Canthigaster compressa     0.0 ± 0.1 

 Canthigaster sp.     0.0 ± 0.1 
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Table 3 

      BBE  BBN  BBS  BBW  BLS  
 BBE       
Hemirhamphus far        0.002893  0.896084     0.013300  

Cheilio inermis        0.000001  0.002681  0.000000  0.000000  
Halichoeres argus        1.000000  1.000000  0.001820  0.000203  
Halichoeres chloropterus        0.035467  1.000000  0.000935  0.523417  
Pentapodus trivittatus        0.005661  0.414988  0.639148  0.025802  
Siganus canaliculatus           1.000000  1.000000  0.186681  
 BBN       

Hemirhamphus far     0.002893     1.000000     1.000000  
Cheilio inermis     0.000001     0.043093  1.000000  1.000000  
Halichoeres argus     1.000000     0.729544  0.014465  0.000951  
Halichoeres chloropterus     0.035467     0.000349  1.000000  0.509301  
Pentapodus trivittatus     0.005661     1.000000  0.000004  1.000000  
Siganus canaliculatus            

 BBS       
Hemirhamphus far     0.896084  1.000000        1.000000  
Cheilio inermis     0.002681  0.043093     0.035100  0.034257  
Halichoeres argus     1.000000  0.729544     0.000125  0.000008  
Halichoeres chloropterus     1.000000  0.000349     0.000001  0.021614  
Pentapodus trivittatus     0.414988  1.000000     0.007233  1.000000  

Siganus canaliculatus     1.000000        1.000000  0.003473  
 BBW       
Hemirhamphus far                    
Cheilio inermis     0.000000  1.000000  0.035100     1.000000  
Halichoeres argus     0.001820  0.014465  0.000125     1.000000  
Halichoeres chloropterus     0.000935  1.000000  0.000001     0.001236  

Pentapodus trivittatus     0.639148  0.000004  0.007233     0.000002  
Siganus canaliculatus     1.000000     1.000000     0.073112  
 BLS       
Hemirhamphus far     0.013300  1.000000  1.000000        
Cheilio inermis     0.000000  1.000000  0.034257  1.000000     
Halichoeres argus     0.000203  0.000951  0.000008  1.000000     

Halichoeres chloropterus     0.523417  0.509301  0.021614  0.001236     
Pentapodus trivittatus     0.025802  1.000000  1.000000  0.000002     
Siganus canaliculatus     0.186681     0.003473  0.073112     
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Table captions 

Table 1. Seagrass shoot densities (mean ± SD, m-2) for all species and total at all 

study sites. Abbreviations for study sites: BBE = Bone Batang East; BBN = Bone Batang 

North; BBS = Bone Batang South; BBW = Bone Batang West; BLS = Barrang Lompo 

South. 

 

Table 2. List of all fish species observed during visual census at study sites. Abundance is 

individual counts 100 m-2. All values are mean ± SD. BBE = Bone Batang East; BBN = 

Bone Batang North; BBS = Bone Batang South; BBW = Bone Batang West; BLS = 

Barrang Lompo South. 

 

Table 3. Differences in abundance between study sites of six abundant fish species 

common at all or most study sites. Values in bold numbers refer to significant differences 

between two sites (Kruskal-Wallis-Test, p < 0.05).



 

Appendix 

A.1. 

Family Species Site Family Species Site 

Apogonidae  Apogon margaritiphorus BLS Nemipteridae Scolopsis bilineatus BLS 
  Apogon angustatus  BBS   Scolopsis monogramma BBE 

Belonidae  Strongylura incisa BLS   Scolopsis taeniopterus BBE 

Blenniidae Ecsenius sp.  BBN   Scolopsis trilineata BLS 

Callionymidae  Callionymidae Gen. sp.  BBN Ostraciidae Lactoria cornuta BBE 

Chaetodontidae Chaetodon melannotus  BLS Pinguipedidae Parapercis cylindrica BBN 

  Chaetodon sp. 1  BLS   Parapercis sp. 1  BBN 

  Chaetodon rafflesi  BLS Platycephalidae Cymbacephalus beauforti BLS 

  Chaetodon vagabundus BLS Plotosidae Plotosus lineatus BBE 

Ephippidae Platax teira  BBS Pomacentridae Abudefduf lorenzi BLS 

Gobiesocidae Diademichthys lineatus  BBS   Abudefduf vaigiensis BLS 

Gobiidae Amblygobius bynoensis BBN   Amphiprion polymnus  BBS 

  Amblygobius phalaena BBE   Chromis analis BLS 

  Valenciennea muralis  BBN   Dascyllus aruanus BBS 

Haemulidae Plectorhinchus vittatus BLS   Pomacentridae Gen. Sp. 3  BBS 

Labridae  Coris pictoides BBS  Pseudochromidae  Congrogadus subducens BLS 

  Halichoeres nigrescens BBE   Manonichthys paranox  BLS 

  Labridae Gen. sp. 1  BBE Scaridae Hipposcarus sp.  BLS 

  Pteragogus enneacanthus BBS   Scaridae sp.  BLS 

  Stegastes lividus  BLS   Scarus ghobban  BBN 

  Stethojulis interrupta BBS Serranidae Cephalopholis cyanostigma  BLS 

  Stethojulis sp. 1  BBN   Cromileptes altivelis BBN 

  Stethojulis sp. 2  BBN   Epinephelus argus  BLS 

  Wetmorella albofasciata BLS   Epinephelus bontoides BBN 

Lutjanidae Lutjanus decussatus  BLS   Epinephelus ongus BLS 

  Lutjanus ehrenbergi BLS Siganidae Siganus spinus BLS 

Monacanthidae Aluterus scriptus BLS   Siganus virgatus BLS 

Mullidae Parupeneus indicus  BBE Sphyraenidae Sphyraena obtusata BBS 

Muraenidae Siderea picta BLS Tetraodontidae Canthigaster compressa BLS 

  Uropterygius macrocephalus BLS   Canthigaster sp.  BLS 

!
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A.2. 

 

 

Species   Site 

Balistidae  Balistidae Gen. sp.  BLS 

Blenniidae  Cirripectes castaneus  BLS 

  Ecsenius axelrodi  BLS 

  Petroscirtes variabilis  BLS 

Callionymidae Synchiropus ocellatus  BLS; BBE 

Carcharhinidae Carcharhinus melanopterus  BLS; BBE 

Centrogenyidae Centrogenys vaigiensis  BLS; BBW 

Dasyatidae  Neotrygon kuhlii  BLS 

Diodontidae Diodon holacanthus  BLS 

Fistulariidae Fistularia commersonii  BLS 

Gobiidae Austrolethops wardi  BLS 

Haemulidae Plectorhinchus albovittatus  BLS 

Hemirhamphidae Hyporhamphus dussumieri   BLS 

Labridae Leptojulis cyanopleura  BBW 

  Stethojulis trilineatus  BLS 

  Stethojulis sp. 2   BLS 

Lutjanidae Lutjanus Sargassum   BLS 

Ophichthidae Leiuranus versicolor   BLS 

Platycephalidae Cymbacephalus beauforti  BLS 

Pomacentridae Abudefduf bengalensis  BLS 

  Dischistodus melanotus  BLS 

Scaridae Scarus ghobban  BLS 

  Scaridae sp.   BLS 

Serranidae Epinephelus quoyanus  BLS 

Siganidae Siganus spinus  BLS 

Solenostomidae Solenostomus sp.   BLS 

Syngnathidae Syngnathoides biaculeatus   BLS 

!

!

!

!

!

!

!

!



67 Manuscript: Fish assemblages in different types of tropical Indo-Pacific seagrass meadows 

Appendix Captions 

A.1. List of single records and rare fish taxa observed at study sites. BBE = Bone Batang 

East; BBN = Bone Batang North; BBS = Bone Batang South; BLS = Barrang Lompo 

South. 

 

A.2. List of additional fish species observed outside transects or not during surveys at 

study sites. BBE = Bone Batang East; BBW = Bone Batang West; BLS = Barrang 

Lompo South. 
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Graphical abstract to the manuscript. Submitted to Estuarine, Coastal and Shelf Science. 
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III. Food web relations of fishes in mixed-species tropical seagrass beds in the 

Spermonde Archipelago, South Sulawesi, Indonesia, as revealed by stable isotope 

analysis and gut-content analysis 

 

1. Introduction 

Seagrass beds are crucial habitats for many animals. Due to their structural complexity,  

seagrass ecosystems provide shelter from predation and represent important feeding grounds 

for a range of organisms, including invertebrates (e.g. amphipods, isopods or sea urchins and 

fish), but also higher vertebrates such as dugongs and green turtles, and birds such as 

waterfowl (Thayer et al., 1982; Heck & Valentine, 2006). Many studies in the higher latitudes 

have shown that both intake and assimilation of seagrass material by heterotrophs is of low 

significance in seagrass beds (Moncreiff & Sullivan, 2001). This was previously explained by 

the low nutrient value (Klumpp & Nichols, 1983; Valentine & Heck, 1999), high fibre content 

(Vonk et al., 2008) and high content of tannine and phenolic substances (Liu et al., 2008).  

Furthermore, many studies – not only restricted to temperate regions – concluded that 

most fish species found in seagrass meadows are omnivores or predators (Unsworth et al., 

2007b), and that only a small number of fish is truly or predominantly herbivorous and feeds 

directly on seagrass plants. Some trophic studies conducted in the lower latitudes, however, 

were contradictory to food web results from temperate regions (Heck & Valentine, 2006). For 

example, in contrast to the higher latitudes, tropical seagrass beds experience considerable 

grazing, with both direct and indirect utilization (i.e. feeding on seagrass epiphytes) (Vonk et 

al., 2008; Yamamuro, 1999). Grazing fish species have been reported from the families 

Scaridae, Labridae and Siganidae from the Mediterranean and Indo-Pacific (Randall, 1967; 

Pollard, 1984; Valentine & Heck, 1999; Khalaf & Kochzius, 2002; Unsworth et al., 2007c) 

Members of the omnivorous family Hemirhamphidae (Randall, 1967) include Hyporhamphus 
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melanochir, a species feeding on seagrass during daytime and on amphipods during night 

time (Klumpp & Nichols, 1983; Robertson & Klumpp, 1983), and Hemirhamphus far,feeding 

on seagrass leaves floating freely in the water column (pers. obs. C.P.). From the Caribbean, 

Scaridae and Acanthuridae are known to ingest seagrasses (Valentine & Heck, 1999; 

summarized by Liu et al., 2008).  

A food web describes trophic interactions between organisms within ecosystems. To 

describe food webs, different methods have been established in the last decades. The present 

study provides the results from combined gut-content and stable isotope analysis. Gut-content 

analysis yields high-resolution information on the food spectrum of an organism, although 

such contents represent restricted periods of time immediately before killing the examined 

organism (Pinnegar & Polunin, 2000; Carassou et al., 2008). Moreover, it is not possible to 

distinguish between food items that are actually digested and assimiliated and those that are 

merely ingested (Lugendo et al., 2006). In contrast, stable isotope analysis is based on the 

enrichment of stable isotopes, such as stable carbon or nitrogen, between trophic levels (e.g. 

Cocheret de la Morinière et al., 2003). This approach allows to average the assimilated diet of 

an organism over a longer period of time (days to months, depending on the type of tissue 

used) (Pinnegar & Polunin, 1999; Post, 2002), but with low resolution. It is not possible to 

identify species or genera; only the trophic level is revealed (e.g., herbivore or top-predator), 

provided that there is a baseline isotopic signature (i.e., isotopic composition of primary 

producers or primary consumers). For stable nitrogen (!
15

N) and stable carbon (!
13

C), 

different rates of accumulation between trophic level are apparent: while the enrichment of 

stable nitrogen from one trophic level to another averages 3.4 ‰ (Post et al., 2000), the 

enrichment of stable carbon is much lower and variable, ranging on average from 0.4 ‰ to  

1 ‰. 
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 This study is the first in the Indo-Pacific region to combine stable isotope and gut-

content analysis to describe the food web of a highly diverse mixed-species seagrass 

community. One aim is to describe the food web of a seagrass bed of the small coral cay 

Barrang Lompo in the Indonesian Spermonde Archipelago, and to compare the outcomes of 

applying stable isotope and gut-content analysis. A further focus is on comparing the 

contribution of trophic guilds of four seagrass beds at the small coral cays Barrang Lompo 

and Bone Batang, another small coral island; this is based on visual census data presented in 

the manuscript that is part of this thesis (Pogoreutz et al., submitted). 

 

2. Material and methods 

2.1. Site description 

Sampling took place at two small coral cays in the Spermonde Archipelago. The archipelago 

is about 200 km long and about 40 km wide and consists mainly of coral islands and 

submerged coral reefs (Vonk et al., 2008; Fig. 1). Two islands that were easily accessible 

from the city Makassar were chosen for the study: the island of Barrang Lompo (lat. 4°85’S, 

long. 119°20’E) and Bone Batang (lat. 4°90´S, long. 119°18´E). The islands are situated 14 

and 15 km off Makassar, respectively. Barrang Lompo measures 0.5 km! and is densely 

populated. Local residents live mainly on marine resources, while waste and sewage water is 

released directly into the sea. Thus, the anthropogenic impact on surrounding marine 

ecosystems is high. Bone Batang is considerably smaller and uninhabited. The human impact 

with respect to nutrient enrichment is lower compared to Barrang Lompo, but there is a 

considerable amount of artisanal fishery. Both islands are surrounded by an extensive 

intertidal reef flat and a coral reef. Seagrass beds around the islands are distinctly differening 

from each other, multiple-species stands with varying shoot densities and dominating species. 

They are composed of seagrass species of the families Hydrocharitaceae (Thalassia 

hemprichii, Enhalus acoroides, Halophila ovalis) and Cymodoceaceae (Cymodocea 



73                                             Food web relations of fishes in mixed-species tropical seagrass beds!

rotundata, Halodule uninervis, Syringodium isoetifolium). Each of the seagrass beds is within 

200 m of a coral reef and a rubble zone. Small single coral colonies of the genera Pocillopora 

and Porites as well as unidentified sponges are loosely scattered all across the seagrass beds 

at Barrang Lompo and Bone Batang. One study site was chosen at Barrang Lompo in the 

south of the island (BLS), and four sites in the cardinal points of Bone Batang: Bone Batang 

North (BBN), Bone Batang East (BBE), Bone Batang South (BBS), Bone Batang West 

(BBW). All food web and biomass sampling was conducted at BLS exclusively, whereas 

visual fish censuses were conducted at all study sites. The fish census was conducted in 

Octobre and November 2009, the food web sampling was done in November and December 

2009. 

 

 

 

Fig. 1 Study area showing (A) the location within Indonesia, (B) the islands of the Spermonde 

Archipelago (both adapted from Liu et al., 2008), and overviews of the islands (C) Barrang Lompo 

(lat. 4°85’S, long. 119°20’E) and (D) Bone Batang (lat. 4°90’S, long. 119°18’E). Asterisks indicate 

positions of transects and food web sampling (Barrang Lompo only). Dotted lines refer to the ranges 

of seagrass meadows. 

 



Food web relations of fishes in mixed-species tropical seagrass beds 74 

!

2.2. Macrophyte and fish densities 

Seagrass shoot densities were assessed by throwing a frame with 0.5 m side length at random. 

This frame was subdivided into 16 quadrats with a side length of 125 mm each. All shoots of 

E. acoroides were counted within the frame. For other seagrasses, three quadrats of the grid 

within the frame were randomly chosen. All shoots of all seagrasses were counted within 

these quadrats and extrapolated.  

To assess fish densities, daytime visual censuses were conducted. One observer 

experienced with fish censuses surveyed fish assemblages whilst snorkelling along transects. 

There were four permanent belt-transects deployed at BLS, two each at BBW and BBN and 

five each at BBS and BBE. The dimensions of each transect were 25 x 6 m (covering an area 

of 150 m
2
 per transect). Transects were parallel to each other and to the shoreline and at least 

15 m apart. The distance from the edge of the seagrass bed exceeded 5 m for each transect. 

Visual fish censuses were conducted during October and November 2009.  

 

2.3. Sampling procedures  

Sample collection took place in November and December 2009. The main primary producers 

were collected (the seagrasses E. acoroides, T. hemprichii, C. rotundata and H. uninervis; 

algae; phytoplankton). For the seagrasses, samples from living plants, freely floating seagrass 

leaves and dead accumulated seagrass detritus from the surface of the sediment were taken.  

Practical considerations prohibited including all the fauna species in the food web, so 

selected invertebrate (epifauna, infauna) and fish species were collected based on observed 

abundance and presumed roles in the seagrass meadow based on the literature (Randall, 1967; 

Nienhuis et al., 1989; Khalaf & Kochzius, 2002; Nakamura et al., 2003; Lugendo et al., 2006; 

Vonk et al., 2008; Benstead et al., 2006; Froese and Pauly, 2010). Care was taken to include 
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all fauna species and representatives of functional groups assumed to be of importance in the 

food web of the meadow.  

Zooplankton was collected during daytime using fine mesh nets (200 µm and 50 "m). 

Those fish species to be included into the food web were chosen by abundance assessed 

during visual census and in catches with gill net (100 m x 0.5 m, mesh size 30 x 20 mm) and 

beach seine (opening 2 x 3 m; mesh size 2 x 2 mm). Fish were caught during daytime at high 

tide. After catching, total length (TL) and standard length (SL) of all specimens was measured 

to the nearest millimetre.  

Invertebrates were sampled by deploying three plastic foils (3 x 3 m) on the sediment. 

All epibenthos (sponges, bivalves of the genus Pinna) was collected before deploying the foil. 

All infauna trying to escape to the sediment surface due to oxygen depletion was collected 24, 

48 and 72 h after deploying the foils. To collect the infauna, the foil was removed carefully 

and all dead and living animals collected. Cryptobenthic fish (e.g. gobies, moray eels) were 

also collected when available. Additionally, 18 sediment cores (15.7 cm in diameter, 30 cm 

deep) were taken parallel to each other. The contents of the cores were washed over a 1 mm 

sieve and all fauna visible with the naked eye collected. Invertebrate sampling and 

identification was done by experienced invertebrate biologists (D. Kneer and D. 

Priasombodo). 

For stable isotope analysis of organic matter in the sediment, six cores (6 cm in 

diameter, 20 cm deep) were taken from the seagrass meadow. A 1-cm-thick layer from one 

centimetre depth from each core was taken for analysis; the rest was discarded. All living 

seagrass parts were removed from the surface samples and discarded. Subsamples of the rest 

were suspended in a bucket of filtered seawater and the resuspendible sediment fraction 

washed over a 1 mm sieve first to gain sediment particulate organic matter (sPOM > 1 mm) 

and afterwards washed over a Whatman GF-F filter (sPOM < 1 mm).  This procedure yielded 
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samples for the sediment, rough detritus from the sediment and fine detritus from the 

sediment. 

  Zooplankton was sampled with a 200 µm and 55 µm sieve, phytoplankton (POC) with 

Niskin canisters (volume 5 l). Of each, four replicates were collected. Zooplankton and POC 

were filtered and washed down with de-ionized water to remove salt and then dried at 60 °C 

to constant weight.  

 

2.4. Preparation of stable isotope samples 

Seagrass was rinsed in freshwater to remove salt and then carefully cleaned of epiphytes. 

Epiphytes were rinsed and filtered through G/F Whatman filters. From fish, a small amount of 

muscle tissue from the dorsal white muscle was taken for stable isotope analysis. For 

Acreichthys tomentosus and smaller labrids, it was necessary to add white muscle from other 

parts of the body, such as the pygostyle. For juvenile Atherinomorus lacunosus, whole gutted 

specimens were used. For invertebrates, care was taken to use muscle tissue for analysis; 

otherwise whole specimens were used. All samples (fish, invertebrates, plankton, epiphytes 

and seagrasses) were dried at 60 °C until constant weight. The samples were then ground to 

fine powder. If necessary, samples were treated with hydrochloric acid to remove inorganic 

carbon. If available, three separate samples or three pooled samples per species were 

subjected to stable isotope analysis. 

Stable isotope analysis was conducted at the Humboldt University Natural History 

Museum, Berlin, Germany. Analysis of stable nitrogen and stable carbon as well as 

concentration measurements were performed simultaneously with an isotope ratio mass 

spectrometer (THERMO/Finnigan MAT V), coupled to a THERMO Flash EA 1112 

elemental analyzer. Carbon and nitrogen isotope ratios are expressed in ! per mil notation 

relative to Vienna PDB (Vienna PeeDee Belemnite standard) and atmospheric N2. All isotope 
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values are expressed as either enriched or depleted in !
13

C and !
15

N, respectively. Average 

reproducibility based on replicate measurements of stable carbon and nitrogen isotopes are 

usually about 0.15 ‰ (Mariotti et al., 1984; Vonk et al., 2008).  

 

2.5. Gut-content analysis 

Fish guts were fixed with 4 % seawater buffered formalin immediately after sampling. Fixed 

guts were dissected under a stereomicroscope and all food items identified to at least class 

level, and, if possible, further. All food items contained in one gut were recorded. After 

dissection, all food items were dried at 60 °C until constant weight to gain values of 

gravimetric proportions. Empty stomachs or those containing parasiters were recorded. Gut-

content analysis was conducted at the Waddensea Station of the Alfred-Wegener-Institute at 

the island of Sylt, Germany.  

 

2.6. Biomass calculations 

Data on dry weight were gained during preparation for stable isotope analysis after drying 

samples at 60 °C to constant weight. The remainders of samples (fish, invertebrates, 

seagrasses) were burned for 5 h at 450 °C. Ash-free dry weight (AFDW) was determined by 

subtracting the weight of burned samples from dry weight.  

 

2.7. Data analysis 

Seagrass biomass, fauna density, isotopes and isotope ratio-values are presented as mean ± 

SD. Differences in isotopic signatures between seagrasses, their epiphytes and phytoplankton 

(POC) were tested using a one-way ANOVA and post-hoc Tukey’s b-test using the package 

Statistica 7.0 (Statsoft, 2007). Evaluation of trophic level (TL) of each species was done after 

Schaal et al. (2008) based on their mean #
15

N, because this ratio has previously been 
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suggested to comprise a valuable indicator of trophic position (Post, 2002). Mean stable 

isotope values for primary consumers (e.g. Pinna muricata, Tapes literatus, Antigona 

puerpera, Gafrarium pectinatum, Vasticardium sp.) were calculated. The following formula 

was used to calculate TL (Schaal et al., 2008): 

 

TLi = [(#
15

Ni – #
15

NPC/3.4] + 2 

 

Where TLi is the average trophic level of species i, $
15

Ni is the average #
15

N of species i, 

#
15

NPC is the average #
15

N of primary consumers the value 3.4 is the mean #
15

N trophic 

enrichment occurring from primary consumers. 

To analyse differences between trophic structures of fishes, proportions of gravimetric 

food items and differences between trophic distribution of fish assemblages between study 

sites, data were subjected to multivariate non-metric Multidimensional scaling ordination 

(MDS) and/or Bray-Curtis cluster analysis using the PRIMER v6 package (Clarke and 

Warwick, 1994). The Bray-Curtis similarity index was applied on square-root transformed 

data and then converted into MDS ordination and cluster (Clarke, 1993). To determine the 

relative contribution of proportions of trophic categories to differences between groupings, 

SIMPER analysis was applied. To assess the width of dietary niches of fish species, Levins 

Index of niche width was applied (Levins, 1968; Feinsinger et al. 1981). The Schoener Index 

of niche overlap was applied to evaluate dietary niche overlap (Hurlbert et al. 1978, Leitaõ et 

al. 2005).  

Information on the trophic status of each fish species was drawn from a number of 

sources including Randall (1969), Khalaf & Kochzius (2002), Nakamura et al. (2002), 

Unsworth et al. (2007), Vonk et al. (2008) and field observations by the author.  
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3. Results 

3.1. Macrophyte and fauna densities 

At BLS, six seagrass species were found: E. acoroides, T. hemprichii, H. ovalis, H. uninervis, 

C. rotundata and S. isoetifolium. The last species was restricted to very small patches within 

the meadow and was never counted within the frame. Seagrass shoot density was low 

compared to literature values for this area (cf. Erftemeijer & Herman, 1993; Vonk et al., 

2008). Total shoot density was about 463 ± 639 m
-2

, ranging from 19 ± 9 shoots for E. 

acoroides to 315 ± 161 shoots for T. hemprichii (Table 1). Large proportions of seagrass 

leaves suffered from severe burning due to insolation. Epiphytes were found on all seagrass 

species, but were most abundant on the large E. acoroides leaves.  

 

Table 1. Shoot densities of seagrass species (shoots m
-2

) in the bed at Barrang Lompo South.  

 Seagrass species shoots 

Enhalus acoroides  19 ± 9 

Thalassia hemprichii 315 ± 161 

Halophila ovalis 49 ± 133 

Halodule uninervis 11 ± 41 

Cymodocea rotundata 69 ± 187 

Syringodium isoetifolium 0 ± 0 

Total 463 ± 639 

 

The three most abundant fish species in the investigated seagrass bed were the omnivorous 

wrasse Halichoeres argus (21.9 ± 24.6 individuals 100 m
-2

), the predominantly herbivorous 

siganid Siganus canaliculatus (18.6 ± 37.8 individuals 100 m
-2

) and juveniles of the 

planktivorous atherinid Atherinomorus lacunosus (16.6 ± 48.2 individuals 100 m
-2

; A.1). 
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3.2. Stable isotope analysis   

3.2.1. Primary producers 

Primary producers differed significantly in stable carbon (ANOVA: F2,34 = 380.17, p = 

0.0000) and stable nitrogen (ANOVA: F2,34 = 4.0412, p = 0.02663) signatures. A post-hoc 

Tukey’s b-test showed significant differences between seagrasses (including floating seagrass 

leaves and dead leaves from the sea bottom) and POC (MS = 1.8596, df = 34, p = 0.049341) 

with respect to stable nitrogen. It also showed significant differences among all groups of 

primary producers with respect to stable carbon (MS = 1.0664, df = 34; seagrasses vs 

epiphytes: p = 0.012976; seagrasses vs POC: p = 0.000125; epiphytes vs POC: p = 0.000125). 

Among living seagrass leaves, E. acoroides had the least depleted !
13

C values, while H. 

uninervis was the most depleted. The other two seagrasses (C. rotundata and T. hemprichii) 

were intermediate between E. acoroides and H. uninervis. Seagrass leaves that were either 

collected floating in the water column or from the sandy sea bottom were similarly depleted 

as the seagrass T. hemprichii. Epiphytes were clearly less depleted than seagrasses, though the 

differences for E. acoroides and its epiphytes were minor (Table 2).   
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Table 2. Primary food sources #
13

C, #
15

N, C and N concentration and C:N ratio mean values 

± SD in the seagrass bed (n = 3 each).    

Primary food 

sources             

  code !
13

C !
15

N  % C  % N C:N ratio 

macrophytes       

Enhalus acoroides Ea -4.88±0.13 3.94±0.89 38.21±4.31 2±0.23 19.25±3.1 

Thalassia hemprichii Th -6.39±0.23 2.18±0.51 41.9±1.23 2.07±0.13 20.29±0.69 

C.rotundata Cr -5.95±1.01 1.86±0.69 36.13±13.53 1.69±0.7 21.7±1.81 

Halodule uninervis Hu -7.04±0.31 2.74±0.41 44.9±0.51 2.23±0.03 20.13±0.31 

seagrass floating fls -6.79±0.19 2.94±0.69 40.7±0.82 1.48±0.22 27.84±3.42 

seagrass detritus dts -6.95±0.18 3.17±0.6 40.65±1.26 1.31±0.15 31.22±2.8 

Epiphytes Enhalus Eea -4.27±0.26 5.54±2.3 22.34±1.13 1.03±0.15 21.98±1.94 

Epiph. Thalassia Eth -4.37±1.48 4.31±0.23 16.07±1.46 0.87±0.22 18.97±3.14 

Epiph. Cymodocea Ecr -4.99 2.71 22.63 1.16 19.,57 

Epiph. Halodule Ehu -5.42±0.6 1.91±0.45 22.5±1.66 1.28±0.11 17.6±0.28 

Epiph.floating Efls -5.28±0.29 3.42±1.54 20.06±0.23 1.02±0.06 19.8±1.05 

Epiph. detritus Edts -6.86±0.09 3.83±1.78 21.17±1.26 0.96±0.12 22.12±1.46 

Chlorophyta Chl -10.62 2.71 20.23 0.98 20.56 

other       

sPOM > 1 mm sPl -5.71 3.12 16.36 0.85 19.27 

sPOM < 1mm SPs -5.01 6.48 18.02 1.3 27.21 

Phytoplankton POM -20.51±1.1 4.47±0.83 0.62±0.08 0.09±0.01 6.9±0.44 

 

 

3.2.2. Fauna 

A total of 66 fishes from 18 species were subjected to stable isotope analysis. The !
13

C values 

of fish species ranged from -8.32 ‰  (Gymnothorax sp., Muraenidae) to -15.87 ‰  (Tylosurus 

crocodilus, Belonidae). The !
15

N values of fish ranged from 4.88 ‰  (Siganus virgatus, 

Siganidae) to 10.95 ‰  (Sphyraena barracuda, Sphyraenidae) (Table 3). Abundances and 

lengths (mean ± SD) of all fish species recorded during visual census are shown in the 

appendix (A.1). Additionally, a total of 81 individuals of 45 taxa plus a total of nine 

zooplankton samples (five samples for zooplankton up to 55µm and four samples for 

zooplankton up to 200µm) were subjected to stable isotope analysis. The range of invertebrate 

!
13

C values was broader than for fish: invertebrate values ranged from -4.43 ‰  (Ophiuroidea 
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sp. “striped“) to -28.53 ‰  (Eucalliax sp.). Invertebrate !
15

N values had a similar range, but 

overall were at lower nitrogen levels than fish: they ranged from -7.53 ‰  (Eucalliax sp.) to 

8.68 ‰  (Ophiuroidea sp. “sponge“) (Table 4). Highest !
15

N values for animals were found 

for the two fish S. barracuda (!
15

N = 10.94 ‰) and T. crocodilus (!
15

N = 10.26 ‰ ).The 

lowest !
15

N and !
13

C values were determined for three species of bivalves (Solemya pusilla, 

Codakia tigerina, Fimbria sp.) and two species of crustaceans (Eucalliax panglaoensis and 

Calliaxina sp.) (Fig. 2).  

 

 

 

 

 

 



!

Table 3. Fish densities (individuals 100 m
-2

) and mean size ± SD (cm) of the species counted in the seagrass meadow using a rapid visual census. 

For the food web, mean !
13

C and !
15

N values ( ‰ ) are shown (± SD). Trophic category is given according to Vonk et al. (2008): herbivorous (H), 

piscivorous (P), omnivorous (O), zoobenthivorous (ZB), and planktivorous (ZP). 

(b) teleosts Species density size 

trophic 

category code n !
13

C !
15

N 

Atherinidae Atherinomorus lacunosus 16.60±48.2 2.37±0.90 ZP Al 3 -15.58±0.27 7.12±0.02 

Belonidae Strongylura incisa 2.32±11.07 30.00±0.00 P Si 3 -9.64±0.07 7.2±0.1 

 Tylosurus crocodilus   P Tc 3 -15.87±0.26 10.26±0.63 

Blenniidae Petroscirtes variabilis   H Pv 2 -13.97 5.95 

Gobiidae Cryptocentrus sp. 0.00±0.19 2.67±0.58 H Csp 1 -9.96 8.14 

Hemirhamphidae Hemirhamphus far 0.09±0.19 24.00±6.52 H Hf 3 -11.99±2.31 8.71±0.49 

Labridae Cheilinus chlorourus  0.91±1.79 6.11±5.29 ZB Cc 3 -9.37±0.37 7.77±0.12 

 Cheilio inermis 1.01±1.70 17.72±7.44 ZB Ci 3 -10.82±0.82 7.42±0.68 

 Choerodon anchorago 0.29±0.70 12.83±6.39 O Ca 3 -9.09±0.07 8.1±0.16 

 Halichoeres argus 21.79±24.56 4.11±1.54 O Ha 3 -8.97±0.24 7.01±0.31 

 Halichoeres chloropterus 3.40±4.21 9.69±3.74 ZB Hc 3 -10.07±1.3 7.78±0.53 

 Halichoeres scapularis 0.19±0.79 6.33±4.93 ZB Hs 1 -9.03 7.87 

 Stethojulis trilineatus 0.20±1.00 7.00±3.39 O St 3 -9.64±0.07 7.2±0.1 

Lethrinidae Lethrinus obsoletus 0.30±1.30 9.89±3.72 ZB Lo 2 -8.9 8.5 

Monacanthidae Acreichthys tomentosus 0.10±0.30 7.39±0.55 O At 3 -8.63±0.35 7.83±0.68 

Mullidae Upeneus tragula 0.10±040 20.63±3.20 ZB Ut 2 -9.33 8.11 

Muraenidae Gymnothorax sp.   ZB, P Gsp 1 -8.32 9.03 

Nemipteridae Pentapodus trivittatus 2.32±2.79 11.52±2.42 ZB Pt 3 -9.07±0.24 8.79±0.43 

 P. trivittatus juv.     Ptj 3 -9.08±0.3 5.96±0.3 

 Scolopsis margaritifera 0.30±0.80 8.63±1.61 ZB Sm 1 -9.75 8.51 

Pomacentridae Dischistodus chrysopoecilus 7.21±7.60 4.37±2.33 H Dc 3 -13.47±0.07 6.94±0.16 

 Dischistodus fasciatus 0.00±0.10 8.00±0.00 H Df 1 -12.16 6.62 

 D. perspicillatus 0.40±1.20 4.77±1.82 H Dp 1 -13.14 6.78 

Scaridae Scaridae sp. 0.40±1.20 2.00±0.00 H Ssp 3 -11.1±0.1 5.25±0.25 



 

!

Siganidae Siganus canaliculatus 18.61±37.80 10.63±2.32 H Sc 3 -11.28±0.9 6.81±0.63 

 Siganus spinus 0.00±0.40 8.00±0.00 H Ss 1 -12.17 6.65 

 Siganus virgatus 0.00±0.19 10.00±0.00 H Sv 1 -12.09 4.88 

Sphyraenidae Sphyraena barracuda 0.00±0.19 33.33±7.64 P Sb 1 -9.94 10.94 

Syngnathidae Syngnathoides biaculeatus     ZP Syb 3 -13.74±2.82 7.51±0.56 
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Table 4. Sample sizes and isotopic signatures of invertebrates subjected to stable isotope analysis, collected from the seagrass meadow. Values are 

given as mean (± SD).  

(a) 

Invertebrates species code n !
13

C !
15

N 

Crustaceans      

 Alpheus sp. Alp 1 -5.86±0.15 6.19±0.07 

 Amphipoda Am 1 -7.72 4.12 

 Mysidae My 3 -11.46±0.04 6.51±0.01 

 Cirripedia Cir 3 -5.59±0.58 4.03±0.27 

 Corallianassa coutieri Cog 2 -4.80±0.13 2.79±0.42 

 Corallianassa assimilis Coy 1 -8.85 4.25 

 Callianida typa Cal 3 -9.16±0.32 7.19±0.42 

 Eucalliax panglaoensis Eu 1 -28.53 -7.53 

 

Calliaxina 

novaebritanniae Cax 1 -25.72 -3.38 

 Glypturus armatus Gly 1 -8.02 3.25 

Molluscs      

Bivalvia Tapes sp. Ta 3 -13.25±0.22 6.35±0.36 

 Tellina sp. Te 1 -14.51 4.12 

 Gafrarium sp. Ga 1 -13.73 4.45 

 Vasticardium sp. Va 1 -13.5 5.83 

 Scutarcopagia sp. Scu 1 -8.71 5.12 

 Antigona sp. Ans 1 -10.93 4.62 

 Antigona lamellaris Al 1 -11.73±0.00 7.17±0.00 

 Pinna muricata Pim 3 -13.23±0.18 4.69±0.28 

 Pitar sp. Pit 1 -13.45 5.8 

 Fimbria sp. Fsp 1 -21.54 3.07 

 Codakia tigerina Ct 1 -23.48 -0.94 

 Solemya pusilla Ssp 1 -26.59 2.36 

 Tellina staurella Ts 1 -8.24 5.11 



 

!

 Antigona puerpera Ap 3 -12.75±0.48 8.07±0.75 

 Mactra maculata Mm 1 -11.91 4.18 

 Anodontia edentula Ae 1 -13.32 5.68 

 Anadara antiquata Aa 1 -12.41 6.74 

Gastropoda Zeacolpus pagodus  Ze 1 -10.7 6.99 

 Strombus urceus Str 1 -9.32 3.47 

 Polinices flemingianus Pf 1 -13.65 6.22 

 Polinices melanostomus Pm 1 -18.61 4.57 

 Conus virgatus Cv 1 -8.48 6.7 

 Cymbiola sp. Cy 1 -7.88 7.17 

Echinoderms      

Asteroidea Archaster typicus Art 3 -6.32±0.21 4.86±1.01 

Holothuroidea Holothuria sp. Hsp 3 -9.46±0.6 6.05±1.2 

 Holothuroidea sp. Hol 1 -6.04 5.25 

Ophiuroidea ophiurid sponge Op1 1 -5.34 8.68 

 ophiurid stripes Op2 3 -4.43±0.44 6.13±0.49 

 ophiurid black Op3 3 -5.05±1.09 7.16±1.31 

 ophiurid Op4 1 5.62 -6.34 

other 

invertebrates      

Cnidaria Actinia large Ac1 3 -6.77±1.29 7.78±0.36 

 Actinia small Ac2 3 -7.42±0.55 7.08±0.43 

Porifera dark brown sponge dbs 3 -12.24±0.09 4.01±0.36 

 sponge brown tips sbt 3 -10.51±1.88 4.26±0.62 

 sponge yellow body sy 3 -11.41±0.57 5.04±0.44 

 mossy sponge ms 1 -15.14 4.89 

Zooplankton zooplankton 55"m Z55 5 -12.47±3.73 5.17±0.94 

 zooplankton 200"m Z200 4 -12.37±0.89 5.53±1.04 

 



!

 

Fig. 2. !
15

N and !
13

C of algae, microphytobenthos, plants, plankton, benthic invertebrates and fishes. Abbreviations follow tables 2, 3, 4. 
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3.2.3 Determination of fish trophic level 

The highest trophic levels were found for the three piscivores S. barracuda, S. incisa and T. 

crocodilus, followed by the macrozoobenthivores Gymnothorax sp. and adult P. trivittatus. 

The predominantly seagrass-feeding herbivore H. far displayed a considerably high trophic 

level and was ranked well before most zoobenthivorous species. Such a high trophic level for 

this species is not represented by gut-content analysis. Other herbivorous species occupied 

lowest trophic levels (! 2.51). Most zoobenthivores occupied a trophic level between 3.00 and 

2.53. The planktivorous A. lacunosus and the omnivorous H. argus do not differ much from 

herbivorous species with respect to trophic level (Table 5).  
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Table 5. Trophic level of the investigated fish taxa of the mixed-species seagrass bed off 

Barrang Lompo South.  

Species 

Trophic 

level 

Sphyraena barracuda 3.69 

Strongylura incisa 3.49 

Tylosurus crocodilus 3.44 

Gymnothorax sp. 3.13 

Pentapodus trivittatus 3.06 

Hemirhamphus far 3.03 

Scolopsis margaritifer 2.97 

Lethrinus obsoletus 2.97 

Choerodon anchorago 2.90 

Cryptocentrus sp. 2.87 

Halichoeres scapularis 2.78 

Acreichthys tomentosus 2.77 

Halichoeres chloropterus 2.76 

Cheilinus sp. 2.76 

Syngnathoides biaculeatus 2.68 

Cheilio inermis 2.65 

Stethojulis trilineatus 2.59 

Atherinomorus lacunosus 2.57 

Halichoeres argus 2.53 

Dischistodus chrysopoecilus 2.51 

Siganus canaliculatus 2.47 

Dischistodus perspicillatus 2.46 

Siganus spinus 2.43 

Dischistodus fasciatus 2.42 

Pentapodus trivittatus juv. 2.22 

Petroscirtes variabilis 2.22 

Scaridae sp. 2.01 

Siganus virgatus 1.91 
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3.3. Gut-content analysis 

3.3.1. Feeding guilds 

Overall, the guts of 182 individuals from 27 fish species were analysed. All of these species 

were assigned to one of the following four feeding guilds: herbivorous, omnivorous, 

(macro)zoobenthivorous and piscivorous. For the nemipterid Pentapodus trivittatus, two 

different ontogenetic classes were used: juveniles (total length ranging from 37 mm to 58 

mm) and adults (TL 120 mm to 250 mm).  

 Bray-Curtis Hierarchical Cluster analysis and non-dimensional MDS were able to 

clearly distinguish between herbivores, piscivores, and a large group comprising omnivores 

and zoobenthivores (Fig. 3 A, B). 
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Fig. 3. Analysis of fish feeding guilds based on gravimetric gut-content data. A. Bray-Curtis 

Cluster analysis of fish feeding guilds based on gravimetric gut-content data. B. Non-

dimensional MDS.  
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 3.3.2. Prey items 

Altogether, a total of 4436 prey items (macerated seagrass and algae excluded) from 

23 major prey categories were identified (Table 6). Highest numbers of prey items  were 

found in macrozoobenthivores (herbivores mostly excluded from this calculation): for the 

labrids C. inermis, 361 prey items from 10 major categories and for the nemipterid P. 

trivittatus (adults only), 356 items from 18 categories were found, followed by the labrid S. 

trilineatus with 169 items and the omnivorous monacanthid A. tomentosus with 165 prey 

items from five major food item categories each. The lowest numbers of prey items were 

found in piscivores and herbivores, with the exception of two specimens of H. far, which had 

a gut filled with macerated seagrasses and several hundred of seagrass-associated 

foraminiferans. The average dietary spectrum of omnivores and zoobenthivores was 

considerably broader than that of herbivores or piscivores. 

Intestinal parasites were found in three species: several specimens of the belonid 

species Tylosurus crocodilus and Strongylura incisa were strongly infected by tapeworms 

(Cestoda), and in one specimen of the half-beak Hemirhamphus far, a mild infection with 

spiny-headed worms (Acanthocephala) was found.  
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Table 6. Vacuity Index (VI) of empty fish guts and Frequency of Occurrence Index (FO; both %) of dietary categories for fish species subjected to 

gut-content analysis. For abbreviations of fish species see Table 2. Species for which less than 4 specimens were subjected to gut-content analysis 

were neglected for calculating indices. Bold numbers at the top of the table refer to dietary category. Bold numbers within table refer to FO ( %) 

found in more than one third of all guts. 1 = algae; 2 = Alpheidae; 3 = Amphipoda; 4 = Annelida; 5 = Anomura; 6 = Bivalvia; 7 = Brachyura; 8 = 

Crustacea (unidentified); 9 = Echinodermata; 10 = fish; 11 = fish eggs; 12 = Foraminifera; 13 = Gastropoda; 14 = Hydrozoa; 15 = Molluska 

(unidentified); 16 = Nematoda; 17 = Oligochaeta; 18 = Ostracoda; 19 = Pantopoda; 20 = Polychaeta; 21 = seagrass; 22 = shrimps; 23 = Sipunculida. 

    FO                       

fish  n VI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

At 11 36.36 0.00 0.00 42.86 0.00 0.00 0.00 0.00 42.86 0.00 0.00 0.00 0.00 14.29 0.00 0.00 0.00 0.00 0.00 0.00 14.29 14.29 0.00 0.00 

Ci 18 0.00 0.00 0.00 11.11 0.00 0.00 22.22 5.56 66.67 38.89 16.67 0.00 5.56 66.67 0.00 5.56 0.00 0.00 0.00 0.00 5.56 5.56 0.00 0.00 

Ca 4 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 25.00 0.00 0.00 25.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dc 10 0.00 100.00 0.00 0.00 10.00 0.00 0.00 0.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00 0.00 0.00 

Ha  24 12.50 8.00 0.00 24.00 0.00 0.00 0.00 0.00 56.00 0.00 0.00 0.00 4.00 44.00 8.00 4.00 16.00 4.00 16.00 4.00 12.00 0.00 12.00 0.00 

Hc 11 0.00 0.00 0.00 18.18 0.00 0.00 0.00 0.00 90.90 9.09 0.00 0.00 18.10 63.63 0.00 18.18 9.10 0.00 9.10 0.00 0.00 0.00 0.00 0.00 

Hf 13 0.00 0.00 0.00 7.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 

Pt 23 0.00 0.00 26.09 47.82 4.34 8.70 8.70 21.74 69.57 8.69 8.69 8.69 0.00 13.04 0.00 4.34 4.34 8.69 0.00 0.00 56.52 13.04 0.00 4.34 

Ptj 12 0.00 7.69 0.00 23.07 0.00 0.00 0.00 0.00 100.00 0.00 0.00 15.38 0.00 15.38 0.00 15.38 0.00 0.00 7.69 0.00 23.07 0.00 23.07 0.00 

Sc 15 0.00 66.67 0.00 0.00 0.00 0.00 0.00 6.67 33.33 0.00 0.00 0.00 13.33 33.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00 0.00 0.00 

St  13 0.00 0.00 0.00 23.08 0.00 0.00 0.00 0.00 92.31 0.00 7.69 0.00 0.00 46.15 0.00 0.00 0.00 0.00 0.00 0.00 7.69 0.00 0.00 0.00 

Si 8 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Syb 4 0.00 25.00 0.00 25.00 0.00 0.00 0.00 0.00 25.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tc 10 27.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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3.3.3. Diet composition 

Over all guts sampled, crustaceans were the most common food items (in 58 % of all guts, 

where unidentified specimens were found in 48.2 % and amphipods in 15.8 % of all guts), 

followed by gastropods (FO = 26.5 %) and seagrass (FO = 24.5 %). A considerable 

contribution to unidentified crustaceans were detached carapaces, appendages and other body 

parts of microcrustaceans. It was not possible to determine whether these were parts of 

benthic or pelagic life forms.  

The Vacuity Index (VI) of all guts was 7.3  %. Empty guts were found only for the 

belonids T. crocodilus  (VI = 27.3 %) and S. incisa (VI = 50 %), the monacanthid A. 

tomentosus (VI = 36.4 %) and the labrid H. argus (VI = 12.5 %). For the 

macrozoobenthivorous labrid C. inermis, gastropods and crustaceans were dominant food 

items found in an equal number of guts (in 66.7 % of all guts investigated), followed by 

echinoderms and bivalves (38.9 and 22.2 % of all guts). For both belonid species, fish was the 

only food item; they were found in 100 % of all non-empty guts. For the labrids H. 

chloropterus and S. trilineatus, the frequency of occurrence (FO) was highest for unidentified 

crustaceans (FO = 90.9 % and FO = 92.31 %), followed by gastropods (FO = 63.6 % and 46.5 

%), and furthermore, for H. chloropterus amphipods (FO = 18.2 %) and alpheid shrimps for 

S. trilineatus (FO = 26.08 %). In the labrid H. argus, small unidentified crustaceans were 

found in about half of all guts (FO = 56.0 %), followed by gastropods (FO = 44 %), 

amphipods (FO = 24 %) and nematodes (FO = 16.0 %). In all guts of dissected C. anchorago 

(n = 4), unidentified crustaceans and gastropods, and in half of the specimens, echinoderms 

were found. For adult P. trivittatus, unidentified crustaceans were again the food source found 

in most guts (FO = 69.6 %), followed by polychaete worms (FO = 56.5 %), amphipods (FO = 

47.8 %), alpheid shrimps (FO = 26.1 %) and unidentified brachyurids (FO = 21.7 %). For 

juvenile P. trivittatus, tiny unidentified crustaceans were present in all guts (FO = 100 %), 

while shrimps, polychaete worms and amphipods were each found in the same proportions of 
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guts (FO = 23.1 %). In less than half of all guts of A. tomentosus, amphipods and unidentified 

crustaceans were found (each FO = 42.9 %), followed by polychaetes, gastropods and 

seagrass (each FO = 14.3 %). In the syngnathid S. biaculeatus, macroalgae, amphipods and 

other crustaceans were present in equal proportions (each FO = 25.5 %). In the herbivorous 

hemirhamphid H. far, all guts contained seagrass (FO = 100 %); seagrass-associated 

foraminiferans were found in about one quarter of all guts (FO = 23.08 %). A few H. far guts 

contained amphipods (FO = 7.7 %). In all guts of the pomacentrid D. chrysopoecilus, 

epiphytic algae were found (FO = 100 %). Seagrass (FO = 80 %) and crustaceans (FO = 30 

%) were present in fewer guts. For the predominantly herbivorous S. canaliculatus, plant 

material was found in most guts (for seagrass FO = 80 % and epiphytic algae FO = 66.7 %), 

and about one third of all guts contained gastropods and unidentified crustaceans (FO = 33.33 

% each; Table 8).  

 

3.3.4. Dietary niche overlap and niche breadth 

Overall, 30 cases of significant niche overlap, indicated by the Schoener Index (SI), occurred 

between fish species. This ranged from a low degree of overlap (e.g. for D. chrysopoecilus 

and D. fasciatus SI = 0.60*) up to complete overlap (e.g. for S. incisa and S. barracuda SI = 

1.00*) (Table 8). Many overlaps occurred between macrozoobenthivores and/or omnivores. 

The omnivores A. tomentosus (Monacanthidae) and C. chlorourus (Labridae) had a dietary 

spectrum of similar composition and proportion of food items, with small and medium-sized 

crustaceans dominating (SI = 0.69*). Macrozoobenthivorous labrids that already grouped 

together in Hierarchical Cluster analysis showed significant niche overlap (e.g C. inermis and 

C. anchorago, SI = 0.66*; C. chlorourus and H. chloropterus, SI = 0.78*; H. chloropterus 

and C. inermis, SI = 0.62*; H. chloropterus and C. anchorago, SI = 0.68*, H. scapularis and 

C. inermis, SI = 0.66*; S. trilineata and H. argus, SI = 0.81*), due to a mutual preference of 

benthic invertebrates such as crustaceans, gastropods and echinoderms. High overlap in the 
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zoobenthivore/omnivore fraction was found between L. obsoletus (Lethrinidae) and H. argus 

(Labridae; SI = 0.99*), U. tragula (Mullidae) and juvenile P. trivittatus (Nemipteridae; SI = 

0.84*) and L. obsoletus and Gymnothorax sp. (Muraenidae). Note, however, that the sample 

size for the latter two was very small (n = 1 each). Although adult P. trivittatus were grouped 

with other macrozoobenthivores in the cluster analysis, there was no significant niche overlap 

either with any of the other fish species or with juvenile P. trivittatus. Another species 

showing no significant overlap was S. margaritifera (Nemipteridae), which did not overlap 

with any other species except for P. trivittatus (SI = 0.50); the gut-content of only one 

specimen was examined during this study.  

For the (predominantly) herbivorous feeding guild, there was significant overlap for 

the three species of Dischistodus (Pomacentridae; D. chrysopoecilus and D. fasciatus, SI = 

0.60*; D. chrysopoecilus and D. perspicillatus, SI = 0.86*), based on a diet of mainly 

epiphytic algae and seagrasses and a small amount of microcrustaceans (mainly copepods). 

There was a partially highly significant overlap between the seagrass-feeding H. far 

(Hemirhamphidae) and several species of siganids that ingest seagrasses and their epiphytes 

(H. far and S. canaliculatus, SI = 0.77*; H. far and S. spinus, SI = 0.99*; H. far and S. 

virgatus, SI = 0.92*), as well as for all of the siganids (S. canaliculatus and S. spinus, SI = 

0.76*; S. canaliculatus and S. virgatus, SI = 0.84*; S. spinus and S. virgatus, SI = 0.92*) and 

between the pomacentrid D. fasciatus and the siganids S. canaliculatus (SI = 0.76*) and S. 

virgatus (SI = 0.64*). In the cluster analysis, P. variabilis (Blenniidae) and S. biaculeatus 

(Syngnathidae) were grouped together with the herbivores. While the former showed 

significant overlap with the herbivorous pomacentrids mentioned above (SI for P. variabilis 

and D. chrysopoecilus SI = 0.77* and for P. variabilis and D. perspicillatus = 0.76*), the 

latter overlapped significantly with omnivorous or zoobenthivorous species, such as H. argus 

(SI = 0.89*), L. obsoletus (SI = 0.89*) and S. trilineatus (SI = 0.81). The syngnathid S. 
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biaculeatus is generally not known as a herbivore, but rather as being zooplanktivorous or 

zoobenthivorous.  

Concerning the piscivorous guild, all three species were grouped together in cluster 

analysis and had highly significant niche overlap (for Sphyraena barracuda and Strongylura 

incisa SI = 1.00*; for S. barracuda and Tylosurus crocodilus = 0.96*; for S. incisa and T. 

crocodilus SI = 0.96*) (Table 7).  

 Levins Index for niche breadth was highest for adult P. trivittatus (RB = 4.39); ranks 

two and three are occupied by C. chlorourus (RB = 3.69) and C. inermis (RB = 3.00).  About 

50 % of the studied species (13 out of 26) had a Levins Index value  < 1.50. Smallest niche 

breadth values were found for S. barracuda, S. spinus, L. obsoletus and Gymnothorax sp. (RB 

= 1.00 each) (Table 8).  
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Table 7. Schoener Index values (SI) of trophic niche overlap between (25) fish species of the mixed-species seagrass bed off the island of Barrang 

Lompo. Asterisks indicate significant overlap of trophic niches (! 0.6*). For abbreviations of fish names see Table 2. Ptj refers to juvenile P. 

trivittatus. 
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Table 8. Levins Index of dietary niche breadth (RB) for 26 fish species of the mixed-

species seagrass bed off the island of Barrang Lompo.  

Species RB 

Pentapodus trivittatus 4.39 

Cheilinus chlorourus 3.69 

Cheilio inermis 3.00 

Halichoeres chloropterus 2.95 

Acreichthys tomentosus 2.92 

Pentapodus trivittatus juv. 2.90 

Halichoeres scapularis 2.28 

Upeneus tragula 2.03 

Dischistodus fasciatus 1.97 

Choerodon anchorago 1.71 

Siganus canaliculatus 1.63 

Petroscirtes variabilis 1.57 

Stethojulis trilineatus 1.52 

Scolopsis margaritifera 1.42 

Dischistodus chrysopoecilus 1.39 

Syngnathoides biaculeatus 1.25 

Siganus virgatus 1.17 

Tylosurus crocodilus 1.10 

Dischistodus perspicillatus 1.05 

Halichoeres argus 1.02 

Hemirhamphus far 1.02 

Strongylura incisa 1.01 

Gymnothorax sp. 1.00 

Lethrinus obsoletus 1.00 

Siganus spinus 1.00 

Sphyraena barracuda 1.00 

 

 

3.4. Fish biomasses 

Biomass or ash-free dry weight (ASDW) was calculated for 24 fish taxa. Overall, 179 

specimens were used. Ash-free dry weight ranged from 0.24 ± 18 (juvenile P. trivittatus) 

to 32.12 ± 0.68g (S. barracuda). Total length of specimens ranged from 44.64 ± 6.42 

(juvenile P. trivittatus) to 414.33 ± 167.73mm (T. crocodilus; Table 9). 
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Table 9. Sample size (n), total length (TL), dry weight (DW) and ash-free dry weight 

(ASDW) of the most common fish species from seagrass beds off Barrang Lompo South. 

All values are presented as mean ± SD. 

species n TL [mm] DW [g] ASDW [g] 

Acreichthys tomentosus 11 88.45±3.96 3.66±1.19 2.38±1.01 

Cheilinus trilobatus 3 97.00±52.33 12.64 9.85 

Cheilio inermis 12 280.00±19.77 31.89±8.05 24.15±6.63 

Choerodon anchorago 4 116.50±4.36 8.59±0.67 6.6±0.61 

Dischistodus chrysopoecilus 12 117.08±8.67 9.41±2.97 6.83±2.37 

Dischistodus perspicillatus 1 105.00 5.20 3.90 

Halichoeres argus 24 52.40±5.58 0.46±0.13 0.35±0.09 

Halichoeres chloropterus 14 150.00±9.70 10.65±2.94 9.00±2.13 

Halichoeres scapularis 1 145.00 13.86 4.71 

Hemirhamphus far 17 320.75±30.34 27.54±6.13 21.97±5.15 

Lethrinus obsoletus 2 130.00±7.07 6.47±1.02 4.87±0.72 

Gymnothorax sp. 1 380.00 6.29 4.66 

Pentapodus trivittatus 23 169.87±31.91 16.84±7.51 13.14±6.16 

Pentapodus trivittatus juv. 14 44.64±6.42 0.34±0.15 0.24±0.18 

Siganus canaliculatus 14 187.64±46.63 21.24±14.21 17.27±12.02 

Siganus spinus 1 105.00 3.83 3.03 

Siganus virgatus 1 130.00 5.41 5.41 

Sphyraena barracuda 2 327.00±9.9 41.97±0.96 32.12±0.68 

Stethojulis trilineatus 12 131.25±8.38 9.52±2.44 7.09±1.89 

Strongylura incisa 11 374.36±56.02 36.97±5.18 29.72±3.68 

Syngnathoides biaculeatus 3 171.33±18.04 1.16±0.10 0.85±0.3 

Tylosurus crocodilus 7 414.33±167.73 39.31±4.86 31.68±4.17 

Upeneus tragula 2 222.00±2.83 29.05±1.28 22.02±1.39 

 

 

 

3.5. Differences in trophic composition between study sites 

The trophic status of fish species was determined based on the literature (A.1.). The study 

sites varied in proportions with respect to the trophic distribution of both individuals and 

taxa. With respect to taxon numbers, zoobenthivorous species made up the largest 

proportions over all study sites (range: 32.9 - 71.1 %), with the lowest values for 

corallivores (exclusively found at BLS: 0.2 %), piscivores (3.2 - 5.3 %) and 
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zooplanktivores (3.2 - 8.3 %; Table 10). With respect to individual counts, 

zooplanktivores dominated at the intertidal sites (52.4 % for BBE and 55.9 % for BBS), 

omnivores at BLS (50.3 %) and zoobenthivores at BBN (36.8 %) and BBW (39.8 %). 

Herbivores showed the lowest relative abundance at the subtidal sites at 2.7 % for BBE 

and 4.2 % for BBS (Table 11), followed by piscivores (0.1 % to 2.8 %), while 

corallivores accounted for the lowest individual counts (again found only at BLS, 0.2 %).  

A Simprof test on the trophic composition of fish assemblages over all study sites 

showed two distinct groupings with a similarity of 64.2 % (! = 4.55): the intertidal 

seagrass beds BLS, BBN and BBW with a similarity of 79.8 % (! = 4.21) versus the 

subtidal seagrass beds BBE and BBS with a similarity of 81.0 %. Within the groups, BBE 

vs BBS and BBN vs BBW are not distinctly different from each other (BBE vs BBS: 

85.5 % similarity, ! = 0.00; BBN vs BBW: 96.4 % similarity, ! = 0.00; Fig. 4). 

 

Table 10. Proportions of taxa (%) per trophic fraction for each study site. Numbers in 

brackets show proportion of total amount of zoobenthivorous taxa feeding on a diet 

including fish. BBE = Bone Batang East; BBN = Bone Batang North; BBS = Bone 

Batang South; BBW = Bone Batang West; BLS = Barrang Lompo South. C = 

corallivores; H = herbivores; O = omnivores; P = piscivores; ZB = zoobenthivores; ZP = 

zooplanktivores. 

 C H O P ZB ZP 

BBE 0.00 7.89 10.53 5.26 71.05 (28.95) 5.26 

BBN 0.00 20.83 16.67 4.17 50.00 (16.67) 8.33 

BBS 0.00 8.70 26.09 4.35 54.35 (13.04) 6.52 

BBW 0.00 20.83 25.00 4.17 45.83 (8.33) 4.17 

BLS 0.03 14.52 22.58 3.23 32.90 (2.26) 3.23 
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Table 11. Proportions of individual counts (%) per trophic fraction for each study site. 

Numbers in brackets show proportion of total amount of individuals of zoobenthivorous 

taxa feeding on a diet including fish. For abbreviations, see Table 5. 

 C H O P ZB ZP 

BBE 0.00 2.70 6.31 1.41 37.17 (8.39) 52.42 

BBN 0.00 19.10 29.56 0.11 37.78 (0.96) 13.45 

BBS 0.00 4.18 6.96 0.63 32.34 (25.36) 55.89 

BBW 0.00 17.91 31.57 0.08 40.16 (0.33) 10.28 

BLS 0.18 12.90 50.29 2.78 14.10 (2.43) 19.74 

 

 

 

 

Fig. 4. Results of Hierarchical Cluster anaysis and Simprof test on trophic composition of 

fish assemblages over all study sites. Two major groupings into subtidal (BBE, BBS) and 

intertidal seagrass beds (BLS, BBN, BBW) are apparent.  

 

SIMPER analysis of trophic distributions of fish assemblages based on 

individuals showed high similarity between inter- and subtidal seagrass beds (35.79 %).  

Subtidal seagrass beds were dominated by zooplanktivorous species (40.84 % 
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contribution), followed by zoobenthivores (31.24 %). Omnivores and herbivores were 

less similar within subtidal beds (14.17 and 9.25 %). In intertidal seagrass beds the 

largest trophic fraction contributing to similarity were the omnivores (30.55 %), followed 

by the zoobenthivores and the herbivores (24.03 and 21.18 %, respectively). 

Zooplanktivores comprise a smaller fraction (18.65 %). Piscivores did not account for 

similarity in either intertidal or subtidal seagrass beds. 

 

 

4. Discussion 

4.1. Seagrass shoot densities and fish abundances 

Seagrass shoot densities are low compared to values in the recent literature both for the 

area and globally (e.g. Erftemeijer & Herman, 1994; Loneragan et al., 1998; Vonk et al., 

2008, 2010). One reason might be strong seasonal fluctuations in shoot densities as 

mentioned by Erftemeijer & Herman (1994), which can be a result of full exposure to air 

and insolation. Another potential explanation is that seagrass shoot densities were 

affected by the strong El Niño Southern Oscillation during the study period: in this year, 

the rain season came late (in January 2010 instead of November or December 2009). This 

might have caused insolation stress and stress from elevated water temperatures, resulting 

in low shoot densities.  

 The three most abundant fish species are the labrid H. argus, the siganid S. 

canaliculatus and the atherinid A. lacunosus. Halichoeres argus is a small species that 

inhabits not only seagrass beds but also other habitats (Kuriandewa et al., 2003) such as 

coral rubble. It typically forms larger schools of at least 10 individuals rather than small 

groups or solitary individuals. Many such schools occurred in the seagrass bed at Barrang 
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Lompo South (BLS) and they apparently represented scattered aggregations with regular 

interactions between the schools (pers. obs.). Field observations suggest that this species 

prefers habitats with high structural complexity such as the mixed-species seagrass beds 

at BLS, where long leaves of the seagrass E. acoroides are intermingled with shorter 

seagrasses. In seagrass beds with a less differentiated canopy structure, e.g. 

predominantly short species or monospecific stands of E. acoroides, H. argus is much 

less abundant (Pogoreutz et al., submitted). The species appears to prefer closed canopy 

meadows. The other two most abundant species have a patchy distribution, with larger 

aggregations containing up to several hundred individuals. Atherinomorus lacunosus is a 

typical schooling fish. This species is zooplanktivorous, might not be dependent on the 

benthic food web (Khalaf & Kochzius, 2002) and might utilize the seagrass meadow as 

shelter from predation or a spawning area rather than as a feeding area. During 

censussing, schools of A. lacunosus never were observed feeding (pers. obs), which 

supports this interpretation.  

The other abundant species, S. canaliculatus, is predominantly herbivorous, 

foraging in the seagrass bed and feeding on leaves of the seagrass E. acoroides and its 

epiphytes. The high densities of S. canaliculatus and A. lacunosus in the complex 

seagrass canopy at BLS might also be due to lower predation pressure here (Vonk et al., 

2010). Vonk et al. (2008) found a different ranking for the most abundant species in a 

seagrass bed at Bone Batang, Indonesia, with A. lacunosus being by far the most 

abundant, followed by unidentified clupeids. The third rank is occupied by the labrid 

Cheilio inermis. Unsworth et al. (2007b) found that, in a comparable seagrass bed in the 

Wakatobi Marine National Park in southeast Sulawesi, A. lacunosus and three species of 
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apogonids were the most abundant species. Such differences in similar habitats might 

reflect different canopy structure of seagrass beds (Vonk et al., 2008), different sampling 

methodology (e.g. diurnal sampling; Unsworth et al., 2007b), or different levels of 

exploitation of living marine resources.  

 

4.2. Stable isotope analysis 

In the present study different types of primary producers and organic matter were 

distinguished as food sources based on significantly different "
13

C signatures: seagrasses 

(including floating detached seagrass leaves and dead leaves, i.e. detritus), seagrass 

epiphytes, and POM (phytoplankton). Phytoplankton signatures were within the range of 

earlier studies in this region, and temperate habitats (Moncreiff & Sullivan, 2001; Vonk 

et al., 2008). Values for sPOM where enriched compared to the literature. Note, however, 

that in the present study these were single samples, and the amounts were too small to 

treat them with acid; thus, a contamination with inorganic carbon must be assumed. 

Signatures of "
13

C for seagrasses were in the range of recent literature values (Hemminga 

& Mateo, 1996), but enriched by about 3 ‰ compared to an earlier study at the 

neighbouring island of Bone Batang in the Spermonde Archipelago (Vonk et al., 2008). 

Hemminga & Mateo (1996) mention intraspecific and interspecific variability of stable 

isotope signatures within seagrasses. With respect to "
15

N signature, the seagrasses T. 

hemprichii and H. uninervis are depleted by about 1 ‰ compared to the study by Vonk et 

al. (2008), whereas the signatures of E. acoroides and C. rotundata do not differ. The 

nitrogen signature indicates no human impact on the investigated seagrass meadow in 

terms of nutrient input (i.e. eutrophication). This was unexpected because the island of 
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Barrang Lompo is densely inhabited (population density of about 5000 on an area of 0.5 

km!?). Values of around 8 ‰ would indicate strong human impact (sewage water, waste 

etc.) (Grice et al., 1996; Vonk et al., 2008), but such levels were not found in this study. 

Moreover, high amounts of nitrogen fixation by cyanobacteria can be excluded in the 

present seagrass beds: strong fixation would be reflected by "
15

N signatures of around 0 

‰ (Yamamuro, 1999). Epiphytes of single seagrass species were enriched in "
15

N 

compared to their substrate, except for H. uninervis, where epiphytes were slightly more 

depleted. Stable carbon signatures for epiphytes were significantly different from 

seagrasses, but strongly enriched compared to other studies (Moncreiff & Sullivan, 2001; 

Vonk et al., 2008), while "
15

N signatures were in range of other studies. One possible 

explanation for strongly enriched "
13

C values is contamination with inorganic carbon, 

which is a component of seagrass epiphytes such as encrusting calcareous algae or 

seagrass-associated foraminiferans. In the present study, epiphytes were treated with 

hydrochloric acid to remove inorganic carbon contents in epiphytes. However, not all 

inorganic carbon may have been removed by the treatment, and remnants mask the actual 

organic "
13

C from the epiphytes. This is surprising because the acid treatment is usually 

sufficient to remove all inorganic carbon. 

 Numerous studies show that the stable carbon signature helps trace the potential 

food sources of a consumer species; this is based on the assumption that stable carbon 

values of a consumer are enriched less than 1 ‰  compared to their diet (e.g. Marguillier 

et al., 1997; Pinnegar & Polunin, 1999; Post, 2002; Benstead, 2006; Carassou et al., 

2008). In this study, no organism was found to rely predominantly or exclusively on 

phytoplankton. Most species were much more enriched in stable carbon, with the belonid 
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Tylosurus crocodilus and the zoobenthivorous atherinid A. lacunosus being the most 

depleted fish (stable carbon of -15.8 and -15.6 ‰, respectively). Values for zooplankton 

were enriched compared to A. lacunosus (-12.47 and -12.37 ‰ for size fractions of 55 

and 200µm, respectively), which is an unexpected result. Signatures of planktonic 

resources may vary largely with time, while the signatures of animal tissue reflect their 

diet of the last days up to months (Vonk et al., 2008). Discrepancies in isotopic signatures 

between consumer and possible food source are known. The gastropod Polinices 

melanostomus was enriched in stable carbon by about 2 ‰ compared to phytoplankton, 

indicating that it might at least partially rely on planktonic food sources. However, 

species of Polinices and other naticid gastropods are known to be predators (e.g. P. 

duplicatus feeding on the bivalve Mya arenaria; Edwards & Hubner, 1977). Thus, this 

gastropod probably relies indirectly on phytoplankton by foraging on filter-feeding prey, 

such as bivalves.   

Some of the organisms subjected to stable isotope analysis had depleted stable 

carbon values compared to phytoplankton: the two callianassidean crustaceans Eucalliax 

panglaoensis and Calliaxina novaebritannicae (-28.53 and -25.72 ‰ ) and the bivalves 

Fimbria sp., Codakia tigerina and Solemya pusilla (-21.54, -23.48 and -26.59 ‰ ) are 

clearly depleted in "
13

C. This suggests that they do not utilize photosynthetic carbon but 

rely rather on chemoautotrophic symbionts (Powell & Somero, 1985; Conway et al., 

1992; Gros et al., 1996; Stewart & Cavanaugh, 2006; Taylor & Glover, 2006). Such 

invertebrate-bacteria symbioses are known from sulfur- and methane-rich hydrothermal 

vents in the deep-sea (Polz & Cavanaugh, 1995; Polz et al., 1998; Gebruk et al., 2000), 

but there are also examples from shallow coastal habitats in the photic zone. Codakia 
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tigerina and S. pusilla belong to the bivalve families Lucinidae and Solemyidae, 

respectively. Both bivalve families are known for their symbiosis with intracellular 

chemoautotrophic, sulfur-oxidizing bacteria located in the gills of the host (e.g. Conway 

et al., 1992; Gros et al., 1996); this symbiosis covers substantial amounts of both the 

carbon and nitrogen requirements of their host bivalves. In the well-studied solemyid 

Solemya velum, about 98 % of the carbon and 100 % of the nitrogen required by the host 

was contributed by its symbionts (Stewart & Cavanaugh, 2006). For a species closely 

related to C. tigerina, C. orbicularis, symbiosis with chemoautotrophs located in the gills 

is known (Frenkiel & Mouëza, 1995). The fimbriid bivalve F. fimbriata may also have a 

symbiotic relationship with autotrophic bacteria based on its gill histology (Reid, 1990), 

although this remains to be confirmed. The present study is the first to show that a 

member of the bivalve genus Fimbria appears to utilize carbon fixed in a 

chemoautotrophic symbiosis.  

For the crustaceans Eucalliax panglaoensis and Calliaxina novaebritannicae, 

chemoautotrophic symbionts were assumed earlier, based on stable isotope studies 

(Kneer, unpublished data). Symbioses of crustaceans with either epibiotic bacteria 

located on anterior body appendages and/or in the gut are known from several studies on 

the trophic relations of hydrothermal vent communities in the deep sea (e.g. Polz et al., 

1998; Gebruk et al., 2000), where sulfur is available in high amounts. Since 1) the two 

crustacean taxa investigated in this study are known to live in burrows inside the 

sediments, 2) marine sediments are known to contain elevated levels of sulphide (Johns et 

al., 1997) and 3) "
13

C signatures do not suggest a nutrition based on fixed carbon from 
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photosynthetic sources, these taxa might meet their carbon requirements with the help of 

chemoautotrophic symbiotic bacteria.  

 Vonk et al. (2008) found a considerable number of species  with carbon signatures 

similar to those of epiphytes, which is consistent with previous studies (e.g. Yamamuro, 

1999; Moncreiff & Sullivan, 2001; Smit et al., 2005, 2006). The mean value of stable 

carbon for seagrass epiphytes (-13 ‰) in Vonk et al. (2008) was in the range of previous 

studies but is much more depleted than in the present study (mean for all seagrass 

epiphytes around -4.7 ‰). Moncreiff & Sullivan (2001) reported even more depleted 

mean "
13

C values for epiphytes of the seagrass Halodule wrightii (-17.5 ‰). In the 

present study, only one organism had a stable carbon signature matching that of 

epiphytes, which is not consistent with previous studies. The present study showed 

similar, but slightly enriched (by 3 ‰) seagrass stable carbon signatures compared to 

values measured by Vonk et al. (2008). If we assume that the highly enriched "
13

C for 

epiphytes in this study reflect a contamination with inorganic carbon, despite sample 

acidification, then these values clearly do not reflect the natural abundance of organic 

carbon in the seagrass epiphytes. If we further assume for the present study similar values 

(i.e. between -12.9 and -17.5 ‰) for epiphytes as described in Vonk et al. (2008) or 

Moncreiff & Sullivan (2001), considerably more organisms of various guilds have a 

carbon signature similar to seagrass epiphytes. This would be consistent with previous 

studies. Comparable "
13

C values were found in the top predator T. crocodilus, the 

omnivorous blenny P. variabilis, the seagrass-ingesting herbivores H. far, D. 

chrysopoecilus, D. fasciatus, D. perspicillatus, S. canaliculatus, S. spinus, S. virgatus, 

and in the pipefish S. biaculeatus. Most zoobenthivores are clearly enriched in heavy 
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carbon compared to epiphytes. For invertebrates, mysid shrimps and several gastropods 

reflect epiphytic signatures similar to those reported in Vonk et al. (2008) and Moncreiff 

& Sullivan (2001). In this case, it is possible to identify gastropods that are known as 

herbivores, such as Strombus spp. (Klumpp et al., 1992; Stoner et al., 1995; 

Alyakrinskaya, 2005), or possible detritus feeders, such as the turritellid Zeacolpus sp. 

Similar values were also found in the gastropod Polinices flemingianus. As discussed 

earlier, this species is probably a predator, and carbon values might reflect an indirect 

consumption of epiphytes by prey organisms.  

Using the "
13

C values of epiphytes measured by Vonk et al. (2008) as a baseline, 

epiphytes seem to be an important carbon source in the trophic web of the studied 

meadow. This would coincide with numerous previous food web studies in seagrass beds 

(e.g., Yamamuro, 1999; Moncreiff & Sullivan, 2001; Smit et al., 2005, 2006; Vonk et al., 

2008).  Stable carbon signatures of seagrass leaves ranged from -4.88 (E. acoroides) to -

7.04 ‰ (H. uninervis). The smallest species (H. uninervis) was most depleted, followed 

by C. rotundata and T. hemprichii. Enhalus acoroides, the largest species, showed the 

least depletion. The same pattern was found by Vonk et al. (2008). In the present study, 

no fish had a "
13

C signature that would reflect the exclusive assimilation of seagrass 

leaves. Even the hemirhamphid H. far, assumed to be a herbivore predominantly feeding 

on seagrasses, is more depleted in "
13

C compared to seagrasses in the present study  

(-11.99 ‰). This suggests that this fish is not assimilating the ingested seagrasses, but 

rather seagrass epiphytes. This contradicts previous findings (e.g. Vonk et al., 2008). 

Among the crustaceans, Alpheus sp., amphipods, and the thalassinidean shrimp 

Corallianassa coutieri exhibit a "
13

C signature comparable to seagrasses; the signature of 
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Alpheus sp., however, might reflect not only a seagrass diet, but also the more depleted 

seagrass detritus. The large burrowing shrimp C. coutieri is known to rely on a diet 

mainly based on seagrass (Kneer et al., 2008). For the related C. assimilis and Callianida 

typa, "
13

C values were more depleted than seagrasses in the present study, suggesting a 

diet not exclusively based on seagrasses, but perhaps also on epiphytes. Assimilation of 

seagrass material by alpheids and amphipods has been described in previous studies (e.g. 

Vonk et al., 2008). In the present study, also an unidentified holothurian, the starfish A. 

typicus and several ophiurids had "
13

C signatures similar to seagrasses and detritus. The 

starfish A. typicus was previously identified as a carnivore (Pinto, 1982). Based on the 

data in the present study, this starfish preys upon organisms that feed on seagrasses. The 

holothurian is assumed to be a detritus feeder rather than a seagrass consumer. Various 

feeding strategies are known for ophiurids in general, for example predation, suspension-

feeding and deposit-feeding (Harris et al., 2009).  

Previous studies drew contradictory conclusions on the importance of seagrass 

matter as a food source in a seagrass ecosystem. While Vonk et al. (2008) found that 

seagrass is utilized widely by a broad range of organisms, other studies did not 

corroborate this result (e.g. Yamamuro, 1999; Lepoint et al., 2000; Smit et al., 2005). 

Seagrass material does not appear to make a major contribution to the food web of the 

investigated seagrass bed. This supports the finding that seagrasses contribute mostly to 

the food web via the detritus food chain. The sampled fish fauna, for example, is not 

dependent on feeding exclusively within the seagrass bed and probably moves for feeding 

to adjacent habitats, for example sand flats or coral reefs (Lugendo et al., 2006; Verweij 

et al., 2006; Vonk et al., 2008), as was occassionally observed for H. argus, C. inermis 
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and P. trivittatus. Food items ingested during excursions to neighbouring ecosystems 

may not depend on seagrass as a food source at all and therefore might not be reflected in 

the analyses (Vonk et al., 2008). In the present study, mangroves can be excluded as a 

potential foraging habitat for fish in the investigated seagrass bed because the bed is 

located on the reef flat of an off-shore island.  

Highest "
15

N levels in the present food web were found for the two piscivores S. 

barracuda ("
15

N = 10.94 ‰) and T. crocodilus ("
15

N = 10.26 ‰). These species are top 

predators: with increasing trophic level, their "
15

N enrichment increases. Thus, top 

predators show the highest enrichment within a food web. Rank number two is occupied 

by Gymnothorax sp., a carnivorous muraenid ("
15

N = 9.03 ‰). High values (8.79 to 8.10 

‰) were also recorded in several zoobenthivores and omnivores (P. trivittatus, S. 

margaritifera, L. obsoletus, U. tragula, C. anchorago) and in two predominantly 

herbivorous species (H. far and Cryptocentrus sp.).  Surprisingly, another piscivore, S. 

incisa, is depleted compared to all these species, and is ranked between other 

zoobenthivores and omnivores. Since the mean size of the examined specimens was 

similar to that of T. crocodilus (400 mm mean TL for T. crocodilus, 370 mm mean TL for 

S. incisa), an age effect on the "
15

N signature can be excluded. One potential explanation 

for the low "
15

N value of S. incisa is that this species was found at the sampling site only 

very briefly, in a large school of about more than 100 individuals, and was never 

observed again. If this species migrates between habitats, it is possible that the specimens 

subjected to stable isotope analysis fed in areas with less nutrient input and might thus be 

less enriched in "
15

N. Moreover, this species is not as piscivorous as previous studies 

have shown, but may also feed on more nitrogen-depleted prey.  
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Lowest "
15

N enrichment (< 7 ‰) was found in herbivores and juvenile P. 

trivittatus. Low values for herbivores are common because they feed on primary 

producers, which are not as enriched in "
15

N as higher trophic levels (various levels of 

non-primary consumers). Low values in juvenile P. trivittatus can be explained by 

ontogeny: stable nitrogen was found to accumulate with age (Vander Zanden et al., 1998; 

Overman & Parrish, 2001).  

Among the invertebrates, the highest "
15

N enrichment (> 8 ‰) was found in 

sponge-associated ophiurids and the bivalve Antigona puerpera. For the latter, both "
13

C 

and "
15

N values suggest a diet based on zooplankton. Lowest (negative) values were 

found for the thalassinieans E. panglaoensis and C. novaebritannicae and the bivalve C. 

tigerina. As discussed above, these organisms are suggested to have a symbiotic 

relationship with chemoautotrophic bacteria, as found in some species of shrimps from 

hydrothermal vents (Polz et al., 1998; Gebruk et al., 2000) and bivalves from both deep-

sea and coastal habitats (Powell & Somero, 1985; Conway et al., 1992; Stewart & 

Cavanaugh, 2006). Such bacteria provide them with a substantial amount of the carbon 

and nitrogen they require for growth and living.  

 

4.2.1. Determination of trophic level 

The highest trophic levels were attributed to three piscivorous fish. The highest level was 

occupied by S. barracuda (3.69), followed by two large belonids S. incisa (3.49) and T. 

crocodilus (3.44). These species are top predators in the investigated seagrass ecosystem 

and are comparable to top predators found in previous studies (e.g. Vonk et al., 2008). 

Gut-content analysis showed an exclusive fish diet (see also 4.4). These three piscivorous 
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pelagic species were followed by the benthic macrozoobenthivores Gymnothorax sp. and 

adult P. trivittatus. Interestingly, the predominantly herbivorous H. far occupies the sixth 

rank (trophic level of 3.03); it is not followed by other herbivores but by zoobenthivorous 

species. Although amphipods were occasionally found in gut-content analyses (see 4.4), 

the results suggested an herbivorous diet for this species, in agreement with previous 

studies (Vonk et al., 2008). Talwar (1962) also mentions the occasional ingestion of 

polychaetes, which were not identified in the present study. Note that the present 

specimens were all caught during daytime. Other hemirhamphid species, such as the 

temperate Hyporhamphus melanochir, are known to show a clear diurnal shift in diet. 

These fish are herbivores only during daytime hours, while they feed on small 

hyperbenthic invertebrates, predominantly amphipods, during the night (Klumpp & 

Nichols, 1983; Robertson & Klumpp, 1983; Earl et al., 2011) and occasionally consume 

insects and polychaetes (Earl et al., 2011). Waltham & Connolly (2006) reported a 

similar pattern for the hemirhamphid Arrhamphus sclerolepis, a species feeding on 

macroalgae during the day and on different amounts of various invertebrates (depending 

on the habitat) during the night. Generally, the beloniform family Hemirhamphidae is 

considered to be omnivorous, (e.g. Randall, 1962; Waltham & Connolly, 2006), with a 

considerable amount of herbivory in some species (e.g. Carseldine & Tibbets, 2005). 

Some species undergo considerable ontogenetic shifts in diet, e.g. Arrhamphus 

sclerolepis krefftii (Tibbetts & Carseldine, 2005), Hyporhamphus quoyi (Talwar, 1962; 

Tibbets & Carseldine, 2005), or Hyporhamphus regularis ardelio (Carseldine & Tibbetts, 

2005; Tibbetts & Carseldine, 2005). Juveniles of the above species are carnivorous, 

feeding on zooplankton, which is common in many marine fishes. The juveniles of most 
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species are non-herbivores due to two reasons. First, young fish have to meet an elevated 

nitrogen demand due to high growth rates and critical stages of development, thus 

requiring protein-rich food (animal tissue). Second, gut development is age dependent 

(Day et al., 2011a). However, a recent study by Day et al. (2011a) suggests that young H. 

regularis ardelio are limited not by the availability of digestive enzymes, but by 

mechanisms of mechanically processing plant matter. The pharyngeal mill, an important 

tool in macerating plant tissue in hemirhamphids (e.g., Carseldine & Tibbetts, 2005; 

Manjakasy et al., 2009; Day et al., 2011b), is incapable of processing such matter up until 

a certain body size (Day et al., 2011a). For H. far, this ontogenetic issue has not been 

described yet. The present specimens, however, were of intermediate body length (about 

24 cm) and some had fully developed gonads. They were therefore clearly beyond such 

physiological thresholds. Diurnal sampling methods may be necessary to reveal possible 

diurnal effects on the diet of H. far and to determine whether this species is an obligate 

herbivore. Other herbivores in the present study belong to the families Siganidae, 

Pomacentridae, Scaridae and Blenniidae. These species occupied lowest trophic levels 

(below 2.51), which is consistent with expectations. Most zoobenthivores occupied 

trophic levels between those of H. far and other herbivores, with the exception of the 

muraenid Gymnothorax sp. and adult P. trivittatus sp. Juvenile P. trivittatus occupied a 

very low rank, characterizing them as herbivores. This is not consistent with gut-content 

analysis, which revealed a diet primarily based on microcrustaceans. Nonetheless, the 

shift in trophic level from juvenile (2.22) to adult P. trivittatus (3.06) is obvious and not 

surprising, considering that most young fish begin their lives feeding on microfauna (e.g. 

zooplankton).   
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4.3. Gut-content analysis 

4.3.1. Feeding guilds 

Four feeding guilds were revealed by gut-content analysis: herbivores, omnivores, 

(macro)zoobenthivores and piscivores. It was not possible to identify planktonic 

organisms within the microcrustaceans. In most samples, the presence of only 

appendages, carapaces and other partially digested body parts did not allow the 

distinction between benthic or pelagic life forms. Better-preserved gut-contents (e.g. not 

strongly digested) might have revealed a zooplanktivorous fish feeding guild. 

 Bray-Curtis Cluster analysis identified all four feeding guilds identified in the gut-

content analysis. In this cluster, all siganids and pomacentrids subjected to gut-content 

analysis cluster together. The small sample size for five out of seven species did not 

enable distinguishing the two families. Furthermore, the herbivorous blenny Petroscirtes 

variabilis and the syngnathid Syngnathoides biaculeatus cluster together with the 

herbivore clade. In the present study, filamentous algae and unidentifiable 

microcrustaceans were found in the gut of P. variabilis. This partially agrees with 

Nakamura et al. (2003), who found not only algae but also debris and fish eggs in the 

guts. Froese & Pauly (2010) also mention fish scales and microcrustaceans. The present 

study was not able to identify the microcrustaceans, though they may have been forms 

living on and within colonies of filamentous algae. For S. biaculeatus, filamentous algae, 

amphipods, unidentified crustaceans and fish scales were found, which is consistent with 

Nakamura et al. (2003), except for the algae, which might have been ingested 

accidentally. For P. variabilis and S. biaculeatus, sample sizes were small (n = 2 for P. 
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variabilis and n = 4 for S. biaculeatus) and an increased sample size would probably 

provide a more detailed picture.  

 Bray-Curtis Cluster analysis further shows a grouping of the three top-predators S. 

barracuda, S. incisa and T. crocodilus; within this cluster, the two belonid species are 

more similar to each other than to the barracuda. Interestingly, the analysis suggests that 

herbivores and piscivores cluster together. This similarity, however, is very small (< 15 

%), and may well be an analytical artifact of the software, based not on the food items per 

se but rather on the low variety of different food items for the two specialised guilds of 

herbivores and piscivores. In comparison, the omnivores and macrozoobenthivores feed 

on a broader spectrum.  

 The status of omnivores and macrozoobenthivores is less distinct in the Bray-

Curtis Cluster analysis. The omnivores and the macrozoobenthivores are mixed and not 

clearly distinguishable, although there might be a transitional “grey zone“ between those 

two feeding guilds. Plant material can be accidentally ingested by zoobenthivorous 

species that actually do not rely on plant matter as a diet, and omnivores might not 

necessarily rely substantially on plant matter when they can meet their nitrogen 

requirement by predominantly feeding on animal matter. This can mask the results. 

Furthermore, the sampling sizes for some omnivorous and zoobenthivorous species were 

possibly too small for definitive results. For example, some omnivores (A. tomentosus, H. 

argus, C. chlorourus and juvenile P. trivittatus) cluster with macrozoobenthivorous (H. 

chloropterus and H. scapularis) as well as with zoobenthivorous species (C. inermis and 

adult P. trivittatus). All of them cluster with the omnivore C. anchorago. In contrast, the 

macrozoobenthivorous U. tragula, L. obsoletus and Gymnothorax sp. cluster together. 
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All of these omnivores and zoobenthivores cluster together and share a similarity of 

about 38 %. The two zoobenthivores S. margaritifera and Cheilinus sp. cluster together 

and are not similar with any of the other groups, probably again reflecting small sample 

size.  

 A non-dimensional MDS shows herbivores and piscivores forming distinct 

groups, whereas omnivores and zoobenthivores are indistinguishable. Syngnathoides 

biaculeatus, S. margaritifera and Cheilinus sp. do not group with any other group. 

 

4.3.2. Prey items 

Many of the prey items identified were benthic. This includes epifauna (echinoderms 

such as brittle stars, sea stars and sea urchins, along with gastropods, large crustaceans, 

hydrozoans) and infauna (polychaetes, alpheids, gastropods, bivalves, sipunculids). 

Foraminifera in the guts were forms associated with seagrasses. Some fish species relied 

on microcrustaceans as a food source. This study did not distinguish between planktonic 

and benthic microcrustaceans.  

Crustaceans were major prey items. They were found in almost 60 % of all guts 

investigated. Other studies report that crustaceans of all size fractions are a major 

component of seagrass food webs (Khalaf & Kochzius, 2002; Nakamura et al., 2003; 

Gillanders, 2006; Unsworth et al., 2007b). Gastropods were the second most important 

prey item, followed by seagrass (each of them found in about one quarter of all guts). 

Like crustaceans, both gastropods and seagrasses are highly abundant in seagrass beds. In 

the case of H. far, however, it was not possible to distinguish seagrass matter from algae. 

This is because hemirhamphids macerate plant food with their pharyngeal mill 
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(Carseldine & Tibbetts, 2005; Manjakasy et al., 2009; Day et al., 2011b). In Siganidae 

and Pomacentridae, pieces of seagrass and algae – presumably seagrass epiphytes – 

dominated gut-contents. It remains unknown, however, whether such plant matter is only 

ingested, or also digested and assimilated – a well-known drawback in gut-content 

analysis (Lugendo et al., 2006). Earlier studies do, however, show that seagrass epiphytes 

are typically a more important direct food source for consumers than seagrasses (e.g. 

Yamamuro, 1999; Moncreiff & Sullivan, 2001; Smit et al., 2005, 2006; Liu et al., 2008; 

Vonk et al., 2008). At least for tropical systems, seagrasses are a more significant food 

source than previously assumed (Valentine & Heck, 1999; Vonk et al., 2008).  

The highest numbers of prey items were found in macrozoobenthivores, and the 

average prey spectrum was considerably wider in benthivores and omnivores compared 

to more specialised guilds such as the piscivores and herbivores. The four species 

containing highest numbers of food items were the zoobenthivores C. inermis, P. 

trivittatus, S. trilineatus and the omnivorous A. tomentosus. The nemipterid P. trivittatus 

showed not only a broad dietary spectrum, but also a considerable variability of ingested 

food items in individual fish: some specimens contained exclusively or predominantly 

large polychaetes, large decapod crustaceans, amphipods, echinoderms, or fish scales. An 

intraspecific variability of food selection was also found in C. inermis, although less 

distinct than in P. trivittatus. Such differences in prey selection among individuals of a 

given species within a given population can be of the same order of magnitude as 

interspecific differences. The ecological consequences can also be similar. This has been 

described as trophic polymorphism (Ehlinger & Wilson, 1988). Trophic polymorphism 

probably reflects a behavioral adjustment of individuals to a variety of circumstances 
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(e.g. different habitats) to maximize foraging success (Ehlinger & Wilson, 1988; 

Ehlinger, 1990). Three of the four fishes mentioned above (C. inermis, P. trivittatus, S. 

trilineatus) do not occupy seagrass beds exclusively, but also move to adjacent sandy and 

rubble areas as well as to algal patches and coral reefs. Especially P. trivittatus was very 

abundant on coral reefs and rubble zones (pers. obs.). These fish not only move to 

habitats adjacent to seagrass beds but probably also forage there Switching between 

habitats might modify foraging behaviour and thus increase intraspecific variation 

(Ehlinger & Wilson, 1988; Ehlinger, 1990). In bluegill sunfish, such a “specialisation” of 

generalistic feeders is associated with phenotypic-limited feeding efficiency and 

differences in morphology (e.g. longer pectoral fins in individuals that prefer foraging in 

vegetated habitats) (Ehlinger, 1990). Whether such phentotypic variatons occur in C. 

inermis or P. trivittatus needs to be examined to get a better understanding of trophic 

polymorphism in these species. Since Labridae (to which C. inermis and several other 

investigated species belong) are amongst the most morphologically and ecologically 

diverse fish families (Westneat et al., 2005): the likelihood of both inter- and intraspecific 

variation of food selection is high.  

  

4.3.3.  Diet composition 

Overall, the investigated fish species fed on a broad spectrum of food items. Since most 

of the items were in a quite processed condition, it was not possible to identify them to a 

low taxon level (e.g., genus or species), which would have yielded a more detailed 

picture of the food spectrum. In 182 guts of 27 species, a few empty guts were found in 

four species (two top predators, two omnivores). The top predators, in contrast to the 
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herbivores, probably did not feeding all day long, but only during a certain day- or night 

time. This might yield a considerable number of individuals with empty guts, which is the 

case for about one third of T. crocodilus and one half of S. incisa. In the omnivore A. 

tomentosus, also about one third of all guts were empty, while the value was about 12.5 

% in the omnivorous H. argus.  

 In both belonid species, T. crocodilus and S. incisa, fish was the single prey 

category (in one specimen, a single prey item was identified as small Siganus sp.). The 

order Beloniformes contains about six families that do not develop a stomach. Among 

those, the hemirhamphids comprise an omnivorous family with tendencies to herbivory. 

The other extreme are the Belonidae, which are carnivorous and highly piscivorous 

(Manjakasy et al., 2009). The belonid species investigated are no exceptions. They are 

known as predominantly piscivorous (Hiatt & Strasburg, 1960; Randall, 1967), though T. 

crocodilus might occassionally ingest crustaceans (Froese & Pauly, 2010).   

 Labridae comprise the second largest family of marine fishes and exhibit 

enormous morphological and ecological diversity in the tropics and subtropics. They 

occupy all major feeding guilds, feeding on a broad range of hard-shelled invertebrates, 

furthermore on fish, fish eggs, zooplankton, corals, ectoparasites, detritus and algal 

matter (Westneat et al., 2005). Here, the labrid C. inermis fed on a broad range of 

macrozoobenthos, with a clear preference for gastropods and crustaceans, which were 

ingested in about two thirds of all dissected specimens. Echinoderms were found in 

slightly more than one third, and bivalves in almost one quarter of all guts. This food 

spectrum is consistent with the literature (Froese & Pauly, 2010). In small amounts, small 

epibenthic crustaceans (e.g. amphipods), teleost fragments and other epibenthic 
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invertebrates were found, which is consistent with Nakamura et al. (2003). Halichoeres 

chloropterus is another zoobenthivorous labrid that feeds predominantly on various 

crustaceans (unidentified crustaceans were found in more than 90 % of all individuals 

investigated), for example amphipods and alpheids, but also on other hard-shelled 

invertebrates such as gastropods. This appears to be typical not only for H. chloropterus, 

but also for other species of the genus Halichoeres, which is comprised by 

zoobenthivorous and omnivorous species (Hiatt & Strasburg, 1960; Westneat, 2001; 

Nakamura et al., 2003). Halichoeres scapularis apparently relies on a similar food 

spectrum, based on the one specimen whose gut content was analysed. In the present 

study, Halichoeres argus was omnivorous, predominantly feeding on miscellaneous tiny 

crustaceans, with a substantial contribution of amphipods, gastropods and nematodes. 

Occasionally, algae, hydrozoans, annelids and foraminiferans are ingested. This study is 

the first to reveal the feeding preferences of this small and highly abundant fish.  

 The labrid S. trilineata fed predominantly on unidentified large and small 

crustaceans, especially alpheid shrimps, and gastropods. According to the literature, this 

species is at least partially zooplanktivorous (Froese & Pauly, 2010). This is not in 

contrast to the present study, because the poor condition of the gut-contents (only 

appendages and pieces of carapace with no indication whether from benthic or pelagic 

life forms). Much of the fragmented planktonic organisms might well have been 

zooplankton, but had to be categorized as miscallaneous crustaceans. The same problem  

applies for the omnivorous labrid C. anchorago: many small and intermediate-sized 

crustaceans were found in almost all of the specimens. Nakamura et al. (2003), however, 

reported an exclusively benthic diet for this labrid. In the present study, filamentous 
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algae, foraminifera, gastropods and echinoderms were found as additional food items for 

C. anchorago; this confirms the findings of Nakamura et al. (2003), except for the algae. 

Note, however, that accidental ingestion of plant matter might occasionally occur.  

 In the nemipterid P. trivittatus, two distinct fish size classes were considered in 

gut-content analysis: juveniles and adults. Adults clearly are generalists that feed on a 

broad range of macrozoobenthos. In the present study, unidentified large crustaceans and 

polychaetes were by far the predominant items in most guts, followed by amphipods, 

alpheids and brachyurid crabs. These results are confirmed by the literature (Russell, 

1990). Interestingly, several individuals appeared to be “specialised” on a certain prey 

category, having ingested one type of organism exclusively: whole guts were filled either 

solely with polychaetes or crustaceans. In one specimen, the whole stomach was tightly 

filled with teleost scales. This species is thus another example of trophic polymorphism 

(Ehlinger & Wilson, 1988; Ehlinger, 1990).  

 The dietary spectrum of juvenile P. trivittatus does not differ from that of adults 

by prey taxa, but rather by size classes. All guts of juveniles contained unidentified tiny 

crustaceans. About one quarter of all guts contained small shrimps, polychaetes and 

amphipods (all < 1 cm), while the crustaceans and polychaetes in adult P. trivittatus were 

considerably larger. This reflects a shift in diet with respect to the prey size spectrum. As 

mentioned above, a substantial part of the unidentified microcrustaceans may have been 

comprised by zooplankton because young fish of many feeding uilds, even piscivores, 

begin life as planktivores (Mittelbach et al., 1988; Day et al., 2011). Such ontogenetic 

dietary shifts are often a consequence of changes in foraging ability, leading to more 

efficient feeding on different sizes or types of prey (Mittelbach et al., 1988). One 
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constraint that may alter foraging ability is mouth gape size, which might explain the 

selection for smaller prey items in young P. trivittatus.  

In contrast to the zoobenthivores mentioned above, the monacanthid A. 

tomentosus is a resident of seagrass beds. It is known to be omnivorous and to rely on a 

diet comprised primarily of gastropods, seagrasses, sponges, algae, amphipods and 

polychaetes (Peristiwady & Geistdorfer, 1991). In the present study, similar food items 

were identified: amphipods, unidentified crustaceans, gastropods, polychaetes and 

seagrasses, although most abundant items had a different ranking and the frequency of 

occurrence of single categories differed from the study of Peristiwady & Geistdorfer 

(1991). Note that the latter study had a considerably larger sample size (> 1000 

specimens vs. 11). 

 The diet of the syngnathid S. biaculeatus consisted of algae, fish fragments, 

amphipods and unidentified crustaceans. Nakamura et al. (2003) mention shrimps and 

zooplankton, adding to the diet of this cryptobenthic species.  

 All guts of the hemirhamphid H. far contained macerated seagrass matter. This 

species appeared to be predominantly herbivorous, with occasional amphipods and 

foraminiferans found in a few guts. Ingestion of animal matter is not uncommon in the 

Hemirhamphidae. Many previous studies have shown that a number of hemirhamphid 

species display a sharp diurnal shift in their feeding patterns, with a preference for plant 

food during daytime hours and for invertebrates during the night (e.g. Talwar, 1962; 

Klumpp & Nichols, 1983; Robertson & Klumpp, 1983; Waltham & Connolly, 2006; Earl 

et al., 2011). Earl et al. (2011) also mention the occasional ingestion of polychaetes and 

insects during the day. In the present study, two specimens ingested extremely high 
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numbers of foraminiferans (approximately 600 per gut). Most of them were seagrass-

associated forms. The distribution of benthic foraminiferans depends strongly on various 

environmental factors, for example organic matter content of the sediment, oxygen, 

sediment grain size or current regime (Matera & Lee, 1962; Murray, 2000). This can lead 

to patchy distributions. Accordingly, the two specimens with high numbers of 

foraminifera in their guts probably fed on seagrass from a different patch than the other 

specimens, or they fed on detached floating seagrass leaves that were imported into the 

sampling area during flood tide.  

 Gut-content analysis of the pomacentrid D. chrysopoecilus revealed seagrass 

fragments in about 80 % and algae in 100 % of all guts. The latter are assumed to be 

seagrass epiphytes. One third of all examined guts contained microcrustaceans 

(predominantly benthic copepods), perhaps epifauna on seagrasses or epiphytes. 

Interestingly, in 20 % of all D. chrysopoecilus guts, no seagrass, but algae were found. 

Since it is unlikely that seagrasses are digested faster than the epiphytes, this may well 

represent another, milder example of trophic polymorphism. One interpretation is that 

specimens that solely ingested epiphytes were able to browse algae without biting off 

fragments of seagrass leaves, while the other 80 % of the examined specimens removes 

seagrass tissue while browsing the algae. Masuda & Allen (1993) mention that this 

species feeds predominantly on epibenthic algae. Whether D. chrysopoecilus assimilates 

the seagrass matter needs to be elucidated with stable-isotope analysis.  

 Gut-content analysis of the siganid S. canaliculatus revealed that plant matter 

dominates the diet. Seagrasses were found in 80 % of all guts, and epiphytes in more than 

two thirds of all guts. One third of all guts contained tiny gastropods and unidentified 
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microcrustaceans (copepods, isopods, tanaids), potentially epifauna on seagrasses and 

epiphytes. Occassionally, larger crustaceans (brachyurids) were found. In S. 

canaliculatus, seagrasses were more abundant food items than epiphytes. This leads to 

two potential conclusions. First, some specimens bit off fragments of younger leaves that 

still lacked epiphytes; second, the epiphytes have a shorter digestion rate than the 

seagrasses and were already processed. The second scenario is more likely because the 

seagrass leaf matter here seemed to be affected by digestive processes. Generally, the 

family Siganidae is considered to be predominantly herbivorous, and siganids can 

contribute substantially to the herbivorous guild either in terms of abundance or biomass 

in some locations (Bryan, 1975; Fox et al., 2009). Previous studies, however, found that 

S. canaliculatus belongs to the omnivorous rather than to the herbivorous guild. 

Hajisamae (2009) reported that this species feeds mainly on polychaetes, and Froese & 

Pauly (2010) summarize that S. canaliculatus does feed on seagrasses and algae, but also 

on zoobenthos such as crustaceans, bryozoans, echinoderms, and detritus. In the present 

study, this fish did not consume such a broad spectrum of invertebrate prey. One reason 

might be the high abundances of the large seagrass E. acoroides and the dense epiphyte 

growth on the leaves of this species at the sampling site at the island of Barrang Lompo. 

Plant food may have been overabundant during the sampling period, so that the siganid 

met its nitrogen requirements by an exclusively herbivorous diet. Siganus canaliculatus 

was observed feeding mainly on stands of E. acoroides (pers. obs.). Salita et al. (2003) 

reported that in the herbivorous siganid S. fuscescens, adults prefer seagrasses and 

juveniles seagrass epiphytes. 
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4.3.4. Trophic niche overlap and dietary niche breadth 

Thirty cases of significant trophic niche overlap (SI # 0.60*) between fish species were 

found in the present study. Dietary overlap does not automatically cause resource 

competition, but is often related with high abundances and/or high diversity of prey items 

(Macpherson, 1981). Moreover, additional parameters such as prey type, prey size, depth 

distribution or guilds allow species with similar diet (i.e. dietary niche overlap) to coexist. 

The actual degree of overlap between species might also be reduced by species with 

seasonal or diel patterns of resource partitioning, using resources (i.e. prey items) at 

different times or in different situations. Thus, calculated overlap values might 

overestimate the direct competition between species (Macpherson, 1981).  

 Thirteen cases of overlap are smaller than SI = 0.80* and are thus considered as 

being moderate. Seventeen cases exceed SI = 0.80*, and in six cases, species exhibited a 

dietary niche overlap of SI # 0.96*, which is very high or total. There is no significant 

overlap of dietary niches between species from different guilds, except for omnivores and 

zoobenthivores. The piscivorous guild in the present study was comprised by two belonid 

species and S. barracuda, which are top predators in the investigated food web. All three 

species show very high to complete dietary overlap. Within the herbivorous guild, most 

cases of overlap were moderate, especially when comparing H. far with other herbivores. 

No overlap was recorded between this species and any of the herbivorous pomacentrids, 

and only moderate overlap occurred between H. far and S. canaliculatus. Note, however, 

that it was not possible to identify any algae (e.g. epiphytes) in the macerated gut-

contents of H. far. Otherwise, overlap might be higher. Overlap might be high or even 

complete if data for seagrasses and algae are pooled without discriminating between both 
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different food sources. There was, however, a high overlap for H. far with each of the 

siganids S. virgatus and S. spinus, and between S. canaliculatus and S. virgatus and 

between S. spinus and S. virgatus. Sample sizes for the latter two species were small, 

limiting interpretability.  

 Degrees of overlap vary within the group of omnivorous/macrozoobenthivorous 

fish. Overlap is present, but low among the larger labrid species (C. inermis, C. 

trilobatus, C. anchorago, H. chloropterus, H. scapularis), which is unsurprising 

considering the high morphological and ecological diversification of labrids (Westneat et 

al., 2006). This is reflected in dietary preferences, and thus in niches. The small H. argus, 

however, has quite substantial overlap with other members of the guild, such as S. 

biaculeatus, L. obsoletus and S. trilineata. This might be indicated by a small mouth gape 

size of all these taxa compared to other zoobenthivores, i.e. they select prey items of 

smaller size classes (L. obsoletus examined here were young fish with small standard 

lengths, thus also small mouth gapes). Total overlap occurred between L. obsoletus and 

Gymnothorax sp., though this result should be interpreted with caution due to low 

sampling sizes in both taxa. High overlap also occurred between S. trilineata and S. 

biaculeatus.  

Interestingly, there is no significant overlap for adults of the generalist P. 

trivittatus, despite the broad food spectrum. With a calculated dietary niche breadth of RB 

= 4.39, P. trivittatus has by far the broadest dietary spectrum of all fish species 

investigated in the present study. In general, the species occupying the highest ranks of 

dietary niche breadth belong either to the zoobenthivorous (P. trivittatus, C. chlorourus, 

C. inermis, H. chloropterus) or omnivorous guild (A. tomentosus), whereas the smallest 
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dietary niche breadth is found in specialists, such as the piscivores and some of the 

predominantly herbivorous species (S. barracuda, S. incisa; H. far, S. spinus), 

respectively. Narrow dietary niches were also found for L. obsoletus and Gymnothorax 

sp., although this no doubt reflects bias due to small sampling size. Sampling more 

individuals would probably have increased the food spectrum and broadened the dietary 

niche breadth. However, if we consider all values of dietary niche breadth where RB $ 

2.00, all herbivores, all piscivores and all species from other feeding guilds where 

sampling size is smaller than n = 5 can be considered narrow in the present study.?habe 

ich das richtig verstanden? Surprisingly, the small labrid H. argus has a very narrow 

dietary niche breadth (RB = 1.02) considering that it is an omivorous species. 

There appears to be a general trend that with increasing dietary niche breadth, 

dietary niche overlap decreases. The nemipterid P. trivittatus as well as certain larger 

labrids – C. chlorourus, C. inermis and H. chloropterus – and the monacanthid A. 

tomentosus have large to very large calculated dietary niches, but either no or no 

significant niche overlap with any of the other species, or (in the labrids) only moderate 

dietary niche overlap (< 0.8*). This is surprising because one might expect that niche 

overlap would increase with increasing food spectra, which is clearly not the case. In 

contrast, specialised feeding guilds, such as the herbivores and the piscivores, have a very 

small food spectrum. Their niches overlap strongly or even completely with each other in 

some cases, which is logical because they belong to one feeding guild. As dietary niche 

breadth increases, trophic niche overlap decreases, especially in tropical environments, 

where a broad range of potential food items is available.  
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4.4. Differences in trophic composition between study sites 

With respect to taxon numbers, zoobenthivorous fish accounted for largest proportions at 

all study sites (up to 71.1 % at BBE). This is unsurprising because seagrass beds are 

known to host an enormous diversity not only of fish, but also of invertebrates (e.g. 

Dorenbosch et al., 2005; Nakamura et al., 2003; Unsworth et al., 2007c; Vonk et al., 

2008). Especially small benthic and/or epibenthic crustaceans exhibit both high species 

numbers and abundances; this makes them key prey items in seagrass habitats and in 

many other ecosystems (e.g. Khalaf & Kochzius, 2002; Nakamura et al., 2003; Nakamura 

& Sano, 2005; Gillanders, 2006; Unsworth et al., 2007b). They comprise a major 

component of marine foodwebs by linking trophic levels (Matheson et al., 1999; 

Unsworth et al., 2007a). Corallivores accounted for the smallest feeding guild, found at 

only one site in the present study. They are strongly associated with live stony corals 

(Khalaf & Kochzius, 2002), which are limited in seagrass beds. The corallivorous species 

were juveniles of several species of the family Chaetodontidae, typical residents of coral 

reef environments. It is not unusual to find juveniles of coral reef species in seagrass 

beds, which are hypothesized as being nursery habitats for early ontogenetic stages of 

reef fish and invertebrates (e.g. Ogden & Buckman, 1973; Ogden & Quinn, 1984; 

Pollard, 1989; de la Morinière et al., 2002; Dorenbosch et al., 2006; Verwej et al., 2006). 

In the present study, corallivores were found only at BLS, which provided the largest 

seagrass bed, the bed of highest structural complexity, and highest fish diversity. With 

respect to taxon numbers, piscivores (up to 5.26 %) and zooplanktivores (up to 8.33 %) 

were the smallest feeding guilds. Schools of zooplanktivorous fish contained only small 

individuals.  
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 With respect to individual numbers, zooplanktivores were the dominating feeding 

guild at subtidal sites (BBE and BBS). This is due to large schools (up to several hundred 

individuals) of A. lacunosus (Atherinidae) that were counted along transects in irregular 

intervals. Such large aggregations of planktivores are possible due to their independence 

from the benthic substrate in respect to food availability (Khalaf & Kochzius, 2002). 

Atherinids were also recorded in lower abundance and in smaller schools at the intertidal 

sites. At BLS, omnivores, and at BBN and BBW, zoobenthivores were the dominant 

feeding guild. This might reflect the high structural complexity that the seagrass beds at 

BLS and BBW offer to both prey and small predators. At these sites the canopy consisted 

of the large species E. acoroides intermingled with several intermediate and short 

species. Furthermore, the seagrass beds at BBN and BBW are in very close to algal 

patches and coral reefs, which might enhance the species richness of zoobenthos. Again, 

corallivores accounted for very few individual counts, and only at BLS. Perhaps the other 

seagrass beds are too small to offer sufficient living space or shelter for juvenile 

corallivores from the neighbouring coral reefs. With respect to individual counts, 

piscivores made up the second-smallest guild, which is not surprising. Generally, top 

predators are present in considerably fewer numbers than their prey in all ecosystems. 

This does not contradict earlier studies that suggest that the major component of fishes in 

seagrass beds are predators (Unsworth et al., 2007b), because zoobenthivores are 

predators as well. Despite their lower trophic level, they contribute considerably to both 

species richness and abundance in the present study. Herbivorous fish comprise a small 

guild with respect to individual counts (ranging from 2.7 % at BBE to 4.2 % at BBS). 

One potential explanation is anthropogenic impact in form of overfishing. For example, 
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Siganidae, especially the schooling species S. canaliculatus, as well as the hemirhamphid 

S. far and mugilids, are commonly caught for human consumption. The same applies to 

piscivores such as sphyraenids and belonids, as well as to elasmobranchs (the dasyatids 

Taeniura lymma and Dasyatis kuhlii as well as small carcharhinid sharks that are 

occassionally seen in the seagrass beds at Bone Batang and Barrang Lompo), which can 

be found at local fish markets (pers. obs.). 

 Omnivores, whilst not being the dominant feeding guild with regard to abundance 

or taxa, still contribute substantially to the fish fauna in intertidal seagrass beds (BLS, 

BBN and BBW). The BLS site has the strongest anthropogenic impact due to the high 

human population density on the island of Barrang Lompo. The site BBN provides a 

small and moderately dense seagrass bed in an early stage of succession, with low fish 

densities and species richness; BBW has a canopy structure similar to that of BLS, but 

might be impacted from gillnet fishing within the seagrass bed and blast fishing along the 

coral reef in the west of the island of Bone Batang. All three of these seagrass beds can 

be characterised as habitats “under stress“, and all three of them are rich and abundant in 

omnivorous fish species. These fish species are non-specialised feeders that cope well 

with changes in their habitat, which might not be the case in piscivores or other 

specialists (Khalaf & Kochzius, 2002).   

 

4.5. Conclusion 

A food web analysis in a seagrass bed of a small coral island in the Spermonde 

Archipelago, Indonesia, South Sulawesi, was conducted based on two different 

methodological approaches. The food web based on stable isotope analysis shows that 
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seagrass epiphytes contribute substantially to trophic relations of the seagrass bed, in 

agreement with previous studies (Yamamuro, 1999; Moncreiff & Sullivan, 2001; Smit et 

al., 2005, 2006; Vonk et al., 2008). Seagrasses do not appear to play a major role as a 

food source in the investigated seagrass bed, conflicting with the outcome of a study by 

Vonk et al. (2008) on an inhabited neighbouring island, where both seagrass epiphytes 

and seagrasses are widely utilized in the whole food web. Future work might need to 

include more components of the food web (e.g. more taxa, such as crustaceans, 

gastropods or echinoids). Based on gut-content analysis, trophic relations of the fish 

fauna were based on crustaceans, gastropods, seagrasses and their epiphytes. This study 

clearly shows that gut-content analysis is a useful tool to describe food webs, but this 

method yielded contrasting results to the stable isotope analysis, which indicated a minor 

role of seagrasses in the food web. This once again supports the common view that gut-

content analysis provides a highly detailed but biased picture of a consumer’s diet, 

because not all food ingested is actually assimilated (Lugendo et al., 2006).   

 The food web based on stable isotope analysis further revealed the existence of 

infauna within the seagrass bed that do not fully rely on photosynthetic carbon sources, 

but rather on symbioses with chemoautotrophic bacteria. Since such symbioses are based 

primarily on sulfur-oxidizing prokaryotes, and marine sediments may contain high 

amounts of sulphides, more as yet undescribed invertebrate-bacteria symbioses may be 

present.    

Trophic relations of fish assemblages in a tropical multiple-species seagrass bed 

between habitats, based on visual census data, revealed six feeding guilds: herbivorous, 

corallivorous, zooplanktivorous, omnivorous, zoobenthivorous, and piscivorous. With 
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respect to taxon numbers, zoobenthivores are the most diverse and dominate all study 

sites. Corallivores, piscivores and zooplanktivores account for the smallest guilds. With 

respect to individual counts, zooplanktivores dominate subtidal and omni-

/zoobenthivores dominate intertidal sites, while corallivores, piscivores and herbivores 

make up the smallest feeding guilds. Differences between study sites may reflect varying 

canopy architecture of seagrass beds, which in turn may result in varying abundances of 

major prey items (e.g. crustaceans, gastropods). Seagrass canopies at intertidal sites are 

structurally more complex than at subtidal sites, yielding higher abundances of benthic 

invertebrates and zoobenthivores. Higher abundances of plankton feeders at subtidal sites 

can be explained by their independence of benthic food webs (Khalaf & Kochzius, 2002). 
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IV. Abstract 

The present study investigated the nature and trophic relationships of fish assemblages in 

seagrass beds at small coral islands in the Indonesian Spermonde Archipelago. Total fish 

abundance did not correlate with seagrass shoot densities. Diversity and species composition 

of fish assemblages differed significantly among five examined seagrass beds, between 

intertidal and subtidal study sites, and between the two islands, while there was no significant 

difference for total fish abundance. Six common species, however, showed significant 

differences between study sites (Labridae: Cheilio inermis, Halichoeres argus, H. 

chloropterus; Hemirhamphidae: Hemirhamphus far; Siganidae: Siganus canaliculatus; 

Nemipteridae: Pentapodus trivittatus). Fish diversity was highest at the most impacted study 

site at Barrang Lompo South. Seagrass beds in a late stage of succession (high structural 

complexity) were more species-rich than seagrass beds in an early stage of succession (low 

structural complexity). Nonetheless, species-accumulation curves for total diversity did not 

show saturation for any of the study sites. For two of the most speciose fish families in the 

present study, the Labridae and Pomacentridae, species-accumulation curves did not exhibit 

saturation, whereas the curve for the third family, the Nemipteridae, clearly was saturated.  

As expected, primary producers were more depleted in stable "
15

N and "
13

C isotope 

values than most animal taxa. Isotopic values of invertebrates had a broader range than those 

of fish, although the highest stable nitrogen enrichment was found for piscivorous fish. 

Lowest isotopic signatures for animals were recorded for bivalves and two taxa of crustaceans 

that are assumed to have bacterial symbionts. Trophic levels calculated based on stable 

isotopes show values of 3.69 and 3.44 for piscivorous fish such as barracuda Sphyraena 

barracuda and garfish Tylosurus crocodilus, respectively, whereas a herbivorous fish such as 

the rabbit fish Siganus virgatus feeds at a trophic level of only 1.91, characterizing it as a 

primary consumer. Neither seagrass nor phytoplankton was found to be utilized widely as a 
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food source in the present seagrass bed. Seagrass epiphytes appear to play a major role in 

trophic relationship of the described food web.  

Analysis of gut content revealed four major feeding guilds (zoobenthivores, 

omnivores, piscivores, herbivores). The most common food items over all guts sampled were 

crustaceans, gastropods and seagrass. The trophic composition of the fish assemblages differs 

distinctly between intertidal and subtidal study sites. In contrast to gut content analysis, the 

trophic contribution of fish assemblages based on visual census data revealed six feeding 

guilds in the seagrass beds (herbivorous, zooplanktivorous, corallivores, omnivorous, 

zoobenthivorous, piscivorous). This difference to gut-content analysis might be due to the fact 

that not all fish species could be included into the analysis (no zooplanktivores and 

corallivores).  With respect to taxon numbers, zoobenthivores dominate over all study sites, 

and corallivores, piscivores and zooplanktivores accounted for the smallest proportions. With 

respect to individual counts, zooplanktivores dominated intertidal sites and omnivores and 

zoobenthivores dominated subtidal sites; again, corallivores, piscivores and herbivores 

accounted for smallest trophic guilds. 

!
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V. Zusammenfassung 

In dieser Studie wurden Biodiversität und trophische Beziehungen von 

Fischgemeinschaften in Seegraswiesen von kleinen Koralleninseln im indonesischen 

Spermonde-Archipel untersucht. Die gesamte Fischabundanz korrellierte nicht mit der 

Seegras-Sproßdichte. Diversität und Artenzusammensetzung der Fischgemeinschaften 

unterschied sich signifikant zwischen einzelnen Seegraswiesen, intertidalen und 

subtidalen Seegraswiesen und den beiden Inseln. Für die Gesamtabundanz von Fischen 

gab es keine signifikanten Unterschiede zwischen den Seegraswiesen. Für die sechs 

häufigsten Fischarten kamen signifikante Unterschiede zwischen Standorten zu tragen 

(Labridae: Cheilio inermis, Halichoeres argus, H. chloropterus; Hemirhamphidae: 

Hemirhamphus far; Siganidae: Siganus canaliculatus; Nemipteridae: Pentapodus 

trivittatus). Die Fischdiversität war an dem Standort mit dem stärksten anthropogenen 

Einfluss am höchsten. Seegraswiesen in einem späten Sukzessionsstadium (hohe 

strukturelle Komplexität) waren artenreicher als Seegraswiesen in frühen Stadien 

(niedrige Komplexität). Art-Akummulationskurven zeigten dennoch für keinen der 

beprobten Standorte Sättigung. Für zwei der drei artenreichsten Fischfamilien, den 

Labriden (Lippfischen) und den Pomacentriden (Riffbarschen), erreichten Art-

Akummulationskurven keine Saturierung, während die Kurve für die dritt-artenreichste 

Familie, den Nemipteriden (Scheinschnappern) Sättigung erreicht. 

 Wie erwartet zeigte die Stabile Isotopen-Analyse, dass Primärproduzenten eine 

geringere Anreicherung an "
15

N und "
13

C aufweisen als die meisten Tier-Taxa. Die 

Isotopen-Signaturen der Evertebraten hatten einen größeren Umfang als die der Fische, 

allerdings war die stärkste Anreicherung für schweren Stickstoff in der piscivoren 
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Fischgilde zu finden. Die niedrigsten Isotopen-Signaturen für Tiere wurden bei drei Arten 

von Muscheln (Codakia tigerina, Solemya pusilla, Fimbria sp.) und bei zwei Krebs-

Arten (Eucalliax panglaoensis und Calliaxina sp.) gefunden. Es wird vermutet, dass 

diese Taxa eine Symbiose mit chemoautotrophen Bakterien pflegen und dass aus dieser 

Symbiose der für diese Organismen notwendige Kohlenstoff und Stickstoff für 

Wachstum und Entwicklung stammt. Die höchsten trophischen Stufen basierend auf 

Stickstoffwerten aus der Stabilen Isotopen-Analyse waren 3.69 und 3.44 für zwei 

piscivore Fische, den Großen Barrakuda (Sphyraena barracuda) und den Krokodils-

Hornhecht (Tylosurus crocodilus). Herbivore Fische finden sich dagegen auf der 

niedrigsten Stufe wieder: der Kaninchenfisch Siganus virgatus belegt eine trophische 

Stufe von lediglich 1.91 und kann dadurch als Primärkonsument identifiziert werden. 

Weder Seegras noch Phytoplankton konnte in der Isotopen-Analyse als wichtige 

Nahrungsquelle in der untersuchten Seegraswiese identifiziert werden, der 

Algenaufwuchs auf den Seegräsern dürfte jedoch eine große Rolle im beschriebenen 

Nahrungsnetz spielen. 

 Darm-Inhalts-Analysen zeigten vier Nahrungsgilden (Zoobenthivore, Omnivore, 

Piscivore, Herbivore). Die Nahrungskategorien, die in den meisten Mägen oder Därmen 

gefunden wurden, waren die der Crustaceen, der Gastropoden und der Seegräser.  

Die trophische Zusammensetzung von Fischgemeinschaften in unterschiedlichen 

Seegraswiesen zeigt distinkte Muster zwischen intertidalen und subtidalen Standorten. 

Die Gilden-Zusammensetzung basierend auf Daten aus einem visuellen Fisch-Zensus 

enthüllte sechs Nahrungsgilden in den Seegraswiesen: Herbivore, Zooplanktivore, 

Corallivore, Omnivore, Zoobenthivore und Piscivore. Unterschiede zu den Ergebnissen 
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der Darm-Inhalts-Analyse werden damit erklärt, dass nicht alle Fischarten in die Analyse 

miteinbezogen werden konnten. Die zoobenthivore Gilde weist die höchsten Taxon-

Zahlen an allen Standorten auf. Die artenmäßig kleinsten Gilden sind die Corallivoren, 

Piscivoren und Zooplanktivoren. Die höchsten Abundanzen sind an den intertidalen 

Standorten für die Zooplanktivoren und für die subtidalen Standorte für die Omnivoren 

und Zoobenthivoren zu finden. Corallivore, Piscivore und Herbivore sind an allen 

Standorten nur in geringen Abundanzen anzutreffen.  
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Oct. – Feb. 2008  Practical in bioacoustic methods 

Sept. 2007   SSI Master Diver (>250 scuba dives)  

Apr. 07 – Feb. 08  Aquarium keeper at the Aqua Terra Zoo Haus des  

Meeres, Vienna (marine section)  

Mar. 2007   Internship as aquarium keeper at the Aqua Terra  

Zoo Haus des Meeres, Vienna (marine section) 



159  Curriculum Vitae 

  

 

Scholarships 

• Scholarship for a semester abroad (SS 2008) 

• Scholarship for the study year 2006/7 

• Scholarship for the study year 2008/9 

 

 

Publications 

Articles 

Schwaha, P., Heinzl, R., Mach, G., Pogoreutz, C., Fister, S. &  

Selberherr, S. 2007. A high performance webapplication for an electro-biological 

problem. Proceedings of the 21th ECMS 2007, Prague, Czech Republic. 

Pogoreutz, C., Asmus, H., Ahnelt, H., submitted. Fish assemblages in different  

types of tropical Indo-Pacific seagrass meadows. 

 

Abstract:  

Pogoreutz, C., Asmus, H., Ahnelt, H. 2010. Fish diversity patterns in  

different types of tropical seagrass meadows in the Spermonde archipelago, Indonesia. 

In: The Wadden Sea: Changes and Challenges in a World Heritage Site. ECSA 

Conference 46, AWI-Wadden Sea Station Sylt, List, Germany, 3 – 6 May 2010 

 

Poster Presentation at the ECSA Conference 46 at the AWI Wadden Sea Station at the 

Island of Sylt, Germany, 3- 6 May 2010 

 

 

Languages 

German  Mother tounge 

English  fluent (spoken and written) 

Indonesian  basic 

French   basic  

 

 

!


