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All visible objects, man, are but as pasteboard masks. 

But in each event — in the living act, the undoubted 

deed — there, some unknown but still reasoning thing 

puts forth the mouldings of its features from behind the 

unreasoning mask. If man will strike, strike through the 

mask! 

 

Captain Ahab in Moby Dick (Melville 1851) 

 

 

 

 

 

There is a theory which states that if ever anyone dis-

covers exactly what the Universe is for and why it is 

here, it will instantly disappear and be replaced by 

something even more bizarre and inexplicable.  

There is another theory which states that this has al-

ready happened. 

 

Adams (1980) 
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1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

On the 8th of August 2010 a devastating mudslide occurred in the Chinese Gansu 

Province after floods and torrential rainfall (BBC News 2010). Several landslides were 

triggered by intense rainfall, transported gravel and mud into the river and built up a 

temporary dam. The lake behind the dam grew to a length of 3 km before it finally 

broke (BBC News 2010). An estimated 1.8 million cubic meter of debris swept through 

three towns in Zhouqu county destroying homes and burying the area in mud several 

meters deep (Bloomberg 2010). More than 10,000 soldiers and rescue staff members 

were send to aid (Boston Globe 2010). According to Xinhua News Agency (2010) the 

total death toll of the mudslide event was 1,471 with several hundreds of people still 

missing. 

 

Disasters like the one in Gansu Province demonstrate the devastating effects that 

mass movements can have on society. However, the impacts of landslides are often 

underestimated and damage is not accounted for. This is also due to the effect that 

landslides are rarely sole events but mostly accompanying other natural hazards like 

storms with intense rainfall or earthquakes which trigger mass movements. In these 

cases damage is often accounted for the triggering event and not for the landslides. 

An illustrative example is the 2008 Wenchuan earthquake in Sichuan Province, China, 

which caused approximately 70,000 fatalities and was one of the worst natural disas-

ters in this year (MunichRe 2010b). Remarkably, 20,000 of those fatalities resulted 

from more than 15,000 mass movements (Yin et al. 2009). A closer look at the 50 worst 

disasters in 2008 listed by MunichRe (2010a) reveals that landslides processes are in 

no case the sole cause of a disasters but accompany 20% of all catastrophic events. 

Turner (1996) estimated the annual losses and fatalities from landslides and other 

mass movement processes in the USA to US $ 1-2 billion and 25-50 deaths. Krauter 

(1992) calculates the yearly economic damage for Germany alone as US $ 150 million. 

According to Yin (2009) the damage due to landslides cause property losses in China 

which add up to 10 billion RMB (approximately 1 billion EUR) and a death toll of 700 

to 900 each year. 

The occurrence of landslides is not only bound to the high-alpine regions of the world 

but also many lower mountain ranges suffer from landslides if steep terrain, unfa-

vourable geological conditions and triggering factors are present (Dikau and Schmidt 

2004; Van Den Eeckhaut et al. 2007). Moreover, it is not only fast landslide processes 

that pose a problem for societies. Generally, slow moving landslides do not require 

emergency actions like for example evacuation, but continuous displacement calls for 
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ongoing maintenance, adopted building codes and stabilisation works. Further on, 

even if observed displacement rates are small there is still the imminent danger of 

sudden acceleration which could lead to a catastrophic slope failure. 

In general, there are four approaches to counter risk from landslides (Schuster and 

Highland 2007): (1) avoiding hazards and restricting development in landslide-prone 

areas; (2) securing potentially dangerous slopes by grading and excavation, and en-

forcement of adopted building codes; (3) protecting existing infrastructure by techni-

cal mitigation measures; and (4) implementing monitoring and early warning sys-

tems. Avoidance is in most cases the easiest and cheapest option to prevent damage 

from mass movements, but is not possible in the case of already existing infrastruc-

ture. Excavation and protective measures are expensive and may not be technically or 

economically possible or feasible for large landslides. Badoux et al. (2009) note that 

communities threatened by mass movements are often also subject to other natural 

hazards like floods which also need sufficient protective measures. Landslide moni-

toring and early warning systems have been developed in many parts of the world 

but most cases consist of prototypic approaches as damage due to landslides is often 

perceived as private losses which led to poor investments by the public sector and 

only minor standardisation (Baum and Godt 2009).  

Despite the fact, that predictive landslide simulation models are very common meth-

ods to forecast future behaviour, or as Janbu (1996) notes, one of the three general 

tasks of slope stability practice along with investigative subsurface exploration and 

experience driven safety assessment, this is only poorly reflected in recent landslide 

early warning systems. Most technical systems rely on monitoring of external and 

internal factors and utilise thresholds which are either based on expert experience or 

model results. However, only very few examples exist where full advantage is taken 

of the predictive possibilities of landslide simulation and prediction models. 

Moreover, many regions which exhibit occurrences of mass movements are not 

equipped with early warning systems, even though the necessary input data like 

quantitative rainfall forecasts are widely available, and the technical advances in 

computers and internet make basic warning service feasible. 

1.2 RESEARCH OBJECTIVES 

This thesis deals with landslide analysis and the subsequent development and im-

plementation of local and regional early warning systems in the Swabian Alb. The 

local study area in Lichtenstein-Unterhausen comprises a extremely-slow reactivated 

deep-seated landslide, for which a relation between hydrological processes and dis-

placement reactivation was assumed in earlier studies (Kruse 2006; Bell 2007); how-

ever, no detailed monitoring data was available to verify this. In this study, it is tried 

to get deeper insights into slope hydrology by the installation of an extensive moni-
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toring system. The application of landslide simulation software aims to simulate and 

forecast landslide behaviour and consequently allow for early warning. On a regional 

scale, it is tried to assess the potential for regional landslide early warning based on 

rainfall thresholds. 

In the following, research questions and the respective objectives for local and re-

gional investigations are summarised. 

 

Local scale 

How does slope hydrology contribute to the reactivation of landslide movements? 

- Installation of a monitoring system for hydrology and slope movement 
- Combined analysis of hydrological and slope movement monitoring data 

 

How can physically-based slope stability models be applied in landslide early warn-

ing? 

- Simulation of landslide behaviour with a physically-based slope stability 
model 

- Development and implementation of a decision-support and early warning 
model 

 

Regional scale 

Are landslide triggering rainfall thresholds applicable to regional early warning in the 

Swabian Alb? 

- Analysis of available landslide inventories 
- Comparison of landslide events to landslide triggering rainfall thresholds 
- Implementation of a regional landslide early warning model 

 

The work presented is embedded into the ILEWS project in which a holistic approach 

is pursuit. The overall goal is to develop and implement an integrative landslide early 

warning system starting with the sensor in the field and ending with user-optimised 

warning messages and action advice. Additional information on the ILEWS project is 

provided in chapter 2.5. More detailed description of the results can be found in chap-

ter 7 and in Bell et al. (2010a). 

1.3 THESIS OUTLINE 

The thesis is designed to provide a systematic understanding of landslide early warn-

ing. Chapter 2 summarises the principles of landslides and the instability of slopes. 

Further on, a comprehensive review on landslide detection and monitoring methods, 

as well as applied landslide early warning systems is presented. The study area 

Swabian Alb, its natural characteristics and previous research on landslides are pre-

sented in chapter 3. The data used within this study and their properties are described 
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in chapter 4. Chapter 5 presents the methodologies applied in this study. Therein, the 

procedure of data analysis and the subsequent development and implementation of 

early warning models on the local and regional scale are explained. Results of this 

research are illustrated in chapter 6. Due to great diversity of the results, initial dis-

cussions are already provided in the respective subchapters. Some additional infor-

mation on the incorporation of the developed early warning models into an integra-

tive early warning system is given in chapter 7. Chapter 8 contains a concluding dis-

cussion in which the research questions are addressed. Perspectives for further re-

search and possible advancement of the developed early warning models, as well as 

the potential for a transfer to other study areas are summarized in chapter 9. The the-

sis ends with a summary given in chapter 10. Some additional information, english 

and german abstracts and a curriculum vitae are provided in the appendix. 
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2 THEORETICAL BACKGROUND 

2.1 LANDSLIDE PROCESSES 

2.1.1 Definitions and classifications 

A very basic but widely accepted and used definition for landslide was established by 

Cruden (1991) and Cruden and Varnes (1996) and defines a landslide as "the movement 

of a mass of rock, debris or earth down a slope". However, the term can be confusing if the 

parts of the word are considered. Cruden and Varnes (1996) note that it describes all 

kinds of mass movements and is not limited to granular soil (as land might suggest) 

or a sliding movement process. The term landslide is well established in the research 

community and will therefore also be used in this thesis as an overarching term refer-

ring to all movement types and material properties. Further on, the term mass move-

ment is used interchangeably with landslide.  

The most common classification for landslides is based on material properties and 

process types (Tab. 2.1). Besides the main types of movement processes there is one 

complex class which contains movement processes with two or more different proc-

esses acting together along with downslope movement of the landslide mass.  
 

Tab. 2.1: Mass movement classification based on process type and 
material (Cruden and Varnes 1996; Dikau et al. 1996) 

Process type  Type of material 

  rock debris earth 

Topple  rock topple debris topple earth topple 

Fall  rock fall debris fall earth fall 

 
Slide 

translational   
rock slide 

 
debris slide 

 
earth slide rotational  

Flow  rock flow debris flow earth flow 

Spread  rock spread debris spread earth spread 

Complex  e.g., rock avalanche e.g., flow slide e.g., slump-earthflow 

 

A second widely acknowledged classification of landslides is based on movement 

velocity (Cruden and Varnes 1996), which ranges from extremely fast to extremely 

slow (Tab. 2.2). Moreover, landslides can be distinguished regarding their state of 

activity. Cruden and Varnes (1996) established eight groups, namely active, sus-

pended, reactivated, inactive, dormant, abandoned, stabilized and relict mass move-

ments. Further on, single, multiple and successive movements are distinguished. 

Other differentiations can be based on, for example, the water content of involved 

materials (Cruden and Varnes 1996).  
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Tab. 2.2: Mass movement classification based on velocity of dis-
placement (Australian Geomechanics Society 2002 after Cruden and 

Varnes 1996) 

Class Description Typical 
velocity 

Expected damages and population reaction 

1 Extremely 
rapid 

>5 m/sec Disaster of major violence; buildings destroyed by impact of 
displaced material; many deaths; escape unlikely 

2 Very rapid >3 m/min Some lives lost; velocity too great to permit all persons to es-
cape 

3 Rapid >1.8 m/h Escape evacuation possible; structures destroyed 

4 Moderate >13 
m/month 

Some temporary and insensitive structures can be temporarily 
maintained 

5 Slow >1.6 
m/year 

Remedial constructions can be undertaken during movement; 
insensitive structures can be maintained with frequent main-
tenance work if total movement is not large during a particular 
acceleration phase 

6 Very slow >15 
mm/year 

Some permanent structures undamaged by movement 

7 Extremely 
slow 

<15 
mm/year 

Imperceptible without instruments; construction possible with 
precautions 

 

The term creep, which was used to describe continuous and imperceptible slow 

movements of the ground (e.g., Terzaghi 1950; 1961) was omitted due to various defi-

nitions and interpretations. Cruden and Varnes (1996) propose to not use the term 

creep and to replace it with the appropriate descriptors of their classification. How-

ever, the term creep may still be applied in a simple mechanical way to describe de-

formation that continues under constant stress (Cruden and Varnes 1996; Terzaghi et 

al. 1996). 

2.1.2 Principles of slope stability 

Landslides are a sign of slope instability which is defined as the "propensity for a slope 

to undergo morphologically and structurally disruptive landslide processes" (Glade and 

Crozier 2005b p.43). Glade and Crozier (2005b) visualise slope stability as a dynamic 

spectrum (Fig. 2.1). On one end, there is a stable slope which is subject to preparatory 

factors which convert the slope to a marginally stable state. At this point, dynamic 

triggering factors exceeding certain thresholds can alter the state of the slope to ac-

tively unstable which leads to continuous or intermittent movement. During the de-

scribed transformation from stable to actively unstable slope conditions the margin of 

stability is continuously decreasing. Precondition or pre-disposing factors are thought 

as static factors that influence the margin of stability and allow dynamic factors. Pre-

paratory factors are dynamic which change the stability margin over time without 

initiating slope failure. Typical examples for preparatory factors are weathering, de-

forestation, tectonic uplift or environmental change. Triggering factors actively shift 

the state of stability to an unstable condition. Common triggers for landslides are in-
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tense rainstorms, seismic shaking or slope undercutting (Glade and Crozier 2005b). 

Inherent in this concept is the theory of extrinsic and intrinsic thresholds (Schumm 

1979). Sustaining factors control the behaviour of the actively unstable state and there-

fore dictate the duration of movement, form and run out distance of slope failure. 

A similar concept is described by Leroueil (2004) who distinguishes four stages of 

landslide movement: a pre-failure stage including deformation process leading to 

failure, the onset of failure characterized by the formation of a continuous shear sur-

face through the entire soil mass, a post failure stage starting from failure until the 

mass stops, and a reactivation phase when sliding occurs on a pre-existing shear sur-

face.  

 

Stresses acting within a slope can be illustrated by vectors (Fig. 2.2), where a mass (m) 

is subject to acceleration of gravity (g) which can be differentiated into a downslope 

component (�) and a force acting perpendicular to slope surface (�). Distribution of 

stresses depends on slope angle (β) and downslope force increases with higher slope 

angles. 

 

Fig. 2.2: Stress vectors within a slope (based on Ahnert 2003) 
 

 

Fig. 2.1: Stability states and destabilising factors (after Glade and 
Crozier 2005b, based on Crozier 1989)  
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The potentially destructive effects of slope instability led to early research in predic-

tion of slope failures. Calculation of slope stability dates back to Coulomb (1776) and 

his work on stability of retaining walls and determination of the most likely shear 

surfaces with a wedge method, which are still valuable today (Ahnert 2003). Another 

important advance of slope stability calculation was made by Terzaghi (1925), who 

established the fundamental concept of effective stress. Therein, the effects of pore-

water pressure in slope stability are acknowledged. Pore-water pressure is the pres-

sure of water in the voids between solid particles of the soil (Casagli et al. 1999). As 

water can not sustain shear stress, only the skeleton of solid particles at their contact 

points can, slope stability decreases with a higher pore-water pressure. The stability 

of slope can be assessed by calculating the Factor of Safety (FoS), which is the ratio of 

driving and resisting forces within a slope (Crozier 1989): 

 

 ��� = �	
��	���
���	
�	
��	���
�� =	 �������	�����

� =	 ���
�
� 	������ 	�����

�
� 	�!��

   (eq. 1) 

 

where � = shear stress 
 " = cohesion with respect effective normal stress 
 � = total normal stress 
 # = pore-water pressure 
 � = total normal stress 
 �′ = � − # 
 &′ = angle of internal friction with respect to effective normal stress 
 ' = weight of the material; that is ( = bulk density multiplied by ) =	
 * = angle of shear surface 

 

In theory, a slope is stable as long as the FoS is greater than one and slope movement 

commences if the FoS is 1.0 or smaller. However, Glade and Crozier (2005b) stress the 

point that the FoS is only a relative measure of stability as it gives no information on 

the magnitude of destabilisation that is needed until slope failure occurs. Moreover, 

some authors describe the onset of movements even before the FoS becomes lower 

than 1.0 (Petley et al. 2002, 2005b, 2005c) which they attribute to the development of 

micro-cracks which progressively form a complete shear surface.  

The Mohr-Coulomb equation given above is the basis for limit equilibrium analyses 

and has been widely applied to calculate the stability of potential slip surfaces. How-

ever, in this form it applies to drained failures, where no excess pore pressure is gen-

erated during shearing. However, undrained conditions can involve the development 

of significant excess pore pressure and cause liquefaction, like in the case of low den-

sity, fine-grained, saturated soils (e.g., quick-clay) (Bovis 2004). Moreover, shear 

strength of rock is largely affected by geological bedding and stratification, the prop-
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erties of involved materials, and the morphology and complex interactions along dis-

continuities like cracks and joints during shearing (Prinz and Strauß 2006). 

 

Examination of shear parameters and the stress-strain behaviour of materials are pri-

marily experimental, because of the technical difficulties to study the processes in 

nature. Shear parameters are generally determined in the laboratory by undertaking 

uniaxial or triaxial shear tests (Wu 1996). A relatively undisturbed soil sample is 

placed into a shear box and stress is applied until the material fails. Applied loads and 

subsequent strains are recorded. Idealized stress-strain curves for brittle and ductile 

failure regimes are given in Fig. 2.3. 
 

 

Fig. 2.3: Idealized stress-strain curves for brittle (A) and ductile (B) 
deformation (Petley and Allison 1997) 

Most geological materials and engineering soils can display both brittle and ductile 

failure modes depending on their confining pressure (Cristescu 1989). However, brit-

tle failure is dominant at low confining pressures representative for shallow failures 

(Petley and Allison 1997). As stress or load is applied soil materials generally display 

an initial phase of elastic and recoverable strain. The applied stress is loaded on the 

grain-bonds within the material which deform but do not break. An increase of stress 

causes the material's weakest bonds to break and an elastic-plastic phase can be ob-

served which is characterized by increasing strain rates. As more and more bonds 

break, peak strength is exceeded and shear strength is significantly reduced. The 

shear surface fully develops in the strain weakening phase in which shear strength 

steadily reduces to a residual value. During this phase shear zone contraction or dila-

tion may occur which affects pore pressures and therefore strain rates (Iverson 2005). 

Thereafter, strains primarily occur as displacement along the shear surface.  

Ductile behaviour can be observed at high effective stresses prevalent in very deep-

seated landslides and in materials with little or no inter-particle bonding like weath-

ered clays (Petley and Allison 1997). The initial phases of elastic and elastic-plastic 

strain are similar to the brittle failure regime. However, due to the high confining 

stress no shear surface can develop. Increased load results in purely plastic deforma-

A B 
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tion at constant stresses as the material reforms. Moreover, a transition between duc-

tile and brittle behaviour was observed by (Petley and Allison 1997) at very high pres-

sures, which are present in very deep-seated landslides. 

 

As mentioned above the term creep does not describe a certain landslide type but 

refers to the mechanical behaviour of geological materials to constant stress. Some 

creep takes place in almost all steep earth and rock slopes and may concentrate along 

pre-existing or potential slip surfaces or distribute evenly across the landslide profile 

(Fang 1990). Creep movements in landslide can be continuous or may vary seasonally 

with hydrological conditions (Petley and Allison 1997). Creep can be maintained for 

long periods, however, creep gradually decreases shear strength and a slope's margin 

of stability (Fang 1990) and eventually the slope may fail.  

A widely acknowledged concept of creep distinguishes between the phases of creep 

movement (Okamoto et al. 2004; Petley et al. 2005b, 2005c; 2008). When constant stress 

lower than peak strength is applied to a soil mass subsequent strains are time-

dependant and can be visualised as displacement versus time plot (Fig. 2.4). In the 

primary creep stage strains are initially high due to elastic deformation but decrease 

with time. During the secondary creep phase the material suffers diffuse damage but 

strains are generally slow or almost steady (Okamoto et al. 2004), or may even stop 

altogether (Petley et al. 2008). When diffuse micro-cracks start to interact to form a 

shear surface, the critical point into the tertiary phase is reached (Reches and Lockner 

1994; Main 2000). This phase is characterized by a rapid acceleration of displacement 

until final failure. 
 

 

Fig. 2.4: Idealized strain curves for the three stages of creep (after 
Petley et al. 2008) 
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The increasing displacement rates associated with rupture growth and micro-crack 

interactions during the tertiary creep stage have been subject to research for a long 

time in order to predict final failure (Saito 1965; Bjerrum 1967; Saito 1969; Voight 1989; 

Fukuzono 1990) and volcanic eruptions (Voight 1988). The concept is frequently 

termed progressive failure analysis and usually employs examination of movement 

patterns by plotting movement in Λ − , space, where Λ = 1// (/ is velocity and , is 

time) (Petley et al. 2002).  

 

It has been observed in many shear experiments and real landslides that linear trends 

in acceleration occur if failure is imminent. This was the case for first-time failures 

and for failures in which brittle behaviour was dominant in the basal shear zone. 

However, reactivated landslides and failures where ductile deformation is dominant 

display asymptotic trend in Λ − , space which has been observed in several land-

slides, e.g., in Italy, New Zealand, California, Japan and the UK (Petley et al. 2002; 

Carey et al. 2007).  

The potential for prediction and early warning of landslide failures has been showed 

by several case studies. Kilburn and Petley (2003) and Petley and Petley (2006) ana-

lysed displacement data from the famous Vaiont reservoir rockslide in Northern Italy, 

which caused a flood wave that killed around 2000 people in 1963. The result of the 

analysis was that at 30 days before final failure a transition to a linear trend in move-

ment acceleration was visible and final failure was therefore predictable. Moreover, in 

the case of the artificial landslide experiment at the Selford slide (Selford Cutting 

Slope Experiment) final failure could be predicted 50 days in advance (Petley et al. 

2002).  

Despite its potential, progressive failure analysis has not been integrated into an early 

warning system yet. A test application to the slope under investigation in this study 

failed because of slow movement rates and insufficient acceleration phases (Thiebes et 

al. 2010). 

 

Slow active landslides are widespread in many geomorphological contexts and mate-

rials, and can display steady movements over long periods of time, often along com-

pletely developed shear zones (Picarelli and Russo 2004). Changes in displacement 

rates of slow or extremely slow landslides is in many cases related to varying pore-

water pressures (Leroueil 2004) and movements can be continuous or intermittent. 

Especially in landslides of moderate depths pore pressures primarily drive displace-

ments, while in deeper landslides creep and erosion, as other phenomena of stress 

relief, are the main influential factors (Picarelli and Russo 2004). While pore pressures 

control landslide movement on short and medium time-scales, erosion, weathering, 



12 2 | Theoretical background 

 

 

progressive weakening due to strain are influencing on a larger time-scale (Picarelli 

and Russo, 2004). 

Seasonal variations of pore pressures close to surface are not necessarily reflected by 

deeper layers if materials are rich in clay (Leroueil 2004). Moreover, clays also influ-

ence infiltration and slope stability by their swelling and drying behaviour. Very dry 

clay may develop cracks which allow for quick percolation into depth along preferen-

tial flow paths. Preferential flow paths can have a positive effect on slope stability by 

allowing quick drainage of potentially unstable areas, but can also have an adverse 

effect by contributing additional water to areas where shear surfaces may develop 

(Uchida et al. 2001). Infiltration in unsaturated materials is a complex process 

(Leroueil 2004) and strongly dependant on initial conditions such as antecedent soil 

water conditions, degree of saturation, pore pressure field, hydraulic conductivity 

and amount of water required for saturation. As a result, it is extremely difficult to 

relate rainfall conditions to pore-water pressures and to the occurrence of landslides. 

Moreover, transferring one threshold to an entire landslide is extremely difficult 

(Picarelli and Russo 2004). 

Slow moving slopes often interact with infrastructure as movement rates are gener-

ally low, so that permanent avoidance or evacuation is not necessary (Picarelli and 

Russo 2004). Still there is a danger of acceleration, as many catastrophic slope failures 

are preceded by long periods of slow creep (Petley and Allison 1997). Geotechnical 

stabilisation on the other hand would in many cases be too expensive or non-effective.  

2.1.3 Systems theory considerations 

Landslides are the results of complex interaction within the natural environment, and 

if human intervention is present, the interactions and feedbacks become even more 

complex (Armbruster 2002). A widely acknowledged approach in physical geography 

was laid out by Chorley and Kennedy (1971) and aimed to provide a theoretical 

framework which allows for analysis of form, material, and processes, as well as 

interaction and feedbacks (Dikau 2005). Moreover, the conceptual approach 

comprises variable space and time-scales of system evolution and external system 

control, as well as early approaches to non-linear system response (Slaymaker 1991). 

Four types of systems can be distinguished: morphological systems, cascading 

systems, process-response systems and control systems (Chorley and Kennedy 1971). 

Following Glade (1997) morphological systems can be used to describe the interaction 

between landslide-prone regions and potentially landslide-triggering rainfall events. 

Bell (2002) notes, that if research focuses on, for example, landsliding of periglacial 

strata cascading systems may be more appropriate. Research on factors controlling 

landslide behaviour can benefit from a process-response system point of view, while 

control systems are important in geomorphological hazard research where direct 
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human manipulation of material parameters aims to decrease risks (Dikau 2005). The 

effects of external perturbation on a geomorphological system are exemplified for 

alluvial deposits in Fig. 2.5. 
 

 

Fig. 2.5: Effects of external perturbations on a geomorphological sys-
tem (based on Bull 1991) 

Reaction time is important within landslide research and illustrates how fast a slope 

reacts to external perturbation, such as rainfall, snow melting or earthquakes. 

Relaxation time describes the velocity of movement until all energy is depleted and 

may range from slow creeping movements to sudden failure. During persistence time 

a slope is stable until further perturbation impacts trigger further system response. 

 

The classic systems approach by Chorley and Kennedy (1971) is essentially based on 

the concept of thermo-dynamic equilibrium which means that a system will return to 

a steady-state by negative feeback effects after external perturbations (Dikau 2006). In 

recent years, however, research shifted more to the analyis of non-equilibrium 

systems and non-linear relationships (Dikau 2005). Nonlinearity implies that "outputs 

or responses of a system are not proportional to inputs or forcings across the entire range of the 

latter" (Phillips 2006 p.110), which is dominant in geomorphic systems. Sources of 

nonlinearity in nature are summarized by Phillips (2003) and comprise thresholds, 

storage effects, saturation and depletion, self-reinforcing positive feedbacks, self-

limitation, competitive relationships, multiple modes of adjustment, self-organisation 

and hysteresis. Nonlinear system analysis provides, according to Dearing (2004), new 

insights and aids to understand system behaviour. Novel concepts developed in this 

area of research include complexity, self-organisation, deterministic chaos and are 
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reviewed and discussed in detail elsewhere (Phillips 1992a, Phillips 1992b; Richards 

2002; Favis-Mortlock and De Boer 2003; Phillips 2003; Dikau 2006). 

 

There is no single, precise definition of complexity (Favis-Mortlock and De Boer 2003). 

However, complexity may loosely be delineated as the fact that systems can not be 

described by the properties of its parts (Gallagher and Appenzeller 1999). According 

to Phillips (1992a) complexity can arise from cumulative process-response 

mechanisms which are far too numerous to be accounted for in individual details, or 

due to multiple controls over process–response relationships that operate over a 

range of spatial and temporal scales. 

The studies of Bak et al. (1988) on sand-pile models provided some insights on 

complex systems. In these models grains were dropped onto a sand pyramid. This 

resulted either in no changes, or in landslides of various sizes. The landslide sizes 

were found to follow a power-law distribution, but it was, however, not possible to 

predict the size of the next landslide. The fact that the system drove itself to a critical 

state was referred to as self-organised criticality, a concept that has been been widely 

applied to geomorphological processes (Favis-Mortlock 1998; Phillips et al. 1999; Fon-

stad and Marcus 2003; Favis-Mortlock 2004). 

Deterministic chaos describes the sensitivity of a system to initial conditions and 

small perturbations, whereby initial differences or effects of minor perturbations tend 

to persist and grow over time and may have unpredictable and apparently random 

consequences (Phillips 2003). The basic principle of determinstic chaos has popularly 

been described by the butterfly effect, where the flap of butterfly wings in one part of 

the world may cause a hurricane at another place. Chaotic behavior was first 

described by Lorenz (1963) who simulated meteorological processes and found 

drastically differing model results depending on minimimal changes to small decimal 

places. Prediction of model states was only possible for short time-spans. 

These aspects of nonlinearity have drastic consequences for the predictability of 

natural phenomena such as landslides (Von Elverfeldt 2010). However, this does not 

mean that prediction is not possible as Dikau (2005) notes: nonlinear systems can be 

simple and predictable, but this is not necessarily the case for complex systems. Most 

landslide simulation programs, such as the models presented in chapter 2.3, can not 

accomodate nonlinear system behaviour, such as complexity, self-organisation or 

deterministic chaos. Some landslide related research projects, however, exploited for 

example self-organised criticality for prediction of landslides and forest fires (Turcotte 

and Malamud 2004), characterisation of landslide evolution (Huang et al. 2008) or 

analyis of triggering conditions (Stähli and Bartelt 2007). Moreover cellular automa 

have widely been used to simulate self-organising complex systems in geomorphic 
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research (Smith 1991; Avolio et al. 2000; D’Ambrosio et al. 2003; Iovine et al. 2005; 

Fonstad 2006). 

2.1.4 Landslide triggering 

Even though landslides can occur without the impact of external factors, generally 

their occurrence is connected to some kind of triggering event. Many factors can act as 

triggers for landslides. The most common natural triggers are either related to geo-

logical events, such as seismic shaking due to volcanic eruptions or earthquakes, or 

hydrological events such as intense rainfall, rapid snowmelt or water level changes in 

rivers or lakes at the foot of slopes (Wieczorek 1996). Moreover, human interaction in 

the form of loading or slope cutting can trigger landslide events. The most important 

trigger, however, in both shallow and deep-seated landslides is intense rainfall (Cro-

sta and Frattini 2008). Infiltrating rain percolates within the soil, thus increasing pore 

pressures at hydrologic boundaries, which subsequently decreases shear strength. 

Positive pore-water pressure may occur directly caused by infiltration and percolation 

(saturation from above), or may be the result of perched ground water tables (satura-

tion from below) (Terlien 1998). Important factors determining the evolution of satu-

ration are soil permeability and stratification, preferential flow paths, as well as me-

chanical characteristics (Berardi et al. 2005). 

 

In the following landslide triggering, the efforts made to predict landslide occurrences 

with respect to hydrological thresholds will briefly be described. More general re-

views on landslide triggering (Wieczorek 1996; Schuster and Wieczorek 2002; Wiec-

zorek and Glade 2005) and rainfall threshold determination (Terlien 1998; Wieczorek 

and Guzzetti 1999; Polemio and Petrucci 2000; Aleotti 2004; Wieczorek and Glade 

2005; Guzzetti et al. 2007; Guzzetti et al. 2008; Brunetti et al. 2010) can be found in the 

respective literature. 

 

Prediction of landslide triggering thresholds is one of the key issues in landslide re-

search (Berardi et al. 2005), and established thresholds have an important role in early 

warning (Terlien 1998). One of the most influential works in this field was published 

by Caine (1980) who worked on landslide triggering rainfall thresholds based on rain-

fall intensity and duration analyses. Since then, many research projects worked on 

defining rainfall thresholds which trigger landslides. Triggering thresholds are pre-

dominantly expressed as rainfall intensity and duration, or cumulative and antece-

dent rainfall, and can be defined as the line fitting the minimum intensity of rainfall 

associated with the occurrence of landslide in different areas (Caine 1980). However, 

Terlien (1998) notes that rainfall events that did not cause landslides also should be 

recognised. Therefore, minimum and maximum thresholds should be acquired, 
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where rainstorms below the minimum threshold never cause landslides, and storms 

above maximum threshold always lead to landslides (Glade 1998; Crozier 1999). Be-

tween these thresholds landslides may occur under certain conditions.  

 

Landslide triggering thresholds differ from one region to another based on hydro-

climatological and geophysical properties, such as regional and local rainfall charac-

teristics and patterns, slope morphometry, soil characteristics, lithology, morphology, 

climate and geological history (Crosta 1998). Further on, landslide triggering thresh-

olds may also vary with time (Crozier 1999), for example due to seasonal changes of 

vegetation (Wieczorek and Glade 2005). Moreover, Crozier and Preston (1999) note 

that after movements have occurred resistance to further events may occur, if for ex-

ample., all material for future debris flows has already been transported.  

Guzetti et al. (2007) distinguish between rainfall thresholds on three spatial scales, for 

example, global, regional and local scale. A further distinction between landslide trig-

gering rainfall thresholds can be made between statistical or empirical and determi-

nistic thresholds (Guzzetti et al. 2007). When sufficient data on landslide occurrences 

and rainfall conditions are available, thresholds can be determined in a statistical way. 

With limited data deterministic models have to be applied to predict landslide behav-

iour under certain hydrological conditions (Terlien 1998).  

 

Most case studies of rainfall thresholds relate to shallow landslides or debris flows. 

Triggering of these landslide types generally refers to short and intense rain storms, 

while the occurrence of deep-seated landslides is more affected by long-term rainfall 

trends (Terranova et al. 2007). Deep-seated landslides share a more complex hydrol-

ogy compared to shallow landslides and simple correlations between rainfall and 

deep-seated landslide triggering can not be determined (Terlien 1998). To establish 

triggering rainfall thresholds in deep-seated landslides it is necessary to include rain-

fall, water infiltration and percolation, generally by means of modelling subsurface 

hydrology (Ekanayake and Phillips 1999), and to determine the location of shear sur-

face, as well as the hydrological triggering mechanism (Terlien 1998). 

The intensity-duration method first proposed by Caine (1980) has been applied in 

many other studies (Pasuto and Silvano 1998; Jakob et al. 2006; Matsushi and Matsu-

kura 2007; Crosta and Frattini 2008; Guzzetti et al. 2008; Capparelli et al. 2009; Saito et 

al. 2010). Rainfall duration generally refers to periods between 10 minutes and 35 

days (Guzzetti et al. 2008), but some authors extended the time span analysed to sev-

eral months (Terranova et al. 2007; Marques et al. 2008). Long-term rainfall trends 

have been integrated into threshold determination by relating intensity and duration 

of rainstorms to mean annual precipitation (MAP) (Giannecchini 2006; Giannecchini 

et al. 2007; Guzzetti et al. 2007; Sengupta et al. 2009). 
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Crozier and Eyles (1980) developed the Antecedent Daily Rainfall method to deter-

mine rainfall thresholds based on antecedent and daily rainfall. A decay factor de-

rived from discharge hydrographs controls the influence of antecedent soil water. 

Several other case studies applied this methodology as well (e.g., Crozier 1999; Glade 

2000; Glade et al. 2000; Strenger 2009).  

 

Although rain is regarded as the prime factor of landslides triggering, infiltration and 

the development of positive pressures at potential shear surfaces are initiating land-

slide processes (Reichenbach et al. 1998; Ekanayake and Phillips 1999; Leroueil 2004). 

There is, however, no established standard procedure for calculation of pore pressure 

in relation to rainfall events (Persson et al. 2007). A common procedure is to calculate 

pore pressures conditions required for slope instability which are then compared to 

observed pore pressures and checked for reasonability. Based on multiple regression 

analysis of piezometric measurements Matsushi and Matsukura (2007) established 

rainfall intensity duration thresholds. Godt et al. (2006) applied a similar approach 

and derived rainfall thresholds by comparing rainfall data with measurements of 

volumetric water content. Other authors utilise models to predict pore pressure in 

response to rainfall events. Wilson (1989) presented a simple numerical model to in-

vestigate the build up of saturation and establish rainfall thresholds. The model 

represents soils as leaky barrels, where additional water is added at one rate, while 

water is lost by another rate. Wilson and Wieczorek (1995) combined the model with 

measurements of piezometric levels and data on antecedent rainfall to derive rainfall 

thresholds. A related approach has been performed by Terranova et al. (2007) who 

derive critical rainfall situation for landslide triggering based on modelled infiltration 

and comparison with piezometer data. Moreover, several other case studies also ap-

plied hydrological models to predict pore pressure evolution in response to rainfall 

events to establish landslide triggering rainfall thresholds (Reid 1994; Crosta 1998; 

Terlien 1998; Ekanayake and Phillips 1999; Iverson 2000; Frattini et al. 2009). 

Coupled hydrology and stability models have been widely applied to predict the ef-

fects of rain storms, and to define critical situations. Examples for local scale (Buma 

2000; Brooks et al. 2004; Berardi et al. 2005; Pagano et al. 2008), and regional scale 

(Dhakal et al. 2002; Crosta and Frattini 2003) approaches can be found in the respec-

tive literature. 

2.2 LANDSLIDE INVESTIGATION AND MONITORING 

The occurrence of landslides is sometimes surprising for humans as they seem to oc-

cur without previous warning signs. However, (Terzaghi 1950) noted that if a land-

slide comes as a surprise to eyewitnesses, it would be more accurate to say that the 

observers failed to detect the phenomena which preceded the slide. Therefore, dedi-
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cated landslide analyses and monitoring methods have to be applied to be able to 

recognise potential slope failures.  

Many methodological approaches have been developed to reveal the occurrence of 

landslides in space and time, to investigate processes acting within mass movements 

and to monitor ground displacements. The wide range of possible methodological 

approaches for landslide research stretch from field or desk-based mapping, to meas-

urements of surface and subsurface movement in field or by remotely acquired data 

sources, recordings of triggering factors like rainfall or hydrological parameters, and 

the use of simulation models.  

Landslides can be assessed on various spatial scales (Glade and Crozier 2005a), but a 

general distinction between local and regional approaches can be made. The initial 

step of regional approaches is to define the spatial occurrence of landslides, com-

monly by preparing landslide inventories (Wieczorek et al. 2005). For local analyses 

Nakamura (Nakamura 2004) argues that one of the first steps to understand the land-

slides under investigation are field investigations and boreholes to define the slip sur-

face. Regarding rockslides, but also applicable to other landslide phenomena, (Glawe 

and Lotter 1996) stated that when instabilities can be expected geotechnical investiga-

tions, displacement monitoring and modelling techniques are generally applied. Fol-

lowing (Cornforth and Mikkelsen 1996) ideal features of a landslide monitoring sys-

tem are continuous measurements of pore-water pressure in the shear zone by auto-

mated sensors in order to correlate these with rainfall data. 

 

In the following a review of methods for landslide detection, surface and sub-surface 

investigations and monitoring techniques is given. The aim of this chapter is not to 

provide a complete summary of all methods available for landslide research, but 

rather to give a comprehensive overview on the methods most used in research prac-

tice and to highlight their advantages and disadvantages for monitoring. More infor-

mation on the methodological approaches to landslide investigation and monitoring 

methods can be found in the sources given or in the general reviews (Franklin 1984; 

Keaton and DeGraff 1996; McGuffey et al. 1996; Mikkelsen 1996; Soeters and Van 

Westen 1996; Turner and McGuffey 1996; Olalla 2004; Van Westen 2007; Liu and 

Wang 2008). No self-contained review on existing monitoring systems will be given as 

many examples of monitoring systems are presented in the review on early warning 

systems (chapter 2.4). It is however important to mention that many landslide moni-

toring systems employ several different techniques, such as methods for measuring 

landslide movement and hydrology. 

Regarding monitoring it should be made clear, that there is no obvious threshold that 

determines what time intervals between repeated measurements are nevessary for it 

to be classed as monitoring. Ollala (2004) points out that monitoring can range from, 
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for example, inclinometer measurements carried out once in a year, or automatic 

measurements in intervals of seconds. Therefore, every repeated measurement could 

be defined as monitoring. Automatic monitoring systems are however more conven-

ient than manual measurements as they do not require humans to regularly go to 

study sites which may be remote or difficult to access. Another advantage of auto-

mated monitoring systems is the ability to control measures by time intervals, thresh-

olds or user input. Besides this, questions of data storage, transmission and security 

arise with such automatic systems. Moreover, data should automatically be processed 

and checked to prevent inconsistencies (Olalla 2004). However, issues of managing 

automatic monitoring systems will not be discussed here. 

2.2.1 Mapping and inventory approaches 

A basic method to detect landslides in space and to prepare landslide inventories is 

geomorphological mapping in the field. Geomorphological mapping requires expert 

knowledge and experience of landslides and the study area. Results can vary drasti-

cally depending on the specialists who prepared the map, the knowledge on the study 

area and the processes present (Guzzetti et al. 2000; Ardizzone et al. 2002). Repeated 

mapping campaigns in the field without further measurements give rather qualitative 

information on how processes have evolved over time but are essential for process 

understanding. Important information could include cracks that open up due to 

ground displacements, or damage to existing infrastructure. 

 

Landslide maps and inventories are frequently prepared based on the analysis of re-

mote sensing data like stereographic aerial or space-borne images, and digital terrain 

models (DTM) from, for example, LiDAR (Light Detection And Ranging) data. Gen-

eral reviews on landslide mapping and inventories can be found in various literature 

sources (e.g., Soeters and Van Westen 1996; Malamud et al. 2004; Guzzetti et al. 2006; 

Van Westen 2007). 

The use of aerial photography is well established in landslide research (Soeters and 

Van Westen 1996). Interpretation of aerial images is primarily qualitative; however 

photogrammetric methods can be used to extract quantitative information. While 

qualitative interpretation is common, quantitative studies are more rare, probably due 

to limited availability of good quality photographs, adequately fixed control points 

and cost (Morgenstern and Martin 2008). However, several landslide related quantita-

tive photogrammetric studies have been described (Maria et al. 2004; Mills et al. 2005; 

Hu et al. 2008; Liu and Wang 2008; Smith et al. 2009). 

Medium resolution satellite imagery, such as LANDSAT, SPOT, ASTER, IRIS-D etc., 

is today used routinely to create landuse maps and inventories of landslides (Van 

Westen 2007). He also notes that Google Earth and other providers of high resolution 
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satellite data greatly facilitate mapping by offering capabilities of creating polygons 

and exporting them to Geographic Information Systems (GIS). In several case studies 

landslide inventories were created based on satellite imagery (Mondini et al. 2009; 

Fiorucci et al. 2010; Santurri et al. 2010; Yang and Chen 2010) or Google Earth (Sato 

and Harp 2009; Chigira et al. 2010). 

In recent years the interpretation of Airborne Laser Scanning (ALS) DTM data has 

been frequently applied for creation of landslide inventories (Van Westen 2007). By 

removing vegetation and other objects from the DTM, Digital Surface Models (DSM) 

can be created (Schulz 2004). This together with different modifiable angles of shad-

ing enable very detailed mapping of landslides and other geomorphological features 

(Haneberg 2004; Thiebes 2006). Examples of ALS-based landslide maps are provided 

by several authors (Chigira et al. 2004; Sekiguchi and Sato 2004; Ardizzone et al. 2007; 

Eeckhaut et al. 2007). 

By using multi-temporal remote sensing data sets landslides can be dated, and activ-

ity and evolution quantitatively investigated. Examples for multi-temporal landslide 

inventories are provided by several authors (e.g., Cardinali et al. 2002; Dai and Lee 

2003; Brennecke 2006; Imaizumi et al. 2008; Chiang and Chang 2009). 

Several automatic landslide detection and mapping approaches have been developed 

and are comprehensively reviewed by (Van Westen 2007). These approaches utilise 

DTM subtraction analysis or multi-spectral analysis of satellite imagery. Fairly recent 

applications of an automated landslide mapping system are presented by Tarantino et 

al. (2005) and Booth et al. (2009). 

Another remote-sensing method for mapping landslides and for detection rates and 

extents of ground deformations is Synthetic Aperture Radar (SAR). SAR and the re-

lated methods of Interferometric SAR (InSAR), and their use for landslide research are 

extensively reviewed by Rosen et al. (2002), Foese et al. (2004) and Morgenstern and 

Martin (2008). SAR is based on microwave signals which are emitted by a satellite or 

airplane and the back-scattered signals, which represent distance measurements, are 

recorded. By processing two slightly offset images from the same flight paths InSAR 

images can be created which can be used to create pixel-based images which form a 

DTM. The benefits of this method are that radar measurements can be performed at 

almost every weather condition and at day and night. Furthermore, large areas can be 

analysed in a short period of time. Determination of displacements can be achieved 

by analysing images from different flights. To further increase the accuracy of dis-

placement measurements Permanent or Persistent Scatterer Interferometric Synthetic 

Aperture Radar (PS-InSAR) was introduced to landslide research (Morgenstern and 

Martin 2008). Permanently fixed ground-points, in many cases buildings or other con-

structions, are determined in multiple InSAR images and relative movements of these 

points can be measured. Best results, with accuracy of measurements in the sub-
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centimetre range, can be obtained for movements along the line of sight (Rosen et al. 

2002; Luzi et al. 2005). Several case studies have been performed utilising satellite-

based InSAR technology to detect and monitor ground movements (Colesanti and 

Wasowski 2004; Ferretti et al. 2005; Meisina et al. 2006; Calcaterra et al. 2008; Vallone 

et al. 2008; Yin et al. 2010b). 

Also historic data such as newspaper articles, eyewitness records, road construction 

office reports, city archives, old photographs and many more sources can be utilised 

for landslide mapping. In many cases spatial and temporal information regarding 

landslide occurrence can be found which are exceptionally useful for understanding 

the magnitude-frequency behaviour of mass movements (Glade 2001). Examples of 

landslide inventories based on historic data can be found in, for example, Calcaterra 

et al. (2003), Carrara et al. (2003), Tropeano and Turconi (2004) and Kohn (2006). 

2.2.2 Displacement measurements 

Many field methods exist to measure ground displacements due to landslide move-

ments. A simple but convenient field method is the use of quadrilaterals (Keaton and 

DeGraff 1996) which consist of four stakes that are fixed inside and outside the land-

slide body. Distances between the stakes can then be measured manually by tape. 

Quadrilaterals have been applied within several research applications (Baum and 

Fleming 1991; Bogaard 2000; Giraud 2002; Fernandez Merodo et al. 2004; Keaton and 

Gailing 2004). 

Standard theodolite geodetic measurements are frequently applied to measure and 

monitor ground displacements (Reyes and Fernandez 1996; Walstra et al. 2004; Wa-

sowski et al. 2004; Burghaus et al. 2009) and available automatic systems have often 

been used (Oboni 2005; Heincke et al. 2010). However, theodolite measurements re-

quire pre-defined ground points or prisms. Manual measurements are also cost and 

time intensive. 

The Global Positioning System (GPS) is another method that is often used to monitor 

landslide movements (Bonnard et al. 1996; Wasowski et al. 2004; Mills et al. 2005; 

Webster and Dias 2006; Yin et al. 2008; Zhang et al. 2008). Precision of measurements 

is in the range of cm to mm. However, the applicability of this method depends on the 

visibility of satellites which may not be the case in narrow valleys, densely forested 

areas or on steep cliffs.  

The methods described above are applicable to measure and monitor ground defor-

mation at the surface. In order to understand landslide behaviour subsurface meas-

urements are necessary. Basic approaches are pits and trenches which can be used to 

investigate e.g., the depth of a landslide and the position of shear surfaces or to take 

undisturbed material samples. Generally, pits and trenches can only be established on 

shallow movements. Examples are given by Bromhead et al. (2000), Clark et al. (2000) 
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and Topal and Akin (2008). Penetration tests can also be performed to investigate 

stiffness of subsurface materials. More often, drillings are utilised to investigate land-

slide bodies. An ample variety of drilling devices is available on the market from 

simple handheld sounding poles to truck-sized rotary drilling machines. Besides the 

advantage of directly probing the landslide body and having the opportunity to take 

core samples, sensors can be applied within the boreholes to further investigate sub-

surface movement and hydrological processes. 

In many cases inclinometers are used to determine subsurface movement of land-

slides (Borgatti et al. 2006; Bonnard et al. 2008; Bressani et al. 2008; Jongmans et al. 

2008; Mihalinec and Ortolan 2008; Yin et al. 2008). General remarks on the use of in-

clinometers for landslides research are provided by Stark and Choi (2008). Inclinome-

ters consist of a flexible rilled pipe which is placed vertically into a drilled borehole. A 

high-precision probe is inserted and the inclination of the pipe is measured in even 

distances, for example, every e.g., 50 cm. Repeated measurements give information of 

the occurred inclination changes in downslope and horizontal direction for the entire 

length of the pipe. However, it is important that inclinometers are fixed into the stable 

ground beneath the shear surface to prevent data bias. Automated inclinometers are 

commercially available and usually consist of several inclinometer probes connected 

to each other to a chain, or automatic systems where the probe automatically moves 

within the pipe. Within landslide monitoring the use of automatic inclinometer and 

inclinometer chains has been described by for example, Lollino et al. (2002) and Olalla 

(2004), Volkmann and Schubert (2005) and Wienhöfer (2009). However, inclinometers 

can only withstand a certain amount of displacement before pipes break. This makes 

them especially applicable for monitoring of slow moving landslides, but also for de-

tection of shear processes in faster moving landslides. 

A more recent method for the detection of subsurface movements and deformation is 

Time Domain Reflectometry (TDR). Barendse and Machan (2009) note that inclinome-

ters can determine the magnitude and direction of ground deformation, while TDR is 

primarily used to identify depths of active shearing. The TDR method has initially 

been developed in the 1950s for locating discontinuities in power transmission cables 

(Pasuto et al. 2000). TDR has first been used within landslide research in the 1980s in 

underground coal mine monitoring (Olalla 2004) and since then applied to several 

other case studies (Pasuto et al. 2000; Barendse and Machan 2009; Singer et al. 2009; 

Yin et al. 2010a). The principle of TDR is based on an electric signal sent through a 

coaxial cable. Shear movements deform the cable which creates a spike in cable signa-

ture and depth can be detected from the signal. Laboratory tests of TDR method for 

detection of shear processes have been performed by Baek et al. (2004) and Blackburn 

and Dowding (2004). Pasuto et al. (2000) compared TDR cables to inclinometer meas-

urements and extensometers. Their result was that TDR cables are less sensitive to 



2 | Theoretical background 23 

 

 

 

deformations but can withstand a larger displacement than usual inclinometers. The 

higher stability of TDR cables make them a good choice for monitoring faster moving 

processes like the Gschliefgraben flowslide in Austria (Marschallinger et al. 2009). 

Wire or rod extensometers are used to monitor the distance between two points and 

are frequently utilised in surface movement investigations (Furuya et al. 2000; An-

gerer et al. 2004; Barla et al. 2004; Willenberg et al. 2004; Wu et al. 2008). Extensom-

eters are in most cases applied to investigate surface movements but can also be in-

stalled within boreholes (Bloyet et al. 1989; Krauter et al. 2007). Accuracy of exten-

someters depends on the length measured and usually is in the sub-mm range. 

Tiltmeters are able to give high resolution information on inclination and have been 

applied to several landslide monitoring systems (Clark et al. 1996; Meidal and Moore 

1996; Barton and McCosker 2000; Blikra 2008; García et al. 2010). 

Crackmeters are used to monitor displacements in the sub-mm range at joints and 

cracks in rocks, buildings and other structures. The application of crackmeters has 

been described by several authors (e.g., Keaton and DeGraff 1996; Greif et al. 2004; 

Olalla 2004; Vlcko 2004; Moore et al. 2010). 

 

The mentioned field based methods only give information on ground displacements 

for points or along lines. However, spatial methods are also available that give infor-

mation on displacement for entire slopes. 

In recent years many studies utilised Terrestrial Laser Scanning (TLS) for monitoring 

of geomorphological processes. The technique is similar to LiDAR, but ground-based. 

In contrast to LiDAR it is appropriate for steep cliffs and rock faces as the scanner can 

be placed in front of it. TLS scans are used to create three dimensional DTM which 

can further be analysed quantitatively within GIS or CAD environments to assess e.g., 

the volume of displaced material between measurements. Precision of TLS is heavily 

dependent on distance to the target and ranges from centimetres to mm, as well as 

environmental conditions such as rain or vegetation. General remarks on TLS and its 

usage for monitoring geomorphological processes are provided by (Prokop and Pan-

holzer 2009) and (Schaefer and Inkpen 2010). Many case studies applied TLS for land-

slide monitoring (e.g., Mikoš et al. 2005; Rosser et al. 2005; Rosser and Petley 2008; 

Avian et al. 2009; Baldo et al. 2009; Oppikofer et al. 2009; Abellán et al. 2010).  

SAR methods can also be applied in ground-based studies, which are frequently 

termed Slope Stability Radar (SSR) (Van Westen 2007). The major advantages of this 

method are that they provide high precision data in sub-millimetre range without 

being affected by weather conditions and without the need to install reflectors or 

ground marks. However, vegetation drastically decreases accuracy. Luzi et al. (2005) 

used a ground-based DinSAR system to monitor displacement on the Italian Tessina 

landslide and compared the measurements to regular theodolite surveys. Based on 
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comparable displacement results by both methods they conclude that InSAR is also 

applicable for landslide early warning systems. Several other research projects in-

stalled SSR systems to monitor displacements of landslides (Canuti et al. 2002; An-

tonello et al. 2004; Casagali et al. 2004; Eberhardt et al. 2008; Bozzano et al. 2010; 

Casagli et al. 2010). 

Another method that has increasingly been used in recent years is Brillouin optical 

time-domain reflectometer (BOTDR). These optical fibres can be used for measure-

ment of ground deformations along profiles. The principle of this method is based on 

an interaction of pulsed beam and photons that are thermally excited within the light 

propagation medium (Wang et al. 2008a), which are affected by temperature and 

strains. Laboratory simulations to test the applicability of BOTDR (Dai et al. 2008; 

Wang et al. 2008a), as well as field applications (Higuchi et al. 2007; Dai et al. 2008; Shi 

et al. 2008a; Shi et al. 2008b; Moore et al. 2010) have been described. 

2.2.3 Hydrological measurements 

Given the great importance of rainfall and slope hydrology for landslide triggering, 

these factors are frequently analysed and monitored within landslide research. Cli-

matic factors such as rain, snowfall, temperature and wind are usually measured at 

climate stations, which are commercially available or in many cases provided by me-

teorological agencies. Measurement of ground-water conditions such as pore pres-

sures and soil water suction is usually accomplished by using piezometers and ten-

siometers. An overview on different types of these sensors can be found in (Kneale 

1987). Piezometers are probably the most common hydrological sensor utilised for 

landslide research (e.g., Wu et al. 2008; Yin et al. 2008; Calvello et al. 2008; Ching-

Chuan et al. 2009; Yin et al. 2010) and come as simple standpipe or more advanced 

vibrating wire piezometers. Piezometers measure the pressure of water in saturated 

soils and therefore give information on the height of the groundwater table within a 

soil. Tensiometers measure matrix potentials and are frequently utilised to assess the 

soil suction in the vadose zone (Li et al. 2004; Rinaldi et al. 2004; Montrasio and Valen-

tino 2007; Greco et al. 2010). Piezometers and tensiometers are usually installed within 

boreholes or directly into the soil at trenches. 

In recent years Time Domain Reflectometry (TDR) has also been applied to measure 

volumetric soil water contents. (Greco et al. 2010) compared TDR sensors with ten-

siometers and concluded that TDR might be more useful for landslide monitoring and 

early warning since TDR measurements of soil water content change smoothly, while 

soil suction showed abrupt steep fronts. More examples of TDR application for assess-

ing soil water are presented by e.g., Hennrich (2000), Tohari et al. (Tohari et al. 2004) 

and Kim (Kim 2008).  
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The chemical properties of ground and pore-water have a widely acknowledged ef-

fect on shear strength and affect slope stability (Di Maio and Onorati 2000; Angeli et 

al. 2004) by for example, influencing the mechanical behaviour of clays (Leroueil 

2004). However, monitoring of ground water composition is only rarely included in 

landslide monitoring systems (Sakai and Tarumi 2000; Montety et al. 2007; Sakai 

2008). 

2.2.4 Geophysical measurements 

Several methods from geophysics have been utilised for landslide research, mainly for 

prospection of landslide bodies and for investigation of hydrological processes acting 

within landslides. However, wider application of geophysics in landslide research 

have been hindered for two reasons (Jongmans and Garambois 2007): geophysical 

methods provide images of geophysical parameters which are not directly linked to 

geological parameters required by geotechnical engineers and geomorphologists; and 

the overestimation of the quality and reliability of results among some geophysicists. 

The main advantages of geophysical methods compared to standard geotechnical 

approaches are that they are non-invasive and can be applied to large areas for a low 

cost. However, the main disadvantages are the decrease of resolution with depth, the 

non-uniqueness of solutions for data inversion and interpretation, and the in-direct 

information (Jongmans and Garambois 2007). Generally, geophysics are used for 

prospection of landslide bodies, detection of discontinuities and shear surfaces, as 

well as for investigation of hydrological regimes. Measurements are usually short-

term and only a few long-term monitoring exist (Supper and Römer 2003; Lebourg et 

al. 2005)). Geophysical methods will only briefly be presented here, more detailed 

reviews on geophysical application are provided by many introductive textbooks 

(Telford et al. 1990; McGuffey et al. 1996; Parasnis 1997; Reynolds 1997; Kearey et al. 

2002; Milsom 2003; Schrott et al. 2003; Knödel et al. 2005). 

Seismic methods are based on the velocity measurements of seismic waves in subsur-

face materials. Generally, denser material causes faster wave propagation. At layer 

interfaces waves are partly reflected, but also partly transferred into depth due to re-

fraction. In geomorphological applications seismic signal is usually induced by a 

sledge hammer that is pounded on a steel plate. Penetration depths of more than 30 m 

can be reached by more power sources e.g., drop weights or explosives) (Schrott and 

Sass 2008). Measurements are taken by geophones which are located at even distances 

along a profile. A number of different seismic techniques have been established, of 

which seismic reflection, seismic refraction and seismic tomography are the most 

common. Although seismic methods proved to be suitable for many geomorphologi-

cal studies which require definition of subsurface properties (Hecht 2001), such as 

determination of active layer in permafrost or volumes of sediment bodies, problems 
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may occur if low velocity layers are sandwiched in high velocity layers (Schrott and 

Sass 2008). Examples of dedicated landslide subsurface characterisation applying 

seismic methods are provided by several authors (Schmutz et al. 2000; Willenberg et 

al. 2002; Meric et al. 2004, Meric et al. 2005; Heincke et al. 2006; Heincke et al. 2010). 

A variation of seismic method is applied to record fracture signals produced by de-

formation within landslides, and to locate fracture both in space and time. These 

methods can be distinguished as micro-seismic, nano-seismic and passive seismic 

(Joswig 2008). Instead of creating a seismic signal by e.g., a sledge hammer, these 

methods use the acoustic signals emitted by deformation processes by "listening" to 

ruptures. This method yields information on depth and mode of slope deformation 

(Bláha 1996). An increasing number of studies employ such approaches in laboratory 

tests (Dixon and Spriggs 2007; Ishida et al. 2010) and field applications (Merrien-

Soukatchoff et al. 2005; Amitrano et al. 2007; Meric et al. 2007; Häge and Joswig 2009; 

Walter and Joswig 2009). 

Ground penetrating radar (GPR) has increasingly been used in recent years in many 

geomorphological research projects to investigate subsurface (Sass and Krautblatter 

2007; Gomez et al. 2009). Advantages of the method include high resolution and wide 

range of penetration depth (Jongmans and Garambois 2007). In landslide research, 

GPR is generally used to determine landslide boundaries and discontinuities, such as 

shear surfaces and cracks in rock, but GPR is also sensitive to groundwater. High-

frequency electromagnetic waves are emitted by an antenna and wave propagation is 

determined by dielectric properties of the subsurface materials (Schrott and Sass 

2008). Emitted pulses are reflected by inhomogeneities and received by a second an-

tenna. The antennas are usually moved along a profile, and travel times of pulses are 

measured and subsequently inverted into 2D images. Penetration depth depends on 

material properties and frequencies used, but can be up to 60 m if conditions are fa-

vourable (Schrott and Sass 2008). Landslide related research applying GPR are pro-

vided by (Bichler et al. 2004; Avila-Olivera and Garduño-Monroy 2008; Sass et al. 

2008; Willenberg et al. 2008; Pueyo-Anchuela et al. 2009). However, GPR is generally 

only applied for short-term measurement campaigns, and has not been employed in 

monitoring projects. Still, Roch et al. (2006) propose repeated GPR monitoring for 

rockfall monitoring. 

Electrical resistivity and spontaneous potential are both geoelectrical methods. Self-

potential measurements investigate natural electrical potential by assessing potential 

differences between pairs of electrodes. If electrochemical processes are absent within 

a slope changes reflect changes of fluid flows, i.e. ground water. Spontaneous poten-

tial measurements can more easily be deployed and monitored compared to the resis-

tivity method (Jongmans and Garambois 2007); however, electrical resistivity meas-

urements are more common (Telford et al. 1990). This method is based on the meas-
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urement of electrical potentials between an electrode pair while a direct current is 

transmitted by another electrode pair (Schrott and Sass 2008). Several different proce-

dures and array setups exist for electrical resistivity measurements which have to be 

chosen depending on the research question, study site properties and desired penetra-

tion depth. Electrical resistivity is affected by the nature of material, in particular clay 

content, water content, as well as rock weathering and fracturing (Jongmans and 

Garambois 2007). Geoelectric geophysical methods have frequently been used for 

landslide prospection and determination of internal structure, such as the location of 

shear surfaces and boundaries of landslide bodies (Jomard et al. 2007; Deparis et al. 

2008; Sass et al. 2008; Heincke et al. 2010). However, sensitivity of resistivity to water 

content also allows detection of ground water tables or preferential flow (Hiura et al. 

2000; Kusumi et al. 2000; Lebourg et al. 2005). Geoelectrical methods are usually ap-

plied for short-term measurement campaigns, and only a few case studies describe 

continuous monitoring (Supper and Römer 2003; Lebourg et al. 2004).  

2.3 LANDSLIDE MODELLING 

Landslide modelling is, along with experimental subsoil exploration and experience 

driven safety assessment, one of the main tasks of slope stability practice (Janbu 1996). 

Models are applied to analyse current stability status and to predict slope behaviour 

under certain conditions such as rainfall events or scenarios for environmental 

change. Moreover, models are used for the back analyses of already failed slopes and 

for assessment of effectiveness of geotechnical stabilisation measures (Barla et al. 

2004). However, when dealing with modelling it is important to keep in mind, that all 

models are necessarily simplified generalisation and approximations of processes 

which are occurring in nature (Favis-Mortlock and De Boer 2003).  

Modelling of landslide failures can be either qualitative or quantitative (Carrara et al. 

1999). Qualitative approaches integrate descriptive prediction and the opinion of ex-

perts, while quantitative applications are based on numerical simulations. Landslide 

modelling approaches can broadly be separated into models that are focussing on 

single landslide processes (i.e. local models), and models with greater spatial extent 

(i.e. regional models) (Crozier and Glade 2005).  

Local approaches to landslides have a long tradition within geotechnical engineering 

slope stability practice, while regional applications have increasingly emerged since 

the wide availability of powerful computers and GIS. A brief summary on regional 

and local approaches to model landslides in order to predict slope failures is given in 

the following sub-chapters. 
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2.3.1 Regional models 

Regional landslide modelling methods generally focus on either landslide susceptibil-

ity or hazard, or eventually landslide risk. Landslide susceptibility is defined as the 

"probability of spatial occurrence of slope failures, given a set of geo-environmental condi-

tions” (Guzzetti et al. 2005 p.113). Therefore landslide susceptibility modelling seeks 

to delineate the terrains’ potential for landslide processes. In contrast, landslide haz-

ard is defined as "the probability of occurrence within a specified period of time and within a 

given area of potentially damaging phenomenon” (Varnes 1984). The term hazard there-

fore also requires definition of magnitude of potential events, that is, affected area, 

volume and velocity of expected landslide events (Reichenbach et al. 2005). The term 

landslide risk refers to the outcomes of landslide events and is defined as "the expected 

degree of loss due to a landslides and the expected number of lives lost, people injured, damage 

to property and disruption of economic activity” (Varnes 1984). While landslide suscepti-

bility and hazard concentrate on the causes and properties of landslides, risk also re-

fers to the consequences and outcomes of such processes, which are strongly depend-

ant on the vulnerability of the effected people and infrastructure.  

 

Soeters and Van Westen (1996) distinguish between four distinct approaches for re-

gional landslide hazard analysis, i.e. inventory-based, heuristic, statistic and determi-

nistic approaches.  

Landslide inventory allow for detailed analyses of landslide distribution and in case 

of multi-temporal inventories activity patterns and form the basis for regional model-

ling of landslide susceptibility, hazard and risk.  

Heuristic methods integrate the knowledge and experience of geomorphological and 

geotechnical experts to derive a regional map of landslide susceptibility and hazard. 

Soeters and Van Westen (1996) distinguish between geomorphological analysis 

(Kienholz et al. 1984; Cardinali et al. 2002; Reichenbach et al. 2005) and weighted 

combination of thematic maps (Pachauri et al. 1998; Nagarajan et al. 2000; Dikau and 

Glade 2003; Moreiras 2005; Petley et al. 2005a). 

Statistical methods are the most frequently applied method to model regional land-

slide susceptibility and hazard, and to predict future slope failures (Armbruster 2002). 

Herein, a statistical relationship between possible landslide causative factors and the 

presence of existing landslides is established, and used for prediction of future land-

slide by spatial interpolation. A vast range of different methods has been developed. 

Bell (2002) provides a extensive list of statistical methods, of which the most fre-

quently applied are bivariate regression (Ayalew et al. 2004; Süzen and Doyuran 

2004), multiple regression (Carrara 1983; Chung et al. 1995), discriminant analyses 

(Ardizzone et al. 2002; Carrara et al. 2003; Guzzetti et al. 2006), logistic regression (At-

kinson et al. 1998; Ohlmacher and Davis 2003; Süzen and Doyuran 2004; Brenning 
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2005), neural networks (Fernández-Steeger et al. 2002; Lee et al. 2003; Catani et al. 

2005), support vector (Brenning 2005), bayesian statistic (Chung and Fabbri 1999; Lee 

et al. 2002; Neuhäuser 2005), fuzzy logic (Tangestani 2003; Dewitte et al. 2006; Lee 

2006) and likelihood ratio (Chung et al. 1995; Chung 2006; Demoulin and Chung 

2007). 

Regional deterministic models apply physically-based simulations to assess landslide 

susceptibility expressed chiefly as FoS, and provide useful insights into landslide 

causes (Carrara et al. 1992). The most frequently applied methodology for regional 

deterministic modelling is based on distributed hydrological modelling and stability 

calculation using a simplified approach, i.e. the infinite-slope model. Hydrological 

modelling is essentially based on topographical flow routing and the simulated de-

velopment of soil saturation above an impermeable layer (O’Callaghan and Mark 

1984; Fairfield and Leymarie 1991; Freeman 1991; Quinn et al. 1991; Lea 1992; Costa-

Cabral and Burges 1994; Terlien et al. 1995; Tarboton 1997). Calculation of slope stabil-

ity utilises geotechnical parameters such as cohesion and internal friction, which can 

be measured in the field or laboratory (Soeters and Van Westen 1996; Westen et al. 

1997). The infinite-slope model estimates stability for single grid-cells of a DTM and 

neglects any effects of neighbouring areas. Moreover, deterministic methods are only 

applicable when geomorphic and geologic conditions are fairly homogenous over the 

entire study area and landslide types are simple (Soeters and Van Westen 1996). Due 

to these limitations, regional deterministic models are only suitable for simple land-

slide processes, such as shallow translational landslides. The most widely used mod-

els for regional deterministic analyses are TOPMODEL (Montgomery and Dietrich 

1994; Casadei et al. 2003; Meisina and Scarabelli 2007), SHALSTAB (Dietrich et al. 

1998; Morrissey et al. 2001; Huang Jr et al. 2006), and SINMAP (Pack et al. 1998; Pack 

et al. 2001; Zaitchik and van Es 2003; Pack and Tarboton 2004; Kreja and Terhorst 

2005; Pack et al. 2005; Thiebes 2006; Deb and El-Kadi 2009), but similar studies have 

also been performed by other authors (Hammond et al. 1992; Terlien et al. 1995; Wu 

and Sidle 1995; van Westen et al. 1997; Wu and Sidle 1997; Sidle and Wu 1999; Xie et 

al. 2004; Claessens et al. 2005). 

2.3.2 Local models 

Models for the analysis of single slope failures, i.e. local models, have a long tradition 

in geotechnical slope stability practice. These models have frequently been applied to 

assess the stability of human-made or natural slopes, and the design of slopes, such as 

embankments, road cuts, open-pit mines etc. Moreover, physically-based models for 

single slopes allow detailed investigation of failure processes, assessment effects of 

triggering events, and assessment of the effectiveness of remedial measures and stabi-

lisation works.  
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Today, a wide range of computer calculation programs are available for numerical 

slope stability assessment. Despite the development of more sophisticated numerical 

models, limit-equilibrium methodology is still widely applied (Abramson 2002). In 

the following a short overview of local landslide modelling methods and techniques 

is presented. It is beyond the scope to review the theoretical background and mathe-

matical and mechanical derivation of local stability calculation. These can be found in 

the literature sources provided or in various textbooks (Chandler 1991; Bromhead 

1998; Abramson 2002; Aysen 2002; Eberhardt 2003a; Ortigão and Sayao 2004; Duncan 

and Wright 2005; Gitirana Jr 2005; Cheng and Lau 2008). 

 

Limit-equilibrium methods provide a mathematical procedure to determine the forces 

within a slope that drive and resist movement. The factors included in the calculation 

have been presented in chapter 2.1.2. Limit-equilibrium analysis usually calculates 

stability for discrete two-dimensional slices of a slope and for assumed or known po-

tential shear surfaces (Fig. 2.6), but three-dimensional approaches have also been de-

veloped. Shear strength of materials along shear surface is assumed to be governed by 

linear or nonlinear relationship between shear strength and normal stress (US Army 

Corps of Engineers 2003). The result of limit-equilibrium analysis is a global FoS for 

shear surface, which provides a snapshot on stresses and resisting forces relationship. 

Several numerical methods are available today which assist in locating critical shear 

surfaces, this is, where the lowest FoS is prevalent. The most widely applied methods 

are Bishop's simplified approach, which accounts for circular slip surfaces, and 

Janbu's method for con-circular, i.e. polygonal shear surfaces. Other methods like the 

infinite-slope wedge method, ordinary slice method, general slice method, Spencer's 

method, Morgenstern and Price's method, and some others are reviewed elsewhere 

(Graham 1984; Anderson and Richards 1987; Nash 1987). Given the wide use of nu-

merical limit-equilibrium methods for slope stability analysis in geotechnical practice, 

most available models allow assessment of effects of e.g., external loads or remedial 

stabilisation structures, such as soil nails or other reinforcements. 

However, limit-equilibrium methods also comprise some drawbacks. The resulting 

FoS represents a global value for a two-dimensional slope profile, where movement 

occurs if the FoS<1.0. However, (Bonnard 2008 p.46) notes that limit-equilibrium 

methods only provide an approximation of force balance within landslides and that in 

reality displacements may occur with a FoS between 1.0 and 1.1 - 1.15. Moreover, the 

FoS is an average value for an assumed critical failure surface and provides no infor-

mation about the actual distributions of stresses or the progressive development of 

unstable state (Eberhardt et al. 2004). 
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Fig. 2.6: Simplified illustration of method of slices (based on Conolly 
1997) 

A second family of stability models on a local scale is concerned with continuum 

modelling. The entire slope mass is divided into a finite number of elements and rep-

resented as a mesh. Continuum approaches include finite-difference and finite-

element methods. Finite-difference methods provide numerical approximations of 

differential equations of equilibrium, strain-displacement relations or the stress-strain 

equations (Eberhardt 2003a). In contrast, finite-element procedure exploits approxi-

mations to the connectivity of elements, and continuity of displacements and stresses 

between elements (Eberhardt 2003a). However, in both methods the problem domain 

is discretised into a set of sub-domains or elements. In contrast to limit-equilibrium 

analysis, continuum modelling software allows for complex time-dependant landslide 

analysis by including constitutive models such as elasticity, elasto-plasticity and 

strain softening. 

A third family of local landslides models are discontinuum methods, where slopes are 

represented by distinct blocks which dynamically interact during movement or de-

formation. The underlying concept of these methods is that limit-equilibrium is re-

peatedly computed for each block, so that complex non-linear interaction can be ac-

counted for (Eberhardt 2003a). 

Three variations of discrete-element variation can be distinguished. Distinct-element 

methods are based on a force-displacement law to describe interaction between de-

formable elements, and a law of motion to numerically simulate displacements. Dis-

crete element methods are computationally intensive as many case studies involve a 

very high number of interacting discrete objects. More detailed information is pro-

vided by (Hart 1993) and (Jing 1998). Discontinuous deformation analysis simulates 

interaction of independent blocks along discontinuities, such as fractures and joints. 

In contrast to distinct-elements methods, discontinuous deformation analysis ac-

counts for displacement instead of simulating forces (Cundall and Strack 1979). Parti-
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cle flow methods represent slopes with spherical particles that interact through fric-

tional sliding contacts (Eberhardt 2003a). 

 

Below, an overview of commercially available local landslide analysis and simulation 

models is presented. This is, however, only a selection of models frequently applied in 

landslide research as a complete summary is far beyond the scope of this study. 

GGU is a CAD-based (Computer Aided Design) stability model which allows for pre-

dicting stability based on Bishop’s and Janbu’s, as well as general wedge and vertical 

slice method. Moreover, stabilising factors such as anchors, soil nails and geosynthet-

ics can be included in the modelling process. However, the GGU stability software 

does not account for dynamic hydrological modelling. Several applications utilising 

the GGU stability software are available (Chok et al. 2004; Schneider-Muntau and 

Zangerl 2005; Kupka et al. 2009; Hu et al. 2010). 

Galena is another numerical software solution available which includes limit-

equilibrium analysis. It includes Bishop’s and Spencer-Wright method and Sarma 

method, which utilises non-vertical slices for slope stability analysis. However, the 

Galena software was developed mainly for slope design in open-pit mines, and only 

few project applied it to analyse landslides (Kumar and Sanoujam 2006). 

The program Xslope is capable of calculating slope stability based on Bishop's or 

Morgenstern and Price's method, and is available through University of Sydney. It 

does not include hydrological modelling, but pore-water pressure from an external 

finite element steady-state seepage model can be integrated. Several case studies are 

available that describe the application of Xslope (Lee et al. 2001; Hubble 2004; Cássia 

de Brito Galvão et al. 2007) 

Another model for limit-equilibrium analysis of soil and rock slopes is provided by 

SLOPE/W which includes several methods (Morgenstern-Price, Spencer, Bishop, Or-

dinary, Janbu and more). Also, several soil strength models are available. Stability 

analysis may be performed using deterministic or probabilistic input parameters. 

However, dynamic hydrological modelling of pore pressures is not included in 

SLOPE/W, but can be imported from SEEP/W, a finite-element software by the same 

company. Moreover, external stresses by earthquakes for example, and also the effects 

of reinforcements can be analysed. The use of SLOPE/W, also in combination with 

SEEP/W is fairly widely acknowledged in recent landslide research (Anderson et al. 

2000; Rahardjo et al. 2007; Cascini et al. 2008; Heng 2008; Yagoda-Biran et al. 2010; 

Rahimi et al. 2010; Navarro et al. in press). 

SVSlope is a slope stability software with a similar complexity and range of available 

methods as SLOPE/W. However, three-dimensional limit-equilibrium analyses can 

also be performed for which slopes are represented as columns to analyse stability by 
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a series of two-dimensional calculations. Moreover, a finite-element stability analysis 

tools have been added to compute stresses and strains.  

Several authors presented case studies applying SVSlope (Gitirana Jr 2005; Fredlund 

2007; Gitirana Jr et al. 2008). 

A similar program is Clara-W, which performs two and three-dimensional stability 

limit-equilibrium analysis (Eberhardt 2003b; Stead et al. 2006; Cotza 2009; Montgom-

ery et al. 2009). 

CHASM (Combined Hydrology And Stability Model) is a coupled hydrology and 

slope stability model for limit-equilibrium analysis. The software program integrates 

simulation of saturated and unsaturated hydrological processes to calculate pore-

water pressures, which are then incorporated into stability computation. CHASM is 

essentially two-dimensional but hydrological simulations can be extended to account 

for flow concentration at topographic hollows. Moreover, vegetation and stabilisation 

measures can be integrated into Janbu and Bishop stability simulations. Furthermore, 

a simple empirical-based run-out simulation is integrated into the model. CHASM 

was also employed within this study and a more detailed review on CHASM meth-

odology is presented in chapter 5.1.3.2. 

The CHASM model has been applied by several research projects, for example in 

New Zealand (Wilkinson et al. 2000), Malaysia (Collison and Anderson 1996; Lateh et 

al. 2008), Hong Kong (Wilkinson et al. 2002b), the Caribbean (Anderson et al. 2008), 

Kuala Lumpur (Wilkinson et al. 2000; Wilkinson et al. 2002a), and Greece (Matziaris et 

al. 2005; Ferentinou et al. 2006; Sakellariou et al. 2006). Common applications of 

CHASM include investigations of effects of rainfall on slope hydrology and subse-

quently on slope stability (Matziaris et al. 2005; Ferentinou et al. 2006). Other studies 

compared CHASM to other slope stability model and carried out sensitivity analyses 

for rainfall, groundwater conditions and slope geometry (Lloyd et al. 2004).  

Sensitivity analysis of CHASM has been carried out for geotechnical and hydrological 

parameters (Hamm et al. 2006), hydraulic conductivity (Ibraim and Anderson 2003), 

vegetation (Wilkinson et al. 2002b) and slope stability methods (Wilkinson et al. 2000). 

Comparisons of field measurements of pore water pressures with modelled results 

are provided by Anderson and Thallapally (1996) and Hennrich (2000). Other applica-

tions of CHASM include studies to improve criteria for geotechnical slope design 

(Anderson et al. 1996), and validation of rainfall thresholds to enhance the perform-

ance of a landslide early warning system in Kuala Lumpur (Lloyd et al. 2001). Later 

works of Wilkinson et al. (2002a) implemented a slope information system in which 

pre-defined slopes can be modelled in CHASM using a variety of input parameter 

constellations. Recent applications of CHASM include the work of Karnawati et al. 

(2005) in which the aim was to provide guidance to local population in Java, Indone-

sia on how to judge stability and hazardousness of slopes. Back analysis of recent 
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landslides within CHASM was applied by Anderson et al. (2008) in the Caribbean. 

Based on modelling results critical hydrological situations were determined and an 

effective slope drainage system was designed.  

Several models are available from RocScience for calculation of stability, stresses and 

displacement for rock and soil. Phase² offers two-dimensional elasto-plastic finite-

element stress analysis for underground or surface excavations with integrated 

groundwater seepage modelling (Hammah et al. 2008, Hammah et al. 2009). The pro-

gram Slide utilises two-dimensional limit-equilibrium analysis with built-in finite-

element hydrological modelling. Generally, capabilities of Slide are similar to other 

limit-equilibrium programs described above. Case studies utilising Slide are de-

scribed by several authors (Kjelland et al. 2004; Hadjigeorgiou et al. 2006; Hammah et 

al. 2006; Brandon et al. 2008; Topal and Akin 2008).  

Plaxis is a collection of finite-element methods for numerical analysis of deformation 

and stability in geotechnical engineering in two and three dimensions. Moreover, un-

saturated groundwater flow and pore pressures, as well as their effects on slope sta-

bility can be simulated. Static loads and dynamic loads and stability in response to 

earthquakes, as well as non-linear, time-dependent and anisotropic behaviour of soils 

and/or rock are more features of this complex software. Plaxis-aided research con-

cerned with landslides has been provided by several authors (e.g., Spickermann et al. 

2003; Ausilio et al. 2004; Comegna et al. 2004; Kellezi et al. 2005; Keersmaekers et al. 

2008; Majidi and Choobbasti 2008; Chang et al. 2010) 

FLAC (Fast Lagrangian Analysis of Continua) is a two-dimensional explicit finite dif-

ference program widely acknowledged in analysis of plastic deformation (Cala et al. 

2004; Maffei et al. 2004; Chugh and Stark 2005; Petley et al. 2005d; Jian et al. 2009). 

Slopes are represented by elements which form a grid and behave according to a pre-

scribed linear or nonlinear stress and strain law. Deformation of the grid allows for 

flowing and plastic-deformation, and large strain can be simulated. A simplified of 

this model is FLAC/Slope, which is sold by the same company. Moreover, a three-

dimensional version, FLAC3D, is available and has frequently been applied within 

research (Teoman et al. 2004; Pasculli and Sciarra 2006; Sitharam et al. 2007; Poisel et 

al. 2009). 

DAN, and its related version DAN-W and DAN3D, are software tools used for dy-

namic run-out analysis of rapid landslides processes such as rock avalanches (Hungr 

1995). The core of the models is a Lagrangian solution of the integrated equations of 

motion which is implemented for thin elements of the flowing mass. The model simu-

lates travel distance, velocity and flow depth and volumes in iterative time-steps. 

Many case studies acknowledge the use of DAN codes (Hungr 1995; Sosio et al. 2008; 

Hungr and McDougall 2009; Pirulli 2009). 
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UDEC (Universal Distinct Element Code) simulates the response of discontinuous 

media such as jointed rock which subject to loading. The two-dimensional analysis 

allows for rigid or deformable blocks. However, the related 3DEC model offers simi-

lar modelling capabilities but in three dimensions. Several case studies applied UDEC 

on rock slopes (Bandis et al. 2000; Bozzano et al. 2000; Chen et al. 2000; Gunzberger et 

al. 2004; Watson et al. 2004; Gong et al. 2005; Zhao et al. 2008), and 3DEC (Cheng et al. 

2006; Ming-Gao et al. 2006; Lato et al. 2007; Bai et al. 2008). 

2.4 LANDSLIDE EARLY WARNING SYSTEMS 

In the following an introduction to early warning and the challenges of early warning 

systems is presented. Therein, general aspects on social and technical aspects of early 

warning are demonstrated. The focus, however, is put on landslide early warning. 

More information regarding early warning systems for natural hazards in general is 

provided by several other authors (e.g., Zschau et al. 2001; Zschau and Küppers 2003; 

Dikau and Weichselgärtner 2005; Hall 2007; Schuster and Highland 2007; Felgentreff 

and Glade 2007; Glantz 2009). In addition, a review of existing landslide early warn-

ing systems worldwide is presented. It is beyond the scope to give a complete sum-

mary of all existent systems, but to illustrate a wide range of technical applications 

and to highlight integration of social components into early warning process.  

 

Early warning can broadly be defined as the timely advice before a potentially haz-

ardous phenomenon occurs. Dikau and Weichselgärtner (2005) add that the effective 

use of information for early warning is an important element of general risk manage-

ment which includes activities such as hazard zoning and prediction, warning com-

munication, disaster prevention and evacuation planning (Fig. 2.7). Good early warn-

ing systems therefore comprise identification and estimation of hazardous processes, 

communication of warnings and adapted reaction of local population. Moreover, 

early warning systems have to be embedded into local communities to ensure effec-

tiveness of the entire system. 

 

A more pin-pointed definition is used by UNISDR (2009) where early warning system 

are described as "the set of capacities needed to generate and disseminate timely and mean-

ingful warning information to enable individuals, communities and organizations threatened 

by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility 

of harm or loss".  

 

Early warning systems have been developed for a wide range of natural hazards of 

which extreme weather events, floods and tsunamis are maybe the best known. How-

ever, also for processes such as volcanic eruptions, droughts, snow avalanches, earth-
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quakes and landslides early warning systems have been installed. Extensive inform

tion on applied early warning systems is presented by several publications 

United Nations International Strategy for Disaster Reduction 

2006b, 2006a). However, specialized landslide early warning systems are not d

scribed therein.  

Within the UNISDR a Platform for the Promotion of Early Warning Systems

(UNISDR-PPEW) has been 

UNISDR puts an emphasis on social aspects of early warning and promotes 

velopment of people-centred early warning systems 

key parts for effective early warning can be 

1. Knowledge about the risks that
2. Monitoring and warning service
3. Dissemination and c

derstood by the local population
4. Response capability

propriately in case of a warning
 

These four segments are also reflected in a general distinction of early warning pr

posed by Zschau et al. (2001)

and reaction. These components constitute the early 

this chain have to be tightly connected and interlinked in order to provide an effective 

measure for risk reduction.

Fig. 2.7: General risk management cycle 
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Prediction is strongly influenced by a natural science and technological perspective 

and aims to improve knowledge on the hazardous process itself and its timing, size, 

extent, severity, duration etc. The time-span between warning and the occurrence of 

the hazardous event is another important issue of prediction, and can last from sec-

onds (for e.g. earthquakes) to months (for e.g., droughts) (Zschau et al. 2001). 

The second element, warning, can be regarded as the critical element within the early 

warning chain (Dikau and Weichselgärtner 2005). Prediction has to be transferred into 

an adequate warning message and distributed to the target population. Several com-

munication channels (e.g., SMS, Fax, Email, sirens) can be used to distribute warning 

messages. However, effective warning is not only a technical problem, but is also de-

pendant on the social and political decisions and the legal framework (Zschau et al. 

2001). Moreover, it is important that communication of warning is carefully planned 

(Mayer and Pohl 2010). According to Kunz-Plapp (2007) warning messages should be 

believable, clearly formulated, adapted to the context of the target group, and should 

contain clear instructions on appropriate protection action. 

Reaction is the third component of early warning, in which warning messages should 

lead to appropriate action such as evacuation of hazardous areas. Decision makers 

have to initiate protection actions based on the warning message. Effective reaction to 

warning messages primarily depends on the administrative and organisational cir-

cumstances (Zschau et al. 2001). 

Given the complex conditions of early warning it is obvious that purely technical ap-

proaches cannot provide effective early warning. It has already been noted by the 

fathers of hazard research that it is important to know how technological advances in 

early warning systems can be used to more efficiently trigger appropriate reactions of 

populations to prevent losses from natural hazards (White and Haas 1975). Still, for a 

long time advances in early warning systems were primarily related to the use of 

more sophisticated monitoring equipment while social aspects of early warning were 

neglected (Zschau et al. 2001). This is problematic, as many communities can not af-

ford expensive high-tech warning systems. Sorensen (2000 p.214) states that "better 

local management and decision making about the warning process are more critical than pro-

moting more advanced technologies, although both would help". Many important social 

aspects are not accounted for in technical approaches to early warning. However, the 

importance of the hazard awareness can be illustrated by recent disaster events, such 

as devastating the tsunami in the Indian Ocean in 2004 which caused more than 

200,000 fatalities. Even though no early warning system was installed, this disaster 

illustrates a major problem in early warning. As many people did not know that a 

sudden decrease in sea-level precedes the occurrence of a tsunami, no appropriate 

reaction could be initialised. If a threatened population is not informed about poten-
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tial hazards, their consequences and suitable protective actions, early warning can not 

be effective. 

Although an early warning system could have enabled many people to evacuate 

coastal areas, early warning systems can not provide full security from hazardous 

events. An example of this took place in April 2010, when a train derailed in the Etsch 

Valley, South Tyrol, Italy, because of a rockfall occurring above the track. Even 

though an automatic early warning system existed to close the track in case of block-

ages, it failed in this event because the rockfall took place right above the passing 

train (Murmelter 2010). 

Moreover, it is important to keep in mind that only people and moveable objects can 

benefit from early warnings and not stationary objects such as infrastructure. An 

alarm can motivate people to escape from potentially dangerous situations, but it 

does not stop the hazardous event itself (Hübl 2000). Therefore, early warning sys-

tems do not substantially decrease property damage (National Research Council 

2004). 

Although early warning systems can be an effective tool for risk reduction (Dikau and 

Weichselgärtner 2005) they can also increase the risk. Increased risk may be due to a 

false sense of security and building of higher value infrastructure in potentially haz-

ardous areas. 

 

Uncertainties always prevail in hazard prediction and are also a major challenge for 

early warning (UNISDR 2004b). Storms may change their track, or lose their strength 

over time, earthquakes may be expected for a large area, but no exact location can be 

determined. For many hazard events, only statistical forecasts, such as an El Niño 

event probability for the next year of 60% can be made. In addition, uncertainties 

within the social components complicate the prediction of the hazard consequences. 

These include the reaction of the population to warnings and hazardous events, and 

the functioning of evacuation plans and general disaster management. Baum and 

Godt (2007) provide interesting examples where people were moving into warning 

areas on purpose to secure their homes or save pets. Others misunderstand the warn-

ing and believe that if a warning is issued by for example the Department of Forestry 

it only relates to areas with actual logging activities. 

Moreover, the costs of unnecessary evacuations due to false alarms are a major con-

cern for decision makers. False alarms are a problem of early warning systems as they 

can substantially compromise the credibility of early warning systems (Larsen 2008). 

In 1982 the United States Geological Survey (USGS) issued a warning for the Mam-

moth Lakes Area because of an expected volcanic eruption potentially threatening a 

ski resort on the slopes of the volcano. After the eruption did not occur the USGS was 

mocked as the US Guessing Society (Die Zeit 2010). However, Sorenson (2000) argues, 



2 | Theoretical background 39 

 

 

 

that false alarms do not necessarily diminish the trust in early warning systems if the 

reason for the false alarm is understood. The number of false alarms can be reduced 

by pursuing a conservative strategy and by issuing generalised warnings. However, 

the use of generalised warnings decreases with the size of the geographic area (Larsen 

2008).  

An interesting example of consequences of false warning took place in Italy in 2009 

were a scientist had been measuring the emissions of radon gases which are associ-

ated with earthquakes. Based on his measurements he was expecting a major earth-

quake for the city of Sulmona two days before the devastating L’Aquila earthquake 

(5.8 magnitude on Richter scale) which is located 70 km north-west. As his prediction 

did not turn out to be accurate he was accused for creating panic but later absolved 

(Die Zeit 2010).  

On the other hand a group of seven Italian earthquake scientists who were assessing 

the seismic activity in the L’Aquila region were accused of gross negligent man-

slaughter as they failed to predict the disaster. Only days before the earthquake they 

had stated at a meeting with city officials that there were no grounds for believing a 

major quake was on the way despite some smaller quakes in the previous days (Car-

tlidge 2010). The allegations gained much attention in the scientific community as 

well as from general public, and a petition to end the investigations had been signed 

by over 5000 scientists. In this open letter it was stated that at the moment there are no 

scientific method to predict earthquake timing and that therefore, there is no ground 

for the allegations (Die Zeit 2010). Warner Marzocchi, chief scientist at the Italian Na-

tional Institute for Geophysics and Vulcanology commented that "as scientists, we have 

to focus on giving the best kind of scientific information" and that the decisions of what 

actions need to be taken "is down to others to decide” (Cartlidge 2010). Thomas Jordan, 

earth scientists who had also been working in the L’Aquila region added that the 

costs of false alarms are too high compared to the low probabilities of an earthquake 

occurring, so that there was no basis to initiate actions such as mass evacuations (Car-

tlidge 2010).  

A similar case happened in the Italian community of Sarno, which was hit by devas-

tating landslides and a debris flood in 1998. Before the disaster event the mayor had 

told the people to stay calm and to stay at home even though there were already 

heavy rainfall and landslides occurring in the vicinity of the town (Die Zeit 2010). Af-

ter the event he was accused for negligent manslaughter but later absolved because 

the event could not have been foreseen. 

The previous examples clearly illustrate some of the problems and challenges of early 

warning systems, arising from both natural and social components. Besides technical 

difficulties of natural hazard prediction, legal, social and political dimensions add to 

the complexity of early warning. Effective early warning systems must therefore be 
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carefully planned. Resulting from the work of the Integrative Landslide Early Warn-

ing Systems (ILEWS) project, issues have been identified that need to be addressed 

when early warning systems are to be installed (Bell et al. 2010a). Important factors to 

be accounted for include the process (flood, volcanic eruptions, landslides), time 

(slowly developing or rapidly initiating hazards), forewarn time needed to provide 

useful warning, financial aspects (private or public investments), communication of 

warning (unidirectional, bidirectional), threatened human lives and infrastructure 

(cost-effectiveness) and stakeholders to be warned (governmental agencies, emer-

gency services). Thus, early warning systems have to be demand-orientated and 

adapted to local conditions (Twigg 2003). In addition, it is important that early warn-

ing systems are embedded into the local community to increase acceptance of warn-

ings (Mileti 1999; Greiving and Glade 2011). 

 

Given the variety of hazards for which early warning systems have been installed it is 

difficult to define clear categories. Some basic distinction, however, can be made (Bell 

et al. 2010a): 

- Monitoring systems are primarily installed to increase the understanding of 
natural processes but can also be utilised to plan further actions. These moni-
toring systems differ by technologies applied, time intervals between meas-
urements and degree of automation. 

- Experts- or control-systems provide information on potentially hazardous 
events and are chiefly implemented to gain information on critical develop-
ments and with the aim to guide scientists and decision makers. 

- Alarm systems are based on monitoring systems and provoke an automatic 
warning if, for example, a predefined threshold is exceeded. Further differen-
tiation of alarm systems can be made between pre- and post event systems 
and the forewarn time provided by the system. Moreover, these systems differ 
in their degree of integration of social aspects between purely technical appli-
cations and integrative early warning systems.  

 

Early warning systems have also been applied for landslide processes, e.g. rotational 

and translational slides, debris flows and rock slides. Landslide early warning sys-

tems can be installed for single slopes, but also for entire regions. Also global land-

slide early warning systems have been proposed by applying methods such as rainfall 

intensity and duration thresholds (Guzzetti et al. 2008) or satellite-based InSAR moni-

toring and progressive failure analysis (Petley et al. 2002). 

Regional landslide early warning systems can only issue warnings, such as a 70% 

probability of debris occurrence for a certain region; single slopes can not be identi-

fied (Wieczorek and Glade 2005). However, local or site-specific landslide early warn-

ing systems provide another quality of information. Exceedance of critical thresholds 

may automatically lead to protective actions, such as alarms, road and bridge clo-



2 | Theoretical background 41 

 

 

 

sures, evacuation and further disaster management actions. Local landslide early 

warning systems have been frequently applied, partly because they can sometimes 

replace structural measures of slope stabilisation while providing sufficient protection 

(Palm et al. 2003). Site-specific systems generally apply monitoring systems for slope 

movement or landslide triggering factors such as rainfall and pore-water pressure 

(see Chapter 2.2) as the early basis of warning.  

 
One of the first modern landslide early warning systems was installed in 1984 in 

Utah, USA, after significant damage by debris flows initiated by snow melt (Baum 

2007). Initially, monitoring of precipitation, temperature and slope movement on po-

tential landslides were used to alert local officials and issue a regional debris flow 

early warning. Later works of (Ashland 2003) established groundwater thresholds for 

instrumented potential landslides. Regional thresholds were determined based on 

annual cumulative rainfall. Recent developments include snow monitoring to account 

for landslide triggering by snow-melt (Baum 2007).  

Based on the works of Campbell (1975), who established landslide and debris flow 

triggering rainfall thresholds by intensity and duration analysis, a regional debris 

flow early warning system was set up for the San Francisco Bay Area, USA in 1986 

(Keefer et al. 1987; Wilson 2005). The system was developed and implemented as co-

operation between USGS and National Weather Service (NWS). Quantitative weather 

forecasts issued by NWS two times a day for the upcoming 24 hours were provided to 

the Landslide Initiation and Warning Project of USGS. Rainfall forecasts were com-

bined with data from automatic rainfall gauges and consequently checked against 

pre-defined thresholds. Estimation of hazard level and final decision upon warning 

was assessed cooperatively by experts from USGS and NWS. Initially, triggering 

thresholds based on rainfall intensity in relation to annual rainfall (Cannon and Ellen 

1988) were utilised. Later thresholds were adjusted to account for water storage ca-

pacity (Wieczorek 1987) and minimum thresholds for debris initiation (Wilson et al. 

1993). Below the minimum rainfall threshold debris flow occurrences are unlikely 

while above the upper threshold significant debris initiation in the region can be ex-

pected. In 1992 it was attempted to integrate radar data into the early warning system 

to improve the spatial resolution of rainfall measurement. However, integration failed 

because no reliable relations between radar reflectivity and ground based measure-

ment could be established. Along with technical problems the social aspects were a 

major challenge for the early warning system. For instance, NWS and USGS had dif-

ferent expectations to the technical system. While USGS interpreted the system as an 

experimental prototype of which warnings are by-products, NWS demanded reliable 

predictions and warnings. Warning communication was another challenge for the 

early warning system. USGS considered early warning as an entirely technical system 

which ended with issuing an alarm. The population was expected to react appropri-
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ately by avoiding dangerous areas. Yet, the population and also emergency services 

were mostly unaware of debris hazards and their damage potential. In reality, many 

people intentionally drove into hazardous areas in severe storm conditions trying to 

get home to save the house or feed a pet (Wilson 2005). Eventually, the system was 

shut down in 1995 because USGS could not afford to continue the service. 

 

Based on the experiences in the San Francisco Bay Area, USGS and National Oceanic 

and Atmospheric Administration (NOAA) cooperatively initiated a regional landslide 

early warning system for burned areas in south California, which are prone to debris 

flow initiation (NOAA-USGS Debris Flow Task Force 2005). An assessment of poten-

tial end-users and their demands towards landslide early warning were clarified be-

fore the system was set-up. Alert level terminology was overtaken from NWS severe 

weather forecasts to increase the acceptance of the population. Dissemination of in-

formation and warning communication were adjusted to end-users needs. USGS also 

developed an education program for involved meteorologists and interested public to 

explain hydrological characteristics of debris flow initiation in areas with burned 

vegetation (e.g., California Geological Survey 2003). Technical advances compared to 

the previous system comprise improved quantitative rainfall forecasts, and imple-

mentation of test areas to improve the understanding of triggering groundwater con-

ditions. In addition, empirical and physically-based models were applied to assess 

susceptibility to debris flows, their potential volume and run-out distance (NOAA-

USGS Debris Flow Task Force 2005). 

 

Another regional debris flow early warning system for Oregon, USA, was developed 

and implemented as a cooperation between Oregon Departments of Forestry (ODF), 

Transportation (ODOT) and Geology and Mineral Industry (DOGAMI) with Oregon 

Emergency Management (OEM) (Baum 2007). During periods of intense rainfall me-

teorologists of ODF monitor measured rainfall and forecasts and assess current haz-

ard level together with geotechnicians which are available 24 hours a day. Warning 

messages are issued if thresholds are almost reached or exceeded. Thresholds used 

within the system account for rainfall intensity and duration, but are modified in case 

of significant antecedent rainfall or snow melting. Warning is spread via the emer-

gency channel of the National Weather Service. Within the developed system infor-

mation and education on debris flow hazards and early warning are also addressed 

by for example, warning signs along the highway, advise to homeowners and infor-

mation on websites (Burns et al. 2008; Oregon Department of Geology and Mineral 

Industry 2010).  
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A regional early warning system for shallow landslides is implemented for the Seattle 

Area, USA since 2002 (Baum et al. 2005a; Baum and Godt 2009) and is jointly man-

aged by NWS, USGS and the city of Seattle. The technical system comprises a total 

number of 17 automatic rain gauges with an average distance of 2-5 km between them 

and quantitative weather forecasts. In addition, a test slope was instrumented to im-

prove understanding of pore-water pressure development and landslide triggering. 

Furthermore, landslide mapping and probabilistic regional hazard modelling were 

performed (Baum et al. 2005b). Detailed examination of rainfall data led to the estab-

lishment of a minimum threshold for landslide triggering based on intensity and du-

ration analysis and an antecedent water index calculated from cumulative rainfall of 3 

days, and rain within the previous 15 days (Chleborad 2000; 2003; Chleborad et al. 

2006). For the assignment of alert levels thresholds are used for both, intensity-

duration and antecedent water index. Rainfall exceeding intensity-duration thresh-

olds triggers a warning status at high antecedent water status. Watch level is issued, 

in the occurrence of medium antecedent rainfall index values and observed or fore-

casted rainfalls above thresholds. Outlook level is activated if any of the rainfall 

threshold is exceeded. In other cases the alert is null. In addition, warnings are only 

provided if thresholds are exceeded for at least three gauges relating to an expected 

number of three or more landslide events (Baum and Godt 2009). Warning thresholds 

performed satisfactory in back-analysis with data from the 1978 to2003 period; only 

eight storms caused landslides without previous threshold exceedance (Godt et al. 

2006). 40% of all warnings were followed by landslides events and 85% off all land-

slides were triggered by rainfall above thresholds values. To increase the acceptance 

of the early warning system and improve risk awareness of the local residents, USGS 

provides educational material and information (USGS 2006). 

 

In the USA, USGS is responsible for allocation of warnings related to geological 

events, including landslides. To increase interoperability of warning systems and en-

sure smooth warning communication a common alerting protocol (CAP) was created 

(Highland and Gori 2008). This data format is the same for many different kinds of 

warnings including also man-made hazards and terrorism. Today it is widely used by 

state agencies in the USA. Landslide related CAP warning have been adopted for all 

study areas, for which reliable rainfall thresholds have been established, i.e. Seattle, 

San Francisco Bay Area and burned areas and parts of the Appalachian mountain 

areas of the eastern US. All alerts, including archived warnings, are presented on 

USGS website. To increase the populations' awareness of landslide hazards and the 

potential outcomes of landslide events, a documentary movie was produced, which is 

also planned for school education (Highland and Gori 2008). Moreover, a wide range 
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of fact sheets, reports and other information on landslide hazards, consequences and 

warnings is produced by USGS. 

 

The most advanced and successful landslide early warning system may be that in-

stalled in Hong Kong, China (Schuster and Highland 2007). Hong Kong is densely 

populated by seven million inhabitants and very prone to landslides occurrences and 

damage consequences. The terrain is rugged, with hills rising up steeply, and less 

than 30% of the densely populated areas are flat (0-5°) (Brand et al. 1984). The limited 

availability of favourable land means that geotechnical slope construction works in-

cluding design of cut and fill slopes and slope stabilisation are frequently required. 

Moreover, strong rainfalls with hourly intensities exceeding 150 mm occur along with 

tropical cyclones and low pressure. After two catastrophic landslide events in 1972 

and 1976 which together caused more than 100 fatalities, the Geotechnical Control 

Office was established to reduce landslide consequences (Malone 1997). Later, the 

agency was renamed the Geotechnical Engineering Office (GEO). GEO has many re-

sponsibilities, such as establishing instructions and guidelines for slope design, slope 

stabilisation, quantitative risk management and early warning (Chan 2007). More-

over, education programs for the general population and homeowners aim to raise 

awareness of landslides and related risks. Radio and television features, a telephone 

hotline and a website provide a wide range of information and advice to local resi-

dents (Massey et al. 2001). Detailed information on integrative landslide risk man-

agement strategies in Hong Kong and the efforts and experiences of GEO is available 

in a collection of scientific papers published for the 30th anniversary of GEO (Geo-

technical Engineering Office 2007). The great success of slope safety in Hong Kong is 

also illustrated by significantly lower fatalities due to landslides after the establish-

ment of GEO's predecessor in 1977 (Fig. 2.8).  

The Hong Kong regional landslide early warning system was launched in 1977 and is 

managed cooperatively by GEO and Hong Kong Observatory. More than 100 auto-

matic rain gauges built the technical base for early warning. Rainfall thresholds trig-

gering landslides in Hong Kong were first established by Lumb (1975), but were 

modified several times afterwards when improved real time rainfall and landslide 

data became available. Initially, warning thresholds accounted for cumulative 24 hour 

rainfall in relation to rainfall of the preceding 15 days. Warnings were issued if meas-

ured rainfall of the last 20 hours and the forecasted rain for the next 4 hours exceed 

175 mm (Chan et al. 2003). In the 1980s an hourly rainfall threshold of 70 mm was 

added to the warning scheme. Progressive analysis of landslide initiation and related 

rainfall events led to prediction of the number of landslides expected for certain storm 

events. Warnings were only issued if 15 or more landslides were expected to occur 

(Chan et al. 2003). Since 2003 a GIS-based approach has been used for landslide pre-
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diction (Yu et al. 2004). Therein, the entire area of Hong Kong is represented as grid 

cells accounting for number of properties contained on the slopes. The number of ex-

pected landslides is then modelled according to a spatially variable susceptibility to 

slope failure. A recent development of the landslide early warning system includes 

the integration of radar data from the SWIRLS system (Short-range Warning of In-

tense Rainstorms in Localised Systems) to track storm cells and improve quantitative 

prediction of localised storms (Cheung et al. 2006). Warning dissemination utilises 

TV, radio and internet to inform the public. In addition, emergency forces and hospi-

tals are contacted if large numbers of landslide are expected. In early years warning 

messages were mostly aimed at slum dwellers because they lived in most hazardous 

areas. However, social and geotechnical developments since the 1980s changed the 

focus. Today, the intention of early warning is to inform the entire population about 

potentially hazardous events, thus to provoke cautious behaviour. 

 

China is probably the country experiencing the highest landslide damage and number 

of fatalities in the world (Tianchi 1994). China has begun to address the landslide 

problem in the 1990s by starting a nationwide investigation program including land-

slide mapping, susceptibility zoning, risk analysis, rainfall threshold analysis, preven-

tion planning and engineering counter measures (Yin 2009) and early warning (Zhou 

and Chen 2005). Since 2003 landslide warning based on rainfall forecasts are issued 

after general weather reports on prime time TV shows (Yin 2009). 

 

Fig. 2.8: Number of landslide fatalities in Hong Kong (Wong and Ho 
2000) 
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A regional landslide early warning system based on susceptibility maps and rainfall 

thresholds was installed for Zhejiang Province (Kunlong et al. 2007; Eng et al. 2009). 

The system is based on rainfall forecasts and works as a WebGIS. Warnings are issued 

if rainfall predictions exceed one of the two defined thresholds and near real-time 

warnings are spread through various communication channels (internet, telephone, 

etc.). The warning system is also combined with an assessment of economical risks 

which aim to extend the system to landslide risk warning (Wu et al. 2009). 

Zhong et al. (2009) provide detailed information of the precipitation based early 

warning system for Hubei Province. The landslide early warning system was installed 

in 2006 and represents a WebGIS. Critical rainfall thresholds have been determined by 

analysing the statistic relationship between spatial distribution of occurred landslides 

and rainfall data. Warning generation is based on 2 and 15 day antecedent rainfall, 

which is compared to 24 hour rainfall forecast. If thresholds are exceeded in any of the 

82 divisions in which Hubei is differentiated, the Meteorological Survey of Hubei 

Province issues a warning on the internet. More information on the current situation 

is freely accessible in the form of maps on the internet. In three years of operation the 

system issued 11 warnings, of which 6 were followed by landslide events (Zhong et 

al. 2009). 

 

The Geotechnical Engineering Office of Rio de Janeiro, Brazil, implemented a regional 

landslide early warning based on rainfall thresholds and rainfall monitoring in 1996 

(Ortigao et al. 2002; Ortigao and Justi 2004). In early years the early warning system 

was not entirely automated which resulted in a lack of warnings on for example, 

weekends and holidays, as no experts were available (D’Orsi et al. 2004). Instead, 

automated fax messages were sent without proper data analysis. However, due to 

wide acceptance of the early warning system it was expanded in 1998, and since then 

provides continuous service. At the same time a rainfall radar was included into the 

technical input to increase forewarn time. In addition, a test slope was equipped with 

piezometers and inclinometers to gain more insights into the failure processes. How-

ever, it was decided not to establish more site-specific monitoring systems as the costs 

were too high. Two critical rainfall thresholds were determined which relate hourly 

rainfall intensity to accumulated rainfall for 24 and 96 hours (D’Orsi 2006). Four 

warning levels are used, e.g., low (landslides could happen), medium (occasional 

landslides), high (scattered landslides) and very high (generalized landsliding). Cur-

rent information on warning levels is broadcasted by media and is also available 

online. In addition, emergency services are informed by fax to prepare for potential 

landslide events. In addition to the landslide early warning system, flash floods were 

later integrated into forecasting activities (D’Orsi 2006). 
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A regional debris flow early warning system was installed in Combeima-Tolima Re-

gion in Colombia (Huggel et al. 2008; Huggel et al. 2009). The project was initiated by 

the Swiss Agency for Development and Cooperation (SDC) which promoted invest-

ment into early warning, risk awareness education and disaster prevention training 

instead of solely focussing on reconstruction. The automatic technical monitoring sys-

tem includes three rainfall stations and a series of geophones. At the Regional Emer-

gency Committee Centre data is collected and analysed 24 hours a day and is avail-

able online. Rainfall thresholds initiating debris flows were calculated based on inten-

sity and duration, and with respect to antecedent rainfall up to 30 days. If thresholds 

are exceeded an emergency plan determines actions to be taken. Interestingly, Huggel 

et al. (2009) analyse the performance of the developed system by a cost-effectiveness 

calculation based on historic records. Therein, the costs of false alarms are compared 

to losses in case of hazard events which can be used to adjust rainfall thresholds. 

However, this approach is ethically questionable as it requires definition of monetary 

costs of lost human lives. 

The combined hydrology and slope stability model CHASM, which is applied within 

this study, has also been used in another landslide early warning system. However, 

instead of applying CHASM for continuous modelling of slope stability, rainfall 

thresholds previously calculated were validated by detailed analyses for single slopes. 

The system is located along the Kuala Lumpur Highway, Malaysia, and is in service 

since 1996 (Lloyd et al. 2001). An automated monitoring system measures rainfall in-

tensity which is compared to pre-defined threshold values also accounting for antece-

dent rainfall conditions. A series of single slope CHASM simulations illustrated the 

effect of high soil permeability on slope stability. In conclusion, rainfall longer than 6 

days ago did not significantly influence slope stability and could be neglected in rain-

fall threshold determination in the study area. 

 

An extensive early warning system for debris flows in Indonesia is presented by Apip 

et al. (2009; 2010). Based on local rainfall threshold analyses accounting for rainfall 

intensity and duration, as well as antecedent rainfall, design charts were created 

which provide three warning levels (safe, watch, danger). Moreover, it is tried to 

widen predictive power of the warning system by integrating spatially distributed 

modelling of slope stability with physically-based hydrology and stability model. 

Therein, quantitative rainfall forecasts by National Oceanic and Atmospheric Admini-

stration (NOAA) are utilised for real-time modelling of potential landslide initiation. 

In addition, the model is planned to be further developed to provide forecasts of river 

flows, sediment transport and debris flow run out.  
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A similar approach to early warning is provided by Liao et al. (2010), who also 

worked on regional landslide early warning in Indonesia. The proposed system in-

cludes a physically-based hydrology and slope stability model, as well as integration 

of quantitative rainfall forecasts. Modelling is performed in two steps. Initial calcula-

tions provide hot spots, which can then be modelled using data with higher resolu-

tion. However, the technical system represents a prototype development and further 

research has to be accomplished in order to increase its predictive capacities. 

 

Schmidt et al. (2008) present an innovative landslide early warning system for New 

Zealand. Therein, probability of landslide failures is computed by combination of a 

regional physical-based hydrology and stability model with quantitative weather 

forecasts. However, landslide prediction is subject to large uncertainties which are 

assessed by probabilistic methods. Unfortunately, the early warning system was only 

a prototypic development and is currently not active. 

 

Aleotti (2004) presents a prototype of a regional landslide early warning system for 

shallow landslides in the Piedmont Region of north-western Italy. Rainfall thresholds 

were determined by analysing intensity-duration, antecedent rainfall and mean an-

nual precipitation. Warning thresholds, however, were established lower than trigger-

ing thresholds to provide more safety. Instead of a warning threshold parallel to the 

triggering threshold Aleotti (2004) applied a curve to account for different rain paths 

(Fig. 2.9). By doing so time spans until landslide triggering threshold exceedance are 

integrated, which are important for initiation of evacuations. The technical warning 

system includes rainfall forecasts and station measurements. The system remains in 

an ordinary attention state until thresholds are exceeded by rainfall forecasts. A pre-

ceding warning procedure is launched if landslide prone areas are affected by thresh-

old exceedance. Rainfall paths are then plotted according to antecedent and real-time 

rainfall and an alert is issued according to the pre-defined thresholds. 

Recent developments of the regional landslide early warning system concentrated on 

the improvement of thresholds by including local properties, such as topography and 

geological properties (Tiranti and Rabuffetti 2010). Consequently, three thresholds 

were established, i.e. regional, sub-regional and a pragmatic threshold, which ac-

counts for multiple occurrences of landslide in single rain events. All thresholds were 

tested for their performance in a back-analysis in terms of correct, false and missed 

alarms. In addition, a technical system named SMART was developed which analyses 

rainfall time series for each rain gauge in real time and identifies where thresholds are 

exceeded. The current early warning system utilises rainfall forecast and real-time 

measurements and applies the pragmatic threshold (Tiranti and Rabuffetti 2010). 
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The Åknes rockslide in Norway is one of the most intensely investigated and moni-

tored landslides worldwide (e.g., Derron et al. 2005; Ganerød et al. 2008; Kveldsvik et 

al. 2008; Kveldsvik et al. 2009; Eidsvig et al. 2009; Heincke et al. 2010; Grøneng et al. 

2010). The rockslide itself does not pose direct threat to a community, however, slope 

failure is supposed to trigger a tsunami affecting ships and towns along the fjord. The 

rockslide mass has a volume of 30-40 million m³ and displacements vary with seasons 

and reach 3-10 cm/year with daily movements up to 1 mm (Blikra 2008). The techni-

cal monitoring system includes extensometers, inclinometers, crackmeters, tiltmeters, 

geophones, piezometers, automated measurements by theodolites, laser and GPS and 

ground based radar, and a climate station. All data is available in a web-based data-

base and supervised by experts 24 hours a day. Threshold values for displacement 

velocity have been established which relate to five alert levels colour-coded from 

green to red. In case of imminent slope failure sirens warn the population in poten-

tially affected towns. Other topics of the project include development and implemen-

tation of warning routines and evacuation planning (Blikra 2008). 

 

Another example of an intensely monitored rock slide is the Frank Slide at Turtle 

Mountain, Canada, which exhibited a catastrophic failure in 1903 causing 70 fatalities 

(Froese et al. 2005). A landslide monitoring and early warning program was launched 

in 2003 and commenced with detailed site investigations using InSAR, microseismic 

surveys, ground penetrating radar, drilling and core sample analysis. Within the ac-

tual early warning system tiltmeters, extensometers and crack meters are used as 

 

Fig. 2.9: Comparison of warning curve and warning line thresholds 
and subsequent time spans for evacuation (Aleotti 2004) 
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primary sensors as they provide high detail displacement data (Froese et al. 2006). 

Secondary sensors include differential GPS and automatic theodolite measurements 

which have higher fluctuations but improve understanding of the overall situation. 

Background information is gained by tertiary sensors, i.e. climate station data and 

microseismic monitoring. The early warning system comprises four elements (Froese 

et al. 2005). A monitoring procedure was established to determine responsibilities for 

measurements and their frequencies, which might change in response to trends and 

anomalies in the data. Within the threshold development procedure value-based and 

velocity-based thresholds two standard deviations above noise level were established. 

Development of alert levels and notification protocols comprise the third element of 

the early warning system. A standardised terminology and appropriate response to 

trends in monitoring data were determined. Moreover, action advice was developed 

for emergencies including procedures for communication and evacuation. The current 

alert level is accessible on the internet and is presented in four colours. The green alert 

level indicates normal situations where measurements are in the range of background 

noise but may exhibit seasonal fluctuation. The watch level is active if multiple sen-

sors display unusual trends and leads to direct communication between technical 

experts and local decision makers and municipal officials). The warning level is initi-

ated if multiple sensors demonstrate acceleration trends exceeding pre-defined 

thresholds. If several sensors indicate accelerations and final failure is imminent (one 

to three days to failure) then the alarm level is issued and the emergency response 

procedure is executed. More detailed information on monitoring (Read et al. 2005), 

modelling (Froese et al. 2009) and the information platform (Froese et al. 2006) is 

given in the respective literature. 

 

An early warning system for rockfall is installed at the Winkelgrat, also located at the 

Swabian Alb in Germany (Fig. 2.10). The technical system consists of nine automatic 

extensometers installed in 2002 (Ruch 2009). An automatic alarm message is sent to 

the local emergency service if pre-defined thresholds are exceeded. The road below 

the unstable rock mass is then closed by setting two traffic lights to red to prevent cars 

from entering the hazardous area. At the same time road maintenance service, police, 

rescue forces and the regional geological department are informed via SMS and fax. 

Following field investigations by experts of the regional geological department it is 

decided to initiate further protective measures, or in case of false alarms, to reopen the 

road (GEOSENS 2009; Krause 2009).  

 

Another landslide early warning system in Germany is described by Lauterbach et al. 

(2002) and Krauter et al. (2007). This system relies primarily on technical solutions, for 

example, GPS displacement measurements, and is installed at an autobahn in south-



2 | Theoretical background 51 

 

 

 

west Germany. The slope under investigation is known to cause deformations to the 

road surface since the 1960s. The landslide mass is calculated to be 700,000 m³ with 

average annual movement rates of 1-2 cm. As structural measures were considered 

uneconomical a GPS based warning system was installed. The system consists of 5 

measured points of which the main station is based outside the landslide mass. Accu-

racy of the system is about 1 mm in location, and 2-3 mm in height. Two kinds of 

alarms are implemented: one occurs when obviously false measurements are being 

taken or maintenance works are necessary, the other if pre-defined thresholds of 

movement rates are exceeded. If warning thresholds are exceeded the experts operat-

ing the system are informed via automatic telephone calls and immediately check the 

situation in the field, which then can lead to emergency actions like, for example, road 

closure. 

  

Several slope monitoring and early warning systems have been installed in the United 

Kingdom. An extensive technical monitoring and early warning was installed for the 

coastal landslides on the Isle of Wight (Clark et al. 1996) where the first tiltmeter slope 

early warning started in 1981 (Barton and McCosker 2000). Today, the technical sys-

tem comprises monitoring of surface and subsurface movements by theodolites, GPS, 

inclinometers, tiltmeters and crackmeters. Weather stations and piezometers record 

also rainfall and its effect on landslide triggering. Automatic alarms are issued if pre-

defined displacement thresholds are exceeded. Automatic monitoring systems were 

preferred over manual systems even though initial costs are considerably higher. 

Similar technical monitoring systems have also been installed in Lyme Regis, Scarbor-

ough and Cromer (Clark et al. 1996). 

In Lyme Regis a series of inclinometers, piezometers and GPS ground markers are 

continuously monitored and provide an alarm to experts and decision makers if an 

Fig. 2.10: Early warning system at Winkelgrat landslide equipped 
with automatic extensometers (left) and traffic light for road closure 

(right) 
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imminent threat is given (Clark et al. 2000). In addition, an increased monitoring fre-

quency can be initiated and emergency response is prepared. 

At Cromer, automatic readings of field sensors activate an alarm by sending a mes-

sage by pager. Warning thresholds are based on a pre-determined movement velocity 

of 3 mm per hour or 10 mm in 6 hours. 

Landslide early warning on the Isle of Wight is part of an extensive general coastal 

management scheme by the Isle of Wight Centre for Coastal Environment which 

promotes a holistic approach. Coastal management comprises for example, allocation 

of planning guidance maps, building codes, engineering measures, monitoring, fore-

casting and early warning. A wide range of information is available on the websites 

(Isle of Wight Centre for the Coastal Environment 2010), such as a best practice guide 

(McInnes 2000) providing detailed descriptions of monitoring and warning schemes, 

as well as advice to homeowners on how to reduce risk of coastal erosion and instabil-

ity. In addition, the local management and information centre arranges workshops 

and educational field trips. 

 

An extensive technical monitoring system is installed along the slopes of Clyde Dam 

Reservoir, New Zealand (Macfarlane et al. 1996). More than 5,500 theodolite observa-

tion points were installed to monitor displacements during dam construction and 

reservoir filling. After filling was accomplished the number of observation points was 

reduced. Further monitoring equipment includes borehole extensometers and incli-

nometers for subsurface movements and piezometers for slope hydrology. All data is 

automatically stored in a database and alarms are raised automatically if pre-defined 

thresholds are exceeded.  

 

Given the great number of engineering works in China many applications of monitor-

ing and early warning systems are described in the literature. Since the 1990s much 

attention has been paid to the landslide hazards along the Three Gorges Dam Reser-

voir, China, and many investigations have been performed by researchers on this 

emerging topic (Fourniadis et al. 2007a, Fourniadis et al. 2007b; Li et al. 2008; Wang et 

al. 2008c; Jian et al. 2009; Li et al. 2009a; Li et al. 2009b; Yin 2009). Several landslide 

monitoring and early warning systems are located along the lake created by the Three 

Gorges Dam. One of these was installed for the Shuping landslide, a reactivated mass 

movement which accelerated after the impoundment of the lake. Several extensom-

eters are used to measure the landslide (Wang et al. 2008b; Wang et al. 2009). Dai et al. 

(2008) describe a monitoring and warning system based on high resolution optical 

fibres for the Yuhuangge landslide in the Three Gorges Area. Four alert levels were 

determined which account for changes in velocity and pore-water pressure. Local 

decision makers are informed about current alert levels and are obliged to issue final 
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warnings and initiate evacuation. Since 2004 the alert level was once set to yellow 

level due to significant acceleration and damage on infrastructure (Yin et al. 2010a). 

Later however, displacement rates decreased to former values and the alert level was 

subsequently lowered.  

Moreover, several more interesting papers on applied landslide early warning sys-

tems in China have been published, unfortunately, many are only available in Chi-

nese language with English abstracts (Jiang et al. 2009; Xu and Zeng 2009; Ye et al. 

2009). 

 

The Illgraben catchment (9.5 km²) in Switzerland has some one of the highest debris-

flow activity in the Alps. A monitoring and early warning system for debris flows 

was installed and described in detail by (Badoux et al. 2009). The overarching early 

warning concepts includes ongoing education and allocation of information for the 

local population regarding debris flows and possible consequences, a monitoring sys-

tem, repeated field surveys to assess changes in the catchment, and integration of me-

teorological measurements to increase forewarn time (Graf et al. 2006). Several educa-

tion campaigns were performed to inform local population about potential hazards 

and the early warning systems. In addition, children at elementary level learn about 

debris flows in school. Tourists are provided information at local tourist information 

centre. Along the debris flow channel warning signs were put up every 200 m ex-

plaining the threat of debris flow occurrences in five languages. Moreover, warning 

lights and loud speakers were installed at three spots where hiking trails cross the 

debris flow channel. The early warning system is managed and maintained by Illgra-

ben Security Commission and contacts local emergency task forces if potentially dan-

gerous situations emerge. The technical system includes several geophones located at 

check dams, which can automatically trigger warning lights and speakers further 

down the debris channel if a seismic signal lasts for more than five seconds. At the 

same time SMS and emails are sent to local decision makers. A forewarn time of 5 to 

15 minutes between measurement of debris flow by geophones and a debris flow 

reaching settlement areas in the valley is provided by the system. Alarms can be can-

celled if geophones further downslope do not detect seismic signals 10 minutes after 

the first signal. This is done to decrease chances of false alarms due to other potential 

geophone triggers, e.g., rock fall, thunderstorms or earthquakes. Further technical 

equipment of the Illgraben monitoring systems includes measurement of discharge by 

ultrasonic sensors, laser and radar. Based on their experiences Badoux et al. (2009) 

propose radar as the most suitable method for early warning, as it provides smooth 

and reliable data on discharge even in situations of rapidly fluctuating discharge 

amounts. The catchment is visited and mapped regularly to detect changes in the de-

bris flow source area, such as landslides that provide material for further debris flow 
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occurrences. Including meteorological forecasts into the early warning systems and 

defining rainfall thresholds was also trialled. However, integration failed because 

local thunderstorms in alpine areas are difficult to predict. The debris flow early 

warning system at the Illgraben can be regarded successful. Since its implementation 

20 alarms were issued, of which only one was a false alarms, and in only three cases a 

warning was cancelled even though the debris flow had not stopped. The Illgraben 

catchment is also part of the national IFKIS-Hydro early warning and information 

platform, which provides monitoring data and event documentation (Romang et al. 

2010). 

 

In the North Italian community of Nals a local debris flow early warning system was 

installed after devastating debris flow events in 2000 (Egger and Mair 2009). The aim 

of the early warning system was to be an addition to structural protection measures. 

Debris flow material is supplied by landslide processes in the upper catchment. How-

ever, due to the high activity it was decided not to install an automatic system there, 

but to place a series of geophones into the debris flow channel to detect already initi-

ated events. Still, a forewarn time of 20 to 60 minutes between a geophone alarm and 

the debris reaching settled areas is accomplished. Further technical equipment in-

cludes a piezometer, rainfall stations and a remote controlled video camera with flood 

lights.  

Another Italian case study on a debris flow warning system utilising geophones is 

presented by Arratano (1999), however, it only was active for one summer. 

 

A prototype of a mudflow early warning system for the Italian city Sarno is described 

by Sirangelo and Braca (2004). Therein, the probabilistic hydrology model FLaIR 

(Forecasting of Landslides Induced by Rainfall) was applied, which correlates rain-

falls with landslide occurrence. Warning thresholds were established by back analysis 

and included the large 1998 event. According to these thresholds three warning levels 

were determined, i.e. attention, alert and alarm. 

The same model has been applied to Lanzo Valley of the Piedmont, Italy (Capparelli 

and Tiranti 2010). Promising performance led to the current implementation of an 

automatic early warning system.  

 
Hübl (2000) describes the application of a prototypic early warning system for the 

Wartschenbach catchment in Austria, which frequently experiences debris flows and 

flash flood events. The developed early warning system is thought as a passive pro-

tection measure. The technical system is based on measurement of rainfall and flow 

discharge by ultrasonic sensors in the upper catchment. If measurements exceed pre-

defined thresholds it is up to experts to decide whether to close lower lying roads to 

prevent cars being hit by debris flows. By developing adequate response plans for 
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hazardous events they have tried to address the response of the local community. The 

implemented system was planned and implemented as a prototype and should be 

installed in other catchments which could potentially produce debris flows after a test 

period. 

 

A novel a landslide early warning system is described by Sakai (2008). Earlier re-

search (Sakai and Tarumi 2000) indicated that concentrations of sodium, calcium and, 

sulphate ions in groundwater changed before phases of landslide activity. Landslide 

failures could be predicted up to 90 days in advance. Therefore, a prototypic landslide 

early warning system was set up which utilises automated ion-selective electrodes to 

provide early warning to railroads in Japan. Data is transmitted from the sensors in 

the field to train dispatchers and track maintenance engineers via mobile phone net-

works. Measurements are taken every 1 to 3 days, but frequency can be increased in 

the case of unusual sensor readings. 

 

Another example of an early warning system in Japan is presented by Chiba (2009). 

The warning system strongly emphasises warning communication and is regarded as 

an integral element of the local disaster prevention program against sediment-related 

processes (debris flows and debris floods). Earlier research on local hazards provided 

information on potential hazardous zones and return periods, which was utilised to 

allocate warning and evacuation zones in the occurrence of debris flow events. Sev-

eral people were employed to carry out education programs in which local residents 

were informed about potential hazards and appropriate reactions in case of a warn-

ing. If exceedance of pre-defined river flow thresholds occurs a disaster management 

headquarter is assigned in which all information about the current hazard status is 

collected. Information is gathered primarily by the employees by calling local resi-

dents by cell phone. Moreover, all data is updated to a GIS platform which is avail-

able online. Chiba (2009) illustrates the effectiveness of the warning system by com-

paring its performance to a neighbouring town, in which no early warning system 

was installed, and no detailed hazard maps and evacuation plans were available. 

During a debris flow event local disaster managers were overwhelmed by incoming 

information and no efficient evacuation could be initialised. In contrast, disaster man-

agers of the town with a warning system were able to quickly determine where debris 

flows had occurred and to initialise evacuation according to the pre-determined 

schemes. 

 

Flentje et al. (2005) present a real-time monitoring network for time pore-water pres-

sure, slope movement and rainfall in Wollongong, Australia, which aims to enhance 

understanding of landslide triggering process and improve quantitative assessment of 
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landslide hazards. All data is automatically sent via a cell phone network to a web-

based database available online. Threshold values have been determined and current 

measurements are colour-coded to allow for easy interpretation. However, the de-

scribed system is essentially technical and does not aim to provide a warning mes-

sages or initiate counter measures or evacuation.  

Besides the ILEWS project several other research programs focussing on early warn-

ing systems for natural hazards were funded within the GEOTECHNOLOGIEN 

framework. Three of these projects also concentrated on landslide processes, and will 

briefly be described in the following. 

The SLEWS (Sensor-based Early Warning System) project focused on three sensor 

types measuring acceleration, inclination and pressure to monitor landslide initiation 

(Fernandez-Steeger et al. 2009). The project emphasized technological developments 

accounted for sensor development and laboratory testing. A large proportion of the 

accomplished work concentrated on wireless sensor networks to ensure smooth data 

transmission. Developed sensors were applied to several real case studies on the Bar-

colonette earthflow in France, and rockfall warning in Rathen, Germany. However, 

besides the technical research, the integration of early warning in social decision mak-

ing process was another topic of the SLEWS project. 

The main goal of the alpEWAS project was sensor-based monitoring and early warn-

ing in the Bavarian Alps (Singer et al. 2009; Thuro et al. 2009). Thereto, three main 

methods were utilised to detect displacements, i.e. TDR measurements, prism-less 

tachymetrie and low-cost GPS measurements. In addition, an information platform 

was set up to collect all data and inform involved experts by email and SMS if pre-

defined thresholds were exceeded.  

The EGIFF project adopted a technical approach and concentrated on the develop-

ment of new methods applicable within landslide early warning. A wide range of 

geotechnical data for a test slope south of Munich, Germany, was compiled and mod-

elled by a finite element model (Breunig et al. 2009). In addition, 3D/4 D databases 

were developed for effective data visualisation. Moreover, the project implemented 

an automated system to interpret media news and extract landslide related informa-

tion. 

 

From the examples of landslide early warning systems illustrated above some conclu-

sions can be drawn. Regional landslide early warning systems that focus on shallow 

landslides or debris flows generally rely on rainfall thresholds derived by empirical or 

physically-based methods. In some cases local test slopes are equipped with monitor-

ing systems to improve understanding of landslide triggering and consequently mod-

ify rainfall thresholds. Innovative approaches try to integrate sophisticated slope sta-

bility models and real time modelling of landslide initiation Local landslide early 
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warning systems however are installed for a wider range of processes. For debris 

flows technical early warning systems can be fairly simple because it may take several 

minutes until an initiated debris flow reaches settled areas. Forewarn time for other 

landslide processes is often shorter and early warnings are more complex. For deep-

seated landslides and failures in rock more complex monitoring is applied to measure 

displacements and processes related to movement triggering. Warning thresholds 

may account for displacement or critical parameter values of triggering factors. Mod-

elling of slope behaviour by complex slope stability models is an important part of 

landslide prediction and is frequently applied for landslide early warning. Most land-

slide early warning system are not fully automated but leave judgment of the current 

situation and final warning to experts. Existing landslide early warning systems differ 

substantially regarding the integration of social aspects. In some cases landslide early 

warning is integrated into larger schemes for slope safety, risk management, disaster 

prevention and hazard awareness, while other systems constitute simple technical 

approaches. 

2.5 THE ILEWS PROJECT 

The work described within this thesis is embedded into the ILEWS project (Integra-

tive Landslide Early Warning Systems) which will be briefly introduced in the follow-

ing. Integrativity therein does not only refer to a strong interdisciplinary and coopera-

tive work between the project partners, but also to involvement of social sciences aim-

ing to cooperatively embed early warning into the prevalent political structures. Some 

results are presented in chapter 7; more detailed information is provided in Bell et al. 

(2010a). The ILEWS project was funded by the German Federal Ministry of Education 

and Research (BMBF) and integrated into the GEOTECHNOLOGIEN research pro-

gram. The project started in 2007 and ran for three years. 

 

It is important to note that the research carried out in the ILEWS project partly over-

laps with the topics of this thesis; however, several aspects are investigated in more 

detail in this work while other aspects are not covered. While the analysis of slope 

movement and hydrological monitoring data, and subsequent development of land-

slide early warning models are main goals of this thesis, the ILEWS project had a 

wider scope. The overall goal of the ILEWS project was to develop and implement a 

transferable early warning concept starting with sensors in the field and modelling of 

early warning, and ending with user-optimized action advice embedded in a holistic 

risk management strategy. To address the multiple issues arising from such a com-

prehensive approach project partners from various scientific backgrounds partici-

pated in the project, i.e. sensor technology, geoinformation, geomorphology, geodesy, 

history, social geography and spatial planning. Altogether, 10 research partners coop-
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erated within the ILEWS project, of which five were private companies, and five uni-

versity research groups. The general structure of the ILEWS project is illustrated in 

Fig: 2.11. 
 

 

Fig: 2.11: General structure of ILEWS project (Bell et al. 2009) 

The project can be distinguished in three clusters, i.e. monitoring, modelling and im-

plementation. However, due to the complex mission of developing and implementing 

integrative landslide early warning systems and the interlinked workflow of the in-

volved project partners, several tasks were carried out cooperatively.  

 

Within the monitoring cluster the main goals were the prospection, and installation 

and operation of an adapted monitoring system for hydrology and slope movement 

on a landslide at the Swabian Alb, South-West Germany. Important milestones of the 

monitoring cluster include: 

- geophysical prospection and development of a technical monitoring system 
accounting for local geomorphology 

- installation of hydrological sensors, inclinometers and geodetic network 
- continuous and periodic measurements of hydrology and slope movement 
- automated data storage, transmission and web-based visualisation 
- development of web-based data management platform allowing for analysis 

and interpretation 
- archival research for analysis of frequency-magnitude behaviour of landslides 

in the study areas 
The overall goal of the modelling cluster was to analyse the data, and provide reliable 

information on future slope behaviour based on a range of modelling approaches. 

Some of the main aims of this cluster were: 

- data analysis and validation 
- application of empirical-based, physically-based and movement-based models 
- integration of models into an early warning system 
- modelling of early warning in real-time for both local and regional study areas 
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Within the cluster implementation cooperative risk management and end-user opti-

mised warning communication were the main objectives. Other goals include: 

- clarification of local and regional demands towards landslide early warning 
- integration of warning into the respective social processes of decision making 
- cooperative definition of protection goals  
- development of alternative risk management strategies 

The objective of ILEWS, to develop and implement an adaptive and integrative land-

slide early warning concept, was examined by a transfer to two studies of which one 

is already equipped with a technical system. 
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3 STUDY AREA 

3.1 REGIONAL SETTING 

In the following, an introduction to the study area Lichtenstein-Unterhausen at the 

Swabian Alb, South-West Germany is presented. Therein, geological, climatic and 

geomorphic properties are described, and an emphasis is put on landslide processes. 

The location of the study area is illustrated in Fig. 3.1. 
 

 

Fig. 3.1: Location of Swabian Alb and the local study area 
Lichtenstein-Unterhausen 

The Swabian Alb is part of the South German cuesta landscape and extends from 

south west (High Rhine at Schaffhausen) to the north east (Nördlinger Ries) over a 

distance of 220 km with a mean width of 40 km. Elevations above 1000 m are present 

in the West Alb, while Central and East Alb exhibit maximum elevations of 700 to 800 

m (Geyer and Gwinner 1986). 

The Swabian Alb is a rural area with a low population density (148 inhabitants/km² 

in 1990) (Grees 1993). Grassland and forest occupy the largest proportion of land area 

(>60%). Settlement areas (8%) are often located in the valley bottoms and fields (29%) 

are primarily cultivated on the plateau. 



62 3 | Study area 

 

 

3.1.1 Geology 

The present landscape of the Swabian Alb is strongly influenced by Jurassic sedi-

ments, but also tertiary and quaternary processes influenced landscape development. 

Leser (1982) emphasises the relationships of current and past climatic factors for land-

scape evolution, such as rainfall and temperature, and weathering, pedogenesis and 

erosion processes, including landslides. 

Lower Jurassic deposits are found in the foreland of the Swabian Alb, while Middle 

Jurassic sediments are located more towards the cuesta ridge (Albtrauf) and the pla-

teau. The latter mainly consists of Upper Jurassic sediments (Geyer and Gwinner 

1997). In addition, some 350 tuff diatremes of tertiary age illustrate volcanic activity in 

the area around Urach (Rothe 2005). Other features include tertiary weathering prod-

ucts and quaternary deposits from limestone solution, as well as slope debris and de-

posits from landslides and fluvial processes. Tertiary deposits in the southern Alb 

area are primarily molasse (Walter 1995). Fig. 3.2 illustrates the Geology of the 

Swabian Alb. More detailed information on Jurassic strata is presented in Tab. 3.1. 

Therein, strata are described by their German names instead of the English transla-

tion, to prevent confusion. Petrographic descriptions however, were translated to im-

prove understanding of strata properties. 

In the Lower Jurassic strata, clays and marls are dominating, which also can be bitu-

minous, and are interstratified with lime and sandy materials. Middle Jurassic sedi-

ments are predominantly clays with fine sands and ferriferous lime sandstones hori-

zons, while Upper Jurassic strata comprise bedded layers of limestone and marls 

(Geyer and Gwinner 1997). Strata are generally dipped towards south-east by 2.5-3°; 

however, inclination may vary due to local folding features (Roth 2004). Fig. 3.3 illus-

trates the geological properties of South Germany's cuesta landscape as a cross sec-

tion, including the foreland, escarpment and plateau of the Swabian Alb.  

Several tectonic fault lines are located in the Swabian Alb (Fig. 3.2), occasionally caus-

ing earthquakes. The strongest seismic events of the recent past include earthquakes 

in 1911, 1943 and 1978 in the area of Albstadt which also triggered landslides (Rothe 

2005). A recent study by Meyenfeld (2009) analysed the effects of earthquakes on 

landslide triggering at the Swabian Alb and emphasized the importance of seismic 

shaking for landslide initiation. The potential earthquake threat is accounted for in 

spatial planning and adaptation of building codes according to earthquake zones 

(Wirtschaftsministerium Baden-Württemberg 2001). 
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Fig. 3.2: Geological features and fault lines in the Swabian Alb (based 
on Bell 2007) 

 

Fig. 3.3: Schematic profile across the South German cuesta landscape 
with indication of landslide susceptible areas and karst features 

(based on Wagenplast 2004) 
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Tab. 3.1: Jurassic strata in the Swabian Alb (based on Ohmert et al. 1988; Geyer and Gwinner 
1997; Wagenplast 2005; Bell 2007) 

 
 stage code stratum petrography thickness 

U
p
p
e
r 

Ju
ra

s
s
ic

 

Tithonian ti1 Hangende Bankkalke  yellowish grey to greyish brown, well bedded 

limestones (10-35cm thick) with marly lime 

and marl interstices 

80-300 m 

Kimmeridgian ki5 Zementmergel blueish grey, yellowish grey and light grey 

marls, lime marls, marl lime and lime, 

partly massive 

0-120 m 

 Ki4 Liegende Bankkalke light yellowish to grey alternating sequences 
of lime- and marl lime beds (10-40cm 

thick) separated by marl beds 

30-80 m 

 ki3 Obere Felsenkalke dominantly massive lime; dense and crystal-

line limestone beds (10-40cm thick), in-

creasing marl interstices to top 

25-35 m, 

up to 60 m 

(massive) 

 ki2 Untere Felsenkalke dominantly massive lime; alongside well 

layered, dense, slightly crystalline lime-

stone beds (10-150cm thick); lower and 

middle sections increasingly interstratified 

by marl interstices and beds, upper section 
very thin marl layers partly missing  

30-50 m, 

>100 m 

(massive) 

 ki1 Lacunosamergel (Kim-

meridge-Mergel) 

grey marl and marl limestones (5-50cm 

thick) with varying clay content  

20-60 m 

Oxfordian ox2 Wohlgeschichtete Kalke 

(Oxford-Kalk) 

light grey to yellowish grey, uniformly strati-

fied limestone beds (10-60cm thick) with 

thin marl beds, partly massive 

15-80 m 

 ox1 Impressamergel (Oxford-

Mergel) 

alternation of marl and marl lime beds; also 

clay marls at basis; lime stone beds to the 

top; partly massive in West Alb 

50-125 m 

M
id

d
le

 J
u
ra

s
s
ic

 

Callovian cl Ornatenton dark grey claystones (5-15% calcium car-
bonate) with oolitic iron horizons; Phos-

phorite and marl lime concretions 

3.3-37 m 

Bathonian bt Parkinsorien-Oxycerieten dark clay stones with interstratified marl lime 

beds 

0.7-70 m 

Bajocian bj2 Oolithische Laibsteinschich-

ten 

dark grey to bluish grey, partly sandy foli-

ated, partly plastic clays and clay marls, 

pyrite and limonite concretions, interstrati-

fied marl lime beds 

5-42 m 

 bj1 Kalksandige Braunjuratone dark grey to yellowish, sandy clays, clay 

marls and marls with scattered lime sand-
stone; frequent limonite concretions 

3-39 m 

Aalenian al2 Eisensandstein- or Eich-

berg-Formation (Sandfase-

rige Braunjuratone) 

Alternating of sandy clays and clay marls 

(60-80% of entire stratum thickness), fer-

riferous sandstones, oolitic iron and sandy 

marl lime 

24-75 m 

 al1 Opalinuston bluish black to dark grey, brittle, often shale 

clays and clay marls, partly pyrite; scat-

tered marl lime beds and sand marl beds 

80-131 m 

L
o
w

e
r 

Ju
ra

s
s
ic

 

Toarcian tc2 Jurensis-Mergel shale, yellowish grey to light grey marl and 

lime marl alternating with cloddy, grey blue 
to yellowish grey marl lime beds; at basis 

partly bituminous 

0.6-13 m 

 tc1 Posidonienschiefer alternating blackish grey, bituminous clay 

marl shale, scattered bituminous marl lime 

beds; also called oil shale 

4-16 m 

Pliensbachian pb2 Amaltheen-Tone dark grey to dark blue, partly clay shale with 

alternating lime marls and marl lime beds; 

clays contain many pyrite concretions 

9-28 m 

 pb1 Numismalis-Mergel grey marls and lime marls; partly light grey 
marl lime beds 

2-13 m 

Sinemurian si2 Turneri-Tone dark grey, partly clay and clay marl shale; 

numerous pyrite and limonite concretions; 

marl lime beds 

0-43 m 

 si1 Gryphaeenkalke oder 

Arietenkalke 

rich in fossils, often dark blue grey lime beds 

alternating with clay shale and dendritic 

marls 

2-6 m 

Hettanganian he2 Angulatensandsteine bzw. 

-tone 

dark, often sandy clay and clay marl shale 

interstratified with marl lime and lime sand-

stone beds 

1.7-16 m 

 he1 Psilonentone clay and clay marls, at basis dark grey, hard 

lime beds 

3.5-11 m 
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3.1.2 Climate 

The climate at the Swabian Alb is typical for Central European regions in the transi-

tion zone between oceanic and continental climate conditions (Leser 1982). Local relief 

and the orientation of the Albtrauf escarpment, however, have strong effects on meso-

scale climate. Fig. 3.4 illustrates mean annual precipitation for the Swabian Alb for 

two reference periods and the changes between them. Orographic effects on distribu-

tion of rainfall amounts can be observed by, for example, drier conditions one the lee 

side of the Black Forest, and higher rainfall along the escarpment and on the plateau. 

The variability of local climatic conditions can be illustrated by the comparison of two 

weather stations, Sonnenbühl-Genkingen and Nehren, of which the former is located 

on the plateau close to the escarpment, and the latter in the foreland (Fig. 3.5). The 

distance between the stations is roughly 10 km. Precipitation trends are fairly similar; 

however, Sonnenbühl-Genkingen receives significantly more rainfall. In addition, 

annual rainfall maxima strongly vary for Sonnenbühl-Genkingen between a maxi-

mum of approximately 650 mm and more than 1450 mm with extremely wet years in 

1941, 1965 and 2002. An overall trend of increased annual precipitation can be ob-

served. 

 

Distribution of monthly precipitation is illustrated in Fig. 3.6 and demonstrates a high 

variability. Most precipitation generally occurs in spring and early summer. How-

ever, comparison of two reference periods indicates a shift from two rainfall maxima 

in June and August to one maximum in July. 

Mean temperatures in the Swabian Alb vary between 6° and 9°C, with lower tempera-

tures associated with higher elevations on the plateau. Precipitation in winter often 

occurs as snow, especially in higher elevation areas. Therefore, runoff is often delayed 

until spring snow melt.  

3.1.3 Hydrology 

The Swabian Alb is located at the divide between the watersheds draining into the 

rivers Rhine and Danube. Limestones of the Upper Jurassic, however, are strongly 

affected by karst processes, thus phreatic watersheds vary from surficial ones. Ter-

horst (1997) distinguishes between shallow and deep karst. Shallow karst is found in 

the vicinity of the Albtrauf escarpment and exhibits karst drainage above the eleva-

tion of the receiving river causing springs, whereas deep karst drainage occurs below. 

Only few rivers can be found on the Swabian Alb plateau due to underground karst 

drainage (Geyer and Gwinner 1997), thus, dry valleys are a common feature on the 

plateau. Drainage density in the foreland of the Swabian Alb is higher due to less 

permeable geological strata. 
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Fig. 3.4: Mean annual precipitation in the Swabian Alb region for pe-
riod A (1941-1970) and period B (1971-2000) (based on Bell 2007) 
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Fig. 3.5: Annual rainfall for two selected weather stations from 1931 
to 2004. Five year moving average and linear trend refer to Sonnen-

bühl-Genkingen 

 

Fig. 3.6: Rainfall by month for selected years for Sonnenbühl-
Genkingen station 
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3.1.4 Geomorphology 

The landscape of the Swabian Alb was essentially formed under climatic conditions 

differing from the present (Blume 1971; Dongus 1977; Leser 1982; Brunotte et al. 2007). 

18 million years ago, at the time of volcanic activity in the Urach-Kirchheim area. The 

escarpment of the Swabian Alb was about 20 km further north than it is today (Geyer 

and Gwinner 1986; Geyer and Gwinner 1997) which relates to an overall relocation of 

1 m/1000 years (Kallinich 1999). Pleistocene relocation has been assessed to be 2-3 

km/1000 years (Dongus 1977), although the involved processes are not entirely clari-

fied (Terhorst 1997). Detailed discussion of the relocation of the Albtrauf escarpment 

is provided by Kallinich (1999). Blume (1971) regards solifluction and fluvial erosion 

as the dominant processes, and rates landslide processes only of local importance for 

relocation of the Albtrauf escarpment. In contrast, Dongus (1977) emphasizes land-

slides as one important erosion factor. For Holocene times, most authors assume low 

geomorphological activity (Büdel 1944; Bleich 1960; Weippert 1960) apart from fluvial 

erosion and sedimentation, soil erosion, karst processes and local landslides. A geo-

morphological map (1:100,000) for the Swabian Alb was established by Dongus 

(1977), and a 1:25,000 map is available for the map sheet of Mössingen (Leser 1982). 

3.1.5 Landslides 

Several studies have focussed on landslide processes within the Swabian Alb. Early 

extensive research include the works of Hölder (1953), Bleich (1960) and Reiff (1968). 

Within the MABIS project carried out by the University Tübingen, a wide range of 

methodological approaches were applied (e.g., Bibus 1985; Bibus 1986; Kraut 1995; 

Wiegand 1996; Terhorst 1997; Kallinich 1999; Knipping 1999; Riedinger and Terhorst 

1999; Kreja 2000; Thein 2000; Kreja and Terhorst 2005; Neuhäuser and Terhorst 2007). 

Within the InterRISK project the focus was put onto local and regional landslide haz-

ard and risk analysis, with methodological approaches including analysis of historic 

sources, geomorphological mapping, geophysical measurements and landslide mod-

elling (Armbruster 2002; Bell et al. 2006; Brennecke 2006; Kohn 2006; Kruse 2006; 

Thiebes 2006; Holland 2007). A general relationship between lithology and landslide 

activity was presented by Terhorst (1997) illustrated in Tab. 3.2. 

 

Landslide inventories for subareas of the Swabian Alb were established e.g., by Kraut 

(1995, 1999), Brennecke (2006) and Kohn (2006). Large scale geomorphological maps 

(1:5,000 to 1:10,000) including landslide processes were established by Kößler (1997), 

Terhorst (1997), Kallinich (1999), Kreja (2000) and Bell (2002). A more general map 

(1:50,000) was developed by Kallinich (1999) for several study areas along the 

Albtrauf escarpment.  
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Tab. 3.2: Lithology and typical landslide processes at the Swabian 
Alb (based on Terhorst 1997) 

lithology code landslide type 

Mittel-Kimmeridge-Kalk ki2,3,4 rotational slides, rock and debris falls, rock top-
ples, translational debris slides 

Unter-Kimmeridge Mergel ki1 flows 

Oxford-Kalke ox2 combined rotational slides, debris falls, transla-
tional debris slides 

Oxford-Mergel ox1 flows 

Braunjuratone, especially Ornaten- 
and Opalinustone 

cl, bt, bj2, 
al1 

flows, translational slides 

Braunjurakalke and –sandsteine bj1, al2 rotational slides, flows 

 

A dendro-geomorphological investigation was carried out by Holland (2007) in which 

phases of landslide activity were analysed for the Urselberg landslides in Pfullingen.  

Several geophysical methods have been applied in local study areas, e.g. seismic 

(Hecht 2001), geoelectric (Bell et al. 2006; Kruse 2006; Sass et al. 2008), radio-

magnetotellurics (Kruse 2006) and georadar (Sass et al. 2008). Kruse and Bell worked 

on the same landslide, which is also investigated in this work. 

Statistical models for delineation of landslide prone areas were established for several 

areas of the Swabian Alb (Wiegand 1996; Thein 1999, Thein 2000; Armbruster 2002; 

Neuhäuser et al. 2005; Neuhäuser and Terhorst 2007). Fig. 3.7 illustrates landslide 

susceptibility for the Swabian Alb developed by Bell (2002), which later has been inte-

grated into regional planning. 
 

 

Fig. 3.7: Landslide susceptibility in the Swabian Alb (after Bell 2007). 
Magnified areas show Irrenberg (A) and Fils valley (B) 
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Deterministic models for landslide susceptibility modelling have been applied by 

Kreja (2000), Kreja and Terhorst (2005) and Thiebes (2006). Based on a susceptibility 

map established by Neuhäuser (2005), Papathoma-Köhle et al. (2007) carried out an 

analysis of landslide vulnerability for Lichtenstein-Unterhausen to develop a frame-

work to be used in holistic risk assessment. 

Research carried out within the InterRISK and ILEWS projects (Röhrs and Dix 2010) 

was able to extract 216 landslide events from historic data sources, of which most 

were unknown before. Events date back almost 600 years, however, the majority of 

detected landslides occurred within the last 300 years. Large landslide events in his-

toric times include the events in Greut (1805) and in Ratshausen (1787 and 1789), in 

which landslide masses moved far down to the valley floor and blocked the rivers, so 

that landslide damned lakes were formed (Groschkopf 1957; Riede 1990; Borngraeber 

and Geyer 2002). The Plettenberg landslide (1851) and the landslide at the Bronner 

Mühle (1960) were deep-seated first-time slope failures involving bedrock material. 

The Irrenberg landslide (1972) was triggered by strong rainfall which occurred after a 

long dry period, which caused shrinkage cracks to open up, thus, increasing infiltra-

tion rates (Fundinger 1985). The most recent large landslide was triggered on 

12.04.1983 at the Hirschkopf in Mössingen which involved 6 million m³ of material 

(Schädel and Stober 1988). The Mössingen landslides was a reactivation of an old 

landslide body and has been investigated in detail by several researchers (Bibus 1985; 

Fundinger 1985; Bibus 1986; Schädel and Stober 1988). Final slope failure was pre-

ceded by crack openings at the Albtrauf escarpment (Bibus 1985; Schädel and Stober 

1988) and caused 1.5 million € damage to forest paths and woods (Fundinger 1985). 

Another recent example of landslide activity in the Swabian Alb took place in January 

2011 close to the community of Lichtenstein, when a 30 m segment of a street col-

lapsed and temporarily interrupted traffic (Müller 2011, personal communication). 

The landslide cause was reported to be heavy rainfall combined with significant snow 

melt. 

3.2 LOCAL STUDY AREA 

In the following, an introduction to the local study area Lichtenstein-Unterhausen in 

the Echaz valley south of the city of Reutlingen (Fig. 3.1) is presented. Several general 

aspects regarding the Swabian Alb described previously also apply for the local study 

area and require no repetition. Therefore, following paragraphs primarily focus on 

local characteristics, such as geology geomorphology and research of previous inves-

tigations. 

The slope under investigation faces south-west and occupies an area of approximately 

0.5 km² (Fig. 3.8). The highest altitude is approximately 780 m AMSL, while the river 

in the valley is at an elevation of approximately 465 m AMSL. The local study area 
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comprises two large landslide bodies with head scarps at approximately 660 m 

AMSL. Today, steep slopes and higher elevations areas are dominantly occupied by 

forest, while lower slopes feature pasture. Settlement activity on the slope under in-

vestigation started in the 1960s and continues today. The local development plan ob-

ligates all construction works to be preceded by a geological survey by experts (Heyd 

2005 in Bell 2007). However, at least one building suffers frequent cracking due to 

slope movement in summer and autumn (Fig. 3.9) (Siegler 2005 in Bell 2007). An in-

teresting feature of the local study area is a steep and almost bare limestone scree 

slope located below the landslide head scarps. The limestone was mined in earlier 

times and an overall volume of approximately 30,000 m³ had been extracted (Schön-

wälder 2006 in Bell 2007). 
 

 

Fig. 3.8: Photo of study area taken facing north east. Lines indicate 
the boundaries of the landslide bodies 

 
Fig. 3.9: Crack in a house due to slope movements 
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3.2.1 Geology 

The lithology of the study area primarily consists of Upper and Middle Jurassic sedi-

ments dipping south west by 1-2° (Fig. 3.10). Slopes are mostly covered by slope de-

bris from Pleistocene solifluction and landslide activity. In addition, fluvial deposits 

and tufa of late glacial and Holocene age cover the valley bottom. At the highest ele-

vations in the study area Untere Massenkalk Formation (joMu) of the Upper Jurassic 

are present, which consist of series of massive limestone layers intersected by thin 

marl interstices. Below approximately 730 m AMSL Zementmergel (ki5) with an aver-

age thickness of 20 m overlies Lacunosamergel (ki1) located above approximately. 670 

m AMSL. The Upper Jurassic Wohlgeschichtete Kalk Formation (ox2) forms a plateau 

with an elevation of approximately 660 m AMSL. This stratum comprises a series of 

stratified limestone beds intersected by thin layers of lime marl beds. The underlying 

Impressamergel (ox1) forms steep slopes and can be found up to approximately 610 m 

AMSL. However, the material is often locally relocated further downslope due to ro-

tational landslide processes. The ox1-stratum is characterised by an alternation of marl 

and marl lime beds. Upper sections mainly consist of massive limestone beds while 

lower sections also comprise clay marls. Below the ox1 stratum Medium Jurassic Or-

natenton is present which consists of dark claystones with 5-15% of calcium carbon-

ate. The material is often deeply weathered and prone to landslide processes (Ohmert 

et al. 1988). A thin stratum of Bathonian clays (bt), sometimes termed Dentalienton, 

can be assumed for the study area (Ohmert et al. 1988), however, no outcrops are pre-

sent. Bajoicum strata bj3, bj2 and bj1 were mapped in the north-western part of the 

study area and comprise clays marl-stones and sandy limestones with clay sections. 

At several locations volcanic tuff is displayed in the map, originating from tertiary 

volcanic activity.  

3.2.2 Geomorphology 

A comprehensive geomorphological map based on field mapping and analysis of a 1 

m DTM was established by Bell (2002) (Fig. 3.11). The slope is dominated by two large 

landslides bodies of which the western is significantly larger. Landslide deposits of 

the larger mass reach down to the valley floor and altered the course of the river 

Echaz. Both landslide bodies feature a steplike morphology with flat areas in the head 

area below the head scarp. Two younger landslides are located on the western land-

slide body. These movements comprise reactivation of material affected by the older 

phase of landslide activity. A recent landslide event took place in 1984 on the western 

end of the settlement area, when a small rotational landslide was triggered by con-

struction works not adapted to local conditions. Superficial and shallow landslide 

activity can be observed on all slope areas without settlement. A highly active scree 
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slope formed of loose limestone is located above the head of the oldest landslide de-

posit. Limestone rocks originating from the ox2 limestone stratum in the landslide 

head scarp areas spread at the foot of the scree slope indicate high rockfall activity.  

 

 

Fig. 3.10: Geological map (1:50,000) and landslide boundaries for the 
local study area Lichtenstein-Unterhausen (based on Bell 2007) 
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Fig. 3.11: Geomorphological map for the local study area Lichten-
stein-Unterhausen (based on Bell 2007) 
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3.2.3 Previous investigations 

The local study area investigated in this thesis has already been studied by the pre-

ceding research project InterRISK. Therein, an initial landslide monitoring system was 

installed comprising inclinometers, geodetic levelling and temporary tiltmeter meas-

urements (Armbruster 2002). In addition, Kruse (2006) performed a series of geoelec-

trical measurements to investigate hydrological processes within the landslide bodies.  

Based on monitoring results, Bell (2002) concluded that at least parts of the landslide 

are seasonally reactivating leading to extremely slow displacement rates. Two distinct 

patterns of movement were distinguished: a deep-seated sliding process down to the 

bedrock in approximately -15.5 m depth, occurring in spring; and a flow or creep 

movement of the upper 8.5 m in summer and autumn. Comparison of landslide 

movement with rainfall data showed no clear relationship. However, a correlation 

between snow melting and deep-seated sliding could be established. More extensive 

interpretations of landslide behaviour were limited by the lack of detailed climatic 

data, the small extent and short period of the slope monitoring, and extremely slow 

movement rates close to the instruments' noise levels. 

Four monthly geoelectrical surveys were performed by Kruse (2006). One of the main 

results of the investigation was that the limestone scree allows for quick infiltration of 

rainfall and melting snow, possibly an important factor for initiation of landslide 

movement. It was, however, neither possible to establish a relationship between 

geoelectrical monitoring data and landslide displacement, nor to fully describe sub-

surface hydrological processes. 

A recently carried out study of potential damage related to a full reactivation of the 

landslide bodies in Lichtenstein-Unterhausen (Greiving 2010) resulted in a maximum 

loss of private property equal to 18.5 million EUR in addition to 1.7 million EUR dam-

age communal infrastructure. 
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4 DATA 

Various data sources were used within this study. A compilation of all data and their 

characteristics and sources is illustrated in Tab. 4.1. Additional information is pre-

sented in the following. 

 

The Digital Terrain Model (DTM) provides detailed information on topography and 

was acquired between 2002 and 2004 by airborne laserscanning during periods with 

low vegetation cover (December to April) (Landesvermessungsamt Baden-

Württemberg 2010). Vegetation and infrastructure, such as houses and bridges were 

removed by post-processing to produce a hydrological correct DTM with a spatial 

resolution of 1 x 1 m.  

 

Geological maps for the local study area are available in 1:25,000 and 1:50,000 scales, 

however, only the latter exists as a digital version. Additional information on geologi-

cal characteristics of the local study area, including detailed description of several 

drillings, is available from Ohmert et al. (1988). 

 

Several sources of information on landslides in the Swabian Alb were available for 

this study.  

Kallinich (1999) mapped plateau areas of large rotational landslides and recent, 

mostly small landslides located nearby. Field mapping was carried out at 1:25,000 

scale, the final was presented in 1:50,000 scale. 

A landslide inventory and database was established by Tübingen University and is 

essentially based on the work of Kraut (1995). Data was acquired by an analysis of 

literature sources, and geological and forestry site maps. The latter distinguish be-

tween active landslide susceptibility, inactive landslide and potentially susceptible to 

landslides, and were produced for all state-owned forests in Baden-Württemberg. 

Landslide locations are illustrated as point information, and timing is acknowledged.  

Within the InterRISK and ILEWS projects, investigations using historical archives 

have been carried out to extract information related to landslide occurrences in the 

Swabian Alb. Data sources included several national and communal archives and 

forestry records. Additional information is provided by Röhrs and Dix (2010). 

Another landslide inventory was provided by Bell (2010, personal communication), 

and contains information on a multiple landslide event in the Fils Valley in April 

1994.  

Brennecke (2006) created a landslide inventory based on interpretation of aerial pho-

tographs and hillshade analysis. Four landslide process types were distinguished, i.e. 

rotational and translational slides, flows and complex landslides. 
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Tab. 4.1: Overview of data used within this study 
Data type Info Format Resolution Source 

Topography     

DTM1 (Digital Terrain 
Model) 

airborne laser scans 
acquired between 2002 

and 2004, available for 

the entire Swabian Alb 

 

ESRI grid 1 m x 1 m Umweltministerium Baden-Württemberg (UM 
BW), Landesanstalt für Messung, Umwelt und 

Naturschutz (LUBW), Landesvermessungsamt 

Baden-Württemberg (LV BW) 

Geology     

GK25 (Geological 
map) 

map sheet 7521 (Reut-
lingen) 

printed map 1:25,000 Landesamt für Geologie, Rohstoffe und 
Bergbau Baden-Württemberg (LGRB BW) 

GK50 (Geological 

map) 

map sheet 7520 (Reut-

lingen) 

 

ESRI shape 

files (polygons) 

1:50,000 LGRB BW 

Landslides     

General landslide map  
 

for parts of Swabian Alb printed map 1:25,000, 
1:50,000 

Kallinich (1999) 

Inventory University 

of Tübingen 

for parts of Swabian Alb EXCEL table 

with point 

coordinates  

 working group Bibus and Terhorst, Institute 

of Geography, University of Tübingen; For-

stliche Versuchs- und Forschungsanstalt 

Baden-Württemberg (FVA) 
Inventory InterR-

SIK/ILEWS  

historical research in 

archives and forestry 

records  

text and EXCEL 

files  

 InterRISK project (Röhrs and Dix 2010) 

Inventory Filstal April 
1994  

event inventory ESRI shape 
files (polygons) 

 Bell (2010, personal communication) 

Inventory Upper 

Filstal 

interpretation of aerial 

photos and DTM 

ESRI shape 

files (polygons) 

 Brennecke (2006) 

Inventory Depart-
ment of Transporta-

tion Stuttgart 

archive analysis and DTM 
mapping 

ESRI shape 
files (points 

and polygons) 

 

 Kohn (2006) 

Climate     

Station data temperature, precipita-

tion 

EXCEL and text 

files 

30 minutes to 

daily 

DWD, LUBW 

Regionalised rainfall 
data 

interpolated rainfall and 
temperature, modelled 

evaporation and snow 

water equivalent 

ESRI grid 500 x 500 m LUBW 

ILEWS weather 
station 

precipitation, humidity, 
temperature, air pres-

sure, wind, radiation, 

snow height 

raw data hourly measure-
ment 

Camek et al. (2010) (ILEWS) 

COSMO-DE (rainfall 
forecasts) 

2 cumulative model runs 
per day with 13 predic-

tions each 

GRIB files hourly measure-
ment 

DWD 

KOSTRA-DWD (rain-

fall intensity prob-
abilities) 

available for Baden-

Württemberg 
 

software 

program 

8.45 km x 8.45 

km 

LUBW 

Geophysical data     

Geoelectric 1 profile analysed data monthly meas-

urement 

Kruse (2006) and Bell (2007) 

Geoelectric 2 profiles analysed data single measure-

ment 

Wiebe and Krummel (2010) (ILEWS) 

Geoseismic 4 profiles analysed data single measure-
ment 

 

Bell et al. (2010b) (ILEWS) 

Movement monitoring    

Geodetic monitoring geodetic network and 

geodetic height 

analysed data measurements 

every 3 months 

Aslan et al. (2010a) (ILEWS) 

Inclinometers 3 inclinometers raw data measurements 
every 3 months 

InterRISK project, Bell (2007), Bell and 
Thiebes (2010) (ILEWS) 

Inclinometer chain 5 inclinometer between 3 

and 15 meter depth 

raw data measurements 

every 30 minutes 

 

Bell and Thiebes (2010) (ILEWS) 

Hydrological monitoring    

Tensiometers and 
TDR sensors 

27 sensors each at 9 
locations 

raw data hourly measure-
ments 

Camek and Becker (2010) (ILEWS) 

Geoelectrical monitor-

ing 

2 profiles raw and 

analysed data 

measurements 

every 2 hours 

 

geoFact (ILEWS) 

Drill cores     

InterRISK 3 drill cores drill cores and 

laboratory 
results 

 Bell (2007) 

ILEWS project 2 drill cores drill cores and 

laboratory 

results 
 

 University of Vienna (ILEWS) 

Geotechnical data    

Laboratory analyses soil particle distribution, 

water content, CaCO3, 

soil water retention 

curves 

EXCEL file  Christa Herrmann, University of Vienna 

Substrate database collection of values from 

literature 

ACCESS data 

base 

 Meyenfeld (2010, personal communication) 

SPAW model geotechnical parameter 

values  

software 

program 

 

 Saxton and Rawles (2006) 
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Kohn (2006) compiled a landslide inventory based on archive data from the Depart-

ment of Transportation of the administrative district Stuttgart. Parts of the archived 

landslide were later mapped on a DTM. However, only a small part of its study area 

covers the Swabian Alb and could be employed within this study. 

 

Climatic data available for this study derives from three sources: National Meteoro-

logical Service Deutscher Wetterdienst (DWD), Landesanstalt für Messung, Umwelt 

und Naturschutz Baden-Württemberg (LUBW), and data from a local weather station 

installed and operated by the ILEWS project. Additional information on rainfall fore-

casts (Cosmo-DWD) and rainfall intensities for scenarios of various annual probabili-

ties (KOSTRA) was also utilised within this study. 

Data on precipitation and temperature for 14 DWD and 16 LUBW stations within the 

Swabian Alb covers the period until 2006 and provides a temporal resolution of 30 

minutes to one hour. For two stations located close to the local study area Lichten-

stein-Unterhausen data extends to 2011. Additional rainfall data from all DWD 

weather stations was provided by DWD for the period from 2006 to 2009. 

For the period 1983 to 2003 regionalised climate data were provided by LUBW. Data 

on precipitation, temperature, and modelled evaporation and snow height as water 

equivalent are available as 500 x 500 m grid data with a daily resolution. Interpolated 

precipitation and temperature data are considered to be very reliable by LUBW. Mod-

elling results, however, exhibit larger uncertainties as local characteristics such as 

wind drift are not represented. For a 10 day period however, data is assumed to be 

reliable (Gudera in Bell 2007). Additional information on regionalised climate data is 

available in Ministerium für Umwelt und Verkehr (UVM) and Landesanstalt für 

Umweltschutz (LfU) (2004).  

 

A weather station was installed in the local study area by the ILEWS project in Au-

gust 2008. Measured parameters include: 

- precipitation (two tipping bucket rain gauges of which one is heated) 

- relative humidity (capacitative humidity sensor by polymer) 

- air temperature (resistance temperature) 

- air pressure (capacitative absolute pressure sensor) 

- wind direction (potentiometer) and wind velocity (Reed switch) 

- global radiation (thermopile) 

- reflected radiation (thermopile) 

- snow height (ultrasound) 

- volumetric soil water content (TDR sensors) 

- soil suction in 30 and 50 cm depth (tensiometer) 

- soil temperature (semiconductor sensor in TDR probe) 
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All parameters are measured at intervals of 60 minutes and subsequently transferred 

to a data server and parsed into the ILEWS project server available by ODBC. How-

ever, no data from the weather station is available from mid-September to mid-

November 2009 due to damage caused by animals, and for two weeks in July 2010 

due to power failure. Additional information on climatic monitoring is provided by 

Camek and Becker (2010). 

 

COSMO-DE is the most complex weather forecasting model employed by DWD for 

short-term prediction of weather conditions (Deutscher Wetterdienst (DWD) 2010b, 

Deutscher Wetterdienst (DWD) 2010a). COSMO-DE is the German contribution to the 

Consortium for Small-scale Modeling (COSMO) founded in 1998. The goal of 

COSMO-DE is modelling of meteorological processes and prediction of parameters 

such as air pressure, temperature, wind, water vapour, clouds and precipitation with 

the aim to provide timely warning for severe weather conditions. Further information 

on COSMO can be found on the consortium's website (Consortium for Small Scale 

Modeling 2007). Within COSMO-DE meteorological processes are simulated in eight 

daily model runs, each with prediction time of 18 hours. COSMO-DE predictions 

have a very high spatial resolution of 0.025 degrees (2.8 km x 2.8 km grid cells) and 50 

vertical levels, and cover Germany and parts of the surrounding countries. Rainfall 

forecast from COSMO-DE model were provided by the DWD for the period from 

September 2006 to December 2009 as cumulative simulation runs. For every day, two 

simulations, each with a simulated length of 12 hours, are available in GRIB format.  

 

Information on the probability of rainfall events was available from the KOSTRA atlas 

distributed by the DWD. KOSTRA (Koordinierte Starkniederschlags-

Regionalisierungs-Auswertungen) represents a collection of maps implemented as an 

interactive computer program. KOSTRA provides rainfall intensities for events of a 

certain annual probability and was primarily developed for the design of technical 

water management systems, e.g., urban drainage infrastructure. KOSTRA is based on 

complex statistical regionalisation of precipitation data between 1951 and 2000 of 4500 

climate stations in Germany. Annual rainfall probabilities vary between 0.5 and 100 

years; storm duration between 5 minutes and 72 hours. Information on storm charac-

teristics can be retrieved for single grid cells of 8.45 km x 8.45 km and exported as 

scenarios with varying rain intensities over the course of the storm events. Additional 

information on KOSTRA is available in Bartels et al. (2005) and Malitz (2005). 

 

Kruse (2006) carried out monthly geoelectrical surveys on the test slope in Lichten-

stein-Unterhausen from January to March 2006, which were later continued by Bell 

(2007). Investigations utilised an ABEM Terrameter SAS 300 apparatus, and results 
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are available as inverted plots. Further information is available in Bell et al. (2006), 

Kruse (2006), and Bell (2002). 

In the initial phase of the ILEWS project, geophysical prospection were carried out 

featuring geoelectrical and geoseismic surveys (Bell et al. 2010b). Two geoelectrical 

profiles were acquired with an AGI STING/SWIFT R1 IP apparatus with Wenner and 

Schlumberger plot configuration. Within a 24 h period 2 profiles were measured, each 

126 m long (3 m electrode spacing and 42 electrodes with 3 m spacing) with an aver-

age penetration depth of approximately 20 m. Seismic prospection was carried out in 

cooperation with partners from the ILEWS project applying a Bison 9048DIFP appara-

tus with 49 geophones with 4 metres spacing to measure 4 profiles. All geophysical 

prospection data was analysed and processed by Heinrich Krummel from the com-

pany geoFact and is available as data inversion plots. 

 

A geodetic network in the local study area, consisting of 15 installed points, was 

measured every three months between November 2007 and December 2009 by a 

working group within the ILEWS project (Aslan et al. 2010a). Measurements were 

taken by a Leica TCRP 1201+ (SN 238310). In addition, geodetic heights were assessed 

with a Trimble DiNi 12 (SN 700118). A total number of seven measurements are 

available as maps displaying deformation. Unfortunately, most epochs do not include 

measurement of stable points outside of the potential landslide area. Therefore, data 

only provides information on relative deformation within the geodetic network. 

Additional information on slope movement existed from five inclinometers posi-

tioned in the local study area, of which three have been installed within the InterRISK 

project, and two during the ILEWS project. Manual measurements of inclinometers 

began in 2004 (Bell 2007) and were continued periodically with a mobile NMG probe 

by Glötzl with an accuracy of 0.01 to 0.1 mm per step. This relates to an error margin 

of 0.2 to 0.3 mm for 10 and 15 m depths, respectively. In addition, an automated incli-

nometer chain by Glötzl (NMGD VP/2/10) with five sensors in depths from 3 to 15 m 

in one borehole has been in operation since May 2009. Linearity of the automated sys-

tem is ±0.2%, and hysteresis ±0.02% of the final value. The error margin is approxi-

mately 1.5 - 3 mm at the surface (Glötzl 2010, personal communication). Measure-

ments are taken every hour and are processed by GLA software by Glötz, and conse-

quently retrieved by ILEWS data server. However, for some periods no measure-

ments were possible due to damage by construction works and electrical power fail-

ure. Additional information is also provided by Bell and Thiebes (2010). 

 

The local monitoring system installed and operated by the ILEWS project included 

tensiometers, TDR probes and two geoelectrical profiles to asses slope hydrology. 
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Management and maintenance of the technical slope hydrology monitoring system 

were carried out by ILEWS project partners (Camek et al. 2010).  

Tensiometers and TDR probes were in most cases connected to computers in the field 

by cable; however, for one location wireless radio transmission was applied. T8 ten-

siometers from UMS were applied within the ILEWS project, measuring soil suction if 

installed above the local ground water table. In addition, tensiometers can also be 

utilised as piezometers if they are located within the phreatic zone. Measurement of 

volumetric water content was achieved by TDR sensors (TRIME PICO probes by 

IMKO). Tensiometers and TDR probes provide detailed data on soil hydrology with 

hourly measurements available from August 2008 to July 2010. However, for certain 

periods no data is available due to power failures. Moreover, tensiometers require 

frequent refills with water to ensure correct measurements of soil suction. Unfortu-

nately, ongoing maintenance of tensiometers could not always be ensured which 

caused some sensors to run dry. 

Geoelectrical monitoring in the local study area Lichtenstein-Unterhausen is main-

tained by the ILEWS project partner geoFact (Wiebe and Krummel 2010) and started 

in June 2008 with a vertical slope profile followed by a horizontal profile in August 

2009. A LGM 4-Punkt light 10W apparatus by Lippmann Geophysikalische Messin-

strumente was applied for geoelectrical monitoring and took measurements every 

two hours. Altogether, 48 electrodes were installed on the vertical profile, and 36 on 

the horizontal profile. Measurement data is stored on the in-field computer and con-

sequently retrieved by the ILEWS data server. Data is available on the web-based 

ILEWS data platform allowing for simple data analyses, such as visualisation of single 

data points and resistivity pseudo-sections. More advanced data analyses including 

time-lapse inversion of data were performed manually by geoFact. 

 

From the InterRISK project, three bore logs originating from inclinometer installations 

were available, including laboratory results reflecting water, CaCo3 content and soil 

particle size distributions. Two additional bore logs were acquired during the ILEWS 

project and subsequently analysed in the laboratory by Christa Herrmann, Institute 

for Geography and Regional Research, University of Vienna. Soil particle size distri-

bution was carried out according to Austrian Norm (ÖNORM) by Köhn pipette 

analysis. In addition, contents of water and CaCO3 were assessed. For a small number 

of samples water retention curves were elaborated. 

 

A collection of geotechnical parameter values (cohesion, angle of internal friction, 

density etc.) based on experimental analysis in the literature was provided by 

Meyenfeld (2010, personal communication). The database contains 1288 entries for a 
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large variety of rock and soil materials, often including minimum and maximum val-

ues. 

Another source of information for geotechnical and hydrological parameterisation 

was the soil database integrated into the SPAW (Soil-Plant-Air-Water) model that was 

developed by (Saxton and Rawls 2006). The database was developed as a computer 

program, in which soil hydrological parameters can be selected based on soil particle 

size distributions as input parameters. 
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5 METHODOLOGY 

A wide range of methods was applied within this study to investigate and model a 

landslide in Lichtenstein-Unterhausen, and to develop and implement local and re-

gional scale technical landslide early warning systems as part of an integrated early 

warning chain. In the following, the methodological approaches of this study are pre-

sented. 

5.1 LOCAL SCALE 

The methodological approach of this work includes planning and installation of a 

monitoring system to assess slope movement and hydrological processes, data analy-

sis to investigate processes leading to landslide reactivation, simulation of slope be-

haviour by a coupled hydrology and slope stability model, and the design and im-

plementation of the model as a technical early warning and decision-support system. 

5.1.1 Field work 

Planning of a monitoring system for slope movement and hydrology was carried out 

cooperatively with the other ILEWS project members during a field inspection. The 

goal of an extended monitoring system was to gain more information on slope 

movement and hydrological processes especially in the area where slope movement 

had been causing cracking to a house, but also for the entire landslide mass. Addi-

tional criteria to be considered in the design of the monitoring systems were geomor-

phological features and the results of geophysical prospection of previous studies 

(Armbruster 2002; Kruse 2006) and additional surveys carried out within the ILEWS 

project (Bell et al. 2010b), as well as technical issues, such as accessibility of the loca-

tions with drilling equipment. 

Most drillings were carried out with a percussion drilling machine (GTR 780V by 

Geotool) mounted on a rubber chain crawler. The drilling rig uses a drop weight of 

63.5 kg and a drop height of 75 cm. For locations impossible to access by the large 

drilling machine, a pneumatic percussion cone penetrometer from Stitz GmbH with a 

drop weight of 50 kg and a drop height of 50 cm was employed.  

To increase the speed of drilling windowed 80 mm sampling tubes were utilised for 

installation of hydrological sensors. However, no undisturbed samples could be ex-

tracted with these sampling tubes. Drillings for inclinometer installations were carried 

out with closed 100 mm sampling tubes with plastic tubes that allowed extraction of 

subsurface materials in a relatively undisturbed condition and the subsequent use for 

later core interpretation and laboratory analyses. 
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In addition to the already existing tree inclinometers, two more inclinometers and one 

inclinometer chain were installed. Since improved drilling equipment was available to 

the ILEWS project in comparison to the preceding InterRISK project, additional incli-

nometers were placed close to the already existing ones and to an increased depth. 

After borehole drilling, 55 mm inclinometer pipes were inserted into the boreholes 

and fixed with a mixture of concrete and bentonite.  

Periodic measurements of all inclinometers were carried out approximately every 

three months with a mobile NMG probe by Glötzl. Each inclinometer was measured 

in 50 cm steps in A and B directions to assess downslope and sideways displace-

ments. All inclinometer measurements were carried out twice to minimise errors. 

An inclinometer chain was installed in the already existing borehole Lic02 with a 

depth of approximately 15.50 m with the aim to increase the temporal resolution of 

slope movement measurements. The inclinometer chain consisted of five inclinometer 

probes located every 3 metres between 3 and 15 m depth. The inclinometer chain was 

connected to the controlling computer located in field by cable, allowing remote con-

trol by a VPN tunnel.  

 

Even though hydrological monitoring within the ILEWS project was managed by pro-

ject partners, drilling and installation of all tensiometers and TDR sensors were car-

ried out by the author with the help of field workers. Cooperatively, nine locations 

were determined for installation of hydrological sensors. At each location boreholes 

were brought down to depths of approximately 2, 5 and 10 meters for installation of 

tensiometers and TDR probes. In each borehole one TDR probe and one tensiometer 

located above were installed. After drilling to a desired depth, a 30 cm thick fill of 

sieved soil material from the same depth was inserted to provide sufficient space for 

the forks of the TDR probe. On top of this, 30 cm of sieved material was filled in be-

fore a tensiometer was installed into the borehole. 

 

A low-cost infrared borehole camera provided by the ILEWS project partner IMKO 

was used in the field to check subsurface conditions and to control correct sensor in-

stallation. 

5.1.2 Data analysis 

Core samples and data from laboratory investigations were analysed to improve un-

derstanding of subsurface conditions, which form an important element of slope sta-

bility modelling and subsequent landslide early warning. The variety of data on slope 

movement and hydrological processes were analysed to investigate the processes 

leading to landslide reactivation.  
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5.1.2.1 Core samples 

Two core samples from inclinometer installations were available for further analyses. 

Initially, cores were visually interpreted to differentiate layers based on material 

characteristics, colour and water content. Samples of each layer were taken for labora-

tory analyses of soil water content, CaCO3 content and grain size distribution analysis 

carried out by a laboratory technician. In addition, four samples were prepared for 

elaboration of soil water retention curves. Soil skeleton was assessed by visual judg-

ment. 

5.1.2.2 Slope movement data 

Data from manual inclinometer measurements was compiled and plotted with soft-

ware by Glötzl (GLNP v4) to visualise displacements between single monitoring 

campaigns. 

Data from inclinometer chain was analysed on the ILEWS project online platform 

where displacements between selectable points in time can be visualised. A more de-

tailed analysis of inclinometer chain data was carried out plotting the displacements 

of each probe over time. 

Data from geodetic measurements carried out by an ILEWS project partner were 

available as maps displaying displacements and change of geodetic height between 

single measurements, and were compared to inclinometer data. In addition, geodetic 

information were utilised as a basis for interpretation of slope movements for a larger 

area of the local study area.  

5.1.2.3 Hydrological data 

Data from local weather station and slope hydrology monitoring system was ex-

ported from the ILEWS database and plotted for further analysis of hydrological con-

ditions. Data were carefully checked for plausibility and possible errors or biases. In-

vestigation concentrated on the assessment of seasonal changes of groundwater con-

ditions for subsequent modelling of slope stability. A more detailed analysis of the 

effects of rainfall and snow melting on soil water content and soil suction was carried 

out for single events. For this, geoelectrical data in the form of time lapse inversions 

from the ILEWS project partner geoFact and inclinometer chain data were also inte-

grated. 

5.1.3 Landslide early warning modelling 

Two approaches for the integration of the physical-based landslide simulation model 

CHASM into a prototypic early warning system were developed in this work. The 

first application was designed to continuously simulate slope stability for a pre-

defined slope profile integrating antecedent rainfall conditions, groundwater table 
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data based on monitoring results, and rainfall forecasts. A second application was 

developed to aid decision-support and to allow quick assessment of slope stability for 

freely selectable slope profiles using various rainfall and groundwater scenarios. As 

noted before, technical solutions were implemented by the ILEWS project partners 

(Jäger et al. 2010). However, design of the technical early warning system, and con-

figuration of CHASM, were part of the work achieved by the author of this study. 

 

In this study, the physically-based landslide simulation model CHASM (Combined 

Hydrology and Stability Model) was used to simulate the behaviour of the landslide 

under investigation. This model was chosen because it combines slope hydrological 

process simulation with slope stability calculation. Moreover, developers of CHASM 

agreed on cooperation and a joint development. A brief description has already been 

presented in chapter 2.3.2. More detailed information on CHASM is provided in the 

following. Additional information, including derivation of equations applied in 

CHASM is available elsewhere (Anderson and Richards 1987; Anderson et al. 1996; 

Anderson and Thallapally 1996; Collison and Anderson 1996; Wilkinson et al. 2000; 

Wilkinson et al. 2002a). 

 

Within CHASM pore water pressures in response to individual rainfall events and the 

effects on slope stability can be simulated. The model comprises two main elements: 

hydrological and slope stability modelling. The first version of CHASM was devel-

oped in an UNIX environment using Fortran ’77, but has later been implemented 

within a Microsoft Windows environment using C++ with the addition of a graphical 

user-interface (GUI). The procedure for hydrological modelling adopted in CHASM is 

a forward explicit finite difference scheme (Wilkinson et al. 2002a). The slope is di-

vided into a series of columns of which each is subdivided into regular cells. Deten-

tion storage, infiltration, evapotranspiration, and unsaturated and saturated flow re-

gimes are modelled within CHASM. Rainfall can infiltrate into the top cells and is 

controlled by the infiltration capacity. Infiltration is calculated using Darcy’s Law 

(Darcy 1856) with the conductivity being equal to the average of the saturated con-

ductivity and the hydraulic conductivity of the top two cells. Unsaturated vertical 

flow within each column is computed using Richards equation (Richards 1931). Un-

saturated conductivity is defined by the Millington–Quirk (1959) procedure. Flow 

between columns is simulated by Darcy’s equation for saturated flow, adopting the 

Dupuit–Forcheimer (Forchheimer 1930) assumption. Numerical stability of the solu-

tion to the Richards equation depends on time step and iteration period and applies a 

methodology proposed by Beven (1985) in which the required time step (iteration 

period) is based on the distance between the computational nodes, the gradient of the 

suction–moisture curve at a given suction value and the flow velocity. For most appli-
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cations the commonly recommended spatial and temporal resolutions are an individ-

ual element size of 1 m × 1 m area, and 60s iteration period (Wilkinson et al. 2002a; 

Wilkinson et al. 2002b). Slope curvature (convexity and concavity) can be integrated 

by adjusting the column breadth to investigate the effects of three-dimensional topog-

raphy on pore pressure. Simulated hydrological conditions are then integrated into 

standard two-dimensional stability analysis. 

 

The stability assessment techniques used in CHASM are Bishop’s simplified circular 

method (Bishop 1955) and Janbu’s non-circular method (Janbu 1954). These limit equi-

librium methods determine the shear strength along the failure surface, the mobilised 

shear strength, and the ratio between these two (Factor of Safety); thus providing a 

measure of the relative slope stability. On each hour of a CHASM simulation, pre-

dicted hydrological conditions are coupled to a limit equilibrium equation determin-

ing slope stability. Both negative and positive pore water pressures are incorporated 

into the effective stress determination by the Mohr- Coulomb equation for soil shear 

strength. A minimum FoS is computed of which temporal variations arise from hy-

drodynamic responses and changes in the position of the critical slip surface. Over-

view of the structure of the CHASM model (Fig. 5.1) and CHASM key input parame-

ters (Tab. 5.1) are presented below. 

 

The main output of a CHASM run is the calculated minimum FoS for each hour of 

simulation, along with the respective shear surface parameters. Additional output 

files contain data on pore water pressure and soil moisture for each cell. For simula-

tion in which a FoS below 1.0 is calculated, an empirical relation (Finlay et al. 1999) of 

slope height and slope angle is applied to simulate landslide run-out onto a horizontal 

plain (CHASM 2008). 

CHASM is continuously being developed and enhanced. One recent extension in-

cludes the integration of vegetation into hydrological simulations and computation of 

slope stability (Collison and Anderson 1996). Effects of vegetation on hydrology and 

slope stability, such as interception, evapotranspiration, root reinforcement and 

changes to hydraulic conductivity and surcharge are incorporated into CHASM by 

several routines. Test applications of the CHASM vegetation extension are provided 

in for example Collison and Anderson (1996) and Wilkinson et al. (2002a). 

Other features of CHASM include the integration of stabilising measures, such as geo-

textiles, geo-grids and earth nails. In addition, effects of seismicity on slope stability 

can be assessed based on an empirical guideline (Charalambus 2003) to estimate the 

horizontal seismic acceleration to induce instability. 

Inherent in the structure and methodology of CHASM are limitations deriving from 

the hydrology scheme and the method of stability analysis. Hydrological simulations 
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are based on simplifying assumptions of flow representation and can not integrate 

soils exhibiting strong anisotropy in hydraulic conductivity or preferential flows for 

example through macropores. Limit equilibrium methods, as implemented within 

CHASM, simplify the process of slope failure and can not accommodate progressive 

failure mechanisms or the complex kinematics of three-dimensional slope failures. 

More detailed information on how CHASM was used within this study is presented 

in chapter 5.1.3.2. 
 

 

Fig. 5.1: CHASM structure (based on Wilkinson et al. 2002b)  

Tab. 5.1: Key input parameters required by CHASM (baed on Wil-
kinson et al. 2002a) 

Theme Parameter Symbol Units 

Geometry slope height H  m 

 slope angle α  degrees 

 slope convergence/divergence C  m 

Numerical mesh resolution w, d, b  m 

 iteration period t  s 

 shear surface search x/y coordinates 

Hydrological rainfall p  ms-1 

 hydraulic conductivity Ksat  ms-1 

 initial surface suction Ψ  m 

 initial water table height wt  m 

 saturated moisture content θsat  m3m-3 

 suction-moisture curve Ψ – θ  m - m3m-3 

Geotechnical effective angle of internal friction Φ’  degrees 

 unsaturated/saturated bulk density γunsat, γsat kNm-3 

 effective cohesion c’  kNm-3 
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5.1.3.1 Generation of input data 

The methodological approach to create input data for CHASM modelling is illus-

trated in Fig. 5.2. and additional information is provided below. 
 

 

Fig. 5.2: Overview on CHASM input data generation 

 

Subsurface model 

A general model combining surface and subsurface information, as well as geotechni-

cal parameters was developed to facilitate slope modelling in the local study area. The 

subsurface model also formed the basis for the developed decision-support CHASM 

application allowing free slope profile selection (chapter 5.1.3.4). 

Information on geological conditions was extracted from available geological maps 

(1:25,000 and 1:50,000). These maps show that large areas are covered by a layer of 

slope debris ("Hangschutt") deriving primarily from solifluction (Ohmert et al. 1988 

p.128), weathering, soil development, erosion and accumulation, as well as fluvial and 

landslide processes. However, several outcrops of geologic strata allowed interpola-

tion of upper and lower limits of strata throughout the entire local study area under 

the assumption that no strong features such as folding are present. In this study it was 

assumed that boundaries of geological strata are parallel to contour lines, neglecting 

the general dipping of geological strata quantified by Leser (1982) as 1-2°. Based on 

altitude information Digital Terrain Models (DTM) for each stratum were computed 

in GIS by a series of RASTERCALCULATOR commands (Appendix X) using the 

DTM1 (1 m x 1 m resolution). 

 

For estimation of slope debris thickness information available from drillings and data 

from geophysical surveys were utilised. In general, a stepwise GIS approach was ap-

plied to create a realistic representation of slope debris cover for the local study. For 

subareas assumed to exhibit similar geomorphological conditions, the depth of debris 
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cover was assessed using the available data, and stored as point data within GIS. Sub-

sequently, a smooth debris cover layer was computed by spatial interpolation tech-

niques. 

Determination of slope debris thickness for the local study area utilised available 

drilling data presented by Ohmert et al. (1988). However, most of the described drill-

ings were not carried out within the boundaries of the study area. Debris thickness 

was therefore estimated, assuming that a similar debris cover is present in corre-

sponding relative slope positions. 

Landslide deposits required a more elaborate approach to be realistically determined. 

Five drillings were available from the InterRISK and ILEWS projects, however; only 

one drilling (Lic02) penetrated the bedrock and gives an exact depth. As an additional 

source of information, data from geoseismic prospection were utilised, which had 

been carried out within the ILEWS project (Bell et al. 2010b) on the upper section of 

the western landslide body. Inverted data plots from four surveyed profiles on the 

upper western landslide deposits were interpreted and respective bedrock depths 

were assessed. Therein, known depth at Lic02 was used for calibration. Derived 

thickness of slope debris was stored as point data in GIS. 

Neither drillings nor geophysical data were available for the eastern landslide body 

and the lower part of the western landslide depositions. For these areas, landslide 

deposits were assessed using an iterative GIS approach. A Triangulated Irregular 

Network (TIN) was computed connecting points of the same height along landslide 

boundaries to create a DTM without landslide deposits. In addition, topographical 

analysis of landslide deposit height were integrated.  

 

Another DTM was created for the limestone scree slope in the landslide head scarp 

area. Determination of thickness was based on geoelectric measurements by Kruse 

(2006) in which the monitored profile extended far upslope. Maximum depth and 

bedrock boundary were assessed using inverted data plots, and measured depths 

were stored as point data in GIS. Since geoelectric data for the limestone scree was 

only available for one profile, thickness of loose material for the remaining areas had 

to be assumed before spatial interpolation. 

 

The final subsurface model was simplified for subsequent modelling in CHASM in 

which only four material layers can be used. The selected layers include: Upper Juras-

sic, Middle Jurassic, slope debris, limestone scree slope. 

 

Modelling slope stability with CHASM required determination of material parame-

ters, including effective angle of internal friction, effective cohesion, hydraulic con-

ductivity saturated and unsaturated bulk density, saturated moisture content, suction 
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moisture curve. Since no shear tests were available to this study, parameter values 

were estimated from literature sources and software models.  

 

Friction angle, cohesion and bulk density values were determined using a substrate 

database created by Meyenfeld (2010, personal communication) containing a wide 

selection of parameter values from literature sources. However, parameters in the 

database exhibit large variations and value definition therefore required interpreta-

tion and subjective judgement. Still, during sensitivity analysis of CHASM, all values 

were manipulated and adjusted to increase the predictive abilities of the model. 

In addition to laboratory results, the SPAW model (Saxton and Willey 2006; Saxton 

and Rawls 2006; Sung and Iba 2010) was utilised to define values for soil suction char-

acteristics, saturated moisture content and hydraulic conductivity for the materials in 

the local study area. Essential input data for the SPAW model were soil particle dis-

tributions available from laboratory analyses.  

As an additional source of information, primarily for determination of hydraulic con-

ductivity (Ksat) values, standard parameter values available in for example Bear (1972) 

and DIN standard (DIN 18130) were used for orientation. 

 

Groundwater scenarios 

Hydrological monitoring data was utilised to create scenarios of ground water table 

positions for subsequent modelling of slope stability in CHASM. Available ground 

water data from each sensor location was analysed and annual variability was as-

sessed. For this, monitoring data until December 2009 was used. However, results 

were verified against later monitoring data. Determination of groundwater table posi-

tions primarily exploited tensiometer data, which provide relative water table height 

by measured excess pressure. Excess pore pressure was related to relative water table 

height by 

 100 hPa = 102.15 cm 

as proposed by the sensor manufacturer (UMS 2007). 

Two groundwater table positions were generated to describe maximum and mini-

mum groundwater table position. Data was stored as point data in GIS and interpo-

lated to the entire study area by Inverse Distance Weighting, as this method provided 

the results judged as the most realistic. 

 

Rainfall scenarios 

Rainfall scenarios for CHASM simulations were derived from the KOSTRA software 

for the local study area Lichtenstein-Unterhausen. In addition, it was investigated 

how KOSTRA rainfall intensities vary for neighbouring areas and for different time 

spans, i.e. summer, winter, and entire year. KOSTRA was used to generate rainfall 

scenarios of various storm durations, annual occurrence probabilities and rainfall in-
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tensity distributions. Three types of scenarios, i.e. normal, maximum intensity and 

worst case, were generated for subsequent CHASM modelling. Normal scenarios 

were based on KOSTRA default settings for determination of rainfall intensities. In 

maximum intensity scenarios KOSTRA default settings were increased to the maxi-

mum of the permitted range of approximately 4 to 12%, depending on annual occur-

rence probability and storm duration. A tolerance range for KOSTRA scenarios is ad-

vised within the model’s outputs if scenarios are to be used for planning purposes. 

For annual probabilities of less than 5 years the advised tolerance range is ±10%, ±15% 

for annual probabilities between 5 and 50 years, and ±20% for events of 50 to 100 year 

reoccurrence intervals. These uncertainties were integrated as additional rainfall to 

create worst-case scenarios. All rainfall scenarios created were transformed into text-

files in the format required for CHASM modelling. 

 

Shear surface search 

Calculation of slope stability within CHASM requires definition of shear surface pa-

rameters, which for single slope analysis can be ascertained by calibration. However, 

development of the decision-support application of CHASM allowing free slope pro-

file selection required to establish rules for automatic slip surface search. Therefore, 

the aim was to concentrate shear surface search into areas most prone to slope failure, 

whilst still allowing for various possible shear surface positions in a reasonable 

amount of time. In addition, time needed for calculation of stability conditions should 

be acceptable for the usage within a web-based decision-support system. The basis for 

the developed shear surface search was a procedure provided by Anderson (2009, 

personal communication), which was modified to better fit slope conditions in the 

local study area. The modified slip surface search procedure was tested on various 

slope profiles and subsequently integrated into the web-based application (chapter 

5.1.3.4). 

5.1.3.2 Model application 

In this study, the physically-based model CHASM was used to assess slope stability 

for the local study area, with a focus on partial reactivation of an existing landslide 

body. For subsequent integration of CHASM into an early warning system slope be-

haviour was simulated to attempt to predict landslide failure timing. For this study a 

CHASM version including a GUI was available but was only used initially due to the 

difficulties entering complex slope morphologies. Instead, the command-line based 

version of CHASM (v4.12.5) was utilised for the majority of CHASM model runs.  

CHASM simulations applied Bishop's methodology for circular shear surfaces, as the 

available CHASM version did not include Janbu's procedure for non-circular shear 

surface morphology. The effects of vegetation on slope stability were neglected in this 

study and the respective CHASM extension was not used. The majority of CHASM 
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simulation computed slope stability for two dimensional slope profiles; however 

three dimensional topography was integrated into some test simulation to investigate 

possible improvements of the model results. 

A sensitivity analysis for CHASM input parameters was carried out to assess their 

influence on slope stability calculation, as well as to find the best suited parameter 

combination to reflect real slope behaviour. Sensitivity analysis included geotechnical 

parameters, rainfall conditions and groundwater table positions. 

CHASM simulations were initially carried out to assess the areas and slope positions 

most susceptible to future slope failures. Based on the results it was decided to focus 

further simulations on a profile containing the damaged house in which slope move-

ments had been detected, and where monitoring data on slope movement and hydro-

logical processes were available. For this profile, slope stability was assessed for vari-

ous slip surface positions and subsequently integrated into an automated early warn-

ing system. 

Analysis of CHASM results concentrated on the FoS as the prime output of CHASM. 

Herein, the temporal development of the FoS as a response to rainfall and hydrologi-

cal processes was assessed. For a limited number of simulations hydrological outputs 

of CHASM were analysed. 

5.1.3.3 CHASM early warning model 

Integration of CHASM into a prototypic landslide early warning system was based on 

the experience of extensive model applications for the slope under investigation. For 

early warning, the slope profile containing the damaged house was selected together 

with the CHASM control parameters previously analysed to be the most appropriate. 

An early warning procedure was designed which includes specifications on the inte-

gration of antecedent rainfall, hydrological monitoring data and rainfall forecasts. 

However, since only historic rainfall forecasts were available to this study, all simu-

lated warnings are of hypothetical character. For integration of antecedent rainfall 

conditions, data from the ILEWS weather station was used. Hydrological field condi-

tions were integrated in the form of groundwater scenarios developed beforehand, 

which are chosen according to in-field measurements of the monitoring system. 

Available rainfall forecast from the COSMO-DE were utilised for early warning and 

integrated into the CHASM simulation as rainfall scenarios. 

5.1.3.4 CHASM decision-support tool 

The second application of CHASM as a decision-support tool also to be used in early 

warning context was essentially based on all previously generated input data on rain-

fall, subsurface and hydrological conditions. In addition, the modified automated 

shear surface procedure was integrated to ensure appropriate calculation of slope 

stability. The cooperatively developed web-application was tested for several slope 
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profiles with the aim to detect bugs and optimise its performance. In addition, a step 

by step guide explaining the usage of the developed application to end users was 

prepared (see Appendix XII to XV). 

5.2 REGIONAL SCALE 

On a regional scale, the methodological approach of this work includes analysis of 

available landslide inventory data, verification and testing of existing rainfall thresh-

olds for landslide initiation for the Swabian Alb, development and implementation of 

a regional landslide early warning system. 

Similar to other works, rainfall thresholds form the basis for regional early warning in 

this study. However, in this study it was not the aim to establish a new rainfall 

threshold for the Swabian Alb, as the data was judged inappropriate to derive reliable 

threshold values. Instead, rainfall thresholds established for other regions that were 

available were tested for their applicability in the Swabian Alb and implemented 

within a technical warning system. 

5.2.1 Inventory analysis  

Data on landslide occurrences in the Swabian Alb was evaluated for its use for valida-

tion of rainfall thresholds. The most important criterion therefore was the availability 

of information regarding the timing of slope failure, which had to be as exact as pos-

sible. In addition, events including multiple landslides are preferred for analysis, to 

ensure that the landslides are not local phenomena such as results of inadequate con-

struction works but are the consequence of rainfall thresholds exceedance. Another 

criterion for the selection of landslide events for threshold validation was the avail-

ability of rainfall data for the place and time of slope failure. 

5.2.2 Thresholds verification 

The applicability of existing rainfall thresholds to the Swabian Alb was evaluated for 

the selected landslide events with known date of failure with rainfall records avail-

able as interpolated climate data with a daily resolution. Tab. 5.2 provides an over-

view on the thresholds tested in this study.  

Four thresholds were tested for their performance in the Swabian Alb. Caine's (1980) 

intensity-duration threshold was the first threshold established for landslide initia-

tion, and forms a benchmark for other, more recent intensity-duration relationships. 

However, Caine (1980) could only use a limited data source of 73 landslide events for 

rainfall threshold derivation. A more recently established global intensity-duration 

rainfall threshold by Guzzetti et al. (2008) was based on a significantly larger database 

of 2,626 rainstorm events that caused landslides. The third intensity-duration thresh-
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old is the one applied in the landslide early warning system operating in Seattle 

(Chleborad 2000; 2003; Chleborad et al. 2006). This system also utilises a threshold 

based on cumulative rainfall of 3 and 15 days, and was also tested in this study. 

Tab. 5.2: Rainfall thresholds tested within this study 

Type Scale Value Landslide types Duration in 

hours 

Source 

intensity-

duration 

global I=14.82×D-0.39  all types 0.167<D<500 Caine 1980 

intensity-

duration 

global I=2.2×D-0.44  shallow land-

slides, debris 

flows 

0.1<D<1000 Guzzetti 2008 

intensity-

duration 

Seattle 

area 

I=3.257D–1.13 soil slides 20<D<55 

 

Chleborad et 

al. 2006 

cumulative 

rainfall 

Seattle 

area 

P3=3.5–0.67P15 soil slides 72<D<360 Chleborad et 

al. 2006 

 

Analysis of intensity-duration relationship of landslide initiation required definition 

of the rainfall event that triggered slope failure. Even if the date of landslide occur-

rence is known, triggering rainfall events may not easily be identified, for example in 

cases where a strong storm event is preceded by only very low precipitation rates. In 

this study, intensity and duration of triggering rainfall events were determined in 

three ways: (1) only accounting for the precipitation on the day of landslide trigger-

ing, (2) for the days previous to landslide triggering on which a minimum rainfall 

amount was recorded (amount determined by data analysis), and (3) for the time span 

preceding landslide triggering up until the day where no rainfall was measured. In 

addition to rainfall, snow melt was integrated in the threshold verification. Threshold 

verification utilised regionalised weather data as the data source.  

5.2.3 Early warning  

The goal of the regional landslide early warning was to design and implement a pro-

totypic system for the Lichtenstein-Unterhausen region based on rainfall thresholds, 

in which rainfall forecasts and actual measurements are integrated. Development of a 

regional early warning system constituted a cooperative work of the author of this 

thesis and of several individuals of the company of Geomer, who were partners in the 

ILEWS project. It is important to mention, that all technical solutions were entirely 

implemented by Geomer described in detail elsewhere (Jäger et al. 2010). 

Design of a regional technical landslide early warning system included two main 

elements: determination of rainfall thresholds, and implementation of a technical in-

formation and warning system integrating rainfall measurements and forecasts. Since 

no reliable rainfall thresholds were available for the Swabian Alb, only preliminary 

thresholds were implemented. Within this study, thresholds reflect measured precipi-
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tation and forecasted rainfall. It was judged for the regional landslide early warning 

system to be easily adjustable and extendable in case additional data becomes avail-

able, or other regions are to be integrated. 

The technical regional landslide early warning system utilised rainfall measurements 

from the ILEWS weather station and rainfall forecast by the DWD (COSMO-DE). An 

information and warning platform implemented by Geomer (Jäger et al. 2010) was 

developed to be able to assess current rainfall conditions and provide warnings in 

case thresholds are exceeded. 
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6 RESULTS 

6.1 LOCAL SCALE 

6.1.1 Field work 

The work in field constituted an important element of this study and required a con-

siderable amount of time. Altogether, over 9 weeks were spent in field during several 

field campaigns between 2007 and 2008, primarily for drilling and subsequent sensor 

installation. Additional field work included periodic manual inclinometers measure-

ments between 2007 and 2011. 

Drillings had to negotiate difficult subsurface conditions, which hindered quick in-

stallation of sensors. In many cases, parts of the boreholes collapsed and had to be 

drilled several times. Investigations of borehole properties with an infrared borehole 

camera showed very heterogeneous subsurface material characteristics. Fig. 6.1 illus-

trates subsurface conditions in the Lic05 drilling down a depth of approximately 3.7 

m. The uppermost material consists of loose material rich in limestone fragments, 

which tended to collapse during drilling procedure (pictures 1 to 5). Pictures 6 to 12 

show very smooth borehole walls consisting of compact clay. In contrast, the last 

three pictures display the sudden change of material with large limestone blocks and 

collapsed borehole walls opening to a cavity.  

Altogether, nine locations were selected for the installation of hydrological sensors, 

i.e. TDR sensors and tensiometers (Fig. 6.2). Sensors were primarily placed along a 

cross and a longitudinal profile for which also geoelectrical monitoring surveys and a 

seismic survey during initial prospection were carried out. Additional sensors were 

placed on the meadow where inclinometer Lic04 was installed during the InterRISK 

project and at a location in the forest (p41) above the road. Aspired depths of sensors 

of 2, 5 and 10 m could not be achieved at all locations due to the difficult subsurface 

conditions and the used drilling equipment. Installation depths of hydrological sen-

sors are summarised in Tab. 6.1. Additional sensors were installed at the ILEWS 

weather station with TDR sensors in depths of 35 and 55 cm, tensiometers in 65 and 

45 cm, and pf metres in 65 and 45 cm. A more detailed description of hydrological 

monitoring results is presented in chapter 6.1.2.1. 

 

Periodic manual inclinometer measurements commenced during the InterRISK pro-

ject were continued approximately every three months. However, after the project 

ended in May 2010, measurements could only be carried out less frequently. Detailed 

information on the results of inclinometer measurements are presented in chapter 

6.1.2.2. 
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Fig. 6.1: Pictures taken with borehole camera in boreholelic05 drilling 
(from surface and depth of approximately 3.7 m depth) 
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Fig. 6.2: Local monitoring system 

Tab. 6.1: Installation depths (in cm) for hydrological sensors in rela-
tion to aspired depths 

 2 m 5 m 10 m 

Location ID TDR Tensiometer TDR Tensiometer TDR Tensiometer 

P11 195 175 470 450 880 860 

P12 235 200 420 385 950 920 

P13 165 135 355 330 840 775 

P14 200 170 475 420 915 885 

P21 160 130 450 440 730 715 

P22 210 190 360 340 710 700 

P24 210 185 480 450 950 935 

P31 175 160 460 420 960 930 

P41 190 170 390 370 710 695 

 

6.1.2 Data analysis 

6.1.2.1 Core samples 

In this study, two core samples from drillings Lic04 and Lic05 were investigated in 

detail. Both cores provide a continuous overview on subsurface conditions down to a 

depth of approximately 11 m; however, for some sections material was lost during 

core extraction.  

A total number of 81 samples were prepared from cores for subsequent laboratory 

analysis of grain size distribution, water content, CaCO3 content. Three additional 
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samples were extracted for laboratory analysis of soil suction behaviour. Core sam-

ples are presented in Fig. 6.3, and some results will be highlighted in the following. A 

graphical representation of all laboratory results can be found in the appendix V. 

 

 

Fig. 6.3: Photos of core samples from Lic04 and Lic05 boreholes 
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The first metre of the Lic04 contains plastic loamy material with a dark brown colour 

indicating soil development processes. Between 1 m and 7 m depth layers of light 

brown relatively plastic loam and dark fine-bedded marls, both with varying content 

of limestone fragments, alternate. In addition several large limestone blocks can be 

found in e.g. 3 m, 5.2 m, and 5.7 m depth. In 7 metre depth very soft and moist mate-

rial overlays compact clay. Drilling at Lic04 ended in a depth of 11.3 m when a hard 

layer was reached, which could not be bored with the available drilling machine. The 

last plastic bore log tube was broken due to high impact force and contains very soft 

and slurry material. 

 

A total number of 31 samples were prepared from Lic04 core sample for laboratory 

analyses. Samples were classified according to Austrian OENORM standard as leh-

miger Ton, schluffiger Lehm, Lehm, and scattered Ton (Fig. 6.4). This relates to silty 

clay and silty clay loam in the U.S. texture definition. Clay content varies between 

34.6% and 49.6% with an average of approximately 43%. Sand content is generally 

low with less than 1% and a maximum of 11% (average 3.7%). Visually assessed soil 

skeleton content varies between 10% and approximately. 40 %; however, for sections 

with large limestone blocks content rises to 90%. Content of CaCO3 in the analysed 

fine material samples varies between 41.1% and a maximum of 77.18% (average 58%). 

For water content, values between 6.7% and 38.2% were assessed, with the highest 

values measured close to the surface, in a depth of approximately 9 m. 

 

The first approximately 1.5 m of Lic05 core sample contains very light material with a 

high content of limestone fragments. Deeper layers comprise more plastic materials, 

and sections with very high content of soil skeleton including complete limestone 

blocks, for example around 4.5 m depth, and between 6 m and 7 m. The drilling from 

6 m to 7 m had to be repeated three times because borehole walls had col lapsed and 

the borehole had been filled up with material. Similar materials characteristics as de-

scribed above can be found until 11 m. The last 30 cm drilled at Lic05 contain similar 

material to Lic04, with very soft and moist soil. Again, the plastic bore log tube of the 

last metre was partly burst due to the high forces that impacted when a hard material 

layer was reached. 

From Lic05 core sample a total number of 50 samples were prepared for laboratory 

analyses. In OENORM these were defined as lehmiger Ton and schluffiger Lehm (Fig. 

6.4), which relates to definition silty clay, silty clay loam, silt loam and clay loam in 

U.S. texture classification.  
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Fig. 6.4: Soil textures according to OENORM 

Clay content varies between 22.6% and 54.1% and averages 38%. Mean sand content 

is low (7%) with a maximum value of 27.5% in a depth of 10.7 m. Soil skeleton content 

varies strongly in the Lic05 borelog, with some sections entirely consisting of lime-

stone blocks, while others are almost free of any larger skeleton. A high mean content 

CaCO3 of 67% in the fine grained material can be found throughout the core sample 

with maximum values of over 80% closer to the surface. Water content varies between 

4% and a maximum value of over 37% at the base of the borelog. 

 

Three soil samples from Lic05 core sample were prepared from depths of 5.6 m, 7.7 m 

and 10.5 m for elaboration of soil water retention characteristics in laboratory. Results 

are presented in Fig. 6.5. All three samples show similar results with mean volumetric 

water content of approximately 13 % to 16% for high suctions (pF 4.2 to 4.0, or 15,000 

hPa to 8,000 hPa, respectively). For lower suctions (pF 2.5 to pF 1.5, or 300 hPa to 30 

hPa) water content lies between 23% and 28%. 

 

Discussion 

Drilling cores and borehole camera investigations document heterogenic subsurface 

conditions in the local study area. In all drill cores, layers of blocky limestones can be 

found. However, similar conditions can not be expected for the entire local study area 

since the material is disturbed due to former landslide activity. 

Even though drillings carried out could not reach the bedrock, they provided some 

interesting information. Both inclinometer drillings, i.e. Lic04 and Lic05 had to be 
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stopped, when a very hard layer was reached in approximately 11 m depth. In both 

drill cores, moist material could be found at the greatest depths, which possibly indi-

cates the position of impermeable material layers, which could also act as shear sur-

faces. Still, without further drillings to greater depths using improved equipment it is 

difficult to verify, if displacements occur along this material interface. 

Laboratory analysis of soil properties provided essential information on material 

characteristics in the local study area. However, since soil particle distribution analy-

sis only uses fine material, the influence of large particles on hydrological processes 

and subsequently slope stability can easily be underestimated. Additional shear tests 

could improve the understanding of geotechnical behaviour. 

6.1.2.2 Slope movement data 

Slope movement data from geodetic surveys carried out by Aslan et al. (2010a), and 

inclinometers measurements including one inclinometer chain were available to ana-

lyse slope movements. An overview on the timing of displacement measurements is 

presented in Fig. 6.7. 

Tachymetry measurements by an ILEWS project partner (Aslan et al. 2010a) provided 

some information on surface displacement between several epochs. In Fig. 6.6, rela-

tive deformation of geodetic network of all nine epochs between November 2007 and 

December 2009 is displayed together with confidence ellipse indicating uncertainties 

of measurements, i.e. noise levels. Measured displacements are generally extremely 

 

Fig. 6.5: Soil suction characteristics in comparison to sand, silt and 
clay soils (Scheffer and Schachtschabel 2009) 
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low and are in the range of millimetres. Largest movements can be observed for point 

201, located in the western part, and at points 205, 206, 207 and 306 in the East. For 

these points, downslope displacements cumulate to 5 to 8 mm. Similar directions of 

movement were also recorded further South at points 105 and 106. Other network 

points, however, exhibited upslope movements for at least some of the epochs, e.g. 

points 201, 202, 203, 101 and 304. The clearest movement trends can be observed for 

the eastern part of the network. For points 101, 102, 104, and 203 movement rates are 

small in relation to noise level and no clear movement trends can be found. 
 

 

Fig. 6.6: Cumulative geodetic displacement measurement from nine 
epochs (based on Aslan et al. 2010a) 

In Fig. 6.8, the change of geodetic height for three selected points, i.e. 201, 204 and 206 

is illustrated. Measurements and subsequent calculation of height changes were 

elaborated by (Aslan et al. 2010a), however, following description and interpretation 

are made by the author of this thesis. Measurements show a seasonal variation of 

 

Fig. 6.7: Overview on periodic and permanent landslide monitoring 

2004 2005 2006 2007 2008 2009 2010 2011

manual inclinomter inclinometer chain geodetic surveys
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geodetic height for all three points. A general trend of lower point positions during 

summer and autumn measurements can be observed. Largest changes are recorded 

for point 201 in the western part of the study area, which shows a total variation of 

geodetic height of over 1.5 cm. Increased geodetic height coincides with upslope dis-

placements, and lower heights can be observed when also a downslope movement 

occurred. Manual inclinometer measurements in the local study area were carried out 

monthly within the InterRISK project. From 2007, measurements were undertaken 

approximately every 3 months by the author. 
 

 

Fig. 6.8: Relative height change for points 201, 204 and 206 (based on 
Aslan et al. 2010a) 

Inclinometer Lic01 was installed during the InterRISK project, and is located in the 

eastern part of the study area, approximately 10 m away from inclinometer Lic04 and 

the hydrological monitoring at p31. With a maximum depth of 9.5 m, the inclinometer 

could not be fixed into stable bedrock. Since 2004 displacements of approximately 4 

mm in both upslope and downslope direction were recorded in 2 m and 4 m depth, 

respectively. The relatively large downslope displacement documented by tachy-

metry measurements can not be observed. A selection of manual measurements un-

dertaken between 2004 and 2011 are provided in appendix VI. 

The closely positioned inclinometer Lic04 was installed in May 2008, and has a depth 

of 11 m, which is still above the stable bedrock. Inclinometer measurements (see Ap-

pendix VIII) document constant but extremely slow movements occurring over entire 

profile. Records show a downslope and a west-directed component. 

Inclinometer Lic03 is located on the western landslide body, directly neighbouring 

hydrological monitoring position p21. The inclinometer was installed during the In-

terRISK project, and has a maximum depth of 8.5 m, which is above the bedrock. Be-
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tween 2005 and 2011 extremely slow movements of 2 - 3 mm into an upslope and 

eastern direction was recorded (see Appendix VII). The relatively large displacements 

documented by geodetic measurements can not be observed in inclinometer data.  

Inclinometer Lic05 is located at the crossing of geoelectrical profiles, directly 

neighbouring hydrological monitoring position p13. Maximum depth of the incli-

nometer is 10.5 m which is still above the stable bedrock. Recorded displacements are 

very small but above error margin of the used inclinometer probe. Movements of ap-

proximately 5 mm in an upslope direction, and approximately 3 mm into a western 

direction can be observed (Fig. 6.9). Results of inclinometer at Lic05 are in agreement 

with tachymetry measurements, which also documented an upslope directed dis-

placement with a similar magnitude for this location (point 203). 

 

Largest displacements were recorded at inclinometer Lic02, which is the only one that 

is fixed into stable bedrock at a depth of 15.5 m. It is located next to the damaged 

house at hydrological monitoring site p12. A selection of manual displacement re-

cords from 2004 to 2011 is displayed in Fig. 6.10. Both, the flowing movement in a 

maximum depth of 8.5 m in summer and autumn, and the sliding movement in 

spring in a depth 15 m continued. Downslope displacements add up to approximately 

1.5 cm in 6.5 years relating to an annual displacement of 2 - 3 mm. In addition, smaller 

movements of about 3 mm in a western direction can be observed.  

When analysing all single measurements, an upslope orientated rotational movement 

occurs before deep sliding commences in spring can be observed. These movements 

can be found in the first measurements in 2005, 2006 and 2009 when compared to the 

directly preceding records. In 2007, however, both, the upslope rotation and the deep 

sliding movement did not occur. In 2008 the sliding movement was very small, and 

no clear rotational component can be detected. Sliding movement is also not present 

in 2010 measurement, which was carried out in early March. The 2011 records ac-

quired in January, document further deep sliding but no significant rotational com-

ponent. 

No direct comparison to geodetic measurements can be made because the inclinome-

ter was not linked to the network. 

In comparison to manual inclinometer records to inclinometer chain measurements 

(see Fig. 6.11) in 3, 6, 9, 12 and 15 m depth, data from the latter has a lower accuracy 

and more scatter, especially if short periods are analysed. Temporal resolution, how-

ever, is significantly higher with measurement intervals of 30 minutes. In a selection 

of inclinometer chain records for periods of 2009 and 2010 is presented. The total dis-

placement recorded between early 2009 and late 2010 adds up to approximately 2 

mm, similar to manual measurements.  
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Fig. 6.10: Selected records of manual inclinometer measurements at : Selected records of manual inclinometer measurements at 
Lic02 
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Fig. 6.11: Measured displacements of inclinometer chain for 2009, 2010 and 2009 to 2010 

 

Even though displacement values are extremely slow and are still in the error margin, 

some general movement trends can be observed. Dominantly, the shallow downslope 

flow movement prevails. The deep sliding movement, however, cannot be detected 

due to the position of the deepest inclinometer probe at 15 m depth. 
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To better understand the temporal dynamics of slope displacements, raw data was 

analysed and thoroughly checked. It was found that extraction of the inclinometer 

chain for manual measurements resulted in sudden jumps in displacements data last-

ing for some days, until records return to more stable values. All records from the 

dates and the following four days, on which the inclinometer chain was extracted 

were deleted from the data set. In addition, reference values which previously had in 

some cases an offset of some days were adjusted. Results for A and B direction are 

presented in Fig. 6.13 and Fig. 6.12, respectively. 

Records start with some scatter during January 2009 but quickly adjust to more stable 

conditions. The correction procedure described above reduced total displacements by 

for example, 0.3 mm for the 3 m inclinometer probe. Still, a total downslope dis-

placement of 2 mm until September 2009 alone was recorded for this sensor. Move-

ment, however, was not continuous, but exhibited several phases of reversed direc-

tion. Periods of upslope movement can also be observed for the 6 m probe; but timing 

of these does not reflect patterns similar to the 3 m sensor. Data from the probes lo-

cated in deeper positions is generally steadier. The probe in 15 m depth exhibited 

three phases of larger movement, i.e. early 2009, between December 2009 and March 

2010, and again in early 2011. However, the inclinometer chain was also removed 

from the borehole during these times.  

Similar to the A direction, no sudden changes can be observed in the daily mean dis-

placement changes of the inclinometer chains in B direction (Fig. 6.12). Records begin 

with some initial scatter. However, from February 2009, relatively smooth changes 

can be observed for 3 and 6 m sensors. A more step like course of displacement is 

documented by the inclinometer probes in 12 m and 15 m depth. 

For both A and B direction, greatest daily displacements variations documented by 

the inclinometer chain are lower than 0.5 mm. Movements in this order of magnitude 

are still in the margin of error and therefore have to be interpreted with great care. 

 

Discussion 

Based on geodetic measurements, three areas with similar movement trends can be 

determined: the eastern part showing a general downslope displacement, the western 

part moving into downslope and western direction, with certain epochs indicating 

upslope movements, and the middle part moving slightly upslope in the upper sec-

tion downslope in the lower section. More detailed interpretation of the boundaries of 

observed slope deformation requires integration of subsurface data provided by in-

clinometers.  

Geodetic monitoring of surface displacements carried out by Aslan et al. (2010a) en-

hances the understanding of general landslide movement patterns. However, since 

fixed points outside the landside body were only integrated into some of the epoch  
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Fig. 6.12: Daily mean displacement changes measured by inclinome-
ter chain for B direction 

 

Fig. 6.13: Daily mean displacement changes measured by inclinome-
ter chain for A direction 
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measurements, only statements on relative deformation in the upper slope areas can 

be made. Direct comparisons to inclinometer data is hindered by different dates of 

measurements, and also because only three inclinometers were directly integrated 

into the geodetic point network. For some parts, uncertainties are relatively large in 

comparison to measured slope movements.  

Observed variations of geodetic height of up to 1.2 cm can not only be explained by 

rotational slope movements. Possibly, the measured variations are attributed to swell-

ing and drying of clay-rich subsurface materials. Lowest positions of geodetic points 

generally coincide with the periods where the driest subsurface conditions were re-

corded. Higher positions were always recorded in early spring, when the wettest 

conditions were measured. Continuation of geodetic measurements could aid to ver-

ify this hypothesis. 

 

The extremely slow movements documented by the 6.5 years of inclinometer meas-

urements also continued during this study. For most inclinometers, displacements are 

still smaller than the error margin of the applied sensors. However, at inclinometer 

Lic02, measured displacements are clearly beyond the error margin by now. Previous 

investigation by Bell (2007) showed a direct relation between the 8.5 m deep flowing 

displacement with crack development at the house next to the inclinometer. High 

precision tilt measurements (Bell 2007) were also able to verify rotational components 

in the observed manual inclinometer measurements. Therefore, it can be assumed that 

rotational movements documented within this study are also real. 

Similar to previous studies in Lichtenstein-Unterhausen (Bell 2007; Bell and Thiebes 

2010), two depths of slope displacements can be observed in data from manual meas-

urements in Lic02 which vary seasonally. These movements were described as a su-

perficial flow movement reaching down to a maximum depth of 8.5 m, and a deep 

sliding movement occurring at approximately 15.5 m depth. In general, the same 

statement can be made with respect to new data acquired in this study. However, 

when taking into account all available manual inclinometer measurements some in-

teresting processes can be observed from approximately 2007 on. The flow-specific 

gradual decrease of displacement with greater depths seems to slowly transition into 

a more even horizontal movement, possibly indicating the onset of a progressive de-

velopment of a shear surface.  

The rotational movements documented by monthly manual inclinometer measure-

ments carried out by Bell (2007) can still be observed in some of this study’s results; 

however, lower monitoring frequency makes detection more difficult. 

A direct comparison of displacements documented by inclinometer to results of the 

geodetic monitoring can only be made for Lic01, Lic03 and Lic05 as these are incorpo-

rated in the geodetic network. 
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Lic01 and geodetic point 306 show similar displacements in B+ and B- direction. The 

large total downslope displacements of the geodetic points however, can not be ob-

served in which might be attributed to the inclinometer installation above stable bed-

rock in 9.5 m. 

Displacements documented by Lic03 are partly in agreement with geodetic measure-

ments at point 201; however the magnitude of movement is smaller in the inclinome-

ter data. Similar to geodetic data, also inclinometer data illustrates in B+, i.e. western 

direction. 

For the eastern part of the geodetic network, i.e. points 205 to 207, 306, 105 and 106, a 

relatively strong downslope movement trend was observed, which is similarly ob-

servable in Lic04 inclinometer data, which is located between the respective points. 

Still, the magnitude of displacement is smaller in Lic04, which is possibly related to 

the installation above stable bedrock and a potential movement deeper than 11 m. 

A comparison of data from inclinometer Lic05 and the geodetic network point 204 are 

in agreement regarding the lack of any significant downslope movement. Rotational 

movements of Lic05, however, can not be observed in geodetic data. Therefore, it has 

to be questioned if the consistent rotational displacement component documented by 

Lic05 and Lic02 are caused by the same movement process. 

 

Unfortunately, the sliding movement documented by manual measurements of Lic02 

can not be observed in the inclinometer chain data due to the positioning of the low-

est sensors. Due to limited project funding, further drillings to a great depth, and sub-

sequently deeper installations of the inclinometer chain could not be carried out. 

However, general trends of movement documented by manual inclinometer meas-

urements are also visible in inclinometer chain data. Still, extremely slow movements 

are in the range of the error margin and have to be interpreted carefully. 

The very good temporal resolution of the automated inclinometer chain is potentially 

of great value for the analysis of movement triggering events. However, no significant 

displacement occurred during the project duration and single dates of the slope 

movement initiation can not be determined. Instead, relatively steady displacements 

are documented. Particularly regarding the deep sliding movement, no period of ac-

celerated movement can be defined. 

6.1.2.3 Hydrological data 

Within this study, climatic data from the ILEWS weather station posed an important 

data source for the analysis of hydrological processes and landslide reactivation. Cli-

matic data is available from mid August 2008 to late March 2011, however due to 

technical problems (power failures, damage induced by animals) no measurements 

were recorded during some periods. Fig. 6.14 displays data for daily rainfall and 

mean daily temperature from the ILEWS weather station. While temperature data 
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shows a plausible course, rainfall data shows some disputable characteristics during 

summer 2010, with almost no recorded rainfall. The reason for this was found out to 

be neglected maintenance of the weather station leading to false measurements from 

approximately spring 2010 on.  

 

Fig. 6.14: Daily rainfall and daily mean temperature measured by 
ILEWS weather station 

In comparison to other weather stations located nearby (Fig. 6.15), the ILEWS station 

generally recorded similar monthly rainfall amounts, when taking into account peri-

ods with station malfunctions. However, data strongly differs from June 2009 on 

where significantly less precipitation was recorded, indicating malfunction of the 

ILEWS station due to insufficient maintenance because of limited availability of re-

sources. A correlation of ILEWS rainfall data with the other weather station Erpfingen 

and Reutlingen for the period between August 2008 and January 2009 resulted in R² 

values of 0.57 and 0.50, respectively. Since linear regression of rainfall data produced 

relatively low correlation values, no interpolation of precipitation values for 2010 

were elaborated. 

 

Inadequate maintenance of the ILEWS weather station also influenced measurements 

of snow height by ultrasound distance measurement. Raw data is illustrated in Fig. 

6.16 with an inverted distance y-axis for easier interpretation. Data shows consider-

able scatter and even fluctuations of distance measurements even during summer 

which can not be related to snow accumulation. To derive reasonable snow height 
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records, a detailed data analysis and correction was carried out for the following use 

within analysis of snow melting and hydrological response. 

 

Since the base distance at the beginning of each winter season varies in each period, 

no single correction factor could be applied. Detailed data analysis considering tem-

perature and precipitation data led to determination of the three correction factors for 

each winter season: 1.81 for winter 2008/2009, 1.78 for winter 2009/2010 and 1.79 for 

winter 2010/2011.  

In addition to correction factors, several records were deleted in the data set where 

snow was considered unlikely due to daily mean temperatures. Adjusted snow height 

data is presented in Fig. 6.17. Visual interpretation of plotted adjusted snow height 

data indicate a relationship between daily mean temperatures and the variation of 

snow height with a diametrically course of both factors. 

 

In winter 2008/2009 the local study area experienced snow coverage from early De-

cember 2008 until early March with an period of snow melting due to higher tempera-

tures in late December and early January. The winter period of 2009/2010 exhibited 

similar snow height conditions, with development of a snow cover in mid December 

which lasted until March. Absolute snow height almost reached 20 cm in early winter 

season. Additional snow fell during the winter season, but also melted during short 

periods of high air temperatures. In winter 2010/2011 snow covered the local study 

 

Fig. 6.15: Comparison of monthly rainfall of ILEWS weather stations 
with stations in Reutlingen and Erpfingen 
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area between late November to early February with a maximum thickness of almost 

20 cm. Warmer periods in late December and early January caused strong snow melt. 

 

 

Fig. 6.16: Raw data from ultrasound distance measurement of snow 
height in comparison to daily mean temperature 

 
Fig. 6.17: Adjusted snow height and mean daily temperature 
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In Fig. 6.18 to Fig. 6.25, data from hydrological monitoring, i.e. TDR sensors and ten-

siometers are presented along with daily rainfall data from the ILEWS weather sta-

tion. Unfortunately, no data from position p31 located in the eastern part of the moni-

toring system was available because this station was only connected to the monitoring 

system at a very late state. In addition, some monitoring sensors are possibly dam-

aged during installation. Also vandalism, in particular to tensiometers was a problem; 

in several cases rubber tubes were removed causing tensiometers to run dry until they 

were repaired and refilled during later maintenance works. 

 

Soil hydrology sensors at p11 are located in the south of the monitoring network, in 

the garden below the house suffering cracking due to slope movements. Records from 

the initial phase of monitoring in 2008 show no variations at (see Fig. 6.18). After 

maintenance work by the project partner IMKO, in which the sensor software was 

updated, real measurements commence in early 2009. Tensiometer measurements in 

8.6 m depth describe positive values (up to >300 hPa) over the entire monitoring pe-

riod indicating that the sensor was permanently below the groundwater table. Similar 

conditions are documented by TDR data from 8.8 m depth with constant volumetric 

water content of around 50%. Tensiometer in 4.5 m depth reflects saturated conditions 

for most times, and only negative values for summer and autumn 2009. The course of 

the graph is similar to the deeper tensiometer, however, reaction to rainfall events is 

quicker. Unfortunately, no TDR data is available from a similar depth because the 

probe malfunctioned. Also measurements by the tensiometer in 1.75 m depth may be 

influenced by a bad connection to the soil. From 2009 on, stable conditions close to 

saturation were recorded without any significant influence of rainfall events. From 

August 2009 on, measured pore pressure quickly decrease until October. Similar be-

haviour can also be observed for some other tensiometers. According to the project 

partners IMKO who were responsible for the monitoring system, this behaviour is 

related to drying of the ceramic contact. However, after refilling during maintenance 

works, in this case around November 2009, records increased again and returned to 

values similar to the initial conditions. TDR sensor in 1.95 metre depth describes a 

strong increase of water content from below 30% to over 40% between February and 

April 2009, followed by a decrease until approximately November. For 2010, also wa-

ter contents of over 45% were recorded indicating full saturation. Strong peaks for 

deep tensiometers and the shallow TDR sensor can be observed after  

February 2009. This event is highlighted in more detail in chapter 0. Groundwater 

conditions for the following spatial interpolation of groundwater and subsequent 

modelling were determined to vary between 2 m and 4.7 m for this location. Highest 

groundwater positions referred to high saturation values measured at the shallowest 
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tensiometer (1.95 m depth), while lowest water table referred to minimum levels of 

4.5 m tensiometer.  

 

Hydrological sensors at p12 are located at the damaged house, only 2 metres away 

from inclinometer chain in borehole Lic02. The TDR sensor in 9.5 m depth recorded 

large fluctuations of volumetric water content which varied between approximately 

35% and 45% (see Fig. 6.19). The amplitude of this sensor is the highest of all TDR 

probes installed at this locations. Strong peaks can be observed for February 2009, and 

from November 2009 on. Tensiometer data from similar depth (9.2 m) illustrates con-

ditions of high saturation but with lower fluctuations. Some stronger rainfall events 

(e.g., May 2009) caused strong peaks relating to a location below groundwater table. 

Phreatic conditions were also recorded by the tensiometer in 3.85 m depth for some 

periods. Response to rainfall events by this sensor is relatively low. Records from ten-

siometer in 2.0 m depth only show small variations and lower response to rainfall 

events than the tensiometer in 9.2 m. From August 2009 on massive drop of recorded 

measurement in one month and increase afterwards, which likely to be caused by 

drying of the tensiometer ceramics and refilling during maintenance works in October 

2009. TDR sensors in 2.35 m and 4.2 m illustrate clear response of volumetric water 

content to rainfall events. Both graphs describe similar trends, however, stronger 

variations can be observed for the shallow TDR which also has higher mean water 

content (~25% and ~20%). During late summer and early autumn 2009, TDR in 2.35 m 

depth recorded quickly decreasing water contents, while the 4.2 m TDR sensor de-

scribes more steady conditions. However, after strong rainfall in December 2009, both 

sensors return to initial value levels. Minimum and maximum groundwater table 

depths for this location were determined to be 4.5 m and 2.0 m, respectively. The high 

water table referred to almost saturated conditions at 2.0 m tensiometer. Low water 

table definition followed measurements of the tensiometer in 3.85 m, which docu-

ments not saturated conditions for some periods. 

 

Sensors at p13 are located in the centre of the monitoring system at inclinometer Lic05 

and the container with monitoring equipment. For the TDR in 8.4 m depth, volumet-

ric water contents between approximately 20% and 25% can be observed (see Fig. 

6.20). Strongest peaks occurred in spring 2009 and again in 2010, possibly related to 

snow melting. However, no direct response to rainfall events can be found through-

out the monitoring campaign. Tensiometer in 7.75 m depth recorded no positive val-

ues, indicating that full saturation did not occur during monitoring campaign. Reac-

tion to rainfall events is relatively small, with the strongest peak occurring in Febru-

ary 2009.  
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Fig. 6.18: Hydrological monitoring at location p11 

Fig. 6.19: Hydrological monitoring at location p12 
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Scattered data close to full saturation was recorded by tensiometer in 3.3 m depth 

without any significant response to rainfall events. Similar to other tensiometers, re-

cords drop in summer 2008, likely to be related to drying of tensiometer ceramics. 

More stable conditions are documented by tensiometer 1.35 m. Positive values indi-

cate saturation almost for the entire monitoring period. However, data from the shal-

lowest TDR sensor do not indicate fully saturated conditions with water content 

variation between 15% and more than 30%. For location p13, groundwater minimum 

levels were determined as 3.7 m, primarily based on 3.55 m tensiometer, which 

documented unsaturated conditions during the entire monitoring period. A maxi-

mum groundwater table was determined to be 1.3 m using high saturation records 

from 1.35 m tensiometer. 

 

The most upslope sensor location is p14, which is positioned in the forest directly 

neighbouring the geoelectrical monitoring profile. Tensiometer data from 8.85 m illus-

trates almost saturated conditions for the entire monitoring period, with only little 

response to rainfall events (see Fig. 6.21). Relatively stable conditions are also docu-

mented by the adjacent TDR sensor in 9.15 m depth, with volumetric water contents 

around 25% and no direct response to rainfall events. Tensiometers in 1.7 m and 4.2 m 

depth recorded diametrical development of pressure measurements in the beginning 

of monitoring period before documenting conditions close to saturation from Febru-

ary 2009 on. Afterwards, 1.7 m tensiometer reflects sudden drying which is likely to 

be caused by damaged tensiometers. In August 2009 and October 2009, however, re-

cords increase again, possibly due to strong rainfall in August and maintenance 

works in October. Shallow TDR sensors in 2.0 m and 4.75 m depth at p14, document 

stable conditions without larger changes until February 2009 when water content in-

creases to more than 30% and 40% of volume, respectively. Afterwards, water con-

tents decrease until late 2009, with little response to rainfall events for the deeper sen-

sor. The shallow TDR in 2.0 m depth however reflects strong variations of more than 

15% water content for spring periods. A maximum groundwater table of 1.8 m below 

the surface was determined based on high saturation records of 1.7 m tensiometer. 

The definition of a minimum water table was difficult due to possible malfunction of 

tensiometers at this location. However, low water contents of 4.75 m TDR was used to 

assume a minimum water table of 6 m.  

 

In the western part of the study area, location p21 is adjacent to inclinometer Lic03. 

Volumetric water contents of around 48% were recorded by deepest TDR in 7.3 m 

with no great changes occurring throughout the monitoring campaign (see Fig. 6.22). 

Phreatic conditions for long periods are also illustrated by tensiometer in a similar 

depth (7.15 m) with variations in the range of -30 to +54 hPa. Large variations due to  
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Fig. 6.20: Hydrological monitoring at location p13 

 

Fig. 6.21: Hydrological monitoring at location p14 
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rainfall events can be observed for the 4.4 m tensiometer with maximum positive 

pressures relating to approximately 50 cm of groundwater above the sensor. Very 

high water contents were also recorded by the adjacent TDR sensor in 4.5 m depth 

with values above 40%. Driest conditions occurred during October and November 

2009. Also TDR sensor located in 1.6 m depth illustrates relatively stable conditions 

with water contents around 40% and only little response to rainfall events. For this 

location, minimum and maximum groundwater levels of 4 m and 5 m were deter-

mined primarily based on the variations of tensiometer data from 4.4 m depth. 

The installation of hydrological sensors at p22, located between inclinometer Lic03 

and Lic05 directly next to the road was very difficult. Boreholes collapsed several 

times during installation so that sensors might not be appropriately fixed into the soil. 

Relatively stable conditions in depth are illustrated by the deepest sensors, with water 

content around 23% by the TDR sensor in 7.1 m depth, and almost saturated condi-

tions (tensiometer in 7.0 m) (see Fig. 6.23). Both other tensiometers (in 1.9 m and 3.4 m 

depth) document partly saturated periods during 2009 until August, when records 

drop to very low values possibly due to drying of tensiometer ceramics. Data from the 

shallow TDR in 2.1 m depth shows water content of approximately 10% with no 

variations for two periods in 2008 and August 2009 to January 2010. For some time, 

water content also drops to 0% which is very likely to be erroneous. More realistic 

measurements and response to rainfall events were recorded from March 2009 on and 

again in 2010. Definition of a groundwater levels for this location was difficult due to 

problematic installation of sensors. However, a maximum groundwater table of 2 m 

was determined based on high saturation values at the 1.9 m tensiometer. A mini-

mum level of 5 m was assumed using data from the 3.4 m tensiometer for orientation. 

 

Sensors at p24 are located in the eastern part of the study area between inclinometer 

Lic05, and the lawn with inclinometers Lic01 and Lic04. Saturated conditions are illus-

trated by deep tensiometer and TDR sensor in 9.35 m and 9.5 m, respectively (see Fig. 

6.24). Volumetric water content was very constant throughout the monitoring cam-

paign, with values around 48 %. Tensiometer data describes positive pressures of up 

to 100 hPa with some fluctuations. However, tensiometer data also includes meas-

urements of exactly 0 hPa very likely due to malfunction. More shallow tensiometers 

data has some large scatter and also exhibits drying of tensiometer ceramics until re-

filling during maintenance works. Shallow TDR sensors show very little response to 

rainfall events with relatively dry conditions (mean volumetric water content of 15% 

for 2.0m, and 25% for 4.8 m). Partial saturation of the tensiometer in 1.85 m depth was  

used to determine a maximum groundwater level as 1.9 m. Lowest groundwater posi-

tion was assumed to be 6 m based on interpretation of TDR and tensiometer from 4.8 

m and 4.5 m depth, respectively, which reflect unsaturated conditions for some time. 
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Fig. 6.22: Hydrological monitoring at location p21 

 

Fig. 6.23: Hydrological monitoring at location p22 
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Fig. 6.24: Hydrological monitoring at location p24 

Hydrological monitoring site p41 is located west of longitudinal geoelectrical moni-

toring system in the forest. Constantly low volumetric water contents of approxi-

mately 13% were measured by the TDR sensor in 7.1 m depth (see Fig. 6.25). The ten-

siometer 15 cm above recorded some variations of pore water pressure following rain-

fall events. Saturation was reached during summer 2009 before soil suction drop to 

lower values around -200 hPa. Tensiometer 1.7 and 3.7 m both show increasing satu-

ration from 2008 on until April 2009, also reaching full saturation for spring 2009 and 

early 2010. Recorded volumetric water content for the TDR sensors in 3.9 m depth is 

initially 0 % before settling to constant values of 10%.  

For this sensor it was assumed it was either damaged during installation or not prop-

erly fixed into the subsurface. The shallowest TDR sensor in 1.9 m depth also re-

corded very dry conditions with less than 10% water for long periods. Moreover, no 

significant response to rainfall events can be observed. For this location, groundwater 

minimum and maximum levels were determined as 2 m and 6 m. Definition of high-

est water table was based on high saturation of 1.7 m tensiometer. Lowest groundwa-

ter levels were primarily assumed by interpretation of data from the deepest hydro-

logical sensors at p41. 
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Fig. 6.25: Hydrological monitoring at location p41 

A more detailed analysis of hydrological response to rainfall and snow melting was 

carried out for several shorter periods. Some examples of these will be presented in 

the following.  

The first event analysed in more detail is February 2009, where a strong raise of water 

content and saturation was documented by several of the hydrological sensors. Cli-

matic data from the ILEWS weather station shows, that in February initially small 

snow coverage increased to approximately 10 cm until 22nd February, when warmer 

temperatures led to a quick decline of snow height (Fig. 6.26).  

Precipitation records from the unheated rainfall gauge reflect the snow melting proc-

ess. Peaks in precipitation measurements can be observed for all periods in which the 

temperatures is above 0° C. Total precipitation in February 2009 cumulates to 77 mm. 

Snow height data, however, does not follow short-time temperature changes but re-

flects general trends. The strong decrease of snow height from 22nd February on, how-

ever, is only partly documented by precipitation records. 

 

For the February 2009 period, a detailed time-lapse inversion of data from the longi-

tudinal geoelectrical profile was elaborated by Wiebe et al. (2010) which will be pre-

sented below. Though data processing was carried out by Wiebe et al. (2010), the fol-

lowing description and subsequent interpretation are made by the author of this the-

sis. Fig. 6.27 illustrates the time-lapse inversion, where changes between a reference 
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record and subsequent measurements are described in percent. The time increment 

between each snapshot is 16 hours, and 32 hours for the last. The lowest hydrological 

monitoring site (p11) is located around profile metre 5. The damaged house and p12 

are at profile metre 36, Lic05 and p13 at profile metre 55 m. The most upslope hydro-

logical sensors p14 are positioned at profile metre 105. 

 

In the reference model, highest resistivity was measured in the upper sections in the 

area of the scree slope. Lowest resistivity can be found on around profile metre 35. In 

the following snapshots, two sections of the profile illustrate some interesting charac-

teristics. For the middle part of the profile, between profile metres 50 and 100, a slow 

and gradual decrease of resistivity down to approximately 5 - 8 m throughout the 

entire time span can be observed. Around profile metre 24 and 48, a similar decrease 

of resistivity can be noticed in the first plots, however at both points, lowered resistiv-

ity quickly reaches depths of about 15 m. Between these areas, approximately at pro-

file metre 36, a superficial area of high resistivity persists in all compared measure-

ments. 

To assess, if observed changes in resistivity relate to infiltration of melting snow, TDR 

sensors along the geoelectrical monitoring profile were analysed. Fig. 6.28 displays 

records from p12 and p13 positioned at profile metres 36 and 55, respectively. Snow 

melting around 9th February caused increases of soil water content with a magnitude 

of 3 to 5% for the sensors in 4.2 m and 2.35 m depth at p12, respectively. During the 

following days, water content slowly decreases. For the TDR sensors at p13, no sig-

 

 

Fig. 6.26: Snow height and temperature in February 2009 



6 | Results 129 

 

 

 

nificant response can be noticed. Further snow melting on the 17th is followed by only 

smaller deviations of soil moisture, even though more precipitation is documented for 

this period. More precipitation was recorded from the 21st on, which lead to signifi-

cant increase in soil water content. The earliest peak can be noticed for the shallowest 

TDR at p12, approximately 24 hours after the precipitation peak. Shortly after, a small 

increase of water content can be recognized for the 4.2 m deep TDR. The deepest TDR, 

however, illustrates a very strong soil moisture increase of 6 – 8% starting on the 25th. 

Sensors at p13 do not reflect any significant decrease in soil water content over the 

entire period. 
 

 

reference measurement 

16 hours 

32 hours 
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Fig. 6.27: Time-lapse inversion of geoelectrical monitoring data for 
period of 23.th to 26th of February (based on Wiebe et al. 2010) 

The other sensors located along the geoelectrical profile, i.e. p11 and p14, also do not 

show any sudden increases of soil moisture, except for the TDR probe in 4.2 m at p14. 

Here, water content increases starting around 16th February from 20% to over 30% in 9 

days, before a further rise to over 50% in only 4 days. 

Inclinometer chain data from the same period were analysed to investigate if any in-

crease of movements were recorded during February 2009. After correction of raw 

data, a total displacement of 0.2 - 0.5 mm can be observed. Magnitude of displace-

ments varies with installation depth of sensors, with larger movements occurring in 

shallower locations. However, to carry out manual inclinometer measurements on 

Lic02 borehole, the chain was extracted and later reinstalled on 12th February. There-

fore, it is not possible to assess if displacements describe real slope movements or 

48 hours 

64 hours 

96 hours 
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originate from settling of the inclinometer probes after 

hole. Manual measurements show no significant displacements between November 

2008 and February 2009. Between February 2009 and the following manual measur

ment in November 2009, a movement of 1 mm occurring in approximately 15 m was 

recorded. In addition, the more superficial displacement in approximately 8 m depth 

also occurred with a total movement of 1.5 mm to 2.5 mm.

 

One of the strongest rainfall events during the period of monitoring occurred 

2009, with a maximum hourly intensity of 27 mm. During this event, only shallow 

sensors showed a quick response by increased soil moisture. Sensors located in 

greater depths do not document significant increases of soil water content, except at 

p12, where small reaction can be observed. Still, the response of the 9.5 m TDR sensor 

is larger than the 4.2 m sensor at this location.

Inclinometer chain data from May 2009 show

sensor with a maximum displacement of 

sors do not display any changes.

 

Another analysed period was November 2009 for which 

records and hydrological data

were above 0° C making an influence of snow unlikely. Within the first five days, 

approaximately 20 mm of precipitation were recorded, however, no signigcant 

response by TDR sensors can be observed. 

tensiometers, which do not reflect any significant changes 

Fig. 6.28: Volumetric water content

originate from settling of the inclinometer probes after the extraction from

Manual measurements show no significant displacements between November 

2008 and February 2009. Between February 2009 and the following manual measur

ment in November 2009, a movement of 1 mm occurring in approximately 15 m was 

ddition, the more superficial displacement in approximately 8 m depth 

also occurred with a total movement of 1.5 mm to 2.5 mm.  

One of the strongest rainfall events during the period of monitoring occurred 

2009, with a maximum hourly intensity of 27 mm. During this event, only shallow 

sensors showed a quick response by increased soil moisture. Sensors located in 

epths do not document significant increases of soil water content, except at 

p12, where small reaction can be observed. Still, the response of the 9.5 m TDR sensor 

is larger than the 4.2 m sensor at this location. 

Inclinometer chain data from May 2009 shows some movements for the 3 m depth 

sensor with a maximum displacement of approximately 1 mm, whereas deeper se

sors do not display any changes. 

Another analysed period was November 2009 for which strong peaks in precipitation 

records and hydrological data can be noticed. During this entire period, temperatures 

making an influence of snow unlikely. Within the first five days, 

approaximately 20 mm of precipitation were recorded, however, no signigcant 

response by TDR sensors can be observed. Similar data was aquired fom 

tensiometers, which do not reflect any significant changes in soil suctions and pore 

: Volumetric water content at location p12 and p13 during 
February 2009 
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extraction from the bore-

Manual measurements show no significant displacements between November 

2008 and February 2009. Between February 2009 and the following manual measure-

ment in November 2009, a movement of 1 mm occurring in approximately 15 m was 

ddition, the more superficial displacement in approximately 8 m depth 

One of the strongest rainfall events during the period of monitoring occurred in May 

2009, with a maximum hourly intensity of 27 mm. During this event, only shallow 

sensors showed a quick response by increased soil moisture. Sensors located in 

epths do not document significant increases of soil water content, except at 

p12, where small reaction can be observed. Still, the response of the 9.5 m TDR sensor 

s some movements for the 3 m depth 

1 mm, whereas deeper sen-

strong peaks in precipitation 

During this entire period, temperatures 

making an influence of snow unlikely. Within the first five days, 

approaximately 20 mm of precipitation were recorded, however, no signigcant 

Similar data was aquired fom 

soil suctions and pore 

 

at location p12 and p13 during 
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water pressure, except for the 9.2 m deep sensor at p12 for which an increase from 

approximately 25 hPa to over 50 hPa was assessed. An increa

roughly relates to a rise of the ground water table by 30 cm.

For November 2009, no significant displacements were recorded by the inclinomter 

chain. 

More than 70 mm rainfall 

followed by quick increase of soil water content (

respond to the precipitation event is the 

moisture of 10% is documented.

sensor in medium depth, which is again smaller 

TDR sensor. Here, water content reaches a maximum of 

contrast, data from shallow TDR probes at p13 only show a slight increase after th

rainfall. The deepest TDR probe in 8.4 m depth shows the largest response to rainfall 

with an increase of soil moisture from

hours. TDR sensors at p14 show the strongest increases for the two shallow sensors, 

and a very smooth and slow rise of soil moisture for the deepest sensor in 9.15 m.

However, data from the inclinometer chain for this period does not reflect any 

significant displacements. 

Fig. 6.29: Volumetric 

 

Discussion 

In general, hydrological monitoring shows saturated conditions located in greatest 

depths during the entire monitoring period, and responses to rainfall and snow mel

ing can mainly be observed for sensors in more surficial positions. 

water pressure, except for the 9.2 m deep sensor at p12 for which an increase from 

25 hPa to over 50 hPa was assessed. An increase of this magnitude 

roughly relates to a rise of the ground water table by 30 cm. 

For November 2009, no significant displacements were recorded by the inclinomter 

0 mm rainfall are recorded in the first 10 days of May 2010

quick increase of soil water content (Fig. 6.29). At p12, the 

respond to the precipitation event is the shallowest TDR for which a 

is documented. Shortly after, a respronse can be observed 

, which is again smaller than peak measured 

TDR sensor. Here, water content reaches a maximum of approximately

contrast, data from shallow TDR probes at p13 only show a slight increase after th

rainfall. The deepest TDR probe in 8.4 m depth shows the largest response to rainfall 

with an increase of soil moisture from 22% to approximately 35% in less than 48 

hours. TDR sensors at p14 show the strongest increases for the two shallow sensors, 

nd slow rise of soil moisture for the deepest sensor in 9.15 m.

However, data from the inclinometer chain for this period does not reflect any 

 
 

: Volumetric water content at location p12, p13 and p14 du
ing May 2010 

In general, hydrological monitoring shows saturated conditions located in greatest 

depths during the entire monitoring period, and responses to rainfall and snow mel

observed for sensors in more surficial positions. Yet, for some rel
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water pressure, except for the 9.2 m deep sensor at p12 for which an increase from 

se of this magnitude 

For November 2009, no significant displacements were recorded by the inclinomter 

recorded in the first 10 days of May 2010 which was 

). At p12, the first sensor the 

for which a rise of soil 

be observed at the 

than peak measured by the 9.5 m 

approximately 55%. In 

contrast, data from shallow TDR probes at p13 only show a slight increase after the 

rainfall. The deepest TDR probe in 8.4 m depth shows the largest response to rainfall 

35% in less than 48 

hours. TDR sensors at p14 show the strongest increases for the two shallow sensors, 

nd slow rise of soil moisture for the deepest sensor in 9.15 m. 

However, data from the inclinometer chain for this period does not reflect any 

at location p12, p13 and p14 dur-

In general, hydrological monitoring shows saturated conditions located in greatest 

depths during the entire monitoring period, and responses to rainfall and snow melt-

et, for some rela-
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tively strong rainfall events, no significant response at all can be noticed. Relatively 

dry conditions documented for location p41 are likely to be caused by the convergent 

topography of the monitoring site. Overall, highest groundwater water contents are 

recorded for spring, while lowest conditions occurred during summer and autumn.  

Determination of groundwater positions from hydrological monitoring is also influ-

enced by subjective interpretation of monitoring data, and other experts could esti-

mate different groundwater levels. In theory, tensiometers can be used as piezometers 

when installed within the phreatic zone, however, measured pressures could not eas-

ily be transferred to groundwater positions because of contradicting records. There-

fore, uncertainties prevail in the results which could be minimised by installation of 

additional sensors. 

Theoretically, the integration of geoelectrical monitoring data could also be used to 

improve determination of groundwater table positions. Still, investigations of the rela-

tion of geoelectrical resistivity and measured soil water content carried out within the 

ILEWS project (Wiebe et al. 2010) were not able to determine a simple relationship 

between these parameters. Still, partial correlation were established for certain sensors 

for relatively dry conditions (>50 ohm or <25% volumetric water content).  

The influence of uncertainties due to partly subjective interpretation of hydrological 

data on subsequent modelling has to be estimated by sensitivity analysis with 

CHASM, which is described later (chapter 5.1.3.2). 

 

The most interesting results in respect to hydrological response to rainfall and snow 

melt derive from analysis of single events. In particular hydrological monitoring site 

p12, located next to the house which frequently suffers crack development due to 

slope movement, shows insightful characteristics. In general, hydrological sensors in 

lower depths respond quicker to percolating water than sensors in greater depth. 

However, at p12 analyses of several single rainfall and snow melt events show a con-

tradicting pattern. Here, the deepest TDR sensor in 9.5 m shows relatively quick and 

large reactions to rainfall and snow melt, while the water content in medium depth 

only varies slightly. 

The observed variations of soil water content can be interpreted as a result of prefer-

ential flow paths by lateral influx of water. This assumption is supported by geoelec-

trical time-lapse inversions, which illustrate an even decrease of resistivity for most of 

the measured profile following snow melt. For the area around monitoring site p12 

however, low resistivity values in great depth develop without significant increases in 

shallower depth above. Assuming variations in geoelectrical measurements for this 

period are primarily related to infiltration and percolation of water, the observed re-

sistivity changes relate to a lateral influx on preferential flow paths. 
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Without any significant accelerations of slope movement hydrological triggering con-

ditions and thresholds can not be analysed adequately. Similar to the results of Bell 

(2007) and Bell and Thiebes (2010), no simple correlation between rainfall or hydro-

logical conditions and shallow slope displacement can be found. The onset of the 

deep-seated sliding, however, can be related to snow melting based on the timing of 

these displacements. Also, deep-seated sliding can be observed for each spring season 

except for 2007, when snow height in the previous months was relatively small. 

 

Based on the results, it can be noted that tensiometers are of great value to estimate 

the position of the groundwater table. An advantage of the TDR sensors is the quick 

response time to rainfall events which make them particularly useful for low depth 

installations. 

Unfortunately, some of the installed tensiometers and TDR sensors seem to either 

malfunction or may not be properly fixed to the soil. In addition, several tensiometers 

are likely to have run dry due to low frequency of maintenance works.  

Uncertainties of the weather data also have to be noted. Precipitation data from the 

local weather station is questionable for at least summer 2010. In addition, also in ear-

lier periods, heated and unheated rainfall sensors differ in their records. Therefore, 

rainfall data has to be interpreted with great care. Snow height data required some 

correction processes to convert raw measurements into realistic snow depths. Cor-

rected snow height data can be assumed to describe general trends of snow accumula-

tion and melting realistically; however, some uncertainties remain regarding the exact 

snow height. 

6.1.3 Landslide early warning modelling 

6.1.3.1 Generation of input data 

In the following, results of generation of input data for following CHASM modelling 

and early warning will be presented. These include the development of the general 

subsurface model, modelling of groundwater scenarios, extraction of rainfall scenar-

ios, and design of an automated shear surface routine. 

  

Subsurface model 

A general subsurface model was generated by a combination of various data sources 

(chapter 4) following a complex procedure (chapter 0) to facilitate subsequent model-

ling and early warning. Below, the results are presented. 

Initially, positions of geological strata as upper limits were extracted from available 

geological maps (1:25,000 and 1: 50,000) including information from described drill-

ings. Both maps contain similar information on positions and thickness for geological 

strata. However, classification of the uppermost stratum differs between maps. In the 
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1:25,000 map, this is termed Kimmeridge Massenkalk, while the 1:50,000 map further 

differentiates into the formations Kimmeridge Massenkalk and Lower Kimmeridge 

Massenkalk. Tab. 6.2 shows the utilised strata classification of from the larger scale 

map. Single DTM were created in GIS for each stratum with upper limit altitude as 

grid cell information. At a later stage, these DTM blocks were merged with debris 

thickness information to create a general subsurface model (see Fig. 6.38). 

Tab. 6.2: Upper limits of geological strata (based on Ohmert et al. 
1988) 

series stage stratum code limit 

Upper 

Jurassic 

Kimmeridgium Upper Kimmeridge limestone (Bank- and Fel-

senkalk) 

ki2-3 790 m 

 Lower Kimmeridge marl (Lacunosamergel) k1 710 m 

Oxfordian Oxfordian limestone (Oxfordkalk) ox2 670 m 

 Oxfordian marl (Impressamergel) ox1 610 m 

Middle 

Jurassic 

Callovian Callovian clay (Ornatenton) cl 505 m 

Bathonian Bathonian clay (Dentalienton) bt 475 m 

Bajocian Bajocian clay (Hamitenton) bj3 465 m 

 Bajocian clay and marl (Stephanoceraten- and 

Ostreenkalk) 

bj2+ 440 m 

 Bajocian clay (Sonninien-Schichten)  bj1 420 m 

 

Drillings described by Ohmert (1988) were the first source of information for estima-

tion of debris thickness above bedrock. Fig. 6.30 displays drillings selected due to 

their vicinity to the local study area. Depths of debris material, primarily termed soil, 

alluvial loam and slope debris by the authors of core descriptions, were extracted, and 

are summarized in Tab. 6.3. Holocene calcareous sinter and gravels from periglacial 

periods found in some drillings, were neglected and therefore add to the geological 

material which they overly. 

 

Drillings 34 to 38 are located close to the river and describe a debris cover varying 

between 3 m and almost 6.5 m, under which periglacial gravels and calcareous sinter 

can be found. Almost 10 m loose material is attested at point 42. Several drillings are 

in lower slope positions, i.e. 39 to 50. For these, a debris cover between 4.8 m and 13.8 

m was measured, with the exception of drilling 41, where over 22 m of fluvial depos-

its and tufa sand overlie Callovian clay. Drilling 50 is located on landslide deposits 

and attested a thickness of 24 m of slope debris above clay marl (cl). The drilling lo-

cated the furthest upslope is positioned at point 48. Here, 8 m of slope debris are over-

lying Oxfordian marl (ox1). 
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Fig. 6.30: Drillings close to the local study area described in geologi-
cal map (1:25,000) (Ohmert et al. 1988) 

Tab. 6.3: Analysed thickness of debris above bedrock (based on Oh-
mert et al. 1988) 

Drilling Position Debris thickness Description 

34 River 3.8 m Soil, loam 

35 River 4.3 m Soil, alluvial loam 

36 River 6.4 m Soil, peat  

37 River 3.0 m Soil, tufa sand 

38 River  6.5 m Soil, tufa sand 

42 River 9.9 m Soil, tufa sand, peat 

39 Lower slope 12.0 m Soil, tufa sand, slope debris 

40 Lower slope 13.8 m Soil, tufa sand, slope debris 

41 River 21.7 m Fill, tufa sand 

43 Lower slope 4.8 m Slope debris, loam 

44 Lower slope 7.2 m Fill, slope debris, alluvial loam 

47 Lower slope 17.8 m Fill, tufa sand, peat 

50 Lower slope 24.0 m Landslide deposits 

48 Middle slope 8.0 m Slope debris 
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From drillings 34, 35, 36, 37 and 38, a mean debris cover of 5 m was assumed for areas 

located close to the river. Estimation of debris thickness for lower and middle slope 

sections primarily referred to drillings 43 and 44, and 48 for orientation. Debris cover 

was assumed to vary between 5 m and 7 m at similar slope positions. On the plateau 

area, points were evenly distributed and a depth of bedrock of 1 m was assumed. 

Variable debris thickness depending on local topography was not included for the 

plateau area. No debris cover was supposed for the outcropping limestone at the 

main landslide crown, and the upper scree slope. However, since evolution of the 

scree took place after occurrence of the main landslide, debris was assumed to be lo-

cated underneath for lower sections. A bedrock depth of 1 m was assumed for this 

area. 

According to these findings, the estimated debris thickness for the local study area 

was stored within GIS as point data and used for subsequent spatial interpolation 

(Fig. 6.31). In addition to the previously described points, some others were added, 

e.g. in the western part of the study area, and also for high slope positions, to ensure a 

smoother interpolation and transition of debris thickness. 
 

 

Fig. 6.31: Estimated depth of debris for local study area 
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In the core area of the local study area, the estimation of debris thickness was based 

on data from seismic prospection elaborated with Rayfract by the company geoFact 

(Bell et al. 2010b). Processing of seismic data was carried out by the project partner 

geoFact, following interpretation and deduction of debris thickness is a result of the 

author of this thesis. Seismic data and estimated depth of bedrock is presented in Fig. 

6.32. Since one drilling, i.e. Lic02, penetrated the bedrock, it was used for calibration 

of seismic results. In addition, the seismic profiles were compared and optimised to 

each other at four intersections. 

The western longitudinal profile intersects with lower and upper cross profiles at 79 

m and 130 m, respectively. Inclinometers Lic02 and Lic05 are located at 42 m and 68 

m, respectively. At Lic02, bedrock corresponds to a wave velocity of approximately 

2000 m/s, displayed as the transition orange to red, which was subsequently used for 

interpretation. The plot illustrated in Fig. 6.32 was combined from two single ana-

lysed profiles superimposed for interpretation. A refractor computed with plus-minus 

method was calculated around 900 m/s, relating to a depth between 6 m to 8 m. Bell 

et al. (2010b) interpreted the refractor as a weak zone. In general, the 2000 m/s line 

was interpreted as the bedrock interface, relating to depths between 13 m to 16 m for 

most parts of the profile. Considerable greater depths of over 20 m were estimated for 

a spoon shaped hollow between profile metre 90 and 130. 

The eastern longitudinal seismic prospection survey has a total length of almost 190 m 

and was acquired in one measurement. At the maximum upslope location, the profile 

intersects with the northern cross profile. Another intersection is positioned at profile 

metre 140. The calculated refractor varies between 8 m and 14 m depth, and shows a 

great variation in terms of wave velocity. For mid and low profile section, depth 

ranges between 8 m and 16 m, respectively. For the upper profile maximum depths of 

over 20 m were estimated, similar to the northern cross profile.  

The northern cross profile has a length of 90 m and intersects with the western and 

eastern longitudinal profiles at metre 47 and 66, respectively. The calculated refractor 

is in a depth of approximately 12 m depth, corresponding to a seismic velocity be-

tween 1200 m/s and 1400 m/s. Estimation of bedrock depth followed the 2000 m/s 

line, corresponding to depths of 10 m and 15 m for eastern and mid profile sections, 

respectively. In the western part greater depths over 20 m were estimated in agree-

ment with data from the eastern longitudinal profile. 

The southern cross profile was the longest, with a total length of 220 m and was pro-

duced by a combination of three single measurements. Intersections with the western 

and eastern longitudinal profiles are located at metres 113 m and 148 m, respectively. 

The refractor is in the range of 1000 m/s to 1200 m/s, corresponding to a depth of 

approximately 8 m. For most areas, the 2000 m/s line was used for estimation of bed-

rock depth. Still, at around profile metre 90, one larger hollow was interpreted as arte-
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fact of data inversion. Depth of bedrock ranges betwee

east, to slightly shallower values around 12 in mid and western profile.
 

Fig. 6.32: Results of geoseismic prospection and estimated bedrock 
interface depths 

 

fact of data inversion. Depth of bedrock ranges between approximately

east, to slightly shallower values around 12 in mid and western profile.

: Results of geoseismic prospection and estimated bedrock 
interface depths (based on Bell et al. 2010) 
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approximately 16 m in the 

east, to slightly shallower values around 12 in mid and western profile. 

 

: Results of geoseismic prospection and estimated bedrock 
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After estimation of bedrock depths in seismic plots, data was transferred to GIS for 

subsequent spatial interpolation. Depth information was extracted every 4 m, ana-

logue to the distance between the geophones during prospection, and stored within 

GIS as point data (Fig. 6.33). Greatest debris thickness up to over 20 m was estimated 

for the northern profile, especially on the western end, but also in the upper part of 

the western longitudinal profile. Shallower positioning of bedrock was ascertained for 

lower slope sections in general, and in particular for the western part. 
 

 

Fig. 6.33: Assigned depth of debris from analysis of seismic prospec-
tion data 

After analysis of debris depth in the upper landslide area, the depth of material of the 

scree slope was estimated. In GIS, outlines of scree slope were digitised and converted 

to point data with scree depth information of zero. From interpretation of geoelectri-

cal monitoring data acquired by Bell (2007) and Kruse (2006), a maximum thickness of 

8 m was assumed. Additional data points with the respective depth value were cre-

ated in GIS, positioned at approximately 60% of horizontal scree length. Further 

points at the sides were added to ensure smooth spatial interpolation of scree depths. 

Several interpolation methods (i.e. Kriging, Inverse Distance Weighting, and Nearest 

Neighbour) were tested, of which the Natural Neighbour method was judged to gen-

erate the most realistic results (see Fig. 6.34). 

 

Initial attempts of spatial interpolation of debris cover using the previously described 

data demonstrated the need to improve representation of lower landslide deposits. 

Since neither drillings nor geophysical data were available, an iterative GIS based 

interpolation was carried out (see Fig. 6.35). 
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In the first interpolation step landslide boundary height information were connected 

by an ArcGIS TIN creation resulting in a maximum depth of landslide deposits  

around 13 m for parts of the upper landslide deposits. However, also negative thick-

nesses up to approximately 14 m were interpolated, e.g. for the landslide head of the 

western large landslide body. The eastern landslide body illustrates deposit depths 

between approximately 5 m in the upper part, but also negative depths up to 5 m for 

some sections. For the lower landslide deposits, depth of material reaches a maximum 

of around 8 m in the east, but also indicates negative landslide thickness values for 

the western areas. Overall, results of first interpolation were evaluated to underesti-

mate the overall thickness of landslide for some parts of the landslide, especially in 

areas with negative values. 

For the second interpolation, the western landslide body was separated into a upper 

and lower part where the lower road is located. TIN interpolation was carried out for 

these areas and the eastern landslide body separately. For this interpolation, landslide 

depth was estimated to vary between 13 m and -13 m. In comparison to the first in-

terpolation, no changes in landslide depth can be recognised for the smaller eastern 

landslide body. Some additional material in the order of 2 m was simulated for the 

western upper landslide body, and up to 3 m for the lower western deposits. 

However, lower landslide depths were simulated, too, e.g. for the middle part of the 

western landslide deposits. Differences add up to over 5 m in some of these areas. 

Similar to the first interpolation, results of second interpolation were judged to un-

 

Fig. 6.34: Interpolation of scree thickness 



142 6 | Results 

 

 

derestimate real landslide deposits with only some centimetres of landslide deposits 

in the mid section of the lower western landslide. In addition, negative values of 

landslide thickness were interpolated for some parts of the landslide, indicating an 

effective hollow instead of additional material.  
 

 

Fig. 6.35: Stepwise interpolation of depth of landslide deposits 
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To further improve spatial interpolation of landslide deposits further details were 

included. At first, it was aimed to improve interpolation for the eastern and upper 

western landslide deposits. Altitude information of the points along the boundary of 

the landslide bodies were lowered by maximum value of 6 m, assumed to be an ap-

propriate depth of landslide deposits for this area. Landslide depth was set to increase 

linearly and reach its maximum thickness after 2/3 of landslide length. 

A second adjustment to the input data used for TIN generation used several profiles 

placed along the landslide deposit boundaries to estimate thickness by the change of 

altitude. In Fig. 6.36, results of this procedure are illustrated along with two sample 

slope profiles. The lower sample profile (Fig. 6.36A) illustrates a cross-section over the 

river, which is located at metre 60. While the southern bank is relatively flat, a much 

quicker increase of altitude can be observed for the landslide deposits on the northern 

bank. Thickness for the pictured profile was estimated to be at least 4 m for e.g. profile 

metre 110 to 120. Similarly, the other sample slope profile (Fig. 6.36B) shows sharp 

increase of height of approximately 2 m at the boundary of landslide deposits. In gen-

eral, estimated depths were found to increase from the boundaries to the mid part of 

the landslide deposits and reach a maximum of 8 m to 10 m. However, no profiles 

could be analysed for the upper landslide boundaries since deposits are not visually 

evaluable. 

 

 

Fig. 6.36: Estimated thickness of landslide deposits by profile analy-
sis 

A 

B 
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Results of third interpolation including points of the manipulated landslide boundary 

between western and eastern landslide bodies, and data points from profile analysis 

are presented in Fig. 6.35 as step 3. In comparison to the second interpolation, thicker 

landslide deposits were simulated for most of the landslide areas. Especially for the 

lower western landslide, the depth of material exceeds 9 m in the mid part. Also for 

the smaller eastern landslide body, up to 7 m of additional material were calculated. 

Fewer deposits were interpolated for some parts of the upper western landslide, and 

for the eastern section of lower western landslide deposits. In this area, material depth 

was estimated to be around 3 m lower than previously calculated in the second inter-

polation. Negative values of landslide thickness primarily occur in the upper part of 

the western landslide. Lower landslide deposits are generally positive, besides some 

points at the western edge. Still, the upper parts of the western landslide, but also the 

eastern landslide body were evaluated to be unrealistic; with negative thickness val-

ues up to 12 m. For these areas, results were rejected, and subsequent interpolation of 

debris thickness for the entire local study area was based on data estimated from 

seismic data and some additional points. Results of the third simulation for the lower 

landslide deposits of the large western landslide were judged to be an appropriate 

representation of real landslide deposit depths and were accepted for further analysis. 

However, to diminish the influence of negative landslide thickness, all values lower 

than zero were increased to zero. 

 

Interpolation of debris thickness for the entire local study area used all data previ-

ously generated. For the upper western and the eastern landslide body thickness was 

interpolated from results of seismic data analysis. Some additional points were added 

to ensure a smooth interpolation without large deviations occurring in small distances 

(see Fig. 6.37A). For lower landslide deposits, regularly spaced points were created in 

GIS and depth of landslide deposits were extracted from third interpolation. How-

ever, since interpolation for this area describes landslide deposits, and not total debris 

depth, a mean thickness of 4 m for undisturbed material located below was assumed 

and added to the point data. Similarly, points were added with a depth value of 4 m 

along the landslide boundaries, assumed to be the mean thickness of debris material 

for these slope positions if unaffected by landslide processes. For the rest of the study 

area, point data from previously described analysis of drillings available in the geo-

logical map (1:25,000) was used. Some additional points were added to ensure smooth 

transitions in subsequent interpolation of debris thickness with ArcGIS methods. Sev-

eral interpolation methods were tested (i.e. Inverse Distance Weighting, Ordinary and 

Universal Kriging, Spline) of which Tension Spline method was evaluated to produce 

the most realistic results (see Fig. 6.37B). From the plateau areas into a downslope 

direction debris thickness smoothly increases from 1 m up to 7 m at the foot slope. No  
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Fig. 6.37: Input data (A) and results (B) of spatial interpolation of de-
bris cover thickness 
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debris was interpolated for the outcropping limestone at the landslide crown and the 

upper part of the scree slope. Calculated debris thickness for the landslide bodies has 

a maximum of 22 m in the central landslide head area, and decreases to approxi-

mately 12 m in the western part. Into downslope direction, debris thickness decreases 

in the mid part of the landslide to 5 m to 6 m, before increasing in the lower part 

again. Here, interpolated thickness of debris reaches a maximum of 10 m to 14 m, and 

levels out to the margins. 

With debris depth stored as grid data, the complete subsurface model was created by 

a series of RASTERCALCULATOR commands in ArcGIS. The scree slope and debris 

grids were subtracted from the original DTM to derive the surface of geological strata. 

Results are presented in Fig. 6.38. For the use within CHASM, the subsurface model 

was simplified since CHASM can only integrate four material layers. The simplified 

subsurface model contains Middle and Upper Jurassic, debris and scree slope (Fig. 

6.39). 
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Fig. 6.38: Subsurface model (DTM: LGL AZ: 2851.9-1/19) 
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Fig. 6.39: Subsurface model for CHASM (DTM: LGL AZ: 2851.9-
1/19) 
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Geotechnical parameters  

The estimation of geotechnical parameters of materials present in the local study area 

utilised the database provided by Meyenfeld (2010, personal communication). Since 

subsequent modelling of slope stability within CHASM could only accommodate four 

material layers, geotechnical parameters were elaborated for Upper Jurassic stratum 

(primarily limestone and marls), Middle Jurassic stratum (primarily clay stones), 

slope debris covering almost the entire study area, and the limestone debris located in 

the scree slope. From the wide range of materials listed within the database, searches 

for the following terms were carried out: Kalk (lime), Kalkstein (limestone), Ton (clay), 

Tonstein (claystone), Schutt (scree material, rubble), and Geröll (gravel, debris). A 

summary of elaborated geotechnical parameters is presented in Tab. 6.4. 

Tab. 6.4: Elaborated geotechnical parameters (based on Meyenfeld 
2010) 

  Number of 

records 

 Minimum 

value 

Maximum 

value 

Mean 

value 

Standard 

deviation 

U
p
p
e
r
 J
u
r
a
s
s
ic
 

Lime 
25 

C’min 0 10,000 1436 2,833 

(Kalk) C’max 0 30,000 3750 8,269 

 
30 

Φ’ min 10  0 25 10 

 Φ’ max 10 70 3  5 

Limestone 
6 

C’m n 1,400 4,000 2,467 1,218 

(Kalkstein) C’max 4,000 8,000 5,333 2,066 

 
11 

Φ’ min 10 40 29 11 

 Φ’ max 35 70 45 12 

Marl 
34 

C’min 0 4,000 490 1,044 

(Mergel) C’ ax 0 8,000 1035 2,178 

 
34 

Φ  min 10  0 25 8 

 Φ’ max 70 1,111 3 13 

Marlstone 
11 

C min 5 1,400 313 542 

(Mergelstein) C’max 40,000 4,000 823 1,575 

 
11 

Φ’ min 1 30 24 8 

 Φ’ max 24 45 34 9 

M
id
d
le
 J
u
r
ra
s
s
ic
 

Clay 
246 

C’min 0 17,000 150 1,106 

(Ton) C’max 0 23,000 254 1,550 

 
250 

Φ’  in 0 45 2 9 

 Φ’ max 5 6,533 26 10 

Claystone 
69 

C’min 0 17,000 365 2,042 

(Tonstein) C’max 0 23,000 554 2,760 

 
72 

Φ’ min 8 45 25 8 

 Φ’ max 13 50 31 8 

L
im
e
s
to
n
e
 s
c
r
e
e
 

Debris 
4 

C’min 0 1 0.3 0.5 

(Schutt) C’max 0 1 0.3 0.5 

 
4 

Φ’ min 32.5 33 33 0.3 

 Φ’ max 32.5 3  3 0.3 

Gravel 
69 

C’m n 0 0 0 0 

(Geröll) C’max 0 0 0 0 

 
72 

Φ’ min 32.5 40 36 2.3 

 Φ’ max 32 5 45 36 3.1 

Note: Cohesion (c’) in kN/m²; internal friction (Φ’) in ° 
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Search for the terms Kalk and Kalkstein, Mergel and Mergelstein delivered 30 and 34 

records with information on cohesion or friction, respectively. However, some records 

were excluded from the selection because they were judged inappropriate. Excluded 

records include records describing for example, materials located in very deep under-

ground conditions (1000 m to 2000 m) and weathered debris. The parameter range for 

both, cohesion and friction is very large. For example, records for Kalk contain mini-

mum cohesion values of 0 kN/m², and a maximum of 30,000 kN/m². The highest 

number of records was available for Ton for and Tonstein with 250 and 72 records on 

cohesion or friction, respectively. Again, the range of geotechnical parameters is very 

large with cohesion varying between 0 kN/m² and 23,000 kN/m². Only a small num-

ber of records were found for Schutt and Geröll. In controversy to the previously de-

scribed search terms, parameters are less dispersed. Cohesion is very low for all re-

cords, ranging between 0 kN/m² and 1 kN/m² , and friction between 33° and 

45°.Values of cohesion and internal friction for slope debris could not be elaborated 

from the database but instead used typical values from literature, which were later 

checked during sensitivity analysis. 

 

Estimated values for cohesion and friction used for initial CHASM modelling are pre-

sented in Tab. 6.5. For estimation of geotechnical characteristics of the Upper Jurassic 

layer, Kalkstein and Mergelstein records were preferred since they focus on intact rock 

materials. Similar for Middle Jurassic, Tonstein was favoured since the Middle Jurassic 

in the study area is covered by slope debris.  

Tab. 6.5: Initial geotechnical values used for CHASM modelling 

 Upper Jurassic Middle Jurassic Debris Scree 

Cohesion 300 1500 20 0 

Internal friction 35 15 20 33 

Ksat 1e-6 1e-9 6,78e-7 1e-1 

Moisture Content (sat) 40.7 44.7 52.6 48.3 

Bulk density(sat) 25 23 16 16 

Bulk density (unsat) 23 21 15 15 

 

CHASM also required determination of soil suction values and saturated moisture 

content for materials involved in CHASM modelling. Values for these parameters 

were elaborated based on the soil database integrated into the SPAW model (Saxton 

and Rawls 2006). Even though, laboratory analysis provided some initial information 

on soil suctions and related water contents (chapter 6.1.2.1), tests only involved a rela-

tively small range of suctions compared to CHASM requirements. Also, laboratory 

suction analyses concerned only materials from slope debris, but not for the other 

materials of the subsurface model. For landslide debris, mean values for clay, silt and 

sand content were calculated from results of laboratory analysis and used as input for 

SPAW. In addition, a relatively high gravel content of 40% was assumed, based on 
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experience during drilling and analysis of available borelogs. In comparison to the 

soil suction data acquired in laboratory analyses, SPAW values describe significantly 

higher water contents for the entire range of applied suctions. Soil suction behaviour 

of the limestone scree material was elaborated using assumed values for grain size 

distribution. High permeability was reflected by 96% sand content and 50% of gravel, 

as well as a decreased compaction factor of 0.9. In comparison to limestone scree ma-

terial, Upper Jurassic material was assumed to be denser and less permeable. Soil suc-

tion curves were determined using assumed contents of 20% sand, 40% clay, no 

gravel and dense compaction (1.1). Middle Jurassic materials were assumed to be 

even less permeable, and soil suction curves were elaborated using 60% clay, 2% 

sand, no gravel and maximum compaction (1.26). Resulting soil suction points for the 

described materials are presented in Tab. 6.6. 

 

Parameter values for hydraulic conductivity (Ksat) for the materials involved in 

CHASM modelling used standard values provided in DIN standard (18130) and lit-

erature values (Bear 1972). For limestone scree material, a very high hydraulic con-

ductivity of 10-1 m/s was estimated, relating to pervious conditions similar to gravel. 

The SPAW model was used to establish Ksat values for debris material. Hydraulic 

conductivity of Upper Medium Jurassic materials were determined referring to pervi-

ous and semi-pervious materials, respectively. Estimated values for hydraulic con-

ductivity initially used for CHASM simulations are presented along with the other 

geotechnical parameters in Tab. 6.5. 

Tab. 6.6: Water content (in %) derived from SPAW model for suc-
tions (pF) from -10 to -0.1  

pF -10  -8  -6 -4  -3 -2 -1.6  -1.2  -0.8  -0.4  -0.2  -0.1 

Scree 0.2 0.3 0.4 0.4 6.9 0.9 1.2 1.53 2.2 4 21.8 35.5 

Debris 0 0 0 0 0 0 0 0 0 0 0 0 

Upper 

Jurassic 25.9 26.6 27.6 29.1 30.2 31.8 32.7 34 35.8 39.2 45.7 50 

Middle 

Jurassic 0 0 0 0 0 0 0 0 0 0 0 0 

 

Groundwater scenarios 

In Fig. 6.40, results of spatial interpolation of groundwater positions by Inverse Dis-

tance Weighting method are illustrated. In addition to the data points describing the 

positions of hydrological monitoring sensors, several points were included to ensure a 

smooth and more realistic interpolation of groundwater positions. For these, 

groundwater table positions had to be assumed since no information was available. 

Mean groundwater table positions for dry and wet seasons were assumed as 4 m and 

6 m, respectively. 
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Results for the dry period (Fig. 6.40A), which relate to the time between approxi-

mately October and December, show a spatially varying groundwater table, which is 

the closest to the surface within the main landslide body. Height of groundwater table 

was simulated to gradually decrease in a downslope direction to values of approxi-

mately 5 m for low slope sections and for areas located close to the river. For steep 

slope sections, i.e. landslide scree and the western and eastern slopes, drier conditions 

were simulated, with a groundwater table modelled as 5.8 m below the surface. Low-

est groundwater tables were interpolated for the plateau area where a mean position 

of the water table is about 6 m below the surface. In the area, where hydrological 

monitoring was carried out, strong variations of groundwater table positions were 

simulated, relating to the variability of estimated groundwater for each sensor ana-

lysed. 

Fig. 6.40B presents interpolated groundwater table positions for the wet period, which 

relates to the period between February and April. Compared to the first interpolation 

(Fig. 6.40A) of groundwater table positions, similar results were computed for the wet 

season. In general, however, groundwater tables tend to be located closer to the sur-

face with a minimum depth of 1.3 m to 2 m. For the main landslide body, the simu-

lated groundwater table stretches further upslope and reaches minimum values of 

approximately 3 m for some parts of the plateau area. As in the first interpolation (Fig. 

6.40A), groundwater depth decreases in the downslope direction. 

 

Shear surface search routine 

A procedure was developed to control the automated CHASM search for circular 

shear surfaces (Bishop's method) integrated into the web-based decision support sys-

tem. A routine provided by Anderson (2009, personal communication) was initially 

tested, but was judged not well adapted to local slope morphologies since it bound 

stability calculation to lower slope sections were landslide occurrence is more 

unlikely. Extensive testing led to a procedure, in which shear surface search varies for 

each selected profile, depending on profile characteristics and input data. In the fol-

lowing, the developed routine will be illustrated for four random profiles, which start 

on the plateau and have a length between 300 m to 600 m (Fig. 6.41). 

Profiles were drawn for areas in which slope failures could occur, i.e. the steep upper 

slope section either reflecting partial reactivation of landslide deposits, or retrogres-

sive landsliding at the head scarp. Since profiles vary in length, in this case 300 m to 

600 m, areas for appropriate shear surface search vary.  
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Fig. 6.40: Spatially interpolated groundwater scenarios for dry (A) 
and wet (B) conditions 
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Fig. 6.41: Random slope profiles between 300 m and 600 m long 

Parallel to Andersons procedure, the position of the grid, in which the centres of ana-

lysed slip circles are located, were defined by geometrical characteristics of the ana-

lysed slope profile (slope length and height). For slope profiles shorter than 450 m, the 

lower upslope corner of the search grid was defined at two-thirds of slope height and 

half of slope length. Longer profiles used two-thirds of slope height and one-third of 

slope length, effectively, moving the grid box further upslope. In Fig. 6.42 the four 

profiles and the position of grid search box are illustrated along with resulting poten-

tial shear surfaces. 

For the first two profiles, grid box is positioned at 50% of slope length, for profile 3 

and 4, at one-third of profile length. For all profiles, potential shear surfaces reflect 

slope failures within the head of former landslide deposits or within the steeper up-

slope area. Retrogressive failure at the plateau can only be analysed when very large 

radiuses are used. 

Apart from position of the grid search box, other settings included its spacing and 

size, and the incremental increase of the search radius between iterations. The spacing 

of the grid search box was set to the same dimension as the general mesh, relating to 

the resolution of the DTM used for profile generation. Since the number of maximum 

cells in CHASM simulations is limited to 300, maximum profile length is 300 m and 

600 m for 1 m and 2 m DTM, respectively. The size of the grid search box was chosen 

to be relatively large with 10 m by 10 m to increase the number of possible shear sur-
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face locations. However, incremental increase of the radius between simulation steps 

was set to a relatively high value of 1 m to limit the total number of iterations and 

shorten simulation time. 
 

 

Fig. 6.42: Position of slip search grid and respective possible shear 
surfaces 
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Rainfall scenarios 

KOSTRA rainfall intensity probabilities were extracted for the grid cell containing the 

local study area Lichtenstein-Unterhausen and subsequently used to derive CHASM 

input files. To enhance the understanding of KOSTRA, spatial and temporal variabil-

ity of rainfall intensities were investigated. KOSTRA data in map format (Fig. 6.43) 

shows, that the cell directly neighbouring the local study area to the west contains 

higher rainfall intensities for many scenarios. Higher cumulative rainfall for this area 

can be observed for all annual probabilities and storm durations. Largest deviations 

can be identified for rainstorm events of long durations, where cumulative rainfall is 

over 20% higher. 

Comparison of summer (May to September) and winter (October to April) rainfall 

intensities to the values of the entire year illustrate some interesting features. Summer 

rainfall intensities are higher than winter rainfalls for almost all rainfall durations and 

occurrence probabilities, with largest deviations occurring for short storm durations. 

For these events summer rainfall intensities are up to 400% higher. Only for rainfall 

events with 72 h duration and bi-annual probability slightly smaller (7%) rainfall in-

tensity is described by KOSTRA. KOSTRA rainfall intensities derived for the entire 

year are the same as for the summer period for almost all rainfall durations and oc-

 

Fig. 6.43: KOSTRA rainfall intensities for 12 hour rainstorm with 
1/10 year occurrence probability for Baden-Württemberg 
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currence probabilities, except for very long durations with high probability of occur-

rence (>1 per year). Winter rainfall intensities are in all cases lower than values for the 

entire year, with largest deviations detectable for short duration scenarios (>80%). 

Tab. 6.7: Cumulative rainfall (in mm) for normal, maximum value 
and worst case scenarios for return periods between 1 and 100 years 

and storm duration between 1 hour and 72 hours 

  Normal values  Maximum values  Worst case  

  Return period in years 

Duration in 

hours 

 

1 10 50 100 

 

1 10 50 100 

 

1 10 50 100 

1  18 37 50 56  18 38 52 58  20 44 60 70 

6  27 48 63 69  29 51 66 73  31 58 76 87 

12  32 54 69 75  34 57 73 80  37 66 84 96 

24  38 64 82 90  40 70 91 100  44 81 105 120 

48  45 73 92 100  50 80 101 110  55 92 116 132 

72  55 83 102 110  60 90 111 120  66 104 128 144 

                

KOSTRA was used to derive rainfall intensity probabilities for storm durations of 1, 6, 

12, 24, 48 and 72 hours, and for return periods of 1, 10, 50 and 100 years (Tab. 6.7). 

Moreover, standard parameter values within CHASM were altered to derive maxi-

mum value scenarios, and uncertainties were integrated as additional rainfall within 

worst case scenarios. Maximum value scenarios differ from normal value scenarios 

between approximately 1% and over 11%, with largest deviations occurring for long 

duration rainstorm events. Worst case scenarios include the fixed uncertainties de-

scribed within KOSTRA which range between 10 and 20% depending on probability 

of occurrence. In comparison to normal values maximum values and uncertainties 

add up to an increased cumulative rainfall of over 30% for long duration and low an-

nual probability scenarios. 

Scenarios with varying intensities over the course of a rainfall event were created to 

describe storm characteristics more realistically. KOSTRA includes Euler1 and Euler2 

model rainstorms only for rainfall duration ≤12 h; for longer storms, rainfall intensity 

distributions were computed manually. Fig. 6.44 exemplifies the differences between 

scenarios of even intensity distributions to Euler1 and Euler2 scenarios. Euler1 scenar-

ios start with a very high rainfall peak which is followed by an even decrease of 

hourly intensities. In contrast, Euler2 scenarios reach highest hourly intensities after 

one third of the storm duration. 

A total number of 192 rainfall scenarios were created for subsequent use in CHASM 

and the web-based applications of slope stability assessment. All scenarios were 

transferred to text-files conform to CHASM requirements. In these files, onset of rain-

storm in relation to CHASM simulation length had to be defined. After thorough test-

ing of CHASM (chapter 6.1.3.2), onset of rainfall was set to hour 10. 
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Fig. 6.44: Comparison of even, Euler1 and Euler2 rainfall distribu-
tions for a 12 hour rainstorm with 1/10 year probability 

Discussion 

The subsurface model created for subsequent CHASM modelling exploited a wide 

range of available data to create a good approximation of real conditions. Yet, at some 

points of the procedure, subjective interpretations were employed leading to uncer-

tainties. 

Data from geological maps provided initial information on strata positions; however, 

interpolation of few outcrops to the entire study area neglected the slight dipping of 

approximately 2.5°.  

Based on the drillings carried out within this study, it was decided to not further dis-

tinguish the slope debris layer. Still, sections of blocky limestones were found in the 

drill cores which roughly coincided with the refractor computed for seismic profiles. 

However, no reasonable geomorphological explanation could be found to justify that 

these limestone block sections occur within the entire study area. 

Detailed description of drillings by Ohmert (1988) could be used to estimate thickness 

of slope debris even though most drillings were carried out outside the local study 

area. Estimation of debris thickness based on relative slope positions may not provide 

exact information; however, good approximations could be achieved. For the rela-

tively flat plateau areas, no information on the depth of debris and soil above bedrock 

was available. Still, these areas do not play an important role in landslide initiation 

and therefore do not influence subsequent modelling to a high degree. 

Seismic prospection data formed the basis for estimation of debris thickness for the 

main upper landslide body. Only one drilling (Lic02) could be used for calibration 

since it was the only available which penetrated the bedrock. Geophysical data al-

ways requires interpretation because it does not directly display the characteristics 

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12

ra
in

fa
ll

 i
n

 m
m

hours

even Euler 1 Euler 2



6 | Results 159 

 

 

 

analysed, which in this study was position of bedrock, but geophysical conditions 

which can be used as proxy information. Uncertainties related to the use of seismic 

data in this study can be estimated preliminarily by comparison of single inversion 

plots along the same profile. Therein, measured seismic velocity can differ signifi-

cantly which relates to differences of bedrock position of several meters. Still, at four 

intersections of the available seismic profiles estimated bedrock depths could be com-

pared and resulted in similar debris thickness. Interpretation of bedrock depths based 

on seismic data would benefit from additional drillings to exactly determine the 

depth of bedrock and calibrate measured seismic velocities. 

The GIS procedure to assess the thickness of landslide deposits in the lower landslide 

body was carried out iteratively. Simple TIN creation could not be applied to create a 

realistic representation of real conditions. Addition of results from topographic analy-

sis of deposits’ height significantly improved delineation of the landslide deposits. 

Though, assessment of landslide deposits’ depths is more uncertain for areas further 

away from the landslide boundaries. 

Final interpolation of the slope debris layer resulted in relatively realistic depths for 

the areas most important for potential landslide initiation.  

Geotechnical parameterisation subsurface material required interpretation and subjec-

tive judgement since the range of values described in literature sources is very large. 

Still, the best-fitting parameter settings were also chosen with respect to their influ-

ence on slope stability modelling assessed during subsequent sensitivity analysis. 

Further shear tests could help to minimise uncertainties associated with the use of 

literature values of geotechnical parameters. 

 

Spatial interpolation of groundwater tables for the entire local study area relied on a 

limited number of hydrological sensors, which exhibited a great variety even though 

sensors were located relatively close to each other. For large parts of the local study 

area, no monitoring data was available and interpolation of groundwater table posi-

tions required addition of assumed water table heights. Since spatial interpolation 

neglected process simulation but rather relied on general spatial interpolation tech-

niques, results lack a physically based justification. Still, this kind of interpolation 

would require more detailed information on subsurface conditions, such as material 

properties and preferential flow paths that would require much more intense field 

surveys. Estimation of the influence of uncertainties inherent in the applied method-

ology requires detailed analysis within CHASM. Altogether, the groundwater scenar-

ios can be assumed to be good approximations of real conditions for the area in which 

hydrological monitoring was carried out, which is also the most important for slope 

stability analysis. For other areas, estimated groundwater scenarios are more specula-

tive.  
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The developed shear surface search routine effectively concentrates search procedure 

to the upper slope areas, which are assumed to be most likely influenced by potential 

landslide initiation. In order to increase the modelling speed it was necessary to limit 

the number of potential shear surfaces analysed by the search procedure. The devel-

oped procedure reduces the number of possible shear surface positions by a relatively 

large radius increment of Bishop’s shear circles, while at the same time allowing for a 

large number of possible positions in a horizontal direction. By the current settings, 

shear surfaces are primarily assumed to be located in the upper slope areas reflecting 

potential reactivation of at least parts of the landslide deposits. Retrogressive slope 

failures involving the massive Upper Jurassic limestone can also be modelled, how-

ever, they were not given priority in this work. Since only circular shear surfaces are 

integrated, more complex landslide morphologies can not adequately be recognised 

by the shear surface search.  

The shear surface search procedure is adjusted to the slope morphology in the local 

study area and can not be transferred to other areas without further modifications. 

Further improvements of the developed shear surface search procedure could employ 

additional threshold values, to enhance the positioning of the grid search box depend-

ing on profile lengths. 

 

In this study, rainfall events were deduced from the KOSTRA atlas, which represents 

the most advanced available data source for precipitation intensity probabilities. Still, 

data is only available for 8.45 km x 8.45 km grid cells and therefore includes simplifi-

cations. For example, local topography, which can have a significant influence on 

rainfall distributions as illustrated in this thesis, is only regarded for the relatively 

large grid cells. Comparison to neighbouring grid cells shows that rainfall could po-

tentially be higher. 

In addition, snow melt is not included in KOSTRA data. However, uncertainties in-

herent in KOSTRA included as additional precipitation in this study can also be re-

garded as the effect of snow melting. 

Integration of Euler 1 and Euler 2 rainfall scenarios aimed to include more realistic 

rainfall distributions with distinct peak rainfalls. 

6.1.3.2 Model application 

Modelling slope stability with CHASM mostly focussed on the longitudinal slope 

profile on which four hydrological monitoring sites and geoelectrical monitoring are 

located. Also, the house experiencing damage due to slope movements is located 

along the profile. The position of the main profile and its subsurface conditions are 

illustrated in Fig. 6.45. Other slope profiles were also tested, however, since modelling 

results did not significantly differ from the main profile, they will not be presented 

herein. 
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The main slope profile has a length of 300 m and starts on the plateau. Hydrological 

monitoring sites are located at approximately 125 m, 170 m, 195 m and 225 m; incli-

nometers Lic05 and Lic02 are positioned at profile metres 170 and 225, respectively. 

Geoelectrical monitoring reaches around 20 m further upslope than hydrological 

monitoring site p13, and ends at p11. 

 

A sensitivity analysis of CHASM input data was primarily carried out by modifica-

tions of parameters for the slope debris layer, which was assumed to be the most 

likely for landslide initiation. For sensitivity analysis for angle of internal friction and 

cohesion, the 300 m long slope profile illustrated in Fig. 6.45 was used. A five hour 

design rainfall with a hourly intensity of 10 mm was used starting at hour 10 of the 

simulation. Simulation length was set to 20 hours to decrease the duration of the 

simulation. For groundwater position, the previously defined high level water table 

was used. Bishop grid search parameters were defined following the procedure pre-

viously developed (see chapter 6.1.3.1). Other settings include soil suction curves as 

defined in chapter 6.1.3.1 with Millington-Quirk procedure. Evaporation and upslope 

recharge were set to zero, and detention capacity was adjusted to 0.1, as in the 

CHASM standard settings. Internal friction and cohesion of the debris layer, which 

was assumed to be the most likely to be influenced by instability were changed step-

wise to investigate their influence on the calculation of the FoS (Fig. 6.46). For both, 

cohesion and angle of internal friction, a similar increase of the FoS can be observed 

for low values. As internal friction approaches values of approximately 45°, the FoS 

increases quicker to a peak value reached at 70°. Higher values lead to decreased FoS. 

 

Fig. 6.45: Main slope profile used for CHASM modelling 
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The linear rise of the FoS with increasing cohesion values continues until values of 85, 

and larger values do not influence the FoS.  

 

CHASM sensitivity to changed hydraulic conductivity values could not be tested the 

same way as for cohesion and internal friction, since not only Ksat values of the poten-

tially unstable debris layer influences the results, but also the hydraulic conductivity 

of the other material layers. In addition, hydraulic conductivity parameter values 

stretch over several orders of magnitudes, leading to an infinite number of possible 

combinations of Ksat values for all materials involved in modelling. Several combina-

tions of hydraulic conductivity values for debris and the Upper Jurassic material be-

low were tested with a wide range of rainfall scenarios and groundwater scenarios. In 

Tab. 6.8, a selection of hydraulic conductivity scenarios modelled is presented. In all 

these scenarios except for the first one, the Upper Jurassic layer has a lower hydraulic 

conductivity than for the slope debris layer to allow for an increase of pore water 

pressures above the bedrock. For the other settings of CHASM, the same values were 

applied as in the previous model run. CHASM results using a range of hydraulic con-

ductivity scenarios are presented in Fig. 6.47. 
 

 

Fig. 6.46: Sensitivity analysis for cohesion and angle of internal fric-
tion 

Tab. 6.8: Ksat scenarios used for sensitivity analysis 

 Limestone scree Slope debris Upper Jurassic Middle Jurassic 

Scenario 1 1e-1 6.78e-7 1e-6 1e-9 

Scenario 2 1e-1 6.78e-6 1e-7 1e-9 

Scenario 3 1e-1 6.78e-5 1e-6 1e-9 

Scenario 4 1e-1 6.78e-5 1e-7 1e-9 

Scenario 5 1e-1 6.78e-7 1e-8 1e-9 

Scenario 6 1e-1 6.78e-6 1e-8 1e-9 
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Fig. 6.47: Sensitivity analysis for Ksat scenarios 

In all scenarios, the FoS is on a similar level of approximately 1.12 at the beginning of 

the simulation run. From hour 5 on, general trends can be observed. For scenarios 1, 2 

and 6, the FoS gradually decreases until the end of the simulation. Scenario 5 how-

ever, shows an increase of stability with and no destabilising effect of the rainfall 

event. Results of scenario 3 and 4 show an increasing FoS for the initial hours of the 

simulation which then drops during the rainfall event. For further modelling and 

subsequent early warning modelling, Ksat values from scenario 2 were selected. 

 

Since soil moisture curve points used for CHASM modelling were not determined by 

detailed laboratory analysis but by the SPAW model, the influence of this input pa-

rameter on stability calculation was examined. The limited number of records on 

pressures and related water content from laboratory analysis were interpolated to the 

range required for CHASM analysis, and then used for modelling. These values are 

significantly lower with water contents approximately 40% to 50% lower than esti-

mated from SPAW. Estimated values are presented in the appendix X and results of 

CHASM simulation are illustrated in Fig. 6.48. The largest differences between the 

model runs can be observed in the initial hours of the simulations. Over the course of 

the simulation, the graphs gradually converge and reach a similar FoS level of ap-

proximately 1.05 towards the end. During the initial three hours of the rainfall event 

the FoS slightly increases, before dropping to lower values for approximately 10 

hours.  
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Fig. 6.48: Comparison of modelled FoS using soil suction curves es-
timated from SPAW model and interpolated laboratory values 

The influence of groundwater positions on CHASM stability calculation was tested 

for the elaborated high and low groundwater scenarios (see chapter 6.1.3.1), and also 

for various designed scenarios in which groundwater was assumed to be located at an 

equal depth below the surface. Results of CHASM modelling using high and low 

groundwater table scenarios, and artificial groundwater positions of 2 m and 5 m be-

low the surface are presented Fig. 6.49. These simulations were carried out with all 

other settings being the same as in the previous simulations. The high groundwater 

scenario and the even 2 m below surface setting both result in very similar FoS of ap-

proximately 1.1 in the beginning of the simulation, and gradually decreasing to values 

of 1.06 towards the end. Lower groundwater tables, i.e. low groundwater scenario 
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Fig. 6.49: Comparison of modelled FoS using high and low groundwater table scenarios 
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and the designed groundwater scenario with an equal depth of groundwater of 5 m 

below the surface, result in higher FoS which decrease during the entire the simula-

tion. No significant accelerated decrease of the FoS can be observed during the rainfall 

event.  

 

Several potential shear surface positions were investigated within this study. In Fig. 

6.50, a selection of four analysed slip surfaces is presented in which the Bishop 

method integrated in CHASM was used. For the upper most shear surface (green), 

indicating a initiation of a slope failure below the scree slope a FoS of 0.78 and 0.75 

with low and high groundwater table scenarios was calculated, respectively. The slip 

surface located further downslope (pink), starting at the lower end of the scree slope, 

resulted in a FoS of 1.52 and 1.4 for low and high groundwater scenarios, respectively. 

For the third slip surface (yellow), with a shear plane affecting the house at its lower 

end, a FoS of 1.15 for low groundwater conditions, and 1.05 using the high groundwa-

ter positions was simulated. This shear surface was also the same, which was used for 

previous CHASM simulations and is the result of shear surface definitions described 

in chapter 6.1.3.1. The highest FoS was calculated for the potential shear surface lo-

cated below the damaged house (teal). For low groundwater conditions, the FoS was 

simulated as 1.78, and 1.61 using the high groundwater scenario. Other shear surfaces 

not displayed here were also tested, including failures comprising bedrock. However, 

the FoS for such shear surfaces was significantly higher with FoS values between 3.0 

to over 6.0. 
 

 

Fig. 6.50: Locations of selected potential shear surfaces 
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The influence of rainfall events on slope stability was tested with several rainfall dis-

tribution and intensities. In the following, results of three rainfall events with differ-

ent distributions of rainfall intensities will be presented (Fig. 6.51). Therein, Euler 1 

and 2 rainfall events are compared to a block rainfall using previous CHASM setting 

and the high groundwater scenario. All rainfall scenarios comprise the same sum and 

only differ in their hourly distribution. For this comparison, the 24 hour rainfall was 

used with an annual occurrence probability of 100 years. In all scenarios, rainfall 

commenced at hour 10 of simulation and lasted until hour 34. The block rainfall has a 

steady precipitation intensity of 3.8 mm/h. The Euler 1 scenario has a hourly maxi-

mum intensities of 56 mm and 44 mm in the first and second hours of the rainfall 

event, respectively. Afterwards, rainfall continues with relatively low hourly intensi-

ties of 1.25 mm/h for the rest of the simulation. Similarly, the Euler 2 rainfall has dis-

tinct precipitation peaks, however, these occurs in hour 7 and 8.  
 

 

 

Fig. 6.51: Rainfall distribution for Euler 1, Euler 2 and block rainfall 
events (A) and resulting FoS (B) 
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The course of the graphs is identical until hour 10 of the simulation, when the rain-

storm commences. Euler 1 rainfall (blue line) shows the lowest FoS at hour 16 of the 

simulation caused by the high intensity rainfall occurring in the first two hours of the 

rainfall event. A similar drop of FoS can not be observed for the Euler 2 (red line) 

which has its maximum intensity at hour seven to eight. Between hour 20 and 24, the 

lowest FoS can be observed for the block rain with constant hourly rainfall intensity. 

For the later simulation time, all tested rainfall distributions result in similar FoS of 

approximately 1.05. Overall, only very small deviations of the FoS between the simu-

lation runs using different rainfall distributions can be observed documenting to a 

relatively low sensitivity to rainfall distributions. 

 

Normal, maximum value and worst-case rainfall scenarios derived from KOSTRA 

were also tested for their influence on slope stability calculation in CHASM. Fig. 6.52 

shows the CHASM results using a 24 hour duration rainfall with annual occurrence 

probability of 100 years beginning at hour 10 of the simulation. Total rainfall for these 

scenarios is 91.2 mm, 100.8 mm and 120 mm for normal, maximum value and worst-

case rainfall scenarios, respectively.  
 

 

Fig. 6.52: Comparison of modelled FoS using normal, maximum and 
worst-case scenario rainfall events 

Until hour 10 of the simulation, when rainfall commences, FoS for all model runs is 

the same in all simulations. Afterwards, the worst-case scenario shows slightly lower 

FoS values for the following seven hours; however, the difference between the model 

runs is very small with FoS deviations of approximately 0.05. For the rest of the 

CHASM simulation, all three simulations produced very similar FoS values with only 
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minor deviations. Towards the end of the model run, FoS values of all three simula-

tions converge to an equal level of approximately 1.04. 

  

The previously presented CHASM simulation had a maximum duration of 40 hours. 

An example of a long simulation is presented in Fig. 6.53. In this model run high and 

low groundwater scenarios were used without any precipitation for the first 500 

hours of simulation followed by a 48 hour rainfall event with an annual occurrence 

probability of 100 years.  

The relatively high FoS of 1.4 for the low groundwater scenario gradually decreases 

over time and reaches the same level as the high groundwater simulation after ap-

proximately 200 hour of simulation. Between hour 200 and 500, both graphs show a 

similar course, with mean FoS of 1.08. When rainfall commences, the FoS is lowered 

to a minimum value of approximately 1.05 reached at the end of the rainfall event and 

then gradually increases again. 

 

Additional modelling using the previously described CHASM settings and various 

combinations KOSTRA derived rainfall events showed, that no FoS below 1.0 could 

be modelled. Lower than unity FoS could only be achieved by either increasing the 

rainfall intensity five to ten-fold, or adjustment of geotechnical parameters. In Fig. 

6.54, the modelling results using high and low groundwater scenarios and consecu-

tive precipitation events are illustrated. For these simulations, the cohesion value for 

slope debris was decreased from 20 to 19 effectively lowering the general level of the 

FoS. Rainfall events comprise a 24 hour rainfall (1 in 100 year occurrence probability), 

followed by 6 hour worst-case scenario rainfall (1 in 100 year occurrence probability).  

In both simulations, the FoS decreases until the first rainfall event commences. This 

trend continues for the low groundwater scenario until the end of the simulation. For 

high water conditions, the FoS slightly increases after the first rainfall, and then de-

creases during the second, reaching a minimum of 0.99 four after the precipitation 

ceases. 

To allow for possible FoS values below unity, the cohesion value of the soil debris 

layer was lowered to 19 for all following CHASM simulations and subsequent 

CHASM early warning modelling. 

 

All previously described CHASM simulations employed a two-dimensional topogra-

phy. Three-dimensional topography in the form of varying cell width was applied in 

several model runs but was found to have no significant effect on stability calculation 

as described by the FoS. 
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For most simulations, only the FoS as the prime output of CHASM simulation was 

analysed. However, CHASM also provides hydrological results, i.e. soil moisture con-

tent and pore water pressures for each cell, which can be exported for single-time 

steps as graphic or text files. Since analysis of hydrological results for long slope pro-

files is very time-intensive, this was only done for few simulations. Hydrological re-

sults for most modelled CHASM scenarios illustrate fully saturated conditions for all 

but the top cells, for which the saturation gradually increases during rainfall events. 
 

 

Fig. 6.53: Long duration simulation of slope stability using high and 
low groundwater scenarios and a 1 in 100 years rainfall with 48 hour 

duration 

 
Fig. 6.54: Comparison of modelled FoS using high and low groundwater scenarios and two 

consecutive rainfall events 
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Discussion 

Sensitivity analysis of geotechnical parameters yielded some interesting results which 

help to estimate the influence of the respective factors. Cohesion and angle of internal 

friction have a similarly strong linear influence on CHASM stability calculation. Hy-

draulic conductivity (Ksat) is an important factor which strongly controls simulation of 

the FoS. If these values are not carefully chosen, hydrological simulations can not re-

sult in positive pore pressures essential for destabilisation. Soil moisture curves and 

groundwater table positions have a strong effect on stability calculation, however, 

during long duration simulations the differences gradually level out. 

All modelled slope profiles and shear surface positions show low FoS values illustrat-

ing potential slope failure. The lowest stability was calculated for the upper slope 

area. CHASM results demonstrate that potential shear surfaces are most likely located 

at the interface of slope debris and the underlying bedrock. Shear surfaces also includ-

ing bedrock material have a significantly higher FoS and no CHASM simulation pro-

duced shear surfaces within the debris material. CHASM simulations therefore reflect 

deep-seated sliding slope movements as monitored in Lic02 inclinometer, which have 

a depth of approximately 15.5 m at this point. The shallower displacements recorded 

in approximately 8.5 m depth, which shows characteristics of a flowing movements 

and possibly the progressive development of a shear surface, is not detected by 

CHASM simulations. Still, limit-equilibrium analysis can only be used to simulate 

failure processes, in which a rigid body slides along a shear surface, so progressive 

failure, flow processes and slow creep of material can not be modelled. 

A very low influence of rainfall in general, and specifically for rainfall distributions 

and intensities is documented by the CHASM simulation results. Even very high pre-

cipitation events do not significantly lower the FoS. A possible explanation for the low 

influence of rainfall on CHASM stability calculation might be that the model is often 

used in tropical and sub-tropical environments and is possibly optimised for excep-

tionally strong rainfall. FoS values lower than 1.0, which in theory represent the initia-

tion of slope movements, can only be simulated by modified geotechnical parameters, 

high groundwater conditions, and strong consecutive rainfall events. 

6.1.3.3 CHASM early warning model 

In the following, the general procedure and technical implementation of the web-

processing service application of CHASM for local landslide early warning is pre-

sented. The CHASM early warning model is a result of the work presented before, 

and the technical implementation carried out by the ILEWS project partner Geomer 

(Jäger et al. 2010). 

The developed CHASM landslide early warning system uses a combination of fixed 

and variable data inputs to simulate hydrological processes and their influence on 

slope stability for one profile every 24 hours. An overview on the CHASM early 
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warning procedure is presented in Fig. 6.55. Fixed input data include a slope profile, 

definition of shear surface search parameters and soil characteristics. The slope profile 

along the damaged house, which was used for most CHASM model runs, was also 

chosen for modelling early warning. The shear surface relating to a potential failure in 

the upper slope area and also affecting the already damaged house was selected. Soil 

characteristics were chosen according to settings judged to be the most appropriate 

during CHASM sensitivity analysis (chapter 6.1.3.2). 

 

Fig. 6.55: Overview on the CHASM landslide early warning model 

Variable data include recorded precipitation, rainfall forecasts and groundwater con-

ditions. Measured rainfall from ILEWS weather station and rainfall forecasts from 

COSMO-DE are combined to one rainfall scenario file adapted to CHASM require-

ments. In the current setting, this file comprises a total simulation length of 560 hours 

and includes 480 hours of recorded rainfall, 20 hours of forecasted rainfall, and 10 

hours without any precipitation. A relatively long simulation length was selected to 

decrease the influence of pre-defined groundwater scenarios, and to allow for a larger 

variation of slope stability calculations. 

Groundwater scenarios are chosen depending on current hydrological conditions re-

corded by the monitoring system. For this, the TDR sensor in 9.5 m depth located at 

the damaged house (monitoring site p12) was selected and a threshold of 40% volu-

metric water content was determined. If current soil moisture is higher than the 

thresholds value, the high groundwater table scenario is chosen; a lower soil water 

content results in the integration of the low groundwater table scenario.  

Fixed and stable input data are both integrated into the web-processing service of 

CHASM implemented by the project partner Geomer (Jäger et al. 2010). Results of the 
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simulation are stored in the database for later access. CHASM early warning model-

ling is connected to an alarm sensor on the ILEWS website which changes its status 

depending on the results of the simulation and provides notification to involved ex-

perts. More detailed information on ILEWS alarm sensors and subsequent issuing of 

early warnings is provided in chapter 7. However, since no real-time data is available 

on rainfall forecasts the connection to the alarm sensor is currently disabled. 

 

Discussion 

The developed prototypic CHASM early warning model applies the program fixed 

settings found to be the most appropriate during earlier model application and sensi-

tivity analysis. Variable input data for early warning modelling combines measured 

and forecasted rainfall into one CHASM readable scenario file. 

Groundwater scenarios depend on hydrological monitoring data, however, in a sim-

plified form of minimum and maximum scenarios. Direct integration of each hydro-

logical sensors’ measurements are hindered by CHASM structure, which can only 

accommodate simplified groundwater conditions. Complex groundwater conditions, 

for example increasing groundwater positions in a downslope direction, and prefer-

ential flow paths can not be represented. Still, determination of an exact groundwater 

table position based on hydrological monitoring is difficult and can not be carried out 

without subjective interpretation (see chapter 6.1.2.3). Without further modifications 

of CHASM, improvements of the integration of groundwater conditions can mainly 

be achieved by the addition of more groundwater scenarios and respective threshold 

determination. To decrease the influence of simplified groundwater conditions, a long 

duration for early warning modelling was selected. 

The developed CHASM early warning model procedure represents a prototypic de-

velopment, which at the moment can only provide theoretical early warnings. How-

ever, if local stakeholders demand realistic early warning, the technical system can be 

adjusted with little efforts. 

The notification service set-up by Jäger et al. (2010) to inform the involved experts on 

potentially dangerous slope stability changes is based on CHASM modelling results. 

Still, without the possibility to validate CHASM simulation with real slope displace-

ment events, the notification thresholds can only be determined hypothetically. 

6.1.3.4 CHASM decision-support tool 

The web-based CHASM decision-support tool was developed to be able to quickly 

assess slope stability for freely selectable profiles using a variety of input parameters. 

The general procedure is a results of this work, technical implementation, however, 

was carried out by the ILEWS project partner Geomer (Jäger et al. 2010). A graphical 

overview on the developed CHASM decision-support web-processing service appli-
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cation is presented in Fig. 6.56. Screenshots of each step of the web-based CHASM 

simulation are presented in Fig. 6.57. 

 

Fig. 6.56: Overview on the CHASM decision-support application 

The slope profile for which stability is to be calculated can be selected by clicking on 

the DTM of the local study area (1). Automatically, the CHASM slope file is produced 

taking into account the simplified subsurface model with a two metre resolution. Ac-

cording to profile length, the slip surface search (chapter 6.1.3.1) is selected. In the 

next step (2), the user can enter a name for the simulation and set model parameters, 

i.e. simulation length and iteration period. All rainfall scenarios derived from 

KOSTRA can be selected for slope stability calculation from a drop down menu (3). 

Currently, all rainfall events start at the hour 10 of the simulation. High and low 

groundwater scenarios are available as input data. For soil characteristics, either the 

CHASM standard parameter or the parameter values developed in this study can be 

chosen. CHASM is executed on the ILEWS server and takes approximately one min-

ute for most simulations (4). The selected slope profile is colour-coded according to 

the simulated FoS of the last hour of the simulation, with green for FoS larger than 1.3, 

orange for FoS between 1.0 and 1.3, and red for FoS lower than 1.0 (5). Further infor-

mation, for example, the course of the FoS throughout the simulation or the position 

of the shear surface can be accessed (6). In addition, all previous simulations are 

stored in the database can be selected for analysis. Sample results are presented in 

screenshots 7 and 8. Therein, rainfall is marked as a blue area and the course of the 

FoS can be viewed. While in the first of these figures, the FoS decreases during rainfall 

and stabilises afterwards, the second graph drops to much lower values for some 

steps of the simulation. This was found to be related to a changed position of shear 

surfaces parameters in the respective time-steps of the simulation. 
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Fig. 6.57: Screenshots of the web-based implementation of the 

CHASM decision-support application (DTM: LGL AZ: 2851.9-1/19) 

 

The CHASM decision-support application is available in German and English lan-

guage. In addition, a bilingual step-by-step tutorial explaining the functionality of the 

service and basic terms of slope stability calculation were developed to increase us-

ability (see Appendix XII to Appendix XV). 

 

Discussion  

The aim of the CHASM decision-support system was to allow quick calculation of 

slope stability without the need to elaborate slope profile and shear surface definition 

files. It was not the goal to convert the entire CHASM stability software into a web-

based simulation program; however, if this is demanded by the CHASM developers, 

further works could be based on the work described in this thesis. In addition to the 

previously described uncertainties inherent in CHASM modelling, the developed 

CHASM decision-support system is subject to uncertainties arising from automated 

7 

8 
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shear surface search which causes the slip search to be located at different positions 

for some hours of the simulation.  

Concluding the results of this work, it can be noted, that the developed CHASM deci-

sion-support system enables quick judgement on slope stability for various slope pro-

files and variable input data. This can be potentially of great help to stakeholders that 

require assessing slope stability situation for larger areas in a short amount of time. 

However, the slope under investigation did not show any significant phase of in-

creased movement speed and CHASM simulations could not be sufficiently vali-

dated. Application of the decision-support system in more active study areas could 

improve the overall performance and aid to assess its value in the context of landslide 

risk management and early warning. 
 

6.2 REGIONAL SCALE 

6.2.1 Inventory analysis  

Not all landslide inventories available for the Swabian Alb could be employed for 

verification of rainfall thresholds because they did not meet the defined criteria. 

The general landslide map by Kallinich (1999) provides extensive information on the 

spatial distribution of slope failures, but does not contain information on the date of 

occurrence. 

The Tübingen University inventory contains over 600 landslide events and informa-

tion about geological and geomorphological characteristics of slope failure sites. 

However, only for a fraction of 36 events the date of occurrence is acknowledged. 

Earliest records date back to 1851; still, the majority of landslide took place in the last 

50 years. Information on timing of slope failures varies between exact dates, year, or 

rough information like "approximately 15 years ago". From all dated events, only four 

landslides could be used for further investigations, since only these occurred during 

the period for which rainfall data is available. The selected landslide events describe 

the "second half of April 1994" as triggering date. To be able to investigate if these 

landslides followed the exceedance of rainfall thresholds, further analyses of rainfall 

events during this period were required. 

The landslide inventory created by analysis of historic documents within the Inter-

RISK and ILEWS projects (Röhrs and Dix 2010) includes a total number of 216 events, 

of which the earliest date to the year 1416. The majority of events, however, took place 

within the last 200 years. For most slope failures date of occurrence is only acknowl-

edgements in terms of years. No events from this inventory could be employed for 

subsequent threshold analysis.  
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The landslide event inventory provided by Bell (2010, personal communication) lists 

10 slope failures that occurred after strong rainfalls in April 1994 in the Fils valley. 

Since rainfall data in the form of regionalised climate data is available for this period, 

the entire inventory could be used for threshold verification. 

Another inventory for the Fils valley produced by Brennecke (2006) only includes 

relative information of landslide age, making threshold verification for these events 

impossible. 

The most detailed information on temporal occurrence of landslides is available in the 

inventory of the Department of Transportation of the administrative district Stuttgart 

created by Kohn (2006). A total number of 389 landslides are included, of which 250 

were localised in GIS. However, many landslides are not located in the Swabian Alb 

but can still be used to ensure recorded landslides were not singular slope failures but 

the result of rainfall threshold exceedance. Altogether, 10 events of increased land-

slide activity between 1 and 44 days long were determined, in which a total number 

62 landslides occurred. However, only 15 of these took place within the Swabian Alb. 

 

In total, 29 landslides were judged to be adequate for the use within rainfall threshold 

verification for the Swabian Alb. An overview on these landslide events is presented 

in Fig. 6.58. Therein, not only the 29 selected events, but also the other slope failures 

outside the Swabian Alb are displayed. 

The monthly distribution of the selected 29 slope failures shows a strong peak in 

April, primarily due to the event inventories by Bell (2010, personal communication) 

and Tübingen University (Fig. 6.59). 

 

Discussion 

Results of inventory analysis illustrate some general problems associated with rainfall 

thresholds, i.e. the availability of information on temporal and spatial occurrence of 

slope failures. In most cases, the exact date of landslide triggering is not acknowl-

edged and can not easily be ascertained by analysis of potential triggering rainfall 

events. From all available data sources, the inventory of the Department of Transpor-

tation of the administrative district Stuttgart (Kohn 2006) provides the most reliable 

data on temporal landslide occurrence, since road damage can be expected to be re-

ported shortly after slope failures. However, these failures are often associated with 

bank failures and therefore may not reflect the conditions which lead to failures of 

natural slopes. 

In addition, the triggering agents are not always recorded in the inventories and un-

certainties remain whether landslides are initiated by for example rainfall, earth-

quakes or inadequate construction works. The integration of landslides which are 

located outside the Swabian Alb aimed to reduce these uncertainties. 
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Fig. 6.58: Selected landslide events with known date of occurrence. 
Magnified areas show (A) April 1994 events from Tübingen Univer-

sity inventory, and (B) April 1994 Filstal events 

 

Fig. 6.59: Monthly distribution of selected landslide events 
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Since the availability of rainfall data with a high temporal resolution was limited, not 

all landslide failures available in inventories could be used for the verification of rain-

fall thresholds. If additional data became available, more landslides events could be 

integrated into threshold verification. 

6.2.2 Thresholds verification 

For two landslide events comprising 14 landslide failures in total, the exact date of 

occurrence is unknown. These include 10 landslides in the Fils valley triggered on 12th 

or 13th February 1994, and four slope failures acknowledged to have occurred in the 

"second half of April 1994". To estimate rainfall thresholds, rainfall data was analysed 

and different potential dates of slope failures were assumed based on rainfall records. 

Fig. 6.60 illustrates daily rainfall for each landslide location in the six weeks preceding 

landslide failures in Fils valley.  

Several rainfall events exceeding 10 mm/day occurred during March and April. 

Strongest peaks were recorded for 12th and 13th April, for which a total of approxi-

mately 120 mm was measured. According to KOSTRA rainfall intensity atlas, rainfall 

intensities of this magnitude have recurrence intervals of 50 to 100 years. 

Since it is unsure on which day landslides were triggered, rainfalls for both potential 

dates were analysed. Comparison to intensity-duration thresholds also required iden-

tification of the landslide triggering rainfall event. Fig. 6.61 displays Fils valley land-

slides with three assumed triggering rainfall events, beginning (A) on the day of po-

tential slope failure, (B) after a day with low precipitation of less than 1 mm, and (C) 

after the last day with no precipitation. For all potential triggering dates and assumed 

triggering rainfall events, precipitation exceeded the thresholds of Guzzetti et al. 

(2008) and Chleborad et al. (2006), Caines' (1980) threshold however, is not reached by 

the records. 

A comparison of rainfall records for the Fils valley landslides to the cumulative rain-

fall threshold by Chleborad et al. (2006) is illustrated in Fig. 6.62. For this, both poten-

tial dates of landslide occurrence, i.e. 12th and 13th April were considered. Cumulative 

rainfall was higher for all landslides than threshold values, independent from date of 

occurrence. 

 

For the four landsides from Tübingen University inventory, the exact date of slope 

failure was also unknown. Rainfall records for April 1994 (see Fig. 6.63) show a strong 

rainfall peak on the 12th and 13th April, similar to that in the Fils valley that had trig-

gered multiple landslides. A second rainfall peak can be observed on the 25th April; 

however, rainfall intensities on that day are about 50% lower than the previous peaks. 

Both dates were assumed to be potential dates of landslide occurrences and were 

used to verify rainfall threshold values. 
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Fig. 6.60: Daily rainfall and mean cumulative rainfall for April 1994 
in Fils valley landslide locations (1 to 10) 

 

Fig. 6.61: Comparison of 1994 Fils valley landslides to intensity-
duration rainfall threshold accounting for two potential triggering 

dates and three potential triggering rainfalls (A to C) 
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Fig. 6.62: Comparison of April 1994 Fils valley landslides to cumula-
tive rainfall threshold accounting for two potentials triggering dates 

 

Fig. 6.63: Daily rainfall and mean cumulative rainfall for April 1994 
landslide locations (11 to 14) 

For comparison of rainfall records for the four landslides from Tübingen University 

inventory, two potential dates of slope failures were analysed to be the most likely, 

i.e. 12th/13th April and 25th April. For this analysis, triggering rainfall event was de-

termined to begin on the day following low precipitation record of less than 0.1 

mm/day. Results are presented in Fig. 6.64 and show that for all tested potential dates 

of landslide occurrence thresholds of Chleborad et al. (2006) and Guzzetti et al. (2008) 

are exceeded, while Caines’ (1980) threshold is not reached. Similar results were 
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elaborated when taking into account only the rainfall on the days of potential slope 

failures. 

Cumulative rainfall thresholds (Chleborad et al. 2006) were exceeded using 13th and 

25th April as potential landslide failures (Fig. 6.65). For the 25th April, threshold ex-

ceedance is primarily influenced by 15-day cumulative rainfall, while for the 13th the 

3-day cumulative rainfall has a greater influence. 
 

 

Fig. 6.64: Comparison of 1994 Tübingen University landslide events 
to intensity-duration rainfall threshold for three potential triggering 

dates 

 

Fig. 6.65: Comparison of April 1994 Tübingen inventory landslides 
with cumulative rainfall threshold accounting for two potentials 

triggering dates 
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For the April 1994 landslides the triggering factor was known to be strong rainfall. 

This is however not the case for the other selected landslide events which could also 

be initiated by for example snow melting. Regionalised climate data including snow 

water equivalent and temperature records were integrated into threshold analysis for 

all landslides where data was available. Slope failure records without data on snow 

cover changes and temperature include seven events with a total number of nine 

landslides which had occurred in the Swabian Alb. 

 

Two landslides (ID 18 and 19) were triggered on 30th July 1987 close to Schwäbisch 

Gmünd. According to inventory information the landslides were both triggered on a 

day with only 6.8 mm precipitation, a total sum occurring very often. However, rain-

fall events up to four times stronger occurred some days earlier and later. Since the 

recorded triggering date may be inaccurate, alternative triggering dates were consid-

ered. 

Two more landslides (ID 24 and 25) were triggered in the same area on the 15th Octo-

ber 1988. 

Between 26th May and 9th June 1983, seven landslides are listed in the inventory, of 

which one (ID 31) is located in the northern Swabian Alb. Even though snow data was 

available for this period, no snow was recorded.  

Four landslides were recorded between 11th and 22nd April 1994 of which one is lo-

cated in the study area (ID 32). The total size of the landslide was 625 m² and it was 

triggered on a day with relatively low precipitation of only 8.5 mm. However, a much 

stronger rainfall event (>50 mm) occurred one day later, and was considered as a po-

tentially more accurate triggering date. 

For late March 2002, the inventory contains four landslides of which one (ID 34) is in 

the Swabian Alb. The slope failure covered an area of 450 m² and had a depth of 3 m. 

No rainfall was recorded for the day of landslide initiation or the day before. An ex-

tremely strong rainfall event of almost 70 mm occurred six days earlier and was 

checked as an alternative triggering date. 

The inventory contains one record (ID 28) for the 29th August 1990 on which several 

landslides had occurred close to Neidlingen; though, only one coordinate is provided. 

Rainfall data describes only 2.8 mm of precipitation for the day of landslide occur-

rence. As an alternative triggering date, the subsequent day was considered, on which 

more than 11 mm precipitation were recorded. 

At the boundary of the Swabian Alb, close to Kirchheim, one landslide (ID 33) was 

recorded for the 6th November 1998. Two more landslides occurred outside the study 

area on the preceding day. 
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A low total precipitation of only 1 mm was recorded for the triggering day; however, 

a very strong rainfall event with over 70 mm six days earlier might have been the cor-

rect initiation day and was therefore considered as an alternative. 

Results of intensity-duration threshold analysis of landslides for which only rainfall 

data was available are presented in Fig. 6.66. 

All landslides are above the intensity-duration threshold used in the Seattle landslide 

early warning system. From the landslides for which the recorded triggering date was 

used four lie below Guzzetti et al. (2008) threshold. Caines’ threshold was not ex-

ceeded by any of the slope failures. Alternative triggering dates generally increased 

intensity-duration values and led to two landslides being raised above Guzzetti et al. 

(2008) threshold; however, slope failures of the Neidlingen event (ID 28) remain be-

low. 

 

Results of cumulative threshold analysis of landslides for which only rainfall data was 

available are presented in Fig. 6.67. Therein, recorded and alternative landslide trig-

gering dates were considered.  

When using recorded triggering dates, five of seven landslides analysed were located 

below threshold values. Generally, these show relatively low values for 3-day cumu-

lative precipitation. Only landslides 33 and 34 exceed the threshold due to high cumu-

lative rainfall of more than 150 mm. Alternative triggering dates generally have 

higher cumulative rainfall values, however, only for landslide 31 the threshold was 

thereby exceeded. 

 

Landslide events, for which also snow data was available, include three events in 

March 1987, March and April 1988 and February 2005. 

On 27th March 1987 three landslides (ID 15 to 17) occurred at the border of the 

Swabian Alb close to Ellwangen. Slope failures were between 20 and 40 m and had a 

maximum depth of 4.5 m. 

The highest number of landslides occurred in March and April 1988. However, of 33 

landslides listed in the inventory, only four were triggered in the study area. Three of 

these landslides (ID 20 to 23) were classified as failures in natural slopes, and one as 

rockfall. The largest of the landslides had a total size of 2,500 m² and required con-

crete injection for stabilisation. In the days preceding the described slope failures 

snow height quickly decreased by approximately 60 cm occurred. 

Two failures in embankments (ID 29 and 30) are listed for 17th February 2005. Even 

though data on snow cover and temperature were available, no threshold analysis 

could be performed. According to weather data, temperature was below zero 

throughout the triggering period, and all precipitation was stored as snow.  
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Fig. 6.66: Comparison of presumably rainfall triggered landslides (18 
to 34) to intensity-duration thresholds accounting for alternative 

triggering dates (18a to 34a)  

 

Fig. 6.67: Comparison of presumably rainfall triggered landslides (18 
to 34) to cumulative thresholds accounting for alternative triggering 

dates (28a to 34a) 
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Results of intensity-duration and cumulative threshold analysis of landslides for 

which snow height data was integrated are presented in Fig. 6.68 and Fig. 6.69, re-

spectively. 
 

 

Fig. 6.68: Comparison of presumably snow-melt triggered landslides 
(15 to 23) to intensity-duration thresholds including alternative trig-

gering dates (15a to 23a) 

 

Fig. 6.69: Comparison of presumably snow melt triggered landslides 
(15 to 23) to cumulative rainfall threshold including alternative trig-

gering date (15a to 23a) 
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All landslides analysed have intensity-duration values lying between the thresholds 

by Guzzetti et al. (2008)and Caine (1980). In general, longer duration precipitation 

events were considered since snow melting occurred over periods up to 18 days. 

When neglecting additional rainfall while using the same precipitation event dura-

tions, results show slightly lower intensity-duration values; however, these are still 

above the values of Guzzetti et al. (2008). 

Results of cumulative rainfall threshold analysis show that four landslides are above, 

and three below the threshold by Chleborad et al. (2006). In general, threshold ex-

ceedance is strongly influenced by long term 15-day cumulative precipitation and 

only to a lower extent by 3-day cumulative precipitation. 

Integration of snow data generally raised cumulative rainfall values. When snow 

melting is not considered only one landslide (22a) is clearly above threshold values, 

and two others (20a and 21a) are very close to threshold line. 

Some interesting characteristics can be observed for landslide 23, which shows a sig-

nificant difference depending on the integration of snow melting. When snow melting 

is considered, it results in the highest cumulative precipitation values of all landslides. 

When only measured precipitation is used, no 3-day cumulative precipitation can be 

observed resulting in values below the threshold. 

 

Most landslides occurred between intensity-duration values between thresholds by 

Caine (1980), which was never exceeded by landslides analysed, and Guzzetti et al. 

(2008), which was exceeded by a large proportion of the landslides. The lowest inten-

sity-duration threshold from the Seattle landslide early warning system was exceeded 

by all analysed landslides. Similarly, the cumulative rainfall threshold by Chleborad 

et al. (2006) was exceeded in most cases; still some landslides occurred below. 

For some cases, the recorded landslide triggering date did not coincide with highest 

rainfall intensities and alternative dates were considered. In general, this resulted in 

higher index values and more landslides being above threshold levels. 

 

Discussion 

Limited availability of data on landslide occurrences and related initiating rainfall 

events hindered the establishment of rainfall thresholds specifically for the Swabian 

Alb. Tested rainfall intensity and duration thresholds proposed in the literature, how-

ever, performed satisfactorily. In general, Caines’ (1980) threshold seems too high for 

the Swabian Alb, since no landslide exceeded its critical values. In contrast, the 

threshold proposed by Chleborad et al. (2006) appears to be too low, since most land-

slides triggering rainfall events significantly exceeded critical values. Still, further 

analysis integrating rainfall events that did not cause landslides should be tested to 

verify this assumption. From all tested intensity duration thresholds, the one pro-
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posed by Guzzetti et al. (2009) performed most satisfactorily, with a high number of 

landslides exceeding critical values.  

Cumulative rainfall thresholds tested in this study (Chleborad et al. 2006) can be con-

sidered adequate since a large number of landslides occurred above threshold values. 

In comparison to intensity-duration thresholds, a slightly higher number of landslides 

occurred below threshold rainfall.  

Still, some uncertainties remain in the results. The exact date of landslide triggering is 

not known for all landslides. Analysis of additional potential triggering dates, as car-

ried out in this thesis, can help to ascertain these, however validation can not be car-

ried out. Similarly, triggering rainfall events are difficult to determine but can have a 

significant influence on threshold verification.  

Results illustrate the need to integrate data on snow data melting into thresholds de-

termination, especially due to the frequent landslide occurrence in spring. 

Regionalised climate data used within this study is subject to uncertainties. In particu-

lar snow melt does not represent real measurements but results of modelling. Integra-

tion of real snow height measurements could significantly improve the results and 

make threshold verification more reliable. 

6.2.3 Early warning  

The regional early warning system was designed in cooperation with the company of 

Geomer which was also responsible for technical implementation (QUOTE). In the 

following, the design of the regional early warning system will be presented. Detailed 

information on the technical implementation is provided by Jäger et al. (2010). Addi-

tional information on the warning procedure initiated once a threshold is exceeded is 

described in chapter 7. 

 

The early warning scheme of the developed prototypic regional system integrates 

measured precipitation, rainfall forecasts and thresholds. Since only historic rainfall 

forecasts were available, the system represents a technical solution without realistic 

early warning capabilities at this stage. However, the regional landslide early warning 

system was planned to be modifiable and extendable when additional data becomes 

available. 

The regional landslide early warning system for the Swabian Alb was designed as a 

spatially distributed system where rainfall thresholds and warning levels may vary 

throughout the focus area. In the current state of the system technical implementation, 

only the area of Lichtenstein-Unterhausen is integrated, which is also the local project 

area in this study. An overview on the early warning procedure is presented in Fig. 

6.70.  



190 6 | Results 

 

 

 

Fig. 6.70: Overview on the regional landslide early warning model 

Precipitation recorded by the ILEWS weather station is utilised to describe antecedent 

rainfall conditions of the past 15 days. Rainfall forecasts for the next 20 hours are ex-

tracted from regionalised climate modelling results of COSMO-DWD for the grid cell 

containing Lichtenstein-Unterhausen. The combination of antecedent precipitation 

and forecasted rainfall is then compared to defined threshold values. Five preliminary 

thresholds values were determined (Tab. 6.9) using Chleborad et al. (2006) as a refer-

ence. 

Tab. 6.9: Preliminary rainfall threhsolds used for regional landslide 
early warning 

Antecedent rainfall (in mm) Forecasted rainfall (in mm) 

130 0 

90 30 

50 50 

20 70 

0 80 

 

The regional early warning system is also connected to alarm sensors on the web-

based ILEWS early warning platform. If any threshold is exceeded, an alarm sensor is 

activated and a notification is sent to the involved experts for evaluation of the cur-

rent situation. More information on the actual early warning procedure is provided in 

chapter . However, since no real-time rainfall forecasts were available for this study, 

early warnings only have a hypothetical character and the alarm sensor is currently 

disabled. 
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Discussion 

The developed regional landslide early warning system represents a prototype appli-

cation which can not issue realistic warning at the current state due to the lack of real-

time rainfall forecasts. The technical system however, can be used for realistic early 

warnings, once real-time rainfall forecasts become available. 

Rainfall thresholds currently implemented in the regional early warning model are 

determined in reference to the values proposed by Chleborad et al. (2006). However, 

threshold values can easily be modified in the web-based warning platform (see chap-

ter 7) once more results become available. 

In its current layout, the regional warning system accounts for the Lichtenstein-

Unterhausen area. Extension of the system to the entire Swabian Alb region as a fully-

fledged regionalised early warning model can be based upon the prototype devel-

oped in this thesis. Further developments could also include spatially varying rainfall 

thresholds once these are investigated in more detail. 
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7 INTEGRATIVE EARLY WARNING  

Local and regional early warning models developed in this thesis forecast future 

landslide behaviour and are embedded into the integrative landslide early warning 

system elaborated by the ILEWS project. In the following, the web-based information 

and warning platform, as well as the process of transformation of alarm notifications 

into early warnings are presented. More detailed descriptions are provided by Jäger 

et al. (2010) and Mayer and Pohl (2010), respectively. Since the developed early warn-

ing chain is a result of the cooperative risk management and communication carried 

out in the ILEWS project, additional information on the challenges of the integration 

of early warning systems into the social and administrative framework and decision 

making processes are summarized. 

The main goal of the web-based platform is to store and visualise monitoring and 

modelling results based on standardised geo-data services to ensure interoperability. 

In addition, notifications to experts are provided in case pre-defined alarm thresholds 

are exceeded, which then can lead to an early warning. The GIS-based visualisation of 

real-time monitoring data is managed by a complex geodata infrastructure described 

in detail by Jäger et al. (2010). Latest measurements can be viewed by hovering the 

mouse over the sensor on a map (Fig. 7.1). Several settings can be changed for data 

analysis. For the automated inclinometer, these include analysed time-frame, scale of 

visualised data, and also direct comparison to hydrological monitoring results. 

Similar visualisation capabilities are implemented for all continuously and periodi-

cally measured monitoring data. Single and groups of hydrological sensor records can 

be visualised and directly compared to climate data from the ILEWS weather station. 

Geoelectrical monitoring data can be displayed for single or groups of measurement 

points. In addition, resistivity pseudo-sections with a time-lapse function can be com-

puted. Movement data from periodic tachymetry and inclinometer measurements in 

the form of interactive maps but can also be downloaded for further analysis. Fur-

thermore, the CHASM early warning and decision-support systems are implemented 

on the ILEWS platform. For quick evaluation of the current situation, a status control 

system was set-up illustrated in Fig. 7.2. 

Alert thresholds are implemented for each continuously measuring sensor in the field, 

accounting for changes of measurement values for varying time periods (Fig. 7.2 A). 

Additional alert thresholds are implemented for the CHASM early warning model, 

and regional rainfall thresholds. Latest measurements are compared to threshold val-

ues and displayed as an alert level (Fig. 7.2 B). In addition, the current status of the 

alert thresholds is visualised as coloured alert lights (Fig. 7.2 C), which change from 

green to yellow if a pre-defined  
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Fig. 7.1: Web-based visualisation of real-time inclinometer monitor-
ing data and comparison to monitoring results 

 

Fig. 7.2: Status control of real-time measurements with alert thresh-
olds (A), alert level (B), alert sensors (C) and early warning signal (D) 

C 

A 

D 

B 
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threshold is exceeded. Ultimately, the alert thresholds influence the three-coloured 

early warning signal light (Fig. 7.2 D).  

 

The ILEWS landslide early warning system was set up as an expert-system, in which 

registered users can only view the data, but only experts can edit the system and for 

example modify thresholds values, adjust frequency of measurements and change the 

early warning level. The current early warning level of the signal light is controlled by 

a procedure illustrated in Fig. 7.3. 
 

 

Fig. 7.3: Signal light (based on Mayer and Pohl 2010) 

As long as real-time measurements are below alert thresholds, the signal light is on a 

green level, indicating that no critical situation is expected. Once an alert threshold is 

exceeded, respective alarm senor and the early warning signal light change to yellow. 

Simultaneously, SMS and emails are sent to the involved experts (e.g. scientists) and 

registered users (e.g. local and regional administration, local population, media), in-

forming that a pre-defined monitoring or modelling threshold has been exceeded. 

Experts are requested to check the situation and decide whether the situation is poten-

tially dangerous or a false alarm. Depending on the experts' decision, the early warn-

ing signal light is either set back to green, or upgraded to red. Red early warning level 

is directly followed by automated messages with action advises to registered users 

and emergency forces are informed by the experts. 
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The ILEWS early warning chain is the result of cooperative risk assessment and com-

munication with local and regional stakeholders and was developed during several 

discussions and round-table meetings to ensure the early warning system is opti-

mised to the end-users (Mayer and Pohl 2010). The local community represented by 

the local administration and the mayor were the first potential end-user interviewed 

about the demands towards a landslide early warning system. On a local level how-

ever, landslide hazards and early warning are of low interest partly due to the admin-

istrative framework which regulates the responsibilities between local, regional and 

national political entities. At the current state, the situation in the local study is not 

regarded an imminent hazard but only as potentially dangerous (Gefahrenverdacht) for 

which the political framework does not foresee any compulsory actions. The local 

administration has no interest in detailed visualisation of monitoring data and other 

scientific products. Instead, only short information is required in case any emergency 

actions have to be initiated. Therefore, management of the landslide early warning 

system can not be undertaken by local administration, but has to be embedded into 

higher-level institution responsible for civil protection. 

Round-table meetings with regional decision-makers included three administrative 

levels which share responsibilities for risk management of natural hazards including 

landslides. Early warning however, is not directly integrated into the federal system 

of Baden-Württemberg and the other federal states of Germany. On the lowest re-

gional level of civil protection (Untere Katastrophenschutzbehörde) the district office 

(Landratsamt) is factually responsible and carries out measures in cooperation with 

specialist authorities (Fachämter), e.g. geological survey. The local community only 

acts as a connecting authority between local population and regional decision-makers. 

On the medium level (Obere Katastrophenschutzbehörde) the regional councils 

(Regierungspräsidien) deals with civil protection issues affecting technical infrastruc-

ture and for affairs which exceed the lowest level responsibilities. On the highest level 

(Oberste Katastrophenschutzbehörde), the Ministry of Interior of the federal state Baden-

Württemberg is responsible for planning of civil protection measures; localised phe-

nomena such landslides however, do not play an important role for this agency. None 

of the regional stakeholders responsible for civil protection and risk management of 

natural hazards wanted to be in charge of the developed early warning system and 

act as the managing expert. However, each authority named other agencies, which to 

their position were dedicated to fulfil the role of the expert. These results show that 

the inexplicit administrative and political structures of responsibilities hinder an ef-

fective application of landslide early warning systems. Successful integration of land-

slide early warning into the decision-making process therefore requires modifications 

of the political framework in Baden-Württemberg to ensure responsibilities are clearly 

defined. 
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8 DISCUSSION 

During the monitoring campaign, small slope movements have been recorded by sur-

face and subsurface measurements which are extremely-slow according to the defini-

tion by Cruden and Varnes (1996). In particular with regard to inclinometer Lic02, 

these displacements can be interpreted as a continuation of the displacement previ-

ously described by Bell (2007). In contrast to this earlier study, the research described 

in this thesis could employ geodetic measurements carried out by Aslan et al. (2010a) 

for interpretation of large scale movement trends. 

According to geodetic monitoring, three blocks of similar movement trends can be 

distinguished: relatively large downslope movements in the eastern part, relatively 

low displacements rates in the middle part, and alternating movement directions in 

the western part. These movement trends are partly affirmed by inclinometer meas-

urements. Exact boundaries of current landslide displacement, however, can not be 

determined. Still, geodetic measurements lack fixed points outside the potential land-

slide which limits their informative power.  

Most important landslide movement data was recorded at inclinometer Lic02, and in 

particular by manual measurements. Two depths of seasonally varying slope dis-

placements can be observed: a deep seated-sliding occurring in 15.5 m depth in 

spring, and a flow-like movement in 8.5 m depth in summer and autumn. The latter 

movements are also recorded by other inclinometers, however, deep-seated sliding 

can not be assessed due to the positioning above stable bedrock. When taking into 

account all manual measurements of inclinometer Lic02, it seems as the shallower 

displacement gradually transformed into a more slide-like movement, possibly indi-

cating the progressive development of a shear surface.  

While manual inclinometer measurements provide superior data on spatial distribu-

tion of movements, temporal resolution is higher for the automated inclinometer 

chain. However, the deep-seated movement is not appropriately detectable with the 

inclinometer chain due to the position of the lowest sensor. During the monitoring 

campaign, no distinct accelerations phases could be observed. Such continuous low 

displacements rates can possibly be interpreted as secondary creep as described by 

Okamoto et al. (2004) and Petley et al. (2005b, 2005c; 2008), in which diffuse micro-

cracks develop. Therefore, an increase of movement speed during a tertiary creep 

phase is a potential future scenario, which should be controlled by continued moni-

toring. In particular, the inclinometer chain is of great value for this task since notifi-

cations by the ILEWS early warning system are provided if displacement thresholds 

are exceeded. In addition, continued monitoring could provide the data required to 

improve definition of triggering conditions.  
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The hydrological monitoring by tensiometers, TDR and geoelectrical monitoring pro-

vided indications for preferential flow paths leading to a quick rise of water content in 

great depths at the damaged house, i.e. monitoring site p12. This is not surprising 

given the heterogenic subsurface conditions documented by the drillings. Even 

though no direct contribution of preferential flow to slope instability can be ap-

pointed, it is likely that some effect is present given the recorded displacements in 

inclinometer Lic02 and the crack development at the house. Further investigations are 

necessary to assess the influence of preferential flow paths since they are important 

for slope stability and should be integrated into early warning (Uchida 2004). In par-

ticular, geoelectrical monitoring could aid to estimate the complex subsurface hydro-

logical processes. Unfortunately, hydrological monitoring data could not be analysed 

in full detail by Wiebe and Krummel (2010) and Wiebe et al. (2010) due to limited re-

sources. 

With regard to these results, the first research question, "How does slope hydrology con-

tribute to the reactivation of landslide movements?", can not easily be answered. Without 

any periods of pronounced slope movement, preferably larger than error margin of 

the monitoring equipment, no exact triggering conditions can be determined. Instead, 

only broad statements on hydrological influence on slope stability can be made, for 

example that some correlation between snow melting in spring and deep-seated slid-

ing exist. 

 

The generation of a subsurface model aimed to describe real surface and subsurface 

conditions as realistic as possible to facilitate slope stability and early warning model-

ling with CHASM. In general, a good approximation of real conditions could be 

achieved even though subjective interpretation was required at some points of the 

applied methodology. For estimation of slope debris thickness, for example, the drill-

ings by Ohmert (1988) provided accurate data for some points and were interpolated 

to the entire study area based on relative slope positions. Similarly, estimation of 

landslide deposit thickness from seismic prospection data included personal judg-

ment but greatly enhanced representation of real conditions. Topographic analysis for 

the lower landslide deposits significantly improved the subsurface model. Geotechni-

cal parameters estimated from literature sources provided good initial information on 

the possible range of real values. Subsequent sensitivity analysis helped to assess the 

influence of the parameters and allowed for calibration of CHASM stability calcula-

tion.  

Based on the available information from drillings and the interpretation of seismic 

prospection data, the slope debris layer could not further be distinguished. Still, drill 

cores demonstrated heterogenic subsurface conditions which in reality can not be 

assumed to behave uniformly. In particular in terms of hydrological conditions, this is 
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a significant simplification of real conditions. Still, preferential flow paths as indicated 

by hydrological monitoring data, for example, cannot be accommodated within the 

current simulation approach implemented in CHASM. 

Results of CHASM analysis show a generally low stability for the entire slope profile 

along the damaged house, with the lowest stability occurring in the upper slope sec-

tions, thus indicating a potential slope failure similar to the medium-age landslide 

located in the western part of the study area. Drill cores from borehole Lic05 provided 

some indication for the existence of a potential shear surface in the upper slope area; 

however, to verify this assumption, continued monitoring or the installation of addi-

tional inclinometers, preferably stably fixed into the bedrock is required. Still, it 

should also be questioned if additional costly installations are justified in regard to 

the extremely slow displacement recorded over the last 6.5 years. From a scientific 

point of view, an extended monitoring system could not only facilitate the under-

standing of the processes occurring at the slope under investigation in this thesis, but 

also provide important information regarding slow moving slopes in the Swabian Alb 

in general. 

According to CHASM simulations, shear surfaces are most likely positioned at the 

boundary of slope debris and the bedrock below. In contrast, shear surfaces also in-

cluding the bedrock material have a significantly higher FoS and are therefore less 

probable. A shear surface position at the bedrock interface reflects a deep-seated slid-

ing, similar to the movements recorded in approximately 15.5 m at inclinometer 

Lic02. The shallower displacement measured at this location, which also shows char-

acteristics of a flowing movement, cannot be simulated by CHASM due to the limita-

tions of the limit-equilibrium method. Future applications of dedicated simulation 

models, for example finite-element software, could provide more insights into the 

displacement process. Some promising initial tests have already been carried out by 

Aslan et al. (2010b) and further research is currently being performed. 

Two CHASM-based applications were developed to address the second research 

question: "How can physically-based slope stability models be applied in landslide early warn-

ing?". 

With the CHASM early warning model slope stability is continuously simulated 

based on current groundwater conditions and measured and forecasted rainfall. Sen-

sitivity analysis of CHASM provided some interesting results regarding the influence 

of rainfall events which is also important for subsequent modelling of early warning. 

Surprisingly, rainfall distribution and rainfall intensity have a very low influence on 

slope stability calculation which limits the predictive power of the CHASM early 

warning model. Possibly, further adjustment of CHASM parameters could increase 

the sensitivity to rainfall; however, this would preferably require a distinct onset of 

displacement to be able to appropriately validate the input data. In its current state of 
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development, the notification service can only issue hypothetic early warnings since 

real-time rainfall forecasts are not available. However, if these became accessible, the 

technical system could easily be adjusted. Nevertheless, the developed CHASM early 

warning application is a prototype with a high potential for the further applications. 

The second CHASM application for the use in the context of early warning is a deci-

sion-support tool for quick calculation of slope stability without time-consuming 

elaboration of a slope profile and the respective shear surface parameters. In addition, 

the effect of a variety of input data can be tested which is a significant improvement 

in comparison to the standard single profile analysis. The integrated shear surface 

search routine effectively concentrates search procedure to the upper slope areas 

which are the most landslide prone areas according to CHASM simulations. How-

ever, the decision-support system represents a prototype development which does 

not include all capabilities of CHASM and cannot replace more detailed investiga-

tions. Overall, the ability to quickly initiate CHASM simulations for freely-selectable 

slope profiles has great potential for future applications. 

 

Available landslide inventories for the Swabian Alb contain several hundred land-

slide events with the earliest records dating back to the 15th century. However, esti-

mation and verification of rainfall thresholds can not in all cases benefit from this data 

since the exact day of initiation and the triggering agents are not accounted for. Still, 

landslide inventories are essential data sources for other research objectives besides 

early warning, for example determination of geomorphological activity, landslide 

hazard and risk management, and spatial planning in general. Therefore, efforts for 

recording of landslide events and investigation of available data sources should be 

continued and increased in the future.  

With the limited number of dated landslide events it was not tried to determine rain-

fall thresholds for the Swabian Alb, but to verify the applicability of thresholds pro-

posed in the literature. Comparison of landslide events to intensity-duration and cu-

mulative rainfall thresholds was carried out for all events for which the date of initia-

tion was recorded, and regionalised climate data was available. For some landslide 

events, the exact date of occurrence was unknown but could be ascertained by assum-

ing potential triggering dates. In general, tested intensity-duration and cumulative 

rainfall threshold performed satisfactorily and affirm the applicability of such an ap-

proach in the Swabian Alb. Still, not all landslides can be explained by the applied 

rainfall thresholds and subsequently early warning cannot be expected to be able to 

predict all future slope failures.  

The importance of snow melting for the initiation of slope failures in the Swabian Alb 

is demonstrated by the temporal clustering of landslide events in spring. In addition, 

the integration of snow melting into verification of rainfall thresholds was able to ex-
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plain some of the landslide events, which could not have been predicted by rainfall 

alone. 

The technical regional early warning system implemented by Jäger et al. (2010) em-

ploys preliminary rainfall thresholds which can be expected to be able to predict the 

majority of landslide events. Once more appropriate threshold values become avail-

able alarm levels can easily be modified on the web-based warning platform. In its 

current state, early warnings are only hypothetical since no real-time rainfall forecasts 

are available; still, from a technical point of view, the system is capable of providing 

notifications to the experts in charge. However, before realistic early warnings can be 

issued, decision-makers have to define the desired warning levels in regard to possi-

ble false alarms and missed warnings. The regional early warning system has a great 

potential for a transfer to larger areas. By relatively small modifications, the early 

warning system could be developed into a fully-fledged regional system accounting 

for spatially varying threshold values, similar to the system in Hong Kong.  

Based on the presented threshold verification and the implemented regional landslide 

early warning prototype, the research question raised in the beginning - "Are landslide 

triggering rainfall thresholds applicable to regional early warning in the Swabian Alb?" - can 

be answered in the affirmative. 
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9 PERSPECTIVES  

The results of this thesis raise new questions for future investigations in the Swabian 

Alb in general and in particular for the landslide in Lichtenstein-Unterhausen. In ad-

dition, some refinements could improve local and regional early warning applications 

and their landslide forecasting capabilities. In the following, potential improvements 

are presented, and the prospects for a transfer of the developed early warning appli-

cations and the ILEWS warning system in general are discussed. 

 

On a local scale, a continuation and expansion of the slope monitoring system could 

improve the understanding of slope hydrology and the process of landslide reactiva-

tion. In particular additional inclinometers installed into stable bedrock could help to 

define the boundaries of measured slope displacements and enhance the subsurface 

model. The integration of fixed points outside the landslide area in tachymetry meas-

urements could enable a more accurate interpretation of large scale movement trends 

and the verification of possible deep-seated displacement for inclinometers Lic04 and 

Lic05. Definition of distinct triggering condition requires the continuation of meas-

urements, in particular by the automated inclinometer. Results of hydrological moni-

toring indicate preferential flow paths in the area of the damaged house. Future re-

search could install additional hydrological sensors to assess the characteristics of 

subsurface hydrology and the contribution to slope instability. Furthermore, geoelec-

trical monitoring data has not been analysed in full detail and could aid understand-

ing of subsurface hydrology. Moreover, the application of hydrological simulation 

software could improve the interpolation of groundwater conditions for subsequent 

stability modelling. Possibly, analysis of chemical properties of groundwater compo-

sition could provide interesting insights and help to predict future accelerations. 

Early warning modelling with CHASM could benefit from an improved subsurface 

representation and more detailed study in groundwater table positions. The applica-

tion of designated models, for example the Sloping Local base Level approach 

(Jaboyedoff et al. 2004) could improve the approximation of the subsurface morphol-

ogy. Hydrological simulation models could be used to create more realistic and so-

phisticated groundwater scenarios for subsequent modelling. In addition, shear tests 

and more complex hydrological laboratory tests of soil samples could improve the 

overall performance of slope stability simulation. CHASM capabilities not tested in 

this study, such as Janbu's non-circular shear surface methodology could potentially 

enhance simulation of landslide behaviour. Furthermore, other physically-based 

landslide simulation models could be applied on the slope in Lichtenstein-

Unterhausen. In particular finite-elements models could help to understand the proc-
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esses of landslide movement reactivation. It would also be interesting to see how 

other landslide simulation models perform in early warning systems. 

The CHASM early warning procedure would benefit from the integration of real-time 

rainfall forecasts instead of historic records so that real warnings can be issued. In 

addition, the integration of snow melting could increase the accuracy of slope stability 

predictions. 

The transfer of the developed CHASM decision-support and early warning applica-

tions to other study areas are attractive prospects. Appropriate study areas should 

include deep-seated landslides with a known shear surface depth. Ideally, hydrologi-

cal monitoring should be available to be able to estimate groundwater tables. How-

ever, the monitoring system could be significantly smaller if subsurface conditions are 

more homogeneous. To take full advantage of quick slope stability calculation capa-

bilities of the developed CHASM decision-support system, an ideal study area would 

comprise similar slope morphologies within the focus area. For example slopes along 

roads or railway lines would be suitable for an effective application. 

 

For future regional scale research on landslides, an improvement of the landslide in-

ventory by further exploration of data sources currently not available to science is 

desirable. Therefore, ongoing recording of landslide events in addition to continued 

research in historic archives and media reports is required. The application of hydro-

logical models could help to define triggering dates for landslides for which the exact 

date is unknown and thus provide the data needed for more sophisticated verification 

of rainfall thresholds.  

In this work, a limited number of landslide triggering rainfall thresholds was ana-

lysed. Future investigations could possibly benefit from an examination of other 

threshold concepts; in particular approaches in which long-term conditions are inte-

grated, for example taking into account mean annual precipitation or the antecedent 

soil water status. Also, deterministic models could be used to enhance determination 

of landslide triggering rainfall threshold, since these approaches have lower require-

ments regarding landslide inventory data (Terlien 1998). 

The regional landslide early warning system would benefit from real-time weather 

forecasts which would enable to issue real early warnings. Prediction of landslide 

events could be enhanced by an automated integration of snow melting data into the 

regional early warning model. One of the most promising improvement of the re-

gional landslide early warning application could be achieved by further development 

into a spatially distributed system similar to the system implemented in Hong Kong. 

Such a system could accommodate both regional and local landslide triggering rain-

fall thresholds for which additional research is required. 
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A transfer of the developed regional landslide early warning procedure could be car-

ried out with very little technical modifications. In particular the availability of rain-

fall forecasts with a high spatial and temporal resolution in the form COSMO-DE 

simulations could be used as the basis for further implementation of regional land-

slide early warning systems in central Europe. However, without additional studies 

on landside initiating rainfall thresholds, only generic alarm levels could be em-

ployed. In addition, warning thresholds had to be determined by cooperative discus-

sions to meet the end-users requirements towards the early warning system. 

 

Even though the technical feasibility of local and regional landslide early warning 

system in the Swabian Alb has been confirmed, effective early warning also requires 

integration into political and social structures. In the federal system of Germany, 

competences are currently not clearly defined and local and regional decision-makers 

are reluctant to overtake responsibilities for early warnings. It is therefore essential to 

inform policy makers about the benefits of early warning systems within integrative 

risk management strategies.  
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10 SUMMARY 

Landslides are among the most hazardous natural hazards and can have disastrous 

effects on society as demonstrated by recent large slope failures for example in China. 

In places, where landslide prone areas cannot be avoided or slopes cannot be stabi-

lised, early warning systems can be a useful counter-measure to effectively protect the 

local population and also act as an integral element of risk management. Despite the 

common use of slope stability simulation software for landslide analysis and forecast-

ing in geotechnical practice, landslide early warning systems rarely take full advan-

tage of these models. Moreover, regional landslide early warning systems are mostly 

implemented as prototype applications even though necessary input data like quanti-

tative rainfall forecasts and rainfall thresholds are widely available.  

 

The main objectives of this thesis are the analysis of landslide characteristics and the 

subsequent development and implementation of local and regional early warning 

models in the Swabian Alb. In the local study area, a reactivated deep-seated land-

slide is equipped with an extensive monitoring system to investigate the contribution 

of slope hydrology to the process of displacement reactivation. A physically-based 

slope stability model is applied to simulate and forecast landslide behaviour and sub-

sequently implemented as a decision-support and early warning model. On the re-

gional scale, available landslide inventories are analysed and dated mass movements 

are compared to rainfall thresholds elaborated in other studies. Consequently, a pro-

totypic early warning application is implemented based on the results. 

The work is embedded in the ILEWS project, in which the entire early warning chain 

from the sensors in the field to user-optimised action advises is addressed. 

 

Forecasting of slope failures, and in particular slow moving landslides is extremely 

difficult. For such processes, long phases of slow and steady displacements, fre-

quently termed creep, can be observed prior to final failure. Changes of displacement 

rates may occur due to variations of hydrological conditions and progressive weaken-

ing of the soil material. Difficulties of landslide forecasting also arise from the com-

plex nature of landslide processes, in which feedback processes and non-linear behav-

iour hamper predictions. Landslide prediction usually employs thresholds of trigger-

ing factors such as rainfall. In particular thresholds accounting for rainfall characteris-

tics such as intensity-duration have frequently been applied on a regional scale. A 

wide range of methods can be applied for landslide investigation and monitoring of 

hydrology and slope displacements, and several simulation models are available for 

landslide modelling of which limit-equilibrium methods are possibly the most fre-

quently applied. Effective early warning of landslides is not only a technical challenge 
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but also requires integration into the society’s political framework and processes of 

decision-making. A review on landslide early warning systems worldwide shows that 

most systems have prototypic character and that no simple best-practice approach is 

available. Landslide early warning systems for single slopes generally apply extensive 

monitoring systems of displacement and potential triggering factors to predict slope 

failure; or are implemented as post-event systems which issue an alarm once a land-

slide process has been initiated. In most cases, regional landslide early warning sys-

tems rely on rainfall measurement and forecasts which are compared to pre-defined 

threshold values.  

 

The study area of this thesis is the lower mountain range of the Swabian Alb in 

southwest Germany, an area which is frequently affected by landslides. The region’s 

geology consists of Jurassic, clays, marls and limestones, of which the latter form a 

steep escarpment (Albftrauf). In the local study area Lichtenstein-Unterhausen, a reac-

tivated landslide body which has also been investigated in previous research projects, 

regularly causes cracking to a house.  

 

A wide range of data was used in this study. On the local scale these include geologi-

cal maps and drillings, geotechnical parameters from literature values, slope hydrol-

ogy and movement monitoring data acquired within the ILEWS project. For regional 

scale analysis climate data and landslide inventories are the most important data 

sources. 

 

Extensive field work including drillings, drill core extraction, and the installation of 

inclinometers and hydrological sensors were an essential part for the research carried 

out in this thesis, as well as for the ILEWS project. Data analysis included comparative 

examination of movement monitoring records in the form of tachymetry measure-

ments, manual and automated inclinometers records. Hydrological data was analysed 

to investigate the response of slope hydrology to rainfall events. The deterministic 

limit-equilibrium software was CHASM used to simulate slope behaviour, and fore-

cast future behaviour. Subsequently, two novel applications were developed for land-

slide decision-support and early warning. To facilitate landslide modelling, a general 

subsurface model combining geological data, drillings, results of geophysical prospec-

tion and geotechnical parameters was created by a step-wise and iterative GIS proce-

dure. Groundwater scenarios were elaborated based on analysis of hydrological data 

and spatially interpolated for subsequent CHASM modelling. In addition, rainfall 

scenarios were generated using the KOSTRA atlas. Furthermore, a procedure was 

developed to control the automated shear surface search implemented within 

CHASM. Simulation of slope behaviour with CHASM investigated the influence of a 
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variety of input parameters including rainfall, groundwater, and geotechnical pa-

rameters during a sensitivity analysis. CHASM was subsequently implemented as an 

early warning model to continuously calculated slope stability. A CHASM decision-

support system allowing for quick calculation of slope stability for freely selectable 

slope profiles was developed based on previously generated input data. On the re-

gional scale, the applied methodology focussed on analysis of landslide inventories in 

the Swabian Alb to select slope failures appropriate for the verification of landslide 

initiating rainfall thresholds. Three intensity-duration and one cumulative rainfall 

thresholds were tested for their applicability in the Swabian Alb, based on regional-

ised climate data reflecting daily rainfall intensities and snow height. Subsequently, a 

regional early warning concept was developed, which was then technically imple-

mented by Jäger et al. (2010). 

 

Results of drill core analysis illustrate heterogenic subsurface conditions with an al-

ternation of dense clays and sections of large limestone blocks. A hydrological moni-

toring system was installed including a total number of 27 tensiometers and TDR sen-

sors located at nine locations in three different depths. In addition, two inclinometer 

pipes were installed and one automated inclinometer chain was put into an existing 

borehole. Tachymetry measurements carried out by Aslan et al. (2010a) illustrate a 

maximum downslope movement of up to 8 mm, and variations of geodetic height of 

up to 1.2 cm. Extremely slow slope movements are also documented by inclinometer 

measurements; however, displacements are for most inclinometers still in the error 

margin. Inclinometer Lic02, which is fixed into stable bedrock recorded a total 

downslope displacement of approximately 1.5 cm in 6.5 years. Two displacement pat-

terns can be observed: a sliding movement in 15.5 m depth in spring, and a flowing 

movement in 8.5 m depth occurring in late summer and autumn. Single dates or short 

periods of accelerated displacement can not be determined based on the inclinometer 

chain data. Hydrological data illustrate seasonal variation of groundwater conditions 

and were estimated to vary between 1.3 m and 6 m metres depending on location and 

season. In general, only small fluctuations and little response to rainfall events can be 

observed for the deepest hydrological sensors. However, at the monitoring site lo-

cated at the damaged house strong peaks in hydrological data demonstrate quick per-

colation of precipitation. Similarly, geoelectrical data describes anomalous character-

istics for this site during a period of strong snow melting. The subsurface model cre-

ated combines several geological strata, limestone scree and mixed slope debris. 

Based on drillings and interpretation of seismic data, the thickness of the slope debris 

layer was estimated to reach maximum values of over 20 m for the landslide head 

area, and approximately 8 m for the lower deposits. Analysis of geotechnical parame-

ter values in the literature for the materials present in the study area illustrates a very 
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large range which was later partly tested during CHASM sensitivity analysis. The 

developed grid search routine is based on slope geometry and effectively focuses 

slope stability calculation on the upper slope areas. Rainfall scenarios created from 

KOSTRA account for normal, maximum and worst-case scenarios. Rainfall events 

have annual exceedance probabilities between 1 to 100 years and cover durations 

from 1 hour to 72 hours. CHASM sensitivity analysis documents a linear influence of 

angle of friction and cohesion for lower value range. Groundwater conditions have a 

strong influence on slope stability calculation. In contrast, rainfall intensities and rain-

fall distributions do only slightly affect the Factor of Safety (FoS). According to the 

results, a potential slope failure is most likely in the upper slope area where the FoS 

only slightly above unity. Computed shear surfaces are located at the interface of 

slope debris and the bedrock below. The developed CHASM early warning model 

combines monitored groundwater conditions with measured and forecasted rainfall 

to forecast future landslide behaviour. The CHASM decision-support represents an 

entirely web-based application based on the input data generated in this thesis. The 

user can chose a profile and select from various rainfall and groundwater conditions 

for calculation of slope stability. A total number of 29 appropriate landslide events 

were selected for regional verification of rainfall thresholds. Most landslide events 

exceeded two of the three tested intensity-duration and the cumulative rainfall 

threshold. The regional early warning procedure developed in this thesis and techni-

cally implemented by Jäger et al. (2010) employs rainfall threshold values in reference 

to the cumulative rainfall thresholds proposed by Chleborad et al. (2006). 

 

The developed local and regional early warning applications are integrated into the 

web-based information and early warning platform implemented within the ILEWS 

project (Jäger et al. 2010). An early warning chain was elaborated (Mayer and Pohl 

2010) in which experts can issue an early warning after being notified about the ex-

ceedance of pre-defined thresholds. However, the topic of early warning is not explic-

itly regulated in the political framework of Baden-Württemberg and responsibilities 

are not clearly defined, thus hindering the effective application of the developed sys-

tem.  

 

The installed monitoring system provides essential information on slope hydrology 

and also indicates the occurrence of preferential flow in the area of the damaged 

house. However, extremely slow slope movements showed no acceleration phase 

during the monitoring campaign which could be attributed to hydrological condi-

tions. Continuous manual inclinometer measurements supply evidence for the transi-

tion from a flowing slope movement to a sliding process along a progressively devel-

oping shear surface.  



10 | Summary 211 

 

 

 

Physically-based modelling of slope behaviour with CHASM based on a detailed rep-

resentation of subsurface conditions showed only little response to rainfall events 

hindering forecasting of landslide prediction. Nevertheless, the developed CHASM 

early warning application represents a novel approach to landslide early warning in 

which a physically-based model is directly incorporated. In addition, the CHASM 

decision-support tool is a major advancement to the simulation model and allows 

quick assessment of stability for various slope profiles. 

With the limited information available on landslide occurrences, only a small number 

of landslides events could be compared to rainfall threshold values. Still, tested rain-

fall thresholds performed satisfactorily and forecasting landslides can be expected to 

predict a large proportion of future landslide events. The developed regional land-

slide early warning application represents a prototype but demonstrates the feasibil-

ity of threshold-based early warning in the Swabian Alb. 

 

Future research should include continuation of local slope monitoring and recording 

of landslide occurrences on a regional scale. Additional investigations are required to 

assess the contribution of preferential flow on slope instability and landslide reactiva-

tion in Lichtenstein-Unterhausen. The regional early warning system could be ex-

tended to a fully distributed regional system with very little efforts. Both landslide 

early warning applications developed in this thesis offer a great potential for a trans-

fer to other study areas. In particular the CHASM decision-support system could be 

effectively used for landslide risk management for example along linear traffic lines 

such as roads and railway lines. 
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Appendix II: English abstract 

Landslide analysis and early warning 

– Local and regional case studies in the Swabian Alb, Germany 

 

Recent landslide events demonstrate the need to improve landslide forecasting and 

early warning capabilities in order to reduce related risks and protect human lives. In 

this thesis, local and regional investigations were carried out to analyse landslide 

characteristics in the Swabian Alb region, and to develop prototypic landslide early 

warning systems. 

 

In the local study area, an extensive hydrological and slope movement monitoring 

system was installed on a seasonally reactivated landslide body located in Lichten-

stein-Unterhausen. Monitoring data was analysed to assess the influence of rainfall 

and snow-melt on groundwater conditions, and the initiation of slope movements. 

The coupled hydrology-slope stability model CHASM was applied to detect areas 

most prone to slope failures, and to simulate slope stability using a variety of input 

data. Subsequently, CHASM was refined and two web-based applications were de-

veloped: a technical early warning system to constantly simulate slope stability inte-

grating rainfall measurements, hydrological monitoring data and weather forecasts; 

and a decision-support system allowing for quick calculation of stability for freely 

selectable slope profiles. 

 

On the regional scale, available landslide inventory data were analysed for their use 

in evaluation of rainfall thresholds proposed in other studies. Adequate landslide 

events were selected and their triggering rainfall and snow-melting conditions were 

compared to intensity-duration and cumulative thresholds. Based on the results, a 

regional landslide early warning system was developed and implemented as a web-

based application. 

 

Both, the local and the regional landslide early warning systems are part of a holistic 

and integrative early warning chain developed by the ILEWS project, and could easily 

be transferred to other landslide prone areas. 
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Appendix III: German abstract 

Analyse und Frühwarnung gravitativer Massenbewegungen 

Lokale und regionale Fallstudie an der Schwäbischen Alb, Deutschland 

 

In jüngerer Vergangenheit aufgetretene gravitative Massenbewegungen verdeutli-

chen die Notwendigkeit die Vorhersagemöglichkeiten von und die Frühwarnung vor 

gravitativen Massenbewegungen zu verbessern, um die damit verbundenen Risiken 

zu reduzieren und Menschenleben zu schützen. Die vorliegende Arbeit beschäftigt 

sich mit lokalen und regionalen Analysen der auslösenden Bedingungen gravitativer 

Massenbewegungen an der Schwäbischen Alb, und der Entwicklung von Frühwarn-

system Prototypen. 

 

Im lokalen Untersuchungsgebiet wurde ein extensives hydrologisches und Hangbe-

wegungsmonitoringsystem auf einem saisonal reaktivierten Hangrutschungskörper 

in Lichtenstein-Unterhausen installiert. Basierend auf der Analyse von Monitoringda-

ten wurde der Einfluss von Niederschlag und Schneeschmelze auf die Grundwasser-

bedingungen und die Initiierung von Hangbewegungen untersucht. Das kombinierte 

Hydrologie und Stabilitätsmodell CHASM wurde verwendet, um Hangbereiche aus-

zuweisen, für die ein Versagen wahrscheinlich ist, und die Auswirkungen einer Viel-

zahl von Einflussfaktoren auf die Hangstabilität zu simulieren. Auf den Ergebnissen 

aufbauend wurden zwei Internet-basierte Anwendungen entwickelt. Die erste Appli-

kation stellt ein technisches Frühwarnsystem dar, in dem die Hangstabilität unter 

Verwendung von gemessenem Niederschlag, hydrologischen Monitoringdaten und 

Wettervorhersagen fortlaufend simuliert wird. Die zweite Anwendung dient der Ent-

scheidungsunterstützung und erlaubt eine schnelle Berechnung der Hangstabilität für 

frei wählbare Profile. 

 

Auf der regionalen Ebene wurden verfügbare Inventare gravitativer Massenbewe-

gungen analysiert und hinsichtlich einer Bewertung von Niederschlagsschwellenwer-

te anderer Studien ausgewertet. Adäquate gravitative Massenbewegungen wurden 

ausgewählt und deren auslösende Niederschlags- und Schneeschmelzekonditionen 

mit Intensität-Dauer und kumulativen Schwellenwerten verglichen. Aufbauend auf 

den Ergebnissen wurde ein regionales Frühwarnsystem für gravitative Massenbewe-

gungen entwickelt und als Internet-basiertes Anwendung implementiert. 

 

Die entwickelten lokalen und regionalen Frühwarnsysteme sind Teil einer holisti-

schen und integrativen Frühwarnkette, welche durch das ILEWS Project implemen-

tiert wurde, und können auch auf andere von gravitativen Massenbewegungen be-

troffene Gebiete übertragen werden. 
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Appendix IV: List of abbreviations 

ALS = Airborne Laser Scanning 
AMSL = Above Mean Sea Level 
BOTDR = Brillouin Optical Time-Domain Reflectometry 
CAD = Computer Aided Design 
CHASM = Combined Hydrology and Stability Model 
DOGAMI = Oregon Department of Geology and Mineral Industry 
DSM = Digital Surface Model 
DTM = Digital Terrain Model 
DWD = Deutscher Wetterdienst 
FLaIR = Forecasting of Landslides Induced by Rainfall 
FoS = Factor of Safety 
FVA = Forstliche Versuchs- und Forschungsanstalt 
GEO = Geotechnical Engineering Office 
GIS = Geographic Information System 
GPR = Ground Penetrating Radar 
GPS = Global Positioning System 
ILEWS = Integrative Landslide Early Warning Systems 
(D)InSAR = (Differential) Interferential Synthetic Aperture Radar 
KOSTRA = Koordinierte Starkniederschlags-Regionalisierungs-Auswertungen 
LGL = Landesamt für Geoinformation und Landentwicklung Baden-

Württemberg 
LGRB = Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg 
LiDAR = Light Detection and Ranging 
LUBW = Landesanstalt für Messung, Umwelt und Naturschutz Baden-

Württemberg 
LV BW = Landesvermessungsamt Baden-Württemberg 
NOAA = National Oceanic and Atmospheric Administration 
ODF = Oregon Department of Forestry 
ODOT = Oregon Department of Transportation 
OEM = Oregon Emergency Management 
SAR = Synthetic Aperture Radar 
TDR = Time Domain Reflectometry 
TIN = Triangulated Irregular Network 
TLS = Terrestrial Laser Scanning 
UM BW = Umweltministerium Baden-Württemberg 
USGS = United States Geological Survey 
WPS = Web-processing service  
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Appendix V: Borehole plots for Lic04 and Lic05 drillings 
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Appendix IX: Slip search grid location definition 

SLIP SEARCH GRID LOCATION 

1.1. Define coordinates of the lower left hand corner of the grid: at one-third of the 

profile length and at two-thirds height for profiles longer than 450 metres; half the 

height and two-thirds of length 

1.2. If grid overlaps with slope surface, move right 1 mesh coordinate  

1.3. Define grid spacing as the same as mesh size, and grid dimensions as 10 by 10 

1.4. Set minimum radius as 10 metres and radius increment as the same as mesh size 

 

 

Appendix X: ArcGIS RASTERCALCULATOR commands for compu-
tation of the subsurface model 

Command to create DTM segments for geological strata in ESRI ArcGIS RASTER-

CALCULATOR based on maximum elevation. The procedure involves two com-

mands to be executed in RASTERCALCULATOR. In this example nine segments are 

created, of which the lowest is below the level of the DTM 

 

Step 1: 

step1_elevation2 = con([DTM] > elevation3, [DTM]) 

step1_elevation3 = con([DTM] > elevation4, [DTM]) 

step1_elevation4 = con([DTM] > elevation5, [DTM]) 

step1_elevation5 = con([DTM] > elevation6, [DTM]) 

step1_elevation6 = con([DTM] > elevation7, [DTM]) 

step1_elevation7 = con([DTM] > elevation8, [DTM]) 

 

Step 2: 

step2_elevation1 = con([DTM] > elevation2, [DTM]) 

step2_elevation2 = con([elevation2_1] >= elevation2, elevation2, [elevation2_1]) 

step2_elevation3 = con([elevation3_1] >= elevation3, elevation3, [elevation3_1]) 

step2_elevation4 = con([elevation4_1] >= elevation4, elevation4, [elevation4_1]) 

step2_elevation5 = con([elevation5_1] >= elevation5, elevation5, [elevation5_1]) 

step2_elevation6 = con([elevation6_1] >= elevation6, elevation6, [elevation6_1]) 

step2_elevation7 = con([elevation7_1] >= elevation7, elevation7, [elevation7_1]) 

step2_elevation8 = con([DTM] < elevation8, [DTM])  

step2_elevation9 = con([DTM] > elevation9, elevation9) 
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Appendix XI: Soil suction curves defined by SPAW model in com-
parison to laboratory measurements with interpolated values 

Pf Laboratory values SPAW values Interpolated values 

15 0.13486667 0.245 0.13486667 

10 0.259 0.14915 

8 0.15643333 0.266 0.15643333 

6 0.276 0.16625416 

4 0.291 0.176075 

3 0.302 0.18589583 

2 0.318 0.19571667 

1.6 0.327 0.2055375 

1.2 0.34 0.21535833 

0.8 0.358 0.22517917 

0.4 0.392 0.235 

0.3 0.235 0.235 

0.2 0.457 0.24 

0.1 0.2587 0.5 0.2587 

0.06 0.26413333 0.26413333 

0.03 0.27656667 0.27656667 
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Appendix XII: English tutorial for web-based CHASM decission-support system 

1. Welcome to the web-processing service by the ILEWS project! On this website you 

can calculate slope stabiltiy for our test slope in Lichtenstein-Unterhausen at the 

Swabian Alb, Germany. To start please activate the pencil symbol in the upper left 

corner and create a slope profile for the calculation by clicking on the map. 

2. Please select a name for your chosen profile. You can change some model parame-

ters like the length of the simulation and the timesteps. Please select the output in-

formation that you would like to receive. Please select the rainfall scenarios by 

clicking on RS. 

3. Please select a rainfall scenario for you simulation.  

o Scenario type: normal, worst case and maximal worst case 

o rainfall distribution pattern: equally distributed rainfall distribution, Euler 1 

and Euler 

o rainfall duration: 6h, 12h, 24h, 48h oder 72h Niederschlagsverteilung: gleich-

verteilt, Euler 1 oder Euler 2 

o likelihood of occurence: 1 in 1, 1 in 10, 1 in 50, 1 in 100 and click OK  

4. Click on „Create model“ to save the your simulation settings to the database, or 

click “create model and calculate” to also start the simulation. 

5. Your simulation is beeing processed on the server. Please wait until calculation is 

finished. 

6. The slope profile is calculated with respect to your settings and the profile is col-

oured regarding the calculated stability. The FoS of the last simulation step is 

shown next to the profile. Please select Simulation>model resuls>show results for 

further information for your simulation. 

7. Please select your simulation or any other simulation created before . 

8. Clicking on the curve symbol behind your simulation opens a graphical presen-

tion of the FoS in the course of the simulation  

9. Congratulation! You have completed a CHASM WPS simulation!  
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Appendix XIII: Englsih frequently asked questions (FAQ) 

General information 

The web-processing service of CHASM enables the user to calculate slope stability for 

the study area of the project ILEWS. For further information please read the FAQ and 

visit the websites. 

 

CHASM 

CHASM is an integrated slope hydrology/slope stability software package. The soft-

ware has been written to assist in the estimation of controls on slope stability and to 

be of value to a wide range of potential users ranging from pre-site investigation en-

gineering applications to evaluations concerned with the impact of bioengineering on 

slope stability.  

Source and additional information: http://chasm.info/  

 

WPS 

A Web Processing Service (WPS) is designed to standardize the way that GIS calcula-

tions are made available to the Internet. WPS can describe any calculation (i.e. proc-

ess) including all of its inputs and outputs, and trigger its execution as a Web Service.  

Source and additional information: 

http://en.wikipedia.org/wiki/Web_Processing_Service  

 

CHASM-WPS 

The CHASM WPS is a pivotal development in the ILEWS project as has been jointly 

designed by the company Geomer (Germany) and the Workgroup on Geomor-

phological Systems and Risk Research (ENGAGE), Institute of Geography and Re-

gional Research, University of Vienna (Austria).  

For further information: http://www.geomer.de/ and 

http://geomorph.univie.ac.at/?L=2  

 

KOSTRA 

Kostra (also KOSTRA-2000-DWD) is a storm rainfall event catalogue published by the 

Deutscher Wetter Dienst (DWD) (German Weather Service).  

Source and additional information: http://de.wikipedia.org/wiki/Kostra and 

http://www.itwh.de/S_kostra.htm  

 

Factor of Safety (FoS) 

A measure of slope stability. With FoS>1 a slope is defined stable and FoS<1 as unsta-

ble  

For more information: http://en.wikipedia.org/wiki/Factor_of_safety  
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ILEWS 

The ILEWS project is is concerned with the development and implementation of 

modular and transferable landslide early warning systems for local and regional 

scales which can also be adapted to other localities and processes. Within ILEWS early 

warning systems are regarded as a chain starting from the sensor in field as the piv-

otal part of a robust monitoring system, reliable data transmission, innovative model-

ling and communication of possible actions with stakeholders.  

For more information: http://www.ilews.eu  

 

Rainfall scenarios 

Rainfall scenarios are based on the KOSTRA atlas. From the statistical modelling of 

the rainfall intensities performed within KOSTRA three types of scenarios were cre-

ated for.  

Normal: These scenario are based on the standard intensities given by KOSTRA 

Maximum: As KOSTRA rainfall events are based on probability calculation upper and 

lower limits are given. Max scenarios are bases on the upper limit given in KOSTRA.  

Max-worst: Rainfall intensities given in KOSTRA are subject to uncertainties and 

these are also quantified (up to 20%). In max-worst scenarios the uncertainties are 

added to the maximum rainfall intensities. 

 

Rainfall distributions 

Three kinds of rainfall distributions are available:  

Equally distributed: same intensities for the entire course of the rainfall event 

Euler 1: a statistically derived rainfall distribution used within drainage planning. 

Euler 1 events have the highest rainfall intensities in the beginning of the rainfall 

event and decreasing intensities afterwards 

Euler 2: similar to Euler 1 scenarios but the highest intensities occur after one third of 

the duration of the rainfall. 

 

Disclaimer 

Slope stability calculation presented here is for informational use only. Calculations 

are based on simplified models and no recommendations for possible actions should 

be deduced of the CHASM WPS without the consultancy of experts. Neither the pro-

ject ILEWS nor the owner of the website are responsible for inappropriate use of the 

CHASM WPS. 

 

Contact 

For questions regarding the implementation of CHASM as WPS please contact 

info@geomer.de For questions concerning the calculation of slope stability, data used 
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and other model parameters please contact benni.thiebes@univie.ac.at For questions 

on CHASM please contact chasmenv@bristol.ac.uk 
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Appendix XIV: German tutorial for web-based CHASM decission-
support system 

1. Willkommen zum web-processing service des Projekts ILEWS! Auf dieser Websei-

te können Sie die Hangstabilität für unseren Untersuchungshang in Lichtenstein- 

Unterhausen an der Schwäbischen Alb, Deutschland ermitteln. Um zu beginnen 

aktivieren Sie bitte das Stiftsymbol oben links und klicken Sie bitte an zwei Stellen 

auf die Karte um ein Profil für die Berechnung zu erstellen. 

2. Bitte wählen Sie einen Namen für das gewählte Profil. Sie können weitere Model-

paramter wie z.B. die Laufzeit der Modellierung und die Länge der Zeitschritte 

verändern. Bitte wählen Sie die gewünschten Ausgabeinformationen. Bitte wählen 

Sie die gewünschten Niederschlagsszenarien, indem Sie auf RS klicken. 

3. Bitte wählen Sie ein Niederschlagsszenario für Ihre Modellierung.  

o Szenariotyp: normal, worst case und maximal worst case Szenario 

o Niederschlagsverteilung: gleichverteilt, Euler 1 oder Euler 2 

o Dauer des Niederschlagsereignisses: 6h, 12h, 24h, 48h oder 72h 

o  Jährlichkeit des Ereignisses: 1 in 1, 1 in 10, 1 in 50, 1 in 100 und klicken Sie an-

schließend OK 

4. Klicken Sie “Modell erstellen” um die Simulationseinstellungen in der Datenbank 

abzuspeichern, oder klicken Sie “Modell erstellen und berechnen” um auch direkt 

die Modellierung zu starten. 

5. Ihre Modellierung wird grade auf dem Server berechnet, bitte warten Sie bis die 

Kalkulation abgeschlossen ist. 

6. Das von Ihnen gewählte Hangprofil wird anhand der ermittelten Stabilität einge-

färbt und der FoS des letzten Modellierungsschrittes wird neben dem Profil ange-

geben Wählen sie unter Simulation>Modell Ergebnisse> Ergebnisse anzeigen um 

weitere Informationen zur Modellierung zu erhalten  

7. Wählen Sie ihr selbst erstellte Simulation aus, oder eine zuvor berechnete Simula-

tion. 

8. Mit einem Klick auf das Kurvensymbol hinter Ihrer Modellierung erhalten Sie 

eine grafische Darstellung des Verlaufs des FoS 

9. Gratulation! Sie haben die zentralen Funktionen des CHASM WPS durchgeführt! 
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Appendix XV: German frequently asked questions (FAQ) 

Einführende Informationen 

Der web-processing service von CHASM ermöglicht die Ermittlung der Hangstabili-

tät für das Untersuchungsgebiet des Projekts ILEWS. Für weitere Informationen lesen 

Sie bitte die FAQ und besuchen Sie die Websites. 

 

CHASM 

CHASM ist eine interiertes Hanghydrologie und -stabilitäts Softwarepaket. Das Pro-

gramm wurde entwickelt um den Einfluss unterschiedlicher Faktoren auf die Hang-

stabilität abzuschätzen. Es dient unter anderem der Vorerkundung für für bauliche 

Maßnahmen und zur Ermittlung des Effekts von bioengineering Maßnahmen.  

Quelle und weitere Informationen: http://chasm.info/ 

  

WPS 

Ein Web processing service ist eine standardisierte Form mit der GIS Berechnungen 

im Internet zur Verfügung gestellt werden. WPS können jegliche Berechnungen (Pro-

zesse) mit allen Inputs und Outputs als Web Service durchführen.  

Quelle und weitere Informationen:  

http://en.wikipedia.org/wiki/Web_Processing_Service  

 

CHASM-WPS 

Der CHASM WPS ist eine zentrale Entwicklung des ILEWS Projekts und wurde ge-

meinschaftlich durch die Firma Geomer (Deutschland) und der Arbeitsgruppe Geo-

morphologische Systeme und Risikoforschung (ENGAGE), Institute für Geographie 

und Regionalforschung, Universität Wien (Österreich) aufgebaut.  

Für weitere Informationen: http://www.geomer.de/ und 

http://geomorph.univie.ac.at/  

 

KOSTRA 

Kostra (auch KOSTRA-2000-DWD) ist ein vom Deutschen Wetterdienst (DWD) he-

rausgegebener Starkregenkatalog und steht für Koordinierte Starkniederschlags-

Regionalisierungs Auswertungen.  

Quelle und weitere Informationen: http://de.wikipedia.org/wiki/Kostra und 

http://www.itwh.de/S_kostra.htm  

 

Factor of Safety (FoS) 

Ein Maß der Hangstbilität. Ein FoS>1 ist demnach stabil und mit FoS<1 instabil.  

Für weitere Informationen: http://de.wikipedia.org/wiki/Reservefaktor  
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ILEWS 

Das Projekt ILEWS beschäftigt sich mit der Entwicklung und Implementierung von 

modularen und transferierbaren Frühwarnsysteme für gravitative Massenbewegun-

gen für lokale und regionale Skalen, welches sich auch auf andere Lokalitäten und 

Prozesse adaptieren lässt. In ILEWS werden Frühwarnsysteme als eine Kette betrach-

tet, welche mit dem Sensor im Feld als zentralen Teil eines robusten Monitorings-

systems beginnt und ebenso zuverlässige Datenübermittlung, innovative Modellie-

rungen und Kommunikation der Warnung, sowie Bereitstellung von Handlungsal-

ternativen für die Entscheidungsträgern umfasst.  

Für weitere Informationen: http://www.ilews.eu  

 

Niederschlagszenarien 

Die Niederschlagsereignisse basieren auf dem KOSTRA Atlas. Aufgrund der statisti-

schen Modellierung von Niederschlagsintensitäten innerhalb von KOSTRA wurden 

drei Typen von Niederschlagsereignissen gebildet:  

o Normal: Diese Szenarien beruhen auf den Standardintensitäten laut KOSTRA 

o Max: Da die Niederschlagsintensitäten in KOSTRA auf probabilitischen Mo-

dellierungen basieren werden obere und untere Klassengrenzen angegeben. 

Die max Szenarien basieren auf den oberen Klassengrenzen von KOSTRA. 

o Max-worst: Die Niederschlagsintensitäten in KOSTRA unterliegen Unsicher-

heiten, welche auch quantifiziert sind (bis zu 20%). In den max-worst Szena-

rien wurden diese Unsicherheiten den maximalen Szenarien zugeschlagen. 

 

Niederschlagsverteilung 

Drei unterschiedliche Niederschlagsverteilungen stehen zur Auswahl:  

o gleichverteilt: gleiche Niederschlagsintensitäten während des gesamten Nie-

derschlagsereignisses 

o Euler 1: ein statistisch ermittelter Modellregen der in der häufig in der Pla-

nung von Entwässerungssystemen Verwendung findet. Euler 1 Verteilungen 

weisen die höchste intensität des niederschlags zu Beginn des Ereinisses auf, 

anschliessend nimmt die Intensität ab. 

Euler 2: ähnlich wie Euler 1 Verteilungen. Der Unterschied besteht darin, dass die 
höchste intensität nach einem Drittel der Niederschlagsdauer erreicht wird. 
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elevation models, regional landslide susceptibility and hazard model-
ling (e.g. SINMAP, SHALSTAB, statistical models ) 

Field me-
thods 

Geomorphological mapping, drilling, geophysical methods (geolectric, 
seismic), geodetic surveying, terrestrial laserscanning, hydrological 
analysis, sensor installation, soil analysis 

Licenses Driving License for cars, trucks (max. 7,5 t) and motorcycles, PADI 
Open Water licence 

  

Publications 

Mayer, J., Glade, T., Thiebes, B., Bell, R. (2010): Integrative Frühwarnsysteme. In: Bell, 
R., Glade, T., Greiving, S., Mayer, J., Pohl, J. (eds): Integrative Frühwarnsys-
teme für gravitative Massenbewegungen (ILEWS) - Monitoring, Modellierung, 
Implementierung.17-31. 

Bell, R., Greiving, S., Pohl, J., Röhrs, M., Glade, T., Thiebes, B., Mayer, J. (2010): Unter-
suchungsgebiete. In: Bell, R., Glade, T., Greiving, S., Mayer, J., Pohl, J. (eds): In-
tegrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) - 
Monitoring, Modellierung, Implementierung. 32-45. 

Bell, R., Wiebe, H., Krummel, H., Camek, T., Becker, R., Öhl, S., Aslan, A. M., 
Burghaus,S., Li, L., Schauerte, W., Kuhlmann, H., Thiebes , B. (2010): Monitor-
ing. In: Bell, R., Glade, T., Greiving, S., Mayer, J., Pohl, J. (eds): Integrative 
Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) - Monitoring, 
Modellierung, Implementierung. 62-129. 

Thiebes, B., Bell, R., Glade, T., Aslan, A. M., Schauerte, W., Kuhlmann, H. (2010): 
Frühwarnmodellierung. In: Bell, R., Glade, T., Greiving, S., Mayer, J., Pohl, J. 
(eds): Integrative Frühwarnsysteme für gravitative Massenbewegungen 
(ILEWS) - Monitoring, Modellierung, Implementierung. 130-154. 

Bell, R., Mayer, J., Pohl, J., Greiving, S., Paulsen, H., Röhrs, M., Jäger, S., Wiebe, H., 
Thiebes, B. (2010): Erfahrungen aus dem integrativen Projekt. In: Bell, R., 
Glade, T., Greiving, S., Mayer, J., Pohl, J. (eds): Integrative Frühwarnsysteme 
für gravitative Massenbewegungen (ILEWS) - Monitoring, Modellierung, Im-
plementierung. 231-237. 

Bell, R., Mayer, J., Pohl, J., Greiving, S., Paulsen, H., Röhrs, M., Jäger, S., Wiebe, H., 
Thiebes, B., Aslan, A. M. (2010): Transferierbarkeit des integrativen Frühwarn-
systems. In: Bell, R., Glade, T., Greiving, S., Mayer, J., Pohl, J. (eds): Integrative 
Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) - Monitoring, 
Modellierung, Implementierung. 238-243. 

Bell, R., Becker, R., , Burghaus, S., Dix, A., Flex, F., Glade, T. Greiving, S., Greve, K., 
Jaeger, S., Janik, M., Kuhlmann, H., Krummel, H., Lang, A., Li, L., Mayer, C., 
Mayer, J., Padberg, A., Paulsen, H., Pohl, J., Roehrs, M., Schauerte, W., Thie-
bes, B. & Wiebe, H. (2009): ILEWS - Integrative Landslides Early Warning Sys-
tems. In: Stroink, L. (editor): Geotechnologien Science Report (Conference Pro-
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ceeding), Early Warning Systems in Earth Management, No. 13. Technical 
University Munich, Germany. 16 - 32. 

Bell, R., Glade, T., Thiebes, B., Jaeger, S., Krummel, H., Janik, M. & Holland, R. (2009): 
Modelling and web processing of early warning. In: J.-P. Malet, A. Remaître, 
T. Bogaard (Editors): Landslide Processes, From Geomorphic Mapping To 
Dynamic Modelling (Conference Proceeding), CERG Editions, Strasbourg, 
France. 249 – 252. 

Bell, R., Thiebes, B., Glade, T., Becker, R., Kuhlmann, H., Schauerte, W., Burghaus, S., 
Krummel, H., Janik, M. & Paulsen, H. (2008): The technical concept within the 
Integrative Landslide Early Warning Systems (ILEWS) project. 10th Interna-
tional Symposium on Landslides And Engineered Slopes (Conference Pro-
ceeding). Xi'an, China. 293 – 298. 

Thiebes, B., Bell, R. & Glade, T. (2007): Determinitische Analyse flachgruendiger Han-
grutschungen mit SINMAP - Fallstudie an der Schwaebischen Alb (Determi-
nistic landslide susceptibility analysis using SINMAP - case study in the 
Swabian Alb, Germany). In: Geomorphology for the Future (Conference Pro-
ceeding). Obergurgl, Austria. (in German with English abstract). 177 – 184. 

Glade, T., Becker, R., Bell, R., Burghaus, S., Danscheid, M., Dix, A., Greiving, S., 
Greve, K., Jaeger, S., Krummel, H., Kuhlmann, H., Paulsen, H., Pohl, J., Roehrs, 
M. & Thiebes, B. (2007): Integrative Landslides Early Warning Systems. In: 
Stroink, L. (editor): Geotechnologien Science Report (Conference Proceeding), 
Early Warning Systems in Earth Management, No. 10. Technical University, 
Karlsruhe, Germany. 89 - 100. 

Thiebes, B. (2006): Raeumliche Gefaehrdungsanalyse flachgruendiger Hang-
rutschungen - GIS gestuetzte Analyse an der Schwaebischen Alb. (Spatial Sus-
ceptibility Assessment of Shallow Landslides – GIS Based Analysis in the 
Swabian Alb). Unpublished Master Thesis. Department of Geographies, Uni-
versity of Bonn, Bonn, Germany. (in German). 124 p. 

Thiebes, B. (2003): Analysis of landslide effects in the Paekakariki area from 3. Oct. 
2003 rainstorm. Institute of Geological and Nuclear Sciences File Report 
LD5/941. Wellington, New Zealand. 14 p. 

 

Presentations 

Modelling landslide early warning - experiences from the ILEWS project . Normal 
University Nanjing, China. 28.08.2010. 

Landslide early-warning using CHASM as a web processing service. European Geo-
sciences Union General Assembly (EGU), Vienna, Austria. Geophysical Re-
search Abstracts, Vol. 11, EGU2009-6228. 21.04.2009. 

Fruehwarnsystem an der Schwaebischen Alb. Nutzen fuer Suedtirol? Workshop with 
local agents of the administration of the Autonomous Province of South Tyrol, 
Bolzano, South Tyrol. 07.04.2009. 

Quantitative Risk Assessment. Presentation in colloquium Geomorphology, Institute 
of Geography and Regional Research, University of Vienna, Austria. 
20.01.2009. 

SINMAP Stability Index Mapping – Determinische Gefaehrdungsanalyse flachgru-
endiger Hangrutschungen. Presentation for agents of the government of 
Lower Austria, Vienna, Austria. 30.09.2008 

Local and Regional Early Warning Systems. International School on "Landslide Risk 
Assessment and Mitigation (LARAM)", University of Salerno, Ravello, Italy. 
12.09.2008. 
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Landslide Monitoring and Modelling. Presentation of PhD thesis in Research Semi-
nar. Institute of Geography and Regional Research, University of Vienna, Aus-
tria. 23.06.2008 

Determinitische Analyse flachgruendiger Hangrutschungen mit SINMAP - Fallstudie 
an der Schwaebischen Alb. At: Geomorphology for the Future, Meeting of the 
Austrian Research Association on Geomorphology and Global Change, Ober-
gurgl, Austria. 05.09.2008 

Spatial landslide susceptibility assessment - GIS-based study in the Swabian Alb. 
Summer School 'Environmental Hazards and Sustainable Development in 
Mountain Regions'. Romanian Academy, Institute of Geography Bucarest, 
Romania. Patarlagele, Romania. 19.07.2006 

Deterministische Analyse flachgruendiger Hangrutschungen mit SINMAP. Presenta-
tion of Master thesis in colloqium of the Prof. Dikau working group. Depart-
ment of Geography, University of Bonn, Germany. 20.06.2006 

 

Posters 

Thiebes, B., Bell, R., Glade, T., Aslan, A. M., Jaeger, S., Anderson, L. & Holcombe, L.: 
Landslide early warning models – five applicartion within the ILEWS project. 
Geophysical Research Abstracts, Vol. 12, EGU2010-2503. European Geo-
sciences Union General Assembly (EGU), Vienna, Austria. 05.05.2010. 

Bai, S., Thiebes, B., Bell, R., Glade, T., Wang, J.: A comparison of susceptibility maps 
created with logistic regression and SINMAP for spatial planning in the Lan-
zhou City, China. Geophysical Research Abstracts, Vol. 12, EGU2010-6130-1. 
European Geosciences Union General Assembly (EGU), Wien, Österreich. 
05.05.2010. 

Thiebes, B., Jaeger, S., Bell, R., Janik, M., Krummel, H., Becker, R., Paulsen, H., Glade, 
T., Holcombe, L., Anderson, M.: Fruehwarnung gravitativer Massenbewegun-
gen als web-processing service. Statusseminar Geotechnologien, Early Warn-
ing Systems in Earth Management. Munich, Germany. 12. - 13.10.2009. 

Thiebes, B., Becker, R., Bell, R., Burghaus, S., Dix, A., Glade, T., Greiving, S., Greve, K., 
Jaeger, S., Krummel, H., Kuhlmann, H., Mayer, J., Paulsen, H., Pohl, J., Roehrs, 
M. & Schauerte, W.: Integrative Fruehwarnsysteme fuer gravitative Massen-
bewegungen. Deutscher Geographentag, Vienna, Austria. 20.09.2009. 

Thiebes, B., Jaeger, S., Bell, R., Janik, M., Krummel, H., Becker, R., Paulsen, H., Glade, 
T., Holcombe, L. & Anderson, M.: Fruehwarnung gravitativer Massen-
bewegungen als web-processing service. Workshop Warn- und Risikoman-
agement bei Massenbewegungen, Hannover, Germany. 25.06.2009. 

Bell, R., Glade, T., Krummel, H., Kuhlmann, H., Mayer, J., Becker, R., Dix, A., Greiv-
ing, S., Burghaus, S., Greve, K., Jaeger, S., Paulsen, H., Pohl, J., Roehrs, M., 
Schauerte, W. & Thiebes, B.: Integrative Fruehwarnsysteme fuer gravitative 
Massenbewegungen. Monitoring, Modellierung, Implementierung. Workshop 
Warn- und Risikomanagement bei Massenbewegungen, Hannover, Germany. 
25.06.2009. 

Thiebes, B., Becker, R., Bell, R., Burghaus, S., Dix, A., Glade, T., Greiving, S., Greve, K., 
Jaeger, S., Krummel, H., Kuhlmann, H., Mayer, J., Paulsen, H., Pohl, J., Roehrs, 
M. & Schauerte, W.: Integrative Landslide Early Warning Systems within the 
ILEWS Project. Geophysical Research Abstracts, Vol. 11, EGU2009-6212. Euro-
pean Geosciences Union General Assembly (EGU), Vienna, Austria. 
21.04.2009. 

Thiebes, B., Bell, R., Glade, T., Jaeger, S. & Anderson, M.: Near-Real Time Early Warn-
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ing Modelling im Projekt ILEWS. 3rd Central-European Congress on Geomor-
phology, Salzburg, Austria. 24.09.2008.  

Bell, R., Thiebes, B., Becker, R., Burghaus, S., Dix, A.,Glade, T., Greiving, S., Jaeger, S., 
Krummel, H., Paulsen, H., Greve, K., Pohl, J., Roehrs, M. & Schauerte, W.: 
ILEWS – Integrative Landslide Early Warning System. 3rd Central-European 
Congress on Geomorphology, Salzburg, Austria. 24.09.2008. 

Thiebes, B., Bell, R., Becker, R., Burghaus, S., Dix, A., Glade, T., Janik, M., Kuhlmann, 
H., Paulsen, H. & Schauerte, W.: Landslide monitoring and modelling within 
the Integrative Landslide Early Warning Systems (ILEWS). Geophysical Re-
search Abstracts, Vol. 10, EGU2008-A-10030. European Geosciences Union 
General Assembly (EGU), Vienna, Austria. 18.04.2008. 

Danscheid, M., Becker, R., Bell, R., Burghaus, S., Dix, A., Glade, T., Greiving, S., 
Greve, K., Jaeger, S., Krummel, H., Kuhlmann, H., Paulsen, H., Pohl, J., Roehrs, 
M., Schauerte, W. & Thiebes, B.: Integrative landslide early warning systems 
(ILEWS). Geophysical Research Abstracts, Vol. 10, EGU2008-A-09998. Euro-
pean Geosciences Union General Assembly (EGU), Vienna, Austria. 
15.04.2008. 

Thiebes, B., Bell, R. & Glade, T.: Deterministic landslide susceptibility analysis using 
SINMAP - a case study in the Swabian Alb. Geophysical Research Abstracts, 
Vol. 9, 11199. European Geosciences Union General Assembly (EGU), Vienna, 
Austria. 20.04.2007. 

Thiebes, B., Bell, R. & Glade, T.: GIS gestuetzte Gefaehrdungsmodellierung flachgru-
endiger Hangrutschungen mit SINMAP. 17th Meeting of Working Group 
Natural Hazards, GIS in Natural Hazard Analysis and Risk Management, 
Augsburg, Germany. 14.12.2006. 

 
Teaching 

Underground investigations of landslides. Intensive Course for the MountainRisks 
Project, Les Diablerets, Switzerland. 22. - 24.06.2009. 

Field and Laboratory Methods in Physical Geography. Lecture (in German), WS 
2008/2009, Institute for Geography and Regional Research, University of Vienna, 
Austria. 

Exercises - Field and Laboratory Methods in Physical Geography . Practical course (in 
German), WS 2008/2009, Institute for Geography and Regional Research, University 
of Vienna, Austria. 
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o AK Naturgefahren/Naturrisiken (Working Group Natural hazards/Natural 
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o AK Geomorphologie (Working Group Geomorphology) 
o Österreichische Geographische Gesellschaft (ÖGG) (Austrian Geographical Socie-

ty) / Austrian Research Association on Geomorpholgy and Environmental 
Change (Geomorph.at) 
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