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1. Introduction and objectives 
 
 

The nutritional needs and habits have been changed widely during the last decades 

especially the western diet. Food variety and availability make the individuals’ choices 

become  more   complicated.  This  would  reflect  the  gradient  in  nutritional  habits. 

Populations that have better  access to processed and market foods differ in their fat 

and fatty acids intakes from other populations that rely on their traditional food types. 

 

The eating patterns have been changed widely as a result of the increased in the living 

standards, industrialization, urbanization and the market globalization. However, those 

patterns have changed  to be unhealthier dietary habits combined  with less physical 

activities which make the energy balance goes to the overweight side (i.e. obesity) and 

nutrition related diseases (Ogura et al., 2010). 

 

That was first noticed in 1972 in Greenland Eskimos population when compared with 

Danish  population,  they  had  lower  levels  of  serum  cholesterol  (Chol),  low  density 

lipoprotein (LDL) and triglycerides (TG) with a low myocardial infarction rate (Amiano et 

al., 2001). Cree and Inuit nations  still eat large quantities of fish and marine products 

(i.e.  sea  food)  from  the  traditional  food   type   which  makes  their  n‐3  fatty  acids 

concentration  one  of  the  highest  grade  among  other  populations  (Dewaillya  et  al., 

2003). 
 

 

Establishing  the  nutritional  requirement  values  to  support  health  and  well‐being  of 

individuals  and  populations  have  and  still  are  topics  that  require  regular  scientific 

updates.  Constructing  taxonomies  and  scientific  categories  of  such  requirements  is 

considered to be very complex as they are adjusted with age and physiological status. In 

2008,  the  third  meeting  of  the  Food  and  Agriculture  Organization  /  World  Health 
 

Organization (FAO/WHO) experts was held on fat in human nutrition (Burlingame et al., 
 

2009). 
 

 

Recent publications have addressed the impact of fat and fatty acids on health, their 

role in the  body are somehow clear. Fat and fatty acids are now believed to have an 
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important role on the early life development, and later life nutrition related chronic 

disease. Fat  and fatty acids requirements through life stages have been studied. Fat 

contributes with increasing the food palatability and soft mixture, plus they have critical 

role in early growth development (embryonic progress to childhood). Certain fatty acids 

have specific roles in vivo. While long chain  n‐3 polyunsaturated fatty acids (LCPn‐3) 

enhance central nervous system (CNS) and brain  development,  saturated fatty acids 

(SFA)  and  trans‐fatty  acids  (TFA)  contribute  with  the  cardiovascular  disease  (CVD) 

(Burlingame et al., 2009). 

 

In  2004,  omega‐3  index  expression  had  been  defined  as  the  red  blood  cells  (RBC) 

percentage   of   Eicosapentaenoic  Acid  +  Docosahexanoic  Acid  (EPA  +DHA).  RBC  is 

preferable for assessing  omega‐3 with respect to the half‐life of RBC being 4‐6 times 

longer than plasma fractions (von  Schacky, 2010). Omega‐3 index is considered to be 

used as a risk biomarker for the coronary heart disease (CHD) especially sudden cardiac 

death (Harris, 2007a). 

 

Many studies have analzyed plasma phospholipids (PL) and cholesterol ester (CE) to 

estimate the fatty acids (FA) composition to estimate the short term of dietary fat intake 

(King et al., 2006; Tvrzicka et al., 2002). Fatty acid compositions of RBC reflect the longer 

dietary  intake  (Harris  and  Thomas,  2009).  However,  assessing  EFA  and  fatty  acids 

composition from whole blood is not widely practiced. Nevertheless, the ideal method 

to assess dietary fat intake still does not exist especially  for very long chain n‐3 fatty 

acids (Amiano et al., 2001). 

 

The objective  of  the  study  is  to  compare  the  fatty  acid  pattern  in  different  blood 

components to find the simplest and most appropriate method for the rapid validation 

of the essential fatty acids in humans. Comparing the different blood components can 

lead to a specifying the preferred component for easy and rapid analysis of fatty acids 

while giving valid information about the status of essential fatty acids. 
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2. Literature Review 

2.1. Fatty acid‐structure and nomenclature 
 

2.1.1. Structure 
 
 

Fatty acids exemplified by a repeating series of aliphatic tail of methylene group with 

hydrocarbon  (CH3) in one hand and the carboxyl group (‐COOH) on the other (Arab, 

2003). The length of carbon chain varies from 2 to 30 carbons or more. Fatty acids are 
 

considered as the major components of the dietary fats that derived from acylglycerols, 

free  fatty   acids,  phospholipids   and  sterol  esters.   Nevertheless,  Triglycerides  are 

considered the main source. 100g of TG yield approximately 95g fatty acids. However, 

fatty  acids  in  the  body  are  incorporated  with  blood  lipids,  in  fats  deposits  and  in 

structural lipids in biological membranes (Ratnayake and Galli, 2009). 

 

Regarding  the  bonds  between  carbon‐carbon  in  the  fatty  acids;  fatty  acids  can 

potentially be classified as saturated fatty acids if no double bonds occur, unsaturated 

fatty acids if they contain  1  or more double bonds in the chain. Fatty acid is called 

monounsaturated when it contains 1  double bond, and polyunsaturated (PUFA) when 

more  than  1  double  bonds  exist.  The  positions  of  these  double  bonds  within  the 

hydrocarbon chain have many possibilities which might formulate the fatty acid as cis or 

trans configured (Ratnayake and Galli, 2009). 

 

2.1.2. Nomenclature 
 
 

A chemical name should clearly describe the chemical structure. This has been a good 

practice for the fatty acids by using the systematic nomenclature which is recommended 

by the International  Union of Pure and Applied Chemistry [IUPAC‐IUB Commission on 

Biochemical  Nomenclature,  1978].  Fatty  acid  is  named  on  the  basis  of  the  carbon 

number, the number and the position of the  double bond is relative to the carboxyl 

group (Arab, 2003). The carboxyl carbon is regarded as  number 1 and the fatty acid 

chain’s carbons are numbered accordingly from the carboxylic carbon. While the IUPAC 

system is accurate but fatty acid names are too long thus biochemists and nutritionists 
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use  the  ‘n‐minus’  system  for  naturally  occurring  cis  unsaturated  fatty  acids  that 

categorize   the   fatty  acids  into  different  families  which  share  same  biosynthetic 

pathways. In regard to the bonds between carbon‐carbon in the fatty acids; fatty acids 

may classified as saturated fatty  acids if no double bonds occurred, unsaturated fatty 

acids if they contain one or more double bonds in the chain (Ratnayake and Galli 2009). 

 

Omega system is referred to the ‘n‐minus’ system. It was Holman RT who established 

the  numbering system for the unsaturation of fatty acids, the "omega nomenclature" 

(Holman 1964; Holman 1998). 

 

Delta (∆) system is another widely used system to identify fatty acids in which it is based 

on the  carbon atoms number between the carboxyl carbon and the nearest double 

bonds to the carboxylic group. In ∆ system; all double bonds position are specified and 

also their cis/trans configuration (Ratnayake and Galli 2009). 

 

2.2. Fatty Acid Classification 
 
 

Fatty acids can be classified according to (1) total number of C atoms (even and odd 

chains), or (2) to the length of hydrocarbon chain (short, medium and long chains), or (3) 

according to the nature of the hydrocarbon chain nature (saturated, unsaturated). 

 

2.2.1. According to the fatty acid synthesis 
 

2.2.1.1. Non‐essential fatty acids 
 
 

Saturated fatty  acids  and  monounsaturated  fatty  acids  are  non‐essential  fatty  acids 

because  humans  can derive  them  from Carbohydrate. SFA can be biosynthesized  in 

humans by the addition of 2‐carbon units to the acyl chain. MUFA are biosynthesized by 

the insertion of a cis double bond between C9 and C10 counting from the carboxyl end 

of the acyl chain. For example; oleic  acid  (18:1n‐9) can be derived from stearic acid 

(18:0) and palmitoleic acid (16:1n‐7) to palmitic acid (16:0) (Paganelli et al., 2001). 



6 
 
 
 
 

2.2.1.2. Essential fatty acids 
 
 

In 1929, Burr discovered the Long Chain Polyunsaturated Fatty Acid (LC PUFA) linoleic 

and linolenic  acids (Holman 1998; Burr GO et al., 1930). However, Burr and Burr are 

considered to be the first who invented the term essential fatty acid (EFA) in 1929 (Burr 

and  Holman  1988).  Arachidonic  Acid  (AA),  EPA,  and  DHA  might  be  considered  as 

conditionally essential as their production would be insufficient (Strijbosch et al., 2008). 

These publications have resulted towards identifying signs of fat  free diet seen in rat 

which both lionleic and linolenic acids implement that effect (Holman 1998), nowadays 

essential had a different definition in which they are the fatty acids that have to be 

obtained from the food (Crawford et al., 2009). 

 

Mammals lack the enzymes to introduce double bonds at carbon atoms beyond C9 thus 

all fatty acids containing a double bond at positions beyond C9 have to be supplied in 

the diet. The two lacking enzymes are named ∆12 and ∆15 desaturases. While in plant, 

Linoleic acid can be  desaturated  to α‐linolenic acid by the insertion of a double bond 

between carbon 3 and 4 (from the methyl carbon). In mammalian cells; three important 

families of fatty acids occurred: Omega‐3, Omega‐6, and Omega 9. The first two families 

are essential in mammals and must be supplemented from the diet. Consequently, cell 

membrane composition of the EFAs is determined by the dietary  intake (Strijbosch et 

al., 2008). 

 

The parental essential fatty acids are the two basic precursors of poly unsaturated fatty 

acids (PUFA) (lionleic acid 18:2n‐6) for the omega 6 family, and (α‐linolenic acid 18:3n3) 

for the omega‐3 family (Tvrzická et al., 2002). It should be clear that all EFA are PUFAs 

but not all PUFAs are EFA (Undurti 2008). 



7 
 
 
 
 

2.2.2. According to the fatty acid structure 
 
 

2.2.2.1.  Saturated fatty acids (SFA) 
 
 

Fatty  acid  contains  only  single  carbon  to  carbon  bonds,  in  nature  this  occurs  in 

unbranched structure with even carbon atoms. Chemical structure in general is R‐COOH 

wherein R group is straight hydrocarbon chain of the form CH3(CH2)X. According to the 

chain length; FAO/WHO Experts Consultation recommended the following subclasses: 

 

•  Short chain fatty acids: between 3‐7 carbon atoms. 
 

•  Medium chain fatty acids: between 8‐13 carbon atoms. 
 

•  Long chain fatty acids: between 14 and 20 carbon atoms. 
 

•  Very long chain fatty acids: within 21 or more carbon atoms. 
 

 

2.2.2.2.  Unsaturated fatty acids (USFA) 
 
 

Fatty acid contains double bonds and hence more chemically reactive than SFAs, the 

more double bonds the more reactivity found. According to the double bond number; 

Unsaturated Fatty Acids (USFA) are categorized into two subcategories: Monounsaturated 

Fatty Acids [MUFA], and Polyunsaturated Fatty Acids [PUFA]. However, according to the 

chain length; FAO/WHO Experts Consultation recommended the following subclasses: 

•  Short chain unsaturated fatty acids: with 19 or fewer carbon atoms. 
 

•  Long chain unsaturated fatty acids: with 20‐24 carbon atoms. 
 

•  Very long unsaturated fatty acids: with 25 or more carbon atoms. (Ratnayake 

and Galli, 2009). 

 

2.2.2.3.  Cis‐Monounsaturated fatty acids (cis‐MUFA) 
 
 

Naturally the largest parts of the double bonds of the unsaturated fatty acids in food 

fats are found in the cis configuration (Ratnayake and Galli 2009). There is a suggestion 
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that MUFA reflect SFA dietary intake but doesn’t reflect MUFA intake which might be 

explained by MUFA being endogenously biosynthesized from PUFA (MA et al., 1995). 

 

2.2.2.4.  Trans‐fatty acids (TFA) 
 
 

USFA that contain at least one double bond in the trans configuration is called trans fat. 

The disadvantages of such recent FA are now known to lead to increase the risk of non 

communicable diseases such CHD and metabolic syndrome. Such FAs have affections on 

blood lipoproteins, while they increase Low Density Lipoprotein (LDL) (the same effect 

of SFA) and TG, they decrease HDL (Asgary et al., 2008). 

 

Small amount (2‐6%) of trans configuration of the USFA double bonds are presented in 

ruminant deposition and milk fats; although the most naturally USFAs double bonds of 

the food fats are found in cis configuration. It was in 1929 when trans isomers of fatty 

acids were demonstrated (Bertram  1928). The major intake of the trans fatty acids in 

human diets  arise  from food  technological  treatment  such  as  hydrogenation  of  oils 

(Ratnayake and Galli 2009). 

 

2.2.2.5.  Polyunsaturated fatty acids (PUFA) 
 
 

According to the double bonds location; natural PUFAs from the methyl terminus of the 

acyl chain with all cis configuration can be alienated into 12 different families from n‐1 

to n‐12. However,  regarding the presence and human health and nutrition, the most 

important two families are n‐3  and n‐6. Both are essential for humans because they 

cannot be synthesized from the organism,  and  have hence to be provided via dietary 

intake  (Ratnayake  and  Galli  2009).  High  long  chain   poly  unsaturated  fatty  acids 

(HLCPUFA) are found in retina membranes, brain synapses and sperm (Arab, 2003). 

 

2.2.2.5.1. n‐6 PUFA 
 
 

Linoleic  acid  structure  was  elucidated  by  (Erdmann  et  al.,  1909),  and  synthesis 

description  was, at a later time, presented by (Raphael et al., 1950). n‐6 PUFA is an 



9 
 
 
 
 

important family with respect to human health. It is considered essential. In nature, 

there are  many important n‐6 PUFAs such as lionleic acid (LA), γ linolenic acid (GLA), 

docosapentaenoic acid (DPA), aracidonic acid (AA), etc. Nevertheless, LA is the parent of 

this  family.  It  is  widely   distributed   in  almost  every  dietary  fat;  therefore  some 

population might over consume LA. In vivo, LA can produce AA and Dihomo‐ γ ‐Linolenic 

Acid (DGLA) and those are substrates for  eicosanoids. AA is mainly present in animal 

products especially free‐range animals and rarely in the plant kingdom (Ratnayake and 

Galli, 2009). 

 

2.2.2.5.2. n‐3 PUFA 
 
 

n‐3 PUFAs family is present in both the animal and plant kingdoms and it is considered 

very important with respect to human health and nutrition. There are many important 

n‐3  PUFAs  such   as  eicosapentaenoic  acid  EPA,  docosapentaenoic  acid  DPA,  and 

docosahexanoic acid DHA. Nevertheless, ALA α‐lionlenic acid is the parent of this family. 

However, each fatty acid has a main role in vivo. For example; EPA is a precursor for the 

n‐3  derived  prostaglandins  (PGs)  and  thromboxanes  (TXs),  DHA  is  the  precursor  of 

docosanoids and it is highly presented in some highly specialist  tissues like brain and 

retinal cells, sperm and cardiomyocytes (Ratnayake and Galli, 2009). 

 

Several studies have demonstrated that n‐3 FA lower levels of triacylglycerol and the 

increase level of HDL (Dewaillya et al., 2003), n‐3 FA can also decrease the atherogenic 

eicosanoids  production  and  modulate  plasma  lipids  (Sun  et  al.,  2008).  It  has  been 

suggested that plasma n‐3  PUFA (especially 22:6n3) form good biomarkers for dietary 

intake (MA et al., 1995). 

 

Fish is the richest source for major n‐3 PUFAs (EPA and DHA). However, there is a high 

correlation   between  serum  EPA  and  DHA  in  cholesteryl  ester  and  phospholipids 

fractions and fish intake which makes very long chain n‐3 PUFA considered as a valuable 

biomarker fish dietary intake (Amiano et al., 2001). 
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2.2.2.6.  Furan Fatty acids 
 
 

Spiteller has reviewed that there are a large group of unusual fatty acids distinguished 

by the furan  ring occurred in a low level in many natural products and also in human 

blood. Human beings obtain furan fatty acids from food (fish, soft corals, vegetable oils) 

and incorporate  them into PLs  and  CEs (Spiteller, 2005; Ratnayake and Galli, 2009). 

Furan fatty acids can be found in different amounts amongst all the blood samples, in 

serum they were found only in PL but not in CE or TG (Wahl et al., 1995). 

 

Furan FA (F‐acids) are identified by the fatty acids characterized by side chain of a propyl 

or pentyl in one of the alpha‐positions; and the other side chain with SFA with COOH 

end (Spiteller, 2005). Yet, some features of this family need to be clinically tested. For 

instance,  furan  fatty  acids  have  the  ability  to  be  radical  scavenging  which  might 

contribute to the cardioprotective functions of the fish and fish oil (Ratnayake and Galli, 

2009). 
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2.2.3. Membrane Lipids 
 
 

2.2.3.1.  Phospholipids 
 
 

Phospholipids are considered to be the main class of membrane lipids. They consist of 

four  substances: the platform where the fatty acids attached with, one or more fatty 

acids, phosphate  and an alcohol attached to the phosphate. They are also known as 

glycerophospholipids. As shown  in (Fig 2.2.3.1.) X group natures in the phospholipids 

produce  many  classes  such  as  phosphatidylcholine,  phosphatidylethanolamine,  and 

phosphatidylserine in biological membrane. However, R1 in the sn1 is usually esterified 

to SFA while R2 in the sn2 is esterified to PUFA while at sn3 the PL molecule is provided 

by a hydrophilic region (phosphorus with nitrogen base or sugar molecule). 

 
 
 

 
 

 

Fig 2.2.3.1. Chemical structure of phospholipids, P= phosphate, R1, R2= fatty acids, X= 
Choline, ethanolamine, serine, inositol or glycerol {Adapted from (Ratnayake and Galli 
2009)}. 

 

2.2.3.2.  Cholesterol 
 
 

Cholesterol is a member of the sterol lipids, although it is an important constituent of 

the membrane lipids. Sterol lipids consist of 3 main components: the steroid nucleus of 

the 4‐ring  structure, the hydrocarbon side chain and the alcohol group. Cholesterol is 
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regarded as the animal fat sterol as it rarely occurs in vegetable oils in trace amounts 

 

(Ratnayake and Galli 2009) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig  2.2.3.2.  Chemical  structure  of  a  cholesterol  {adapted  from  (Ratnayake  and  Galli 
2009)}. 
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2.3. Fat digestion, absorption and delivery to tissue 
 
 

Digestion   breaks   down   the  large  components    of   food   into   substances   the 

gastrointestinal tract lining can absorb. This process requires secretion of enzymes from 

different part of the Gastrointestinal (GI) tract. Triglycerides are the main component in 

the natural fat intake with  other few types of fatty acids such as SFA and USFA. The 

main site for fat digestion is the small intestine (Frances Sizer and Ellie Whitney, 2007). 

 

However, as dietary fat intake does not exist for pure fat and other components thus 

when fat enters the stomach it floats on the top of the fluid components in the stomach. 

Bile is the main factor  to emulsify fat in the small intestine while digestive enzymes 

complete  most  fat  digestion  in  the  small  intestine.  Those  digestive  enzymes  cleave 

triglycerides into free fatty acids, glycerol, and monoglycerides (Frances Sizer and Ellie 

Whitney, 2007) 

 

Free fatty acids are absorbed by the intestinal villi. The small volume of short chain fatty 

acids and glycerol allow them to be absorbed into the bloodstream immediately to be 

used by cells or stored in adipose tissue. However, short chain fatty acids is oxidized in 

the liver, while long chain fatty acids combines with protein (as they are not soluble in 

the  blood  aqueous  median)  to  form  chylomicrons  and pass  to  bloodstream  via the 

lymph vessels (Ratnayake and Galli 2009). 

 

Dietary fatty acids absorption would reach > 95%. On the other hand, absorption of 

dietary TG depends on the TGs physical natures that are found in the food (Ratnayake 

and Galli, 2009). To increase the absorption of the long chain PUFAs (especially DHA and 

EPA), Garaiova suggested to pre‐emulsification the oil mixture before eating while that 

had no effect on shorter chain SFAs absorption (Garaiova, 2007). 

 

TGs are mainly structured of fatty acids which are also found in PL and CE. Fatty acids in 

vivo are usually found combined and not as free fatty acids (Arab, 2003). 
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Similar amount of the n‐3 FAs intake either in form of capsules or salmon fish have 

different plasma EPA and DHA concentrations, from the later were significantly higher 

according to many studies (Ratnayake and Galli, 2009). 
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2.4. Fatty acids synthesis 
 
 

Many fatty acids can be synthesized, elongation and desaturated in vivo which affect 

the fatty acids measuring as indicator for the dietary intake (Arab, 2003). Nonessential 

fatty acids NEFA (SFA and MUFA) are totally identified to be supplied from dietary intake 

and also from in vivo biosynthesis from acetate precursors which might be PUFA or non‐ 

fatty  components  such  as  carbohydrates  and  glucogenic  amino  acids  (Brenna  and 

Lapillonne 2009). TFA, LA, ALA, Long Chain Saturated Fatty Acid LCSFA (22:0 and 24:0) 

are  obtained  from  dietary  intake,  while  16:0,  18:0,  16:1n7,   18:1n7  and  OA  are 

synthesized endogenously from carbohydrates (King et al., 2006). 

 

Synthesizing fatty acids in vivo swing between three processes; (1) synthesize SFA from 

acetyl Coenzyme A (CoA) units that derive from carbohydrate intake, (2) elongate the FA 

by entering 2 carbon atoms at once which create new fatty acid chain (usually occurs in 

endoplasmic reticulum),  and  (3)  desaturate  fatty  acid  by  entering  double  bond  and 

remove the hydrogen (converting the saturated bond to an unsaturated one). The last 

process requires desaturase enzymes, and mammalian are deficient in ∆12 that convert 

Oleic Acid (OA) to LA (n‐9 to n‐6), and ∆15 that convert LA to ALA (Arab 2003). 

 

LA  and  ALA  as  mentioned  before  are  considered  the  EFA  parent  in  which  their 

metabolized  produce  the main two families of PUFA. This metabolize  occurs by the 

same microsomal enzyme system (Ratnayake and Galli, 2009). In tissue structural lipids 

in both humans and animals the two  biochemistry (desaturation and elongation) are 

altering to produce up to 22 carbons fatty acid chain or long (Holman 1998). Human can 

enter double bonds at the ∆9 position but they cannot enter it  between ∆10 and the 

methyl terminal end. Those reactions use the same enzymes but they are independent 

and never cross their reactions series (Ratnayake and Galli, 2009). 

 

The pioneers  to describe  the in vivo conversion  of stearic  acid into oleic acid were 

(Schoenheimer  et  al.,  1936).  Synthesis  of  linoleic  acid  and  linolenic  acid  were  first 

described by (Raphael et al., 1950). Wider and Holman reported that LA is the precursor 



16 
 
 
 
 
of AA, while ALA is the precursor of the pentaene and hexaene acids. In rat fed fat free 

diet; oleic  acid was the precursor  of mead acid (which was known as trienoic acid) 

(Holman, 1998).  However, it is well known that LA and ALA are the precursors of the 

LCPn‐3 and LCPn‐6 (Sprecher  et  al., 1995). LA can be converted to LCPUFAn‐3 in vivo 

(Sun et al., 2008) 

 

Since 1963, there were many experimental studies investigating the effect of linoleate 

and  linolenate intake on the concentration of AA and ESA (eicostrienoic acid). It was 

shown that intake  of linolenate and linoleate reduce the ESA level in rat liver. When 

supplied the rat (through fat free diet course) with linolenate, a slight reduction on the 

AA and DPA levels appeared (Mohrhauer and Holman, 1963). 

 

Fatty acids’ intake has a noticeable effect on the de novo fatty acids biosynthesized. 

Both PUFA and SFA suppress FA synthesizing. High fat intake leads to a reduction in the 

de novo FA synthesis  (Arab 2003), while high carbohydrates intake elevates the liver 

conversion of carbohydrates to fatty  acids especially SFA (14:0 and 16:0), n‐7 and n‐9 

(King et al., 2006). However, habitual dietary intake, physical activity, genetic characters 

and  hormonal  status  have  also  an  influence  on  the  individuals’  fatty  acids  profile 

(Hodson et al., 2008; Ratnayake and Galli, 2009). 

 

Alcohol would be metabolized to SFA in vivo which increase  the SFA concentration. 

Alcohol also decreases the 18:2n6 in plasma PL and CE (MA et al., 1995), inhibit ∆6 and 

∆5 desaturases which decrease the conversion of LA to AA, ALA to EPA and DHA, and 

also decrease the LCPUFA concentration (Ratnayake and Galli 2009). However, alcohol 

drinkers showed to have higher 16:0 in RBC PL than non‐drinkers (Heude et al., 2002). 

 

Undurti in the Lipids in the Health and Diseases journal summarized the inhibitor and 

activator factors of ∆6 and ∆5 desaturases that interference the EFA metabolism. It was 

mentioned   that   SFA,   TFA,   cholesterol,   alcohol   intakes,   adrenaline   level,   insulin 

deficiency, diabetes, hypertension, oncogenic viruses (such hepatitis C), glucose rich diet 

and protein deficient inhibit ∆6 and ∆5 desaturases which reduce the formation of GLA, 

DGLA, AA, EPA, and DHA. Whilse fat free diet, caloric restriction, insulin and co‐factors 
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(e.g. zinc, magnesium, pyrixodine, and nicotinic acid) would enhance their regulation 

(Undurti,  2008); lipid lowering drugs have an effect on the LA conversion (Ratnayake 

and Galli, 2009) 

 

Smoking has an effect on the LA conversion, the serum LCPUFAs, and lower serum AA 

and  DHA.   Negative  smokers  might  face  changes  in  n‐3  biosynthetic  pathways  in 

epithelial cells; in  addition  women who smoke during their pregnancy would cause a 

reduction in their infants LCPUFA levels (Pawlosky, 2007; Ratnayake and Galli, 2009). 

 

Oral hormonal  replacement  therapy  in  postmenopausal  women  would  enhance  the 

elongation   and  the  desaturation  activity  that  transform  LA  to  AA  in  plasma  CE. 

Increasing AA level enhance the eicosanoids synthesizing which has an important role in 

CVD (Lewis‐Barned et al., 2000). 

 

LA metabolic cascade was described by (Marcel et al., 1968) as follows: 

18:2ω6 –› 18:3ω6 –› 20:3ω6 –› 20:4ω6 –› 22:4ω6 –› 22:5ω6 
 
 

ALA metabolic was described by (Klenk and Mohrhauer, 1960) as follows: 

18:3ω3 –› 18:4ω3 –› 20:4ω3 –› 20:5ω3 –› 22:5ω3 –› 22:6ω3 
 

 

AA and EPA biosynthesizing depends on the LA and ALA desaturation at the position 6. 

The  assumption  of  having  a  large  amount  of  DHA  and  low  levels  of  22:5n6  in  the 

membrane lipids would be justified by the faster conversion of EPA to 24:6n3 than AA to 

24:5n6 (Sprecher et al., 1995). The conversion of n‐6 PUFA is accelerated by the LA high 
 

intake and concentration with low ALA in lipids tissue (Ratnayake and Galli 2009). On 

the other  hand, the n‐3 and n‐6 reactions rates of desaturation and elongation were 

found to be similar (Sprecher et al., 1995). 

 

The conversion of ALA to n‐3 LCPUFA is not sufficiently provided and thus the adequate 

intake of EPA and DHA are recommended (Ratnayake and Galli, 2009). 
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Fig 2.4. Representation of the pathways of n–6 and n–3 fatty acid metabolism 
(Ratnayake and Galli, 2009) 
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2.5. Essential fatty acids in human health and disease prevention 
 

2.5.1. Heart diseases 
 
 

The attention paid for the blood lipid bprofile with respect to cardiovascular disease is 

ample.  Meta‐analyse‐studies  demonstrated  a  positive  correlation  between  total  fat 

intake and total  cholesterol, LDL and HDL cholesterol levels; however in other studies 

these results could not be confirmed. These conflicting results can be caused by the fact 

that the intake of fat vary widely in their fatty acids composition pattern. It is also well 

known  the  reduction  of  body  weight  through  changing  the  energy  balance  has  an 

impact on the blood lipid profile. For each 1 kg body weight loss, TGs were lessened by 

0.011 mmol/l, and HDL increased by 0.011 mmol/l (Elamdfa and Kornsteiner, 2009). 
 

 

High intake  of  SFA  and  cholesterol  along  with  low  intake  of  PUFA  stimulate  serum 

cholesterol level and CHD risk (Skeaff and Miller, 2009). Nevertheless, TFA consumption 

plays a role on the CHD as it affects the serum lipoproteins. TFA are considered as pro‐ 

inflammatory (Galli and Calder 2009). 

 

The role of EPA in preventing thrombosis and atherosclerosis was studied by (Dyerberg 

et al., 1978). In recent days, WHO is demonstrated with the protective effect of linolenic 

acid, EPA, and DHA and the inverse effect of the SFA myristic and palmitic with regards 

to the increasing the risk of cardiovascular disease and reducing the mortality (Anderson 

et al.,  2009).  Especially  n‐3  LCPUFA  (Skeaff  and  Miller,  2009)  from fish  and fish  oil 

supplements were found to be protective agents against cardiovascular diseases (Welch 

et al., 2006). The FAO/WHO was reported that replacing  SFAs  with PUFAs in dietary 

intake lower LDL‐cholesterol, total cholesterol/ HDL‐cholesterol ratio  and reduce the 

risk of CHD (Elmadfa and Kornsteiner, 2009). 

 

Harris has reported that the intake of n‐3 (EPA and DHA) fatty acids has a beneficial 

effect on the  heart disease. 850 mg/day would decrease 25% of death from CHD and 

45% of sudden cardiac death. In case of primary prevention two meals of fatty fish 

correspond   to   (500mg)   EPA+DHA  per  week   would   be  recommended,   while  for 
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secondary prevention 1 g EPA+DHA /day would decrease the risk of CHD death (Harris 

and  von   Schacky,  2004).  EPA  and  DHA  supplementation  reduce  the  CVD  risk  by 

stabilizing  the  arterial   plaque  which  is  considered  as  a  potential  mechanism  to 

secondary reduce inflammation (Harris, 2010a). 

 

In Japan, 7.8 out of 100.000 persons would suffer from sudden cardiac death (SCD) (von 

Schacky and Harris, 2007) with an omega‐3 index in RBC equal to 10%, while in Western 

countries the incidence is  much higher and amounts to 150 out of 100.000 with an 

omega‐3 index in RBC equal to 4.5%. In Seattle, a case‐control study showed that when 

omega‐3 index is 3.3% the sudden cardiac death was 1.0 while when the index increased 

to 6.5% the risk decreased to 0.1 person per 100,000 per year (von Schacky, 2009). 

 

2.5.2. Overweight and Obesity 
 
 

Recently, obesity is considered as an epidemic since the prevalence in most countries 

has increased significantly. FAO/WHO reported in 1994 that high fat intake increases the 

risk of obesity,  CHD and certain cancer types (Smit et al., 2009; Ogura et al., 2010; 

Kobayashi et al., 2001). 

 

While some prospective studies have demonstrated the hypothesis of food with high in 

fat and energy promote weight gain, other prospective studies debated this hypothesis 

and found some conflicting results. However, in short term intervention studies, it was 

clear that reducing body weight could be achieved by lowering the energy percentage 

from fat but not on an ad libitum basis (Elmadfa and Kornsteinerm, 2009). 

 

The  effect  of  diet  rich  in  medium‐chain  fatty  acids  on  controlling   weight   was 

demonstrated  by  (Kaunitz  et  al.,  1958).  n‐3  PUFA  might  positively  contribute  in 

controlling  some  metabolic  mechanism  of  obesity  (Nobili  et  al.,  2011).  In  rat‐based 

studies fish oil supplements were proven to decrease obesity but not in human. There is 

a positive relation between  EPA and body mass index (BMI) in human (Ogura et al., 

2010).  Adiposity  and  weight  increase  are  enhanced  with  diet  poor  in  PUFA  (Lweis‐ 
 

Barned et al., 2000). 
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2.5.3. Type 2 Diabetes Mellitus 
 
 

EFAs/PUFAs ratio has an important role in diabetes mellitus (Undurti 2008). According 

to the  strong association between type 2 diabetes and overweight and obesity, many 

studies were designed to establish the relation between type 2 diabetes and fat intake 

(Melanson et al., 2009,  Elmadfa and Kornsteiner,  2009). Cohort studies found some 

conflicting results. Reduction in body  weight and Insulin sensitivity was shown to be 

improved by regular physical activity (Elmadfa and Kornsteiner, 2009). 

 

Insulin  activates  ∆6  desaturase  while  diet  rich  in  glucose  suppress  ∆6  and  ∆5 

desaturases  (Undurti,  2008).  However,  there  are  evidences  that  insulin  resistance 

increases when diet is rich in SFA and poor in PUFA (Lweis‐Barned et al., 2000). In animal 

studies,  SFA  rich  food  reduces  insulin  sensitivity  as  opposed  to  n‐3  LCPUFA  which 

increase it. Although there has been no guarantee  evidence that replacing fat type or 

change in fat amount  have a constant  effect  on insulin  sensitivity,  limited evidence 

showed an improvement in insulin sensitivity and glycaemic index in  type 2 diabetes 

when swapping the SFA (animal source) with MUFA (vegetable source) (Sanders, 2009). 

 

2.5.4. Essential fatty acids and depression 
 
 

Abnormalities in fatty acids patterns were noticed in patients with psychiatric disorders 

such as high EPA/DHA ratio and low level of EPA and n‐3 PUFA in CE and PL. Second to 

adipose tissue, cells of central nervous system are richest in fat (Bourre 2004) especially 

PUFAs (Heude  et al., 2003). Thus,  any abnormalities  in amount  and  composition of 

ingested  PUFA’s  will  change  the  regulation  of  those  cells.  In  bipolar  patients,  RBC 

concentrations  of  AA  and  DHA  are  significantly  depleted  as  compared  to  healthy 

individuals affecting mood stabilizers. However, among schizophrenia patients, EPA was 

noticed to improve the disease symptoms (Chiu et al., 2003). 
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2.5.5. Cognitive function 
 
 

AA and DHA are well established to be major structural components of the brain. A trail 

investigation showed that when school aged children were supplemented with LCPUFA 

(DHA and EPA) their  learning and memory abilities were improved. Children with low 

level  of  n‐3  LCPUFA  appear  to  have  learning  problems.  However,  DHA  long  term 

supplementation  has  a  positive   effect   on   the  children   health   and   their   school 

performance (Dalton et al., 2009). 

 

2.5.6. Eicosanoid precursors and inflammation 
 
 

As  PUFA  are  responsible  for  the  production  of  eicosanoids  in  vivo,  Eicosanoids  are 

derived by the oxidation of n‐3 and n‐6 essential fatty acids mainly from AA (Arab, 2003) 

which is the  predominant PUFA in the body tissue is the product of desaturation and 

elongation of LA in the liver (Ratnayake and Galli, 2009). Eicosanoids are high potency 

hormones  (Arab,  2003)  and  they   are  the  connection  between  inflammation  and 

immunity from one side and the PUFA from the other (Simopoulos, 2002). Eicosanoids 

and  docosanoids  have  diverse  physiological  functions  in   blood  pressure,  platelet 

clotting, blood lipid profiles, the immune response and the inflammation  response to 

injury infection (Ratnayake and Galli, 2009). Both n‐3 and n‐6 have anti‐inflammatory 

properties as they produce different eicosanoids. Although the eicosanoids from n‐3 

and n‐6 have  reversed properties, EPA has higher affinity to cyclooxygenases and 5‐ 

lipoxygenase than AA (Simopoulos 2002). ALA, EPA and DHA play an important role in 

the immune function. While high intake of ALA (15g/d) suppress the IL‐1 and TNF (tumor 

necrosis factor), high intake of n‐6 (imbalance  of n6:n3 PUFAs) will over produce the 

pro‐inflammatory  prostaglandins  of  the  n‐6  series  and   cytokines.  Thus  it  can  be 

concluded that LA increases while n‐3 reduces the pro‐inflammatory cytokine secretion 

(Simopoulos,  2002).  Prostaglandin  E2  (PGE2) has  pro‐inflammatory  effect  which  can 

cause pain, fever and edema. When supplemented with 2g EPA and DHA, those n‐3 will 

work as anti‐inflammatory and decrease the bacterial infection (Arab, 2003). 
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The pivotal of n‐6 PUFA AA is a precursor of several lipid mediators that have biological 

actions (LTs,  PGs, TX and HETEs) (Gomolka et al., 2011). The metabolism of the AA 

cascade through the cyclooxygenase enzymes (which has two isoforms Cyclooxygenases 

1 (COX‐1)  and  Cyclooxygenases  2  (COX‐2))  increase  the  PG  and  Thromboxanes  (TX) 

series. COX‐1 and ‐2 are found in many normal human body’s tissues. While COX‐1 plays 

role in basal  production  of  eicosanoids, COX‐2  is enhanced  by certain inflammation 

factors and also plays a role in the PG production (Ratnayake and Galli, 2009) 

 

EFAs play a special role in regulating the prostaglandins (PGs) and the leukotrienes (LTs) 

which are released by almost all the body tissues. PGs and LTs play an important role in 

the inflammatory and immune system. DGLA, AA and EPA are the precursors of the 1‐, 

2‐ and, 3‐ LTs series, respectively (Belch and Hill, 2000). In addition, TFAs work as pro‐ 
 

inflammatory  and  trans  LA  and  trans  OA  are  stronger  than  trans  16:0  in  pro‐ 
 

inflammatory effect (Galli and Calder, 2009). 
 

 

Furthermore, EPA and DHA compete with AA on the production of PGs, TXs, LTs and 5‐ 

HETE  in  inflammatory  cells.  While  AA  produces  them,  EPA  and  DHA  suppress  their 

production (Ratnayake and Galli, 2009). 

 

2.5.7. Inflammatory bowel disease IBD 
 
 

The  IBD  diseases,  Crohn’s  disease  or  ulcerative  colitis  are  related  to  immunologic, 

environmental and genetic components. AA metabolites, prostaglandins, leukotrienes 

and cytokines are the most studied mediators. LTB4  which is the end product of AA is 

shown to be high in  ulcerative colitis patients. However, supplementation of Crohn’s 

disease patients with 2.7g of n‐3 decreased the relapse rate, which in the company of 

other studies concluded that n‐3 showed significant improvement for the IBD patients 

(Simopoulos, 2002). 

 

A cross sectional study done in Berlin, Vienna, and Bari to compare FAs profile between 
 

IBD patients and healthy individuals showed that SFA, MUFA were abnormal. Plasma 
 

15:0 and 24:0 decreased while  16:0 and 18:0 series  increased. PUFAs profiles  were 
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similar between the 2 groups – except for 22:4n‐6 which was higher in IBD patients‐ 

 

although most studies showed different levels in IBD patients (Hengstermanna et al., 
 

2008). 
 

 

2.5.8. Bacterial, viral, fungal and parasitic diseases 
 
 

PUFA is suggested to inactivate HIV virus. It was found that plasma PL in AIDS patients is 

low in DGLA, AA, and DHA levels icnreasing the onset and the development of AIDS. LA, 

ALA, and AA can  inactivate  both gram‐positive and gram‐negative bacteria. There is a 

hypothesis that EFA/PUFA  ratio  has similar aspirin‐like action and that subjects with 

lower  PUFA  levels  are  more  able  to  develop  HCV  (hepatitis  C  virus),  HIV  (human 

immunodeficiency virus), malaria and bacterial  infections. Throughout many studies it 

was established that PUFAs have anti‐bacterial, anti‐viral, anti‐fungal and anti‐parasitic 

actions (Undurti, 2008). 

 

2.6. Essential fatty acids deficiency (EFAD) 
 
 

LA and ALA are the essential fatty acids because they must be obtained from diet as the 

body does not have the ability to synthesize them in vivo. LA and ALA constitute the cell 

membranes and  accordingly EFA deficiency might alter the membrane structure and 

fluidity,  also  can  ffect  the  membrane‐bound  enzymes  and  receptors  performances 

(Undurti, 2008; Bourre, 2004). 

 

EFAD  is  the  combination  of  the  low  intake  with  increased  demand  of  physical 

requirements  and  sever  malabsorption  (Holman,  1998).  Chronic  malnutrition  which 

includes low intake of EFA and protein (which is important for enzyme and lipoproteins 

synthesizing) causes low  LA and  its products (Johnson et al.,  1985). Clinically,  EFAD 

would  be  distinguished  by  many  symptoms  such  as  growth  retard,  renal  toxicity, 

pulmonary abnormalities, and increased metabolic rate. However on the other hand in 

laboratarial experimentations, EFDA is distinguished by low level of omega‐3, omega‐6, 

AA, and high level of Mead Acid (Holman, 1998). 
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20:3n9 (mead acid) level in general is low in the plasma and tissue, while in the case of 

fatty acids  deficiency the conversion  of  OA to 20:3n9 is increased  according to the 

reduction  in  AA  level.  The  ratio  of  20:3n9/  20:4n6  is  therefore  increased  which  is 

considered as an EFAD biomarker (Ratnayake and Galli, 2009). The high level of Mead 

acid is a result of the conversion of the metabolic pathway. Usually, LA is converted to 

AA, while the deficiency and low intake of LA lead to a low level of AA which enhances 

Oleic acid to be converted to Mead Acid (20:3n9) (Ratnayake and Galli 2009; Mohrhauer 

and Holman, 1963). Increased level of all n‐7 fatty acids, and n‐9 (especially  OA) with 

low level of LA (and most n‐6 FA) would be signs of EFAD (Jeppesen et al., 1998). It was 

shown  in  a  study  feeding  rat  fat  free  diet  has  increased  dietary  linoleate  intake 

suppressed 20:3n9 level in liver and heart lipids (Mohrhauer and Holman, 1963). 

 

The index of triene/tetraene to indicate the EFAD status was established by Holman in 
 

1960, and this index is now known by Holman index. However, triene/tetraene ratio is 

being  used  to  indicate  the  EFAD  but  not  omega‐3  status  (Strijbosch  et  al.,  2008; 

Mohrhauer and Holman  1963). Holman has stated triene/tetraene ratio > 0.2 to be 

abnormal and EFAD ratio is > 0.4 in PL fraction (Holman 1960; Holman et al., 1979). 

 

Previously, EFAD was noticed clinically from the eczema symptoms in an infant who was 

on skimmed  milk and sucrose diet instead of mother’s milk, and the dermatitis that 

noticed in a man who also was on low fat diet for 6 months. EFAD occurs rapidly and 

severely in both young and adult subjects (Holman, 1998). 

 

However, EFAD affect all body tissues (RBC, heart tissue, liver, kidney, muscle, skin and 

depot fat of  rats (Holman, 1998). Since 1960s the correlation between CAD and EFAD 

were established by (Paganelli et al., 2001). It was found that the onset of certain types 

of   diseases   such   as   collagen   vascular   diseases,   hypertension,   diabetes   mellitus, 

metabolic  syndrome  X,  Alzheimer’s  disease,   CHD,  atherosclerosis  and  cancer  are 

significantly triggered by the severly low plasma and tissue levels of GLA, DGLA, AA, EPA 

and DHA (EFA/PUFA deficient) (Undurti, 2008). ALA deficiency affects the performance 

of the certain cerebral structure and altering sensor organs receptors which  decrease 
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the taste sensitivity. Subjects with ALA deficiency will need large amount of sugar to 

actually taste sweetness (Bourre, 2004). 

 

For n‐3 deficiency but not for DHA, 22:5n6/ 22:6n3 ratio is established in animal studies 

because 22:5n6 concentration increased in case of n‐3 deficiency (Ratnayake and Galli, 

2009). However, Holman was the first to report n‐3 deficiency in 1982 (Holman, 1998). 

Excessive  SFA  leads  to  n‐3  deficiency  due  to  their  effect  on  transport  mechanism 

(Paganelli et al., 2001). 

 

Increased intake of LA with low ALA intake decreases the EPA and DHA synthesis. In 

addition,  western  diet  is  extremely  high  in  LA  (10  folds  higher  than  ALA  intake) 

especially  with   people   who  do  not  consume  LCPUFAn‐3  (EPA/DHA).  Thus,  it  is 

recommended  to  increase  the  intake  of  ALA  (whether  from  plant  or  fatty  fish)  to 

prevent  the  EFAD  and  to  ensure  an  adequate  conversion  of  ALA  to  EPA  and  DHA 

(Ratnayake and Galli, 2009). 

 

2.7. An essential fatty acid index necessity 
 
 

In 2004, the definition of omega‐3 index was established in RBC to be the sum of EPA 

and DHA. Using RBC rather than serum to assess the EPA+DHA decreases the biological 

variability as RBC half‐life is 4‐6 times longer and less influenced by day‐to‐day dietary 

intake. Thus, RBC omega‐3 index is not influenced by fasting or feeding state. In case of 

short term dietary intake scenario, plasma fatty acid would be considered. Many factors 

affect omega‐3 index values such as age, gender, BMI, alcohol drinking, physical activity 

and diabetes (von Schacky, 2010). Omega‐3 index doesn’t only differ according to those 

factors but also it varies within (2.6% to 14.9%) and between populations (3.4% to 9.5%) 

as well. However, the upper limit of the omega‐3 index presents in Japanese population 

is 10% (von Schacky, 2009). 

 

Omega‐3 index is favoured as a marker for the CHD especially sudden death for many 

reasons.  Most importantly is the inverse relationship between omega‐3 index tissue 

levels and the risk of  cardiac events and sudden death (Harris, 2007a; Albert, 2002; 
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Siscovick  et al.,  1995;  Kuriki,  2006).  Omega‐3  FAs  have  a  lowering  effect  on  serum 

triglycerides level, blood pressure, and serum cholesterol (Anderson et al., 2009) which 

are  considered  as  the  main  risk  factors  for  cardiac  diseases.  Omega‐3  index  would 

reflect  CHD  more  than  other  known  risk  factors  plus  that  it  is  simple,  safe,  and 

inexpensive  (Harris,  2007a).  However,  EPA  and  DHA  were  found  to  work  as  anti‐ 

atherosclerotic and enhanced plaque stability (Harris and von Schacky, 2004), they are 

considered as an indicator of the risk of sudden death according to  the results of a 

prospective, nested case‐control analysis study established the effect of WB EPA  and 

DHA level (not the DPA and ALA) in lowering the risk of the sudden death (Albert et al., 

2002). 
 
 

The Omega‐3 Index 
 

 
 

Least Protection Greatest Protection 
 

 
 
 
 

4% 6% 8 % 10 
 
 
 
 
 
 
 

Fig 2.7.1. Summary of the proposed cut points for the Omega‐3 Index (Harris and von 
 

Schacky, 2004) 
 

 

The only two risk factors that have a statistically significant effect on CHD are: C‐reactive 

protein and  the blood omega‐3 index. The omega‐3 index is considered as a suitable 

biomarker  independent  from  other  risk  factors  for  the  sudden  cardiac  death  risk. 

Recently  Harris  and  Schacky  established  omega  3  index  for  cardiovascular  patients 

(Harris and von Schacky, 2004). Harris  found  in one study that EPA+DHA content was 

29% lower in patients with acute coronary syndrome than controls (1.7 ± 0.9% versus 
 

2.4 ± 1.4%, p<0.001) (Harris, 2007b). However, omega‐3 index is affected by the intake 
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of EPA + DHA, an increase of 0.24% will be noticed with each 4 g of EPA and DHA 

 

consumed monthly (von Schacky, 2010). 
 

 

In  another  study  Harris  and  von  Schacky  established  an  omega‐3  index  target  for 

cardioprotective to be about 8% and when the index is lower than 4% the risk of CHD 

death  increased (Harris and von Schacky, 2004; Ratnayake and Galli, 2009). However, 

8% or greater is considered the optimal levels (Harris, 2010c). While Aarsetoey could not 
 

establish the above index, he however did not find a significant correlation between 

omega‐3 index > 5.27% and all mortality risk reduction (Aarsetoey et al., 2008). In serum 

phospholipids, DHA ≥  4.5% from total fatty acids was found to decrease 34% of CHD, 

while omega‐3 index (EPA+DHA) ≥  4.6 % was shown  to lower  70% of the CHD risk 

(Halub, 2009). 

 

 
 

 

Fig 2.7.2. Proposed risk zone for the omega‐3 index (RBC EPA+DHA) (Harris, 2007a) 
 

 

Rupp distinguished between the two terms of omega‐3 level and omega‐3 index. The 

omega‐3  level  does not mean omega‐3 index as omega‐3 level includes other n‐3 FA 

while the index includes only EPA and DHA (Rupp et al., 2004) the most two important 

n‐3 LCPUFA in RBC membrane (Aarsetoey et al., 2008). 

 

To our knowledge, there is no omega‐3 index cut of point to compare between healthy 

subjects; this has lead to the urgent need for further studies to establish a valid omega‐3 

index. There is a rising requirement for a standardized method that assess EFA and the 

omega‐3 index which is believed to be a CVD biomarker (Harris and Thomas, 2009). It 

has been suggested to consider the omega‐3 index test as a part of routine blood test 
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(von Schacky, 2009). Similarity to the fact that HbA1c reflect glucose homeostasis (von 

Schacky and Harris, 2007), and LDL levels (LDL<100 mg/dl) (von Schacky, 2009) equal to 

(2.586 mmol/L) (Robins et al, 2001) omega‐3 index reflects omega‐3 fatty acids status 

(von Schacky and Harris, 2007). Only three laboratories in the world have installed the 

analytic methods to assess omega‐3 index as it  includes highly standardized analytic 

laboratories methodology (von Schacky, 2010). 

 

Omega‐3 index is considered as an accepted risk marker according to its consistency 

among  the  epidemiological  data,  between  and  within  population  in  addition  to  the 

prospective cohort  studies. In addition the strong associations between the omega‐3 

index and certain types of disease with low biological variability and being safe, quick, 

and cheap to be analyzed are all advantages for considering omega‐3 index a biomarker 

(Harris and von Schacky, 2004). 

 

2.8. Choices of tissue for measurement of fatty acids 
 
 

Fatty acid composition in tissue and blood have been used as a biomarker for dietary 

intake  because they are mainly derived from the intake (Hodson et al., 2008). Blood 

lipids a good  biomarker to reflect dietary long‐term intake and measure EFA status in 

animals (Holman, 1998; Ogura et al., 2010). Changing fat dietary intake will change fatty 

acid composition which would turn  back entirely within days (Kuang 2009). Analyzing 

fatty acids from blood components (single blood draw) is considered minimally invasive. 

 

Despite the huge publications regarding the fatty acids profile, it remains difficult to 

establish a general distribution level. This is because fat intake and its absorption and 

metabolism affect fatty acids profile in body tissues. Highly specialized cells contain high 

amount of AA and DHA in the structural lipids PLs. Higher intake of LA does not correlate 

with higher concentration of the AA in RBC. On the other hand, very high intake of LA 

enhances the storage of the LA in the adipose tissue (Ratnayake and Galli, 2009). 

 

The status of FA is influenced by many factors, dietary intake, food preparation method 
 

(which would affect the bioavailability),  individual  age, BMI, and total energy intake 
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(Aarsetoey et al., 2008). Yet, blood and tissues’ concentrations of PUFAs (n‐3 and n‐6) 

cannot reflect their accurate proportions in the dietary intake (MA et al., 1995; Sun et 

al., 2007). Assessing PUFAs’ level in body is the best biomarker to determine the dietary 

intake especially the levels of EPA, DHA, and n‐3 HUFA as they are not biosynthesized in 

humans  (Kuriki  et  al.,  2006).  However,  n‐3,  n‐6,  and  TFA  as  they  are  synthesized 

exogenously can be measured in blood specimens  (plasma,  serum, RBC) (Sun et al., 

2007). 
 

 

2.8.1. Whole blood 
 
 

The easiest in which it can be measured from a dried blood spot does not need pre‐ 

separation or lipid trans‐esterification like in RBC and Plasma (Harris, 2007a). There is no 

need for the TLC procedure, and FFA can be easily obtained by FAME method (Bailey‐ 

Hall et al., 2008). Intakes of  EPA and DHA were easily measured in whole blood, EPA 

increased from 0.6% to 1.4% within 10  days, while DHA increased from 2.9% to 4.3% 

(Rupp et  al.,  2004).  WB  lipids  composition  represents FA  of  all  the  circulating  lipid 

classes (Agostoni et al., 2011). 

 

2.8.2. Erythrocyte 
 
 

Erythrocyte has been widely examined throughout many studies. Harris has compared 

between  omega‐3 index that is measured in RBC, plasma and plasma phospholipids. 

However, he preferred using RBC to measure EPA+DHA as this index is not influenced by 

feeding  status  (blood  could  be  withdrawn  from  fed  or  fast  individual),  RBC  is  not 

influenced by day to day dietary intake according to its longer half life shelf (4 to 6 more 

time longer than plasma) (Sun et al., 2007), RBC  can be stored in ‐80 C° for 4 years 

(Harris, 2007a). The half‐life of EPA in RBC is 4 months thus RBC reflect the last months 

diet  intake  (Sun  et  al.,  2007).  RBC  omega‐3  status  is  believed  to  have  the  lowest 

biological variability because all the RBC’s FAs are esterified in the membrane PL, thus it 

reflects longer status than plasma beside it doesn’t alter by the fed state (Harris and 

Thomas, 2009; Ogura et al., 2010). 
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Plasma and RBC n‐3 LCPUFA composition are higher than those of other lipid fraction 

such  CE  and  TG.  Therefore,  RBC  and  plasma  PL  are  considered  as  an  n‐3  LCPUFA 

biomarker (Kawabata et al., 2011) 

 

The table below shows the advantages of using RBC as an omega‐3 FA intake biomarker 

[modified from (Harris and von Schacky, 2004)]. 
 

Table 2.8.2. Advantages of RBCs as biomarkers for omega‐3 FA intakes 
 

1.   Lipid bilayer—reflects tissue FA composition 

2.   The Omega‐3 Index half‐life is 4– 6 times longer than serum 

EPA + DHA , better reflecting long‐term exposure 

3.   Not influenced by fasting or fed state 

4.   Responsive towards increasing intakes 

5.   Correlates well with other biomarkers  of omega‐3 FA intake (with WB in this 

study) 

6.   Less influenced by dyslipidemias than serum FA 

7.   Less variable than serum EPA + DHA composition 

8.   Laboratory assessment is simpler than lipoprotein or lipid fraction FA 

9.   Stable to variations in pre‐analytical storage conditions 
 
 
 

2.8.3. Plasma 
 
 

Plasma and serum’ PUFA are useful to assess particularly the short term dietary intake 

(Kuriki et al.,  2006; Kobayashi et al., 2001). It is difficult to measure 22:5n6 in plasma 

because it presents in trace amount and the concentration go higher only in case of n‐3 

deficiency  (Galli  et  al.,  1971;   Ratnayake  and  Galli,  2009).  However,  plasma  FA 

composition is considered to be a biomarker for the marine origin n‐3 PUFA (Kobayashi 

et al., 2001). 

 

Plasma contains a mixture of lipoprotein associated FAs (cholesteryl ester, TG and PLs) 

plus  the   non   esterified  FAs  which  make  plasma  more  variable  in  assessing  FAs 

composition  (Harris  and  Thomas,  2009).  While  chylomicrons  reflect  the  last  meal 

consumed, triacylglycerols reflect  the previous few hours, and CE and PL reflect the 

previous few days (Arab, 2003). 
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Fatty acids’ changing  is faster  in plasma  than in RBC, and the later still faster than 

subcutaneous adipose tissue which has the slowest rate (Ogura et al., 2010). 

 

2.8.4. Plasma Phospholipids 
 
 

Thannhauser has illustrated that extracting phospholipids is efficient with the mixture of 

chloroform to methanol (2/1) (Thannhauser, 1936). Phospholipids’ PUFA in erythrocytes 

and platelets are useful to assess the medium term dietary intake (Kuriki et al., 2006) 

while fatty acids of plasma PLs pool tend to reflect day to day intake more than RBC FA 

pool (Harris and Thomas, 2009; Kawabata et al., 2011). Fatty acid composition in PL has 

been considered as a good biomarker for omega‐3 derived from  fish intake. Studies 

showed an  inverse  correlation between  omega‐3  in  serum PL and  CHD  risk  (Holub, 

2009). However, plasma phospholipids vary among countries, PLs from Caninio in Italy 

showed significant difference from Nurmijarv in Finland (Ching Kuang 2009). 

2.8.5. Plasma Cholesterol ester 
 
 

As for plasma phospholipids, plasma cholesterol ester content reflects weeks to months 

of the  dietary  intake (medium‐term) (MA et al., 1995). Fatty acid composition of CE 

reflects  FA  pattern   of  tissue  lipids.  In  1963,  Morris  isolated  acids  from  plasma 

cholesterol esters with 0, 1, 2, 3, 4, 5 and 6 double bonds (Nichols et al., 1966). 

 

Cholesterol ester plasma lipoprotein fatty acid composition is affected by the rate of FA 

synthesis,  FA  dietary intake, organism requires and their non‐enzymatic degradation 

(Tvrzická et al., 2002). Cholesterol ester was more sensitive to recent diet and EPA half‐ 

life was 4.8 days (Sun et al., 2007). 
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2.8.6. Adipose tissue 
 
 

Adipose tissue’ PUFAs are useful to assess the long term dietary intake (Kuriki et al., 
 

2006; MA et al., 1995) in which they are reflected in human over 2 and half years (Ogura 

et al., 2010;  Kobayashi  et al., 2001) to 3 years (Amiano et al., 2001). 680 days are 

estimated to be the half‐life of LA in adipose tissue (MA et al., 2007). 

 

For studying the EFA status, fatty acids’ biomarkers in plasma and RBC PLs seems to be 

more  favourable than adipose tissue. However, adipose tissue has the slowest rate in 

reflecting fatty acids changing when comparing with other lipids components (Amiano 

et al., 2001). In addition,  participants  prefer the blood withdrawal  than the adipose 

tissue biopsy (as it is more invasive)  (Amiano et al., 2001; MA et al., 1995) therefore, 

RBC and Plasma would be more appropriate  especially when dealing with large‐scale 

studies (Ogura et al., 2010). 

 

MUFAs are the predominant FAs in Adipose tissue, followed by SFAs while PUFAs has 

the   lowest   level   of   presence.   However,   according   to   their   liquid   form   room 

temperature; n‐3 PUFAs  do not accumulate in adipose tissue as it is not appropriate 

(Ogura et al., 2010). The correlation  between n‐6 FA, LA, and TFA were stronger in 

adipose tissue than in plasma or whole blood (Sun et al., 2007). The correlation between 

PUFA from subcutaneous adipose tissue and fat intake measured by FFQ were found to 

be positive (MA et al., 1995; Sun et al., 2007). 
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2.9. Recommendation of the quantity and quality of fat intake 
 
 

It is known that a fat macronutrient yields double the value of energy (E) from an equal 

amount  of  grams  weight  of  carbohydrate  and  protein.  Studies  approved  that  fat 

increases the palatability  and reduce the satiety. However, high fat foods have many 

effects on the body in a way that they are more able to be stored than carbohydrates 

and proteins are, also they increase the total  number and sizes of the body fat cells 

(Elmadfa and Kornsteiner, 2009) 

 

Table 2.9. Dietary recommendations for fat and fatty acid intake for adults (Elmadfa and 
 

Kornsteiner, 2009) 
 

Type of fat Amount 

Total fat E% 20‐35 

SFAs. E% 10 

MUFAs, E% By differences 

Total n3,n6 PUFAs, E% 6‐ 11 

n6 PUFA LA, E% 2.5‐9 

n3 PUFA : ALA, E% ≥ 0.5 

n3 PUFA : EPA + DHA 0.250‐ 2 g/day 

Trans fatty acids, E% 1 
 
 

2.9.1. Recommendation of fat and fatty acid intake 
 

2.9.1.1. Fats and fatty acid requirements for infant of 0‐2 years 
 
 

During the brain development, intake of LA and ALA is very important (Heude et al., 
 

2002). Energy from fat lay between 40‐60% of total energy during the first 6 months. At 

later stages, after 6 months till 3 years, the energy requirement from fat declined needs 

to be from 30‐35% of total energy depending on the child physical activity. Roles of the 

lipid as structural components are very important especially for tissues of brain, retina 

and neural tissues. Those tissues are rich in LCPs especially (Uauy and Dangour, 2009). 

However, adequate supplements of LCPUFA should be  provided to fetuses (Makrides, 

2000). 
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Human milk is a good source for the DHA and AA and their precursors LA and ALA. DHA 

level in human milk depends on the maternal diet while AA is more constant. Therefore 

to supply the infant who depends on his mother’s milk with DHA, mothers are therefore 

advised to be supplemented with DHA. While for the infant fed on formula, human milk 

considered the ideal to be matched in the concentration of LCPUFA, EPA, DHA and AA. 

DHA concentration is between 0.2 to 0.5% of total FAs. Added AA should be around the 

same concentration of DHA, also EPA should not exceed the DHA. EPA and DHA should 

be maximally account for 1.5% of the total energy in the formula (Uauy and  Dangour 

2009) 
 

 

In order to prevent nutrition‐related chronic diseases in infants aged 0‐2 years, total fat 

intake should lay between 30‐40 % according to the infant’s physical activity. PUFAs in 

total are between 5‐15% of total energy, including 4‐13% from n‐6 and 1‐2% from n‐3 of 

total energy. MUFA’s requirement has  no restriction within the total fat range while 

cholesterol  should  not  exceed  300  mg/day  (Uauy  and  Dangour,  2009).  There  is  a 

hypothesis that n‐3 intake during infancy reduce the risk of type  1  diabetes and both 

infection and non infection diseases (Undurti, 2008) 

 

2.9.1.2. Fats and fatty acid requirements for children of 2‐18 years 
 
 

For children over 2 years, intake of SFA should not exceed 10% of total energy. PUFA’s 

requirements lay between 5‐15% by giving attention to the ratio between omega 6 and 

omega 3 to be between 5:1 and 10:1. No restriction to MUFA’s within the total fat range 

with highly restricted to the hydrogenated fats (Uauy and Dangour, 2009). 

 

2.9.1.3. Fats and fatty acid requirements for adults 
 
 

Total fat intake requirements vary according to the individual’s physical activity. The 

moderate  physical activity  individual  would  need 30% of energy while  high physical 

activity individual  requirements increase to 35% of energy. However, the acceptable 

macronutrient distribution  range  (AMDR) varies between 20 and 35% of total energy 

(minimum 15%, maximum 35%). A  maximum level of SFAs should not exceed 10% of 
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total energy intake. However, MUFAs requirements depend on the total fat and fatty 

acid intake pattern. FAO/WHO calculated MUFAs intake by: Total fat intake minus SFAs 

minus PUFAs minus  TFAs.  The maximum PUFAs (n‐3 and n‐6) intake is 11%. ALA (n‐3 

FAs) requirements encouraged to achieve between 0.5 and 2% from total energy; 0.5% 

is the minimum in order to avoid deficiency symptoms. Therefore the lower range of LA 

(n‐6 FAs) would be 2.5 while the average can reach 9% from total energy. TFAs intake 

adjusted for gender. The average acceptaned values for humen are approximately 1.5 g 

and 0.9 g for men and women respectively. Alterantively, near 0.5% E for both genders 

(Elmadfa and Kornsteiner, 2009). 

 

However,  for  adults  in  the  US,  the  Food  And  Drug  Administration  (FDA)  in  1997 

considered  the safe dose is up to 3 g/day of EPA and DHA, although there were no 

significant clinical symptoms (bleeding) noticed with high dose of EPA and DHA (Harris 

and von Schacky, 2004). The  American Society for Nutrition has published that taking 

high  dose  of  EPA  and  DHA  (3.4  g/d)  lowers  significantly  serum  triglycerides  27% 

comparing with 0.85 g/d (Skulas‐Ray et al., 2011). 

 

2.9.1.4. Fats and fatty acid requirements for pregnancy and lactation 
 
 

FA n‐3 and n‐6 LCPUFA especially DHA requirement are high and very important during 

pregnancy  (especially during the last trimester) for the fetus development especially 

that maternal DHA plasma phospholipids significantly decrease during pregnancy. It also 

contributes in the structure of brain cell membrane and prostaglandins and eicosanoids 

production (Makrides, 2000). 

 

For the total fat intake requirements, pregnancy and lactating women needs do not 

differ from  the non‐pregnant and non‐lactating ones of the same age. No additional 

requirements for SFAs  and MUFAs while a warranty restriction for the food contain 

Partially Hydrogenated Vegetable Oil  (PHVO). DHA recommendation  in lactation and 

pregnancy is at least 200 mg/day, however, for pregnancy the highest demand will be in 

the third trimester. In case of pregnancy; the average for  both DHA and EPA is 300 
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mg/day, while the AA upper limit is 800 mg/day (Brenna and Lapillonne, 2009). LCPUFA 

status is generally decreased in maternal and infant during the lactating period (Kuipers 

et al., 2011). 

 

Smoking   during   pregnancy   will   affect   infant’s   PUFAs   level   and   reduce   plasma 

concentration (20:3n6, AA, DHA, 20:3n6/LA, AA/20:3n6 and DHA/ALA) of the newborns 

(Ratnayake and Galli, 2009). 

 

2.9.2. Recommendation of the n‐6/n‐3 ratio: 
 
 

Holman found that when ALA intake is increased, n‐6 family production is consequently 

suppressed.   In  contrast,   when   LA  intake  is  increased,   n‐3  family   production  is 

consequently suppressed. That would explain the competition between n‐3 and n‐6 on 

the metabolism reaction enzymes. Increasing the intake of ALA to < 2% suppresses n‐6 

metabolism while LA intake should be increased 10 times to suppress n‐3 metabolism to 

the same degree (Holman, 1998). 

 

n‐3   and   n‐6   hold   important   roles   as   precursors   of   bioactive   lipid   mediators, 

consequently the different ratios of n‐6/n‐3 might lead to different levels of those lipid 

mediators and metabolites (Gomolka et al., 2011). 

 

Decreasing the intake of LA from 7 to 3% energy increases the EPA synthesis  while 

increasing  the  intake of ALA from 0.3 to 1.1% energy decreases the DHA synthesis. In 

another   way,   increased   intake   of   ALA   and   decreased   intake   of   LA   would   be 

recommended to stimulate  the synthesis of EPA and DHA. ALA and LA biological roles 

depend  on  the  balance  of  their  dietary  intake,  thus  FAO/WHO  in  a  1994  meeting 

recommended a dietary intake balance to be between LA:ALA 5:2 and 10:1 (Ratnayake 

and Galli, 2009). 

 

Over  the  past  century,  LA  had  been  the  area  of  medical  interest  and  people  were 

encouraged to increase their LA intake as the only source of PUFA while n‐3 PUFA were 

ignored. The higher dietary intake of animal’s meat rather than fish led to a fat intake 
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rich in LA and poor in ALA. All of the previous points led to n‐3 EFAD especially in the 

 

American population (Holman, 1998). 
 

 

The ratio of LCPUFA n‐6:n‐3 is used to present n‐3 biostatus in addition to EPA+DHA 

(omega‐3 index) (Harris and Thomas, 2009). n‐6:n‐3 ratio would be decreased with diet 

high in EPA and DHA which found in Japanese participants (increased n‐3 and decreased 

n‐6) (Ogura et al., 2010). 
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2.10. History of Fatty acids analysis 
 
 

Through 1900s, fatty acids science was more sophisticated and had more achievement. 

Normann  patented his discovery of the conversion of unsaturated fatty acids or their 

glycerides into saturated compounds by hydrogenation (Normann, 1903). Morrison was 

the first to prepare FAME with described boron trifluoride (Morrison et al., 1964). 

 

It   was   the   first   time   when   Folch   described   the   isolation   of   phospholipids, 

phosphatidylserine  and  phosphatidylethanolamine  from  brain  (Folch,  1942).  Folch 

established the lipids extraction method that is still used by most laboratories. He used 

the mixture of chloroform/methanol (2/1 Vol) (Folch et al., 1957) 

 

Until mid 1940s, no method was established  yet to evaluate individual fatty acid in 

mixtures (Holman, 1998). Burr and his students were the first to work on the method to 

distinguish PUFA’s family. They measured the double bonds numbers by using alkaline 

isomerization  and  ultraviolet.  Via  this  method  they  found  the  lionleic  acid  was  the 

precursor of AA, that PUFA respond to fat intake, and finally that trienoic acid would be 

an index the EFA as its concentration increased (Burr and Holman, 1988). 

 

2.11. Analysis of fatty acids by Gas Chromatography 
 
 

Mikhail   Tswett   (a   Russian   botanist)   can   be   considered   the   first   who   applied 

chromatography to separate various plant pigments by passing solution through glass 

column on a chalk column in 1903. Afterwards, scientists tried to minimize the column 

sizes to increase the separated efficiency, till 1960 columns sizes reach as small as 3 to 

10 µm. then glass columns were replaced by stainless steel (Lin et al., 2009). 
 

 

James and Martin are considered the first to use and publish gas chromatography (GC) 

in assessing the underivatized fatty acids, they described the method of free fatty acids 

separation (from 1 to 12 C) (James and Martin, 1952), in later years they used shorter 

FAME form to assess fatty acids by GC (James and Martin, 1956; James and Wheatley, 

1956). However, Mohrhauer and Holman validated the EFA analyzing by GC method to 
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analyze  EFA  and  their  metabolic  products  in  liver,  with  the  alkaline  isomerization 

method. Results were the same which established all the old results from studies used 

the later method (Holman, 1998; Mohrhauer and Holman, 1963). 

 

The main three parts of the GC equipment are: 
 
 

•  The instrument‐injector. 
 

•  The column. 
 

•  The detector. 
 

Through  those  three  parts,  fatty  acid  –in  the  past‐  might  lost  while  recently  such 

techniques are improved and losing problems are solved in which all the process being 

fully automated and computerized (Tvrzická et al., 2002). 

 

Analyzing fatty acids by GC involves main steps: lipid extraction from cells or tissue, 

methylation, then the injection into the GC (Ratnayake and Galli, 2009; Masoodet et al., 

2005; Kurik et al., 2006) which is called the conventional method. It is applied in most 

lipid analysis laboratories (Kang and Wang, 2004). 

 

However, there is an argument made about a simplified method in which the extraction 

(homogenate   using  organic  solvents)  is  combined  with  the  methylation.  This  has 

advantages such as saving time, materials and solvents, simple (easy to do), and can be 

used with dried or liquid small sample amount with large samples number. There is a 

study which has assessed the fatty acids profile in mouse heart tissue. Compareing the 

two methods (conventional method that  combine extraction before methylation and 

simplified method without prior extraction) has  concluded that the results from the 

simplified method is good. Also, It is more suitable for long chain PUFA ≥ 18 C. However, 

prior extraction is still needed for analyzing fatty acids from  Phospholipids (Kang and 

Wang, 2004). 

 

In another  study,  GC  technique  was  endeavoring  to  shorten  the  time  consumed  in 

analyzing  human plasma FAME. While the standard  method consume  approximately 

>70 minutes per sample, the adapted fast GC method reduces the time to <12 minutes 
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which  makes  it  more  reasonable  for  large  studies.  Nevertheless  24:1n9  would  be 

overlapped  with DHA thus this method is not appropriate for analyzing samples that 

contain those two fatty acids (Masood et al., 2005). 

 

TLC method is quite slow, time‐ and material‐wise comsuption (Kang and Wang, 2004). 

It can  oxidize  PUFA if exposed to air, thus it is not appropriate for large number of 

samples, it can also  generate organic waste and possible contamination which make 

cholesterol ester and phospholipid method inconvenient (Burdge et al., 2000). 



42 
 
 
 
 

3. Materials and methods 
 

3.1. Study design 
 

This study is a part of the Austrian Study on nutritional status and aimed to assess the 

essential fatty acids status at population level. The observational study included 140 

participants (69 female, 71 male). The mean age (years) at enrollment was 38.8 ± 11.1 

for the female, 37.8± 11.2 for the male. The mean body mass index (BMI) was 23.4 ± 

3.01 kg/m2   for the female and 24.53 ± 2.6 kg/m2   for the male. Dietary intakes were 
 

assessed by a 24h recall and  a food frequency questionnaire (FFQ). Fasting blood 

glucose (no  caloric intake within last 8 hours) ranges between 4‐6 mmol/l (60 ‐110 

mg/dl), it reflects normal  blood glucose. If the range goes higher than 110 mg/dl, it 

reflects hyperglycemia (Earl et al.,  2002) ranged from 6 to 11 mmol/l (Preissig and 

Rigby, 2010), while beneath 60 mg/dl it  reflects  hypoglycemia (Miller et al., 2001) 

similar to blood glucose ≤2∙2 mmol/l (Vlasselaers et al., 2009). 

 
The American Heart Association had established guidelines for triglyceride levels in 

which  Normal  range, low risk < 150 mg/dl (<1.7 mmol/l), borderline high 150‐ 199 

mg/dl  (1.7‐  2.2  mmol/l),  and  high  level  of  TG  when  higher  than  200  mg/dl  (>2.2 

mmol/L)(American Heart Association, 2010; Genest et al., 2009). 

3.2. Subjects characteristics 
 

Table 3.2.: Subject characteristics (age and BMI are shown as means ± SD) 
 

 Total Female Male 
n 140 69 71 
Age (Years) 38.28 ± 11.13 38.8 ± 11.12 37.77 ±11.20 
BMI (kg/m

2
) 23.97 ± 2.86 23.4 ± 3.01 24.53 ± 2.6 

Smoking (Y) 
n  (% of sample) 

79 
(56%) 

35 
(51%) 

44 
(62%) 

Normal blood glucose (4‐6 mmol/l ) 
n  (% of sample) 

109 
(88%) 

54 
(78%) 

55 
(77%) 

Hypoglycemic blood glucose (< 2.2 

mmol/l) 
n  (% of sample) 

18 
(13%) 

11 
(16%) 

7 
(10%) 

Normal blood TG (<1.7 mmol/l) 
n  (% of sample) 

122 
(87%) 

65 
(94%) 

57 
(80%) 

Hyperlipidemia  (> 2.2 mmol/l) 
n  (% of sample) 

9 
(6%) 

2 
(3%) 

7 
(10%) 
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3.3. Analysis of fatty acids by Gas Chromatography 
 

Fatty acids pattern was analysed with gas chromatography (PERKIN Elmer, Vienna, 

Austria). Carrier gas was Helium and equipped with a 30m X 0.25 mm ID fused silica 

column (RTX‐2330) and a flame ionization detector (FID) which is a universal detector. 

Most nuitrition practisioners use capillary columns of 30m X 0.32 (or 0.25) mm length 

as it is adequate for analytic labour  (Ratnayake and Galli, 2009). The separation of 

FAME appears on the GC baseline according to the FA chain length, number of double 

bonds and their position (Tvrzická et al., 2002). 

The samples were  dissolved in 50 µl hexane (Vial: CHROMACOL C 821 UK; biolab 

Ges.m.b.H) and 1.0 µl was injected in the gas chromatography with 30:1 split flow with 

helium as a carrier gas.  The experiment time was 29.14 minutes, sampling rate was 

6.25000 pts/s and FAMEs were identified by FID which was 0.38 mV. FID is still used 
 

because of its reasonable price in comparison to mass spectrometric (Tvrzická et al., 
 

2002). The initial temperature was 90 deg, ramp 1 with 13/min to 155 C°, ramp 2 with 
 

2.9/min to  185  C°  and held for 5  min,  ramp  3  with  5/min  to  229 C°.  It  is worth 

mentioning  that  the  temperature  program  affect  the  resolution  of  all  interested 

components within suitable time (Tvrzická et al., 2002). 

The order of the fatty acids in the baseline depends on the numbers of carbon atoms 

and then the degree of unsaturation. The four or five double bonds are appeared after 

the SFA FAME, in addition PUFA n‐6 family appeared after PUFA n‐3 even if they have 

same carbon atoms number and double number (Tvrzická et al., 2002). 

The   methylation   was   controlled   by   methylating   Fatty   acid   supplement:   SAFC 
 

Biosciences F7050; 115K5410. Free Fatty Acids FFAs were identified with reference to 

standard mixture of known composition Standard ‐C37, Supelco analytic 18919‐1AMP; 

LB63416‐ is run on the same column under identical condition. The area % fatty acid 

compositions are calculated and all peak areas of the identified fatty acids were taken 

as 100%. 



Parameters Matrix Methods 

Fatty acids in whole blood Whole blood Methyl/ BF3; GC 

Fatty acids in Red Blood Cells Red Blood Cells Methyl/ BF3; GC 

Fatty acids in Plasma Plasma Methyl/ BF3; GC 

Fatty acids in Plasma Phospholipids Plasma TLC; Methyl/ BF3; GC 

Fatty acids in Plasma Cholesterol Ester Plasma TLC; Methyl/ BF3; GC 
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3.4. Overview of the parameters 
 

Table 3.4. Overview of the analysed parameters 
 

 
 
 
 
 
 
 
 
 
 
 

BF3= Boron trifluride methanol solution 14%, Methyl = Methanol for analysis, GC= Gas 
chromatography, TLC= Thin layer chromatography 

 
3.5. List of fatty acids analysed 

 

Table 3.5. List of fatty acids analysed (Adapted from Kornsteiner 2008) 
 

Fatty Acid abbr. common name systematic name 

14:0  Myristic acid Tetradecanoic acid 
15:0  pentadecanoic acid pentadecanoic acid 
16:0  Palmitic acid Hexadecaneoic acid 
17:0  Margaric acid Heptadecanoic acid 
18:0  Stearic acid Octadecanoic acid 
20:0  Arachidic acid Eicosanoic acid 

16:1n7  Palmitoleic acid cis9‐Hexadecenoic acid 
18:1n9 trans  Elaidic acid trans9‐Octadecenoic acid 

18:1n7 trans  trans‐Vaccenic acid trans11‐Octadecenoic acid 
18:1n9 Cis OA Oleic acid cis9‐Octadecenoic acid 
18:1n7 Cis  Vaccenic acid cis11‐Octadecenoic acid 
20:1n9  Gadoleic acid cis11‐Eicosenoic acid 

18:2n6 trans  Linolelaidic acid  
18:2n6 Cis LA Linoleic acid all‐cis9,cis12‐Octadecadienoic acid 
18:3n6 GLA γ‐Linolenic acid all‐cis6,9,12‐Octadecatrienoic acid 
20:2n6  Eicosadienoic acid all‐cis‐11,14‐eicosadienoic acid 
20:3n6 GDGLA Dihomo‐γ‐linolenic acid all‐cis8,11,14‐Eicosatrienoic acid 
20:4n6 AA Arachidonic acid all‐cis5,8,11,14‐Eicosatetraenoic acid 
22:4n6 DTAn‐6 Adrenic acid all‐cis7,10,13,16‐Docosatetraenoic acid 
18:3n3 ALA α‐Linolenic acid all‐cis9,12,15‐Octadecatrienoic acid 
20:5n3 EPA Timnodonic acid all‐cis5,8,11,14,17‐Eicosapentaenoic 
22:5n3 DPAn‐3 Docosapentaenoic acid all‐cis7,10,13,16,19‐Docosapentaenoic acid 
22:6n3 DHA Cervonic acid all‐cis4,7,10,13,16,19‐Docosahexaenoic acid 
20:3n9 MA Mead acid all‐cis11,14,17‐Eicosatrienoic acid 
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3.6. Calculations of the fatty acid indexes 
 
 

Table 3.6. Fatty acid indexes’ calculations. 
 

SFA 14:0 + 15:0 + 16:0 + 17:0 + 18:0 + 20:0 
Atherogenic SFA 14:0 + 16:0 

TFA 18:1n9t + 18:1n7t + 18:2n6t 
Atherogenic FA 14:0 + 16:0 + TFA 

Cis‐MUFA 16:1n7 + 18:1n9c + 18:1n7c + 20:1n9 

Total‐MUFA 16:1n7 + 18:1n9c + 18:1n7c + 20:1n9 + 18:1n9t + 18:1n7t 
 

Cis‐PUFA 
18:2n6c + 18:3n6 + 20:2n6 + 20:3n6 + 20:4n6 + 22:4n6 + 18:3n3 + 20:5n3 + 22:5n3 + 22:6n3 
+ 20:3n9 

 
Total‐PUFA 

18:2n6c + 18:3n6 + 20:2n6 + 20:3n6 + 20:4n6 + 22:4n6 + 18:3n3 + 20:5n3 + 22:5n3 + 22:6n3 
+ 20:3n9  + 18:2n6t 

USFA Cis‐MUFA + Cis‐PUFA 

LCP‐n 6 20:2n6 + 20:3n6 + 20:4n6 + 22:4n6 

LCP‐n 3 20:5n3 + 22:5n3 + 22:6n3 

n3 index 20:5n3 + 22:6n3 

n‐6 20:2n6 + 20:3n6 + 20:4n6 + 22:4n6 + 18:2n6c + 18:3n6 

n‐3 20:5n3 + 22:5n3 + 22:6n3 + 18:3n3 

n‐7 16:1n7 + 18:1n7t + 18:1n7c 

n‐9 18:1n9t + 18:1n9c + 20:1n9 + 20:3n9 
LA/ ALA 18:2n6c / 18:3n3 

Holman Index 20:3n9 / 20:4n6 
n3 HUFA score LCPn‐3 /  LCPn‐3+LCPn‐6 

 

 
 

3.7. Reagents 
 
 

•  Methanol: Methanol for analysis, AMSURE. 1.06009.2500. 
 

•  Standard fatty acid supplement: SAFC Biosciences F7050; 115K5410. 
 

•  Sodium hydroxide: Riedel‐ de. Haën 06203. 
 

•  n‐Hexane p.a. MERK KGaA 1.04367.2500. 
 

•  Chloroform p.a. MERCK KGaA 1.02445.2500. 
 

•  2,6‐Di‐tert‐butyl‐p‐cersol (BHT) Butylated Hydroxytoluene  SIGMA  B‐1378 [128‐37‐0]. 
 

•  BF3  Boron trifluride methanol solution 14% SIGMA B‐1252; Batch 078K5301. 
 

•  Diethyl ether: ANALAR NORMAPUR 23811.326. 
 

•  Heptane (Petroleum)  Riedel‐ de. Haën 32287. 
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•  Acetic acid 99.8% SIGMA‐ ALDRICH 33209. 

 

•  11  mM  tris‐buffer  pH  7.6:  4  g  tris‐(hydroxymethyl)‐aminomethan  (Riedel‐de  Haën 
 

33742) are dissolved in 3000 ml demineralized water. 
 

•  Cholesterol analytic calibration standard for GC, Serva CAS. No. 57‐88‐5. 
 

•  MeOH  extracting  agent:  50  ml  Mehtanol+  3mg  BHT+1g  NaOH;  for  45  minutes  in 

ultrasonic bath. 

•  Folch extract : Chloroform p.a.: Methanol p.a. 2:1 v:v + 50mg BHT. 
 

3.8. Equipments 
 

•  Drier: CAMAG TLS Plate Heater III  CERAN SCHOTT ; cat: 022.3306 ; ser no: 121102. 
 

•  TLC: CAMAG ; cat: 022.7808; ser no: 121027 LINOMAT 5 . 
 

•  Freezer: SANYO model: MDF‐U53V; serial no: 09080772. 
 

•  TLC Plates: Silica gel 60 F254  glass plates 20X20 cm, MERCK 1.05715.0001 HX 953371. 
 

•  Vial: CHROMACOL C 821 UK; biolab Ges.m.b.H. 
 

•  Needles: HAMILTON 1750 LTN; ga 22/51 mm/pst 2 ) 500 µl; P/N 8121 7/01; WO: 
 

137422. 
 

•  Technospin Sorvall Centrifuges Instruments DU PONT. 
 

•  Champers. 
 

 

3.9. Analyzing Fatty Acids from different tissues/systems 
 

3.9.1. Preparation and methylation 
 

In general, analyzing fatty acids from body tissues goes through 3 main steps: tissue 

preparation  to extract the lipids, transformation  the derivatives lipids to fatty acid 

methyl esters (FAMEs) (KANG and WANG, 2004), and then to detect fatty acids profile 

usually GC is used to analyze FAMEs (Ratnayake and Galli 2009). The method from the 

five systems resembles each other starting from the second step. However, extracting 

the lipids from the tissues and cells differ according to the system nature. 

Venous blood was drawn from the participants after an overnight fast into a tube with 

EDTA (as anticoagulant) and transferred to the institute laboratory in a locked dry ice 

box to avoid any  enzymatic lipolysis. From each participant; 100 µl of whole blood, 
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400 µl of plasma (300 µl in separated cup for CE and PL and 100 µl for total plasma), 

and 200  µl   of   erythrocyte  packed  cells  were  filled  in  cups  labelled  with  the 

participant’s ID number and stored in a ‐80 C0 freezer. During the analysis phase, cups 

were taken out from the freezer and  liquefied by hand temperature. Samples were 

saponified with 1 ml NaOh in methanol for 5 minutes at 100 C0  boiled water bath then 

fatty acids were methylated using 1 ml BF3  at 100 C0  boiled water bath for 5 minutes 

then extracted with Hexane. A new bottle of BF3‐MeOH reagent; in  about weekly 

basis; was used to avoid any artifact production to prevent the loss of HUFA as the 

BF3‐MeOH has a limit shelf life even when refrigerated (Ratnayake and Galli, 2009). 

 
 

MeOH extract agent (50ml Methanol/1gNaOH/3mg BHT) was used for the analysis of 

fatty acids  by the method of (Folch et al., 1957). BHT is believed to minimize fatty 

acids  oxidation  (Bailey‐Hall,  2008).  Fatty  acids  were  transmethylated  by  alkaline 

methanolysis (1 ml) using the  BF3 (1 ml) reagent kit. However NaOH salt alters the 

lipids distribution and eradicates them from the upper phase while in the absence of 

it; lipids might be lost during washing (Folch et al., 1957). The antioxidant 2,6‐Di‐tert‐ 

butyl‐p‐cersol (60mg/l) was added to the MeOH to prevent the USFAs oxidation. 

 
 

Fatty acid methyl  esters (FAMEs) were  washed  and extracted with 500 µl Hexane 

(enhancing the efficiency of fatty acid methylation) (Araujo et al., 2008). The resulting 

assortment separated into two phases. The lower phase is the total pure lipids extract 

(Folch et al., 1957). The hexane upper layer was transferred to a new glass tube and 

evaporated  with  nitrogen  (N2)  then   FAMEs   were  ready  to  be  resolved  by  gas 

chromatography. The extracts  were  dissolved  with  50 µl hexane  and  flushed with 

nitrogen  then  stored  in  the  labelled  GC  Vials  (CHROMACOL   C   821  UK;  biolab 

Ges.m.b.H)  at  ‐80  C0    for  up  to  3  months  prior  to  GC  analysis  for  the  fatty  acid 
 

composition. 
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3.9.2. Extracting Fatty Acids Methyl Ester from venous whole 

blood 

A 35 µl of whole blood were transferred to glass tube and transmethylated using the 

method of Jordi Folch directly from the venous blood tubes to detect the fatty acids 

profile (Folch et al.,  1957). However, using BF3/MeOH FAME method transesterified 

TG thus it is appropriate for analyzing whole blood fatty acids (Bailey‐Hall et al., 2009). 

The CVs for the major fatty acids in  whole blood were as follows: 2.09% for 16:0, 

3.71% for 18:0, and 5.48 % for cis 18:1n–9, 3.82% for 18:2n–6, 5.06% for 20:4n–6, 
 

9.94% for 18:3n–3, 4.81% for 20:5n–3, and 5.73% for 22:6n–3. 
 
 
 

3.9.3.  Extracting Fatty Acids Methyl Ester from plasma 
 
 

Plasma was immediately separated from erythrocytes by centrifugation at 4000 rpm 

at room temperature for 10 minutes. A 35 µl of the sample were transferred to glass 

tube and transmethylated by the method of Jordi Folch (Folch et al., 1957). The CVs 

for the major fatty acids were as follows: 2.13% for 16:0, 1.86% for 18:0, 6.85% for cis 

18:1n–9, 3.37% for 18:2n–6, 5.10% for 18:3n–3, 7.08% for 20:5n–3, and 4.04% for 
 

22:6n–3. 
 
 
 

3.9.4.  Extracting Fatty Acids Methyl Ester from erythrocytes 
 

As  mentioned  above;  plasma  was  immediately  separated  from  erythrocytes  by 

centrifugation at 4000 rpm at room temperature for 10 minutes. Then erythrocytes‐ 

packed cells  (1.5 g) were treated with 11mM tris‐buffer. Erythrocytes packed cells 

were washed 3 times with an EDTA ‐containing saline solution to remove white cells 

and  plasma  contamination  (Bailey‐Hall  et  al.,  2008).  A  35  µl  of  the  sample  were 

transferred to glass tube and transmethylated by the method of Jordi Folch (Folch et 

al., 1957). 
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The CVs for the major fatty acids were as follows: 2.62% for 16:0, 2.41% for 18:0, 2.01 
 

% for cis 18:1n–9, 3.75 % for trans 18:1n–9, 2.22 % for 18:2n–6, 2.76% for 20:4n–6, 
 

4.11% for 18:3n–3, and 4.94% for 22:6n–3. 
 
 
 

3.9.5. Extracting Fatty Acids Methyl Ester from plasma 

phospholipids and plasma cholesterol ester 

 

Plasma  phospholipids  and  plasma  cholesterol  ester  were  extracted  from  blood 

plasma.  The   Isolation  of  the  lipids  classes  were  completed  by  TLC  (thin  layer 

chromatography).  However,  TLC  considered  as  the  most  convenient  technique  for 

small  amount  of  lipids  components  isolation  and  to  achieve  excellent  separation 

(Ratnayake and Galli, 2009). Separation can be achieved by 1 dimensional TLC in single 

run using mobile phases consisting of a mixture of Petroleum and diethyl ether with 

acetic acid. 

 
 

The lipids were extracted from 200µl Plasma by mixing the sample with 5ml Folch 

extract. The mixture was shacked in cool dark room for 1 hour. After centrifuged on 

4000 rpm for 15 minutes; upper layer was abated while the waste shifts to the base of 

the tube. The extract was evaporated with nitrogen (N2) gas in warm bath (40 C0) and 

the lipids were re‐dissolved in 100µl chloroform. 

 
 

However;  500µl  of  plasma  were  trailed  with  5ml  of  extract;  the  shake  mixtures 

outcome was not clear, harder to be abated with very high FFA concentration in the 

GC baseline. Therefore 200µl Plasma was used in this method. 
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500µl of plasma 200µl of plasma 
 

 
 

Fig 3.9.5. Lipids extracted from plasma by Folch extract. 
 
 
 

TLC was performed by using Silica gel 60 F254 glass plates 20X20 cm from MERCK. 

First  the  plates  were  activated  with  70  ml  methanol  in  the  chamber for  1hr  and 

15minutes. Standards and aliquots of the lipid extract were applied as narrow bands 

(0.5 cm in length) on the plate. During the sample injection and application; a flow of 

nitrogen was blown across the injection point to facilitate the spotting of a tight lipid 

band. Six samples were spotted per plate (1.5 cm space); though, 12 and 9 samples 

could be trailed per plate; but encountered CE separations materialized. 

 
 

Meanwhile the extraction chamber is activated by a modified solvent system of (85ml 

Petroleum+  15ml  diethyl  ether  +  2ml  acetic  acid)  for  35  minutes.  Solvent  system 

separated the sum of sphingo‐ and phospholipid fraction from the cholesterol fraction 

(Kornsteiner 2008). The plate with the injected samples was placed in the extraction 

chamber for 35 minutes in order to apply the  phospholipids and cholesterol ester 

extraction from the lipids. The PL and CE fractions were  made visible under iodine 

vapor. Lipids bands were identified by co‐migration with standard phospholipids and 

standard cholesterol ester and quantified under identical conditions. 
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The phospholipids and cholesterol ester fractions were scraped into separate labelled 

test tubes for the preparation of fatty acid methyl esters process. Each phospholipid 

and cholesterol ester sample was then esterified in the presence of methanolic NaCl/ 

BF3  and analyzed by gas ‐liquid chromatography. 

 
 

The CVs for the major fatty acids were as follows for  phospholipids: 6.97% for 16:0, 
 

5.32% for 18:0, 9.63% for 18:2n–6 cis, 7.95% for 18:2n‐6 trans, 9.20% for 20:4n–6, 
 

9.13% for 18:3n–3, 7.8% for 20:5n3. 
 
 
 

Additionally for  cholesterol ester: 7.67% for 16:0, 4.94% for 18:0, 10.85% for 18:2n–6 
 

cis, 7.98% for 18:2n‐6 trans, 9.7% for 20:4n6, 10.25% for 18:3n–3, 11.68% for 20:5n–3. 
 
 
 

Table 3.9. Summary for the main steps in analyzing: 
 

Sample/tissue Sample µl Me/NAOH 
ml 

BF3/ml Extraction 
(ml)/N2 

Dissolved 
µl Hexane 

Whole Blood 35 1 1 2 (4x0,5) 50 
Erythrocytes 35 1 1 2 (4x0,5) 50 
Plasma 35 1 1 2 (4x0,5) 50 
Fatty acid 
supplement 

15 1 1 2 (4x0,5) 50 

Phospholipids/ 
Cholesterol 
ester 

200 µl of 
the sample 
in 5 ml 
Folch 
extraction 

1 1 2 (4x0,5) 50 

 
 

3.10. Statistical analysis 
 

All statistical analyses were implemented by using version 17.0 of the SPSS statistical 

package.  GC  computer  program  for  fatty  acids  integration  was  performed  using 

version 6.3.0.0445 TotalChrom Workstation; PerkinElmer. Fatty acids’ Area [µV.s] from 

the Chromatogram were  completed and calculated by using Microsoft ®Office Excel 

2007 (12,0,4518,1014) MSO (12,0,4518,1014). 
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Student’s T‐Test was used to calculate the correlation between normal distribution 

values   while   Mann‐Whitney‐U‐Test   to   calculate   correlation   of   the   un‐normal 

distribution values. P‐values were considered as significant for p < 0.05. 

 
 

Partial Spearman’s rank‐correlation coefficients were calculated for the influence of 

BMI, age, gender, and smoking status on the fatty acids profile. Normally this Partial 

correlation can only be carried out with normal FA distribution. Explanatory variables 

were either continuous (age (y), body mass index (BMI kg/m2) or categorical (Gender 

(Male\Female), smoking (Y\N), blood  glucose  (normal,  hyperglycemia  and 

hypoglycemia),  triglyceride  (normal/  hyperlipidemia).  To  compare  the  continuous 

covariates  between  levels   of   the  categorical  factors,  two  sample  t‐tests  were 

performed, whilst associations between  the categorical factors were assessed using 

Pearson's  correlations  for  the  normal  distribution   and  Spearman  nonparametric 

coefficient correlation. 
 
 
 

For  each  of  the  whole  blood,  RBC,  plasma,  plasma  phospholipids  and  plasma 

cholesterol  ester  fatty  acids,  the  mean  and  two  standard  deviations  (2  SD)  were 

tabulated after checking  that the distribution of each fatty acid was approximately 

normal. Pearson's correlation was used to assess the relation between the FAs index 

in  the  5  different  methods.  Spearman  rank  correlation  coefficient  was  of  similar 

degree and was used to determine the strength of the association. 

 

The aim of the study is two‐fold: first, to find the best blood component for essential 

fatty acids  analys; and second, to assess the essential fatty acid status in the tested 

population. 
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4. Results 
 
 

Data on the range of the fatty acids contents of whole blood, RBC, plasma, plasma 

phospholipids  and  plasma  cholesterol  ester  of  140  Austrian  healthy  adults.  This 

present  study  attempts to find the most appropriate method for a large number of 

samples that: 

•  Gives an accurate fatty acid profile (especially essential fatty acids in concern), 
 

•  Is easy‐to‐do (may not require professional workers), 
 

•  And consumes less time, less material, less agents and less sample size. 
 
 
 

4.1. Fatty  acids  in  whole  blood,  red  blood  cells,  plasma,  plasma 

cholesterol ester, plasma phospholipids 

 

Of the 140 blood samples; 120 WB samples, 131 RBC samples, 131 plasma samples, 
 

128 CE samples and 117 PL samples were analysed. Same ID of the blood samples 

were matched through the five blood components. 24 fatty acids were analysed and 

their means are tabulated in the next table. 

 

Table 4.1. Fatty acids of whole blood, red blood cells, plasma, plasma cholesterol ester, 
and plasma phospholipids (mean ±SD). 

 
% of total fatty acids 

 
Fatty Acid 

 

WB 
 

RBC 
 

Plasma 
 

CE 
 

PL 
Total n= 120 total n=131 total n= 131 Total n=128 total n=117 

14:0 0.65 ± 0.28 0.21 ± 0.07 0.88 ± 0.36 0.83 ± 0.26 0.46 ± 0.15 

15:0 0.42 ± 0.22 0.30 ± 0.14 0.38 ± 0.18 1.00 ± 0.53 0.78 ± 0.24 
16:0 21.54 ± 1.83 19.35 ± 1.28 23.03 ± 2.42 12.51 ± 1.25 31.0 ± 3.13 

17:0 0.30 ± 0.06 0.34 ± 0.13 0.30 ± 0.08 0.19 ± 0.12 0.65 ± 0.19 

18:0 11.41 ± 1.08 19.82 ± 1.14 7.63 ± 0.95 1.69 ± 0.81 19.84 ± 3.08 

20:0 0.17 ± 0.08 0.21 ± 0.06 0.11 ± 0.07 0.09 ± 0.10 0.23 ± 0.19 
16:1n7 1.54 ± 0.54 0.40 ± 0.11 2.12 ± 0.70 2.63 ± 1.04 0.69 ± 0.20 

18:1n9 trans 0.18 ± 0.07 0.22 ± 0.06 0.15 ± 0.05 0.25 ± 0.17 0.17 ± 0.05 

18:1n7 trans 0.22 ± 0.08 0.24 ± 0.07 0.17 ± 0.07 traces 0.24 ± 0.08 

18:1n9 Cis 19.21 ± 1.85 14.13 ± 0.91 21.04 ± 2.59 18.37 ± 2.20 8.72 ± 1.72 

18:1n7 Cis 1.59 ± 0.21 1.32 ± 0.15 1.69 ± 0.25 1.21 ± 0.37 1.47 ± 0.29 
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Fatty Acid WB RBC Plasma CE PL 

20:1n9 0.36 ± 0.10 0.43 ± 0.10 0.33 ± 0.14 0.11 ± 0.08 0.21 ± 0.19 

18:2n6 trans 0.12 ± 0.06 0.12 ± 0.09 0.13 ± 0.11 0.23 ± 0.18 0.21 ± 0.19 

18:2n6 Cis 22.57 ± 2.37 10.34 ± 1.11 28.11 ± 3.61 49.47 ± 3.39 18.41 ± 2.44 

18:3n6 0.31 ± 0.10 0.08 ± 0.08 0.43 ± 0.14 0.88 ± 0.32 0.15 ± 0.09 

20:2n6 0.31 ± 0.07 0.34 ± 0.07 0.29 ± 0.13 0.34 ± 0.27 0.68 ± 0.20 
20:3n6 1.86 ± 0.37 2.08 ± 0.42 1.72 ± 0.39 0.82 ± 0.22 2.61 ± 0.85 

20:4n6 10.60 ± 1.49 17.23 ± 1.28 7.19 ± 1.46 6.39 ± 1.60 9.64 ± 1.57 

22:4n6 1.29 ± 0.40 3.94 ± 0.66 0.36 ± 0.29 0.75 ± 0.51 0.29 ± 0.24 
18:3n3 0.47 ± 0.18 0.18 ± 0.06 0.66 ± 0.17 0.62 ± 0.18 0.21 ± 0.07 

20:5n3 0.71 ± 0.27 0.72 ± 0.25 0.73 ± 0.35 0.64 ± 0.33 0.58 ± 0.30 
22:5n3 1.26 ± 0.24 2.77 ± 0.45 0.56 ± 0.17 0.17 ± 0.13 0.82 ± 0.29 

22:6n3 2.77 ± 0.64 5.10 ± 1.00 1.82 ± 0.52 0.74 ± 0.37 1.80 ± 0.58 

20:3n9 0.14 ± 0.05 0.13 ± 0.05 0.16 ± 0.07 0.08 ± 0.04 0.14 ± 0.05 

SFA 34.48 ± 1.70 40.23 ± 1.51 32.33 ± 2.61 16.31 ± 1.81 52.95 ± 3.37 
TFA 0.52 ± 0.16 0.59 ± 0.16 0.46 ± 0.17 0.47 ± 0.28 0.62 ± 0.23 

Atherogenic FA 22.71 ± 2.08 20.14 ± 1.35 24.37 ± 2.71 13.82 ± 1.32 32.08 ± 3.04 

∑ MUFA 23.10 ± 2.15 16.75 ± 0.94 25.51 ± 2.91 22.57 ± 2.92 11.51 ± 1.94 
∑ PUFA 42.42 ± 3.05 43.02 ± 1.65 42.17 ± 4.17 61.11 ± 3.02 35.54 ± 2.56 

USFA 64.99 ± 1.77 59.18 ± 1.56 67.21 ± 2.66 83.21 ± 1.90 46.43 ± 3.43 
PUFA/SFA 1.23 ± 0.14 1.07 ± 0.07 1.32 ± 0.21 3.78 ± 0.50 0.67 ± 0.09 

USFA/SFA 1.89 ± 0.14 1.47 ± 0.09 2.10 ± 0.24 5.17 ± 0.64 0.88 ± 0.12 

LCP n6 14.06 ± 1.77 23.59 ± 1.70 9.56 ± 1.55 8.29 ± 1.66 13.22 ± 1.77 

LCP n3 4.74 ± 0.91 8.59 ± 1.33 3.12 ± 0.82 1.55 ± 0.58 3.20 ± 0.76 

∑ LCPUFA 18.80 ± 2.14 32.18 ± 1.84 12.68 ± 2.00 9.85 ± 1.92 16.42 ± 1.95 
∑ n3 5.21 ± 0.91 8.76 ± 1.34 3.31 ± 0.82 2.17 ± 0.62 3.41 ± 0.77 
∑ n6 36.94 ± 2.83 34.00 ± 1.72 38.23 ± 3.98 58.64 ± 3.09 31.78 ± 2.58 

∑ n7 3.35 ± 0.63 1.96 ± 0.20 3.99 ± 0.79 3.84 ± 1.10 2.41 ± 0.38 

∑ n9 19.89 ± 1.87 14.91 ± 0.93 21.68 ± 2.60 18.81 ± 2.22 9.24 ± 1.74 
n6/n3 7.29 ± 1.34 3.99 ± 0.72 3.22 ± 0.77 29.31 ± 8.56 9.81 ± 2.41 

n3/n6 0.14 ± 0.03 0.26 ± 0.05 0.33 ± 0.08 0.04 ± 0.01 0.11 ± 0.03 

LA/ALA 52.51 ± 15.84 64.33 ± 21.74 45.64 ± 13.21 85.99 ± 22.13 97.01 ± 32.11 

AA/ EPA 16.94 ± 6.32 26.79 ± 9.00 11.59 ± 4.72 1.83 ± 2.43 22.69 ± 16.17 

DPA/ DHA 0.48 ± 0.13 0.56 ± 0.14 0.33 ± 0.12 0.28 ± 0.26 0.50 ± 0.24 
Omega 3 index 3.48 ± 0.80 5.82 ± 1.13 2.55 ± 0.74 1.38 ± 0.56 2.38 ± 0.71 
Holman Index 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.21 ± 0.25 0.02 ± 0.01 

n3 HUFA score 0.25 ± 0.04 0.27 ± 0.04 0.25 ± 0.05 0.16 ± 0.05 0.20 ± 0.04 



55 
 
 
 
 

Fatty acid  values  of  different  blood  components  have  been  found  different  due  to 

variation in the concentration of the FFA, PLs and steryl esters (Bailey‐Hall, 2008). 

 

The most abundant family of fatty acids in all fractions was PUFAs except for PL where 

more than half of the fatty acids were saturated (52.95 %). In WB, RBC and plasma the 

second abundant FAs  family was SFA followed by MUFA, while  CE fraction was the 

poorest in SFAs. 

 

4.1.1. Saturated Fatty Acids SFA 
 
 

PL fraction was the richest in SFAs as palmitic acid alone was approximately one third 

(31.0%) of the total fatty acids and Stearic acid was around 20% (19.84%). Among all FAs 

in  Plasma  PL,  palmitic  acid  (16:0)  was  the  highest  proportion  (Ogura  et  al.,  2010). 

However, RBC was the poorest in palmitic acid. It was noticed that plasma CE had the 

lowest of the Stearic acid (1.69%) which was  extremely different from the highest for 

the same FA in RBC and PL (19.82% and 19.84%, respectively). However; the presence of 

C 18:0 was higher in WB than in plasma (11.41% vs. 7.63%). CE was the poorest fraction 

in SFA (16 %). 

 

4.1.2. Cis Monounsaturated Fatty Acids 
 
 

PL fraction was the poorest in MUFA’s family, because oleic acid was very low (8.72%) 

while in other fractions its level was in close range. Oleic acid (18:1n9) predominant in 

CE in comparison to PL and RBC (Riséa et al., 2007). Palmitoleic acid (16:1n7) in RBC was 

the lowest in comparison to  other  fractions followed by PL (0.4%, 0.69% respectively) 

while  in  CE  was  the  highest  followed  by  plasma  then  WB  (2.63%,  2.12%,  1.54% 

respectively). 

 

4.1.3. n‐6 Polyunsaturated Fatty Acids 
 
 

Amongst the tested systems, CE fraction was the richest in n‐6 fatty acids as more than 
 

58% of total fatty acids in CE were n‐6 PUFA. LA concentrations are the highest in CE 



56 
 
 
 
 
(Arab, 2003) which was confirmed by our results; it was close to become half of all the 

fatty  acids  presence  (49.47%).  However,  the  lowest  LA  content  was  found  in  RBC 

(10.34%). A study done by Riséa in 10 healthy subjects showed that plasma is known to 

have a higher level of LA than in RBC while AA, DTAn‐6 and DPAn‐6 is higher in RBC than 

in plasma (Riséa et al., 2007) which is shown in this study’s obtained results. 

 

Although the level of 18:3n6 is low in all analysed fractions (<1.0%), the lowest was 

found in RBC (0.08%) while the highest found in CE (0.88%). AA was the highest in RBC 

(17.23%) while the lowest in CE (6.39%), plasma’s level was close to CE’s (7.19%), WB 

(10.6%) and PL (9.64%). The presence  of  n‐6 was highest in CE (58.64%), lowest in PL 

(31.78%). 

4.1.4. n‐3 Polyunsaturated Fatty Acids 
 
 

ALA was higher in plasma and CE as compared to other analysed fractions (0.66% and 
 

0.62%, respectively) such as RBC (0.18%) and PL (0.21%). Usually ALA concentration in 

PL is not more than 0.5% (Holman, 1998). No trace for ALA in RBC (Riséa et al., 2007), in 

our results RBC had the lowest percentage of ALA. 

 

RBC were  the richest  while  CE  had  the lowest  level  of  DHA level (5.1% vs. 0.74%). 

However;  DHA  was  higher  than  EPA  in  all  analysed  fractions.  Long  term  intake  of 

vegetable oils that contain a high level of ALA and a low level of LA would increase the 

DHA levels in blood (Ratnayake and Galli, 2009). Plasma and RBC concentration of DHA 

is a better indicator of fish and n‐3 intake than is EPA because the latter is affected by 

some factors. EPA is mobilized faster form the  adipose  tissue than DHA (Sun et al., 

2008). 
 

 

EPA  presence  in  WB,  RBC,  and  plasma  were  similar  (0.71%,  0.72%,  and  0.73%, 

respectively).  For DPA, the richest fraction was RBC (2.77%) followed by WB (1.26%), 

while the lowest was CE  fraction (0.17%). DPA (22‐5n3) level in the tissue reflect the 

overall  metabolic  pathway  because   it   mediates   the  conversion  of  EPA  to  DHA 

(Ratnayake and Galli, 2009). 
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In regards to omega 3, the highest was found in RBC (8.76%), followed by WB (5.21%) 

and  the  lowest  in  plasma  CE  (2.17%)  which  confirms  the  idea  of  that  WB  might 

substitute the RBC as test system for an omega‐3 indicator. n‐3 HUFA score were very 

close and in similar range in WB,  RBC, Plasma, PL (0.25, 0.27, 0.25, 0.20 respectively) 

while  in  CE  the  ratio  was  lower  (0.16%).  n‐3  HUFA  (in  the  total  HUFA  pool)  was 

considered  to  be  the  tissue  biomarker  of  blood  omega‐3   fatty  acids.  It  showed 

constantly (low variable) and strong correlation with animal tissues (Stark 2008). From 

our data, n‐3 HUFA were similar in WB, RBC, plasma followed by PL while it was lower in 

CE. 
 

4.1.5. Omega‐3 Index 
 

Omega‐3 index was the highest in RBC (5.82%) followed by WB (3.48%), plasma (2.55%) 

and PL (2.38%) while the lowest was found in CE (1.38%). This supports that RBC would 

be the best compartment to establish omega‐3 index followed by WB. 

 

4.1.6. n6/n3 ratio 
 

According to the high concentration of n‐6 FAs in plasma CE thus the highest ratio of 

n6/n3 was  in  CE while the lowest was found in plasma and RBC (3.22 and 3.99). Vice 

versa holds for the lowest value of the ratio of n3/n6 was in CE while the highest found 

in plasma followed by RBC  (0.33  and 0.29). 4:1 was the suggested ratio of n6:n3 for 

optimal functional by Yehuda and Carasso (Holman, 1998; Yehuda and Carasso, 1993). 

 

AA/EPA+DHA might be used as an indicator of n‐6/n‐3 status which  showed  a high 

correlation  between capillary WB, RBC and PL (Bailey‐Hall et al., 2009). Differences in 

n6/n3 ratio would highly increase cell membrane composition of AA concentration and 

slightly EPA,  consequently  increase  the production  of  eicosanoids  and  inflammatory 

mediators (Adams et al., 1996). A high n6/n3  ratio in plasma inversely correlates with 

health consequences which can be corrected by either increase the dietary n‐3 intake 

and/or decrease n‐6 intake (Harris et al., 2006). High n3/n6 ratio  was correlated with 

low incidence of the cancer mortality (Adams et al., 1996). Low n3/n6 ratio might be an 

index for the risk of cognitive impairment and dementia (Heude et al., 2002). 
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4.1.7. n‐7, n‐9 Polyunsaturated Fatty Acids and Holman Index 
 
 

The lowest n‐7 was found in RBC, while the lowest for n‐9 was found in PL. For the mead 

acid (an index of EFAD concentrations), levels were similar in WB, RBC, plasma, PL while 

in CE the concentration was lower (0.08%). Usually 20:3n9 (Mead Acid) has a very low 

concentration makes it  difficult to be detectable (Strijbosch et al., 2008) and it’s an 

indication  of  the  EFAD  if  elevated  (Holman,  1970).  Holman  index  in  RBC,  WB,  and 

plasma were  equal while  the highest found in  CE  (0.21). None  of the five fractions 

showed any EFAD laboratory signs as Holman index was ≤ 0.2. 

 

Holman has published that triene/tetraene ratio of > 0.2 to be abnormal and EFAD ratio 

is greater than 0.4 in PL fraction (Holman, 1960; Holman et al., 1979). Holman index is 

being used as a predictor of EFAD especially with the EFAD clinical signs such as growth 

retardation (Strijbosch et al.,  2008) and it was suggested to consider 20:3n9/20:4n6 > 

0.2 as cutoff point for the EFAD diagnosis (Jeppesen et al., 1998). The Holman index 

which  used   to  be  called  (triene‐to‐tetraene)  in  previous  works,  is  considered  to 

determine the fat  deficiency status in rats, swine and other species (Mohrhauer and 

Holman, 1963). 

 

4.1.8. Total Polyunsaturated Fatty Acids 
 
 

CE fraction was the richest in PUFA family. LA and ALA have the strongest correlation 

with dietary intake because those PUFAs are derived only from diet (Popitt et al., 2005). 

LA/ALA ratio was massively highest in PL (97.01) followed by CE (85.99) which might be 

explained to the high of LA in PL and CE. LA/ ALA ratio intake should be 14:1 for equal 

metabolized competitive (Holman, 1998).  However; LA/ALA and ALA levels affect the 

conversion of ALA to its derivatives (Ratnayake and Galli, 2009). 

 

The highest content of PUFAs (cis and total) was found in CE while the lowest was in PL. 

However, WB, RBC and Plasma were very similar, but the SD in RBC is the lowest which 

might  be  explained  by  the  long  term  dietary  intake  reflection  and  low  biological 

variability. WB and Plasma SD  were higher than the RBC SD (plasma SD is also higher 
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than WB SD) which also be explained by the short term dietary intake variation (and 

individual variations). 

 

The highest level of the USFA were found in CE (83.21%), WB and plasma were in close 

range  (64.99%, 67.99%), not far RBC (59.18%) while PL had the lowest (46.43%). For 

LCPUFA, RBC had  the highest concentration (32.18%) while the lowest was found in 

plasma CE (9.85%). However, sum of LCPUFA in WB, PL and Plasma somehow in close 

average (18.8%, 16.42%, and 12.68%). LCPUFA ’correlations are the main consideration 

in  most  studies  since  they  indicate  the  dietary  intake  of  them  (as  they  are  not 

biosynthesized in vivo) (Bailey‐Hall et al., 2008). 

 

DPA/ DHA ratio in RBC and PL were similar (0.56, 0.5) and it was low in CE (0.28). 

AA/EPA ratio was higher in RBC followed by PL (26.79, 22.69) while it was extremely low 

in CE (1.83). Plasma PL AA/EPA showed to have correlations with some chronic disorders 

and positively with clinical  symptoms of depression while the AA/DHA ratio showed 

correlation with neuroticism (Holub  2009).  AA/EPA level would reflect the depression 

grade. In plasma PL; AA/EPA ratio was strongly correlated with the Hamilton depression 

rating scale (Adams et al., 1996). 

 

HUFA (20‐ to 22‐ carbon fatty acids with 3 to 6 double bonds) are precursors for the 

eicosanoids. In fish eating, eicosanoids derived from EPA while in non‐fish eating they 

are derived from AA.  Thus  the AA/EPA ratio affects the biochemical and physiological 

responses to stress (Harris et al., 2006). In our results, RBC would be a good indicator as 

it shows the highest ratio followed by PL and not from plasma CE. 

 

AA/homo‐g‐LA  is  considered  as  an  index  for  the  ∆5  desaturase  enzyme  which  is 

responsible to insert the double bond to the ninth carbon starting from the COOH side. 

AA/LA  (product/precursor) is an index for the AA metabolic pathway activity (Lewis‐ 

Barbed et al., 2000).  The plasma P/S ratio indicates the risk of death from coronary 

heart disease (Anderson et al., 2009) since it reflects the double bond index (Lepage et 

al., 1989). Since the PUFA was the highest  among CE thus the P/S ratio was also the 

highest in CE fraction, while the lowest was in PL since the SFA was predominant. 
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4.1.9. trans Fatty Acids TFA 
 
 

Trans fatty acids were the highest in plasma PL (0.62%). Atherogenic SFA was found to 

be the  highest in PL followed by plasma and WB while the lowest concentration was 

found in CE. 
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4.2. Comparison between fatty acids composition from our data and 

other studies 

Our results of the five different blood components were compared with other studies 

which  analysed  same  blood  components  and  using  the  same  method.  Our  results 

appear in the range of the other studies outcomes. 
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4.2.1. Comparison between fatty acids composition in whole 

blood 
 

The percentage of total analysed fatty acids in WB from our results are mentioned in 

table (4.2.1.)  in order to compare our results with other studies that used WB and 

same analysing method as  well. Number of subjects from our data was 120 mixed 

genders (male and female) and the number of analysed fatty acids was 24 FA. 

 

In Italy; Marangoni analysed FAs from fasting WB in 6 healthy subjects from both 

genders  where  their  age  ranged  between  22  to  72  years  who  worked  in  the 

Department  of   Pharmacological  Science  in  Milan.  No  differences   were  found 

between WB FAs from arm venous artery and fingertip blood drop (Marangoni et al., 

2004). On the other hand, Marangoni in 2007 analysed 19 FAs from fasting fingertip 
 

WB in healthy 47 males and 53 females separately aged from 22 to 70 years who 

were attending to the Department of Pharmacological Science in Milan (Marangoni et 

al., 2007). 

 

In 2008, Armestrong analysed 24 FAs from WB in 4 healthy males in Waterloo Ontario 
 

Canada (Armestrong et al., 2008). However; his colleagues Metherel in 2009 analysed 
 

21 FAs from fasting venous artery WB in healthy 9 males and 7 females separately 
 

(Metherel et al., 2009). 
 

 

In Costa Rica 2005, a study was done to analyse 31 FAs from fasting WB in healthy 99 

males and 101 females aged between 56 and 62 years (Baylin et al., 2005). Chavarro 

analysed 8 FAs from fasting WB in 476 healthy males (aged between 53 to 63 years 

old)  in  a  USA  study  that  compared  the  FAs  status  differences  between  prostate 

cancer  cases  and  control  cases.  In  the  following  table  control  cases  were  stated 

(Chavarro et al., 2007). 
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Table 4.2.1. Comparison between whole blood fatty acids composition from our data with other References 
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18.23 
 

1.52 
 

0.17 
 

0.12 
 

22.38 
 

0.28 
 

‐ 
 

1.75 
 

9.08 
 

1.28 
 

0.37 
 

0.81 
 

0.90 
 

2.39 
 

34.07 
 

23.32 
 

39.87 
 

35.10 
 

4.54 
USA

7  

476 
 

1 
 

8 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

25.30 
 

0.26 
 

‐ 
 

1.36 
 

10.10 
 

‐ 
 

0.35 
 

1.79 
 

0.97 
 

2.19 
 

‐ 
 

‐ 
 

‐ 
 

‐ 
 

4.96 
Values = % of total fatty acids. 

Gender: 1= Male, 2= Female, 3= Mix 

n of FA= number of total fatty acids analyzed. 
1 and  2 

Marangoni et al., 2007, 
3 

Marangoni et al., 2004, 
4 

Armestrong et al., 2008, 
5   

Metherel et al., 2009, 
6   

Baylin et al., 2005, 
7   

Chavarro et al., 2007, 
o   

our data 2010 
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4.2.2.Comparison between fatty acids composition in Red Blood 

Cells 
 
The percentage of total analysed fatty acids in RBC from our results is mentioned in 

table (4.2.2.) in order to compare our results with other studies that analysed RBC using 

the same analysing method. Number of subjects from our data was 131 mixed genders 

(male and female) and the number of analysed fatty acids was 24 FA. 

 

In South Africa, Koorts  analysed  22 FAs from RBC in 10 healthy  subjects from both 

genders (6 males and 4 females), the mean age was 38 years (Koorts et al., 2002). King 

analysed 21 FAs from RBC in 30 healthy postmenopausal females aged 50‐79 years (King 

et al., 2006). Armestrong analysed  24 FAs from RBC in 4 healthy males in Waterloo 

Ontario Canada (Armestrong et al., 2008) while his colleagues Metherel analysed 21 FAs 

from RBC in healthy 9 males and 7 females separately (Metherel et al., 2009). 
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Table 4.2.2. Comparison between red blood cells fatty acids composition from our data with other References 
 

 
 

Country 
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2
2

:4
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6
 

 

1
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:3
n
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0

:5
n

3
 

 

2
2

:5
n

3
 

 

2
2

:6
n

3
 

 

S
F

A
 

 

M
U

F
A
 

 

P
U

F
A
 

 

n
-6

 

 

n
-3

 

Austria
0 131 3 24 0.21 19.35 19.82 0.21 0.40 1.32 0.43 10.34 0.08 0.34 2.08 17.23 3.94 0.18 0.72 2.77 5.10 40.23 16.75 43.02 34.00 8.76 

South Africa
1 10 3 22 0.39 21.21 16.64 0.38 0.17  0.22 12.11 0.03 0.42 1.62 15.92 0.39 0.13 0.28 1.56 4.26      

USA, Washington 

Seattle
2 

30 2 21 0.26 18.96 13.97 0.39 0.37 0.99 0.24 8.56  0.25 1.57 14.17 2.93 0.14 0.68 2.29 5.05 40.09 16.81 35.68 27.51 8.17 

Canada Waterloo
3 4 1 24 0.45 24.59 13.06 0.33 0.89 1.53 0.36 11.35 0.08 0.30 0.75 13.23 3.06 0.18 0.53 2.22 1.99 41.92 18.54 34.14 29.22 4.92 

Canada Ontario 

Waterloo
4 

9 1 21 0.63 22.27 13.62 0.25 0.32 1.45 0.26 9.82 0.01  1.60 12.30 3.12 0.12 0.38 2.05 2.51 42.90 17.65 32.65 27.60 5.07 

7 2 21 0.74 23.50 12.79 0.26 0.39 1.49 0.28 9.83 0.01  1.36 12.01 2.99 0.12 0.31 1.48 3.44 42.74 17.85 32.35 27.00 5.35 

Values = % of total fatty acids. 

Gender: 1= Male, 2= Female, 3= Mix 

n of FA= number of total fatty acids analyzed. 
1
Koorts et al., 2002, 

2 
King et al., 2006, 

3 
Armestrong et al., 2008, 

4 
Metherel et al., 2009, 

o   
our data 2010 
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4.2.3.Comparison between fatty acids composition in plasma 
 
The percentage of total analysed fatty acids in plasma from our results are mentioned in 

table (4.2.3.) in order to compare our results with other studies that used plasma and 

the same analysis method as well. Number of subjects from in this experiment was 131 

mixed genders (male and female) and the number of analysed fatty acids was 24 FA. 

 

However, Akiko and his colleagues analysed 9 FAs from plasma in healthy subjects from 

different  Asian ethnic groups  (Japan, Korea, and Mongolians); 411 healthy Japanese 

(194 males and 217 females) aged 30‐60 years, 418 healthy Koreans (240 males and 178 

females) aged 30‐60 years, and 215 Mongolians (100 males and 152 females) (Akiko et 

al., 2007). 

 

In Costa Rica 2005, a study was done to analyse 31 FAs from plasma in healthy 99 males 

and 101  females aged between 56 and 62 years old (Baylin et al., 2005). In Canada, 

Metherel analysed 21  FAs from plasma in healthy 9 males and 7 females separately 

(Metherel et al., 2009). 
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Table 4.2.3. Comparison between Plasma fatty acids composition from our data with other References 
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n
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2

2
:6

n
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 S
F

A
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U

F
A
 

 P
U

F
A
 

 n
-6

 

 
n

-3
 

Austria
0  

131 
 

3 
 

24 
 

0.88 
 

23.03 
 

7.63 
 

0.11 
 

2.12 
 

21.04 
 

1.69 
 

0.33 
 

28.11 
 

0.43 
 

1.70 
 

7.19 
 

0.36 
 

0.66 
 

0.73 
 

0.56 
 

1.82 
 

32.33 
 

25.51 
 

42.17 
 

38.23 
 

3.31 
Japanese

1 411 3  

9  
 

24.40 
 

7.80   
 

18.50   
 

33.70   
 

6.30  
 

0.50 
 

2.50 
 

0.90 
 

5.50 
 

32.10 
 

18.50 
 

48.50 
 

39.90 
 

8.50 
Koreans

1 418 3  

9  
 

23.60 
 

6.70   
 

19.60   
 

37.20   
 

6.40  
 

0.60 
 

1.40 
 

0.50 
 

4.00 
 

30.20 
 

19.60 
 

50.10 
 

43.60 
 

6.50 
Mongolians

1 215 3  

9  
 

23.90 
 

8.30   
 

20.70   
 

34.60   
 

6.30  
 

0.70 
 

1.00 
 

1.10 
 

3.50 
 

32.20 
 

20.70 
 

46.00 
 

40.80 
 

5.10 
Canada 

Ontario 

Waterloo
2 

 

9 
 

1 
 

21 
 

0.97 
 

21.66 
 

6.53 
 

0.13 
 

2.14 
 

20.66 
 

1.95 
 

0.15 
 

29.39 
 

0.32 
 

1.43 
 

6.17 
 

0.19 
 

0.57 
 

0.39 
 

0.42 
 

1.07 
 

30.51 
 

25.43 
 

40.29 
 

37.85 
 

2.45 
 

7 
 

2 
 

21 
 

1.10 
 

23.72 
 

6.12 
 

0.12 
 

3.03 
 

20.95 
 

2.09 
 

0.21 
 

26.96 
 

0.31 
 

1.51 
 

5.50 
 

0.21 
 

0.56 
 

0.30 
 

0.30 
 

1.34 
 

32.11 
 

26.81 
 

37.44 
 

34.94 
 

2.51 
Costa Rica

3  

200 
 

3 
 

31 
 

0.74 
 

22.78 
 

6.76 
 

0.19 
 

2.64 
 

20.74 
 

1.71 
 

0.14 
 

28.09 
 

0.30 
 

1.68 
 

6.02 
 

0.26 
 

0.49 
 

0.34 
 

0.41 
 

1.49 
 

31.85 
 

25.91 
 

38.39 
 

36.74 
 

2.62 
Values = % of total fatty acids. 

Gender: 1= Male, 2= Female, 3= Mix 

n of FA= number of total fatty acids analyzed. 
1
Akiko et al., 2007, 

2 
Metherel et al., 2009, 

3 
Baylin et al., 2005, 

o   
our data 2010 



68 
 
 
 

 

4.2.4.Comparison between fatty acids composition in plasma 

phospholipid 
 
The percentage of total analysed fatty acids in PLs from our results are mentioned in 

table  (4.2.4.)  in  order  to  compare  our  results  with  other  studies  that  used  plasma 

phospholipids (PL) and used the same analysing method. Number of subjects from our 

data was 117 mixed genders (male and female) and the number of analysed fatty acids 

was 24 FA. 

 

Wang analysed 11 FAs from PL in 3309 subjects in middle age adults (45‐ to 64‐ years) in 

a study was  held to investigate the relation of PL composition with incidence of CHD. 

They compared subjects with CHD incident vs. no CHD. In the following table, no CHD 

subjects PL’s FAs profile was stated (Wang et al., 2003). 

 

King analysed 21 FAs from PL in 30 healthy postmenopausal females aged 50‐79 years 

(King et al., 2006). Armestrong analysed 24 FAs from PL in 4 healthy males in Waterloo 

Ontario Canada (Armestrong et al., 2008). 

 

However, a recent study was conducted to examine the association between breast 

cancer  risk   and  the  FA  composition  of  PLs.  PLs  profile  was  analysed  from  257 

postmenopausal women aged 50‐69 years (Takata et al., 2009). 
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Table 4.2.4. Comparison between Plasma phospholipids fatty acids composition from our data with other References 
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-6
 

 
n

-3
 

Austria
0 117 3 24 0.46 31.00 19.84 0.23 0.69 8.72 1.47 18.41 0.15 2.61 9.64 0.29 0.21 0.58 0.82 1.80 52.95 11.51 35.54 31.78 3.41 

Minneapolis 
USA

2 
 

3309   

11   

25.40 
 

13.30   

0.64 
 

8.60   

22.00 
 

0.11 
 

3.32 
 

11.50   

0.15 
 

0.56   

2.80 
 

40.60 
 

9.97 
 

42.70 
 

38.20 
 

4.42 

Seattle USA 
3 30 2 21 0.25 25.56 12.92 0.56 0.65 8.37 1.41 18.62  3.45 11.19 0.45 0.21 0.99 0.98 4.14 42.48 12.96 40.42 34.10 6.11 

Canada 

Waterloo
4 

 

4 
 

1 
 

24 
 

0.77 
 

30.44 
 

12.09 
 

0.33 
 

0.84 
 

8.26 
 

1.51 
 

22.17 
 

0.07 
 

1.57 
 

9.40 
 

0.41 
 

0.28 
 

0.81 
 

0.94 
 

1.52 
 

46.30 
 

12.37 
 

37.87 
 

34.28 
 

3.59 

USA
5 257 2 39 0.29 26.20 13.30 0.41 0.57 8.06 1.27 19.60 0.09 3.21 11.0 0.42 0.10 0.65 0.82 2.77 43.50 13.00  34.00 4.33 

Values = % of total fatty acids. 

Gender: 1= Male, 2= Female, 3= Mix 

n of FA= number of total fatty acids analyzed. 
1
Wang et al., 2003, 

2 
King et al., 2006, 

3
Armestrong 2008, 

4
Takata et al., 2009, 

o   
our data 2010 
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4.2.5. Comparison between fatty acids composition in plasma 

cholesterol ester 
 
The percentage of total analysed fatty acids in CE from our results are mentioned in 

table (4.2.5.) in order to compare our results with previous studies that determined the 

fatty acid pattern in CE using the same analysing method. Number of subjects from our 

data was 128 mixed genders (male and female) and the number of analysed fatty acids 

was 24 FA. 

 

Wang analysed 11 FAs from CE in 3309 subjects in middle age adults (45‐ to 64‐ years) in 

a study was held to investigate the relation of CE composition with incidence of CHD. 

They compared subjects with CHD incident vs. no CHD. In the following table, no CHD 

subjects CE’s FAs profile was stated (Wang et al., 2003). 

 

King analysed 21 FAs from CE in 30 healthy postmenopausal females aged 50‐79 years 
 

(King et al., 2006). 
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Table 4.2.5. Comparison between Plasma cholesterol ester fatty acids composition from our data with other References 
 

  
C

E 
(p

la
sm

a)
 

 
n
 

 

g
e

n
d

e
r 

 

n
 o

f 
F

A
 

 
1

4
:0

 

 
1

6
:0

 

 
1

8
:0

 

 
2

0
:0

 

 
1

6
:1

n
7
 

 
1

8
:1

n
9

c
 

 
1

8
:1

n
7

c
 

 
2

0
:1

n
9
 

  
1

8
:2

n
6

c
 

 
1

8
:3

n
6
 

 
2

0
:2

n
6
 

 
2

0
:3

n
6
 

 
2

0
:4

n
6
 

 
2

2
:4

n
6
 

 
1

8
:3

n
3
 

 
2

0
:5

n
3
 

 
2

2
:5

n
3
 

 
2

2
:6

n
3
 

 
S

F
A
 

 
M

U
F

A
 

 
P

U
F

A
 

 
n

-6
 

 
n

-3
 

Austria
0 

 

128 
 

3 
 

24 
 

0.83 
 

12.51 
 

1.69 
 

0.09 
 

2.63 
 

18.37 
 

1.21 
 

0.11 
 

49.47 
 

0.88 
 

0.34 
 

0.82 
 

6.39 
 

0.75 
 

0.62 
 

0.64 
 

0.17 
 

0.74 
 

16.31 
 

22.57 
 

61.11 
 

58.64 
 

2.17 
Minneapolis 

USA
1 

 
3309   

11   
10.00 

 
0.89   

2.58 
 

16.00    
54.10 

 
1.02   

0.76 
 

8.25   
0.41 

 
0.54   

0.44 
 

11.60 
 

18.60 
 

65.70 
 

64.20 
 

1.41 

Seattle USA
2 

 

30 
 

2 
 

21 
 

0.63 
 

11.14 
 

0.96 
 

0.62 
 

3.57 
 

17.81 
 

1.29 
 

N/A 
 

49.53  
 

N/A 
 

0.88 
 

7.99 
 

N/A 
 

0.61 
 

0.91 
 

0.06 
 

0.72 
 

13.76 
 

23.21 
 

60.86 
 

58.56 
 

2.30 
Values = % of total fatty acids. 

Gender: 1= Male, 2= Female, 3= Mix 

n of FA= number of total fatty acids analyzed. 
1
Wang et al., 2003, 

2 
King et al., 2005, 

o   
our data 2010 
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Tabels 4.2.1. to 4.2.5. show evaluation of our results with other published studies that 

used folch method in analysing FAs. 

 

In table 4.2.1. FAs% in WB were compared from our data (Austria) with WB FAs% from 

Italy,  Canada,  USA and Costa Rica. SFA and MUFA from Austira were in the range of 

Canada, USA, and Costa Rica while PUFA and n‐3 from our data were higher. However, 

Italy showed higher SFA, MUFA lower PUFA and n‐3 as the case for Austria. 

 

In table 4.2.2. FAs% in RBC from our data (Austria) were compared with RBC FA% from 

South Africa, USA, and Canada. While USA Washington Seattle showed very similar n‐3, 

SFA, and MUFA with Austria, Canada appears to have lower n‐3. 

 

In table 4.2.3. FAs % in plasma from Austria were compared with FA% in plasma from 

Japan, Korea, Mongolia, Canada, and Costa Rica. Japan had the highest n‐3 followed by 

Korea while Canada and Costa Rica had the lowest. SFA and PUFA were in similar range 

between Austria and other countries. 

 

In table 4.2.4. FAs % in PLs from Austria were compared with FA% in PLs from USA and 

Canada. Austria appeared to be similar to Canada Waterloo in n‐3 and PUFA however, 

SFA looked higher in Austria than other compared countries. 

 

In table 4.2.5. FAs % in CE from Austria  were  compared  with  FA% in CE from USA 

(Minneapolis  and Washington Seattle). Austria’s n‐3 was similar to Seattle but higher 

than Minneapolis. However, SFA in Austria was higher. 
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4.3. Correlation coefficient between the five blood components 

Bivariate correlations were  measured between  each  FA and Index among WB, RBC, 

plasma, CE, and PL. Table 4.3 shows  summary of the correlation coefficients for each 

fatty acid between the tested systems. 
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Table 4.3: Summary of the correlation coefficients between each fatty acid between the tested system 
 

Fatty Acid WB, RBC WB, Plasma WB ,CE WB, PL RBC, plasma RBC, CE RBC, PL Plasma, PL Plasma, CE PL, CE 

14:0 0.374** 0.686** 0.306** 0.406** 0.345** 0.424** 0.245** .348** .243** .455** 
15:0 0.342** 0.197** 0.258** ‐0.004 ‐0.038 0.012 ‐0.026 0.040 0.066 .430** 
16:0 0.460** 0.720** ‐0.014 0.207* 0.348** ‐0.120 0.277** .265** 0.111 0.041 
17:0 0.692** 0.496** 0.435** 0.485** 0.515** 0.318** 0.406** .404** .409** .372** 
18:0 0.270** 0.644** 0.271** 0.358** 0.188* 0.175 0.401** .389** .390** .451** 
20:0 0.217* 0.544** 0.331** 0.303** 0.238** 0.108 0.113 .332** .204* .234* 
16:1n7 0.523** 0.821** 0.752** 0.691** 0.428** 0.521** 0.543** .731** .831** .769** 
18:1n9trans 0.217* 0.216* 0.208* 0.318** 0.083 ‐0.016 0.073 0.127 0.075 .344** 
18:1n7trans 0.441** 0.593** N/A 0.522** 0.189* N/A 0.253** .511** N/A N/A 
18:1n9Cis 0.365** 0.768** 0.084 0.200* 0.392** 0.138 0.098 .332** ‐0.002 .506** 
18:1n7Cis 0.551** 0.667** 0.000 0.484** 0.388** 0.092 0.238* .524** .418** .359** 
20:1n9 0.247** 0.615** 0.134 0.388** 0.209* 0.049 0.087 .301** ‐0.02 .194* 
18:2n6 trans 0.296** 0.345** 0.225* 0.256* 0.199* 0.079 0.167 0.107 .252** .433** 
18:2n6 Cis 0.511** 0.732** 0.552** 0.371** 0.583** 0.435** 0.455** .397** .576** .357** 
18:3n6 0.408** 0.820** 0.719** 0.300** 0.504** 0.407** 0.207* .391** .712** .334** 
20:2n6 0.518** 0.537** 0.125 0.374** 0.396** 0.166 0.385** .241* .186* .447** 
20:3n6 0.752** 0.829** ‐0.033 0.434** 0.578** ‐0.124 0.234* .489** 0.032 0.097 
20:4n6 0.419** 0.732** 0.121 0.046 0.307** ‐0.057 ‐0.022 0.028 .206* 0.123 
22:4n6 0.389** 0.16 ‐0.03 0.223* 0.184* 0.041 0.020 ‐0.050 0.091 ‐0.083 
18:3n3 0.269** 0.727** 0.618** 0.581** 0.163 0.468** 0.270** .558** .656** .715** 
20:5n3 0.616** 0.796** 0.606** 0.449** 0.597** 0.413** 0.247** .412** .471** .475** 
22:5n3 0.572** 0.515** 0.154 ‐0.017 0.231* 0.137 0.071 0.116 0.059 ‐0.014 
22:6n3 0.746** 0.841** 0.496** 0.490** 0.687** 0.468** 0.454** .567** .535** .456** 
20:3n9 0.234* 0.566** 0.352** 0.398** 0.102 0.178 0.241* .338** .179* 0.172 
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Continue table 4.3: Summary of the correlation coefficients between each fatty acid between the tested system 
 

Fatty Acid WB, RBC WB, plasma WB ,CE WB, PL RBC, plasma RBC, CE RBC, PL Plasma, PL Plasma, CE PL, CE 

SFA 0.152 0.597** 0.025 ‐0.059 0.211* ‐0.081 0.091 ‐0.071 ‐0.038 0.128 
Atherogenic FA 0.415** 0.698** 0.021 0.010 0.305** ‐0.102 0.246** 0.237* 0.099 ‐0.003 
TFA 0.304** 0.508** 0.240* 0.198 0.246** 0.131 0.270** 0.245* 0.156 .447** 
cis‐MUFA 0.291** 0.762** 0.399** 0.292** 0.335** 0.082 0.101 0.411** .464** .588** 
∑ MUFA 0.264** 0.763** 0.401** 0.289** 0.295** 0.060 0.071 0.402** .464** .576** 
cis‐PUFA 0.253** 0.768** 0.317** 0.178 0.220* ‐0.070 0.170 0.252** .418** 0.131 
∑ PUFA 0.251** 0.770** 0.323** 0.197 0.139 ‐0.061 0.171 0.265** .428** 0.132 
USFA 0.14 0.577** 0.04 ‐0.068 0.195* ‐0.078 0.104 ‐0.079 ‐0.038 0.143 
LCP n6 0.457** 0.694** 0.403** 0.015 0.290** ‐0.169 0.027 0.026 .553** ‐0.096 
LCP n3 0.702** 0.790** 0.518** 0.386** 0.542** 0.480** 0.378** 0.568** .639** .614** 
Omega 3 index 0.770** 0.856** 0.522** 0.526** 0.640** 0.494** 0.468** 0.593** .679** .656** 
∑ LCPUFA 0.291** 0.689** 0.366** 0.141 0.247** 0.174 0.230* 0.174 .568** 0.116 
∑ n6 0.385** 0.730** 0.387** 0.231* 0.212* 0.083 0.131 0.280** .546** 0.146 
∑ n3 0.730** 0.799* 0.539** 0.411** 0.550** 0.500** 0.340** 0.572** .592** .587** 
∑ n7 0.315** 0.845** 0.723** 0.515** 0.207* 0.226* 0.206* 0.474** .787** .470** 
∑ n9 0.362** 0.778** 0.357** 0.213* 0.394** 0.144 0.074 0.351** .389** .522** 
n6/n3 0.792** 0.720** 0.594** 0.400** 0.641** 0.523** 0.306** 0.284** .495** .483** 

n3/n6 0.831** 0.704** 0.641** 0.459** 0.662** 0.544** 0.369** 0.284** .515** .574** 
PUFA/SFA 0.186* 0.826** 0.092 0.077 0.189* ‐0.101 0.132 0.085 0.091 0.058 
USFA/SFA 0.141 0.725** 0.049 ‐0.059 0.203* ‐0.070 0.086 ‐0.090 ‐0.019 0.103 
LA/ALA 0.394** 0.614** 0.546** 0.519** 0.112 0.333** 0.302** 0.564** .612** .643** 
AA/ EPA 0.610** 0.730** 0.176 0.290** 0.553** 0.099 0.192* 0.395** .208* 0.099 
DPA/ DHA 0.824** 0.809** 0.308** 0.396** 0.726** 0.275** 0.262** .204* .213* .198* 
Holman Index 0.263** 0.263** 0.113 0.342** 1.000** 0.017 0.130 0.130 0.017 .193* 
n3 HUFA score 0.883** 0.834** 0.578** 0.245* 0.678** 0.510** 0.277* 0.376** .579** .341** 
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**. Correlation is significant at the 0.01 level (2‐tailed). 
*. Correlation is significant at the 0.05 level (2‐tailed). 

 
From FAs means value in table 4.1. two types of correlation were calculated, parametric 

Pearson  correlation and nonparametric Spearman's rho. Correlations via the 5 blood 

components would  give a good estimate about the connection of one FA in a blood 

component with the same FA in other blood component. This would allow the worker to 

choose the blood component according to the FA in interest. 

 

No negative correlations were found between WB and RBC, WB and plasma, WB and CE 

(except for 16:0, 20:3n6 and 22:4n6), RBC and plasma except for 15:0 (r= ‐0.038), RBC 

and PL except for (15:0 and AA), plasma and PL except for (22:4n6, SFA, and U/S) and 

between PL and CE except for (DPA,  LCPn‐3 and atherogenic FA). The most fractions 

were noticed to have negative correlation were between RBC and CE. 

 

The correlations between WB and CE were noticed to have negative correlations for the 

fatty acids of 16:0 (r= ‐0.014), 20:3n6 (r= ‐0.033), and 22:4n6 (r= ‐0.03). The correlations 

between WB and PL were negative among the fatty acids of 15:0 (r= ‐0.004), DPA (r= ‐ 

0.017), SFA (r= ‐0.059), USFA (r= ‐0.068) and for the ratio of U/S (r= ‐0.059). However, 

the correlations between RBC and plasma were all positive except for the fatty acid 15:0 

(r= ‐0.038) being negative. 

 

With regards to the CE fraction; the correlation with RBC method was noticed to have 

the most negative linear relationship which would be explained in that CE reflects fatty 

acids of the very short term intake while RBC reflect longer intake term; (SFA index, the 

Atherogenic indexes, PUFA, LCPn‐6,  P/S, U/S, fatty acid of 16:0, 18:1n9t, 20:3n9 and 

AA).  Correlations  with  plasma  were  also  found  to  have  many  negative  correlations 

among (SFA, USFA, U/S, oleic acid, and 20:1n9). In addition,  the correlations with PL 

were negative among TFA, LCPn‐6, and DPA. 

 

Correlation  coefficients  were  weak,  absent  or  negative  between  RBC  and  PL,  CE 

especially  among (15:0, 16:0, 20:0, 18:1n9t, 18:1n9c, 20:3n9, 18:2n6t, DPA, AA, SFA, 

MUFA, PUFA, USFA, P/S, U/S, and Holman index). 
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The strongest significant positive correlations (at p. value < 0.01 level (2‐tailed) and r < 
 

0.05 strong degree of linear relationship) were found mostly between WB and plasma 

except for 22:4n6, while a medium significant positive correlation was found for (15:0, 

17:0,  18:1n9t,  18:2n6t  and  holman  index)  since  the  correlation  were  positive  but 

middling than the other FAs (r < 0.05). 

 

Although the entire correlation coefficients were positive for the LA in all the 5 fractions, 

the strength degree between WB and plasma was the highest in comparison to others 

(r= 0.732 at p. value < 0.01 level). 

 

According  to  ALA,  the  strongest  correlation  was  found  between  WB  and  plasma 

followed by CE and PL, the weakest correlation was between RBC and plasma. While for 

EPA the strongest correlation was between WB and plasma; the weakest was between 

RBC and PL. DHA strongest correlation were noticed between WB and Plasma followed 

by WB and RBC. Two negative correlations were noticed for the DPA between WB and 

PL, and PL with CE. 

 

For  SFA,  many  negative  correlations  were  noticed.  In  general  the  only  positive 

correlations were between WB and plasma followed by RBC and plasma. 

 

WB and plasma showed the strongest correlations for MUFA, PUFA, USFA, LCPUFA, n‐6, 

n‐3,  n‐7,  n‐9,  Omega‐3  index  and  P/S  ratio.  However,  the  next  highly  significant 

correlations were found between WB and RBC after WB and plasma. 

 

For the omega‐3 index, the correlations were positive and close to (r ≥ 0.5 at p. value < 
 

0.01 level) but the strongest as mentioned before was between WB and plasma (r= 
 

0.856, p‐value 0.01 level followed by WB and RBC (r=0.770 at p. value < 0.01 level). 
 

 

The highest correlation among all the 5 methods were found for the 16:1n7, LA, EPA, 

DHA,  LCPn‐3,  omega 3 index, n‐3, and  n‐3  HUFA score. However  the perfect  linear 

relationship r=1.00 was found for holman index between RBC and plasma. 
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Bailey‐Hall  concluded  from  their  study  done  to  validate  capillary  WB  with  RBC,  PLs 

LCPUFA status, that DHA level in RBC is higher than in WB since RBC is rich in PL. They 

also reported the weak correlation between WB AA and AA from RBC and PLs (Bailey‐ 

Hall et al., 2008). 
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4.4. Linear plot relationship 
 
 

To illustrate the correlations of the FAs between blood components, scatter plot Bivar 

linear  relationship were computed. In the following sections; omega‐3 index, LA/ALA 

and EFA (LA with ALA) correlations are demonstrated. 

 

4.4.1. Linear plot of omega‐3 index between fractions 
 

 
 

Fig 4.4.1.1 Correlation between WB Omega‐3 index and RBC n‐3 index Fig 4.4.1.2 Correlation between WB Omega‐3 index and plasma n‐3 index 

r
2
= 0.592, p. value < 0.01  r

2
= 0.733, p. value < 0.01 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.4.1.3 Correlation between WB Omega‐3 index and CE n‐3 index Fig 4.4.1.4. Correlation between WB Omega‐3 index and PL n‐3 index 

r
2
= 0.304, p. value < 0.01  r

2
= 0.277, p. value < 0.01 
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Fig 4.4.1.5 Correlation between RBC Omega‐3 index and PL n‐3 index Fig 4.4.1.6 Correlation between RBC Omega‐3 index and CE n‐3 index 

r
2
= 0.219, p. value < 0.01  r

2
= 0.244, p. value < 0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.4.1.7 Correlation between RBC Omega‐3 index and Plasma n‐3 index Fig 4.4.1.8 Correlation between Plasma Omega‐3 index and CE n‐3 index 

r
2
= 0.409, p. value < 0.01   r

2
= 0.461, p. value < 0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.4.1.9 Correlation between Plasma Omega‐3 index and PL n‐3 index Fig 4.4.1.10 Correlation between PL Omega‐3 index and CE n‐3 index 

r
2
= 0.351, p. value < 0.01  r

2
= 0.431, p. value < 0.01 
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From the previous figures, the scatter plot Bivar linear relationship between omega‐3 index 

(EPA+ DHA) concentrations through the 5 fractions show positive correlations. However, linear 

plot relationships matched that correlation coefficient. 

 

Omega‐3 index of WB and plasma showed the highest correlation r2= 0.733 at p. value 0.01 (fig 
 

4.4.1.1) followed by WB and RBC r2= 0.592 at p. value 0.01 (fig 4.4.1.2), while the lowest were 

between  omega‐3 index RBC and PL r2= 0.219 at p. value 0.01 (fig 4.4.1.5), RBC and CE r2= 

0.244 at p. value 0.01 (fig 4.4.1.6). 
 

 

These results strengthen  selecting  WB blood  components as an omega‐3 index  biomarker 

along with RBC and plasma according to the high correlations between those compartments. 

In analogous, choosing PL and CE is not favourable to validate the status. 
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4.4.2. Linear plot relationship of ratio (LA/ALA) between fractions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 4.4.2.1 Correlation between WB LA/ALA and RBC LA/ALA Fig 4.4.2.2 Correlation between WB LA/ALA and Plasma LA/ALA 

r
2
= 0.155, p. value < 0.01  r

2
= 0.533, p. value < 0.01 

 
 

Fig 4.4.2.3 Correlation between WB LA/ALA and PL LA/ALA Fig 4.4.2.4 Correlation between WB LA/ALA and CE LA/ALA 

r
2
= 0.27, p. value < 0.01  r

2
= 0.298, p. value < 0.01 
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Fig 4.4.2.5 Correlation between RBC LA/ALA and plasma LA/ALA Fig 4.4.2.6 Correlation between RBC LA/ALA and PL LA/ALA 

r
2
= 0.012,  r

2
= 0.091, p. value < 0.01 

 
 

Fig 4.4.2.7 Correlation between RBC LA/ALA and CE LA/ALA Fig 4.4.2.8 Correlation between Plasma LA/ALA and PL LA/ALA 

r
2
= 0.111, p. value < 0.01  r

2
= 0.318, p. value < 0.01 

 
 

Fig 4.4.2.9 Correlation between Plasma LA/ALA and CE LA/ALA  Fig 4.4.2.10 Correlation between CE LA/ALA and PL LA/ALA 

r
2
= 0.374, p. value < 0.01  r

2
= 0.413, p. value < 0.01 
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From the previous figures, the scatter plot Bivar linear relationship between the EFA LA/ALA 

ratios through the 5 fractions shows positive correlations. However, the highest correlations 

were between WB and plasma followed by PL and CE, while the lowest were between RBC 

and Plasma, RBC and PL. 

 

LA/ALA of WB and plasma showed the highest correlation r2= 0.533 at p. value 0.01 (fig 
 

4.4.2.2) followed by PL and CE r2= 0.413 at p. value 0.01 (fig 4.4.2.10), while the lowest 

were  between RBC and PL r2= 0.019 at p. value 0.01 (fig 4.4.2.6), RBC and plasma r2= 

0.012 (fig 4.4.2.5). 
 

 

These results strengthen selecting WB blood components as an LA/ALA biomarker along 

with  plasma   according  to  the  high  correlations  between  those  compartments.  In 

analogous, choosing RBC is not favourable. 
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4.4.3. Linear  plot  relationship  of  concentrations  of  LA  and  ALA 
 

within tested systems 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.4.3.1 Correlation between WB LA and ALA  Fig 4.4.3.2 Correlation between RBC LA and ALA 

R
2
= 0.007  R

2
= 0.04, at p.value < 0.05 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.4.3.3 Correlation between plasma LA and ALA  Fig 4.4.3.4 Correlation between PL LA and ALA 

R
2
= 0.002  R

2
= 0.009 
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Fig 4.4.3.5 Correlation between CE LA and ALA 

R
2
= 0.047, at p. value < 0.05 

 
 
 

From the above figures, the scatter plot Bivar linear relationship between the EFA presence 

among the 5  blood components LA and ALA within the 5 fractions shows weak positive 

correlations.  However,  the  strongest  significant  correlations  were  for  RBC  r2= 0.04,  at 

p.value < 0.05 (fig 4.4.3.2) followed by CE r2= 0.047, at p. value < 0.05 (fig 4.4.3.5), while 

the weakest was for plasma r2= 0.002. 
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4.5. Fatty acid analysis in correlation to individuals characters 
 

The plasma FA composition of a person was found to be influenced by age, body weight, 

sex and health status as well as habitual life smoking status, alcohol drinking (MA et al., 

1995). 
 

Tables 4.5 1.to 4.5.5 show the analyzed fatty acids in relation to the following: sex, age, 

smoking status, blood glucose and blood lipids. 
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4.5.1. Gender differences 
 

Distribution amongst the five parameters: 
 

Table 4.5.1.1.  Subjects characters according to gender. 
 

 Male Female 

WB 59 61 

RBC 64 67 

PLAMSA 65 66 

CE 62 66 

PL 51 66 
 
 

The following table summarize the significant and none significant values amongst the 

five fractions. For example, within the WB fraction, the comparison was between the 

total fatty acids mean of 59 males and 61 females. 

Table 4.5.1.2. Comparison of the fatty acids status according to the gender. 
 

fatty acids WB RBC Plasma CE PL 
14:0 n.s. 0.004 n.s. n.s. n.s. 

15:0 n.s. n.s. 0.000 n.s. n.s. 
16:0 n.s. n.s. n.s. n.s. n.s. 

17:0 0.008 n.s. n.s. n.s. 0.004 

18:0 0.006 0.001 0.010 0.000 0.000 

20:0 n.s. 0.001 n.s. n.s. n.s. 

16:1n7 0.000 n.s. 0.012 0.001 0.001 

18:1n9trans n.s. 0.040 n.s. n.s. n.s. 

18:1n7trans n.s. n.s. n.s.  n.s. 
18:1n9Cis n.s. 0.000 0.000 n.s. n.s. 

18:1n7Cis n.s. n.s. n.s. n.s. n.s. 

20:1n9 n.s. n.s. n.s. n.s. n.s. 

18:2n6 trans 0.040 n.s. 0.009 n.s. n.s. 
18:2n6 Cis 0.050 n.s. n.s. n.s. n.s. 

18:3n6 n.s. n.s. n.s. n.s. n.s. 
20:2n6 n.s. n.s. n.s. n.s. 0.005 

20:3n6 0.000 n.s. 0.007 n.s. 0.031 

20:4n6 n.s. n.s. n.s. n.s. n.s. 

22:4n6 0.000 n.s. n.s. n.s. 0.000 
18:3n3 n.s. 0.034 n.s. n.s. n.s. 

20:5n3 n.s. n.s. n.s. n.s. n.s. 

22:5n3 0.001 0.001 n.s. n.s. n.s. 
22:6n3 0.019 0.001 0.000 n.s. 0.021 
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Continue table 4.5.1.2. 

fatty acids WB RBC Plasma CE PL 
20:3n9 0.036 n.s. 0.017 n.s. n.s. 

SFA n.s. n.s. n.s. 0.045 0.011 
Atherogenic FA n.s. n.s. n.s. n.s. n.s. 

TFA n.s. n.s. 0.028 n.s. n.s. 
∑ MUFA n.s. 0.000 0.006 n.s. 0.054 

∑ PUFA n.s. 0.000 n.s. n.s. n.s. 

USFA n.s. n.s. n.s. n.s. 0.010 
LCP n6 n.s. n.s. n.s. n.s. n.s. 

LCP n3 n.s. n.s. 0.013 n.s. 0.051 

Omega 3 index 0.037 0.003 0.003 n.s. 0.013 

∑ LCPUFA n.s. 0.024 n.s. n.s. n.s. 
∑ n6 n.s. 0.020 n.s. n.s. n.s. 

∑ n3 n.s. n.s. 0.048 0.034 0.037 
∑ n7 0.000 n.s. 0.055 0.003 0.006 

∑ n9 n.s. 0.000 0.000 n.s. n.s. 
n6/n3 n.s. n.s. 0.013 n.s. n.s. 

n3/n6 n.s. n.s. 0.010 0.047 n.s. 
P/S n.s. 0.004 n.s. n.s. 0.022 

U/S n.s. n.s. n.s. n.s. 0.013 
LA/ALA n.s. 0.025 n.s. n.s. n.s. 

AA/ EPA n.s. n.s. n.s. n.s. n.s. 

DPA/ DHA 0.000 0.000 0.000 n.s. 0.051 
Holman Index n.s. n.s. n.s. n.s. n.s. 

n3 HUFA score n.s. n.s. 0.008 n.s. 0.034 

n.s. not significant at p >0.05 
 
 

Due to  the  differences  in  hormonal  balance,  age, dietary  intake  or disease  status 

(cholesterol gallstones which showed significant lower EPA levels) gendre differences 

occurred (Ogura et al.,  2010). In healthy women, an inverse correlation was found 

between the LA intake and serum homo‐g‐LA (Lweis‐Barned et al., 2000). 

There were no significant differences between men and women among all fractions of 
 

the fatty acids of 16:0, 18:1n7t,c , 20:1n9, GLA, AA, EPA, Atherogenic FA, LCPn‐6, 

AA/EPA, and holman index. 

However, in FA 18:0 and omega‐3 index the differences between men and women 

were highly significant among all the fractions. For DHA, and DPA/DHA the differences 
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were significant among all the fractions except in CE. For n‐7, and their ratio (16:1n7/ 
 

18:1n7) the differences were significant among all the fractions except in RBC. Oleic 

acid was highly significantly differing in RBC and plasma. 

 

In adipose tissue, LA and DHA were shown to be higher in Scottish women than in 

Scottish  men  while  in  Japan  a  study  by  Ogura  showed  no  significant  differences 

between genders in PUFAs of the plasma PL (Ogura et al., 2010). In our study LA found 

to be different among WB, only in the other fractions no significant differences were 

noticed. 

 

Estrogen effects might lower the conversion of the ALA to EPA and DHA in women 

than in men  in the same age (Ratnayake and Galli, 2009). Although no significant 

differences in their concentrations were found in our PL fractions. 

 

Welch noticed  that  DPA  concentration  was  higher  in  men  than  in  women  which 

agreed  with  our  results;  while  plasma  fatty  acids  concentrations  were  higher  in 

women than in men. In addition, fatty acids of plasma phospholipids concentrations 

are higher in women than in men even with same amount of fish intake. That might be 

explained  according  to  the  body  size  and  plasma  volume  differences.  In  addition, 

among non dietary n‐3 PUFA consumers, women still have higher n‐3 PUFAs than men 

which could be returned to the oestrogen concentration (Welch et al., 2006). 

 

In the study of MA et al.,1995 study, plasma PL and CE SFA and MUFA were higher in 

men than in  women while PUFA were lower (MA et al.,   1995). In this study it was 

noticed that men had higher SFA and lower MUFA and PUFA than women. Men had 

higher % of 16:0 in RBC PL than in women (Heude et al., 2002). However; in our data it 

was found that both RBC and plasma PL were higher in females than males although 

no significant differences were noticed. 

 

As for the serum CE fraction, females’ concentration of LA decreases with age faster 

than males  while AA increases in males faster than females. However, it was found 

that PUFA and n‐6 fatty  acids have different falling curve, they decrease faster in 
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females than in males with getting old which reflect the decreasing in EFA status. 

Males had higher USFA indexes than females (Holman et al., 1979) while in this study, 

PL shows significant high USFA level in women. 
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4.5.2. Age differences 
 

The ranges of age used in this work were 19‐30 for youth subjects, and 40‐62 for 

adult subjects. 

Table 4.5.2.1. Shows the age groups characters categorized according to gender. 
 

 Female (n) Male (n) 

 19‐ 39 40‐ 62 19‐ 39 40‐ 62 

WB 32 29 31 28 

RBC 34 33 36 28 

plasma 33 33 36 29 

CE 32 34 37 25 

PL 33 33 30 21 
 
 

The  following  table  summarizes  the  differences  between  age  groups  within  each 

fraction. For  example in WB, fatty acids levels were compared between females aged 

from 19 to 39 yrs old and females aged from 40 to 62 yrs old, similar within male. 
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Table 4.5.2.2: Comparison of the fatty acids in regards to age and differentiated according to Gender. 
 

 Female Male 
Fatty Acids WB RBC plasma CE PL WB RBC plasma CE PL 
14:0 n.s. n.s. n.s. n.s. n.s. n.s. 0.017 n.s. n.s. n.s. 
15:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.020 n.s. 
16:0 n.s. n.s. n.s. n.s. n.s. n.s. 0.024 n.s. n.s. n.s. 
17:0 n.s. n.s. n.s. n.s. 0.046 n.s. n.s. n.s. n.s. n.s. 
18:0 n.s. n.s. n.s. n.s. n.s. 0.053 n.s. n.s. n.s. 0.017 
20:0 n.s. n.s. n.s. n.s. n.s. 0.007 n.s. 0.014 n.s. 0.023 
16:1n7 n.s. n.s. n.s. n.s. n.s. 0.005 0.053 0.018 0.016 0.012 
18:1n9trans n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.003 n.s. 
18:1n7trans n.s. 0.016 n.s. N/A n.s. n.s. n.s. n.s. N/A n.s. 
18:1n9Cis n.s. 0.008 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.015 
18:1n7Cis n.s. n.s. n.s. 0.016 n.s. n.s. n.s. n.s. n.s. n.s. 
20:1n9 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:2n6 trans n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.013 n.s. 
18:2n6 Cis n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:3n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:2n6 0.009 0.056 0.049 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:3n6 0.001 0.030 0.002 0.002 n.s. n.s. n.s. n.s. n.s. n.s. 
20:4n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
22:4n6 n.s. 0.014 n.s. n.s. n.s. 0.009 0.025 n.s. n.s. n.s. 
18:3n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:5n3 0.018 n.s. 0.021 0.054 n.s. 0.010 0.004 n.s. 0.011 n.s. 
22:5n3 0.029 0.004 0.000 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
22:6n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.042 
20:3n9 n.s. n.s. 0.009 n.s. n.s. n.s. 0.005 0.044 n.s. n.s. 
SFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Atherogenic FA n.s. n.s. n.s. n.s. n.s. n.s. 0.023 n.s. n.s. n.s. 
TFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.003 n.s. 
∑ MUFA n.s. 0.012 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.013 
∑ PUFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
USFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.050 n.s. 
LCP n6 n.s. 0.012 n.s. n.s. n.s. 0.028 0.007 n.s. n.s. n.s. 
LCP n3 n.s. n.s. 0.021 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Omega 3 index n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.012 n.s. 
∑ LCPUFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ n6 n.s. n.s. n.s. n.s. n.s. n.s. 0.000 n.s. n.s. n.s. 
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Continue table 4.5.2.2. 
 

 Female Male 
Fatty Acids WB RBC plasma CE PL WB RBC plasma CE PL 
∑ n3 n.s. n.s. 0.042 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ n7 n.s. n.s. n.s. n.s. n.s. 0.051 n.s. 0.054 0.031 0.030 
∑ n9 n.s. 0.010 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.016 
n6/n3 n.s. n.s. 0.004 0.055 n.s. n.s. n.s. n.s. n.s. n.s. 
n3/n6 n.s. n.s. 0.006 n.s. n.s. n.s. 0.021 n.s. 0.041 n.s. 
P/S n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
U/S n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
LA/ALA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
AA/ EPA 0.002 n.s. 0.001 n.s. n.s. 0.006 0.001 n.s. n.s. n.s. 
DPA/ DHA n.s. 0.018 0.038 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Holman Index n.s. n.s. n.s. n.s. n.s. n.s. 0.003 0.002 n.s. 0.064 
n3 HUFA score 0.014 0.063 0.005 n.s. n.s. 0.034 0.023 n.s. 0.055 n.s. 
n.s. not significant. N/A not available 
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Within serum CE fraction, females’ concentration of LA decreased with age faster than 

males while AA increased in males faster than females. However, it was found that PUFA 

and n‐6 fatty acids have different falling curve, they decreased faster in females than in 

males with getting old which reflect the decreasing in EFA status (Holman et al., 1979). 

This shows that age and sex have an evident  effect on fatty acid composition. Aging 

reduces the activity  of ∆6  desaturase  which  is important  for the formation  of GLA, 

DGLA, AA, EPA, and DHA (Undurti 2008). 

 

Omega‐3 index is affected by age (+0.50% per decade) (von Schacky, 2010) which was 

noticed  to  be  significant  in  the  CE  fractions  among  males.  Although  no  significant 

differences were noticed  within the other fractions, the values were higher in older 

groups than younger groups in both genders amongst the 5 fractions. Rabini noticed a 

significant increase (p < 0.05) in RBC membrane U/S ratio amongst younger group (aged 

21‐40 yrs old) than in older group (aged > 41 yrs old) (Rabini et al., 2002). 
 

 

Among  Females  there  were  no  significant  differences  in  regard  to  age  categorizes 

among all fractions for 14:0, 15:0, 16:0, 20:0, 16:1n7, 18:1n9t, 18:2n6t, 18:2n6, 18:3n6, 

20:4n6,  ALA,  DHA,  SFA, TFA,  PUFA,EFA,  omega‐3  index,  LCPUFA,  n‐6,  n‐7,  P/S,  U/S, 

LA/ALA, and the Holman index. In Males there were no significant differences in regard 

to age categorizes in  17:0,  18:1n7t, 18:1n7c, 20:1n9, 18:2n6, 18:3n6, 20:2n6, 20:3n6, 

20:4n6, ALA, DPA, LCPUFA, n‐3, U/S, LA/ALA, and DPA/DHA. 
 

 

Amongst fractions: 
 

WB: it was found that DGLA, EPA, and DPA increased significantly with age in females 

while AA/EPA decreased. In males 16:1n7 and atherogenic acids significantly increased 

with age while 18:0, 20:0, AA, USFA, n‐7, LCPn‐6, and AA/EPA decreased. 

RBC: oleic acid, DPA, MUFA, n‐9, DPA/DHA and n‐3 HUFA score significantly increased in 
 

females with age while DGLA, 22:4n6, and LCPn‐6 decreased. However, in males, 14:0, 
 

16:0, 16:1n7, 22:4n6, EPA, and atherogenic acids significantly increased with age while 
 

PUFA, n‐6, LCPn‐6 and AA/EPA decreased. 



96 
 
 
 
 
Plasma: in females, EPA, DPA, DHA, mead acid, n‐3 and LCPn‐3 significantly increased 

with  age  while  AA/EPA  decreased.  However,  in  males,  16:1n7,  mead  acid  and  n‐7 

significantly increased with age while 20:0 and LA decreased. 

 

CE: in females, adult women showed higher levels of 18:1n7, EPA, DHA and lower level 

of 22:4n6  than younger  women.  In males,  adult males showed  lower level of 15:0, 

18:1n9trans, 18:2n6trans, atherogenic acid, TFA and higher level of 16:1n7, EPA, USFA, 
 

LCPn‐3 and omega‐3 index than younger males. 
 

 

PLs: significant increasing with age was noticed in females for 17:0 and 18:0 fatty acids. 

In males, significant increasing with age had been noticed for 16:1n7, OA, DHA, MUFA, 

USFA, n‐7 and n‐9 and significant decreasing for 18:0, 20:0, and SFA. 

 

Although age (19 ‐ 64 years) has an influence on the serum fatty acids’ absorption, 

synthesis, and metabolism; it is not associated with the marine origin n‐3 PUFA in serum 

PL (Kobayashi et al., 2001). 

 

In a study done in Japan among 75 adults (≤ 49 till 70≥ years old), correlations were 

noticed between age and PUFAs as a result of the dietary factors. While this correlation 

was positive with n‐3 PUFA, it was negative with n‐6 PUFAs (Ogura et al., 2010). AA in 

PLs was higher in young than in  elderly even with identical AA intake. However, fish 

consumption  increased  significantly  with  age  but  no  difference  was  notice  with  AA 

intake with age (Kawabata et al., 2011). 
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4.5.3. BMI differentiation: 
 

Normal BMI stands for subjects with body mass index lay between 19‐ 24.99 kg/m2
 

 

while overweight BMI stands for over 25 kg/m2. 
 

Table 4.5.3.1. Shows the BMI groups characters categorized according to gender. 
 

 Female Male 
 Normal BMI Overweight Normal BMI Overweight 

WB 47 14 34 25 
RBC 53 14 40 24 
plasma 51 15 39 26 
CE 52 14 40 22 

PL 52 14 35 16 
 
 

The  following  table  summarizes  the  differences  between  BMI  groups  within  each 

fraction. For example in WB, fatty acids levels were compared between normal weight 

females with overweight females, similar within male. 
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Table 4.5.3.2. Comparison of the fatty acids in regards to BMI and categorized according to genders. 
 

 BMI Differences in Female BMI  Differences in Male 
Fatty acid WB RBC plasma CE PL WB RBC plasma CE PL 
14:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
15:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.007 n.s. 
16:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
17:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.037 n.s. 
18:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:0 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.017 n.s. 
16:1n7 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:1n9 trans n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:1n7 trans n.s. n.s. n.s. N/A n.s. n.s. n.s. n.s. N/A n.s. 
18:1n9 Cis n.s. n.s. 0.040 n.s. n.s. n.s. n.s. n.s. 0.056 n.s. 
18:1n7 Cis n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:1n9 n.s. n.s. n.s. n.s. n.s. 0.042 n.s. n.s. n.s. n.s. 
18:2n6 trans n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:2n6 Cis n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:3n6 0.034 n.s. 0.039 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:2n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:3n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:4n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
22:4n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
18:3n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:5n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
22:5n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
22:6n3 0.059 n.s. 0.047 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
20:3n9 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
SFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Atherogenic FA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
TFA n.s. n.s. n.s.  n.s. n.s. n.s. n.s. n.s. n.s. 
∑ MUFA n.s. n.s. 0.017 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ PUFA 0.040 n.s. 0.018 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 



99 
 

 
 
 
 
 
 
 

Continue table 4.5.3.2. 
 

 BMI Differences in Female BMI  Differences in Male 
Fatty acid WB RBC plasma CE PL WB RBC plasma CE PL 
USFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
LCP n6 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
LCP n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Omega 3 index n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ LCPUFA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ n6 n.s. n.s. 0.037 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ n7 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
∑ n9 n.s. n.s. 0.031 n.s. n.s. n.s. n.s. n.s. 0.056 n.s. 
n6/n3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
n3/n6 n.s. n.s. n.s. 0.027 n.s. n.s. n.s. n.s. n.s. n.s. 
P/S n.s. n.s. 0.056 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
U/S n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
LA/ALA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
AA/ EPA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.032 n.s. 
DPA/ DHA n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Holman Index n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
n3 HUFA score n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

 

n.s. not significant , N/A not available. 
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Amongst  females,   males   and   both   BMI   categories;   there   were   no   significant 

differences in LA, ALA, AA, EPA, DPA, mead acid, SFA, TFA, USFA, LCPn‐6, LCPn‐3, EFA, 

omega 3 index, n‐7, and holman index. 

 

Although BMI has an influence on the serum fatty acids’ absorption, synthesis, and 

metabolism;  it  has  no  association  with  the  marine  origin  n‐3  PUFA  in  serum  PL 

(Kobayashi et al., 2001). Omega‐3 index is affected by BMI (‐0.30 % per three units) 

(von  Schacky  2010)  although  that   wasn’t  noticed  in  this  study  since  no  obese 

participant was included. 

 

The relationship between quality of fat intake and obesity is still controversial. A study 

done in Spain  reported no role of the fat intake and obesity, another study found a 

positive  association   between  fat  intake  (rather  than  vegetable  fats)  and  BMI. 

However, it has been reported  that  BMI was not correlated with any FAs. Amongst 

Australians, a negative association was found between n‐3 PUFA and obesity. Plasma 

cholesterol  ester  fatty  acids  composition  showed   significant  positive  association 

between BMI and EPA and AA, and negative association with LA (Ogura et al., 2010). 

However, this study might suggest that females’ fatty acids composition  would be 

affected by BMI more than males since fatty acids amongst males WB, RBC, plasma, PL 

and most CE didn’t differ significantly between both BMI groups. 

 

Since no obese (BMI > 30 kg/m2) subjects were enrolled in this study, little significant 

differences   were  found  between  categories.  Plasma  MUFA  and  OA  significantly 

increased in female  overweight than normal weight while plasma n‐6 and PUFA in 

plasma and WB decreased. 
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4.5.4. Smoking differentiation 
 

Table 4.5.4.1. Shows the smoking groups characters. 
 

 Smoker None Smoker 
WB 67 42 
RBC 72 48 

Plasma 72 48 

CE 71 45 

PL 66 40 
 
 

Smoker indicates  current  smoker  subjects,  while  none  smoker can be either former 

smoker subjects or subjects who never smoked. 

The following table summarizes the differences between smoking groups within each 

fraction. For  example in WB, fatty acids levels were compared between smoker and 

none smoker subjects. 

Table 4.5.4.2. Comparison of the fatty acids levels according to the smoking status. 
 

Fatty acids WB RBC Plasma CE PL 
14:0 n.s. n.s. n.s. n.s. n.s. 
15:0 n.s. n.s. n.s. n.s. n.s. 
16:0 n.s. n.s. n.s. n.s. n.s. 
17:0 n.s. n.s. n.s. 0.034 n.s. 
18:0 n.s. n.s. n.s. n.s. n.s. 
20:0 n.s. n.s. n.s. 0.048 n.s. 
16:1n7 n.s. n.s. n.s. n.s. n.s. 
18:1n9trans n.s. n.s. n.s. n.s. n.s. 
18:1n7trans 0.006 n.s. 0.010 N/A n.s. 
18:1n9Cis n.s. n.s. n.s. n.s. n.s. 
18:1n7Cis n.s. n.s. n.s. n.s. n.s. 
20:1n9 0.005 n.s. n.s. n.s. 0.057 
18:2n6 trans n.s. n.s. n.s. n.s. n.s. 
18:2n6 Cis n.s. n.s. n.s. n.s. n.s. 
18:3n6 n.s. 0.024 n.s. n.s. n.s. 
20:2n6 n.s. 0.026 n.s. n.s. n.s. 
20:3n6 n.s. n.s. n.s. n.s. n.s. 
20:4n6 n.s. n.s. n.s. n.s. 0.044 
22:4n6 n.s. n.s. n.s. n.s. n.s. 
18:3n3 n.s. n.s. n.s. n.s. n.s. 
20:5n3 n.s. n.s. n.s. 0.028 0.028 
22:5n3 n.s. 0.004 n.s. n.s. n.s. 
22:6n3 n.s. 0.033 n.s. n.s. n.s. 
20:3n9 n.s. n.s. n.s. n.s. n.s. 

SFA n.s. n.s. n.s. n.s. n.s. 
Atherogenic FA n.s. n.s. n.s. n.s. n.s. 
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Continue table 4.5.4.2. 

Fatty acids WB RBC Plasma CE PL 
TFA n.s. n.s. n.s. n.s. n.s. 
∑ MUFA n.s. n.s. n.s. n.s. n.s. 
∑ PUFA n.s. n.s. n.s. n.s. n.s. 
USFA n.s. n.s. n.s. n.s. n.s. 
LCP n6 n.s. n.s. n.s. n.s. 0.043 
LCP n3 n.s. 0.008 n.s. n.s. n.s. 
Omega 3 index n.s. 0.043 n.s. n.s. 0.047 
∑ LCPUFA n.s. 0.009 n.s. n.s. 0.012 
∑ n6 n.s. n.s. n.s. n.s. n.s. 
∑ n3 0.057 0.008 n.s. 0.048 n.s. 
∑ n7 n.s. n.s. n.s. n.s. 0.047 
∑ n9 n.s. n.s. n.s. n.s. n.s. 
n6/n3 0.027 0.004 n.s. 0.023 n.s. 
n3/n6 0.032 0.019 n.s. n.s. n.s. 
P/S n.s. n.s. n.s. n.s. n.s. 

U/S n.s. n.s. n.s. n.s. n.s. 
LA/ALA n.s. n.s. n.s. n.s. n.s. 
AA/ EPA n.s. n.s. n.s. n.s. n.s. 
DPA/ DHA n.s. n.s. n.s. n.s. n.s. 
Holman Index n.s. n.s. n.s. n.s. n.s. 
n3 HUFA score n.s. 0.047 n.s. n.s. n.s. 

n.s. not significant , N/A not available 
 

 
Although smoking status might have an influence on the serum fatty acids’ absorption, 

synthesis,  and  metabolism; it is not associated with the marine origin n‐3 PUFA in 

serum PL (Kobayashi et  al., 2001). Fatty acids composition in both cigarette smoker 

and non‐smoker has been described. Tobacco is thought to have an inhibitory effect 

on the essential fatty acids metabolism (Simon et al., 1996). 

 

WB, plasma and CE n‐3 fatty acids concentration decreased significantly in smoker 

subject. PUFAs concentrations (both n‐3 and n‐6) in the membrane were found to be 

depleted as a result of smoking (Chiu et al., 2003). 

 

In a study done in 2002 on male physicians in Boston, it was noticed that current 

smokers   have   significantly  lower  level  or  LCPUFAn‐3  (Albert  CM,  2002)  which 

conformed  to  our  RBC  LCPn‐3  levels.  However,  RBC  fraction  showed  the  more 

significant differences than other fraction which may raise a hypothesis that smoking 

would  affect  the  FA  long‐term  composition.   18:3n6,  20:2n6,  and  n‐3:n6  ratios 
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increased  significantly  in  smoker  than  non  smoker,  while  DPA,  DHA,  n‐3,  LCPn‐3, 

omega‐3 index, sum of LCPUFA decreased. EPA in both CE and PL showed significant 

reduction in their concentrations in smoker subjects than non‐smokers. Similar results 

were shown in another study; where smokers had lower percentage of EPA in RBC PL 

than none smoker (Heude et al., 2002). 

 

Male smokers have high BMI (overweight or obesity) and alcohol consumption leads 

to  high  SFA  in  plasma  PL  and  CE  with  low  LA.  That  would  be  explained  by  the 

hypothesis of conversion alcohol to SFA endogenously or that those conditions would 

affect FA metabolism. SFA in plasma PL and CE were higher and 18:2n6 was lower in 

overweight, male smokers than non‐smoking with normal BMI males (MA et al., 1995). 
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4.5.5. Glycaemic status and fatty acids composition 
 

 
Table 4.5.5.1.Subjects characteristics according to glycaemic status. 

 
 Hypoglycemia Normal blood glucose 

WB 16 93 

RBC 18 100 

plasma 18 100 

CE 16 100 

PL 15 90 
 
 

When fasting, blood glucose (no caloric intake within last 8 hours) ranges between 4‐6 

mmol/L (60  ‐110 mg/dl),  it reflects normal blood glucose. If the range  exceeds 110 

mg/dl, it reflects hyperglycemia (Earl et al., 2002) ranged from 6 to 11 mmol/l (Preissig 

and Rigby, 2010), while beneath 60 mg/dl it reflects hypoglycemia (Miller et al., 2001) 

alike to blood glucose ≤2∙2 mmol/l (Vlasselaers et al., 2009). 

 
 
Table (4.9.2.) summarizes the differences between normal glycaemic and hypoglycemic 

groups  within  each  fraction.  For  example  in  WB,  fatty  acids  levels  were  compared 

between normal‐ with hypo‐glycaemic. 

Table  4.5.5.2.  Comparison  of  fatty  acids  composition  between  hypo‐  and  normal‐ 
 

glycaemic subjects. 
 

Fatty acids WB RBC Plasma CE PL 
14:0 n.s. n.s. n.s. n.s. n.s. 
15:0 n.s. n.s. n.s. n.s. n.s. 

16:0 n.s. n.s. n.s. 0.049 n.s. 
17:0 n.s. n.s. n.s. n.s. n.s. 

18:0 n.s. n.s. n.s. n.s. n.s. 
20:0 n.s. n.s. n.s. n.s. n.s. 

16:1n7 n.s. n.s. n.s. n.s. n.s. 
18:1n9trans n.s. n.s. n.s. n.s. 0.052 

18:1n7trans n.s. n.s. n.s. N/A n.s. 

18:1n9Cis n.s. n.s. n.s. n.s. n.s. 
18:1n7Cis 0.034 n.s. n.s. n.s. n.s. 

20:1n9 0.023 n.s. n.s. 0.043 0.015 
18:2n6 trans n.s. n.s. n.s. n.s. n.s. 
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Continue table 4.5.5.2. 

Fatty acids WB RBC Plasma CE PL 

18:2n6 Cis n.s. n.s. n.s. n.s. n.s. 

18:3n6 n.s. 0.035 n.s. n.s. 0.000 

20:2n6 n.s. n.s. n.s. n.s. 0.057 
20:3n6 n.s. n.s. n.s. n.s. n.s. 

20:4n6 n.s. n.s. n.s. n.s. n.s. 
22:4n6 0.021 n.s. n.s. n.s. 0.000 

18:3n3 n.s. n.s. n.s. n.s. n.s. 

20:5n3 n.s. 0.000 n.s. n.s. n.s. 

22:5n3 n.s. 0.042 n.s. n.s. n.s. 

22:6n3 n.s. n.s. n.s. n.s. n.s. 

20:3n9 n.s. 0.021 n.s. n.s. n.s. 

SFA n.s. n.s. n.s. n.s. n.s. 

Atherogenic SFA n.s. n.s. n.s. n.s. n.s. 

Atherogenic FA n.s. n.s. n.s. n.s. n.s. 

TFA n.s. n.s. n.s. n.s. 0.051 
∑ MUFA n.s. n.s. n.s. n.s. n.s. 

∑ PUFA n.s. n.s. n.s. n.s. n.s. 
USFA n.s. n.s. n.s. n.s. n.s. 

LCP n6 n.s. n.s. n.s. n.s. n.s. 
LCP n3 n.s. 0.054 n.s. n.s. n.s. 

Omega 3 index n.s. n.s. n.s. n.s. n.s. 

∑ LCPUFA n.s. n.s. n.s. n.s. n.s. 

∑ n6 n.s. 0.009 n.s. n.s. n.s. 

∑ n3 n.s. 0.054 n.s. n.s. n.s. 
∑ n7 n.s. n.s. n.s. n.s. n.s. 

∑ n9 n.s. n.s. n.s. n.s. n.s. 
n6/n3 n.s. 0.029 n.s. n.s. n.s. 

n3/n6 0.051 0.021 n.s. n.s. n.s. 
LCPn6/ LCPn3 0.015 0.043 n.s. n.s. n.s. 

P/S n.s. n.s. n.s. n.s. n.s. 

USFA/SFA n.s. n.s. n.s. n.s. n.s. 

LA/ALA n.s. n.s. n.s. n.s. n.s. 
AA/ EPA 0.005 0.000 n.s. n.s. n.s. 

DPA/ DHA n.s. n.s. n.s. n.s. n.s. 

Holman Index n.s. n.s. 0.058 0.037 n.s. 
161n7/181n7 n.s. n.s. 0.004 n.s. n.s. 

n3 HUFA score 0.013 0.029 n.s. n.s. n.s. 
n.s. not significant, N/A not available 
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No significant differences were found between the groups amongst all the fractions for 

 

OA, LA, ALA, AA, SFA, MUFA, PUFA, USFA, omega‐3 index, n‐7 and n‐9. 
 

 

EPA, DPA, n‐3 and n‐3 HUFA in RBC fraction were found to be significantly lower in 

hypoglycemic  subjects than normal blood glucose subjects, and the opposite with n‐6 

and n6/n3. 

 

Holman index was found to be significantly higher in hypoglycemic group in plasma CE 

fraction.   20:1n9   were   significantly   lower   in   normal   blood   glucose   subject   than 

hypoglycemic in WB, CE, and PL. 

 

The AA/EPA ratio in WB, RBC were significantly lower in normal blood glucose subject 

than the hypoglycemic group (p=0.005 and p= 0.000, respectively). 

 

A threshold and modest association was observed between omega 3 index (EPA and 

DHA) intake  and type 2 diabetes incidents. However, no association as observed with 

ALA intake (Djoussé et al., 2011). 
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4.5.6. Lipidemia status and fatty acids composition 
 
 

Table 4.5.6.1.  Subjects characteristics according to lipidemia status. 
 

 Hyperlipidemia Normal blood TG 
WB 8 105 

RBC 8 114 

Plasma 9 113 

CE 9 110 

PL 8 100 
 

The American Heart Association had established guidelines for triglyceride levels in 

which  Normal  range, low risk < 150 mg/dl (<1.7 mmol/l), borderline high 150‐ 199 

mg/dl  (1.7‐  2.2  mmol/l),  and  high  level  of  TG  when  higher  than  200  mg/dl  (>2.2 

mmol/l) (American heart association, 2010; Genest et al., 2009). 

 
 

 
Table 4.5.6.2. Comparison of fatty acids composition between normal‐ and hyper‐ 

lipidemia subjects. 
 

Fatty acids WB RBC Plasma CE PL 
14:0 0.005 n.s. 0.051 n.s. n.s. 

15:0 n.s. n.s. n.s. n.s. n.s. 
16:0 0.007 n.s. 0.008 n.s. n.s. 

17:0 n.s. n.s. n.s. n.s. n.s. 

18:0 n.s. n.s. n.s. n.s. n.s. 

20:0 n.s. n.s. n.s. n.s. 0.016 

16:1n7 n.s. n.s. n.s. n.s. n.s. 

18:1n9trans n.s. n.s. n.s. n.s. n.s. 

18:1n7trans n.s. 0.004 n.s. N/A n.s. 
18:1n9Cis 0.000 0.002 0.000 n.s. n.s. 

18:1n7Cis n.s. n.s. n.s. 0.009 0.002 
20:1n9 n.s. n.s. n.s. n.s. n.s. 

18:2n6 trans n.s. n.s. n.s. n.s. n.s. 

18:2n6 Cis n.s. n.s. 0.000 n.s. n.s. 

18:3n6 0.008 0.057 n.s. 0.035 n.s. 

20:2n6 n.s. n.s. n.s. n.s. n.s. 

20:3n6 0.019 n.s. 0.013 n.s. n.s. 

20:4n6 0.001 n.s. 0.000 n.s. n.s. 
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Continue table 4.10.2. 

Fatty acids WB RBC Plasma CE PL 
22:4n6 n.s. n.s. 0.001 n.s. n.s. 

18:3n3 0.029 n.s. n.s. n.s. n.s. 
20:5n3 n.s. n.s. n.s. n.s. n.s. 

22:5n3 n.s. n.s. 0.001 n.s. n.s. 
22:6n3 0.002 n.s. 0.001 n.s. n.s. 

20:3n9 n.s. n.s. n.s. n.s. n.s. 

SFA 0.017 n.s. 0.007 n.s. n.s. 

Atherogenic FA 0.004 n.s. 0.006 n.s. n.s. 
TFA n.s. n.s. n.s. n.s. n.s. 

∑ MUFA 0.001 0.003 0.000 n.s. n.s. 

∑ PUFA 0.000 n.s. 0.000 n.s. n.s. 
USFA 0.021 n.s. 0.009 n.s. n.s. 

LCP n6 0.000 n.s. 0.000 n.s. n.s. 
LCP n3 0.007 n.s. 0.015 n.s. n.s. 

Omega 3 index 0.009 n.s. 0.018 n.s. n.s. 
∑ LCPUFA 0.000 n.s. 0.000 n.s. n.s. 

∑ n6 0.001 n.s. 0.000 n.s. n.s. 
∑ n3 0.016 n.s. 0.018 n.s. n.s. 

∑ n7 n.s. n.s. n.s. n.s. 0.028 

∑ n9 0.000 0.002 0.000 n.s. n.s. 

n6/n3 n.s. n.s. n.s. n.s. n.s. 

n3/n6 n.s. n.s. n.s. n.s. n.s. 

P/S 0.001 0.056 0.000 n.s. n.s. 

U/S 0.020 n.s. 0.011 n.s. n.s. 

LA/ALA 0.054 0.046 0.020 n.s. n.s. 

AA/ EPA n.s. 0.015 n.s. n.s. n.s. 

DPA/ DHA 0.033 n.s. n.s. n.s. n.s. 

Holman Index n.s. n.s. n.s. n.s. 0.044 

n3 HUFA score n.s. n.s. n.s. n.s. n.s. 

n.s. not significant, N/A not available 
 

 

Sum of SFA concentration and atherogenic FA increased significantly in hyperlipidemic 

subjects in both WB and plasma. Fatty acid 14:0 significantly increased in hyperlipidemic 

WB  and  plasma.  While  16:0  significantly  increased  in  hyperlipidemic  plasma,  18:0 

significantly decreased in WB. 
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OA increased significantly in WB, RBC, and plasma in hyperlipidemic subjects. 18:3n6 

were significantly higher in hyperlipidemic subjects in WB, RBC, and CE. While ALA was 

significantly  higher  in  WB  hyperlipidemic  subjects,  LA  was  found  to  be  significantly 

higher  in  plasma  normal  TG  level  subjects.  Similarly  the  case  was  with  AA  as  its 

concentration was significantly higher  among normal TG subjects in WB and Plasma. 

DPA and DHA were significantly higher in plasma normal TG. 

 

MUFA levels were significantly higher in hyperlipidemic of WB, RBC and plasma, while 

both PUFA and USFA levels were significantly lower in WB and plasma. 

 

WB  and  plasma  n‐3,  n‐6,  LCPn‐3,  LCPn‐6,  omega  3  index,  P/S,  U/S,  LA/ALA  were 

significantly higher in normal TG subject while n‐9 was significantly lower. 

 

However, it was noticed that WB and plasma were the most affected fractions by the TG 
 

levels variation, while CE and PL were the lowest. 
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5. Discussion 
 

The objective  of  this  study  is  to  evaluate  the  best  blood  component  for  assessing 

essential fatty acids and omega‐3 index status that can give accurate profiles, easy‐to‐ 

do, consumes less time, less material, less agents and less sample size. 

5.1. Essential fatty acid status 
 

The fatty acid analysis in the venous blood fractions demonstrated that the five blood 

components  have  lead to  different  concentrations  of SFAs, MUFAs,  PUFAs  although 

some fractions were close in some fatty acids but in general they were not alike. 

The most abundant family of fatty acids in all fractions was PUFAs except for PL where 

more than  half of the fatty acids were saturated. In WB, RBC and plasma the second 

abundant FAs family was  SFA followed by MUFA, while CE had the lowest content of 

SFAs. 

 

The concentrations of the SFAs in the fractions were: PL> RBC> WB> Plasma > CE. Of the 

MUFA, the distributions were, plasma> WB> CE> RBC> PL while for the PUFA, CE> RBC> 

WB> Plasma> PL. In regard to USFA, the proportions were, CE> Plasma> WB> RBC> PL. 

 

The percentage of EFA (LA + ALA) was not equal in the different fractions which were 

noticed in  the ratio of LA/ALA. The percentage of LA was much higher in all fractions 

than ALA. However, LA (18:2n6c) was abundant in CE followed by plasma, WB, PL and 

the  lowest  was  in  RBC.  ALA  (18:3n3)  showed  similar  series  although  the  highest 

proportion of ALA was found in plasma followed by CE, then WB, PL and the lowest was 

in RBC. 

 

Usually ALA concentration in plasma phospholipids is not more the 0.5% (Holman 1998) 

while no trace for ALA in RBC (Riséa et al., 2007). RBC might contain the lowest levels of 

EFA since EFA aren’t stored in their intake forms but they are stored in their derivations 

forms. CE would be the best to  assess EFA intake as their concentrations (ALA + LA) 

were found to be the highest in CE while the  lowest were in RBC ,as RBC does not 
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influenced by day to day dietary intake according to its longer half life shelf (4 to 6 more 

time longer than plasma) (Sun et al., 2007). 

 

As DHA concentrations were found to be the highest in RBC followed by WB therefore, 

the omega‐3 index was highest in RBC followed by WB. n‐3 and LCPn‐3 fatty acids were 

also highest in RBC followed by WB whereas the lowest was in CE. n‐6 (since it includes 

LA) concentrations were highest in CE followed by WB and the lowest in PL, while LCPn‐ 

6 (since it doesn’t include LA) concentrations were the highest in RBC (according to the 
 

high level of AA) followed by WB whereas the lowest was found in CE. However, sum of 
 

LCPUFA were highest in RBC followed by WB and the lowest was in CE. 
 

 

Omega‐3 index in plasma might be affected with the most recently consumed meal. A 

meal poor in n‐3 FAs and contain other FAs will enrich the plasma FA pool with other 

FAs but not n‐3 FAs,  which will decrease n‐3 FAs content consequently. This will not 

happen in RBC FAs pool as RBC is not affected by recently consumed meals whatever 

were the FAs content of those meals. According to the stability of RBC Omega‐3 index 

(EPA+ DHA) and since it isn’t affected by the last meal, RBC are considered to be better 

biomarker than plasma or plasma PL (Harris and Thomas, 2009). Omega‐3 index is found 

higher in coastal population than in land communities (3.8% Vs 3.2%) (Dewaillya et al., 

2003). 
 

 

Although there were significant differences between the different groups  that were 

analysed, it was recognized from this study that blood triglycerides are more affected by 

the fatty acids than  glycaemic status. No significant differences were found between 

glycaemic   groups   while   SFAs,   MUFAs,   PUFAs,   USFAs,   omega‐3   index,   LCPUFA 

significantly differ between lipidemia groups. BMI had little effect after the exclusion of 

obese subjects; however, females’ fatty acids composition  would be affected by BMI 

more than males. 

 

The interesting results will be the fatty acids and the indexes that relate to the EFA as 

they have  been correlated with the risk for CVD and CHD. The major fatty acids that 

contribute  to  the  total  concentration  of  n‐3  FA  in  human  blood  components  are 
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EPA+DHA+DPA while ALA being the minor, AA +LA were the major components to the 

total n‐6 FA. 

 

5.2. Importance of omega‐3 index for human health 
 
 

n‐3 fatty acids were established to assess the fatty acid pattern and the risk of death 

from CHD. In  western populations, high concentrations  of n‐3 fatty acids (especially 

omega‐3 index EPA+ DHA) in dietary intake and blood levels decrease the risk of sudden 

cardiac  death.  However,  EPA+  DHA  lower  triacylglycerols,  they  also  work  as  anti‐ 

hypertensive, and have anti‐inflammatory roles in lowering CHD risk. Therefore, omega‐ 

3 index is hypothesized to be predictor for CHD mortality (Stark 2008). 
 

 

One of the first studies was DART (the Diet and Reinfarction Trial) which investigated 

the  association between dietary intake of n‐3 fatty acids and secondary prevention of 

myocardial infarction. GISSI‐Prevemzione Trial is one of the largest recent studies that 

concluded  toward  omega‐3  fatty  acids  to  reduce  45%  of  sudden  death  and  20% 

reduction in all cause mortality (Covington 2004). 

 

n‐3 fatty acids were found to be low in patients with bipolar disorder, schizophrenia 

(Ranjekar  et  al.,  2003),  depression  (Sontrop  and  Campell,  2006),  child  hyperactivity 

(Chen et al., 2004) and autism (Vancassel et al., 2001). 

 

5.3. Correlations between fatty acids status among methods 
 
 

Comparisons between fatty acids were limited. Several blood biomarkers of omega‐3 

fatty acids intake have been reported; including the percentage of EPA + DHA omega‐3 

index in erythrocytes (Harris and Von Schacky, 2004), in plasma phospholipids (Prisco et 

al., 1996), EPA/AA ratio (Rupp et  al.,2004), n‐6/n‐3 ratios (Harris et a., 2006), and n‐3 

HUFA score (Stark et al., 2005). 
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5.3.1. Choosing the biomarker depends on many considerations 
 

1.   Fatty acids or indexes that are the focus of the study. 
 

2.   Sensitivity of the biomarker; so if the interest was the short‐term changes in n‐ 
 

3 status then plasma, PLs, CE will be more favourable than RBC. However, in 

the  steady  state  all  the  medians  would  be  fine  according  to  their  highly 

correlated between their values (Harris and Thomas, 2009). 

3.   For large observational and clinical trials, blood based biomarkers are more 
 

favourable than adipose tissue (Stark 2008) especially when dealing with large 

number of  participants  (Ogura  et al., 2010)  as participants  would  be more 

compliant  if  the  samples  are  taken  as  blood  more  than  an  adipose  tissue 

biopsy  (MA et al.,  1995). 

 
 

5.3.2. Parallelism between fractions 
 
 

The intake correlation is better in n‐3 RBC than in n‐3 adipose tissue. However, RBC is 

better  as  a   biomarker  for  the  intake  than  in  plasma  which  might  make  RBC  a 

replacement of the  adipose  tissue especially for the long term evaluation (Sun et al., 

2007). 
 

 

Plasma PL and CE might not give an exact reflection of the intake of fat and fatty acids. 

RBC cannot be used as a biomarker for SFA in short‐term studies (3 wks) (Popitt et al., 

2005). 
 

 

In a study done by Qi Sun, RBC DHA concentration was better as a biomarker of the DHA 

intake than plasma DHA, although the correlation between both biomarkers and DHA’s 

intake were very strong.  The same was noticed with total trans fatty acids. While the 

associations between dietary MUFA and SFA with plasma and RBC were weak according 

to their endogenously synthesized from carbohydrates. Thus this study concluded that 

for long‐term intake, RBC n‐3 FA and TFA are suitable biomarkers (Sun et al., 2007). 
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5.3.3. Whole blood: favourable method 
 
 

Since total blood fatty acids are analyzed in venous whole blood, thus values obtained 

from WB give a general overview of all dietary intake terms (short, medium, and long 

term). Whole blood method saves many steps that must be done for the other methods: 

1.   No   need   for   the   separation   of   WB   into   RBC,   plasma   (usually   done   by 

centrifugation) which also might save sample amount. 

2.   RBC needs washing to remove the white cells and plasma contamination. 
 

3.   Plasma PL and CE need separation by TLC which need around 3‐5 hours (Bailey‐ 
 

Hall et al., 2008). 
 

4.   Since WB necessitate one step only to be analyzed, therefore it requires less 

agents, less time, and save materials. 

WB represents two different LCPUFAn‐3 pools, short term (plasma) and stored term 

(RBC), which would reflect the complementary profiles (Albert et al., 2002). Through the 

linear omega‐3 index  graphs, it was clear that WB had a stronger positive correlation 

with RBC and with plasma than between other fractions, which strengthen considering 

WB also as a system for an omega‐3 index  biomarker. The highest concentration of 

omega‐3 index was in RBC (5.82%) followed by WB (3.48%), then plasma (2.55%), and PL 

(2.38%) while the lowest was found in CE (1.38%). This shows that  RBC is the best 

according to the highest concentration followed by WB. Thus WB would be also a good 

indicator as the omega‐3 index is also high and the analyzing process is the easiest 

amongst other methods. 

 

Skeaff suggested whole blood for fatty acids analysing as it gives adequate approach 

(Skeaff et al., 2006) in addition, Riséa reported that blood fatty acids profile are mainly 

determined  from  plasma   and  RBC  phospholipids  but  not  for  EPA.  Therefore  he 

suggested plasma and whole blood to be the best two methods for assessing FA status 

(Riséa et al., 2007). However, the whole blood method is characterized as simple, rapid 

(Ratnayake and  Galli  2009)  and  useful  for  fatty  acids  status  from  large  populations 

(Agostoni et al., 2011). 
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6. Summary 
 
 

The objective of the study was to set up the appropriate system for assessing fatty acids 

profiles especially essential fatty acids and omega‐3 index status that can give accurate 

profiles, easy‐to‐do, consumes less time, less material, less agents and less sample size. 

The present study included 140 Austrian adults of both genders of which 69 female, 71 

male.  Five  blood  components  had  been  analysed  to  assess  24  fatty  acids  and  to 

calculate  omega  3  index.  Whole  blood,  red  blood  cells,  plasma  total  lipids,  plasma 

phospholipids and plasma cholesterol ester were all assessed from fasting venous blood. 

The interesting fatty acids those that are related to essential fatty acids, since they have 

been correlated to CVD and CHD risks. The major fatty acids that contribute to the total 

concentration of n‐3 fatty acids in human blood components are EPA and DHA and DPA 

while ALA being the minor; AA and LA are the major components to the total n‐6 fatty 

acids 

Many papers suggested RBC to be the best indicator for omega‐3 index as RBC has the 

highest   concentration  with   low   variability.   However,   WB   is  the   second   highest 

parameters with  omega‐3 index especially that analysing omega‐3 index from WB is 

easier than RBC since it does not need any extractions. Through the five tested systems, 

the best correlations were between WB and plasma followed by WB and RBC especially 

for the omega‐3 index. 

WB parameter was found to be the most favourable blood component to assess the 
 

omega‐3 index and essential fatty acids due to the following aspect: 
 

1.  Reflects general indications of the short, medium and long term dietary intake. 

2.  Saves the separation steps which save: 

.2.1  Time. 

.2.2  Sample size. 

.2.3  Materials and agents. 

3.  Simple 

4.  Rapid. 

5.  Gives accurate values. 

6.  Easy to do and does not require professional worker such as PL and CE methods. 
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According to this study, assessing EFA and omega‐3 index from venous whole blood 

parameter are recommended. 
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7. Fazit: 
 

Das Ziel der Studie war die Etablierung eines geeigneten Systems zur Bewertung des 

Fettsäuremusters,   insbesondere   essentieller   Fettsäuren   und   des   Omega‐3‐Index, 

welches ein genaues Profil reflektiert, einfach durchzuführen ist, weniger Zeit, Material 

und finanzielle Mittel sowie ein geringes Proteinvolumen benötigt. 

Die vorliegende Studie umfasste 140 österreichische Erwachsene beiderlei Geschlechts 
 

davon 69  weiblich,  71  männlich.  Fünf  Blutkomponenten  wurden  verwendet  um  24 
 

Fettsäuren  zu  bewerten  und  den  Omega‐3‐Index  zu  berechnen.  Vollblut  (VB),  rote 

Blutkörperchen   (RBZ),   Plasma,   Plasma‐Phospholipide   und   Plasma‐Cholesterinester 

wurden im venösen Nüchternblut untersucht. 

Die essentiellen Fettsäuren, die in Verbindung mit dem Risiko für CVD und KHK stehen, 

bildeten den  Schwerpunkt der Arbeit. Hierzu zählen die n‐3‐Fettsäuren EPA und DHA, 

DPA und ALA; sowie AA  und LA sind die wichtigsten n‐6‐Fettsäuren im menschlichen 

Körper. 

RBZ  werden  aufgrund  der  Fettsäuren‐Konzentration  und  der  geringen  Variabilität 
 

vielfach als bestes Kompartiment zur Errechnung des Omega‐3‐Index angesehen. VB ist 

jedoch  ebenfalls  zur  Bestimmung  des  Omega‐3‐Index  geeignet,  wobei  die  Analytik 

einfacher ist als in den RBZ, da keine Extraktionen durchgeführt werden müssen. Bei den 

fünf  getesteten  Komponenten  wurden  die  besten  Korrelationen  zwischen  VB  und 

Plasma, gefolgt  von VB und RBZ speziell für den Omega‐3‐Index gefunden. 

VB  konnte  basierend  auf  folgenden  Aspekten  als  bevorzugte  Blutkomponente  zur 
 

Beurteilung des Omega‐3‐Index und essentieller Fettsäuren erfasst werden: 
 

1.  Reflektiert die kurz‐, mittel‐ und langfristige Aufnahme an Fett über die Nahrung. 

2.  Speichert die Trennungsschritte und spart daher: 

.2.1  Zeit 

.2.2  Stichprobenumfang 

.2.3  Materialien und Reagenzien 

3.  Einfach 

4.  Schnell 

5.  Ergibt genaue Werte 
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6. Einfach durchzuführen und erfordert keine speziellen Fachkräfte   wie PL und CE‐ 

Methoden 
 

 
Laut dieser Studie, kann die Beurteilung der EFA und des Omega‐3‐Index in venösem 

 

Vollblut empfohlen werden. 
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