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1 Abstract 
Membrane fusion is a crucial step during the cell entry of enveloped viruses and is driven by 

specific membrane-anchored viral surface proteins (fusion proteins). According to their 

molecular architecture these proteins have been assigned to three different structural classes 

(class I, II, and III). They all drive fusion by conformational changes that are triggered by 

interactions with the host cell (such as receptor binding or exposure to acidic pH) and 

presumably involve protein-protein interactions at the fusion site. 

Flaviviruses are small enveloped viruses and comprise several human pathogens like yellow 

fever virus, dengue virus, Japanese encephalitis virus (JEV), West Nile virus, and tick-borne 

encephalitis virus (TBEV). These viruses enter the host cells by receptor mediated 

endocytosis followed by fusion in the endosome mediated by the envelope protein E, a class 

II viral fusion protein. The acidic pH in the endosome triggers the conformational 

reorganization from metastable pre-fusion E homodimers into post-fusion trimers. The crystal 

structures of truncated E proteins, lacking the so-called ‘stem’-region and the membrane 

anchor, are known in their pre- and post-fusion conformations. The E protein is the only 

known viral fusion protein with a double membrane anchor, consisting of two antiparallel 

transmembrane helices (TM1 and TM2), required for intracellular sorting and processing of 

the viral polyprotein. Using recombinant subviral particles (RSPs) of TBEV with truncated 

and chimeric forms of protein E (containing heterologous JEV TM segments) it was shown 

that both TM helices are essential for efficient fusion. Functional analyses demonstrated that 

TM interactions apparently contribute to the stability of the post-fusion trimer and the 

completion of the merger of the membranes.  

In this diploma thesis we were interested to assess the significance of the observations made 

with RSP TM mutations in the context of infectious virions, heterologous and chimeric 

membrane anchors were introduced into an infectious cDNA clone of TBEV. The studies 

revealed that recombinant TBE viruses with a completely heterologous TM anchor or 

chimeric TM anchors had dramatically reduced specific infectivities. They were also severely 

impaired in their virus growth properties thus prohibiting the production of sufficient amounts 

of mutant viruses for in vitro fusion experiments. The data obtained in this work suggest that 

modifications of the TM helices in the virus not only affected fusion, but also additional steps 

of the virus life cycle such as particle assembly.  

In the second part of this diploma thesis, the role of conserved histidines in the E protein as 

pH sensors for triggering flavivirus membrane fusion were analysed in the context of 

infectious TBEV. A previous study using TBEV RSPs revealed that one histidine at an 

interface between two domains was important for the acidic-pH-induced initiation of fusion 

and a second histidine at this interface (which could not be investigated with RSPs) was 
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speculated to be also involved in this process. Replacement of these histidines in infectious 

TBE virions led to a 10-fold reduced infectivity of the mutants compared to wild type and the 

combination of both mutants yielded even a 100-fold reduced infectivity. The generation of 

these mutants now provides the basis for further experiments to analyze the pH sensor in an 

infectious system, including the determination of specific infectivities and fusion activities of 

the histidine mutants after up-scaling of virus productions.  
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Zusammenfassung  
Die Membranfusion ist ein essentieller Schritt im Infektionsprozess umhüllter Viren und wird 

durch spezifische membranverankerte virale Oberflächenproteine (Fusionsproteine) 

vermittelt. Auf Grund ihres molekularen Aufbaus werden diese Proteine in drei 

unterschiedliche strukturelle Klassen eingeteilt (Klasse I, II und III). Sie alle bewirken Fusion 

durch Konformationsänderungen, die durch Interaktionen mit der Wirtszelle (wie z.B. 

Rezeptorbindung oder sauren pH) ausgelöst werden, wobei vermutlich Protein-Protein 

Wechselwirkungen am Fusionsort beteiligt sind.  

Flaviviren sind umhüllte Viren, die eine Reihe von humanen Pathogenen umfassen wie 

Gelbfieber Virus, Dengue Virus, Japanische Enzephalitis Virus (JEV), West Nil Virus und 

Frühsommer-Meningoenzephalitis Virus (FSMEV). Diese Viren dringen durch 

rezeptorvermittelte Endozytose und anschließende Fusion ihrer Membran und der 

endosomalen Membran in Wirtszellen ein. Das Hüllprotein E („envelope“), ein virales Klasse 

II Fusionsprotein, ist für den Fusionsprozess verantwortlich. Der saure pH Wert der 

Endosomen löst die konformationelle Reorganisation vom metastabilen E Homodimeren in 

post-Fusions-Trimere aus. Die Kristallstrukturen von löslichen verkürzten E Proteinen 

verschiederner Flaviviren, denen die sogenannte „Stamm“-Region und der doppelte 

Membrananker fehlen, wurden vor und nach der säure-induzierten Umlagerung geklärt. 

Bemerkenswert ist, dass das E Protein als einziges bekanntes virales Fusionsprotein einen 

doppelten Transmembrananker besitzt, der aus zwei antiparallel angeordneten 

Transmembranhelices (TM1 und TM2) besteht. Diese sind für das intrazelluläre Sortieren 

und Prozessieren des viralen Polyproteins erforderlich.  

Unter Verwendung von rekombinanten subviralen Partikeln (RSP) des FSME Virus, die 

verkürzte und chimäre (mit heterologen JEV TM Segmenten) Formen des E Proteins 

enthalten, konnte gezeigt werden, dass beide TM Helices für eine effiziente Fusion 

notwendig sind. Funktionelle Analysen wiesen darauf hin, dass TM Interaktionen offenbar zur 

Stabilität des post-Fusions-Trimer und zur Vervollständigung des Fusionsprozesses der 

beiden Membranen beitragen.  

Ziel dieser Diplomarbeit war es, die Bedeutung der Beobachtungen mit RSP TM Mutationen 

im infektiösen FSMEV System zu verifizieren. Hierfür wurden heterologe und chimäre 

Membrananker in infektiöse FSMEV cDNA Klone eingebracht. Rekombinante FSME Viren 

mit einem gänzlich heterologen TM Anker oder chimären TM Ankern zeigten eine 

dramatische Reduktion der spezifischen Infektiösität und eine starke Beeinträchtigung der 

Virusvermehrung. Dadurch war es nicht möglich, mutierte Viren in ausreichender Menge für 

in vitro Fusionsexperimente herzustellen. Die in dieser Diplomarbeit gewonnene Daten 

deuten darauf hin, dass Modifikationen der TM Helices im Virus nicht nur die Fusion 
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beeinflussen, sondern auch zusätzliche Schritte des viralen Lebenszyklus wie Partikelaufbau 

(„Assembly“) betreffen.  

Im zweiten Teil dieser Diplomarbeit sollte die Funktion von konservierten Histidinen im E 

Protein als pH Sensoren für die Flavivirus Membranfusion in infektiösen FSME Viren 

analysiert werden. Eine vorangegangene Studie unter Verwendung von FSMEV RSPs hatte 

gezeigt, dass ein Histidin an der Schnittstelle zwischen zwei Domänen für die saure pH-

induzierte Einleitung der Fusion wichtig ist. Es wurde spekuliert, dass ein zweites Histidin in 

dieser Region (welches jedoch im RSP System nicht untersucht werden konnte) ebenfalls an 

diesem Prozess beteiligt sein könnte. Der Austausch eines dieser Histidine führte in FSME 

Viren zu einer 10-fachen Reduktion der Infektiosität der Mutanten im Vergleich zum Wildtyp 

und die Kombination der beiden Mutanten ergab sogar eine 100-fache Reduktion der 

Infektiosität. Die Produktion dieser Mutanten liefert nun die Grundlage für weitere Studien 

einschließlich der Analyse der spezifischen Infektiosität und Fusionsaktivität nach 

Virusproduktion im Großmaßstab, um die Funktion von Histidine als pH Sensoren im 

infektiösen System untersuchen zu können. 
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2 Introduction  

2.1 Flaviviridae 

Flaviviridae represent a large family of small, enveloped RNA viruses that are classified into 

three genera: the genus Flavivirus, the genus Hepacivirus, and the genus Pestivirus. 

Members of this family share similarities in virion morphology, genome organization, and 

replication strategy (Lindenbach 2007).  

 

Flavivirus is the largest genus of this family and comprises more than 70 virus species 

(Fauquet 2005; Mukhopadhyay, Kuhn et al. 2005). Most of them are arthropod-borne viruses 

and are transmitted by mosquitoes or ticks. For some flaviviruses the transmission is not 

known and most probably does not involve an arthropod vector (Fauquet 2005).  

This genus can be subdivided into serological (corresponding to serocomplexes) and 

phylogenetical (based on clades and clusters) groups, as shown in Figure 1 (Kuno, Chang et 

al. 1998). 
 

 
 

Figure 1: Flavivirus classification 

The denodrogram represents the relationship between the flaviviruses based on amino acid identity in 

the E protein. The classification of flaviviruses into serocomplexes is indicated by different colors: 

dengue virus serocomplex is represented in red, Japanese encephalitis virus serocomplex in green, 

yellow fever virus serocomplex in orange, and tick-borne encephalitis virus serocomplex in blue. The 

brackets on the right show the mosquito-borne and tick-borne virus clusters. Dengue virus (DEN), St. 

Louis encephalitis (SLE) virus, Japanese encephalitis (JE) virus, Murray Valley encephalitis (MVE) 

virus; West Nile (WN) virus, yellow fever (YF) virus, tick-borne encephalitis (TBE) virus, Powassan 

(POW) virus. Figure modified from (Stiasny, Kiermayr et al. 2006). 
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Important human flavivirus pathogens are dengue virus (DENV), Japanese encephalitis virus 

(JEV), tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and yellow fever virus 

(YFV) (Gubler 2007). 

Tick-borne encephalitis viruses can be classified as one species with three subtypes: Far 

Eastern, Siberian and European subtype (Ecker, Allison et al. 1999; Fauquet 2005). 

 

2.2 Epidemiology and disease 

Tick-borne encephalitis virus  

Tick-borne encephalitis virus is endemic in regions of Europe and Asia and its main 

transmission vectors are ticks. The European TBEV subtype is mainly transmitted by Ixodes 

ricinus, the other two suptypes by Ixodes persulcatus (Gubler 2007; Lindquist and Vapalahti 

2008). The natural hosts of TBEV are ticks and small vertebrates, mainly rodents, although 

larger animals like deer can get infected as well. Approximately 3,000 hospitalized human 

cases are reported annually in Europe and up to 10,000 in Russia (Donoso Mantke, Schadler 

et al. 2008). Typically, the disease takes a biphasic course. After an asymptotic period of 

several days, the second phase with central nervous system symptoms, such as meningitis, 

meningoencephalitis, meningoencephalomyelitis, or meningoencephaloradiculitis, occurs in 

20-30% of infected humans (Haglund and Gunther 2003; Holzmann 2003; Lindquist and 

Vapalahti 2008). The available vaccines licensed for use in Europe contain highly purified 

formalin-inactivated European TBEV strains adsorbed to aluminium hydroxide (Barrett 2008). 

The field effectiveness of TBEV vaccines is > 95% (Heinz, Holzmann et al. 2007).  

Japanese encephalitis virus 

Japanese encephalitis virus is the leading recognized cause of viral encephalitis in eastern, 

southern and southeastern Asia and Papua New Guinea. 30,000-50,000 clinical cases per 

year are recorded and of these about 25-30% are fatal and about 50% result in neurological 

sequelae (Mackenzie, Gubler et al. 2004). Clinical disease varies from a nonspecific febrile 

illness to meningoencephalitis, aseptic meningitis or a polio-like acute flaccid paralysis 

(Solomon and Vaughn 2002). JE virus exists in a zoonotic transmittion cycle between 

mosquitoes and pigs and/or water birds. The transmission to humans occurs only incidentally 

by the bite of an infected mosquito and humans are dead-end hosts (Mackenzie, Gubler et 

al. 2004). Available vaccines for immunization against JEV are either killed vaccines 

containing formalin-inactivated JEV or a live-attenuated vaccine (JE SA 14-14-2) in China 

(Fischer, Casey et al. 2007).  
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2.3 Molecular biology of flaviviruses  

 Genome structure and translation 2.3.1

The flavivirus genome is a linear, single-stranded, positive-sense RNA of about 11 kb. The 

genome contains a single open reading frame (ORF) that is flanked by 5’ and 3’ noncoding 

regions (NCRs) (Figure 2A). The NCRs form specific secondary structures that play an 

important role in genome replication and translation (Lindenbach 2007).  

 

The genomic RNA is translated into an about 3400 amino acid long polyprotein which is co- 

and post-translationally processed by a combination of viral and host proteases. It gives rise 

to ten viral proteins. The N-terminal part contains the structural proteins followed by seven 

non-structural proteins. The capsid (C), the precursor of membrane glycoprotein (prM) and 

the envelope (E), form the virus particle. The non-structural proteins, NS1, NS2A, NS2B, 

NS3, NS4A, NS4B, and NS5, are essential for replication of the viral genome (Lindenbach 

2007). 

 

During translation of the polyprotein, the viral proteins are translocated and anchored in the 

endoplasmatic reticulum (ER). The topology of viral surface proteins – with respect to the 

endoplasmatic reticulum – is defined by stop-transfer and signal sequences.  

The capsid protein has a signal sequence at the carboxy-terminus, which is responsible for 

recruiting prM into the ER lumen. The prM protein is anchored in the ER membrane by two 

transmembrane helices, whereof the second serves as a signal sequence for the E protein 

and an ER-retention signal (Mukhopadhyay, Kuhn et al. 2005). The E Protein is anchored as 

well in the ER membrane by two transmembrane helices, whereof the second segment is an 

internal signal sequence for NS1. The E/NS1 junction is cleaved by a host signal peptidase 

resulting in the release of NS1 into the lumen of the ER (Lindenbach 2007). The topology of 

the viral structural proteins and the cleavage sites for the proteases are shown in Figure 2B. 
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Figure 2: Flavivirus genome structure and membrane topology of the viral 

proteins 

(A) Schematic of the TBEV genome: The TBEV genome consists of a linear, positive-sense RNA with 

a single open reading frame (ORF). The genome encodes 10 proteins: The structural proteins in the 

order C, prM/M and E, followed by seven non-structural proteins in the order NS1, NS2A, NS2B, NS3, 

NS4A, NS4B, and NS5. Figure adapted from (Stiasny and Heinz 2006). 

(B) Membrane topology of the viral proteins with respect to the endoplasmatic reticulum membrane 

(grey). The cleavage sites of viral and host derived proteases are indicated by arrows. The viral 

proteins are shown in different colors. The transmembrane domains of the viral proteins are displayed 

as cylinders. Figure adapted from (Umareddy, Pluquet et al. 2007). 

 Flavivirus particles 2.3.2

Flaviviruses are small lipid-enveloped viruses. The nucleocapsid consists of the genomic 

RNA surrounded by multiple copies of the capsid protein (C). It is surrounded by a lipid 

bilayer derived from the endoplasmic reticulum of the host cell. Two membrane-anchored 

proteins, envelope (E) and membrane (M), cover the virion surface (Lindenbach 2007). 

Virions are assembled as immature particles, displaying heterodimers of the precursor form 

of M (prM) and E on their surface (Figure 3). During maturation, the pr peptide of the prM 

protein is proteolytically cleaved, which leads to structural rearrangements on the viral 

surface. In mature viral particles, the surface is smooth and completely covered by tightly 

interacting E homodimers that are oriented parallel to the virus surface (Figure 3).  
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Figure 3: Schematic illustration of immature and mature flavivirus particles 

Immature virion with prM and E heterodimers (left); mature form after proteolytic cleavage of prM 

during maturation with M proteins and E homodimers (right). Figure adapted from (Stiasny and Heinz 

2006). 

 

 Structural proteins 2.3.3

2.3.3.1  Capsid protein 

The capsid protein (C) is the smallest flavivirus structural protein with a size of 12-14 kDa, 

playing an essential role in virus assembly and encapsidation of the viral genome 

(Mukhopadhyay, Kuhn et al. 2005). It contains a number of basic residues, accumulated at 

the C- and N-termini, and an internal hydrophobic region.  

The C protein monomer contains four alpha helices that are linked by short loops. Two 

capsid protein monomers build a compact dimer. For the assembly of the nucleocapsid, 

positively charged residues of the C protein bind to the negatively charged RNA and the 

hydrophobic residues interact with the viral membrane (Lindenbach 2007). 

 

2.3.3.2  Membrane Glycoprotein 

The membrane precursor of M (prM) is about 26 kDa and contains up to three N-linked 

glycosylation sites and six conserved cysteins, which form disulfide bridges (Nowak, Farber 

et al. 1989; Chambers, Hahn et al. 1990). The two transmembrane domains consist of two 

antiparallel coiled coils, which anchor the prM protein in the host-derived membrane (Zhang, 

Chipman et al. 2003).  
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PrM acts as a chaperone for the E protein folding and is involved in the formation of prM-E 

heterodimers in immature particles (Allison, Stadler et al. 1995; Lorenz, Allison et al. 2002). 

The main function of prM is the prevention of low-pH-induced rearrangements of the fusion 

protein E, that would lead to premature fusion during exocytosis (see 2.2.6) (Stadler, Allison 

et al. 1997; Lindenbach 2007). 

Particle maturation occurs in the trans-Golgi-network (TGN) where the low pH induces 

conformational changes in the prM/E glycoproteins complexes leading to the exposure of the 

furin cleavage site (Stadler, Allison et al. 1997). After secretion of the virus into the 

extracellular space, the neutral pH triggers the release of the pr part resulting in mature 

particles (Yu, Zhang et al. 2008).  

The mature M protein is the smaller part of the prM original protein and consists of only 75 

amino acids. Whether it has a specific function still remains elusive (Mukhopadhyay, Kuhn et 

al. 2005). 

 

2.3.3.3  Envelope Glycoprotein 

The flavivirus envelope protein E, a class II viral fusion protein (53 kDa), mediates receptor 

binding and membrane fusion (Kielian 2006; Stiasny and Heinz 2006). It contains 12 

conserved cysteins that form six disulfide bonds (Nowak 1987). On mature virions the E 

protein is arranged in head-to-tail homodimers that are oriented parallel to the viral 

membrane. 
 

Each E monomer is composed of the E protein ectodomain, the stem region, and the 

membrane anchor (Zhang, Chipman et al. 2003) (Figure 4B). 
 

The atomic structures of the ectodomains (soluble E, sE) of several flaviviruses have been 

determined (Rey, Heinz et al. 1995; Modis, Ogata et al. 2003; Zhang, Zhang et al. 2004; 

Modis, Ogata et al. 2005; Kanai, Kar et al. 2006; Nybakken, Nelson et al. 2006).  

The E ectodomain is organized in three domains (DI, DII, and DIII) and is shown in Figure 

4A: the central domain I forms a β-barrel, the elongated domain II is responsible for 

dimerisation, and domain III, which maintains an immunoglobulin-like fold, is involved in 

receptor binding (Lindenbach 2007). The three domains are connected with flexible junctions 

(Modis, Ogata et al. 2003; Zhang, Zhang et al. 2004) that enable the E protein to undergo 

structural rearrangements.  

Domain II of the E protein contains a hydrophobic highly conserved sequence element at its 

tip, the fusion peptide (FP). The FP is of central importance for interactions with the host cell 

membranes during viral membrane fusion (Allison, Schalich et al. 2001).  
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The stem region contains two amphipathic α-helices (H1 and H2), which are arranged 

parallel to the outer leaflet and half-buried in the viral membrane (Zhang, Chipman et al. 

2003).  

 

 
 

Figure 4: Representations of flavivirus protein E in its pre-fusion conformation 

and conserved residues in the membrane anchor of E  

(A,B) Schematics of the full-length E dimer. Figure modified from (Kiermayr, Stiasny et al. 2009). (C,D) 

Ribbon diagrams of the TBEV protein E ectodomain. The stem and anchor regions are shown 

schematically as cylinders. Color codes: DI, red; DII, yellow; DIII, blue; FP, orange; helices of the 

stem, purple; C-terminal transmembrane helices, green; lipid membrane, grey. Figure modified from 

(Stiasny and Heinz 2006). (E) Alignment of the amino acid sequences of the transmembrane regions 

of several flaviviruses (TBEV numbering): TBEV (Gene bank accession number U27495), Powassan 

virus (POWV) (Gene bank accession number FJ687432), DENV type 2 (Gene bank accession number 

NC_001474), DENV type 3 (Gene bank accession number FJ850055), DENV type 4 (Gene bank 

accession number AY618990), JEV (EF571853), St. Louis encephalitis virus (SLV) (Gene bank 

accession number M16614), West Nile virus (WNV) (Gene bank accession number DQ211652), 

Yellow fever virus (YFV) (Gene bank accession number AY640589). The predicted TM1 and TM2 

helices are indicated at the bottom. Figure modified from (Fritz, Blazevic et al. 2011) 
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The E protein is anchored in the viral membrane by two transmembrane helices (TM1 and 

TM2) (Figure 4B). These transmembrane domains (TMDs) result from the polyprotein 

processing (Figure 2B) and form an antiparallel hairpin structure (Zhang, Chipman et al. 

2003). The two TMs are separated by a linker of four to six amino acids (mostly polar) that 

are located at the cytoplasmic side of the membrane. The TMDs among flaviviruses show 

low sequence conservation (Figure 4E). The structure of the double membrane anchor is 

unique for the flavivirus fusion protein and not found in other viral fusion proteins. Its specific 

functional role was recently investigated in a study by Fritz et al. which showed that TM 

interactions contribute to the stability of the E protein post-fusion conformation and to the 

completion of the fusion process (Fritz, Blazevic et al. 2011). 

 

 Surface structure of flaviviruses 2.3.4

Mature virions are 50 nm in diameter and have a spikeless and smooth surface. Cryo-

electronmicroscopy of mature flavivirus particles revealed an icosahedral particle 

organization (Mukhopadhyay, Kuhn et al. 2005). At the viral surface 180 E monomers are 

arranged in a herringbone-like pattern consisting of 30 rafts of three parallel E dimers (Kuhn, 

Zhang et al. 2002; Mukhopadhyay, Kim et al. 2003) (Figure 5B). 
 

Immature virions have a diameter of about 60 nm (Lindenbach 2007). Newly synthesized 

virus particles contain 60 trimeric spikes on their virus surface. Each spike consists of 3 E 

monomers surrounding a prM trimer (Zhang, Zhang et al. 2004; Mukhopadhyay, Kuhn et al. 

2005) (Figure 5A). 
 

Recent studies report that not only completely mature and completely immature but also 

partially mature/immature particles can be secreted from flavivirus infected cells (Cherrier, 

Kaufmann et al. 2009; Junjhon, Edwards et al. 2010).  

 

 Subviral particles 2.3.5

In addition to the secretion of whole virus particles, smaller, non-infectious subviral particles 

with a diameter of 30 nm can be released from flavivirus infected cells (Stollar 1969; Smith, 

Brandt et al. 1970) (Figure 5C). These subviral particles are called slowly sedimenting 

hemagglutinin (SHA). SHA particles contain only the E and prM/M proteins anchored in a 

lipid membrane, but lack the nucleocapsid (Lindenbach 2007). Such particles can be 

produced in recombinant form by the coexpression of the viral surface proteins prM and E in 

mammalian cells (Allison, Stadler et al. 1995; Schalich, Allison et al. 1996). Cryo-

electronmicroscopy studies using recombinant subviral particles (RSPs) of TBEV revealed a 
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T=1 icosahedral symmetry of 30 E dimers at their surface (Ferlenghi, Clarke et al. 2001). 

Although the particles differ in their architecture compared to the mature virus, RSPs share 

similar properties with respect to fusion activity (Schalich, Allison et al. 1996; Corver, Ortiz et 

al. 2000; Mukhopadhyay, Kuhn et al. 2005). These particles have been established as a 

model system to study fusion of flaviviruses (Allison, Schalich et al. 2001; Fritz, Stiasny et al. 

2008).  

 

 

Figure 5: Flavivirus particles and recombinant subviral particle  
Structures of (A) immature, (B) mature viral particles and (C) mature RSP based on cryo-

electronmicroscopy reconstructions. (A) One trimeric E protein spike of an immature particle is 

highlighted. (B) One raft, containing 3 parallel E dimers, is highlighted. Figure (A) and (B) adapted 

from (Zhang, Zhang et al. 2004; Mukhopadhyay, Kuhn et al. 2005). Figure (C) adapted from 

(Ferlenghi, Clarke et al. 2001; Kiermayr, Stiasny et al. 2009). Color codes: DI, red; DII, yellow; DIII, 

blue; for figure A: FP, green; for figure B and C: FP, orange. 
 

 Flavivirus life cycle 2.3.6

Flaviviruses attach and bind to poorly characterized receptor molecules on the cell surface. 

For the initial attachment of several flavivirus to host cells highly sulfated glycosaminoglycans 

(e.g. heparin sulfate) have been discussed to play an important role (Kroschewski, Allison et 

al. 2003). The virus is internalized into the target cell by receptor-mediated, clathrin-

dependent endocytosis and ends up in the endosome (Kaufmann and Rossmann 2010). The 

acidic pH of the endosome induces conformational changes in the E protein that mediate 

fusion of the viral and endosomal membrane. This finally leads to the release of the viral 

RNA genome into the cytoplasm (Stiasny and Heinz 2006). The viral plus-stranded RNA is 

directly translated into a single viral polyprotein which is co- and post-translationally cleaved 

to give rise to the viral proteins (Lindenbach 2007). NS3 and NS5 form the replication 

complex, together with other viral and host proteins. The replication complex synthesizes a 

negative-sense RNA that acts as a template for the synthesis of genomic plus-stranded RNA 

(Lindenbach 2007).  
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The newly synthesized C protein, located at the cytoplasmic side of the ER, recruits viral 

genomic progeny RNA. The assembly of viral particles occurs at the ER membrane. The 

budding into the ER leads to a host-derived lipid envelope of the virus and the formation of 

immature viral particles (Lindenbach 2007). Protease- and pH-dependent maturation of the 

viral particle takes place during the transit from the ER through the trans-Golgi-network to the 

cell surface (Stadler, Allison et al. 1997; Elshuber, Allison et al. 2003; Yu, Zhang et al. 2008). 

Maturation is responsible for significant E protein reorganization and furin cleavage of prM 

(Stadler, Allison et al. 1997). After the furin cleavage of prM, the pr fragment stays 

associated with E (Yu, Zhang et al. 2008) and prevents premature fusion in the acidic trans-

Golgi-network during exocytosis (Stadler, Allison et al. 1997). Upon secretion into the 

extracellular space, the removal of pr is triggered by neutral pH (Yu, Zhang et al. 2008) 

leading to mature virus particles ready for a new infection (Mukhopadhyay, Kuhn et al. 2005). 

 

 
Figure 6: Flavivirus life cycle 

Flavivirus entry occurs by receptor mediated endocytosis. The low pH of the endosomes induces 

structural changes in the E protein leading to fusion and the release of the nucleocapsid into the 

cytoplasm. Translation and replication of the viral genome occur in the cytoplasm. Viral assembly 

takes place in the ER. Newly assembled immature virions are transported through the exocytic 

pathway where maturation cleavage occurs. Mature viral and slowly sedimenting hemagglutinin (SHA) 

particles are released from infected cells. ER, endoplasmatic reticulum; TGN, trans-Golgi-network. 

Figure adapted from (Stiasny and Heinz 2006). 
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2.4 Membrane fusion 

Membrane fusion is a fundamental biological process leading to the merger of two separate 

lipid membranes into a single bilayer (Martens and McMahon 2008). The entry of enveloped 

viruses into host cells involves membrane fusion and is mediated by viral fusion proteins 

(Harrison 2008; White, Delos et al. 2008). 
 

Fusion takes place either directly at the plasmamembrane or at the membrane of an 

intracellular compartment, e.g. endosomes, after endocytotic uptake (Harrison 2008). Fusion 

proteins are anchored in the viral membrane and primed to undergo structural changes that 

drive fusion and provide the energy for the fusion process (Stiasny and Heinz 2006; Harrison 

2008). These rearrangements are activated by specific triggers and ensure that the fusion 

process occurs at the right time and the right place of the viral life cycle. Different trigger 

mechanisms have been described: 1. interactions with receptors (e.g. human 

immunodeficiency virus, HIV), 2. low pH in the endosomes leading to protonation of fusion 

relevant residues (e.g. influenza viruses, flaviviruses), and 3. a combination of receptor 

interaction and low pH (some retroviruses) (White, Delos et al. 2008). 

 

 Classification of membrane fusion proteins 2.4.1

Viral surface fusion proteins can be divided into 3 structural classes (Weissenhorn, Hinz et 

al. 2007; White, Delos et al. 2008).  
 

− Class I fusion proteins are mainly composed of α-helical coiled coil structures and carry 

N-terminal or N-proximal located FPs. Orthomyxo-, paramyxo-, retro-, filo-, and 

coronaviruses are representatives for class I fusion proteins (Schibli and Weissenhorn 

2004). These proteins share analogies to SNARE proteins involved in cellular fusion 

processes (Sapir, Avinoam et al. 2008). 

− Class II fusion proteins are largely composed of β-sheets and possess internal FPs. 

They are found in alpha- und flaviviruses (Kielian 2006; Stiasny and Heinz 2006). 

− Class III fusion proteins contain mixed secondary structures and share features with 

class I and II fusion proteins. Fusion proteins of rhabdo-, herpes-, and baculoviruses 

belong to this class (Backovic and Jardetzky 2009). 
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 Flavivirus membrane fusion 2.4.2

2.4.2.1 Pre- and post-fusion structure of the E protein 

In the pre-fusion conformation (described in section 2.3.3.3), two protein E monomers form 

head-to-tail metastable homodimers which are orientated parallel to the viral membrane and 

slightly curved (Figure 7A). Within the pre-fusion dimer, the fusion loop is buried in a 

hydrophobic pocket formed by DI and DIII of the second subunit (Figure 7B) (Rey, Heinz et 

al. 1995; Modis, Ogata et al. 2003). 

 

 
 

Figure 7: Ribbon diagrams and schematics of TBEV proteins E in their pre- and 

post-fusion conformations. 

Side views of the sE (A) and full-length E (B) dimer in their pre-fusion conformation. Side view of the 

sE (C) and full-length (D) E post-fusion trimer. The position of the transmembrane domains of the 

membrane anchor and the helices of the stem are based on the study of (Bressanelli, Stiasny et al. 

2004). Color code corresponds to Figure 3. Figure adapted from (Stiasny and Heinz 2006) 

 

During the low-pH-induced fusion process the E protein undergoes a transition from the pre- 

(Figure 7A, B) to the post-fusion structure (Figure 7C, D). This transition causes an 

irreversible reorganization of the molecule from a horizontal dimer into a vertically oriented 

trimer (Bressanelli, Stiasny et al. 2004; Modis, Ogata et al. 2004; Nayak, Dessau et al. 2009). 

In the post-fusion conformation, the monomeric subunits are oriented parallel to each other. 

DII is slightly reoriented due to a 20° rotation at the DI-II junction. DIII of E relocates to the 
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side of DI and points towards DII (Figure 8). This arrangement causes a juxtaposition of the 

fusion loops and the TMDs on the same side of the molecule (Figure 7D). It is predicted that 

two neighboring DIIs of the E trimer generates a hydrophobic groove along their interface. 

The stem regions are supposed to bind this hydrophobic area (Bressanelli, Stiasny et al. 

2004) (Figure 7D).  

 

 
Figure 8: Relocation of DIII of TBEV protein E 

Ribbon diagram of the sE protein (A) in their pre-fusion conformation and (B) in their post-fusion 

conformation. The low-pH-induced movements of DII (yellow arrow) and DIII (blue arrow) are indicated 

by curved arrows. (B) The position of the C-terminal residue of the crystallized sE fragment is 

indicated by an open star. Figure adapted from (Bressanelli, Stiasny et al. 2004). 

 

2.4.2.2  Fusion mechanism 

Based on the crystal structure of flaviviral sE proteins in their pre- and post-fusion 

conformation (Rey, Heinz et al. 1995; Modis, Ogata et al. 2003; Bressanelli, Stiasny et al. 

2004; Modis, Ogata et al. 2004; Zhang, Zhang et al. 2004; Modis, Ogata et al. 2005; Kanai, 

Kar et al. 2006; Nybakken, Nelson et al. 2006; Nayak, Dessau et al. 2009) and biochemical 

studies, a model for flavivirus membrane fusion has been established (Figure 9). The 

intermediate stages are hypothetical only and need further investigations. 
 

Flaviviruses are taken up by receptor-mediated endocytosis. The internalized virus ends up 

in endosomes where the acidic pH-dependent membrane fusion occurs.  

Acidic-pH-induces first a dissociation of the metastable pre-fusion E homodimers into 

monomers (Stiasny, Kossl et al. 2007) (Figure 9A), thereby leading to the exposure of the FP 

loops at the tip of DII (Stiasny, Allison et al. 2002). The fusion peptides insert into the target 
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membrane (Figure 9B) followed by the trimerization of E and relocation of DIII to the side of 

the molecule (Stiasny and Heinz 2006) (Figure 9C). This rearrangement is possible by 

flexible junctions between the domains (Stiasny and Heinz 2006).  

Fusion proceeds by the zippering of the stem along the body of the trimer (Figure 9D). The 

formation of the hairpin-like post-fusion trimer with the fusion peptides and the membrane 

anchor at the same side of the molecule finally leads to the opening of the fusion pore 

(Figure 9E). 
 

The transition from the metastable E homodimers into more stable E homotrimers provides 

the energy to overcome the kinetic barrier for merging the two membranes (Stiasny and 

Heinz 2006; Harrison 2008). 

 

 
 

Figure 9: Proposed flavivirus fusion model 

(A) Side view of a metastable E homodimer at the surface of a mature flavivirus particle at neutral pH.  

(B) Acidic-pH-induced dissociation of the E homodimer and exposure of the FPs. The FPs are able to 

interact with the target membrane.  

(C-D) E trimerization, DIII relocation and the zippering of the stem along the E trimer. 

(D) Generation of a hemifusion intermediate in which only the outer leaflets of the host and viral 

membranes are fused.  

(E) Formation of the E protein post-fusion structure and opening of a fusion pore.  

Color code for the E protein as described in Figure 3; target membrane, grey; viral membrane, orange. 

Figure adapted from (Fritz, Blazevic et al. 2011). 
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2.4.2.3  DI-DIII interface of the E protein 

In the metastable pre-fusion E protein, the fusion peptide at the tip of DII is buried at the 

DI/DIII interface of the second monomer (Stiasny and Heinz 2006) (Figure 10). There are two 

conserved histidines (H146, and H323) and one conserved salt bridge (E373-R9) which are 

important for stabilizing this interface (Bressanelli, Stiasny et al. 2004; Kampmann, Mueller et 

al. 2006; Fritz, Stiasny et al. 2008). The destabilization of these contact residues is 

necessary for the release of the FP, as well as the relocation of DIII during the 

conformational changes of E and thus for the entire fusion process (Bressanelli, Stiasny et al. 

2004).  
 

Since the pH threshold of flavivirus membrane fusion is around 6.6 (Gollins and Porterfield 

1986; Corver, Ortiz et al. 2000; Moesker, Rodenhuis-Zybert et al. 2010) and the pKa of 

histidine is between 6 and 7, histidine residues have been proposed to act as low-pH sensor 

(Bressanelli, Stiasny et al. 2004; Stevens, Corper et al. 2004; Kampmann, Mueller et al. 

2006; Kanai, Kar et al. 2006; Roussel, Lescar et al. 2006; Mueller, Kampmann et al. 2008; 

Roche, Albertini et al. 2008; Qin, Zheng et al. 2009). At neutral pH, histidine (H) residues are 

uncharged and become protonated and positively charged at the acidic pH in the 

endosomes.  
 

The 5 histidine residues conserved among all flavivirus proteins E (H146, H248, H287, H323 

and H438 in TBEV) were analyzed with mutated RSPs of TBEV E (Fritz, Stiasny et al. 2008) 

(Figure 10). Two of these resides are located at the domain I/III interface (H146 and H323), 

H248 is located in DII, H287 in DI and H438 in the stem. Single substitutions of H248, H287 

and H438 had no effect on fusion, but replacing H323 by alanine (H323A) led to a dramatic 

reduction of fusion activity with liposomes (Fritz, Stiasny et al. 2008). Further investigations 

identified that early steps of membrane fusion (dissociation of the protein E dimer, FP 

exposure and initial membrane interactions) were impaired in the H323A mutant. In this 

study it was not possible to investigate the role of H146 because its mutation abolished RSP 

production (Fritz, Stiasny et al. 2008). 
 

A study using the flavivirus system of WN and Langat virus demonstrated that histidine 

mutants (corresponding to H146 and H323 of TBEV) still produced infectious virions (Nelson, 

Poddar et al. 2009), but neither fusion activities nor specific infectivities of these mutants 

have been determined in this study. 
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Figure 10: Intramolecular interactions at the DI/DIII interface  

Ribbon diagram of the TBEV sE dimer and the details of the interface between DI and DIII in the pre-

fusion conformation. H146, H323 and the salt bridge between E373 and R9 are highlighted.  

 

2.4.2.4  Stem-anchor region of the E protein 

Although the crystal structure of soluble E proteins lack the stem-anchor region, improved 

techniques for reconstructing cryo-electronmicroscopy images made it possible to determine 

these regions in the native conformation (Zhang, Chipman et al. 2003). In the pre-fusion 

protein E, the two amphipathic helices of the stem lie flat on the viral membrane and are 

partially buried in the outer lipid leaflet by hydrophobic interactions while the TM anchor form 

an antiparallel hairpin structure (Zhang, Chipman et al. 2003). 
 

Although no structural details are available for the stem-anchor region in the post-fusion 

trimer, the orientation of the C-terminus of sE in its post-fusion conformation and modeling 

studies, however, indicate that the stem follows a groove between the domains II alongside 

the body of the trimer (Bressanelli, Stiasny et al. 2004). The high hydrophobicity of the 

stretch of amino acids N-terminal to the TM domains could be involved in interactions with 

the FPs and/or membranes during fusion.  
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Biochemical studies implicated that the stem acts as a stabilizing feature for the post-fusion 

trimer (Stiasny, Kossl et al. 2005). In the absence of target membranes, the stem helix 1 was 

essential for trimerization of the E protein (Allison, Stiasny et al. 1999). 
 

The E protein is the only known viral fusion protein carrying a double membrane anchor 

which is composed of two antiparallel transmembrane helices (TM1 and TM2) with different 

functions in polyprotein processing. TM1 acts as a stop-transfer sequence and TM2 as an 

internal signal sequence for the translocation of the first non-structural protein into the lumen 

of the ER (Lindenbach 2007).  

All other fusion proteins (class I, III and the class II of alphaviruses) have a single 

transmembrane domain. These transmembrane domains anchor the proteins in the viral 

membrane and are followed by a cytoplasmic tail of varying lengths (White, Delos et al. 

2008).  

The unique organization of the C-terminal part of flavivirus fusion protein E has not been 

ascribed a specific functional role in the fusion mechanism. Using the TBEV RSP model 

system Fritz and colleagues addressed the question whether the double membrane anchor 

of the E protein is necessary for flavivirus membrane fusion or is merely a remnant of 

polyprotein processing. TM2 helix was shown to be completely dispensable for the early 

steps of membrane fusion, but was required for E trimer stability and efficient fusion. The 

data in this study provided evidence, that both intra- and inter-trimeric interactions mediated 

by the TM helices of E are involved in flavivirus membrane fusion (Fritz, Blazevic et al. 2011). 
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3 Objectives 
 

The overall goal of this diploma thesis was the generation and characterization of TBEV 

protein E mutants that allow the investigation of the flavivirus fusion process in more detail. 

Specifically, two aspects were investigated in an infectious system: the functional role of 1. 

the E protein membrane anchor and 2. conserved residues at the DI/DIII interface of the E 

protein. 

 

3.1 Analysis of the functional relevance of the transmembrane hairpin of 

flavivirus in membrane fusion 

The flavivirus envelope protein E is the only known viral fusion protein with a double 

membrane anchor, consisting of two antiparallel transmembrane helices (TM1 and TM2) 

(Figure 2 and 4). The possible role of this peculiar hairpin in membrane fusion has been 

addressed by studying TM mutants of tick-borne encephalitis virus (TBEV) recombinant 

subviral particles (RSPs). The membrane anchor of E was modified by deleting the TM2 

helix, replacing both TM domains by those of a heterologous flavivirus (Japanese 

encephalitis virus, JEV), and shuffling the TM domains between TBEV and JEV. Functional 

analysis of these mutant RSPs demonstrated that the TM2 helix was completely dispensable 

for the early steps of membrane fusion but essential for later steps. The data obtained with 

RSPs not only provided evidence for a role of the TM helices in intra-trimer interactions but 

also indicated their participation in inter-trimer interactions that are both necessary for 

efficient fusion.  

To assess the significance of the observations made with RSP TM mutants in the context of 

infectious virions, heterologous and chimeric membrane anchors (JE TM1-JE TM2, TBE 

TM1-JE TM2, and JE TM1-TBE TM2) were engineered into an infectious cDNA clone of 

TBEV for this thesis. The obtained virus mutants were characterized with respect to their 

infectious properties. Since the TM2 element is indispensable for polyprotein translation and 

thus for the generation of infectious virions, a ΔTM2 mutant could not be analyzed. 
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3.2 Investigation of key residues of the E protein involved in triggering 

membrane fusion 

Using RSPs of TBEV, the mutational analysis of histidines conserved among all flavivirus E 

proteins provided evidence that H323 is an important residue in the initiation of the low-pH-

dependent multistep fusion process. H323 is located at the domain I/III interface which 

contains a network of interactions between the two domains within one E monomer and a 

salt bridge between R9 (domain I, DI) and E373 (domain III, DIII). The destabilization of the 

DI/DIII interface by protonation is essential for the structural changes of protein E and thus 

for the entire fusion process. 

In contrast to these results, the substitutions of histidines – in the context of single round 

infectious particles of West Nile and Langat virus – still allowed pH-dependent infection of 

cells. Some of the identified mutants were less infectious than wild type, but specific 

infectivities were not determined and the effect of these mutations on fusion was not 

investigated. 

Further experiments – both in vitro fusion experiments and standardized infectivity assays – 

are needed to clarify this issue. Therefore – as the second part of the thesis – the two 

conserved histidines at the DI/DIII interface (H146 which could not be analyzed in the context 

of RSPs, H323) and E373 were mutated in the infectious cDNA clone of TBEV. The obtained 

virus mutants were then characterized with respect to their infectious properties.  
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4 Materials and Methods 

4.1 Materials 

 Cells 4.1.1

Baby hamster kidney cells - BHK-21 cells (ATCC no. CCL-10TM) - were grown in Eagle's 

minimum essential medium (Sigma-Aldrich) containing 5% fetal calf serum (FCS), 1% 

glutamine, and 0.5% neomycine (growth medium) at 37°C and 5% CO2. The maintenance 

medium for BHK-21 cells was composed of Eagle's minimum essential medium (Sigma-

Aldrich) containing 1% fetal calf serum (FCS), 1% glutamine, 0.5% neomycine, and 15 mM 

HEPES, pH 7.4. 

 Viruses 4.1.2

In all experiments, the European subtype TBEV strain Neudoerfl (Mandl, Heinz et al. 1988; 

Mandl, Heinz et al. 1989) (GenBank accession no. U27495) was used.  

For the cloning of TMD mutants the Japanese encephalitis (JE) virus strain Nakayama 

(GenBank accession no.  EF571853) was used.  

 Plasmids 4.1.3

The pTNd/c plasmid contains the complete genomic cDNA of the TBE virus strain Neudoerfl 

(sequence 1- 11141 Nt) inserted into the vector pBR322 under the control of a T7 

transcription promoter (Mandl, Ecker et al. 1997).  
 

The pTNd/5’ plasmid contains the 5’ terminal one third of TBE virus strain Neudoerfl cDNA 

(sequence 1-3155 Nt) inserted into the vector pBR322 under the control of a T7 transcription 

promoter (Mandl, Ecker et al. 1997).  

 

4.2 Methods 

 Cloning of transmembrane hairpin mutants  4.2.1

Full-length cDNA clones containing modified E membrane anchors were generated by the 

substitution of the original anchor region with chemically synthesized DNA fragments 

(GeneArt). The synthesized constructs consisted of heterologous membrane anchor of JEV 

(JE1-JE2) or shuffled membrane anchors (JE1-TBE2, TBE1-JE2). These synthesized DNA 

fragments were first amplified and then introduced into the full-length cDNA clone pTNd/c by 

taking advantage of unique restriction sites (SnaBI nucleotide (nt) position 1880 and ClaI nt 

position 3155).  
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 Cloning of DI/DIII interface mutants  4.2.2

Mutations at the codon positions 146, 323, or 373 of the E protein gene were first introduced 

into the pTNd/5’ plasmid using the site-directed mutagenesis kit Gene Tailor (Invitrogen). The 

sequences of the primers (VBC Biotech) used for the mutagenesis PCR are listed in Table 1.  
 

Table 1: Oligonucleotide primers for mutagenesis PCR 

Primer Orientation Sequence (5’ to 3’) Position 
H146A sense CG GTC AAA GTC GAA CCA GCG ACG GGA GAC T 1391-1420 
H146N sense CG GTC AAA GTC GAA CCA AAC ACG GGA GAC T 1391-1420 
H146 rev antisense TGG TTC GAC TTT GAC CGT GTA CAC TAT TTT 1378-1407 
H323A sense GA GCT CCA ACA GAC AGT GGG GCA GAT A 1919-1945 
H323A rev antisense CCC ACT GTC TGT TGG AGC TCT CTT CCA TG 1910-1938 
E373A sense GGA GGT GGC TTC ATA GCT ATG CAG CTG CC 2047-2103 
E373N sense GGA GGT GGC TTC ATA AAT ATG CAG CTG CC 2047-2103 
E373 rev antisense TAT GAA GCC ACC TCC ATT GTT TTC AAT TGT 2059-2088 

Bold letters indicate mutated nucleotides. 
Position numbers of matching nucleotides corresponding to the wild type virus genome sequence of 
TBEV Neudoerfl strain (GenBank accession no. U27495). 
 

These substitutions were then transferred into the full-length cDNA clone pTNd/c (Mandl, 

Ecker et al. 1997) by taking advantage of two unique restriction sites. For the full-length 

cDNA clones containing a mutation at codon position 146 of the E protein the restriction 

enzymes SalI (site located upstream of the TBE virus 5’ end) and SnaBI (nt position 1880) 

were used. The full-length cDNA clones with mutations at codon position 323 and 373 of the 

E protein were generated by cleavage with SnaBI (nt position 1880) and ClaI (nt position 

3155).  

For the generation of the H146A-H323A full-length clone, the pTNd/5’ fragment carrying 

H146A mutation was cloned by cleavage with SnaBI and ClaI into the pTNd/c clone 

containing the H323A mutation. 

All plasmids were amplified in E. coli strain HB101 and purified using commercially available 

systems (Qiagen) according to manufacturer’s protocols.  

 

Table 2: Restriction enzymes for generation of full-length cDNA clones. 

Mutation  restriction enzymes 
H146A SalI and SnaBI 
H146N SalI and SnaBI 
H323A SnaBI and ClaI 
H146A-H323A SnaBI and ClaI 
E373A SnaBI and ClaI 
E373N SnaBI and ClaI 
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 Agarose gel electrophoresis 4.2.3

Separation of DNA fragments was performed by agarose gel electrophoresis. 5x DNA 

loading buffer was added to DNA samples and loaded on a 1% (wt/v) agarose gel. For size 

determination of DNA fragments, length marker λ phage DNA digested with HindIII was 

used. Separation of DNA fragments according to their size was performed by application of a 

constant voltage of 110 V for 30-40 minutes. The agarose gel contained ethidium bromide 

(2.5 µg/ml) to visualize the DNA fragments under ultraviolet light (320 nm). 

 

 DNA sequencing 4.2.4

Sequence analysis of DNA fragments was performed using the Big Dye Terminator Cycle 

Sequencing Kit from Applied Biosystems according to the manufacturer’s instructions. The 

sequence reaction was carried out in a thermal cycler (Perkin Elmer) using the following 

program: 
 

 initiation denaturation annealing extension hold 
temperature 96°C 96°C 50°C 60°C 4°C 
time 20 sec 30 sec 15 sec 4 min hold 
cycle 1 cycle  35 cycles  1 cycle 
 

Amplified DNA products were purified by centrifugation through swelled Sephadex. The 

sequence of the DNA samples were analysed with an automatical capillary sequencer 

(Applied Biosystems, GA 3100) by employing fluorescence-labeled dideoxynucleotides as 

described in (Sanger, Nicklen et al. 1977). Analysed sequences were aligned using the 

software DNAStar (DNAStar, Inc.). 

 

 In vitro RNA transcription 4.2.5

In vitro transcription of engineered genomic full-length RNA was performed with the T7 RNA 

polymerase kit (T7 MEGAscript transcription kit from Ambion) as reported previously (Mandl, 

Ecker et al. 1997; Kofler, Heinz et al. 2002; Elshuber, Allison et al. 2003). The template DNA 

was degraded by incubation with DNaseI for 15 minutes at 37°C, and the RNA was purified 

using an RNeasy Mini kit (Qiagen). The correct length and integrity of the synthesized RNA 

was verified by staining with radiant red and checked on a formalin-denaturing 1% agarose 

gel. RNA concentration was quantified by spectrophotometric measurement (Mandl, Ecker et 

al. 1997; Taucher, Berger et al. 2010). 
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 Transfection of BHK-21 cells by electroporation 4.2.6

A subconfluent monolayer of BHK-21 cells grown in a 175 cm2 tissue flask was transfected 

with equal amounts of viral full-length RNA as described previously (Mandl, Ecker et al. 

1997). In brief, BHK-21 cell aliquots resuspended in ice-cold PBS were electroporated with in 

vitro transcribed RNA (7.8 µg). The electroporation was performed by two pulses using a Bio-

Rad Gene Pulser (settings: 1.8 kV; 25 µF, 200 Ω) resulting in an optimal time constant of 0.8 

milliseconds. The electroporated cells were seeded into a 80 cm2 tissue flask containing 10 

ml growth medium. The growth medium was replaced about 6 hours post transfection and 

the concentration of FCS was reduced to 1%.  

Cell culture supernatants were harvested 48 hours post-transfection and the supernatants 

were cleared from cell debris and insoluble material by centrifugation at 10,000 rpm for 20 

minutes and 4°C (Beckman JA 14 rotor). The clarified cell culture supernatant, containing the 

recombinant virions, was stored at -80°C and used for further analysis.  

 Infection of BHK-21 cells 4.2.7

BHK-21 cells were seeded into 24-well plates (105 cells/well) containing glass cover slips and 

maintained overnight with growth medium. The growth medium was replaced, the cells were 

washed three times with minimal medium and 200 µl cell culture supernatant harvested after 

transfection or infection was added. After incubation for 45 minutes at 37°C and 5% CO2 the 

supernatant was removed and the cells were washed two times with minimal medium. 1 ml 

fresh minimal medium was added and incubated for 48-72 hours.  

The cell culture supernatants were harvested and cleared from cell debris and insoluble 

material by centrifugation at 10,000 rpm for 20 minutes at 4°C (Eppendorf, 5417R). The 

clarified cell culture supernatant, containing the virions, was stored at -80°C and used for 

further analysis or infections.  

 Viral RNA isolation from supernatant and cDNA synthesis 4.2.8

Supernatants derived from transfected and/or infected cells were incubated with 0.5% SDS, 

0.8 µg proteinase K (Roche), 40 U RNAse inhibitor (Boehringer Mannheim), 4 nM Tris (pH 

8.0) and 2 nM EDTA (pH 8.0) for 1 hour at 37°C. To isolate and purify viral RNA, 

phenol/chloroform extraction and ethanol precipitation were performed (Kandolf and 

Hofschneider 1985). Viral RNA was transcribed into cDNA by a commercially available kit 

(cDNA Synthesis Kit, Roche). The transcribed viral cDNA was extracted by 

phenol/chloroform purification and ethanol precipitation. 
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 Immunofluorescence staining 4.2.9

Transfected or infected BHK-21 cells were grown on glass cover slips. 24 hours post 

transfection or infection the cells were fixed with acetone/methanol (1:1) for 10 minutes at      

-20°C, air-dried and washed with phosphate-buffered saline (PBS). The cell monolayer was 

then incubated with a polyclonal rabbit anti-TBEV serum for 1 hour in a humid chamber at 

37°C. After washing with PBS, a fluorescein isothiocyanate-conjugated goat anti-rabbit IgG 

(H+L) (Jackson immune research laboratory) was added for 45 minutes in a humid chamber 

at 37°C. Finally, the second antibody was removed, dried and embedded in DePeX (Serva) 

on microscope slides. Visual inspection was performed with the Microphot-SA microscope 

from Nikon.  

 Quantitative TBEV protein E four-layer ELISA 4.2.10

MaxiSorp microtiter plates (96 well, Nunc) were coated with 50 µl polyclonal guinea pig anti-

TBEV immunoglobulin (2.5 µg/ml, carbonate buffer pH 9.6) for 48 hours at 4°C. The samples 

and the protein standard were denatured with sodium dodecyl sulfate (SDS) for 30 minutes 

at 65°C. Serial dilutions of the denatured samples and standard in ELISA buffer (PBS pH 7.4, 

with 2% Tween and 2% sheep serum) were transferred to the coated plates and incubated 

for 2 hours at 37°C in a humid chamber. After washing the plates four times with washing 

buffer (PBS pH 7.4 with 0.025% Tween) a polyclonal rabbit-anti TBEV serum was added, 

incubated for 1 hour at 37°C and then washed again. An anti-rabbit IgG peroxidase 

conjugate from donkey (Amersham) was used to visualize the amount of bound antigen by a 

reaction with the substrate ortho-phenyldiamine (Sigma-Aldrich). The reaction was stopped 

after 30 minutes by the addition of 2 N H2SO4. The absorbance was measured with a 

photometer (ELX 808) at the dual-wavelength 490/630 nm using the KC Junior data analysis 

software (both from BioTek) (Heinz, Stiasny et al. 1994). 

 Rate zonal gradient centrifugation of viral particles 4.2.11

Virus samples containing equal amounts of protein E were applied to 5-30% (wt/wt) 

continuous sucrose gradients in TAN buffer pH 8.0 (50 mM TEA, 100 mM NaCl). After 

centrifugation for 70 minutes at 38,000 rpm and 4°C (Beckman SW 40 rotor), fractions were 

collected by upward displacement with the BioComp Piston Gradient Fractionator (settings: 

speed 0.4, distance 4.0 and fraction 20). The E protein concentration in each fraction was 

quantified by an E protein specific four-layer SDS ELISA (4.2.10).  
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 RNA quantification by real-time PCR analysis 4.2.12

Isolation of viral RNA from the cell culture supernatant harvested 48 hours post transfection 

was performed using the RNeasy Mini Kit from Qiagen. Reverse transcription of isolated viral 

RNA was carried out with the iScript cDNA Synthesis Kit from Bio-Rad. The temperature 

profile of the reaction was: 5 minutes at 25°C, 30 minutes at 42°C, and 5 minutes at 85°C, 

followed by a hold at 4°C. An aliquote of the cDNA preparation was used for the 

quantification of viral RNA equivalents by real-time PCR. The TaqMan Universal PCR 

Mastermix (PE Applied Biosystems) and primers specific for part of the TBEV NS5 coding 

region were used for the real-time qPCR. Amplification and detection was performed using 

the ABI 7300 Real Time RCP System (PE Applied Biosystems).  
 

 Initiation 1 Initiation 2 denaturation annealing extension 
temperature 50°C 95°C 95°C 55°C 72°C 
time 3 min 10 min 15 sec 30 sec 31 sec 
cycle 1 cycle 1 cycle  45 cycles  
 

RNA was quantified using a standard curve prepared from a ten-fold dilution series of 

spectrophotometrically quantified, purified, in vitro-synthesized genomic full-length RNA 

(Kofler, Hoenninger et al. 2006; Schrauf, Schlick et al. 2008).  

 Focus formation assay 4.2.13

BHK-21 cells were seeded into 24-well plates (105 cells/well) and cultured in growth medium 

for 24 hours followed by washing with maintenance medium. Ten-fold serial dilutions of 

infectious supernatants were transferred to these cell monolayers and incubated for 4 hours 

at 37°C and 5% CO2. The supernatant was removed and 1 ml 3% carboxymethyl cellulose 

(CMC) in maintenance medium was added. The cells were further incubated for two days at 

37°C and 5% CO2. The CMC overlay was removed, the cells were washed three times with 

PBS (pH 7.4), fixed and permeabilised with acetone/methanol (1:1) for 10 minutes at -20°C. 

The fixed cells were blocked with PBS containing 5% sheep serum for 30 minutes at RT and 

incubated with polyclonal rabbit-anti TBEV serum in PBS (pH 7.4 with 0.2% Tween and 3% 

sheep serum) for 1 hour at 37°C. Antibody-labeled cells were detected with an anti-rabbit IgG 

alkaline phosphatase conjugate (Sigma-Aldrich) in TBS buffer (0.2% Tween and 3% sheep 

serum) and Sigma Fast Red TR/naphthol AS-MX as a substrate. The reaction was stopped 

with ddH2O and the formed foci were counted.  
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5 Results 

5.1 Analysis of the functional relevance of the transmembrane hairpin of 

flavivirus in membrane fusion 

The flavivirus E protein is the only known fusion protein with a membrane anchor consisting 

of two transmembrane helices (TM1, TM2). Using RSPs with truncated (lacking TM2) and 

chimeric forms of the E protein (containing heterologous flavivirus TM segments) it was 

shown that both TM helices are crucial for efficient fusion (Fritz, Blazevic et al. 2011). TM 

interactions apparently contribute to the stability of the post-fusion trimer and the completion 

of the merger of the membranes. 

The goal of this diploma thesis was to assess the significance of the observations made with 

TBEV RSP TM mutants also in the context of infectious virions. Therefore chimeric E 

membrane anchors were cloned into an infectious cDNA clone of TBEV to characterize the 

resulting virions. Since the TM2 element is indispensable for polyprotein translation and thus 

for the generation of infectious virions (see section 2.2.1), a mutant lacking TM2 could not be 

analyzed in this study.  

 

 Generation of full-length cDNA clones 5.1.1

To investigate the role of TM domain modifications of the E protein in the infectious system, 

the following TBEV constructs were generated: 1. replacement of the complete TM hairpin by 

the heterologous TM hairpin of JEV, a distantly related flavivirus (JE1-JE2), 2. generation of 

a chimeric hairpin in which the TM2 domain was replaced by that of JEV (TBE1-JE2) and 3. 

generation of a chimeric hairpin in which the TM1 domain was replaced by that of JEV (JE1-

TBE2) (Figure 11A). Fragments containing the desired heterologous TMD sequences 

(synthesized by Geneart, amino acid sequences shown in Figure 11B) were cloned into the 

backbone of the full-length cDNA virus genome plasmid pTNd/c (Mandl, Ecker et al. 1997) as 

described in Materials and Methods. Successful cloning was confirmed by verification of the 

correct size of the plasmid by agarose gel electrophoresis (Figure 12) and sequence 

analysis. Two bands were detected in the agarose gel that corresponded to different forms of 

the plasmid. The band at 14,802 bp most likely represented the linear form of the plasmid 

while the upper band corresponded to the nicked circle form. These two bands indicated the 

correct size of the engineered plasmids. Sequencing the final full-length cDNA clones 

revealed that they contained only the desired anchor modifications, but no additional 

mutations.  
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Figure 11: Schematic representation of TBEV full-length clones with modified E 

membrane anchors 

(A) Diagram representing the constructs used for producing mutant TBE virions. H1: stem helix 1, H2: 

stem helix 2, TM1: transmembrane helix 1, TM2: transmembrane helix 2. (B) Representation of the 

amino acid sequences (448 – 496/495; TBEV numbering) of the E protein of TBEV wt and the 

engineered virus mutants. The TMD1 of JEV is one amino acid shorter than TMD1 of TBEV. Color 

code: white characters and red boxes highlight identical amino acids; red characters amino acids with 

similar properties; black characters amino acids without similar properties. Arrows indicate the amino 

acids which form the predicted alpha-helices of the TMDs.  

 

 

 

Figure 12: Agarose gel of full-length cDNA clones 

Agarose gel electrophoresis of purified mutant and wt full-length cDNA clones after plasmid 

purification. For size determination of DNA, λ-DNA digested with HindIII was used as a marker.  
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 Characterization of mutant viruses  5.1.2

5.1.2.1 Production of mutant viruses 

To obtain recombinant viruses, mutated and wt full-length cDNA clones were transcribed in 

vitro into RNA. After transfection of BHK-21 cells with the corresponding RNA, cells were 

seeded into cell culture flasks and the cell culture supernatants were harvested 48 hours 

after transfection as described in Materials and Methods.  

To verify the sequences of the virus in the supernatant after primary transfection, viral RNA 

was isolated and used for cDNA transcription. The region coding for the structural proteins as 

well as the first 40% of NS1 were sequenced. In all cases, the sequences contained the 

desired modifications without additional mutations.  

To proof that replication and translation have occurred, immunofluorescence staining of 

transfected cells was performed. In brief, BHK-21 cells transfected with viral RNA were fixed 

and stained 24 hours post transfection as described in Materials and Methods. As shown in 

Figure 13A, no differences were observed between wt and mutant-transfected cells. 

 

5.1.2.2 Infectious properties of mutant viruses 

To determine whether transfected cells released infectious virus particles, the cell culture 

supernatants of the experiments displayed in Figure 13A, were harvested 48 hours post 

transfection and transferred to fresh cells. Immunofluorescence staining of infected cells was 

performed after 24 hours. Only few positive cells were detected in the case of the mutants in 

contrast to the wt control (Figure 13B), indicating that mutated virions were significantly 

reduced in infectivity compared to TBEV wt. 
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Figure 13: Immunofluorescence staining of (A) tranfected and (B) infected BHK-21 

cells  

(A) Immunofluorescence staining of BHK-21 cells transfected with either mutant or wt viral RNA is 

indicated in the left panels. (B) Immunofluorescence staining of cells infected with cell culture 

supernatants harvested 48 hours after transfection. Staining was performed using a polyclonal serum 

recognizing the structural proteins of TBEV. At least two independent experiments were carried out. 

Immunofluorescence pictures from one representative electroporation are shown. 
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To quantify the infectivity of cell culture supernatants harvested 48 hours post transfection, 

focus formation assays were carried out. The infectious titers of the mutants viruses were at 

least ~10,000-fold lower than that of the wt control (Figure 

 14A). Inspection of the foci revealed a reduced size for the mutants compared to wt, 

especially for mutants TBE1-JE2 and JE1-TBE2 (Figure 

 14B). Taken together, the introduced modifications had a significant influence on the 

infectivity of mutants.  

 

 
 
Figure 

 14: Infectivity of E protein TMD mutations in BHK-21 cells 

(A) Quantification of virus in cell culture supernatants harvested 48 hours after transfection (Figure 

13B) by focus formation assays. Two independent experiments were carried out in duplicates. The 

data represent the means of these two experiments and the error bars indicate the observed range. 

Focus forming units (FFU).               

(B) Focus morphology of wild type and mutant viruses. 
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To investigate the specific infectivity of cell culture supernatants harvested 48 hours post 

transfection, the ratio of RNA equivalents to infectious units was determined. For that 

purpose, viral RNA molecules released into the cell culture supernatant were quantified using 

quantitative real-time PCR as described in Materials and Methods. Analysis of RNA 

equivalents in the cell culture supernatant revealed that also the specific infectivities of the 

mutant viruses were reduced compared to the wt. 

 

 
Figure 15: Specific Infectivity of E protein TMD mutations 

Determination of the specific infectivities (RNA equivalents per infectious units) of virus in the cell 

culture supernatants harvested 48 hours after transfection. Two independent experiments were 

performed in duplicates. The data represents the means of these two experiments and the error bars 

indicate the observed range.  
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5.1.2.3 Expression and characterization of the E protein in the cell culture 

supernatant of transfected cells 

Only low infectivities were observed for the mutant viruses, but it still remained unclear 

whether less particles were secreted or whether secreted particles were less infectious. 

Therefore, E secreted into the cell culture supernatant was quantified by an E protein specific 

four-layer SDS-ELISA and the organization of E (soluble, particulate) was investigated by 

rate zonal gradient centrifugation. As shown in Figure 16, for two mutants TBE1-JE2 and 

JE1-TBE2 similar amounts of the E protein were detected in the cell culture supernatants of 

transfected cells compared to wt. Mutant JE1-JE2 revealed a reduced E protein 

concentration in the cell culture supernatant of about 35%.  

 
Figure 16: E protein concentrations of cell culture supernatant 48 hours post 

transfection 

Quantification of the E protein concentrations in cell culture supernatants 48 hours post transfection. 

Mean values of 2 independent ELISA measurements of one representative electroporation are shown, 

error bars represent observed range.  

 

To find out whether the secreted E protein is incorporated into viral particles, rate zonal 

gradient centrifugation was performed. Briefly, the supernatants of TBEV wt and mutant 

viruses were applied on sucrose gradients, centrifuged for 70 minutes and fractionated as 

described in Materials and Methods. A gradient with purified TBE virus was run in parallel 

and served as a control.  
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Dramatic differences in the distribution of the E protein in the gradients were observed 

(Figure 17). Only in the case of recombinant TBE wt virus, the E protein was detected in the 

fractions 13-16 corresponding to infectious virions. In the case of mutant viruses, however, 

the E protein was detected only in the upper fractions which indicated soluble E protein, not 

integrated into particles. 

Taken together, due to the low infectivities and low amounts of virus particles secreted it was 

not possible to produce sufficient amounts of mutant viruses for biochemical analyses.  

 

 

Figure 17: Analysis of particle formation by rate zonal gradient centrifugation  

Sedimentation analysis of supernatants from transfected cells with wt and mutant RNAs. The 

sedimentation direction is from left to right. Results are expressed as percentage of E found in the 

fractions in relation to the total amount of E in the gradient. The error bars indicate the range of two 

determinations of E by ELISA. 

 

5.1.2.4 Analysis of resuscitating mutations 

To select possible resuscitating mutations and examine mutant virus stability, a total of four 

serial passages of cell culture supernatants from transfected cells was performed. Cell 

culture supernatant from the last passage was used for RNA isolation, cDNA synthesis and 

sequencing of the structural proteins as described in Materials and Methods. This 

supernatant was also used for the infection of fresh cells (fifth passage) and 

immunofluorescence staining.  
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After four serial passages of the infectious supernatant no resuscitating or additional 

mutations were found. The immunofluorescence staining of infected cells in the fifth passage 

corresponded to that of the first passage (compared in Figure 18). Taken together, viruses 

containing the introduced anchor modifications remained stable, during five serial passages.  

 

 
Figure 18: Immunofluorescence staining of BHK-21 cells after (A) first and (B) fifth 
passage 

(A) Immunofluorescence staining of BHK-21 cells infected with the cell culture supernatants harvested 

48 hours after transfection. (B) Immunofluorescence staining of BHK-21 cells infected with the 

supernatants after the fourth passage. Staining was performed using a polyclonal serum recognizing 

the structural proteins of TBEV. Two independent experiments were carried out. Immunofluorescence 

pictures from one representative electroporation are shown. 
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5.2 Investigation of key residues of the E protein involved in triggering 

membrane fusion 

In a previous study, a mutagenesis approach (Figure 19) was utilized to identify the 

involvement of 5 conserved histidine residues in flavivirus membrane fusion using 

recombinant subviral particles of TBEV (Fritz, Stiasny et al. 2008). Mutation of H323 was 

shown to be important for the initiation of fusion whereas that of H146 could not be analyzed 

in the RSP system because it abolished RSP formation (Fritz, Stiasny et al. 2008).  

To study the observations made with RSPs also in the context of infectious virions, amino 

acid substitutions at position 323 and 146 were introduced in infectious TBEV cDNA clones 

and the resulting virions were characterized. 

 Generation of full-length cDNA clones 5.2.1

The used cloning strategy for the generation of mutated full-length cDNA clones is illustrated 

in Figure 19. 

 
 

 

Figure 19: Schematic representation of the cloning strategy 

For detail see 5.2.1.1 and 5.2.1.2. Yellow star indicates introduced amino acid substitution. 
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5.2.1.1 Mutagenesis of pTNd/5’ cDNA clones 

To test the effect of replacing conserved residues at the DI/DIII interface of the E protein in 

the infectious system (TBEV), mutations were introduced into the plasmid pTNd/5’ (Figure 

19), having an insert coding for C, prM, E and partly NS1, by site-directed mutagenesis as 

described in Materials and Methods. Figure 20 displays the single and combination 

mutations used in this study: As in the RSP system, H323 was mutated to alanine. H146 was 

replaced by both, alanine and asparagine. A double mutant, in which both histidines at the 

DI/DIII interface (146, 323) were substituted by alanine, was also constructed. E373 is highly 

conserved and located at the DI/DIII interface. Depending on the environment in the protein, 

glutamate residues could act as alternative pH sensors (Srivastava, Barber et al. 2007). 

Therefore TBEV protein E was also mutated by replacing E373 by alanine or asparagine, 

respectively. 

Engineered plasmids were transfected in E. coli HB101 cells and colonies were picked for 

plasmid preparation as described in Materials and Methods.  

 

 
Figure 20: Location of the mutated residues in the E protein  

(A) Schematic of the E dimer including ribbon diagrams of sE of TBEV and the stem-anchor region. 

The residues mutated in this study are indicated by coloured spheres: H146, black; H323, green; 

E373, pink. Stem-anchor regions for which the atomic structure is unknown are represented 

schematically. Color code of E as described in Figure 4. (B) Amino acid substitutions and their location 

in the E protein.  
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To verify the correct size of the desired plasmid, agarose gel electrophoresis was performed 

(Figure 21). The appearance of two bands indicated the correct size of the plasmids (6,913 

bp). Additionally, the sequence of the designed clones was checked by sequence analysis. 

Sequence analysis revealed that only the introduced single amino acid mutations were 

present.  

 

 
Figure 21: Agarose gel of mutated and wt pTNd/5´cDNA clones 

Agarose gel electrophoresis of purified mutant and wt pTNd/5´ CDNA plasmids carrying introduced 

single amino acid substitutions. As a size marker, λ- DNA digested with HindIII was used.  

  

5.2.1.2 Construction of full-length cDNA clones 

To generate full-length cDNA clones of TBE virus with the mutations listed in Figure 20B, 

pTNd/5’ was digested with restriction enzymes (shown in Table 2) and cloned into the 

backbone of the wild type TBEV full-length cDNA clone treated with the same enzymes 

(Figure 18). Mutated plasmids were transfected into E. coli HB101 and colonies were picked 

for plasmid preparation as described in Materials and Methods. To confirm successful 

cloning, agarose gel electrophoresis and sequence analysis was performed. As shown in 

Figure 22, the presence of two bands indicated the correct size of the plasmids. Sequence 

analysis of the final full-length cDNA clones revealed no additional mutations except the 

introduced amino acid substitutions.  

 

 
Figure 22: Agarose gel of full-length cDNA clones 

Agarose gel electrophoresis of purified mutant and wt full-length cDNA plasmids carrying introduced 

modifications in the E protein. As a size marker, λ- DNA digested with HindIII was used.  
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 Characterization of mutant viruses 5.2.2

5.2.2.1 Production of mutant viruses 

For the generation of recombinant viruses, modified and wt cDNA full-length clones were 

transcribed in vitro into RNA, and transfected into BHK-21 cells as described in Materials and 

Methods.  

The cell culture supernatants harvested 48 hours after transfection were used for further 

analysis: First, sequence analysis was performed to verify the sequence of the released 

virions. Viral RNA was isolated and used for cDNA transcription as described in Materials 

and Methods. The region coding for the structural proteins as well as the first 40% of NS1 

was sequenced. For all mutant viruses, the sequences contained the introduced 

modifications without additional mutations.  

To provide evidence for replication and transfection of the viral genome, indirect 

immunofluorescence staining of transfected cells was performed. For this purpose, BHK-21 

cells transfected with viral mutant or wt RNA were fixed and stained 24 hours post 

transfection as described in Materials and Methods. Mutant and wt transfected cells did not 

reveal differences in the immunofluorescence staining (Figure 23A). 

 

5.2.2.2 Infectious properties of mutant viruses 

To determine whether transfected cells released infectious particles, the cell culture 

supernatants obtained 48 hours after transfection were transferred to fresh cells and 

immunofluorescence staining 24 hours post infection was performed. As shown in Figure 

23B, no differences were observed for mutant viruses H146A, H146N and H323A and wt, 

whereas a reduction was observed with mutant virus H146A-H323A. Mutant virus E373 lost 

infectivity completely. 

 

 

 



Results 

   50 

 
Figure 23: Immunofluorescence staining of (A) transfected and (B) infected BHK-

21 cells  

(A) Immunofluorescence staining of BHK-21 cells transfected with mutant or viral RNA. (B) 

Immunofluorescence staining of BHK-21 cells infected with cell culture supernatants harvested 48 

hours after transfection. Staining was performed using a polyclonal serum recognizing the structural 

proteins of TBEV. Immunofluorescence pictures from one representative electroporation are shown.  
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In order to quantify infectious particles, the cell culture supernatants harvested 48 hours after 

transfection were analyzed by focus formation assays as described in Materials and 

Methods. As shown in Figure 24A, mutations H146A, H146N and H323A exhibited a ~10-fold 

lower infectivity and mutant H146A-H323A a ~100-fold lower infectivity. Consistent with the 

immunofluorescence data, mutant viruses E373 did not contain infectious particles. H146A 

and H146A-H323A mutants formed smaller foci compared to wt while the focus size of the 

other mutants was not affected (Figure 24B). 

Taken together, the infectivity of the generated histidine mutants was reduced whereas 

mutations at position E373 abolished infectivity completely.  

 

 
 

Figure 24: Infectivity titers of E substitutions (DI/DIII interface) in BHK-21 cells 

(A) Quantification of virions in cell culture supernatants harvested 48 hours after transfection by focus 

formation assay. The data represents the means of a representative electroporation carried out in 

duplicates (error bars represent the observed range). (B) Focus morphology of wild type and mutant 

viruses. 
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5.2.2.3 Expression and characterization of the E protein in the cell culture 

supernatant of transfected cells  

Reduced infectivities were observed for the mutant viruses, but it still remained unclear 

whether less particles were secreted or whether secreted particles were less infectious. 

Therefore, the E protein secreted into the cell culture supernatants was quantified and the 

organization of E (soluble, particulate) was investigated by rate zonal gradient centrifugation.  

In order to find out whether the mutant viruses secrete comparable amounts of E, the cell 

culture supernatants were quantified in an E specific four-layer ELISA. As shown in Figure 25 

mutant viruses – with the exception of E373A – secreted E protein, although the 

concentration was dramatically lower compared to wt, but the reduction of released E protein 

(4 to 8-fold) was not as pronounced as reduction in infectivity (10 to 100-fold).  

 
Figure 25: E protein concentrations of cell culture supernatant 48 hours post 
transfection  

Quantification of the E protein concentration in cell culture supernatants 48 hours post transfection. 

Mean values of 3 independent ELISA measurements of one representative electroporation are shown, 

error bars represent SD.  

 

Since it was not clear in which form (soluble, RSP or incorporated into whole virus particles) 

the E protein was present in the cell culture supernatants, analysis by rate zonal gradient 

centrifugation was performed as described in Materials and Methods (Figure 26). Purified 

virions, which were run in parallel as a control, sedimented in fractions 12-15.  
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The E protein was detected in the top fractions of all cell culture supernatants (histidine 

mutants and wt) which indicated soluble, nonintegrated E. Only in the case of the H323A 

mutant and wt, the E protein was also detected in the fractions corresponding to virus 

particles (20% and 25% of total E protein for H323A and wt, respectively).  

Unfortunately, the sensitivity of the detection method was not sufficient to detect the viral 

peak for the other mutants.  

 

Figure 26: Analysis of particle formation by rate zonal gradient centrifugation  

Sedimentation analysis of supernatants from cells transfected with wt and mutant RNAs. The particle 

sedimentation direction is from left to right. Results are expressed as percentage of E protein found in 

the fractions in relation to the total amount of E in the gradient.  

 

5.2.2.4 Analysis of resuscitating mutations 

To investigate whether passaging of mutants resulted in resuscitating mutations and to 

examine mutant virus stability, serial passages of cell culture supernatants from transfected 

cells were performed. A total of four passages were carried out. Cell culture supernatant from 

the last passage was used for RNA isolation, cDNA synthesis and sequencing of the 

structural proteins as described in Materials and Methods. This supernatant was also used 

for infections of fresh cells (fifth passage) and immunofluorescence staining. 

 

No resuscitating mutations or additional mutations were found after four serial passages and 

immunofluorescence staining of infected cells in the fifth passage corresponded to infected 

cells of the first passage (compared in Figure 27).  
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Taken together, the viruses containing the engineered modifications were stable, during five 

serial passages. 

 

 
Figure 27: Immunofluorescence staining of BHK-21 cells after (A) first and (B) fifth 

passage 

(A) Immunofluorescence pictures from BHK-21 cells infected with cell culture supernatants harvested 

48 hours after transfection. (B) Immunostaining of cells infected with the supernatants after the fourth 

passage. Staining was performed using a polyclonal serum recognizing the structural proteins of 

TBEV. Immunofluorescence pictures from one representative electroporation are shown.   
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6 Discussion 

6.1 Analysis of the functional relevance of the transmembrane hairpin of 

flavivirus in membrane fusion 

The double membrane anchor of the envelope protein E (consisting of two antiparallel 

helices, TM1 and TM2) is a unique distinguishing structural feature of the flavivirus fusion 

protein. The TM2 helix is a remnant of flavivirus polyprotein processing and acts as an 

internal signal sequence for the synthesis of the NS1 protein (Lindenbach 2007). All other 

viral fusion proteins analyzed so far possess single TM anchors that are C-terminally 

extended by intracytoplasmic tails of various lengths (White, Delos et al. 2008). Membrane 

anchor modifications of class I and class III fusion proteins affected late stages of fusion, 

such as the hemifusion state and/or the opening of the fusion pore (Langosch, Hofmann et 

al. 2007; White, Delos et al. 2008).  
 

Studies with mutant RSPs of TBEV revealed that the TM2 helix is multifunctional and not 

only essential for viral polyprotein processing but also indispensable for efficient membrane 

fusion (Fritz, Blazevic et al. 2011). The engineered modifications of the transmembrane 

anchor of the E protein include the deletion of TM2, the replacement of both TM domains by 

those of the related JEV, and the chimerization of membrane anchors (TBEV-JEV). None of 

the designed TM-mutations affected early steps of the fusion process, but TM-interactions 

apparently contributed to the stability of the post-fusion E trimer and the completion of the 

membrane merger. 
 

Unfortunately, it was not possible to extend the findings obtained in the RSP system to 

infectious virus and to study of whole virions in the same assays. As shown in this thesis, the 

engineering of recombinant TBE viruses with completely heterologous TMs or chimeric TMs 

resulted in a severe impairment of virus production and recoveries that were 4, 5, and 6 logs 

lower compared to wt with JE TM1-JE TM2, TBE TM1-JE TM2, and JE TM1-TBE TM2 TM-

mutants, respectively. There are several possible explanations for these findings: In the case 

of the chimeric TM anchor mutant viruses, reduced fusion activities as observed with the 

RSPs could contribute to the low infectivities. However, also the specific infectivity of the JE 

TM1-JE TM2 mutant viruses was dramatic reduced and revealed a ~10,000 times lower yield 

compared to wt, although the same mutation had no effect on the fusion activity of RSP JE1-

JE2. It has therefore to be assumed that modifications of the TM hairpin of the E protein in 

the virus also affected other steps of the virus life cycle, independent of membrane fusion. 

Particle assembly would be a possible candidate for such effects, involving mechanisms that 

contribute to virion but not to subviral particle formation. RSPs can be formed through lateral 
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interactions between prM-E heterodimers only and they are smaller than whole virions 

(Schalich, Allison et al. 1996). In mature RSPs, the protein E homodimers are organized in a 

regular T=1 icosahedral lattice (Ferlenghi, Clarke et al. 2001) whereas on the viral surface 

the E proteins are more tightly packed in a herringbone-like arrangement (Figure 5) (Kuhn, 

Zhang et al. 2002; Mukhopadhyay, Kim et al. 2003). It is possible that the more complex 

organization of the viral envelope requires interactions of the TMDs of prM-E heterodimers 

during virus particle assembly and/or budding that are dispensable for RSP formation. Such 

an interpretation would be consistent with previous studies that had demonstrated that 

alterations in the transmembrane anchor of the E protein could severely impair the 

production of infectious viruses (Op De Beeck, Rouille et al. 2004; Orlinger, Hoenninger et al. 

2006; Hsieh, Tsai et al. 2010). 
 

Irrespective of the possible involvement of the double transmembrane anchor of the E 

protein in virus assembly, these TM helices play an essential role in the late steps of 

flavivirus membrane fusion and provide both intra- and intermolecular protein E trimer 

interactions that are necessary to drive the fusion process to completion. This is an extension 

of the already existing models of flavivirus fusion that have focused on the relocation of 

protein E DIII and the zippering of the stem region only to serve as primary energy sources 

for this process (Harrison 2008).  

 

6.2 Investigation of key residues of the E protein involved in triggering 

membrane fusion 

The mutational analysis of histidines conserved among all flavivirus E proteins – using RSPs 

of TBEV – provided evidence that H323 is part of the pH sensor necessary for triggering low-

pH-induced flavivirus membrane fusion (Fritz, Stiasny et al. 2008). This amino acid is located 

at the DI/DIII interface which contains a network of interactions between the two domains in 

the E protein monomer of the pre-fusion dimer (hydrogen bonds, van der Waals contacts) 

and a salt bridge between R9 (DI) and E373 (DIII). Domains I and III of the E protein provide 

a pocket for the FP at the tip of the partner subunit. The destabilization of this interface by 

protonation is essential for the release of the FP as well as for the relocation of DIII and thus 

for the entire fusion process. Understanding the details of the flavivirus membrane fusion 

process at a molecular level can help in the search for antiviral compounds that target 

structural transitions during fusion (Stiasny, Fritz et al. 2009). 
 

In the context of single round particles (SIPs) of West Nile virus (WNV), SIPs containing 

mutated histidines were still able to infect cells. Some of the identified mutants were less 
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infectious than wt SIPs (Nelson, Poddar et al. 2009), but specific infectivities of the mutated 

SIPs have not been determined. A possible explanation for the observed infectivity – despite 

the replacement of histidines – could be that other residues take over the pH sensor function 

in the course of the infection of the host cell. The local protein environment can change the 

pKa of titrable side chains (Srivastava, Barber et al. 2007) in such a way that aspartates and 

glutamates could function as alternative pH sensors, e.g. the highly conserved E373 (DIII) 

which forms a salt bridge with R9 (DI) in the pre-fusion dimer. 
 

To study the possible discrepancy between the fusion data obtained with RSPs of TBEV and 

infectivity of SIPs of WNV, standardized infectivity assays and in vitro fusion experiments 

with viruses and RSPs containing mutations of conserved residues at the DI/DIII interface of 

the E protein are necessary. Such TBEV mutants have been generated during this diploma 

thesis and the infectivities of these viruses were determined.  

In the RSP system, the H323A mutant was strongly impaired in membrane fusion and 

mutating residue H146 abolished secretion of RSPs (Fritz, Stiasny et al. 2008). In the 

infectious system, the single mutants (TBEV H323A, H146A, and H146N) were still 

infectious, although a 10-fold reduced infectivity compared to wt was detected. The 

combination of both mutations (TBEV H146A-H323A) revealed even a 100-fold reduced 

infectivity compared to wt.  

Characterization of the cell culture supernatant using rate zonal gradient centrifugation 

revealed particles comparable to wt only for the TBEV H323A mutant. In the case of the 

other mutants it remained unclear whether the amounts of produced viral particles were 

below the detection limit of the analysis, especially for the H146A-H323A double mutant with 

the lowest infectivity titers, or whether the produced mutant virus particles were less stable 

and disintegrated during rate zonal gradient centrifugation.  

We also attempted to mutate the conserved residue E373 which is part of the salt bridge 

between DI and DIII and could act as an alternative pH sensor in the acidic endosomal 

compartments. Unfortunately, the replacement of E373 by either A or N completely abolished 

the secretion of E and infectivity, indicating that E373 is already necessary for proper 

formation and/or secretion of virus particles. (Berger 2009) (Fritz 2009) (Taucher 2009) 

(Orlinger 2007) (Schrauf 2006) 

At present it is unclear whether the observed reduced infectivities were due to an impairment 

in fusion or other steps of the viral life cycle. To address this issue, upscaling of virus 

productions is necessary followed by quality controls of the mutants including particle 

formation, maturation state and folding of E in comparison to wt. Such well characterized 

virus particles can then be used for the determination of fusion activities and specific 

infectivities.  
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