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Abstract (English) 

Oligodendrocytes are the myelin-producing cells in the central nervous system (CNS) and constitute 

the pendant to the myelinating Schwann cells in the peripheral nervous system (PNS). Whilst myelin 

formation for axonal insulation to ensure rapid impulse propagation, oligodendrocytes have gained a 

prominent role in the maintenance of axonal integrity. Therefore, oligodendrocytes are detached from 

the former passive role as a supporter cell of neurons to an indispensable, active companion to assure 

neuronal preservation. Further, oligodendrocytes are the target in developmental defects like 

Pelizaeus-Merzbacher disease and devastating degenerative diseases like Multiple Sclerosis (MS). To 

understand the presumably failure of re-myelination in chronic MS lesions and for establishing new 

therapies to avoid de-myelination or enhance re-myelination, the efficient research in oligodendrocyte 

precursor cell (OPC) differentiation is constitutive. The mechanisms of myelination are thought to be 

related to those of re-myelination. Thus, detailed knowledge about the cellular and molecular 

processes that underlie myelination is necessary to provide insights into myelin regeneration. As 

recent experiments regarding the impact of Eph-receptors and Ephrins on oligodendrocyte 

differentiation suggest a receptor mediated differentiation block, new studies are needed to explore 

those pathways of OPC differentiation. Thus, this study focussed on experiments that investigate the 

mechanisms of oligodendrocyte precursor cell differentiation through analyzing of Eph-receptor 

mediated pathways as well as brain samples from EphrinB3 knockout mice compared to controls. In 

addition, established primary oligodendrocyte cell differentiation experiments were tried to be 

reproduced by the oligodendrocyte cell lines OLN-93 and OLI-Neu for both the reduction of animal 

sacrifices and a faster realization of experiments. The results revealed the OLN-93 and OLI-Neu cell 

lines to be not suitable for the simulation of OPC differentiation in vitro and to probably represent 

oligodendroglial cells conserved in earlier stages of development. However, the most important 

finding in this study indicated that EphrinB3 knock out in day 2 mice promotes premature myelination 

of axons compared to controls. As EphrinB3 was shown to act inhibitory on OPC differentiation in vitro, 

this result strengthens EphrinB3 to be a crucial element in oligodendrocyte development. 
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Abstract (German) 

Oligodendrozyten sind die Myelin produzierenden Zellen des Zentralen Nervensystems und stellen das 

Gegenstück zu den myelinierenden Schwann-Zellen des Peripheren Nervensystems dar. Neben der 

Produktion von Myelin für die Isolation von Axonen um die schnelle Weiterleitung von 

Nervenimpulsen zu gewährleisten, haben die Oligodendrozyten in den letzten Jahren immer größere 

Bedeutung für die Bewahrung der Integrität von Axonen erlangt. Diese Loslösung der bis dahin passiv 

gesehenen Aufgabe der Neuronenunterstützung hat die Oligodendrozyten zu aktiven Begleitern der 

Neuronen erhoben, die sich unverzichtbar für deren Erhalt herausgestellt haben. Weiters hat sich 

gezeigt, dass Oligodendrozyten das Ziel von neurodegenerativen Krankheiten wie Pelizaeus-

Merzbacher oder Multipler Sclerose (MS) sind und beispielsweise chronische MS Läsionen auf Fehler in 

der Re-Myelinierung von Axonen hinweisen. Neue Therapien zur Vermeidung von De-Myelinierung 

oder zur Wiederherstellung von Myelin werden dringend benötigt, aber leider weiß man noch zu 

wenig über den Ablauf und Fehler von Myelinierungsvorgängen. Effiziente Forschung und neue 

Strategien sind demnach unerlässlich um detailreiches Wissen über die zellulären und molekularen 

Prozesse anzureichern, die der Differenzierung von Oligodendrozyten zugrunde liegen da sie sehr 

wahrscheinlich jenen der Re-Myelinierung ähneln. Kürzlich erbrachte Experimente, welche die 

Auswirkung von Eph-Rezeptoren und Ephrinen auf Oligodendrozyten untersucht haben, konnten eine 

rezeptorbasierende Blockierung der Differenzierung nachweisen. Da die Signalwege der 

Differenzierung von Oligodendrocyten-Vorläuferzellen (OPCs) bis hin zu myelinierenden 

Oligodendrozyten kaum bekannt sind, beschäftigt sich diese Studie mit Experimenten, welche die 

Mechanismen der Differenzierung von OPCs durch Eph-Rezeptoren vermittelte Signalwege und 

Gehirnproben von EphrinB3 Knock-Out Mäusen im Vergleich zu Kontrollen analysieren. Außerdem 

wurde versucht, etablierte Primär-Zellkultur Experimente zur Oligodendrozyten Differenzierung mit 

Zelllinien zu reproduzieren um sowohl die Anzahl der benötigten Tiere zu reduzieren, als auch eine 

schnellere Umsetzung dieser Experimente realisieren zu können. Die Ergebnisse haben jedoch gezeigt, 

dass die OLN-93 und OLI-Neu OPC Zelllinien dafür nicht geeignet sind und wahrscheinlich Frühstadien 

von Oligodendrozyten repräsentieren, die in dieser Entwicklungsphase konserviert sind. Von großer 

Bedeutung war jedoch ein Ergebnis, welches auf eine verfrühte Myelinierung von Axonen in zwei Tage 

alten Hirnen von EphrinB3 Knock-Out Mäusen hindeutet. Da sich EphrinB3 in in vitro Versuchen 

inhibierend auf die Oligodendrozyt-Vorläuferzellen Differenzierung auswirkt, unterstreicht dieses 

Ergebnis die wichtige Rolle von EphrinB3 in der Oligodendrozyten Entwicklung. 
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1. Introduction 

1.1 The central nervous system (CNS) 

The CNS is primary constituted by neuronal and glial cells. While the different types of neurons are 

needed for the propagation of nerve impulses, the glial cells have shown to be necessary for the 

correct development, support and protection of neuronal cells. Former known as the ‘nervenkitt’ 

(nerve glue)1 the role of glia (glia = greek for glue) changed in both function and importance and today, 

glial cells represent active partners of neurons to ensure their integrity and regeneration.2 Thereby, 

two types of glia are divided: macroglia and microglia. While macroglia arise from the neuroectoderm 

and form astrocytes, ependymal cells and oligodendrocytes, microglia develop from the mesoderm 

into the resident macrophages. 

 

1.2 Oligodendrocyte precursor cells (OPCs) 

Oligodendrocytes are the myelin forming cells of the CNS and mature from so called oligodendrocyte 

precursor cells (OPCs) that are generated from pluripotent neuroepithelial cells within the spinal cord 

and ventricles of the brain. During development, OPCs migrate through the spinal cord and the brain 

grey and white matter to their final destinations where they differentiate into myelin forming cells.3 

When OPCs are isolated from P0-P2 rat cortices or P7 rat optic nerve, they can be differentiated into 

astrocytes or oligodendrocytes dependent on the used serum percentage.4 However, in adult brains 

they arise from neuronal stem cell populations that are resident in the subventricular zone (SVZ), the 

hippocampus or in the spinal cord5,6.  

Most valuable about isolated OPCs is indeed that their maturation from the oligodendrocyte precursor 

cell until the myelinating oligodendrocyte seems to follow the same stages as in vivo (compare 

figure1). This suggests OPCs to have an intrinsic differentiation capacity7 and thus, oligodendrocyte 

development can be studied in vitro even without neurons.4,8 However, the co-culture of OPCs with 

neurons increases the myelin expression.9 

 

1.2.1 Oligodendrocyte Precursors in the spinal cord 

Oligodendrogenisis was first thought to be restricted to the ventral ventricular zone (VZ) of the 

embryonic neural tube10, specifically to the neuroepithelial domain (pMN), but there is also a minor 

population (~15%) that arises from dorsal parts of the VZ.11,12 The pMN creates motor neurons in the 

first place and changes to oligodendrocyte precursor cell production about embryonic day (E)12.5, 

generation of dorsal OPCs follows about E15.13 
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1.2.2 Early oligodendrocyte lineage markers 

In the developing vertebral neural tube the cell fate is dependent on the concentration of inductive 

and repressive signals. In the ventral midline, the glycoprotein Sonic Hedgehog (SHH) is secreted from 

the notochord and floor plate and co-ordinately regulates Olig2/Olig1 gene expression in the pMN. 

Thereby, SHH activates the transcription factor Nkx6.2 that in turn induces the formation of basic 

helix-loop-helix transcription factors OLIG2 and OLIG114. Whereas OLIG1 promotes OPC development 

and is necessary for maturation and myelin regeneration15, OLIG2 is essential to induce motor neuron 

and oligodendrocyte specification in the neuroepithelia and is expressed during the whole 

oligodendrocyte development.16 Further, Olig2 gene expression is thought to be the first marker of 

spinal cord progenitor cells that develop into oligodendrocyte precursors.17 Other established lineage 

markers of ventrally derived spinal cord OPCs are NG218, SOX1019,20, platelet-derived growth factor 

receptor (PDGFRα)21 and nkx2.222. However, dorsally derived OPCs express those markers as well but 

very likely through hedgehog-independent pathways.12,25 

 

1.2.3 Oligodendrocyte Precursors in the fore brain 

Parts of the embryonic VZ in the forebrain produce OPCs as well but compared to the spinal cord at 

different times. However, they first appear at E12.5 from neuroepithelial cells of the medial ganglionic 

eminence (MGE), situated in the ventral part of the telencephalon. They start migrating into the 

developing forebrain and at E18 only ventral derived OPCs are found in the cortex. This first wave of 

OPCs is then followed by a second one, originated from the lateral and/or caudal ganglionic 

eminence/s (LGE/CGE). At least, parts of the neuroepithelium in the cortex itself produce a third wave 

of OPCs. These different OPC populations, all with a region specific expression of transcription factors, 

now mix and compete with one another for territory in the cortex. This would indicate specialized 

oligodendrocyte subtypes but there seem to be no significant differences as both ventral and dorsal 

derived forebrain OPCs are able to take over the others place when eliminated. Interestingly, the 

earliest, most ventral, MGE-derived OPC population progeny disappear upon postnatal life. After birth 

until adulthood, the subventricular zone (SVZ), the hippocampus and some spinal cord regions remains 

active in generating new oligodendrocyte precursor cells.6 As the SVZ is derived mainly from the 

embryonic LGE and lateral cortex, with no contribution from more ventral regions, any evidence of 

MGE-derived OPCs is erased in the adult brain.26 SHH is suggested to have a similar role in 

oligodendrocyte development in the telencephalon like in the spinal cord.27 
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1.3 Maturation of oligodendrocytes 

During the whole developmental process, the survival, maturation and differentiation of OPCs is 

regulated by growth factors, chemokines, soluble and cell mediated signals from neighbouring cells 

(neurons, astrocytes, ...) and the extracellular matrix. Maturation of oligodendrocytes is accompanied 

by changes in shape and expression of specific cell surface proteins. Some antigens are lost and new 

ones acquired so that they can function as lineage markers to identify the stage of oligodendrocyte 

differentiation. 

In early development, the oligodendrocyte progenitor cells have shown to be NG2 & PDGFRα 

positive18,28,29 and migrate throughout the CNS. They are still able to proliferate but this ability is 

dependent on PDGFRα expression. When the OPCs settle along the fiber tracts of the future white 

matter (E16), they start to express the marker O4 (O-antigens are sulfatides)30 and transform into pre-

oligodendrocytes that results in becoming less motile as they lose their mitotic response to 

PDGFα.31,32,33 By reaching their final target, the appearance of galactocerebroside (GalC)34 

characterizes the immature oligodendrocyte. Finally, the expression of the myelin proteins as myelin 

basic protein (MBP) along with myelin associated glycoprotein (MAG) followed by proteolipid-protein 

(PLP)35 indicates the mature (non-myelinating) oligodendrocyte immediately before myelin formation. 

Important for terminal differentiation is the transcription factor Sox10 as it can directly induce 

expression of myelin genes.36 

 

Figure 1 | Stages of oligodendrocyte differentiation. 

 

 

1.4 The myelinating oligodendrocyte 

The myelinating oligodendrocyte can form several myelin sheets, also called myelin internodes, to 

enwrap multiple segments of about 10 to 15 different neurons. For myelin sheets production several 

enzymes of the lipid metabolism have to be activated, the transcription factors Nkx2.2, Nkx6.1, Nkx6.2 

are expressed37 as well as proteins that are necessary for transport and synthesis of myelin mRNA or 

proteins. 
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Myelin itself is a lipid rich, multilamellar membrane, spirally wrapped around axon fibres to ensure 

their electrical insulation. Its segmental structure allows the fast and saltatory conduction of nerve 

impulses as action potentials can only occur at un-myelinated 

regions between those segments, the Nodes of Ranvier. The 

importance of myelin can be shown by its loss in several 

neurological diseases such as multiple sclerosis in the CNS. 

 

Figure 2 | A myelinating oligodendrocyte at d4 after in vitro differentiation 

from an isolated primary OPC culture. The immunocytostaining shows 

antibodies against the oligodendrocyte marker O4 in red and against MBP 

(myelin sheet) in green.  

 

1.5 Demyelination and Re-myelination in the CNS 

Under normal conditions, the turnover of myelin is very slow.38 The loss of myelin sheets through the 

direct insult or death of Oligodendrocytes is called de-myelination followed by neuronal conduction 

block. The default response to de-myelination is regeneration or the replacement through new 

Oligodendrocytes to restore neuronal integrity as the neuron itself is still alive. This spontaneous, 

regenerative phenomenon of re-myelination stands in contrast to the poor regeneration after 

neuronal injuries.39, 40 

Two major events are necessary for re-myelination, first, the recruitment (activation, proliferation and 

migration) of OPCs from widespread populations in the CNS 41,42 or from the adult SVZ 43,44 to the place 

of lesion and second, the differentiation into a myelinating Oligodendrocyte to restore saltatory 

conduction.45 However, in contrast to the myelin 

sheets that are acquired during development, in 

re-myelinated areas the normal relationship 

between axon and myelin sheet is never 

regained46 as both the thickness and size of newly 

produced myelin is decreased.47,48 The ratio of the 

inner axonal diameter to the total outer diameter 

called the g-ratio. Therefore, re-myelinated areas 

can be identified by abnormally thin myelin 

sheaths (> g ratio) but is only obvious at axons 

with a large diameter.49,50 

 

Figure 3 | EM image of an oligodendrocyte surrounded by 

myelinated axons. 
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1.6 Re-myelination failure and disease 

De-myelination in the CNS is caused by two major events, genetic abnormalities that affect glial cells 

(e.g. leukodystrophies) and inflammatory damage to myelin and oligodendrocytes (e.g. multiple 

sclerosis).51 Failure in re-myelination predisposes axons to degenerate since a chronic de-myelination 

leaves denuded neurons vulnerable to atrophy, an irreversible degenerative event that is probably 

followed by a progressive axonal loss52 as present in the later stages of multiple sclerosis (MS).53 MS is 

an inflammatory disease associated with failure in re-myelination. However, in some MS patients there 

is evidence of complete re-myelination in a significant number of lesions.54 By now, the reasons for re-

myelination failure in MS are not fully understood.  

Re-myelination failure can either occur during the recruitment or the differentiation phase. In the 

recruitment phase the lack in environmental support, a depleted OPC pool or old age55 could influence 

activation, proliferation or migration of OPCs56, whereas in the differentiation phase the OPCs are 

somehow restrained to differentiate into a functional, myelinating Oligodendrocyte.57 According to 

that, quiescent OPCs have been observed to be present in chronic MS lesions58,59 presumably caused 

by differentiation failures after recruitment to the site of lesion.  

The re-myelination ability depends on the absence of stimulating or the presence of inhibitory signals 

in the lesion.60 Amongst others, such inhibitory signals have shown to be myelin proteins that are 

present in de-myelination caused debris.61,62,63,64 In the process of re-myelination, macrophages are 

important for the removal of this myelin debris since a block of macrophage debris clearance ability 

results in detained differentiation of OPCs. In aging animals, OPC differentiation is thought to be 

slowed due to a poor macrophage response that causes a delayed myelin debris clearance.65,66,67,68 

Based on the inhibitory effect of myelin in vitro following experiment was performed to test the 

impact of the myelin substrates in in vivo. Purified central nervous system myelin was supplemented 

into toxin induced lesions in rats. After day 28, the control group restored myelin but axons of the 

myelin treated group remained un-myelinated. Notably, the density of OPCs in the lesion was the 

same in both groups suggesting a normal recruitment of OPCs to the lesion site. Those results indicate 

the phagocytic clearance of myelin debris after demyelination to be an essential step to ensure 

effective re-myelination in the CNS and further, that inhibition of OPCs differentiation rather than of 

OPC recruitment is responsible for re-myelination failure.63 
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Figure 4 | a The normal adult white matter consists of astrocytes, microglia, myelinating oligodendrocytes and OPCs.                

b Subsequently after de-myelination, microglia and astrocytes are activated which in turn activate surrounding OPCs.               
c Macrophages begin to remove the myelin debris. Astrocytes and inflammatory cells secrete mitogens and pro-migratory 

factors leading the OPCs to proliferate and guide them to the de-myelination site. A failure of OPCs recruitment will end in 

incomplete or lack of re-myelination. d Recruited OPCs will start to differentiate and to produce myelin sheets after axonal 

contact is established. During this phase, re-myelination generally fails.
39

 

 

Additionally, re-myelination is also influenced by other cell types including astrocytes69 and 

lymphocytes.70 Neighbouring glial cells are thought to activate OPCs from a quiescent into a 

regenerative state71, whereas the differentiation into a myelinating oligodendrocytes depends on the 

establishing of axonal contact.9 Those facts disclose a whole network of interacting cells and signals 

involved in this complex process of myelin repair and suggest that therapeutic strategies will have to 

be combined for an effective therapy.  
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1.7 Ephrins & Eph-Receptors  

Ephrins are membrane bound guidance molecules that function as ligands for their corresponding Eph 

receptor on neighbouring cells through direct cell to cell contact.72 Eph receptors have intracellular 

tyrosine kinases (RTKs) and are divided into EphA and EphB receptors. Upon ligand binding the 

receptors tyrosine gets auto-phosphorylated followed by activation of the kinase that promotes signal 

transduction. There are either EphrinA ligands that are bound to the cell membrane by 

glycosylphosphatidylinositol (GPI) anchors or EphrinB ligands that are transmembrane proteins. With 

few exceptions, EphA receptors bind EphrinA ligands and EphB receptors bind EphrinB ligands. 

However, when an EphrinB ligand is bound, bidirectional signals are transduced into both cells since 

each EphrinB ligand either act as a ligand, sending non cell autonomous signals to adjacent cells or as a 

receptor, sending cell autonomous signals into the own cell through their intracellular domain and a 

yet unidentified kinase.73,74 

The interest in Ephrins and their possible effects on oligodendrocyte differentiation raised because 

spinal cord injury in rats was followed by up-regulation of Eph-Receptors in astrocytes and neurons75,76 

and EphrinB3 was identified to act like a myelin-based inhibitor of neurite outgrowth.77  

EphrinB3 is expressed in the region of cortex, hippocampus and amygdala as an integral membrane 

component of myelin sheaths and recently has been demonstrated to be a potent myelin associated 

inhibitor of OPC differentiation. When EphrinB3 is fused to an antibodies’ Fc-region, EphrinB3 

molecules can be clustered by a human IgG antibody and together increase the sensitivity of bound 

Eph-Receptors to mediate a stronger inhibitory response on OPC differentiation and process formation 

or OPC linage progression at later stages.78, 81 
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2. Project overview 

2.1 Analysing of primary OPCs versus OPC cell lines 

Primary cells are derived directly from tissue of organisms. For the generation of pure primary OPCs, 

P0-P2 neonatal cortices are digested to form a mixed glia cell culture that has to be incubated for 

about 10 days. After this period, OPCs can be isolated through a procedure called ‘shake off’ and have 

to be seeded immediately afterwards in the according experimental conditions (see figure 5).  

When OPCs are incubated in Satos media + 0.5 % FCS, first membranous processes are formed after 4h 

to 6h and they differentiate into myelinating oligodendrocytes about d3-4. On the other hand, OPC 

differentiation can be inhibited by myelin protein extract (MPE) and by the just recent identified 

molecule EphrinB3.78 In vitro OPC maturation reflects the same stages since in vivo suggesting the 

differentiation capacity to be intrinsic to the OPCs.7 Therefore, primary OPCs are an adequate model to 

investigate the OPC differentiation process. However, this procedure of primary OPCs isolation is time-

consuming and a considerable amount of P0-P2 rats is necessary to gain a reasonable output. Hence, it 

is worth to try to reproduce the differentiation experiments of primary OPCs with OPC cell lines in 

order to reduce animal sacrifices and a faster realization of experiments.  

The OPC cell lines OLI-Neu and OLN-93 were selected to investigate their morphology and 

differentiation potential compared to primary OPCs. After identification of a suitable differentiation 

media, the inhibitory effect of MPE and EphrinB3 on OLI-Neu and OLN-93 cell differentiation was 

visualized through double-immunocytostaining against the markers O4 & MBP.   
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Figure 5 | Overview of primary OPC experiments. After purification of primary 

OPCs from neonatal rat cortices, OPCs were seeded into different media conditions 

to perform differentiation and inhibitory experiments. 

 

 



19 | 74 

 

 

Figure 6 | Overview of OPC cell lines experiments. OLI-Neu and OLN-93 cells were seeded into 

different media conditions to reproduce primary OPC differentiation and inhibitory 
experiments. 
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2.2 EM analysis of myelin abnormalities in EphrinB3 knock-out mice 

As EphrinB3 has shown to inhibit OPC differentiation in vitro78, the investigation of possible myelin 

abnormalities in EphrinB3 knockout rats is an obvious interest. Analysis of brain sections by electron 

microscopy (EM) is an effective method to identify the quality of axon myelination. Therefore, brains 

of five EphrinB3 knockout rats of different ages (d2, 1M, 3M, 6M, old) and five according control brains 

were fixed and embedded in resin blocks. For identification of white matter in the caudal cerebellar 

penduncle (CCP) the blocks were cut with an ultramicrotome (0.2 µm slices) and analysed. The areas of 

white matter were marked on the block and handed to Mike Peacock (Institute for Neurosciences, Vet. 

Medicine, Cambridge, UK) who prepared the EM slices for further analysis. Those were photographed 

and studied for myelin abnormalities through visible phenotypes and determination of the g-ratio. The 

g-ratio is the ratio of the inner axonal diameter to the total outer diameter and very reliable to asses 

axonal myelination as it has to be accurate to achieve maximal conduction efficiency and physiological 

optimization.50 

 

Brain cutting overview: 

 

 

Encircled numbers represent the preferred specimen for analysing 

 

Analysed brain specimen: 

day 2 (d2) 
(2 KO & 2 Control 

brains) 

 

1 month (1M) 
(1 KO & 1 Control 

brain) 

3 month (3M) 
(1 KO & 1 Control 

brains) 

6 month (6M) 
(1 KO & 1 Control 

brains) 

Old (o) 
(2 KO & 2 Control 

brains) 

 

Control brain 1: 

day2 C1 CCP1 

day2 C1 CC1 

 

KO brain 1: 

day2 K1 CCP1 

day2 K1 CC1 

 
Control brain 2: 

day2 C2 CCP1 

day2 C2 CC2 

 

KO brain 2: 

day2 K2 CCP2 

day2 K2 CC1 

 

Control brain 5: 

1M C5 CCP21 

1M C5 CC11 

 

KO brain 5: 

1M K5 CCP12 

1M K5 CC11 

 
 

 

Control brain 7: 

3M C7 CCP12 

3M C7 CC11 

 

KO brain 7: 

3M K7 CCP21 

3M K7 CC12 

 

 

Control brain 6: 

6M C6 CCP21 

6M C6 CC12 

 

KO brain 6: 

6M K6 CCP21 

6M K6 CCP11 

 

 

Control brain 3: 

o C3 CCP21 

o C3 CC11 

 

KO brain 3: 

o K3 CCP22 

o K3 CC11 

 
Control brain 4: 

o C4 CCP22 

o C4 CC12 

 

KO brain 4: 

o K4 CCP21 

o K4 CC12 
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2.3 EphrinB3 and its receptors 

As EphrinB3 has shown to be a potential inhibitor of OPC differentiation78 and IgG clustered EphrinB3 

has been identified to activate the Eph receptors B1, B2, B3 and A481, there is an obvious correlation 

between those facts and a strong interest in finding the Eph receptor(s) mediating this differentiation 

block. Therefore, the following Eph receptor Phosphorylation Status Assay was performed to 

investigate the Ephrin mediated pathways of OPC differentiation. 

In this experiment, purified OPCs were seeded on 6 well plates and let settled for 4h. After this period, 

EphrinB3 was added to attached OPCs or not (= control). Lysates were made from both conditions at 

two time points: 45min and 4h after addition. Out of those lysates, the Eph receptors B1, B2, B3 & A4 

were immunoprecipitated. The following detection of tyrosine kinase phosphorylations and according 

Eph receptor should display the differences within the phosphorylation patterns of the mentioned Eph 

receptors when EphrinB3 was added or not. Activation of Eph receptors would be visible through 

additional tyrosine phosphorylation bands.  

In addition, EphrinB3 was tried to be immunoprecipitated and detected through western blot method 

either out of myelin protein extract (MPE) or out of oligodendrocyte lysates as it can function as a 

receptor as well. 
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3. Methods 

3.1 Preparation of mixed glial cells (MGCs) 

MGCs primary cultures were obtained from P0 to P2 neonatal Sprague-Dawley Rat cerebral cortices 

according to a standard protocol85 that was adapted from our group.64 All steps were carried out in a 

dissection hood with 70% EtOH sterilized instruments. The brains were resected with a curved scissors 

and collected in a MEM containing petri dish. The following dissection steps were performed: removal 

of cerebellum, separation of cortices, removal of midbrain (including basal ganglia) and peeling away 

of meninges. Then, 6/8 cerebral cortices at once were digested with 1 ml sterile filtrated digestion 

buffer for 30 min at 37°C and homogenized before stopping the reaction with the 10 fold volume of 

preheated DMEM followed by centrifugation at 1500 rpm for 10 min. After discarding of the 

supernatant the loose pellet was re-suspended in 1 ml DMEM and the cell suspensions plated on PLL 

coated flasks. These mixed glia cell cultures were cultivated in a 0.01% Poly-L-Lysine (PLL) coated T75 

flask with 10 ml DMEM + 1% Penicillin/Streptomycin + L-Glutamine + 10% FCS for about 10 days at 7.5 

% CO2 and 37°C whereas the media was changed every 3 to 4 days. 

 

3.2 Purification of OPCs (Shake-Off) 

About 10 days after plating, the mixed glia cell cultures were confluent (astrocyte layer with OPCs and 

microglia on top). First, the loosely adherent microglia were pre-shaken by agitate flasks for 1h at 37°C 

and 260 rpm on an orbital shaker. Then, the media was removed and the cells were washed with 

preheated 1x PBS. Afterwards, 10 ml preheated DMEM was added to cultivation flask followed by a 

Shake-Off of OPCs either per hand or overnight agitation on orbital shaker.  

 

Confluent mixed glia cell 
culture 

After pre-shake of  
microglia 

After Shake-Off of  
OPCs 

Figure 7 | image of confluent mixed glia cell culture (left), glia cell culture after removal of microglia (middle), glia cell culture 
after shake off of OPCs (right). Note: It is possible to shake off OPCs again after cultivation of remained mixed glia culture in 

10 ml DMEM for about 1 week. The media should be changed every 3 to 4 days. 

 

The OPC including media was then collected and transferred to an untreated petri dish and incubated 

for 10 min as contaminating microglia tend to attach more rapidly to petri dish surface than OPCs. 
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Afterwards the petri dish was swirled gently and the media was pipetted into a 50 ml falcon tube. 

Finally, the OPC suspension was centrifuged for 10 min at 1000 rpm, the pellet was suspended in 1 ml 

Satos media and cells were counted using a ‘Bright Line Counting Chamber’. For differentiation, OPCs 

were seeded in Satos Media + 0.5 % FCS on PLL coated dishes at following density: per 8-well (0.9 cm2): 

25.000 cells and 300 µl media; per 6-well (9.6 cm2): 300.000 cells and 3000 µl media, per 24 well: 

40.000 cells and 500 µl media. OPCs were incubated at 37°C with 7.5 % CO2. 

 

3.3 Preparation of myelin membrane substrates and myelin protein extracts 

In general, myelin was purified through discontinuous density sucrose gradient centrifugation and 

osmotic disintegration.86 All centrifugation steps were carried out with an Ultra-Centrifuge (Avanti J-

30I Centrifuge, Beckman Coulter). 

Brains of young Sprague-Dawley rats (female) were homogenized mechanically for 2 min in ice-cold 

0.32M sucrose using a mechanical blender (Ultra-Turrax; IKA, T18basic). The homogenized brains were 

diluted with 2.5mM Tris/HCl pH7.0 to a final sucrose concentration of 0.25M and pelleted for 10 min at 

55 000 g, 4°C. The pellet was re-suspended in 17 ml of 0.88M sucrose solution and overlaid carefully 

with 17 ml of 0.25M sucrose solution to establish a gradient. After sucrose density gradient 

centrifugation for 1h at 100 000 g and 4°C, the myelin interface was collected and mixed in 30 ml of ice 

cold dH2O followed by pelleting for 10 min at 55 000 g and 4°C. The pellet was re-suspended in 10 ml 

ice cold dH2O, the myelin solution incubated for 1 h on ice for osmotic shock and then pelleted again 

for 10 min at 55 000 g and 4°C. After removal of the supernatant, the flotation and two washing steps 

were repeated. The pellet was stored at -80°C until isolation of Myelin Protein Extract (MPE). 

To prepare MPE, the pellets were thawed and re-suspended in 1% N-octyl-beta-D-glucopyranoside, 

0.2M Sodiumphosphate pH 6.8, 0.1M Na2SO4 and 1mM EDTA and incubated at 23°C for 2h. Then the 

solution was centrifuged for 30 min at 100 000 g and 18°C and the supernatants were collected, 

aliquoted and stored at -20°C until further usage.63 

For plating of MPE, 40 µg of MPE solution were added onto Poly-L-Lysine-Hydrobromide precoated cell 

culture dishes over night at 4°C. The next day, the MPE solution was sucked off and OPCs were seeded. 
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3.4 Determination of protein concentration (BCA) 

This method includes the biuret reaction (reduction of Cu2+ to Cu1+) with a following highly sensitive 

and selective colorimetric detection of the cuprous cation (Cu1+) with a reagent that contains 

bicinchoninic acid (BCA). The chelation of two BCA molecules with one cuprous ion forms the purple 

coloured reaction product which absorbs a wavelength of 562 nm (nearly linear with increasing 

protein concentration over 20 - 2 000 µg/ml). 

Therefore, the BCATM Protein Assay Kit from Pierce was used. Before each measurement, a calibration 

curve with a BSA standard was performed in advance with following concentrations: 1mg/ml; 0.5 

mg/ml; 0.25 mg/ml; 0.125 mg/ml and 0.062 mg/ml. The solutions were prepared according to the data 

sheet: 50 µl protein solution (blank, or standard) were mixed with 950 µl of Working Reagent (50 parts 

‘Solution A’ + 1 part ‘Solution B’) in a 1.5 ml Eppendorf Cup and put on 37°C with 600 rpm for 30 min. 

Then, the Eppi was inverted several times and the solution transferred into a semi-micro cuvette. 

Protein determination was performed with an Eppendorf Bio-photometer at 562 nm. Note: the protein 

solution can be diluted with dH2O or 1x PBS (according to blank). 

 

3.5 Immunoprecipitation 

An immunoprecipitation (IP) follows the principle of an antigen-antibody reaction. Thereby, a specific 

antibody against the desired protein is added to a protein-lysate solution. Then, the antibody-protein 

complexes are precipitated by adding agarose beads with bound A/G-proteins that recognizes the 

antibodies Fc-Domain. After centrifugation, the protein of interest will be dissolved from the agarose-

bead-antibody conjugate through heating in the appropriate SDS-page loading buffer and analysed by 

immunoblotting.  
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3.5.1 Immunoprecipitation overview 

 

 

A) Preclear 

Remove proteins that can cause contamination 

through unspecific binding to agarose beads or AB: 

 

1 µg of Ms IgG antibody was added to lysate and 

rotated for 15 to 30 min at 4°C.   Then, 10 to 

20 µl protein A/D agarose beads PLUS (Millipore) were 

added to the cell lysate and rotated 30 min at 4°C (� 
the immobilized A/G protein on the agarose beads 

surface will bind the IgG antibodies Fc-region). After 

centrifuging for 5 min at 2500 rpm and 4°C the 

supernatant was transferred into a new eppendorf cup.  

 

 

B) Target protein of interest with according antibody: 

1 µg of according antibody were added to lysates. As a 

negative control, the same amount of IgG antibody was 

used for ‘control lysate’. The antibody-protein solutions 
were rotated for about 1-2h at 4°C. 

 

 

C) Pull down protein of interest: 

10 to 20 µl of protein A/G agarose beads PLUS were 

added to antibody-protein solutions and rotated over 

night at 4°C. 

 

 

D) Wash beads to remove unbound proteins:  
Centrifugation for 5 min at 2500 rpm and supernatant 

was removed. Following washing step with 500 µl of ice 

cold 1xPBS or IP washing buffer (+ Protease Inhibitor + 

Phosphatase Inhibitor) was repeated 4x. 

 

 

E) Dissolve protein-bead complexes: 

The protein-bead complexes were dissolved by adding 

20 to 40 µl of 1x SDS-Page loading buffer and heating 
for 3-5 min at 99°C and 750 rpm (Di-sulfide-bonds will 

be reduced and protein-aggregates dissolved). 

Afterwards, agarose beads were spinned down and 10 

to 20 µl of protein-buffer solution were loaded on a 

Tris-Gly-Gel for following SDS-Page. 

 

 

 
Figure 8| Illustration of an IP for Eph receptors. Note that IP was 
also performed on EphrinB3 proteins. 
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3.6 SDS-Page 

For separation of proteins in a mass weight (Mw) 

dependent way, it is necessary to denaturate them and 

mask their natural charge. The detergent SDS (sodium 

dodecyl sulphate) was used to destroy the proteins 

hydrogen bounds and to cover the proteins natural 

charge with a negative one � the bigger the protein, 

the more negative charge is present. Beta-Mercapto-

ethanol was used to reduce the proteins di-sulfide 

bounds (heating for 3-5 min at 99°C enhances the 

process).  

The proteins were then separated by using poly-

acrylamide gel electrophoresis (tris-glycine gels and 

electrophoresis-chamber from Invitrogen) in an 

appropriate electrolyte containing buffer (SDS-running-

buffer). After applying of voltage (135 V, 35 mA), all 

proteins will be attracted by the positive pole as they 

are negatively charged. Lighter proteins will migrate 

much faster through the gel than heavier ones as the 

acrylamide grid functions as a barrier. Therefore, the 

speed of migration can be regulated through a variable 

percentage of acrylamide. 

 

 

    Figure 9 | SDS-Page overview.  

 

3.7 Western-Blot 

After SDS-Page, the separated proteins within the gel were transferred to a nitrocellulose membrane 

(Hybond ECL from Amersham) in a blocking chamber from invitrogen. Therefore, the proteins were 

forced to migrate out of the gel onto the membrane by applying of vertical voltage in an appropriate 

Transfer Buffer. As the proteins are negatively charged, it is important to put the membrane between 

gel and positive pole – see figure for assembly of blotting apparatus and procedure. 

For enhanced chemi-luminescence (ECL), the Amersham ECL Plus Western Blotting Detection System 

was used. Oxidation of Lumigen®PS-3 trough HRP generates numerous acridinium ester intermediates 

per minute which react with peroxide at alkaline pH and produce high-intensity chemiluminescence. 

This light emission at 430 nm was detected on autoradiography films (Amersham HyperfilmTM ECL).  
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Figure 10 | Western Blot overview. Assembly of blotting apparatus and procedure for chemi-lumineszenz. 

 

3.8 Embedding of brain tissue 

Wild type and Knock out rat brains were cut (Figure 11 | A) and the tissue placed into basket chambers 

in appropriate order (Figure 11 | B). Six baskets at once were strung and fixed on a stab (Figure 11 | C), 

transferred into a bijou tube and rotated in 2% osmium over night at 4°C (Figure 11 | D). 

 

 

Figure 11 | Overview of brain tissue embedding. A Brain cutting procedure, B-C Embedding procedure. 

 

The next morning, the osmium solution became black and baskets were washed twice with dH2O. 

Then, baskets were washed with 70% EtOH for 15 min, 95% EtOH for another 15 min and 100% EtOH 

for 3x 10 min. Afterwards, propylene oxide was added for 2x 15 min, discarded and specimen left in a 

50:50 propylene oxide & resin mix overnight, rotating. Baskets were then rotated in a 100% resin mix 

for at least 6hs followed by embedding of the specimen in a new 100% resin mix. Therefore, the tubes 

had to be filled with two drops of 100% resin mix, then, the specimen was placed in desired cutting 
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direction and the tube filled up with 100% resin mix. This procedure was repeated for all specimen and 

tubes were stored in the oven at 60°C for polymerization overnight. The hard resin blocks were freed 

by cutting off the plastic tube: 

 

 

Figure 12 | Preparation of resin blocks. 

 

3.9 Preparing of EM-slices 

An ultramicrotome was used to cut the resin blocks. The blocks were first trimmed with a rasp until 

tissue was reached. With a glass knife, the tissue was trimmed to obtain a plane surface and a fresh 

glass knife was used to cut 1-2 µm slices – when water is dropped on the glass knife, the surface 

tension will avoid screwing of slice – and placed upon a water drop spotted on a microscope slide. 

Some slices were collected on one slide and put on a heater dish for vaporization of the water drop 

causing the slice to stick. Thereafter, the slices were stained with methylene blue by heating the slide 

for two seconds above a Bunsen burner, adding methylene blue and heating the slide again for 3 

seconds above the Bunsen burner. Thereby, the methylene blue solution must not cook. Then, the 

slide was washed with hot water upside-down and dried on a heater dish overnight. 

The stained slices were analysed under a light microscope where grey matter regions can be identified 

and marked on the resin block for electron microscope section preparation (performed by Mike 

Peacock, Neurosciences, Vet.Medicine, Cambridge, UK). The electron microscope sections were then 

analysed and photographed with a HITACHI H600 transmission electron microscope at different 

magnifications. 

 

3.10 Immunocytochemistry 

The immunocytochemistry staining follows the principle of an antigen-antibody reaction. Thereby, a 

specific antibody against the desired protein is added to previously fixed cells. This first antibody can 

be detected through a secondary antibody with a bound fluorochrome at the right wavelength.  

3.10.1  Fixation of cells 

The media was removed and cells washed twice with pre-incubated 1x PBS. Fixation of cells occurred 

through addition of 4% PFA for 10 min followed by washing two times with 1x PBS. 

3.10.2  Blocking/permeabilisation step 

Solution A was added for 5 min. 



30 | 74 

3.10.3  Staining  

The cells were stained with the first antibody against the desired protein and appropriately diluted in 

Solution B for one hour at RT or overnight at 4°C (note: the antibody dilution was decreased when 

incubated overnight). Then, cells were washed three times with 1x PBS for 5 min before incubation 

with the according secondary antibody diluted in Solution B for one hour at RT. The cells were washed 

again with 1x PBS three times for 5 min (note: double staining is possible by repeating this protocol 

with another 1st antibody). Afterwards, the nuclei were stained with dapi diluted in Solution B for 2 min 

at RT and washed again with 1x PBS. Pictures were taken with an Olympus BX 71 microscope.  

 
1

st
 antibodies dilutions 2

nd
 antibodies dilutions 

 

Anti-O4  Millipore 

 

ICC: 4,5 µl/ml 

(10-20 µg/nl) 

 

Anti-Ms Cy3  Jackson 

Immuno Research 

 

10 µl/ml 

Anti-MPB  

Chemicon  

ICC: 6µl/ml Anti-Rt Cy2  Jackson 

Immuno Research 

10 µl/ml 

Anti-EphB1  R&D WB: 10 µl/10ml  Anti-Rt 1:2500 

Anti-EphB2  R&D WB: 0,2 µg/ml 

ICC: 10 µg/ml 

Anti-Ms 

Anti-Ms Cy3  Jackson 

Immuno Research 

1:2500 

10 µl/ml 

Anti-EphB3  Abcam WB: 7 µl/15ml  

(1:500 – 1:1000) 

Anti-Rb 1:2500 

Anti-Eph4A  Abgent WB: 10 µl/10ml 

1:100-500 

Anti-Rb 1:2500 

Anti-

Phosphotyrosine 

Millipore 

WB: ~ 0,1 µg/ml 

 

Anti-Ms 1:2500 

Anti-A2B5  

Chemicon 

ICC: 5µl/ml  

(5-10µg/ml) 

Anti-Ms Cy3  Jackson 

Immuno Research 

10 µl/ml  

Anti-nkx2.2  Aviva WB: 1,25 µl/10ml Anti-Rb  1:2500 

Anti-GAPDH  

Abcam 

WB: 0,5-1 µg/ml Anti-Rb  1:2500 

Anti-alpha-Tubulin 

Abcam 

WB: 1:5000-10000 Anti-Ms  1:2500 

Anti-GalC  Millipore ICC: 1:10-50 Anti-Rb Cy2  Jackson 

Immuno Research 

10 µl/ml 

Anti-PLP  Abcam ICC: 1/100 Anti-Ms Cy3  Jackson 

Immuno Research 

10 µl/ml 

 

 

 

3.11 Differentiation of OLN-93 and OLI-Neu cell lines 

After proliferation about 2-3 days, the cell lines were passaged and seeded on poly-L-lysine coated 

dishes and cultured in diverse conditions to define an appropriate differentiation media. Afterwards, 

they were tested for reproducibility of established primary oligodendrocyte experiments (c.p. figure 6). 
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Media overview for OLN-93: Media overview for OLI-Neu: 

Satos media + 0.5% FCS 

DMEM + 0.5% FCS + IGF1 

DMEM + 0.5% FCS 

DMEM + 10% FCS (=cultivation media as a control) 

Satos media + 0.5% HS 

DMEM + 0.5% HS + IGF1 

DMEM + 0.5% HS 

DMEM + 5% HS (=cultivation media as a control) 

 

One media contained the Insulin like growth factor 1 (IGF-1) as binding to the IGF-1 receptor is known 

to play a vital role in Oligodendrocyte development, survival and myelin genesis79,80 and therefore, 

probably promotes differentiation. However, the Satos media already included 10µg/ml Insulin.  

 

Plating overview OLN-93 Plating overview OLI-Neu 

per 8-well (0.9 cm2): 5.000 cells, 300 µl media 

per 6-well (9.6 cm2): 10.000 cells, 3 ml media 

per T57 flask: 250.000 cells, 10 ml media 

per 8-well (0.9 cm2): 7.000 cells, 300 µl media 

per 6-well (9.6 cm2): 20.000 cells, 3 ml media 

per T57 flask: 350.000 cells, 10 ml media 

 

The media were changed every 2-3 days. Day1 to Day4 differentiated OLN-93 and OLI-Neu cells were 

counted, photographed (Olympus BX 71), stained by immunofluorescence for maturation markers, 

lysed for protein expression analysis and compared to identify the best differentiation media. 

 

3.12 Others 

3.12.1  Harvesting of OLN-93 & OLI-Neu cell lines from flasks 

The cells were washed with warm 1x PBS and incubated with 2 ml 0.05 % Trypsin in DMEM for 2-5 min 

at 37°C. The reaction was stopped by adding 10 ml pre-warmed DMEM followed by centrifugation at 

1500 rpm for 10 min. The supernatant was removed, the cells were diluted in 1 ml pre-warmed Satos 

or DMEM media with the appropriate percentage of FCS or HS and counted. 

 

3.12.2  Thawing of OLN-93 & OLI-Neu cell lines 

Cells were immediately transferred from the -80°C fridge (or -140°C liquid nitrogen) in a 37°C warm 

water bath. As soon as the cell solution was thawed, 10 ml of warm media (DMEM + 10% FCS + L-Glu + 

P/S) was added drop wise and inverted gently. After spinning at 1000 g for 5 min, the supernatant was 

decanted and the pellet dissolved in 1 ml warm media. Then, cells were transferred into the flask and 

incubated at 37°C and 7.5% CO2.  

 



32 | 74 

3.12.3  Freezing of OLN-93 & OLI-Neu cell lines 

For freezing cells, they were known to grow well or to be in the log phase. After harvesting and 

counting of cells, they were centrifugated for 5 min at 1500 rpm. Then, the supernatant was removed 

and per 1*106 cells 1 ml of freezing solution was added. The cells were re-suspended thoroughly, 

transferred into cryovials (1 ml) and maintained on ice for approximately 30 min. Keep cells in the -

80°C freezer for short term storage or at least 24 hours before transfer in liquid nitrogen for long term 

storage. 

 

3.12.4  Cell number calculation 

Therefore, a ‘Bright Line Counting Chamber’ was used. Cells were pelleted at 15000 rpm for 10 min 

and after removal of supernatant (well) dissolved in 1 ml pre-incubated DMEM. 10 µl of cell solution 

was diluted with 10 µl of Trypan Blue (stains only dead cells) and add 10 µl of Trypan Blue cell solution 

onto the counting chamber. The cells of three squares were counted and dead cells were substracted 

from total cell number. The average of all three squares multiplied by the dilution factor (1:2) *104 

reflects the cell number of living cells in 1 ml. 

 

3.12.5  Clustering of EphrinB3 

EphrinB3 was dissolved in 1x PBS to a concentration of 200 µg/ml. The anti-human Fc-IgG (1mg/ml) 

was mixed with the EphrinB3 solution (4µl IgG per 200µl EphrinB3 solution) and allowed to incubate 

for 3 hours on ice.  
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4. Materials 

4.1 Primary OPCs 

Mixed glia cell cultures were obtained from P0 to P1 neonatal Sprague-Dawley Rat cerebral cortices 

according to a standard protocol87 that was adapted from our group.64 OPCs were purified the Shake-

Off method and seeded on PLL coated dishes with the according condition. 

 

4.2 OPC cell lines  

4.2.1 OLI-Neu 

The OPC cell line, OLI-Neu (provided by J. Trotter, University of Mainz, Mainz, Germany) was first 

described in 1989.87 OLI-Neu are cell lines of murine oligodendroglial precursor cells immortalized by 

an activated tyrosine kinase.88 For all experiments passage numbers < 30 were used. After passaging, 

the cells were seeded on PLL coated dishes in Satos media supplemented with 5% HS for cultivation or 

0.5% HS for differentiation and maintained at 37°C and 7.5% CO2. OLI-Neu cells were passaged 1:5 two 

or three times a week.  

 

4.2.2 OLN-93 

OLN-93 rat oligodendroglia cells (provided by C. Richter-Landsberg, University of Oldenburg, 

Oldenburg, Germany) were cultured as described previously from C. Richter-Landsberg & M. Heinrich. 

They established this permanent cell line, derived from spontaneously transformed cells in primary rat 

glial cultures.89 After passaging (only passages <30 were used) the cells were seeded on PLL coated 

dishes in DMEM supplemented with 10% FCS for cultivation or in Satos media with 0.5% FCS for 

differentiation and maintained at 37°C and 7.5% CO2. OLN-93 cells were passaged 1:8-1:10 two or 

three times a week for cultivation. 

 

4.3 EphrinB3 knock-out mice 

The EphrinB3 knock-out mice have been provided by Prof. Amparo Acker-Palmer. 
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4.4 Cell Culture Media 

4.4.1 OLI-Neu Cultivation Media 

 500.00 ml DMEM + 4.5 g/l D-Glucose + 3.7 g/l NaOCO2 

 5.00 ml Satos Stock Solution (1%) 

 25.00 ml heat inactivated Horse Serum (5%) 

 5.00 ml Pen/Strep solution (1% / 5000U/ml) 

 11.00 µl 10 mM Na Selenite Stock (f.c. 220 nM) 

 500.00 µl 100 mM Putrescine Stock (f.c. 100 µM) 

 10.00 µl 10 mM Progesterone Stock (f.c. 200 nM) 

 2.50 µl 1 mM Tri-Iodo-thyroxine (T3) Stock (f.c. 50 pM) 

 26.00 µl 1 mM L-Thyroxine (T4) Stock (f.c. 520 nM) 

 1.00 ml 5 mg/ml Insulin solution – fresh (f.c. 10 µg/ml) 

 1.00 ml 2,5mg/ml Holo-Transferrin solution – fresh (f.c. 5 µg/ml)  

 500.00 µl 100 mM Pyruvate Stock (f.c. 0.11 mM) 

 10.00 ml 200 mM L-Glutamine (f.c. 4 mM) 

  

4.4.2 OLI-Neu Differentiation Media 

 500.00 ml DMEM + Glucose + NaOCO2 or Satos Media 

 50.00 ml heat inactivated HS (0.5% or 1%) 

 5.00 ml Pen/Strep (1%) 

 10.00 ml 200 mM L-Glutamine (f.c. 4 mM) 

 

4.4.3 OLN-93 Cultivation Media 

 500.00 ml DMEM + Glucose + NaOCO2 

 50.00 ml heat inactivated FCS (10%) 

 5.00 ml Pen/Strep (1%) 

 10.00 ml 200 mM L-Glutamine (f.c. 4 mM) 

  

4.4.4 OLN-93 Differentiation Media 

 500.00 ml DMEM + Glucose + NaOCO2 or Satos Media 

 50.00 ml FCS (0.5%) 

 5.00 ml Pen/Strep (1%) 

 10.00 ml 200 mM L-Glutamine (f.c. 4 mM) 

 

4.4.5 MEM 

 500.00 ml MEM  

 5.00 ml Pen/Strep solution (1%) 

 10.00 ml 200 mM L-Glutamine (f.c. 4 mM) 

 

4.4.6 Satos Media 

 500.00 ml DMEM  

 5.00 ml Satos Stock Solution (1%) 

 5.00 ml Pen/Strep solution (1%) 

 1.00 ml 25mg/ml Holo-Transferrin fresh (f.c. 10 µg/ml) 

 1.00 ml 2.5 mg/ml Insulin solution– fresh (f.c. 10 µg/ml) 

 10.00 ml 200 mM L-Glutamine (f.c. 4 mM) 

 

4.4.7 OPC differentiation Media 

 Add 2.50 ml FCS (0.5%) into Satos Media 
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4.5 Buffers  
 

Buffer 

 

Recipe 

 

TBS (Tris Buffered Saline) 10x 

 
20 mM Tris-base 

0.9% NaCl 
Adjust pH to 7.4 with HCl 

 

TBS-T 1x Dilute TBS 10x 1:10 with dH2O and add 0,1% Tween20 
 

SDS-Gel Running Buffer 10x 30.3 g Tris base 
144.0 g Glycine 

10.0 g SDS 

Fill up to 1L with dH2O 
 

SDS-Gel Running Buffer 10x Dilute SDS-Gel-Running Buffer 10x 1:10 with dH2O 
 

Transfer Buffer 10x, 1L 2.4 g Tris base 
14.2 g Glycine 

1 ml SDS (10%) 
Fill up to 1L with dH2O 

 

Transfer Buffer 1x for blotting, 

500ml 

50 ml Transfer Buffer 10x 

350 ml dH2O  
100 ml Methanol 

 

Blocking Buffer, 10ml 5 g dry milk (5%) 
100 ml TBS-T 

Mix for at least 30 min 
 

Lysis Buffer for IP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wash Buffer for IP 

IP Buffer I (Sasha): 

0.05 g Octyl Pyranoside (1%) 
1.5 ml NaCl (150 mM) 
10 µl EDTA (1mM) 

Adjust to 5 ml with Tris base (50 mM) pH 8 
 

IP Buffer II (Millipore): 

0.05 g Octyl Pyranoside (1%) 
25 mM Hepes pH 7.5 

150 mM NaCl  
1 mM EDTA 
2% Glycerol 

Dilute 1:5 by adding 4ml dH2O to 1ml Buffer II 
 

IP Buffer III (Yasir): 
0.05 g Octyl Pyranoside (1%) 

0.2 M Sodiumphosphate pH 6.8 
0.1 mM Na2SO4  

1 mM EDTA 
 

25 ml: 
1.25 ml Tris (50mM), pH7,6 

7.5 ml NaCl (150mM) 
100 µl EDTA (2mM), pH 8 

50 µl NP-40 (0.2%) or Tween20 

10 µl Proteinase Inhibitor 
10 µl Phosphatase Inhibitor 

 

MPE Buffer, 10 ml 0.1 g Octylglycoside 
4 ml 0.5 M Sodiumphosphate pH 6.8 

1 ml 1 M Na2SO4 
20 µl 0.5 M EDTA pH8 
60 µl 0.1 M DTT 

5 ml dH2O 
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4.6 Solutions 

 

Used formulars:  n (mol) = m (g) * M (g/mol) 

 

 V1 (ml) * c1 (mg/ml) = V2 (ml) * c2 (mg/ml) 

 

Solution Calculation Result 

0.25 M Sucrose, 500ml 0.250 mol / 1 L  
0.123 mol / 500 ml 

Mw Sucrose = 342.3 g/mol 
0.125 mol * 342.3 g/mol = 42.8 g 

 

42.8 g Sucrose to 500 ml 

with 2.5mM Tris/HCl pH7.0 

0.32 M Sucrose, 500 

ml 

0.32 mol / 1 L  

0.16 mol / 500 ml 

Mw Sucrose = 342.3 g/mol 

0.16 mol * 342.3 g/mol = 54 g 

 

54 g Sucrose to 500 ml with 

2.5mM Tris/HCl pH7.0 

2.5 mM Tris-HCl pH7, 

2 L 

2.5 mmol / 1 L  
5.0 mmol / 2 L 

Mw Tris-HCl = 788 g/mol 

5 mmol * 788 g/mol = 788 mg = 

0.79 g 

 

0.79 g Tris-HCl to 500 ml 

with Mili-Q Water  

10 mM Na-Selenit 

Stock,  

10 ml 

 

 

f.c. 220 nM in 500 ml 

10 mmol / L 

10 µmol / ml 
Mw Na-Selenite = 172.92 g/mol 

10 µmol * 172.94 g/mol = 1.73 mg  
10 ml Stock = 17.3 mg / 10 ml  

 

f.c. of 220 nM in 500 ml DMEM: 

10 000 µM * x = 0.22 µM * 500 ml 

x = 11 µl 

 

10 mM Stock: 1.73 mg + 10 

ml dH2O 

 

 

f.c. of 220 nM  

= 11 µl of 10 mM Stock / 500 

ml 

PLL 0.01%, 100 ml Poly-L-lysine Stock 1% 
x = 100*1% / 0.01% = 10 ml 

10 ml 1% Stock in 950 ml 1x 

PBS 

 

Clustered EphrinB3  

200 µg/ml 

(f.c. 10 µg/ml) 

For 300µl media: 

200µg * x = 10 µg * 300 µl 

or: 

200µg/ml*x = 10µg/ml*(300µl+x) 

200µg/ml*x = 

3000µg/ml*µl+10xµg/ml 

200µg/ml*x-10xµg/ml = 

3000µg/ml*µl 

x(200µg/ml-10µg/ml) = 

3000µg/ml*µl 

x*190µg/ml = 3000µg/ml*µl 

x = 3000µu/ml / 190µg/ml *µl 

x = 15.789 µl 

 

For 2000µl media: 

x = 105.3 µl 

15.8 µl EphrinB3 / 300µl 

media  

 

 

 

 

 

 

 

 

 

105.3 µl EphrinB3 / 2000 µl 
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Solution Recipe 

 

Digestion Solution, 10 ml 

 

   450.00 µl Papain (dissolves the ECM) 

   150.00 µl DNAse I typeIV 

   100.00 µl L-Cysteine 

        9.3 ml MEME (minimum essential medium eagel) 

� vortex 

� sterilisation per filter (0.2 µm) 

 

Sato’s Stock solution      5.1 g BSA V 

     3.0 mg Progesterone 

    805 mg Putrescine 

   0.25 mg Sodium Selenite 

      20 mg T3 (dissolve in 0.1M NaOH in 75%MeOH) 

      20 mg T4 (dissolve in 0.1M NaOH in 75%MeOH) 

Adjust to 500 ml in DMEM, make 5 ml aliquots, store at -80°C 

 

SolutionA, 15 ml 

(for Immunocytochemistry) 

   500.00 µl normal goat serum (f.c. 10%) 

     50.00 µl Triton-X 100 30% (f.c. 0.3%) 

       4.35 ml 1x PBS 

� rotate 1h at 4°C to dissolve Triton-X 100 

 

SolutionB, 5 ml 

(for Immunocytochemistry) 

   100.00 µl normal goat serum (f.c. 2%) 

     16.67 µl Triton-X 100 30% (f.c. 0.1%) 

        4.85 ml 1x PBS 

� rotate 1h at 4°C to dissolve Triton-X 100 

 

4% Paraformaldehyde 

Solution (PFA) 

 

Dilute 16% PFA-stock 1:4 with PBS 1x 

 

 

Stripping Solution 62.5 mM Tris-HCL pH 6.8 

100 mM beta-Mercaptoethanol 

2% SDS 

 

Freezing Solution 90% FCS or HS  

10% DMSO 

Add 1*10
6
 OLN-93 cells / 1ml Freezing Solution (FCS) 

Add 2*10
6
 OLN-93 cells / 1ml Freezing Solution (HS) 
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4.7 Chemicals  

 
Acetic Acid Sigma-Aldrich 

BSA (Bovine Serum Albumin Fraction V) Sigma-Aldrich 

Bromphenol blue Sigma-Aldrich 

DNAseI Type IV Sigma-Aldrich 

DMEM (Dulbecco’s Modified Eagle Medium) Sigma-Aldrich 

DTT (Dithiothreitol) Sigma-Aldrich 

ECL Western Blotting Detection Kit Amersham 

EDTA Sigma-Aldrich 

Ethanol MERCK 

FBS (Fetal Bovine Serum) Sigma-Aldrich 

HCl 37% Sigma-Aldrich 

Hoechst solution Sigma-Aldrich 

HS (Horse Serum) Sigma-Aldrich 

(recombinated) Human EphrinB3 R&D Systems 

Human Holo-Transferrin Sigma-Aldrich 

Insuline Sigma-Aldrich 

IGF1 (Insulin Like Growth Factor) Sigma-Aldrich 

L-Cysteine Hydrochloride Sigma-Aldrich 

L-Glutamine Sigma-Aldrich 

Glycerine Sigma-Aldrich 

MEM (Modified Eagle Medium) Sigma-Aldrich 

Mercaptoethanol Sigma-Aldrich 

Methanol MERCK 

Normal Goat serum Sigma-Aldrich 

NP-40 Sigma-Aldrich 

Octyl-beta-D-Glycopyranoside FLUKA 

Page RulerTM Prestained Protein Ladder Plus Fermentas 

10x PBS (Phosphate Buffered Sialine) Invitrogen 

Papain Worthington 

Penstrep (Penicillin-Streptomycin) GIBCO 

PFA (Paraformaldehyde) Sigma-Aldrich 
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PMSF (Phenylmethylsulfonylfluorid) Sigma-Aldrich 

Protease Inhibitor Mix Roche 

Poly-L-Lysine-Hydrobromide Sigma-Aldrich 

Progesterone Sigma-Aldrich 

Putrescine (1,4-Diaminobutane) Sigma-Aldrich 

SDS Sigma-Aldrich 

SDS-Page 12,5% Invitrogen 

Sodium Chloride Sigma-Aldrich 

Sodium Hydroxide Sigma-Aldrich 

Sodium Selenite Anhydrous Sigma-Aldrich 

Sucrose Sigma-Aldrich 

T3 (3,3’,5-Triiodo-L-Thyronine Sodium Salt) Sigma-Aldrich 

T4 (L-Thyroxine) Sigma-Aldrich 

Tris base Sigma-Aldrich 

Triton X-100 Sigma-Aldrich 

Trypan Blue Solution Sigma-Aldrich 

Tween 20 Sigma-Aldrich 
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5. Results  

5.1 Primary OPCs vs. OPC cell lines 
 

5.1.1 Analysis of primary OPC morphology and differentiation potential. 

When primary OPCs were seeded on PLL coated dishes with Satos media + 0.5% FCS, the cells started 

to form processes after 4h. Those mono- or bipolar progenitors continued in process formation and 

about 24h, multipolar and slightly branched phenotypes referred to pre-oligodendrocytes were 

observed. Growth and extensive branching indicated the maturation of oligodendrocytes and first 

myelin sheets were identified through bright field analysis at d3. The appearance of myelin 

demonstrated a successful differentiation of OPCs into mature, myelinating oligodendrocytes. 

The seeded cell number (e.g. 20 000 cells per 8-

well slide) and a constant distribution of OPCs 

were important to initiate the differentiation 

process and to enable extensive branching that 

normally resulted in myelin sheet formation. It 

shall be noted that d1 OPCs in figure 13 | A were 

seeded to dense but the multipolar, slightly 

branched processes are visible. Figure 13 | B 

shows multipolar branched oligodendrocytes at d3 

that are very likely to produce myelin sheets (black 

arrows). 

  

 

Figure 13 | Overview of primary OPC differentiation experiments. A bright field image of OPCs with multipolar processes 

and slightly branching at d1. B several multipolar branched, myelin producing oligodendrocytes at d3. C-E oligodendrocytes 

positive for O4. F-H oligodendrocyte with wide myelin-sheet formation, positive for MBP. I-L oligodendrocytes double-
immunocytostained against O4 and MBP. The correct distribution of OPCs encourages extensive branching and wide myelin 

sheet formation. M-P oligodendrocytes double-immunocytostained against A2B5 and MBP. Stainings against A2B5 enable a 
definite morphology analysis of branched processes. Note that the right cell is already MBP

+
. 
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To illustrate the differentiation potential of primary OPCs and their whole extent of branching, the 

oligodendrocytes were immunocytostained against the common pre-oligodendrocyte marker O4 

(figure 13 | C,E,I & L). To visualize myelin sheets and to determine fully differentiated primary 

oligodendrocytes, the myelin marker MBP was used (figure 13 | F-P). Stainings against the general glial 

cell marker A2B5 enabled a definite illustration of branched processes and were used for morphology 

analysis (figure 13 | M,P). Primary OPCs were A2B5
+ and became O4+ about 6-12h after plating. The 

first myelin producing cells appeared at d3 and about 45% of cells are MBP+ at d4. Thus, morphology 

analysis and immunocytostainings demonstrated primary OPCs to have the differentiation potential to 

form multipolar branched, myelinating oligodendrocytes. 

Following OPC cell lines were tested for reproducibility of primary OPC differentiation potential and 

morphology experiments in order to reduce animal sacrifices and a faster realization of experiments. 

 

5.1.2 Analysis of OPC cell line morphology 

The OPC cell lines OLI-Neu and OLN-93 were chosen for morphology and differentiation potential 

analysis. After proliferation of cell lines in PLL coated T57 flasks with cultivation media, they were 

passaged and seeded into diverse media conditions to define an appropriate differentiation media. A 

reduction of serum is known to encourage primary OPC differentiation. Therefore, a serum percentage 

of 0.5 was used in all three tested differentiation media. The according cultivation media with a higher 

percentage of serum served as a control. One tested media contained 10 µg/ml of the insulin like 

growth factor 1 (IGF1) because its binding to the IGF1 receptor play a vital role in oligodendrocyte 

development, survival and myelin genesis79,80. The Satos media already included 10µg/ml insulin. The 

media were changed every 2-3 days. 

Media overview for OLN-93: Media overview for OLI-Neu: 

Satos media + 0.5% FCS 

DMEM + 0.5% FCS + IGF1 

DMEM + 0.5% FCS 

DMEM + 10% FCS (=cultivation media as a control) 

Satos media + 0.5% HS 

DMEM + 0.5% HS + IGF1 

DMEM + 0.5% HS 

DMEM + 5% HS (=cultivation media as a control) 
 

To identify the best differentiation media, d1-d4 OLN-93 and OLI-Neu cells were photographed 

(Olympus BX 71), immunocytostained against maturation markers, lysed for protein expression 

analysis and compared. 
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5.1.2.1 OLI-Neu morphology in diverse media conditions 

When OLI-Neu cells were seeded in PLL coated flasks with media that either contained 5% or 0.5% 

horse serum (HS), a clear reduction of proliferation was obvious in every 0.5% HS containing flask. 

Independent of the used media (Satos or DMEM), 0.5% HS encouraged the OLI-Neu cells to form 

longer processes, a possible indicator for initiation of a differentiation process (figure 14 | C-H). 

However, the seeded cell number was important to obtain healthy looking as well as processing OLI-

Neu cells and identified to be beneficial at 350 000 cells per T75 flask. When OLI-Neu and primary OPC 

morphologies were compared, there are visible differences in cell body appearance, number and type 

of processes and branching. Most of the OLI-Neu cells formed two to four processes that showed just 

slightly branching and therefore, were morphological comparable to primary OPCs until a pre-

oligodendrocyte stage of differentiation. Further, within one flask two types of OLI-Neu cells were 

present, cells with small cell bodies and long processes and cells with wide cell bodies that did not 

necessarily form processes. Immunocytostainings were performed to control differentiation status 

through developmental marker appearance.  

 

Figure 14 | OLI-Neu & OLN-93 cell morphology in different media condition. 0.5% serum encouraged OLI-Neu and OLN-93 

cells to reduce proliferation and undergo morphology alterations that could indicate the initiation of a differentiation process. 
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5.1.2.2 OLN-93 morphology in diverse media conditions 

Seeding of OLN-93 cells in PLL coated flasks with 0.5% fetal calf serum (FCS) resulted in a reduction of 

proliferation, independent of the used media (DMEM, Satos). Within the 10% FCS containing 

cultivation media, OLN-93 cells even grew above each other and tend to form grid-like structures 

(figure 14 | I-J) whereas in the 0.5% FCS containing media, the cells showed a high variation in 

morphology. Phenotypes of multiple or less, thick or thin processes that were highly or hardly 

branched with or without membranous structures were observed (figure 14 | K-P). Some OLN-93 cells 

in cultivation media showed multiple branched phenotypes too but the rapid proliferation rate 

seemed to prevent expansion and number of processes. A cell number of 250 000 cells per T57 flask 

was necessary to promote growth and process formation in media with 0.5% serum. Morphology 

analysis identified some OLN-93 cells to look comparable to primary OPCs at a bi- to multipolar stage. 

Nevertheless, most OLN-93 cells appeared like hybrids of type-II-astrocytes and oligodendrocytes as 

they showed wide and flat cell bodies with various branched processes. The diversity of OLN-93 cells 

within one flask complicated precise comparison and therefore, immunocytostainings were performed 

to obtain more information about the expression of oligodendrocyte developmental makers. 

 

Interestingly, both cell lines reacted with significant morphological alterations to serum reduction but 

remained unaffected by the kind of media (DMEM or Satos) or IGF1 addition. The tested 

differentiation media revealed no media composition to more or less support morphology alterations 

related to differentiation processes. Therefore, following immunocytochemistries were performed on 

cells grown in all potential differentiation media to identify the cell lines differentiation poteintial, the 

according cultivation media seved as control. 

 

5.1.3 Analysis of morphology and differentiation potential with immunocytochemistry markers 

Established oligodendrocyte maturation markers were used to determine the developmental status of 

the OLI-Neu and OLN-93 cell lines. The differentiation potential of primary OPCs showed them to 

undergo maturation until fully differentiated, myelinating oligodendrocytes. Thereby, primary OPCs 

developed branched processes and became positive for the pre-oligodendrocyte marker O4. They 

extended in size and branching that resulted in myelin formation detected by the myelin basic protein 

marker MBP. According to those results, the cell lines were tested for reproducibility. 
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5.1.3.1 OLI-Neu cell line differentiation potential 

OLI-Neu cells were positive for the oligodendrocyte marker O4 from d1 to d4 in all tested media 

conditions (figure 15). Therefore, OLI-Neu cells had the potential to represent a pre-oligodendrocyte 

developmental stage. In addition, morphology changes that indicated differentiation initiatin were 

observed in all media with 0.5% serum (figure 15 | E-P). Those three differentiation media encouraged 

OLI-Neu cells to form long, slightly branched processes, whereas cells within the cultivation media 

showed wider cell bodies and less process formation but more membranous structures (figure 15 | A-

D). The Satos media with 0.5% HS was identified to act most benificial for a homologue cell population 

with about 70% of cells forming long processes. However, unlike OPCs, the OLI-Neu cells failed to 

extend in branching and never became positive for MBP in all tested media at d3 or d4. 

 

 
Figure 15 | OLI-Neu cells in different media immunocytostained against O4. In all tested media, the OLI-Neu cells are equally 

positive for the marker O4. However, formation of long processes is predominant in media with 0.5% serum.  
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5.1.3.2 OLN-93 cell line differentiation potential 

Independent of the used media, all OLN-93 cells were positive for O4 at d1 to d4 (figure 16). The three 

tested differentiation media promoted a branched, membranous phenotype but the kind of process 

formation highly varied within one flask. Most of OLN-93 cells were very flat and wide with 

membranous structures (e.g. figure 16 | M-P) or intensively branched (e.g. figure 16 | E-H) that 

indicated differentiation. Cells with thicker cell bodies and formation of long processes by less 

branching (e.g. figure 16 | I-L) were predominantly found in Satos media with 0.5% serum and 

comparable to primary OPCs at a bi- to multipolar stage. Following immunocytostainings against MBP 

were negative suggesting OLN-93 cell line differentiation potential to end at a pre-oligodendrocyte 

stage of development. The morphological alterations to membranous, branched phenotypes therefore 

did not reflect a fully differentiated primary oligodendrocyte. 

 

  

Figure 16 | OLN-93 cells in different media immunostained against O4. In all tested media, the OLN-93 cells are positive for 

the marker O4 but there is a high variablility in cell morphology independent of the used media. 
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5.1.3.3 Morphological differences between primary OPCs and cell line cells 

A closer look on morphological differences between primary OPCs and cell line cells was obtained 

through immunocytostainings against the glial marker A2B5. Like primary oligodendrocytes both OLI-

Neu and OLN-93 cells are positive for A2B5 at d3 after cultivation in Satos media with 0.5% serum. 

However, when compared to primary oligodendrocytes, the cell lines display obvious morphological 

differences. OLI-Neu and OLN-93 cells showed bigger cell nuclei, wider cell bodies and different kinds 

of processes and branching at d3. (cp. figure 17) 

 

 

Figure 17 | Morphology overview of primary oligodendrocytes, OLI-Neu and OLN-93 cells in Satos media + 0.5% serum. All 

cells were positive for the glial marker A2B5 but cell line cells showed significant morphological differences when compared to 

primary oligodendrocytes. 
 

5.1.3.4 Morphological stages of OLI-Neu and primary OPC process formation  
 

The differentiation of primary OPCs is subdivided in certain stages of process formation until a 

multipolar branched, myelinating phenotype is reached as illustrated in figure 18 | F-I. Morphology 

observations gave the impulse that the beginning OLI-Neu cells process formation could behave similar 

to primary OPCs even if an extensive branching was never reached. 

Immunocytostainings against O4 illustrated matchable morphological stages of OLI-Neu process 

formation until stage 2, a multipolar, slightly branched phenotype (figure 18| A-D). In contrast to 

primary OPCs, all OLI-Neu cells were O4+. Even the most inhibited phenotype with no process 

formation was still positive for O4 and therefore counted for stage 0 (figure 18 | A). However, 

extensive branched OLI-Neu cells comparable to the stage 3 primary oligodendrocyte phenotype were 

never observed.  
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 Figure 18 | Morphological stages of OLI-Neu cells and OPCs. F-I Stages 
of OPC process formation. It shall be noted, that OPCs without processes 

but positive for O4 are counted for stage 1. A-D Stages of OLI-Neu 

process formation. 
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5.1.4 Analysis of the inhibitory potential of MPE and EphrinB3 

To calculate and compare the inhibitory potentials of MPE and IgG clustered EphrinB3 on primary 

OPCs, OLI-Neu and OLN-93, the cells were counted for presence in four defined morphological stages 

of development, whereas stage 0 = most inhibited phenotype and stage 3 = most differentiated 

phenotype. Thereby, at least 200 cells were counted from different wells cultivated in the particular 

condition (PLL, MPE, clustered EphrinB3) at d3. In every condition Satos media with 0.5% serum was 

used.  

 

5.1.4.3 OPCs on PLL  

When primary OPCs were seeded on PLL, about 45% differentiated into myelinating Oligodendrocytes 

(stage 3), 25% had multipolar processes that were slightly branched (stage 2) and about the same 

amount showed at least mono- or bipolar processes (stage 1). However, even in well differentiating 

conditions some OPCs did not form processes and were negative for O4 (stage 0). (cp. figure 20 | A) 

 
5.1.4.4 OPCs on MPE  

Upon seeding on MPE (40µg) coated dishes, OPC differentiation initiation was inhibited (figure 13 | L & 

O). Thereby, most OPCs hardly showed any process formation and about 75% were not even positive 

for the marker O4 at d1. They are still alive, displayed by an intense and well defined dapi staining 

(figure 19 | N) but in a quiescent stage. The remaining cells formed mono- to multipolar branched 

processes but never differentiated into myelinating oligodendrocytes. (cp. figure 20 | A) 

 

5.1.4.5 OLI-Neu cells on PLL 

At d3 after cultivation on PLL, 45% of OLI-Neu cells developed several long processes that were slightly 

branched (stage 2) whereas 15% also showed membranous structures (stage 3). At least 34% started 

to form mono- or bipolar processes (stage 1) and 5% showed no processes by being O4+ (stage 0). (cp. 

figure 20 | B) 

 

5.1.4.4 OLI-Neu cells on MPE 

When OLI-Neu cells were seeded on dishes coated with 40µg MPE, 43% of OLI-Neu cells showed an 

inhibited phenotype with no process formation. A similar number of cells were found in a mono- or 

bipolar stage (figure 19 | F-J) and just about 15% formed multipolar, slightly branched but short 

processes. Interestingly, all inhibited cells were positive for the marker O4 (cp. figure 20) at d1. This 

fact demonstrated the OLI-Neu cells to represent an O4+ developmental stage from the very beginning 
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but further differentiation was inhibited. However, less OLI-Neu cells were able to attach to MPE 

coated surfaces since they were found floating around dead in the media. (cp figure 20 | B) 

 

5.1.4.5 OLN-93 cells on MPE 

In turn, OLN-93 cells remained completely unaffected when seeded on MPE coated dishes. Most of 

them formed multiple, branched processes and all were positive for O4 by having a good attachment 

rate (figure 19 | A-E). Therefore, no statistics were performed and OLN-93 cells were excluded for 

reproduction of the established primary OPC experiments.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 | Primary OPCs and cell lines to MPE at d1. K-O on MPE OPCs were 
strongly inhibited - no process formation and no expression of O4. F-J OLI-Neu 

cells hardly showed process formation on MPE but were O4 positive! A-E OLN-

93 cells showed no significant inhibition on MPE and are O4 positive. C-M As 

expected, all cells were negative for MBP. Note the green appearing cells in C 

not to be MBP positive but just represent a strong background signal from the 

secondary antibody.  
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5.1.4.6 Reaction of OPCs on EphrinB3 

When inhibitor EphrinB3 (IgG clustered) was added 4h after seeding on PLL coated dishes, just 14% 

differentiated into myelinating oligodendrocytes and 21% remained in a pre- or immature 

oligodendrocyte phenotype. In contrast to MPE, OPCs showed no total inhibition upon EphrinB3 

addition but 65% remained in an O4 positive, mono- or bipolar stage. This observation indicated 

EphrinB3 to inhibit predominantly the initiation of later differentiation processes. (cp. figure 20 | A) 

 
5.1.4.7 Reaction of OLI-Neu cells on EphrinB3 

Addition of EphrinB3 4h after seeding caused OLI-Neu cells to react quiet similar like primary OPCs. A 

minor percentage of OLI-Neu cells showed multipolar, slightly branched processes (17%) or enlarged 

membranous structures (9%). 40% of OLI-Neu cells were predominantly mono- or bipolar and 34% 

were O4 positive without process formation. (cp. figure 20 | B) 

 

 
 

Figure 20 | Morphological stages of OPC (A) and OLI-Neu (B) process formation in different conditions at d3. The numbers 

of cells at four morphological stages were evaluated by counting of at least 200 cells in different wells according to condition 

(PLL, MPE, clustered EphrinB3) in Satos media, whereas stage 0 = most inhibited phenotype and stage 3 = most differentiated 

phenotype. Please note that just one well with OLI-Neu cells + Ephrin B3 was available for counting.  
 

5.1.5 Immunocytostaining results overview  

Comparison of primary oligodendrocyte, OLI-Neu and OLN-93 cell lines immunocytostainings (table 1) 

indicated OLI-Neu and OLN-93 cell lines to represent a pre-oligodendrocytal stage of development (O4 

& A2B5 positive) which, at least under the present conditions, could not be triggered further in the 

differentiation process until a MBP positive phenotype. 

 

 Prim. Oligo. OLI-Neu OLN-93 

O4
+
 on PLL (from d1) 98 % 100 % 100 % 

O4
+
 on MPE (d1) 25% 100% 100% 

O4
+
 with EphrinB3 

(from d1) 

100% 100% - 

MBP
+
 on PLL (d3 to d4) 45% 0% 0% 

MBP
+
 on MPE (d1) 0% 0% 0% 

A2B5
+
 on PLL (from d1) 100% 100% 100% 

 

Table 1 | Overview of primary oligodendrocyte, OLI-Neu & OLN-93 cell line immunocytostainings.  
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5.2 Potential OPC-astrocyte switch  
 

 

Figure 21 | OPCs on PLL in Satos media with 10% FCS (A-E) or 0.5% 

FCS (F) at d7. 10% FCS containing wells showed at least two 

different shaped types of astrocytes (GFAP
+
 in green), 

Oligodendrocytes (O4
+
 in red) as well as cells to be positive for both 

markers (most obvious ones indicated with white arrows). 

 

Primary OPCs were seeded in Satos media 

with either 0.5% or 10% FCS to illustrate 

morphological differences. After a change of 

media at d2 or d3, the cells were fixed at d7. 

Immunocytostaining demonstrated oligo-

dendrocytes positive for O4 and revealed

several degrading myelin sheet structures

(e.g. figure 21 | D). The degradation was

thought to be due to the deprivation of 

nutrients. Surprisingly, the 10% FCS wells 

showed an unexpected high amount of cell 

types, not positive for O4. As it was very likely 

for those cells to be astrocytes, they were 

immunocytostained against the common 

astrocyte marker GFAP. The result displayed

cells negative for O4 to be positive for GFAP 

and to appear in different shapes: type-I like 

astrocytes (wide and flat cells with no or less 

processes) or type-II like astrocytes (cells with 

 a more compact cell body and multiple, astral processes) and in addition, some cells positive for both. 

Interestingly, those O4+/GFAP+ cells looked like to have been originated from oligodendrocytes, which 

switched into an astrocyte phenotype (figure 21 | A-E white arrows). Even if this oligodendrocyte-

typeII-astrocyte phenotype was just an in vitro relict, 

caused/promoted by an initial contamination from a bad 

shake off or a lack of nutrients, in Satos media with 0.5% 

FCS those O4+/GFAP+ cells have never been observed. In 

addition, when astrocytes were present in media with 0.5% 

FCS (contamination normally less than 5%) they showed an 

astral like shape with thicker processes (figure 21 | F). The 

percentage of occurring cell types at d7 is illustrated in 

figure 22. 

 

Figure 22 | Percentages of present cell 

types in Satos media +10% FCS at d7. 
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5.3 EM analysis of EphrinB3 KO mice 
 

5.3.1 Analysing of g-ratios 

The g-ratios of CCP regions from 1M, 3M, 6M and old EphrinB3 KO and according control brains were 

evaluated at 6x magnification and compared. Thereby, about 20 axons with different diameters were 

analysed through calculation of the ratio between the inner axonal diameter divided by the total 

diameter (with myelin). The results showed this g-ratio to be very consistent in both general and when 

KO and control brains are compared as illustrated in figure 23.   

 

Figure 23 | Overview of EphrinB3 KO and control CCP g-ratios. EphrinB3 KO and control mice brains of different ages 

were evaluated for their g-ratios and compared, resulting in no significant changes. 

 

 

5.3.2 Differences in myelination 

Analysing of knock out and control CCP brain regions through EM revealed differences in myelination 

appearances in d2 mice. Whereas the control brain showed hardly any axon myelination, the KO brain 

contained several regions of slight myelinated axons (figure 24 | d2 K2 CCP2 EM images). This 

observation could indicate that EphrinB3 KO promotes active myelination before postnatal day 6 (P6). 

In addition, former in vitro experiments confirmed EphrinB3 as an inhibitor of primary OPC 

differentiation and therefore, its knock out would match the result of prematurely myelination.  
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Figure 24 | d2 K2 & C2 CCP EM images at different 

magnifications. Note that d2 EphrinB3 KO EM images – in 
contrast to d2 controls – show several regions of slight 

myelinated axons! 

 

Figure 25 | 1M K5 & C5 CCP EM images at different 

magnifications. 

 

The 1M (figure 25), 3M (figure 26), 6M (figure 27) and old (figure 28) KO and control CCP EM images 

exhibited no further obvious changes in myelination appearance. However, some animals were badly 

perfused (e.g. figure 27 | 6M C6 CCP21). 
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Figure 26 | 3M K7 & C7 CCP EM images at different 

magnifications.  

 

 

Figure 27 | 6M K6 & C6 CCP EM images at different 

magnifications. Note the bad animal perfusion in the 

control. 

 

 

 

 
 

Figure 28| old KO & control CCP EM images at different magnifications. 
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5.3.3 Myelin abnormalities 

After different types of myelin abnormalities were identified and defined as ‘whatever’, ‘thick myelin 

wraps’, ‘multiple myelin wraps’, ‘multiple neuron wraps’, ‘messed up’, ‘infolding’ and ‘outfolding’, the 

EM specimen were evaluated for those myelin abnormalities without knowing if a control or KO 

specimen was watched (figure 29). The results illustrate an increased ‘whatever’ phenotype in the 1M 

EphrinB3 KO CCP and more ‘multiple myelin wraps’ in the 3M EphrinB3 KO compared to controls. 

However, no certain pattern of myelin abnormality occurrence was identified.  

 

 

Figure 29 | Overview of myelin abnormalities in EphrinB3 KO and control CCP regions. 
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5.4 Analysing of EphrinB3 and its receptors 
 

5.4.1 IP and phosphorylation analysis of Ephrin receptors 

The immunoprecipitation of Eph receptors B1, B2, B3 and A4 were performed on primary OPCs either 

lysed at 45min or 4h after a settlement period of four hours. The results displayed the IP to probably 

fail since no receptor bands (about 110kDa) could be identified and a strong IP background band 

pattern complicated evaluation. The according phosphotyrosine profile exhibited also strong 

background bands and no clear interpretation could be obtained. Several other immunoprecipitations 

were performed with modified protocols but the assays (and according IP band patterns) pretty much 

reflect those in figure 30 | A-D.  

 

 

Figure 30 A-B | Overview of Phosphorylation Status Assays EphB1 (A) and EphB2 (B) at 45min and 4h after 

settlement period of OPCs.  
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Figure 30 C-D | Overview of Phosphorylation Status Assays EphB3 (C) and EphA4 (D) at 45min and 4h after 

settlement period of OPCs. 
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5.4.2 IP of Eph receptors  

In this study, several immunoprecipitations were performed on Eph receptors B1, B2, B3 & A4 but 

distinct bands could never been identified. Further experiments were needed to ensure the Eph 

receptors were not precipitated during lysate preparation. Therefore, oligodendrocyte d2 lysates were 

centrifuged and 30 µg of the supernatant and the whole according pellet were loaded on a SDS gel.  

SDS-page was followed by western blotting to detect all four Eph receptors. The result (shown in figure 

31) displayed several bands in the supernatant lines 

but hardly and very slight at the right weight (e.g. 

for Eph receptors B3 and A4 at about 110 kDa). In 

addition, R&D gave no information at which weight 

Eph receptors B1 and B2 bands should be expected. 

Interestingly, in the pellet lanes detected against 

Eph receptors B1 and B2 very strong bands about 60 

kDa and against Eph receptor B3 a clear band about 

70 kDa appeared (red arrows). Those could indicate 

that the receptors were not proper dissolved from 

the cell membranes and therefore precipitated in 

the pellet. However, if this is the case their detected 

band sizes did not correspond to the expected ones.  

 

5.4.3 IP of EphrinB3 out of MPE 

The immunoprecipitation of EphrinB3 out of MPE failed several times and was thought to be due to 

the precipitated detergent Octyl β-D-pyranoglycoside. Therefore, the MPE was centrifuged two times 

at 8000 rpm for 3 min to obtain a clear supernatant (=supernatant2). The following IPs on 

supernatant2 were either performed witch the EphrinB3 antibody from abcam or R&D. In addition, 

one probe of a brain lysate was available for analysis. After centrifugation to obtain a quiet clear 

supernatant the IP was performed with the more trusted abgent EphrinB3 antibody and the pellet 

served as a control. Other controls were 1) the pellet after first MPE centrifugation as EphrinB3 was 

possible precipitated, 2) pure MPE (0.8 mg/ml), 3) supernatant2 immunoprecipitated with IgG and 4) 

‘immunoprecipitated’ 1x PBS to identify the IP band pattern.  

When the IP was realized with the abcam EphrinB3 antibody, EphrinB3 was detected with the R&D 

EphrinB3 antibody and vice versa. The EphrinB3 band was expected either at about 36 kDa (abcam 

datasheet) or about 58 kDa90. However, a strong band was just observed in the brain lysate lane (figure 

Figure 31 | OCP lysate supernatants and pellets 

detected against Eph receptors B1, B2, B3 and A4. Eph 
receptor bands are expected at about 110 kDa.  
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32 A | upper band in the big red circle) immunoprecipitated with the abcam EphrinB3 antibody.  

However, the IgG control lane contained a slighter but comparable band at the same high (figure 27 A 

| band in the small red circle). This result indicated the presumable EphrinB3 band either to be hidden 

by the IP band pattern or to be a part of the IP band pattern. 

IP with the R&D EphrinB3 antibody (figure 32 | B) showed no bands at the expected high and the IP 

band pattern (c.f. 1x PBS and IgG lane) was equivalent to the band of supernatant2 

immunoprecipitated with R&D EphrinB3 antibody. Nevertheless, both EphrinB3 antibodies detected 

no bands in the pure MPE or pellet lanes.  

 

  

Figure 32 | EphrinB3 immunoprecipitations with either abcam EB3 (A) or R&D (B) EB3 antibody 

 

It shall be noted that the illustrated IP band pattern in figure 32 was comparable to those of former 

experiments, even when different lyse or wash buffers were used. 

 

 

 

 

 



62 | 74 

5.4.4 IP of EphrinB3 out of primary oligodendrocyte lysates  

Here, EphrinB3 was tried to be immunoprecipitated out of primary oligodendrocyte lysates at different 

stages of development (day 0, day 1, day 2). As it was still not clear whether EphrinB3 is precipitated 

during lysate preparation, the corresponding pellets served as controls. To visualize the IP band 

pattern ‘immunoprecipitated’ 1x PBS was used. The IPs in this experiment were performed with the 

R&D EphrinB3 antibody.  

 

Figure 33 | Immunoprecipitation of EphrinB3 out of primary 

oligodendrocyte lysates from different developmental stages. (d0 = 

8h after seeding, d1 = pre-oligodendrocytes, d2 = mostly immature 

oligodendrocytes) 
 

The results displayed all band patterns to resemble those of the 1x PBS control. Nevertheless, there 

was a slightly thicker band about 55kDa in the oligodendrocyte d2 lysate line (figure 33 | red circle) 

whereas the IP band pattern showed the same intensity like the others. This could, according to the 

former result in 4.4.3) indicate the presumable EphrinB3 band either to be hidden by the IP band 

pattern or to be a part of the IP band pattern. 
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6. Discussion 

6.1 Primary OPCs versus cell lines 

6.1.1 Primary OPC experiments  

In this study, I could repeat and confirm methods such as the purification of primary oligodendrocytes 

out of P0-P2 rat brains and the preparation of myelin protein extracts (MPE) out of adult rat brains to 

realize following OPC experiments.  Differentiation and inhibitory studies were performed by analysing 

primary oligodendrocyte morphology changes and immunocytochemistry marker expression. Whereas 

differentiation studies demonstrated primary OPCs to have the differentiation potential to develop 

into myelinating oligodendrocytes, inhibitory studies displayed primary OPCs lineage progression to be 

inhibited by MPE and EphrinB3. Thereby, MPE acts predominantly on the very beginning of OPC 

differentiation as most of the cells remained in a quiescent, O4 negative stage. In contrast, the 

inhibitory potential of EphrinB3 prevents the initiation of differentiation processes after O4 

expression.  

Those results displayed the basic requirements the OPC cell lines OLI-Neu and OLN-93 need to be able 

to reproduce in order to reduce animal sacrifices and a faster realization of experiments. 

 

6.1.2 Analysis of OPC cell line OLN-93 displayed them to be not  

First morphology analysis showed most OLN-93 cells to form differentiated-like phenotypes upon 

serum reduction to 0.5% at d3. Those cells appeared very flat and wide with membranous structures 

or intensively branched thought to indicate an on-going differentiation process. Although those 

phenotypes were different to primary OPCs after the same time of development, they were possible to 

represent an altered kind of differentiation. However, at some regions cells with thicker but small cell 

bodies that formed long, fine and less branched processes were observed. Those were comparable to 

primary OPCs at a bi- to multipolar stage and thought to be not fully differentiated.  

Following immunocytostainings revealed OLN-93 cells to be positive for the glial cell marker A2B5 and 

the pre-oligodendrocyte marker O4 but they failed to become positive for the myelin marker MBP 

suggesting the OLN-93 cell line differentiation potential to end at a pre-oligodendrocyte stage of 

development. Therefore, the observed morphological alterations to membranous, branched 

phenotypes of OLN-93 cells did not reflect a fully differentiated primary oligodendrocyte.  

In addition, OLN-93 cells remained unaffected by MPE, a potent inhibitor of primary OPCs 

differentiation initiation. Thus, it is very likely that the OLN-93 differentiated-like phenotypes were in 

vitro relicts that did not longer represent the original OPC characteristics. In turn, the smaller, bi- to 

multipolar processed OLN-93 cells probably represented the original cell line cells. 
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According to those results, a recent publication revealed the morphological changes of OLN-93 cells to 

not reflect biochemical and functional differentiation. Further, just quiet high passage numbers of 

OLN-93 cells were available for this study (>24) and the same publication strongly recommends to use 

passage numbers <10 as over sub-culturing dramatically changed the cell line properties. This could 

explain the diversity of OLN-93 cells that appeared within one flask. Finally, it was declared that 

morphology changes not necessarily represent on-going differentiation processes and that serum 

conditions can easily alter cell type appearances.82 

 

6.1.3 OLI-Neu cells 

Analysis of OLI-Neu cells revealed morphology changes that could indicate a differentiation initiation 

process as upon serum reduction to 0.5%, the OLI-Neu cells formed several long, slightly branches 

processes at d3. However, no further signs of differentiation such as extensive branching or myelin-like 

structures were observed. 

Positive immunocytostainings against A2B5 and O4 displayed matchable morphological stages of OLI-

Neu and primary OPC process formation until a multipolar, slightly branched phenotype. However, 

OLI-Neu cells failed to become MBP positive indicating the cells to represent a pre-oligodendrocyte 

stage of development, confirmed by a publication from EM Krämer & T Koch in 1997.83  

Inhibitory experiments with MPE showed OLI-Neu cells to be inhibited since they formed less and 

shorter processes. Interestingly, even the most inhibited phenotype with no processes was still 

positive for O4. This fact revealed the OLI-Neu cells to probably display an O4+ developmental stage 

from the very beginning. Further, the inhibitory potential of EphrinB3 on OLI-Neu cells was illustrated 

to be comparable to primary OPCs.  

Altogether, differentiation and inhibitors studies showed early OLI-Neu passages usable to study OPC 

differentiation events until a multipolar, slightly branched phenotype. However, they were not suitable 

for developmental studies as they never reached a myelinating phenotype.  

 

6.1.4 Summary 

Analysis of morphology and immunocytochemistry marker expression revealed the OLI-Neu and OLN-

93 cell lines to represent oligodendrocytal cells arrested in an O4 positive stage of differentiation. In 

contrast to OPCs, they did not have the potential to progress in development since at least under the 

tested conditions no myelinating phenotype was observed. Thus, the OLI-Neu and OLN-93 cell lines are 

not suitable to reflect primary OPC differentiation into myelinating phenotypes. It shall always be 

remembered that cell lines are immortal due to certain mutations and tend to alter their original 

characteristics upon a few passages. They represent one certain type of cell and may not share the 

potential to progress in development. 
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6.2 Potential oligodendrocyte-astrocyte switch in vitro with 10% FCS 

It was established a while ago that OPCs develop into astrocytes or oligodendrocytes depending on the 

used serum percentage. Serum rich media about 10% FCS promotes type-II-astrocyte development 

whereas 0.5% FCS leads to oligodendrocyte development.4 To illustrate those morphological 

differences, primary OPCs were seeded in Satos media with either 0.5% or 10% FCS. The media was 

changed at d2 or d3 and the cells were fixed at d7. However the cells should have been fixed at d4, 

immunocytostainings against the pre-oligodendrocyte marker O4 and the astrocyte marker GFAP 

confirmed the former statement. In the 10% FCS containing wells, the 43% of OPCs developed into 

GFAP+, astral shaped type-II-astrocytes and 31% showed O4+ oligodendrocytes, predominantly at a 

pre- to immature differentiation stage. Interestingly, about 26% of cells displayed a GFAP+, wide and 

flat type-I-astrocyte phenotype that Raff & Miller (1983) did not report. In addition, some cells were 

positive for both O4 and GFAP and in the first place were counted GFAP+. Interestingly, about 25% of 

GFAP+ cells looked like to have been originated from oligodendrocytes which switched into an 

astrocyte phenotype by forming multiple, long and fine GFAP+ astral processes but they were O4+ 

around and at the cell body. Even if those O4+/GFAP+ cells were just in vitro artefacts caused by an 

initial contamination from a bad shake off or a lack of nutrients, in Satos media with 0.5% FCS those 

O4+/GFAP+ cells have never been observed. In addition, when astrocytes were present in media with 

0.5% FCS (contamination normally less than 5%) they showed less and thicker astral processes. 

However, it is comprehensible that GFAP+/O4+ cells are just aberrant cells induced by culture 

conditions. Even if this oligodendrocyte-astrocyte switch exists, it is very unlikely to represent a normal 

stage of development and this observation just discloses the tight developmental relationship 

between astrocytes and oligodendrocytes. 

 

6.3 Day 2 EphrinB3 KO mice showed a premature beginning of active myelination 

Evaluation of 1M, 3M, 6M and old EphrinB3 KO and control mice EM images of CCP regions showed 

very consistent g-ratios when compared to the according control. In addition, the average of all g-

ratios together was determined to be 0.79 that matched the normal CNS g-ratio of 0.7.50  

To investigate whether the EphrinB3 KO caused myelin abnormalities, phenotypes were defined and 

counted for of their frequency of occurrence. The result revealed myelin abnormalities to occur 

independent of EphrinB3 KO or age. 

When EM tissue samples of d2 EphrinB3 KO and d2 control brains were analysed, the EphrinB3 KO CCP 

areas revealed several regions of slight myelinated axons whereas the controls hardly showed any 

myelination. The 1M, 3M, 6M and old KO and according control specimen exhibited no obvious 
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differences in myelination. This indicated that EphrinB3 KO promoted active myelination before the 

normal beginning at postnatal day 6 (P6)84 but thereby, did not affect the correct development of 

myelin.  According to this finding, former in vitro experiments identified EphrinB3 as a potent inhibitor 

of OPC differentiation.78 Therefore, its knock out is plausible to cause prematurely myelination. This 

finding is for sure the most important result in this study. However, this experiment was only 

performed at once and is strongly recommended to be repeated. The facts that EphrinB3 knock-out 

mice already exist and phenotypes are presumably obtained in P0 to P18 mice will cause just minor 

costs of animal keeping but could reveal important new insights of EphrinB3 and its impact on 

myelination in vivo. 

 

6.4 EphrinB3 and its receptors Eph B1, B2, B3 & A4  

6.4.1 Eph receptors B1, B2, B3 & A4 were probably precipitated with cell membrane debris 

Several immunoprecipitations (IPs) on Eph receptors B1, B2, B3 & A4 were performed out primary 

oligodendrocytes lysates without identification of distinct bands. The reason was thought to be either 

an incomplete dissociation from the oligodendrocyte cellular membrane or a problem within the IP 

procedure. Eph receptor IPs were shown to work in the lab before, therefore, the problem seemed 

rather to be due to the handling than the method itself. Nevertheless, the possibility of precipitated 

Eph receptors together with cell membrane debris after primary oligodendrocyte lysate centrifugation 

was verified by loading of these pellets on a SDS-Page together with the according supernatant in the 

neighbouring lane and following detection for specific Eph receptor. The results displayed several 

bands in the supernatant lanes but hardly and if just very slight at the right weight of about 110 kDa. 

Interestingly, in the pellet lanes of Eph receptors B1, B2 & B3 very strong bands appeared that could 

indicate the receptors to be not totally dissolved from the cell membranes. However, if this is the case 

their detected band sizes did not correspond to the expected one and thus, it is still not clear whether 

the bands just display fragments of Eph receptors or whole Eph receptors. 

 

6.4.2 EphrinB3 probably failed  

Detection of EphrinB3 after IPs out of MPE, primary oligodendrocyte lysates or brain lysate displayed 

strong IP band patterns that looked quite similar to PBS controls in all experiments. However, a strong 

band could be observed in the brain lysate lane (immunoprecipitated with the abcam EphrinB3 

antibody) and in the OPC d2 lysate lane (immunoprecipitated with the R&D EphrinB3 antibody) at 

about 55 kDa. EphrinB3 is expected either at about 36 kDa (abcam datasheet) or about 58 kDa90 and 

therefore, it is possible that the bands displayed EphrinB3. Nevertheless, those results gave no clear 

information whether the presumable EphrinB3 band is hidden by or part of the IP band pattern. 
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