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1 Introduction

The field of research regarding the optimization of humanitarian aid as well as health
care efforts is very wide. During the last decades, the efforts expended in research
projects related to this area are steadily increasing. This continuously growing
demand may be caused by many influence factors. The constantly increasing expec-
tation of life in most developed countries induces an increasing demand for health
care as well as for transportation services suited for elderly and disabled persons.
Also, the ongoing growth of human settlements in coastal areas, earthquake zones
and other endangered regions leads to continuously increasing impacts of natural
disasters on human life. Sadly, ongoing armed conflicts, famines, droughts and for-
est fires are still forcing millions of people worldwide to seek refugee or to require
humanitarian aid. This list is by far not complete and thus the need for effective
and efficient means of providing humanitarian aid and health care will most likely
continue to get more and more important in the future.

In this book we study one selected aspect out of the wide health care subject. We
investigate possible improvements regarding the logistics involved in the transporta-
tion of elderly, disabled and ill persons. The problem we address is motivated by
the patient transportation tasks performed by organizations like the Austrian Red
Cross (ARC) or the Arbeiter-Samariter-Bund Österreichs (ASBÖ) in their daily op-
eration. The ARC is a non-governmental organization and the largest ambulance
service provider in Austria. It runs 141 district offices, 442 offices with 24/7 ser-
vice and has 5,620 full-time employees, 4,047 civilian servants and 51,430 volunteer
helpers. Its vehicle fleet consists of 1,978 vehicles performing a total of 2,767,490
operations with a mileage of 94,164,699 kilometers in the year 2009 [1]. The ASBÖ is
also a non-governmental Austrian organization which provides ambulance services.
It has 4,694 active members of which 1,041 are full-time employees. Its vehicle
fleet consists of 508 vehicles performing almost 720,000 operations with a mileage of
17,241,806 kilometers in the year 2009 [2].

One of the operations performed by these organizations is to provide (non emer-
gency) ambulance service. Patients can call a service line in order to arrange a
transport from their respective home location to a hospital (outbound requests).
This service is often used by patients who need dialysis treatment, patients having
mobility problems and elderly persons. After the treatment or surgery at the hospi-
tal is completed, the patients are transported back to their home location (inbound
requests), if required. The vehicle fleet used for this purpose consists mainly of
patient transport ambulances (PTA) that were donated by companies. Therefore,
both organizations dispose of quite a large number of vehicles, whereas the number
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Figure 1.1: Outline of the studied problems.

of drivers available is limited. The most important aim is to cause as little incon-
venience for the patients as possible. This implies that rejecting a transportation
request is not an option and complying to the patient’s time constraints is essential
(i.e., picking the patient up and arriving at the hospital in time). Additionally, the
costs caused by providing this kind of service should also be kept as low as possible.

This kind of ambulance service is offered all over Austria. In this book we will
address the optimization of the vehicle dispatching operations involved in this ser-
vice. Currently, this task is performed by human dispatchers. What makes this
problem especially complicated is the fact that patients can arrange the transport
whenever they want, which can lead to two different situations. If the transport is
organized the day before it is supposed to take place (or earlier), it can be regarded
as static while planning. Otherwise, the organizations currently do not have any
a priori information about the request, which therefore is dynamic. Furthermore,
all outbound requests (static as well as dynamic) can cause a corresponding inbound
request, which is dynamic as well.

Based on a variant of the dynamic dial-a-ride problem (DDARP), which is an
extension to the well known dial-a-ride problem (DARP), we study three different
stochastic extensions of this problem. We adapt two pairs of metaheuristic solution
approaches to each of these problems in order to compare the results of myopic solu-
tion methods to the results obtained by their stochastic counterparts. First, we study
the effect of exploiting stochastic information about future outbound requests while
planning the vehicle routes for the Austrian ambulance service providers. There-
fore, we present the dynamic stochastic dial-a-ride problem with expected return
transports (DSDARP) as an extension to the basic DDARP. Second, we exploit
stochastic information about future time-dependent travel speeds while planning.
For this purpose we use the dynamic dial-a-ride problem with stochastic time-de-
pendent travel speeds (DDARPTD), which is again a stochastic variant of the basic
DDARP. Third, we combine these two problem variants into one singe problem and

2



add aspects of the heterogeneous dial-a-ride problem (HDARP). The resulting prob-
lem is called heterogeneous dynamic stochastic dial-a-ride problem with stochastic
time-dependent travel speeds (HDSDARPTD). An outline of the studied problem
types is given in Figure 1.1.

The remainder of this book is structured as follows. In Chapter 2 we give a short
description of the DDARP which is the basis for all our stochastic problem exten-
sions. In Chapter 3 we present our study on the DSDARP. The second stochastic ex-
tension, the DDARPTD, is described in Chapter 4. The HDSDARPTD is described
in Chapter 5. The book concludes with a summary and some final conclusions in
Chapter 6.
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2 The dynamic dial-a-ride problem

2.1 Related work

The daily operation of ambulance service providers can be characterized as a point-
to-point passenger transportation problem. Such problems are commonly referred
to as dial-a-ride problem (DARP) in the literature. The DARP was introduced in
the early 1970s by Wilson et al. [3, 4, 5] and has since then attracted considerable
attention by the scientific research community. Healy and Moll [6] showed that the
DARP is NP-hard and thus much effort has been dedicated to the development of
(meta-)heuristic solution approaches for this problem class. In particular, real world
motivated dial-a-ride problems have been widely studied during the last decades (see
[7, 8] for recent surveys). The static and deterministic variants of the DARP are
well studied and very sophisticated solution approaches were presented within the
last years (see, e.g., [9, 10] for state-of-the-art metaheuristics).

In the special case faced by the Austrian Red Cross and the Arbeiter-Samari-
ter-Bund Österreichs, the patients are free to express their need for transportation
while the day progresses. This means, that some of the transportation requests are
dynamic in the sense that no information about them is known a priori. Therefore,
the problem at hand can in general terms be defined as a dynamic dial-a-ride problem
(DDARP).

Several variants of the DDARP have lately been studied in the literature. One
of the first approaches to solving the DDARP was taken by Psaraftis [11]. He pro-
posed an exact dynamic programming approach for the static single-vehicle DARP
and used it to repeatedly solve the static problem arising when a new request gets
known and the already executed partial route is fixed. An insertion based algorithm
for the real-life multi-vehicle DDARP was presented by Madsen et al. [12]. Horn [13]
developed a heuristic algorithm for demand-responsive passenger services including
time windows, capacity constraints and booking cancelations. Attanasio et al. [14]
proposed a parallel tabu search algorithm for the DDARP, which in multiple par-
allel threads performs random insertions of a new request in an existing solution
followed by a tabu search procedure for each thread. Berbeglia et al. [15] studied
a hybrid tabu search and constraint programming algorithm for the DDARP. For
a recent literature review on the DDARP and other dynamic pickup and delivery
problems, the interested reader is referred to Berbeglia et al. [16]. A recent survey
covering a larger number of different pickup and delivery problems was presented
by Parragh et al. [7].
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The dynamic dial-a-ride problem

2.2 Problem definition

As a base for the following extensions (see Chapters 3, 4, and 5) we model the fun-
damental problem faced by the Austrian ambulance service providers as a dynamic
dial-a-ride problem (DDARP). The following problem definition is based on the
ones used in [17] and [18]. The problem is defined on a directed real world road
network G = (V,A) consisting of a set of vertices V and a set of arcs A connecting
all vertices. Each vertex v ∈ V represents a patient’s home location or a hospital
site. The aim of the problem is to find vehicle routes based on G in order to service
a set of transportation requests R using a limited number of vehicles. Each trans-
portation request r ∈ R is related to two vertices (pr, dr) representing the pickup
and delivery location of the corresponding passenger, respectively. Additionally,
each request r is assigned a required capacity of qr = 1. All vehicles are based on
a common depot location v0 (one of the hospital locations) and is able to transport
up to Q = 3 patients at the same time. This means that in this basic DDARP,
patients and vehicles are assumed to be homogeneous in the sense that each patient
occupies exactly one seat in a vehicle and each vehicle has exactly 3 seats installed.

Each request r has two time windows: [ep, lp] for the pickup location and [ed, ld] for
the delivery location. The depot has the time window [0, Tmax].This means that all
vehicles may depart from the depot from time 0 on and should return to the depot
by time Tmax at the latest. If a vehicle arrives at the depot later than Tmax, the
vehicle crew exceeds its working hours and overtime payments are to be paid (which
should be avoided). All time windows are treated as soft on both ends, which means
that starting service before the beginning of the time window as well as after the end
of the time window is possible. However, starting service early would require the
driver to wait for the patient to be ready and should therefore be avoided. Starting
service after the end of the time window reduces customer satisfaction and should
thus be avoided as well.

As patients are free to express their need for transportation whenever they want,
some of the transportation requests are not known a priori in the DDARP. Each
request r is therefore assigned a time ar which represents the moment in time at
which the request becomes known. Static requests (that were arranged before the
beginning of the planning period) arise at time ar = 0. Dynamic requests get
known while the day progresses and thus arise at time ar > 0. All outbound requests
(static and dynamic) can cause a followup inbound request if the patient needs to be
transported back home at a later point in time. Such return transports are arranged
by the hospital personnel whenever the patient is ready to be picked up again.
Therefore, such inbound requests are always dynamic as no a priori information is
assumed to be known in this basic DDARP.

The classical DARP usually includes user inconvenience in terms of excess ride
time as a constraint or as part of the objective function. For the problem at hand,
user inconvenience is included as a maximum detour constraint in the following
sense. We define the time required to travel from pr to dr without detour as tdirect.

6



2.2 Problem definition

The planned travel time tplanned is defined as the time between the planned end
of service at pr and the planned beginning of service at dr. The maximum detour
constraint can then be stated as tplanned ≤ tdirect + 30 in order to avoid detours of
more than 30 minutes.

For the Austrian ambulance service providers, the most important aspect while
planning their vehicle routes is to minimize patient dissatisfaction. Besides this,
minimizing the total costs for providing the service is also important. Therefore, we
define the objective function for this basic DDARP as a three-stage lexicographic
function. The primary objective is to minimize the sum of earliness and tardiness
as a measure for customer dissatisfaction. In order to penalize overtime payments,
late returns to the depot (after the end of the depot’s time window) are counted
as tardiness as well. If two solutions obtain equal results regarding this primary
objective, they are compared based on the secondary objective which is the number
of vehicles used (i.e., the number of routes). In case two solutions are equally good
in both objectives, evaluation is based on the total route duration as a tertiary
objective.
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3 Stochastic return transports

3.1 Introduction and related work

In Chapter 2 we present the basic version of the dynamic dial-a-ride problem faced by
the Austrian ambulance service providers. However, the real-life problem includes
an additional interesting aspect which we study in this chapter. This chapter is
based on an article published by Schilde et al. [17] and several passages are taken
from there.

Imagine a patient who needs to receive periodical medical treatment because of an
illness (e.g., dialysis). Many such patients are not able to go to the hospital on their
own, but need to be transported by an ambulance service provider. What makes
this idea interesting for the problem at hand is the fact that the duration of such a
treatment can be estimated quite precisely from historical data. Additionally, the
duration of such periodic treatments is relatively independent of the person who re-
ceives the treatment or the time at which the treatment is performed. This leads us
to the idea, that some stochastic information about the duration of such treatments
can be derived from historical data and could as a consequence be used to improve
the planning process for the Austrian ambulance service providers. Therefore, we
extend the concept of the DDARP presented in Chapter 2 by introducing stochas-
tic information about future return transports. We call the resulting problem the
dynamic stochastic dial-a-ride problem with expected return transports (DSDARP).

The problem studied in this chapter is a variant of the dynamic dial-a-ride prob-
lem presented in Chapter 2 which includes stochastic aspects regarding future trans-
portation requests. To the best of our knowledge, dial-a-ride problems with stochas-
tic aspects related to future requests have received very little attention in the litera-
ture up to now. An article by Coslovich et al. [19] was among the first publications
studying the effect of stochastic aspects regarding future transportation requests.
These authors propose a two-phase insertion algorithm based on route perturba-
tions. Xiang et al. [20] include stochastic events for new requests, the absence of
customers, the cancelation of requests and more into the problem and present a
heuristic solution approach for it. Hyytiä et al. [21] present a model describing
a single vehicle in a dial-a-ride system with stochastic customers. Finally, Heil-
porn et al. [22] present an integer L-shaped algorithm for the single-vehicle DARP
with stochastic customer delays.

A greater deal of attention has been attracted by other stochastic problems. Gut-
jahr et al. [23] developed a stochastic branch-and-bound method for optimal single-
machine tardiness scheduling. Laporte and Louveaux proposed an integer L-shaped
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Stochastic return transports

method for stochastic integer problems with complete recourse. Laporte et al. [24]
proposed an integer L-shaped method for the capacitated vehicle routing problem
with stochastic demands. Gutjahr [25] also proposed an ant-based approach to
combinatorial optimization problems under uncertainty. Jaillet [26], Bertsimas [27],
Bertsimas et al. [28] and Laporte et al. [29] studied probabilistic versions of the trav-
eling salesman problem and other combinatorial optimization problems. Teodorović
and Pavković [30], Gendreau et al. [31], and Golden and Stewart [32] published
several solution methods for stochastic variants of the vehicle routing problem. Sec-
omandi and Margot [33] proposed re-optimization approaches for the vehicle rout-
ing problem with stochastic demands. Tillmann [34] proposed a modification of
the well known Clarke and Wright [35] savings algorithm for the multiple termi-
nal delivery problem with probabilistic demands. Kleywegt et al. [36] published
a method based on Markov decision processes for the stochastic inventory routing
problem with direct deliveries. A solution approach to the dynamic stochastic vehi-
cle routing problem based on a sample scenario hedging heuristic was published by
Hvattum et al. [37]. Gutjahr et al. [38] recently introduced a stochastic variant of
the well known variable neighborhood search (VNS, [39]) for project portfolio anal-
ysis under uncertainty. This S-VNS method is mainly based on the idea of taking
possible scenarios of the future into account when comparing two solutions. This
leads to very robust results. Bent and Van Hentenryck [40] proposed a multiple plan
approach (MPA) and a multiple scenario approach (MSA) for the dynamic vehicle
routing problem with time windows and stochastic customers. These approaches
are based on the idea of maintaining a pool of solutions during execution. The MSA
additionally takes into account scenarios of the future while planning. A short sur-
vey on the literature regarding stochastic vehicle routing problems was presented by
Gendreau et al. [41]. Also the survey by Parragh et al. [7] contains a short overview
of the literature on stochastic vehicle routing problems.

The remainder of this chapter is structured as follows. In the first section, we give
a short overview on the related literature. Section 3.2 provides a short definition
of the DSDARP with expected return transports based on the basic DDARP. The
used solution approaches are described in Section 3.3 followed by a description of
the computational experiments and results (Section 3.4) as well as a short summary
(Section 3.5).

3.2 Problem definition

As described in the previous section, the problem studied in this chapter is an exten-
sion to the basic DDARP outlined in Chapter 2. This means, that the fundamental
structure of the dynamic dial-a-ride problem is also valid for the dynamic stochastic
dial-a-ride problem with expected return transports. The problem is also defined
on a directed real world road network and aims at designing routes for a fixed fleet
of homogenous vehicles located at a common depot. Each vehicle is again able to
transport up to three patients at the same time and each patient occupies exactly
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one seat inside a vehicle. As in the case of the DDARP, all incoming transportation
requests have a time window for both, the pickup and the delivery location and
all requests must be serviced. The maximum detour made to pick up or drop off
additional passengers is limited to 30 minutes in the same way as described for the
DDARP.

The objective function of the DSDARP with expected return transports is iden-
tical to the one used for the DDARP. Again, the primary objective is to minimize
the customer dissatisfaction represented by the sum of earliness and tardiness with
respect to the service requests’ time windows. To minimize the costs caused by a
found solution, the secondary objective is to minimize the number of vehicles used.
As a second factor related to the costs of a solution, the total mileage of the solutions
is used as tertiary objective.

The main difference between the DDARP and the DSDARP with expected return
transports is caused by a change in the underlying assumptions. In the case of the
dynamic dial-a-ride problem, we assume that no a priori information of whatever
kind is available about future transportation requests. For the dynamic stochastic
dial-a-ride problem with expected return transports, we assume that for a part of
the requests some stochastic information is available. If we take a closer look at the
inbound request from a hospital location back home to the corresponding patient’s
home location, we see that in fact some stochastic information can be derived from
historical data. Especially in the case of standard treatments like dialysis, this seems
to be obvious. Such treatments can be expected to consume a more or less constant
amount of time, independent of who the patient is or when the treatment takes
place.

Based on this idea we assume that the time at which future inbound requests will
get known can be estimated by sampling the corresponding stochastic distribution
derived from historical data. An additional complexity comes from the fact that not
all outbound requests cause an inbound request during the planning period. Some
patients do not need to be transported back home after their treatment. They might
be using a taxi instead, a relative could pick them up at the hospital or an inpatient
admission may be necessary. Thus, we additionally assume that each outbound
request r has a specific probability Rr to cause an inbound request during the
planning period (e.g., depending on the specific treatment). For outbound requests
we still assume that no a priori information is known. This is due to the fact that
we do not know in advance from which location such an outbound request would
originate or where it’s delivery location is. For inbound requests, the patient’s
home location and the corresponding hospital are already known from the outbound
requests. Note, that we also evaluated the case in which we assume to have stochastic
information about future outbound requests (regarding their timing and location).
Details are described in Section 3.4.5.
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3.3 Solution methods

The research described in this chapter aims at studying the effect of using avail-
able stochastic information about possible future return transports while planning
vehicle routes for the Austrian ambulance service providers. The question is, if
stochastic solution algorithms (i.e., taking stochastic information into account while
planning) can obtain solutions of higher quality than myopic methods that ignore
any stochastic information. For this purpose we propose two conceptually simi-
lar pairs of metaheuristic solution methods for the DSDARP with expected return
transports. Each pair consists of a myopic approach and its stochastic counterpart.
All methods are based on well known metaheuristic concepts from the literature and
are adapted to the requirements of the problem at hand. The decision to use pairs
of methods is taken in order to allow for direct observation of the effects caused by
the additional use of stochastic information. Otherwise, all observed effects could
probably be caused by different influence factors (e.g., conceptual differences in the
algorithm design). We decide to use two slightly different pairs of algorithms to see
if the found effects are also depending on the conceptual basis of the underlying
approach or if they are generally applicable.

The first method we adapt to the requirements of the DSDARP with expected
return transports is based on a variable neighborhood search (VNS) approach pre-
sented by Parragh et al. [9]. This method represents a very efficient and effective
state-of-the-art solution approach proposed for the static DARP. The used neighbor-
hood operators are well tested and documented and can therefore be used as a basis
for our modifications. We adapt the method in order to handle dynamically arising
transportation requests, resulting in a dynamic VNS approach. This first myopic
algorithm ignores any available stochastic information about future transportation
requests and simply treats them as dynamic.

Based on this dynamic variable neighborhood search method we develop an adap-
tation of the stochastic VNS (S-VNS) proposed by Gutjahr et al. [38] for stochas-
tic project portfolio analysis. This solution approach takes stochastic information
about future inbound transportation requests into account while designing the vehi-
cle routes for the Austrian ambulance service providers. To be precise, the stochastic
information is used to evaluate solutions based on sampled future request scenarios
whenever two solutions need to be compared. The resulting dynamic S-VNS method
is thus the stochastic counterpart to the (myopic) dynamic VNS.

The second pair of metaheuristics consists of adaptations of two methods proposed
by Bent and Van Hentenryck [40] for the stochastic vehicle routing problem. We
adapt the myopic multiple plan approach (MPA) such that it fits the requirements of
the DSDARP. We hereby use our dynamic VNS as a local search component within
the MPA framework. Based on this adaptation of the MPA, we build a modified
variant of the multiple scenario approach (MSA) for the problem at hand. Similar to
S-VNS, MSA also incorporates available stochastic information in the form of sam-
pled future requests in the process of designing the vehicle routes. The information
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is, however, not just used for comparison purposes, but is directly integrated into
the existing solution during the search process. This way we again obtain a myopic
base method (MPA) and its corresponding stochastic counterpart (MSA).

3.3.1 Simulation framework

In order to test different scenarios for the dynamic stochastic dial-a-ride problem, we
use a simulation framework which is designed as a background service for the solver
modules. It supplies the solution algorithms with all the required information on a
query basis. This means, that it loads and manages all problem specific informa-
tion like for example test instance data, distance matrices, vehicle information, and
request arrival lists. In addition, the status information for all requests is handled
based on the information supplied by the solution algorithms.

At the beginning, the framework loads all problem specific information from file
and starts the selected solver module. From this time on, the simulator provides
a request interface to the solution algorithm and limits it’s activity to reacting on
incoming requests through this interface in order to minimize resource consumption.
Whenever the solver needs problem specific information (e.g., travel times between
two locations), it puts a request to the simulator and receives the required informa-
tion as an answer. In order to keep the simulation up to date, all relevant status
updates are forwarded to the simulator via the interface as well (e.g., departures or
arrivals of vehicles). Also, whenever the solution method reaches a point at which it
is able to handle new requests, it requests the corresponding list of requests which
arose since the last request. At this occasion, the simulation framework updates the
simulation time proportional to the actual CPU time that elapsed since starting the
solver module. Proportional hereby means that simulation time does not necessarily
equal run time. Nevertheless, all results presented in this book are obtained by test
runs which are performed in real time.

3.3.2 Initial solution

As all our solution methods are to some extent based on the principles of the well
known VNS metaheuristic, they need an initial solution from which the search
process can start. For the purpose of finding such a feasible initial solution, we
use a modified version of the well known cheapest insertion heuristic proposed by
Rosenkrantz et al. [42] for the traveling salesman problem. This ensures, that all
solution methods start from the same initial solution and thus none of the solutions
has an advantage over the other methods regarding this aspect. We give an outline
for this modified method in Algorithm 1. In the pseudo code, we denote by ∆(x, r)
the increase in tardiness caused by inserting a request r into an existing route in
solution x and by ∆(x+, r) the increase caused by inserting r into a new route in so-
lution x. Furthermore, V (x) represents the number of vehicles which is still unused
in a given (partial) solution x.
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Algorithm 1 Structure of the modified cheapest insertion heuristic

1: R← ListOfKnownRequests()
2: x← AddEmptyRoute()
3: for r ∈ R do

4: if ∆(x, r) > ∆(x+, r) AND V (x) > 0 then

5: x← InsertRequestIntoNewRoute(x, r)
6: else

7: x← InsertRequestAtBestPosition(x, r)
8: end if

9: end for

10: return x

Starting from a (partial) solution containing only a single empty route, the method
iteratively inserts all known transportation requests into the solution one after an-
other. For each request the algorithm checks all feasible combinations of insertion
positions for the pickup service and the delivery service within the current solution.
The actual insertion is then performed at the positions which cause the smallest
deterioration in solution quality. As an alternative to inserting a request in an ex-
isting route, the method also checks the option of inserting the request in a new
empty route. This is of course only possible if not all vehicles are already used in
the current (partial) solution.

For any pair of insertion positions, the algorithm has to check the feasibility of the
resulting solution. This task is performed using a modified version of the well known
scheduling algorithm proposed by Hunsaker and Savelsbergh [43] with a reported
algorithmic complexity of O(n). Our modifications enable this algorithm to handle
soft time windows (including the depot time window at the end of a day). Also, the
scheduling method may not change the timing of already executed services. This
means, that all services to which a vehicle has already departed are considered as
frozen and must not be modified. If the sequence of services in a route is feasible
with respect to vehicle capacity and maximum ride times of the patients, the method
returns an efficient scheduling for this route.

3.3.3 Dynamic variable neighborhood search

The concept of the variable neighborhood search (VNS) metaheuristic was pro-
posed by Mladenović and Hansen [39] for static optimization problems. It has since
then proven to be a powerful solution approach for numerous problems and was used
in a large number of publications during the last years (see [44] for a recent survey).

The basic outline of the traditional VNS method is given in Algorithm 2. We
modified this algorithm in order to obtain a solution method capable of solving the
DDARP (and thus also the DSDARP), which will be denoted as dynamic VNS in
what follows. The outline of dynamic VNS is presented in Algorithm 3. The main
difference between the two methods is caused by the need to periodically update the
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Algorithm 2 Structure of traditional VNS

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x′ ← ShakeSolution(x,N (κ))
5: x′′ ← LocalSearch(x′)
6: x← MoveOrNot(x, x′′)
7: N (κ)← SelectNextNeighborhood(κ)
8: end while

9: return x as best found solution

Algorithm 3 Structure of dynamic VNS for the DSDARP

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x← InsertNewRequests(x)
5: x′ ← ShakeSolution(x,N (κ))
6: x← MoveOrNot(x, x′)
7: N (κ)← SelectNextNeighborhood(κ)
8: end while

9: return x as best found solution

current (partial) solution by inserting new transportation requests which occurred
since the last update (Line 4).

Our implementation of dynamic VNS is based on the version of VNS presented
by Parragh et al. [9] for the static DARP. We adapted the proposed neighborhood
operators in order to handle the dynamic requests. As these neighborhood operators
already include some kind of local search behavior, the use of an additional local
search phase within the VNS framework did not prove to be beneficial. Therefore,
our dynamic VNS algorithm corresponds to the concept of reduced VNS (without
local search). Thus, Line 5 of the static version of VNS was omitted in our dynamic
version.

The objective of our research is to create efficient vehicle routes for the Austrian
ambulance service providers. This means, that each vehicle route represents one
working day of a vehicle crew. Therefore, the stopping criterion of our dynamic
VNS algorithm is its run time. If the end of the simulated working day (10 hours in
our case) is reached, the solution method stops.

Insert new requests

As described before, the conceptual difference between classical VNS and dynamic
VNS is caused only by the periodic updating of the current solution by adding new
dynamic requests. This can be seen on Line 4 of Algorithm 3. In detail, the method
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requests a list of new requests from the simulation framework at the beginning of
each iteration. If there are requests which occurred since the beginning of the last
iteration, they must be inserted into the current (partial) solution, as requests may
not be rejected. This insertion is performed using the modified cheapest insertion
heuristic which is used to determine the initial solution for all our algorithms (see
Section 3.3.2 for details). Hereby, the current (partial) solution is used as an input to
the insertion method and all parts of the solution which have already been serviced
are considered as frozen. In other words, only insertion positions after the last stop
to which a vehicle has already departed can be feasible.

Shake solution

We use a set of highly efficient and effective neighborhood operators proposed for
the static DARP by Parragh et al. [9] as the basis of our dynamic VNS. These
operators are well tested and documented, which make them ideal candidates for
re-using them. Due to the dynamic nature of the DDARP, however, they need to
be slightly adapted in a similar way as the previously described cheapest insertion
method. Routes which were already (partially) serviced, can only be modified to a
limited extent by any neighborhood operation. To be precise, if a vehicle already
departed towards a request’s pickup location, the complete request (pickup and
delivery location) must not be assigned to be serviced by a different vehicle any
more. Also, each stop along the route to which a vehicle already departed must not
be re-scheduled and no request(s) may be inserted before them.

We use four different neighborhood operators. Each of these operators is used in
five different intensity levels κ = {1 . . . 5}, defining the degree of perturbation caused
by the operator. The first neighborhood is based on a move operator. It randomly
selects a single route out of the current (partial) solution and removes κ randomly
selected transportation requests from it. These requests are then iteratively re-
inserted into the current solution using the modified cheapest insertion heuristic.
Each request is inserted into the route and at the position where it causes the
lowest deterioration in solution quality. The second neighborhood is defined by
a swap operator. This operator randomly selects two different routes from the
current solution and removes a randomly selected sequence of up to κ consecutive
requests from each of them. These requests are then iteratively re-inserted into
the other route. This means, a request may only be re-inserted into one of the
two selected routes, but not the one from which it was just removed. The third
operator in our set is a chain operator. It randomly selects two routes: an origin
and a destination. It removes a randomly selected sequence of up to κ requests
from the origin route and re-inserts these requests into the destination route using
the modified cheapest insertion strategy. Then, it uses the destination route as new
origin route, randomly selects a new destination route and repeats the described
procedure κ times. The last neighborhood structure is based on a zero split operator.
It randomly selects one route from the solution and determines all positions in the
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sequence of services at which the vehicle is empty (”zero split points“). Then,
it randomly selects two of these points (with up to κ − 1 other zero split points in
between) and removes the sequence of services which is delimited by these two points.
Finally, the removed requests are re-inserted into the solution using the cheapest
insertion method (without limitation regarding the route into which a request can
be re-inserted). Note, that each neighborhood operator is used to randomly create
one single solution.

Move or not and select next neighborhood

After perturbing the current incumbent solution by applying one of the described
neighborhood operators to it, the dynamic VNS method needs to determine, if the
so found solution will be used as a new starting point for upcoming iterations of the
search process or not. For this purpose, it compares the current solution and the new
candidate solution based on their objective values and accepts the new solution only
if it is better than the current incumbent solution. If the found candidate solution is
infeasible (with respect to the vehicle capacities or the maximum detour duration),
it can never be accepted as a new current incumbent solution.

Besides deciding if the found solution is used as a new current incumbent solution,
the algorithm also needs to determine which neighborhood operator to use in the
next iteration. This depends on the result of the first decision: if the new solution
was accepted, the next iteration will start with the first operator (move) and the
lowest intensity level, κ = 1. Otherwise, the intensity level will be increased, until it
exceeds the maximum intensity level of κ = 5. In this case, the next neighborhood
operator is used with the lowest intensity level (or if this was the last operator, it
starts from the first one again). The sequence is as follows: move → swap → chain

→ zero split.

Time complexity of neighborhood operators

Let x̄ = {x1, x2, x3, . . . , xj} be a solution consisting of j vehicle routes. Furthermore,
let η = |x| be the number of stops (pickup and delivery) along any of these routes.
For a specific neighborhood size κ, we can then determine the worst case time
complexity of each neighborhood operator. Note, that the approximate complexity
of all used neighborhood operators reduces to the complexity of re-inserting the
removed requests into the solution as this is the most complex part.

For the move operator, re-insertion in the worst case requires to check each of the
η2

2 insertion positions for both, the pickup and delivery part of each removed request
in each of the j routes in the solution. Additionally, we need to re-schedule each
route after the insertion to check for feasibility and to determine the solution quality

(which has a complexity of O(η)). Therefore, the computational effort is κj η3

2 and
time complexity is O(η3). In the case of the swap operator, we do not need to check
the insertion positions in each route, but only in the two affected routes. Therefore,

the computational effort is 2κη3

2 and time complexity is O(η3). The time complexity
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of the chain operator is very similar to the one of the swap operator. One difference
is, that the sequence of requests is only moved to the destination route and not vice
versa. Another difference is, that up to κ sequences are moved from one route to

another. Therefore, the computational effort is κ2 η3

2 and time complexity is O(η3),
again. For the zero split neighborhood operator, the actual complexity depends on
the sequence length determined by two zero split points. In the worst case, this
sequence includes all requests in a route, so κ does not make any difference. As

re-inserting the removed requests requires testing all η2

2 insertion positions in every

route, the computational effort is j η4

2 and time complexity is O(η4). However, an
efficient implementation can avoid checking a large number of insertion positions
without re-scheduling the corresponding route (e.g., by storing the actual load of
each vehicle at each stop) and therefore the actual average case time complexity of
our neighborhood operators is by far lower than the worst case time complexity.

3.3.4 Dynamic stochastic variable neighborhood search

Gutjahr et al. [38] proposed a stochastic extension of the variable neighborhood
search metaheuristic which is called S-VNS. They demonstrated it’s application to
project portfolio analysis. An outline of this original S-VNS method is given in
Algorithm 4. Its overall structure is similar to the classical VNS metaheuristic. The
algorithm starts with constructing an initial solution and then iteratively searches
for better solutions until a specific stopping criterion is met.

The most important difference between VNS and S-VNS is the way how solutions
are being compared. The classical VNS directly compares a found candidate solution
with the current incumbent solution, ignoring any possible stochastic information
about the future. In order to exploit this stochastic information about the future,
S-VNS utilizes a sampling based comparison procedure instead. This means, that
S-VNS uses the stochastic information to sample a set of s0 possible scenarios of
the future. These scenarios are then included in the compared solutions one after
another and the resulting solutions are evaluated with respect to their sample average
estimator (SAE). The SAE for the expected objective function value is simply the
average over all s0 scenarios. By using the SAE as a base for comparison, S-VNS
always selects the solution providing the better average performance with respect
to the used set of sampled scenarios. This concept is also used for the (stochastic)
local search phase of S-VNS (Lines 7 to 17 in Algorithm 4).

Another conceptual difference to traditional VNS is the fact that S-VNS does not
only use a current incumbent solution (denoted as x in Algorithm 4) but also keeps
track of the best solution found during the complete search process (x̂). In order
to compare this solution to the current incumbent solution based on their sample
average estimators, a so called Tournament step is performed once in each iteration
of the algorithm (Lines 22 to 25). In the original S-VNS concept the size sm of the
set of scenarios use for this Tournament step is increased continuously in order to
prefer more robust solutions towards the end of the search process. Note, that this
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Algorithm 4 Structure of traditional S-VNS

1: x← InitialSolution()
2: x̂← x
3: m← 1
4: N (κ)← SelectFirstNeighborhood()
5: while StoppingCriterionNotMet() do
6: x′ ← ShakeSolution(x,N (κ))
7: ρ← 1
8: repeat

9: Z ← SampleFutureRequests(s0)
10: x′′ ← BestNeighbor(x′, Z)
11: if SAE(x′′, Z) � SAE(x′, Z) then
12: x′ ← x′′

13: ρ← ρ+ 1
14: else

15: ρ← ρmax + 1
16: end if

17: until ρ > ρmax

18: Z ′ ← SampleFutureRequests(s0)
19: if SAE(x′, Z ′) � SAE(x,Z ′) then
20: x← x′

21: end if

22: Z ′′ ← SampleFutureRequests(sm)
23: if SAE(x,Z ′′) � SAE(x̂, Z ′′) then
24: x̂← x
25: end if

26: N (κ)← SelectNextNeighborhood(κ)
27: m← SelectNextTournamentSampleSize(m)
28: end while

29: return x̂ as best found solution

set of scenarios is not the same as the one used for comparing the current incumbent
solution to candidate solutions.

A first intuitive adaptation of the traditional S-VNS concept to the requirements
of the dynamic DARP could look like the outline presented in Algorithm 5. The
notation of this listing is a more compact one in order to make the algorithm easier
to read (e.g., the local search phase of Lines 7 to 17 in Algorithm 4 is written as
Line 9 in Algorithm 5). Similar to the adaptations of dynamic VNS, the concept of
S-VNS has to be modified in order to handle dynamically occurring transportation
requests. For this purpose, the algorithm has to insert all new requests into the
current incumbent solution (Line 6) as well as into the best so far solution (Line 7).
This straight forward adaptation, however, has a major disadvantage. In the context
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Algorithm 5 Structure of modified S-VNS

1: x← InitialSolution()
2: x̂← x
3: m← 1
4: N (κ)← SelectFirstNeighborhood()
5: while StoppingCriterionNotMet() do
6: x← InsertNewRequests(x)
7: x̂← InsertNewRequests(x̂)
8: x′ ← ShakeSolution(x,N (κ))
9: x′′ ← LocalSearchSAE(x′, s0)

10: x← MoveOrNotSAE(x, x′′, s0)
11: x̂← Tournament(x̂, x, sm)
12: N (κ)← SelectNextNeighborhood(κ)
13: m← SelectNextTournamentSampleSize(m)
14: end while

15: return x̂ as best found solution

Algorithm 6 Structure of dynamic S-VNS for the DSDARP

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x← InsertNewRequests(x)
5: x′ ← ShakeSolution(x,N (κ))
6: Z ← SampleFutureRequests(1, Smax)
7: x← MoveOrNotSAE(x, x′, Z)
8: N (κ)← SelectNextNeighborhood(κ)
9: end while

10: return x as best found solution

of the DSDARP, the evaluation of a solution based on a set of sampled future
transportation requests is a time consuming task. Such an evaluation requires the
algorithm to insert all sampled requests of a set into the solution followed by a
scheduling algorithm in order to evaluate the solution’s quality. Unfortunately, this
modified S-VNS algorithm would require large numbers of such evaluations to be
performed and thus the performance of the algorithm would not allow to efficiently
solve the DSDARP.

As a result, we present another version of the S-VNS metaheuristic, which in-
cludes further modifications in order to overcome this problem. The resulting solu-
tion method, which we call dynamic S-VNS, is outlined in Algorithm 6. This final
modified version of dynamic S-VNS is conceptually more similar to the traditional
VNS concept than the first intuitive adaptation. This is an additional advantage, as
it keeps the risk of obtaining different results as an effect of conceptual differences
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between dynamic VNS and dynamic S-VNS as small as possible. The main difference
compared to the original S-VNS concept is, that no best so far solution is recorded
and thus all related comparisons in the Tournament step are omitted. Additionally,
dynamic S-VNS uses only a single set of sampled future return transports for the
comparison of two solutions in the MoveOrNotSAE step (i.e., s0 = 1). The shaking
phase of our dynamic S-VNS uses the same set of neighborhood operators in the
same order as our dynamic VNS method (see Section 3.3.3 for details). As already
mentioned in the section about dynamic VNS, the local search step does not lead
to significantly better solution quality and is therefore omitted as well.

Another interesting question that needs to be answered is, if it makes sense to
sample all future return transports that might occur until the end of the planning
period. The alternative is to introduce a limitation on the time until which the
sampled requests are taken into account while planning. Extensive testing showed,
that using a look ahead time window Smax (see Line 6) for the sampling of return
transports is in most cases beneficial to solution quality. This means, that sampled
requests are used for planning if the beginning of their pickup time window is not
more than Smax minutes in the future. Using such a limit has two positive effects on
the solution approach. First, it significantly reduces the number of sampled return
transports. This leads to a better algorithm performance as the solution evaluations
based on these samples are not as computationally expensive as if run without such
a limitation. Second, the amount of noise increases with higher values for Smax and
is highest when no limit is used. This means, the farther a sampled request is in the
future, the higher is the risk that a planned solution will be thrown into disarray
by additional incoming dynamic requests. However, using a limitation on the look
ahead time window also bears the risk of ignoring information that might be useful
for planning. In other words, if the value for Smax is set too low, this may worsen the
obtained solution quality as the algorithm doesn’t use enough sampled information
any more. Therefore, the value for Smax should be carefully tuned as presented in
Section 3.4.3.

An intuitive assumption might be that using a limitation on the sampling horizon
of Smax = 0 would reduce the dynamic S-VNS to a myopic dynamic VNS as no
more sampled return transports would be used for planning. This, however, is not
completely correct. Even if the look ahead time window is set to zero, the set of
sampled results might still include some return transports. This is caused by the
conceptual design of the sampling procedure. Return transports are sampled for
all outbound requests if their corresponding return transports did not arise up to
now. This is done even if the underlying distribution would indicate that the return
transport should already have occurred (in this case, the beginning of the sample’s
pickup time window is set to the current time). The reason for this is, that although
the distribution indicates that the return transport should already be known by
now, it might still occur anyways. Preliminary testing showed that using even this
little amount of additional information may in some cases still be enough to obtain
slightly better results than with a purely myopic approach.
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Algorithm 7 Structure of the MPA for the DSDARP

1: P ← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x← SelectCurrentIncumbent(P )
5: for x̄ ∈ P do

6: if (x̄ 6= x) ∧ (Timeout(x̄, x) ∨ Departure(x̄, x)) then
7: P ← P \ {x̄}
8: else

9: InsertNewRequests(x̄)
10: end if

11: end for

12: x′ ← ShakeSolution(x,N (κ))
13: if x′ /∈ P then

14: P ← P ∪ {x′}
15: end if

16: N (κ)← SelectNextNeighborhood(κ)
17: end while

3.3.5 Multiple plan approach

The concept of the multiple plan approach (MPA) was proposed by Bent and
Van Hentenryck [40] for the dynamic vehicle routing problem with time windows
(VRPTW). The design of the MPA is a generalization of the work by Gendreau et al. [45]
who proposed a parallel tabu search algorithm arranged around an adaptive mem-
ory containing multiple solutions. It is in fact a metaheuristic solution framework
designed to be combined with almost any search component. In the original publi-
cation, the authors used a large neighborhood search approach to demonstrate the
method.

The main idea of the MPA is to maintain a set of solutions found during the
search process in order to preserve as much flexibility for later planning decisions as
possible. This means that starting from a given set of alternative solutions for the
static part of a dynamic vehicle routing problem, the MPA continuously searches
for further alternative solutions while time progresses. Whenever a new alternative
solution is found, it is inserted into the set of solutions. As the MPA is designed to
solve dynamic problems, all solutions in the set need to be kept compatible with the
decisions made until the current time. For this purpose, the framework maintains
a single current incumbent solution which is used to determine the actual decisions
made. This master solution is selected out of all solutions in the set and is re-selected
whenever a new solution is found and stored in the set. Based on the decisions made
in the current incumbent solution, the MPA eliminates solutions from the set if they
are no longer compatible with the master solution (i.e., if a vehicle departs in the
current incumbent solution, but not in another solution or vice versa). Additionally,
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new transportation request are inserted into all solutions in the set and solutions
which cannot accommodate a request are eliminated from the set (unless no solution
can accommodate the requests which would in this case be rejected).

The multiple plan approach is a concept which is already designed to handle ve-
hicle routing problems with dynamic requests and thus we expect it to be suitable
for the dynamic DARP as well. As Bent and Van Hentenryck state that the MPA
framework is independent of the used search component, we decide to use our im-
plementation of dynamic VNS for this purpose. By doing so, we also guarantee that
found differences between our solution methods are not caused by a different local
search technique, but are due to the relevant design decisions we make.

The outline of the MPA framework is presented in Algorithm 7. Like our other
local search based metaheuristic approaches, it starts by constructing an initial solu-
tion (Line 1). For this purpose, our adaptation of the cheapest insertion heuristic is
used (see Section 3.3.2 for details). After this, the algorithm iteratively searches for
new alternative solutions. At the beginning of each iteration it selects the current
incumbent solution out of the current set of solutions (Line 4). Then, all incompat-
ible solutions are removed from the set of solutions (Line 7) and new transportation
requests are inserted into all remaining solutions in the set (Line 9). As no requests
may be rejected in the case of our DSDARP, the MPA does not need to eliminate
any solutions from the set at this point (as would be the case in the original MPA
concept). The search component used to find new alternative solutions (Line 12) is
the same as the one used for our implementation of dynamic VNS. This means, that
the same neighborhood operators are used in the same way as for dynamic VNS.
For this reason, again an additional local search phase does not bring an additional
benefit and is thus omitted. If the found solution is not already known, it is stored in
the set of solutions, otherwise it is discarded (Line 13). Finally, the method decides
which neighborhood to use next (Line 16; following the same rules as in the case of
dynamic VNS) and continues with the next iteration.

3.3.6 Multiple scenario approach

The idea of the multiple scenario approach (MSA) was presented as a logical
extension to the multiple plan approach by Bent and Van Hentenryck [40]. It is
a stochastic version of the MPA and was demonstrated for the dynamic VRPTW.
While the MPA ignores any available stochastic information about the studied prob-
lem, the idea for the MSA is to exploit this information while planning the vehicle
routes. This is, however, done in a slightly different way than in the case of (dy-
namic) S-VNS. Sampled future requests are not only used to compare two different
solutions but also during the search phase itself.

The MSA is (like the MPA) a metaheuristic framework that is designed to work
independent from the underlying search procedure. Therefore, we again use our
implementation of dynamic VNS for this purpose. By this we again guarantee that
all found effects are due to the exploitation of the stochastic information and not
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Algorithm 8 Structure of the MSA for the DSDARP

1: P ← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x← SelectCurrentIncumbent(P )
5: for x̄ ∈ P do

6: if (x̄ 6= x) ∧ (Timeout(x̄, x) ∨ Departure(x̄, x)) then
7: P ← P \ {x̄}
8: else

9: InsertNewRequests(x̄)
10: end if

11: end for

12: Z ← SampleFutureRequests(1, Smax)
13: x′ ← AddSampledRequestsToSolution(x,Z)
14: x′ ← ShakeSolution(x′,N (κ))
15: x′ ← RemoveSampledRequestsFromSolution(x′, Z)
16: if x′ /∈ P then

17: P ← P ∪ {x′}
18: end if

19: N (κ)← SelectNextNeighborhood(κ)
20: end while

cause by any other conceptual differences between the MPA and the MSA.

An outline of the multiple scenario approach is presented in Algorithm 8. The
structure is very similar to the one of the MPA. The algorithm starts by creating
an initial solution using the modified cheapest insertion method presented in Sec-
tion 3.3.2 followed by an iterative search phase. At the beginning of each iteration,
the current incumbent solution is selected out of the set of solutions (Line 4). After
that, all solutions which are no longer compatible with the current incumbent solu-
tion are removed from the set (Line 7). New requests are inserted into all remaining
solutions in the set using the modified cheapest insertion method (Line 9). The
main difference to the MPA is, that future requests are sampled and inserted into
the current incumbent solution before the shaking step (Lines 13 and 14). After the
shaking these sampled requests are removed from the solution again (Line 15). This
is done in order to obtain a solution including gaps in the schedule of the request,
which can at a later point in time be used to accommodate real future requests
more easily. The resulting solution is then stored in the set of solutions if it was not
known before (Line 16) and the next neighborhood operator is selected accordingly
(Line 19). Hereby, the same neighborhood structures are used as with all our other
methods.

The multiple scenario approach as well as the multiple plan approach use a set
of solutions found during the search process. This leads to the requirement of us-
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ing a single solution to determine which decisions should finally be made while the
day progresses. Therefore, at the beginning of each iteration both methods select a
current incumbent solution out of all solutions in the pool. According to Bent and
Van Hentenryck [40], the best way to perform this selection is by using a consensus
function which is a strategy similar to the concept of least commitment. Interest-
ingly, in the case of the dynamic stochastic dial-a-ride problem, this is not necessarily
true. In fact, our extensive tests show that altering the original design of the MPA
and the MSA in order to always select the currently best solution out of the set of
solutions leads to better results than using the proposed consensus function. Also,
using the so selected current incumbent solution as a basis for the search process
seems to be the favorable alternative for this problem.

3.4 Computational experiments

In order to study the effect of exploiting the available stochastic information about
future return transports while planning the vehicle routes for the Austrian ambu-
lance service providers, we create a set of real world based test instances. Starting
from a set of real world data provided by one of the Austrian ambulance service
providers about daily operations in an Austrian city during one year as well as a
real world street network, we derive our test instances in order to represent one 10
hour working day each. This is done by extracting the distribution parameters for
the interarrival times of the requests serviced during this period. The details of this
analysis are described in the master thesis of Kritzinger [46] and a short summary
of the process is presented in Section 3.4.1. This information about the underlying
stochastic distributions is used to sample transportation requests for each test in-
stance as described in Section 3.4.2. All computational experiments are performed
on one core of a SUN Fire X2270 server with 2 quad-core Intel Xeon X5550 proces-
sors (2.66 GHz) with 24 GB of shared memory. The algorithms are implemented
using C++ and the GNU compiler g++ in its version 4.1.2 on CentOS 5.5.

3.4.1 Data generation

This section is a short summary of the data analysis performed by Kritzinger [46]
in her master thesis. The underlying real world data set was supplied by an Aus-
trian ambulance service provider and consists of log entries for a total of 125,035
anonymized transportation requests performed during the year 2004. The remainder
of this section is taken from [17].

The first observation of the analysis was that approximately 50% of all trans-
portation requests are already known in the morning (static). The other 50% arises
during the day dynamically. To obtain information about these dynamic requests,
the interarrival times of the sample were calculated and filtered. Then, the day was
split into segments of one hour. For each segment, the number of interarrival times
that fall into a specific interval (e.g., 0 to 10 minutes, 10 to 20 minutes, . . . ) was
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counted. The analysis indicated an exponential distribution. This assumption was
tested using χ2 tests. The null hypothesis was, that the data is exponentially dis-
tributed with a continuous density f(x) = λe−λx for λ > 0 and an expected value of
E(X) = 1

λ
. The parameter λ was determined using the maximum likelihood estima-

tion of the reciprocal of the sample’s average value. The χ2 tests returned positive
results for approximately 70% of all cases (i.e., do not reject the null hypothesis).
For the time between the occurrence of a transportation request and the correspond-
ing latest arrival time at the hospital, results suggest a gamma distribution with a
continuous density f(x) = λ

Γ(α)(λx)
α−1e−λx, whereby α, λ > 0, the expected value is

E(X) = α
λ
, and the variance is Var(X) = α

λ2 . The values for α and λ were estimated
using the generalized method of moments, which proved to be a good estimation.

The analysis continued by taking a look at intervals of 15 minutes. For each of
these intervals, the number of working days showing 0, 1, 2, 3, . . . return transports
was counted. This counting process showed the characteristics of a Poisson process
within each of the 15 minute intervals. To verify if the underlying data really fol-
lows a Poisson distribution, again χ2 tests were used. The null hypothesis was that
the distribution follows a Poisson distribution with a discrete distribution density
of P(X = k) = λk e−λ

k! with k ∈ N0 and an expected value of E(X) = λ. Maxi-
mum likelihood estimation of the sample’s average value was used to determine the
parameter λ. The χ2 tests returned positive results for about 80% of the intervals.

The same procedure was used to determine the distribution of the time between
a transportation request’s latest arrival time at the hospital and the arrival time of
the corresponding return transport. The null hypothesis was that the underlying
distribution is a gamma distribution with a continuous density function. The values
for parameters α and λ were determined using the generalized method of moments.
As the χ2 test rejected the null hypothesis for the determined parameters, they
were iteratively modified to fit the underlying data more precisely. Finally, analysis
showed that data suggests that approximately 50% of all transports towards a hos-
pital cause a corresponding return transport in the opposite direction on the same
day.

Knowing the statistical distribution parameters, all information required for sam-
pling artificial transportation requests was available. By sampling a set of such
transportation requests, a real world inspired test instance could be generated. Also,
modifying the distribution parameters allowed for simulating different scenarios of
reality (e.g., larger cities). Additionally, the data set reported customer locations as
often as they occurred during the observation period. This means, that if the same
patient was transported to the hospital 10 times during this period, there existed 10
entries. Using this information enabled us to map the real world geographical distri-
bution of patient locations and the corresponding frequencies to our test instances.
This was done by assigning customer locations using a uniform random selection to
each artificial request.
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R

N 30% 50% 80%

100% 149.93 168.73 208.13
200% 281.87 325.07 389.27
300% 404.80 474.33 566.53
400% 523.40 614.47 718.73

Table 3.1: Average number of transportation requests per instance class. (R - return
transport probability, N - relative size of the instance set)

outbound

R static dynamic inbound total

30% 135.98 127.33 76.68 340.00
50% 137.68 127.08 130.88 395.65
80% 135.62 128.50 206.55 470.67

Table 3.2: Average number of requests per type depending on return transport prob-
ability. (R - return transport probability)

3.4.2 Test instances

Based on the distribution parameters derived from the real world data set (see Sec-
tion 3.4.1), we create 12 sets of test instances each containing 15 instances. For this
purpose we start by sampling the found distribution for the outbound transportation
requests (from a patient’s home location to a hospital). Beginning at time t = 0, the
first request’s arrival time a1 is calculated by sampling the interarrival time of the
outbound requests. All following requests’ arrival times are then determined based
on the previous request’s arrival time ai−1 until the end of the planning horizon (10
hours) is reached. This way we obtain the arrival times of all outbound requests.
Based on these arrival times, we calculate the time at which each patient needs
to be at the hospital (i.e., the end of the delivery time window) by sampling the
corresponding distribution. The delivery time window is set to 30 minutes length.
Then, the end of the 30 minute pickup time window can be calculated as the starting
time of the delivery time window minus the time required to travel directly from the
pickup to the delivery location. Finally, half of the generated requests is set to be
static by assigning an occurrence time of ar = 0 to them.

In a second step, the return transports (inbound requests) for the generated out-
bound requests are generated. For this purpose, a return transport for each of the
requests (both static and dynamic ones) is generated with a probability R. The
occurrence time ar for these inbound requests was determined by sampling the dis-
tribution for the time between the outbound request’s end of the delivery time
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window and the beginning of the inbound request’s pickup time window (i.e., the
time at which the patient can be picked up at the hospital again). From this time on,
the pickup time window has a length of 60 minutes. The beginning of the inbound
request’s delivery time window is calculated by adding the time required to travel
directly from the hospital to the patient’s home location. The length of the delivery
time window is set to 90 minutes, which is 60 minutes plus the maximum length of
an allowed detour (30 minutes).

In order to cover a larger range of scenarios, the parameters for the interarrival
time between the occurrence of two outbound requests as well as the probability
for a return transport (R) is modified for each set of scenarios. The former is
done to obtain instances with different numbers of outbound requests during the
planning period. The idea behind this is to test if larger instances (i.e., representing
larger cities) does have and influence on the observed effects. The relative number
of outbound requests N is therefore altered in the range of 100% to 400% of the
real world size in steps of 100%. The probability for return transports R is set
to 30%, 50% and 80%, respectively. Although the real world data suggests that
approximately 50% of all outbound requests cause an inbound request on the same
day, this is done in order to study if this factor of uncertainty has an influence on
the found effects. By using every possible combination of N and R, we obtain 12
different sets of instances. We do not take inbound requests that are not caused by an
outbound request on the same day into account. This is because we are primarily
interested in the effect of the exploitation of the available stochastic information
about future inbound requests. As we do not have any information about such
independent requests, they would be treated as being purely dynamic and thus
no influence on the obtained effects is expected. The average number of requests
per instance depending on the probability for return transports R and the relative
instance size N is given in Table 3.1. The average number of requests per instance
depending on the probability for return transports and the type of request (static,
dynamic, return transports) is presented in Table 3.2.

To obtain a reasonable limit for the number of vehicles available for each of the
instances, we create a greedy solution for each of them using the modified cheapest
insertion heuristic described in Section 3.3.2 (assuming all requests to be known
a priori). The number of vehicles used in each of these solutions is then increased by
10% and used as limit on the number of vehicles available for the respective instance.

3.4.3 Parameter settings

As the main focus of this work is to study the effects and influence factors of exploit-
ing stochastic information about future return transports while planning the vehicle
routes for Austrian ambulance service providers, we need solution approaches that
are able to solve the dynamic dial-a-ride problem in an efficient and effective way.
The existing literature provides a large number of state-of-the-art metaheuristics
for different types of vehicle routing problems and also the DARP. Therefore, we
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decide to base our work on some of the proposed approaches that are well tested
and documented. We use the conceptual design and parameter settings suggested
by Parragh et al. [9] for the static DARP as a local search basis for all our meth-
ods. Additionally, we use the ideas presented by Gutjahr et al. [38] and Bent and
Van Hentenryck [40] with some modifications. Although we can base our work on
this already available information, we still need to tune some parameters for our
solution approaches.

In this part of our work, we use a parameter τ as a threshold value for opening new
routes when inserting new requests using the modified cheapest insertion heuristic.
Opening an additional route for the new request is considered only if the increase in
tardiness by inserting the request in an existing route would be larger than τ . After
extensive testing we observe that values between 20 and 30 minutes lead to the best
results. As all our methods would be equally affected by this parameter, we decided
to fix it to 25 minutes.

Another parameter that needs to be tuned carefully is the look ahead time win-
dow Smax. The value selected for Smax defines the extent to which sampled future
requests are taken into consideration by our stochastic solution approaches. This
means, that sampled requests that will occur more than Smax minutes in the future
will be ignored by the methods. It turns our that this parameter has a strong in-
fluence on the obtained results. Therefore, we try to find preferable values for this
factor by fixing it to a specific value and evaluating the resulting solution quality for
all 12 sets of test instances. By comparing the average solution quality over all test
instances obtained with different values for Smax we are able to identify the most
promising values. Detailed results are presented in Section 3.4.4.

Additionally, we studied the effect of a speedup factor of 10 for the simulation time.
As mentioned in the description of our simulation framework (see Section 3.3.1),
simulation time does not necessarily elapse equally fast as real time. In other words,
speeding up simulation time by a factor of 10 causes the simulation to run 10 times
faster than real time. After extensive testing we observed, that results obtained using
a speedup factor of 10 are not representative for the results achieved in real time.
The positive effect of additional run time is much stronger for our dynamic S-VNS
and dynamic VNS approaches than for the MPA and the MSA. For this reason,
the results obtained with the speedup factor would lead to different conclusions and
should therefore not be used for parameter tuning or similar activities.

3.4.4 Results

Look ahead period

The look ahead time window Smax has, as described in the previous section, a strong
influence on the obtained solution quality of our stochastic algorithms. In order to
tune this parameter, we solved all 180 test instances (12 sets with 15 instances
each) using values of Smax = {3, 5, 10, 20} minutes. The obtained average solution
quality over all instances indicates, that shorter look ahead time windows seem to be
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Figure 3.1: Average relative gaps depending on Smax.

beneficial for our stochastic approaches. A summary of the average solution quality
over all instances is presented in Table 3.5. The values shown in this table are the
gaps between the solution obtained by the respective algorithm and the one obtained
by dynamic VNS. A negative value indicates superior solution quality obtained by
dynamic VNS; a positive value indicates a superior result obtained by the other
method. As our objective function is lexicographic, the comparison can only be
based on the primary objective (tardiness, gap1) while the secondary (number of
vehicles, gap2) and tertiary objective (total route duration, gap3) are reported for
the sake of completeness only. Figure 3.1 presents a graphical representation of these
results. This picture shows a peak at the value of 3 minutes for dynamic S-VNS and
at 20 minutes for the MSA. However, it seems that the MSA is not influenced by
the look ahead time window as strongly as dynamic S-VNS. These results lead us
to the conclusion that taking only the very near future into account when exploiting
the stochastic information about return transports seems to be most beneficial to
solution quality. A reason for this might be that newly incoming dynamic requests
cause the sample based estimation of a solution’s quality to change very frequently.
A summary of all solutions obtained using Smax = 3 and Smax = 20 is given in
Tables 3.3 and 3.4, respectively.

As can be seen from the results presented in Table 3.5, when using a look ahead
time window of 3 minutes dynamic S-VNS can obtain solutions which are on average
over all test instances 15.50% better than the ones obtained by dynamic VNS. Also,
the MSA can improve the average solution quality by 2.72% when using Smax = 20
minutes. This means, that we are able to verify the hypothesis that taking into
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gap1 in % gap2 in % gap3 in %

R N MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS

30 100 -1.98 3.81 13.57 0.00 -3.03 -3.03 -0.55 -3.53 -36.40
30 200 -0.96 -0.91 22.75 -4.83 -6.55 -1.38 -2.00 -1.04 -38.39
30 300 -2.48 -1.19 40.31 -6.87 -6.36 -1.78 0.55 -3.36 -35.21
30 400 -5.32 -3.17 29.03 -7.05 -5.71 -0.19 0.31 -5.89 -29.62
50 100 10.69 -4.12 11.89 -0.60 -3.61 -9.04 -0.74 -4.53 -35.58
50 200 -5.90 -0.50 36.33 -7.14 -5.00 -12.50 1.11 -4.83 -40.39
50 300 -7.33 -3.30 -5.23 -5.06 -4.10 -3.37 0.65 -6.12 -33.84
50 400 1.57 3.79 10.27 -7.24 -7.05 -7.05 -0.53 -5.53 -30.18
80 100 -2.82 5.41 14.79 1.14 0.57 -13.14 0.26 -4.12 -36.23
80 200 -4.77 -1.59 20.76 -2.30 -3.62 -12.83 -0.17 -5.71 -38.97
80 300 -4.21 9.57 5.70 -1.15 -2.75 -11.24 0.40 -7.56 -35.78
80 400 -9.22 -6.99 4.11 -5.12 -6.40 -12.80 0.15 -8.94 -33.70

avg. -2.73 0.07 17.02 -3.85 -4.47 -7.36 -0.05 -5.10 -35.36

Table 3.3: Summary of results obtained with Smax = 3. (R - return transport prob-
ability, N - relative instance size)

account stochastic information about future return transports while planning vehicle
routes for the Austrian ambulance service providers is beneficial to solution quality.
Also, we observe that the design of the used methods does have a strong impact on
the obtained advantages of using stochastic information. Knowing that, we want to
determine additional factors that influence the amount of improvement that can be
achieved. Therefore, we need to examine solution quality in more detail. In what
follows, if not explicitly mentioned otherwise, we will refer to solutions obtained
using a value of Smax = 20 for the MSA and Smax = 3 for S-VNS. Note that the
MPA, which is not influenced by Smax, achieves an average gap in tardiness of 0.08%
over all runs included in Table 3.5. This indicates, that the used long term memory
concept (i.e., the use of a set of solutions) does not lead to significant improvements
over dynamic VNS in the case of the dynamic stochastic dial-a-ride problem with
expected return transports.

Discussion of findings

The detailed results obtained in our computational experiments are shown in Ta-
ble 3.6 (depending on the relative instance size N) and Table 3.7 (depending on
the return transport probability R). The results presented in Table 3.6 show, that
dynamic S-VNS obtains a significantly larger improvement over dynamic VNS than
the MSA. This advantage is relatively stable but decreases slightly with increasing
instance size. The solutions achieved by dynamic S-VNS are between 11.12% and
25.86% better than the ones found by dynamic VNS, depending on the instance size.
The multiple scenario approach yields improvements of -1.35% to 9.98% compared
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gap1 in % gap2 in % gap3 in %

R N MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS

30 100 1.60 6.83 13.23 -1.20 -1.20 0.00 -1.99 -2.89 -36.30
30 200 -6.16 -7.79 15.83 -3.39 -3.39 -1.02 0.47 -4.72 -40.79
30 300 5.29 0.25 41.95 -4.57 -5.08 -1.78 -1.40 -5.47 -34.83
30 400 -2.52 8.59 29.12 -6.10 -5.90 -0.38 -1.66 -6.41 -31.18
50 100 7.61 4.55 4.66 -1.80 -1.80 -8.38 -0.84 -4.01 -38.67
50 200 4.51 10.56 30.39 -6.09 -5.02 -12.54 -0.89 -5.37 -39.99
50 300 3.92 -0.06 -15.01 -5.83 -6.07 -6.80 0.13 -7.23 -34.17
50 400 -4.93 1.46 -0.60 -7.24 -7.24 -5.14 -0.04 -5.21 -28.93
80 100 3.32 15.90 19.83 -3.43 -1.14 -15.43 -0.76 -5.94 -36.89
80 200 -5.48 -6.31 -4.34 -2.27 -2.92 -15.26 1.66 -5.32 -40.78
80 300 -3.40 2.96 8.93 -3.00 -6.22 -16.13 1.40 -8.79 -35.13
80 400 0.10 -2.67 5.94 -3.78 -5.22 -17.99 0.79 -9.34 -32.75

avg. 0.32 2.86 12.49 -4.06 -4.27 -8.40 -0.26 -5.89 -35.87

Table 3.4: Summary of results obtained with Smax = 20. (R - return transport
probability, N - relative instance size)

gap1 in % gap2 in % gap3 in %

Smax MSA S-VNS MSA S-VNS MSA S-VNS

3 -0.11 15.50 -4.43 -7.45 -5.24 -35.42
5 1.61 7.63 -4.42 -7.42 -5.21 -36.03

10 1.40 12.22 -3.99 -7.73 -5.44 -36.23
20 2.72 10.95 -4.26 -8.55 -2.72 -10.95

Table 3.5: Average gap in solution quality compared to dynamic VNS obtained with
different settings for Smax. Positive (negative) values indicate that this
method performed better (worse) than dynamic VNS.

to dynamic VNS.

We also test the original design of dynamic S-VNS as proposed in the article
of Gutjahr et al. [38] which uses multiple samples for comparison and maintains a
best so far solution which is compared to the current incumbent solution based on a
different set of samples with an increasing number of samples. This variant performs
significantly worse for our test instances as it achieves improvements of only 4.72%
to 20.61% compared to dynamic VNS while our modified version obtains between
11.12% and 25.86% improvement.

An interesting observation regarding the effect of the return transport probability
R on the solution quality obtained by dynamic S-VNS can be made when looking at
Table 3.7. This table shows the average results over all test instances depending on
R. The same effect can also be seen in Figure 3.3 which shows the gaps obtained by
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Figure 3.2: Average relative gaps depending on Smax and R for the MSA.

dynamic S-VNS compared to dynamic VNS with respect to Smax and R. The lower
the return transport probability is, the better are the results obtained by dynamic
S-VNS compared to dynamic VNS and vice versa. The MSA, however, seems to
be far less sensitive to changes in the return transport probability (see Figure 3.2).
Intuitively, this effect would be expected to work in the opposite direction. A higher
probability for return transports (i.e., less insecurity in this aspect) should imply
more accurate samples with respect to future return transports (as it is less likely
to sample return transports that in fact will never occur or not to sample return
transports that will in fact occur). These more accurate samples should then also
lead to more accurate solutions and thus a higher solution quality. In reality, how-
ever, the higher return transport probability increases the absolute number of return
transports and by that also the total number of dynamic requests relative to the
total number of requests in an instance (see Table 3.2). This implies a higher total
degree of dynamism which seems to be compensating for the positive effects of the
more accurate samples. Thus, the relative advantage of dynamic S-VNS gets lower
as the results obtained by the (myopic) dynamic VNS is better at handling highly
dynamic situations.

Yet another observation can be seen in Table 3.6. Dynamic S-VNS leads to solu-
tions that use on average 7.45% more vehicles and have 35.42% longer total route
durations compared to the solutions found by dynamic VNS. The MSA on average
achieves 4.26% and 6.01% higher values than dynamic VNS, respectively. This is
not only true for scenarios in which the main objective (i.e., tardiness) is improved
compared to dynamic VNS, but for most other scenarios as well. This tradeoff
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Figure 3.3: Average relative gaps depending on Smax and R for dynamic S-VNS.

between tardiness and number of used vehicles (which to some extent induces the
higher total duration) was not unexpected. However, the magnitude of this effect
is remarkable. We assume it is caused by the relatively small number of iterations
performed by dynamic S-VNS and the MSA. It seems that dynamic VNS spends
much more time locally optimizing known solutions with respect to the secondary
and tertiary objectives (i.e., number of vehicles used and total route duration) than
dynamic S-VNS and the MSA.

34



3
.4

C
o
m
p
u
ta
tio

n
a
l
ex
p
erim

en
ts

gap1 in % gap2 in % gap3 in % iterations

N MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS VNS MPA MSA S-VNS

100% 3.53 9.98 13.31 0.20 -1.38 -8.50 -0.30 -4.43 -36.07 275,531,013 197,609,100 1,388,240 1,716,533
200% -4.30 -1.35 25.86 -4.69 -3.74 -8.92 -0.30 -5.16 -39.26 77,475,788 56,088,319 490,501 577,590
300% -4.61 1.43 11.72 -4.26 -5.81 -5.63 -0.53 -7.32 -34.98 40,055,460 27,533,506 267,885 318,721
400% -5.59 0.83 11.12 -6.45 -6.10 -6.76 -0.03 -7.15 -31.37 24,391,153 18,007,290 181.636 221,579

avg. -2.74 2.72 15.50 -3.80 -4.26 -7.45 -0.02 -6.01 -35.42 104,363,353 74,809,554 582,065 708,606

Table 3.6: Average solution quality depending on relative test instance size with Smax = 20 for the MSA and Smax = 3 for
dynamic S-VNS. (N - relative instance size)

gap1 in % gap2 in % gap3 in % iterations

R MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS VNS MPA MSA S-VNS

30% -2.68 1.97 26.42 -4.69 -3.89 -1.60 -0.42 -4.87 -34.90 139,609,711 99,770,945 702,520 735,365
50% -0.24 4.13 13.31 -5.01 -5.03 -7.99 0.12 -5.45 -35.00 102,378,472 74,239,400 551,509 720,376
80% -5.25 2.47 11.34 -1.86 -3.88 -12.50 0.16 -7.35 -36.17 71,101,879 50,418,317 492,169 670,076

avg. -2.72 2.86 17.02 -3.85 -4.27 -7.36 -0.05 -5.89 -35.36 104,363,354 74,809,554 582,066 708,606

Table 3.7: Average solution quality depending on return transport probability with Smax = 20 for the MSA and Smax = 3
for dynamic S-VNS. (R - return transport probability)
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gap1 in % gap2 in % gap3 in %

R N MSA S-VNS MSA S-VNS MSA S-VNS

30 100 5.08 17.63 -4.27 -1.83 -1.95 -33.20
30 200 7.62 24.31 -3.40 -0.68 -1.86 -32.91
30 300 -2.11 27.46 -6.84 -1.01 -1.61 -31.19
30 400 -1.38 28.87 -6.83 -0.76 -1.33 -28.17
50 100 -1.78 8.18 -4.29 -9.20 -1.00 -28.89
50 200 9.46 12.82 -6.50 -7.58 -1.06 -32.38
50 300 -9.63 -17.65 -4.55 -3.35 -4.16 -29.31
50 400 -3.86 6.16 -6.62 -4.35 -1.90 -27.24
80 100 13.18 32.54 0.00 -10.06 -2.66 -26.37
80 200 -1.58 9.33 -3.93 -8.52 -1.60 -25.98
80 300 -6.37 -12.49 -3.42 -11.19 -1.74 -24.88
80 400 -3.96 -1.41 -5.80 -13.41 -2.28 -23.20

avg. 0.39 11.31 -4.70 -5.99 -1.93 -28.64

Table 3.8: Summary of results obtained with Smax = 3 in the unbiased test case. (R
- return transport probability, N - relative instance size)

3.4.5 Testing for bias

The fact that our stochastic solution approaches only use samples of future inbound
requests (from hospital back to a patient’s home location) and do not sample future
outbound requests (from a patient’s home location to a hospital) induces a specific
bias. As the algorithms try to accommodate the sampled inbound requests, they
might end up forcing vehicles to stay close to hospitals where such requests are ex-
pected to occur. This, however, can have contra-productive effects on the ability to
react on future outbound requests, thus leading to poorer solution qualities. Note,
that this bias could also be a possible explanation for the fact that the original con-
cept of using a consensus function to determine the current incumbent solution does
not have the same effect in our case as in the case studied by Bent and Van Hen-
tenryck [40]. The consensus over several biased solutions might strengthen the bias
even more, thus leading to lower solution quality.

To verify if this effect might be the reason for the observed deterioration of solution
quality of dynamic S-VNS in cases with a higher return transport probability R, we
test variants of the stochastic algorithms which also sample outbound requests. To
do so, we provided the methods with a list of all patient locations included in our
real world data set including the occurrence frequencies. Based on this information,
the sampling of future outbound requests is performed the same way as the test
instances were created (see Section 3.4.2).

The results for these unbiased tests are presented in Table 3.8. They show, that
dynamic S-VNS does perform significantly worse in this unbiased case and MSA per-
forms almost equally in both cases. This result may have two reasons. Either the
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assumed bias does not cause the effect that R has on the solution quality achieved
by dynamic S-VNS or the quality of the sampled outbound requests is poor and
therefore further misleads the search process. The latter could be the case as these
samples do not only incorporate insecurity regarding the time of occurrence (as do
the samples of inbound request) but also regarding the geographical location of up-
coming requests. Therefore each of the sampled requests has a very low probability
to coincide with a real request. Because of this, the estimation of a solution’s quality
by dynamic S-VNS might be too far off the truth, thus leading to worse results in
the end. The reason why the MSA does not seem to be affected by this in the same
extent may be that (other than dynamic S-VNS) it does not discard a solution based
on the solution quality regarding the used sample but stores it in the pool anyway.
Therefore, the MSA has a better chance to correct for the bad sampling at a later
point in time, which dynamic S-VNS has not.

3.5 Summary

In this chapter we study the effects of exploiting stochastic information about future
return transports while planning the vehicle routes for an Austrian ambulance service
provider. For this purpose, we compare four different adaptations of metaheuristic
solution methods for the dynamic stochastic dial-a-ride problem with expected re-
turn transports. We are able to identify circumstances that are beneficial for the
proposed stochastic approaches and some which are not. Especially if the number of
return transports is relatively low compared to the total number of transportation
requests, dynamic S-VNS strongly outperforms the myopic methods (dynamic VNS
and the MPA).

Another interesting finding is the influence which the look ahead time window’s
size has on the solution quality obtained by our stochastic solution methods. It turns
out that taking only a very short period of the future into account while planning
brings the largest benefit. Our results indicate that the length of this period should
not exceed 20 minutes in order to obtain the best possible results. The achieved
average gaps to solutions obtained by dynamic VNS reach up to 15.90% for the MSA
and up to 41.95% for dynamic S-VNS. However, in the worst case, average gaps can
drop to -7.79% for the MSA and -15.01% for dynamic S-VNS. For nearly all tested
cases, dynamic S-VNS outperforms the MSA and therefore seems to be the method
of choice.

Furthermore, some of the main conceptual design aspects of the original design of
the multiple plan and multiple scenario approach [40] should be modified in order to
obtain the best possible results for the problem at hand. Instead of using a consensus
function to determine the used current incumbent solution out of the set of solutions,
the best solution out of the set should be used for this purpose. This may be caused
by the fact that the problem we study uses a completely different objective function
than the one used for the VRPTW by Bent and Van Hentenryck [40] (minimization of
the number of rejected requests). It could be an interesting topic for further research
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to study the possible relation between the used objective function and the method
used to determine the current incumbent solution. Additionally, the used search
component does in fact have a strong influence on solution quality. More precisely,
the used long term memory component induces an additional source of diversification
when compared to our single solution based VNS approach. In combination with
a strong set of shaking operators, this seems to drive the search process towards
a random search like behavior, thus reducing solution quality. Nevertheless, the
multiple scenario approach can be a powerful and robust stochastic solution method
if the right design decisions are made.

Summing up, we can say that we were able to prove that integrating stochastic
information about a relatively small portion of future requests (only return trans-
ports) into the process of planning vehicle routes for the DSDARP can be beneficial
to solution quality. In our opinion, S-VNS clearly is the method of choice for this
problem type. However, it seems that the MSA is the more robust method with
respect to R and N , which in some cases might be favorable.
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4 Stochastic time-dependent travel

speeds

4.1 Introduction and related work

Based on the version of the dynamic dial-a-ride problem presented in Chapter 2, we
present a second extension as a further step towards a more realistic representation
of the problem faced by the Austrian ambulance service providers. For this purpose,
we extend the DDARP by introducing stochastic time-dependent travel speeds. We
denote the resulting problem as dynamic dial-a-ride problem with stochastic time-
dependent travel speeds (DDARPTD). Note that, in this chapter, the return trans-
ports studied in Chapter 3 are being treated as purely dynamic requests again (as in
the basic DDARP). This chapter is based on a working paper by Schilde et al. [18]
and most passages are taken from there.

Most of the published articles related to vehicle routing problems assume travel
speeds to be constant over time (e.g., for the dial-a-ride problem, see [16, 9, 14]). In
reality, however, travel speeds are not constant at all. They are heavily influenced by
many factors like, for example, traffic congestion caused by rush-hours, accidents,
construction sites or just bad weather conditions. An example for this influence
can be seen in Figure 4.1. It shows the average travel speed observed on a specific
road segment in the city of Vienna depending on the time of day. The morning and
afternoon peaks (rush hours) which are typical for inner-city roads are clearly visible.
Also, the real (stochastic) travel speed observed during one specific day on the same
road segment is shown. As can be seen, travel speeds are highly sensitive to the time
of day and furthermore show significant stochastic fluctuations caused by different
effects. Therefore, assuming travel speeds to be non-stochastic or even time-inde-
pendent often causes planned schedules to fail with respect to time windows or ride
time limitations.

Recent publications try to avoid this shortcoming by treating travel speeds as
time-dependent. More precisely, in most of the publications it is assumed that a day
can be divided into discrete time intervals which imply a characteristic average travel
speed for each road inside a road network (see, for example, [47, 48, 20, 49, 50, 51]).
Still, most of these approaches assume travel speeds to be deterministic. This means,
that the travel speed in terms of average values for each interval is known a priori
and is not influenced by any stochastic effects. Some authors (see, e.g., [52, 53, 54])
use a different approach to this problem. The idea is to incorporate time-dependent
travel speeds in the process of calculating shortest paths. However, to the best of our
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Figure 4.1: Time-dependent travel speeds over 24 hours: average versus real
(stochastic) velocities.

knowledge, the algorithms used by these authors to create the actual vehicle routes
do not take any stochastic information about future travel speeds into account in
order to obtain a better solution. Instead, these methods still treat travel times as
given and are restricted to reacting on changes in travel speeds.

As can be seen in Figure 4.1, the real travel speed during one day can, however,
significantly deviate from time-dependent average values. Therefore, travel speeds
should rather be treated as being stochastic in order to represent reality more pre-
cisely. This way, the reliability and productivity of the planned schedules can be
improved significantly (see, e.g., [55, 56]). Especially in the case of conveying pas-
sengers, missed time windows and excessive ride times have a strong negative effect
on the quality of service. This is even more important if the transported passengers
are patients or elderly people. Furthermore, contrary to what could be expected,
treating travel speeds as time-dependent and non-stochastic in an environment in
which travel speeds in fact are stochastic does not necessarily lead to significant
improvements on solution quality (see Section 4.4.2 for details).

In this chapter we assume time-dependent average values of travel speeds to be
known from historical floating car data (FCD). In detail, we divide a day into 24 in-
tervals, each implying a specific (known) average travel speed for each road segment
in a real world road network. The corresponding FCD was collected and analyzed
during a project in the city of Vienna (c.f., [57, 58, 59, 60]). This means that it is a
realistic representation of the real world traffic situation during the observation in-
terval including temporal as well as geographical correlations between travel speeds
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on different streets. Based on the analysis of this data, we know that real travel
speeds regularly deviate from an interval’s average travel speed by as much as 20%
in both directions due to stochastic influences (e.g., accidents). In what follows,
we address the question if stochastic algorithms (i.e., which take into account the
available information about these stochastic deviations) can produce better solu-
tions than myopic ones (i.e., which rely only on the fixed mean travel speeds for
each interval or even only on constant average travel speeds). As the DDARPTD is
a logical generalization of the DARP, it also belongs to the class of NP-hard com-
binatorial optimization problems. Hence, we adapt the four metaheuristic solution
methods presented in Chapter 3 to the requirements of the problem at hand.

The remainder of this chapter is organized as follows. In Section 4.2, a detailed
problem description is provided, followed by an overview on the used methods in
Section 4.3. In Section 4.4 the used test instances and the corresponding computa-
tional results are explained, respectively. The chapter concludes with a summary in
Section 4.5.

4.2 Problem definition

The dynamic dial-a-ride problem with stochastic time-dependent travel speeds is
an extension to the basic DDARP presented in Chapter 2. It is based on a (di-
rected) real world road network with stochastic time-dependent travel speeds. This
means, we assume that going from node A to any other node B takes T̂ (t, A,B) =
T̂avg(t, A,B)+Tstoc(t, A,B) time units. Hereby, T̂avg(t, A,B) is the time required to
travel from A to B when leaving A at a given time t. This travel time is based on
the average vehicle speeds during the affected time intervals and is assumed to be
known a priori. The term Tstoc(t, A,B) represents the stochastic influence on this
travel time which is revealed only upon departure from A. Note, that we denote by
Ť (t, A,B) the time required to travel from point A to point B when the arrival time
at point B should be t.

In the case of the DDARPTD, we need to slightly modify the maximum detour
constraint due to the time-dependent nature of the problem. Let the time required
to go directly from pr to dr departing at time t be T̂direct(t, pr, dr). Let the time
between the planned end of service at pr and the planned start of service at dr
be Treal. Then, the equation Treal ≤ T̂direct(t, pr, dr) + 30 should not be violated.
However, due to the stochastic influence on travel speeds, we cannot guarantee that
this equation will strictly hold. In case a travel time happens to be longer in reality
than in the plan, a detour might end up being longer than 30 minutes. To penalize
this effect, the amount of time by which a solution violates this maximum detour
constraint is denoted as ride time violation. Furthermore, waiting times may only
be planned when a vehicle is empty.

The top priority while planning the vehicle routes is again to minimize passenger
dissatisfaction. Additionally, total costs have to be kept as low as possible. We
therefore adapt our lexicographic objective function. The primary objective is to
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minimize the sum of tardiness, earliness and ride time violations over all routes. The
secondary objective is the number of routes (vehicles used). The third objective
is the total route duration. In general, solutions are compared according to the
primary objective. In case two solutions are equal in terms of the primary objective,
the secondary one is used for comparison. Only if both, primary and secondary
objective, are equal for two solutions, comparison is based on the third objective.

4.3 Solution methods

The research described in this chapter aims at studying the effect of exploiting
stochastic information about the future traffic situation while planning vehicle routes
for the Austrian ambulance service providers. The question is again, if stochastic
solution algorithms can obtain solutions of higher quality than myopic methods
that ignore any stochastic information. For this purpose we adapt the metaheuristic
solution methods presented in Chapter 3 in order to handle the stochastic time-de-
pendent travel speeds in this problem.

The first method we adapt to the requirements of the DDARPTD with expected
return transports is our dynamic variable neighborhood search approach presented
in Section 3.3.3. This approach ignores any available stochastic information about
future travel speeds and uses only the known time-dependent average travel speeds
for planning.

This dynamic VNS method is the basis for our adaptation of the dynamic S-VNS
approach presented in Section 3.3.4. Dynamic S-VNS is again the stochastic coun-
terpart to dynamic VNS, taking stochastic information about future travel speeds
into account while designing the vehicle routes for the Austrian ambulance service
providers. The stochastic information is used to evaluate solutions based on sampled
future travel speeds whenever two solutions need to be compared.

As a second pair we adapt the myopic multiple plan approach and the multiple
scenario approach presented in Sections 3.3.5 and 3.3.6. We use the adapted version
of our dynamic VNS as a local search component within the MPA and the MSA
framework. The MSA requires some more adaptation effort than dynamic S-VNS in
order to exploit the stochastic information about future traffic situations effectively.
This is caused by the fact that the original concept of the MSA is based on the idea
of generating gaps in the found solutions by removing sampled information from
them after the search phase. This, however, does not work well for travel speeds, as
removing them from a solution means to re-schedule them with known travel speeds.
Thus, no information about the used sample (i.e., gaps) are left behind. The details
for all required adaptations are presented in the following sections.

4.3.1 Simulation framework

As the DDARPTD is also a dynamic problem, we re-use the simulation framework
developed for the DSDARP (see Section 3.3.1) as basis for our simulation environ-
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Algorithm 9 Guaranteeing the FIFO property
1: t← t0
2: d← dij
3: t′ ← t+ d

vijk

4: while (t′ > t̄k) do
5: d← d− vijk(t̄k − t)
6: t← t̄k
7: k ← k + 1
8: t′ ← t+ d

vijk

9: end while

10: return (t′ − t0)

ment. It is already designed to continuously keep track of all transportation requests’
status during execution, provides information about incoming new requests to our
solution methods whenever necessary and manages simulation time.

We enhance this framework such that it is capable of managing stochastic time-
dependent travel speeds. To be precise, we add an interface which allows the solver
modules to request expected travel times between two locations for a given departure
or arrival time. In this way the framework provides travel times based on the aver-
age speeds within the affected intervals. Only when simulation time advances, travel
times including the actual stochastic influences are revealed to the solver modules.
This means that the framework is based on the assumption that true (stochastic)
travel times are revealed to a solver the moment a vehicle departs towards it’s next
stop. Thus, no updating of the travel times is performed while traveling the corre-
sponding path. Also, the actual path is not re-calculated but only the corresponding
travel time required for this path is being updated upon departure.

An important aspect in this extended framework is to guarantee the ”first-in-first-
out“ property (FIFO [51], also known as ”non-passing property“, [61]). Besides the
logical implications of this property, this also has systemic reasons. Our scheduling
algorithm is based on a strategy that requires being able to find a definite departure
time for any given arrival time (see the definition of Ť in Section 4.2). In such
situations, guaranteeing the FIFO property is crucial as otherwise multiple depar-
ture times could result in the same arrival time. This problem and its solution by
guaranteeing the FIFO property are shown in Figures 4.2 and 4.3, respectively. We
guarantee the FIFO property by using the approach presented by Ichoua et al. [51]
as listed in Algorithm 9. This approach can easily be inverted such that the travel
time is being calculated given a specific arrival time. We denote by t0 the departure
time at location i, by dij the total distance to be traveled, by vijk the velocity on
link (i, j) during interval k, and by t̄k the end of interval k.
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Figure 4.2: The problem arising without guaranteeing the FIFO property.

Figure 4.3: The solution when guaranteeing the FIFO property.

4.3.2 Scheduling algorithm

Our solution approaches are based on two phases. First, the sequence of transporta-
tion requests inside each route is determined. Second, the feasibility and timing for
each route is determined using a scheduling algorithm. For this purpose, we present
an alternative scheduling algorithm for the DDARPTD in this chapter which we
call block scheduling algorithm (BSA). It is inspired by two ideas presented in the
literature: the concept of scheduling blocks presented by Fu [56] (which is somewhat
similar to the concept of zero split points presented by Parragh et al. [9]) and the
forward time slack concept proposed by Savelsbergh [62]. A service block is defined
as a sequence of nodes inside a route that starts and ends with the vehicle being
empty. The forward time slack is originally defined as the maximum amount of time
by which the departure from a node can be delayed without causing the route to
be infeasible. For our scheduling algorithm, we define the forward time slack as the
maximum amount of time by which the start of service at a node can be delayed
without increasing tardiness with respect to its time window.

We decide not to adapt any of the two most commonly used scheduling algo-
rithms proposed for the deterministic DARP [10, 43] (we use the second one for the
DSDARP presented in Chapter 3) to the requirements of the DDARPTD because of
the following reason. Shifting services with respect to the time they are performed
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Algorithm 10 Block scheduling algorithm: Outline

for all stops along the route do

Determine timing without waiting time
if vehicle is empty before this stop then

Add waiting time before this stop if needed
Remember new block characteristics

else

Update block characteristics
end if

end for

for all blocks in backwards order do
if block can and should be shifted then

Shift block by adding waiting time in front
Update block characteristics
while shift caused problems that cannot be ignored do

Undo part of the shift to correct problems
Update block characteristics

end while

end if

end for

can have a direct influence on all following travel times. Additionally, the problem
at hand includes only soft time windows, soft maximum ride time constraints (due
to the stochastic influences on travel speeds) and no waiting time is allowed when-
ever a person is aboard a vehicle. Therefore, extensive modifications to the existing
scheduling algorithms would be required, whereas a new concept can be designed
especially for this setting and thus seems to be more appropriate.

Unlike the two mentioned scheduling algorithms [10, 43], the BSA corrects time
window violations by shifting complete scheduling blocks instead of individual ser-
vices (as described in detail in the following paragraphs). If waiting time with
patients aboard is allowed, this might lead to schedules that have a higher tardiness
with respect to the time windows than the ones obtained by the other methods.
However, if speed is not a crucial aspect, this could be overcome by adding a third
phase that performs an additional service-wise shift after the block-wise shift. The
major advantage of BSA compared to the other two scheduling methods is the fact
that BSA is specifically designed to handle time-dependent travel speeds while de-
termining the schedule for a route. This design guarantees that no infeasibility can
be caused by the interaction between a shifting operation and the changing travel
speeds. In other words, the existing algorithms can cause schedules in which vehicles
are planned to arrive after the next stop’s beginning of service. This is due to the
fact that shifting a stop’s service into the future can have a direct influence on all
following travel times (as travel speeds are time-dependent).
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Algorithm 11 Block scheduling algorithm: Phase 1

1: i← 0
2: Q0 ← 0
3: for n = {1, . . . , |S|} do
4: An ← Dn−1 + T̂ (Dn−1, n− 1, n)
5: Bn ← An

6: Dn ← Bn + dn
7: Qn ← Qn−1 + qn
8: if Qn > Q then

9: return Infeasible
10: end if

11: if (Qn = 0) ∧ (An < en) then
12: An ← en
13: Dn−1 ← An − Ť (An, n − 1, n)
14: Bn ← An

15: Dn ← Bn + dn
16: i← i+ 1
17: Θstart

i ← n

18: Θwaiting
i ← Dn−1 −Bn−1 − dn−1

19: Θearliness
i ← max{en −Bn, 0}

20: Θslack
i ← max{ln −Bn, 0}

21: else

22: Θearliness
i ← max{max{en −Bn, 0},Θ

earliness
i }

23: Θslack
i ← min{max{ln −Bn, 0},Θ

slack
i }

24: end if

25: end for

The BSA is a two stage method as outlined in Algorithm 10. In the first stage,
the algorithm creates an initial schedule for the given route by using forward prop-
agation. Hereby waiting times are permitted only directly before departing towards
a pickup service if the vehicle is empty (not after arriving at the pickup location).
Such a point along the route also indicates the beginning (and end) of a service
block. During this phase, all required parameters of the respective service blocks
are stored for the second phase. This initial schedule is then refined in phase 2 by
introducing additional waiting time before service blocks in order to reduce earliness
with respect to time windows. This second phase steps through the found blocks in
backwards order and introduces just enough waiting time in front of the first stop
of each block such that earliness is minimized without increasing tardiness. Due to
the time-dependent nature of travel speeds, this can cause problems if the changing
travel times lead to negative waiting time behind the current block. This effect is
then compensated by iteratively removing part of the inserted waiting time again.

A detailed outline is given in Algorithms 11 and 12. We use the following notation:
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Algorithm 12 Block scheduling algorithm: Phase 2

1: for i = {|Θ| − 1, . . . , 1} do
2: if (Θslack

i > 0) ∧ (Θearliness
i > 0) ∧ (Θwaiting

i+1 > 0) then

3: s← min{Θslack
i ,Θearliness

i ,Θwaiting
i+1 }

4: Borig ← BΘstart
i+1

−1

5: Θwaiting
i ← Θwaiting

i + s
6: AΘstart

i
← AΘstart

i
+ s

7: BΘstart
i
← AΘstart

i

8: DΘstart
i −1 ← AΘstart

i
− Ť (AΘstart

i
,Θstart

i − 1,Θstart
i )

9: Θtardiness
i ← 0

10: φ← 0
11: for n = {Θstart

i + 1, . . . ,Θstart
i+1 − 1} do

12: Dn−1 ← Bn−1 + dn−1

13: An ← Dn−1 + T̂ (Dn−1, n− 1, n)
14: Bn ← An

15: Θtardiness
i ← max{max{Bn − ln, 0},Θ

tardiness
i }

16: Θslack
i ← min{max{ln −Bn, 0},Θ

slack
i }

17: if n = Θstart
i+1 − 1 then

18: Θwaiting
i+1 ← Dn −Bn − dn

19: if ((φ < φmax) ∧ (Θtardiness
i > 0)) ∨ (Θwaiting

i+1 < 0) then
20: φ← φ+ 1
21: scorr ← ((Bn −Borig)/s)(−min{−Θtardiness

i ,Θwaiting
i+1 })

22: s← s− scorr
23: Θwaiting

i ← Θwaiting
i − scorr

24: AΘstart
i
← AΘstart

i
− scorr

25: BΘstart
i
← AΘstart

i

26: DΘstart
i −1 ← AΘstart

i
− Ť (AΘstart

i
,Θstart

i − 1,Θstart
i )

27: n← Θstart
i + 1

28: Θtardiness
i ← 0

29: end if

30: end if

31: end for

32: end if

33: end for

S is the set of nodes to be visited by the current route (in chronological order, 0
and |S| are the indices of the depot nodes), Qn is the number of passengers aboard
the vehicle when arriving at node n, Q is the vehicle capacity, An is the arrival time
at node n, Bn is the beginning time of service at node n, Dn is the departure time
from node n, dn is the service time at node n and Θi is used to store information
about service block i. The first stage consists of creating an initial schedule by using
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forward propagation (Algorithm 11). Hereby, waiting times (in order to reduce
earliness with respect to time windows) are only permitted whenever no person is
aboard the vehicle (Lines 12 to 15). As all time windows and the maximum ride
time limitation are soft, the only definitive infeasibility would be a violation of the
vehicle capacity (Line 9). This way we obtain a feasible schedule consisting of a
sequence of service blocks connected by waiting time and subsequent deadheading
movement. During this first phase, we keep track of four different properties of each
block (Lines 17 to 23): its starting index (Θstart

i ), the maximum earliness within the
block (Θearliness

i ), the minimum forward time slack within the block (Θslack
i ) and

the waiting time before the block (Θwaiting
i ).

In the second phase, the algorithm steps backwards through the schedule blocks
and postpones complete blocks in order to reduce earliness (Algorithm 12). More
precisely, the waiting time before each block i is increased by the minimum out of
Θearliness

i , Θslack
i and Θwaiting

i+1 (Lines 3 to 8). Then, all timings inside the block
and the block’s properties are updated accordingly using forward propagation again
(Lines 12 to 16). This way, we obtain a schedule which minimizes earliness and
tardiness with respect to time windows without waiting time within a service block.
However, due to the time-dependent nature of travel speeds, postponing a service
block like this can lead to negative waiting time after the block (i.e., we would need
to shift the subsequent block - which we already shifted in a previous iteration) or
an increase in tardiness inside the block. This is caused by the fact that vehicle
movements might be shifted into later time intervals with lower travel speeds. The
BSA iteratively compensates this effect before continuing with the preceding block.
For this purpose it determines the amount of negative waiting time caused by the
current block movement relative to the performed postponement. Then, it undoes
part of the block’s postponement accordingly (Lines 21 to 28). This correction is
performed iteratively as long as the waiting time after the block is negative or up
to φmax times in order to compensate for an increase in tardiness inside the block
caused by the shift. This limitation is used to avoid excessive computation time.

4.3.3 Dynamic variable neighborhood search

The first solution method we adapt to the requirements of the DDARPTD is our
dynamic VNS presented for the DSDARP in Section 3.3.3. An outline of the adapted
method is given in Algorithm 13.

The method is adapted to take time-dependent travel speeds into account while
planning. These travel speeds are provided by the simulation framework for a specific
departure or arrival time and are based on the average vehicle speeds within each
affected interval. We assume the stochastic travel speed for any path inside the
road network to be known with certainty the moment a vehicle starts traveling
that path. Travel speeds are not updated while traveling a path nor is the path
itself re-calculated depending on the current traffic situation. This new information
then has to be incorporated into the current solution as well. Therefore, dynamic
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Algorithm 13 Structure of dynamic VNS for the DDARPTD

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x← RescheduleWithTrueTravelSpeeds(x)
5: x← InsertNewRequests(x)
6: x′ ← ShakeSolution(x,N (κ))
7: x← MoveOrNot(x, x′)
8: N (κ)← SelectNextNeighborhood(κ)
9: end while

10: return x as best found solution

VNS needs to re-schedule all subsequent requests in an affected route according to
this real travel time whenever a vehicle departs towards it’s next stop (Line 4).
By making the mentioned assumption, this process is facilitated by enabling the
algorithm to determine a specific (real) arrival time the moment a vehicle departs
from it’s current position. We are confident that this simplifying assumption still
represents a sufficiently accurate model of reality. We base this on the observation
that travel times within a city tend to be rather short and thus traffic situations
can be assumed to stay roughly unchanged during this time. The remainder of this
adapted dynamic VNS stays the same as the original dynamic VNS.

As in the original version of dynamic VNS (see Section 3.3.3) we use a set of four
different neighborhood operators based on the ones proposed by Parragh et al. [9]
during the shaking phase of our dynamic VNS algorithm (Line 6). Each of these
operators is again used in five different intensity levels κ = {1 . . . 5}. The first five
neighborhoods use a move operator. This operator randomly removes κ transporta-
tion requests from a randomly selected route and re-inserts them into any route at
the position where they fit best. By this we mean that this position causes the small-
est possible deterioration in solution quality. The second set of five neighborhood
operators uses a swap operator. It randomly selects two routes and removes up to
κ consecutive requests from each of them starting at a randomly selected position,
respectively. The removed requests are then re-inserted into the corresponding other
route at the position where they fit best. The third set uses a chain operator. It
starts by randomly selecting an origin route and a destination route. After that,
it removes a sequence of up to κ consecutive requests from the origin route and
re-inserts them into the destination route where they fit best. It then iterates κ
times using the destination route as new origin route and a randomly selected new
destination route. The last neighborhood set is based on a zero split operator. It
randomly selects one route and determines all positions inside the route at which the
corresponding vehicle is empty (”zero split points“). It then randomly selects two
of these points, whereby up to κ− 1 other such points may be in between these two
points. Finally, it removes all transportation requests between the selected points
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Algorithm 14 Structure of dynamic S-VNS for the DDARPTD

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: Z ← SampleFutureTravelSpeeds()
4: x← Reschedule(x,Z)
5: u, i← 0
6: while StoppingCriterionNotMet() do
7: i← i+ 1
8: x← RescheduleWithTrueTravelSpeeds(x)
9: x← InsertNewRequests(x)

10: x′ ← ShakeSolution(x,N (κ))
11: if i− u > U then

12: u← i
13: Z ← SampleFutureTravelSpeeds()
14: x← Reschedule(x,Z)
15: x′ ← Reschedule(x′, Z)
16: end if

17: x← MoveOrNot(x, x′)
18: N (κ)← SelectNextNeighborhood(κ)
19: end while

20: return x as best found solution

and re-inserts these requests into any route at the position where they fit best.

We start our search using the move neighborhood with intensity level κ = 1. For
each neighborhood we randomly create one neighboring solution. If this solution
is not better than the current incumbent solution, we continue with intensity level
κ = κ + 1, otherwise we continue with the first operator and κ = 1. When the
maximum value for the intensity is reached, we switch to the next neighborhood
operator (move → swap → chain → zero split) with intensity level κ = 1. If the
maximum intensity is reached for the last neighborhood operator, we switch back
to the move neighborhood (Line 8).

4.3.4 Dynamic stochastic variable neighborhood search

The second algorithm we apply to this variant of the dynamic dial-a-ride problem
is an adaptation of the dynamic stochastic variable neighborhood search approach
(see Section 3.3.4). The main idea behind the S-VNS concept stays the same: de-
termine the quality of any given solution based on samples of future developments.
The outline of this adaptation is given in Algorithm 14.

Most of the overall structure of dynamic S-VNS is not changed in this adapta-
tion. As dynamic S-VNS is meant to take stochastic information about future travel
speeds into consideration while planning, the current incumbent solution is evalu-
ated based on a sample of future travel speeds. Therefore, the algorithm determines
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possible future deviations from each road segment’s average travel speed for each fu-
ture interval by sampling the corresponding distribution parameters (Lines 3 and 4).
At the beginning of each iteration the algorithm adapts the current incumbent solu-
tion to stochastic travel speeds if they are known by now (Line 8). It then inserts all
new requests which have become known during the last iteration into this solution
(Line 9). This is followed by a shaking step using the same neighborhood struc-
tures as previously described for dynamic VNS (Line 10). After every U iterations,
the algorithm updates the used sample and re-schedules both x and x′ accordingly
(Lines 11 to 16). Then, the solution which has the better sample average estimator
with respect to the current sample is selected as new current incumbent solution
(Line 17). Due to the computationally rather expensive sampling of future travel
speeds we again use a single sample for this evaluation. In the original S-VNS con-
cept (see [38]) the sampled information is only used for this comparison and not
integrated into the current incumbent solution before continuing. As it turns out,
this doesn’t make much sense for sampled travel speeds as the current incumbent so-
lution would be scheduled with average (time-dependent) travel speeds and doesn’t
include any viable information about the used sample. Therefore, in a setting like
this it is essential to keep the sampled information included in the solution that is
to be executed in order to obtain significant benefits over an algorithm that uses
only average travel speeds for planning.

4.3.5 Multiple plan approach

As a myopic base for the second pair of metaheuristics the multiple plan approach
is adapted to the requirements of the DDARPTD. All modifications are based on the
adaptation for the DSDARP (see Section 3.3.5) and introduce all changes required to
cope with stochastic time-dependent travel speeds. As underlying search procedure
we use our dynamic VNS in the version adapted to the DDARPTD. This way, we
again guarantee all differences found between the results of our four methods to
be caused by the essential conceptual design (myopic versus stochastic, long term
memory versus no long term memory) and not by the underlying search method.

An outline of the adapted multiple plan approach is shown in Algorithm 15. The
main idea behind the MPA is to use a pool of solutions as long term memory in which
each unique solution found during the search process is stored is kept unchanged in
this modification (Line 15). At every point in time, the algorithm uses one of these
solutions as a current incumbent solution (which is to be executed by the vehicles;
Line 5). To guarantee the feasibility of all solutions in the pool, solutions which are
incompatible with decisions made in the current incumbent solution are eliminated
from the pool whenever necessary (Line 8). This way, the resulting solution is defined
by the sequence of actions taken during execution.

According to Bent and Van Hentenryck [40], the best strategy to select the current
incumbent solution is based on a consensus function similar to a least commitment
strategy. This means that the solution most similar to all other solutions in the long
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Algorithm 15 Structure of the MPA for the DDARPTD

1: P ← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x̄← RescheduleWithTrueTravelSpeeds(x̄) ∀x̄ ∈ P
5: x← SelectCurrentIncumbent(P )
6: for x̄ ∈ P do

7: if (x̄ 6= x) ∧ (Timeout(x̄, x) ∨ Departure(x̄, x)) then
8: P ← P \ {x̄}
9: else

10: InsertNewRequests(x̄)
11: end if

12: end for

13: x′ ← ShakeSolution(x,N (κ))
14: if x′ /∈ P then

15: P ← P ∪ {x′}
16: end if

17: N (κ)← SelectNextNeighborhood(κ)
18: end while

term memory is selected. Previous findings for the DSDARP (see Chapter 3) indicate
that this strategy, however, may not be the best choice under all circumstances. As
the DDARPTD is structurally similar to the DSDARP, we decide to use the best
solution in the pool as our current incumbent solution as we do for the DSDARP.

4.3.6 Multiple scenario approach

Based on the MPA, we modify the multiple scenario approach in order to exploit
the available stochastic information about future travel speeds. All adaptations
are based on the modified version of the MSA presented for the DSDARP (see
Section 3.3.6). An outline of this modification is shown in Algorithm 16.

The main difference between the MPA and the MSA is that the latter incorpo-
rates stochastic information in the search process, while the former does not. For
this purpose, the multiple scenario approach samples future travel speed deviations
the same way as dynamic S-VNS. Contrary to S-VNS, it does not only use this
information for comparing two solutions by means of sample average estimators,
but uses this information during the search process. To be precise, it re-schedules
the current incumbent solution using the sampled stochastic deviations before the
search process (Lines 4 and 8 to 12). As for S-VNS, the used sample is updated
every U iterations. This way, the search process is intended to be guided towards
solutions which are of high quality regarding the used sample in order to increase
the diversity of solutions in the long term memory. Note, that it is again (as for
S-VNS) crucial to keep the stochastic information (i.e., the current sample of future
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Algorithm 16 Structure of the MSA for the DDARPTD

1: P ← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: Z ← SampleFutureTravelSpeeds()
4: x̄← Reschedule(x̄, Z) ∀x̄ ∈ P
5: u, i← 0
6: while StoppingCriterionNotMet() do
7: i← i+ 1
8: if i− u > U then

9: u← i
10: Z ← SampleFutureTravelSpeeds()
11: x̄← Reschedule(x̄, Z) ∀x̄ ∈ P
12: end if

13: x̄← RescheduleWithTrueTravelSpeeds(x̄) ∀x̄ ∈ P
14: x← SelectCurrentIncumbent(P )
15: for x̄ ∈ P do

16: if (x̄ 6= x) ∧ (Timeout(x̄, x) ∨ Departure(x̄, x)) then
17: P ← P \ {x̄}
18: else

19: InsertNewRequests(x̄)
20: end if

21: end for

22: x′ ← ShakeSolution(x,N (κ))
23: if x′ /∈ P then

24: P ← P ∪ {x′}
25: end if

26: N (κ)← SelectNextNeighborhood(κ)
27: end while

travel speeds) included in all the stored solutions instead of removing it before they
are stored.

4.4 Computational experiments

In order to study the effect of exploiting the available stochastic information about
future travel speeds while planning the vehicle routes for the Austrian ambulance
service providers, we create a set of real world based test instances. The ride times in
our test instances are based on historical data gathered during a recent floating car
data (FCD) project in the city of Vienna. Additionally, the distribution parameters
for the interarrival times of the requests serviced during this period described in the
master thesis of Kritzinger [46] (see Section 3.4.1) are used again. All computational
experiments are performed on one core of a SUN Fire X2270 server with 2 quad-
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Λ = 0% Λ = 30%

inbound outbound inbound outbound

N static dynamic (dynamic) total static dynamic (dynamic) total

100% 113.2 0.0 111.6 224.8 81.2 32.0 111.6 224.8
200% 211.8 0.0 207.2 419.0 151.4 60.4 207.2 419.0
300% 309.8 0.0 303.0 612.8 216.0 93.8 303.0 612.8
400% 410.0 0.0 401.2 811.2 295.6 114.4 401.2 811.2

Λ = 50% Λ = 80%

inbound outbound inbound outbound

N static dynamic (dynamic) total static dynamic (dynamic) total

100% 58.0 55.2 111.6 224.8 23.0 90.2 111.6 224.8
200% 105.8 106.0 207.2 419.0 43.4 168.4 207.2 419.0
300% 152.8 157.0 303.0 612.8 59.2 250.6 303.0 612.8
400% 213.2 196.8 401.2 811.2 79.0 331.0 401.2 811.2

Table 4.1: Average number of transportation requests per instance class. (Λ - degree
of dynamism, N - relative size of the instance set)

core Intel Xeon X5550 processors (2.66 GHz) with 24 GB of shared memory. The
algorithms are implemented using C++ and the GNU compiler g++ in its version
4.1.2 on CentOS 5.5.

4.4.1 Test instances

We assume that a day consists of 24 time intervals, each of 1 hour length. For
each link inside the used real world road network and each of the intervals we
can therefore determine an average vehicle speed. These travel speeds are used
as a planning basis by the myopic approaches (see Section 4.3). In addition, we
generate stochastic deviations from these average velocities. This is done by drawing
uniformly distributed random samples in the range ∆i = [∆i,∆i] for each link inside
the network and each interval i, whereby ∆i = min{max{Babs, Brel}, Babs} and ∆i =
max{min{Babs, Brel}, Babs}. Here, Babs = 1.2 and Babs = 0.8 represent the allowed
upper and lower bound for deviations from the average velocity of interval i as a
factor. For each interval i > 0, the terms Brel = 1.1∆i−1 and Brel = 0.9∆i−1 define
the upper and lower bound for divergence from the previous interval’s deviation
∆i−1. For interval i = 0 these values are set to Brel = Babs and Brel = Babs. This
way, neighboring intervals’ deviations are correlated in a way which we assume to
be sufficiently realistic.

We create our transportation requests based on distribution parameters derived
from real world data on daily operations of an Austrian ambulance service provider
in the city Graz during one year. We hereby assume the parameters to be sufficiently
representative for the city of Vienna as well. In addition to these parameters, we use
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a geocoded set of patient and hospital locations in the city of Vienna correspond-
ing to the original locations serviced within one year. To model the geographical
distribution of the generated requests, this set includes an occurrence counter for
each location that is used to assign locations to created requests via roulette wheel.
By sampling the distribution of the interarrival time of two consecutive requests
we determine the arrival times for all requests. Similarly, the distribution of the
time between an incoming request and the latest time of arrival at the hospital
is sampled to construct the requests’ time windows. By varying the distribution
of interarrival times we create instances with N = {100%, 200%, 300%, 400%} the
number of requests arising in reality. A more detailed description of the process
used to determine the distribution parameters can be found in Section 3.4.1.

For each of the 4 settings for N we created 5 test instances, each representing one
working day of 10 hours length. To be precise, each instance consist of 50% inbound
(home to hospital, static or dynamic) and 50% outbound (hospital to home, always
dynamic) requests. Table 4.1 shows the average number of transportation requests
that have to be serviced in each set of test instances. Additionally, the instances
are created in a way such that the inbound requests can be selected to be static
or dynamic by defining the desired degree of dynamism. For our computational
experiments, we use degrees of dynamism of Λ = {0%, 30%, 50%, 80%} to see how
this factor influences our results.

The inbound requests are created by sampling the corresponding distributions
using the modified parameters as follows. Starting at time t = 0, the arrival time
a1 of the first request is determined according to the corresponding distribution
of the interarrival time. Iteratively, the occurrence time of the follow-up request
ai is determined based on the arrival time of the previous request ai−1. We stop
when ai exceeds the considered period of 10 hours. For each of these transportation
requests, the end of the delivery time window is determined by again sampling
the corresponding distribution. The length of the delivery time windows is set to 30
minutes. The end of the 30 minute pickup time window is determined as the starting
time of the delivery time window minus the time required to travel directly from
pickup to delivery. The same procedure is used to generate the static transportation
requests. The only difference is that, after creation, ai is set to a value of 0 for each
of the static requests.

Based on the resulting set of inbound requests, a set of outbound requests is
generated. We assume that each inbound request, no matter whether static or
dynamic, causes a corresponding outbound request. In this case, the arrival time ar
is sampled using the distribution for the time between the request’s latest arrival time
at the hospital and the beginning of the outbound request’s pickup time window.
The time window for pickup at the hospital starts at ar and is set to 60 minutes.
The start of the time window for arrival at the patient’s home location is calculated
using the average time required to travel directly from the hospital to the patient’s
home location. This time window has a length of 90 minutes, which is 60 minutes
plus the maximum ride time allowed for the patient (30 minutes).
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Figure 4.4: Average (circles) and 95% confidence intervals (whiskers) of the relative
gaps in the primary objective obtained by the MPA with time-dependent
travel speeds and the MPA with constant travel speeds (Λ - degree of
dynamism, N - instance size).

Finally, we create a greedy solution for each of the test instances using the modified
cheapest insertion procedure described in Section 3.3.2 under the assumption that
all requests are known a priori. The number of vehicles used in this solution is
increased by 10% and used as the maximum number of vehicles available to all four
algorithms.

4.4.2 Results

In what follows, we present the results obtained during 5 independent runs on our
test instances in terms of relative solution quality. This means, that results for
the stochastic methods are given as percentage relative to the results obtained by
their myopic counterparts. Also, results obtained with myopic approaches using
time-dependent travel speeds are relative to the ones obtained when using constant
travel speeds. A positive percentage indicates that the corresponding method yields
a better solution quality than the approach it is compared to, whereas a negative
value indicates the opposite. All results are obtained using an update frequency of
U = 100 iterations for the samples of our stochastic methods.

At first, we test if using time-dependent travel speeds in our myopic approaches
brings a benefit over using non-time-dependent (i.e., constant for the complete day)
average travel speeds. We expect to observe significant improvements when using
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Figure 4.5: Average (circles) and 95% confidence intervals (whiskers) of the relative
gaps in the primary objective obtained by dynamic VNS with time-de-
pendent travel speeds and dynamic VNS with constant travel speeds (Λ
- degree of dynamism, N - instance size).

time-dependent travel speeds. However, we find that for our setting with stochastic
travel speeds, there is no reliable improvement when using time-dependent speeds
compared to using constant speeds. This can be seen in Figure 4.4 for the MPA and
Figure 4.5 for dynamic VNS. The figures show the average values (circles) and 95%
confidence intervals for each of the five test instances and each of the different settings
for N and Λ. A result above the 0% line indicates an improvement over the result
obtained by the compared method whereas a result below this line indicates the
opposite. These confidence intervals indicate that no stable benefit can be obtained
by just using time-dependent travel speeds in the given setting with stochastic travel
speeds. Especially for large problem sets (N = 400%), even the opposite seems to
be true.

The explanation for this finding is as follows. The main assumption when using
time-dependent travel speeds is, that they are likely to be a better representation
of the true travel speeds than is constant average speed. This, however, is not
necessarily the case if there is a stochastic influence on true travel speeds. An
example for the expected situation is given in Figure 4.6. As can be seen in the lower
diagram (showing the absolute values of the deviations from true stochastic speeds),
time-dependent speed is, on average, a better approximation of the true travel speed
than constant average speed. The unexpected case is shown in Figure 4.7. Here,
constant travel speeds are the better approximation on average. For our problem
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Figure 4.6: Comparison of the travel speeds showing the expected case (td - time-de-
pendent speed, real - stochastic speed, const - constant average speed).

setting, both cases occur almost equally often thus leading to no reliable benefit
from using time-dependent travel speeds while planning.

As mentioned earlier, the main focus of our research is to find out if our stochastic
algorithms (dynamic S-VNS and the MSA) are able to obtain better solutions for
this problem than our myopic methods (dynamic VNS and the MPA). A summary
of all results obtained for Λ = {0%, 30%, 50%, 80%} is shown in Tables 4.2, 4.3, 4.4
and 4.5, respectively. The columns titled gap1 relate to the primary objective (sum
of tardiness, earliness and ride time violations), the columns named gap2 and gap3
relate to the secondary (number of vehicles used) and tertiary (total route duration)
objective functions, respectively. Note, that we use a lexicographic objective func-
tion. This means that only the primary objective function can be used directly to
compare solution quality. Results for the secondary and tertiary objective function
are presented for the sake of completeness only.

The first finding is that the conceptual design of the stochastic methods as pro-
posed for the DSDARP (see Section 3.3) cannot be directly used for the problem
at hand. The reason for this is that both algorithms are based on the same idea of
producing gaps in the schedule of planned solutions which, at a later point in time,
can be used to accommodate additional requests when they become known. The
MSA does this by inserting and removing sampled future requests during the search
process while dynamic S-VNS tends to prefer more robust solutions by using sample
based comparison. This works well in the case of sampled transportation requests,
but doesn’t make much sense in the case of sampled travel speeds, as no information
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Figure 4.7: Comparison of the travel speeds showing the unexpected case (td - time-
dependent speed, real - stochastic speed, const - constant average speed).

(in terms of gaps) is left after re-scheduling a solution with known travel speeds.
Therefore, both methods have to be adapted in order to keep information about the
sample included in their solutions (see Section 4.3). Still, this adaptation alone does
not lead to the desired benefits.

Additionally, the used samples themselves need to show specific characteristics in
order to achieve reasonably stable improvements in solution quality. Specifically,
the samples of possible future travel speeds should only include negative effects.
This means, that only during intervals for which the sample indicates a travel speed
lower than the time-dependent average speed, the sample should be used for plan-
ning/evaluating. For all other intervals, the known time-dependent average speed
should be used instead. In other words, in order to be beneficial, a sample should not
represent a case that is better than the average situation. It thus seems that plan-
ning more conservatively (i.e., with travel times longer than average) has a positive
effect on the obtained results.

In the static case (Λ = 0%, Table 4.2), the MSA yields an average improvement
of 12.25% compared to the solutions found by the MPA. Dynamic S-VNS achieves
11.30% average improvement over dynamic VNS in this case. This indicates, that
(assuming that all inbound requests are known in advance whereas all outbound
requests are dynamic) both stochastic methods can achieve reasonable improvements
compared to the myopic methods by using the very limited amount of stochastic
information that is available. In other words, taking stochastic deviations from
time-dependent travel speeds into account while planning leads to significantly better
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gap1 in % gap2 in % gap3 in %

N MSA S-VNS MSA S-VNS MSA S-VNS

100% 10.63 11.10 1.21 -0.97 0.69 -0.42
200% 11.45 11.53 3.21 -1.76 3.01 -0.46
300% 12.63 10.87 4.29 -3.54 3.58 -2.44
400% 14.31 11.69 3.00 -1.55 2.97 -1.21

avg. 12.25 11.30 2.92 -1.96 2.56 -1.13

Table 4.2: Average solution quality for instances with Λ = 0% depending on relative
test instance size N .

gap1 in % gap2 in % gap3 in %

N MSA S-VNS MSA S-VNS MSA S-VNS

100% 7.34 7.12 -0.86 -0.49 -0.19 1.07
200% 8.25 7.08 1.50 -1.45 1.50 0.40
300% 10.79 8.08 2.50 -1.79 2.36 -0.97
400% 11.20 9.29 2.04 -2.69 3.13 -1.64

avg. 9.39 7.89 1.30 -1.61 1.70 -0.28

Table 4.3: Average solution quality for instances with Λ = 30% depending on relative
test instance size N .

results in this case. Both stochastic methods perform almost equally well on average.
For smaller instances, dynamic S-VNS leads to larger improvements than the MSA,
whereas the opposite is true for larger instances.

In the dynamic cases (Λ > 0%), the solution quality obtained by both our stochas-
tic solution approaches declines compared to the corresponding myopic approaches.
This can be seen in Figure 4.8 for the MSA and Figure 4.9 for dynamic S-VNS.
These figures, like Figures 4.4 and 4.5 show the average gap between the results ob-
tained by the two compared methods (circles) and the corresponding 95% confidence
intervals. The relative advantage of the MSA, however, decreases faster than the
one of dynamic S-VNS. Regarding the slightly dynamic case (Λ = 30%, Table 4.3),
the MSA obtains solutions that are on average 9.39% better than the ones found by
the MPA. Dynamic S-VNS can improve on the solutions found by dynamic VNS by
7.89%. In the medium dynamic case (Λ = 50%, Table 4.4), the MSA achieves solu-
tions that are on average 5.50% better than the ones obtained by the MPA whereas
dynamic S-VNS yields 6.96% better results than dynamic VNS. In the highly dy-
namic case (Λ = 80%, Table 4.5), dynamic S-VNS still obtains results that are on
average 3.70% better than the ones found by dynamic VNS. The solutions found by
the MSA are on average only 1.30% better than the ones found by the MPA.

Besides the direct comparison between our stochastic and myopic methods, a
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gap1 in % gap2 in % gap3 in %

N MSA S-VNS MSA S-VNS MSA S-VNS

100% 6.27 6.94 -0.42 -2.03 0.61 1.39
200% 3.30 4.47 -0.26 -2.94 0.51 -1.40
300% 5.46 7.97 0.52 -0.99 1.76 -0.64
400% 6.95 8.46 0.86 -2.53 1.39 -1.92

avg. 5.50 6.96 0.17 -2.12 1.07 -0.64

Table 4.4: Average solution quality for instances with Λ = 50% depending on relative
test instance size N .

gap1 in % gap2 in % gap3 in %

N MSA S-VNS MSA S-VNS MSA S-VNS

100% 2.39 4.47 -1.50 -2.42 -1.54 0.75
200% 1.83 3.06 -4.55 -0.77 -1.54 -0.57
300% 1.05 3.63 -1.49 -2.09 -0.75 -0.50
400% -0.07 3.63 -1.99 -3.01 -0.86 -1.84

avg. 1.30 3.70 -2.38 -2.07 -1.17 -0.54

Table 4.5: Average solution quality for instances with Λ = 80% depending on relative
test instance size N .

comparison between all four methods is given in Table 4.6. As can be seen, the
MPA performs on average 2.47% and 2.22% worse than dynamic VNS in the static
and slightly dynamic case, respectively. In the cases with more dynamic requests
(Λ >= 50%), both methods provide results of similar quality. The MSA can improve
on the solutions found by dynamic VNS by 2.60% to 11.30% depending on the degree
of dynamism, which is slightly worse than the improvements obtained by dynamic
S-VNS. This indicates, that for the problem at hand, the concept of using a long
term memory as in the MPA and the MSA seems to have no strong beneficial effect.
However, as the direct comparison between the MPA and the MSA has shown,
the potential benefits from using stochastic information in this concept are more
sensitive to the degree of dynamism than in the case of dynamic S-VNS. In other
words, although based on a conceptual design that is less sophisticated than the
one used by the MPA and the MSA, the potential benefits from using stochastic
information in the case of dynamic VNS and dynamic S-VNS appear to be more
robust against changes in the degree of dynamism.

Another interesting aspect is the performance of our algorithms regarding the
secondary and tertiary objective function. While dynamic S-VNS uses 1.96% more
vehicles than dynamic VNS, the MSA can reduce the average number of vehicles
used by 2.92% compared to the MPA in the static case (Λ = 0%, Table 4.2). This
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Figure 4.8: Average (circles) and 95% confidence intervals (whiskers) of the relative
gaps in the primary objective obtained by the MPA with time-dependent
travel speeds and the MSA (Λ - degree of dynamism, N - instance size).

difference, however, is caused by the fact that the MPA uses 7.98% more vehicles
than dynamic VNS anyway. This effect is of similar magnitude for higher degrees of
dynamism as well (see Tables 4.3,4.4, and 4.5). As can be seen from the same tables,
both stochastic methods obtain solutions that have between -1.17% and 2.56% gap
to the route durations found by the corresponding myopic approach. This means,
that the benefits obtained by the stochastic methods can be achieved without large
sacrifices regarding the secondary and tertiary objective values.

Finally, we can see from Tables 4.2, 4.3, 4.4 and 4.5, that the test instance size
does also have an impact on relative solution quality. This influence, however, is
relatively small except for the slightly dynamic situation (Λ = 30%).

Our results show, that possible advantages of using stochastic information about
future travel time deviations while planning is highly depending on two factors. On
the one hand, the conceptual design of the used method does have a strong influence
on the obtained results. On the other hand, the magnitude of possible improvements
depends on the degree of dynamism. In detail, we found that our single solution
based dynamic S-VNS approach is slightly less sensitive to the degree of dynamism
than MSA. Still, both stochastic methods are in almost all cases able to benefit from
the scarce information about the stochastic effects on travel speeds that is available.
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Figure 4.9: Average (circles) and 95% confidence intervals (whiskers) of the relative
gaps in the primary objective obtained by VNS with time-dependent
travel speeds and S-VNS (Λ - degree of dynamism, N - instance size).

4.5 Summary

In this chapter we adapt the two conceptually similar pairs of metaheuristic solu-
tion approaches for the DSDARP to the requirements of the dynamic dial-a-ride
problem with stochastic time-dependent travel speeds (DDARPTD). The first pair
consists of a dynamic variable neighborhood search method (dynamic VNS) and a
stochastic variant thereof (dynamic S-VNS). The second pair includes the multiple
plan approach (MPA) and the multiple scenario approach (MSA). All four methods
use our implementation of dynamic VNS as a search component. Our main aim
is to determine if the inclusion of information about future stochastic deviations
from time-dependent travel speeds in stochastic algorithms leads to better solutions
than using only average time-dependent travel speeds in the corresponding myopic
methods.

We test all algorithms on sets of real world inspired test instances including a
total of 20 instances. Our findings show, that in the static case (Λ = 0%, i.e., all
inbound requests known a priori) both stochastic approaches lead to remarkable
average improvements of more than 10% over their myopic counterparts. In more
dynamic situations (Λ = {30%, 50%, 80%}), the relative performance of MSA de-
teriorates faster than the one of dynamic S-VNS. Still, both stochastic methods
perform reasonably better than their myopic counterparts. Thus, the benefit from
using information about stochastic deviations from future time-dependent travel
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Stochastic time-dependent travel speeds

gap1 in % gap2 in % gap3 in %

Λ MPA MSA S-VNS MPA MSA S-VNS MPA MSA S-VNS

0% -2.47 10.18 11.30 -7.98 -4.77 -1.96 -2.85 -0.19 -1.13
30% -2.22 7.44 7.89 -2.50 -1.12 -1.61 -1.10 0.65 -0.28
50% 0.32 5.81 6.96 -1.64 -1.45 -2.12 -0.78 0.31 -0.64
80% 1.35 2.60 3.70 1.31 -0.99 -2.07 1.94 0.80 -0.54

avg. -0.75 6.51 7.46 -2.70 -2.08 -1.94 -0.70 0.39 -0.65

Table 4.6: Average solution quality depending on degree of dynamism. All values
relative to results obtained by dynamic VNS. (Λ - degree of dynamism)

speeds is potentially noteworthy, but it’s magnitude highly depends on the problem
characteristics (e.g., degree of dynamism).

In situations with low degrees of dynamism, MSA leads to larger improvements
relative to the corresponding myopic approach than dynamic S-VNS. In cases with
higher degrees of dynamism, the opposite is true. It seems that dynamic S-VNS is
the more robust way to integrate stochastic information into the planning process.
Additionally, the concept of using a long term memory in the solution process (as
in MPA and MSA) seems not to be favorable over a pure VNS approach in the case
of the dynamic DARP with stochastic time-dependent travel speeds.
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5 Heterogenous aspects and multiple

depots

5.1 Introduction and related work

In Chapter 3 we study the effects of exploiting stochastic information about future
return transports while planning vehicle routes for the dynamic dial-a-ride problem.
In Chapter 4 we do the same for stochastic time-dependent travel speeds. In this
chapter, we combine these two stochastic aspects and include additional real world
motivated constraints to the DDARP in order to obtain an even more realistic
problem description. For this purpose, we assume stochastic information about
both, future return transports and time-dependent travel speeds, to be available
and additionally include heterogeneous patients, heterogeneous vehicles and multiple
depots in the problem (see Section 5.2 for details). The resulting problem is denoted
as heterogeneous dynamic stochastic dial-a-ride problem with stochastic time-depen-
dent travel speeds (HDSDARPTD).

Among the first publications to study heterogeneous versions of the passenger
transportation problem was a paper by Toth and Vigo [63]. The authors consider
seated passengers, patients who require a wheelchair and different types of vehicles
in the context of the handicapped persons transport problem which is a generaliza-
tion of the pickup and delivery problem with time windows. The proposed solution
methods include a parallel insertion heuristic and a tabu thresholding procedure
used to improve the solutions found by the heuristic. Melachrinoudis et al. [64]
present a heterogeneous extension to the DARP including vehicles with different
capacities but only a single mode of transportation and solve it using a tabu search
approach. A similar variant of the DARP including different vehicle capacities but
a single mode of transportation is also studied by Rekiek et al. [65] using a group-
ing genetic algorithm. Beaudry et al. [66] present an adaptation of a tabu search
approach for a heterogeneous version of the DARP for patient transportation opera-
tions inside hospitals. The studied problem is dynamic and includes different modes
of transportation as well as different vehicle types. Another application in the con-
text of dynamic heterogeneous intrahospital patient transportation is presented by
Hanne et al. [67]. Kergosien et al. [68] study the dynamic problem when transporting
patients between different care units of a hospital and propose a tabu search method
with an adaptive memory. Finally, Parragh [69] presents exact and metaheuristic
solution approaches for the DARP with four different modes of transportation and
different types of vehicles. As this work is also considering the requirements of an
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Figure 5.1: Vehicles of type 1 (left) and type 2 (right).

Passenger type Staff seat Patient seat Stretcher Wheelchair place

Accompanying person X X X
Seated patient X X
Lying patient X
Patient with wheelchair X

Table 5.1: Available upgrading options for the different transportation modes.

Austrian ambulance service provider, our study uses the same types of vehicles and
patients.

5.2 Problem definition

The heterogeneous dynamic stochastic dial-a-ride problem with stochastic time-de-
pendent travel speeds is a combination and extension of the dynamic stochastic
dial-a-ride problem with expected return transports and the dynamic dial-a-ride
problem with stochastic time-dependent travel speeds. This means, that we assume
stochastic information about both, future return transports and time-dependent
travel speeds, to be available and additionally include heterogeneous patients, het-
erogeneous vehicles and multiple depots in the problem. To be precise, we no longer
assume every patient and every vehicle to be the same. Instead, we assume that
there are four different types of resources depending on the required mode of trans-
portation: staff seats, patient seats, stretchers and wheelchair places. The presented
types of vehicles and patients are taken from Parragh [69]. In addition to this, we
also no longer assume all vehicles to be located at a common home depot at the
beginning of the planning horizon. Instead, we assume each vehicle do be located
at a specific hospital site to which it must return in the evening.

Some patients require a normal passenger seat as they can be transported sitting
(due to legal restrictions using a staff seat is not allowed for patients in Austria).
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5.2 Problem definition

Alternatively, such patients can, however, be transported lying on a stretcher (which
is denoted as upgrading). Some patients need to be transported in a lying position
which means that they require a stretcher to be available in the vehicle used to
service their request. A third type of patients requires a wheelchair place to be
available in order to be transported. The latter two types of patients cannot be
upgraded. Finally, every patient may be accompanied by an additional person.
Such an accompanying person normally uses a staff seat, but also a patient seat or a
stretcher can be used if no free staff seat is available. Additionally, we assume that
two different types of vehicles are available for transporting the patients. Vehicles
of type 1 are equipped with one staff seat, six patient seats, no stretcher and one
wheelchair place. Vehicles of type 2 are equipped with two staff seats, one patient
seat, one stretcher and one wheelchair place. A graphical representation of these two
vehicle types is shown in Figure 5.1 taken from Parragh [69]. The possible options
for upgrading the different transportation modes are shown in Table 5.1 which is
also taken from Parragh [69].

The remainder of the HDSDARPTD is a combination of the DSDARP and the
DDARPTD. This means, that we assume each outbound request r to have a specific
probability Rr to cause an inbound request during the planning period (as in the
case of the DSDARP). For outbound requests we still assume that no a priori
information is known. Additionally, the problem is defined on a (directed) real world
road network with stochastic time-dependent travel speeds as is the DDARPTD.
Therefore, we assume that going from node A to any other nodeB takes T̂ (t, A,B) =
T̂avg(t, A,B) + Tstoc(t, A,B) time units. T̂avg(t, A,B) is the time required to travel
from A to B when leaving A at a given time t and is based on the average vehicle
speeds during the affected time intervals which are assumed to be known a priori.
Again, the term Tstoc(t, A,B) represents the stochastic influence on this travel time
which is revealed only upon departure from A.

As the travel speeds used for the HDSDARPTD are time-dependent, the max-
imum detour constraint introduced for the DDARPTD is used for this problem
as well. We define the time required to go directly from pr to dr departing at
time t as T̂direct(t, pr, dr). The time between the planned end of service at pr
and the planned start of service at dr is denoted as Treal. Then, the equation
Treal ≤ T̂direct(t, pr, dr) + 30 should not be violated. Due to the stochastic influence
on travel speeds, we again cannot guarantee that this equation will strictly hold and
penalize this ride time violation in the objective function. Note, that waiting times
may only be planned when a vehicle is empty.

For the HDSDARPTD we use the same lexicographic objective function as for the
DDARPTD as the aim of planning the vehicle routes is still to minimize passenger
dissatisfaction while keeping total costs as low as possible. The primary objective is
to minimize the sum of tardiness, earliness and ride time violations over all routes.
The secondary objective is the number of routes (vehicles used). The third objective
is the total route duration. In general, solutions are compared according to the
primary objective. In case two solutions are equal in terms of the primary objective,
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the secondary one is used for comparison. Only if both, primary and secondary
objective, are equal for two solutions, comparison is based on the third objective.

5.3 Solution methods

The aim of the research presented in this chapter is twofold. First, we want to find
out if the combination of the two stochastic aspects studied separately in Chapters 3
and 4 leads to effects different from the ones found before. Second, we want to
study the effect of additionally introducing heterogenous aspects into the problem
the Austrian ambulance service providers are facing. For this purpose, we use the
same solution approaches presented for the DSDARP and the DDARPTD to solve
the HDSDARPTD.

Again, we need to adapt our four solution methods to the requirements of this
extended problem. This means, that we need to combine the modifications made to
solve the DSDARP and the ones used for the DDARPTD in order to obtain solu-
tion methods capable of handling stochastic return transports as well as stochastic
time-dependent travel speeds. Additionally, we need to adapt all methods to the
heterogeneous aspects of the new problem. To be precise, the methods need to
make sure, that vehicles used to service a specific request really possess the capacity
required by this request with respect to each of the four transportation modes.

5.3.1 Simulation framework

As we combine the two extensions to the DDARP presented in the previous chap-
ters, we also need to adapt the simulation framework accordingly. This means, that
we merge the features of both simulators into one while extending the framework
in order to support multiple resources and different vehicle types. The resulting
framework still loads and manages all problem specific information like, for exam-
ple, test instance data, distance matrices, vehicle information, and request arrival
lists. It also has the interface which allows the solver modules to request expected
travel times between two locations for a given departure or arrival time. In this
way the framework provides travel times based on the average speeds within the af-
fected intervals. Again, we assume that travel times including the actual stochastic
influences are revealed to the solver modules only upon departure of the respective
vehicle. The framework also takes care of the FIFO property as we use the same
block scheduling algorithm as presented in Section 4.3.2. Further modifications are
required in order to handle the HDSDARPTD because of the heterogeneous vehicle
fleet, the heterogeneous patients and the use of multiple depots.

5.3.2 Scheduling algorithm

As the heterogeneous dynamic stochastic dial-a-ride problem with stochastic time-
dependent travel speeds includes multiple resources and different patient types, we
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Algorithm 17 Heterogeneous block scheduling algorithm: Phase 1

1: i← 0
2: Q0 ← 0
3: for n = {1, . . . , |S|} do
4: An ← Dn−1 + T̂ (Dn−1, n− 1, n)
5: Bn ← An

6: Dn ← Bn + dn
7: if CheckCapacities(n) then
8: return Infeasible
9: end if

10: if VehicleEmptyBeforeStop(n) ∧(An < en) then
11: An ← en
12: Dn−1 ← An − Ť (An, n− 1, n)
13: Bn ← An

14: Dn ← Bn + dn
15: i← i+ 1
16: Θstart

i ← n

17: Θwaiting
i ← Dn−1 −Bn−1 − dn−1

18: Θearliness
i ← max{en −Bn, 0}

19: Θslack
i ← max{ln −Bn, 0}

20: else

21: Θearliness
i ← max{max{en −Bn, 0},Θ

earliness
i }

22: Θslack
i ← min{max{ln −Bn, 0},Θ

slack
i }

23: end if

24: end for

need to adapt our block scheduling algorithm accordingly. Given a specific sequence
of transportation requests inside a route, the feasibility and timing of the route is
determined. In order to correctly handle the heterogeneous aspects of the problem,
the algorithm needs to match the available capacities with the requirements of each
transported patient.

The outline of phase 1 of the block scheduling algorithm capable of handling the
heterogeneous aspects of the HDSDARPTD is presented in Algorithm 17. As the
sequence of the stops is not altered during the scheduling process, phase 2 of the BSA
remains unaffected by the heterogeneous aspects of the problem (see Algorithm 12).
In order to make this outline easier to read, we condense all the capacity checks into
a single function call (Line 7).

For this purpose, we extend the notation used in Section 4.3.2 as follows. S is
again the set of nodes to be visited by the current route (in chronological order,
0 and |S| are the indices of the depot nodes). Q0 is the number of staff seats
available inside the vehicle servicing the current route. Q1, Q2 and Q3 is the number
of installed patient seats, the number of stretchers and the number of wheelchair

69



Heterogenous aspects and multiple depots

Algorithm 18 Heterogeneous block scheduling algorithm: capacity check pickup

1: if Q0 + q0n <= Q0 then

2: Q0 ← Q0 + q0n
3: else if Q1 + q0n <= Q1 then

4: Q01 ← Q01 + q0n
5: Q1 ← Q1 + q0n
6: else if Q2 + q0n <= Q2 then

7: Q02 ← Q02 + q0n
8: Q2 ← Q2 + q0n
9: else

10: return Infeasible
11: end if

12: if Q1 + q1n <= Q1 then

13: Q1 ← Q1 + q1n
14: else if Q2 + q1n <= Q2 then

15: Q12 ← Q12 + q1n
16: Q2 ← Q2 + q1n
17: else

18: return Infeasible
19: end if

20: if Q2 + q2n <= Q2 then

21: Q2 ← Q2 + q2n
22: else

23: return Infeasible
24: end if

25: if Q3 + q3n <= Q3 then

26: Q3 ← Q3 + q3n
27: else

28: return Infeasible
29: end if

places available, respectively. The values Q0,Q1,Q2 and Q3 represent the used
amount of the respective resource when arriving at the current stop. In order to
handle the upgrading options correctly, we additionally introduce Q01 and Q02 as
the number of accompanying persons upgraded to a patient seat or a stretcher. Also,
Q12 is the number of sitting patients transported on a stretcher instead of using a
patient seat. Note, that lying patients and wheelchair users cannot be upgraded.
The amount of resources required by each of the stops along the route are denoted
as q0n, q1n, q2n and q3n, respectively (assuming the pickup and delivery stop of the
same patient to have the same non-negative capacity requirements).

The outline of this function for pickup stops is presented in Algorithm 18. First,
the function checks if the vehicle can accommodate an additional accompanying
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Algorithm 19 Heterogeneous block scheduling algorithm: capacity check delivery

1: if Q02 > 0 then

2: Q02 ← Q02 − q0n
3: Q2 ← Q2 − q0n
4: else if Q01 > 0 then

5: Q01 ← Q01 − q0n
6: Q1 ← Q1 − q0n
7: else

8: Q0 ← Q0 − q0n
9: end if

10: if Q12 > 0 then

11: Q12 ← Q12 − q1n
12: Q2 ← Q2 − q1n
13: else

14: Q1 ← Q1 − q1n
15: end if

16: Q2 ← Q2 − q2n
17: Q3 ← Q3 − q3n

person if required (Lines 1 to 11). Second, it checks the available space for sitting
patients (Lines 12 to 19) followed by the space for lying patients (Lines 20 to 24)
and wheelchair users (Lines 25 to 29). For delivery stops, the function needs to
make sure that all resources are freed correctly (Algorithm 19). This means, that
upgraded persons need to be downgraded as soon as possible in order to free the
more scarce resources (i.e., stretchers, patient seats).

5.3.3 Dynamic variable neighborhood search

We adapt the dynamic variable neighborhood search algorithm presented in the
previous chapters in order to meet the requirements of the HDSDARPTD. We use
the adaptation of our dynamic VNS presented for the DDARPTD (see Section 4.3.3)
as a basis for our modifications as it already includes all changes required to handle
time-dependent travel speeds. Due to the heterogeneous aspects of the problem
the algorithm needs to be slightly modified in order to guarantee the matching of
transportation modes (sitting, lying, in wheelchair and accompanying persons) to
the available resources of the vehicles (patient seats, stretchers, wheelchair places
and staff seats). In the outline given in Algorithm 20, however, these modifications
cannot be seen as they do not affect this rather abstract outline of the algorithm
but more fundamental parts of the implementation. To be precise, especially the
scheduling algorithm needs to be modified in order to correctly handle multiple
resources and heterogeneous patients. For this purpose, we include the respective
modifications in the block scheduling algorithm as described in Section 5.3.2.

The dynamic VNS algorithm starts by creating an initial feasible solution includ-
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Algorithm 20 Structure of dynamic VNS for the HDSDARPTD

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x← RescheduleWithTrueTravelSpeeds(x)
5: x← InsertNewRequests(x)
6: x′ ← ShakeSolution(x,N (κ))
7: x← MoveOrNot(x, x′)
8: N (κ)← SelectNextNeighborhood(κ)
9: end while

10: return x as best found solution

ing all static request using the modified cheapest insertion heuristic described in
Section 3.3.2 and then enters the iterative search process. At the beginning of each
iteration, the current incumbent solution needs to be updated with respect to the
current traffic situation (Line 4). Note, that this is only required if a vehicle de-
parted since the last update (as we assume true travel speeds to be revealed upon
departure of a vehicle). Then, all new transportation requests are inserted into
the current incumbent solution using the cheapest insertion method (Line 5). The
current incumbent solution is then perturbed by a shaking step using the neighbor-
hood operators described in Section 3.3.3. Finally, the algorithm decides whether or
not to accept the new solution as current incumbent solution and selects the next
neighborhood operator and intensity level accordingly (Lines 7 and 8).

5.3.4 Dynamic stochastic variable neighborhood search

In order to adapt the dynamic S-VNS to the new requirements of the HDSDARPTD
we combine the two variants of dynamic S-VNS presented for the DSDARP and the
DDARPTD. This means, that we use the general outline of the version tailored
to the DDARPTD as a basis and introduce the required changes in order to also
exploit the stochastic information about future return transports. All modifications
required to handle the heterogeneous extensions are already included in the block
scheduling algorithm.

An outline of the modified dynamic S-VNS method is given in Algorithm 21. In
the case of the HDSDARPTD, the current incumbent solution is evaluated based
on a sample of future travel speeds and a sample of future return transports at the
same time. This means that the algorithm determines possible future deviations
from each road segment’s average travel speed for each future interval by sampling
the corresponding distribution parameters (Line 3) and re-schedules the initial solu-
tion using this information (Line 4). At the beginning of each iteration the algorithm
adapts the current incumbent solution to stochastic travel speeds if they are known
by now (Line 8). It then inserts all new requests which have become known during
the last iteration into this solution (Line 9). This is followed by a shaking step using
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Algorithm 21 Structure of dynamic S-VNS for the HDSDARPTD

1: x← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: Zspeeds ← SampleFutureTravelSpeeds()
4: x← Reschedule(x,Zspeeds)
5: u, i← 0
6: while StoppingCriterionNotMet() do
7: i← i+ 1
8: x← RescheduleWithTrueTravelSpeeds(x)
9: x← InsertNewRequests(x)

10: x′ ← ShakeSolution(x,N (κ))
11: Zrequests ← SampleFutureRequests(1, Smax)
12: x← InsertSampledRequests(x,Zrequests)
13: x′ ← InsertSampledRequests(x′, Zrequests)
14: if i− u > U then

15: u← i
16: Zspeeds ← SampleFutureTravelSpeeds()
17: x← Reschedule(x,Zspeeds)
18: x′ ← Reschedule(x′, Zspeeds)
19: end if

20: x← MoveOrNot(x, x′)
21: x← RemoveSampledRequestsFromSolution(x,Zrequests)
22: N (κ)← SelectNextNeighborhood(κ)
23: end while

24: return x as best found solution

the same neighborhood structures as already described for dynamic VNS (Line 10).
Following the shaking step, a sample of future return transports is generated and
inserted into the current incumbent and the candidate solution (Lines 11 to 13).
Then, it re-schedules both, the current incumbent and the candidate solution, ac-
cordingly (Lines 14 to 19). After every U iterations, the algorithm updates the used
sample of future travel speeds. The solution which has the better sample average
estimator with respect to the current samples is selected as new current incumbent
solution after removing the sampled return transports from it again (Line 20). We
use a single sample of future travel speeds and a single sample of future return
transports for this evaluation. It is again essential to keep the sampled information
about future travel speeds included in the solution that is to be executed in order
to obtain significant benefits over an algorithm that uses only average travel speeds
for planning.

5.3.5 Multiple plan approach

Our second pair of metaheuristics we adapt to the requirements of the HDSDARPTD
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Algorithm 22 Structure of the MPA for the HDSDARPTD

1: P ← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: while StoppingCriterionNotMet() do
4: x̄← RescheduleWithTrueTravelSpeeds(x̄) ∀x̄ ∈ P
5: x← SelectCurrentIncumbent(P )
6: for x̄ ∈ P do

7: if (x̄ 6= x) ∧ (Timeout(x̄, x) ∨ Departure(x̄, x)) then
8: P ← P \ {x̄}
9: else

10: InsertNewRequests(x̄)
11: end if

12: end for

13: x′ ← ShakeSolution(x,N (κ))
14: if x′ /∈ P then

15: P ← P ∪ {x′}
16: end if

17: N (κ)← SelectNextNeighborhood(κ)
18: end while

is based on the multiple plan approach. As the variant of the MPA presented for
the DDARPTD is already able to handle time-dependent travel speeds and dynamic
requests (return transports are treated as being dynamic as this is a myopic solution
approach), we do not need to include additional modifications with respect to these
two aspects. The presence of heterogeneous aspects, however, needs to be taken
into account by the method. The changes required in order to handle the different
vehicle and patient types are already included in the scheduling algorithm and thus
do not show up in the general outline of the MPA given in Algorithm 22.

The main idea behind the MPA still is to use a pool of solutions as long term
memory in which each unique solution found during the search process is stored. At
every point in time, the algorithm uses one of these solutions as a current incumbent
solution which is to be executed by the vehicles (Line 5). To guarantee the feasibility
of all solutions in the pool, solutions which are incompatible with decisions made
in the current incumbent solution are eliminated from the pool whenever necessary
(Line 8). This way, the resulting solution is defined by the sequence of actions taken
during execution. As the HDSDARPTD is structurally similar to the DSDARP
and the DDARPTD, we decide to use the best solution in the pool as our current
incumbent solution as we do for these two problems.

5.3.6 Multiple scenario approach

Finally, we need to merge the two variants of the multiple scenario approach
presented for the DSDARP and the DDARPTD into one solution method for the
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Algorithm 23 Structure of the MSA for the HDSDARPTD

1: P ← InitialSolution()
2: N (κ)← SelectFirstNeighborhood()
3: Zspeeds ← SampleFutureTravelSpeeds()
4: x̄← Reschedule(x̄, Zspeeds) ∀x̄ ∈ P
5: u, i← 0
6: while StoppingCriterionNotMet() do
7: i← i+ 1
8: if i− u > U then

9: u← i
10: Z ← SampleFutureTravelSpeeds()
11: x̄← Reschedule(x̄, Zspeeds) ∀x̄ ∈ P
12: end if

13: x̄← RescheduleWithTrueTravelSpeeds(x̄) ∀x̄ ∈ P
14: x← SelectCurrentIncumbent(P )
15: for x̄ ∈ P do

16: if (x̄ 6= x) ∧ (Timeout(x̄, x) ∨ Departure(x̄, x)) then
17: P ← P \ {x̄}
18: else

19: InsertNewRequests(x̄)
20: end if

21: end for

22: Zrequests ← SampleFutureRequests(1, Smax)
23: x′ ← AddSampledRequestsToSolution(x,Zrequests)
24: x′ ← ShakeSolution(x′,N (κ))
25: x′ ← RemoveSampledRequestsFromSolution(x′, Zrequests)
26: if x′ /∈ P then

27: P ← P ∪ {x′}
28: end if

29: N (κ)← SelectNextNeighborhood(κ)
30: end while

HDSDARPTD. This means, that we use the variant described for the DDARPTD
as a basis for our modifications and include the parts required in order to handle
stochastic return transports. An outline of this modification is shown in Algo-
rithm 23.

The algorithm starts by creating an initial solution using the modified cheapest
insertion method presented in Section 3.3.2 and re-schedules this solution using a
first sample of future travel speeds. This is followed by an iterative search phase.
Every U iterations, all stored solutions are re-scheduled using a new sample of future
travel speeds (Lines 8 to 12). Then, all solutions are re-scheduled if new true travel
speeds have been revealed (i.e., if a vehicle has departed since the last iteration;
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Line 13). Note, that the information of the current sample of future travel speeds is
not removed from the solutions by doing so (if true travel speeds are still unknown,
the sampled ones are used for re-scheduling). The current incumbent solution is
selected out of the set of solutions (Line 14). After that, all solutions which are
no longer compatible with the current incumbent solution are removed from the set
(Line 17). New requests are inserted into all remaining solutions in the set using
the modified cheapest insertion method (Line 19). Future requests are sampled and
inserted into the current incumbent solution before the shaking step and removed
again after the shaking was performed (Lines 23 to Line 25). This is done in order to
obtain a solution including gaps in the schedule of the request, which can at a later
point in time be used to accommodate real future requests more easily. The resulting
solution is then stored in the set of solutions if it was not known before (Line 27)
and the next neighborhood operator is selected accordingly (Line 29). Hereby, the
same neighborhood structures are used as with all our other methods.

5.4 Computational experiments

The aim of studying the HDSDARPTD is to find out if exploiting stochastic informa-
tion about two different problem aspects simultaneously in a heterogeneous setting
leads to new insights. For this purpose, we adapt the test instances created for
the DDARPTD (see Section 4.4.1) by re-including the stochastic return transports
and adding heterogenous vehicles, heterogeneous patients and multiple depots. All
computational experiments are performed on one core of a SUN Fire X2270 server
with 2 quad-core Intel Xeon X5550 processors (2.66 GHz) with 24 GB of shared
memory. The algorithms are implemented using C++ and the GNU compiler g++
in its version 4.1.2 on CentOS 5.5.

5.4.1 Test instances

Based on the test instances created for the DDARPTD (see Section 4.4.1), we create
an extended set of instances for the HDSDARPTD. The main difference is, that we
include the heterogeneous aspects of the problem into the instances. Additionally,
we re-include the stochastic return transports from the DSDARP.

For the problem at hand we use only 5 of the largest test instances (defined by
N = 400%) and add the heterogeneous aspects as follows. First, we adapt the vehicle
fleet defined for each instance. To be precise, we allow using up to 120 vehicles for
solving each instance and assign a random number in the interval [0, 1] to each
of them. This number can then be used to define the vehicle type when loading
the instance. Note, that we perform all our computational experiments using 50%
chance for each vehicle type (i.e., an approximately equal number of vehicle of both
types). Additionally, each vehicle is assigned a specific depot location by randomly
selecting one of the ten largest hospital locations (with respect to the number of
transportation requests going there according to the available real world data).
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Figure 5.2: Average (circles) and 95% confidence intervals (whiskers) of the relative
gaps in the primary objective obtained by the MPA with time-depen-
dent travel speeds and the MSA (Λ - degree of dynamism, R - return
transport probability).

Furthermore, we assign each transportation request a random number in the inter-
val [0, 1] allowing to specify the capacity requirements of the respective patient when
loading the instance data. For all our computational experiments we use the same
parameters for the heterogeneous patients as presented by Parragh [69]. Namely,
we set 50% of all patients to be accompanied by an additional person, 83% of the
patients to be transported sitting, 11% to be transported lying and 6% to be using
a wheelchair. These parameters as well as the used fleet size roughly correspond to
the real situation faced by one of the largest Austrian ambulance service providers.

In our computational experiments, each of the test instances is solved using dif-
ferent settings for the return transport probability R and the amount of dynamic
requests Λ (the proportion of inbound requests that are dynamic). The return trans-
port probability can be R = {30%, 50%, 80%}, whereas the degree of dynamism can
be Λ = {0%, 30%, 50%, 80%}. Thus, we test 12 different parameter combinations
for each of the 5 instances.

5.4.2 Results

In what follows, we present the results obtained during 5 independent runs on our
test instances in terms of relative solution quality. This means, that results for
the stochastic methods are given as percentage relative to the results obtained by
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Figure 5.3: Average (circles) and 95% confidence intervals (whiskers) of the relative
gaps in the primary objective obtained by VNS with time-dependent
travel speeds and S-VNS (Λ - degree of dynamism, R - return transport
probability).

their myopic counterparts. A positive percentage indicates that the corresponding
method yields a better solution quality than the approach it is compared to, whereas
a negative value indicates the opposite. All results are obtained using an update
frequency of U = 100 iterations for the samples of our stochastic methods.

The main focus of our research is to find out if our stochastic algorithms (dy-
namic S-VNS and the MSA) are able to obtain better solutions for this problem
than our myopic methods (dynamic VNS and the MPA). Especially the question if
the observed effects differ from the ones found during the separate studies of the
two stochastic effects is of relevance to us. A summary of all results obtained for
R = {30%, 50%, 80%} depending on the degree of dynamism Λ is shown in Ta-
bles 5.2, 5.3, and 5.4, respectively. The columns titled gap1 relate to the primary
objective (sum of tardiness, earliness and ride time violations), the columns titled
gap2 and gap3 relate to the secondary (number of vehicles used) and tertiary (total
route duration) objective functions, respectively. Note, that we use a lexicographic
objective function. This means that only the primary objective function can be
used directly to compare solution quality. Results for the secondary and tertiary
objective function are presented for the sake of completeness only. Figure 5.2 shows
the average gap (and the 95% confidence intervals) between the solution quality ob-
tained by the MSA and the one obtained by the MPA for each of the test instances.
Figure 5.3 shows the same information for dynamic S-VNS and dynamic VNS.
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gap1 in % gap2 in % gap3 in %

Λ S-VNS MSA S-VNS MSA S-VNS MSA

0% 25.30 36.75 0.00 2.34 -4.27 4.29
30% 17.14 32.00 -5.61 1.27 -5.71 2.65
50% 12.43 23.53 -6.52 1.40 -7.18 0.52
80% -1.79 10.80 -9.83 -2.97 -10.91 -1.22

avg. 13.27 25.77 -5.49 0.51 -7.02 1.56

Table 5.2: Average solution quality obtained for a return transport probability of
R = 30% depending on degree of dynamism Λ.

gap1 in % gap2 in % gap3 in %

Λ S-VNS MSA S-VNS MSA S-VNS MSA

0% 19.67 31.84 -1.29 2.02 -4.40 3.47
30% 11.41 25.19 -5.24 3.99 -5.87 3.70
50% 6.11 18.79 -6.24 1.02 -6.64 1.38
80% -4.01 8.89 -9.70 -1.00 -9.21 -0.24

avg. 8.29 21.18 -5.62 1.51 -6.53 2.08

Table 5.3: Average solution quality obtained for a return transport probability of
R = 50% depending on degree of dynamism Λ.

In the case with a low return transport probability (R = 30%, Table 5.2), the aver-
age improvement obtained by the MSA is 25.77%, while the one achieved by dynamic
S-VNS is 13.27%. This means, that both methods yield remarkable improvements
over their myopic counterparts, but the MSA performs clearly better than dynamic
S-VNS. In the case with 50% return transport probability (Table 5.3), the average
improvement obtained by the MSA is still 21.18%, while the one obtained by dy-
namic S-VNS drops to 8.29%. In the case with 80% return transport probability, the
situation is even worse. While the MSA can still achieve an average improvement of
16.85% over the MPA, dynamic S-VNS performs only 5.56% better than dynamic
VNS. In addition to that, the MSA is able to obtain an improvement in all tested
cases, while dynamic S-VNS performs even worse than dynamic VNS if the degree
of dynamism is set to 80%.

The first observation is, that both, the return transport probability R and the
degree of dynamism Λ, have a strong effect on the benefits achievable by exploiting
the available stochastic information. While increasing the return transport prob-
ability causes a relatively small decrease in the obtained relative solution quality,
the impact of increasing the degree of dynamism is remarkably larger. Both ef-
fects are basically caused by the same mechanism. Increasing the return transport
probability R causes more return transports to occur, thus increasing the total de-
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gap1 in % gap2 in % gap3 in %

Λ S-VNS MSA S-VNS MSA S-VNS MSA

0% 15.28 25.87 -1.31 2.51 -3.25 3.42
30% 7.67 21.61 -6.03 2.64 -4.77 3.37
50% 2.18 14.80 -6.74 0.83 -6.18 1.77
80% -2.88 5.13 -9.60 -1.36 -8.25 -0.47

avg. 5.56 16.85 -5.92 1.16 -5.61 2.02

Table 5.4: Average solution quality obtained for a return transport probability of
R = 80% depending on degree of dynamism Λ.

gree of dynamism of the problem (part of which is compensated by exploiting the
available stochastic information about these requests). Increasing Λ directly leads
to more completely dynamic requests, thus giving the myopic approaches a relative
advantage over their stochastic counterparts.

The second observation is, that using stochastic information about both stochastic
influence factors simultaneously seems to lead to more stable benefits than exploit-
ing each of the factors on its own (compare the results presented in Sections 3.4.4
and 4.4.2). A possible reason for this could be synergy effects. This means, that
while one stochastic aspect has a strong beneficial effect for a specific test instance,
the other might be less helpful. For another instance, it might be the other way
round. Therefore, exploiting both aspects at the same time allows the algorithm to
benefit in both cases.

Also, the magnitude of improvement achievable by exploiting both stochastic as-
pects simultaneously is much larger than the one obtainable by exploiting each of
the two aspects separately (again, compare the results presented in Sections 3.4.4
and 4.4.2). However, the magnitude of the effect appears to be less than the sum
of both effects. This might be due to the heterogeneous aspects included in the
HDSDARPTD.

Our results show, that possible advantages of exploiting the stochastic information
about future travel speed deviations and future return transports simultaneously
while planning is highly depending on the total degree of dynamism. On the one
hand, the actual amount of dynamic inbound requests has a strong influence on the
resulting relative solution quality. On the other hand, the probability for return
transports causes an effect in the same direction (which is however not as strong as
the first one). Additionally, the conceptual design of the solution method is again
very important. In the case of the HDSDARPTD, the MSA is clearly the more
favorable approach.
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5.5 Summary

In this chapter we present adapted versions of our four solution approaches which
are capable of exploiting both stochastic aspects presented in the previous two chap-
ters simultaneously. Additionally, the methods are able to handle heterogeneous
patient requests, a heterogeneous vehicle fleet as well as multiple depots included
in the heterogeneous dynamic stochastic dial-a-ride problem with stochastic time-
dependent travel speeds (HDSDARPTD). We extend the dynamic variable neigh-
borhood search (dynamic VNS), the dynamic stochastic VNS (S-VNS), the multiple
plan approach (MPA) and the multiple scenario approach (MSA) to the require-
ments of this new problem class.

We test all four algorithms on a set of real world inspired test instances tailored for
the HDSDARPTD. The performed computational experiments show that the mul-
tiple scenario approach clearly outperforms the dynamic S-VNS with respect to the
obtained solution quality relative to the corresponding myopic approach. The aver-
age improvements obtained by the MSA are between 25.77% and 16.85% depending
on the probability of return transports to occur. Additionally, the improvements
obtained for the HDSDARPTD prove to be much more stable than the ones ob-
tained for the DSDARP or the DDARPTD, indicating that increasing the amount
of stochastic information that can be exploited has a positive effect on the robustness
of the obtained results.

Furthermore, the total degree of dynamism present in a problem setting (depend-
ing primarily on the number of dynamic requests, but also on the probability for
return transports) has a very strong influence on the benefits that can be obtained by
exploiting the available stochastic information. The higher the degree of dynamism,
the lower is the competitive advantage of the stochastic solution methods.
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6 Conclusion

In this book we study the effects of exploiting stochastic information about fu-
ture circumstances while planning vehicle routes for Austrian ambulance service
providers. For this purpose we present three stochastic variants of the dynamic dial-
a-ride problem (DDARP). Furthermore, we tailor two conceptually similar pairs of
metaheuristic solution methods to the requirements of these problem classes using
the well known idea of variable neighborhood search (VNS) as a basis.

In Chapter 2 we present a short description of the basic DDARP which is used as
a basis for all three stochastic extensions. This problem is based on a real world road
network and consists of planning the vehicle routes for an Austrian ambulance service
provider in order to service a given set of (partially) dynamic transportation requests
using a limited number of homogeneous vehicles. The passenger ride time is limited
by defining a maximum detour restriction of 30 minutes. The objective function used
is lexicographic and includes three stages. First, the user inconvenience in terms of
the sum of earliness and tardiness with respect to the requests’ time windows is to
be minimized. Second, the solution costs represented by the number of vehicles used
in a solution shall be kept as low as possible. Third, the total mileage of the found
solution, which is another cost related aspect, should be minimized.

Based on this basic DDARP, we present the first stochastic extension in Chap-
ter 3. The dynamic stochastic dial-a-ride problem with expected return transports
(DSDARP) is based on the assumption that some stochastic information about fu-
ture return transports (outbound requests) can be exploited during the process of
designing the vehicle routes. We adapt two pairs of metaheuristic solution methods
to the requirements of the DSDARP in order to study the differences between my-
opic methods (i.e., which do not take any stochastic information into account while
planning) and stochastic methods (i.e., which try to exploit the available stochastic
information while planning). To be precise, we present a dynamic variant of the well
known VNS methods and a dynamic variant of stochastic VNS (S-VNS) as the first
pair. The second pair consists of the multiple plan approach (MPA) as a myopic
method and the multiple scenario approach (MSA) as a stochastic variant thereof.
This way we can directly compare the results obtained by myopic and stochastic
methods and study the effects of exploiting the stochastic information while plan-
ning. The results show, that reasonable improvements can be obtained when using
stochastic approaches. However, the results reveal a remarkable negative correla-
tion between the return transport probability (which to some extent influences the
total degree of dynamism present in a problem instance) and the obtained solution
quality.
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In Chapter 4 we present the second stochastic extension to the basic DDARP
which assumes the availability of stochastic information about future traffic situa-
tions. This problem class is denoted as dynamic dial-a-ride problem with stochastic
time-dependent travel speeds (DDARPTD). Vehicle speeds along the underlying
real world road network are assumed to be time-dependent and additionally influ-
enced by stochastic effects (like, e.g., traffic accidents). We adapt our two pairs
of metaheuristics to the requirements of this new problem class and again study
the effects of exploiting the relatively limited amount of stochastic information that
is available. Additionally, we present an alternative scheduling algorithm for the
DDARP with time-dependent travel speeds. Due to the time-dependent nature of
the travel speeds, also the objective function needs to be adapted in order to pe-
nalize maximum detour violations. The obtained results show that both stochastic
methods are able to obtain almost equally large improvements over their myopic
counterparts. Again, the total degree of dynamism is negatively correlated with the
resulting solution quality.

The third extension to the DDARP is a combination of the DSDARP presented
in Chapter 3, the DDARPTD studied in Chapter 4 and additional heterogeneous
aspects with respect to the vehicle fleet and the transportation requests. The het-
erogeneous dynamic stochastic dial-a-ride problem with stochastic time-dependent
travel speeds (HDSDARPTD) is based on the assumption that stochastic infor-
mation about both, future return transports as well as future traffic situations, is
available. Additionally, we no longer assume all vehicles an patients to be iden-
tical but instead use two different vehicle types with different seating and define
three different patient types. In addition to patients who can be transported in a
sitting position, some patients require a stretcher or a wheelchair place to be avail-
able. Furthermore, some patients are accompanied by an additional person during
transportation. Our results show, that exploiting information about both stochastic
problem aspects simultaneously leads to more stable improvements than exploiting
each of the two stochastic aspects separately. Again, the results indicate that the
overall degree of dynamism present in a problem instance ist the most important
factor influencing the obtainable improvement.

Summarizing, in this book we present three different stochastic extensions to a real
world motivated dynamic dial-a-ride problem as well as four metaheuristic solution
approaches tailored to each of these problem classes. The obtained results show
that for real world sized ambulance routing problems, the exploitation of available
stochastic information during the process of designing the vehicle routes leads to
remarkable improvements in solution quality compared to the solutions found by
purely myopic methods.

Future research should especially investigate further possibilities of exploiting ad-
ditional stochastic information about future traffic situations. This will in our opin-
ion be one of the major topics in the near future because the amount of traffic on
city roads is steadily increasing. Also re-allocation strategies exploiting the available
stochastic information while planning would be an interesting field of research.
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List of abbreviations

ARC Austrian Red Cross

ASBÖ Arbeiter-Samariter-Bund Österreichs

BSA block scheduling algorithm

DARP dial-a-ride problem

DDARP dynamic dial-a-ride problem

DDARPTD dynamic dial-a-ride problem with stochastic time-dependent travel
speeds

DSDARP dynamic stochastic dial-a-ride problem

FCD floating car data

FFG Austrian Research Promotion Agency

FIFO first-in-first-out

FWF Austrian Science Fund

HDARP heterogeneous dial-a-ride problem

HDSDARPTD heterogeneous dynamic stochastic dial-a-ride problem with stochas-
tic time-dependent travel speeds

MPA multiple plan approach

MSA multiple scenario approach

PTA patient transport ambulance

S-VNS stochastic variable neighborhood search

SAE sample average estimator

VNS variable neighborhood search

VRPTW vehicle routing problem with time windows

VSC Vienna Scientific Cluster
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[31] M. Gendreau, G. Laporte, and R. Séguin. A Tabu Search Heuristic for the
Vehicle Routing Problem with Stochastic Demands and Customers. Operations

Research, 44(3):469–477, 1996.

[32] B.L. Golden and W.R. Stewart Jr. Vehicle routing with probabilistic demands.
In Computer Science and Statistics: Tenth Annual Symposium on the Interface

NBS Special Publication 503, pages 203–259. 1978.

[33] N. Secomandi and F. Margot. Reoptimization Approaches for the Vehicle-
Routing Problem with Stochastic Demands. Operations Research, 57(1):214–
230, 2009.

[34] F.A. Tillmann. The Multiple Terminal Delivery Problem with Probabilistic
Demands. Transportation Science, 3(3):192–204, 1969.

[35] G. Clarke and J.W. Wright. Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points. Operations Research, 12(4):568–581, 1964.

[36] A. Kleywegt, V. Nori, and M. Savelsbergh. The stochastic inventory routing
problem with direct deliveries. Transportation Science, 36(1):94–118, 2002.

[37] L.M. Hvattum, A. Løkketangen, and G. Laporte. Solving a Dynamic and
Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic.
Transportation Science, 40(4):421–438, 2006.

89



Bibliography

[38] W. Gutjahr, S. Katzensteiner, and P. Reiter. A VNS Algorithm for Noisy
Problems and its Application to Project Portfolio Analysis. In 4th International

Symposium on Stochastic Algorithms: Foundations and Applications, pages 93–
104. Springer Berlin / Heidelberg, 2007.
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Abstract

The field of research regarding the optimization of humanitarian aid as well as health
care efforts is very wide. During the last decades, the efforts expended in research
projects related to this area are steadily increasing. In this book, we address a
specific problem out of this large field: the transportation of elderly, ill and disabled
persons. Such problems are commonly referred to as dial-a-ride problem (DARP)
in the literature.

We study three dynamic and stochastic variants of this problem type with the aim
of examining the effects of exploiting stochastic information about different future
circumstances while planning. First, we consider stochastic information about future
return transports and tailor two pairs of metaheuristic solution methods to the
requirements of this problem. Second, we study the usage of stochastic information
about future travel speeds while constructing the vehicle routes. Finally, we combine
these two stochastic aspects with additional heterogeneous extensions regarding the
vehicle fleet, the transported patients and multiple depots.

Based on our findings we identify factors which have a strong influence on the
potential benefits of exploiting stochastic information about future circumstances.
Generally speaking, the benefits obtainable by planning in a stochastic way can be
remarkable if the underlying conditions are suitable. Especially the total degree of
dynamism present in a problem setting turns out to be negatively correlated with
the achieved solution quality.
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Zusammenfassung

Die wissenschaftliche Forschung in Bezug auf humanitäre Hilfe sowie Gesundheitsfür-
sorge ist sehr weitläufig. Im Laufe der letzten Jahrzehnte stiegen die Anstrengungen
welche in einschlägige Forschungsprojekte investiert wurden stetig an.

In diesem Buch betrachten wir einen konkreten Problemfall aus diesem großen
Forschungsbereich: den Transport von alten, kranken oder in ihrer Mobilität einge-
schränkten Personen. Probleme dieser Art werden in der Fachliteratur regelmäßig
als dial-a-ride Probleme bezeichnet.

Wir studieren drei dynamisch und stochastische Varianten dieser Problemklasse
mit dem Ziel, Effekte, welche durch das Ausnutzen von stochastischen Informatio-
nen über zukünftige Umstände während der Planung verursacht werden, zu un-
tersuchen. Zunächst betrachten wir stochastische Informationen über zukünftige
Rücktransporte und adaptieren zwei Paare von metaheuristischen Lösungsverfahren
für diese Problemstellung. Anschließend untersuchen wir die Ausnutzung stochastis-
cher Informationen über zukünftige Verkehrsbedingungen während der Planung der
Fahrzeugrouten. Schlussendlich kombinieren wir diese beiden stochastischen Einflüsse
mit zusätzlichen Aspekten bezüglich heterogener Fahrzeugflotten, heterogener Pa-
tienten sowie mehrerer Heimatstandorte.

Basierend auf unseren Ergebnissen identifizieren wir Faktoren, welche starken Ein-
fluss auf das mögliche Verbesserungspotential haben, das durch Ausnutzung der
stochastischen Informationen erreichbar ist. Grundsätzlich sind die Vorteile, die
durch eine stochastische Planung erreicht werden können bemerkenswert, sofern die
entsprechenden Rahmenbedingungen vorliegen. Insbesondere das in einer Prob-
lemstellung vorhandene Ausmaß an Dynamik erweist sich als mit der erreichten
Lösungsqualität stark negativ korrelierend.
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