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1. INTRODUCTION 
 

Fluid balance in the healthy adult mammalian lung depends on the regulation of re-absorption 

of fluid and solutes by the alveolar and distal epithelia on the one hand and passive secretion 

of fluid, driven by hydrostatic pressure, from the vascular space into the alveolar lumen, on 

the other (Matthay et al. 2002, Eaton et al. 2009). Excessive accumulation of fluid in the 

alveolar spaces can be accompanied by reduction of alveolar liquid clearance (ALC) capacity, 

an epithelial and endothelial hyper-permeability, or a disruption of the epithelial and 

endothelial barriers caused by increased apoptosis or necrosis (Lucas et al. 2009). Pulmonary 

oedema is a major complication of acute lung injury (ALI), severe pneumonia, and acute 

respiratory distress syndrome (ARDS), where failure of lungs to rapidly clear oedema fluid is 

associated with higher morbidity and mortality (Verghese et al. 1999, Ware and Matthay 

2001). Resolution of alveolar oedema depends on the active removal of salt and water from 

the distal air spaces of the lung across the distal lung epithelial barrier (Matthay et al. 2002, 

Sartori and Matthay 2002). Evidence from clinical studies shows that increased ALC leads to 

better clinical outcome in cases of pulmonary oedema and ALI/ARDS (Sartori and Matthay 

2002). Apart from ventilation strategies, no specific treatment exists for pulmonary oedema 

and novel therapies need to be developed to improve clinical outcome (Johnson and Matthay 

2010). 

The involvement of Na+ transporters in alveolar fluid clearance in the mammalian lung has 

been well established in recent years (Berthiaume et al. 2002, Berthiaume and Matthay 2007, 

Eaton et al. 2009, Hummler and Planès 2010). Transport via the amiloride-sensitive epithelial 

sodium channel (ENaC) in particular is one of the major pathways for Na+ entry across 

alveolar and distal epithelial cells (Folkesson and Matthay 2006). Although the primary site of 

oedema fluid clearance appears to be in the alveolar epithelium, distal airway epithelial cells 

can also absorb Na+ (Berthiaume et al. 2002). The current understanding of alveolar fluid 

clearance is that Na+ ions passively enter alveolar epithelial cells through the apically located 

ENaC and are extruded into the interstitium by basally located Na+/K+-ATPase accompanied 

by transport of water in the same direction, following the osmotic gradient generated (Guidot 

et al. 2006, Berthiaume and Matthay 2007). The large variety of metabolites and intricate 

signaling pathways involved in regulation of ENaC activity in lung epithelia illustrates the 

central role of regulation of lung Na+ absorption and ENaC activity in lung fluid balance and 
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function (Eaton et al. 2009, Lucas et al. 2009). For this reason, enhancement of ENaC activity 

in pathological conditions such as ALI and ARDS has been the focus of intense research. 

Tumor necrosis factor α (TNF-α) has been shown to produce an amiloride-sensitive increase 

in ALC in Pseudomonas aeruginosa induced pneumonia in rats and to stimulate amiloride-

sensitive Na+

1.1 Alveolar liquid clearance and ion channels 

 uptake by type II pneumocytes (Rezaiguia et al. 1997, Fukuda et al. 2001). 

Furthermore, TNF-α has been shown to stimulate ALC during intestinal ischemia-reperfusion 

and during bronchial asthma in rats (Borjesson et al. 2000, Tillie-Leblond et al. 2002). The 

activating effect of TNF-α on ALC is mediated by its lectin-like domain (Lucas et al. 1994, 

Ridge et al. 1997, Hribar et al. 1999, Tillie-Leblond et al. 2002, Lucas et al. 2009, Hamacher 

et al. 2010).  

AP301 was designed over 15 years ago with the aim of mimicking the loop containing the 

lectin-like domain of TNF-α (TIP), corresponding to residues C101-E116 of wild type human 

TNF-α (Lucas et al. 1994). The cyclic TIP peptide AP301 contains an artificial disulphide 

bridge, which effectively restrains the sequence of amino acid residues representing the lectin-

like domain into a cyclic structure. However, from a pharmacological standpoint, the peptide 

AP301 has limitations for therapeutic use as the disulphide bridge is easily reduced and is 

therefore unstable. For medicinal use, a molecule with improved stability and increased 

activity is desirable. For this reason, the new TIP peptides described in this thesis were 

designed containing different, more stable chemical structures across the bridging part of the 

molecule.  

The cyclic peptide AP301 has been granted orphan drug status both in Europe for treatment of 

ALI and ARDS and in the USA for prevention of ischemia reperfusion injury in the lung 

during transplantation. 

 

 

 
The lungs of mammals are covered with epithelium and have a larger surface area in total 

than the outer surface area of the lung itself. The fetal lung converts from fluid secretion to 

fluid re-absorption only shortly before birth. After birth, the regulation of the amount of fluid 

in the thin (average 0.2 μm) liquid layer, lining the alveolar epithelium, affects the efficient 

gas exchange (Johnson et al. 2006). In the normal lung, fluid first moves from the blood 

circulation through the capillary endothelium into the lung interstitium. Afterwards, it is 

cleared by the lymphatics on a continuous basis. This mechanism secures the dryness of the 



3 
 

alveolar surface in order to allow gas exchange without a fluid barrier (Zemans et al. 2004). 

But in cardiogenic pulmonary oedema or ALI, alveolar fluid transport impairs from alveolar 

to interstitial spaces. As a result the fluid is more than normal and the exchange of CO2/O2

1.1.1. Different types of lung cells and their functions 

 

will be disordered. It is proved that ALC is achieved by active ion transport in the lung 

epithelial cells. 

 

 

The alveolar epithelium covers >99% of the large internal surface area of the lung. It is 

composed of two cell types, alveolar type I (TI) and type II (TII) cells (Figure 1).  

 
TII cells are cuboidal cells that synthesize and secrete pulmonary surfactant. These cells cover 

2–5% of the internal surface area of the lung (Johnson et al. 2006). TI cells, however, cover 

>95% of the surface area of the lung. TI cells express aquaporin 5, which is a water channel. 

They have the highest known osmotic water permeability of any mammalian cell type 

(Johnson et al. 2006). 

 

1.1.2. Different types of ion channels in isolated type I and type II lung cells 

 

Freshly isolated type I cells of adult Sprague-Dawley rat lungs contain (Figure 2):  

 Amiloride-sensitive epithelial sodium channels (ENaC, HSC)  

 pimozide-sensitive cyclic nucleotide-gated cation channels (CNG channels) 

 voltage-gated potassium (K+

 the cystic

) channels and  
 fibrosis transmembrane regulator (CFTR Cl- channels) 

Figure 1: The distal airway 

epithelium contains alveolar type I 

and type II cells and Clara cells, 

which possess various pumps and 

channels that achieve clearance of 

oedema fluid (Zemans et al.2004). 
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Freshly isolated type II cells contain:  

 ENaC and  

 cystic fibrosis transmembrane regulator  

 

 
 

 

 

 

 

 

 

 

 

Cultured TII cells have been proposed as a model for TI cells because type I cells are difficult 

to isolate. Moreover, cultured type II cells express some markers shared by type I cells 

(Johnson et al. 2006). 

Cultured type II cells contain epithelial ENaC, CNG channels, K+ channels and CFTR Cl- 

channels. The expression of CNG and K+ channels depends on duration of cultivation, 

though. TII cells contained CNG channels only when cultured for 2 days (Kemp et al. 2001). 

Studies on TII cells on the other hand give evidence for K+ channels when cultured for 5–7 

days (O’Grady et al. 2003). This clearly demonstrates that culture conditions can alter channel 

expression. 

Figure 2: Sodium is transported through channels on the apical membrane and extruded 

from the cell by the Na+/K+-ATPase located on the basolateral membrane. This transport 

generates a sodium gradient that drives the transport of water, which is accomplished in 

part through water channels. AQP, aquaporin; CFTR, cystic fibrosis transmembrane 

conductance regulator; CNG, cyclic nucleotide-gated; ENaC, epithelial Na+channel, HSC, 

highly selective channel, NSC, non-selective channel, TI cells (green), TII cells (yellow). 

From Johnson et al. (2006). 

http://www.pnas.org/cgi/content/full/103/13/4964#B31#B31�
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1.1.3. CNG channels, K+ channels and CFTR Cl-

1.1.3.1. L

 channels 

ocation and function

The cyclic nucleotide-gated ion channel is any 

 of CNG channels 

ion channel that opens in the presence of 

cyclic nucleotides. As a result, cations flow into the cell and cause depolarization. Cyclic 

GMP stimulates currents through CNG channels, which are inhibited by pimozide (Kemp et 

al. 2001). 

CNG channels are particularly important in several tissues. Examples would be the retinal 

photoreceptor cells, and the kidney where they promote Na+ reabsorption. In addition, it was 

demonstrated that mRNA for primary and secondary subunits of CNG channels, hαCNG1 and 

hβCNG1, respectively, are expressed in several human airway cell lines. These include 

normal and cystic fibrosis bronchial airway cells, normal and cystic fibrosis tracheal airway 

cell lines and nasal polyp tissue from a cystic fibrosis patient. By increasing circulating 

glucocorticoids or mineralocorticoids, the mRNA of αCNG1 in rat lung and in cultured 

alveolar airway cells increases. αCNG1 is a functional sodium entry channel in both rat and 

human airway epithelial cells. This channel could mediate an increase in sodium absorption 

across lung epithelia in response to circulating hormones, if channel protein is also elevated 

(Oiu et al. 2000). 

 

1.1.3.2. Location and function

The cystic fibrosis transmembrane conductance regulator is an 

 of CFTR 
ABC transporter-class 

protein and ion channel. The ion channel transports chloride ions across epithelial cell 

membranes. Whole cell patch-clamp experiments revealed cAMP-stimulated, 5-nitro-2-(3-

phenylpropyl-amino)-benzoate-sensitive Cl- conductance with a linear current-voltage 

relationship. In cell-attached membrane patches with 100 µM amiloride in the pipette 

solution, forskolin stimulated channels of approximately 4 pS conductance. It is concluded 

that functional CFTR Cl-

In epithelial cells of many organs including 

 channels occur in adult alveolar cells and could contribute to 

alveolar liquid homeostasis (Brochiero et al. 2004). 

lung, liver, pancreas, digestive tract, reproductive 

tract and skin, the CFTR can be traced. Mutations that result in decreased expression or 

function of the membrane Cl-

 

 channel CFTR, result in a decrease in the volume and hence the 

depth of liquid on the airway surface, impaired ciliary function, and dehydrated glandular 

secretions (Nichols et al. 2008). 

http://en.wikipedia.org/wiki/Ion_channel�
http://en.wikipedia.org/wiki/Cyclic_nucleotide�
http://en.wikipedia.org/wiki/ABC_transporter�
http://en.wikipedia.org/wiki/Protein�
http://en.wikipedia.org/wiki/Ion_channel�
http://en.wikipedia.org/wiki/Ion_channel�
http://en.wikipedia.org/wiki/Chloride�
http://en.wikipedia.org/wiki/Cell_membrane�
http://en.wikipedia.org/wiki/Cell_membrane�
http://en.wikipedia.org/wiki/Cell_membrane�
http://en.wikipedia.org/wiki/Lung�
http://en.wikipedia.org/wiki/Liver�
http://en.wikipedia.org/wiki/Pancreas�
http://en.wikipedia.org/wiki/Digestive�
http://en.wikipedia.org/wiki/Reproductive�
http://en.wikipedia.org/wiki/Skin�
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1.1.3.3. Location and function

Voltage-gated potassium channels are 

 of potassium channels 

transmembrane channels specific for potassium. They 

are sensitive to voltage changes in the cell's membrane potential and play a central role in 

mediating hypoxic pulmonary vasoconstriction. During inflammatory lung processes such as 

pneumonia or ARDS, hypoxic pulmonary vasoconstriction is impaired (Spöhr et al. 2007). In 

the lung epithelia repair processes, the stimulation of K+ channels through autocrine 

activation of epidermal growth factor receptors could play a crucial role (Trinh et al. 2007). 
Calcium activated K+ channels can be divided into different categories such as BK channels, 

IK channels, and SK channels. The distinction is made based on their conductance (big, 

intermediate, and small conductance). In epithelia from tissues outside the airway that have 

similar transport mechanisms to airway cells, large Ca2+

1.1.4. Epithelial sodium channel (ENaC) 

-activated potassium channels have 

been found (Ridge et al.1997). BK channels may play a role in repolarizing cells following 

depolarization or calcium entry (Morin et al. 2007). Nevertheless, the question of the 

physiological role of BK channels in primary alveolar epithelial cells remains to be answered. 

IK channels are prominently expressed in cells of the hematopoietic system. Moreover, they 

can be found in organs involved in salt and fluid transport, including the colon, lung, and 

salivary glands. 

 

 

The epithelial sodium channel belongs to a new class of ion channels, which were found at the 

beginning of the 1990s. It is a member of the ENaC/degenerin family of nonvoltage-gated ion 

channels (Garty and Palmer 1997, Alvarez de la Rosa et al. 2000, Kellenberger and Schild 

2002, Rossier et al. 2002). The ENaC (synonyms: sodium channel non-neuronal 1 (SCNN1) 

or amiloride sensitive sodium channel (ASSC)) is permeable for Li+ , -ions protons and 

especially Na+ . It is an active ion-channel, and it belongs to the most selective ion 

channels. It is proved that ENaC, compared to other channels, which are found in early stage 

evolution like potassium, chloride and water channels, is expressed just in animal cells with 

specialized functions. The members of the ENaC/degenerin gene family show a high degree 

of functional heterogeneity that is unusual among the known gene families of ion channels. 

Their wide tissue distribution that includes transporting epithelia as well as neuronal excitable 

tissues best reflects the functional heterogeneity of the ENaC/degenerin family members. 

Depending on their function in the cell, these channels are either constitutively active like 

ENaC or activated by mechanical stimuli as postulated for C. elegans degenerins, or by 

-ions

http://en.wikipedia.org/wiki/Potassium_channel�
http://en.wikipedia.org/wiki/Voltage-gated_ion_channel�
http://en.wikipedia.org/wiki/Membrane_potential�
http://en.wikipedia.org/wiki/Lithium�
http://en.wikipedia.org/wiki/Proton�
http://en.wikipedia.org/wiki/Sodium�
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ligands such as peptides or protons in the case of FMRF (Phe-Met-Arg-Phe-NH₂)

1.1.4.1. 

-amide-

gated ion channel (FaNaC) and acid-sensing ion channels (ASICs) (Kellenberger and Schild 

2002).  

 

Location and function of ENaC in different organs 

 Kidney and urinary bladder 

ENaC is localized in the apical membranes of sodium-absorbing epithelia like the 

aldosterone-sensitive distal nephron, respiratory epithelia, distal colon, and sweat and salivary 

ducts. In these epithelia ENaC is the rate-limiting step for sodium absorption and plays a 

critical role in the maintenance of body sodium balance. In addition, ENaC expression has 

been reported in a number of other tissues, including skin, endothelial cells, vascular smooth 

muscle cells, and neurons where its physiological role remains to be determined (Kellenberger 

and Schild 2002). 

 

For regulation of fluid balance, epithelial sodium channels are expressed in the distal 

convoluted tubule, connecting tubule, cortical collecting tubule and outer medullary 

collecting tubule. 

 Intestine 

The colon is the important and major part of the gastrointestinal tract of ENaC 

expression. 

 Sweat and salivary ducts 

ENaC is expressed in human sweat and rabbits salivary ducts. The amiloride sensitive 

channel works in conjunction with the (CFTR) Cl-

 Salt-taste cells 

 channels to reabsorb salt from the 

sweat. 

These kinds of cells are defined by specialized cells on the tongue that has reaction to 

NaCl. Recently some studies suggested that the channels play a role in taste. Amiloride 

can attenuate the perception of salty taste. 

 Lung 

The fluid can be reabsorbed and secreted in airway epithelial cells. In comparison to other 

cells in different organs with this type of Na+ channel, like kidney, colon, and sweat and 

salivary ducts, the Na+ transport through ENaC is not only involved in electrolyte 

balance, but also in maintaining a level of hydration of fluid layer that covers the inner 

surface of the epithelium. In addition, sodium reabsorption by ENaC is also very 
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important to keep alveoli dry. To absorb the fluid from the airways and alveolar lumen, 

an active transport of sodium ions by alveolar type II and possibly type I cells is required 

(Davis et al. 2007). 

In humans, the expression of ENaC in the upper airways like nasal epithelium, trachea 

and bronchi fluid is demonstrated both in vivo and in vitro. 

In adult rats and humans, all three subunits α, β and γ are highly expressed in small and 

medium-sized airways. In the lung, where type II cells are located, more α- and γ-

subunits are expressed. The α-subunit is essential for ENaC function in the lung. This is 

based on the evidence that the α-subunit by itself forms functional channels in Xenopus 

oocytes and that inactivation of this subunit in animal models results in early death with 

flooded lungs (Chu et al. 2008). 

The role of amiloride sensitive Na+

1.1.4.2. 

 transport at birth time is important to reabsorb the 

liquid that fills the alveoli and the airways of the fetal lung. mRNAs for all three subunits 

is detected in the fetal lung, and expression of α and γ subunits increases in the late fetal 

and early postnatal life. This is the time when the lung’s function is changed from 

secretion to absorption. 

 

Recent research demonstrates that the epithelial sodium channel is a heteromeric protein 

composed of three well characterized homologous subunits, α, β and γ (Figure 3). In human 

an additional δ-subunit exists, which 

Structure of ENaC in different organs 

alters proteolytic channel activation and enhances base-

line channel activity (Haerteis et al. 2009). At the sequence level δ-ENaC is more closely 

related to α-ENaC (37% amino acid identity) and to the ϵ-subunit of Xenopus laevis (Babini et 

al. 2003) than to the β- and γ-subunits of ENaC. Such δβγ-ENaC is found in pancreas, testes 

and ovaries. The biophysical properties of the δβγ-hENaC channel are different from those of 

the αβγ-channel (Waldmann et al. 1995). The δβγ-ENaC is more than an order of magnitude 

less sensitive to amiloride than αβγ-ENaC (Waldmann et al. 1995, Ji et al. 2004, Ji et al. 2006, 

Lu et al. 2008).  

Each subunit contains two transmembrane domains (M1 and M2), a large extracellular loop, 

and short intracellular NH2- and COO-- termini. With their M2 domains all subunits are 

thought to contribute to the channel pore (Garty and Palmer 1997, Kellenberger and Schild 

2002). In the absence of a crystal structure for ENaC, its subunit stoichiometry remains a 

matter of debate. Nevertheless, the recently published crystal structure of the related acid-

sensing ion channel ASIC1 suggests that ENaC is probably a heterotrimer. 

http://en.wikipedia.org/wiki/Pancreas�
http://en.wikipedia.org/wiki/Testicle�
http://en.wikipedia.org/wiki/Ovary�
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The size of the ENaC proteins is from 530 to 740 amino acids. Several studies show that there 

are different types of epithelial sodium channels, which can conduct sodium and are defined 

pharmacologically by their sensitivity to potassium sparing diuretic such as amiloride or 

triamterene. Four Na+ channel phenotypes have been presented with differing Na+ selectivities 

and amiloride sensitivities (Kellenberger and Schild 2002): 

Highly selective Na+ channels (HSC): 

Selectivity: 

HSC is defined by a very high selectivity for Na+ over K+ lying between 100:1 and 1000:1. 

The idea is that the pore of sodium channel selects for Na+, which is totally dehydrated. This 

idea can explain why Li+ and H+, which are smaller ions than Na+, can pass the channel, but 

larger ions like K+, Rb+ and Cs+

 
 cannot. 

A B 

Figure 3: Structure of ENaC 

A: ENaC may exist as a heterotrimer composed of an α-, β-, and γ-subunit. Each subunit 

has two membrane-spanning domains (M1 and M2) with intracellular N- and C-termini 

(Bhalla et al. 2008.) 

B: The model shows the tetrameric assembly of ENaC subunits around the central 

channel pore. The model is based on functional analyses, which showed that all ENaC 

subunits participate in the formation of the channel pore (Kellenberger and Schild 2002). 
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Single channel currents and conductance: 

Single channel current amplitude is between 0.1 and 0.5 pA, depending on membrane voltage 

and temperature. The single channel conductance is about 4 to 5 pS.  

Kinetics of gating: 

This kind of channels can have very different kinetics and open probabilities (Po). It is 

reported that Po can range from near zero to close to one. So the channels with high Po have 

long open time and short closed time, but in case of low Po long closed times and short open 

times. Both open and closed times are between 0.5 to 5 seconds. 

Interaction with amiloride: 

The interaction with amiloride (Figure 4) depends on the transmembrane voltage, pH of the 

extracellular solution and the concentration of extracellular Na+

 

. The concentration of 

amiloride that can block ENaC is in the range of 0.1 to 1 µM, and it is suggested to apply 

amiloride to the extracellular surface. However, some studies show that high concentrations 

of amiloride can block ENaC from the intracellular side in some cells such as from proximal 

tubules. 

 

Other epithelial amiloride sensitive channels: 

This group is ranked between highly selective and moderately selective channels, and the 

selectivity for Na

ENaC in the proximal tubule 

+ over K+

 

 is more than 19:1. Conductivity is approximately 12 pS and 

the channel can be blocked with 10 µM amiloride from the inside of the cells. 

The conductivity is between 9 and 21 pS, and the P

Moderately selective channels 

o for most of the channels is less than 

0.1. This kind of channel can be observed in cultured cells. The ion selectivity for Na+ 

over K+

 

 is about 6:1. The open and closed times are shorter than in highly selective 

channels with approximately 40 to 100 ms, respectively. The channel can be blocked by 

100 µM amiloride. This type of channel is expressed in the cells, which grow in plastic 

flasks, whereas the highly selective type is expressed when the cells are grown on 

permeable supports. 

This kind of channel can be blocked by very low concentrations of amiloride and it has no 

selectivity between Na

Non-selective cation channel (NSC) 

+ and K+. The conductivity with ~28 pS is rather high compared to 

highly and moderately selective channels. The mean of open and closed times are 
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comparable with moderately selective channels with ~40 and 50 ms, respectively (Garty 

and Palmer 1997). 

 

 

 
 

 

 

 

 

 

 

 

 

1.1.4.3. 

A number of human diseases that have been linked to malfunction of or mutations in ENaC, 

including pulmonary oedema, multiple target organ defect pseudohypoaldosteronism type I, 

Liddle's syndrome and colitis (Staub et al. 2000, Rossier et al. 2002, Bhalla et al. 2008, Chu et 

al. 2008, Shehata et al. 2009): 

 
Pulmonary oedema:  

Channelopathies 

ALI and ARDS are defined with clinical conditions like respiratory failure and death. One of 

the important pathologic factors of ALI/ARDS is non-cardiogenic pulmonary oedema. 

 

Figure 4.: Block of ENaC by amiloride. 

A: Amilorid binds to αS583 and Gly residues in β and γ. The selectivity filter is formed by 

αG587, βG529, γS541 and the ring of Ser residues (αS589 and homologous residues in β 

and γ). In this model the M2 domain forms the intracellular part of the pore. 

B: Amiloride is a guadinium group containing a pyrazine ring and both are necessary for 

high affinity binding. 

(Kellenberger and Schild 2002) 

 

A B 
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Pulmonary oedema plays an important role in the recovery phase of ALI/ARDS and is 

critically dependent on ALC. Unfortunately, a majority of ALI/ARDS patients have less 

function or expression of ENaC (Chu et al. 2008). 

 
 

 

Colitis: 

Decreased expression of ENaC subunits in human biopsy 

Some patients with the autosomal recessive inheritance of this syndrome have been found to 

carry mutations in one or another of the α, β, or γ subunits. It is a loss-of-function mutation, 

which results in a defect of sodium transport in many organs such as kidney, lung, colon, 

sweat and salivary glands. The mutation leads to salt-loss symptoms and is characterized

samples from patients with colitis is 

demonstrated (Bhalla et al. 2008). 

 

Multiple target organ defect pseudohypoaldosteronism type I (MTODPHA-I), hypotensive 

syndromes: 

 by 

volume depletion, hypotension, hyperkalemia, and failure to respond to mineralocorticoids. 

Figure 5: Clinical correlations 

of ENaC regulation.  

ENaC has been well 

characterized as a regulator of 

volume status and blood 

pressure, but more recent studies 

have demonstrated its role in 

oedema formation and 

gastrointestinal and respiratory 

disorders. 

(Bhalla et al. 2008) 
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The importance of ENaC in the absorption of salt and fluid by epithelia has been confirmed 

by the generation of knockout mice with inactivated subunits of ENaC.  

 

Liddle's syndrome, hypertensive syndromes: 

The Liddle’s syndrom is an autosomal-dominant form of salt-sensitive hypertension caused 

by gain-of-function mutations, which leads to constitutively increased channel activity

1.1.5. Methods to increase the activity of ENaC in lung cells 

. ENaC 

is very important for the maintenance of sodium balance, extracellular fluid volume and long 

term blood pressure control. The syndrome is defined by a severe form of hereditary 

hypertension, hypokalemia, low aldosterone and plasma renin levels and metabolic alkalosis 

in human. Studies with patients suffering from Liddle’s syndrome demonstrated linkage of 

hypertension to a segment of chromosome 16, which contains the β- and γ-subunits of the 

amiloride-sensitive ENaC. Several mutations have been identified in β- and γ-subunits that 

either deleted most of the carboxy terminus or introduced point mutations in a short carboxy-

terminal proline-rich sequence. 

 

 

 

As described above, ENaC plays a critical role in epithelial cells to absorb Na+ and also water, 

and to make the alveoli space dry. Thus, this ion channel is of interest in the treatment of 

pulmonary oedema. To achieve this goal, an increased activity of ENaC either by stimulation 

of expression or by stimulation of the ion current is the target.  

 

1.1.5.1 Stimulation of expression of ENaC 

Most studies are focused on the stimulation of the expression of ENaC. It has been observed 

that glibenclamide induced the stimulation of the amiloride-sensitive current in oocytes 

expressing human αβγENaC by 40-50% (Chraibi and Horisberger 1999). 

Also in airway and renal epithelia, the glucocorticoid-mediated stimulation of amiloride-

sensitive Na+ transport has been demonstrated, which is caused by the increased expression of 

the epithelial Na+

 

 channel α subunit (αENaC) (Sayegh et al. 1999). 

Furthermore, some experiments indicate that an increase in channel open probability 

combined with an increase in channel surface expression are the two mechanisms by which 

cAMP leads to enhanced ENaC currents (Yang et al. 2006). 
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1.1.5.2 Stimulation of epithelial sodium channel by TNF-α 

Recently, several articles confirmed that TNF-α induced up-regulation of alveolar fluid 

transport in human alveolar epithelial cells. Some of the researches reported that TNF-α 

creates ion channels in the cells by insertion into the plasma membrane (Baldwin et al. 1995, 

1996). On the other hand it has been reported that membrane interaction of TNF-α is not 

sufficient to trigger an increase in membrane conductance in mammalian cells (Van der Goot 

et al. 1999), while Fukuda et al. demonstrated in patch clamp studies with human alveolar 

epithelial cells (A549 cell line) that TNF-α stimulates Na+

 

 

 influx and that this effect was 

inhibited by amiloride (Figure 6) (Fukuda et al.2001). 

 

 
 

 

 

 

 

 

 

  

 

A B 

Figure 6: Structure and effect of TNF-α on Na+ current 

A: Trimeric molecule of TNF-α and the side of this molecule, which has the ability to 

actively affect oedema re-absorption (Braun et al. 2005).  

B: Effect of TNF-α on Na+ current in A549 cells patched in the whole cell mode (Fukuda et 

al. 2001). The pipette was filled with standard internal solution. The cell was held at -40 

mV, and an inward current was elicited by an application of a -100 mV pulse. The cell was 

perfused with either standard external solution (SES) or SES containing TNF-α (120 ng/ml) 

as indicated. 
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1.2. Structure of lectin-like domain of TNF-α and design 

of a series of novel peptides 
 

TNF-α is a cytokine that is secreted by macrophages and monocytes. It occurs in many 

inflammatory diseases, and also as a response to endotoxins from bacteria. This molecule has 

three chains, which are named A, B and C with 152 residues (Figure 7). 

 

 
 

 

 

 

 

 

As described above, it has been demonstrated that TNF-α can stimulate the epithelial sodium 

channel in the human epithelial cell line A549 (Fukuda et al. 2001). The lectin-like domain 

(TIP) of the TNF-α molecule is responsible for this effect and presented by C101 to E116 as 

illustrated in Figure 8.  

Native TNF-α is a homotrimer with the lectin-like domain of each subunit (in human TNF-α 

the sequence of amino acid residues from C101 to E116) located close together at the tip of 

the structure (Figure 6), whereas the TNF receptor-binding sites are located in the basolateral 

regions of the molecule. Initially characterized for its trypanolytic effect (Lucas et al. 1994), 

the lectin-like domain of TNF-α has been shown to activate amiloride-sensitive Na+ uptake in 

lung microvascular endothelial cells (Hribar et al. 1999) and in the alveolar epithelial cell line 

A549 (Fukuda et al. 2001). 

A B 

Figure 7: Structure of TNF-α 

A: Schematic diagram of interactions between protein chains. The bridges between the 

chains are mostly hydrogen bonds.  

B: Structure of TNF-α at 2.6 Ǻngstrom resolution. 

(From Protein Data Bank) 
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In the present study, the lectin-like domain of human TNF-α (C101 to E116), previously 

shown to be implicated in sodium uptake activation in A549 cells (Fukuda et al, 2001), was 

used as a template for the design of a series of novel peptides, in which cyclisation was 

achieved, in all cases but one, by amide bond formation between an amino group of an N-

terminal lysine or non-protein amino acid and a carboxyl group of a C-terminal α-amino acid 

residue. The 3D structural model for human TNF-α, PDB ID:1A8M was used as a template to 

build 3D models of the peptides using molecular graphics software and the models provided 

estimates of atomic distances in the cyclic molecules (Hazemi et al. 2010).  

Cyclic peptides were generally designed such that the distance between the N-terminal and C-

terminal α-carbon atoms or atoms in positions equivalent to these, approximated that in 

AP301 (C1-C17 Cα-Cα distance 7.15 Ǻ) or in human TNF -α (P100-E116 Cα-Cα distance 

7.23 Ǻ in PDB ID:1A 8M A chain) (Figure 9). The 19-residue cysteine-free, cyclic peptide 

(AP303) comprises the sequence of human TNF-α from K98 to E116, with C101 replaced by 

glycine and cyclisation achieved by isopeptide bond formation between the ε-amino group of 

K98 and the γ-carboxyl group of E116 (Figure 9). The cysteine-containing peptide (AP302) 

has the wild-type sequence of TNF-α from C101 to K112 to which two glycine residues have 

been added followed by a C-terminal cysteine residue. Disulphide bond formation between 

the two terminal cysteine residues brings about cyclisation in the 15-peptide AP302. Thus, 

AP302 lacks P113 and bulky hydrophobic residues W114 and Y115 of TNF-α (P14, W15 and 

Y16 of AP301), whilst retaining the residues T105, E107 and E110 (T6, E8 and E11 of 

AP301) (Figure 9), shown to be essential for the ENaC-activating effect of TNF-α and 

Figure 8: Analysis of sequence's residue in chain A of human TNF-α. 

The lectin like domain of TNF-α is highlighted. (From Protein Data Bank) 
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AP301. A mutant TIP peptide having the same sequence as AP301 with T6, E8 and E11 each 

replaced by alanine, was included in the study for comparative purposes (Figure 9). 

 

 

 

                                  
 

 

                                      
 

TIP-peptide AP303 TIP-peptide AP301 

TIP-peptide AP302 mutant peptide 

TNF-α-TIP 
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Figure 9: Human TNF-α around TIP or lectin-like domain (C101-E116) according to structure PDB 

ID:1A8M, and models for the TIP-peptides AP301, AP302, AP303 and mutant peptide based on the 

1A8M template.  

Side chains are shown only for those residues relevant for structure activity relationship. Numbers 

adjacent to lines with double arrowheads refer to Cα-Cα distances in Ǻ.  

i) Human TNF-α molecule, A chain, showing parts of polypeptide chain, F64-L76 (blue), K98-

E116 (green), disulphide bridge between residues C69 and C101 (yellow) and residues known 

from previous studies to be essential for trypanolytic and ENaC-activating effects: T105, E107 

and E110.  

ii)  AP303, the TIP-peptide which most resembles wild-type TNF-α, showing isopeptide link 

between side chains of K1 (K98 in TNF-α) and E19 (E116 in TNF-α) and amino acid change 

G4 (C101 in TNF-α).  

iii) AP301, showing disulphide bond between C1 (P100 in TNF-α) and C17 (E116 in TNF-α) and 

amino acid change G2 (C101 in TNF-α); residues critical for ENaC-activating activity are T6, 

E8 and E11. 

iv) AP302, showing disulphide bond between C1 (C101 in TNF-α) and C15; sequence C1-K12 is 

the same as C101-K112 in TNF-α, but residues corresponding to P113, W114 and Y115 are 

missing.  

v) Mutant peptide, showing disulphide bond between C1 (P100 in TNF-α) and C17 (E116 in TNF-

α) and amino acid change G2 (C101 in TNF-α), as well as mutated critical residues A6, A8 and 

A11 (T105, E107 and E110 in wild-type human TNF-α and T6, E8, E11 in AP301). 

 

(Hazemi et al. 2010) 
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1.3. Pore-forming bacterial toxins 
 

1.3.1 Panton-Valentine Leukocidin (PVL) 
 

Panton-Valentine Leukocidin (PVL) is a β-barrel pore-forming toxin secreted from 

Staphylococcus aureus (S. aureus), a gram positive bacterium. PVL consists of two subunits, 

LukS-PV and LukF-PV, which in an equimolar ratio, shape the octamer structure (Kaneko et 

al. 2004, Jayasinghe et al. 2005, Miles et al. 2006, O’Hara et al. 2008) and can form pores on 

a host cell (Genestier et al. 2005). Bacterial strains carrying the gene for PVL are rare 

(Genestier et al. 2005) but in last several years due to spread of several methicillin resistant S. 

aureus (MRSA) clones throughout the world, they are becoming more prevalent (Vandenesch 

et al. 2003). Previous studies show that human and rabbit neutrophils are highly sensitive to 

pore-forming properties of PVL and thereby undergo cell death rapidly (Colin et al. 1994 ). 

Lysing the first cells which come to the site of the infection is a good strategy of bacteria to 

escape the immune response and this is likely to be a key event of successful MRSA 

pathogenesis (Genestier et al. 2005). 

Within the respiratory tract, alveolar macrophages are considered to be the first lines of 

defence and express a plethora of pattern recognition receptors, including Toll-like receptors 

(TLR), which recognize pattern associated molecular patterns. Fast and accurate recognition 

of pattern associated molecular patterns is extremely important in lungs, which are a 

specialized compartment constantly exposed to air flow and pathogens (Knapp et al. 2006). 

Toll-like receptor activation results in downstream signaling pathways such as activation of 

mitogen-activated protein kinases and the transcription factor nuclear factor kappa B (NF-

kB). These pathways then modulate inflammatory gene expression, which is crucial to 

shaping the innate immune response within the lungs. 

Previous studies predominantly concentrated on the in vitro role of PVL on 

polymorphonuclear cells (PMNs) and disclosed the toxic properties of PVL (Colin et al. 1994, 

Genestier et al. 2005). So far data indicate that PVL can induce apoptosis in human PMNs by 

virtue of its ability to release cytochrome C from mitochondria (Genestier et al. 2005). Also, 

PVL has been shown to induce granule content release, to interfere with the oxidative burst 

and to induce IL-8 release (Colin et al. 1994, Colin and Monteil 2003). From other reports 

that also concentrated on PMNs, it seems that PVL’s ability to form pores has to be 

distinguished from its capacity to open Ca2+ channels (Staali et al. 1998, Baba Moussa et al. 
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1999). A dispute arose over the ability of PVL to directly cause lung inflammation in vivo. 

While one report could demonstrate this effect, the other one found contradictory results and 

based the pathogenicity of PVL on the concomitant presence of hemolysins (Labandeira-Rey 

et al. 2007, Bubeck Wardenburg et al. 2007). By using a microarray profiling approach it was 

shown that PVL induces a highly specific inflammatory transcriptional response in alveolar 

macrophages. Further biochemical and genetic studies indicated that this response is 

independent from PVLs pore-forming ability and is mediated via NF-kB, through a TLR2 

dependent mechanism (Zivkovic et al., manuscript accepted). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Model for how PVL might mediate tissue necrosis. The two components of 

PVL, LukS-PV and LukF-PV are secreted from S. aureus before they assemble into a 

pore-forming heptamer on PMN membranes. High PVL concentrations cause PMN lysis 

whereas low concentrations mediate a novel pathway of PMN apoptosis by directly 

binding to mitochondrial membranes. Tissue necrosis could result from release of reactive 

oxygen species (ROS) from lysed PMNs. Alternately, release of granule contents from 

lysed PMNs could set in motion an inflammatory response, eventually resulting in tissue 

necrosis. It is unlikely that PVL has a direct necrotic effect on epithelial cells. 

(Boyle-Vavra and Daum 2007) 
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1.3.1.1 
Panton-Valentine Leukocidin is a cytotoxin that can destroy white blood cells and cause 

extensive tissue necrosis and severe infection. The toxin was first described by Panton and 

Valentine in 1932. Severity of infection ranges from mild skin diseases, such as impetigo and 

skin abscesses to serious invasive diseases, including sepsis, endocarditis, toxic shock 

syndrome, and necrotizing pneumonia (Genestier et. al 2005). Presence of PVL-positive 

MRSA isolates are usually associated with soft tissue (skin and lungs) necrosis and these 

patients have poor prognosis along with strikingly higher mortality rates (up to 75%) 

compared to PVL-negative MRSA strains (Gillet et al. 2002). 

 

1.3.1.2 

Role of PVL in disease 

 

Pore-forming function of PVL 

As described before, PVL has two components, LukF-PV and LukS-PV. The presence of both 

components is necessary to form a pore in the cell membrane (Figure 11). Staphylococcal 

leukocidin (Luk) and α-hemolysin are members of the same family of β-barrel pore-forming 

toxins. The Luk pore is formed by the co-assembly of four copies each of the two distantly 

related polypeptides, LukF and LukS, to form an octamer (Miles et al. 2006).  

 

 

 

 

 

 

Figure 11: PVL is a β-barrel pore-forming toxin, comprised of two subunits termed LukF-PV 

and LukS-PV. Both subunits are secreted separately (1) and are thought to oligomerize (2, 3) on 

the surface of specific cells to assemble the final pore (4). 

(Miles et al. 2006) 
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1.3.2 Listeriolysin O (LLO) 
 

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin, a family of toxins secreted by 

Gram-positive bacteria (Tweten et al. 2005, Kayal et al. 2006). Structural studies have 

provided much insight into the molecular mechanism of pore formation by this family. 

Initially, the secreted monomer binds to cholesterol-containing membranes via the conserved 

undecapeptide motif in domain 4 (Rossjohn et al. 1997, Ramachandran et al. 2002). Lateral 

diffusion and oligomerization of the monomers is followed by structural changes in the 

molecule (Gilbert et al. 1999, Tilley et al. 2005), resulting in pores consisting of 35–50 

monomers, with a diameter of 25–35 nm (Gilbert et al. 2005). LLO, together with the other 

listerial cholesterol-dependent cytolysins (seeligerolysin and ivanolysin), are distinct within 

the wider family for having an optimum activity at acidic rather than neutral pH (Geoffroy et 

al. 1987), attributed to a triad of acidic residues unique to this subgroup of toxins (Schuerch et 

al. 2005). These trigger rapid and irreversible denaturation of the structure at neutral pH at 

temperatures above 30°C. However, it has been recently shown that binding and 

permeabilization of cells is possible at neutral pH, provided the cholesterol content of the 

membrane is sufficiently high (Bavdek et. al 2007).  

LLO is critically required during Listeria infection, and Listeria deficient for LLO are 

avirulent in mouse infection studies (Kathariou et al. 1987). LLO expression allows escape of 

bacteria from phagosomes into the cytoplasm and secondary cell-to-cell spreading, although in 

some cell types its loss may be compensated for by bacterial phospholipases (Alberti-Segui et 

al. 2007). The acidic pH optimum, together with rapid degradation within the cell, restricts its 

intracellular activity and prevents premature death of the host cell (Schnupf et al. 2006 and 

Glomski et al. 2002). The action of LLO during infection, however, may not be restricted to 

the phagosome, given that the toxin will be released from extracellular bacteria and from dead 

cells. Indeed, lesions in the spleen resulting from extensive lymphocyte death during Listeria 

infection are shown to be due to extracellular LLO release (Carrero et al. 2004a). These 

exogenous actions can contribute to the pathogenesis of infection, for example, the apoptotic 

lymphocyte death previously mentioned is reported to trigger a down-regulation of the 

inflammatory response, to the detriment of the host (Carrero et al. 2006).

Exogenous LLO, and also other pore-forming toxins, were shown

  
 to trigger signaling events 

in a variety of cell types (Kayal et al. 2006). In some instances, including MAPK activation 

and calcium signaling, this is attributed to its pore-forming ability at the plasma membrane 

and also potentially at organelle membranes. It is also suggested that signaling may be 
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triggered by LLO binding to a cell surface receptor, specifically TLR4 (Repp e. al. 2002, Park 

et al. 2004, Carrero et al. 2006a, Gekara et. al 2007), although no direct binding was shown. 

An alternative model for LLO-induced signaling is also proposed, based on the observation 

that LLO oligomerization induces lipid raft aggregation in the cell membrane (Gekara et al. 

2005). Subsequent pore formation is not required for this process, nor for the tyrosine kinase 

activation, induced presumably through signaling complex congregation in the raft.  

Pore-formation and signaling events are linked to cell death induced by LLO and other pore-

forming toxins, at concentrations less than those required for instant lysis of nucleated cells 

(Guzman et a.l 1996). Reports for LLO-induced death include apoptotic death in dendritic 

cells, and in T lymphocytes (Carrero et al. 2004a), where caspase-dependent and -independent 

death has been shown. Ion fluxes initiated by pore opening are suggested to be the trigger for 

death in the case of various other pore-forming toxins, including Staphylococcus aureus α-

toxin and aerolysin from Aeromonas hydrophila (Jonas et al. 1994, Bantel et al. 2001, Nelson 

et al. 1999). 

The case of T lymphocyte death upon LLO treatment is particularly intriguing, as it is shown 

to be up-regulated upon pretreatment of the lymphocytes with type I interferon (IFN-I) 

(Carrero et al. 2004b). IFN-I production, induced during early stages of Listeria infection in 

vivo, is detrimental to the innate immune response of the host (Carrero et al. 2004b, O’Connell 

et al. 2004, Auerbuch et al. 2004). Macrophages are host cells for invading Listeria within the 

spleen and liver. When activated, they are able to destroy phagocytosed bacteria. However, in 

vitro experiments show that infection of resting macrophages results in a slow, predominantly 

necrotic death (Barsig et al. 1997), and this death is increased by IFN-β production and 

signaling triggered by the cytoplasmic invasion of the macrophage (Stockinger et al. 2002). In 

this case, LLO expression by Listeria is necessary for cytoplasmic invasion and IFN-β 

production, but the necrotic death is in part attributed to IFN-dependent up-regulation of 

inducible NO synthase (Zwaferink et al. 2008a). The lytic activity of LLO may both 

contribute to the death of infected macrophages and affect non-infected cells as in the case of 

T lymphocytes. 

 

1.3.2.1. Pore-forming properties of LLO 

 

Various signalling events and cellular effects, including modulation of gene expression, are 

triggered by LLO. LLO applied extracellularly at sublytic concentrations causes long-lasting 

oscillations of the intracellular Ca2+ level of human embryonic kidney cells; resulting from a 
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pulsed influx of extracellular Ca2+ through pores that are formed by LLO in the plasma 

membrane (Figure 12). Calcium influx does not require the activity of endogenous Ca2+ 

channels. LLO-formed pores are transient and oscillate between open and closed states. Pore 

formation and Ca2+ oscillations were also observed after exposure of cells to native Listeria 

monocytogenes (Repp et al. 2002)

 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Pore formation after exposure to wild-type Listeria monocytogenes and LLO. 

A. Section from a 15 min recording. The trace goes downwards after a pore opening and 

upwards during a pore closing. When the recording was stopped, the membrane current 

amplitude was ~ −0.6 nA. 

B. Pore formation by LLO (100 ng.ml−1). The inset shows the beginning of pore 

formation on an expanded time and current scale. The dotted lines indicate membrane 

current levels corresponding to pore openings. The membrane holding potential was −50 

mV (Repp et al. 2002). 
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1.4 Aim of study 
 

The present work investigated the effect of the original TIP peptide AP301, and a series of 

novel cyclic peptides that also mimic the lectin-like domain of TNF-α, on amiloride-sensitive 

sodium current in A549 cells. The study was aimed at elucidation of structural features that 

are important for the ENaC-activating effect in order to achieve an improved TIP peptide for 

therapeutic use. These novel peptides were compared to the original human TIP analogue, 

CGQRETPEGAEAKPWYC (AP301), which contains the sequence from P100 to E116 of 

human TNF-α, but with P100 and E116 replaced by cysteine residues and C101 replaced by 

glycine, so that cyclisation of the linear sequence was achieved by disulphide bond formation 

between the two terminal cysteine residues. The disulphide bond in analogue AP301 may be 

susceptible to reduction and scission leading to complications in medical use. Therefore, the 

focus of the new peptide design described in the thesis was replacement of the disulphide 

bridge of the original TIP analogue, AP301, with other molecular arrangements, whilst 

preserving the sequence of residues T105-E110, shown to be essential for the ENaC-

activating effect of TNF-α. The continuous human ATII alveolar cell line A549 was used to 

test the activity of the peptides by means of the patch clamp technique. Furthermore, the 

selectivity of the activation effect of Na+ over K+ and the effect of deglycosylation of the cell 

membrane was investigated. Furthermore, the electrophysiological effects of TIP peptides in 

presence of pore-forming bacterial toxins were studied. 

The two studied pore-forming bacterial toxins are produced by MRSA and Listeria. MRSA 

strains can contain genes that encode PVL, which is responsible for many severe clinical 

symptoms of infection with MRSA. The aim of this study was to determine whether PVL or 

the two components LukF-PVL and Luks-PVL can induce pores in the cell membrane of 

macrophages. Besides the pore-forming activity, electrophysiological properties such as ion 

selectivity and single channel current kinetics had to be characterized. Furthermore, 

concentration- and potential-dependency as well as site of action were evaluated. As it has 

been demonstrated that the human TIP-peptide blunts LLO-induced hyperpermeability in 

vitro (Xiong et al. 2010), we aimed to study the effect of TIP-peptides on PVL-induced 

current. Furthermore, the effect of the bacterial toxin LLO on pore formation was tested after 

pretreatment of macrophages with IFN-β as it was reported that pore-formation and signaling 

events are linked to cell death induced by LLO. 
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2. MATERIAL AND METHODS 
 

2.1. Materials 
 

2.1.1 Cell culture 
 

2.1.1.1 Cells 

A549 cells were kindly supplied by W. Berger from the Department of Medicine I, Institute of 

Cancer Research, Medical University of Vienna, Austria in the 80th passage. 

MH-S cells (ATCC) were kindly supplied by S. Knapp from the Center for Molecular 

Medicine (Ce-M-M) of the Austrian Academy of Sciences, Vienna, in the second passage. 

Bone marrow-derived macrophages were obtained by culture of bone marrow from 7- to 11-

week-old mice of C57BL/6 genetic background in L cell-derived CSF-1. These cells were 

kindly supplied by T. Decker from the Department of Microbiology and Immunobiology. 

 

2.1.1.2 Cell culture media 

DMEM-F-12 (Dulbecco’s modified Eagle’s medium/nutrient mixture F12 Ham) was 

purchased from Sigma-Aldrich GmbH. 

RPMI-1640 medium with L-glutamine, without sodium bicarbonat was purchased from 

Sigma-Aldrich St. Louis USA. 

Fetal calf and bovine serum was purchased from Sigma-Aldrich GmbH. 

Penicillin-Streptomycin that was added to the media was purchased from Sigma-Aldrich 

GmbH and stored at -20°C. 

PBS without Ca2+/Mg2+ 10X: 2.00 g KCl, 2.0 g KH2PO4, 80.0 g NaCl, 27.07 g 

Na2PO4.2H2O, 1000 ml distilled H2O. Mixed to dissolve, this solution was diluted 1:10 with 

distilled H2O, sterile filtrated before use and stored at 4 °C. 

Trypsin/EDTA 10X: 0.25 g trypsin (1:250), 0.20 g EDTA, 10 ml PBS without Ca2+/Mg2+ 1x. 

Mix to dissolve. This solution was sterile filtrated and stored at –20 °C. Diluted 1:10 with 

sterile PBS without Ca2+/Mg2+

 

 

 

 

 1X before use. 
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2.1.2 Solutions for patch clamp experiments 
 

All the solution ingredients were purchased from Sigma-Adrich GmbH, except Amphotericin 

B, which was from Fluka Biochemika.  

 

2.1.2.1 Whole cell recording  

 

Bath solution for experiments with TIP-peptides (in mM):  

145 NaCl, 2.7 KCl, 1.8 CaCl2, 2.0 MgCl2, 5.5 glucose, 10 HEPES, pH 7.4 adjusted with 

NaOH.  

 

Pipette solution for experiments with TIP-peptides (in mM): 

135 potassium methylsulfonic acid, 10 KCl, 6 NaCl, 1 Mg2ATP, 2 Na3ATP, 10 HEPES, 0.5 

EGTA, pH 7.2 titrated with 1 N KOH.  

 

Bath solution for experiments with bacterial toxins (in mM): 

150 NaCl, 5.4 KCl, 1.8 CaCl2, 0.5 MgCl2, 5 glucose, 10 HEPES, pH 7.4 adjusted with 

NaOH. 

 

Pipette solution for experiments with bacterial toxins (in mM): 

140 potassium aspartate, 2 MgCl2, 2 CaCl2, 10 HEPES, pH 7.4 adjusted to KOH. 

 

Amphotericin B from Streptomyces ssp. was used in a concentration of 600 µg/ml in the 

pipette solution when applying the perforated patch clamp configuration in experiments with 

LLO.  

 

2.1.2.2 Cell-attached patches 

 

Bath solution for experiments with TIP-peptides (in mM):  

145 potassium methanesulfonate, 5 MgCl2, 40 mannitol, 10 HEPES, 5.5 glucose, pH 7.4. 

With this solution the cells were depolarized to 0 mM. 

 

Pipette solution for experiments with TIP-peptides (in mM)

145 sodium methanesulfonate, 5 MgCl

:  

2, 40 mannitol, 10 HEPES, 5.5 glucose, pH 7.4. 
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2.1.2.3 Inside-out patches 

 

The pipette and bathing solutions were of the same composition and contained (in mM): 

140 potassium aspartate (or NaCl for sodium ions as the charge carrier), 2 CaCl2, 2 MgCl2, 2 

Na2ATP, 10 HEPES, titrated to pH 7.4 with KOH. 

or 110 CaCl2, 2 MgCl2 and 10 HEPES (for calcium ions as the charge carrier), titrated at pH 

7.4 with Ca(OH)2. 

 

 

2.1.3. Chemicals 
 

Amiloride hydrochloride hydrate was used at concentrations of 10 to 100 µM in order to 

block ENaC. 

Tetraethylammonium chloride (TEA) was used at a concentration of 10 mM to block the K+ 

current. 

Both amiloride hydrochloride hydrate and TEA were purchased from Sigma-Aldrich GmbH, 

Austria. 

Peptide-N-glycosidase F cloned from Flavobacterium meningosepticum and expressed in 

E. coli was obtained from Roche Diagnostics GmbH, Germany. Cells were treated with the 

enzyme in order to study if this has an effect on binding properties of TIP-peptides. 

Recombinant murine 

 

interferon β (IFN-β, Calbiochem) was used to prove whether IFN-β has 

an influence on the pore-forming activity of LLO. 

 

 

2.1.4.  Experimental set-up 
 

The set-up consisted of the microscope (Axiovert 100, Carl Zeiss, Germany), amplifier 

(Axopatch 200B, Axon Instruments, CA, USA), headstage (CV 203BU Axon Instruments, 

CA, USA), pipette holder (HL-U, Axon Instruments, Inc., Foster City, Ca, USA), 

micromanipulator (A WR-60, Narishige Scientific Instrument Lab., Tokyo, Japan), computer, 

metal cage and vibration isolation table (Newport Coporation, Irvine, CA, USA). 

The silver wire was chlorinated every week before using as an electrode. 
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2.2. Methods 
 

2.2.1  Cell culture 

 

Experiments were carried out on the human epithelial cell line A549 (ATTAC Nr. CCL-185) 

in passages 80-90. Cells were grown in Dulbecco’s modified Eagle’s medium/nutrient 

mixture F12 Ham, supplemented with 10% fetal bovine serum and containing 1% penicillin-

streptomycin. The cells were maintained at 37 °C in a humidified atmosphere of 5 % CO2 in 

air. The cells were refreshed every 2 or 3 days with new medium according to the specific 

requirements. 

Cells were grown on tissue culture flasks until it has been 70% full of cells. Confluent cells 

were washed (with 37 °C warm PBS without Ca2+/Mg2+) and detached from the culture dishes 

by enzymatic digestion using 37°C warm 1X trypsin/EDTA. Following enzymatic digestion, 

cells were collected in centrifuge tubes and spun down at 1000 rpm for 5 min at 4°C. The 

pellet was re-suspended in culture medium and the cells seeded and allowed to proliferate 

onto new culture flasks with splitting rates of 1:4. 

Following enzymatic digestion, cells were pelleted and re-suspended in new medium. After 

addition of 10 µl Tryptan blue to re-suspended cells, viable cells were counted with the cell 

counter (Hemacytomter; Hausser Scientific, Horsham, PA. USA). The counted cells were 

pelleted again and re-suspended in a defined volume of freezing medium (50 % heat 

inactivated FBS, 40 % D-MEM-F-12 and 10 % DMSO). About 4 million cells in 1.5 ml 

freezing medium were aliquoted in cryogenic vials. The latter were immediately placed in 

freezing containers (Nalgene, USA) with isopropanol and stored overnight at –80 °C to allow 

freezing at a constant rate of -1°C/min. These vials were later transferred to liquid nitrogen 

tanks for long term storage. 

After re-suspension of the cells in culture medium, the cells were seeded on coverslips 12 to 

24 hours before performing patch clamping experiments. The coverslips were put in small 

culture plates with 2 ml culture medium and were maintained at 37°C in a humidified 

atmosphere of 5 % CO2

 

 in air. 
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2.2.2  Patch clamp technique 

 

The patch clamp technique is an electrophysiological technique that allows the study of single 

or multiple ion channels in cells (Hamill et al.1981).  

 

2.2.2.1 

 

 

2.2.2.2 

Cell attached patch  
 

The glass pipette is sealed to the patch of membrane, and the cell remains intact. This allows 

the recording of currents through single ion channels in that patch of membrane, without 

disrupting the interior of the cell. Test compounds being studied are included in the pipette 

solution, where it can contact what had been the external surface of the membrane. While the 

resulting channel activity can be attributed to the test compounds being used, it is usually not 

possible to then change the test compounds concentration and it can be a disadvantage. The 

advantage of this method is the possibility to analyze channel kinetics in more detail like open 

time and close time of the channel in the patch.  

Inside-out patch 

 

After the giga-seal had been made, the pipette is quickly detached from the cell, thus ripping 

the patch of membrane off the cell, leaving the patch of membrane attached to the tip of the 

pipette, and exposing the intracellular surface of the membrane to the external solution (bath 

solution). This mode is useful when the researcher studies the effect of compounds binding 

from the intracellular side. The concentration of the test substances can easily be changed. 

This method also allows measuring the current through single ion channels. 

Figure 13: Patch clamp technique in 

the cell-attached mode. 

This mode is used to study single 

channel kinetics. 
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2.2.2.3 

 

Whole cell recording mode 

 

This method allows to measure whole cell current through entire ion channels on the cell 

membrane. The pipette is left in place on the cell, but more suction is applied to rupture the 

membrane patch, thus providing access to the intracellular space of the cell. Alternatively, the 

pipette can be filled with an amphothericin containing solution, an ionophore which provides 

perforated patches. 

The positive point of whole-cell patch clamp recording compared to sharp microelectrode 

recording is that the larger opening at the tip of the patch clamp pipette provides lower 

resistance and thus better electrical access to the inside of the cell. A disadvantage of this 

technique is that the volume of the electrode is larger than the cell, so the soluble contents of 

the cell's interior will slowly be replaced by the contents of the electrode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: All models of patch clamping. 

After putting the pipette on the cell surface, with the first suction, an attached cell patch will be 

made. After that either, with the second suction, the whole cell patch will be created, or by 

pulling the pipette an vesicle, and after quickly moving out of the solution, an inside-out patch 

will be obtained. For an outside-out patch, after formation of the whole cell configuration the 

pipette must be pulled off the cell. 
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2.2.2.4 
 

Patch pipettes were made in three stages: pipette pulling, heat polishing and filling. 

The patch pipettes were pulled from borosilicate glass (WPI, Sarasota, FL, USA) using a 

programmed Flaming/Brown micropipette puller (P-87, Sutter Instrument Company, CA, 

USA). The pipette tips were fire-polished on a Micro-Forge model MF-79 (Narishige 

Scientific Instrument Lab., Tokyo, Japan). The pipette tip polishing was observed at 16 x 35 

magnification using a compound microscope with a long distance objective (Leitz Biomed, 

Wetzlar, Germany). This procedure further reduced the tip opening to a final resistance of 2-

10 MΏ. 

The tip of the pipettes were dipped into pipette solution for 5 minutes. Then the pipettes were 

back filled by syringe and needle with pipette solution. The next stage was to drive out the air 

bubbles by regular strong knocks. The pipette solution must be filtered before using a filter 

with at a pore size equivalent to 0.2 mm in diameter (Sartorius, Göttingen, Germany). 

The pipette resistance was controlled before patch formation. Pipettes with a resistance lower 

than 1.5 MΏ were rejected and also pipettes with a resistance higher than 10 MΏ. Usually, 

the pipette resistance between 1.5-3.5 MΏ was used for whole cell patch clamp experiments 

and 5-10 MΏ for single channel studies. 

 
 

Pipettes  

2.2.3 Experimental procedure  

 
2.2.3.1 Whole cell recording and cell-attached patches in A549 cells 

 

Effects on ENaC were studied on A549 cells at room temperature (19-22°C) 24 to 48 h after 

plating. 

Currents were recorded with the patch clamp method in the whole-cell mode and to further 

evaluate the effects of TIP-peptides on biophysical properties of the epithelial sodium 

channel, A549 cells were patched in the cell attached mode and single-channel currents were 

recorded. Glass cover slips with the cultured cells were transferred to a chamber of 1 ml 

capacity, mounted on the stage of an inverted microscope. 

Capacity transients were cancelled, and series resistance was compensated. Whole cell 

currents were filtered at 5 kHz and sampled at 10 kHz. 
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Data acquisition and storage were processed directly to a PC equipped with pCLAMP 10.0 

software (Axon Instruments, CA, USA). 

After GΩ-seal formation, the equilibration period of 5 min was followed by control 

recordings at at holding potentials (Eh) between –100 and +100 mV in 20 mV increments for 

1 min at each Eh.  

Then, aliquots of a stock solution, which was prepared with distilled water, were cumulatively 

added into the bathing solution, resulting in concentrations ranging from 1.75 to 30 nM TNF-

α, and from 3.5 to 240 nM TIP peptide, respectively.  

The wash-in phase lasted about 1 min. After steady-state had been reached, the same 

experimental protocol as during control recordings was applied for each concentration of the 

peptide. Concentration-response curves and EC50-values were fitted and estimated for 

currents recorded at Eh of –100 mV with SigmaPlot 9.0. Differences in EC50 were calculated 

for statistical significance (P<0.05) with the Student’s t-test. 

For evaluation of ion selectivity, ENaC was blocked by 10 to 100 µM amiloride 

hydrochloride before the addition of peptide in the whole cell recording mode. Subsequent 

addition of 10 mM tetraethylammonium chloride (TEA) indicated whether any observed 

increases in the current were due to potassium current. These experiments were also carried 

out at Eh = –100 mV. 

To study the effect of TNF-α, AP301 and AP318 on ENaC after deglycosilation, N-

glycosidase F (PGNase) was applied. Currents were recorded with the patch clamp method in 

the whole-cell and cell-attached mode. In the whole cell mode the A549 cells were either 

incubated with 100 units PNGase F for 1 to 5 minutes before doing experiment, and glass 

cover slips with the cultured cells were rinsed with external solution before transferred to a 

chamber of 1 ml bath. After control recordings, 30nM TNF-α, 240nM AP301 or AP318 was 

added. To study more details in single channel kinetics after deglycosilation, the 100 units 

PNGase F with one of the substance (TNF-α, AP301 or AP318) was added to 1ml pipette 

solution. TNF-α, AP301 and AP318 were added in concentrations corresponding to their 

respective EC50 values to the pipette solution. 

For single channel current measurements 10 mM TEA was added to the pipette solution to 

block the K+ channel. It allows us to see the openings of the Na+ channel without the 

interference with the K+ channel, because the amplitude of the K+ channel is really big in 

contrast to the Na+

 

 channel. For control, only TEA was added to the pipette solution, and 

these controls were recorded at ±60 mV holding potential. 
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Furthermore, to study the effect of the pore-forming toxin PVL on A549 cells, after control 

recording of 5 min 200nM PVL was added to the bath solution. After steady-state has been 

reached, 240 nM AP301 was added to the bath solution. 

 

2.2.3.2 
 

Currents were recorded with the patch clamp technique in the whole cell and inside out mode. 

Macrophages of passage 2 to 12 were plated on glass cover slips 12 to 24 h before the 

experiments were performed.  

All measurements were performed at room temperature (19-22°C). Electrodes pulled of 

borosilicate capillaries had a tip resistance of 3-5 MΩ for whole cell recording and 8-10 MΩ 

for single channel recording. After patch formation an equilibrium period of 5 min followed, 

which was succeeded by control recordings at holding potentials ranging from –80 mV to +80 

mV with 20 mV increments. During the control period no electrical activity could be 

observed. Then either of the single components LukF-PV and LukS-PV, or both components 

together were added to the bathing solution to obtain concentrations of 14 to 280 nM PVL. 

First channel openings were detected approximately 1 min after addition of the toxin. Then 

the same experimental protocol was applied as during control recordings. 

Electrophysiological measurements were carried out with an Axopatch-1D patch clamp 

amplifier (Axon Instruments, CA) at a cut-off frequency (-3 dB) of 2 kHz. Currents were 

filtered at 5 kHz and sampled at 10 kHz. Data acquisition was executed directly to a PC with 

pCLAMP 6 software (Axon Instruments, CA). Current analysis was performed with ASCD 

software (G. Droogmans, Leuven, Belgium).  

 

Whole cell recording and inside-out patches in macrophages 

For studies with LLO, macrophages were plated onto glass coverslips and treated with IFN-β 

(500 U/ml) overnight. Currents were recorded in the perforated patch clamp configuration 

using amphothericin B (600 µg/ml) in the pipette solution. All measurements were performed 

at 20–22°C. Electrodes pulled of borosilicate capillaries had a tip resistance of 5–6 MΩ. After 

patch formation, an equilibrium period of 5 min followed, which was succeeded by a control 

period of 5 min at a holding potential of –30 mV during which no electrical activity could be 

observed. Then, LLO was added to the bathing solution at concentrations of 2.5 or 5.0 µg/ml. 

First channel openings were detected 1 min after addition of LLO. Electrophysiological 

measurements were conducted with an Axopatch-1D patch clamp amplifier (Axon 
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Instruments) at a cutoff frequency (–3 dB) of 2 kHz. Currents were filtered at 5 kHz and 

sampled at 10 kHz. Data acquisition was executed directly to a PC with pCLAMP 6 software 

(Axon Instruments). Current analysis was performed with ASCD software (G. Droogmans, 

Katholieke Universiteit Leuven, 

2.3.1 TNF-α 

Leuven, Belgium). 

 

 

2.3 Test substances 
 

 

TNF-α was purchased from Sigma-Adrich, Saint Louis, USA. Mouse TNF-α, recombinant, 

expressed in E.coli (T 7539) was used. 

To reconstitute the contents of the vial using 0.2 µm filtered, distilled water was used to 

obtain a concentration of 0.1 mg/ml. For further dilutions, the stock solution with distilled 

water was prepared and stored in the freezer at -20°C.  

The reference compound TNF-α was studied at concentrations ranging from 1.75 to 30 nM. 

 

2.3.2 TIP-peptides 
 

TIP peptides AP301 (cyclic and linear), AP302, AP303, AP309, AP310, AP314, AP317, 

AP318, AP319, AP321 and AP322 were obtained from Dr. B. Fischer, APEPTICO 

Forschung und Entwicklung GmbH. 

The test compounds were studied at a concentration range of 3.5 to 240 nM. 

The stock solutions were prepared with distilled water and stored in the freezer. 

 

The lectin-like domain of human TNF-α (C101 to E116), previously shown to be implicated 

in sodium uptake activation in A549 cells (Fukuda et al. 2001), was used as a template for the 

design of a series of novel peptides, in which cyclisation was achieved, in all cases but one, 

by amide bond formation between an amino group of an N-terminal lysine or non-protein 

amino acid and a carboxyl group of a C-terminal α-amino acid residue. 

 



36 
 

2.3.2.1 Peptide Description 
 

The amino acid sequence of the TNF-α lectin like domain is CQRETPEGAEAKPWYE (see 

Figure 8). The identical sequence of 14 amino acids in lectin-like domain of TNF-α, the lead 

compound AP301 (CGQRETPEGAEAKPWYC) and other test compounds is highlighted in 

blue. This amino acid sequence of TNF-α lectin like domain is present in all studied 

compounds except in AP302 (only 12 identical amino acids, amino acids identical to TNF-α 

TIP printed in bold letters) and mutant AP301 (amino acids identical to TNF-α TIP printed in 

bold letters). 

Natural and non-protein amino acids and amino carboxylic acids replacing C1 (in red) and 

C17 (in red) in the molecule of the lead compound AP301 are highlighted in red. 

 

AP301: Cyclo(CGQRETPEGAEAKPWYC). Cyclisation was achieved by oxidation of the 

terminal cysteine residues to form a disulphide bridge. The purity of the peptide was 96.3%. 

m/z (ESI) 1924.2 (M++1); theoretical average molecular mass 1923.1. 

 

AP302: Cyclo(CQRETPEGAEAKGGC). Cyclisation was achieved by oxidation of the 

terminal cysteine residues to form a disulphide bridge. The purity of the peptide was 97.0%. 

m/z (MALDI) 1534.8 (M++1); theoretical average molecular mass 1533.6. 

 

AP303: Cyclo(KSPGQRETPEGAEAKPWYE). Cyclisation was achieved by formation of an 

amide bond between the amino group attached to the ε-carbon of the N-terminal lysine 

residue and the side chain carboxyl group attached to the γ-carbon of the C-terminal glutamic 

acid residue. The purity of the peptide was 89%. m/z (MALDI-TOF) 2142.7 (M++1); 

theoretical average molecular mass 2142.3. 

 

AP309: Cyclo(KGQRETPEGAEAKPWYG). Cyclisation was achieved by creating an amide 

bond between the amino group attached to the ε-carbon of the side chain of the N-terminal 

lysine residue and the carboxyl group of the C-terminal glycine residue. The purity of the 

peptide was 98.8%. m/z (ESI) 1888.2 (M++1); theoretical average molecular mass 1886.0. 

 

AP310: Cyclo(ornithine-GQRETPEGAEAKPWYG). Cyclisation was achieved by creating an 

amide bond between the amino group attached to the δ-carbon of the side chain of the N-

terminal ornithine residue and the carboxyl group of the C-terminal glycine residue. The 
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purity of the peptide was 97.4%. m/z (ESI) 1873.4 (M++1); theoretical average molecular 

mass 1872.0. 

 

AP314: Cyclo(5-aminopentanoic acid-GQRETPEGAEAKPWYG). Cyclisation was achieved 

by creating an amide bond between the amino group of N-terminal 5-aminopentanoic acid and 

the carboxyl group of the C-terminal glycine residue. The purity of the peptide was 100%. m/z 

(MALDI-TOF) 1857.9 (M++1); theoretical average molecular mass 1857.0. 

 

AP317: Cyclo(4-aminobutanoic acid-GQRETPEGAEAKPWYG). Cyclisation was achieved 

by creating an amide bond between the amino group of the N-terminal 4-aminobutanoic acid 

and the carboxyl group of the C-terminal glycine residue. The purity of the peptide was 100%. 

m/z (MALDI-TOF) 1843.3 (M++1); theoretical average molecular mass 1843.0. 

 

AP318: Cyclo(4-aminobutanoic acid-GQRETPEGAEAKPWYD). Cyclisation was achieved 

by creating an amide bond between the amino group of 4-aminobutanoic acid and the side 

chain carboxyl group attached to the β-carbon of the C-terminal aspartic acid residue. The 

purity of the peptide was 100%. m/z (MALDI-TOF) 1901.6 (M++1); theoretical average 

molecular mass 1901.0. 

 

AP319: Cyclo(β-alanine-GQRETPEGAEAKPWYE). Cyclisation was achieved by creating an 

amide bond between the amino group of the N-terminal β-alanine (3-aminopropanoic acid) 

and the side chain carboxyl group attached to the γ-carbon of the C-terminal glutamic acid 

residue. The purity of the peptide was 100%. m/z (MALDI-TOF) 1902.7 (M++1); theoretical 

average molecular mass 1901.0. 

 

AP321: Cyclo(7-aminoheptanoic acid-GQRETPEGAEAKPWY). Cyclisation was achieved 

by creating an amide bond between the amino group of the N-terminal 7-aminoheptanoic acid 

and the carboxyl group of the C-terminal tyrosine residue. The purity of the peptide was 

97.2%. m/z (MALDI-TOF) 1828.9 (M++1); theoretical average molecular mass 1828.0. 

 

AP322: Cyclo(6-aminohexanoic acid-GQRETPEGAEAKPWYG). Cyclisation was achieved 

by creating an amide bond between the amino group of 6-aminohexanoic acid and the 

carboxyl group of the C-terminal glycine residue. The purity of the peptide was 100%. m/z 

(MALDI-TOF) 1872.6 (M++1); theoretical average molecular mass 1871.0. 
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Mutant AP301: Cyclo(CGQREAPAGAAAKPWYC). Cyclisation was achieved by oxidation 

of the terminal cysteine residues to form a disulphide bridge. The purity of the peptide was 

98.2%. m/z (ESI) 1778.2 (M+

 

 

 

 

 

 

+1); theoretical average molecular mass 1777.0. 

 

TIP peptides 309, 310, 314, 317, 318, 319, 321 and 322 have the same sequence as AP301 

from G2 to Y16, with natural and non-protein amino acids and amino carboxylic acids 

replacing C1 and C17; AP321 is a 16-peptide in which 7-aminoheptanoic acid replaces C1. In 

Figure 15: TIP peptide 301, 2D chemical structure.  

Atoms replaced in the derived TIP peptides 309, 310, 314, 317, 318, 319, 321 and 322 

are shown in bold and coloured red. This part of the molecule refers to the cross linking 

structures, which are listed in Table 1. 
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each peptide the cross-linking structure replaces the atoms shown in bold and red in Figure 

15. 

 

Table 1: Cross-linking solutions to replace the disulphide bridge of AP301 in TIP peptide 

analogues  

 

Peptide Cross-linking structure 
(positions 1 and 17) 

Characteristics of amide bond 
in cross-linking structure 

AP309 

 

Side chain amino group of lysine 
(K1) and carboxyl group of 
glycine (G17) 

AP310 

 

Side chain amino group of 
ornithine and carboxyl group of 
glycine (G17)  

AP314 
 

Amino group of 5-
aminopentanoic acid and 
carboxyl group of glycine (G17) 

AP317 

 

Amino group of 4-aminobutanoic 
acid and carboxyl group of 
glycine (G17) 

AP318 

 

Amino group of 4-aminobutanoic 
acid and side chain carboxyl 
group of aspartic acid (D17) 

AP319 

 

Amino group of β-alanine (3-
aminopropanoic acid) and side 
chain carboxyl group of glutamic 
acid (E17) 

AP321 
 

Amino group of 7-amino-
heptanoic acid and carboxyl 
group of tyrosine (Y16) 

AP322 

 

Amino group of 6-aminohexanoic 
acid and carboxyl group of 
glycine (G17) 
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2.3.3 Panton-Valentine Leukocidin (PVL) 
 

PVL is comprised of two subunits termed LukF-PV and LukS-PV. These components of the 

PVL toxin were kindly supplied by S. Knapp from the Center for Molecular Medicine 

(CeMM) of the Austrian Academy of Sciences. The stock solution of each subunit was stored 

separately in the freezer. 

To generate PVL the sequence from Staphylococcus aureus V8 (ATCC 49775) was amplified 

as described by Genestier et al. (2005).  

 

 

2.3.4 
 

Listeriolysin O (LLO)  

LLO was kindly supplied by T. Decker from Vienna Biocenter, Department of Microbiology 

and Immunobiology. Production and purification are described in detail by Zwaferink et al. 

(2008b). The protein was stored frozen in aliquots at -80°C. 
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3. RESULTS 
 

3.1. TIP peptides 
 

3.1.1. Structure-activity relationship 
 

TNF-α has been shown to activate ENaC in alveolar epithelium (Fukuda et al. 2001). 

Therefore, synthetic peptides that mimic the lectin-like domain of TNF-α (TIP) were 

synthesised and evaluated for their ability to enhance the amiloride-sensitive sodium current 

through ENaC in A549 cells. Currents were recorded by means of the patch clamp technique 

in the whole-cell mode. To prove the specificity of the test compounds on the amiloride-

sensitive Na+ current, firstly, amiloride was added in control experiments to identify the 

registered current as the amiloride-sensitive Na+ current. Secondly, after a control period and 

addition of the tested TIP peptide, amiloride was added after a steady-state effect has been 

reached in order to prove whether the peptide-induced increase in current is due to the 

amiloride-sensitive Na+ current. In this experimental setting it could be shown that, in a 

similar manner to TNF-α, TIP peptides AP301, AP303, AP309, AP310, AP318 and AP319 

induced an amiloride-sensitive sodium ion flux through ENaC at all tested membrane holding 

potentials ranging from –100 to +100 mV (Figure 16 and 17). At a membrane holding 

potential of Eh= –100 mV, a maximal response to TNF-α and each ENaC-activating peptide 

was reached at a current level of 1073 ± 15 pA, whereas TIP peptides mutant AP301, AP302, 

AP314, AP317, AP321 and AP322 showed no effect on ENaC at concentrations up to 480 

nM.  

For comparison of activity, the concentration for half maximal response (EC50) was estimated 

at Eh= –100 mV for TNF-α and all tested TIP peptides. TNF-α as the reference compound 

increased Na+ current with an EC50 of 8.2 ± 0.1 nM (n=5). The active TIP peptides showed 

0.14- (TIP peptide AP303) to 0.43-fold (TIP peptide AP319) the activity of TNF-α. TIP 

peptide AP303 with an estimated EC50 of 56.0 ± 0.8 nM (n=4) increased the Na+ current to 

the same extent as compound AP301 (Table 2, Figure 18). All other active TIP peptides, 

AP309, AP310, AP318 and AP319, were significantly (P<0.05) more effective in increasing 

the Na+ current than TIP peptide AP301 (Table 2, Figure 18).  
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Figure 16: Effect of AP301 on ENaC. 

Representative original whole-cell recordings from a cell clamped at holding potentials 

ranging from –100 to +100 mV (in 20 mV increments) are shown during control (A) and in 

presence of 120 nM AP301 (B). At this concentration the ENaC-activating effect was 

maximal.  
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Figure 17: Effect of AP301 on current-voltage (IV) relationship. 

IV-curves are illustrated for control (open circles, n=5), in presence of 60 nM AP301 

(filled squares, note: concentration of AP301 is 60 nM that is the concentration close to the 

EC50-value of AP301, n=5). Open triangles represent values obtained after addition of 10 

mM amiloride, which blocks the sodium current in control (n=5) as well as in presence of 

AP301 (n=5). Mean values ± S.E. are given for 5 experiments. 
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These data imply that either a free positively-charged N-terminal amino group on residue 1 

(AP309 and AP310) or a free negatively-charged carboxyl group on residue 17 (AP318 and 

AP319) is essential for the ENaC-activating effect. The presence of both types of charged 

group on the terminal residues, as in compounds AP301 and AP303, results in an ENaC-

activating effect, which is less pronounced than when either charged group is present alone.  
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Figure 18: Concentration-response curves. 

For all ENaC-activating TIP peptides a maximal effect could be observed at 120 nM. TIP 

peptides AP309, AP310, AP318 and AP319 were more active than reference compound 

AP301, but less active than TNF-α, whereas AP303 was as active as AP301. Estimated 

values for the Hill slope of the concentration-response curves were smaller for TIP 

peptides than for TNF-α and AP301, indicating attenuated steepness of the curves. Mean 

values ± S.E. for 3-5 experiments are given. 



45 
 

This structure-activity relationship becomes evident, since the TIP peptides AP314, AP317, 

AP321 and AP322, which lack a free positively-charged N-terminal amino group on residue 1 

as well as a free negatively-charged carboxyl group on residue 17, showed no effect on ENaC 

at concentrations up to 240 nM. TIP peptides AP302 and mutant AP301 were also ineffective. 

 

Table 2: Potency of ENaC-activating TIP peptides. 

Active test 
compound EC50 (nM) n 

TNF-α 8.2 ± 0.1 5 

AP301 54.3 ± 0.8 5 

AP303 56.0 ± 0.8 4 

AP309 38.3 ± 1.7 3 

AP310 45.5 ± 0.6 3 

AP318 24.8 ± 0.5 5 

AP319 19.9 ± 0.7 4 

 

 

 

All studied TIP peptides (AP301, AP302, AP303, AP309, AP310, AP314, AP317, AP318, 

AP319, AP321, AP322, mutant TIP peptide) have a cyclic structure. In case of AP301, the 

circular form is intended to restrain the key residues known to be necessary for the ENaC-

activating effect: T105, E107 and E110, in the conformation found in native human TNF-α. It 

is well known that circular peptides are more stable than their linear counterparts. However, 

cyclization is another additional step in the synthesis of TIP-peptides. Therefore, it was of 

interest whether the cyclic structure is essential for the ENaC activating effect. When the 

concentration of the linear peptide AP301 was increased until 600 nM (n=5), no effect on 

ENaC was observed (Figure 19), whereas subsequent addition of cyclic AP301 increased the 

sodium current. 
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3.1.2. Selectivity of ENaC-activating effect 
 

All TIP peptides showing an activating effect were highly selective for amiloride-sensitive 

sodium current. The percentage increase in whole-cell current, which could be attributed to 

ENaC ranged between 89.6% in the case of AP319 and 99.4% for AP301 and AP309. 

Specifically, TIP peptides AP301, AP309 and AP310 have virtually no effect on potassium 

channels whereas AP303, AP318 and AP319 do have a slight effect (Table 2, Figure 20). The 

small current which was induced by these latter peptides, when ENaC was blocked by 

amiloride, could be reversed by the K+

With regard to this point, it is interesting to note that AP309 and AP310 have a free 

positively-charged, N-terminal amino group on residue 1 and no free negatively-charged 

 channel blocker TEA.  

Figure 19: Effect of the linear peptide on ENaC recorded in the whole cell mode. 

Addition of 600 nM linear peptide did not affect the current whereas the addition of 240 nM 

cyclic AP301 increased Na+ current (n=5). 
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carboxyl group on residue 17, whereas AP318 and AP319 have no free positively-charged 

amino group, but they do have a free negatively-charged carboxyl group on residue 17. Both 

AP301 and AP303 have a free amino group on residue 1, but in AP303, residue 1 is 

equivalent to K98 in native TNF-α, whereas in AP301 residue 1 is equivalent to P100, thus 

the N-terminal residues in these peptides represent structurally different parts of the native 

TNF-α molecule. 

 

 

Table 3: Selectivity of ENaC-activating TIP peptides. 

 
Active 

test compound 

Selectivity  

n 
ENaC  
(%) 

Potassium current 
(%) 

TNF-α 93.4 ± 1.9   6.9 ± 1.8 4 

AP301 99.4 ± 0.1   0.6 ± 0.1 3 

AP303 93.4 ± 0.6   6.1 ± 0.9 3 

AP309 99.4 ± 0.2   0.6 ± 0.1 3 

AP310 98.9 ± 0.3  1.1 ± 0.3 3 

AP318 91.2 ± 0.2   8.6 ± 0.1 3 

AP319 89.6 ± 1.2 10.4 ± 1.1 3 
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Figure 20: TEA-selective K+ current 

Current traces induced by clamping the cell membrane to a holding potential of –100 mV 

are presented. The original whole-cell recordings from two cells are illustrated during 

control, and after addition of 100 µM amiloride, which blocks the amiloride-sensitive Na+ 

current through ENaC. Addition of AP301 and AP318 to the bathing solution induced 

virtually no (AP301, right panel) or only a small (AP318, left panel) current, respectively. 

This peptide-induced current was completely blocked by TEA indicating that this current 

is a K+ current. The pulse protocol and calibration bar is illustrated in the inset. 
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3.1.3. Activity of nebulised AP301 solution 
 

The lead compound AP301 is being developed as an aqueous solution, which will be 

delivered to the patient by inhalation as an aerosol. It is therefore essential to demonstrate that 

AP301 retains its pharmacological effect after nebulisation. Administration of the lead 

compound as an aerosol by inhalation is considered the most efficient delivery route, since 

AP301 exerts its pharmacological effect by activating apically-located ENaC ion channels in 

alveolar epithelia, resulting in uptake of Na+ ions from the alveolar fluid and subsequent 

reabsorption of lung oedema (Lucas et al, 1994; Fukuda et al, 2001; Elia et al, 2003; Braun et 

al, 2005). The ENaC activation effect of a solution of AP301 which has been introduced into 

the nebuliser, nebulised and reconstituted by capture (“condensation”) of the aerosol particles 

was tested. It had to be proven that the nebulised AP301 peptide spray generated by the 

nebuliser retains its activity, because the nebulised form is the finally way to use with patient. 

The concentrations of nebulised and un-nebulised AP301 were applied in 25, 2.5, 0.5, 0.25, 

0.167, 0.125, 0.1 mg/ml. 

A solution of AP301 test substance containing 25 mg/ml pure AP301, which had been 

nebulised using the Aeroneb Solo nebuliser unit (Aerogen Ltd, Ireland) and condensed, 

showed the same activation effect on ENaC ion channels as the same solution of AP301 

which had not been nebulised (Table 4, Figure 21). 

 

Table 4: The data of whole cell patch clamping in A549 cells with nebulised and un-nebulised 

AP301 in different concentrations. 

Concentration 

(mg/ml) 

Un-nebulised AP301 

I (pA) at Eh= -100mV 

Nebulised AP301 

I (pA) at Eh= -100mV 

25 1013 ± 35 1085 ± 51 

2.50 - 1056 ± 65 

0.50 - 1141 ± 30 

0.167 1100 ± 40 1041 ±58 

0.125 - 1028 ± 16 

0.1 (corresponds to 60 nM) 589 ± 9   586 ± 22 
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3.1.4. Effects on single epithelial sodium channel current in A549 cells 
 

TNF-α and TIP-peptides AP301, AP303, AP309, AP310, AP318 and AP319 induced a 

marked, concentration-dependent increase of macroscopic Na+ current. To study the effects 

on single channel current, TNF-α, AP301 and the most active TIP-peptide, AP318, were 

examined in the cell-attached mode of the patch clamp technique. Experiments were 

performed at holding potentials of ±60 mV. For single Na+ channel measurements, in all 

experiments 10 mM TEA was added to the pipette solution to block the potassium channel, 

because otherwise K+ current with its large amplitude would cover the Na+ current. TNF-α, 

AP301 and AP318 were added at respective EC50 concentrations to the pipette solution. Na+ 

current with a conductivity of 9.4 ± 0.1 pS (n=18) was observed. This parameter was not 

significantly changed by TNF-α (9.8 ± 0.1 pS, n=10), AP301 (9.7 ± 0.1 pS, n=7) and AP318 

(9.6 ± 0.3 pS, n=9). When amiloride (100 µM) was included in the pipette solution, no 

Figure 21: Dose response curves of TNF-α (filled circles), un-nebulized AP301 (filled 

triangles) and nebulised AP301 (open circles). 
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channel activity was seen (n=3). The amplitude and open probability (Po) were calculated 

from all event histograms. In the cell-attached mode, TNF-α, AP301 and AP318 significantly 

increased Po of single channels without affecting their amplitude (Table 5 and 6, Figure 22 

and 23).  

 

 

 
 

 

 

 

 

 

 

 

 

Figure 22: Original recordings from a cell-attached patch at a holding potential of -60 mV during 

control (left panel) and in presence of AP301 (right panel).  

Dashed lines indicate the closed state of the channel, and dotted lines indicate the open state 

(downward deflections). The recordings clearly indicate the longer duration of single channel 

openings with AP301. 
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Table 5: Effect of TNF-α, AP301 and AP318 on single channel kinetics at Eh= -60 mV. 

 Control TNF-α AP301 AP318 

Po 
0.37 ± 0.03 

n=5 

0.77 ± 0.08*** 

n=4 

0.69 ± 0.05*** 

n=3 

0.78 ± 0.05*** 

n=3 

Mean open time 
(ms) 

2.2 ± 0.9 

n=5 

23.5 ± 4.5*** 

n=4 

24.3 ± 4.8*** 

n=3 

26.5 ± 4.3*** 

n=4 

Number of 
bursts 

993 ± 105 

n=5 

1274 ± 259* 

n=4 

2365 ± 419*** 

n=3 

1966 ± 402** 

n=4 

Events in burst 
7.2 ± 1.7 

n=5 

46.3 ± 4.3*** 

n=4 

32.3 ± 5.0*** 

n=3 

16.1 ± 4.9** 

n=4 

Duration of 
burst (ms) 

5.7 ± 1.3 

n=5 

210.6 ± 47.8*** 

n=4 

47.9 ± 1.4*** 

n=3 

42.2 ± 12.5*** 

n=4 

Mean intra-burst 
interval (ms) 

0.29 ± 0.03 

n=5 

0.60 ± 0.1** 

n=4 

0.63 ± 0.03*** 

n=3 

0.60± 0.12** 

n=4 

* P<0.05, ** P<0.01, *** P<0.001 

Table 6: Effect of TNF-α, AP301 and AP318 on single channel kinetics at Eh= +60 mV. 

 Control TNF-α AP301 AP318 

Po 0.09 ± 0.02 

n=13 

0.49 ± 0.03*** 

n=6 

0.40 ± 0.01*** 

n=4 

0.42 ± 0.03*** 

n=6 

Mean open time 0.9 ± 0.1 

n=4 

3.4 ± 0.3*** 

n=6 

5.5 ± 1.1*** 

n=4 

4.1 ± 1.2*** 

n=6 

Number of 
bursts 

2300 ± 214 

n=4 

4179 ± 320*** 

n=6 

5477 ± 517*** 

n=4 

5851 ± 900*** 

n=6 

Events in burst 3.4 ± 1.2 

n=4 

23.3 ± 5.5*** 

n=6 

6.6 ± 0.6** 

n=4 

8.7 ± 1.3** 

n=6 

Duration of 
burst (ms) 

1.6 ± 0.5 

n=4 

33.9 ± 12.6*** 

n=6 

7.5 ± 1.7*** 

n=4 

7.5 ± 1.1*** 

n=6 

Mean intra-burst 
interval (ms) 

0.28 ± 0.03 

n=4 

0.58 ± 0.05*** 

n=6 

0.57 ± 0.01*** 

n=4 

0.48 ± 0.02*** 
n=6 
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Figure 23: Original recordings from cell-attached patches at holding potentials of +60 and -60 

mV during the respective controls and in presence of the reference peptide TNF-α, and the test 

peptides AP301 and AP318.  

“C” indicates the closed state of the channel, and “O” indicates the open state. The recordings 

demonstrate the increase in open times caused by TNF-α and the TIP-peptides. 



54 
 

Besides mean open times, also the number of bursts, and the duration of bursts were 

significantly increased by TNF-α as well as AP301 and AP318 (Table 5 and 6, Figure 24). In 

Figure 23 typical recordings are shown which demonstrate the increase in burst duration. 

Accordingly, effects on macroscopic Na+

 
 

 current were confirmed by single channel current 

measurements. 

 

 

 

 

 

 

TEA-sensitive K+ current was measured with a conductivity of 261 ± 20 pS (n=6). This 

estimated conductance is very close to the value of 242 ± 33 pS reported for the TEA-

sensitive Ca2+-activated K+ channel in A549 cells (Ridge et al. 1997). In Figure 25 typical 
single channel K+ currents recorded from cell-attached patches at a holding potential of -60 mV are 

shown during control and in presence of TNF-α and AP301. In total single channel parameters were 

not changed significantly by TNF-α and AP301. This confirms the data obtained with whole-cell 

recordings. 

Figure 24: Typical single Na+ channel current recordings from cell-attached patches of 

A549 cells demonstrating increased burst duration by AP301 and AP318, and especially 

TNF-α. 



55 
 

AP301 -60 mV

TNF-α -60 mV

Control -60 mV

25 pA

700 ms

 
 

 

 

 

 

 

 

3.1.5. Effect of TNF-α and TIP peptides on ENaC after deglycosylation 
 

A cyclic disulfide heptadecapeptide, TIP17ox, derived from the lectin-like 17-amino acid 

domain of human TNF-α was demonstrated to bind specifically to N,N-diacetylchitobiose, a 

disaccharide present in many glycan structures of glycoproteins. Approximately 30% of the 

mass of the voltage-dependent sodium channel is carbohydrate, present as glycoconjugate 

chains, mostly composed of N-acetylhexosamines and sialic acid. ESI-FTICR-MS was used 

as an efficient tool for the direct molecular characterisation of TIP peptide–carbohydrate 

complexes. The specific binding of the TNF-TIP domain to chitobiose and other carbohydrate 

Figure 25: Single channel K+ currents in A549 cells at a holding potential of -60 mV during 

control and in presence of TNF-α and AP301 are illustrated. Downward deflections indicate 

single channel openings. 
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motifs in glycoproteins may explain the high proteolytic stability of these peptides in 

biological fluids (Marquardt et al. 2007).  

To study a theoretical interaction of the TIP-peptides with sugar moieties on the cell 

membrane, deglycosylation of the A549 cell membrane was performed with PNGase F. Cells 

were incubated with the enzyme for 1-5 minutes or the enzyme was added to the pipette 

solution when studying effects on single channel activity. Currents were recorded with the 

patch clamp method in the whole-cell and cell-attached mode. 

Whole cell current was recorded at Eh= -100mV from cells without any pre-treatment during 

control and in presence of TNF-α, AP301 and AP318 as well as after treatment with PGNase. 

Test compounds were added at concentrations of 120 and 240 nM to ensure a maximal effect. 

It could be clearly demonstrated that the ENaC-activating effect of TNF-α and the two studied 

TIP-peptides got lost when cells were pre-treated with PGNase (Table 7). 

 

 

 

Table 7: Effect of deglycosylation on TNF-α-, AP301- and AP318-induced ENaC activation. 

Whole cell currents were recorded from A549 cells at Eh= -100 mV. The peptide 

concentrations were 120 and 240 nM. 

 

Test 
compound Control 

Pre-treatment 
with PNGase F untreated cells 

TNF-α 

25.4 ± 6.1 pA 

n= 10 

24.0 ± 5.9 pA 

n=3 

1073.3 ± 15.1 pA 

n= 10 AP301 19.6 ± 2.9 pA 

n=3 

AP318 23.1 ± 5.4 pA 

n=3 
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In single channel studies, this effect of deglycosylation could be verified. In untreated cell 

membranes Po was significantly increased by TNF-α and TIP-peptides, whereas after 

deglycosylation no effect of TIP peptides on Po could be observed (Table 8). Single channel 

conductivity was not changed by TIP-peptides, indicating an interference of sugar moieties of 

the cell membrane with binding of TIP-peptides. 

 

 

 
Table 8: Open probability and single channel conductivity (Con.) of ENaC at Eh= -60 mV in 

untreated and deglycosylated A549 cell membranes. 

 

Test 

compound 

Control Pre-treatment with 
PNGase F 

untreated cells 

Po Con.(pS) Po Con.(pS) Po Con.(pS) 

TNF-α 

0.09 ± 0.02 

n=18 

9.6 ± 0.2 

n=18 

0.10 ± 0.03 

n=4 

9.6 ± 0.4 

n=10 

0.77 ± 0.08  

n=4 

9.8 ± 0.1 

n=10 

AP301 
0.09 ± 0.02 

n=3 

0.69 ± 0.05  

n=3 

9.7 ± 0.1 

n=7 

AP318 
0.10 ± 0.02 

n=3 

0.78 ± 0.05  

n=3 

9.6 ± 0.3 

n=9 

 

 

 



58 
 

3.2. Pore-forming bacterial toxins 
 

3.2.1. Pore-forming activity of PVL in macrophages 
 

Macrophages were treated with different concentrations of either subunit of rPVL (LukS or 

LukF) or with an equimolar combination of both subunits. Pore-forming activity was 

measured with the patch clamp technique in the whole cell recording mode. A concentration-

dependent increase of current was observed (Figure 26 and 27). 

 

 
 

 

 
Figure 26: Concentration-dependent effect of PVL. 
Original whole-cell recordings are presented at holding potentials of +80 mV (upper row) and  

–80 mV (lower row). The closed state of the channels is indicated by the dashed lines and is 

marked with “C”. Up- and downward deflections indicate channel openings in the presence of 28, 

140 and 280 nM PVL. 
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No pore formation was observed following treatment of macrophages with only one of the 

subunits of the toxin (Figure 28), but multiple ion channels openings were observed after a 1 

min treatment with both subunits at concentrations of 140 (Figure 25 and 26) and 280 nM 

(Figure 26, 27 and 28). These data are in line with previous observations, showing that both 

subunits of rPVL in an equimolar ratio are required to create a pore. However, as we found in 

our studies it has to be mentioned that LukF and LukS only induced pores when administered 

concomitantly, but not when applied consecutively. 

 

 

Figure 27: Current-voltage relation of PVL-induced currents at different 

concentrations and holding potentials ranging from -80 mV to +80 mV. 
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Furthermore, in experiments performed in the inside-out configuration of the patch clamp 

technique, it became obvious that PVL can create pores independent on the site of application, 

i.e. PVL acts from the extra- as well as from the intracellular side. The PVL-induced pores 

were not ion selective as they conducted Na+, K+ (Figure 29) and Ca2+ ions with a single 

channel conductivity of 207 pS (Na+), 257 pS (K+) and 186 pS (Ca2+

 

), respectively. 

 

Figure 28: Original whole-cell recordings are presented at holding potentials of +80 mV 

(upper row) and –80 mV (lower row). The closed state of the channels is indicated by the 

dashed lines and is marked with “C”. Up- and downward deflections indicate channel 

openings. In the presence of 140 nM LukF, 140 nM LukS, 280 nM LukF and 280 nM LukS no 

channel openings were observed, while in the presence of both components (140 nM LukF 

plus 140 nM LukS) multiple channel openings occurred. 
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3.2.2. Effect of LLO on membrane permeability of macrophages in 

presence of IFN-β  
 

Experiments were performed on macrophages with the perforated patch clamp technique in 

the whole cell configuration. After a control period of 5 min without any electrical activity, 

LLO was added at concentrations of 2.5 or 5.0 µl/ml to the external solution. About 1 min 

after addition of the bacterial toxin, single channel currents could be observed. The pore 

formation progressed rapidly and multiple openings occurred. At least three elementary pore 

current amplitudes of 16.5 ± 1.5 pA, 32.0 ± 2.0 pA and 64.1 ± 6.2 pA were measured at a 

holding potential of –30 mV; the latter are multiples of the smallest pore current amplitude. 

Pore openings were rare and occurred in bursts. At a concentration of 2.5 µ/ml, LLO caused 

channel openings only of small amplitude (n=3). The current was markedly increased in IFN-

β pre-treated macrophages (n=3) (Figure 30). Multiple openings were observed, which never 

occurred in absence of IFN-β in otherwise same experimental conditions. At 5.0 µl/ml LLO 

(n=2), obviously more pores were incorporated into the cell membrane as multiple openings 

were frequently seen, and again membrane current was larger in IFN-β pre-treated cells (n=3). 

After about 10 min the frequency of pore openings slowly decreased. 

 

 

Figure 29: Original recording at a holding potential of +80 mV from an inside-out 

patch of a macrophage with K+ as the charge carrier. PVL was applied to the bathing 

solution at a concentration of 140 PVL. Upward deflections indicate channel openings. 

 

20 pA 

              50 ms 
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Figure 30: Effect of IFN-β on pore forming activity of LLO. 

Original recordings at a holding potential of –30 mV are shown during control (upper 

traces), in presence of LLO (middle traces) and with LLO in IFN-β pre-treated 

macrophages (lower traces). Downward deflections represent channel openings, and “C” 

indicates the closed state of the pore. Single channel and multiple openings are seen in 

the recording of the IFN-β pre-treated cells. The horizontal and vertical calibration bars 

indicate 1 s and 25 pA, respectively. 
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3.3. Electrophysiological effect of AP301 in presence of 

PVL in A549 cells 
 

Recently it was demonstrated that the human TIP-peptide blunts LLO-induced hyper-

permeability in vitro (Xiong et al. 2010). Thus, we aimed to study the effect of AP301 on 

PVL-induced current. As described in the Introduction and in section 3.6., PVL is a β-barrel 

pore forming toxin. This pore-forming effect was not only observed in macrophages but also 

in other cells such as the A549 cell line as a model of alveoli type II cells.  

280 nM PVL (50 µg/ml LukF-PV plus 50 µg/ml LukS-PV) was added to the standard bath 

solution. The current was recorded in whole cell patch clamp mode at a holding potential of  

-100 mV. After addition of 240 nM AP301 the current further increased (Figure 31). These 

results show that AP301 does not interfere with the current-inducing effect of PVL. It is 

suggested that signaling pathways might be the targets of TIP-peptides in presence of PVL as 

previously described for LLO. 

 

 

 Figure 31: Effect of AP301 on PVL-induced current in A549 cells (n=11).  
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4. DISCUSSION 
 

Both alveolar type I (ATI) cells (which cover at least 95% of the internal surface area of the 

lung) and type II (ATII) cells (which cover about 2-5% of the internal surface area of the 

lung) have several different sodium-permeable channels in their apical membranes that play a 

role in normal lung physiology and pathophysiology (Eaton et al. 2009). ENaC appears to be 

expressed in both ATI and ATII cells (Guidot et al. 2006). The channel plays a prominent role 

in sodium uptake from alveolar fluid, and its involvement in alveolar clearance in normal and 

diseased lungs has been widely demonstrated (Lazrak et al. 2000, Matthay et al. 2002, Sartori 

and Matthay 2002, Berthiaume and Matthay 2007). K+ channels are also expressed in ATI 

and ATII cells (Guidot et al. 2006, Leroy et al. 2004), and they can participate in 

transepithelial Na+ and Cl− exchange (Leroy et al. 2004), as well as alveolar fluid clearance  

(Sakuma et al. 1998). Apart from ENaC, several other ion channels such as acid-sensing ion 

channels (ASIC) or ion pumps and transporters like the sodium-calcium exchanger, Na+/K+-

ATPase or the Na+/K+/Cl-

TNF-α has been shown to activate amiloride-sensitive sodium currents in alveolar epithelium 

(Fukuda et al. 2001). In accordance, several in situ, ex vivo and in vivo studies have indicated 

that the lectin-like domain of TNF-α promotes amiloride-sensitive oedema reabsorption and 

alveolar fluid clearance (Berthiaume 2003, Elia et al. 2003, Braun et al. 2005, Vadasz et al. 

2008, Lucas et al. 2009, Hamacher et al. 2010). The seemingly contradictory roles of TNF-α 

in pulmonary oedema can be explained by the spatial separation of the different functions of 

TNF-α, with its lectin-like domain which activates, and its receptor-binding sites which 

inhibit oedema reabsorption (Dagenais et al. 2004, Bao et al. 2007), being located in different 

domains in the native molecule (Hribar et al. 1999, Braun et al. 2005, Vadasz et al. 2008, 

 co-transporter contribute to the sodium homeostasis of a cell. 

Previous work showed an effect of TNF-α on ENaC (Fukuda et al. 2001). ENaC is located at 

the apical side of the cell, and in addition there is evidence that TIP peptides rather work from 

the apical than basolateral side (Hamacher et al. 2010). A549 cells express ENaC (Lazrak et 

al. 2000), potassium channels (Karle et al. 2004) and a cyclic nucleotide-gated ion channel 

(Xu et al. 1999), but no co-expression of ASIC and ENaC in the A549 cell line has been 

reported. Therefore, based on these previous findings, A549 cells were chosen for the 

structure-activity relationship studies on ENaC. However, TIP peptides could affect directly 

or indirectly also other channels than ENaC and also ion pumps and transporters, which are 

responsible for sodium homeostasis. 
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Lucas et al. 2009, Hamacher et al. 2010). Native murine TNF-α (mTNF) has been shown to 

produce a similar amiloride-sensitive increase in ALC in mice expressing TNF receptors as in 

mice genetically deficient for the TNF receptors, indicating a TNF receptor-independent 

mechanism for amiloride sensitive ALC (Elia et al. 2003). A mutant mouse TNF-α with 

amino acid changes T104A, E106A and E109A in the lectin-like domain, has no effect on Na+ 

uptake in flooded rat lungs in situ, unlike the wild type mTNF, which increases uptake (Elia et 

al. 2003). Furthermore, wild-type mTNF, but not mutant, stimulates the amiloride-sensitive 

Na+

Native TNF-α is a homotrimer with the lectin-like domain of each subunit (in human TNF-α 

the sequence of amino acid residues C101 to E116) located close together at the tip of the 

structure, whereas the TNF receptor-binding sites are located in the basolateral regions of the 

molecule. Initially characterised for its trypanolytic effect (Lucas et al. 1994), the lectin-like 

domain of TNF-α has been shown to activate amiloride-sensitive Na

 uptake in A549 cells in vitro (Fukuda et al. 2001). The mouse TIP peptide also has been 

shown to improve alveolar fluid balance in injured isolated rabbit lungs (Vadasz et al. 2008). 

More recently it has been demonstrated that human TIP peptide improved rat lung function 

after transplantation, reducing ROS generation and neutrophil infiltration (Hamacher et al. 

2010). The latter study also provided evidence for the role of ENaC as the primary site of 

action of the TIP peptide in monolayers of rat type II alveolar epithelial cells, as the peptide 

activated transepithelial current only when introduced to the apical side of the cells 

(Hamacher et al. 2010). Taken together, these observations indicate that the receptor-binding 

sites of TNF-α inhibit, whereas its lectin-like domain activates oedema reabsorption and 

support a therapeutic role for TIP peptides in treatment of pulmonary oedema and 

ALI/ARDS. 

 

4.1. Structure-activity relationship of TIP peptides 

+ uptake in lung 

microvascular endothelial cells (Hribar et al. 1999) and in the alveolar epithelial cell line 

A549 (Fukuda et al. 2001). Therefore, synthetic peptides that mimic the lectin-like domain of 

TNF-α were synthesized. Replacement of C101 by a glycine residue (G2) and addition of N-

terminal (C1) and C-terminal cysteine (C17) residues, linked by a disulphide bridge, resulted 

in the 17-residue cyclic peptide, AP301. The disulphide bond in analogue AP301 may be 

susceptible to reduction and scission leading to complications in medical use. Therefore, the 

focus of the new peptide design described in the thesis was replacement of the disulphide 

bridge of the original TIP analogue, AP301, with other molecular arrangements. The amino 

acid residues T105, E107 and E110 of human TNF-α corresponding to T6, E8 and E11 of 
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AP301, were shown to be essential for the ENaC-activating effect of TNF-α and the analogue 

AP301 peptide (Lucas et al. 1994, Hribar et al. 1999). From the TIP-domain of TNF-α, a 

series of synthetic TIP peptides, AP302, AP303, AP309, AP310, AP314, AP317, AP318, 

AP319, AP321, AP322 as well as cyclic, linear and mutant AP301 was derived.  

A comparison of the ENaC-activating effect of all the TIP peptides allows tentative 

conclusions to be drawn regarding the influence of three main structural features of the TIP-

domain and AP301 on ENaC. These features are firstly, the T105, E107, E110 triad of 

residues at the tip of the TNF-α molecule previously shown to be necessary for the 

trypanolytic, chitobiose-binding and ENaC-activating effects of TNF-α and AP301 (Lucas et 

al. 1994, Hribar et al. 1999, Fukuda et al. 2001, Marquart et al. 2007, Hamacher et al. 2010), 

secondly, a hydrophobic region introduced by P113 and bulky, hydrophobic side chains of 

adjacent residues W114 and Y115, and thirdly, the presence of either a positively-charged N-

terminal amino group, or a negatively-charged C-terminal carboxyl group or both of these. In 

addition, it has been demonstrated that only the cyclic TIP peptide is active. 

The importance of residues T105, E107 and E110 (corresponding to T6, E8 and E11 in 

AP301) is substantiated in the present study as the mutant TIP peptide, in which these 

residues are replaced by alanine, has no effect on the sodium current in A549 cells, whereas 

AP301 does have an effect (EC50 

and peptide AP322 differ solely in that AP309 has a charged amino group on residue 1. 

AP309 has an EC

= 54.3 ± 0.8 nM). All novel peptides contain T6, E8 and 

E11, which have been shown to be essential for the ENaC-activating effect of AP301. The 

inactive TIP peptide AP302 lacks residues equivalent to P113, W114 and Y115 of human 

TNF-α, and therefore the bulky hydrophobic region of AP301. Furthermore, studying the 

ENaC-activating effect of these TIP peptides, it became obvious that a free positively-charged 

N-terminal amino group on residue 1 and/or a free negatively-charged carboxyl group on 

residue 17 is essential for activity. The most active peptides have either a free positively-

charged amino group at the N-terminal in the position of residue 1 – this is the case for AP309 

and AP310 – or they have a free negatively-charged carboxyl group at the C-terminal in the 

position of residue 17, as is the case for AP318 and AP319. TIP peptides which lack a free 

positively-charged N-terminal amino group on residue 1 as well as a free negatively-charged 

carboxyl group on residue 17 (AP314, AP317, AP321, AP322), did not affect ENaC. The 

importance of the charged groups in the linker part of the peptides for activity can be better 

appreciated by comparison of the activity of pairs of peptides differing only in the presence or 

absence of a charged group on the linker portion of the molecule. Specifically, peptide AP309 

50 of 38.3 nM, whereas AP322 is inactive. Peptide AP310 and peptide 
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AP314 also differ solely in the presence of a charged amino group on residue 1 in AP310 and 

its absence in AP314. AP310 has an EC50 of 45.4 nM, whereas AP314 is inactive. Similar 

comparison concerning the presence of a free carboxyl group show that peptide AP318, which 

has a free carboxyl group on residue 17, has an EC50 of 24.8 nM, whereas AP317, which 

lacks a carboxyl group is inactive. TIP peptides AP301 and AP303, which are approximately 

identical in their ability to activate amiloride-sensitive Na+ current, (EC50 of 54.3 ± 0.8 and 

56.0 ± 0.8 nM, respectively), each have both a positively-charged, N-terminal amino group 

and a negatively-charged, C-terminal carboxyl group. Therefore, it seems that the presence of 

charge, positive on the N-terminal residue 1 or negative on the C-terminal residue 17 (or 19 in 

the case of AP303) is essential for the ENaC-activating effect of the TIP peptides. All active 

TIP peptides were highly selective for ENaC with a tendency towards less selectivity in 

molecules without a free positively-charged N-terminal amino group. 

It is well know that cyclic peptides are more stable than their linear counterparts, and the fact 

that the linear peptide was inactive seems to indicate that the structural arrangement of the 

residues is critical for the ENaC-activating effect. Furthermore, we demonstrated that a 

solution of AP301, which has been nebulized, retains the ENaC activating effect of AP301. 

Therefore, delivery of AP301 as an aerosol by inhalation to the patient will have no 

detrimental effect on the pharmacological activity of AP301. 

 

4.2. Mechanism of action on ENaC 

Effects on macroscopic Na+ current were confirmed by single channel current measurements. 

Besides open probability, mean open times, number of bursts, and duration of bursts were 

increased by TNF-α as well as AP301 and AP318, resulting in an increased macroscopic 

current. Single channel conductivity of 9.4 ± 0.1 pS was not changed by the test compounds. 

TEA-sensitive K+ current was measured with a conductivity of 261 ± 20 pS (n=6). This 

estimated conductance is very close to the value of 242 ± 33 pS reported for the TEA-

sensitive Ca2+-activated K+ channel in A549 cells (Ridge et al. 1997). Single K+

The binding site for TIP peptides is unidentified, however, patch clamp experiments gave 

evidence for an extracellularly located site since the TIP peptides acted only when applied to 

the bathing solution in whole-cell experiments or to the pipette in the inside-out configuration. 

A cyclic disulfide heptadecapeptide (TIP17ox) derived from the lectin-like 17-amino acid 

domain of human TNF-α (100–116) was demonstrated to bind specifically to  

 channel 

parameters were not changed significantly by TNF-α and AP301, which confirms the data obtained 

with whole-cell recordings. 
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N,N-diacetylchitobiose, a disaccharide present in many glycan structures of glycoproteins 

(Marquardt et al. 2007). The specific binding of the TNF-TIP domain to chitobiose and other 

carbohydrate motifs in glycoproteins may explain the high proteolytic stability of these 

peptides in biological fluids. Although the TIP domain forms a loop structure in the native 

TNF-α protein, the authors showed by high-resolution ESI-FTICR mass spectrometry that a 

homologous linear heptadecapeptide (TIP17rd) binds with comparable affinity to chitobiose, 

suggesting that cyclisation is not essential for carbohydrate binding. This is in contrast to our 

findings as the linear form of the lead compound AP301 did not show any activating effect on 

ENaC. To study a theoretical interaction of the TIP peptides with sugar moieties on the 

cellular membrane, deglycosylation of the A549 cell membrane was performed with PNGase 

F. Previous studies on deglycosylated channels have been performed on voltage-gated sodium 

channels of Electrophorus electricus, which have approximately 30% carbohydrates. After 

enzymatic deglycosylation no net change in protein secondary structure from the 

deglycosylation procedure was observed. Cronin et al. (2005) demonstrated that the sugars of 

the voltage-gated sodium channels are not essential for functional or structural integrity, but 

they do appear to have a modulating effect on the conductance properties of these channels. 

However, in our experiments we could not find any effect on conductivity of epithelial 

sodium channels after deglycosylation. The ENaC-activating effect, however, got lost in 

deglycosylated cells as demonstrated with patch clamp experiments in the whole-cell and 

inside-out configuration. These data imply a role of sugar moieties on the cell surface for the 

binding of TIP peptides to the cellular membrane. 

 

4.3. Pore-forming bacterial toxins and pneumonal oedema 

Listeriosis can lead to potentially lethal pulmonary complications in newborns and immune 

compromised patients, characterized by extensive permeability oedema. The Listeria-toxin 

LLO induces a dose-dependent hyperpermeability in monolayers of human lung 

microvascular endothelial cells in vitro. Zwaferink et al. (2008b) showed that IFN-β can 

increase the damage and death caused when macrophages are exposed to LLO. IFN-β is 

primarily associated with a protective response to viral infection, but its important role in 

other pathological situations, such as tumor immunity and bacterial infection, is becoming 

more apparent. Treatment of macrophages with IFN-β increased the ability of sublytic LLO 

concentrations to cause transient permeability of the plasma membrane. This effect pertains 

directly to the extent of pore formation at the plasma membrane. We could show that pre-

treatment of macrophages with IFN-β critically increased the extent of pore formation by 



69 
 

LLO as well as the rate of cell death. At higher LLO concentrations, IFN-β enhanced the 

complete breakdown of membrane integrity and cell death. This activity of IFN-β required 

Stat1. Perturbation of the plasma membrane by LLO resulted in activation of the p38MAPK 

pathway. IFN-β pretreatment enhanced LLO-mediated signaling through this pathway, 

consistent with its ability to increase membrane damage. p38MAPK activation in response to 

LLO was independent of TLR4, a putative LLO receptor, and inhibition of p38MAPK neither 

enhanced nor prevented LLO-induced death. IFN-β caused cells to express increased amounts 

of caspase 1 and to produce a detectable caspase 1 cleavage product after LLO treatment. 

Contrasting previous reports (Nelson et al. 1999, Bantel et al. 2001) with another pore-

forming toxin, this pathway did not aid cell survival as caspase1-deficient cells were equally 

sensitive to lysis by LLO. Key lipogenesis enzymes were suppressed in IFN-β-treated cells, 

which may exacerbate the membrane damage caused by LLO. More detailed studies of events 

surrounding pore formation and repair will be needed to delineate how these processes are 

affected by IFN-β. The inhibitory effect of IFN-β on lipogenesis pathways may prove 

important. There are two possibilities for the action of IFN-I on LLO. Given that binding and 

pore formation by LLO is dependent on membrane composition, it is conceivable that IFN-β 

causes changes in this such that the extent of pore formation is increased. Alternatively, 

closure of pores and cell survival requires a membrane resealing process (McNeil and 

Kirchhausen 2005), which may be influenced by lipogenesis pathways. Inhibition of this 

could extend the damage caused by pore formation, leading to increased death stemming 

directly or indirectly from the continued ion movement and osmotic stress. 

The permeability increasing activity of LLO, which is accompanied by an increased reactive 

oxygen species generation (ROS), RhoA activation and myosin light chain (MLC) 

phosphorylation, can be completely inhibited by the protein kinase C α/β inhibitor GÖ6976, 

indicating a crucial role for PKC in the induction of barrier dysfunction. The TNF-derived 

human TIP peptide blunts LLO-induced hyperpermeability in vitro, upon inhibiting LLO 

induced protein kinase C-α activation, ROS generation and MLC phosphorylation and upon 

restoring the RhoA/Rac 1 balance. These results indicate that the lectin-like domain of TNF-α 

has a potential therapeutic value in protecting from LLO-induced pulmonary endothelial 

hyperpermeability (Xiong et al. 2010). Amiloride, which inhibits TIP peptide-mediated Na+ 

uptake, also inhibits LLO-mediated MLC phosphorylation. Recently, the α-subunit of the 

epithelial sodium channel, which has been shown to be crucial for the channel's activity, has 

been shown to be expressed in endothelial cells (Kusche-Vihrog et al. 2008, Wang et al. 

2009). These results thus suggest a link between Na+ uptake and regulation of permeability in 
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endothelial cells, which requires further investigation. As such, the TIP peptide might 

represent an interesting candidate for the treatment of infection-associated permeability, since 

it is able to restore both alveolar liquid clearance as well as endothelial barrier function 

(Xiong et al. 2010). 

Infections with PVL-positive Staphylococcus aureus strains were rare, but emerged 

worldwide within the last years. The β-barrel pore-forming toxin PVL is comprised of two 

subunits termed LukF-PV and LukS-PV, and it is associated with serious lung infections. 

Both subunits are secreted separately and are thought to oligomerize on the surface of specific 

cells to assemble the final pore (Colin et al. 1994, Jayasinghe and Bayley 2005). However, we 

could demonstrate that the two subunits had to be added to the bathing solution concomitantly 

and not consecutively in order to allow pore-forming activity of PVL. This effect was 

observed independent of site of application as Na+, K+ and Ca2+ conducting PVL pores were 

induced after extra- as well as intracellular application. 

Permeabilsation of the plasma membrane by pore-forming toxins leads to changes in 

cytoplasmic ion composition, which have been previously shown to modulate inflammatory 

gene expression (Dragneva et al. 2001, Taneike et al. 2002, Aroian and Van der Goot 2007). 

For example, treatment of renal epithelial cells with α-haemolysin toxin leads to IL-8 

production in a calcium dependent manner (Uhlén et al. 2000). To determine whether pore 

formation is a pre-requiste for inflammatory cytokine synthesis following rPVL treatment, we 

treated macrophages with different doses of both single subunits of rPVL (LukS or LukF) or 

an equimolar combination of both subunits and performed whole cell patch clamp 

experiments. No pore formation was observed following treatment of cells with single 

subunits of toxin but multiple ion channels were open following a 1 min treatment with both 

subunits. These data are in line with previous observations, showing that both subunits of 

rPVL in an equimolar ratio are required to perform a pore (Colin et al. 1994, Jayasinghe and 

Bayley 2005). Significantly, although single subunits are incapable of inducing a pore in 

macrophages, they are capable of inducing TNF-α gene expression, albeit at lower levels than 

rPVL. These data indicate that although pore formation precedes inflammatory gene 

expression, inflammatory gene expression is dependent on cellular pathways which are 

independent of pore formation. A microarray profiling approach to show that PVL induces a 

highly specific inflammatory transcriptional response in alveolar macrophages was applied. 

Biochemical and genetic studies indicated that this response is independent from PVLs pore 

forming ability and is mediated via NF-kB, through a TLR2 dependent mechanism (Zivkovic, 

paper in print).  
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4.4. Conclusion 
The results of the present thesis show that TIP peptides which have an activating effect on 

amiloride-sensitive ENaC in A549 cells possess i) the triad of residues equivalent to T105, 

E107 and E110 of human TNF-α, ii) the group of adjacent hydrophobic residues equivalent to 

P113, W114 and Y115 of human TNF-α, and iii) either a positively-charged N-terminal 

amino group or a negatively-charged C-terminal carboxyl group or both of these, whereas 

peptides which lack one or more of these features do not exert such an effect.  

As a link between amiloride-sensitive Na+ uptake and regulation of permeability in 

endothelial cells is reported, the TIP peptides might represent an interesting candidate for the 

treatment of infection-associated permeability oedema. The TNF-derived human TIP peptide 

is able to blunt LLO-induced hyperpermeability in vitro. The presented data show that pre-

treatment of macrophages with IFN-β critically increased the extent of pore formation by 

LLO as well as the rate of cell death. On the other hand, for PVL the data indicate a highly 

specific inflammatory transcriptional response in alveolar macrophages which is independent 

of PVL’s pore forming ability that was not affected by TIP peptides. 
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5. LIST OF ABBREVIATIONS  
 

ALC  alveolar liquid clearance  

ALI acute lung injury  

ARDS  acute respiratory distress syndrome  

ASICs  acid-sensing ion channels 

ATI (TI)  alveolar type I cells 

ATII (TII)  alveolar type II cells 

CFTR Cl-  channel cystic fibrosis transmembrane regulator 

CNG channel  pimozide-sensitive cyclic nucleotide-gated cation channel 

ENaC  amiloride-sensitive epithelial sodium channel  

HSC  highly selective epithelial sodium channel 

IFN-I  type I interferon 

IFN-β  interferon β 

IL-8  interleukin 8 

LLO   Listeriolysin O 

LukF-PV  Staphylococcal leukocidin, component of PVL 

LukS-PV  Staphylococcal leukocidin, component of PVL  

MRSA  methicillin resistant Staphylococcus aureus 

NF-κB  nuclear factor kappa B 

NSC   non-selective cation channel 

PGNase  N-glycosidase F (Peptide-N4-(acetyl-ß-glucosaminyl)-asparagine amidase) 

PMNs  polymorphonuclear cells 

PVL   Panton-Valentine Leukocidin 

ROS  reactive oxygen species 

St. aureus  Staphylococcus aureus  

TEA   tetraethylammonium chloride 

TIP   lectin-like domain of TNF-α  

TLR  Toll-like receptors 

TNF-α  Tumor necrosis factor α  
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6. TABLES 

 

Table 1: Cross-linking solutions to replace the disulphide bridge of AP301 in TIP peptide 
analogues. 

Table 2: Potency of ENaC-activating TIP peptides. 

Table 3: Selectivity of ENaC-activating TIP peptides. 

Table 4: The data of whole cell patch clamping in A549 cells with nebulised and un-
nebulized AP301 in different concentrations. 

Table 5: Effect of TNF-α, AP301 and AP318 on single channel kinetics at Eh= -60 mV. 

Table 6: Effect of TNF-α, AP301 and AP318 on single channel kinetics at Eh= +60 mV. 

Table 7: Effect of deglycosylation on TNF-α-, AP301- and AP318-induced ENaC activation. 

Table 8: Open probability and single channel conductivity (Conduct.) of ENaC at Eh= -60 mV in 
untreated and glycosylated A549 cell membranes. 
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7. FIGURES 

 

Figure 1: The distal airway epithelium contains alveolar type I and type II cells and Clara 
cells. 

Figure 2: Sodium is transported through channels on the apical membrane. 

Figure 3: Structure of ENaC. 

Figure 4: Block of ENaC by amiloride. 

Figure 5: Clinical correlations of ENaC regulation. 

Figure 6: Structure and effect of TNF-α on Na+ current. 

Figure 7: Structure of TNF-α. 

Figure 8: Analysis of sequence residue in chain A of human TNF-α. 

Figure 9: Human TNF-α around TIP or lectin-like domain (C101-E116) according to 
structure PDB ID:1A8M, and models for the TIP-peptides AP301, AP302, AP303 
and mutant peptide based on the 1A8M template.  

Figure 10: Model for how PVL might mediate tissue necrosis. 

Figure 11: PVL is a β-barrel pore-forming toxin, comprised of two subunits termed LukF-PV 
and LukS-PV. 

Figure 12: Pore formation after exposure to wild-type Listeria monocytogenes and LLO

Figure 17: Effect of AP301 on current-voltage (IV) relationship. 

. 

Figure 13: Patch clamp technique in the cell-attached mode. 

Figure 14: All models of patch clamping. 

Figure 15: TIP peptide 301, 2D chemical structure.  

Figure 16: Effect of AP301 on ENaC. 
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Figure 18: Concentration-response curves. 

Figure 19: Effect of the linear peptide on ENaC recorded in the whole cell mode. 

Figure 20: TEA-selective K+ current. 

Figure 21: Dose response curves of TNF-α, un-nebulized AP301 and nebulized AP301. 

Figure 22: Original recordings from a cell-attached patch at a holding potential of -60 mV 
during control and in presence of AP301. 

Figure 23: Original recordings from cell-attached patches at holding potentials of +60 and  
-60 mV during the respective controls and in presence of the reference peptide 
TNF-α, and the test peptides AP301 and AP318. 

Figure 24: Typical single Na+ channel current recordings from cell-attached patches of A549 
cells. 

Figure 25: Single channel K+ currents in A549 cells at a holding potential of -60 mV during 
control and in presence of TNF-α and AP301. 

Figure 26: Concentration-dependent effect of PVL. 

Figure 27: Current-voltage relation of PVL-induced currents at different concentrations and 
holding potentials ranging from -80 mV to +80 mV. 

Figure 28: Original whole-cell recordings are presented at holding potentials of +80 mV and  
–80 mV. 

Figure 29: Original recording at a holding potential of +80 mV from an inside-out patch of a 
macrophage with K+

Figure 30: Effect of IFN-β on pore forming activity of LLO. 

 as the charge carrier. 

Figure 31: Effect of AP301 on PVL-induced current in A549 cells.  
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9. APPENDIX 

 

9.1. Abstract 
 

Pulmonary oedema is a major complication of acute lung injury, severe pneumonia, and acute 

respiratory distress syndrome. Ventilation strategies apart, no standard treatment exists for 

pulmonary permeability oedema. Therefore, novel therapies activating sodium uptake from 

the alveolar fluid could improve clinical outcome. The involvement of Na+ transporters in 

alveolar fluid clearance in the mammalian lung has been well established in recent years. 

Transport via amiloride-sensitive epithelial sodium channel (ENaC) in particular is one of the 

major pathways for Na+ entry across alveolar and distal epithelial cells. ENaC plays a 

prominent role in sodium uptake from alveolar fluid and is the major component in alveolar 

fluid clearance in normal and diseased lungs. The lectin-like domain of TNF-α has been 

shown to activate amiloride-sensitive sodium uptake in type II alveolar epithelial cells. 

Therefore, several synthetic peptides that mimic the lectin-like domain of TNF-α (TIP) were 

synthesized and their ability to enhance sodium current through ENaC was studied in A549 

cells with the patch clamp technique. Replacement of C101 by a glycine residue (G2) and 

addition of N-terminal (C1) and C-terminal cysteine (C17) residues, linked by a disulphide 

bridge, resulted in the 17-residue cyclic peptide, AP301. The disulphide bond in analogue 

AP301 may be susceptible to reduction and scission leading to complications in medical use. 

Therefore, the focus of the new peptide design described in the thesis was replacement of the 

disulphide bridge of the original TIP analogue, AP301, with other molecular arrangements. 

The data from structure-activity relationship studies suggest that TIP peptides which have an 

activating effect on amiloride-sensitive ENaC in A549 cells possess the triad of residues 

equivalent to T105, E107 and E110 of human TNF-α, and the group of adjacent hydrophobic 

residues equivalent to P113, W114 and Y115 of human TNF-α. Furthermore, a free positively 

charged N-terminal amino group on residue 1 and/or a free negatively charged carboxyl group 

on residue 17 of the TIP peptide is essential for the ENaC-activating effect. Peptides which 

lack one or more of these features do not exert such an effect. All active TIP peptides were 

highly selective for ENaC with a tendency towards less selectivity in molecules without a free 

positively-charged N-terminal amino group. A solution of AP301, which has been nebulized, 

retains the ENaC activating effect of AP301. Therefore, delivery of AP301 as an aerosol by 

inhalation to the patient will have no detrimental effect on the pharmacological activity of 
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AP301. Effects on macroscopic Na+ current were confirmed by single channel current 

measurements. Open probability, mean open times, number of bursts, and duration of bursts 

were increased by TNF-α as well as AP301 and AP318, whereas single channel conductivity 

was not changed by the test compounds. Patch clamp experiments gave evidence for an 

extracellularly located binding site for TIP peptides. The specific binding of the TNF-TIP 

domain to N,N-diacetylchitobiose, a disaccharide present in many glycan structures of 

glycoproteins, was demonstrated previously. After deglycosylation of the A549 cell 

membrane with PNGase F, no effect on channel conductivity was found, however, the ENaC-

activating effect got lost in deglycosylated cells. 

Infections with Listeria and Staphylococcus aureus can lead to potentially lethal pulmonary 

complications, characterized by extensive permeability oedema. The bacterial toxin 

Listeriolysin O (LLO) is a cholesterol-dependent cytotoxin, which induces hyperpermeability 

in monolayers of human lung microvascular endothelial cells in vitro. It is reported that pore-

formation and signaling events are linked to cell death induced by LLO and some other pore-

forming toxins. When macrophages were pretreated with IFN-β the extent of pore formation 

by LLO as well as the rate of cell death critically increased. Given that binding and pore 

formation by LLO is dependent on membrane composition, it is conceivable that IFN-β 

causes changes in this such that the extent of pore formation is increased. Panton-Valentine 

Leukocidin (PVL) is a β-barrel pore-forming toxin comprised of two subunits termed LukF-

PV and LukS-PV. PVL secreting Staphylococcus aureus strains emerged worldwide in the 

last years and were found associated with serious lung and skin infections in humans, 

indicating the potential threat of serious infections. Data indicate a highly specific 

inflammatory transcriptional response in alveolar macrophages which is independent of 

PVL’s pore forming ability. The two components had to be added to the bathing solution 

concomitantly but not consecutively in order to allow pore-forming activity of PVL. This 

effect was observed independently of the site of application as Na+, K+ and Ca2+ conducting 

PVL pores were induced after extra- as well as intracellular application. TIP peptides showed 

no effect on PVL-induced pore formation. 

As a link between amiloride-sensitive Na+ uptake and regulation of permeability in 

endothelial cells is reported, the TIP peptides might represent an interesting candidate for the 

treatment of infection-associated permeability oedema. Indeed, it could already be 

demonstrated that the TNF-derived human TIP peptide is able to blunt LLO-induced 

hyperpermeability in vitro.  
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9.2. Zusammenfassung 
 

Lungenödem ist eine schwerwiegende Komplikation im Rahmen einer Lungenverletzung, 

schwerer Pneumonie und akutem Lungenversagen. Neue Therapiemöglichkeiten wie 

Aktivierung des Natriumtransports und dadurch bedingten Wassertransports aus der 

alveolären Flüssigkeit könnte die Prognose eines Permeabilitätsödems verbessern. 

Insbesondere der Transport über den Amilorid-sensitiven epithelialen Natriumkanal (ENaC) 

ist einer der Hauptwege für Na+ über alveoläre und distale Epithelzellen. ENaC spielt eine 

wichtige Rolle beim Natriumtransport aus der Alveolarflüssigkeit und ist eine wesentliche 

Komponente in der alveolären Clearance in gesunden und kranken Lungen. Die Lectin-

Domäne von TNF-α kann die Amilorid-sensitive Natriumaufnahme in Typ II alveolären 

Epithelzellen aktivieren. Ziel war daher die Wirkung von synthetischen Peptiden, die die 

Lectin-Domäne von TNF-α (TIP) nachbauen, auf ENaC in A549 Zellen mit Hilfe der Patch 

Clamp Technik zu untersuchen. Austausch von C101 durch Glycin (G2) und Hinzufügen von 

N-terminalen (C1) und C-terminalen Cystein (C17) Resten, verbunden durch eine 

Disulfidbrücke, ergab das cyclische Peptid AP301. Die Disulfidbrücke in AP301 kann 

nachteilig sein und daher sollten neue AP301-Analoge getestet und eine Struktur-

Wirkungsbeziehung aufgestellt werden. Die Daten zeigen, dass TIP Peptide, die einen ENaC-

aktivierenden Effekt in A549 Zellen haben, einerseits die Triade von Gruppen besitzen, die 

äquivalent mit T105, E107 und E110 des humanen TNF-α sind, und andererseits auch die 

angrenzende Gruppe der hydrophoben Reste besitzen, die äquivalent mit P113, W114 und 

Y115 vom humanen TNF-α sind. Weiters ist eine freie positiv geladene N-terminale 

Aminogruppe an Rest 1 und/oder eine freie negativ geladene Carboxylgruppe an Rest 17 der 

TIP Peptide essentiell für die ENaC-aktivierende Wirkung. Peptide ohne eine oder mehrere 

dieser Eigenschaften hatten keine Wirkung. Alle aktiven TIP Peptide waren hoch selektiv für 

ENaC mit einer Tendenz zu geringerer Selektivität in Molekülen ohne eine freie positiv 

geladene N-terminale Aminogruppe. Eine AP301-Lösung, die vernebelt und kondensiert 

wurde, behielt ihre ENaC-aktivierende Wirkung. Deshalb ist die Anwendung in Ärosol-Form 

zur Inhalation für Patienten geeignet, ohne Verlust der pharmakologischen Wirksamkeit. Die 

Wirkungen auf den makroskopischen Na+ Strom wurden durch die Einzelkanalstrom-

messungen bestätigt. Die Öffnungswahrscheinlichkeit, mittlere Öffnungszeit sowie Anzahl 

und Dauer der Bursts wurden durch TNF-α und auch AP301 und AP318 signifikant erhöht, 

wohingegen die Einzelkanalleitfähigkeit durch die Testsubstanzen nicht verändert wurde. 
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Patch Clamp Experimente weisen auf eine extrazelluläre Bindungsstelle für TIP Peptide hin. 

Eine spezifische Bindung der TNF-TIP Domäne an N,N-Diacetylchitobiose, ein in vielen 

Glykanstrukturen von Glykoproteinen vorkommendes Dissaccharid, ist bekannt. 

Deglycosylierung der A549 Zellmembran mit PNGase F bewirkte keine Veränderung der 

Kanalleitfähigkeit, jedoch ging die ENaC-aktivierende Wirkung in deglykosylierten Zellen 

verloren. 

Infektionen mit Listeria und Staphylococcus aureus können zu möglichen letalen pulmonalen 

Komplikationen mit ausgeprägtem Permeabilitätsödem führen. Das bakterielle Toxin 

Listeriolysin O (LLO) gehört zur Gruppe der Cholesterol-abhängigen Cytotoxine, das 

Hyperpermeabilität in Einzelschichten humaner pulmonaler mikrovaskulärer Endothelial-

zellen in vitro induzieren kann. Es wird angenommen, dass über Porenbildung und 

Signalwege der von LLO und anderen porenbildenden Toxinen induzierte Zelltod erfolgt. 

Vorbehandlung von Makrophagen mit IFN-β verstärkte die LLO-induzierte Porenbildung und 

den Zelltod drastisch. Da die Bindung und Porenbildung durch LLO vom Membranaufbau 

abhängig ist, wäre eine IFN-β bedingte erhöhte Porenbildung denkbar. Panton-Valentine 

Leukocidin (PVL) ist ein β-barrel porenbildendes Toxin, das aus zwei Komponenten besteht, 

LukF-PV und LukS-PV. PVL sezernierende Staphylococcus aureus Stämme traten in den 

letzten Jahren vermehrt auf und wurden mit schweren Lungen- und Hautinfektionen in 

Zusammenhang gebracht. Die Ergebnisse deuten auf eine hoch spezifische inflammatorische 

transkriptionale Reaktion in alveolären Makrophagen hin, die unabhängig von der 

porenbildenden Eigenschaft von PVL ist. Die zwei Toxin-Komponenten müssen gemeinsam 

der Badlösung zugesetzt warden. Eine sukzessive Applikation führt nicht zur Porenbildung. 

Die Bildung von Na+, K+ und Ca2+ leitenden Poren wurde sowohl nach extra- als auch 

intrazellulärer Applikation festgestellt. 

Da ein Zusammenhang zwischen Amilorid-sensitivem Na+ Transport und Regulation der 

Permeabilität in Endothelzellen besteht, könnten die TIP Peptide ein interessanter 

Ansatzpunkt in der Therapie von infektionsassoziierten Permeabilitätsödemen sein. Es konnte 

bereits gezeigt werden, dass ein humanes TNF-TIP Peptid eine LLO-induzierte 

Hyperpermeabilität in vitro abschwächen kann. 
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