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ABSTRACT 

Mg2+ is one of the most abundant divalent cations in cells and organelles. 

Magnesium is unique in its chemical properties compared to the other cations. It 

plays an important role in stabilizing macromolecules and in binding to nucleotides. 

Furthermore, it acts as a cofactor of a number of different enzymes. Mg2+ also 

influences cell volume and signalling processes by modulating the activities of ion 

channels and transporters. The magnesium transporters discovered to date have 

unique characteristics, which correlate with the typical physicochemical properties of 

Mg2+ cations. The CorA/Mrs2 family of Mg2+ transporters belongs to a class of 

transporters known as 2-TM-GxN with no homology to other ion transporters. This 

class of ion transporters is wide spread in all domains of life and belongs to the 

metal ion transporter superfamily. The best studied members of this family are the 

CorA protein of prokaryotes, and the eukaryotic Alr1/2 and Mrs2/Lpe10 proteins. 

 

Mrs2 transporters form the major mitochondrial Mg2+ uptake system in yeast, 

plants and mammals and are essential for mitochondrial Mg2+ homeostasis. Human 

Mrs2 is involved in promoting multidrug resistance in gastric cancer cells by 

regulating p27, expression of cyclin D1 and release of cytochrome C.                                 

 

Common features of all of these proteins are the presence of two adjacent 

transmembrane helices (TM1, TM2) near their C-terminus and the highly conserved 

GMN sequence motif at the very end of TM1. The N-terminus is characterized by a 

large soluble domain which forms a funnel like structure and is shown to constitute 

an allosteric regulatory module that can be designed to promote an open or closed 

state. 

 

In the absence of sufficient intracellular Mg2+ levels, Mg2+ ions bound between 

monomers are released, the N-terminal domains move as a rigid body, whereas the 

willow helices undergo a rearrangement with respect to one another and relative to 

the stalk helices (pore forming helices). This causes a torque along the stalk helix. 

The torque propagates onto the intracellular hydrophobic gates and possibly 

activates the periplasmic gate by interaction of the cytoplasmic, acidic residues and 
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the C-terminal, basic residues. This causes an infringe on periplasmic gating 

residues through movement of TM2 and the MPEL motif loop and thus allow Mg2+ 

ions to flow through. 

 
  Mrs2 from Saccharomyces cerevisae is being extensively studied 

biophysically and biochemically by our collaborative group of Prof Rudolf J. 

Schweyen (late) who discovered the MRS2 gene in the late eighties. 

 

In this work, a number of efforts based on biophysical methods and structural 

studies have been carried out in order to elucidate the mechanism of magnesium 

transport at the molecular level across the membrane and to enhance insights into 

the regulation of the transport. 

 

In this thesis, several constructs of Mrs2 were prepared, focusing on the 

soluble N-terminal inner mitochondrial domain of Mrs2. They were designed based 

on bioinformatics, limited proteolysis in order to determine the construct which 

behaves as a functional protein and at the same time being suitable for structural 

studies. The inner mitochondrial domain of Mrs2 from Saccharomyces cerevisae 

was crystallized in four different conditions in the monomeric form and its crystal 

structure solved by a single-wavelength anomalous dispersion exploiting sulphur 

anomalous signal at 1.83 Å. This structure was then further refined against the high 

resolution data set at 1.28 Å, collected at European Synchrotron Radiation Facility 

(ESRF).  

 

The N-terminal domain of Mrs2 is a six-stranded anti-parallel β-sheet 

sandwiched between two sets of α-helices and adopts the expected, a prokaryotic 

CorA N-terminal like fold. Analytical gel filtration and dynamic light scattering showed 

that the N-terminal domain of Mrs2 forms pentamers at low salt concentration. 

Extension of the C-terminus shows that a portion of the trans-membrane helix is 

necessary for the oligomerisation of the soluble domain, this is also supported by our 

analysis of the inter-domain interface of the Mrs2 model generated on the CorA 

pentameric crystal structure. 

 

2



Based on the structural comparison with known functional homologues (CorA, 

the bacterial magnesium transporter, ZntB, the bacterial zinc transporter) of Mrs2, 

we have identified the presumed active site which is formed by an Asp 97 of α3, 

located in close proximity to the neighbouring monomer in a functional reconstructed 

pentameric form. A sequence alignment of eukaryotic magnesium transporters 

reveals that the carboxylate residues of Glu 270 possibly coordinate the metal ion 

together with Asp97 of the adjacent protomer in the functional pentamer, and that 

both residues are highly conserved in the whole family of eukaryotic Mrs2 proteins. 

In the crystal structure of the monomeric N-terminal domain no bound metal was 

found at the putative metal binding site. The analysis of the pentameric Mrs2 model 

constructed on the known structure of CorA together with structure based amino 

acid sequence alignment, allowed us to identify the putative gate forming residues 

forming the narrowest constriction along the pore. 
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ZUSAMMENFASSUNG 

Mg2+ ist eines der am häufigsten vorkommenden zweiwertigen Kationen in Zellen 

und Organellen. In seinen chemischen Eigenschaften ist es im Vergleich mit 

anderen zweiwertigen Kationen einzigartig. Es spielt eine wichtige Rolle bei der 

Stabilisierung von Makromolekülen, in der Bindung an Nukleotide und als Kofaktor 

für zahlreiche Enzyme. Weiters beeinflusst Mg2+ das Volumen der Zelle und 

Signalprozesse, indem es die Aktivität von Ionenkanälen und Transportern reguliert. 

Die bisher charakterisierten Magnesiumtransporter sind an die einzigartigen 

physiochemischen Eigenschaften dieses Ions angepasst. Die Mg2+-Transporter der 

CorA/Mrs2 Familie gehören zur Klasse der 2-TM-GxN Proteine und zeigen keine 

Homologie mit anderen Ionentransportern. Sie sind in allen Domänen des Lebens 

vertreten und gehören zur Superfamilie der Metallionentransporter. Die am besten 

charakterisierten Vertreter dieser Klasse sind das Protein CorA der Prokaryoten, 

sowie die eukaryotischen Proteine Alr1/2 und Mrs2/Lpe10. 

 

Mrs2 bildet das Haupttransportsystem für Mg2+ in Mitochondrien bei Hefe, 

Pflanzen und Säugetieren und ist außerdem für die mitochondriale Mg2+ 

Homöostase essentiell. Das menschliche Mrs2 Protein vermittelt multiple 

Wirkstoffresistenz bei Magenkarzinomzellen indem es die Expression von p27 und 

Cyclin D1 sowie die Cytochrom C-Freisetzung reguliert.  

 

Gemeinsamkeiten dieser Proteine sind zwei nahe aneinander liegende 

Transmembran-Helices (TM1, TM2) im C-terminalen Bereich des Proteins und das 

hochkonservierte F/Y-G-M-N Motiv am C-terminalen Ende von TM1. Der N-

terminale Teil des Proteins besteht aus einer großen, löslichen Domäne, die eine 

trichterförmige Struktur besitzt. Es wurde bereits experimentell gezeigt, dass dieser 

Bereich ein allosterisches Regulationsmodul bildet, das so verändert werden kann, 

dass ein offener oder geschlossener Zustand des Kanals erreicht wird. Ist die 

intrazelluläre Mg2+-Konzentration niedrig, werden Mg2+-Ionen, die zwischen zwei 

benachbarten Monomeren gebunden sind, freigesetzt und die N-terminale Domäne 

des Proteins führt als insgesamt starrer Körper eine Bewegung aus. Im Gegensatz 

dazu kommt es bei den „willow“ Helices, zu einer Umlagerung zueinander und in 
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Bezug auf die langen Helices, die den Trichter bilden. Diese führt schlussendlich zu 

einer Drehung der Helices die den Trichter bilden. Diese Drehung setzt sich bis zu 

den intrazellulären hydrophoben Schleusenstellen fort und aktiviert möglicherweise 

auch die periplasmatische Schleuse durch eine Interaktion der cytoplasmatischen, 

sauren Aminosäurenreste mit den C-terminalen, basischen Aminosäurenreste. Die 

Bewegung von TM2 und der MPEL Schleife führt dann zur Öffnung der 

periplasmatischen Schleuse und erlaubt schlussendlich den Einstrom von Mg2+-

Ionen. 

 

Mrs2 der Hefe Saccharomyces cerevisae wurde in der Gruppe unseres 

Kollaborationspartners Prof. Schweyen zum ersten Mal als Magnesiumkanal 

charakterisiert und wird mit biophysikalischen und biochemischen Methoden intensiv 

studiert.  

 

In dieser Arbeit wurden verschiedene biophysikalischen und strukturbasierte 

Methoden angewendet, um den Mechanismus des Ionentransports durch diesen 

Kanal und seine Regulation auf molekularer Ebene zu klären 

 

Eine Reihe von MRS2-Konstrukten, mit Fokus auf den N-terminalen, löslichen 

Teil des Proteins wurden hergestellt. Das Design der Konstrukte basierte auf 

Bioinformatik und Ergebnissen eines begrenzten proteolytischen Abbaus des 

Proteins mit dem Ziel, ein funktionelles Protein zu erhalten, das aber gleichzeitig 

auch für die Strukturanalyse geeignet ist.  

 

Die inner-mitochondriale Domäne von Mrs2 von Saccharomyces cerevisiae 

wurde, in monomerischer Form, unter vier verschiedenen Bedingungen kristallisiert. 

Die Kristallstruktur wurde durch Einzelwellenlänge anomale Dispersion unter 

Ausnützung der anomale Signale des Schwefels mit einer Auflösung von 1,83 Å 

bestimmt. Mit den am European Synchrotron Radiation Facility (ESRF) akquirierten 

hoch-auflösenden Daten wurde die Struktur weiter bis zu einer Auflösung von 1,28 Å 

verfeinert.  

 

Die N-terminale Domäne von Mrs2 besteht aus einem sechs-strängigen ß-

Faltblatt, dass zwischen zwei Sets von α-Helices liegt. Die Faltung war, wie erwartet, 
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vergleichbar mit der N-terminalen Faltung des prokaryotischen CorA Proteins. 

Analytische Gelfiltration und dynamische Lichtstreuungs-Analyse haben gezeigt, 

dass die N-terminale Domäne von Mrs2 unter niedriger Ionenstärke Pentamere 

bildet. Versuche mit einer Verlängerung des C-Terminus des Proteins haben aber 

gezeigt, dass ein Teil der Transmembran-Helix für die Oligomerisierung der 

löslichen Domäne notwendig ist. Diese Beobachtung wird auch durch die von uns, 

auf Basis der pentamerischen CorA Kristallstruktur durchgeführte Analyse des Inter-

Domänen Interface des generierten Mrs2 Modells unterstützt. 

 

Basierend auf Strukturvergleichen von Mrs2 mit seinen bekannten, 

funktionellen Homologen (dem bakterielle Magnesiumtransporter CorA und dem 

Zinktransporter ZntB) haben wir mit Asp 97 von Helix α3 das vermutliche aktive 

Zentrum des Proteins identifiziert. Diese Aminosäure befindet sich in großer 

räumlicher Nähe zum benachbarten Monomer in der funktionellen, rekonstruierten, 

pentamerischen Form. Ein Sequenzabgleich mit anderen eukaryotischen 

Magnesiumtransportern zeigt, dass im funktionellen Pentamer, die Carboxylgruppen 

der Aminosäuren Glu 70, vermutlich zusammen mit Asp 97 im angrenzenden 

Protomer das Metallion koordinieren. Beide Aminosäuren sind in der gesamten 

eukaryotischen Transporterfamilie hochkonserviert. In der Kristallstruktur der 

monomeren N-terminalen Domäne konnte kein gebundenes Metallion gefunden 

werden. Dennoch hat die Analyse des, auf der Basis der bereits bekannten Struktur 

von CorA, erzeugten pentameren Mrs2 Modells, in Kombination mit 

strukturbasiertem Sequenzabgleich, es uns erlaubt, die Aminosäurenreste, zu 

identifizieren die vermutlich die stärksten Verengungen der Pore und damit die 

Schleusen des Kanals bilden. 
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     1. INTRODUCTION 

1.1 Magnesium Transport  

Proteins involved in the transport of ions (cations and anions) across the membrane 

can be divided into channels and carriers. Carriers in general, can be divided into 

three distinct subgroups: symport, antiport and uniport. When carriers transport a 

molecule against its concentration gradient, two primary sources are used to provide 

the desired energy (Wipf et al, 2002) (1) from ATP hydrolysis and (2) energy 

acquired when one species is coupled to other gradient (e.g. Na+, K+-ATPase). (3) 

The third sub-group are the uniporters, alleviating diffusion down a concentration 

gradient (facilitating diffusion) (Lalonde et al, 2004). The main difference between 

the channels and carriers is towards their substrate selectivity, as channels in 

general are non-saturable and exhibit less stereo specificity towards their substrates 

compared to carriers (Bruce Alberts, 2002; Yan, 2003)(Fig.1.1). 

 

Fig. 1.1: Examples for the three different types of transport.  

The differences between the three types of transporters are the direction of transport 
and the number of substrate transported. This type of classification does not 
consider whether the process is energy dependent (active transport) or independent 
(passive transport) (Saier, 2000). 
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1.2 Chemical and Biological Properties of Magnesium 

Mg2+ is one of the most abundant divalent cation present in living cells, at a total 

concentration of about 15-25 mM both in prokaryotic and eukaryotic organisms 

(Maguire and Cowan, 2002; Romani and Scarpa, 1992; Scarpa and Brinley, 1981). 

Insufficient Mg2+ leads to dissociation of ribosomes into their subunits, serves as an 

essential structural element both for ribosomes and membranes and acts as a 

cofactor for ATP in the active sites of a number of enzymes. In prokaryotes, Mg2+ 

also regulates cell volume and signalling processes, which are essential for 

virulence. (Garcia Vescovi et al, 1996; Ikari et al, 2008; Mobasheri et al, 1998; 

Soncini et al, 1996; Stephenson & Hoch, 2002). 

The chemical properties of divalent magnesium are unusual among all the 

biologically important cations (Maguire & Cowan, 2002). The hydrated radius of Mg2+ 

is approximately 400 times bigger than the dehydrated radius. This difference is 

much larger as compared to Na+ and Ca2+ (approximately 25-fold) or K+ (4-fold). Of 

all the biological cations, Mg2+ is the most charge dense, holding the water 

molecules within its hydration shell stronger by a factor of about 104 compared to 

Ca2+, K+, Na+  and is a hard Lewis acid (Fig.1.2) (Maguire & Cowan, 2002). In 

addition, Mg2+ cations are more rigid than other cations in terms of the coordination 

sphere. It is always hexacoordinated, and prefers to coordinate with oxygen 

molecules. Moreover, compare to other divalent metal ions, exchange rate of 

solvent, i.e., waters around is very slow (about three to four times of magnitude than 

Na+ and Ca2+), probably due to its strong bond with oxygen of water molecule 

(Diebler & Winkler., 1969). Proteins that transport Mg2+ must be able to recognize 

the very large hydrated cation, remove the strongly bound hydration shell from the 

cation, and only then transport the fully or partially dehydrated form of magnesium. 

Thus, the chemical properties of Mg2+ predict that the proteins which recognize and 

transport Mg2+ into cells or organelles, will possess unusual features in nature 

(Grubbs & Maguire, 1987; Maguire, 2006). 
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Fig.1.2: Schematic comparison of atomic and hydrated radii of magnesium 

and calcium 

The hydrated (left) and dehydrated/atomic (right) sizes of Mg2+ and Ca2+ is 
illustrated to its size (Maguire & Cowan, 2002). Figure adapted from (Maguire, 
2006). 

 

Regarding, concentration of the magnesium in the body, it is the fourth most 

common and after potassium the second most abundant intracellular cation (Altura, 

1994; Iseri & French, 1984; Rude, 1998). In serum and red blood cells very less 

amount of magnesium is present (less than 1 %) of the total human body. 

Magnesium exists in three different forms ionized, bound (mainly to albumin) and in 

the complex form with other anions such as phosphate and citrate. It exists primarily 

between bone, intracellular compartment of muscle and soft tissues with a ratio of 53 

%, 27 %, and 19 %, respectively. In organelles it is mostly concentrated in 

mitochondria, the endoplasmic reticulum and the nucleus, involved there in different 

biochemical reaction (Romani & Scarpa, 1992). About ninety percent of intracellular 

magnesium is restricted to organic matrices (Elin, 1987; Elin, 1994). This frequent 

occurrence of magnesium in the body indicates its involvement in different 

biochemical reactions (i.e., more than 300 biochemical reactions). Magnesium 
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deficiency in humans resulting from insufficient Mg2+ intake in the food is a 

worldwide clinical problem.  

1.3 Classes of Magnesium Transporters in Prokaryotes  

As described briefly above, the unique chemical characteristics of the magnesium 

ion, it has been hypothesized that the proteins participating in the transport of this 

particular divalent cation would have a different structure as compare to other 

transporters and will represent novel types of transporters or channels. Indeed, this 

is quite true for the so far described Mg2+ transporters characteristics and its 

structures (Lunin et al, 2006; Moomaw & Maguire, 2008). 

In the late 1960’s, Webb (1966) observed the importance of magnesium for 

microbial growth. Since then investigation on magnesium metabolism and its 

transport in prokaryotes started. In the 1960’s and 1970’s genetic studies were 

carried out on Escherichia coli in the laboratories of Silver and Kennedy. Both 

groups discovered the first Mg2+ transport system of prokaryotes by transport 

kinetics experiments using the radio label isotope 28Mg2+(Lusk & Kennedy, 1969; 

Silver, 1969; Silver & Clark, 1971; Snavely et al, 1989). They discovered mutants of 

E.coli which exhibit an unusual behavior towards Co2+ ions (Nelson & Kennedy, 

1971). In short, until now three distinct magnesium transport systems CorA, MgtE 

and MgtA/MgtB are discovered. All of them transport magnesium in prokaryotes 

across the bacterial cell membrane but are expected to have different mechanism of 

transport and its regulation (Romani, 2007; Smith & Maguire, 1995; Smith & 

Maguire, 1998). They are described briefly in the following paragraphs. 

 

1.3.1 The CorA transporter class 

CorA transporter is the first magnesium transport system identified in E. coli, 

constitiute the primary Mg2+ uptake system of bacteria and archaea and is the most 

studied magnesium transporter among all the magnesium transporters (Hmiel et al, 

1986; Kehres et al, 1998; Park et al, 1976). The name CorA was derived from the 

mutant phenotype of increased resistance against the ordinarily toxic levels of Co2+ 

(Cor = Co2+ resistance, (Park et al, 1976)). CorA mainly transport divalent cations, 
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especially magnesium in prokaryotes and is widely distributed throughout gram 

negative bacteria (Niegowski & Eshaghi, 2007; Smith & Maguire, 1995).  

CorA was successfully cloned for the first time in 1986 in S. enterica (Hmiel et 

al, 1986). The transport parameters of the CorA system have been studied in the 

bacteria S. typhimurium, E. coli and the Archaeon Methanococcus jannaschii. CorA 

does not solely transport Mg2+ but also mediates the influx of Ni2+ and Co2+ (Hmiel et 

al, 1986; Snavely et al, 1989; Xia et al, 2011). Mn2+ is a poor, non-competitive 

inhibitor of CorA and is not transported by CorA. Other divalent cations, e.g. Ca2+, 

Sr2+, Ba2+, Fe2+, Mn2+, and Zn2+ do not inhibit CorA significantly. Transport kinetics of 

CorA demonstrates that Fe2+ and Fe3+ is neither a substrate of CorA nor its inhibitor 

(Maguire, 2006; Papp & Maguire, 2004). The CorA affinity for Mg2+ is 15 μM. 

Affinities for Ni2+ and Co2+ have been quantified in E. coli and S. typhimurium and 

are in the range of 200 to 400 and 20 to 40 μM, respectively. As the Ka values of 

CorA for Co2+ and Ni2+ are relatively high (explained above), the concentrations 

required to achieve significant levels of Co2+ and Ni2+ uptake are  toxic for the cell 

(Maguire, 2006). Therefore, the uptake of Ni2+ and Co2+ is unlikely to be important 

due to physiological reasons (Maguire, 2006). As physiological requirement of Ni2+ 

and Co2+ is very low compare to other ions, their simple diffusion through CorA may 

fulfil the cellular requirements under different environmental circumstances (Maguire, 

2006). The high Ka value of CorA for Co2+ and Ni2+ point out the fact, that the 

transport of Co2+ and Ni2+ is not the primary function of CorA (Hmiel et al, 1989; 

Hmiel et al, 1986). It has recently been reported by Xia et al. that CorA from some 

species transports Co2+ more efficiently than Mg2+ (Xia et al, 2011). Transport of 

cations is controlled by the membrane potential like Mrs2 (discuss below) and does 

not seem to involve ATP hydrolysis for acquiring energy (Smith & Maguire, 1998). 

As CorA initially interacted with the hexahydrated Mg2+ ions which leads to the fact 

that being of similar size, cobalt hexaammines, can be a potent inhibitor of CorA 

(Eshaghi et al, 2006; Kucharski et al, 2000; Snavely et al, 1989).  

In most bacteria CorA encodes a protein of approximately 310-360 amino 

acids that has a variable N-terminal hydrophilic domain of about 260 amino acids 

followed by fairly well conserved two transmembrane helices (TM1 and TM2) of 

approximately 55 amino acids. On gel electrophoresis like most of the membrane 
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proteins, CorA runs slightly anomalously at 42 kDa instead of the expected 36-37 

kDa. The large majority of CorA proteins has only a short conserved hydrophilic 

sequence of about six amino acids at the very C-terminus that always contains 

positively charged residues followed by either one or two aromatic residues resulting 

in a KKKKWX motif (where as, X is most often aromatic residues) (Maguire, 2006) 

(Fig.1.3. and 1.4). Some CorA homologues have longer C-terminal tails of about 30 - 

35 amino acids, which always retain the positively charged and aromatic residues 

near both the membrane interface and the conduction pathway (Maguire, 2006). 

The structure of the CorA protein is quite unique compared to other cation  

transporters (Moomaw & Maguire, 2008). It contains a large soluble, N-terminal 

cytoplasmic domain, constituting about 75 % of the total protein and two 

transmembrane (TM1, TM2) helices at the C-terminus, each one of about 20 

residues (Lunin et al, 2006). Besides the conserved GMN motif at the end of the 

TM1 helix, the overall general structural features are also conserved over the entire 

CorA homologues in bacteria and archaea (Eshaghi et al, 2006; Lunin et al, 2006; 

Payandeh et al, 2008). The CorA transporters represent a major part of the 2-TM-

GxN type of proteins in the superfamily of metal ion transporters (MIT) (Knoop et al, 

2005; Lunin et al, 2006). To transport metal ions across the plasma membrane CorA 

must oligomerize to form an ion conducting pathway through the membrane. 

Previously, it has been reported biochemically that it exists as a homo-tetramer (in 

S. enterica; (Warren et al, 2004) and homopentamer (the yeast homologue Mrs2, 

(Kolisek et al, 2003)). This oligomerization ambiguity was finally solved by analyzing 

the crystal structure of the CorA transporter from Thermotoga maritima (Tm-CorA), 

which revealed that it is made of five subunits and is thus function as a 

homopentamer (Fig.1.3) (Lunin et al, 2006).  

The TM1 helices of the five subunits are involved in the formation of the pore 

in the plasma membrane, while the large N-terminal domains build a funnel like 

structure in the cytoplasm which monitor the concentration of Mg2+ in the cytoplasm 

(Lunin et al, 2006). The conserved GMN motif is located at the periplasmic surface 

of the transporter and was implicated in ion selectivity as well as in its dehydration 

(Payandeh & Pai, 2006). Due to the size of the pore (6-2.5 Å), it is strongly believe 

that the ion must first be dehydrated completely or partially in order to pass through 
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the conduction pathway (Eshaghi et al, 2006; Lunin et al, 2006; Payandeh & Pai, 

2006). 

 

Fig.1.3: Three dimensional crystal structure of the Tm-CorA homopentamer 

Figure (left) shows the CorA homopentamer side view, with the membrane domain 
at the top. Each monomer is represented with different colored, and the TM1 and 
TM2 helices are indicated by an arrow. The loop between the two transmembrane 
including the conserved GMN motif is not resolved in any of the available crystal 
structure. Figure (right) shows the homopentamer from the cytosol (bottom) facing 
out through the conduction pathway (pore) in close conformation. The five red dots 
represent the Mg2+ bound between the adjacent monomers. The α7 helices 
indicated by an arrow Figure adapted from (Papp-Wallace & Maguire, 2007). 

 

1.3.1.1. Three-dimensional structure of Tm-CorA 

Lunin et al. (2006) solved the crystal structure of Tm-CorA in the closed 

conformation (Lunin et al, 2006) at 3.9 Å resoluton. The crystal structure of Tm-CorA 

suggests the importance of the conserved GMN motif and hydrophobic residues in 

the ion conduction pathway for recognition and transport of Mg2+ as previously 

observed by analysis of S. enterica mutants (Eshaghi et al, 2006; Payandeh & Pai, 

2006; Smith et al, 1998b; Szegedy & Maguire, 1999). It was proposed previously by 

biophysical experiments (Smith et al, 1993b), that each monomer possess three TM 

helices in the S. enterica CorA, seems very unusual within the 2-TM-GxN proteins’ 
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family. It is now very well clear that this third proposed TM helix following the two C-

terminal helices is the prolonged α-helical portion of the first TM helix making the 

side wall of the conduction pathway as well as the funnel-shaped cytoplasmics 

domain, the α7 known as the “stalk helix” (Lunin et al, 2006). The structure of the 

full-length CorA revealed strong electron density for magnesium at residue Asp 89 of 

α3 from one protomer and Asp 253 α7 of the adjacent protomer in the cytoplasmic 

domains, while no electron density were observed at the pore or at the GMN motif 

(Eshaghi et al, 2006; Lunin et al, 2006; Payandeh & Pai, 2006).  

Another research group reported the crystal structure of the Tm-CorA 

transporter at a higher resolution (2.9 Å versus 3.9 Å), and identified a second Mg2+
 

ion binding site, which can also be occupied by Co2+ ions, corroborate that 

magnesium is not the only substrate of Tm-CorA (Eshaghi et al, 2006; Xia et al, 

2011). This site is formed by residues Glu88, Asp175 Asp253 and His257 and 

coordinates the hydrated Mg2+ ion via water. They called them M1and M2, 

respectively (Fig.1.4) (Eshaghi et al, 2006).  

 

Fig.1.4: Structure of the Tm-CorA Mg2+ transporter 

(a) Single monomer: green – transmembrane domains TM1 and TM2, blue - α7 helix 
and red N-terminal domain. (b) Side view of the full-length homopentamer: cyan – 
metal binding sites M1 and M2. (c) View from the top of Tm-CorA, representing, blue 
– the basic sphincter (KKKK), yellow – the aromatic ring and green - the hydrophobic 
gate forming residues Leu294 and Met291. Figure adapted from (Svidova et al, 
2010) 
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1.3.1.2. Mechanism of magnesium transport in CorA 

As the full-length structure of CorA is only available in the close conformation (Lunin 

et al, 2006), Payandeh et al. (2006) reconstitute the open conformation of the full- 

length transporter from the crystal structure of the N-terminal soluble domain 

(Payandeh & Pai, 2006). They then proposed a mechanism for magnesium 

transportation for the bacterial transporter Tm-CorA (Eshaghi et al, 2006; Lunin et al, 

2006; Payandeh et al, 2008; Payandeh & Pai, 2006). In the absence of sufficient 

intracellular Mg2+ levels, Mg2+ ions bound between subunits are released, the N-

terminal domains of the oligomer moves as a rigid body, whereas the willow helices 

(two antiparallel helices the α5 and α6 at the N-terminus) undergoes a 

rearrangement not only with respect to one another, but also to the stalk helices (the 

pore forming helices) (Payandeh & Pai, 2006). The release of magnesium from the 

binding site and the rearrangement of the helices cause a torque along the stalk 

helix. The torque move up into the intracellular hydrophobic gates (Met 291 and Leu 

294) and possibly activates the periplasmic gate by interaction of the cytoplasmic N-

terminal, acidic residues and the C-terminal, basic residues (Lunin et al, 2006). This 

causes an impingement on the gating residues through movement of TM2, the 

MPEL motif (located in the loop connecting TM1 and TM2, following the GMN motif) 

and thus allowing Mg2+ ions to flow through into the cytoplasm (Eshaghi et al, 2006; 

Lunin et al, 2006; Payandeh et al, 2008) (Fig.1.5). As described above the residues 

Asp253, Asp89 and Glu88 which are involved in both the magnesium binding sites 

are from α7 and α3 respectively, indicates the importance of these positions in the 

transporter regulation. As the conserved GMN motif are located at the entrance of 

the pore, may provide a polar region for interacting with cations and thus may act as 

a selectivity filter (Eshaghi et al, 2006; Lunin et al, 2006; Payandeh et al, 2008; 

Payandeh & Pai, 2006). 
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Fig. 1.5: Tm-CorA gating model  

A proposed electrostatic interaction between the funnel domain (FD) (acidic 
residues) and TM2 basic residues (side arrow). The movement of the periplasmic 
gating residues through a movement of TM2 and the MPEL motif loop (top arrow) 
upon removal of magnesium from magnesium binding sites M1 and M2. Figure 
adapted from (Payandeh et al, 2008). 

 

1.3.2 The MgtE transporter class 

This type of transporters lacks the GMN motif and does not belong to the 2-TM-GxN 

family of transporter (Hmiel et al, 1989). It constitutes the second magnesium 

transport system, which is ubiquitously distributed transporter in all phylogenetic 

domains (Townsend et al, 1995). Human homologues of MgtE have been 

functionally characterized and proposed to be involved in magnesium homeostasis, 

however, compare to CorA transporter they are less widespread (Townsend et al, 

1995). Like CorA, MgtE is also unique in nature and shows no homology to other 

known cation transporters. MgtE initially was cloned both from the Gram-negative 

and Gram-positive bacterium (Providencia stuartii and Bacillus firmus OF4)  (Smith 

& Maguire, 1995; Townsend et al, 1995) Evidence exists that, MgtE transport Mg2+ 

and Co2+; but Ni2+ is not transported by this kind of transporter. Expression of MgtE 

regulated constitutively (Kehres & Maguire, 2002; Maguire, 2006). MgtE has a 

number of homologues in the eukaryotes (Kehres & Maguire, 2002). It has recently 
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reported that MgtE are also involved in the regulation of Type III Secretion System of 

Pseudomonas aeruginosa (Anderson et al, 2010). 

1.3.2.1. Three-dimensional structure of MgtE 

Hattori et al. (2007) determined the full-length crystal structure of MgtE from bacteria 

Thermus thermophilus to a resolution of 3.5 Å (Hattori et al, 2007a; Hattori et al, 

2007b) (Fig.1.6). It is a 40 kDa protein, exists as a homodimer with five 

transmembrane segments per monomer, forming a general architecture similar to 

some extent to that of Tm-CorA, (i.e., an N-terminal soluble domain and a C-terminal 

transmembrane domain), but with 10 TM segments in total (Hattori et al, 2007a). 

The cytosolic domain is composed of two highly acidic sub domains, the helical rich 

N domain and the cystathionine-β-synthase (CBS) like domain. The CBS and the 

TM domain are connected by a stretching helix known as “connecting helix,” which is 

pointed perpendicular to the membrane interface (Hattori et al, 2007a). The first N-

terminal domain (the N domain) is located at the N-terminal region of the cytosolic 

region and is a right-handed super helix with 10 α-helices. The CBS domain, which 

follows the N domain, is a tandemly repeated, very well-known dimerization domain 

in various transporters (Ignoul & Eggermont, 2005; Moomaw & Maguire, 2008). 

Hattori et al. (2007) proposed that the  cytosolic domain might function as a Mg2+ 

sensor like that of Tm-CorA which regulates the hydrophobic gating in response to 

elevated intracellular Mg2+ (Hattori et al, 2007a). Recently it has been reported by 

Hattori et al. (2009) that in presence of high intracellular Mg2+ concentration, the 

close conformation of the transporter stabilized, which is an indication that MgtE 

might be regulated in the same pattern as the CorA. The exact mechanism of Mg2+ 

transport via MgtE and its regulation is still unknown (Hattori et al, 2009). 
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Fig.1.6: Structure of MgtE Mg2+ transporter.  

(a) The MgtE dimer is viewed in the site of the plane of the membrane, highlighting 
the N domain (red), CBS domain (beige), connecting helix (blue). The TMs helix of 
individual monomer are shown in different colors and labeled as TM1 to TM5. The 
extracellular H1b helices are represented in purple. The five bound magnesiums are 
labeled according to their position in the protein. (b) Solvent-accessible surface of 
the pore with pore-forming transmembrane helices. The bound Mg2+ is shown in 
purple in the transmembrane region (figure modified from Andrea S. Moomaw et al. 
(2008) and Motoyuki Hattori et al. (2007)). 

 

1.3.3 The MgtA/MgtB transporter class 

Another family of prokaryotic Mg2+ transporters that lack the GMN signature motif 

and thus belong to the non 2-TM-GxN family of transporter (Hmiel et al, 1989). The 

MgtA and MgtB (Mgt = Magnesium transport) transporters comprise the third 

magnesium transport system of Salmonella enterica that transport Mg2+ across the 

lipid bilayer (Hattori et al, 2009; Quamme, 2010). This class of transporter are quite 

different from the class of CorA-transporters in many characteristics (Hmiel et al, 

1986). MgtA and MgtB have a molecular weight of about 95 kDa and 102 kDa 

respectively and generally have ten TM helices (like MgtE), with both N-terminal and 

C-terminal sequences in the cytoplasm (Fig.1.6.) (Hmiel et al, 1989; Tao et al, 1995). 

The MgtA/MgtB transporters belong to the superfamily of P-type ATPases, which are 
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cations transport enzymes and has ATP binding domain, acquired energy from the 

hydrolysis of ATP for the transport process (Smith et al, 1993a). During the process 

of magnesium transport, phosphorylation of the conserved aspartyl residues takes 

place by ATP hydrolysis, which causes conformational changes in the protein. 

(Smith et al, 1993a; Smith & Maguire, 1998). The identity between MgtA/MgtB and 

mammalian Ca2+-ATPases is 50 % and is 25 % with any other prokaryotic ATPases, 

respectively (Maguire, 1992), thus MgtA/MgtB is more similar to mammalian Ca2+-

ATPases than to any known P-type ATPases (Maguire et al, 1992).  

 

 

Fig.1.6: Bacterial Mg2+ receptors and its transport systems. 

The Mg2+ transport systems of Salmonella enterica are shown with their membrane 
topologies. The topologies of MgtE, MgtC, PhoQ, MgtA, MgtB and CorA have been 
shown based on different experimental evidence. The topology for MgtE here is 
depicted from hydropathy analysis. The crystal structures of CorA and MgtE have 
resolved their topology ambiguity, which is quite different from their predicted 
topologies (Hattori et al, 2007a; Kyte & Doolittle, 1982; Lunin et al, 2006). Figure 
adapted from Moncrief and Maguire (1999).  

 

The PhoPQ (PhoP-PhoQ) is a two component signal transduction system and 

is responsible for the regulation of MgtA and MgtB in response to the extracellular 

magnesium level (Kier et al, 1979) (Fig.1.6). The PhoPQ system can be found in 

different type of bacteria, its regulation was first described in Salmonella enterica 

serovar Typhimurium (Garcia-Calderon et al, 2007; Groisman, 2001; Kato & 

Groisman, 2008). When Mg2+ binds to the membrane-bound PhoQ receptor it 
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causes inactivation of this protein. If the magnesium concentration decreases, Mg2+ 

and PhoQ dissociation takes place, leading to phosphorylation of the transcription 

factor PhoP which in turn activates and regulates transcription of a series of genes 

(about 40), two of which are MgtA and MgtB (Groisman, 1998; Vescovi et al, 1997). 

MgtA and MgtB maintain a constant intracellular Mg2+ concentration (Snavely et al, 

1991). Moreover, Ca2+ and manganese can repress the transcription of PhoP-

activated genes. The PhoPQ system acts as an essential control element in 

virulence of S. enterica and other bacterial species. (Monsieurs et al, 2005). It is now 

very well-known, that not only, PhoPQ system is responsible for the regulation of 

these transporters, but their expression is directly monitored by the intracellular 

concentration of Mg2+ via the gene’s 5′ UTR (5′ untranslatable region) (Cromie et al, 

2006; Quamme, 2010). 

MgtA is similar to a P-type ATPase of S. enterica. The MgtB is encoded by 

the mgtCB operon, which has a size of about 17 k bases. This operon also encodes 

another hydrophobic protein known as MgtC of an unknown function, which has a 

molecular weight of about 22.5 kDa (Moncrief & Maguire, 1998). As the S. enterica 

strains knockout for the MgtC gene are avirulents in the mouse. It was hypothesized 

that MgtC might be necessary for magnesium transport by stabilising magnesium 

transporting channels/transporters in the membrane and thus required for the 

virulence in mice (Blanc-Potard & Groisman, 1997; Gunzel et al, 2006; Retamal et 

al, 2009). Unlike CorA and MgtE, MgtA and MgtB both transport Ni2+ besides Mg2+. 

E. coli lacks an MgtCB operon, only the MgtA protein represents the P-type ATPase 

(Blattner et al, 1997; Park et al, 1976; Smith et al, 1998a). Compared to CorA the 

Mgt proteins are quite specific in its distribution in different organisms. Most of the 

sequenced bacterial and archaeal genomes do not possess MgtA or MgtB 

homologues (Kehres & Maguire, 2002). 
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1.4 Eukaryotic magnesium transport systems 

The three magnesium transport systems (CorA, MgtA/MgtB and MgtE), identified 

and characterized so far in prokaryotes have, to some extent, homologues in 

eukaryotes. The CorA homologues exist throughout the genome of the eukarya 

(Knoop et al, 2005). The MgtE homologues are widely distributed in eukaryotes, 

including humans, but their homologous proteins are not yet discovered in lower 

eukaryotes like fungi (Kehres & Maguire, 2002; Maguire, 2006). The prokaryotic 

MgtA/B transporter has P-type ATPase homologues in eukaryotes, until now no 

structure and mechanism of transport are described for the eukaryotic magnesium 

transporters. (Kehres & Maguire, 2002; Maguire, 2006). The inhomogeneous 

distribution of the prokaryotic types of Mg2+ transporters within the eukarya, provide 

a reason to suggest that, an additional Mg2+ transport system may be exist in this 

domain of life. Below are briefly described the so far characterized transport systems 

in yeast, mammals and plants. 

 

1.4.1 Yeast transport systems  

The eukaryotic homologue of CorA is mostly studied in the fungal model organism 

Saccharomyces cerevisiae, commonly known as “baker’s yeast”. In fungi CorA-like 

proteins exist for distribution and uptake of magnesium. Alr1 and Alr2 are the 

homologues proteins of CorA in yeast, located in the plasma membrane (Lee & 

Gardner, 2006a). These are among the first transporters cloned, which mediate 

magnesium through the plasma membrane of yeast (Gebert et al, 2009; Graschopf 

et al, 2001; Lee & Gardner, 2006a; MacDiarmid & Gardner, 1998; Pisat et al, 2009). 

The names “Alr” were derived, due to their ability to exhibit resistance to the toxic 

effects of Al3+ when over-expressed (Alr = Al3+ resistance; (MacDiarmid & Gardner, 

1998)). Mrs2 and Lpe10 are also, the homologues of CorA in yeast, located in the 

inner mitochondrial membrane and mediate the transport of Mg2+ into mitochondria 

(Bui et al, 1999; Gregan et al, 2001a; Moomaw & Maguire, 2008). The sequence 

identity of Mrs2 with Lpe10 is about 32 % (Sponder et al, 2010).  

Mrs2 (Mrs2 = mitochondrial RNA splicing 2) was originally identified in the 

laboratory of Prof. Schweyen, (Wiesenberger et al, 1992). Later it was confirmed 
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that the deficiency in splicing with Mrs2 deletion was due to deficiency of Mg2+ for 

ribozyme structure and function (Gregan et al, 2001b). All homologues of the CorA 

in yeast exhibit typical structural features of 2-TM-GxN proteins, which is a large 

cytoplasmics N-terminal domain in case of Alr1 and Alr2 or a mitochondrial matrix 

domain in case of Mrs2 and Lpe10. The N-terminal soluble domain is followed by the 

two TM helices with the universally conserved GMN motif at the end of the first 

transmembrane helix, followed by a flexible loop between the two transmembrane 

helices (Fig.1.8) (Knoop et al, 2005). The orientation of these transporters in their 

membranes is such that both the large N-terminus and the shorter C-terminus are 

oriented towards the mitochondrial matrix in case of Mrs2 and to the cytoplasm in 

case of Alr1, creating the Nin - Cin topology (Daley et al, 2005). Despite the low 

sequence homology, it was suggested that in general Mrs2 and Alr1/2 likely exhibit a 

similar fold to that of Tm-CorA (Eshaghi et al, 2006; Lunin et al, 2006). Lee et al. 

(2006) demonstrated by stepwise truncation experiments that 239 amino acids at the 

N-terminus and 53 amino acids at the C-terminus has no role in the magnesium 

uptake of the Alr1/2 transporters, but may be required for protein regulation (Lee & 

Gardner, 2006b). Unlike CorA, yeast Mrs2 transporters has longer C-terminus, with 

a surplus of positively charged residues and no conserved motif (Weghuber et al, 

2006).  
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Fig.1.8: Secondary structure comparison of Mrs2 homologues.  

The secondary structures features of the indicated sequences were predicted and 
plotted along the linear sequence with α-helices in magenta and β-sheets in blue. 
The human, yeast and Arabidopsis proteins have an additional N-terminal sequence, 
and the human and yeast proteins have additional C-terminal sequences not 
homologous to CorA. These additional sequences did not present here and 
indicated by the open ends of the bars. The prediction also demonstrates that most 
of the proteins exhibit a high α-helical content (Figure adapted from Michael E. 
Maguire 2006). 

 

The MRS2 knockout strain (mrs2∆ strain) shows a petite phenotype. The 

strain is demonstrating defects in the mitochondrial cytochrome complexes and are 

thus not capable to grow on non-fermentable carbon sources like glycerol and 

ethanol (Wiesenberger et al, 1992). The growth defect cannot be compensated by 

the second mitochondrial Mg2+ transporter, Lpe10, indicating that although the two 

proteins are 32 % identical at the amino acid level, but they cannot functionally 

substitute for each other (Gregan et al, 2001a). Furthermore, for Mrs2 it has been 

recently reported that it also forms hetero-oligomers with Lpe10 (Sponder et al, 

2010). Thus, the MRS2 deleted yeast strain is very useful for the functional analysis 

of other members of the 2-TM-GxN family of transporters. 
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1.4.2 Mammalian transport systems  

Over the last several years considerable efforts have been made to characterize 

molecular mechanisms of the transporters and its components regarding, regulation 

of Mg2+ homeostasis in mammals. The 2-TM-GxN family has a number of members 

in lower eukaryotes like fungi; however, vertebrates distinctly own only the Mrs2 

transporter located in the inner mitochondrial membrane. The human Mrs2 has been 

cloned and has functionally studied in yeast (Knoop et al, 2005; Zsurka et al, 2001). 

This indicates that proteins different from the CorA/Mrs2 family are responsible for 

Mg2+ transport in the remaining membranes of mammalian cells.  

In 2003 a human homologue of the microbial MgtE was discovered and was 

termed SLC41A1 (for solute carrier family 41 member 1). Its recent functional 

characterization suggested it, to be involved in magnesium homeostasis (Kolisek et 

al, 2008). This protein also has homologues in Homo sapiens and in metazoans as 

well, representing a eukaryotic gene family (Kolisek et al, 2008; Wabakken et al, 

2003). SLC41A1 possible implication in Mg2+ and other, divalent cation transport 

was further endorsed by voltage-clamp analysis of SLC41A1 and SLC41A2 

expressed in Xenopus leavis oocytes. (Goytain & Quamme, 2005a; Goytain & 

Quamme, 2005b; Wabakken et al, 2003). Recently, it has been reported by Kolisek 

et al. (2008) that human SLC41A1 (hSLC41A1) acts as a magnesium transporter 

and is non sensitive to well-known magnesium channel blocker, cobalt (III) 

hexamine. They also demonstrated that hSLC41A1 localizes to the plasma 

membrane (Kolisek et al, 2008). 

In the mammalian plasma membrane two magnesium channels, TRPM6 and 

TRMP7 are found. They belong to the TRPM (melastatin-related transient receptor 

potential) superfamily of ion channels (Callera et al, 2009). Both of them possess six 

predicted TM helices and host a unique kinase domain at the C-terminus, which may 

be responsible for the regulation of channel. (Ikari et al, 2008; Schmitz et al, 2003). 

TRPM7 (also known as LTRPC7) is also permeable for a number of other divalent 

cations as well. (Monteilh-Zoller et al, 2003; Nadler et al, 2001). TRPM7 is 

ubiquitously expressed among tissues and has been described to be necessary for 

cell viability, whereas TRPM6, predominantly expressed in intestinal epithelia and 

kidney tubules (Romani, 2007). It has been shown that these TRPMs have to be 
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involved in Mg2+ absorption and the whole body Mg2+ homeostasis. (Chubanov et al, 

2004; Ryazanova et al, 2010; Schlingmann et al, 2002; Teramoto et al, 2005).  

Goytain and Quamme discovered another two genes that encode a Mg2+ 

transporter, ACDP2 and MagT1. The MagT1 gene (Magnesium Transporter 1) 

encodes a Mg2+ transporter protein with no sequence homology to any known 

transporters (Goytain & Quamme, 2005c), again indicating that these transporters 

generally comprises unique types of proteins. It is expressed in a wide range of 

tissues, their levels of expression, both MagT1 and ACDP2 (Ancient Conserved 

Domain Protein 2) seem to be regulated in response to external Mg2+ concentrations 

(Goytain & Quamme, 2005c; Zhou & Clapham, 2009). When expressed in oocytes 

cells, MagT1 is able to evoke large Mg2+ dependent currents. This transporter only 

transports Mg2+ ions and is thus quite specific. On the other hand, ACDP2 exhibits 

voltage-dependent transporter characteristics with a broad spectrum of substrates, 

besides Mg2+ other divalent cations including Mn2+, Co2+, Sr2+, Fe2+,  Ba2+ and Cu2+ 

can be transported by ACDP2 (Goytain & Quamme, 2005a; Goytain & Quamme, 

2005c). MagT1 has five predicted TM helices. 

MagT1 is capable to substitute for the yeast Alr1 magnesium transporter 

(Quamme, 2010; Zhou & Clapham, 2009). All members of this family are widely 

distributed in all domain of life and share their characteristic conserved domain with 

the microbial CorC protein (Goytain & Quamme, 2005a; Goytain & Quamme, 

2005c).   

Another gene product, known as paracellin-1 (PCLN-1), is responsible for the 

total body Mg2+ homeostasis in mammalian cells (Simon et al, 1999). It is a member 

of the claudin family of tight-junction proteins mainly located in the thick ascending 

limb of Henle’s loop and also in the distal nephron that control paracellular 

reabsorbtion in the kidney (Gunzel et al, 2009). The pore possibly formed by PCLN-

1 conducts Mg2+ fluxes by a complex mechanism. PCLN-1 first interacts with apical 

Ca2+ activated Cl− channels, taking into account Cl− currents, which then regulate 

the Mg2+ concentration in the cells (Gunzel et al, 2009).  
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1.4.3 Plant transport systems  

Recently, in plants, the homologues of CorA/Mrs2 have been discovered, as 

members of the large gene family and called them AtMRS2 or AtMGT, because of 

magnesium transport. At present, two different types of magnesium transport 

systems have been known in plants. (a) The vacuolar Mg2+/H+ exchanger AtMHX (b) 

the 2-TM-GxN class of transporters, the first one is the Arabidopsis thaliana Mg2+ 

proton exchanger while the second is homologous to the yeast Mrs2/CorA class of 

transporters (Gebert et al, 2009; Schock et al, 2000; Shaul et al, 1999). Homologues 

of prokaryotic magnesium transport systems, e.g. MgtE and MgtA/B are not yet 

discover in plants.  

AtMHX (ATMRS2-11) transporters are quite unique in nature, its gene is 

similar to that of SCL8 family, encoding the Na+/Ca2+ exchanger NCX1 (Na+/Ca2+ 

exchanger 1) of the mammalian plasma membrane (Schmitz et al, 2003). Its 

homologous are also discovered in Paramecium, but their role in magnesium 

transport is not yet reported. It is localized in the tonoplast, mediates the 

electrogenic exchange of protons with Mg2+ and Zn2+ ions, and was predicted to 

contain eleven TM helices (Shaul et al, 1999). AtMHX proteins are expressed mainly 

in the xylem parenchyma cells of the plants (Shaul et al, 1999).  

 In 2000, the group of Volker Knoop and colleagues discovered the family of 

magnesium transporter in pants, and because of its ability to substitute with yeast 

Mrs2, they called them as AtMRS2 (Schock et al, 2000). In Arabidopsis thaliana and 

Oryza sativa 11 gene of AtMRS2 transport system are spread over five 

chromosomes, from AtMRS2 to AtMRS9 (Gebert et al, 2009). All these proteins 

were predicted to have a chloroplast leader peptide in their sequence. All the 

AtMRS2 genes were analysed in yeast, which shows that these genes significantly 

increased the rate of magnesium uptake in yeast (Li et al, 2001). Some of these 

transporters show higher similarity to a subclass of microbial 2-TM-GxN 

transporters, one of them being the zinc transporter (ZntB) from Salmonella enterica 

(Knoop et al, 2005). The conserved GMN motif of 2-TM-GxN family of magnesium 

transporting proteins is changed into GIN in ZntB (Worlock & Smith, 2002), which is 

also found in some plant homologues as well (Knoop et al, 2005). The ZntB proteins 

do not transport Mg2+ but mediate the efflux of Zn2+ from the bacterium (Tan et al, 
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2009). As was expected the structure of the soluble domain of ZntB resemble the 

CorA structure to high extent (Tan et al, 2009). Even so, according to Orit Shaul, 

very little is known about the magnesium transport systems in plants and in future 

most likely further transport systems might be discovered (Shaul, 2002).  

By now many genes have been reported from plants, bacteria and animals 

encoding for proteins involved or mediating Mg2+ transport (Gardner, 2003). 

Considering the biological abundance and importance of Mg2+, there is still a 

surprising gap of information regarding the proteins that transport Mg2+, the 

mechanisms by which they do so, the regulation of their transport and their 

physiological roles within the cell. Many open questions concerning not only their 

biological and physiological functions, but also their structures and the capability and 

mechanism of Mg2+ transport remains. The low sequence homology of the 

eukaryotic Mrs2 transporters with the prokaryotic magnesium transporter Tm-CorA, 

or any other protein of known structure, makes it difficult to predict accurately their 

structure and function (Weghuber et al, 2006). In this thesis, I present the crystal 

structure of the N-terminal moiety of the yeast (Saccharomyces cerevisiae) 

mitochondrial magnesium transporter Mrs2 at the atomic resolution and its functional 

characterization.  
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2. AIM OF THE THESIS 

Metal ions are essential elements in many cellular processes. Therefore, their 

concentrations in cells and organelles must be kept at appropriate levels. In fact, an 

impairment of transport systems has been implicated in a number of pathological 

conditions, collectively called channelopathies (Hubner & Jentsch, 2008). The 

expression of MRS2 has been associated with the maintenance of proper steady-

state concentrations of mitochondrial Mg2+. Understanding the regulation of the 

magnesium transporter Mrs2 at a molecular level is very important for the 

comprehension of its function in mitochondrial Mg2+ homeostasis.  

 

A mechanism of opening and closing of the prokaryotic magnesium 

transporter CorA has been proposed by the construction of a model based on the 

crystal structure of the inner soluble domain of CorA from Thermotoga maritima (Tm-

CorA) and its comparison with the structure of Tm-CorA in its closed state 

(Payandeh et al, 2008; Payandeh & Pai, 2006). In the absence of intracellular 

magnesium, the Mg2+ ions bound between the monomers are released, which 

triggers structural changes in the N-terminal domain as well as in the membrane 

spanning region. These changes cause opening of the gates in the pore, and allow 

Mg2+ flux into the cytoplasm.  

 

Low sequence homology of the N-terminal domain of Mrs2 with the 

prokaryotic magnesium transporter Tm-CorA or any other protein of known structure 

hampers accurate predictions of its structure and function. We, therefore, set out for 

a functional and structural analysis of the N-terminal domain of Mrs2 from 

Saccharomyces cerevisiae inner mitochondrial membrane, using a combination of 

these analyses with the goal to: 

 
 

 Generate high resolution structural information on the eukaryotic 

Mg2+ transporter Mrs2 (from yeast), focusing on its N-terminal 

soluble domain. 
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 Relate structural analysis to Mrs2 function through biochemical, 

genetic and atomic absorption spectroscopy of selected mutants 

and wild-type protein. 

 
Specific aims are: 
 

 Structural analysis and comparison with structures of prokaryotic 

homologues. 

 

 Identification of the divalent cation binding sites (DCS), and of the 

hydrophobic gate forming residues. 

 

 Understanding the determinants of the oligomerisation of the N-terminal 

soluble domain of Mrs2. 

 

 Validation and functional characterization of residues implicated in the 

putative magnesium binding site and in gating. 

 

 Effect of mutations in the conserved GMN motif on ion transport and 

selectivity in Mrs2. 

 

 Assessment of the role of the C-terminal extension of Mrs2 as the “basic 

sphincter”.  
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3. MATERIALS AND METHODS 

3.1 Constructs and nomenclature 
 
The constructs used for this study are shown in (Table 3.1). The residues are 

numbered according to the sequence of the Mrs2 with the N-terminal target peptide 

(32 amino acids). Constructs for Mrs2 were designed based on the homology 

modeling, limited proteolysis and spontaneous degradation. For expression in E. coli 

most of the constructs were cloned in vector pETM11 and few of them were cloned 

in pCS19 both with N- and C-terminal 6xHis-tag. While for expression in Pichia 

pastoris vector pPic3.5K was used, expressing the full-length and the one truncated 

at N-terminus.  
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3.2 DNA manipulation 

3.2.1 DNA amplification PCR and colony PCR 
 
The PCR reaction was prepared to a final volume of 50 μl: 3.125 mM MgCl2, 0.625 

mM dNTP’s, 6.25 units of Taq DNA Polymerase, 2.5x PCR buffer (10 mM Tris-HCl 

pH 8.0, 50 mM KCl, 0.08 % Nonidet P-40), 25 pmol of each oligonucleotide 

(forward/reverse) and 25 to 30 ng of DNA template. The cycles of PCR reactions 

were optimized according to the length of the target product under investigation 

(construct) and the melting temperature oligonucleotides (Tm; Table 3.2). 

 

To identify the positive clones similar PCR reaction was performed as 

described above, but the template used was a mixture containing a dilution of a 

colony in double distilled water. The template here prepared by diluting a single 

colony in 100 μl of double distilled water. The mixture was heated to 95° C for 10 

minutes, centrifuged and then used 1 μl of the supernatant for the reaction. 

 

Most of the constructs were cloned in the pETM expression system, which 

has fused tag at N-terminal of the expressed protein. These vectors are available 

with different tag like polyhistidine-tag (6x His-tag / 8x His-tag), green fluorescent 

protein (GFP), glutathione S-transferase-tag (GST), disulfide oxidoreductase A 

(DsbA), E. coli thioredoxin A (TrxA). These fused tag help in the protein purification, 

its identification and also in the solubilization of the cloned protein. The 

characteristics of the expression plasmid with their corresponding tags are listed in 

(Table 3.3). The restriction endonuclease reaction was followed by ligation reaction 

using the T4 DNA ligase enzyme and buffers of the Fermentas. The reaction was set 

up according to the supplier manual. 
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Table 3.2: Oligonucleotides and Tm (°C). Restriction sites are highlighted in red for 

NotI, in blue for NcoI, in bright Green for KpnI, lavender for BamHI and in black for 

HindIII. 

 

 

Primer Name OLIGONUCLEOTIDES (5’ TO 3’) Tm  
(°C) 

65. 3 MRS2 Nco1 wo sig BD fw 
WTM1_ML rv 

CTTTATTTTCAGGGCGCCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT 
GTG CTC GAG TGC GGCCGC TTA CAA CAT TAA GGA ATT TCT ATT TGC GTC CAA 

66.3 

65. 3 MRS2 Nco1 wo sig BD fw 
WTM1_LE 

CTTTATTTTCAGGGCGCCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT 
GTG CTC GAG TGC GGCCGC TTA CTC CAA CAA CAT TAA GGA ATT TCT ATT TGC 66 

65. 3 MRS2 Nco1 wo sig BD fw 
WTM1_LK 

CTTTATT CCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT TTCAGGGCG
GTG CTC GAG TGC GGCCGC TTA GGT AAC CTC CAA CAA CAT TAA GGA ATT TCT 65.3 

65. 3 MRS2 Nco1 wo sig BD fw 
WTM1_VT 

CTTTATTTTCAGGGCGCCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT 
GTG CTC GAG TGC GGCCGC TTA GGT AAC  TTT CAA CTC CAA CAA CAT TAA G 66 

65. 3 MRS2 Nco1 wo sig BD fw 
WTM1_IY 

CTTTATTT CCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT TCAGGGCG
GTG CTC GAG TGC GGCCGC TTA GTA GAT GGT AAC TTT CAA CTC CAA CAA C 67 

65. 3 MRS2 Nco1 wo sig BD fw 
WTM1_TL 

CTTTATTTTCAGGGCGCCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT 
GTG CTC GAG TGC GGCCGC TTA CAA CGT GTA GAT GGT AAC TTT CAA CT 66.6 

65. 3 MRS2 Nco1 wo sig BD fw 
Mrs2 Not 1 wo sig with TM 1 rv 

CTTTATTTTCAGG CCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT GCG
GTGCTCGAGT GCGGCCGC TTA CTTTAAATTCATACCATAGAATGCCGG 66 

65. 3 MRS2 Nco1 wo sig BD fw 
MRS2 Not1 with TM1,2 end 

CTTTATTTTCAGGGCGCCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT 
GTGCTCGAGTGCGGCCGCTTAATTTTTCTTGTCTTCTATCAACCATTTCCAAA 65. 3 

65. 3 MRS2 Nco1 wo sig BD fw 
MRS2 Not1 with TM1,2 trun_rev 

CTTTATTTT CCATGGGC AAACAGTTAC TATCGTTGAA GCCCATT CAGGGCG
GTGCTCGAGTGCGGCCGCTTATAAAGAATTAAAATTTTTCTTGGTGATATAAAGGG 64 

59 Mrs2 Nco1 wo sig alpha 4 fw 
Kpn1 wo sig alpha 4  rv 

AAACCATGGGAGCTGACACATCCACTGCTG 
TAAGGTACCTTATTACTCTATAAGCATTTCCAAGTCC 56 

68.6 InfusionMRS2 frw (BamHI) 
InfusionMRS2 rew (NotI) 

TTATT
ATTAATTCGCGGCCGCTCAATGATGATGATGATGGTGATTTTTCTTGTCTTCTATCAACCATTTCC 

CGAAGGATCCACCATGGGGAATCGGCGTCTCCTGGTACG 

69 

66 F1  NcoI(N) 
R1 BamHI(TM1) 

CTTTATTTTCAGGGCGCCATGGGAGCTGACACATCCACTGCTGCAAA 
GTGCTCGAGTGGATCCCTTTAAATTCATACCATAGAATGCCGGC 64 

66 F1  NcoI(N) 
R3(438) BamHI(TM1, 2) 

CTTTATTTTC CCATGGGAGCTGACACATCCACTGCTGCAAA AGGGCG
GTGCTCGAGTGGATCCATTTTTCTTGTCTTCTATCAACCATTTCCAAA 62 

65 F2 NcoI(BD) 
R1 BamHI(TM1) 

CTTTATTTTCAGGGCGCCATGGGAAAACAGTTACTATCGTTGAAGCCC 
GTGCTCGAGTGGATCCCTTTAAATTCATACCATAGAATGCCGGC 64 

65 F2 NcoI(BD) 
R3(438) BamHI(TM1, 2) 

CTTTATTTTC CCATGGGAAAACAGTTACTATCGTTGAAGCCC AGGGCG
GTGCTCGAGTGGATCCATTTTTCTTGTCTTCTATCAACCATTTCCAAA 62 

66 F1 BamHI(N) 
R1 HindIII(TM1) 

CTTTATTTTCAGGGCGGGATCCATGGCTGACACATCCACTGCTGCAAA 
GTGCTCGAGTAAGCTTTTACTTTAAATTCATACCATAGAATGCCGGC 62 

66 F1 BamHI(N) 
R2 HindIII(TM1,2) 

CTTTATTTTCAGGGCGGGATCCATGGCTGACACATCCACTGCTGCAAA 
GTGCTCGAGTAAGCTTTTATCAATTTTTCTTGTCTTCTATCAACCATTTCC 61 

65 F2  BamHI(BD) 
R1 HindIII(TM1) 

CTTTATTTTCAGGGCGGGATCCATGAAACAGTTACTATCGTTGAAGCCC 
GTGCTCGAGTAAGCTTTTACTTTAAATTCATACCATAGAATGCCGGC 62 

65 F2  BamHI(BD) 
R2 HindIII(TM1,2) 

CTTTATTTTCAGGGCGGGATCCATGAAACAGTTACTATCGTTGAAGCCC 
GTGCTCGAGTAAGCTTTTATCAATTTTTCTTGTCTTCTATCAACCATTTCC 61 

59 Mrs2 Nco1 wo sig with alpha 4 
fw 

Mrs2 Kpn1 wo TM1 

AAACCATGGGAGCTGACACATCCACTGCTG 
TAAGGTACCTTATTATTTCAACTCCAACAACATTAAG 54 
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3.2.1.1 Soluble domain constructs: Mrs233-270, Mrs233-308 Mrs248-308, 
Mrs248-310, Mrs248-312, Mrs248-314, Mrs248-316, Mrs248-318, Mrs248-320. 
 
Mrs2 target fragments were amplified by PCR using the full-length fragment cloned 

into pETM 11 as the template (Fig. 3.1). For all constructs specific oligonucleotides 

were designed including the restriction sites for Nco1 (forward) and Not1, Kpn1 

(reverse) etc. (Table 3.2). 

 

 

 

Fig. 3.1: Vector map of pETM-11 courtesy of EMBL 

 

3.2.1.2 Full-length Mrs2 
 
The full-length Mrs2 was amplified by PCR, using the full-length fragment cloned into 

pUC18 vector by the group of Prof. Schweyen (late) Austria as a template. Specific 

oligonucleotides were designed including the restriction sites for NcoI (forward) and 

Not1 (reverse) (Table 3.2) 
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3.2.2 DNA agarose gel electrophoresis 
 
All the DNA samples were analysed by DNA agarose gel electrophoresis in different 

concentrations ranging from 0.8 % (w/v) to 1.2 % (w/v) in 1x TAE buffer (10x TAE 

buffer = 400 mM Trizma, 40.7 % acetic acid, 500 mM EDTA pH 8.0) and 1 μl of 

SYBR Safe dye. The electrophoresis was carried out at 80-100 V for 30-40 mints 

and the DNA bands was visualized by ultraviolet (UV) light. 

 

3.2.3 Restriction endonuclease reactions 
 
All the expression plasmids and PCR fragments were subjected to restriction 

endonuclease enzymes reaction, the enzymes were selected according to their 

restriction sites. The plasmids and the amplified target DNA were digested by NcoI – 

Not1 and KpnI in accordance with their restriction site (Table 3.2). Restriction 

enzymes and the relavent buffers used were from New England BioLabs and the 

reaction was performed according to the manual. 

 

3.2.4 DNA purification 
 
Both the linearized plasmids and PCR fragments after the restriction reactions were 

run on DNA agarose gel, and then purified by using the QIAGEN QIAquick Gel 

Extraction Kit according to the manual manual. 

 

Table 3.3: Expression vectors and their respective fused tags 

 

Plasmid cloning vector Tag 

pETM13 No tag 

pETM11 N-ter 6x His-tag 

pETM13 GST N-ter 6x His-tag + GST-tag 

pETM20 N-ter 6x His-tag + TrxA 

pCS19 N-ter 6x His-tag 

pCS19 C-ter 6x His-tag 

pPIC3.5K No tag 
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3.2.5 Transformation 
 
The ligation mixture was transformed into a E.coli strain DH5α (Table 3.4). The 

transformation process was carried out by heat shock procedure, in which 5 μl 

mixture of ligation were added to 100 μl of the DH5α cells. Incubate for 15-20 mints 

on ice, heat shock at 42° C for 90 sec and then immediately place on ice for 5 mints. 

To this mixture 900 μl of Luria Broth (LB, Sigma) were added, and then incubated at 

37° C with 150 rpm for 1 h.  

 

The same method was employed to transform positively selected plasmids 

into other different expression strains: BL21 (DE3) Star, E. coli BL21 (DE3), C-41 

DE3, C-43 (DE3), BL21 (DE3) Rosetta pLysS, and BL21 (DE3) pLysS, (Table 3.4). 

 
 
3.2.6 Selection of positive clones using antibiotics  
 
The transformation mixture were plated on appropriate antibiotics containing, LB-

agar medium (LB + 1.5 % agar): Kanamycin (50 μg/ml), Carbenicillin (100 μg/ml) or 

chloramphenicol (34 μg/ml), based on the plasmid and the E. coli strain (Table 3.4), 

and incubated at 37° C. for 12 - 14 h. 

 

3.2.7 Plasmid extraction in mini scale (miniprep) 
 
The positive clones, which were identified by antibiotics and PCR, subjected to 

plasmid miniprep using a kit supplied by QIAGEN, following the protocol of the 

QIAGEN. 

 
 
3.2.8 DNA sequencing 
 
All the products of the miniprep were sent to DNA sequencing facilities at VBC-

Biotech Service GmbH, Vienna, Austria and Agowa DNA Sequencing Erlin 

Germany, using a primer for of T7 promoter/terminator. 

 

 

.                                                                                                                                                           
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3.2.9 Cloning in Pichia pastoris 
 
Mrs2 target fragments were amplified by PCR using the full-length fragment of Mrs2 

cDNA as a template. Specific oligonucleotides were designed including the 

restriction sites for BamH I (forward) and EcoR I (reverse) (Table 3.2). 

 

The vectors pPIC3.5K was used for cloning in Pichia pastoris. Vector 

pPIC3.5K is 9004 bp, and created in such a way to find out in vivo manifold 

integrations of the gene in the Pichia genome. It has five distinct restriction sites in 

the cloning sites: Not I, BamH I, EcoR I, Avr II SnaB I (Fig. 3.2). It needs ATG codon 

for iniation in a Kozak consensus sequence for correct expression of the gene 

(Invitrogen, 2002). The characteristics of the expression plasmid with their 

corresponding tags are listed above in (Table 3.3).  

 

For cloning in Pichia pastoris the restriction endonuclease reaction was 

followed by submitting the target fragments over night to ligation reaction with the T4 

DNA ligase enzyme using buffer purchased from Invitrogen. The ligation mixture 

transformed to DH5α, in the same method as described above, and then screened 

for positive clones (Cregg et al, 2000). The positive clones were then pursued by 

manipulation of the plasmid, sequenced the plasmid to conform the target sequence. 

The sequenced plasmid (one with the correct fragment) was later linearized at AOX I 

with Sac I for insertion of the target fragment to pichia GS115 cells. Streak GS115 

cells onto a YPD plate in such a way that an isolated, single colonies will grow, 

incubated the plate at 30° C, for one to two night, preparation of the spheroplast was 

done using protocol supplied by Invitrogen (p31-33) (Invitrogen). Concentrated 10 ug 

of linearized pPIC3.5K was added to 100ul of the spheroplast and incubated at room 

temperature for 10 min, the rest of the transformation protocol followed as provided 

by Invitrogen (P 34-35) (Invitrogen) manual. The qualitative screen with Geneticin 

resistance was performed to find out the multiple inserted colonies (Ausubel, 1994). 

 

38



 
                                                 

Fig. 3.2: Vector map of pPIC3.5K courtesy of InvitrogrenTM 
 
3.3 Protein expression 

 
3.3.1 Over-expression of recombinant proteins 
 
After confirming the sequence identities of the cloned inserts, the plasmids were 

transformed into different expression strains and plated into LB-agar supplied 

containing an appropriate antibiotic. Took a single isolated colony and diluted in 10 

ml LB pre-culture. The 10 ml pre-culture of the target protein grown over night at 37° 

C and 200 rev. min-1, was diluted in fresh 1 liter LB having the appropriate 

antibiotics. For small scale over-expression experiments, 0.2 ml of pre-culture was 

diluted in 5 ml LB desired antibiotics. The fresh culture grew at 37° C and 130 rev 

min-1 until it reached an optical density OD600 between 0.6 and 0.8. The proteins 

were then induced by adding 0.5 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG 

(Sigma)) and allowed to grow to a final OD600 of 2.3 at 21° C or 37° C at 120 rev. 

min-1. Protein induction lasted 3 h for experiments performed at 37° C or over night 

for experiments performed at 21° C. the expressed culture was harvested by 

centrifugation (6,000 g, 30 min, at 4° C). 
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The cells of the small scale over-expression experiments were lysed by using 

Bug buster protein expression kit (Novagen), according to the manual. 

 
 
3.3.2 Purification of recombinant N-terminal soluble constructs 

Mrs233-270, Mrs233-308 Mrs248-308, Mrs248-310, Mrs248-312, Mrs248-314, Mrs248-

316, Mrs248-318, Mrs248-320 of Mrs2  

 
To obtain pure protein the expressed cells were resuspended in sonication buffer 

10-20 ml lysis buffer per liter of culture (50 mM Tris–HCl pH 8.0, 500 mM NaCl) 

supplemented with 1 mM phenylmethanesulfonylfluoride (PMSF), 5 mM β-

mercaptoethanol (BME), 20 mM imidazole and 5 % glycerol, and lysed by sonication 

(disrupted for 10 min sonication on ice with 60 % maximum energy output (Bandelin 

Sonoplus)) and also by French press. The cell lysate was then centrifuged at 50,000 

g, 30 min, at 4° C. The supernatant of the centrifuged lysate was submitted to three 

different protein purification steps, including NTA agarose column (Qiagen), ion 

exchange (Resource Q column) and size exclusion chromatography (SEC) (Khan et 

al, 2010). 

 

The NTA agarose column (Qiagen) was pre-equilibrated in the buffer A (50 

mM Tris–HCl pH 8.0, 500 mM NaCl, 1 mM PMSF, 5 mM BME, 20 mM imidazole and 

5 % glycerol). The column was extensively washed before applying the sample with 

buffer A containing 20 mM imidazole. Previously, the NTA agarose column was 

charged with 100 mM NiSO4 (Khan et al, 2010). 

 

The supernatant of the cell lysate was loaded onto a NTA agarose column. 

After the supernatant had passed through the column, 6 column volumes of the 

buffer A was used to wash it. The protein was eluted with a linear gradient of buffer 

B (buffer A + 500 mM imidazole). The N-terminal His6 tag was cleaved using TEV 

(see below Cleavage of His6-tag by Tobacco etch virus (TEV) protease). The 

cleaved N-terminus and TEV were separated from the protein by reapplying the 

reaction mixture onto the Ni–NTA column(Khan et al, 2010). 
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The next protein purification step was the ion exchange chromatography 

using a Resource Q column (6 ml; GE Healthcare). The flow through of Ni-NTA was 

pooled and loaded onto a Resource Q column equilibrated with buffer A containing 

of 50 mM Tris–HCl pH 8.0, 5 mM BME, 20 mM NaCl and 1 mM PMSF and the 

protein was eluted employ either, a gradient of 20 – 1000 mM NaCl in 50 mM Tris–

HCl pH 8.0, 5 mM BME and 1 mM PMSF or eluted with single step of 50 % of the 

above buffer (Khan et al, 2010). The protein eluted from the Resource Q column in a 

single peak at about 280 mM NaCl (Khan et al, 2010). 

 

The last purification step was carried out on a HiLoad 26/60 Superdex 200 

(GE Healthcare) gel-filtration column in 50 mM Tris–HCl pH 8.0 and 300 mM NaCl.  

 

The purified protein was concentrated by reapplying it onto a Resource Q 

column (6 ml; GE Healthcare) as described above; it was concentrated to about 3 

mg ml-1(Khan et al, 2010). 

 

3.3.2.1 Purification of constructs containing trans-membrane 

helices Mrs233-337, Mrs248-337, Mrs233-369, Mrs248-470, and full-length 

Mrs233-470 of Mrs2  

 
The purification of transmembrane constructs Mrs233-337, Mrs248-337, Mrs233-369, 

Mrs248-470 and full-length construct Mrs233-470 of Mrs2 is considerably different from 

that of the N-terminal soluble domain. In order to obtain pure protein the induced 

cells were resuspended in 10 - 20 ml lysis buffer (50 mM Tris–HCl pH 8.0, 500 mM 

NaCl) per liter of culture, supplemented with 1 mM phenylmethanesulfonylfluoride 

(PMSF), 5 mM β-mercaptoethanol (BME) and 5 % glycerol. Cells were lysed by 

using French press at 18,000 Psi pressure, maintaining the temperature at 4°C. The 

resulting supernatant was centrifuged at 10,000 rpm for 1 hour. The pellet was 

discarded and the supernatant centrifuged at 45,000 rpm for 1 hour, discard the 

supernatant and collect the pellet (membrane). The pellet was then solubilised in 

membrane solubilising buffer containing 50 mM Tris–HCl pH 8.0, 500 mM NaCl, 20 

mM imidazole supplemented with 1 mM PMSF, 5 BME, 10 % glycerol and 1 % n-
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Dodecyl-β-D-maltosid (DDM) and stirred gently at 4°C for overnight. The membrane 

extracts were then centrifuged at 45,000 rpm for 1 hour.  

 

The resulting supernatant from the centrifuged lysate was submitted to two 

different protein purification steps, including NTA agarose column (Qiagen) and size 

exclusion chromatography. The NTA agarose column (Qiagen) pre-equilibrated in 

the buffer A (50 mM Tris–HCl pH 8.0, 500 mM NaCl, 1 mM PMSF, 5 mM BME, 20 

mM imidazole 10 % glycerol and 1 % DDM). The membrane extracted supernatant 

was loaded onto a NTA agarose. After the supernatant had passed through the 

column, 5 column volumes of the same buffer A was used to wash it. The protein 

was eluted with a linear gradient of buffer B (buffer A + 500 mM imidazole).  

 

Subsequent purification was carried out on a HiLoad 26/60 Superdex 200 

(GE Healthcare) gel-filtration column in 50 mM Tris-HCl pH 8.0 and 500 mM NaCl 10 

% glycerol 1 mM PMSF and 0.2 % DDM. 

 
3.3.3 Cleavage of His6-tag by Tobacco etch virus (TEV) protease 
 
The N-terminal His6-tag was cleaved using an optimised amount of TEV (protease: 

protein mass ratio 1:70) for 12-16h in the dialysis bag, dialysing against 50 mM Tris-

HCl pH 8.0 containing 300 mM NaCl, 1 mM dithiothreitol (DTT) and 1 mM PMSF at 

4° C (Khan et al, 2010). To increase the cleavage reaction the TEV protease was 

refreshed after the first hour of the reaction. The reaction mixture was purified by 

reapplying onto Ni-NTA column as described above. The purity of the cleaved 

samples was analyzed by SDS-PAGE for all the constructs. The cleaved protein 

target was submitted for further purification steps as described above (Khan et al, 

2010). 

 

3.3.4 Protein dialysis 
 
Dialysis  of the soluble N-terminal domain constructs of Mrs2 was carried out in a 

dialysis membrane (Spectra/Por Dialysis Membrane Tubing), with a molecular 

weight cut off (MWCO) of 12 kDa (Spectrum laboratories Inc.), while the full-length 

(homopentamer) was dialysed using 30 kDa cut off against 3 liter of the desired 
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buffer at 4°C for overnight. To increase the dialysis speed the buffer were refresh 

after 1 h. 

 
3.3.5 Protein concentration 
 
The concentration of the full-length protein and the protein containing one 

transmembrane was performed by using 10, 30 or 50 kDa cut off (Millipore) 

membranes of Centriprep centrifugal filters devices with the regenerated cellulose. 

The centrifugation was done as advised by the manufacturers. 

 

3.3.6 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) 

 
The purity of the protein samples were analysed under denaturing conditions on a 

12-15 % polyacrylamide gel depending on the molecular weight of the constructs 

under investigation, according to the protocol of Laemmli’s (Laemmli, 1970). The 

protein bands were stained by Coomassie Brilliant Blue R-250 for 10 mints and then 

consequently destained by destaing solution. 

 
3.3.7 Protein concentration determination 
 
The concentration of protein was determined spectroscopically, measuring the 

protein absorbance by UV at 280 nm (OD280; Nanophotometer, IMPLEN). 

Concentration of the protein was computed by an equation: protein concentration 

(mg/ml) = OD280 x dilution factor / extinction coefficient (g/l) and afterwards 

converted into mg/ml for all constructs. The extinction coefficient (ε) of the protein 

was determined by the ProtParam tool using the website (http://www.expasy.ch/) of 

ExPASy proteomics and primary sequence of each construct. 

 

3.3.8 Protein storage 
 
The purified protein in buffer containing 300 mM of NaCl and 50 mM of Tris-Hcl pH 

8.0 was flash frozen in liquid nitrogen and kept at -80° C for long storage purpose, 

while for short storage purpose the protein was kept at 4° C on ice. 
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3.3.9 Differential scanning fluorimetry (DSF) or Thermo Fluor 
 
DSF was used for screening the optimal buffer conditions for protein stability. The 

dye binding affinity towards protein increase, when the protein unfolds, which leads 

to the increase fluorescence (Niesen et al, 2007). The protein solution was heated 

from 4° C to 95° C during the DSF experiment. The buffer condition at which the 

protein unfolds at the highest temperature (Tm) is considered the most stable 

condition (Ericsson et al, 2006).  

 

A combination of different pH, ionic strength and glycerol were prepared in a 

96 well plate (Table 3.5). The solution was performed in a final volume of 20 μl, 10 μl 

buffers, 4 μl proteins (~1.5 mg/ml) and 6 μl of SYPRO Orange dye (Invitrogen) (the 

dye used was 5x of the original 5000x as the absolute dye concentration was not 

registered). The experiment was performed on an instrument (Real-Time PCR) 

supplied with unique filters calibrated to the SYPRO Orange dye signals. The 

instrument contains Mx3005 Real-Time QPCR System from Stratagene, 

Mastercycler eprealplex from Eppendorf and from Bio-Rad the iQ5 multicolour Real-

Time PCR Detection System. 
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In order to find an optimal buffer condition for homo pentamerization of the 

soluble domain of Mrs248-308 DSF was employed. The protein thermal stability was 

assayed by varying a combination of pH, glycerol, PEG Smear and sucrose in the 

presence of 10mM NaCl (Table 3.6). The final reaction volume of 25 μl contains: 

12.5 μl buffer, 5 μl protein (1 - 0.5 mg/ml) and 7.5 μl SYPRO Orange dye (Invitrogen) 

at a dilution of 5x. 
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3.3.10 Dynamic light scattering (DLS) 
 
DLS also known as Quasi-Elastic Light Scattering (QELS) is a technique most often 

used to measure the size of small molecules in solution. It is a well established 

technique measuring the size of molecules and particles below 1 nanometer 

(Chayen et al, 2004). The molecules in Brownian motion cause fluctuation in the 

scattered light intensity according to their composition. Protein solution in different 

oligomerization states (aggregates, oligomers, dimers, monomers, etc.), scatter light 

in different intensities evaluated by a detector positioned at a 90° angle to the 

incident laser light (Banachowicz, 2006; Cecere et al, 2003; Jamieson A & Mc, 

1979). Sample dispersity can be estimated according to its population (Borgstahl, 

2007). It is widely believed that monodisperse (polydespersity below 30 %) samples 

are more likely to crystallize (Carvalho et al, 2009; D'Arcy, 1994).  

 

DLS was routinely employed to evaluate the polydispersity of the protein solutions 

prior to setting up the crystallization trials. DLS measurements were performed at 

22° C as well as 4° C using the DynaPro-801 instrument (protein Solution Inc.) with 

100 - 150 acquisitions taken each at 1 sec. intervals. The Dynamics V6 software 

(Protein Solutions Inc.) was employed for analysis of the recorded data. 

 

3.3.11 Protein reductive methylation 
  
To obtain diffraction-quality crystals is a major bottleneck in the macromolecular 

crystallography. Protein reductive methylation is a chemical method to modify the 

crystallization properties of protein (Fan & Joachimiak, 2010; Kim et al, 2008; 

Rypniewski et al, 1993). Protein reductive methylation generates changes in the 

surfaces charges of the protein that could likely enhance the crystal packing of the 

macromolecules during crystallization (Fan & Joachimiak, 2010). The change in 

surfaces charge occur as a result of primary free amino groups found in lysine 

residues or in the N-terminal of the protein being changed to tertiary or secondary 

amino groups (Fig. 3.3). 
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Fig. 3.3: Three different amino groups:  

Primary (found in lysine or the N-terminal of proteins), secondary and tertiary amine. 
 

Originally, the lysine methylation protocol was established by Rypniewski WR 

and modified by Thomas S Walter and coworkers (Rypniewski et al, 1993; Walter et 

al, 2006). Prior to lysine methylation all samples were purified and subsequently 

dialyzed against the desired methylation buffer (100 mM HEPES pH 7.5, 300 mM 

NaCl). The methylated samples were re-purified by size exclusion chromatography 

using the appropriate buffer.  

 

3.3.12 Limited proteolysis 
 
Limited proteolysis was employed to design stable constructs of N-terminal soluble 

domain of Mrs2. It is most significant for designing constructs of protein fragments 

that can fold autonomously and thus behaves as an individual protein domains 

(Fontana et al, 2004). Infect, Neurath (1980) proposed that proteolysis is anticipated 

at the whippy regions between different protein domains (Fontana et al, 2004; 

Neurath, 1980). Proteolytic reaction usually occurs at loops, which are accessible to 

solvents, and at flexible regions, which include disordered or denatured N- and C-

termini plus uncovered loops or regions between different globular domains (Gao et 

al, 2005). 

 

The N-terminal soluble domain construct of the Mrs2 (Mrs248-308, 2.5 mg/l), in 

300 mM NaCl and 50 mM Tris-HCl pH 8.0, was incubated in presence of trypsin, 

chymotrypsin and proteanse K at different temperature 4°, 25° and 37° C. The 

reaction was stopped at different time intervals from 1 to 60 mints. The digested 

sample was run on 15 % SDS-PAGE. The band from SDS-PAGE was cut out and 
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dissolved in distilled water by heating gently. In-gel digestion of the protein was 

performed by trypsin overnight and then analyzed by MALDI MSMS. 

 

3.3.14 Circular dichroism (CD)  
 
CD was performed in the near UV region to gain information about the secondary 

and tertiary structure of the Mrs2 protein using construct Mrs248-276. CD 

measurement was performed on spectrometer instrument (Applied Photophysics 

PiStar-180), using quartz cell (Hella) of 1 mm path length. CD signals between 190 

nm and 240 nm were measured for N-terminal soluble domain of Mrs248-276 in 20 mM 

HEPES pH 7.5, 100 mM NaCl. Data was collected at 25° C, with a wave length 

change of 1 nm. 

 

3.3.15 Mrs248-308 soaking and co-crystallization 
 

In order to check the magnesium or cobalt binding site within Mrs2 transporter, 

diffraction-quality crystals of Mrs248-276 were soaked in magnesium chloride, 

magnesium nitrate, or cobalt chloride solution of different molarities. The cryo-

solution was prepared by increasing the ethylene glycol to 30 % (v/v) and 56 mM 

sodium/potassium phosphate pH 6.3. The concentration of magnesium and cobalt 

salt used ranged from 1 mM to 100 mM (final concentration) and different soaking 

times from 30 sec to one week.  

 

The co-crystallization was done by adding 1 to 5 mM of magnesium salt to 

protein sample (2.8 mg/ml), incubated at 4° C for 30 min, and then centrifuged at 

20,000 rpm, for 20 min at 4° C. The magnesium incubated sample was immediately 

submitted to crystallization trials. 
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Mrs2 transporters are distantly related to the major bacterial Mg2+ transporter

CorA and to Alr1, which is found in the plasma membranes of lower eukaryotes.

Common features of all Mrs2 proteins are the presence of an N-terminal soluble

domain followed by two adjacent transmembrane helices (TM1 and TM2) near

the C-terminus and of the highly conserved F/Y-G-M-N sequence motif at the

end of TM1. The inner mitochondrial domain of the Mrs2 from Saccharomyces

cerevisae was overexpressed, purified and crystallized in two different crystal

forms corresponding to an orthorhombic and a hexagonal space group. The

crystals diffracted X-rays to 1.83 and 4.16 Å resolution, respectively. Matthews

volume calculations suggested the presence of one molecule per asymmetric unit

in the orthorhombic crystal form and of five or six molecules per asymmetric

unit in the hexagonal crystal form. The phase problem was solved for the

orthorhombic form by a single-wavelength anomalous dispersion experiment

exploiting the sulfur anomalous signal.

1. Introduction

Mg2+ is the most abundant divalent cation in cells and organelles

(Diwan, 1987). It plays important roles in stabilizing macromolecules

and in binding to nucleotides and acts as a cofactor of many enzymes.

By regulating the activities of ion channels and transporters, Mg2+

also influences cell volume and signalling processes (Ikari et al., 2008;

Mobasheri et al., 1998).

Mrs2 transporters form the major mitochondrial Mg2+-uptake

system in yeast, plants and mammals (Zsurka et al., 2001; Kolisek et

al., 2003; Li et al., 2001; Schock et al., 2000) and are essential for

mitochondrial biogenesis (Walker et al., 1982). Mrs2 transporters are

distantly related to the major bacterial Mg2+ transporter CorA and to

Alr1, which is located in the plasma membrane of lower eukaryotes.

The amino-acid sequence identity between the N-terminal domains

of CorA from Thermotoga maritima and Mrs2 from Saccharomyces

cerevisae is 11%. The members of the Alr1 subfamily appear to be

restricted to lower eukaryotes, where they form the major Mg2+-

uptake system of the plasma membrane. Expression of Alr1 is

essential for the growth of yeast cells, except when kept in media with

nonphysiologically high Mg2+ concentrations (Graschopf et al., 2001).

On the other hand, the cellular uptake of Mg2+ in mammals is

mediated by proteins unrelated to the CorA–Mrs2–Alr1 superfamily

that belong to the mammalian melastatin-related transient receptor

potential (TRPM) family of cation channels (TRPM6 and TRPM7;

Voets et al., 2004; Schmitz et al., 2005).

Common features of all of these proteins are the presence of two

adjacent transmembrane helices (TM1 and TM2) near the C-terminus

and of the highly conserved F/Y-G-M-N sequence motif at the

C-terminus of TM1 (Bui et al., 1999; Gardner, 2003; Knoop et al.,

2005; Lunin et al., 2006). The N-terminus is characterized by a large

cytoplasmic domain which forms a funnel and has been shown to

constitute an allosteric regulatory module that can be engineered to

promote an activated or closed state (Payandeh et al., 2008).

Despite low amino-acid sequence identity, secondary-structure

features appear to be conserved in the N-terminal and transmem-

brane portions of all members of the CorA–Mrs2–Alr1 superfamily

(Lunin et al., 2006), while they display notable differences in the
# 2010 International Union of Crystallography
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region C-terminal to TM2 (Gardner, 2003). Moreover, some of these

transporters can partially replace each other, which strongly supports

the notion that they are orthologues (Bui et al., 1999; Lunin et al.,

2006; Li et al., 2001; R. Schweyen, unpublished work).

Mrs2 is located in the inner mitochondrial membrane, while Alr1 is

inserted into the cytoplasmic membrane. The orientation of these

transporters in their cognate membranes is such that both the long

sequence N-terminal to TM1 and the sequences C-terminal to TM2

are oriented towards the mitochondrial matrix and the cytoplasm in

Mrs2 and Alr1, respectively. Only a short loop connecting the TM

helices is oriented towards the space between the two mitochondrial

membranes and outside in Mrs2 and Alr1, respectively (Baumann

et al., 2002; Bui et al., 1999; Wachek et al., 2006). In their cognate

membranes yeast Mrs2 and Alr1 have been shown to form homo-

oligomers, while the bacterial transporter CorA was found to be in a

pentameric state (Kolisek et al., 2003; Wachek et al., 2006; Warren et

al., 2004; Weghuber et al., 2006).

Here, we report the crystallization and X-ray diffraction analysis of

the N-terminal domain of Mrs2, the Mg2+ transporter from yeast

inner mitochondrial membrane.

2. Materials and methods

2.1. Cloning and expression

The gene encoding the mitochondrial magnesium transporter Mrs2

(YOR334W) from S. cerevisae was used to amplify the mitochondrial

matrix domain of Mrs2 (Mrs216–276; Mr = 30 124) by polymerase chain

reaction (PCR) using Taq DNA polymerase with the forward primer

50-CTTTATTTTCAGGGCGCCATGGGCAAACAGTTACTATC-

GTTGAAGCCCATT-30 and the reverse primer 50-GTGCTCGAGT-

GCGGCCGCTTATAAGGAATTTCTATTTGCGTCCAATATGA-

T-30, which were designed based on the nucleotide sequence of the

Mrs2 gene. The PCR product was digested with NcoI and NotI (the

recognition sites are shown in bold in the primers used) and cloned

into the vector pETM-11 (EMBL Hamburg) with a tobacco etch virus

(TEV) cleavable N-terminal His6 tag MKHHHHHHPMSDYDIPT-

TENLYFQGA. The DNA insert cloned in pETM-11 was sequenced

to confirm the fidelity of DNA amplification.

The recombinant protein was overexpressed in BL-21 Star (DE3)

Escherichia coli transformants grown in LB medium containing

kanamycin (0.025 mg ml�1) at 310 K with shaking at 200 rev min�1;

the cells were induced at an OD600 of 0.6 with 0.5 mM isopropyl �-d-

1-thiogalactopyranoside (IPTG) and allowed to grow to a final OD600

of 2.3 at 294 K. The cells were harvested by centrifugation (6000g,

30 min), resuspended in sonication buffer (50 mM Tris–HCl pH 8.0,

500 mM NaCl) supplemented with 1 mM phenylmethanesulfonyl-

fluoride (PMSF), 5 mM �-mercaptoethanol (BME), 20 mM imidazole

and 5% glycerol, and lysed by sonication.

2.2. Purification

After sonication of the cells, the crude extract was centrifuged at

50 000g for 30 min and the supernatant was loaded onto a 5 ml Ni–

NTA agarose column (Qiagen) pre-equilibrated in buffer A (50 mM

Tris–HCl pH 8.0, 500 mM NaCl, 1 mM PMSF, 5 mM BME, 20 mM

imidazole and 5% glycerol). The column was extensively washed with

buffer A containing 20 mM imidazole. The protein was eluted with

a linear gradient of buffer B containing 500 mM imidazole. The

N-terminal His6 tag was cleaved using TEV (protease:protein mass

ratio 1:70) for 12 h during dialysis against 50 mM Tris–HCl pH 8.0

containing 300 mM NaCl, 1 mM dithiothreitol (DTT) and 1 mM

PMSF. The cleaved N-terminus and TEV were separated from the

protein after TEV cleavage by again applying the reaction mixture

onto the Ni–NTA column. The flowthrough was pooled and loaded

onto a Resource Q column (6 ml; GE Healthcare) equilibrated with

buffer A consisting of 50 mM Tris–HCl pH 8.0, 20 mM NaCl, 5 mM

BME and 1 mM PMSF and the protein was eluted using a gradient of

20–1000 mM NaCl in 50 mM Tris–HCl pH 8.0, 5 mM BME and 1 mM

PMSF. The protein eluted from the Resource Q column in a single

peak at 280 mM NaCl. Further purification was carried out on a

HiLoad 26/60 Superdex 200 (GE Healthcare) gel-filtration column in

50 mM Tris–HCl pH 8.0 and 300 mM NaCl. The protein eluted in a

single peak at an elution volume of 218 ml, corresponding to a

molecular weight of 30 kDa, which is compatible with the monomer

of Mrs216–276. The purified protein was concentrated by reapplying

it onto a Resource Q column (6 ml; GE Healthcare) as described

above; it was concentrated to about 3 mg ml�1 for crystallization

screening. These procedures reproducibly yielded 6 mg protein from

1 l of bacterial culture.

The purity of the protein solution used in the crystallization

experiments was checked by SDS–PAGE analysis and showed a

single band with an apparent molecular weight of about 30 kDa

(Fig. 1a).

Dynamic light scattering was used to assess the monodispersity of

the protein solution: a monomodal distribution with a polydispersity

of 5% was observed and the gyration radius was estimated to be

4.2 nm, suggesting that the protein solution was homogenous and

monomeric. Circular-dichroism spectroscopy in the far-ultraviolet

wavelength range showed that the protein was rich in �-helical

content.

2.3. Crystallization

Initial screening for crystallization conditions was performed using

Crystal Screens 1 and 2, PEG/Ion Screen, Index, Natrix, SaltRX,

Cryo 1 and 2, JCSG, PACT and MembFac kits from Hampton

Research. A nanodrop crystallization robot (Phoenix RE, Matrix

Technologies) was employed for screening using the sitting-drop

vapour-diffusion method at 295 K, mixing equal volumes (0.2 ml) of

protein solution (3 mg ml�1 in anion-exchange buffer) and reservoir

solution. Crystals of Mrs216–276 were initially obtained from Cryo 1

and 2 condition No. 59, consisting of 0.1 M sodium/potassium phos-

phate pH 6.2, 25%(v/v) 1,2-propanediol, 10%(v/v) glycerol, and

condition No. 22, composed of 0.1 M sodium/potassium phosphate

pH 6.2, 40%(v/v) ethylene glycol. For optimization of crystallization

crystallization communications
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Figure 1
SDS–PAGE gels of TEV cleavage of Mrs216–276 and of dissolved Mrs216–276 crystals
(form A). (a) Lane 1, before His6-tag cleavage; lane 2, after His6-tag cleavage with
TEV; lane S, molecular-weight standards (kDa). (b) Lane C, control; lane Cr,
dissolved crystals; lane S, molecular-weight standards (kDa).
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conditions, 1 ml protein solution (3 mg ml�1 in anion-exchange

buffer) was mixed with 1 ml mother liquor for vapour-diffusion

experiments against 0.5 ml reservoir solution. After further optimi-

zation of the crystallization conditions, the best crystals were

obtained using 22%(v/v) ethylene glycol, 56 mM sodium/potassium

phosphate pH 6.3. The crystals (form A) appeared overnight and

grew to maximum dimensions of about 0.5 � 0.2 � 0.2 mm within 2–

3 d (Fig. 2a). Small crystals of Mrs216–276 (form B) were also obtained

in the presence of 1.7 M NaCl, 70 mM imidazole pH 7.8 at 295 K

(Fig. 2b). However, these crystals did not diffract to high resolution.

The crystals (form A) were dissolved in deionized water at room

temperature. SDS–PAGE was performed on 12.5% polyacrylamide.

The protein bands of dissolved crystals were identified by comparing

their mobility with those of protein standard molecular-weight

markers and purified Mrs216–276 (Fig. 1b).

2.4. X-ray diffraction

All Mrs216–276 X-ray diffraction data sets were collected at 100 K

in a cold nitrogen stream using either an in-house Bruker Microstar

crystallization communications
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Figure 2
The two different forms of Mrs216–276 crystals. (a) Crystals of Mrs216–276 grown in 22%(v/v) ethylene glycol, 56 mM sodium/potassium phosphate pH 6.3 (form A). (b) Crystals
of Mrs216–276 grown in 1.7 M NaCl, 70 mM imidazole pH 7.8 (form B).

Figure 3
Diffraction patterns of Mrs216–276 crystals. (a) Diffraction pattern of form A Mrs216–276 crystals. The resolution is �1.8 Å at the edge. (b) Diffraction pattern of form B
Mrs216–276 crystals. The resolution is �3.4 Å at the edge.
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rotating-anode generator equipped with a Platinum 135 CCD

detector and a 300 mm collimator or the ID14-1 beamline at ESRF

equipped with an ADSC Q210 CCD detector, using a beam size of

100 � 100 mm. Prior to cryocooling in a nitrogen stream, the form A

crystals of Mrs216–276 were transferred into a cryoprotectant solution

containing 30%(v/v) ethylene glycol, 56 mM sodium/potassium

phosphate pH 6.3, while the form B crystals were transferred into a

cryoprotectant solution containing 19% glycerol, 1.7 M NaCl, 70 mM

imidazole pH 7.8. The form A crystals of Mrs216–276 diffracted to

1.83 Å resolution on an in-house source (Fig. 3a) and belonged to

space group P212121 (unit-cell parameters a = 54.66, b = 67.70,

c = 85.30 Å), with the asymmetric unit containing one molecule. This

is consistent with a Matthews coefficient of 2.32 Å3 Da�1 and a

solvent content of 47.0%. The form B crystals of Mrs216–276 diffracted

to 4.16 Å resolution at ESRF (Fig. 3b) and belonged to space group

P6222 or P6422 (unit-cell parameters a = b = 230.00, c = 114.47 Å),

with the asymmetric unit being likely to contain five or six molecules,

corresponding to a Matthews coefficient of 2.84 Å3 Da�1 and a

solvent content of 56.7%.

The data-collection statistics are summarized in Table 1. Crystallo-

graphic data collected in-house were processed (integrated and

scaled) with the PROTEUM2 software suite (Bruker AXS Inc.),

while the synchrotron data sets were processed using XDS (Kabsch,

2010).

2.5. Solution of the phase problem

The structure could not be solved by molecular replacement using

the known CorA structure as a search model (Lunin et al., 2006), but

was instead solved by the single-wavelength anomalous dispersion

method (SAD) using the Mrs2 native S atoms for phasing. A highly

redundant (average multiplicity of 80) data set with high anomalous

completeness (92.5%; 83.0% in the outermost shell) was obtained

from a form A crystal using the in-house X-ray source with a 1.54 Å

wavelength (Table 1). The diffraction data were cut to 2.5 Å resolu-

tion to determine the sulfur substructure using SHELXD (Sheldrick,

2008). All 11 S-atom sites were found, corresponding to the five

cysteine and six methionine residues present in the protein. Subse-

quent heavy-atom refinement and density modification was per-

formed using autoSHARP (Vonrhein et al., 2007). The sulfur SAD

phases obtained from autoSHARP produced an electron-density map

which was traced using ARP/wARP (Morris et al., 2003; Joosten et al.,

2008) and automatically fitted 243 of the 261 amino-acid residues in

three different chains (Rwork and Rfree of 0.21 and 0.30, respectively)

into the density. Structure determination is currently in progress

using the diffraction data extending to 1.83 Å resolution.

We acknowledge the ESRF, Grenoble for provision of synchrotron

radiation. MBK is the recipient of a PhD fellowship from FWF

(P20141). This work was partially supported by WWTF (LS05021)

and the University of Vienna.
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Table 1
Data-collection statistics for the N-terminal domain of Mrs2.

Values in parentheses are for the outermost resolution shell. No �(I) cutoff was used in
the data-integration process.

Form A
(home source)

Form B
(ESRF ID14-1)

Wavelength (Å) 1.54178 0.933
Temperature (K) 100 100
Space group P212121 P6422 or P6222
Unit-cell parameters (Å, �) a = 54.66, b = 67.70,

c = 85.30,
� = � = � = 90

a = b = 230.00, c = 114.47,
� = � = 90, � = 120

Resolution (Å) 36.89–1.83 (1.90–1.83) 50–3.60 (4.25–4.16)
Measured reflections 3977702 365747
Unique reflections 48844 25957
Completeness (%) 99 (92) 96 (90)
Redundancy 80 (13) 27 (28)
Anomalous completeness (%) 92.5 (83.0) N/A
No. of subunits in asymmetric unit 1 5 or 6
Phasing power 0.311 (0.069) N/A
Figure of merit (centric/acentric) 0.08586/0.21770 N/A
Rp.i.m.† (%) 0.80 (23.0) N/A
Rmerge‡ (%) 8.5 (88.4) 9.6 (65.9)
Rmeas§ (%) N/A 9.8 (67.0)
hI/�(I)i 40.2 (1.9) 31.7 (6.5)

† Rp.i.m. =
P

hkl ½1=ðN � 1Þ�1=2 P
i jIiðhklÞ � hIðhklÞij=Phkl

P
i IiðhklÞ, where Ii(hkl) and

hI(hkl)i are the ith and the mean measurements of the intensity of reflection hkl and N is
the redundancy. ‡ Rmerge =

P
hkl

P
i jIiðhklÞ � hIðhklÞij=Phkl

P
i IiðhklÞ. § Rmeas =P

hkl ½N=ðN � 1Þ�1=2 P
i jIiðhklÞ � hIðhklÞij=Phkl

P
i IiðhklÞ.
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ABSTRACT 
Eukaryotic Mrs2 transporters are distantly related to the major bacterial Mg2+ 

transporter CorA and the eukaryotic Alr1, located in the plasma membranes of 

lower eukaryotes. All Mrs2 proteins are functional pentamers composed of large 

soluble N-terminal domains and 2 adjacent transmembrane helices, followed by 

a variable C-terminal region. Here we report a functional and structural analysis 

of the N-terminal domain of Mrs2 from the inner mitochondrial membrane of 

Saccharomyces cerevisiae by crystallography, genetics, biochemistry and 

fluorescence. By analytical gel filtration and dynamic light scattering, the N-

terminal domain of Mrs2 forms a homopentamer in low-salt solutions. Structural 

analysis showed that the fold of the N-terminal domain bears differences 

compared with the prokaryotic CorA counterpart, and suggested residues that 

form hydrophobic gates and the putative magnesium sensing site. Functional 

analysis of the candidate gating mutants in isolated mitochondria confirmed the 

involvement of the identified amino acids in gating. We further functionally 

examined the exceptionally long C-terminus of S. cerevisiae Mrs2, in particular, a 

positively charged stretch in the C-terminal region concerning its function in the 

transporter regulation. 

 

Keywords: amino-terminal domain / crystallography / eukaryotic magnesium 

transporter / hydrophobic gates / Mrs2  
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INTRODUCTION 

Magnesium ion, Mg2+, is essential for many biochemical processes and remains 

the only major biological ion whose mechanism of transport is still not fully 

understood. It is present at 15–25 mM in prokaryotic and mammalian cells (Ikari 

et al, 2008; Lunin et al, 2006; Mobasheri et al, 1998). Mg2 mediates the 

stabilization of macromolecules during binding to nucleotides and is a cofactor for 

many enzymes. By regulating the activities of ion channels and transporters, 

Mg2+ also influences cell volume and signalling processes (Ikari et al, 2008; 

Mobasheri et al, 1998). In the cytosol, the majority of Mg2+ is bound to 

adenosine-5'-triphosphate (ATP) and other phosphonucleotides. In all cells, Mg2+ 

is an essential structural element for ribosomes and membranes. In prokaryotes, 

Mg2+ is an important regulatory signal that is essential for virulence (Eshaghi et 

al, 2006; Garcia Vescovi et al, 1996; Lunin et al, 2006; Papp-Wallace et al, 

2008). 

 

Balancing Mg2+ levels is vital for normal cellular function. Homeostasis is 

maintained by a delicate balance of transport activities across the plasma and 

organelle membranes. The CorA family mediates Mg2+ uptake in most 

prokaryotes and is the most extensively studied set of magnesium transporters. 3 

crystal structures (at 2.9, 3.7, and 3.9 Å resolution) (Eshaghi et al, 2006; Lunin et 

al, 2006; Payandeh & Pai, 2006) of Thermatoga maritima CorA (Tm-CorA) and 

the structure of the soluble cytoplasmic domain of the Vibrio parahemolyticus 

zinc transporter ZntB (Vp-ZntB) (at 1.9 Å resolution) have revealed 

homopentameric assemblies (Tan et al, 2009). Full-length Tm-CorA has 2 

transmembrane α-helices (TM1, TM2) per monomer and a large intracellular N-

terminal moiety. 

 

Conversely, the structures of the cytoplasmic domain of Tm-CorA (1.85 Å) 

(Lunin et al, 2006) and Archaeoglobus fulgidus CorA (Af-CorA) (2.9 Å) show 

dimeric arrangement of the CorA subunits, which might be attributed to crystal 

packing effects (Payandeh & Pai, 2006). 
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Mrs2 transporters constitute the major mitochondrial Mg2+ uptake system 

in yeast, plants, and mammals (Kolisek et al, 2003; Li et al, 2001; Schock et al, 

2000; Zsurka et al, 2001) and are essential for mitochondrial biogenesis (Walker 

et al, 1982). Human mitochondrial Mrs2 promotes multidrug resistance in gastric 

cancer cells by regulating p27, cyclin D1 expression, and cytochrome C release 

(Tiao et al, 2009). Mrs2 transporters are distantly related to the major bacterial 

Mg2+ transport system CorA. The amino acid sequence identity and similarity 

between the N-terminal domains of Tm-CorA and Saccharomyces cerevisiae 

Mrs2 are 11% and 40%, respectively, compared with 15% and 31%, respectively, 

for the entire sequences. 

 

Mrs2 transporters are also related to the Alr1 subfamily, which is restricted 

to lower eukaryotes where it forms the principal Mg2+ uptake system in the 

plasma membrane. Alr1 is essential for the growth of yeast cells, except if 

cultured in media with non-physiological, high Mg2+ concentrations (Kolisek et al, 

2003). Some of these transporters can partially functionally replace each other, 

which strongly suggests that they are homologues (Bui et al, 1999; Kehres & 

Maguire, 2002; Li et al, 2001; Zsurka et al, 2001). 

 

The CorA, Mrs2, and Alr1 families harbour 2 adjacent transmembrane 

helices (TM1, TM2) at the C-terminus and a highly conserved G-M-N motif at the 

end of TM1. The N-terminus of Tm-CorA has a large cytoplasmic domain that 

forms a funnel in the functional pentamer. Two divalent cation sensing (DCS) 

sites that regulate the opening and closing of the transporter have been mapped 

to the N-terminal domain of CorA (Eshaghi et al, 2006; Lunin et al, 2006; 

Payandeh et al, 2008; Payandeh & Pai, 2006). 

 

Despite the low sequence identity between members of the CorA-Mrs2-

Alr1 superfamily, the structures of their N-terminal domains and transmembrane 

regions are partially conserved. In contrast, based on their sequences, the C-
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terminal regions that follow TM2 are expected to differ significantly. Although the 

sequences of the CorA-Mrs2-Alr1 superfamily are extremely divergent, they 

appear to exploit the membrane potential in driving Mg2+ uptake (Froschauer et 

al, 2004; Kolisek et al, 2003).  

 

The cation selectivity of CorA and Mrs2 is attributed to their signature 

motifs (CorA: YGMNFxxMPEL, Mrs2: xGMNxxxFIEE) (Kehres et al, 1998; 

Worlock & Smith, 2002), as also suggested for the ZntB zinc transporter family 

(GxxG[I,V]NxGGxP) (Tan et al, 2009). The motif lies at the end of the TM1 α-

helix at the outer surface of the membrane, and it tends to be disordered in 

crystal structures (Lunin et al, 2006; Payandeh & Pai, 2006). It has been recently 

reported by Yu Xia et al. that Tm-CorA preferentially transports Co2+ and not 

Mg2+ (Xia et al, 2011). 

 

Mg2+ gating mechanisms through the transmembrane region were 

proposed based on Tm-CorA structures. Together with the successive negatively 

charged loop, the G-M-N motif has been implicated in the binding and 

dehydration of magnesium hexaaqua ions (Eshaghi et al, 2006; Lunin et al, 2006; 

Payandeh & Pai, 2006). Residue Asn314 of the G-M-N motif at the external 

entrance to the pore and a pair of hydrophobic rings that are formed by Met291 

and Leu294 were hypothesized to be involved the gating of the channel (Lunin et 

al, 2006). 

 

Mechanisms by which the conductance of the bacterial transporter Tm-

CorA is regulated has been proposed (Eshaghi et al, 2006; Lunin et al, 2006; 

Payandeh et al, 2008; Payandeh & Pai, 2006). In the absence of sufficient 

intracellular Mg2+ levels, Mg2+ ions that are bound between monomers are 

released, and the N-terminal domains of the protomers move as a rigid body, 

whereas the willow helices (2 antiparallel helices at the N-terminus) rearrange 

with respect to each other and relative to the stalk helix (the pore-forming helix). 

These actions create a torque along the stalk helix. The torque propagates to the 
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hydrophobic gates (Met291 and Leu294) and possibly activates the periplasmic 

gate residue Asn314 through interaction of the cytoplasmic N-terminus (acidic 

residues) and the positively charged C-terminal basic sphincter. This activation 

impinges on the Asn314 residue through movement of TM2 and the MPEL motif 

(in the loop that connects TM1 and TM2), allowing Mg2+ ion to flow through 

(Lunin et al, 2006; Payandeh et al, 2008). 

 

Many genes that encode proteins that mediate Mg2+ transport have been 

reported in plants, bacteria, and animals (Gardner, 2003). Nevertheless, there 

are limited data on their biological and physiological functions, structures, and 

capabilities and mechanisms of Mg2+ transport. The low sequence homology 

between eukaryotic Mrs2 transporters and the prokaryotic magnesium 

transporter Tm-CorA, or any other protein with a known structure, renders it 

difficult to predict structure and function of Mrs2 accurately.  

 

Here, we report the crystal structure of the N-terminal domain of the yeast 

(Saccharomyces cerevisiae) mitochondrial magnesium transporter Mrs2 at 1.28 

Å resolution and characterize selected residues that are critical for magnesium 

transport. This structure can be used to study regulatory metal sites, 

conformational changes during regulation and transport, and the residues that 

mediate the formation of hydrophobic gates and to evaluate the hallmarks of this 

transporter family. 

 

RESULTS AND DISCUSSION 

Ionic strength modulates oligomeric state of Mrs248-308  

Based on our study (Khan et al, 2010), we designed a stable Mrs2 construct (48–

308), denoted Mrs248-308 (this construct was termed Mrs216-276 in our previous 

publication, wherein the mitochondrial targeting sequence was not included in the 

numbering), which included the entire soluble, N-terminal matrix domain of Mrs2. 

The optimal buffers conditions were found by using Thermofluor-based essay 
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(Supplementary Figure 5). By analytical size exclusion chromatography, Mrs248-

308 behaves as a monomer in high-ionic-strength buffers and as a homopentamer 

in low-ionic-strength buffers (Supplementary Figure 1). The circular dichroism 

(CD) spectrum of Mrs248-308 showed minima at 208 and 219 nm, typical for a 

protein that is rich in α-helices (Supplementary Figure 2). 

 

Dynamic light scattering (DLS) was used to assess the monodispersity of 

the protein in solution: a monomodal distribution with a polydispersity of 5% was 

observed, and the gyration radius was estimated to be 4.2 nm in high-ionic-

strength buffers. Under low-ionic-strength conditions, the protein solution 

exhibited polydispersity of about 25% and a radius of gyration of 14 nm, which 

are consistent with the analytical size exclusion chromatography findings. These 

data suggest that our construct is autonomously folded into the native 

conformation in solution and that the protein solution is monomeric at high ionic 

strengths and pentameric at low ionic strengths. 

 

Overall structure of Mrs248-308 versus those of prokaryotic 

magnesium and zinc transporters 

A monomer of Mrs248-308 was crystallized in the orthorhombic space group 

P212121, and its structure was solved by experimental phasing, exploiting the 

anomalous signals of sulphur (Khan et al, 2010). The overall organizations of 

prokaryotic (Tm-CorA) and eukaryotic (Mrs248-308) magnesium transporters are 

thus similar (Figure 1C and D). Each subunit can be divided into an N-terminal 

alpha/beta domain that is followed by an alpha domain. Whereas the former is a 

compact alpha-beta-alpha sandwich, the latter contains a triple coiled-coil, the 

end of which enters the membrane with a TM helix (Figure 1C). 

 

Although the coiled-coil domains in Tm-CorA and Mrs248-308 are nearly 

identical, the N-terminal domains differ (Figure 1C and D). The central beta sheet 

is formed by 7 strands in Tm-CorA versus 6 strands in Mrs248-308. Whereas the 

last 4 strands (termed C1–C4 in the Figure 1D) are topologically identical in both 
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proteins and form a series of 3 beta hairpins, the first 2 beta strands differ 

topologically. The alpha helix that follows the N2 strand, and the entire N3 strand 

are missing in Mrs248-308, rendering the eukaryotic protein smaller than its 

prokaryotic counterpart. Although this disparity appears to have arisen due to 

deletion during molecular evolution, we cannot reject other hypotheses. 

However, it is clear that any structural alignments of these structural moieties will 

be misleading, because Tm-CorA and Mrs2 adopt different folds. 

 

The relatively long α5 and α6 helices, which extend toward the membrane, 

are called ‘willow’ helices in Tm-CorA, “as they hang down like the branches of a 

weeping willow tree” and harbor many glutamic and aspartic acid residues in the 

tip region (Lunin et al, 2006). For Mrs248-308, α5 and α6, corresponding to the 

willow helices of Tm-CorA, contain 3 acidic residues compared with 10 in Tm-

CorA. In Tm-CorA, there is also an extended loop between C2 and C3 that 

protrudes like the willow helices toward the membrane surface. The tip of this 

loop in Tm-CorA has a very high density of aspartic and glutamic acid residues 

(Maguire, 2006). In contrast, the C2 and C3 strands of Mrs248-308 are shorter, and 

the loop that intercalates between them does not protrude toward the willow 

helices or harbor any acidic residues (Figure 1C and D). 

 

To determine the structural neighbours of Mrs248-308, we used the web-

based Dali server (Holm & Sander, 1996), which identified the following 

structures that had Z-scores greater than 9: (i) Thermotoga maritima divalent 

metal ion transporter Tm-CorA (PDB code 2IUB); (ii) Vibrio parahaemolyticus 

RIMD cytoplasmic domain of zinc transporter Vp-ZntB (PDB code 3CK6); (iii) 

Dictyostelium discoideum STAT protein, (PDB code 1UUS); and (iv) Escherichia 

coli Pore-forming toxins (PDB code 2WCD). The latter two hits clearly have 

molecular functions different from Mrs2 and CorA. All of these structures have 

low sequence similarity with S. cerevisiae Mrs2, and only the metal ion 

transporter Tm-CorA was identified in a BLAST search (Altschul et al, 1990) 

against the Mrs2 sequence.  
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Despite the low sequence homology Mrs248-308, Tm-CorA, and Vp-ZntB 

are structurally similar with regard to overall architecture and also perform similar 

functions. Nevertheless, the protomer and pentamer structures cannot be 

superimposed easily, because the relative orientations of the α/β/α and helical 

subdomains, as well as the folds, are different. Mrs248-308 and the soluble domain 

of Tm-CorA (PDB code 2IUB) can be superimposed with an RMSD value of 2.85 

Å (for Cα, 179 of 256 residues aligned, with a sequence identity of 16%) 

(Supplementary Figure 3A). Separately, the subdomains of Mrs248-308, Vp-ZntB 

and Tm-CorA (α/β/α and helical) align with different RMSD values. 

 

The α/β/α subdomains of Mrs248-308 and Tm-CorA can be superimposed 

over the Cα atoms with an RMSD value of 2.96 Å (for Cα, 69 of 117 residues 

aligned, with a sequence identity of 8%) (Supplementary Figure 3C). Similarly, 

the corresponding helical subdomains can be aligned with an RMSD value of 

2.62 Å (for Cα, 112 of 131 residues aligned, with a sequence identity of 13%) 

(Supplementary Figure 3E). 

 

Mrs248-308 and Vp-ZntB (PDB code 3CK6) can be superimposed with an 

RMSD value of 2.61 Å (for Cα, 158 of 237 residues aligned, with a sequence 

identity of 14%) (Supplementary Figure 3B). Conversely, the α/β/α subdomains 

of Mrs248-308 and Vp-ZntB can be superimposed with an RMSD value of 2.75 Å 

(for Cα, 57 of 116 residues aligned, with a sequence identity of 5%) 

(Supplementary Figure 3D), and the helical subdomains can be aligned with an 

RMSD value of 2.22 Å (for Cα, of 110 of 121 residues aligned, with a sequence 

identity of 8%) (Supplementary Figure 3F). These changes in orientation 

between the 2 sub-domains may be due to different levels of funnel opening in 

the 3 different ion transporters. 

 

The soluble domains of Tm-CorA (PDB code 2IUB) and Vp-ZntB (PDB 

code 3CK6) can be superimposed with an RMSD value of 1.89 Å (for Cα, 199 of 
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237 residues aligned, with a sequence identity of 19%). Separately, the soluble 

domains α/β/α aligned with an RMSD of 1.93 Å (for Cα, 92 of 116 residues 

aligned, with a sequence identity of 9%), whereas the helical domain was 

superimposed with an RMSD value of 1.71 Å (for Cα, 112 of 121 residues 

aligned, with a sequence identity of 19%). 

 

These data clearly demonstrate that the prokaryotic proteins Tm-CorA and 

Vp-TntB are structurally more similar to each other than to the eukaryotic protein 

Mrs248-308. Vp-ZntB also contains a mixed 7-stranded beta-sheet that is clearly 

similar to that of Tm-CorA but differs from the 6-stranded sheet of Mrs248-308. 

Moreover, we hypothesize that the structural variability between the 3 proteins is 

related to the different states (open/closed) of the ion channel/transporter, which 

are reflected in the reorientation of the coiled-coil moiety (see below) and 

influenced by cation concentrations. 

 

A structure-based sequence alignment (SBSA) (manually corrected) 

between Mrs248-308 and Tm-CorA together with the analysis of the Mrs2 pentamer 

model identified important residues involved in the formation of hydrophobic 

gates and in propagation of magnesium across the ion conduction pathway in 

Mrs2-type transporters (Figure 1B).  

 

Model of Mrs248-308 funnel 

To generate a model of the pentameric funnel from the monomeric Mrs248-308 

structure, we superimposed Mrs248-308 onto the helical domains of Tm-CorA and 

Vp-ZntB. The maximum diameter of the funnel, based on Tm-CorA, is 106 Å, and 

the residues at the C-terminus of the stalk helix (forming the wall of the funnel) 

clash at the tips (Figure 2C and D). This phenomenon might be attributed to the 

structure of Tm-CorA, which has been reported in a closed conformation, 

whereas monomeric Mrs248-308 is more relaxed and might reflect an open 

conformation of the transporter. 
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In a functional pentamer, each protomer makes contacts with 2 adjacent 

molecules. Our structural analysis of the Mrs248-308 funnel model, based on the 

Tm-CorA structure, shows 5 hydrogen bonding interactions and 1 salt bridge. 

The residues involved in the formation of the salt bridge are Glu295 of one 

protomer and Lys291 of an adjacent protomer. These interacting residues belong 

to the α7 stalk helix of a subunit, the α7 stalk helix of the adjacent subunit, and 

the tip of the α5 and α6 willow helices. 

 

Conversely, the funnel model that is based on Vp-ZntB has a maximum 

diameter of 102 Å and reveals no clash of the C-termini - further evidence that 

the Vp-ZntB is likely in an open conformation. A structural analysis of the funnel 

model of Mrs248-308 shows that the interface between the α7 stalk helix of a 

protomer and the α5 and α6 willow helices of an adjacent protomer, comprises 2 

hydrogen bonds and 1 salt bridge. The residues involved in the formation of the 

salt bridge are Lys221 of a protomer and Glu205 of an adjacent protomer. 

 

In contrast, there are 8 hydrogen bonds and 8 salt bridges in the funnel 

domain of the Vp-ZntB (PDB code 3CK6) transporter and 16 hydrogen bonds 

and 15 salt bridges in Tm-CorA (PDB code 2BBJ). Although the stereochemistry 

of the interface of the Mrs248-308 funnel was not optimized, the presence of 

remarkably fewer hydrogen bonds and salt bridges compared with Tm-CorA and 

Vp-ZntB might explain the higher sensitivity of Mrs248-308 to elevated salt 

concentrations. 

 

An analysis of the electrostatic surface potential of the structure of   

Mrs248-308 showed that the α7 helices, forming the inner wall of the pentameric 

funnel, are lined along their lengths with negatively charged or hydroxyl-bearing 

residues (Figure 2A and B). Such an arrangement exists in other monovalent 

cation (KcsA) and divalent cation (CorA, ZntB) channels and were proposed to 

constitute an electrostatic sink that increases local ion concentrations (Roux & 

MacKinnon, 1999). 
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Putative magnesium-sensing sites in Mrs2 

Two divalent cation binding sites have been identified at the protomer-protomer 

interface in the funnel of Tm-CorA (Eshaghi et al, 2006; Lunin et al, 2006; 

Payandeh et al, 2008; Payandeh & Pai, 2006) - termed “divalent cation sensor” 

(DCS) sites. Whereas the first binds cations directly through the 2 carboxylates of 

Asp89 and Asp253, the second, comprising Glu88, Asp175, Asp253, and 

His257, binds them indirectly by coordinating hydrated metal cations. According 

to a model of the regulation of Tm-CorA, a torque is generated at the bottom of 

the stalk helix (α7) by releasing bound magnesium from magnesium-binding sites 

and propagates toward the hydrophobic gate (Eshaghi et al, 2006; Lunin et al, 

2006; Payandeh et al, 2008; Payandeh & Pai, 2006). 

 

Based on a structural comparison between Tm-CorA and our model of the 

Mrs248-308 funnel, we identified the candidate the amino acid residues that could 

form a DCS site in Mrs2 that corresponds to DSC1 of Tm-CorA: Asp97 from one 

subunit and Glu270 from an adjacent subunit (Figure 2C and D, Figure 4D). By 

sequence alignment of eukaryotic Mrs2 homologues, Asp97 and Glu270 are 

highly conserved throughout the entire family, and equivalent residues exist in 

the prokaryotic CorA family (Figure 1B). In Mrs248-308, Glu270 lies in the N-

terminus of α7, corresponding to Asp253 in Tm-CorA (Figure 4A and C); Asp97 

is located in the α3 helix, corresponding to Asp89 of Tm-CorA (Figure 4A and B). 

In this structural analysis, we could not confidently identify the residues that 

constitute the second DCS site. 

 

In the initial crystallization conditions no magnesium was present, but we 

obtained crystals with 1.5 mM magnesium chloride and 1.5 mM cobalt chloride. 

Native crystals were soaked in the presence of magnesium chloride, cobalt and 

nickel chloride and structurally analyzed. The structures of Mrs248-308 in 

magnesium, cobalt, and nickel-soaked crystals and magnesium and cobalt co-

crystals did not reveal bound metal ions and were essentially identical to the 
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native crystal structure in the absence of exogenous divalent cations. The 

addition of magnesium in the crystal environment did not change the structure of 

the native protein. The absence of cations bound to the monomeric Mrs248-308 is 

in agreement with the notion that the DCSs are composed of ligands from 

adjacent subunits in the pentamer implying that a single subunit cannot bind 

divalent ions with high affinity. 

 

Effect of metal ions on protease susceptibility of pentameric 

Mrs248-308 

Payandeh at al. showed that cations in the protomer interface stabilize Tm-CorA 

but are not required to maintain its pentameric state (Payandeh & Pai, 2006). 

Furthermore, they demonstrated that Tm-CorA becomes resistant to trypsin in a 

divalent cation-dependent manner, wherein the presence of ions renders the 

conformation trypsin-resistant, presumably reflecting the closed state of the 

channel. To determine whether Mrs248-308 undergoes conformational changes in 

function of divalent cations, we performed the protease susceptibility assay in the 

presence and absence of magnesium and cobalt ions. 

 

Prior to this experiment, Mrs248-308 was dialyzed against a low-ionic-

strength buffer to induce the formation of functional pentamers and incubated 

with various concentrations of magnesium, cobalt, EDTA and trypsin. In the 

presence of EDTA, the protein was protected from protease digestion. 

Conversely, only high concentrations of cobalt rendered Mrs248-308 less 

susceptible to trypsin cleavage, whereas the presence of magnesium did not, 

irrespective of incubation time (Fig. 3). The reactions were performed at 4°C and 

37°C for 4 and 15 hours. 

 

These results demonstrate that Mrs2 adopts 2 distinct conformations in a 

magnesium-dependent manner, wherein the closed conformation (in the 

presence of magnesium) appears to be more susceptible to protease cleavage 

compared with the open conformation (in the presence of EDTA). This differential 
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susceptibility compared with Tm-CorA implicates distinct conformations and 

distinct conformational changes in the N-terminal domains of the 2 types of 

transporters. Differences between the folds of the 2 domains might explain the 

varying responses and patterns with regard to protease susceptibility. 

 

Hydrophobic gates in Mrs2 

In Tm-CorA Met291 and Leu294 form the main hydrophobic gate by 

creating a strong energetic barrier to ion permeation (Lunin et al, 2006; Svidova 

et al, 2010). The gate residues in Tm-CorA are positioned at the 

membrane/cytoplasmic interface, with Met291 being cytoplasmic and Leu294 

membrane embedded (Lunin et al, 2006). 

 

Because no 3-dimensional structure of full-length Mrs2 is available, we 

generated the Mrs2 pentamer, including the transmembrane helices, starting 

from the funnel model and extended the sequence in the alignment and in the 

model (by homology modelling) to the C-terminal TM1 and TM2 α-helices. 

Inspection of sequence alignment (Figure 1B) showed that eukaryotic 

magnesium transporters consistently display a three amino acid insertion after 

position corresponding to Met291 in prokaryotic transporters, extending in this 

way the helix α7.  

 

In searching for gating residues in Mrs2 corresponding to Met291 and 

Leu294 in Tm-CorA, we imposed 2 criteria: (i) involvement in formation of a 

constriction in the pore; (ii) mitochondrial matrix location for the first gating 

residue and membrane embedded location for the second position. 

 

By analysis of the pentameric Mrs2 model, the narrowest constriction of 

the pore lay at residue Met309 (Figure 4F), corresponding to the hydrophobic 

gate residue Met291 in Tm-CorA (Figure 4E). By TMpred analysis (Online server 

Prediction of Transmembrane Regions and Orientation 

http://www.ch.embnet.org/software/TMPRED_form.html) of the primary sequence 
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of S. cerevisiae Mrs2, the first transmembrane helix comprises residues Val315 

to Leu336, while Met309 is predicted to be located in the matrix. Further, by 

sequence alignment of members of the eukaryotic Mrs2 family, Met309 is highly 

conserved (Figure 1B), and we named it Gate 1. 

 

The second narrowest opening, which we termed Gate 2, occurred at 

Val315, corresponding to Leu294 in Tm-CorA (Figure 4E and F). TMpred 

analysis predicts Val315 to be in a transmembrane helix. Sequence alignment of 

eukaryotic Mrs2 homologues revealed that Val315 is less conserved than 

Met309, with the bulkier phenylalanine and smaller valine present in some 

sequences (Figure 1B). 

 

Functional analysis of selected mutants 

To validate the function of the candidate residues that were identified in our 

structural analysis to be involved in magnesium sensing and the formation of 

hydrophobic gates, we performed a functional and mutational analysis of these 

residues. Further, we examined the role of positively charged residues at the C-

terminus in transport activity and regulation of Mrs2. 

 

DCS mutants 

According to our structural analysis, Asp89 and Asp253, which form the primary 

cation-sensing site in Tm-CorA, in Mrs2 correspond to Asp97 and Glu270 in 

Mrs2. In Tm-Cor, mutations in the first DCS site alter the transport of Mg2+ by 

Tm-CorA (Payandeh et al, 2008). 

 

To assay the function of Asp97 in the regulation of the transporter, we 

performed site-directed mutagenesis, changing Asp97 to Ala, Phe, and Trp. We 

intentionally did not choose a positively charged mutation, because Payandeh et 

al reported that salt bridge across the first DCS site can partially maintain 

TmCorA in a closed or inactive conformation (Payandeh et al, 2008). The 

resulting mutants expressed in S. cerevisiae, did not exhibit notable growth 
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defects on non-fermentable carbon sources (Figure 5A). Accordingly, no 

significant differences in Mg2+ uptake between wild-type Mrs2 and the mutant 

proteins in isolated mitochondria were observed (Figure 5B).  

 

Based on the high conservation of Asp97 throughout the Mrs2 subfamily, 

the lack of effect is noteworthy and implies that the sensing of magnesium, which 

is exerted by several residues in the two DCS sites cannot be abrogated by a 

mutation of a single residue in Mrs2. Large hydrophobic residues at the Asp97 

location were predicted to disrupt metal binding as well as to perturb domain 

closure or packing within the funnel. The weak effect of bulky amino acid residue 

on growth on non-fermentable carbon sources may be explained by local 

structural rearrangements, allowing for the conformational changes upon 

transporter closure. 

 

Gating mutants 

The candidate Gate 1 and 2 residues (Met309 and Val315) were mutated 

to 3 amino acids with disparate properties with regard to size and charge - the 

small glycine, the negatively charged glutamic acid, and the bulky phenylalanine. 

The effects of these mutations were monitored by growth complementation 

assays and using mag-fura-2 measurements of Mg2+ influx into mitochondria. 

 

Deletion of MRS2 causes a growth defect on non-fermentable carbon 

sources and abolishes Mg2+ influx into mitochondria (Kolisek et al, 2003; 

Wiesenberger et al, 1992). Strain DBY747 mrs2∆ was transformed with the high-

copy number vector YEp351 or with the centromeric plasmid YCp22, harbouring 

the mutated MRS2 variants, and as controls, the wild-type MRS2 and the empty 

vector. In growth tests, all 3 mutations at Met309 location impaired growth on 

non-fermentable carbon sources, indicating that they had a considerable effect 

on magnesium homeostasis in mitochondria. The Met309Gly mutant had the 

most dramatic effect (Figure 6A, B).  
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The greatest decrease in magnesium uptake was observed in the 

Met309Phe variant (Figure 6B), which is attributed to its bulky side chain, 

narrowing the pore at this position. The Met309Gly mutant effected the highest 

degree of dysregulation with regard to the gating of the channel. The exchange 

of Met309 for Gly resulted in a considerably stronger influx compared with the 

wild-type protein and significantly elevated the final steady-state magnesium 

concentrations (Figure 6B). Particularly strong uptake was observed after the 

initial addition of magnesium, and plateau levels were less pronounced 

compared with the wild-type control (Figure 6B). The transporter was able to 

close the ion conduction pathway to a limited extent (Figure 6B), suggesting that 

in the Met309Gly mutant, the pore is wide and cannot close properly due to the 

absence of the glycine side chain. An effect similar to that of Met309Gly mutant 

was observed for Met309Glu, which displayed higher final steady-state 

magnesium levels compared with wild-type (Figure 6B). This effect was most 

likely caused by its charge, in the pentamer forming a negatively charged ring 

that could elicit more robust transport due to increased electrostatic attraction of 

the magnesium ion. 

 

Substitution of Gate 2 residue Val315 to Glu and Phe had no significant 

effects on growth on non-fermentable carbon sources (Figure 7A). Consistent 

with this result, Mg2+ uptake was less affected by mutations compared with Gate 

1 mutants at position 309. Mg2+ uptake by the Glu mutant was comparable with 

that of wild-type Mrs2. The bulky Phe residue was well tolerated and did not 

impair ion conduction to such an extent that led to a substantial reductions in 

magnesium uptake (Figure 7B). This is not surprising, as this residue is found at 

position 315 also in some naturally occurring sequences, suggesting that a 

bulkier residue can be accommodated at this location (Figure 1B). As expected, 

the Val315Gly mutation reduced growth (Figure 7A), which was though less 

pronounced than in the Met309Gly mutant (Figure 6A). Based on the mag-fura-2 

measurements, this effect was caused by greater magnesium uptake due to a 

widening of the channel at this position (Figure 7B). 
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Taken together the above observations confirm the residue Met309 as 

Gate 1, equivalent to Met291 in Tm-CorA, but leave some uncertainty as to 

Val315 residue being Gate 2. The less pronounced constriction together with 

natural amino acid variability at this location may be the basis for good tolerance 

of the mutations. Nevertheless, it needs to be kept in mind that the homology 

models have their limitations, in particular, when it comes to accommodation of 

insertions or deletions. Based on the amino acid sequence alignment (Figure 1B) 

highly conserved Leu313 could be an alternative candidate for Gate 2, although it 

is not positioned inside the pore in the homology model.  

 

Function of the Mrs2 C-terminus 

Tm-CorA has a highly conserved, positively charged sequence at the C-terminus, 

comprising a series of lysine residues, termed the basic sphincter. It lies in the 

cytoplasmic neck at the hydrophobic gate of the pore and was proposed to be 

important for transporter function (Lunin et al, 2006). The basic sphincter was 

proposed to draw negative charges away from the middle of the pore, preventing 

passage of the charged Mg2+ cations (Eshaghi et al, 2006; Lunin et al, 2006; 

Weghuber et al, 2006). The combination of the positive potential field of the ring 

of lysine residues in the basic sphincter and the hydrophobic barrier of the gate 

creates a formidable impediment to the passage of positively charged Mg2+ ions 

in the closed state. In the open state, the negatively charged willow helices pull 

the positive charge of the basic sphincter away from the central axis of the pore, 

allowing the passage of magnesium (Eshaghi et al, 2006; Lunin et al, 2006; 

Payandeh & Pai, 2006). 

 

Members of the Mrs2 subfamily have C-termini that vary in length, nearly 

absent of conserved primary sequence motifs. The only conserved feature is a 

surplus of positively charged residues (Supplementary Table 1). On average, 

20% of residues in the C-terminus of the Mrs2 family have a positive charge, 

which may collectively have the same function as the basic sphincter in Tm-
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CorA. A C-terminal moiety of Mrs2 directly following TM2 contains a segment 

that has characteristics of an amphipathic helix that might function as an internal 

targeting signal that mediates an Nin -Cin topology (Baumann et al, 2002). 

 

Yeast Mrs2 has a 107-amino-acid-long C-terminal sequence and a 

positively charged KRRRK stretch (402–406) that is not conserved in the Mrs2 

family. This positively charged sequence was deleted in a previous study, 

reducing Mg2+ uptake when expressed from a low-copy vector. In contrast, 

overexpression of this mutant nearly restored Mg2+ uptake to wild-type levels 

(Weghuber et al, 2006). To obtain greater insight into the function of the KRRRK 

stretch, we reversed the charge of this sequence by introducing negatively 

charged Glu residues at these positions. The resulting mutant permitted good 

growth on non-fermentable carbon sources, expressed from the centromeric 

plasmid YCp22 or when overexpressed (Figure 8A). Mg2+ uptake capacity was 

moderately increased in this mutant.  

 

To further investigate the function of the C-terminus, we removed the C-

terminal region of Mrs2 after residue Thr376. Notably, truncation of the entire C-

terminus impeded the growth of cells on non-fermentable carbon sources (Figure 

8A), consistent with the strong reduction in Mg2+ transport, based on mag-fura-2 

measurements in isolated mitochondria (Figure 8B). 

 

Taken together, the small nonconserved positively charged stretch 

(KRRRK, 402-406) does not appear to be critical for Mrs2 function. These 

findings imply that the introduction of a highly negatively charged cluster that 

encloses the ion conduction pathway generates a more active transporter without 

impairing its regulation (Figure 8B). Conversely, complete truncation of the C-

terminus (deletion of 94 residues at the C-terminus), impairs transport, 

suggesting that the electrostatic potential that results from the overall surplus of 

positively charged residues in the C-terminus of Mrs2 has a similar function as 

the basic sphincter in Tm-CorA.  
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Conclusions 

This study provides the first molecular view of the N-terminal moiety of a 

eukaryotic magnesium transporter, Mrs2 from S. cerevisiae. Together with 

structure-based mutagenesis and functional analysis in vivo, the study provides 

insight into gating and regulation of Mrs2. The study identified candidate residues 

implicated in divalent cation binding, residues involved in formation of the 

hydrophobic gate, and showed that the entire C-terminal region acts as the basic 

sphincter. Our observations suggest a higher degree of regulation of the Mrs2 

transporter compared with CorA; ie, the high inside negative membrane potential 

of mitochondria attracts the positively charged Mg2+ ion and requires fine and 

stringent control of transport at more than one site of the ion conduction pathway 

to ensure normal mitochondrial function. 

 
 
MATERIALS AND METHODS 

Preparation of Protein 

Details on cloning and purification were reported earlier (Khan et al, 2010). The 

mitochondrial matrix domain of Saccharomyces cerevisiae was cloned from 

genomic DNA into pETM-11 vector (EMBL Hamburg) with a tobacco etch virus 

(TEV) cleavable N-terminal His6-tag. The recombinant protein was over 

expressed in BL-21 star (DE3) at 21 °C, in the presence of 0.025 mg/ml of 

kanamycin and induced by 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG). 

Cells were sonicated in a suitable buffer. The supernatant after centrifugation 

was applied onto a 5 ml Ni–NTA agarose column (Qiagen). The N-terminal His6-

tag was cleaved using TEV. After the TEV cleavage, the protein was reapplied 

on a Ni-NTA column, followed by Resource Q column, and HiLoad 26/60 

Superdex 200 (GE Healthcare) size exclusion chromatography. 

 

Protein purity and monodispersity controls 

The purity of the protein solution used for the crystallization experiments was 

evaluated by SDS-PAGE analysis and showed a single band of apparent 
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molecular weight of about 30 kDa. Dynamic light scattering (DLS) was used to 

assess the monodispersity of the protein solution: a monomodal distribution with 

a polydispersity of 5% was observed and the gyration radius was estimated to be 

4.2 nm, suggesting that the protein solution was homogenous and monomeric. 

Circular dichroism (CD) spectroscopy in the far ultraviolet wavelength range 

showed that the protein is rich in alpha helical content.  

 

Analytical gel filtration chromatography 

Analytical gel filtration chromatography on Mrs248-308 was performed at 4 °C, 

using the construct eluted as a monomer from Superdex 200 10/300 column 

(Amersham Biosciences), after dialyzing the protein against low ionic salt and run 

on an analytical gel filtration 200 10/300 column in 15 mM Tris-Hcl (pH 8.0), 

15mM NaCl. The protein eluted as a pentamer. 

 

Crystallization 

Details on crystallization conditions were reported earlier (Khan et al, 2010). 

Initial crystallization screening conditions obtained from the sparse matrix screen 

from MembFac kits and Hampton Research were optimized by hanging drop at 

22 °C. Magnesium and cobalt-soaked crystals were obtained by soaking the 

native crystal with 1-5 mM magnesium chloride and 5 mM cobalt chloride in the 

crystallization drops. Co-crystals with magnesium or cobalt were grown by vapor 

diffusion at 22 °C in a solution containing 2.8 mg/ml protein, 22% v/v ethylene 

glycol 56 mM Na/K phosphate pH 6.3, 1.5 mM magnesium chloride, or cobalt 

chloride. Crystals were flash-frozen in a solution containing 30% v/v ethylene 

glycol 56 mM Na/K phosphate pH 6.3 and mounted on loops at 100 K prior to 

data collection.  

 

 

Data collection, structure solution and refinement 

Mrs248-308 X-ray diffraction data sets were collected at 100 K in a cold nitrogen 

stream using various beamlines at ESRF or Microstar rotating anode at 1.54 Å. 
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The crystals of Mrs248-308 diffracted to 1.83 Å resolution on an in-house source 

and to 1.28 Å at ESRF. Detail of the data collection, statistics and processing 

were reported earlier (Khan et al, 2010). Crystallographic data collected in-house 

were processed (integrated and scaled) with the Proteum2 software suite (Bruker 

AXS Inc.), while the synchrotron data sets were processed using XDS (Kabsch, 

1988). The structure of Mrs248-308 was solved, using a highly redundant data set 

collected on an in-house source by the single-wavelength anomalous dispersion 

method (SAD) exploiting the Mrs2 native sulphur (S) atoms for phasing using 

SHELXD (Uson & Sheldrick, 1999). After finding the S atoms, heavy atom 

refinement and density modification were performed using autoSHARP (Vonrhein 

et al, 2007). The electron density map obtained from autoSHARP was traced by 

ARP/wARP (Joosten et al, 2008; Morris et al, 2003), which fitted 243 out of 261 

amino acid residues in three different chains with Rwork/Rfree = 0.21/0.30. The 

structure refinement yielded final Rwork and Rfree values of 0.193 and 0.243, 

respectively. This model contains 258 amino-acid residues and 432 water 

molecules. Two complete data sets at 1.42 Å and 1.28 Å were collected at ESRF 

ID14-1, processed individually using XDS. The data sets were then scaled 

together using SCALA. The structure from S-SAD data was further refined 

against the merged 1.28 Å data sets using REFMAC5 and phenix. The final 

model contains 261 amino acid and 392 water and five ethylene glycol molecules 

with a Rwork and Rfree of 0.169 and 0.204 respectively. Details on the refinement 

statistics are shown in Table 1. 
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Miscellaneous 

The SBSA were made by SHEBA (Structural Homology by Environment-Based 

Alignment) (Jung & Lee, 2000). For the SBSA, the structures Mrs248-308 and Tm-

CorA were first aligned by SHEBA. The two aligned sequences were then 

aligned with randomly selected sequences of ten eukaryotic and ten prokaryotic 

magnesium channels using the profile alignment features of ClustalX2 (Larkin et 

al, 2007).  

 
Manual adjustments were applied to further improve alignments. 

Sequence identity and conservation were determined using the Lalign web-

server (Pearson, 1991) and ESPript (Gouet et al, 2003), respectively. Protein 

Homology/analogY Recognition Engine (phyre) 

(http://www.sbg.bio.ic.ac.uk/~phyre) was used for homology modeling of the 

transmembrane portion of Mrs2 (Kelley & Sternberg, 2009).  

 

Protease susceptibility assay 

For 50 ml reaction volumes, stock solutions were prepared to obtain the final 

concentration desired upon dilution: 39 ml of protein (2.5 mg/ml), 1µl of trypsin 

(10 mg/ml; Sigma), and 10µl of 0-100 mM of metal solution. Reaction solutions 

were mixed and equilibrated at 4°C for 20 min. Trypsin was then added, and 

reactions were incubated at 4° or 37°C for the desired times. After adding 50 ml 

of SDS–PAGE sample buffer, samples were boiled and run immediately on 15% 

SDS–PAGE gels. In order to rule out the possibility of trypsin inhibition, controls 

were performed on the test protein bovine serum albumin (BSA) over the full 

range of conditions. 

 

Yeast strains, growth media and genetic procedures  

S. cerevisiae strain DBY747 and the isogenic deletion strain mrs2∆ have been 

described previously (Bui et al, 1999; Wiesenberger et al, 1992). Yeast cells 

were grown in YPD (1% yeast extract, 2% peptone, 2% glucose) to stationary 

phase. For growth tests on solid media, yeast cells were grown in YPD over 
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night, washed with dH2O and spotted in ten-fold dilutions on YPD or YPG (1% 

yeast extract, 2% peptone, 3% glycerol) and incubated at 28°C for 2 (YPD) or 6 

days (YPG).  

 

Plasmid constructs 

The plasmid Yep351-MRS2-HA (Bui 1999) was used as the template in overlap 

extension PCR. For mutagenesis of Met309, Val315, and the putative sensing 

site Asp following mutagenic forward and reverse primers were used (changed 

nucleotides are in bold):  

 

 
MRS2 M309E fw: 5’-CGCAAATAGGAATTCCTTAGAGTTGTTGGAGTTGAAAGTTACC-3’ 
MRS2 M309E rev: 5’-GGTAACTTTCAACTCCAACAACTCTAAGGAATTCCTATTTGCG-3’ 
MRS2 M309F fw: 5’-CGCAAATAGGAATTCCTTATTCTTGTTGGAGTTGAAAGTTACC-3’ 
MRS2 M309F rev: 5’-GGTAACTTTCAACTCCAACAAGAATAAGGAATTCCTATTTGCG-3’ 
MRS2 M309G fw: 5’-CGCAAATAGGAATTCCTTAGGATTGTTGGAGTTGAAAGTTACC-3’ 
MRS2 M309Grev: 5’-GGTAACTTTCAACTCCAACAATCCTAAGGAATTCCTATTTGCG-3’ 
 
 
MRS2 V315E fw:  
5’-CGCAAATAGGAATTCCTTAATGTTGTTGGAGAGGAAAGTTACCATCTACACGTTGGG-3’ 
MRS2 V315E rev:  
5’-CCCAACGTGTAGATGGTAACTTTCCTCTCCAACAACATTAAGGAATTCCTATTTGCG-3’ 
MRS2 V315F fw:  
5’-CGCAAATAGGAATTCCTTAATGTTGTTGGATTCGAAAGTTACCATCTACACGTTGGG-3’ 
MRS2 V315F rev:  
5’-CCCAACGTGTAGATGGTAACTTTCGAATCCAACAACATTAAGGAATTCCTATTTGCG-3’ 
MRS2 V315G fw:  
5’-CGCAAATAGGAATTCCTTAATGTTGTTGGAGGAGAAAGTTACCATCTACACGTTGGG-3’ 
MRS2 V315G rev:  
5’-CCCAACGTGTAGATGGTAACTTTCTCCTCCAACAACATTAAGGAATTCCTATTTGCG-3’ 

 
MRS2 D97A fw: 5’-CATTCCCTTTTCCCGAGAGCGCTGAGGAAAATAGATAACTCC-3’ 
MRS2 D79A rev: 5’- GGAGTTATCTATTTTCCTCAGCGCTCTCGGGAAAAGGGAATG-3’ 
MRS2 D97F fw: 5’-CATTCCCTTTTCCCGAGATTTCTGAGGAAAATAGATAACTCC-3’ 
MRS2 D97F rev: 5’-GGAGTTATCTATTTTCCTCAGAAATCTCGGGAAAAGGGAATG-3’ 
MRS2 D97 Wfw: 5’-CATTCCCTTTTCCCGAGATGGCTGAGGAAAATAGATAACTCC-3’ 
MRS2 D97 Wrev: 5’-GGAGTTATCTATTTTCCTCAGCCATCTCGGGAAAAGGGAATG-3’ 

 

The above mentioned mutagenic primers were used in combination with 

the forward primer MRS2Mcsfw: 5’-CGATTAAGTTGGGTAACGCCAGGG-3’ and 
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the reverse primer MRS2Mcsrev: 5’-GCACGACAGGTTTCCCGACTGGAAAGC-

3. 

 

Verification of positive clones was performed by restriction analysis of the 

introduced EcoRI (Met309 and Val315) or AvaI (Asp97) sites (underlined). All 

restriction sites were introduced by silent mutations. No additional mutations 

were found by sequencing of the complete ORF. 

 

PCR fragments were digested with XbaI and SmaI and cloned in the 

vector Yep351-MRS2-HA and YCp22-MRS2-HA digested with the same enzyme 

combination. To create the C-terminal truncation of MRS2, the primer 

MRS2Mcsfw and the reverse primer MRS2 CutCterm rev: 

GCGCGCGTCGACCGGTCATCTTTGTCAC were used. The XbaI/SalI digested 

PCR fragment was cloned in vector Yep351 and YCp22. For the substitution of 

the positive amino acid stretch by negatively charged amino acid residues in the 

KRRRK/E mutant the mutagenic primers MRS2 KRRRK/E fw: 5’- 

GCGTCTATTGCCCTGACAAATAAACTAGAAGAGGAAGAGGAATGGTGGAAG

TCAACCAAGCAGCGG-3’ and MRS2 KRRRK/E rev: 5’-

CCGCTGCTTGGTTGACTTCCACCATTCCTCTTCCTCTTCTAGTTTATTTGTCA

GGGCAATAGACGC-3’ were used with the above mentioned primers in overlap 

extension PCR. Positive clones were verified by the introduced HincII restriction 

site (underlined). 

 
Isolation of mitochondria and measurement of [Mg2+]m by 
spectrofluorimetry 
 

Isolation of mitochondria and the ratiometric determination of intramitochondrial 

Mg2+ concentrations ([Mg2+]m) dependent on various external concentrations 

([Mg2+]e) were performed as reported previously (Kolisek et al, 2003). 
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FIGURE LEGENDS 
 

Figure 1 Structure-based sequence alignment of Mrs248-308 and its closest 

structural homologue Tm-CorA. (A) A schematic view of the domain structure 

of Mrs2 (B) Structure-based sequence alignment of Mrs248-308 and Tm-CorA 

(PDB code 2IUB). The first two sequences belonging to the structures of Mrs248-

308 and Tm-CorA are followed by ten sequences of eukaryotic Mrs2 and ten 

sequences of prokaryotic CorA transporters from different species. Identical 

residues between Mrs2 and Tm-CorA transporters are in red. The gaps due to 

residues omitted from the sequence alignment are represented by two solid black 

lines. The sequences of the two phyla are separated by horizontal black solid 

line. The sequence identity between the prokaryotic species used in the 

alignment is about 53% while between eukaryotic species is about 52%. The 

conserved signature sequence GMN is boxed. Residues of the putative 

magnesium binding site in eukaryotes, i.e. Asp97 and Glu270, are boxed and are 

denoted by + and × symbols. The prokaryotic magnesium binding site formed by 

Asp89 and Asp253 is boxed and denoted by = and # symbols in the sequence 

alignment. The residue involved in the formation of an Asp ring is boxed and 

represented by * symbol. The residues involved in the hydrophobic gate 

formation, i.e. Met309, Val315 in case of Mrs2 transporter and Met291, Leu294 

in case of Tm-CorA transporter are boxed and are denoted by G1 and G2 in the 

sequence alignment (representing Gate 1 and Gate 2), respectively. The 

secondary structure derived from Mrs248-308 is shown above the sequence. The 

residues embedded in the first transmembarne (TM1) are represented by black 

solid (C) The structures of the soluble moiety of Tm-CorA and Mrs2 contain a C-

terminal triple coiled-coil (magenta), which continues into the membrane (not 

shown), and an N-terminal alpha/beta/alpha domain (green). (D) The N-terminal 

domains of Tm-CorA and Mrs248-308 are different. While the last four beta strands 

(C1-C4, yellow) are topologically identical, there are three N-terminal beta 

strands in Tm-CorA and two in Mrs2 (N1 and N2, magenta) and three in Tm-
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CorA (N1-N3, magenta). The helix, which is intercalated between the second and 

the third strand, of Tm-CorA is missing in Mrs248-308. 

 

Figure 2 Structural features of Mrs248-308 and the proposed funnel model. (A) 

Mrs248-308 is represented as ribbon and the side chains of the negatively charged 

or hydroxyl bearing residues of helix α7, making the inner side of the pore, are 

represented as stick. (B) Electrostatic surface potential analysis of Mrs2, 

generated by APBS. Views are from the helix forming the inner wall of the funnel 

(red, negatively charged; blue, positively charged; white, uncharged). The red 

arrow shows the gradual increase of negative charge from top to bottom (C) Side 

view of the pentamer funnel model of the inner soluble domain of Mrs2 based on 

Tm-CorA from Thermotoga maritima. (D) Bottom view of the pentamer funnel 

model, highlighting the putative magnesium binding site (red). All structural 

figures were created with Pymol (http://www.pymol.org/). 

 

Figure 3 Protease susceptibility assay. Trypsin susceptibility of Mrs248-308 after 

4 h (right) and 15 h (left). Reactions were performed as described in 

Experimental Procedures. Control samples (C) for the different experimental 

conditions and the molecular weight ladder (S) are shown. The different tested 

conditions in the protease susceptibility assay are: (1) 20 mM EDTA, (2) 5 mM 

EDTA, (3) 5 mM Mg2+ (or 5 mM Co2+), (4) 20 mM Mg2+ (or 20 mM Co2+). 

 

Figure 4 Putative magnesium binding site in Mrs248-308 and the hydrophobic 

gate residues in Mrs2 and Tm-CorA. (A) Superposition of Mrs248-308 (blue) and 

Tm-CorA (cyan) soluble domains showing the magnesium binding site of Tm-

CorA and the putative magnesium binding site of Mrs248-308. The colored boxes 

(panels B and C) show the residues involved in magnesium sensing. (B) The 

magnesium binding residue Asp89 of Tm-CorA and the corresponding putative 

magnesium binding residue Asp97 of Mrs248-308. (C) The magnesium binding 

residue Asp253 of Tm-CorA and the corresponding putative magnesium binding 

residue Glu270 of Mrs248-308. (D) Putative magnesium binding pocket featuring 
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Asp97 from one monomer (blue) and Glu270 from an adjacent subunit (cyan) in 

a proposed functional funnel model. (E) Top view of CorA (PDB code 2IUB) 

showing the hydrophobic gate residues Met291 and Leu294 (red). (F) Top view 

of the model of Mrs2 transporter showing the putative hydrophobic Gate 1 

residues Met309 and Gate 2 residues Val315 (red). 

 

Figure 5 Mutation of Asp97 of a putative Mg2+ binding site in Mrs2 does not 

influence the regulation of the transporter. (A) Growth phenotypes of 

Saccharomyces cerevisiae strain DBY747 mrs2∆ expressing MRS2 variants 

harbouring mutations in the D97 site from high-copy number vector YEp351 or 

low copy vector YCp22. Serial dilutions of yeast cultures were spotted on 

fermentable (YPD) or non-fermentable (YPG) plates and incubated at 28°C for 3 

or 6 days, respectively. (B) [Mg2+]e-dependent changes in [Mg2+]m in DBY 747 

mrs2∆ mitochondria expressing MRS2 or the mutant variants were determined. 

Representative curve traces of four individual measurements are shown. 

 

Figure 6 Mutations in the hydrophobic Gate 1 (M309) of Mrs2 impairs 

growth on non-fermentable carbon sources and alters the transport activity 

of the channel. (A) Growth phenotypes of Saccharomyces cerevisiae strain 

DBY747 mrs2∆ expressing wild-type MRS2 and the corresponding MRS2 mutant 

variants from high-copy number vector YEp351 or low copy vector YCp22. Serial 

dilutions of the different strains were spotted on fermentable (YPD) and non-

fermentable (YPG) substrates and grown for three or six days, respectively. (B) 

[Mg2+]e-dependent changes in [Mg2+]m in mitochondria of mrs2∆ cells, and cells 

expressing WT MRS2 or the mutant variants. Isolated mitochondria were loaded 

with the Mg2+-sensitive dye mag-fura-2 and changes in the intramitochondrial 

free Mg2+ concentration upon addition of Mg2+ to the nominally Mg2+-free buffer, 

as indicated in the figure, were determined. Representative recordings of four 

individual measurements are shown.  
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Figure 7 Characterization of mutants in the hydrophobic gate 2 of Mrs2. (A) 

Serial dilutions of DBY747 WT and DBY747 mrs2∆ cells transformed with the 

vectors Yep351 and YCp22 expressing MRS2 or different mutant variants for 

V315 were spotted on fermentable (YPD) or non-fermentable (YPG) plates and 

incubated at 28°C for 3 or 6 days, respectively. (B) [Mg2+]e-dependent changes in 

[Mg2+]m in mitochondria of DBY 747 mrs2∆ cells expressing WT MRS2 or mutant 

variants of V315. Representative curve traces of three individual measurements 

are shown. 

 

Figure 8 Characterization of the Mrs2 C-terminus. (A) Phenotypes associated 

with charge reversion of the KRRRK stretch and truncation of the C-terminus 

after Thr376. Serial dilutions of yeast cultures were spotted on fermentable 

(YPD) or non-fermentable (YPG) plates and incubated at 28°C for 3 or 6 days, 

respectively. (B) [Mg2+]e-dependent changes in [Mg2+]m in DBY 747 mrs2∆ 

mitochondria expressing the KRRRK/E mutant or the MRS2 variant with a C-

terminal truncation. Representative curve traces of four individual measurements 

are shown. 
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Figure 1 Structure-based sequence alignment of Mrs248-308 and its closest 
structural homologue Tm-CorA. 
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Figure 2 Structural features and proposed funnel model. 
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Figure 3 Protease susceptibility assay. 
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Figure 4 Magnesium binding site in Mrs248-308 and hydrophobic gate residues in 
Mrs2 and Tm-CorA. 
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Figure 5 Mutation of Asp97 in putative Mg2+ binding site in Mrs2. 
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Figure 6 Mutations in the hydrophobic Gate 1 (Met309) of Mrs2. 
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Figure 7 Characterization of mutants in the hydrophobic Gate 2 of Mrs2. 
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Figure 8: Characterization of the Mrs2 C-terminus. 
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TABLE 1. 

Data collection and refinement statistics 
 

 Data set 1 Data set 2 
DATA COLLECTION   

Source Home source ID14-1 (ESRF) 
Wavelength (Å) 1.541 0.933 
Resolution (Å) 36.89–1.83 (1.90–1.83)a 50.0-1.28 (1.35 - 1.28) 
Space group P212121 P212121 
Unit cell (Å) a = 54.66, b = 61.70, c = 85.30 a = 54.88 = 61.88, c = 85.45 

 
Molecules / a.u. 1 1 

Unique reflections 48844 69621 (4235) 
Completeness (%) 99 (92) 92.1 (79.0) 

Rmeas
b  0.069 (1.172) 

Rpim
c 0.80 (23.0)  

Ranom 0.0316  
Multiplicity 80 (13) 12.0 (6.2) 

I/sig(I) 40.2 (1.9) 19.9 (1.83) 
   

PHASING   
No. of sites 11  

Phasing powerd 0.311 (0.069)  
Figure of merit 0.841 

 
 

REFINEMENT   
Rcryst

e/ Rfree
f 0.193/0.244 0.169/0.204 

No. Reflections used for 
Rfree 

1289 7312 

R.m.s.d. bonds (Å) 0.0124 0.004 
R.m.s.d. angles (º) 1.33 0.91 

B protein (Å2) 29.6 15.1 
 
a Values in parentheses are for the highest resolution shell. 
b 

,

,

,

I I
1 1

 with I

I

h

h

h

n
h

h h i n
h ih

hmeas h in
ih

h i
h i

n

n
R I

n







 
 




 
 
 
 
c 

 
     i ihkl hkl i

1
I I hkl / I

1pim i
R hkl hkl

N
 

    
 

Where I (hkl) is the mean intensity of multiple Ii (hkl) observations of the symmetry-related reflections, N is the 
redundancy, nh is the multiplicity, Îh is the average intensity and Ih,i is the observed intensity. 

dAnomalous phasing power: (Σ|FH(imag)|2/ Σ|| ∆F±PH(obs)|-|∆F±PH(calc)||2)1/2 where ∆F±PH is the structure factor 
difference between Bijvoet pairs and FH(imag) is the imaginary component of the calculated structure factor 
contribution by the anomalously scattering atoms. 

eRcryst = Σ |Fo-Fc| / Σ Fo 
fRfree is the cross-validation Rfactor computed for the test set of reflections (5 %) which are omitted in the refinement 
process. 
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Supplementary Information 

 

Supplementary Figure 1 

Analytical size exclusion chromatography (ASEC) of Mrs248-308. (A) ASEC 

studies showed that Mrs248-308 behaves as a homo-pentamer in low ionic strength 

buffers (10 mM Tris-Hcl, 10 mM NaCl) and (B) as a monomer in high ionic 

strength buffers (50 mM Tris-HCl, 300 mM NaCl). The corresponding peaks are 

visualized by SDS-PAGE. The column was pre-calibrated with standard 

molecular weight markers. 

 

Supplementary Figure 2 

Circular dichroism spectra of Mrs248-308. The mean residual ellipticity of 

Mrs248-308 at 1 mg/ml was monitored from 240 to 190 nm. Three scans were 

performed on individual sample and subsequently averaged. The data were 

reconstructed and the difference between the reconstructed and the 

experimental data was determined. The circular dichroism (CD) spectrum of 

Mrs248-308 showed the minima at 208 and 219 nm, a characteristic for a protein 

rich in α-helices. 

 

Supplementary Figure 3 

Superposition of Mrs248-308 on the soluble domains of Tm-CorA and ZntB. 

(A) Superposition of the complete soluble domain of Mrs248-308 (red) on the 

soluble domain of Tm-CorA (PDB code 2IUB) with an RMSD of 2.85 Å and 

mscore of 70 %. (B) Superposition of the complete soluble domain of Mrs248-308 

(red) on the soluble domain of ZntB (PDB code 3CK6) (green) with an RMSD of 
2.61 Å and mscore of 67 %. (C) Superposition of α/β/α subdomains of Mrs248-308 

(red) and Tm-CorA (yellow) with an RMSD of 2.96 Å and mscore of 59 %. (D) 

Superposition of α/β/α subdomains of Mrs248-308 (red) and ZntB (green) with an 

RMSD of 2.75 Å and mscore of 49 %. (E) Superposition of helical subdomains of 

Mrs248-308 and Tm-CorA with an RMSD of 2.62 Å and mscore of 85 %. (F) 

Superposition of helical subdomains of Mrs248-308 and ZntB with an RMSD of 2.71 
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Å and mscore of 91 %. Superpositions were made with a program SHEBA (Jung 

& Lee, 2000). 

 

Supplementary Figure 4 

Western Blot analysis of the expression levels of MRS2 and the different 

MRS2 mutant variants. Isolated mitochondria of mrs2∆ cells transformed with 

an empty plasmid or high copy number vector Yep351 expressing MRS2-HA or 

the mutant variants were separated by SDS/PAGE and proteins were visualized 

by immunoblotting with an antiserum against the HA tag. Porin was used as a 

loading control.  

 

Supplementary Figure 5  

Thermofluor-based stability optimization of Mrs248-308 (A) Thermal shift assay 

of protein Mrs248-308 in the initial condition, 50 mM Tris-Hcl and 200 mM NaCl. (B) 

Thermal shift assay of protein Mrs248-308 in 50 mM Tris-Hcl and 500 mM NaCl. 

The melting temperature Tm is determined at the inflection point of the melting 

curve in all conditions. The buffer 50mM Tris-HCl and 500 mM NaCl (Tm = 48° C) 

stabilizes protein considerably compare to 50 MM Tris-HCl and 200 mM NaCl 

(Tm = 32° C). The condition was repeated four times as indicated by the four 

curves in order to avoid pipetting error.  
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Supplementary Figure 1 Analytical size exclusion chromatography of 
Mrs248-308. 
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Supplementary Figure 2 Circular dichroism spectra of Mrs248-308.   
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Supplementary Figure 3 Superposition of entire N-terminal moieties and of 
individual domains of CorA,  ZntB on Mrs248-308 .  
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Supplementary Figure 4 Western Blot analysis of the expression levels of 
MRS2 and the different MRS2 mutant variants. 
 

 
 
 
 
 

  Supplementary Figure 5 Thermofluor-based stability optimization of Mrs248-308 
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Supplementary Table 1 
Number of positively charged residues at the C-terminus of Mrs2 from different 

species 

 

Name of species Number of 
residues at C-

terminus 

Number of Positively 
charged residues 

Saccharomyces 
cerevisiae 

107 24 

Penicillium marneffei 116 21 
Penicillium chrysogenum 122 22 

Ashbya gossypii 78 16 
Kluyveromyces lactis 79 15 
Magnaporthe oryzae 198 29 
Yarrowia lipolytica 42 14 

Debaryomyces hansenii 69 15 
Vanderwaltozyma 

polyspora 
83 18 

Botryotinia fuckeliana 65 18 
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Abstract 

The highly conserved G-M-N motif of the CorA-Mrs2-Alr1 family of Mg2+ 

transporters has been proven to be essential for Mg2+ transport. We 

performed random mutagenesis of the G-M-N motif of Saccharomyces 

cerevisiae Mrs2p, and an unbiased genetic screen. We obtained a large 

number of mutants still capable of Mg2+ transport, albeit below the wild-type 

level, as assessed by measurements of Mg2+ influx into isolated mitochondria. 

Growth complementation assays in the presence of different concentrations of 

divalent cations (Ca2+, Co2+, Mn2+ and Zn2+), revealed some mutants with 

reduced growth in the presence of Mn2+ and Zn2+ ions. We hereby conclude 

that the G-M-N motif can be partially replaced by certain combinations of 

amino acids. We show that it plays a role in ion selectivity, together with the 

flanking negatively charged loop at the entrance of the channel, to which 

selectivity filter function has primarily been assigned. 

 

 

Keywords: magnesium transport, Mrs2, G-M-N motif, Saccharomyces 

cerevisiae, mitochondria 
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1. Introduction 

As the most abundant divalent cation within cells, magnesium is required for 

numerous cellular functions, including coordination to nucleotide 

triphosphates, membrane stability, regulation of gene transcription, DNA 

replication, enzyme catalysis, and protein synthesis [1; 2; 3; 4; 5]. 

Maintenance of Mg2+ concentrations within a certain range is therefore critical 

for cell viability. Cellular membranes are impermeable to divalent cations, 

which necessitates transmembrane channels or carriers that allow Mg2+ to 

pass through in a controlled manner. 

 

Members of the large, heterogeneous CorA/Mrs2/Alr1 protein 

superfamily, found in prokaryotes, eukaryotic organisms, as well as in plants 

are high-affinity Mg2+ uptake systems enabling growth of bacterial and yeast 

cells even in very low external Mg2+ concentrations [6; 7; 8; 9; 10; 11]. 

Mutants lacking these transporters cannot survive without being provided with 

high external Mg2+ concentrations [7; 9; 12]. 

 

The MRS2 gene encodes a 54 kDa integral protein of the inner 

mitochondrial membrane (Mrs2p). Yeast cells lacking MRS2 are respiratory 

deficient and therefore exhibit a growth defect on non-fermentable substrates 

(“petite phenotype”) [13; 14; 15]. Besides Mrs2p, S. cerevisiae expresses a 

homologous protein known as Lpe10p/Mfm1p, essential for magnesium 

homeostasis and group II intron splicing in yeast [16]. Deletion of 

LPE10/MFM1 also results in a “petite phenotype“ [17] and in a considerable 

reduction of the mitochondrial membrane potential () [18]. 

 

Mrs2p is a distant relative of the bacterial Mg2+ transporter CorA, which 

three-dimensional crystal structure has already been solved [19; 20; 21]. 

Conservation of the primary sequences in the CorA/Mrs2/Alr1 protein 

superfamily is in the range of 15-20% [6; 8]. Despite of the low primary 

sequence homology there are several structurally conserved features, in 

particular the two -helices (termed “willow helices”) in the large N-terminal 

part and two trans-membrane helices (TM1, TM2) near the C-terminus 
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connected by a short conformationally flexible loop (Figure 1) [17]. The 

sequence G-M-N, a motif at the end of TM1 and the presence of bulky 

hydrophobic amino acids in the predicted gate region at the 

intracellular/intramitochondrial end of the pore are the only universally 

conserved features, indicating an essential role for the function of these 

proteins [19; 20; 21].  

 

Mrs2p-mediated Mg2+ transport has been extensively studied using the 

Mg2+ sensitive, fluorescent dye mag-fura-2, where it was shown that Mrs2p 

mediates rapid, highly regulated Mg2+ uptake into mitochondria [9]. Isolated 

mitochondria respond within seconds to a rise in the external magnesium 

concentration with a rapid increase of the mitochondrial free Mg2+ 

concentration (150 µM s-1) [9]. The high conductance of ~150 pS obtained in 

patch-clamp recordings, characterizes Mrs2p as a channel [22] and 

preliminary data on the Mrs2p homologue, Salmonella typhimurium CorA, 

suggest a similarly high conductance [23]. The assumption of a common 

mechanism of Mg2+ transport for Mrs2p and CorA is supported by the fact that 

Mrs2p can be functionally replaced by CorA [17] and vice versa (this study). 

Furthermore, Mg2+ transport is in both cases inhibited by cobalt(III)-

hexaammine, an analogue for the hydrated Mg2+ ion [22; 24; 25]. 

 

Mrs2p is able to mediate Ni2+ transport, albeit with a 3.5-fold lower 

conductance (~45 pS) compared to Mg2+, whereas it is not permeable for 

Ca2+, Mn2+ or Co2+ [22]. Additionally, suppression of Mg2+ currents in the 

presence of Co2+ was observed suggesting Co2+ to interact with the pore [22]. 

This is different to S. typhimurium CorA and yeast Alr1p for which transport of 

Ni2+ as well as of Co2+ has been reported [6; 24]. 

 

The G-M-N motif has been shown to be critical for the function of CorA 

and even conservative single point mutations completely abolish Mg2+ 

transport [26; 27]. This was also confirmed for Mrs2p where single mutations 

in the G-M-N motif were introduced [9]. This suggests that this sequence is 

indispensable for the function, possibly through suitably positioning the 
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periplasmic loop implicated in initial binding of the hydrated Mg2+ [19] and in 

assisting in the dehydration process [23].  

 

The crystal structure of Thermotoga maritima CorA revealed that main-

chain carbonyl groups of the G-M-N motif are exposed into the center of the 

pore entrance on the periplasmic side and form a polar strip suited for 

interaction with cations [20]. Lunin et al. proposed that the ring of five Asn314 

side chains of the G-M-N motif in the CorA pentamer at the periplasmic 

entrance occlude the pore in the closed state [19].  

 

In order to further investigate the importance and role of the G-M-N 

motif we performed random PCR mutagenesis on the G-M-N triplet to obtain 

mutants harbouring all possible amino acid combinations and identified those 

still capable of transporting Mg2+. The active mutants were further 

characterized using in vivo and in vitro studies showing that the G-M-N motif 

can be in part functionally replaced by certain combinations of amino acids. 

Our results corroborate the notion that this motif plays an important role in ion 

selectivity. 

 

 

2. Materials and Methods 

 

2.1 Yeast and bacterial strains, growth media and genetic procedures 

 

2.1.1 Bacterial cells 

Escherichia coli DH10B F- endA1 recA1 galE15 galK16 nupG rpsL ∆lacX74 

Φ80lacZ∆M15 araD139 ∆(ara,leu)7697 mcrA ∆(mrr-hsdRMS-mcrBC) λ. 

 

Salmonella enterica serovar Typhimurium transmitter strain LB5010: 

metA22 metE551 ilv-452 leu-3121 trpC2 xyl-404 galE856 hsdL6 hsdSA29 

hsdSB121 rpsL120 H1-b H2-e, n, x flaA66 nml (-) Fel-2(-). 

 

Salmonella enterica serovar Typhimurium strain MM281 DEL485 

(leuBCD)mgtB::MudJ;mgtA21::MudJ;corA45::mudJ;zjh1628::Tn10(cam). 
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CamR, KanR, Mg 2+ dependent) was kindly provided by M.E. Maguire. It lacks 

all three major magnesium transport systems CorA, MgtA and MgtB and 

therefore requires medium containing Mg2+ concentrations in the millimolar 

range. 

 

Salmonella enterica serovar Typhimurium strain MM 1927 DEL485 

(leuBCD);mgtB::MudJ;mgtA21::MudJ;corA45::mudJ;zjh1628::Tn10(cam) 

CamR, KanR, pALTER-CorA (AmpR). 

 

Strains were grown in LB medium (1% tryptone, 0.5% yeast extract, 

1% NaCl) with ampicillin (100 µg/ml). MM281 required addition of 10 mM 

MgCl2. LB plates contained 2% Difco Agar Noble minimizing possible Mg 

contamination. 

 

2.1.2 Yeast cells 

The yeast S. cerevisiae DBY747 mrs2∆ deletion strain (DBY mrs2-1, 

short) has been described previously [13; 14; 15]. Yeast cells were grown in 

rich medium (1% yeast extract, 2% peptone) with 2% glucose as a carbon 

source (YPD) [11]. 

 

2.1.3 Plasmid constructs 

The construct YEp351 MRS2-HA was described previously [17].  

 

For cloning of MRS2 into the vector pGEX-3X with IPTG-inducible 

promoter the primers M2GEXfw: 5’-

CGCGGATCCCCAATCGGCGTCTCCTGG-3’ and MRS2HiXrev: 5’-

TGCTCTAGATCAATGGTGATGGTGATGG-3’ were used. The resulting PCR 

fragment was cloned into the vector via BamHI and XbaI restriction sites.  

 

2.1.4 Random PCR mutagenesis 

In order to introduce various amino acid substitutions in Mrs2p, overlap 

extension PCR according to Pogulis et al. [28] was used. No additional 

mutations were found by sequencing.  
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Random mutagenesis of the GMN motif of MRS2 was performed with the 

mutagenic forward primer 5'- 

GCATCTGTTCTGCCGGCGTTCTATNNNNNNNNNTTAAAGAATTTCATCGA

GGAGAGTG -3' and the reverse primer 5'- 

CACTCTCCTCGATGAAATTCTTTAANNNNNNNNNATAGAACGCCGGCAG

AACAGATGC -3' according to standard protocols. 

 

PCR products were digested with XhoI and EcoRI and cloned into an 

XhoI and EcoRI digested pGEX-MRS2 construct. For transformation into the 

DH10B Escherichia coli strain standard calcium chloride method was used. 

Correctly ligated constructs were identified by deletion of the BsmI restriction 

site of the MRS2 gene, resulting in a silent mutation from an adenine to a 

guanine. 

 

2.2 Identification of tolerated substitutions 

A total of 45,600 constructs were pooled and transformed into the S.  

typhimurium transmitter strain LB5010. A total of 46,848 construct were 

pooled and transformed into the S.  typhimurium strain MM281, plated on LB 

plates supplemented with 10 mM MgCl2 and replicaplated on LB plates 

containing 0.05 mM IPTG to induce protein expression. 49 mutants able to 

grow on this medium were sequenced. No additional mutations were found by 

sequencing. 

 

2.3 Serial dilutions 

For serial dilutions on plates, cells were grown in liquid LB medium containing 

10 mM MgCl2 at 37°C over night, washed twice with LB medium, adjusted to 

an A600 of 1 and diluted to an A600 0.1, 0.01 and 0.001. Serial dilutions were 

spotted onto LB medium plates containing different concentrations of MgCl2, 

IPTG, MnCl2 or ZnCl2 and incubated for 24 h. 

 

2.4 Isolation of mitochondria and measurement of changes in the 

intramitochondrial Mg2+ concentrations by spectrofluorimetry 

Isolation of mitochondria by differential centrifugation and ratiometric 

determination of intramitochondrial Mg2+ concentrations ([Mg2+]m) dependent 
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on various external concentrations ([Mg2+]e) was performed as previously 

reported [9]. 

 

 

3. Results and discussion 

 

3.1 Screening of triple G-M-N mutants 

According to the studies of Szegedy and Maguire [26] and of Kolisek et al. [9],  

single amino acid substitutions in the G-M-N motif of CorA or Mrs2p are 

sufficient to abolish Mg2+ transport. Since single conservative mutations in the 

G-M-N motif are poorly tolerated, we performed a triple site random 

mutagenesis screen in order to address the question whether any other amino 

acid combination can substitute for this unique and universally conserved 

motif. 

 

Since large-scale isolation of mitochondria from yeast is extremely time 

consuming and thus not suitable for high throughput analyses, we decided to 

develop a bacterial system for screening for functional G-M-N mutants. Based 

on the fact, that Mrs2p can be functionally replaced by its bacterial homologue 

CorA [17], we assumed that Mrs2p expressed in the S. typhimurium strain 

MM281 depleted of all major Mg2+ transport systems (CorA, MgtA and MgtB), 

could complement the Mg2+ transport deficiency. S. typhimurium strain 

MM1927 lacking the magnesium uptake systems MgtA and MgtB and over-

expressing only CorA was used as the positive control. As depicted in Figure 

2, growth of MM281 cells was only supported at a high magnesium 

concentration of 10 mM. MM281 cells expressing Mrs2p virtually grew like 

MM1927 also without addition of external MgCl2. This experiment clearly 

proved the ability of Mrs2p to complement the corA∆mgtA∆mgtB∆ induced 

Mg2+ deficiency of strain MM281 and enabled us to investigate our G-M-N 

mutants of Mrs2p in bacteria. 

 

After transforming the mutant library into strain MM281, we 

replicaplated the transformants on LB plates without additional Mg2+ but 
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supplemented with 0.05 mM IPTG to induce protein expression. These 

conditions restrict growth exclusively to mutants still able to transport Mg2+.  

 

We obtained a considerable amount of mutants able to grow without 

additional Mg2+ supplementation. 62 mutants were sequenced, 7 of which 

contained the G-M-N motif itself (showing the functional dominance of this 

sequence), while 55 contained mutations of the G-M-N motif, 6 of which 

appeared twice, resulting in 9 different mutations. These 49 mutants were 

analyzed further using a growth complementation assay on plates 

supplemented with different IPTG concentrations to investigate, how their 

Mg2+ transport ability differs from wild-type Mrs2p. The assays were scored 

with four symbols “+” for cells able to grow at all four dilution steps, while “-” 

represents no growth at all on the plate (Tab. 1). 

 

Bacterial cells transformed with wild-type MRS2 were able to grow on 

plates with only 0.03 mM IPTG. In contrast, the analyzed mutants exhibited 

only poor growth at this IPTG concentration or did not grow at all. Upon 

stronger expression (IPTG concentrations of 0.035 – 0.05 mM) viability and 

growth of most of the mutants improved (Tab. 1). These results indicate that 

several G-M-N triple mutants still exhibited Mg2+ transport albeit at lower 

efficiency than wild-type Mrs2p. 

 

3.2 Sequences of the functional mutants 

The prominent feature of the amino acid sequences of the functional mutants 

is their divergence from the canonical G-M-N motif. A glycine at the first 

position is observed only twice (4%), a methionine appears twice (4%) at the 

second position, and in only one case there is an asparagine at the third 

position. The only mutant resembling the wild type protein is characterized by 

the presence of a G-T-N tripeptide instead of G-M-N. 

 

Interestingly, about 80% of the functional mutants have a positively 

charged residue at the G-M-N motif. In 59% of the cases this occurs at the 

first position, in 18% of the cases at the second position, and only in 4% of the 

cases at the third position. However, the co-presence of two positively 
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charged amino acids is uncommon (only in about 10% of the cases). There is 

only one evident correlation between two positions: in the 59% of the cases in 

which the first position is occupied by a positively charged residue, a small 

and hydrophobic amino acid (Val, Ile or Leu) occupies the third position. 

 

In contrast, few negatively charged residues are observed in the 

functional mutants, i.e. only six times at the first position and twice at the other 

two positions. No other clear trends were observed. 

 

In a previous mutation analysis of the G-M-N motif of S. typhimurium CorA, 

none, even the most conservative single mutations (A-M-N, G-A-N, G-C-N, G-

I-N, G-M-A, G-M-L, G-M-Q) were tolerated [26]. A mutational study of Mrs2p 

performed by Kolisek et al. [9] also confirmed the importance of the G-M-N 

motif: mutation to A-M-N reduced Mg2+ uptake to the level of the mrs2 

mutant. These findings are in agreement with our results, as neither these 

mutants nor any other single point mutation - with the exception of the rather 

poorly growing G-T-N mutant - were found amongst the functional mutants, 

which are notably diverse from the native motif G-M-N. It might be 

hypothesised that while single mutations within the canonical G-M-N motif are 

evolutionary not tolerated by Nature, multiple adjacent mutations, though 

unlikely to occur in Nature, result in functional molecules. 

 

3.3 The effect of mutations of the G-M-N sequence on cation selectivity 

of Mrs2p 

We performed a growth complementation assay on plates containing 0.05 mM 

IPTG and different concentrations of divalent cations (Ca2+, Co2+, Mn2+ and 

Zn2+), known substrates of the yeast plasma membrane Mg2+ uptake system 

Alr1p, a homologue of Mrs2p [29]. We selected 10 mutants for this assay 

(Tab. 2, 3), in which we examined if the presence of the aforementioned 

divalent cations in the growth medium influenced cell growth compared to 

wild-type Mrs2p.  
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Seven of the chosen mutants had a positively charged amino acid (K, 

R, H) at the first position and a small, hydrophobic residue at the third position 

(like 35 of the mutants of Table 1). The last three mutants did not fit in the 

pattern “positively charged – X – hydrophobic”, and were chosen as 

representatives of well (R-A-W), medium (R-R-T) and poorly (R-V-H) 

complementing mutant variants. 

 

In case of Ca2+ and Co2+ we did not observe any difference (results not 

shown) in the growth complementation assay compared to plates not 

supplemented with cations, suggesting that no transport or blockage of the 

channel by these ions occurred. In a study employing patch clamp 

electrophysiology on giant lipid vesicles fused with inner-mitochondrial 

membranes, Mrs2p was permeable for Mg2+ and Ni2+ but not for Ca2+, Mn2+ or 

Co2+. However,  suppression of Mg2+ currents in the presence of Co2+ was 

observed [22]. In our case no effect of Co2+ was observed, both on wild-type 

Mrs2p and on the investigated mutants. This might be due to different 

techniques used: patch-clamp recordings on single ion channels allow very 

precise measurements of the ion currents and tight control of ionic conditions 

on both sides of the channel which is not possible in a growth 

complementation assay on plates. Furthermore, ion concentrations used in 

the patch-clamp experiments were much higher (~ 1000x in this case) than 

concentrations used in vivo, and as a consequence, we cannot properly 

compare the results of the growth complementation assay and the patch-

clamping experiments. 

 

The tested concentrations of MnCl2 reduced growth of all mutants, 

whereas growth of cells harboring wild-type MRS2 remained unaffected. The 

negative effect of MnCl2 increased with increasing concentrations of the 

cation (Table 2). Furthermore, the growth defect was differently pronounced in 

the mutants: the top three least affected are characterized by positively 

charged residues at the first and the second position (K-R-L; R-R-T), while the 

two most affected mutants carry Arg at the first, and Leu at the third position 

(R-Q-L; R-V-L) (Table 2). 
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The effect of ZnCl2 was similar to MnCl2, however the growth defect of 

the mutants was slightly less pronounced (Table 3). The three least affected 

and the two most affected mutants were the same as those identified in the 

Mn2+ assay.  

 

The R-V-H, R-A-W and R-R-T mutants do not significantly differ from 

the “positively charged - X - hydrophobic” set, suggesting that the absence of 

a hydrophobic amino acid at the third position does not critically affect ion 

selectivity, when combined with a small hydrophobic or positively charged 

residue on the second place. 

 

Amongst the reasons for the manganese and zinc dependent negative 

effects on growth complementation assays, it is possible to hypothesize that 

both Mn2+ and Zn2+ either cross the channel and enter into the cells or block 

the entrance of the pore, stopping the flux of Mg2+. Both explanations might 

be coherent with the experimental observation that increasing cation 

concentrations correlate with negative effects on cell growth. However, it is 

impossible to determine exactly the underlying mechanism of the negative 

effects, given the comparable ionic radii of Mg2+, Mn2+ and Zn2+ (0.72 Å, 0.82 

Å, 0.75 Å, respectively) and the consequent similarity between the hexa-

aquaions [30]. It is on the other hand clear that Mn2+ and Zn2+ did not affect 

growth of cells hosting wild type Mrs2, suggesting that the G-M-N motif is 

involved in ion selectivity. 

 

 Apart from the size of the hydrated and non-hydrated ions, the water 

exchange rate of the hydrated ion appears to be an important parameter for 

the transport activity of the channel. Mg2+ has a very slow water exchange 

rate of 105 s-1 compared to Mn2+ and Zn2+ for which exchange rates are at 

least one to two orders of magnitude higher [31]. The incoming Mg2+ ion has 

to be at least partially dehydrated to enter the channel. The sequence G-M-N 

and the loop residues might generate a unique structural environment 

specially suited for the interaction and dehydration of Mg2+. Consequently, 

alterations of the G-M-N motif could lead to a more or less productive 
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interaction with ions different from Mg2+ and thereby alter the selectivity of the 

channel. 

 

3.4 Mg2+ influx into isolated mitochondria 

In order to directly investigate Mg2+ influx into isolated mitochondria of 

selected mutants we used the Mg2+-sensitive dye mag-fura-2 (Figure 3). The 

mutants were selected on the basis of good (R-M-V, R-F-V, R-C-V), medium 

(R-Q-L) or poor (R-V-H) growth complementation capacity in S. typhimurium 

strain MM281 (Table 1). After addition of MgCl2 to a concentration of 1 mM 

Mg2+ a lack of the characteristic rapid Mg2+ influx [9] was observed in most 

mutants, together with significantly lower steady-state Mg2+ levels (Figure 3). 

The only exception was the R-Q-L mutant, which lacked rapid Mg2+influx, but 

finally reached a mitochondrial Mg2+ concentration comparable to the wild-

type level during the subsequent 100 seconds. After addition of MgCl2 to the 

final concentration of 3 mM Mg2+, we observed Mg2+ influx in all mutants, 

however, it did not reach the final steady-state level of wild-type Mrs2p. The 

differences between mutants were minimal, with the exception of the R-Q-L 

mutant, which reached almost wild-type Mg2+ levels. At the same time this 

mutant was found amongst the variants exhibiting the strongest growth 

reduction on plates supplemented with Mn2+ and Zn2+. This mutation strongly 

affected ion selectivity but at the same time had only a minor effect on the 

conductivity of the channel for Mg2+, implying that ion conduction and ion 

selectivity are two independent processes.  

 

These results show that all investigated mutants maintained a certain 

ability to transport Mg2+ in S. typhimurium cells (Table 1) and mutants R-V-H, 

R-M-V, R-F-V, R-C-V and R-Q-L also in yeast mitochondria (Figure 3), albeit 

in both systems the transport activity was significantly decreased compared to 

the wild type protein.  
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4. Conclusions  

The asparagine residues of the G-M-N motif have been proposed to block the 

entrance of the channel in the closed conformation [19; 23]. Furthermore, this 

motif has been implicated in suitably orienting the flexible, negatively charged 

loop at the mouth of the pore for interaction with the hydrated magnesium ion. 

The loop connecting TM1 and TM2 appears to form the initial interaction site 

for hydrated Mg2+ and likely participates in the dehydration process of the ion 

required prior to its entrance into the pore of the channel [23]. The high 

conductance of Mrs2p [22] and CorA [23] channels were proposed to be 

based on a mechanism which involves electrostatic interactions of the loop 

residues with the hydration shell of Mg2+ and not with the ion itself [23].  

 

Our study on the G-M-N motif identified viable triple mutants hosting a 

positively charged residue primarily on the first but also on the third position. 

At a first glance, the presence of positively charged residues in functional 

mutants might seem counterintuitive as these mutations could in fact hinder 

the transport of Mg2+ ions by electrostatic repulsion. However, since it is 

structurally unfeasible for all three amino acid residues of the motif to be in 

direct contact with the ion [27], it is plausible to envisage that these residues 

form a structural motif critical for ion uptake, which can be partially 

accomplished by different amino acid combinations, eventually leading to a 

functionally equivalent structure. 

 

In order to assess the impact of mutations in the G-M-N motif on the 

selectivity of Mrs2p, we performed growth complementation assays on plates 

supplemented with different cations (Ca2+, Co2+, Mn2+ and Zn2+). Our results 

show that mutations in the G-M-N motif lead to reduced growth of the cells in 

presence of Mn2+ and Zn2+ while Ca2+ and Co2+ did not influence their viability. 

This can take place via two possible competitive mechanisms: (i) Mn2+ and 

Zn2+ are transported through the pore and the growth defect is caused by 

Mn2+/Zn2+ overdose, or (ii) Mn2+ and Zn2+ ions are trapped and block the 

channel for Mg2+ transport causing in this way the growth defect by Mg2+ 

deficiency. 
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In summary we conclude that despite its high degree of conservation, 

the G-M-N motif can be functionally replaced by certain combinations of 

amino acid residues. Most frequently a positively charged residue in the first 

and a hydrophobic residue in the third position were found in functional 

mutants. Our studies suggest that the G-M-N motif plays a role in ion 

selectivity, being therefore part of the selectivity filter together with the flanking 

negatively charged loop, at the entrance of the Mrs2p channel. The 

concurrent involvement of the G-M-N motif in the gating process and in ion 

selectivity as well, might be the molecular basis for its universal conservation 

throughout the phyla. 
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Table 1 
S. typhimurium strain MM281 was transformed with plasmids indicated, serially 

diluted and replicaplated on plates with increasing IPTG concentrations. The number 
of “+” symbols corresponds to the number of dilution steps exhibiting growth. 

 

Sequence 0.03 mM IPTG 0.035 mM IPTG 0.04 mM IPTG 0.045 mM IPTG 0.05 mM IPTG 
      
G-M-N ++++ ++++ ++++ ++++ ++++ 
R-F-V + ++++ ++++ ++++ ++++ 
R-I-L + ++++ ++++ ++++ ++++ 
R-M-V + ++++ ++++ ++++ ++++ 
R-Q-I + ++++ ++++ ++++ ++++ 
R-Q-L + ++++ ++++ ++++ ++++ 
R-V-L + ++++ ++++ ++++ ++++ 
L-R-C ++ +++ +++ ++++ ++++ 
R-A-W + ++++ +++ ++++ ++++ 
R-V-M + ++++ +++ ++++ ++++ 
I-R-I ++ +++ ++ ++++ ++++ 
K-A-I - ++++ +++ ++++ ++++ 
K-R-L - ++++ +++ ++++ ++++ 
R-F-I + ++++ +++ ++++ +++ 
R-V-I + ++++ +++ ++++ +++ 
R-N-L - +++ +++ ++++ ++++ 
R-P-L + +++ +++ ++++ +++ 
C-F-L ++ ++ ++ +++ ++++ 
R-G-F + +++ +++ +++ +++ 
R-S-V + +++ +++ ++++ ++ 
R-C-V - ++ ++ ++++ ++++ 
F-R-L + ++ ++ +++ +++ 
D-F-G + ++ + +++ +++ 
K-A-M - ++ ++ +++ +++ 
R-F-Y + ++ ++ +++ ++ 
R-R-T - ++ ++ +++ +++ 
V-R-A + ++ ++ ++ +++ 
V-R-C + ++ ++ ++ +++ 
D-F-P + ++ + ++ +++ 
E-F-P + ++ ++ ++ ++ 
K-H-V - ++ ++ +++ ++ 
E-Q-V + ++ + ++ ++ 
G-D-M + ++ + ++ ++ 
K-Y-I - ++ ++ ++ ++ 
R-T-Y - ++ ++ ++ ++ 
E-F-A + + + ++ ++ 
G-T-N + + + ++ ++ 
K-M-L - ++ + ++ ++ 
P-D-L - + ++ ++ ++ 
R-F-Q - ++ + ++ ++ 
R-V-H - + + +++ ++ 
R-Y-S - ++ ++ ++ + 
R-F-S - + + ++ ++ 
T-S-E + + + + ++ 
E-S-K - + + ++ + 
F-R-E - + + ++ + 
K-I-T - + + ++ + 
P-N-V - + + + + 
P-R-L - + + + + 
P-T-L - - - + + 

 Mutants which appeared two times.  
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Table 2 
S. typhimurium strain MM281 was transformed with plasmids indicated, serially 

diluted and replicaplated on plates with 0.05 mM IPTG and different MnCl2 

concentrations. The number of “+” symbols corresponds to the number of dilution 
steps exhibiting growth. 

 

Sequence 0 mM 
MnCl2 

0.01 mM  
MnCl2 

0.1 mM  
MnCl2 

    
G-M-N ++++ ++++ ++++ 
K-R-L ++++ +++ ++ 
R-A-W ++++ +++ ++ 
R-R-T +++ +++ ++ 
K-A-I ++++ ++ + 
R-M-V ++++ ++ + 
R-C-V ++++ + + 
R-F-V ++++ + + 
R-Q-L ++++ + + 
R-V-L ++++ + + 
R-V-H ++ ++ + 

 

 

 

 

 

Table 3 
S. typhimurium strain MM281 was transformed with plasmids indicated, serially 

diluted and replicaplated on plates with 0.05 mM IPTG and different ZnCl2 

concentrations. The number of “+” symbols corresponds to the number of dilution 
steps exhibiting growth. 

 

Sequence 0  
ZnCl2 

0.01 mM 
ZnCl2 

0.1 mM  
ZnCl2 

- - - - 
G-M-N ++++ ++++ +++ 
K-R-L ++++ +++ ++ 
R-R-T +++ +++ ++ 
R-A-W ++++ ++ + 
K-A-I ++++ ++ + 
R-C-V ++++ ++ + 
R-F-V ++++ ++ + 
R-M-V ++++ ++ + 
R-Q-L ++++ ++ + 
R-V-L ++++ ++ + 
R-V-H ++ ++ ++ 
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Figure 1 Schematic representation of the Mrs2p pentamer.  
Position of the G-M-N motif at the end of the TM1 helix is marked, together with TM1 
and N- and C- termini of subunits. Flexible loop connecting TM1 and TM2 is depicted 
in red. 
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Figure 2 Growth complementation assay of the MM281 mutant strain by Mrs2p.  
Over night cultures of MM1927 and MM281 were transformed with plasmids 
indicated, serially diluted and spotted on LB medium plates with 10 mM magnesium 
chloride or 0.05 mM and 0.025 mM IPTG concentrations and incubated on 37°C for 
24 hours.  
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Figure 3 Representative recordings of [Mg2+] uptake.  
S. cerevisiae strain DBY747 mrs2∆ was transformed with the indicated plasmids and 
mitochondria were isolated. The representative recordings show changes in 
fluorescence intensity of mag-fura-2 monitored over 300 seconds after step-wise 
addition of MgCl2. 
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DISCUSSION 

Structural studies on Mrs2 

The yeast Saccharomyces cerevisiae Mrs2 is a well known member of the 2-TM-

GxN eukaryotic magnesium transporter family, capable for substituting the 

prokaryotic CorA transporter. In my thesis, the yeast Mrs2 was taken as the 

archetype for this protein family to address the structural and functional 

characterization of the Mrs2 transporter, which is essential for the Mg2+ homeostasis 

in Saccharomyces cerevisiae (Kolisek et al, 2003; Papp-Wallace & Maguire, 2007; 

Quamme, 2010; Zsurka et al, 2001). The yeast Mrs2 protein belongs to the large 

superfamily of the 2-TM-GxN type transporters, forming a membrane potential-

driven, ion-selective channel/transporter in the membrane to control Mg2+ 

homeostasis (Kolisek et al, 2003). This family of proteins is widely distributed in the 

eukaryotic as well as the prokaryotic world (Papp-Wallace & Maguire, 2007). It 

includes the bacterial CorA transporters, the fungal Alr1 and Alr2 like homologues, 

found from yeast to human. The typical features of this protein family are a large N-

terminal moiety, 2 transmembrane helices (TM1 and TM2) with a highly conserved 

GMN motif (generally YGMNF) at the very end of the first transmembrane helix 

(TM1) and a comparatively short C-terminus. Generally, members of the CorA-Mrs2-

Alr1 family of divalent metal ion transporters show low sequence homology and 

distinct structural features compare to other transporters (Lunin et al, 2006; 

Weghuber et al, 2006).  

 

At present, the knowledge of the molecular/structural basis of Mg2+ 

homeostasis is still poorly understood, although many components of the Mg2+ 

transport network have been investigated. Extensive data are available for the 

existence of various Mg2+ transporters in different domain of life (Odblom & Handy, 

1999; Quamme & Rabkin, 1990; Schweigel et al, 2006; Schweigel et al, 2000). Only 

the crystal structure of the prokaryotic magnesium transporter CorA from 

Thermatoga maritima (Tm-CorA) is solved in the closed conformation of 2-TM-GxN 

protein family (Eshaghi et al, 2006; Lunin et al, 2006). The crystal structure of the 

magnesium transporter MgtE from Thermus thermophilus is also accessible at 3.9 Å 
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but this transporter is not belonging to the Mrs2 superfamily (Hattori et al, 2007a). It 

is still not clear in molecular detail how these types of transporters differentiate 

magnesium from other metal ions, how magnesium is dehydrated and how 

magnesium propagates through the transporter conduction pathway (Lunin et al, 

2006; Payandeh & Pai, 2006). In addition, little structural information is available 

about the common features in the CorA-Mrs2-Alr1 superfamily of transporters 

(Eshaghi et al, 2006; Lunin et al, 2006; Payandeh & Pai, 2006). 

 

Overall structure of Mrs248-308 and its comparison with prokaryotic 

magnesium transporter Tm-CorA and Zinc transporter ZntB 

In the beginning of this work, we designed a series of constructs in order to find an 

autonomously folded domain which is amenable to crystallization, based on 

bioinformatics, limited proteolysis and autocatalysis of the already expressed 

constructs. Most of the investigated constructs represented the soluble domain while 

some of them included the transmembrane helices as well as the full-length protein.  

 

Most of the constructs were purified and characterized biochemically. Details 

on the purification and crystallization are reported in (Khan et al, 2010). The soluble 

constructs of Mrs2 included the entire N-terminal domain located in the 

mitochondrial matrix. Analytical size exclusion chromatography and dynamic light 

scattering (DLS) showed that the Mrs2 N-terminal constructs behaved as monomers 

in high ionic strength buffers and as homopentamers in low ionic strength buffers. In 

addition, the circular dichroism (CD) spectrum of the constructs showed that the 

protein is rich in α-helices. Together, these data suggest that most of our construct is 

autonomously folded into the native conformation in solution and that the protein 

solution is monomeric at a high ionic strength and pentameric at a low ionic strength 

(Khan et al., manuscript submitted).  .  

 

One of the constructs of the soluble domain encompassing residues 48-308 

(Mrs248-308, in the first publication denoted as Mrs248-276) was crystallized in a 

monomeric form (Khan et al., manuscript submitted). The Mrs248-308 monomer is 

broadly composed of two closely associated sub-domains, an N-terminal α/β/α 
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sandwich sub-domain (residues 48–164) and a C-terminal helical/coiled-coil sub-

domain (residues 167–305).  

 

The folds of prokaryotic and eukaryotic magnesium transporters are similar, 

to a certain extent. Each protomer can be divided into one N-terminal alpha/beta 

domain followed by an alpha domain. While the first one is a compact alpha-beta-

alpha sandwich, the second one contains a triple coiled-coil that enters, at the end of 

the third, into the membrane with a transmembrane helix (TM-helix).  

 

While the coiled-coil domain is almost identical in Tm-CorA and Mrs248-308, the 

N-terminal domain is rather different. The central beta sheet is formed by seven anti-

parallel strands in Tm-CorA and by six strands in Mrs248-308. Despite differences in 

the length, the last four strands are topologically identical in the two proteins – a 

series of three beta hairpins. The first beta strands are topologically different. The 

alpha helix, that follows the strand N2, and the strand N3 is missing in Mrs248-308, 

making the eukaryotic N-terminal domain smaller than the prokaryotic one (Figure 

1D, manuscript 2). It seems that in Mrs2 deletions of the first helix and the third 

strand of Tm-CorA have occurred during molecular evolution. Evolutionary 

relationships cannot be predicted just assuming the structural data. However, it is 

self-explanatory, that any structural based sequence alignment of these structures 

would be extremely deceptive, as the N-terminal domains of Tm-CorA and Mrs248-308 

have different folds. 

 

The Dali web-server (Holm & Sander, 1996) was employed to find out the 

structural neighbors of Mrs248-308,. Tm-CorA and Vp-ZntB are the most structurally 

similar to Mrs248-308 at the level of the monomer. Moreover, the monomer and 

pentamer structures cannot be superimposed because, the relative orientation of the 

helical and the α/β/α sub-domains are different. 

 

The major differences of the three types of proteins occur at the N-terminus of 

the proteins. The α1 and C1 of Mrs248-308 did not superpose on any of the structural 

elements of Tm-CorA. The major structural difference between the two structures is 

the length and orientation of α4 of Mrs248-308 with respect to the β sheets. Other 

differences can be found in the loop regions between the C2 and C3. The stalk helix 
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α7 in case of Tm-CorA is bent near the membrane, while in case of Mrs248-308 the 

corresponding helix (α7) is much straighter. This might be due to the fact that the 

Tm-CorA structure is in a closed conformation, in a functional pentameric form. As a 

result it is more rigid and does not allow as much flexibility as Mrs248-308, which is in 

a monomeric form and most likely will represent the open conformation of the 

transporter.  

 

Similarly, superposition of the Mrs248-308 and Vp-ZntB intracellular domain 

from Vibrio parahemolyticus also shows that most of the variations occur at the α/β/α 

domain, the first two β-strands, i.e. N1 and N2 of Mrs248-308 do not superpose on the 

Vp-ZntB transporter and more the α4 of Mrs248-308 does not superimpose on any of 

the structural elements of Vp-ZntB. As the available structure of Vp-ZntB only 

comprises the soluble domain and does not exhibit the kink in the stalk helix (α7 

helix), this helix superposed quite well. This evidence supports the idea that the 

funnel domain of Vp-ZntB is in open conformation, as there is no bound divalent 

cation in the structure. 

 

The different RMSDs values for the individuals domains seem to be either 

due to different orientations of the two N-terminal domains or to different types of 

folds of the three transporters (Khan et al., manuscript submitted).  

 

Structural analysis clearly demonstrates that the prokaryotic proteins Tm-

CorA and Vp-ZntB are structurally more similar to each other than to the eukaryotic 

protein Mrs248-308. Furthermore, Vp-ZntB contains a mixed seven-stranded beta 

sheet which is more similar to that of Tm-CorA and different from the six-stranded 

sheet of Mrs248-308. Moreover, it can be hypothesized that some structural variability 

between the three proteins may be related to the different level of funnel 

opening/closing of the transporter, which in-turn is reflected in the reorientation of 

the coiled-coil moiety, and which are influenced by the magnesium ion 

concentration. 
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Model of Mrs248-308 funnel 

The funnel model was regenerated from the monomeric crystal structure of Mrs248-

308 by superposing the helical domains of Tm-CorA and Vp-ZntB. The residues at the 

C-terminus of the funnel structure based on Tm-CorA came unfavourably close. This 

may be because of the structure of Tm-CorA, which has been reported in a closed 

conformation while the monomeric Mrs248-308 is more relaxed and may represent the 

open conformation of the transporter (Lunin et al, 2006). On the other hand, in the 

funnel model generated on Vp-ZntB, the residues at the C-terminus are at 

reasonably favoured distances from each other. It might be due to the structure of 

Vp-ZntB, which would represent the open conformation as there is no bound metal 

ion, the same is true for the monomeric Mrs248-308 which is also  more relaxed and 

may be represent the open conformation of the transporter (Tan et al, 2009).  

 

The structural analysis of the funnel model based on the Tm-CorA structure 

indicates that there are five hydrogen bonding interactions and one salt bridge 

between adjacent protomers. Similarly, the interactions between the two adjacent 

protomers in the funnel model generated on Vp-ZntB are via two hydrogen bonds 

and two salt bridges. On the other hand, eight hydrogen bonds and eight slat bridges 

can be identified in the crystal structure of the funnel domain of Vp-ZntB (PDB code 

3CK6) (Tan et al, 2009), and sixteen hydrogen bonds and fifteen salt bridges in the 

crystal structure of Tm-CorA (PDB code 2BBJ) (Lunin et al, 2006). Although the 

interfaces of the proposed Mrs2 funnel were not optimized, the presence of fewer 

hydrogen bonds and salt bridges may explain the higher sensitivity of Mrs2 to 

elevated salt concentrations (Khan et al., manuscript submitted). 

 

Analysis of the electrostatic surface potential of the structure of Mrs248-308, 

showed that the α7 helices, making the inner wall of the entire funnel in the 

functional pentameric form are rich with negative or hydroxyl-containing residues. 

Such an arrangement of charged residues is not only found in Mrs248-308, but also in 

other monovalent cation (KcsA) and divalent cation (CorA, ZntB) 

transporters/channels and possibly serve as an electrostatic sink to enhance the 

local ion concentration (Roux & MacKinnon, 1999).  
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Effect of metal ions on the pentameric Mrs248-308 susceptibility to 

protease 

In Tm-CorA the elbow formed in the funnel domain by the helices (α5-α6) move in 

connection with the metal site occupancy at the metal binding site (Payandeh & Pai, 

2006). It has been shown that the metal stabilizes the Tm-CorA but is not required 

for the pentamerization of the protein (Eshaghi et al, 2005; Payandeh & Pai, 2006). 

Furthermore, it has been demonstrated that Tm-CorA becomes resistant to trypsin 

cleavage in the presence of metal ions, which represents the closed state of the 

transporter (Payandeh & Pai, 2006). In order to investigate the structural changes 

occurring in presence and absence of metal ions (magnesium and cobalt) we carried 

out a protease susceptibility assay of the pentameric Mrs248-308 funnel domain in low 

ionic strength buffers. 

 

The results showed that in the presence of EDTA the protein was protected 

from protease digestion. On the other hand, only presence of high concentrations of 

cobalt rendered Mrs248-308 less susceptible to trypsin cleavage, while presence of 

magnesium did not, irrespective of the incubation time (Fig. 3 in manuscript 2). The 

reaction conditions were tested both at 4 and 37°C for 4 and 15 hours. 

 

These observations were quite different, rather reverse to what has been 

observed for Tm-CorA protease susceptibility (Payandeh & Pai, 2006). Interestingly, 

addition of EDTA protected the Mrs248-308 funnel domain from protease cleavage. 

This differential protease susceptibility of the Mrs248-308 funnel domain compared to 

Tm-CorA suggests distinct conformational changes, which may be either due to 

different folds of the two types of proteins and/or due to different changes in open 

and closed conformations and subsequent protease digestion. Further molecular 

details are necessary to find out the changes, in particular, regions (which are 

involved in the conformational changes of the two states) of the funnel domain of 

Mrs2 in the two different types of conformations. 
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Structure based sequence alignment of Mrs248-308 and Tm-CorA 

The structure based sequence alignment (manually corrected) of Mrs248-308 with Tm-

CorA explores important residues involved not only in formation of the hydrophobic 

gate of the transporter (see below regulation of magnesium transport in Mrs2 and 

Tm-CorA) but also in driving of magnesium across the ion conduction pathway in the 

Mrs2 type of transporters. Glu295 aligned with Asp277 of Tm-CorA, which is highly 

conserved and is responsible for making an “aspartate ring” and regulates transport 

in Tm-CorA (Eshaghi et al, 2006; Lunin et al, 2006). In TolC (the outer membrane 

protein of many multidrug efflux pumps) transport system, an “aspartate ring” formed 

by the carboxylates of three aspartate residues was shown to determine selectivity, 

as well as to form a binding site for inhibitory cations (Eshaghi et al, 2006; Higgins et 

al, 2004). The high conservation of Glu295 in eukaryotic Mrs2 transporters together 

with the localization at the entrance of the pore and orientation towards the centre of 

the conduction pathway in the funnel model, suggest that this residue is important 

for transport or regulation. Experimental evidences are needed to explore the 

importance of this residue in the regulation of the transporter. 

 

 

Functional Studies on Mrs2 

Regulation of magnesium transport in Mrs2 and Tm-CorA  
Until now it is not completely understood how Tm-CorA differentiates between 

magnesium and other metal ions; it still needs to be studied at the molecular level, 

but the conserved signature sequence GMN in 2-TM-GxN seems to play a central 

role in magnesium selection (Eshaghi et al, 2006; Lunin et al, 2006; Payandeh et al, 

2008; Payandeh & Pai, 2006). Two important reasons arguing for a role of the GMN 

motif in magnesium selection are its location at the membrane-periplasm interface 

and the high conservation of the sequence throughout the phyla (Eshaghi et al, 

2006; Lunin et al, 2006; Payandeh & Pai, 2006). 

 

As no three-dimensional structure of the full-length Mrs2 transporter is 

available, we performed a structure based sequence alignment (manually corrected) 

of Mrs248-308 with the soluble domain of Tm-CorA, extended the sequence alignment 
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at the C-terminus and modeled the complete Mrs2 transporter. Our alignment and 

model of the pentamer of Mrs2 suggest that Met309, and Val315 are putatively 

involved in the formation of a hydrophobic gate. A sequence alignment of eukaryotic 

Mrs2 magnesium transporters showed that Met309 is highly conserved in the whole 

family, and we named this amino acid gate 1. Analysis of the pentameric Mrs2 

model constructed on the known structure of Tm-CorA shows the narrowest 

constriction of the pore at this residue corresponding to Tm-CorA Met291. In 

contrast to Met309, a sequence alignment of various eukaryotic Mrs2 homologues 

indicates that Val315 is less conserved than Met309. We named this amino acid 

gate 2 (Khan et al., manuscript submitted).  .  

 

The amino acids, with different characteristics were substituted at these two 

positions (Met309 and Val315) in Mrs2: bulky (phenylalanine), small (glycine) and 

negatively charged (glutamic acid). All substitutions of Met309 demonstrated a 

strong growth reduction on non-fermentable carbon sources in contrast to cells 

harbouring wild-type MRS2. Phe, being a bulky amino acid at position 309 narrowed 

the pore diameter and thereby reduced Mg2+ influx in mag-fura 2 measurements. 

Substitution of Met309 with Glu increased the magnesium uptake in mag-fura 2 

measurement maybe by the enhancement of a negatively charged ring. This may 

increase the magnesium conductance, either directly due to stronger electrostatic 

interaction of the Mg2+ ion or contribute to the negative charged ring generated by 

the residues from the tip of the α5 and α6. The dramatic effect was observed in the 

Gly mutant, which display very robust Mg2+ flux and inchoate signs of deregulation of 

the closing process (Khan et al., manuscript submitted). However, closing of the ion 

conduction pathway was not completely deregulated as noticed for mutations at 

position 294 in Tm-CorA (Svidova et al, 2010).  

 

Substitution of Val315 to Glu and Phe had no dramatic effect on growth of the 

Saccharomyces cerevisiae on non-fermentable carbon sources. In line with this 

result, also Mg2+ uptake was less affected by mutations at this position. Mg2+ uptake 

in the Glu mutant was comparable to wild-type MRS2. Moreover, the bulky residue 

Phe was surprisingly well endured at this position and apparently does not constrict 

the ion conduction pathway to an extent leading to a substantial reduction of 

magnesium uptake. Only Gly at this position reduced growth partially, which was, 
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however, less pronounced than in the Met309 mutant. Based on the results from 

mag-fura 2 measurements this effect is again caused by stronger magnesium 

uptake due to a widening of the channel at this position.  

 

In addition TMpred analysis (Online server Prediction of Transmembrane 

Regions and Orientation http://www.ch.embnet.org/software/TMPRED_form.html), 

using the primary sequence both of Tm-CorA and Mrs2 from Saccharomyces 

cerevisiae, shows that the first transmembrane helix consists of Val293 to Met313 in 

case of Tm-CorA while in case of Mrs2 it includes residues Val315 to Leu336. Based 

on the TMpred server prediction the two methionine residues of the hydrophobic 

gate i.e. Met291 (Tm-CorA) and Met309 (Mrs2) of the two transporters are located 

outside of the membrane, either in the cytoplasm or the mitochondrial matrix 

accordingly, while the second set of gating residues Leu294 in Tm-CorA and Val315 

in case of Mrs2 are located in the membrane spanning regions of the helices (Khan 

et al., manuscript submitted).  

 

These observations suggest a higher degree of regulation of the Mrs2 type of 

transporter relative to Tm-CorA. Mutations at only one of the several positions 

putatively involved in gating did not completely abolish the function of the transporter 

to close the pore. The higher negative membrane potential inside the mitochondria 

causes a strong driving force for the Mg2+ ion (Iwatsuki et al, 2000; Rodriguez-

Zavala & Moreno-Sanchez, 1998; Sponder et al, 2010). A tight control of the 

transport activity at more than one site of the ion conduction pathway (pore) may 

therefore, be essential to ensure a proper Mg2+ level in the mitochondrial matrix.   

 

The role of the conserved GMN motif for Mg2+ transport and ion 

selectivity  

The GMN motif located at the end of the first transmembrane helix is universally 

conserved in the CorA-Mrs2-Alr1 superfamily (Knoop et al, 2005). Single mutations 

within the GMN sequence in T. maritima and S. typhimurium almost always abolish 

the transport capability of CorA (Lunin et al, 2006; Szegedy & Maguire, 1999). 

However, in nature sequence divergence from GMN to GVN or to GIN occurs, but 
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these transporter transport metals other than magnesium (Knoop et al, 2005). Based 

on the analyses of the Tm-CorA closed crystal structure, different functions were 

proposed for this motif. In a homo-pentameric Tm-CorA, the Asn ring of GMN motif 

obstructs the ion conduction pathway (Lunin et al, 2006; Payandeh & Pai, 2006).  

 

Moreover, the GMN motif was suggested to be critical for positioning of the 

periplasmic loop (Lunin et al, 2006; Moomaw & Maguire, 2008). This short loop is 

presumably responsible for the initial binding of magnesium and is supposed to 

assist in the dehydration/rehydration of ions as well as it acts in cation selectivity 

(Lunin et al, 2006; Moomaw & Maguire, 2008). The carbonyl groups of the GMN 

main chain appear to be oriented towards the centre of the conduction pathway 

(pore) and putatively  interact with the hydrated ion and as a result play a role in the 

dehydration of the metal ion (Moomaw & Maguire, 2008; Payandeh & Pai, 2006). 

Kolisek et al. (2003) mutated the GMN motif to AMN in Mrs2, which resulted in a 

completely abolished magnesium transport capability (Kolisek et al, 2003).  

 

In our study, we carried out random mutagenesis of the GMN motif to all 

possible amino acid combinations in order to find out its potential role in magnesium 

ion conductance and ion selectivity. We used the S. typhimurium strain MM281 

which is deficient for all major bacterial magnesium transport systems (CorA, MgtA, 

MgtB) and screened for mutants, which still retained magnesium transport capability 

(Svidova S. et al. manuscript submitted).  

 

Interestingly, we found a number of mutants, which were still capable of 

transporting magnesium with amino acid combinations completely different from 

GMN. Nevertheless, these mutant variants of MRS2 required higher expression 

levels to overcome the growth defect of MM281 cells, exhibiting diminished 

magnesium transport ability compared to wild-type Mrs2 (Svidova S. et al. 

manuscript submitted).  

 

These observations indicate that the GMN motif can be replaced by different 

combinations of amino acids, even though GMN is highly conserved. Furthermore, 

the high divergence of the functional sequences from the native GMN is surprising. 

In our analysis of the mutants, a positively charged residue at the first and a 
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hydrophobic amino acid at the third position were often observed. The second amino 

acid (methionine) seems to be adaptable to any kind of amino acid.  

 

Almost, all the observed variants showed altered ion selectivity leading to a 

growth defect on solid media supplemented with Zn2+ or Mn2+. Given the fact that no 

patch clamping data are available for these mutant Mrs2 variants, one can postulate 

that these effects may be caused by a block of the ion conduction pathway or by 

excessive transport of these ions, leading to toxic effects (Svidova S. et al. 

manuscript submitted).  

 

The GMN motif thus seems to work in a concerted manner with the 

periplasmic loop in selecting and dehydrating the magnesium ion. The GMN motif is 

located at the membrane-periplasm/inter-membrane space at the very end of the 

first transmembrane helix (TM1) (Lunin et al, 2006). This location at the entrance of 

the transporter seems an ideal strategic site for the ion selectivity and the 

dehydration of the incoming ion (Eshaghi et al, 2006; Payandeh & Pai, 2006). 

Furthermore, it reveals that not the individual amino acids of this motif are important, 

but the structural properties generated collectively by this motif. This can be partially 

accomplished by amino acid combinations of completely different individual 

properties. It seems that GMN is the best combination of amino acids in nature to 

ascertain high selectivity and accompanying high transport capability of Mrs2 

(Svidova S. et al. manuscript submitted).  

 

The role of the Mrs2 C-terminus  
It has been reported that the Lpe10p-Mrs2 chimeric protein consists of the N-

terminal moiety of Lpe10p and the C-terminal part of Mrs2, including the long α7 

helix responsible for making the funnel domain showed enhance transport capability 

(Sponder et al, 2010). The higher transport capacity of this chimeric protein, 

compared to the wild Mrs2-Lpe10p protein may be because this fusion protein 

contains the conduction pathway of Mrs2 (Sponder et al, 2010). However, the 

exceptionally long C-terminus of Mrs2 also seems to play an important role in the 

conduction of Mg2+ ions. Based on the crystal structure of Tm-CorA, its biophysical 

aspects have been discussed and are proposed that the Tm-CorA C-terminus has a 
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role in the regulation of magnesium transport (Payandeh & Pai, 2006; Quamme, 

2010).  

 

Tm-CorA has a highly conserved positively charged sequence at the very C-

terminus of TM2, mostly four lysine residues (KKKK) (Lunin et al, 2006). The 

orientation of the TM2 helices in the structure positions the short, extremely basic C-

terminus of the protein at the intracellular side of the membrane, parallel to the two 

hydrophobic gates of the pore (Lunin et al, 2006; Payandeh & Pai, 2006; Svidova et 

al, 2010). Considering, the homo-pentameric nature of Tm-CorA, this positions at 

least 20 lysines residues just below the membrane, near the neck of the cytoplasmic 

funnel domain, creating a ring of positive charge, known as the “basic sphincter” 

(Eshaghi et al, 2006; Lunin et al, 2006; Payandeh & Pai, 2006). For the conduction 

of magnesium ion it seems that the basic sphincter, together with the hydrophobic 

constriction (hydrophobic gates) formed by Met291 and Leu294 seem to be the 

primary barrier for Mg2+ transport in Tm-CorA (Payandeh et al, 2008; Payandeh & 

Pai, 2006). This sphincter was proposed to draw the negative charge away from the 

conduction pathway at this level, in the close conformation and this obstruct the 

passage of the positively charged Mg2+ cation through the pore (Lunin et al, 2006).  

 

According to TMpred (an online server) TM2 of Mrs2 ends with 1 - 2 non 

conserved lysine residues. Considering the homo-pentameric nature of Mrs2 this 

position at least 5 - 10 lysines at the membrane-matrix interface, which resulting in a 

ring of positively charged residues. The Mrs2 subfamily has C-termini highly variable 

in length containing almost no conserved primary sequence motives (Weghuber et 

al, 2006). The Mrs2 family on average has about 20 % of positively charged 

residues at their C-terminus (Khan et al., manuscript submitted). In addition, the C-

terminus of Mrs2 also contains an arginine-rich motif (ARM) (Weghuber et al, 2006). 

The ARM is located about 40 amino acids away from the end of TM2 in the primary 

sequence. As no structure information of the C-terminus of Mrs2 is available it is 

difficult to model a structure of this part as well as to predict its function. Despite its 

distance from TM2, the ARM of Mrs2 may be located near the membrane in a three 

dimensional structure and would make a potential candidate for a basic sphincter in 

Mrs2. Even so, our observations do not conclude any important role of this motif in 

regulation of transporter. According to Weghuber et al, (2006) deletion of this motif 

141



(400-414 amino acids) resulted in anaemic Mg2+ uptake when expressed in low copy 

vector, but upon high copy expression no defect in growth was observed (Weghuber 

et al, 2006).  

 

It cannot be ruled out that deletion of a whole motif could result in drastic 

structural changes and a different orientation of the C-terminus in respect to the 

funnel domain as well as to the conduction pathway. This makes it difficult to to 

conclude here the importance of this motif for Mg2+ transport. To get more insight 

into the function of the positively charged KRRRK (402-406) stretch, we substitute 

Glu at these positions, in order to incorporate the opposite charge. This mutant had 

no defect in growth on non-fermentable carbon sources and slightly increased Mg2+ 

influx in mag-fura 2 measurements were observed. The observed enhanced 

transport activity may be caused by the negatively charged residues contributing to 

the formation of a negatively charged ring, which would eventually result in a 

stronger electrostatic interaction with the Mg2+. On the other hand, this mutation had 

no pronounced effect on regulation of the transporter (Khan et al., manuscript 

submitted).  

 

Interestingly, deletion of nearly the whole C-terminus (deletion after Thr376) 

turned out in a growth defect on non-fermentable carbon sources, equal to mrs2∆ 

cells. This is in line with the observed strong decrease of Mg2+ transport capacity in 

mag-fura 2 measurements of isolated mitochondria (Khan et al., manuscript 

submitted).  

 

Taken together, the small, non-conserved positively charged stretch (KRRRK, 

402-406) at the C-terminus seems not to be critical for the function of Mrs2 

transporter. On the other hand, deletion of the C-terminus (deletion of 94 residues at 

the C-terminus), diminish the transport activity. Likewise the ARM, the whole C-

terminus of Mrs2 displays an excess of positively charged amino acid residues (24 

positively charged out of 107 of total). The C-terminus deletion did not caused 

instability of the protein; rather protein levels were slightly raised. These 

observations demonstrate that the KRRRK-stretch is not important for the function of 

Mrs2 transporter, but the overall surplus of positively charged residues at the C-

terminus of Mrs2 might fulfill a similar function like that of the “basic sphincter” in Tm-
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CorA. This is also in agreement with the measurement of Mg2+ influx of the two 

chimeric Mrs2/Lpe10p proteins, where the fusion protein Mrs2-Lpe10p with out the 

Mrs2 C-terminus demonstrated weaker Mg2+ uptake in isolated mitochondria mag-

fura 2 measurements (Sponder et al, 2010).  

 

Moreover, it has been proposed for Tm-CorA that the C-terminus is directly 

involved in opening and closing of the transporter by pulling out the negatively 

charged residues from the ion conduction pathway. Accordingly, deletion of the 

whole C-terminus may result in decreasing opening and closing capabilities of the 

transporter. 

 

Magnesium sensing sites in Mrs2 and Tm-CorA 
Two divalent cation binding sites have been identified by Eshaghi at al. at the 

protomer-protomer interface within the funnel domain of Tm-CorA (Eshaghi et al, 

2006; Lunin et al, 2006; Payandeh et al, 2008) and have been characterized as a 

“divalent cation sensor (DCS)”. The two sites coordinate the metal ion differently: the 

first was found to bind the cation directly by two carboxylates of Asp89 and Asp253, 

while and the second, composed of Glu88, Asp175, Asp253 and His257, 

coordinating the hydrated metal cation indirectly (Eshaghi et al, 2006). According to 

a model for regulation of Tm-CorA, a torque is produced at the bottom of the stalk 

helix (α7) by releasing bound magnesium from the magnesium binding sites and 

move up toward the hydrophobic gate of the ion conduction pathway (Payandeh et 

al, 2008; Payandeh & Pai, 2006).  

 

Based on the structural comparison of Tm-CorA and our model of the Mrs248-

308 funnel, we identified the residues that would form a potential DCS in Mrs2, Asp97 

from one subunit and Glu270 from adjacent subunit, corresponding to the DCS1 of 

Tm-CorA. A sequence alignment of eukaryotic magnesium transporters reveals that 

the Asp97 and Glu270 residues, possibly coordinating the metal ion, are highly 

conserved in the whole subfamily. In the Mrs248-308 crystal structure Glu270 is 

located at the N-terminus of α7 corresponding to the position of Asp253 in Tm-CorA. 

 

143



Many efforts have been made to co-crystallize a monomer of Mrs2 with 

magnesium as well as to soak in the metals but no electron density has been 

observed for the metal ion. The addition of magnesium in the crystallization 

environment did not change the structure of the native protein and corroborate the 

notion that DCS is composed of ligands coming from adjacent subunits in the 

pentamer. Consequently, a single subunit cannot bind divalent ions with high affinity.  

 

In order to test the involvement of these amino acids in regulation of the 

channel, we performed site-directed mutagenesis of Asp97 to Ala, Phe and Trp. 

Amazingly, these mutants do not displayed any growth defect on non-fermentable 

carbon sources. Accordingly, no significant differences between wild-type Mrs2 and 

the mutant proteins in Mg2+ uptake measurements in isolated mitochondria could be 

observed, suggesting that a magnesium sensing site(s) composed of multiple ligand 

residues cannot be abrogated by a single residue mutation in Mrs2.  
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