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Abstract

This thesis is a collection of projects done under supervision of Prof. Časlav Brukner.

It is divided into two main chapters. First part is based on the instrumental approach to

quantum mechanics with the main objective to identify and mark the exclusive features

of quantum theory in a broad class of probabilistic theories. The second part investi-

gates the non-classical features of quantum mechanics including quantum statistics,

quantum correlations and quantum simulations.

It is fair to say that we still lack intuitive clear and broadly accepted physical prin-

ciples that are a groundbasis of quantum theory. This shortfall is the main reason for

today’s coexistence of various interpretations of quantum theory, some of which even

use mutually exclusive concepts. One of the main objectives in the first chapter was to

specify theories that describe systems with fundamentally limited information content

and therefore necessarily give a probabilistic description. With ”limited information

content of the system“ we understand a fundamental restriction on how much informa-

tion about the state preparation can be decoded in the measurement. What was found

is the whole hierarchy of theories that share this property with quantum and classical

probability theory. The two theories separate from the full class of the probabilistic

theories by adopting additional assumptions: locality and reversibility. With the “lo-

cality” principle we assume that a global state of a composite system can be learned

trough the statistics of individual systems, whereas the “reversibility” principle states

that any two pure state can be connected by a reversible transformation. Finally, quan-

tum theory is separated by the requirement that the set of reversible transformations

is continuous. In addition, one of the basic quantum concepts, the complementarity

principle was investigated through so- called mutually unbiased bases relating them to

the known mathematical problem of orthogonal Latin squares.

A plausible classical description of quantum statistics requires counterintuitive

concepts such as ”quantum non-locality“ and ”contextuality“. The part of the second

chapter deals with another question, i.e. the ”cost“ in terms of resources for a plausi-

ble classical description. It was found that classical simulation of quantum statistics

requires a polynomial number of classical resources (hidden-variables) in terms of

number of measurement settings. Furthermore, the model confirms, in a proper limit,

the known result that quantum mechanics is indeed the most optimal description of

itself.

Quantum correlations are responsible for ”quantum non-locality“, as well as com-
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putational speedups and quantum information processing. There are examples of quan-

tum information tasks that do not necessarily require entanglement. Therefore it is fair

to say that ”quantumness“ of the correlations is not equivalent to entanglement. The

part of the second chapter deals with the question of “non-classicality” of quantum

correlations, captured by quantum discord. The main result gives an experimentally

friendly necessary and sufficient condition for non-zero quantum discord. Furthermore

the analysis of the resources in a mixed-state quantum computation scenario is pro-

vided and shows that the role of quantum discord in quantum information processing

still remains unclear.

Finally, the part of the last chapter investigates quantum simulations, both theo-

retically and experimentally. Quantum simulators provide a platform to mimic the

dynamics of another quantum system that is infeasible for simulations on a classical

computer. What is presented is the framework for the experimental realization of a

small-size photonic quantum simulator that is capable of simulating a frustrated spin

tetramer. The full dynamics and simulation of the ground state adiabatic evolution is

achieved by employing entangled photon pairs, tunable quantum gates and measure-

ment induced nonlinearities.



Zusammenfassung

Diese Dissertation besteht aus einer Sammlung von Projekten, welche unter der Be-

treuung von Prof. Časlav Brukner durchgeführt wurden. Die Arbeit gliedert sich in

zwei Hauptteile. Der erste Teil widmet sich dem operativen Zugang zu der Quan-

tenmechanik. Die Hauptaufgabe besteht hierbei darin, die exklusiven Eigenschaften

der Quantenmechanik in einer größeren Klasse probabilistischer Theorien zu identi-

fizieren. Der zweite Teil beschäftigt sich mit der typischen Charakteristik der Quanten-

physik, wie der Quantenstatistik, den Quantenkorellationen und Quantensimulationen.

Man kann sicherlich sagen, dass wir derzeit noch keine der Intuition zugänglichen,

und allgemein akzeptierte physikalische Prinzipien haben, welche die Grundlage der

Quantemechanik darstellen. Der Mangel solcher Prinzipien ist die Hauptursache für

die derzeitige Koexistenz von vielen Interpretationen der Quantenmechanik, die von

Konzepten Gebrauch machen, welche sich gegenseitig ausschließen. Eine Hauptauf-

gabe des ersten Kapitel besteht in der Spezifizierung von Theorien mit grundsätzlich

beschränkten Informationsgehalt, welche aufgrund dieser Tatsache eine probabilistis-

che Beschreibung besitzen. Unter dem “beschränkten Informationsgehalt eines Sys-

tems”, verstehen wir eine grundsätzliche Beschränkung der Information welche durch

eine Messung über die Preparation eines Zustandes gewonnen werden kann. Ein

Ergebnis dieses Kapitels ist die Charakterisierung der gesamten Hierarchie der The-

orien, welchen diese Eigenschaft gemein sind. Auf den unteren Stufen dieser Hierar-

chie sind die klassische, wie auch die quantenmechanische Wahrscheinlichkeitstheorie

enthalten. Um die Quantentheorie und klassische Theorie von der ganzen Klasse der

Wahrscheinlichkeitstheorien zu unterscheiden, wurden zusätzliche Annahmen getrof-

fen. Diese Annahmen sind Lokalität und Umkehrbarkeit. Unter dem Prinzip der

Lokalität verstehen wir, dass der Gesamtzustand eines Systems durch die Statistik der

individuellen Untersysteme rekonstruiert werden kann. Das Prinzip der Umkehrbarkeit

drückt aus, dass zwei reine Zustände immer durch eine umkehrbare Transformation au-

seinander hervorgehen. Darüber hinaus, wurde ein weiteres fundamentales Prinzip der

Quantenmechanik, das Komplementaritätsprinzip, mittels “mutually unbiased bases”

untersucht. Es wurde eine Verbindung zu dem bekannten mathematischen Problem der

orthogonalen lateinischen Quadraten hergestellt.

Eine plausible klassische Beschreibung der Quantenstatistik benötigt nicht eingäng-

ige Konzepte wie die quantenmechanische “Nicht-lokalität” und “Kontextualität”. Der

zweite Teil dieser Dissertation widmet sich einer weiteren Frage, der Frage nach dem
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“Kostenaufwand” im Sinne der beschreibenden Ressourcen welche eine plausible klas-

sische Beschreibung der Quantenstatistik zulassen. Es wurde gezeigt, dass die klas-

sische Simulation der Quantenstatistik nur eine polynomiale Anzahl an Ressourcen,

so genannte verborgene Variablen, für die Verschiedenen Messeinstellungen benötigt.

Darüber hinaus bestätigt dieses Simulationsmodell auch, dass in einem vernünftigen

Limes, die optimale Beschreibung der Quantenstatistik die Quantenmechanik selbst

ist.

Quantenkorrelationen sind für die quantenmechanische Nicht-lokalität verantwort-

lich, wie auch für den “computational speedup” in der Quanten Informationsverar-

beitung. Es gibt Beispiele von Quanteninformationsprotokollen, die mit Sicherheit

kein Verschränkung nutzen aber dennoch von quantenmechanischen Korrelationen Ge-

brauch machen. Es ist daher nicht möglich die Korrelationen in ihrer allgemeinen Form

mit der Verschränkung gleich zu setzen. Das zweite Kapitel behandelt die Frage der

nicht-klassischen Eigenschaften der Quantenkorrelationen welche durch den “quan-

tum discord” beschrieben werden. Das Hauptergebnis ist eine experimentell einfach

zugängliche, hinreichend wie auch notwendige, Bedingung für nicht-verschwindenden

quantum discord. Darüber hinaus stellen wir eine Analyse der Ressourcen in “mixed-

state quantum computation” vor, welche zeigt, dass die Rolle des “quantum discord”

in der Quanteninformationsverarbeitung weiterhin unklar ist.

Schließlich widmet sich das letzte Kapitel dieses Teils der Untersuchung von Quan-

tensimulationen, sowohl theoretisch als auch experimentell. Quantensimulatoren könn-

en verwendet werden um die Zeitenwicklung eines bestimmten quantenmechanischen

system darzustellen, eine Aufgabe, die für klassische Computer sehr schwierig ist. Es

wird ein kleiner photonischer Quantensimulator vorgestellt, der in der Lage ist ein frus-

triertes Spin Tetramer zu simulieren. Die Simulation macht von verschränkten Photon-

paaren, verstellbaren Quantengattern und durch Messung induzierten Nichtlinearitäten

Gebrauch.
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Chapter 1

Generic probabilistic theories

Quantum formalism teaches us that a physical state is represented by density opera-

tor, a curious beast that operates in a Hilbert space. Unfortunately it does not pro-

vide us with an answer why is so, it only gives a prescription how to compute the

probabilities of the measurement outcomes. The lack of a clear operational interpreta-

tion of quantum formalism indicates that there might be a possibility for some deeper

foundations of the theory. For many years there has been lot of attempts to “em-

bed” quantum mechanics in a more complete theory, such as various hidden-variable

theories [19, 120, 92], collapse models [77, 110, 109, 60, 151, 149] and non-linear

variants of the Schrödinger equation [22, 167, 169, 75]. All of them tempt to save

one or another feature of classical physics, like determinism or localizability. Since

quantum mechanics successfully survived experimental tests against such models, it

has become clear that it should have a status of genuine probabilistic theory. On the

other hand, from the operational point of view, quantum theory is just one among the

many of probabilistic theories that one can think of. A vast majority of them share the

same features with quantum theory such as no-signaling and no-cloning [14, 15] or

monogamy of the correlations [163].

Still there is no global consensus among the physicist what is “typically” quan-

tum. For example, no-signaling principle does not forbid the possibility of superstrong

correlations, known as Popescu-Rorlich boxes [157]. But, why the superstrong corre-

lations do not appear in nature? One answer to this question could be: because, they

are prohibited by the Hilbert space formalism. For a pragmatist, such a statement is

very naive, because “quantum phenomena do not occur in a Hilbert space, they occur

in a laboratory”(A. Peres) [154].

In this chapter, an instrumentalist (operational) approach has been employed to

study various topics. It is organized as follows:

13



14 CHAPTER 1. GENERIC PROBABILISTIC THEORIES

In the first section, the principle of limited information content [197, 39, 40] is

investigated from the operational perspective. Although, the set of quantum states

is continuous, a finite dimensional quantum system can be used to transfer a finite

amount of information only. More precisely, a d-level system contains at most log d

bits of information, which is known as Holevo bound [102]. This can be considered as

a fundamental principle of nature – the principle of limited information content. Some

basic notions of this idea can be found already in the work of Weizsäcker [185] and

the principle itself was further developed by Zeilinger [197]. If the finite amount of

information is encoded in the state of system, then the system can reveal with certainty

answers to a finite number of questions that are asked in the measurement. Therefore,

the uncertainty of the measurement outcomes and the complementarity principle come

as natural consequence. The principle is valid both in quantum and classical proba-

bility theory. For example, classical bits, and qubits are the two known examples of

systems that are fundamentally limited to one bit of information. However, careful

analysis shows that these are not the only examples. Whole hierarchy of theories share

this feature with quantum and classical probability theory. The limited information

content is introduced operationally, through a ”blackbox“ that can have different con-

figurations. A system is used to probe the blackbox and after being measured it reveals

some information about its configuration. The theory is characterized by the maximal

number of mutually (complementary) exclusive questions that the system can answer

when opposed to a measurement. A theory of a higher order contains all the theories

of the lower order, in the same way that a quantum bit contains a classical bit. Further-

more, the computational power of the theories grows with its order as it can be seen

trough Deutsch-Josza algorithm [57]. Some basic ingredients of these theories are de-

rived. The systems dimension is computed for a composite systems using the counting

parameter argument [96]. A possible experimental tests is discussed. It is assumed

that an experimentalist posses all the quantum tools and that there exists in nature a

genuine source that emits a state that can be described by some higher order theory,

i.e. it goes beyond the set of quantum states. Furthermore, it is shown that genuine

”non-quantum“ evolution can be observed which can be used to detect the order of a

theory that describes the source.

In the second section, the question of the existence of complete set of mutually un-

biased bases (MUB) [104] in quantum theory is studied. The MUBs are closely related

to the principle of complementarity, one of fundamental bases of quantum mechanics.

They provide a neat way to encode an information in a physical state. Although, it

is well known how to construct them when the system’s dimension is prime or power
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of prime, for other cases it is suspected that the complete set of MUB does not exist.

An interesting connection between this problem and the problem of finding the set of

mutually orthogonal Lattin squares (OLS) [66] is found. By applying known results

for OLS one can disprove the existence of certain classes of MUBs when the system’s

dimensions is not a power of prime.

The third section presents the main work of the thesis. It tries to identify the set

of physical principles behind quantum formalism. Such an attempt is known as re-

construction of quantum theory. The approach is operational, and it does not address

the ”ontological background“ of quantum theory, for example if there could be a hid-

den determinism behind probabilities. It is rather phenomenological and gives the set

of simple physical axioms from which the quantum formalism can be derived. The

general setting involves a typical experimental situation where experimentalist faces

preparation, transformation and the measurement device. Different operations can be

performed by varying a knob (switch) on each device. The system is released in the

preparation device and measured in the measurement device where it activates one of

the outcomes, e.g. the ”click“ is recorded in one of the detectors. After many runs the

measurement retrieves the probability. The set of probabilities for a different measure-

ment outcomes define the state of system that is associated to the preparation. In such

a scenario quantum theory is just one particular theory among the set of generalized

probabilistic theories. What makes the difference between theories is particular set of

physical principles from which a particular theory can be derived. For example, both

classical and quantum are the theories with reversible dynamics. What can distinguish

them is continuous in one case and discrete dynamics in other case [96]. The main

objective of the work is to identify the set of an informational-based set of principles

that can be used to single out quantum theory. The applied operational approach builds

upon the works of Hardy [96] and Barrett [18]. The specific set of axioms on which

the present reconstruction is based are: (1) (Information capacity) All systems with

information carrying capacity of one bit are equivalent. (2) (Locality) The state of a

composite system is completely determined by measurements on its subsystems. (3)

(Reversibility) Between any two pure states there exists a reversible transformation.

Remarkable, only classical and quantum theory are consistent with these principles.

Furthermore, if one requires the transformation from the last assumption to be contin-

uous, one separates quantum theory from the classical probabilistic one. A remarkable

result following from the reconstruction is that no probability theory other than quan-

tum theory can exhibit entanglement without contradicting one or more axioms.
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1.1 Theories of systems with limited information con-
tent

We introduce a hierarchical classification of theories that describe systems with fun-

damentally limited information content. This property is introduced in an operational

way and gives rise to the existence of mutually complementary measurements, i.e. a

complete knowledge of future outcome in one measurement is at the expense of com-

plete uncertainty in the others. This is characteristic feature of the theories and they

can be ordered according to the number of mutually complementary measurements

which is also shown to define their computational abilities. In the theories multipartite

states may contain entanglement and tomography with local measurements is possible.

The classification includes both classical and quantum theory and also generalized

probabilistic theories with higher number of degrees of freedom, for which operational

meaning is given. We also discuss thought experiments discriminating standard quan-

tum theory from the generalizations.

Can one find a class of logically conceivable physical theories that all share some

fundamental features with quantum mechanics? For example, in gravitational physics,

general relativity and Brans-Dicke theory [30] belong to a broad class of relativistic

classical theories of gravitation. By contrast, it is often assumed that any modification

of quantum mechanics would produce internally inconsistent theories [186].

In this paper we identify a class of quantum-like theories describing systems with

limited information content [197, 39, 40]. This limit does not arise from an observer’s

ignorance about the “true ontic states of reality” [175] — which would be a hidden-

variable theory and would have to confront the theorems of Bell [19] and Kochen-

Specker [116] — but rather is a fundamental limit. To introduce an operational notion

of information content, we insert the system into a “black box”, which itself has one

of a number of configurations. After leaving the black box, the system is measured to

reveal some of the properties of the configuration. The “limited information content of

the system” represents the fundamental restriction on how much information about the

configuration can be gained in this measurement.

We first consider a system with an information content of one bit, which we call

a two-level system 1. A measurement outcome can only reveal one bit of informa-

tion, i.e. it can distinguish between two equally-sized subsets of possible configura-

tions, without any possibility of discriminating between further subsets. This gives

1Even if more than two detectors are involved in the measurement of such system, it can only reveal
one bit of information about the configuration in the black box.
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rise to mutually complementary properties of black box configurations and the notion

of complementary questions, which are questions about these properties. We study

the information gain about these configurations which can be revealed using two-level

systems described by different theories. The number of complementary system observ-

ables predicted by the theories limits the number of complementary black-box config-

urations which can be accessed. We use this to identify a hierarchical classification

of quantum-like theories. We show that classical physics — with no complementary

observables — and quantum physics — with three complementary observables for a

qubit — are just two examples of theories within this hierarchy and present examples

of other theories. A theory on a particular level of the hierarchy contains all lower-level

theories, just as theory of quantum bits contains theory of classical bits.

We investigate the computational capabilities of the new theories in a manner sim-

ilar to the work on no-signaling theories [133, 124, 18, 15, 17, 16, 183] and show that

computational capabilities increase with the level of the theory in the hierarchy. We

then consider composite systems, and demonstrate existence of complementary prop-

erties of many black boxes which cannot be accessed with (product of) independent

subsystems, leading to necessity of entanglement in the corresponding theories. We

also show that the number of parameters obtained from complementary measurements

on a composite system consisting of many two-level systems agrees with the number

of parameters obtained from correlations between complementary local measurements.

This fact is a remarkable coincidence since a priori there is nothing in the definition of

the hierarchy that hints at it. Finally, we present thought experiments aimed at distin-

guishing standard quantum theory from the generalized theories.

Other attempts have previously been made to introduce a hierarchy of models that

includes both classical and quantum theory. The generalized models exploit different

sum-rules for probabilities [172] or explore physical systems described by a number

of parameters (sometimes also called “degrees of freedom”) different than in quan-

tum mechanics [194, 96, 199, 74, 48]. Our approach is related to the later in that

we consider two-level systems with additional degrees of freedom. We show that the

principle of limited information content together with an assumption that a system can

reveal any of the complementary properties of black box configurations allows only

specific values for the number of these degrees. The same number is derived by Woot-

ters [194] and Hardy [96] using parameter counting argument for composite systems.

Here, however, it follows already for a single system.

It should be noted that our aim here is not to derive the structure of quantum theory

but rather to show alternative models whose parameters also have operational mean-
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ing. It is interesting to ask which axioms of standard quantum theory such models

defy. Compared with Hardy’s axiomatization [96], our models for a single two-level

system involve more degrees of freedom than a qubit and therefore include also those

theories which Hardy excluded by the simplicity axiom (the simplicity axiom states

that one should take the minimal number of degrees of freedom in agreement with

other axioms). The probability axiom (in all experiments on a sufficiently big en-

semble of systems prepared in the same way, the relative frequencies of measurement

outcomes tend to the same values) is fulfilled in our models. The continuity axiom

(there exists a continuous reversible transformation on a system between any two pure

states of that system), is fulfilled by the presented models of a single system. For

multiple two-level systems, assumption of limited information content together with

requirement that systems reveal any of complementary properties implies Hardy’s ax-

iom about composite systems (local tomography is possible). It states that both the

number of levels of a composite system, N, and the number of parameters describing

its unnormalized states, K, are products of respective numbers for individual subsys-

tems, i.e. N = NANB and K = KAKB. It was proved that Hardy’s simplicity axiom is

redundant [48], i.e. that only classical and quantum theories are in agreement with all

other axioms. This implies for the multipartite theories studied here that they have to

defy Hardy’s subspace axiom (it states that a n-level subsystem of a higher-level system

behaves like a system with n levels). This is a consequence of the fact that continuity is

fulfilled by the presented models for a single system and therefore the subspace axiom

implies continuity for many systems because any two states of a composite system are

connected by a continuous transformation, introduced in a single particle case. As we

already noted, this would constrain the possible theories to classical and quantum only

due to the results of Ref. [48].

1.1.1 Limited information content

Consider the black box illustrated in Fig. 1.1. A Boolean function of a single s-valued

argument, y = f (x), with x = 0, ..., s − 1 and y = 0, 1, is realized physically by

putting one of two different (classical) objects in each of s different positions inside

the box. As a result, there are 2s different functions f (x) and as many distinguishable

configurations of the black box. If all the configurations have the same probability of

occurring, s bits of information are necessary to identify a given function. A physical

system with information content below s bits cannot therefore distinguish an individual

function, but only groups of functions with certain properties.

For example, consider a black box with two positions inside which is probed by
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Figure 1.1: The configuration of items inside the black box is a physical realization of a

function y = f (x). The value of x is encoded in the position inside the box, whereas the value

of y is encoded by putting a yellow (y = 0) or orange (y = 1) item at position x. A physical

system enters the black box from the right, undergoes function-dependent transformations and

is finally measured after leaving the box.

a single two-level system. The possible box configurations represent four Boolean

functions of the position variable x = 0, 1, which can be indexed by j = 21 f (0)+20 f (1).

The readout step reveals one bit of information, splitting the four functions into two

equally-sized sets. In this case, one finds three possible splits which can be illustrated

by the three rows of the following tables (symbol ⊕ denotes addition modulo two):

0 1 2 3

0 2 1 3

0 3 1 2

a = 0 a = 1

00 01 10 11

00 10 01 11

00 11 01 10

f (0) = a?

f (1) = a?

f (0) ⊕ f (1) = a?
(1.1)

The table on the left-hand side shows the index j 2, and the middle table shows the

functional values ordered as pairs f (0) f (1). The table on the right-hand side gives

the three complementary questions about the properties of the functions. They are an-

swered by the functions in the left and right column of the middle table (left column

→ answer 0, right column→ answer 1). We shall refer to such tables as the comple-

mentarity tables [145].

The black box forms a bridge between the abstract mathematical construction of

complementarity tables and the physical world. The physical system can be used to

probe the box configuration by subjecting it to configuration-dependent transforma-

tions. An appropriate measurement can then be used to identify the subset to which

the configuration belongs. Two-level systems described by different physical theories

2An equivalent table was introduced by Spekkens within a different interpretational approach [175].
There, an individual quantum system is assumed to be in an ontic state, while here only the (classical)
black box is in a well-defined “ontic” state.
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allow one to answer different numbers of complementary questions.

In the simplest case, s = 1, the black box contains only one position. It is conve-

nient to think of the value f (0) = 0 as an empty position and f (0) = 1 as an occupied

position. This configuration can be revealed by a classical bit, which by definition can

only either be flipped or left untouched. If its state is flipped only when the object is

present, then knowing the initial and final states of the bit completely determines the

box configuration, f (0). This is possible because the box stores only one bit.

The next case, with two positions inside the black box, is qualitatively different

because complementary questions now arise. A classical bit can no longer be used to

answer any one of them. This can, however, be achieved using a quantum bit.

A quantum bit can be entirely expressed in terms of real vectors in three dimen-

sions. The set of pure quantum states forms a unit Bloch sphere, with orthogonal axes

representing the eigenstates of complementary observables. The set of operations on

a qubit is no longer restricted only to bit flips, but includes any rotation. Consider

the following interaction between the system and the black box. For f (x) = 0 (posi-

tion x is empty), the qubit state is left untouched. If f (x) = 1 (occupied), the σx or

σz Pauli rotation is applied to the qubit state for x = 0 or 1, respectively. The qubit

propagates through the black box from right to left, giving a total transformation of

σ
f (0)
x σ

f (1)
z . In Bloch coordinates, these rotations are represented by diagonal matrices,

σx → diag[1,−1,−1] and σz → diag[−1,−1, 1]. Thus, the interaction of the black box

with the system is represented by the diagonal matrix

diag[(−1) f (1), (−1) f (0)+ f (1), (−1) f (0)]. (1.2)

The quantum probability to observe an outcome associated with the state m⃗, given a

system prepared in state n⃗, is P(m⃗|⃗n) = 1
2 (1 + n⃗ · m⃗), where the dot denotes a scalar

product in R3. Therefore, if the |z±⟩ states are used as inputs, the measurement in

this basis after the interaction reveals the value of f (0). Similarly, using |x±⟩ or |y±⟩
as inputs, and measuring in these bases, reveals the value of f (1) and f (0) ⊕ f (1),

respectively. Thus, each of the complementary questions can be answered using the

eigenstates of the complementary quantum observables.
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1.1.2 Generalized theories

We next investigate a black box containing three positions, x = 0, 1, 2. The resulting

complementarity table has seven rows:

0 1 2 3 4 5 6 7

0 1 4 5 2 3 6 7

0 1 6 7 2 3 4 5

0 2 4 6 1 3 5 7

0 2 5 7 1 3 4 6

0 3 4 7 1 2 5 6

0 3 5 6 1 2 4 7

f (0) =?

f (1) =?

f (2) =?

f (0) ⊕ f (1) =?

f (0) ⊕ f (2) =?

f (1) ⊕ f (2) =?

f (0) ⊕ f (1) ⊕ f (2) =?

(1.3)

The table on the left-hand side presents the values of j = 22 f (0) + 21 f (1) + 20 f (2).

Given one bit of information that answers any single complementary question in the

right-hand-side table, no information can be obtained about an answer to any of the

other questions, i.e. the seven questions are logically independent [147].

In analogy to the previous cases, one can ask what “physical theory” for the sys-

tem is required to answer any one of the complementary questions contained in table

(1.3). Such a theory must contain features of complementarity, and we now generalize

the Bloch representation of a quantum bit to produce a quantum-like theory related

to the black box with three internal positions. Since there are seven complementary

questions, there must be seven complementary measurements for the system and we

assume its pure physical states are represented by vectors on a sphere in seven dimen-

sions (state space postulate). Given a system prepared in a state n⃗, the probability to

observe an outcome associated with the state m⃗, is chosen as P(m⃗|⃗n) = 1
2 (1 + n⃗ · m⃗),

where the dot now denotes a scalar product in R7 (probability rule). To fulfill the phys-

ical requirement that immediate repetition of the same measurement should have the

same outcome, the state n⃗ is updated in the measurement to +m⃗ or −m⃗, depending on

the result (collapse postulate). The physical transformations, including temporal evo-

lution, are represented in this theory by rotations belonging to SO(7). They preserve

distinguishability between any two states as measured by the scalar product, and are

continuously connected with the identity, i.e., no transformation.

The model just described allows us to answer any complementary question from

table (1.3). The black box transformation can be chosen to be a product R f (0)
0 R f (1)

1 R f (2)
2
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of rotations

R0 → diag[−1, 1, 1,−1,−1, 1,−1],

R1 → diag[1,−1, 1,−1, 1,−1,−1],

R2 → diag[1, 1,−1, 1,−1,−1,−1]. (1.4)

This product is a diagonal matrix with seven entries: (−1) f (0), (−1) f (1), (−1) f (2), (−1) f (0)+ f (1),

(−1) f (0)+ f (2), (−1) f (1)+ f (2), (−1) f (0)+ f (1)+ f (2), where the powers are specified by the com-

plementary questions. Therefore, to answer a complementary question one propagates

through the black box system prepared in a state related to the corresponding comple-

mentary measurement and finally performs this measurement.

In the general case of a black box with s internal positions, one finds
(

s
1

)
+

(
s
2

)
+ ...+(

s
s

)
= 2s−1 complementary questions. There are

(
s
1

)
questions about the value of f (x),(

s
2

)
questions about different sums of f (x)⊕ f (x′) with x , x′, and so forth. A physical

theory of a two-level system can be constructed with 2s−1 complementary measure-

ments using the approach described above. Since s can be arbitrarily large, there are

complementarity tables with arbitrarily many rows, and correspondingly many differ-

ent theories for a two-level system.

Importantly, the derived number of independent parameters which completely spec-

ify the state in a generalized theory, i.e. 2s − 1, is the same as the one following from

the parameter counting argument for composite systems [194, 96]. Here, however, it

follows already for a single system: from the operational definition (via black box) of

the limited information content and the assumption that a system can answer any of

the complementary questions.

In all cases, the quantum-like models we have introduced possess rotationally in-

variant state spaces. There is therefore no preferred choice of a set of 2s − 1 com-

plementary directions or any preferred state. One may expect information contained

in all pure states n⃗ to be the same and independent of the choice of a complete set of

complementary measurements. We ask how to quantify information gain in a single

measurement I(p+ j, p− j), with p± j =
1
2 (1 ± n⃗ · m⃗ j) being probabilities for ±1 results in

measurement m⃗ j, such that this expectation is fulfilled. Assuming after Ref. [36] that

information content of state n⃗ is the sum of information gained in all complementary

measurements I(n⃗) =
∑2s−1

j=1 I(p+ j, p− j) the argument of Ref. [41] shows that in the set

of information measures based on α-entropy, i.e. if one takes I(p+ j, p− j) = 1−k
1−pα

+ j−pα− j

α−1

with a constant k and real parameter α, only for the quadratic measure, with α = 2,

the information content I(n⃗) is constant and invariant under a continuous change be-

tween different complete sets of mutually complementary directions. Fixing k = 2 sets
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the units such that we have I(n j) = n2
j , where n j = n⃗ · m⃗ j and since the directions of

complementary measurements are orthogonal one finds I(n⃗) = |⃗n|2, which immediately

generalizes the measure of Ref. [36]. This measure captures intuitive expectation that

overall information contained in a pure state (revealed in the complete set of comple-

mentary measurements) is again one bit.

1.1.3 Computational abilities of generalized theories

The theories with different number of complementary measurements have different

computational abilities. Consider the problem of determining properties of a function

with a single query of the black box. As an example, think about table (1.9). A qubit

propagating through the black box is able to reveal the value of any of f (0), f (1) or

f (0) ⊕ f (1) by making the appropriate choice of input state and measurement [57].

Classically this is impossible. A classical bit can in principle reveal only one of the

three properties because each of the items inside the black box can either keep the bit

value or flip it. For example, if the classical bit is flipped after leaving the box, then we

know that one of the internal positions is occupied, but it is impossible to determine

which one no matter what initial state is used.

Likewise, table (1.3) illustrates the limitations of quantum computing. A single

two-level system with seven complementary observables can encode an answer to any

one of the seven complementary questions. By contrast, it is only possible to answer

at most three of the questions using one qubit. A qubit can be embedded into all gen-

eralized theories, just as classical bit is embedded into quantum theory. A sphere in

2s − 1 dimensions, for s > 2, always contains as subspace a two-sphere of pure states

of a quantum bit, and rotations on a two-sphere are a subset of all rotations on higher-

dimensional spheres. The rotations of two-sphere, when applied in arbitrary order,

never evolve the system outside the two-sphere. Therefore, even if the qubit interacts

with more than two items in a black box, it can never answer more than three com-

plementary questions. All generalized theories with more complementary observables

are computationally more powerful than both classical and quantum physics.

1.1.4 Theories of many systems

The presentation so far has been limited to a single system. We operationally define

the information content of N systems as a maximal possible information gain about

the internal configuration of N black boxes, each for a single system. Therefore, the

information content of N two-level systems is limited to N bits [197]. We show that
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the number of independent real parameters obtained from (joint) complementary mea-

surements, answering the questions about the complementary properties of N Boolean

functions encoded in the black boxes, is the same as the number of parameters obtained

from correlations between local complementary measurements.

To simplify the presentation we start with two quantum systems as an illustration

of ideas and techniques, and next give general results 3. The quantum case corresponds

to s = 2. For two qubits we have two black boxes, each of which encodes one of four

Boolean functions, see (1.9), and therefore there are in total 2Ns = 16 combinations of

pairs of functions in two black boxes. Accordingly, every row of the complementarity

table contains 16 items. Since in this case the final measurement reveals two bits

of information, the table has 2N = 4 columns. Complementary properties of two

Boolean functions are defined such that full knowledge of one property precludes any

knowledge about the other property. They correspond to the rows of the table in which

items from a fixed column of one row (full knowledge) are evenly distributed among

all columns of any other row (no knowledge). For example, for two qubits we have:

a1 = 0 a2 = 0 a1 = 0 a2 = 1 a1 = 1 a2 = 0 a1 = 1 a2 = 1

00 01 10 11 02 03 12 13 20 21 30 31 22 23 32 33

00 02 20 22 01 03 21 23 10 12 30 32 11 13 31 33

00 03 30 33 01 02 31 32 10 13 20 23 11 12 21 22

00 12 23 31 02 10 21 33 01 13 22 30 03 11 20 32

00 13 21 32 01 12 20 33 02 11 23 30 03 10 22 31
(1.5)

where each item is a pair of numbers j1 j2 describing functions in the first and second

black box respectively, i.e. j1 = 2 f1(0) + f1(1) and j2 = 2 f2(0) + f2(1). The comple-

mentary properties in this case are the following: (i) the first row corresponds to two

binary questions, whether f1(0) = a1 and f2(0) = a2, (ii) the second row corresponds

to asking whether f1(1) = a1 and f2(1) = a2, (iii) the third row is the “parity question”,

whether f1(0) ⊕ f1(1) = a1 and f2(0) ⊕ f2(1) = a2, (iv) the forth row coincides with

asking whether f1(0) ⊕ f2(1) = a1 and f1(0) ⊕ f1(1) ⊕ f2(0) = a2, (v) the last row leads

to asking if f1(1) ⊕ f2(0) = a1 and f1(0) ⊕ f1(1) ⊕ f2(1) = a2. The answers to these

questions are in a form of two bit values a1 a2 and the columns of the table from left

to right correspond to the answers 00, 01, 10 and 11. Such complementarity tables are

well-known in a mathematical theory of combinatorial designs. In the quantum case

of s = 2 they are so-called net designs, and the maximal number of their rows gives

3For the simplest non-classical and non-quantum example, N = 2 and s = 3, the complementarity
table has 21 rows and it is cumbersome to present it explicitly.
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the number of complementary quantum measurements [145]. In a general case of arbi-

trary s, the complementarity table describing complementary properties of N Boolean

functions of an s-valued argument has 2Ns items in every row and 2N columns. Such

complementarity tables, with s > 2, are known as the generalized net designs (affine

1-designs) and the maximal number of their rows is given by the Bose-Bush bound 4:

rs(N) =
2Ns − 1
2N − 1

. (1.6)

Each of the rs(N) mutually complementary (joint) measurements gives 2N − 1 inde-

pendent real parameters (due to normalization) and therefore all the complementary

measurements give altogether rs(N)(2N − 1) = 2Ns − 1 independent real parameters.

The same number is found via “tomography with local measurements” [194, 96],

in which case we are looking into correlations between the outcomes of all combina-

tions of complementary local measurements (on every subsystem). Each single system

is described by 2s − 1 real parameters. Additionally, one measures correlations be-

tween 2, 3, ...,N subsystems (if none of the subsystems is measured, no information is

gained). This gives (2s − 1 + 1)N − 1 = 2Ns − 1 independent real parameters. Thus, we

have shown that the number of parameters obtained from joint and local measurements

coincide. We see it as an argument that this number of parameters should completely

specify a state of the system. Under this assumption, the models considered possess an

intuitive feature that a physical state is equally well described by joint and individual

measurements. These are then just two different ways of accessing the same informa-

tion about the system. The equality of the number of parameters obtained by joint and

local measurements also means that the models satisfy Hardy’s axiom about composite

systems: the number of levels of the whole system is a product of number of levels of

subsystems and the number of parameters specifying the unnormalized joint state is

also a product of the number of such parameters for the subsystems [96].

The complementary questions related to table (1.14) and similar tables for many

two-level systems in the generalized theories reveal that the theories involve entangle-

ment. One can recognize the first three questions of table (1.14) are just combinations

of complementary questions for single systems, see (1.9). They are asked indepen-

dently on every subsystem, i.e. the questions with the answer a1 involve only function

f1(x) and the questions with answer a2 involve only function f2(x). With them, all

the complementary questions for single subsystems are already exhausted. The same

argument applies to any complementarity table of higher level theories. Since for any

4Pages 219-220 of Ref. [47]. In their notation, λ = 2N(s−2), v = n = 2N and k is the number of rows
in the complementarity table.
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such table related to many black boxes the maximal number of rows is greater than the

number of rows of the table for a single system, there are complementary questions

involving relational properties of functions encoded in different black boxes, such as

e.g. the question of the value of f1(0)⊕ f2(1) and f1(0)⊕ f1(1)⊕ f2(0). These questions

cannot be answered by systems in a product state and we conclude that entanglement

must be present in such models.

1.1.5 Experimental consequences

We give two experimental consequences of the generalized theories that differ from

predictions of standard quantum theory of a single two-level system. Note that if the

experimenter has access to generalized states, evolutions and measurements it is clear

that standard quantum theory could be refuted. It is more realistic however to study

if the other models can be identified by looking only at the data gathered in quantum

measurements. A reason for this is that we now only know how to build apparatuses

corresponding to quantum measurements. Furthermore, one can imagine that there

is in Nature a source emitting states of generalized theories whereas we are still re-

stricted to quantum measuring devices. Therefore, we make here an assumption that

experimentalists have access only to measurements allowed by standard quantum me-

chanics (on the Bloch sphere) whereas states and evolutions obey generalized theories

(on higher dimensional spheres).

The first consequence is a change of purity of an evolving closed system. When the

system represented by a vector in a higher dimensional Bloch sphere evolves in time,

the projected vector onto the standard two-sphere will in general change its length

indicating “decoherence” and “recoherence” in the effective quantum state description.

These effects would be present even when the system is closed and can be considered

as isolated from environment according to all means of standard quantum theory.

Second, we present a gedanken experiment which tests a dimension of the sphere

of states. Consider a scenario in which there are grounds to assume a source prepares

random states from the entire higher dimensional Bloch ball (also mixed states) in such

a way that the mean value of measurement along some x⃗ axis can be found for every

random state. For example, the source is slowly randomly evolving such that within a

short time interval the states emitted are basically the same, but if one waits a longer

time and then measures again, the observed state will be unrelated to the previously

observed one. The frequency with which a mean ⟨x⃗⟩ occurs, f (⟨x⃗⟩), is proportional

to the number of states giving rise to this particular value of ⟨x⃗⟩, which is related to

the projection of the state vector on the x⃗ axis. Since the higher the dimension of the
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sphere the more states have the mean ⟨x⃗⟩ close to zero, the shape of f (⟨x⃗⟩) reveals the

dimension. We now develop this idea quantitatively.

To make an illustration, we first describe how to distinguish between a theory in

which all the states are within a disk (real quantum theory) and standard (complex)

quantum theory having a three-dimensional ball of allowed states. If the state space is a

disc, a random state is distributed with probability density dp(x, y) = dxdy/πR2, where

R is the radius of the disc. The frequency of observation of the average value m in a

measurement of x⃗ is related to the length of the chord perpendicular to the x axis which

crosses the axis at point m, F2(m) = 2
∫ √R2−m2

0
dy
πR2 =

2
√

R2−m2

πR2 . If the state space is a

ball, a random state is distributed with probability density dp(x, y, z) = dxdydz/ 4
3πR3,

and the frequency of observation of the average value m is now related to the area

of the disc orthogonal to x axis which crosses the axis at point m, F3(m) = πr2

4
3πR3 ,

where r =
√

R2 − m2 is the radius of the disc. In general, for a state space which

is a sphere in D dimensions, a random state is distributed according to probability

density dp(x1, . . . , xD) = dx1 . . . dxD/VD(R), where VD(R) = πD/2RD

Γ(D/2+1) is the volume of

the sphere embedded in D dimensions and Γ(x) is the gamma function. The frequency

of the average value m is given by the ratio of volumes FD(m) = VD−1(r)
VD(R) with r =√

R2 − m2. Putting in the explicit formulae for the volumes gives

FD(m) =
1

β( D
2 +

1
2 ,

1
2 )

(R2 − m2)
D−1

2

RD , (1.7)

where β(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Euler beta function and we used Γ(1/2) =

√
π. Fig. 1.2

shows FD(m) for various D and R = 1. Note that in principle D does not even have to

be an integer.

If one measures not along a single direction, but along d orthogonal directions,

the immediate generalization of the frequency formula (1.7) reads FD(m1, . . . ,md) =
VD−d(r)
VD(R) with r =

√
R2 − m2

1 − · · · − m2
d. This can be useful if a random state is not

sampled from spherically symmetric space, providing a way to distinguish even more

general models than those studied here. As an illustration, consider first a single x⃗

measurement and states sampled from a disc. We already know the distribution of m

is F2(m) = 2
√

R2−m2

πR2 . The same distribution is obtained for the state space which is a

half disc cut at the x axis, because both the probability density for state distribution

and the probability for the mean value equal to m are half those for the disc space and

their contributions cancel out in the fraction. Clearly, measurement along x and y could

distinguish these two cases.

Summary.– In conclusion, we have introduced a hierarchy of theories describing

systems with limited information content, which contains classical and quantum me-
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Figure 1.2: Detecting dimension of state space with a random sampler. Assuming that states

are represented by vectors within higher-dimensional sphere, sampling them randomly in such

a way that for each state the average value, m, along some direction x⃗ can be measured, provides

a way to find the dimension. The dimension can be read from the histogram of m. The plot

shows the histogram for three dimensions, D = 2, 3, and 7. Generally, after measuring the

frequency of the average values one finds the dimension from the fit of the curve (1.7).

chanics as special cases. The order parameter of the hierarchy is the number of com-

plementary questions about the properties of Boolean functions the systems described

by the theory can experimentally answer. Typical quantum features such as irreducible

randomness and complementarity inevitably occur in the theories. We consider a phys-

ical system able to encode the answer to any one of the complementary questions,

and assume there is a measuring device which can reveal this information. While the

appropriate measurement will reveal the answer to the selected question, the comple-

mentary measurements must reveal no information whatsoever — the readout has to

give a completely random answer [147]. Further, since the information content of the

system is fundamentally limited to one bit, no underlying hidden structure (in the form

of hidden variables) is possible, and the results are irreducibly random. As a final

remark, we note that we gave examples of generalized theories which share some es-

sential features with quantum mechanics but nevertheless differ from it. Intriguingly,

this perhaps suggests that either Nature admits additional conceptual ingredients that

single out quantum theory from the more general class [48] or the alternatives are also

realized in some domain that is still beyond our observations.
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1.2 Mutually unbiased bases and orthogonal Latin squares

Mutually unbiased bases encapsulate the concept of complementarity – the impossi-

bility of simultaneous knowledge of certain observables – in the formalism of quantum

theory. Although this concept is at the heart of quantum mechanics, the number of

these bases is unknown except for systems of dimension being a power of a prime. We

develop the relation between this physical problem and the mathematical problem of

finding the number of mutually orthogonal Latin squares. We derive in a simple way

all known results about the unbiased bases, find their lower number, and disprove the

existence of certain forms of the bases in dimensions different than power of a prime.

Using the Latin squares, we construct hidden-variable models which efficiently simu-

late results of complementary quantum measurements.

Complementarity is a fundamental principle of quantum physics which forbids si-

multaneous knowledge of certain observables. It is manifested already for the simplest

quantum mechanical system — spin 1
2 . If the system is in a definite state of, say, spin

along x, the spin along y or z is completely unknown, i.e. the outcomes “spin up”

and “spin down” occur with the same probability. The eigenbases of σ̂x, σ̂y and σ̂z

Pauli operators form so-called mutually unbiased bases (MUBs): every vector from

one basis has equal overlap with all the vectors from other bases. MUBs encapsulate

the concept of complementarity in the quantum formalism. Although complementarity

is at the heart of quantum physics, the question about the number of MUBs remains

unanswered. Apart from being of foundational interest, MUBs find applications in

quantum state tomography [195], quantum-key distribution [81] and the Mean King

problem [181, 100].

A d-level quantum system can have at most d + 1 MUBs, and such a set is referred

to as the complete set of MUBs. In 1981 Ivanović proved by construction that there

are indeed d+1 complementary measurements for d being a prime number [104]. This

result was generalized by Wootters and Fields to cover powers of primes [195]. For

other dimensions the number of MUBs is unknown, the simplest case being dimension

six. A considerable amount of work was done towards understanding this problem.

New proofs of previous results were established [13, 37, 119, 113, 63] and the problem

was linked with other unsolved problems [29, 21]. It was also noticed that it is similar

in spirit to certain problems in combinatorics [196, 20, 189] and finite geometry [161,

192]. Here, we build upon these relations.

We describe the problem of the number of orthogonal Latin squares (OLSs), which

was initiated by Euler [66] and still attracts lots of attention in mathematics. Although

this problem is not solved yet in full generality, more is known about it than about the
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number of MUBs. Using a black box which physically encodes information contained

in a Latin square, we link every OLS of order being a power of a prime with a MUB.

For dimension six, our method gives three MUBs, which is the maximal number found

by the numerical research [196, 21]. Utilizing known results for OLSs we derive a

minimal number of MUBs, and disprove the existence of certain forms of MUBs for

arbitrary d. Finally, using OLSs we construct hidden-variable models that efficiently

simulate complementary quantum measurements.

1.2.1 Orthogonal Latin squares

A Latin square of order d is an array of numbers {0, ..., d − 1} where every row and

every column contains each number exactly once. Two Latin squares, A = [Ai j] and

B = [Bi j], are orthogonal if all ordered pairs (Ai j, Bi j) are distinct. There are at most

d−1 OLSs and this set is called complete. The existence of L OLSs is equivalent to the

existence of a combinatorial design called a net with L + 2 rows [46]. The net design

has a form of a table in which every row contains d2 distinct numbers. They are split

into d cells of d numbers each, in such a way that the numbers of any cell in a given

row are distributed among all cells of any other row. The additional two rows of the

net correspond to orthogonal but not Latin squares, with the entries Ai j = j and Ai j = i.

The following algorithm allows to construct the net from a set of OLSs:

• Write the squares in the standard form in which the numbers of the first col-

umn are in ascending order (by permuting the entries, it is always possible to

write the set of OLSs in the standard form without compromising Latiness and

orthogonality).

• Augment the set of OLSs by the two orthogonal non-Latin squares Ai j = j and

Ai j = i.

• Write the rows of the squares as cells in a single row of the table. The number

of the table’s rows is now equal to the number of squares in the augmented set.

• In the row of the table which corresponds to the square Ai j = j, referred to as the

“coordinate row”, replace the number Ai j in the ith cell by A′i j = id + j, where d

is the order of the square.

• In every cell of the other rows replace number Bi j on position j by the integer

associated to the number Bi j of the jth cell in the coordinate row, i.e. Bi j →
B′i j = jd + Bi j.
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We shall prove that the table generated by this procedure is indeed a net design. We

use another property defining the design: two numbers in one cell do not repeat in any

other cell. This already includes that any two cells of two different rows share exactly

one common number, as if there were no common numbers shared by these cells, there

would have to be at least two common numbers shared by other cells.

Due to the definitions of A′i j and B′i j and the fact that the columns of Bi j contain

all distinct numbers 0, ..., d − 1, every row of the table contains d2 distinct numbers

0, ..., d2 − 1. By construction, the numbers of any cell of the coordinate row are dis-

tributed among all the cells of all the other rows. Therefore, it is sufficient to prove the

property of the net for the remaining rows. Assume to the contrary, that two numbers

repeat in two cells of different rows, ( jd + Bi j, j′d + Bi j′) = (ld +Ckl, l′d +Ckl′). Since

j, j′, l, l′, Bi j,Ci j ∈ {0, ..., d − 1} the equality can only hold if Bi j = Ck j and Bi j′ = Ck j′ ,

i.e. there are rows of the squares B and C which contain the same numbers, in the

columns defined by j and j′. This, however, cannot be because one can always per-

mute the entries of, say, square C such that its kth row becomes the ith row (without

compromising orthogonality) and the two squares would not be orthogonal.

1.2.2 The qubit case

Consider the squares for d = 2. We link them with the complementary measurements

of a qubit. The augmented set of orthogonal squares reads

0 1

0 1

0 0

1 1

0 1

1 0
(1.8)

The right square is Latin, the left and middle square are orthogonal to each other and

to the Latin square. These three squares lead to the following net design on the left, in

which the numbers are represented by pairs m n in modulo-two decomposition:

b = 0 b = 1

00 01 10 11

00 10 01 11

00 11 01 10

m = b?

n = b?

m + n = b?
(1.9)

On the right, we write down the complementary questions associated with each row.

They are answered by pairs m n in the left and right column of the net design (left

column→ answer 0, right column→ answer 1). In this way, the questions are linked

to the orthogonal squares.
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The complementary questions can be answered in quantum experiments involving

MUBs. Consider a device encoding parameters m and n via application of the unitary

Û = σ̂m
x σ̂

n
z . When it acts on |z±⟩ states, they get a phase dependent on n and are flipped

m times. Thus, knowing the initial state, a final measurement in the σ̂z eigenbasis

reveals m, giving the answer to the first complementary question. Similarly, taking

|x±⟩ and |y±⟩ as initial states, the results of σx and σy measurement answer the second

and the third complementary question, respectively.

1.2.3 Prime dimensions

For prime d the net has d + 1 rows. This time, each of its entries takes on one of

d values. The entries of the rows corresponding to the OLSs are generated from the

following formula

n = am + b, (1.10)

where the integer a = 1, ..., d − 1 enumerates the rows of the table, while the integer

b = 0, ..., d−1 enumerates different columns, and the sum is modulo d. Additional two

rows correspond to the questions about m and n, respectively. The table for the rows

corresponding to the OLSs is built in the following way:

• Choose a row, a, and the column, b.

• Vary m = 0, ..., d − 1 and compute n using (1.10).

• Write pairs m n in the cell.

For example, for d = 3, one has

b = 0 b = 1 b = 2

00 01 02 10 11 12 20 21 22

00 10 20 01 11 21 02 12 22

00 11 22 01 12 20 02 10 21

00 12 21 01 10 22 02 11 20

m = b?

n = b?

n = m + b?

n = 2m + b?
(1.11)

The complementary questions are given on the right. Different values of b enumerate

possible answers.

We shall see, again, that the complementary questions can be answered using

MUBs. Consider encoding of parameters m and n via application of Û = X̂mẐn, where
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the Weyl-Schwinger operators X̂mẐn span a unitary operator basis. In the basis of Ẑ,

denoted as |κ⟩, the two elementary operators satisfy

Ẑ|κ⟩ = ηκd|κ⟩, X̂|κ⟩ = |κ + 1⟩, (1.12)

where ηd = exp (i2π/d) is a complex dth root of unity. For the same reasons as for a

qubit, the first two questions are answered by applying Û on an eigenstates of Ẑ and X̂

operators, and then by measuring the emerging state in these bases.

In all other cases the action of the device is Û = X̂mẐam+b = X̂mẐamẐb. The ele-

mentary operators do not commute, instead one has ẐX̂ = ηdX̂Ẑ, and it follows that

X̂mẐam = η
− 1

2 am(m−1)
d (X̂Ẑa)m. Finally, the action of the device is, up to the global phase,

given by Û ∝ (X̂Ẑa)mẐb. The eigenstates of the X̂Ẑa operator, expressed in the Ẑ basis,

are given by | j⟩a = (1/
√

d)
∑d−1
κ=0 η

− jκ−asκ
d |κ⟩, where sκ = κ + ... + (d − 1) [13], and the Ẑ

operator shifts them: Ẑ| j⟩a = | j − 1⟩a. After the device, | j⟩a is shifted exactly b times

and subsequent measurement in this basis reveals the answer to the ath question. On

the other hand, the eigenbases of X̂Ẑa for a = 1, ..., d − 1 and eigenbases of X̂ and Ẑ

are known to form a complete set of MUBs [13]. Not only the number of MUBs is the

same as the number of OLSs, but they are indexed by the same variable, a. This allows

to associate MUB to every OLS for prime d.

1.2.4 Powers of primes

If d is a power of a prime, a complete set of OLSs is obtained using operations in the

finite field of d elements, and one expects that a complete set of MUBs also follows

from the existence of the field. Indeed, explicit formulae for MUBs in terms of the field

operations were presented in [195, 63, 113]. Here, we prove this result in a simple way

related to [78], using the theorem of Bandyopadhyay et al. [13, 87]: If there is a set of

orthogonal unitary matrices, which can be partitioned into M subsets of d commuting

operators, then there are at least M MUBs. They are the joint eigenbases of the d

commuting operators.

To illustrate the idea, consider again prime d. Take the orthogonal unitary operators

Ŝ mn = X̂mẐn with their powers m n taken from the first column of the net. The cell

of the first and second row corresponds to the eigenbases of Ẑ and X̂, respectively,

whereas the other two rows are defined by b = 0, i.e. n = am. According to the

commutation rule of the elementary operators X̂ and Ẑ, Ŝ mn and Ŝ m′n′ commute if and

only if mn′ −m′n = 0 mod d. Thus, for a fixed row, i.e. fixed a, the set of d operators

Ŝ mn commute, because m(am′)−m′(am) = 0, and, due to the mentioned theorem, there

is a set of d + 1 MUBs.
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For d = pr being a power of a prime, the OLSs and the net are generated by the

formula

n = a ⊙ m ⊕ b, (1.13)

where ⊙ and ⊕ denote multiplication and addition in the field, a, b,m, n ∈ Fd are field

elements, and a , 0. The first two rows of the table are defined by m = b and n = b.

In the case of d = 4, the four elements {0, 1, ω, ω + 1} of the field F4 (ω is the root of

x2 + x + 1 [78]), when indexed with the numbers {0, 1, 2, 3}, lead to the following net

design:

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

00 11 22 33 01 10 23 32 02 13 20 31 03 12 21 30

00 12 23 31 01 13 22 30 02 10 21 33 03 11 20 32

00 13 21 32 01 12 20 33 02 11 23 30 03 10 22 31
(1.14)

We use the concept of a basis in the finite field Fd. It consists of r elements ei, with

i = 1, ..., r. Every basis has a unique dual basis, e j, such that tr(ei ⊙ e j) = δi j, where

the trace in the field, tr(x), maps elements of Fd into the elements of the prime field Fp.

It has the following useful properties: tr(x ⊕ y) = tr(x) + tr(y), and tr(a ⊙ x) = a tr(x),

where operations on the right-hand side are modulo p and a is in the prime field. We

decompose m in the basis ei, m = m1 ⊙ e1 ⊕ ... ⊕ mr ⊙ er, where mi = tr(m ⊙ ei), and n

in the dual basis, n = n1 ⊙ e1 ⊕ ... ⊕ nr ⊙ er, with ni = tr(n ⊙ ei). Due to the properties

of the trace in the field and the dual basis

tr(m ⊙ n) =
r∑

i=1

mini = m⃗ · n⃗, (1.15)

where m⃗ = (m1, ...,mr) and n⃗ = (n1, ..., nr) have components in the prime field, i.e.

numbers {0, ..., p − 1}.
Consider operators defined by the decomposition of m and n, Ŝ m⃗n⃗ = X̂m1

p Ẑn1
p ⊗ ... ⊗

X̂mr
p Ẑnr

p , where e.g. Xmi
p is the unitary operator acting on the ith p-dimensional subspace

of the global d-dimensional space. Operators S m⃗n⃗ form an orthogonal basis. They

commute, if and only if m⃗ · n⃗′− m⃗′ · n⃗ = 0 mod p. Take the operators corresponding to

a fixed row of the first column of the net, i.e. a is fixed, b = 0 and therefore n = a ⊙m.

From Eq. (1.15), all these d operators commute if tr(m ⊙ a ⊙ m′) = tr(m′ ⊙ a ⊙ m),

which is satisfied due to associativity and commutativity of multiplication in the field.

Therefore, their eigenbases define MUBs. Again, each row of the table is linked with

the MUB.
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To make an illustration, consider again the example of d = 4. Choose (e1, e2) =

(ω, 1) as a basis in the field, such that the numbers m are decomposed into pairs m →
m1 m2 in the usual way: 0 → 0 0, 1 → 0 1, 2 → 1 0, 3 → 1 1. The dual basis reads

(e1, e2) = (1, ω + 1), which implies that the numbers n are decomposed into pairs

n → n1 n2 as follows: 0 → 0 0, 1 → 1 0, 2 → 1 1, 3 → 0 1. Each pair of numbers of

table (1.14) is now written vertically as a combination of two pairs of numbers:

00 01 01 00 00 01 01 00 10 11 11 10 10 11 11 10

00 00 01 01 10 10 11 11 00 00 01 01 10 10 11 11

00 00 10 10 01 01 11 11 01 01 11 11 00 00 10 10

00 10 00 10 00 10 00 10 01 11 01 11 01 11 01 11

00 01 11 10 01 00 10 11 01 00 10 11 00 01 11 10

00 10 01 11 00 10 01 11 01 11 00 10 01 11 00 10

00 01 10 11 01 00 11 10 01 00 11 10 00 01 10 11

00 11 01 10 00 11 01 10 01 10 00 11 01 10 00 11

00 00 11 11 01 01 10 10 01 01 10 10 00 00 11 11

00 11 00 11 00 11 00 11 01 10 01 10 01 10 01 10
(1.16)

MUBs are formed by the eigenbases of operators σ̂m1
x σ̂

n1
z ⊗ σ̂m2

x σ̂
n2
z , where the powers

are taken from the first column of this table. The result is in agreement with other

methods [37, 119, 13]. The complementary questions answered by the states of these

MUBs are formulated in terms of individual bits m1, m2, n1, n2, which are encoded by

Û = σ̂m1
x σ̂

n1
z ⊗ σ̂m2

x σ̂
n2
z . E.g., the question of the last row is about the values of m1 + n1

and m2 + n2.

An interesting feature strengthening the link between MUBs and OLSs is the ex-

istence of the set of OLSs and MUBs which cannot be completed. For example, the

following net design

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

00 11 22 33 01 12 23 30 02 13 20 31 03 10 21 32
(1.17)

cannot have more rows. The MUBs related to this table are the eigenbases of X̂, Ẑ and

X̂Ẑ for d = 4. Correspondingly, there are no other bases which are mutually unbiased

with respect to these three [86].
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1.2.5 General dimension

Tarry was the first to prove that no two OLSs of order six exist [178], i.e. the net for

d = 6 has only three rows. The operators X̂mẐn commute for numbers m and n from

the first cell of these rows and the corresponding MUBs are the eigenbases of X̂, Ẑ and

X̂Ẑ. Similarly to the case of d = 4 no other MUB with respect to these three exists

[87]. Of course, the question whether different three MUBs can be augmented with

additional MUBs remains open.

1.2.6 MacNeish’s bound

More generally, the lower bound on the number of OLSs was given by MacNeish

[130]. If two squares of order a are orthogonal, A ⊥ B, and two squares of order b are

orthogonal, C ⊥ D, then the squares obtained by a direct product, of order ab, are also

orthogonal, A × C ⊥ B × D. This implies that the number of OLSs, L, of the order

d = pr1
1 ...p

rn
n , with pi being prime factors of d, is at leastL ≥ mini(pri

i −1), where pri
i −1

is the number of OLSs of order pri
i . A parallel result holds for MUBs [113, 87]. If |a⟩

and |b⟩ are the states of two MUBs in dimension d1, and |c⟩ and |d⟩ are the states of

MUBs in dimension d2, then the tensor product bases |a⟩⊗ |c⟩ and |b⟩⊗ |d⟩ form MUBs

in dimension d1d2. Thus, for d = pr1
1 ...p

rn
n there are at least mini(pri

i + 1) MUBs.

Latin operator basis

In general, we know more about the number of OLSs than about the number of MUBs

[46]. We use this knowledge to derive conditions which restrict the form of MUBs.

Consider the operators

B̂n0...nd = 11 +
d∑

m=0

d−1∑
ξ=1

η
nmξ
d S ξ

m, (1.18)

where nm = 0, ..., d − 1 and S ξ
m =

∑d−1
j=0 η

jξ
d | j⟩m⟨ j| have complete set of MUBs as eigen-

bases, m = 0, ..., d. We show that existence of such a set and orthogonality of d2

operators B̂n0...nd implies completeness of the set of OLSs. The trace scalar product

Tr(B̂†n0...nd B̂n′0...n
′
d
) is given by d2(k − 1), where k denotes the sum of Kronecker deltas,

k ≡ δn0n′0
+ ... + δndn′d

. Operators B̂n0...nd and B̂n′0...n
′
d

are orthogonal if and only if k = 1,

i.e. nm = n′m for exactly one m. This condition applied to d2 orthogonal operators,

defines a complete set of orthogonal squares. To see this, take d2 orthogonal operators

B̂n0(b)...nd(b) with b = 1, ..., d2 and consider d + 1 squares defined by their indices nm(b)

for a fixed m. If the squares were not orthogonal, one could find at least two identical



1.2. MUTUALLY UNBIASED BASES AND ORTHOGONAL LATIN SQUARES37

pairs, (nm(b), nm′(b)) = (nm(b′), nm′(b′)), implying that operators (1.18) are not orthog-

onal (k > 1). Therefore, e.g. for d = 6, there is no complete set of MUBs for which

operators B̂n0...nd are orthogonal because there is no complete set of OLSs in this case.

Orthogonal functions

The second condition is obtained by noting that a net defines “orthogonal” functions,

Fa(m, n), which give the column of the ath row where the pair m n is entered. The

orthogonality means that for the pairs m n for which the function Fa(m, n) has a fixed

value, the function Fa′(m, n) acquires all its values. We show that if d2 unitaries, Ûmn,

shift (up to a phase) the states of different bases in accordance with the net

Ûmn| j⟩a ∝ | j + Fa(m, n)⟩a, (1.19)

then these bases are MUBs. For the proof, note that
∑d−1

i′=0 |a⟨i|i′⟩a′ |2 = 1. From orthogo-

nality of the functions, this sum can be written as
∑
S |a⟨ j+Fa(m, n)| j′+Fa′(m, n)⟩a′ |2 =

1, where S is the set of pairs m n for which Fa(m, n) has a fixed value. By (1.19), the

last is
∑
S |a⟨ j|Û†mnÛmn| j′⟩a′ |2, which due to unitarity, Û†mnÛmn = 11, is the sum of d

identical terms |a⟨ j| j′⟩a′ |2. Therefore, |a⟨ j| j′⟩a′ |2 = 1/d. Further, given d2 unitaries with

property (1.19), one recovers the table in the following experiment: prepare |0⟩a, act

on it with Ûmn, measure in the same basis, and write the pair m n in the ath row and

the column corresponding to the result. Thus, in dimension six, there cannot be 36

unitaries satisfying (1.19), with the orthogonal functions, for more than three bases,

because otherwise one could construct more than three orthogonal squares of order

six, which is impossible.

1.2.7 Hidden-variable simulation of MUBs

The net designs can be used to construct hidden-variable models which simulate results

of complementary measurements on certain states. Recently, Spekkens showed that

only four “ontic states” (hidden variables) are sufficient to simulate complementary

measurements of a qubit prepared in a state of a MUB [175]. In his model, quantum

states of MUBs correspond to the “epistemic states” satisfying the knowledge balance

principle: the amount of knowledge one possesses about the ontic state is equal to the

amount of knowledge one lacks [175]. This principle lies behind the net design. Left

table of (1.9) corresponds to the original Spekkens’ model: the numbers enumerate

ontic states, cells correspond to the epistemic states and rows to the complementary

measurements. All other tables generalize the model. To identify the ontic state one
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needs two dits of information (there are d2 ontic states), whereas the epistemic state is

defined by a single dit, leaving the other one unknown. The quantum states described

by these models require (a classical mixture of) only two dits to model d outcomes of

d + 1 quantum complementary measurements.

Our approach allows to ask the question how many epistemic states satisfying the

knowledge balance principle, i.e. having d underlying ontic states, correspond to quan-

tum states. For example, in the case of a two-level system there are four ontic states,

and six possible epistemic states [see the net design of (1.9)]. All six correspond to

quantum eigenstates of complementary observables. In general, any epistemic state

is represented by a cell of d numbers i1 i2 ... id . Since each number takes on one

of d2 values, the numbers cannot repeat and their order is not important, there are

Ed =
∑D

i1=1
∑D+1

i2=i1+1 · · ·
∑D+d−1

id=id−1+1 possible epistemic states, with D = d2 − d + 1.

For d being a power of a prime the quantum states corresponding to the cells of the

net design are basis vectors of a complete set of MUBs. They can be used to uniquely

decompose arbitrary Hermitian operator

Ô = −Tr(Ô)1̂1 +
d∑

m=0

d−1∑
j=0

p(m)
j | j⟩m⟨ j|, (1.20)

where p(m)
j =m ⟨ j|Ô| j⟩m and | j⟩m is the jth state of the mth MUB. For the proof, note

that the complete set of MUBs can be used to define the operator basis in the Hilbert-

Schmidt space Ŝ ξ
m =

∑d−1
j=0 η

jξ
d | j⟩m⟨ j|. There are d2 such operators, because m = 0, ..., d,

the power ξ = 0, ..., d−1 and all d operators Ŝ 0
m are equal to the identity operator. Since

they are normalized as Tr[(Ŝ ξ
m)†Ŝ ξ′

m′] = dδmm′δξξ′ any operator has a unique expansion

Ô = 1
d [Tr(Ô)1̂1+

∑d
m=0

∑d−1
ξ=1 Tr(Ô(Ŝ ξ

m)†)Ŝ ξ
m] Writing Ŝ ξ

m in terms of projectors on MUBs

one finds Eq. (1.20).

If Ô is a quantum state, Tr(Ô) = 1 and p(m)
j ’s are probabilities to observe outcomes

related to suitable states of MUBs. We consider general epistemic states, not neces-

sarily those corresponding to the cells of the net design. Such epistemic states have

“partial overlap” with the cells, defined as the number of common ontic states divided

by d. For example, the epistemic state 00 01 20 has an overlap of 2
3 and 1

3 with the

first and third epistemic state of the first row of table (1.11), respectively. To con-

struct operator Ô associated with a general epistemic state, we take these overlaps to

define the probabilities p(m)
j . Since we would like to see how many epistemic states

correspond to quantum states we take operators Ô with a unit trace. If Tr(Ô2) = 1

and Tr(Ô3) , 1, the operator Ô cannot represent a quantum state, because the first

condition excludes mixed states, and both of them exclude pure states [107]. We find

that for d = 3 only the epistemic states of the net design correspond to the quantum
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states. There are Q3 = 12 such states, out of E3 = 84 different epistemic states. The

ratio of Rd = Qd/Ed rapidly decreases with d: we checked R3 = 1/7, R4 = 8/455

and R5 = 1/1771. Thus, most of the epistemic states, constructed according to the

“knowledge balance principle”, do not represent a quantum-physical state.

Summary.– In conclusion, we showed a one-to-one relation between OLSs and

MUBs, if d is a power of a prime. For general dimensions, we derive conditions which

limit the structure of the complete set of MUBs and we presented parallelism between

the MacNeish’s bound on the minimal number of OLSs and the minimal number of

MUBs. Interestingly, the MacNeish’s bound is known not to be tight. There are at least

five OLSs of order 35, where the MacNeish’s bound is four [190]. Therefore, further

insight into the relations between MUBs and OLSs would be gained from studies of

MUBs for d = 35.

Finally, using the squares, we constructed hidden-variable models that efficiently

simulate measurements of MUBs. However, the majority of states in these models do

not have quantum-physical counterparts.



40 CHAPTER 1. GENERIC PROBABILISTIC THEORIES

1.3 Reconstruction of quantum theory

Quantum theory makes the most accurate empirical predictions and yet it lacks simple,

comprehensible physical principles from which the theory can be uniquely derived. A

broad class of probabilistic theories exist which all share some features with quantum

theory, such as probabilistic predictions for individual outcomes (indeterminism), the

impossibility of information transfer faster than speed of light (no-signaling) or the

impossibility of copying of unknown states (no-cloning). A vast majority of attempts to

find physical principles behind quantum theory either fall short of deriving the theory

uniquely from the principles or are based on abstract mathematical assumptions that

require themselves a more conclusive physical motivation. Here, we show that classi-

cal probability theory and quantum theory can be reconstructed from three reasonable

axioms: (1) (Information capacity) All systems with information carrying capacity of

one bit are equivalent. (2) (Locality) The state of a composite system is completely

determined by measurements on its subsystems. (3) (Reversibility) Between any two

pure states there exists a reversible transformation. If one requires the transformation

from the last axiom to be continuous, one separates quantum theory from the classical

probabilistic one. A remarkable result following from our reconstruction is that no

probability theory other than quantum theory can exhibit entanglement without con-

tradicting one or more axioms.

The historical development of scientific progress teaches us that every theory that

was established and broadly accepted at a certain time was later inevitably replaced by

a deeper and more fundamental theory of which the old one remains a special case.

One celebrated example is Newtonian (classical) mechanics which was superseded by

quantum mechanics at the beginning of the last century. It is natural to ask whether

in a similar manner there could be logically consistent theories that are more generic

than quantum theory itself. It could then turn out that quantum mechanics is an ef-

fective description of such a theory, only valid within our current restricted domain of

experience.

At present, quantum theory has been tested against very specific alternative theo-

ries that, both mathematically and in their concepts, are distinctly different. Instances

of such alternative theories are non-contextual hidden-variable theories [116], local

hidden-variable theories [19], crypto-nonlocal hidden-variable theories [120, 92], or

some nonlinear variants of the Schrödinger equation [22, 167, 169, 75]. Currently,

many groups are working on improving experimental conditions to be able to test al-

ternative theories based on various collapse models [77, 110, 109, 60, 151, 149]. The

common trait of all these proposals is to suppresses one or the other counter-intuitive
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feature of quantum mechanics and thus keep some of the basic notions of a classi-

cal world view intact. Specifically, hidden-variable models would allow to preassign

definite values to outcomes of all measurements, collapse models are mechanisms for

restraining superpositions between macroscopically distinct states and nonlinear exten-

sions of the Schrödinger equation may admit more localized solutions for wave-packet

dynamics, thereby resembling localized classical particles.

In the last years the new field of quantum information has initialized interest in

generalized probabilistic theories which share certain features – such as the no-cloning

and the no-broadcasting theorems [14, 15] or the trade-off between state disturbance

and measurement [18] – generally thought of as specifically quantum, yet being shown

to be present in all except classical theory. These generalized probabilistic theories

can allow for stronger than quantum correlations in the sense that they can violate

Bell’s inequalities stronger than the quantum Cirel’son bound (as it is the case for the

celebrated “non-local boxes” of Popescu and Rohrlich [157]), though they all respect

the “non-signaling” constraint according to which correlations cannot be used to send

information faster than the speed of light.

Since the majority of the features that have been highlighted as “typically quantum”

are actually quite generic for all non-classical probabilistic theories, one could con-

clude that additional principles must be adopted to single out quantum theory uniquely.

Alternatively, these probabilistic theories indeed can be constructed in a logically con-

sistent way, and might even be realized in nature in a domain that is still beyond our

observations. The vast majority of attempts to find physical principles behind quan-

tum theory either fail to single out the theory uniquely or are based on highly abstract

mathematical assumptions without an immediate physical meaning (e.g. [129]).

On the way to reconstructions of quantum theory from foundational physical prin-

ciples rather than purely mathematical axioms, one finds interesting examples coming

from an instrumentalist approach [96, 50, 83], where the focus is primarily on primitive

laboratory operations such as preparations, transformations and measurements. While

these reconstructions are based on a short set of simple axioms, they still partially use

mathematical language in their formulation.

Evidentally, added value of reconstructions for better understanding quantum the-

ory originates from its power of explanation where the structure of the theory comes

from. Candidates for foundational principles were proposed giving a basis for an un-

derstanding of quantum theory as a general theory of information supplemented by

several information-theoretic constraints [159, 197, 39, 40, 44, 91]. In a wider con-

text these approaches belong to attempts to find an explanation for quantum theory
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by putting primacy on the concept of information or on the concept of probability

which again can be seen as a way of quantifying information [193, 71, 176, 177, 27,

43, 73, 84, 85, 127, 175, 82]. Other principles were proposed for separation of quan-

tum correlations from general non-signaling correlations, such as that communication

complexity is not trivial [182, 31], that communication of m classical bits causes infor-

mation gain of at most m bits (“information causality”) [148], or that any theory should

recover classical physics in the macroscopic limit [139].

In his seminal paper, Hardy [96] derives quantum theory from “five reasonable

axioms” within the instrumentalist framework. He sets up a link between two natural

numbers, d and N, characteristics of any theory. d is the number of degrees of freedom

of the system and is defined as the minimum number of real parameters needed to

determine the state completely. The dimension N is defined as the maximum number

of states that can be reliably distinguished from one another in a single shot experiment.

A closely related notion is the information carrying capacity of the system, which is

the maximal number of bits encoded in the system, and is equal to log N bits for a

system of dimension N.

Examples of theories with an explicit functional dependence d(N) are classical

probability theory with the linear dependence d = N − 1, and quantum theory with the

quadratic dependence for which it is necessary to use d = N2 − 1 real parameters to

completely characterize the quantum state 5. Higher-order theories with more general

dependencies d(N) might exist as illustrated in Figure 1. Hardy’s reconstruction resorts

to a “simplicity axiom” that discards a large class of higher-order theories by requiring

that for each given N, d(N) takes the minimum value consistent with the other axioms.

However, without making such an ad hoc assumption the higher-order theories might

be possible to be constructed in agreement with the rest of the axioms. In fact, an

explicit quartic theory for which d = N4 − 1 [199], and theories for generalized bit

(N = 2) for which d = 2r − 1 and r ∈ N [146], were recently developed, though all of

them are restricted to the description of individual systems only.

It is clear from the previous discussion that the question on basis of which physical

principles quantum theory can be separated from the multitude of possible general-

ized probability theories is still open. A particulary interesting unsolved problem is

whether the higher-order theories of Refs. [96, 199, 146] can be extended to describe

non-trivial, i.e. entangled, states of composite systems. Any progress in theoretical

understanding of these issues would be very desirable, in particular because experi-

5Hardy considers unnormalized states and for that reason takes K = d + 1 (in his notation) as the
number of degrees of freedom.
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Figure 1.3: State spaces of a two-dimensional system in the generalized probabilistic theories

analyzed here. d is the minimal number of real parameters necessary to determine the (gener-

ally mixed) state completely. From left to right: A classical bit with one parameter (the weight

p in the mixture of two bit values), a real bit with two real parameters (state ρ ∈ D(R2) is rep-

resented by 2 × 2 real density matrix), a qubit (quantum bit) with three real parameters (state

ρ ∈ D(C2) is represented by 2 × 2 complex density matrix) and a generalized bit for which

d real parameters are needed to specify the state. Note that, when one moves continuously

from one pure state (represented by a point on the surface of a sphere) to another, only in the

classical probabilistic theory one must go trough the set of mixed states. Can probability the-

ories that are more generic than quantum theory be extended in a logically consistent way to

higher-dimensional and composite systems? Can entanglement exist in these theories? Where

should we look in nature for potential empirical evidences of the theories?

mental research efforts in this direction have been very sporadic. Although the ma-

jority of experiments indirectly verify also the number of the degrees of freedom of

quantum systems 6, there are only few dedicated attempts at such a direct experimental

verification. Quaternionic quantum mechanics (for which d = 2N2 −N − 1) was tested

in a suboptimal setting [155] in a single neutron experiment in 1984 [152, 108], and

more recently, the generalized measure theory of Sorkin [172] in which higher order

interferences are predicted was tested in a three-slit experiment with photons [170].

Both experiments put an upper bound on the extent of the observational effects the two

alternative theories may produce.

6As noted by Zyczkowski [199] it is thinkable that within the time scales of standard experimental
conditions “hyper-decoherence” may occur which cause a system described in the framework of the
higher-order theory to specific properties and behavior according to predictions of standard (complex)
quantum theory.



44 CHAPTER 1. GENERIC PROBABILISTIC THEORIES

1.3.1 Basic ideas and the axioms

Here we reconstruct quantum theory from three reasonable axioms. Following the

general structure of any reconstruction we first give a set of physical principles, then

formulate their mathematical representation, and finally rigorously derive the formal-

ism of the theory. We will only consider the case where the number of distinguishable

states is finite. The three axioms which separate classical probability theory and quan-

tum theory from all other probabilistic theories are:

Axiom 1. (Information capacity) An elementary system has the information carrying

capacity of at most one bit. All systems of the same information carrying capacity are

equivalent.

Axiom 2. (Locality) The state of a composite system is completely determined by local

measurements on its subsystems and their correlations.

Axiom 3. (Reversibility) Between any two pure states there exists a reversible trans-

formation.

A few comments on these axioms are appropriate here. The most elementary sys-

tem in the theory is a two-dimensional system. All higher-dimensional systems will

be built out of two-dimensional ones. Recall that the dimension is defined as the max-

imal number of states that can be reliably distinguished from one another in a single

shot experiment. Under the phrase “an elementary system has an information capac-

ity of at most one bit” we precisely assume that for any state (pure or mixed) of a

two-dimensional system there is a measurement such that the state is a mixture of two

states which are distinguished reliable in the measurement. An alternative formula-

tion could be that any state of a two dimensional system can be prepared by mixing at

most two basis (i.e. perfectly distinguishable in a measurement) states (see Figure 2).

Roughly speaking, axiom 1 assumes that a state of an elementary system can always

be represented as a mixture of two classical bits. This part of the axiom is inspired by

Zeilinger’s proposal for a foundation principle for quantum theory [197].

The second statement in axiom 1 is motivated by the intuition that at the funda-

mental level there should be no difference between systems of the same information

carrying capacity. All elementary systems – be they part of higher dimensional systems

or not – should have equivalent state spaces and equivalent sets of transformations and

measurements. This seems to be a natural assumption if one makes no prior restrictions

to the theory and preserves the full symmetry between all possible elementary systems.

This is why we have decided to put the statement as a part of axiom 1, rather than as
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Figure 1.4: Illustration of the assumption stated in axiom 1. Consider a toy-world of a two-

dimensional system in which the set of pure states consists of only x1 and x2 and their orthog-

onal states x⊥1 and x⊥2 respectively, and where only two measurements exist, which distinguish

{x1, x⊥1 } and {x2, x⊥2 }. The convex set (represented by the grey area within the circle) whose

vertices are the four states contains all physical (pure or mixed) states in the toy-world. Now,

choose a point in the set, say y = λx1 + (1 − λ)x2. Axiom 1 states that any physical state can

be represented as a mixture of two orthogonal states (i.e. states perfectly distinguishable in a

single shot experiment), e.g. y = ηx+ (1−η)x⊥. This is not fulfilled in the toy world, but is sat-

isfied in a theory in which the entire circle represents the pure states and where measurements

can distinguish all pairs of orthogonal states.

a separate axiom. The particular formulation used here is from Grinbaum [90] who

suggested to rephrase the “subspace axiom” of Hardy’s reconstruction using physical

language rather than mathematical. The subspace axiom states that a system whose

state is constrained to belong to an M dimensional subspace (i.e. have support on only

M of a set of N possible distinguishable states) behaves like a system of dimension M.

In logical terms axiom 1 means the following. We can think of two basis states

as two binary propositions about an individual system, such as (1) “The outcome of

measurement A is +1” and (2) “The outcome of measurement A is -1”. An alternative

choice for the pair of propositions can be propositions about joint properties of two

systems, such as (1’) “The outcomes of measurement A on the first system and of B

on the second system are correlated” (i.e. either both +1 or both -1) and (2’) “The

outcomes of measurement A on the first system and of B on the second system are an-

ticorrelated”. The two choices for the pair of propositions correspond to two choices

of basis states which each can be used to span the full state space of an abstract ele-

mentary system (also called “generalized bit”). As we will see later, taking the latter

choice, it will follow from axiom 1 alone that the state space must contain entangled

states.

Axiom 2 assumes that a specification of the probabilities for a complete set of

local measurements for each of the subsystems plus the joint probabilities for corre-
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lations between these measurements is sufficient to determine completely the global

state. Note that this property does hold in both quantum theory and classical probabil-

ity theory, but not in quantum theory formulated on the basis of real or quaternionic

amplitudes instead of complex. A closely related formulation of the axiom was given

by Barrett [18].

Finally, axiom 3 requires that transformations are reversible. This is assumed alone

for the purposes that the set of transformations builds a group structure. It is natural to

assume that a composition of two physical transformations is again a physical trans-

formation. It should be noted that this axiom could be used to exclude the theories

in which “non-local boxes” occur, because there the dynamical group is trivial, in the

sense that it is generated solely by local operations and permutations of systems with

no entangling reversible transformations (that is, non-local boxes cannot be prepared

from product states) [94].

If one requires the reversible transformation from our axiom 3 to be continuous:

Axiom 3’. (Continuity) Between any two pure states there exists a continuous re-

versible transformation,

which separates quantum theory from classical probability theory. The same axiom is

also present in Hardy’s reconstruction. By a continuous transformation is here meant

that every transformation can be made up from a sequence of transformations only

infinitesimally different from the identity.

A remarkable result following from our reconstruction is that quantum theory is

the only probabilistic theory in which one can construct entangled states and fulfill

the three axioms. In particular, in the higher-order theories of Refs. [96, 199, 146]

composite systems can only enjoy trivial separable states. On the other hand, we will

see that axiom 1 alone requires entangled states to exist in all non-classical theories.

This will allow us to discard the higher-order theories in our reconstruction scheme

without invoking the simplicity argument.

As a by product of our reconstruction we will be able to answer why in nature only

“odd” correlations (i.e. (1, 1,−1), (1,−1, 1), (−1, 1, 1) and (−1,−1,−1)) are observed

when two maximally entangled qubits (spin-1/2 particles) are both measured along

direction x, y and z, respectively. The most familiar example is of the singlet state

|ψ−⟩ = 1
2 (|0⟩1|1⟩2−|0⟩1|1⟩2) with anticorrelated results for arbitrarily but the same choice

of measurement directions for two qubits. We will show that the “mirror quantum

mechanics” in which only “even” correlations appear cannot be extended consistently

to composite systems of three bits.
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Our reconstruction will be given in the framework of typical experimental situa-

tion an observer faces in the laboratory. While this instrumentalist approach is a useful

paradigm to work with, it might not be necessary. One could think about axioms 1 and

3 as referring to objective features of elementary constituents of the world which need

not necessarily be related to laboratory actions. In contrast, axiom 2 seems to acquire

a meaning only within the instrumentalist approach as it involves the word “measure-

ment”. Even here one could follow a suggestion of Grinbaum [90] and rephrase the

axiom to the assumption of “multiplicability of the information carrying capacity of

subsystems.”

Concluding this section, we note that the conceptual groundwork for the ideas pre-

sented here has been prepared most notably by Weizsäcker [185], Wheeler [187] and

Zeilinger [197] who proposed that the notion of the elementary yes-no alternative, or

the “Ur”, should play a pivotal role when reconstructing quantum physics.

1.3.2 Basic notions

Following Hardy [96] we distinguish three types of devices in a typical laboratory.

The preparation device prepares systems in some state. It has a set of switches on it

for varying the state produced. After state preparation the system passes through a

transformation device. It also has a set of switches on it for varying the transformation

applied on the state. Finally, the system is measured in a measurement apparatus. It

again has switches on it with which help an experimenter can choose different mea-

surement settings. This device outputs classical data, e.g. a click in a detector or a spot

on a observation screen.

We define the state of a system as that mathematical object from which one can

determine the probability for any conceivable measurement. Physical theories can have

enough structure that it is not necessary to give an exhaustive list of all probabilities for

all possible measurements, but only a list of probabilities for some minimal subset of

them. We refer to this subset as fiducial set. Therefore, the state is specified by a list of

d (where d depends on dimension N) probabilities for a set of fiducial measurements:

p = (p1, . . . , pd). The state is pure if it is not a (convex) mixture of other states. The

state is mixed if it is not pure. For example, the mixed state p generated by preparing

state p1 with probability λ and p2 with probability 1 − λ, is p = λp1 + (1 − λ)p2.

When we refer to an N-dimensional system, we assume that there are N states each

of which identifies a different outcome of some measurement setting, in the sense that

they return probability one for the outcome. We call this set a set of basis or orthogonal

states. Basis states can be chosen to be pure. To see this assume that some mixed state
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identifies one outcome. We can decompose the state into a mixture of pure states, each

of which has to return probability one, and thus we can use one of them to be a basis

state. We will show later that each pure state corresponds to a unique measurement

outcome.

If the system in state p is incident on a transformation device, its state will be

transformed to some new state U(p). The transformation U is a linear function of the

state p as it needs to preserve the linear structure of mixtures. For example, consider

the mixed state p which is generated by preparing state p1 with probability λ and p2

with probability 1−λ. Then, in each single run, either p1 or p2 is transformed and thus

one has:

U(λp1 + (1 − λ)p2) = λU(p1) + (1 − λ)U(p2). (1.21)

It is natural to assume that a composition of two or more transformations is again

from a set of (reversible) transformations. This set forms some abstract group. Axiom

3 states that the transformations are reversible, i.e. for every U there is an inverse group

element U−1. Here we assume that every transformation has its matrix representation

U and that there is an orthogonal representation of the group: there exists an invertible

matrix S such that O = S US −1 is an orthogonal matrix, i.e. OTO = 11, for every U

(We use the same notation both for the group element and for its matrix representation).

This does not put severe restrictions to the group of transformations, as it is known that

all compact groups have such a representation (the Schur-Auerbach lemma) [24]. Since

the transformation keeps the probabilities in the range [0, 1], it has to be a compact

group [96]. All finite groups and all continuous Lie groups are therefore included in

our consideration.

Given a measurement setting, the outcome probability Pmeas can be computed by

some function f of the state p,

Pmeas = f (p). (1.22)

Like a transformation, the measurement cannot change the mixing coefficients in a

mixture, and therefore the measured probability is a linear function of the state p:

f (λp1 + (1 − λ)p2) = λ f (p1) + (1 − λ) f (p2). (1.23)

1.3.3 Elementary system: system of information capacity of 1 bit

A two-dimensional system has two distinguishable outcomes which can be identified

by a pair of basis states {p,p⊥}. The state is specified by d probabilities p = (p1, ..., pd)

for d fiducial measurements, where pi is probability for a particular outcome of the

i-th fiducial measurement (the dependent probabilities 1− pi for the opposite outcomes
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are omitted in the state description). Instead of using the probability vector p we will

specify the state by its Bloch representation x defined as a vector with d components:

xi = 2pi − 1. (1.24)

The mapping between the two different representations is an invertible linear map and

therefore preserves the structure of the mixture λp1 + (1 − λ)p2 7→ λx1 + (1 − λ)x2.

It is convenient to define a totaly mixed state E = 1
N

∑
x∈Spure

x, where Spure denotes

the set of pure states and N is the normalization constant. In the case of a continuous

set of pure states the summation has to be replaced by a proper integral. It is easy to

verify that E is a totally invariant state. This implies that every measurement and in

particular the fiducial ones will return the same probability for all outcomes. In the

case of a two-dimensional system this probability is 1/2. Therefore, the Bloch vector

of the totally mixed state is the zero-vector E = 0⃗.

The transformation U does not change the totaly mixed state, hence U(0⃗) = 0⃗. The

last condition together with the linearity condition (1.21) implies that any transforma-

tion is represented by some d × d real invertible matrix U. The same reasoning holds

for measurements. Therefore, the measured probability is given by the formula:

Pmeas =
1
2

(1 + rTx). (1.25)

The vector r represents the outcome for the given measurement setting. For example,

the vector (1, 0, 0, . . . ) represents one of the outcomes for the first fiducial measure-

ment.

According to axiom 1 any state is a classical mixture of some pair of orthogonal

states. For example, the totally mixed state is an equally weighted mixture of some or-

thogonal states 0⃗ = 1
2x+ 1

2x⊥. Take x to be the reference state. According to axiom 3 we

can generate the full set of states by applying all possible transformations to the refer-

ence state. Since the totally mixed state is invariant under the transformations, the pair

of orthogonal states is represented by a pair of antiparallel vectors x⊥ = −x. Consider

the set Spure = { Ux | ∀U} of all pure states generated by applying all transformations

to the reference state. If one uses the orthogonal representation of the transformations,

U = S −1OS , which was introduced above, one maps x 7→ S x and U 7→ O. Hence,

the transformation Ux 7→ S Ux = OS x is norm preserving. We conclude that all pure

states are points on a d-dimensional ellipsoid described by ||S x|| = c with c > 0.

Now, we want to show that any vector x satisfying ||S x|| = c is a physical state and

therefore the set of states has to be the whole ellipsoid. Let x be some vector satisfying

||S x|| = c and x(t) = tx a line trough the origin (totaly mixed state) as given in Figure
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1.5 (left). Within the set of pure states we can always find d linearly independent

vectors {x1, . . . , xd}. For each state xi there is a corresponding orthogonal state x⊥i = −xi

in a set of states. We can expand a point on the line into a linearly independent set of

vectors: x(t) = t
∑d

i=1 cixi. For sufficiently small t we can define a pair of non-negative

numbers λi(t) = 1
2 ( 1

d + tci) and λ⊥i (t) = 1
2 ( 1

d − tci) with
∑

i(λi(t) + λ⊥i (t)) = 1 such that

x(t) is a mixture x(t) =
∑d

i=1 λi(t)xi + λ
⊥
i (t)x⊥i and therefore is a physical state. Then,

according to axiom 1 there exists a pair of basis states {x0,−x0} such that x(t) is a

mixture of them

x(t) = tx = αx0 + (1 − α)(−x0), (1.26)

where α = 1+t
2 and x = x0. This implies that x is a pure state and therefore all points of

the ellipsoid are physical states.

For every pure state x, there exists at least one measurement setting with the out-

come r such that the outcome probability is one, hence rTx = 1. Let us define new

coordinates y = 1
c S x and m = cS −1T r in the orthogonal representation. The set of pure

states in the new coordinates is a (d − 1)-sphere Sd−1 = {y | ||y|| = 1} of the radius. The

probability rule (1.25) remains unchanged in the new coordinates:

Pmeas =
1
2

(1 +mTy). (1.27)

Thus, one has mTy = 1. Now, assume that m , y. Then ||m|| > 1 and the vectors

m and y span a two-dimensional plane as illustrated in Figure 1.5 (right). The set of

pure states within this plane is a unit circle. Choose the pure state y′ to be parallel

to m. Then the outcome probability is Pmeasur =
1
2 (1 + ||m||||y′||) > 1 which is non-

physical, hence m = y. Therefore, to each pure state y, we associate a measurement

vector m = y which identifies it. Equivalently, in the original coordinates, to each x
we associate a measurement vector r = Dx, where D = 1

c2 S TS is a positive, symmetric

matrix. A proof of this relation for the restricted case of d = 3 can be found in Ref. [96].

From now one, instead of the measurement vector r we will use the pure state x
which identifies it. When we say that the measurement along the state x is performed

we mean the measurement given by r = Dx. The measurement setting is given by a

pair of measurement vectors r and −r. The measured probability when the state x1 is

measured along the state x2 follows from formula (1.25):

P(x1, x2) =
1
2

(1 + xT
1 Dx2). (1.28)

We can choose orthogonal eigenvectors of the matrix D as the fiducial set of states

(measurements):

Dxi = aixi, (1.29)
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Figure 1.5: (Left) Illustration to the proof that the entire d-dimensional ellipsoid (here repre-

sented by a circle; d = 2) contains physical states. Consider a line x(t) = tx through the origin.

A point on the line can be expanded into a set of linearly independent vectors xi (here x1 and

x2). For sufficiently small t (i.e. when the line is within the gray square) the point x(t) can be

represented as a convex mixture over xi and their orthogonal vectors x⊥i and thus is a physical

state. According to axiom 1, x(t) can be represented as a convex mixture of two orthogonal

pure states x0 and x⊥0 : x(t) = tx = αx0 + (1 − α)(−x0), where x = x0 (see text for details). This

implies that every point in the ellipsoid is a physical state. (Right) Illustration to the proof that

in the orthogonal representation the measurement vector m that identifies the state x, i.e. for

which the probability Pmeas =
1
2 (1 +mTy) = 1, is identical to the state vector, m = y. Suppose

that m , y, then ||m|| > 1, since the state vector is normalized. But then the same measurement

for state y′ parallel to m would return a probability larger than 1, which is nonphysical. Thus

m = y.

where ai are eigenvalues of D. Since xi are pure states, they satisfy xT
i Dx j = δi j. The

set of pure states becomes a unit sphere Sd−1 = {x | ||x|| = 1} and the probability

formula is reduced to

P(x1, x2) =
1
2

(1 + xT
1 x2). (1.30)

This corresponds to a choice of a complete set of mutually complementary measure-

ments (i.e. mutually unbiased basis sets) for the fiducial measurements. The states

identifying outcomes of complementary measurements satisfy P(xi, x j) = 1
2 for i , j.

Two observables are said to be mutually complementary if complete certainty about

one of the observables (one of two outcomes occurs with probability one) precludes

any knowledge about the others (the probability for both outcomes is 1/2). Given some

state x, the i-th fiducial measurement returns probability pi =
1
2 (1+ xi). Therefore, xi is

a mean value of a dichotomic observable bi = +1xi − 1x⊥i with two possible outcomes

bi = ±1.

A theory in which the state space of the generalized bit is represented by a (d − 1)-

sphere has d mutually complementary observables. This is a characteristic feature of

the theories and they can be ordered according to their number. For example, classical



52 CHAPTER 1. GENERIC PROBABILISTIC THEORIES

physics has no complementary observables, real quantum mechanics has two, complex

(standard) quantum mechanics has three (e.g. the spin projections of a spin-1/2 system

along three orthogonal directions) and the one based on quaternions has five mutually

complementary observables. Note that higher-order theories of a single generalized

bit are such that the qubit theory can be embedded in them in the same way in which

classical theory of a bit can be embedded in qubit theory itself.

Higher-order theories can have even better information processing capacity than

quantum theory. For example, the computational abilities of the theories with d = 2r

and r ∈ N in solving the Deutsch-Josza type of problems increases with the number of

mutually complementary measurements [146]. It is likely that the larger this number is

the larger the error rate would be in secret key distribution in these theories, in a simi-

lar manner in which the 6-state is advantageous over the 4-state protocol in (standard)

quantum mechanics. In the first case one uses all three mutually complementary ob-

servables and in the second one only two of them. (See Ref. [16] for a review on char-

acterizing generalized probabilistic theories in terms of their information-processing

power and Ref. [2] for investigating the same question in much more general frame-

work of compact closed categories.)

A final remark on higher-order theories is of more speculative nature. In various

approaches to quantum theory of gravity one predicts at the Planck scale the dimension

of space-time to be different from 3 + 1 [6]. If one considers directional degrees of

freedom (spin), then the d − 1-sphere (Bloch sphere) might be interpreted as the state

space of a spin system embedded in real (ordinary) space of dimension d, in general

different than 3 which is the special case of quantum theory.

The reversible transformation R preserves the purity of state ||Rx|| = ||x|| and there-

fore R is an orthogonal matrix. We have shown that the state space is the full (d − 1)-

sphere. According to axiom 3 the set of transformations must be rich enough to gen-

erate the full sphere. If d = 1 (classical bit), the group of transformations is discrete

and contains only the identity and the bit-flip. If d > 1, the group is continuous and

is some subgroup of the orthogonal group O(d). Every orthogonal matrix has deter-

minant either 1 or -1. The orthogonal matrices with determinant 1 form a normal

subgroup of O(d), known as the special orthogonal group SO(d). The group O(d) has

two connected components: the identity component which is the SO(d) group, and

the component formed by orthogonal matrices with determinant -1. Since every two

points on the (d − 1)-sphere are connected by some transformation, the group of trans-

formations is at least the SO(d) group. If we include even a single transformation with

determinant -1, the set of transformations becomes the entire O(d) group. (Later we



1.3. RECONSTRUCTION OF QUANTUM THEORY 53

will show that only some d are in agreement with our three axioms and for these d’s

the set of physical transformations will be shown to be the SO(d) group).

1.3.4 Composite system and the notion of locality

We now introduce a description of composite systems. We assume that when one com-

bines two systems of dimension L1 and L2 into a composite one, one obtains a system

of dimension L1L2. Consider a composite system consisting of two geneneralized bits

and choose a set of d complementary measurements on each subsystem as fiducial

measurements. According to axiom 2 the state of the composite system is completely

determined by a set of real parameters obtainable from local measurements on the two

generalized bits and their correlations. We obtain 2d independent real parameters from

the set of local fiducial measurements and additional d2 parameters from correlations

between them. This gives altogether d2 + 2d = (d + 1)2 − 1 parameters. They are the

components xi, yi, i ∈ {1, ..., d}, of the local Bloch vectors and Ti j of the correlation

tensor:

xi = p(i)(A = 1) − p(i)(A = −1), (1.31)

y j = p( j)(B = 1) − p( j)(B = −1), (1.32)

Ti j = p(i j)(AB = 1) − p(i j)(AB = −1). (1.33)

Here, for example, p(i)(A = 1) is the probability to obtain outcome A = 1 when the

i-th measurement is performed on the first subsystem and p(i j)(AB = 1) is the joint

probability to obtain correlated results (i.e. either A = B = +1 or A = B = −1) when

the i-th measurement is performed on the first subsystem and the j-th measurement on

the second one.

Note that axiom 2 “The state of a composite system is completely determined by

local measurements on its subsystems and their correlations” is formulated in a way

that the non-signaling condition is implicitly assumed to hold. This is because it is

sufficient to speak about “local measurements” alone without specifying the choice of

measurement setting on the other, potentially distant, subsystem. Therefore, xi does

not depend on j, and y j does not depend on i.

We represent a state by the triple ψ = (x, y,T ), where x and y are the local Bloch

vectors and T is a d × d real matrix representing the correlation tensor. The product

(separable) state is represented by ψp = (x, y,T ), where T = xyT is of product form,

because the correlations are just products of the components of the local Bloch vectors.

We call the pure state entangled if it is not a product state.
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The measured probability is a linear function of the state ψ. If we prepare totaly

mixed states of the subsystems (0, 0, 0), the probability for any outcome of an arbitrary

measurement will be 1/4. Therefore, the outcome probability can be written as:

Pmeasur =
1
4

(1 + (r, ψ)), (1.34)

where r = (r1, r2,K) is a measurement vector associated to the observed outcome and

(..., ...) denotes the scalar product:

(r, ψ) = rT
1 x + rT

2 y + Tr(KTT ). (1.35)

Now, assume that r = (r1, r2,K) is associated to the outcome which is identified

by some product state ψp = (x0, y0, T0). If we preform a measurement on the arbitrary

product state ψ = (x, y,T ), the outcome probability has to factorize into the product of

the local outcome probabilities of the form (1.30):

Pmeasur =
1
4

(1 + rT
1 x + rT

2 y + xTKy) (1.36)

= P1(x0, x)P2(y0, y) (1.37)

=
1
2

(1 + xT
0 x)

1
2

(1 + yT
0 y) (1.38)

=
1
4

(1 + xT
0 x + yT

0 y + xTx0yT
0 y), (1.39)

which holds for all x, y. Therefore we have r = ψp. For each product state ψp there is

a unique outcome r = ψp which identifies it. We will later show that correspondence

r = ψ holds for all pure states ψ.

If we preform local transformations R1 and R2 on the subsystems, the global state

ψ = (x, y, T ) is transformed to

(R1,R2)ψ = (R1x,R2y,R1TRT
2 ). (1.40)

T is a real matrix and we can find its singular value decomposition diag[t1, . . . , td] =

R1TRT
2 , where R1,R2 are orthogonal matrices which can be chosen to have determinant

1. Therefore, we can choose the local bases such that correlation tensor T is a diagonal

matrix:

(R1,R2)(x, y,T ) = (R1x,R2y, diag[t1, . . . , td]). (1.41)

The last expression is called Schmidt decomposition of the state.

The local Bloch vectors satisfy ||x||, ||y|| ≤ 1 which implies a bound on the correla-

tion ||T || ≥ 1 for all pure states. The following lemma identifies a simple entanglement

witness for pure states. The proof of this and all subsequent lemmas is given in the

Appendix.
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Lemma 1. The lower bound ||T || = 1 is saturated, if and only if the state is a product

state T = xyT.

Recall that for every transformation U we can find its orthogonal representation

U = S OS −1 (the Schur-Auerbach lemma), where S is an invertible matrix and OTO =

11. The matrix S is characteristic of the representation and should be the same for all

transformations U. If we choose some local transformation U = (R1,R2), U will be

orthogonal and thus we can choose to set S = 11. The representation of transformations

is orthogonal, therefore they are norm preserving. By applying simultaneously all

(local and non-local) transformations U to some product state (the reference state)

ψ and to the measurement vector which identifies it, r = ψ, we generate the set of

all pure states and corresponding measurement vectors. Since we have 1 = P(r =

ψ, ψ) = P(Ur,Uψ), correspondence r = ψ holds for any pure state ψ. Instead of the

measurement vector r in formula (1.34) we use the pure state which identifies it. If the

state ψ1 = (x1, y1,T1) is prepared and measurement along the state ψ2 = (x2, y2,T2) is

performed, the measured probability is given by

P12(ψ1, ψ2) =
1
4

(1 + xT
1 x2 + yT

1 y2 + Tr(T T
1 T2)). (1.42)

The set of pure states obeys P12(ψ, ψ) = 1. We can define the normalization condition

for pure states P12(ψ, ψ) = 1
4 (1 + ||x||2 + ||y||2 + ||T ||2) = 1 where ||T ||2 = Tr(T TT ).

Therefore we have:

||x||2 + ||y||2 + ||T ||2 = 3, (1.43)

for all pure states.

An interesting observation can be made here. Although seemingly axiom 2 does

not imply any strong prior restrictions to d, we surprisingly have obtained the explicit

number 3 in the normalization condition (1.43). As we will see soon this relation will

play an important role in deriving d = 3 as the only non-classical solution consistent

with the axioms.

1.3.5 The main proofs

We will now show that only classical probability theory and quantum theory are in

agreement with the three axioms.

Ruling out the d even case

Let us assume the total inversion Ex = −x being a physical transformation. Let ψ =

(x, y,T ) be a pure state of composite system. We apply total inversion to one of the
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subsystems and obtain the state ψ′ = (E, 11)(x, y,T ) = (−x, y,−T ). The probability

P12(ψ, ψ′) =
1
4

(1 − ||x||2 + ||y||2 − ||T ||2) (1.44)

=
1
2

(||y||2 − 1) (1.45)

has to be nonnegative and therefore we have ||y|| = 1. Similarly, we apply (11, E) to

ψ and obtain ||x|| = 1. Since the local vectors are of the unit norm we have ||T || = 1

and thus, according to lemma 1, the state ψ is a product state. We conclude that no

entangled states can exist if E is a physical transformation. As we will soon see,

according to axiom 1 entangled states must exist. Thus, E cannot represent a physical

transformation. We will now show that this implies that d has to be odd. Recall that

the set of transformations is at least the SO(d) group. d cannot be even since E would

have unit determinant and would belong to SO(d). d has to be odd in which case E has

determinant -1. The set of physical transformations is the SO(d) group.

Ruling out the d > 3 case.

Let us define one basis set of two generalized bit product states:

ψ1 = (e1, e1,T0 = e1eT
1 ) (1.46)

ψ2 = (−e1,−e1, T0) (1.47)

ψ3 = (−e1, e1,−T0) (1.48)

ψ4 = (e1,−e1,−T0) (1.49)

with e1 = (1, 0, . . . , 0)T. Now, we define two subspaces S 12 and S 34 spanned by the

states ψ1, ψ2 and ψ3, ψ4, respectively. Axiom 1 states that these two subspaces behave

like one-bit spaces, therefore they are isomorphic to the (d − 1)-sphere S 12 � S 34 �

Sd−1. The state ψ belongs to S 12 if and only if the following holds:

P12(ψ, ψ1) + P12(ψ, ψ2) = 1. (1.50)

Since the ψ1, . . . , ψ4 form a complete basis set, we have

P12(ψ, ψ3) = 0, P12(ψ, ψ4) = 0. (1.51)

A similar reasoning holds for states belonging to the S 34 subspace. Since the states

ψ ∈ S 12 and ψ′ ∈ S 34 are perfectly distinguishable in a single shot experiment, we have

P12(ψ, ψ′) = 0. Therefore, S 12 and S 34 are orthogonal subspaces.

Axiom 1 requires the existence of entangled states as it is apparent from the fol-

lowing Lemma 2.
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Lemma 2. The only product states belonging to S 12 are ψ1 and ψ2.

We define a local mapping between orthogonal subspaces S 12 and S 34. Let the state

ψ = (x, y,T ) ∈ S 12, with x = (x1, x2, . . . , xd)T and y = (y1, y2, . . . , yd)T. Consider the

one-bit transformation R with the property Re1 = −e1. The local transformation of this

type maps the state from S 12 to S 34 as shown by the following lemma:

Lemma 3. If the state ψ ∈ S 12, then ψ′ = (R, 11)ψ ∈ S 34 and ψ′′ = (11,R)ψ ∈ S 34.

Let us define T(x)
i = (Ti1, . . . , Tid) and T(y)

i = (T1i, . . . , Tdi)T. The correlation tensor

can be rewritten in two different ways:

T =


T(x)

1

T(x)
2
...

T(x)
d


or T =

(
T(y)

1 T(y)
2 . . . T(y)

d

)
. (1.52)

Consider now the case d > 3. We define local transformations Ri flipping the first

and i-th coordinate and R jkl flipping the first and j-th, k-th, and l-th coordinate with

j , k , l , 1. Let ψ = (x, y, (T(x)
1 , . . . ,T(x)

d )T) belong to S 12. According to Lemma 2,

the states ψi = (Ri, 11)ψ and ψ jkl = (R jkl, 11)ψ belong to S 34, therefore P12(ψ, ψi) = 0

and P12(ψ, ψ jkl) = 0. We have:

0 = P12(ψ, ψi) (1.53)

1 − x2
1 + x2

2 + · · · − x2
i + · · · + x2

d + ||y||2 (1.54)

−||T(x)
1 ||

2 + ||T(x)
2 ||

2 + · · · − ||T(x)
i ||

2 + · · · + ||T(x)
d ||

2 (1.55)

= 1 − 2x2
1 − 2x2

i − 2||T(x)
1 ||

2 − 2||T(x)
i ||2 + ||x||2 + ||y||2 + ||T ||2

= 2(2 − x2
1 − x2

i − ||T(x)
1 ||

2 − ||T(x)
i ||

2). (1.56)

Similarly, we expand P12(ψ, ψ jkl) = 0 and together with the last equation we obtain:

x2
1 + x2

i + ||T(x)
1 ||

2 + ||T(x)
i ||

2 = 2 (1.57)

x2
1 + x2

j + x2
k + x2

l + ||T
(x)
1 ||

2 + ||T(x)
j ||

2 + ||T(x)
k ||

2 + ||T(x)
l ||

2 = 2.

Since this has to hold for all i, j, k, l we have:

x2 = x3 = · · · = xd = 0 (1.58)

T(x)
2 = T(x)

3 = · · · = T(x)
d = 0. (1.59)

We repeat this kind of reasoning for the transformations (11,Ri) and (11,R jkl) and obtain:

y2
1 + y2

i + ||T
(y)
1 ||

2 + ||T(y)
i ||2 = 2 (1.60)

y2
1 + y2

j + y2
k + y2

l + ||T
(y)
1 ||

2 + ||T(y)
j ||

2 + ||T(y)
k ||

2 + ||T(y)
l ||

2 = 2.
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Therefore, we have

y2 = y3 = · · · = yd = 0 (1.61)

T(y)
2 = T(y)

3 = · · · = T(y)
d = 0. (1.62)

The only non-zero element of the correlation tensor is T11 and it has to be exactly 1,

since ||T || ≥ 1. This implies that ψ is a product state, furthermore ψ = ψ1 or ψ = ψ2.

This concludes our proof that only the cases d = 1 and d = 3 are in agreement with

our three axioms. To distinguish between the two cases, one can invoke the continuity

axiom (3’) and proceed as in the reconstruction given by Hardy [96].

1.3.6 “Two” quantum mechanics

We now obtain two solutions for the theory of a composite system consisting of two

bits in the case when d = 3. One of them corresponds to the standard quantum theory

of two qubits, the other one to its “mirror” version in which the states are obtained from

the ones from the standard theory by partial transposition. Both solutions are regular

as far as one considers composite systems of two bits, but the “mirror” one cannot be

consistently constructed already for systems of three bits.

Two conditions (1.50) and (1.51) put the constraint to the form of ψ:

x1 = −y1, T11 = 1. (1.63)

The subspace S 12 is isomorphic to the sphere S2. Let us choose ψ complementary

to the one bit basis {ψ1, ψ2} in S 12. We have P12(ψ, ψ1) = P12(ψ, ψ2) = 1/2 and thus

x1 = y1 = 0. For simplicity we write ψ in the form:

ψ =

 0

x

 ,  0

y

 ,  1 TT
y

Tx T

 , (1.64)

with x = (x2, x3)T, y = (y2, y3)T, Ty = (T12,T13)T, Tx = (T21,T31)T and T =

 T22 T23

T32 T33

.
Let R(ϕ) be a rotation around the e1 axis. This transformation keeps S 12 invariant.

Now, we show that the state ψ as given by equation (1.64) cannot be invariant under

local transformation (11,R(ϕ)). To prove this by reductio ad absurdum suppose the

opposite, i.e. that (11,R(ϕ))ψ = ψ. We have three conditions

R(ϕ)y = y, TT
y RT(ϕ) = TT

y , TRT(ϕ) = T, (1.65)
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which implies y = 0, TT
y = 0 and T = 0 thus

ψ =




0

x2

x3

 ,


0

0

0

 ,


1 0 0

T2 0 0

T3 0 0


 . (1.66)

According to equations (1.57) and (1.60) we can easily check that ||x|| = 1, and thus ψ

is locally equivalent to the state:

ψ′ =




0

0

1

 ,


0

0

0

 ,


1 0 0

T ′2 0 0

T ′3 0 0


 . (1.67)

Let χ1 = (−e3, e1,−e3eT
1 ) and χ2 = (−e3,−e1, e3eT

1 ). The two conditions P(ψ′, χ1) ≥ 0

and P(ψ′, χ2) ≥ 0 become

1
4

(1 − 1 − T ′3) = −1
4

T ′3 ≥ 0 (1.68)

1
4

(1 − 1 + T ′3) =
1
4

T ′3 ≥ 0 (1.69)

and thus T ′3 = 0. The normalization condition (1.43) gives T ′2 = ±1. The state ψ′ is not

physical. This can be seen when one performs the rotation (R, 11) where

R =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 . (1.70)

The transformed correlation tensor has a component
√

2 which is non-physical. There-

fore, the transformation (11,R(ϕ))ψ draws a full circle of pure states in a plane orthog-

onal to ψ1 within the subspace S 12. Similarly, the transformation (R(ϕ), 11) draws the

same set of pure states when applied to ψ. Hence, for every transformation (11,R(ϕ1))

there exists a transformation (R(ϕ2), 11) such that (11,R(ϕ1))ψ = (R(ϕ2), 11)ψ. This gives

us a set of conditions:

R(ϕ2)x = x (1.71)

R(ϕ1)y = y (1.72)

R(ϕ2)Tx = Tx (1.73)

TT
y RT(ϕ1) = TT

y (1.74)

R(ϕ2)T = TRT(ϕ1), (1.75)



60 CHAPTER 1. GENERIC PROBABILISTIC THEORIES

Figure 1.6: Correlations between results obtained in measurements of two bits in a maximal

entangled (Bell’s) state in standard quantum mechanics (Left) and “mirror quantum mechanics”

(Right) along x, y and z directions. Why do we never see correlations as given in the table on the

right? The opposite sign of correlations on the right and on the left is not a matter of convention

or labeling of outcomes. If one can transport the two bits parallel to the same detector, one can

distinguish operationally between the two types of correlations [173].

which are fulfilled if x = y = Tx = Ty = 0 and T = diag[T1,T2]. Equation (1.57) gives

T 2
2 = T 2

3 = 1 and we finally end up with two different solutions:

ψQM = (0, 0, diag[1,−1, 1]) ∨ ψMQM = (0, 0, diag[1, 1, 1]). (1.76)

The first “M” in ψMQM stands for “mirror”. The two solutions are incompatible

and cannot coexist within the same theory. The first solution corresponds to the triplet

state ϕ+ of ordinary quantum mechanics. The second solution is a totally invariant

state and has a negative overlap with, for example, the singlet state ψ− for which

T = diag[−1,−1,−1]. That is, if the system were prepared in one of the two states

and the other one were measured, the probability would be negative. Nevertheless,

both solutions are regular at the level of two bits. The first belongs to ordinary quan-

tum mechanics with the singlet in the “antiparallel” subspace S 34 and the second so-

lution is “the singlet state in the parallel subspace” S 12. We will show that one can

build the full state space, transformations and measurements in both cases. The states

from one quantum mechanics can be obtained from the other by partial transposi-

tion ψPT
QM = ψMQM. In particular, the four maximal entangled states (Bell states) from

“mirror quantum mechanics” have correlations of the opposite sign of those from the

standard quantum mechanics (see Figure 4).

Now we show that the theory with “mirror states” is physically inconsistent when

applied to composite system of three bits. Let us first derive the full set of states and

transformations for two qubits in standard quantum mechanics. We have seen that

the state ψQM belongs to the subspace S 12, and furthermore, that it is complementary

(within S 12) to the product states ψ1 and ψ2. The totally mixed state within the S 12

subspace is E12 =
1
2ψ1 +

1
2ψ2. The states ψ1 and ψQM span one two-dimensional plane,
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and the set of pure states within this plane is a circle:

ψ(x) = E12 + cos x (ψ1 − E12) + sin x (ψQM − E12) (1.77)

= (cos x e1, cos x e1, diag[1,− sin x, sin x]). (1.78)

We can apply a complete set of local transformations to the set ψ(x) to obtain the

set of all pure two-qubit states. Let us represent a pure state ψ = (x, y,T ) by the 4 × 4

Hermitian matrix ρ:

ρ =
1
4

(11 ⊗ 11 +
3∑

i=1

xiσi ⊗ 11 +
3∑

i=1

yi11 ⊗ σi +

3∑
i, j=1

Ti jσi ⊗ σ j), (1.79)

where σi, i ∈ {1, 2, 3}, are the three Pauli matrices. It is easy to show that the set of

states (1.77) corresponds to the set of one-dimensional projectors |ψ(x)⟩⟨ψ(x)|, where

|ψ(x)⟩ = cos x
2 |00⟩ + sin x

2 |11⟩. The action of local transformations (R1,R2)ψ corre-

sponds to local unitary transformation U1 ⊗ U2|ψ⟩⟨ψ|U†1 ⊗ U†2 , where the correspon-

dence between U and R is given by the isomorphism between the groups SU(2) and

SO(3):

UρU† =
1
2

11 +
3∑

i=1

 3∑
j=1

Ri jx j

σi

 . (1.80)

Here Ri j = Tr(σiUσ jU†) and xi = Trσiρ. When we apply a complete set of local

transformations to the states |ψ(x)⟩we obtain the whole set of pure states for two qubits.

The group of transformations is the set of unitary transformations SU(4).

The set of states from “mirror quantum mechanics” can be obtained by applying

partial transposition to the set of quantum states. Formally, partial transposition with

respect to subsystem 1 is defined by action on a set of product operators:

PT1(ρ1 ⊗ ρ2) = ρT
1 ⊗ ρ2. (1.81)

where ρ1 and ρ2 are arbitrary operators. Similarly, we can define the partial transposi-

tion with respect to subsystem 2, PT2. To each unitary transformation U in quantum

mechanics we define the corresponding transformation in “mirror mechanics”, e.g.

with respect to subsystem 1: PT1UPT1. Therefore, the set of transformations is a con-

jugate group PT1SU(4)PT1 := {PT1UPT1 | U ∈ SU(4)}. Note that we could equally

have chosen to apply partial transposition with respect to subsystem 2, and would ob-

tain the same set of states. In fact, one can show that PT1UPT1 = PT2U∗PT2, where U∗

is a conjugate unitary transformation (see Lemma 4 in the Appendix). Therefore, the

two conjugate groups are the same PT1SU(4)PT1 = PT2SU(4)PT2. We can generate
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the set of “mirror states” by applying all the transformations PTUPT to some product

state, regardless of which particular partial transposition is used.

Now, we show that “mirror mechanics” cannot be consistently extended to com-

posite systems consisting of three bits. Let ψp = (x, y, z,T12,T13,T23, T123) be some

product state of three bits, where x, y and z are local Bloch vectors, T12, T13, T23 and

T123 are two- and three-body correlation tensors, respectively. We can apply the trans-

formations PTUi jPT to a composite system of i and j, and we are free to choose with

respect to which subsystem (i or j) to take the partial transposition. Furthermore, we

can combine transformations in 12 and 13 subsystems such that the resulting state is

genuine three-partite entangled, and we can choose to partially transpose subsystem 2

in both cases. We obtain the transformation

U123 = PT2U12PT2PT2U23PT2 (1.82)

= PT2U12U23PT2. (1.83)

When we apply U123 to ψp we obtain the state PT2U12U23ϕp, where ϕp = PT2ψp

is again some product state. The state U12U23ϕp is a quantum three qubit state. Since

states ψp and ϕp are product states and do belong to standard quantum states, we can

use the formalism of quantum mechanics and denote them as |ψp⟩ and |ϕp⟩. Further-

more, since the state |ψp⟩ is an arbitrary product state, without loss of generality we set

|ϕp⟩ = |0⟩|0⟩|0⟩. We can choose U12 and U23 such that:

U12|0⟩|0⟩ = |0⟩|0⟩ (1.84)

U12|0⟩|1⟩ =
1
√

2
(|0⟩|1⟩ + |1⟩|0⟩) (1.85)

U23|0⟩|0⟩ =
1
√

3
|0⟩|1⟩ +

√
2
3
|1⟩|0⟩. (1.86)

This way we can generate the W-state

|W⟩ = U12U23|0⟩|0⟩|0⟩ (1.87)

=
1
√

3
(|0⟩|0⟩|1⟩ + |0⟩|1⟩|0⟩ + |1⟩|0⟩|0⟩). (1.88)

When we apply partial transposition with respect to subsystem 2, we obtain the cor-

responding “mirror W-state” which we denote as WM-state, WM = PT2W. The local

Bloch vectors and two-body correlation tensors for the W state are

x = y = z = (0, 0, 1
3 )T, (1.89)

T12 = T13 = T23 = diag[2
3 ,

2
3 ,−

1
3 ], (1.90)
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where |0⟩ corresponds to result +1. Consequently, the local Bloch vectors and the

correlation tensor for WM-state are

x = y = z = (0, 0, 1
3 )T, (1.91)

T12 = T23 = diag[2
3 ,−

2
3 ,−

1
3 ], (1.92)

T13 = diag[2
3 ,

2
3 ,−

1
3 ]. (1.93)

The asymmetry in the signs of correlations in the tensors T12,T23 and T13 leads

to inconsistencies because they define three different reduced states ψi j = (xi, x j,Ti j),

i j ∈ {12, 23, 13}, which cannot coexist within a single theory. The states ψ12 and ψ23

belong to “mirror quantum mechanics”, while the state ψ13 belongs to ordinary quan-

tum mechanics. To see this, take the state ψ = (0, 0, diag[−1,−1, 1]) which is locally

equivalent to state ψMQM = (0, 0, 11). The overlap (measured probability) between the

states ψ13 and ψ is negative

P(ψ, ψ13) =
1
4

(1 − 2
3
− 2

3
− 1

3
) = −1

6
. (1.94)

We conclude that “mirror quantum mechanics” – while being a perfectly regular

solution for a theory of two bits – cannot be consistently extended to also describe

systems consisting of many bits. This also answers the question why we find in nature

only four types of correlations as given in the table (Figure 4) on the left, rather than

all eight logically possible ones.

1.3.7 Higher-dimensional systems and state up-date rule in mea-
surement

Having obtained d = 3 for a two-dimensional system we have derived quantum the-

ory of this system. We have also reconstructed quantum mechanics of a composite

system consisting of two qubits. Further reconstruction of quantum mechanics can

be proceeded as in Hardy’s work [96]. In particular, the reconstruction of higher-

dimensional systems from the two-dimensional ones and the general transformations

of the state after measurement are explicitly given there. We only briefly comment on

them here.

In order to derive the state space, measurements and transformations for a higher-

dimensional system, we can use quantum theory of a two-dimensional system in con-

junction with axiom 1. The axiom requires that upon any two linearly independent

states one can construct a two-dimensional subspace that is isomorphic to the state

space of a qubit (2-sphere). The state space of a higher dimensional system can be
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characterized such that if the state is restricted to any given two dimensional subspace,

then it behaves like a qubit. The fact that all other (higher-dimensional) systems can

be built out of two-dimensional ones suggests that the latter can be considered as fun-

damental constituents of the world and gives a justification for the usage of the term

“elementary system” in the formulations of the axioms.

When a measurement is performed and an outcome is obtain, our knowledge about

the state of the system changes and its representation in form of the probabilities must

be updated to be in agreement with the new knowledge acquired in the measurement.

This is the most natural update rule present in any probability theory. Only if one

views this change as a real physical process conceptual problems arise related to dis-

continuous and abrupt “collapse of the wave function”. There is no basis for any such

assumption. Associated with each outcome is the measurement vector p. When the

outcome is observed the state after the measurement is updated to p and the measure-

ment will be a certain transformation on the initial state. Update rules for more general

measurements can accordingly be given.

1.3.8 What the present reconstruction tells us about quantum me-
chanics?

It is often said that reconstructions of quantum theory within an operational approach

are devoid of ontological commitments, and that nothing can be generally said about

the ontological content that arises from the first principles or about the status of the

notion of realism. As a supporting argument one usually notes that within a realistic

world view one would anyway expect quantum theory at the operational level to be

deducible from some underlying theory of “deeper reality”. After all, we have the

Broglie-Bohm theory [25, 26] which is a nonlocal realistic theory in full agreement

with the predictions of (non-relativistic) quantum theory. Having said this, we can-

not but emphasize that realism does stay “orthogonal” to the basic idea behind our

reconstruction.

Be it local or nonlocal, realism asserts that outcomes correspond to actualities ob-

jectively existing prior to and independent of measurements. On the other hand, we

have shown that the finiteness of information carrying capacity of quantum systems

is an important ingredient in deriving quantum theory. This capacity is not enough to

allow assignment of definite values to outcomes of all possible measurements. The

elementary system has the information carrying capacity of one bit. This is signified

by the possibility to decompose any state of an elementary system (qubit) in quantum
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mechanics in two orthogonal states. In a realistic theory based on hidden variables and

an “epistemic constraint” on an observer’s knowledge of the variables’ values one can

reproduce this feature at the level of the entire distribution of the hidden variables 7.

That this is possible is not surprising if one bears in mind that hidden-variable theo-

ries were at the first place introduced to reproduce quantum mechanics and yet give a

more complete description 8. But any realism of that kind at the same time assumes

an infinite information capacity at the level of hidden variables. Even to reproduce

measurements on a single qubit requires infinitely many orthogonal hidden-variable

states [97, 138, 49]. It might be a matter of taste whether or not one is ready to work

with this “ontological access baggage“ [97] not doing any explanatory work at the

operational level. But it is certainly conceptually distinctly different from the theory

analyzed here, in which the information capacity of the most elementary systems –

those which are by definition not reducible further – is fundamentally limited.

To further clarify our position consider the Mach-Zehnder interferometer in which

both the path information and interference observable are dichotomic, i.e. two-valued

observables. It is meaningless to speak about “the path the particle took in the inter-

ferometer in the interference experiment” because this would already require to assign

2 bits of information to the system, which would exceed its information capacity of 1

bit [38]. The information capacity of the system is simply not enough to provide def-

inite outcomes to all possible measurements. Then, by necessity the outcome in some

experiments must contain an element of randomness and there must be observables

that are complementarity to each other. Entanglement and consequently the violation

of Bell’s inequality (and thus of local realism) arise from the possibility to define an

abstract elementary system carrying at most one bit such that correlations (“00” and

“11” in a joint measurement of two subsystems) are basis states.

Summary.– Quantum theory is our most accurate description of nature and is fun-

damental to our understanding of, for example, the stability of matter, the periodic

table of chemical elements, and the energy of the sun. It has led to the development

of great inventions like the electronic transistor, the laser, or quantum cryptography.

Given the enormous success of quantum theory, can we consider it as our final and

ultimate theory? Quantum theory has caused much controversy in interpreting what

its philosophical and epistemological implications are. At the heart of this controversy

lies the fact that the theory makes only probabilistic predictions. In recent years it was

7See Ref [175] for a local version of such hidden-variable theory in which quantum mechanical
predictions are partially reproduced.

8That this cannot be done without allowing nonlocal influences from space-like distant regions is a
valid point for itself, which we do not want to follow here further.
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however shown that some features of quantum theory that one might have expected

to be uniquely quantum, turned out to be highly generic for generalized probabilistic

theories. Is there any reason why the universe should obey the laws of quantum theory,

as opposed to any other possible probabilistic theory?

In this work we have shown that classical probability theory and quantum theory –

the only two probability theories for which we have empirical evidences — are special

in a way that they fulfill three reasonable axioms on the systems’ information carrying

capacity, on the notion of locality and on the reversibility of transformations. The two

theories can be separated if one restricts the transformations between the pure states

to be continuous [96]. An interesting finding is that quantum theory is the only non-

classical probability theory that can exhibit entanglement without conflicting one or

more axioms. Therefore – to use Schrödinger’s words [164, 165] – entanglement is

not only “the characteristic trait of quantum mechanics, the one that enforces its entire

departure from classical lines of thought”, but also the one that enforces the departure

from a broad class of more general probabilistic theories.

Appendix

In this appendix we give the proofs of the lemmas from the main text.

Lemma 1. The lower bound ||T || = 1 is saturated, if and only if the state is a product

state T = xyT.

Proof. If the state is a product state then ||T ||2 = ||x||2||y||2 = 1. On the other

hand, assume that the state ψ = (x, y,T ) satisfies ||T || = 1. Normalization (1.43) gives

||x|| = ||y|| = 1. Let ϕp = (−x,−y,T0 = xyT) be a product state. We have P(ψ, ϕp) ≥ 0

and therefore

1 − ||x||2 − ||y||2 + Tr(T TT0) = −1 + Tr(T TT0) ≥ 0. (1.95)

The last inequality Tr(T TT0) ≥ 1 can be seen as (T,T0) ≥ 1 where (, ) is the scalar prod-

uct in Hilbert-Schmidt space. Since the vectors T,T0 are normalized, ||T || = ||T0|| = 1,

the scalar product between them is always (T,T0) ≤ 1. Therefore, we have (T, T0) = 1

which is equivalent to T = T0 = xyT.

QED

Lemma 2. The only product states belonging to S 12 are ψ1 and ψ2.
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Proof. Let ψp = (x, y, xyT) ∈ S 12. We have

1 = P12(ψp, ψ1) + P12(ψp, ψ2) (1.96)

=
1
4

(1 + xe1 + ye1 + (xe1)(ye1)) (1.97)

+
1
4

(1 − xe1 − ye1 + (xe1)(ye1)) (1.98)

=
1
2

(1 + (xe1)(ye1)) (1.99)

⇒ xe1 = ye1 = 1 ∨ xe1 = ye1 = −1 (1.100)

⇔ x = y = e1 ∨ x = y = −e1. (1.101)

QED

Lemma 3. If the state ψ ∈ S 12, then ψ′ = (R, 11)ψ ∈ S 34 and ψ′′ = (11,R)ψ ∈ S 34.

Proof. If ψ ∈ S 12 we have

1 = P12(ψ, ψ1) + P12(ψ, ψ2) (1.102)

= P12((R, 11)ψ, (R, 11)ψ1) + P12((R, 11)ψ, (R, 11)ψ2) (1.103)

= P12(ψ′, ψ3) + P12(ψ′, ψ4). (1.104)

Similarly, one can show that (11,R)ψ ∈ S 34.

QED

Lemma 4. Let U be some operator with the following action in the Hilbert-Schmidt

space; U(ρ) = UρU†, and PT1 and PT2 are partial transpositions with respect to

subsystems 1 and 2, respectively. The following identity holds: PT1UPT1 = PT2U∗PT2,

where U∗ is the complex-conjugate operator.

Proof. We can expand U into some product basis in the Hilbert-Schmidt space

U =
∑

i j ui jAi ⊗ B j. We have

PT1UPT1(ρ1 ⊗ ρ2) = PT1{UρT
1 ⊗ ρ2U†} (1.105)

=
∑
i jkl

ui ju∗kl(A
∗
kρ1AT

i ) ⊗ (B jρ2B†l )

= PT2{
∑
i jkl

ui ju∗kl(A
∗
kρ1AT

i ) ⊗ (B∗l ρ
T
2 BT

j )}

= PT2{
∑
i jkl

u∗klui j(A∗k ⊗ B∗l )(ρ1 ⊗ ρT
2 )(AT

i ⊗ BT
j )}

= PT2U∗PT2(ρ1 ⊗ ρ2),

for arbitrary operators ρ1 and ρ2.

QED
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Chapter 2

Quantum statistics, correlations and
simulations

In this chapter three topics are analyzed: classical description of quantum statistics,

quantum correlations captured by quantum discord and quantum simulations. It is

organized as follows:

In the first section the question of “cost” for a classical (hidden-variable) descrip-

tion of quantum statistics is investigated. It is known that any attempt to give classical

description for quantum phenomena necessarily leads to “quantum paradoxes” [19,

116, 88]. The classical states (hidden-variables) that provide a hidden determinism

behind quantum probabilities have to be non-local in order to violate Bell’s inequal-

ity [19]. In general, non-locality can be seen as a special case of contextually [116],

i.e. velues determined by hidden variables depend on the measurement context. Apart

from this counterintuitive features (from classical perspective), one can ask how “eco-

nomical” (in terms of resources) determinism can be? In other words, given a mea-

surement data table of a certain size, what is the minimal number of hidden-variables

(HVs) needed to reproduce such a table, regardless of whether they are contextual or

not. This is called an “ontological baggage” [97]. It has been shown that already a

plausible description of one qubit requires infinite amount of classical bits [97]. But

how exactly, does the amount of HVs scale with the number of measurements? This

question is particularly important because in practice one can never perform a full sam-

pling of all measurement settings, because of finite measurement accuracy. The total

number of HVs scales exponentially with the number of measurements, but not all of

them are necessarily needed. This is called an ”ontological compression“ [160]. For

example, Spekkens toy model [175] that reproduces the statistics for three comple-

mentary states and measurements for a qubit requires only four out of eight HVs. By

69



70CHAPTER 2. QUANTUM STATISTICS, CORRELATIONS AND SIMULATIONS

exploring the combinatorial properties of convex sets a nice geometrical picture for

ontological compression is found. It is shown that in fact, one can always find a model

that requires a polynomial number of HVs only. In the limit of a continuous number

of measurement settings the model converges to the model where each quantum state

represents hidden-variable itself. This confirms that quantum mechanics is indeed the

most economical description of itself [137].

The second section is devoted to the quantum simulation of spin models. Solving

a many-body Schrödinger equation is known to be a very hard task on a classical com-

puter. On the other hand a universal quantum computer is capable of completing the

task [125]. Quantum simulator is a controllable quantum system that can be used to

simulate another quantum system of interest. The idea goes back to Feynman [70, 69]

who has shown an exponential advantage of quantum simulators over classical com-

puters. Recent technological development increased the motivation to use a quantum

simulator as a powerful tool to address the most important and difficult problems in

many-body physics and quantum chemistry. There are two basic types of quantum

simulator: analog (based on adiabatic evolution) and digital (based on discrete gate

operations) [42]. In the present work the photonic quantum simulator is investigated

that combines in a way both types, by utilizing a tunable quantum gates without the

necessity of either discretizing the quantum evolution or engineering the physical inter-

actions for an adiabatic quantum simulation. The photonic simulator is used to prepare

the ground state of a frustrated spin-1/2 tetramer and simulate an adiabatic evolution

via tunable quantum gate. Furthermore an exotic states such as spin liquid state [4] ap-

pears to be the ground states of a tetramer for a certain value of the system’s parameters

that can be well controlled in the experiment.

The topic of the third section is quantum discord [141, 101]. Quantum discord

(QD) has been proposed as a measure of ”non-classicality“ of quantum correlations.

While entanglement is known to be the sufficient resource for quantum-information

processing, it is not clear to what extend separable states are useful for quantum infor-

mation processing. Unlike quantum entanglement, QD exists also in separable states.

Among others it has been proposed as a key resource for deterministic quantum com-

putation with one qubit (DQC1) [54]. In the work the necessary and sufficient con-

dition for non-zero quantum discord was found. An experimentally friendly and easy

implementable criterion is found that enables an experimentalist to check the presence

of QD straight from the (tomographic) measurement results. In the past the evaluation

of QD required a complicated minimization procedures and analytic expressions were

known only for specific classes of states. In the work a geometric measure of QD is
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defined that can be evaluated directly from the measurement results without the need of

a density matrix reconstruction and minimization procedures. At the end of the section

the resources in DQC1 model are analyzed. It has been found that QD is very unlike

to be the reason for the DQC1 speedup.
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2.1 How much does it cost to simulate quantum statis-
tics?

We prove that the results of a finite set of general quantum measurements on an ar-

bitrary dimensional quantum system can be simulated using a polynomial (in mea-

surements) number of hidden-variable states. In the limit of infinitely many measure-

ments, our method gives models with the minimal number of hidden-variable states,

which scales linearly with the number of measurements. These results can find appli-

cations in foundations of quantum theory, complexity studies and classical simulations

of quantum systems.

In classical physics, the position and momentum of a particle determine the out-

comes of all possible measurements that can be performed upon it. They define a

deterministic classical state. If the state is not fully accessible, a general probabilistic

classical state is a mixture of the deterministic states, arising from the inaccessibility.

Since quantum mechanics gives only probabilistic predictions, it was puzzling already

to the fathers of the theory whether it can be completed with an underlying classical-

like model [64]. The quantum probabilities would then arise from an inaccessibility

of some hidden variables (HV) describing analogs of deterministic classical states, the

hidden-variable states, which determine the results of all quantum measurements.

Since the seminal work of Kochen and Specker (KS), it has been known that HV

models must be contextual [116]. On the operational level, the contextual HV models

cannot be distinguished from quantum mechanics. However, one may ask how plausi-

ble these models are in terms of resources, e.g., how many HV states (also called the

“ontic states” [174, 160, 175]) they require. In addition to the fundamental question

of the minimal HV model for a quantum system, this research is motivated by prob-

lems in quantum information theory. In particular, HV models allow a fair comparison

between complexities of quantum and classical algorithms [1, 98], as a quantum algo-

rithm can now be represented by a classical circuit.

For an infinite number of measurement settings, already a single qubit requires in-

finitely many HV states, the result proved by Hardy [97] and, in a different context,

by Montina [137, 138]. However, these authors did not consider the scaling of the

number of HV states with the number of measurements. Harrigan and Rudolph found

a deterministic HV model that requires exponentially many HV states to simulate re-

sults of the finite set of measurements on all quantum states [99]. Our construction

also provides such models and consumes at most a polynomial number of HV states,

bringing exponential improvement. In the limit of infinitely many measurements, the
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number of HV states for an indeterministic model scales linearly with the number of

measurements. Moreover, the number of real parameters that specify these HV states

saturates the lower bound derived by Montina [138] and, consequently, is the minimal

number possible. Our method also allows a universal generalization of the Spekkens

model [175].

2.1.1 General Setting

Consider a finite number, N, of projective measurements on a d-level quantum sys-

tem in a state ρ. The probability to observe the rth result in the nth measurement is

p(n)
r (ρ̂) = Tr[ρ̂Π̂(n)

r ], where Π̂(n)
r is a projector on the rth orthogonal state of the nth

measurement, i.e., r = 1, ..., d and n = 1, ...,N. We form a d-dimensional vector,

p(n) = (p(n)
1 , . . . , p(n)

d )T , composed of the probabilities for distinct outcomes in the nth

measurement. For the set of measurements, we build a dN-dimensional preparation

vector, p = (p(1), ...,p(N))T [96]. The deterministic HV states predetermine the results

of all measurements and can be represented as a dN-dimensional vector

Or1...rN = (0, . . . , 1, . . . , 0| . . . |0, . . . , 1, . . . , 0)T , (2.1)

where rn is the position of 1 in the nth sequence (rn = 0, . . . , d − 1 indicates that

outcome rn occurs in the nth measurement). The space of all HV states, Λ, is formed

by classical mixtures of dN deterministic states Or1...rN .

A set of κ quantum states ρ1, . . . , ρκ has a HV model for N measurements, if one

can find L vectors O1, . . . ,OL ∈ Λ such that

p(ρk) =
L∑

l=1

αl(k)Ol, for all k = 1, ..., κ (2.2)

where αl(k) ≥ 0 and
∑

l αl(k) = 1. The model is called deterministic if all Ol are de-

terministic HV states; otherwise, it is called indeterministic. The model is preparation-

universal, if the HV states simulate any physical state ρ, and it is measurement-universal

if they simulate any measurement.

Formally, the set Λ is a convex polytope in RdN having the states Ol as vertices.

Since all probabilities satisfy 0 ≤ p(n)
r ≤ 1, any preparation vector p(ρ) lies inside this

polytope and has a HV model. We study the number of HV states required for the

model.
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2.1.2 Two-level system

We begin with a specific deterministic HV model for a two-level quantum system

(qubit) which we shall often refer to later on. An arbitrary state of a qubit can be rep-

resented as ρ̂ = 1
2 (11+

∑3
i=1 xiσ̂i), where σ̂i’s are the Pauli matrices and x = (x1, x2, x3)T

is a Bloch vector, in a unit ball |x| ≤ 1. A set of N projective measurements, with

2N outcomes (states on which the qubit is projected), is described by 2N unit vec-

tors ±m1, . . . ,±mN on the Bloch sphere. The preparation vector for these directions

is p(x) = (1±m1x
2 , . . . , 1±mNx

2 ). Since the probability for the measurement −m is fully

determined by the one for the +m, one can reduce (”compress”) preparation vec-

tor to p(x) = ( 1+m1x
2 , . . . , 1+mNx

2 ). Similarly, the deterministic HV states are reduced

to N-dimensional vectors Or1...rN = (r1, . . . , rN)T , where rn = 0, 1. The (reduced)

space Λ is a hypercube in N dimensions, with 2N vertices defined by these states.

By Carathéodory’s theorem 1 for each vector p(x) = (p1, . . . , pN)T , one can identify

N + 1 HV states the convex hull of which contains p(x). For a given x, the vector

p(x) can be written as a permutation of a reordered preparation vector p↓(x) wherein

the probabilities appear in increasing order, p↓1 ≤ p↓2 ≤ · · · ≤ p↓N , and the latter can be

expressed in terms of N + 1 HV states as

p↓(x) =



0 1 0 0 · · · 0

0 1 1 0 · · · 0

0 1 1 1 · · · 0
...

...
...

...
...

0 1 1 1 · · · 1





α0

α1

α2
...

αN−1

αN


, (2.3)

where the columns of the displayed matrix are the HV states. The expansion coeffi-

cients are

α0 = 1 − p↓N , α1 = p↓1,

αn = p↓n − p↓n−1 for n = 2, ...,N, (2.4)

and, due to the ordering of probabilities, the coefficients are all positive and sum up to

1. One can suitably permute the rows in matrix given by (2.3) to bring the probabilities

in order given by p(x). Thus, p(x) can be written as a convex combination of N +

1 columns (HV states) of a reordered matrix. The number of N + 1 states can be

further reduced. E.g., for two equal probabilities, p1 = p2, the number of HV states
1The Carathéodory’s theorem states that a point, x, in a convex polytope in Rn can be written as a

convex combination of n + 1 vertices.
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is decreased because α2 = 0. If, say, p2 = 1 − p1, one can exchange m1 → −m1,

such that the probabilities become equal, leading to another reduction. Importantly,

different quantum states are generally modeled by different sets of N + 1 HV states.

As an illustrative example, consider a model for three complementary measure-

ments along mx,my,mz. We show a nonuniversal model, only for the eigenstates

of these measurements: ±mx,±my,±mz. The corresponding preparation vectors are:

p(+)
x = (1, 1

2 ,
1
2 ), p(−)

x = (0, 1
2 ,

1
2 ), p(+)

y = ( 1
2 , 1,

1
2 ), p(−)

y = ( 1
2 , 0,

1
2 ), and p(+)

z = (1
2 ,

1
2 , 1),

p(−)
z = ( 1

2 ,
1
2 , 0). Applying the method of (2.3) to each of these preparation vectors,

one finds that L = 4 HV states are sufficient for the simulation: O0 = (1, 1, 1)T ,

O1 = (1, 0, 0)T , O2 = (0, 1, 0)T , and O3 = (0, 0, 1)T . These four states, together with

their decomposition of the preparation vectors,

p(+)
x =

1
2

O0 +
1
2

O1, p(−)
x =

1
2

O2 +
1
2

O3,

p(+)
y =

1
2

O0 +
1
2

O2, p(−)
y =

1
2

O1 +
1
2

O3,

p(+)
z =

1
2

O0 +
1
2

O3, p(−)
z =

1
2

O1 +
1
2

O2. (2.5)

are equivalent to the toy model of Spekkens [175].

We give a constructive proof that a preparation-universal simulation of N quantum

measurements on a qubit can be achieved with the number of HV states that is poly-

nomial in N. Let M denote a polytope formed as a convex hull of the measurement

settings,M = conv{±m1, . . . ,±mN}. Its dual polytope is a set 2,

DM = {y ∈ R3| − 1 ≤ mny ≤ 1, n = 1 . . .N}. (2.6)

The polytopeM lies inside the Bloch sphere and its dual contains the sphere. There-

fore, every Bloch vector can be written as a convex combination of the vertices, yl,

of the dual polytope, x =
∑

l αl(x)yl. The components of the measurement vector can

now be decomposed as pn(x) =
∑

l αl(x) 1
2 (1 + mnyl). According to the definition of

the dual polytope, the quantity 1
2 (1 + mnyl) ∈ [0, 1] and can be interpreted as the nth

component (probability) of the lth HV state. Since the Bloch vectors corresponding to

projections onto orthogonal states sum up to the zero vector, the corresponding proba-

bilities assigned by a HV state sum up to 1, as it should be. Thus, the set of HV states

corresponding to vertices of the dual polytope is sufficient for a preparation-universal

HV model. Note that this model can in general be indeterministic. In such a case, each

indeterministic HV state can be further reduced into at most N − 2 deterministic HV
2In the special case of measurement settings within a plane, we consider the dual polygon lying in

that plane.
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states, according to (2.3). The reason for N − 2, and not N + 1, states stems from the

observation that a vertex of the dual polytope saturates at least three of the inequali-

ties defining the polytope (at least three facets have to meet at each vertex), i.e., the

corresponding probability is 1 or 0, and reduces the number of required deterministic

HV states. Finally, the total number of HV states required for an indeterministic model

is L ≤ F, and for a deterministic model is L ≤ (N − 2)F, where F is the number of

vertices of the dual polytope or, equivalently, the number of facets of the measurement

polytope. A convex polytope with 2N vertices (in three-dimensional space) can have

N + 2 ≤ F ≤ 4(N − 1) facets [134], which implies that indeterministic HV models re-

quire at most a number of HV states that is linear in N, and deterministic ones require

quadratic number of HV states.

Using the dual polytope approach, we generalize Spekkens’ model [175], origi-

nally formulated to explain the measurement results on the eigenstates of the three

complementary directions, to the preparation-universal model. For these directions,

the measurement polytope is an octahedron, see Fig. 2.1(a). The dual polytope is a

cube, whose interior forms the whole space of HV states, with the vertices being the

deterministic states. Another interesting example is illustrated in Fig. 2.1(b).

Figure 2.1: Preparation-universal HV models and dual polytopes. (a) The vertices of the

octahedron inside the Bloch sphere define the three complementary qubit measurements. A

preparation-universal HV model for these measurements requires eight HV states, which are

written near their representative vertices of the cube containing the sphere. It generalizes the

Spekkens model [175], which is not universal and utilizes only four out of eight states (see main

text). Their corresponding vertices span a tetrahedron inside the cube, which does not contain

the whole Bloch sphere. (b) Here, the measurement directions form a cube inside the sphere.

Although more measurements are to be simulated, the universal HV model requires only six

HV states, which are written near their representative vertices of the octahedron containing the

sphere.
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The dual polytope approach can be applied to arbitrary preparation vectors. How-

ever, efficient simulations are only expected for highly symmetric polytopes. For this

reason, we move to more complicated Platonic solids and general symmetry consider-

ations.

Consider a set of measurement directions ±m1, . . . , ±mN , which is generated by a

group; e.g., an octahedron and a cube can be generated via the chiral octahedral group

O with 24 rotations. Generally, if G is a symmetry of the measurement polytope,M,

it is also a symmetry of its dual, DM; i.e., the dual polytope can also be generated by

G. The group action permutes the vectors ±mn as well as vertices of the dual polytope.

Since the last are related to the HV states, we can define the permutation representation

of the group in the HV space, DP(G). The HV state, h(y′), corresponding to a vertex

of a dual polytope, y′ = gy, which is generated by g ∈ G acting on an initial vertex, y,

can be found using the group representation:

h(gy) = DP(g)h(y). (2.7)

Decomposing h(y) into deterministic HV states brings (2.7) to the form h(gy) =∑
l=1 αlDP(g)Ol. Therefore, the set of deterministic HV states required for the preparation-

universal model is the union of a number of group orbits {DP(g)Ol|g ∈ G}. Because of

the symmetries involved, the minimal number of HV states cannot be smaller than the

number of elements in the smallest orbit.

Let us consider two other Platonic solids, the icosahedron and the dodecahedron
3. Both of them posses the same symmetry, the chiral icosahedral group I, with 60

rotations. Consider the icosahedron as the measurement polytope, N = 6. Its dual,

the dodecahedron, has 20 vertices corresponding to indeterministic HV states that can

be further reduced to deterministic HV states. The total number of possible determin-

istic HV states is 26 = 64 in this case. We have found four different orbits of action

of I with 12, 12, 20, 20 different elements, respectively. Only one orbit, with 20 ele-

ments, gives deterministic states for universal simulation. For N = 10 measurement

settings, the dodecahedron is the measurement polytope. Its dual, the icosahedron,

has 12 vertices. The total number of possible deterministic HV states is 210 = 1024,

which is partitioned into 24 different orbits: 2 with 12 elements, 8 with 20, and 14

with 60 elements. The two lowest orbits are suitable for the universal model. Thus, the

minimal deterministic model, among all HV models obtained through the dual poly-

tope construction, requires only 24 HV states, twice the number of vertices of the dual

polytope.

3Similar analysis applies to cube and octahedron.
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2.1.3 Arbitrary dimension

The presentation so far was limited to qubits. However, a similar line of reasoning

applies to any d-level quantum system. In the general case, Pauli operators have to

be replaced by generalized Gell-Mann operators, λ̂i, which naturally leads to the gen-

eralized, D ≡ d2 − 1 dimensional, Bloch representation. An arbitrary quantum state,

ρ̂ = 1
d [11 + (d − 1)

∑D
i=1 xiλ̂i], is now represented by a generalized Bloch vector, x, with

components xi = Tr(ρ̂λ̂i). We normalize the Gell-Mann operators as Tr(λ̂iλ̂ j) = d
d−1δi j,

such that pure quantum states are represented by normalized generalized Bloch vec-

tors. Contrary to the qubit case, not every unit vector corresponds to a physical state.

The probability of an outcome associated with a projector on a state represented by

mn, in a measurement on a state represented by x, is pn(x) = 1
d [1 + (d − 1)(mnx)]. The

requirement of positive probabilities reveals that, e.g., the vector x = −mn does not

represent a physical state.

In analogy to the dual polytope, for a set of dN preparaion vectors, representing N

d-valued observables, we introduce a convex polytope the interior of which includes

all vectors y leading to physically allowed probabilities pn(y) ∈ [0, 1]:

PM = {y ∈ RD| − 1
d−1 ≤ mny ≤ 1, n = 1, ..., dN}. (2.8)

Among others, this polytope contains all the vectors of quantum states. The general-

ized Bloch vectors corresponding to a complete set of orthogonal quantum states sum

up to the zero vector, implying the probabilities assigned by a HV state for different

outcomes of any measurement sum up to 1, as it should be. Again, the vectors of

quantum states can be expressed as a convex combination of vertices of PM, and their

number gives the upper bound on the amount of HV states sufficient for preparation-

universal simulation. The polytope PM is specified by q = 2dN linear inequalities,

two inequalities for each vector mn, and its maximal number of vertices is given by

L ≤
(

q−δ
q−D

)
+

(
q−δ′
q−D

)
, where δ ≡ ⌊(D + 1)/2⌋, δ′ ≡ ⌊(D + 2)/2⌋, and ⌊x⌋ is the integer part

of x [134]. In the special case of a qubit, the dual polytope is defined by 2N, and not

4N, inequalities because the two bounds of Eq. (2.6) are the same for the vectors ±mn.

Since the binomial coefficient
(

a
b

)
increases with a, L ≤ 2

(
q−δ
q−D

)
. Using

(
a
b

)
=

(
a

a−b

)
, we

have L ≤ 2
(

q−δ
D−δ

)
, and since

(
a
b

)
≤ ab/b!, the maximal number of vertices is polynomial

in N, L ∼ (2dN − δ)D−δ. The related HV states can in general be indeterministic, and

each of them can be decomposed to O(N) deterministic HV states, using decomposi-

tion (2.3) in the dN dimensional space Λ. Therefore, for any system, the number of

(in)deterministic HV states required for a preparation-universal simulation is polyno-

mial in N.
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In the limit of infinitely many measurements, our method gives (preparation and

measurement) universal models with the minimal number of HV states. As proved by

Montina, in this limit the optimal model requires 2(d − 1) real parameters to describe

the HV states [138]. We show that for an infinite number of settings the set of universal

HV states converges to the set of pure quantum states, which is known to be param-

eterized by 2(d − 1) real numbers. First, consider a finite set of projectors Π̂n with

n = 1, ..., dN, and the corresponding polytope (2.8) in the Hilbert-Schmidt space of

Hermitian operators with unit trace. The operators of its vertices, ŷl, correspond to the

HV states, i.e., for all n, Tr(ŷlΠ̂n) gives the probability that is assigned by the HV state,

of the outcome associated with projector Π̂n. For other projectors, not within the set of

dN, the trace does not have to represent a probability and therefore the set of operators

ŷl is larger than the set of quantum states 4. However, in the limit of infinitely many

measurements, Tr(ŷlΠ̂n) ∈ [0, 1] for all possible projectors; therefore, the eigenvalues

of ŷl’s lie within the [0, 1] interval. Since Tr(ŷl) = 1, the operators ŷl are just quantum

states and the HV states corresponding to pure quantum states are universal. Their

number scales linearly with N, because N measurements correspond to dN projectors

and each of them represents one HV state (and also one pure quantum state).

Regarding the polytope PM in the space of Hermitian operators allows for an easy

generalization of our approach to POVM measurements. POVM elements, Ên, are pos-

itive operators being vertices of a measurement polytope. The polytope PM includes

all the unit-trace operators ŷ for which Tr(ŷÊn) ∈ [0, 1]. Since for all quantum states

Tr(ρ̂Ên) ∈ [0, 1], the polytopePM contains all of them and, as before, its vertices define

HV states.

For a d-level system the KS argument disqualifies non-contextual HV theories

[116], and one might wonder how contextuality enters our models. Consider the KS

argument of Peres [153]. It involves 33 different vectors in R3, which belong to 16

different orthogonal triads. Non-contextuality requires a value associated with a single

vector to be the same irrespectively of other vectors in the triad. In the present models,

the results of 16 different measurements are described by HV states with 3 · 16 = 48

components; i.e., a value assigned to the same vector can depend on the other vectors

in the triad.

Summary.– In conclusion, we proved that a preparaion-universal HV model of the

results of N quantum measurements requires at most a number of HV states which

is polynomial in N. In the limit of infinitely many measurements, our method gives

4E.g., if the preparation vector of a qubit involves projectors on |z±⟩ and |x±⟩, it is valid to consider
ŷl =

1
2 11 + σ̂x + σ̂z, which is not a quantum state.
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optimal preparation- and measurement-universal HV models, with the minimal number

of real parameters describing the HV states. There is no HV model that would require

less HV states than the model in which every quantum state is associated with a HV

state [138]. Furthermore, since there are infinitely many measurements that can be

performed on a quantum system, its HV description requires infinitely many HV states.

This “ontological baggage” [97] can be seen as an argument against the HV approach

because it is extremely resource demanding already for a single qubit.
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2.2 Quantum simulation of a frustrated Heisenberg spin
system

Quantum simulators are capable of calculating properties of quantum systems un-

feasible for classical computers. Here we report the analog quantum simulation of

arbitrary Heisenberg-type interactions among four spin-1/2 particles. This spin-1/2

tetramer is the two-dimensional archetype system whose ground state belongs to the

class of valence-bond states. Depending on the interaction strength, frustration within

the system emerges such that the ground state evolves from a localized to a resonating

valence-bond state. This spin-1/2 tetramer is created using the polarization states of

four photons. We utilize the particular advantages of the precise single-particle ad-

dressability and a tunable measurement-induced interaction to obtain fundamental in-

sights into entanglement dynamics among individual particles. We also directly extract

ground-state energies and pair-wise quantum correlations, which enable our quantum

simulator to investigate the frustration of entanglement. Remarkably, the pair-wise

correlations are restricted by quantum monogamy.

During the past years, there has been an explosion of interest in quantum-enhanced

technologies. The applications are many-fold and reach from quantum metrology [80]

to quantum information processing [198]. In particular quantum computation has gen-

erated a lot of interest due to the discovery of quantum algorithms [58, 168, 95] which

outperform classical ones. The first proposed application for which quantum compu-

tation can give an exponential enhancement over classical computation was suggested

by Richard Feynman [70, 69]. He considered a universal quantum mechanical simula-

tor, which is a controllable quantum system that can be used to imitate other quantum

systems, therefore being able to tackle problems that are intractable on classical com-

puters. Since then the motivation to use a quantum simulator as a powerful tool to

address the most important and difficult problems in multidisciplinary science has led

to many theoretical proposals [125, 9, 179, 42]. Vast technological developments al-

lowed for recent realizations of such devices in atoms [89, 105, 122, 180], trapped

ions [121, 72, 76, 112], NMR [171, 150, 61] and single photons [126, 144, 118]. The

quantum simulation of strongly correlated quantum systems (e.g. frustrated spin sys-

tems) is of special interest and would provide new results that cannot be otherwise

classically simulated [184].

In order to manipulate and measure individual properties of microscopic quantum

systems the complete control over all degrees of freedom for each particle is required.

Typically, atoms in optical lattices [89] are used for realizing physical systems that can
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simulate various models in condensed-matter physics. The fact that the experimen-

tal addressability of single atoms in optical lattices remains very challenging [11, 10]

leads to the studies of bulk properties of the atomic ensemble (≈ 105 atoms) instead

of single particles. Therefore we utilize single photons in separate spatial modes and

measurement-induced interactions as a quantum simulator, thus the particles are in-

dividually accessible. The tunable interaction between two entangled photon-pairs

allows for the precise simulation of the ground state of a spin-1/2 tetramer. We obtain

the ground-state energy and have direct access to the distribution of pair-wise quantum

correlations as a function of the competing spin-spin interactions. We also observe the

influence of monogamy [45, 56, 143] in this strongly correlated quantum system.

2.2.1 Analog quantum simulator

The main challenge in the understanding of strongly correlated quantum systems is

to calculate the energies and ground state properties of many-body systems as this

becomes exponentially difficult with increasing number of particles when using a clas-

sical computer. In contrast, quantum simulators use quantum systems to store and

process data which allows them to polynomially mimic the evolution of the quantum

system of interest.

Usually, the system being simulated is defined by its Hamiltonian H(t, J, B, . . . )

that is dependent on parameters such as time, t, interaction strength, J, external field,

B, etc. One method of realizing a quantum simulator is based on discrete gate oper-

ations and the phase estimation algorithm [9, 118], referred to as a digital quantum

simulator [42]. An alternative approach utilizes the adiabatic theorem [28], where an

initial Hamiltonian, whose ground state is easy to prepare, can be adiabatically evolved

to a final Hamiltonian with a nontrivial ground state of interest [125, 67, 23]. An adia-

batic quantum simulator can be built by engineering interactions among particles using

tunable external parameters (e.g. an external magnetic field). The system will remain

in its ground state if the system parameters change gradually enough.

Our experimental technique combines the advantages of both approaches by uti-

lizing a tunable quantum gate without the necessity of either discretizing the quantum

evolution or engineering the physical interactions for an adiabatic quantum simula-

tion. Thus, we consider our simulator as an analog quantum computer [89, 72, 112],

where the change of the quantum evolution can be obtained by a tunable quantum gate.

Figure 2.2 shows the concept of this analog simulator.
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Figure 2.2: Mimicking an adiabatic quantum evolution with an analog quantum simula-

tor. (a) Adiabatic quantum evolution. The system is prepared in an initial ground state

|ψ(t0, B0, J0, . . . )⟩. Then the gradual change of the system parameters (t, B, J, etc.) causes

an adiabatic evolution to the final ground state of interest |ψ(t, B, J, . . . )⟩. (b) Analog quantum

simulation. The adiabatic evolution of the system to be simulated is mapped onto a controllable

evolution of a quantum system. A set of tunable gates give access to the change of parameters.

(c) Model used to study the valence-bond states. The nearest-neighbor Heisenberg-type inter-

actions of strength J1 and J2 among four spin-1/2 particles are drawn as connecting bonds and

form a spin-1/2 tetramer. All the properties of the tetramer depend only upon the coupling ratio

κ = J2/J1. (d) Quantum simulation of a spin-1/2 tetramer using a photonic analog quantum

simulator. The initial ground state, |Ψ(θ0)⟩, is prepared by generating the photon-pairs 1 & 2

and 3 & 4 in two singlet states. Then the analog quantum simulation is performed utilizing

the measurement-induced interaction, consisting of quantum interference and the detection of

a four-photon coincidence after superimposing photons 1 & 3 on a tunable beam splitter. Map-

ping the coupling ratio κ on the beam splitter’s splitting ratio tan2 θ, leads to the ground state

of interest, |Ψ(θ)⟩.

2.2.2 Simulation of a spin-1/2 tetramer

Over the last 60 years the fundamental interest in studies of ground states of Heisenberg-

type Hamiltonians has led to a few exact theorems, which may serve as guidelines for

quantum simulators. Based on Marshall’s theorem [132] and its extension [123] the

absolute ground state has total spin zero (S 2 = 0) for N spins on a bipartite lattice

with nearest-neighbor Heisenberg-type interactions. This constraint requires the cre-

ation of valence bonds, where a pair of antiferromagnetically interacting spins forms a

spin-zero singlet state. If all the spins are covered by valence bonds, which are max-

imally entangled states, then the ground state’s total spin is zero and non-magnetic.
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This is established by valence bonds that are either static and localized or fluctuating

as a superposition of different partitionings of spins. In general, the equally weighted

superposition of two different localized valence-bond states corresponds to a quantum

spin liquid, the so-called resonating valence-bond state [4, 12].

The smallest configuration for studying and simulating these phenomena on a two-

dimensional square lattice is four spin-1/2 particles forming a tetramer. In the case

of such a spin-1/2 tetramer the Heisenberg-type interactions lead to the creation of

three possible dimer-covering configurations for the localized valence-bond states,

|Φ=⟩ ≡ |ψ−⟩12|ψ−⟩34, |Φ∥⟩ ≡ |ψ−⟩13|ψ−⟩24 and |Φ×⟩ ≡ |ψ−⟩14|ψ−⟩23, where |ψ−⟩ij is the sin-

glet of particle i and j (Fig. 2.2c). Since the total spin-zero subspace for this system is

two-dimensional, these three dimer-covering states are not independent and |Φ×⟩ can be

written as |Φ×⟩ = |Φ∥⟩−|Φ=⟩ in the |Φ=⟩/|Φ∥⟩ basis. This state, |Φ×⟩, like any other equal

superposition of these two dimer-covering states represents a resonating valence-bond

state. Particularly interesting states are resonating valence-bond states [179, 131]with

s-wave pairing symmetry, |Φ∥⟩+ |Φ=⟩ (up to normalization), and with the exotic d-wave

pairing symmetry, |Φ×⟩ = |Φ∥⟩ − |Φ=⟩. The studies of these states are of high interest,

because it was conjectured that a transition from an localized valence-bond configu-

ration to the superposition of different valence-bond states, which become mobile and

superconducting upon doping, might explain high-temperature superconductivity in

cuprates [8]. A quantum simulator capable of preparing such arbitrary superpositions

of dimer-covering states is thus sufficient for simulating any Heisenberg-type interac-

tions of four spin-1/2 particles on a two-dimensional lattice. It is the particular strength

of our optical quantum simulator that the simulated ground states can be restricted to

the spin-zero singlet subspace by utilizing the quantum interference of photons at a

tunable beam splitter.

Here, we experimentally demonstrate an optical analog quantum simulator by pro-

ducing two polarization entangled photon pairs (see Fig. 2.3a), |ψ−⟩12 =
1√
2
(|HV⟩12 −

|VH⟩12) and |ψ−⟩34 =
1√
2
(|HV⟩34 − |VH⟩34), in the spatial modes 1 & 2 and 3 & 4.

|H⟩ and |V⟩ denote horizontal and vertical polarization states, respectively. The tun-

able interaction among these singlet states is achieved by a tunable directional coupler

(TDC), followed by a projective measurement of one photon in each of the four out-

put modes. This tunability allows us to continuously change the measurement-induced

interaction between photons 1 and 3. The TDC is an optical fiber device that trans-

fers optical signals between fibers acting as a beam splitter with controllable splitting

ratio. The control of the splitting ratio is achieved by adjusting the relative positions

of the fibers (Fig. 2.3b). The transmittivity and reflectivity of this TDC go as cos2 θ
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Figure 2.3: Experimental setup. (a) Femtosecond laser pulses (≈ 140 fs, 76 MHz, 404 nm)

penetrate two β-barium borate (BBO) crystals generating two pairs of photons in the spatial

modes 1 & 2 and 3 & 4 (two-fold coincident count rate per pair ≈ 20 kHz). The walk-off

effects are compensated with a half-wave plate (HWP) followed by a BBO crystal in each

mode. The photon’s spectral and spatial distinguishability is erased with interference filters

(IF, FWHM = 3 nm) and single-mode fibers. The polarization of each photon is analyzed by a

combination of a quarter-wave plate (QWP), a HWP and a polarizing beam splitter (PBS). Sin-

gle photons are detected by single-photon counting modules (SPCM). (b) Schematic diagram

of the fiber-based tunable directional coupler (TDC). The view from the top of the TDC illus-

trates the coupling of the evanescent light as depending on the fiber separation. The coupling

between these two fibers is controlled by adjusting the horizontal position of the D fiber. (c)

Experimental calibration of TDC’s transmittivity (red circles) and reflectivity (black circles)

with respect to the position of the D fiber (s) is performed by using weak laser beams and

SPCM. The fibers’ separations for 0%, 50% and 100% transmittivity are shown in the insets.

The error bars are based on a Poissonian distribution are smaller than 0.5% of the mean values.

and sin2 θ, respectively, where θ parameterizes the fibers’ separation. We calibrate the

TDC’s transmittivity and reflectivity such that the modulating visibilities (Michael-

son visibility) are above 95% for both inputs, as required for high-precision quantum

control (Fig. 2.3c).

A successful detection of a four-fold coincidence event from each spatial mode

gives the four-photon state,

|ψ(θ)⟩1234 =
1
√

n(θ)
[ − cos2 θ(|HHVV⟩ + |VVHH⟩)

+ sin2 θ(|HVVH⟩ + |VHHV⟩)
+ cos 2θ(|HVHV⟩ + |VHVH⟩)], (2.9)
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where n(θ) = 1
2 (cos4 θ + cos2 2θ + sin4 θ) is the normalization constant. The ex-

perimentally obtained density matrix, ρexp, is reconstructed from a set of 1,296 lo-

cal measurements using the maximum-likelihood technique [188, 106]. For this, all

combinations of mutually unbiased basis sets for individual qubits, that is |H/V⟩,
|+/−⟩ = 1√

2
(|H⟩ ± |V⟩) and |R/L⟩ = 1√

2
(|H⟩ ± i|V⟩), are measured. The duration of

each measurement for a given setting of the polarization analyzers and the TDC was

200 s and the average detected four-fold coincidence rate was 3 Hz. In total eight

density matrices for different settings of θ are reconstructed and are summarized in

the Supplementary Information. Uncertainties in quantities extracted from these den-

sity matrices are calculated using a 10 run Monte Carlo simulation of the whole state

tomography analysis, with Poissonian noise added to each experimental data point in

each run.

For our quantum simulation we consider four spin-1/2 particles on a square lat-

tice (tetramer) that interact via nearest-neighbor Heisenberg-type interactions of the

strength J1 and J2 (Fig. 2.2c). The system is described by the Hamiltonian

H = J1S⃗ 1S⃗ 3 + J1S⃗ 2S⃗ 4 + J2S⃗ 1S⃗ 2 + J2S⃗ 3S⃗ 4, (2.10)

where S⃗ i is the Pauli spin operator for spin i. All the properties of the system depend

only on the coupling ratio κ = J2/J1 therefore we re-normalize the Hamiltonian to

H(κ) = H0 + κH1, (2.11)

where H(κ) = H/J1 is the final Hamiltonian, H0 = S⃗ 1S⃗ 3+ S⃗ 2S⃗ 4 the initial Hamiltonian

and H1 = S⃗ 1S⃗ 2 + S⃗ 3S⃗ 4 the competing Hamiltonian of H0. By adjusting κ, we can

change H(κ) and hence its ground state. For convenience we introduce a new parame-

ter, θ, where tan2 θ = κ +
√
κ2 − κ + 1 represents the splitting ratio of the TDC used in

the experiment (see Fig. 2.3). This enables the full control of the interactions among

the spins (coupling ratio κ) via adjusting the splitting ratio of the TDC. The ground

state of the Hamiltonian given in Eq. (2.11) is

|Ψ(0)(θ)⟩ = 1
√

n(θ)
(cos 2θ|Φ=⟩ − cos2 θ|Φ∥⟩). (2.12)

The ground state energy of |Ψ(0)(θ)⟩ is E(0) = −2(1 + κ) − 4
√

1 − κ + κ2. The TDC’s

angel, θ, takes the values from the interval of 0 ≤ θ ≤ π
2 . Using our photonic quantum

simulator, we can mimic the adiabatic change of the Hamiltonian shown in Eq. (2.11),

where the full range of the coupling ratio −∞ ≤ κ ≤ +∞ is experimentally covered by

tuning the angle of the TDC between arctan 1√
2
≤ θ ≤ π

2 . For κ = 0 (θ = π
4 ), the ground
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Figure 2.4: Ground state energy of the spin-1/2 tetramer. By tuning θ, where tan2 θ = κ +√
κ2 − κ + 1 represents the splitting ratio of the tunable directional coupler, we gradually change

the ground state of the spin-1/2 tetramer. The full range of the coupling ratio −∞ ≤ κ =
J2
J1
≤ ∞ is covered by tuning θ from arctan 1√

2
to π

2 . We measure the ground state energy for

seven different configurations. Of particular interest are the quantum states |Φ∥⟩ + |Φ×⟩, |Φ∥⟩,
|Φ∥⟩+|Φ=⟩ and |Φ=⟩, shown explicitly. The black circles represent the experimental data and the

solid line is parameter-free theoretical prediction. The error bars follow Poissonian statistics

and are smaller than the data points.

state is |Φ∥⟩, while for κ = +∞ (θ = π
2 ), the ground state changes to |Φ=⟩. These two

cases are dimer-covering states.

Tuning the coupling ratio to κ = −∞ results in the equally weighted superposition

|Φ×⟩ + |Φ∥⟩, whereas κ = 1 leads to the interesting resonating valence-bond state [8,

4, 12] |Φ=⟩ + |Φ∥⟩. In Fig. 2.4, we present E(0) as a function of θ and obtain good

agreement with theoretical prediction.

In Fig.2.5, we show the experimentally obtained density matrices of the four valence-

bond states, |Φ=⟩ + |Φ×⟩, |Φ∥⟩, |Φ=⟩ + |Φ∥⟩ and |Φ=⟩, which correspond to the setting of

θ = 0.197π, θ = 0.25π, θ = 0.304π and θ = 0.468π. The state fidelity is defined as

F(Ψ, ρ) = ⟨Ψ|ρ|Ψ⟩, where |Ψ⟩ is the target and ρ is experimentally obtained quantum

state. Due to the high quality of our quantum simulator, we obtain four-photon state

fidelities that range from F = 0.712(4) to F = 0.888(2) (see Supplementary Informa-

tion).
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Figure 2.5: Density matrices of various spin-1/2 tetramer configurations in the computational

basis (|H⟩/|V⟩). Shown are the real parts of the density matrices for the cases of (a) equal super-

position of dimer-covering states, (b,d) dimer-covering states and (c) resonating valence-bond

state. The imaginary parts are small and shown in the Supplementary Information. The wire

grids indicate the expected values for the ideal case. The density matrices are reconstructed

from the experimental four-photon tomography data for the settings of (a) θ = 0.197π, (b)

θ = 0.25π, (c) θ = 0.304π and (d) θ = 0.468π. The fidelities, F, of the measured density

matrix with the ideal state are (a) F = 0.745(4), (b) F = 0.712(4), (c) F = 0.746(6) and

(d) F = 0.888(2). The uncertainties in fidelities extracted from these density matrices are

calculated using a Monte Carlo routine and assumed Poissonian errors.

2.2.3 Quantum monogamy and complementarity

Monogamy is one of the most fundamental properties of quantum entanglement [45,

56, 143]. It restricts the shareability of quantum correlations among parties and is

of essential importance in many quantum information processing protocols, includ-

ing quantum cryptography and entanglement distillation. Recent work showed that in

the context of condensed-matter physics, monogamy gives rise to frustration effects

in e.g., Heisenberg antiferromagnets. The ideal ground state for an antiferromagnet

would consist of singlets between all interacting spins. But, due to the monogamy re-

lation a particle can only share one unit of entanglement (singlet) with its neighbors.

Therefore, it will spread entanglement in an optimal way with all its neighbors leading

to a strongly correlated ground state [143].

To study the dynamics of pair-wise interactions, in which the monogamy of bipar-

tite quantum entanglement distribution plays a crucial role, we characterize the distri-

bution of the two-body energies and correlations between one spin with respect to the
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Figure 2.6: Experimentally extracted pair-wise Heisenberg energies. (a) Experimental obser-

vation of quantum monogamy when comparing the pair-wise normalized Heisenberg energy,

ei j, it acts as a two-particle entanglement witness, for the spin pairs 1 & 2 (black square), 1

& 3 (red circle) and 1 & 4 (blue triangle). The highlighted area corresponds to the full range

of the coupling ratio −∞ ≤ κ = J2
J1
≤ ∞. For the case of κ = 0 (θ = π

4 ), the ground state of

this spin-1/2 tetramer is |Φ∥⟩ = |ψ−⟩13|ψ−⟩24 and the amount of entanglement of the pair 1 & 3

reaches its maximum while the pairs 1 & 2 and 1 & 4 are not entangled. Similarly, for the case

of κ = +∞ (θ = π
2 ), the ground state is reduced to |Φ=⟩ = |ψ−⟩12|ψ−⟩34, where pair 1 & 2 is now

maximally entangled, and pairs 1 & 3 and 1 & 4 are disentangled. In the case of the resonating

valence-bond state, entanglement distributions are equal between the pairs 1 & 2 and 1 & 3

(i.e. e12 = e13). In other cases, entanglement is distributed according to the monogamy rela-

tion. (b) Experimental demonstration of the complementarity relation in a spin-1/2 tetramer.

For each valence-bond configuration we measured pair-wise Heisenberg energies, ei j, which

are normalized by its maximal value, emax
i j . The sum of these renormalized energy values are

in good agreement with the theoretical prediction (shown as line in the plot). The uncertainties

represent standard deviations deduced from propagated Poissonian statistics.

others with the normalized Heisenberg energy per unit of interaction, ei j. It is defined

as ei j = − 1
3Tr(ρi jS⃗ iS⃗ j). Note that ρi j is the density matrix of spins i and j. The normal-

ized Heisenberg energy per unit of interaction is also an entanglement witness [35, 7]

and reaches its maximum value of ei j = 1 for the singlet state. The amount of entan-

glement can also be quantified by concurrence [191], which is directly related to ei j

with C(ei j) = max{0,− 1
2 +

3
2ei j}. For our four-spin system the dependencies of the pair-

wise energies with respect to the TDC’s angle θ are given by e12 = − 1
n (sin2 θ cos 2θ),

e13 =
1
n (sin2 θ cos2 θ), and e14 =

1
n (cos2 θ cos 2θ).

Remarkably, monogamy is manifested in the constraint of the energy distribution

for the considered spin pair through a complementarity relation [65, 34]

e2
12 + e2

13 + e2
14 = 1. (2.13)
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Figure 2.7: Directly observed pair-wise correlation functions of various valence-bond states.

The correlation tensors T12 (photons 1 & 2), T13 (photons 1 & 3) and T14 (photons 1 & 4) are

obtained from correlation measurements directly in the bases X = σx, Y = σy and Z = σz. For

a convenient graphical representation, the negative values of the correlation tensors are shown.

The structure of (a) the superposition state and (c) resonating valence-bond state show that the

quantum correlations are equally distributed among two competing pairs. (b) and (d) belong

to dimer-covering states, in which only one pair is maximally correlated in a singlet state.

This restricts the maximal amount of energy or entanglement associated with corre-

lated spin systems (see Fig. 2.6a). For instance, in the experiment we obtain the nor-

malized Heisenberg energy per unit interaction between photons 1 and 2 (e12) with

the correlation measurements in three mutually unbiased bases (S (w)
1 ⊗ S (w)

2 , where

w = 1, 2, 3).

As shown in Fig. 2.6a, the adiabatic change of the coupling between the four spins

is simulated by tuning the angle of the TDC, θ, from arctan 1√
2

to π
2 . This corresponds to

the full range of the coupling ratio −∞ ≤ κ = J2
J1
≤ ∞. In the ideal case, the maximum

of ei j is unity which corresponds to a singlet state shared by spins i and j. However,
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imperfections in the generation of entangled photon pairs and the two-photon interfer-

ence on the TDC reduce the measured value of ei j by a constant factor, independent

of θ. For the individual photon pairs we obtain the maximal Heisenberg energy of

emax
12 = 0.920(7), emax

13 = 0.727(9), and emax
14 = 0.926(5). In order to demonstrate the

complementarity relation [62] we re-normalized each energy ei j by its maximal value

emax
i j and obtain a good agreement with the theoretical prediction shown in Fig.2.6b.

The advantage of the individual addressability for our particles in the ground state

allows for the direct extraction of the pair-wise quantum correlations. The pair-wise

quantum correlation is defined as:

T (S (w)
i , S (v)

j ) =
C(S (w)

i , S (v)
j ) +C(S (w)⊥

i , S (v)⊥
j ) −C(S (w)⊥

i , S (v)
j ) −C(S (w)

i , S (v)⊥
j )

C(S (w)
i , S (v)

j ) +C(S (w)⊥
i , S (v)⊥

j ) +C(S (w)⊥
i , S (v)

j ) +C(S (w)
i , S (v)⊥

j )
,

where C(S (w)
i , S (v)

j ) are the corresponding coincidence counts between pair i and j in

the bases of S (w) and S (v), respectively. In Fig. 2.7, the pair-wise correlation functions

for the ground states, |Φ=⟩ + |Φ×⟩, |Φ∥⟩, |Φ=⟩ + |Φ∥⟩ and |Φ=⟩, are shown. As expected

from the monogamy relation, in the cases of dimer-covering states, one pair of the

photons is maximally correlated, e.g. photons 1 and 3 in Fig. 2.7b, and photons 1 and

2 in Fig. 2.7c. In the cases of the equal superposition of two dimers (Fig. 2.7a) and the

resonating valence-bond state (Fig. 2.7d), correlations are distributed among different

pairs.

Summary.– We demonstrate the feasibility of an all-optical analog quantum simula-

tor by enabling quantum control of the measurement-induced interaction among pho-

tonic quantum states. Various ground states, including the resonating valence-bond

states for four interacting spin-1/2 particles are generated and characterized by ex-

tracting the total energy and the pair-wise quantum correlations. The simulation of

a spin-1/2 tetramer also proves that the pair-wise entanglement and energy distribu-

tion are restricted by the role of quantum monogamy. Our results provide promising

insights for quantum simulations of small quantum systems, where individual address-

ability and control over all degrees of freedom on the single-particle level is required.

This is of particular interest for quantum chemistry with small numbers of particles

and might allow in the near future the simulation of aromatic systems and chemical re-

actions [111]. Although it was shown that efficient scalable quantum computing with

single photons, linear-optical elements, and projective measurements is possible [115],

the most important challenges for future optical approaches will be (a) the realization

of high-quality quantum control, (b) generating systems with more qubits and (c) de-

veloping efficient methods of simulating other classes of complex Hamiltonians by
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using optical elements. Ideally, this and related work will open a new and promising

avenue for the experimental simulation of various quantum systems.

2.2.4 Supplementary Information -
Experimental photonic analog quantum simulation

Quantum state tomography

We perform quantum state tomography for the simulated ground states of a spin-1/2

tetramer. The studies of the eight different ground states lead to 10368 coincidence

count measurements with a total 414724 four-fold coincidence counts. The recon-

structed density matrices are plotted in Fig. 2.8 and 2.9.
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Figure 2.8: Density matrices of various spin-1/2 tetramer configurations in the computational

basis (|H⟩/|V⟩). Shown are the real parts (ρre), imaginary part (ρim), and absolute values (ρabs)

of the density matrices for the different settings of the splitting ratio of θ of the tunable direction

coupler: (a), θ = 0.468π, (b), θ = 0.455π, (c), θ = 0.366π and (d), θ = 0.304π. The wire grids

indicate the expected values for the ideal case. The fidelities, F, of the measured density

matrix with the ideal state are (a), F = 0.888(2), (b), F = 0.888(2), (c), F = 0.840(4) and (d),

F = 0.746(6).
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Figure 2.9: Density matrices of various spin-1/2 tetramer configurations in the computational

basis (|H⟩/|V⟩). Shown are the real parts (ρre), imaginary part (ρim), and absolute values (ρabs)

of the density matrices for the different settings of the splitting ratio of θ of the tunable direction

coupler: (a), θ = 0.25π, (b), θ = 0.222π, (c), θ = 0.197π and (d), θ = 0.045π. The wire grids

indicate the expected values for the ideal case. The fidelity, F, of the measured density matrix

with the ideal state are (a), F = 0.712(4), (b), F = 0.755(5), (c), F = 0.745(4) and (d),

F = 0.897(1).



94CHAPTER 2. QUANTUM STATISTICS, CORRELATIONS AND SIMULATIONS

2.3 Necessary and sufficient condition for non-zero quan-
tum discord

Quantum discord characterizes “non-classicality” of correlations in quantum mechan-

ics. It has been proposed as the key resource present in certain quantum communica-

tion tasks and quantum computational models without containing much entanglement.

We obtain a necessary and sufficient condition for the existence of non-zero quantum

discord for any dimensional bipartite states. This condition is easily experimentally

implementable. Based on this, we propose a geometrical way of quantifying quantum

discord. For two qubits this results in a closed form of expression for discord. We apply

our results to the model of deterministic quantum computation with one qubit (DQC1),

showing that quantum discord is unlikely to be the reason behind its speedup.

Quantum states of a composite system can be divided into entangled and sepa-

rable once. Entangled states display “nonlocal features” violating Bell’s inequali-

ties [19] and are considered a necessary resource for quantum communication and

pure quantum computation allowing computational speedup over the best classical al-

gorithm [140]. On the contrary, separable states are generally considered as purely

classical, since they do not violate Bell’s inequalities and can be prepared by local

operations and classical communication. However, it is valid to ask if highly mixed

states, and in particular separable states, are completely useless from quantum infor-

mation perspective. Recent investigations give compelling evidences that this is not

the case. A highly mixed state in the DQC1 model [114] is believed to perform a

task exponentially faster than any classical algorithm (“without containing much en-

tanglement”). Furthermore, it has been shown that even some separable states contain

nonclassical correlations [141, 101] and can create an advantage for computing and in-

formation processing tasks over their classical counterparts [32, 135, 53, 55, 54, 117].

The “non-classicality” of bipartite correlations is measured via quantum discord [141]–

the discrepancy between quantum versions of two classically equivalent expressions

for mutual information. Recently, it has been shown that almost all quantum states

have non-vanishing discord [68]. Quantum discord was proposed as a figure of merit

for characterizing the nonclassical resources present in the DQC1 [54]. It has been

shown that initial zero-discord system-environment state is necessary and sufficient

condition for completely-positive map evolution of the system when the environment

is traced out [166, 158]. Furthermore, in Ref. [156] is demonstrated that if the state

can be locally broadcasted than it has vanishing discord.

Despite increasing evidences for relevance of quantum discord in describing non-
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classical resources in information processing, there is no straightforward criterion to

verify the presence of discord in a given quantum state. Its evaluation involves op-

timization procedure and analytical results are known only in a few cases [127, 59,

162, 5, 3, 79]. In this Letter we derive the necessary and sufficient condition for non-

vanishing quantum discord. The criterion is simple and also experimentally friendly,

since it can be evaluated directly from a (sub)set of measurements standardly used

for quantum state tomography. Based on this, we introduce the geometrical measure

of discord and derive an explicit expression for the case of two qubits. Finally, we

give arguments putting in question appropriateness of quantum discord to describe the

non-classical resource in DQC1 computational model.

2.3.1 Quantum discord

Correlations between two random variables of classical systems A and B are in infor-

mation theory quantified by the mutual information I(A : B) = H(A)+H(B)−H(A, B).

If A and B are classical systems, than H(.) stands for the Shannon entropy H(p) =

−∑
i pi log pi, where p = (p1, p2, . . . ) is the probability distribution vector, while H(., .)

is the Shannon entropy of the joint probability distribution pi j. For quantum systems

A and B, function H(.) denotes the von Neumann entropy H(ρ) = −Trρ log ρ where

ρ is the density matrix. In the classical case, we can use the Bayes rule and find an

equivalent expression for the mutual information I(A : B) = H(A) − H(A|B) where

H(A|B) is the Shannon entropy of A conditioned on the measurement outcome on B.

For quantum systems, this quantity is different from the first expression for the mutual

information and the difference defines the quantum discord.

Consider a quantum composite system defined by the Hilbert space HAB = HA ⊗
HB. Let dimensions of the local Hilbert spaces be dimHA = dA and dimHB = dB,

while d = dimHAB = dAdB . Given a state ρ (density matrix) of a composite system,

the total amount of correlations is quantified by quantum mutual information [93]:

I(ρ) = H(ρA) + H(ρB) − H(ρ), (2.14)

where H(ρ) is the von Neumann entropy and ρA,B = TrB,A(ρ) are reduced density

matrices. A generalization of the classical conditional entropy is H(ρB|A), where ρB|A is

the state of B given a measurement on A. By optimizing over all possible measurements

in A, we define an alternative version of the mutual information

QA(ρ) = H(ρB) −min{Ek}
∑

k

pkH(ρB|k), (2.15)
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where ρB|k = TrA(Ek ⊗ 11Bρ)/Tr(Ek ⊗ 11Bρ) is the state of B conditioned on outcome

k in A and {Ek} represents the set of positive operator valued measure elements. The

discrepancy between the two measures of information defines the quantum discord

[141, 101]:

DA(ρ) = I(ρ) − QA(ρ). (2.16)

The discord is always nonnegative [141] and reaches zero for the classically correlated

states [101]. Note that discord is not a symmetric quantity DA(ρ) , DB(ρ) and DA

refers to the “left” discord, while DB refers to the “right” discord. The state ρ for

which DA(ρ) = DB(ρ) = 0 is completely classically correlated in a sense of [142, 136]

From now on, when we refer to the discord we mean the “left” discord DA.

To give an example of a state with non-vanishing discord consider the two-qubit

separable state in which four nonorthogonal states of one qubit are correlated with four

nonorthogonal states of the second qubit:

1
4

(|0⟩⟨0| ⊗ |+⟩⟨+| + |1⟩⟨1| ⊗ |−⟩⟨−| + |+⟩⟨+| ⊗ |1⟩⟨1|
+|−⟩⟨−| ⊗ |0⟩⟨0|). (2.17)

Unlike the state above, one can show that the state ρ is of zero-discord if and only

if there exist a von Neumann measurement {Πk = |ψk⟩⟨ψk|} such that [51]∑
k

(Πk ⊗ 11B)ρ(Πk ⊗ 11B) = ρ, (2.18)

In other words the zero-discord state is of the form ρ =
∑

k pk|ψk⟩⟨ψk| ⊗ ρk where {|ψk⟩}
is some orthonormal basis set, ρk are the quantum states in B and pk are non-negative

numbers such that
∑

k pk = 1.

2.3.2 An easily implementable necessary and sufficient condition

Let us choose basis sets in local Hilbert-Schmidt spaces of Hermitian operators, {An}
and {Bm} where n = 1 . . . d2

A and m = 1 . . . d2
B. We decompose the state ρ of composite

system into ρ =
∑

nm rnmAn ⊗ Bm. The coefficients rnm define d2
A × d2

B real matrix R

which we call the correlation matrix. We can find its singular value decomposition

(SVD), URWT = diag[c1, c2, . . . ] where U and W are d2
A × d2

A and d2
B × d2

B orthogonal

matrices, respectively, while diag[c1, c2, . . . ] is d2
A × d2

B diagonal matrix. SVD defines

new basis in local Hilbert-Schmidt spaces S n =
∑

n′ Unn′An′ and Fm =
∑

m′ Wmm′Bm′ .

The state ρ in the new basis is of the form ρ =
∑L

n=1 cnS n ⊗ Fn where L = rankR is the

rank of correlation matrix R (the number of non-zero eigenvalues cn).
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The necessary and sufficient condition (2.18) becomes
∑L

n=1 cn(
∑

k ΠkS nΠk)⊗ Fn =∑L
n=1 cnS n ⊗ Fn and it is equivalent to the set of conditions:

∑
k

ΠkS nΠk = S n, n = 1 . . . L, (2.19)

or equivalently [S n,Πk] = 0 for all k, n. This means that the set of operators {S n} have

common eigenbasis defined by the set of projectors {Πk}. Therefore, the set {Πk} exists

if and only if:

[S n, S m] = 0, n,m = 1 . . . L. (2.20)

In order to show zero discord we have to check at most L(L − 1)/2 commutators,

where L = rankR ≤ min{d2
A, d

2
B}. Now, recall that the state of zero discord is of the

form ρ =
∑dA

k=1 pkΠk ⊗ ρk, therefore is a sum of at most dA product operators. This

bounds the rank of the correlation tensor to L ≤ dA. Thus, the rank of the correlation

tensor is the simple discord witness: If L > dA, the state has a non-zero discord.

Correlation matrix can be obtained directly by simple measurements usually in-

volved in quantum state tomography. However, the detection of non-zero discord does

not necessarily require measurement of all (dAdB)2 elements of the correlation matrix

(full state tomography). It is sufficient that the experimentalist measures that many

elements of the correlation matrix until he finds dA + 1 linearly independent rows (or

columns) of the correlation matrix.

2.3.3 Geometric measure of discord

Evaluation of quantum discord given by equation (2.16) in general requires consider-

able numerical minimization. Different measures of quantum discord [33] and their

extensions to multipartite systems [136] have been proposed. However, analytical ex-

pression are known only for certain classes of states [128, 59, 162, 5, 3, 79]. Here we

propose a following geometric measure

D(2)
A (ρ) = minχ∈Ω0 ||ρ − χ||2, (2.21)

where Ω0 denotes the set of zero-discord states and ||X−Y ||2 = Tr(X−Y)2 is the square

norm in the Hilbert-Schmidt space. We will show how to evaluate this quantity for an

arbitrary two-qubit state.
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Two-qubit case

Consider the caseHA = HB = C2. We write a state ρ in Bloch representation:

ρ =
1
4

(11 ⊗ 11 +
3∑

i=1

xiσi ⊗ 11 +
3∑

i=1

yi11 ⊗ σi +

3∑
i, j=1

Ti jσi ⊗ σ j), (2.22)

where xi = Trρ(σi ⊗ 11), yi = Trρ(11 ⊗ σi) are components of the local Bloch vectors,

Ti j = Trρ(σi ⊗ σ j) are components of the correlation tensor, and σi, i ∈ {1, 2, 3}, are

the three Pauli matrices. To each state ρ we associate the triple {x⃗, y⃗,T }. Now, we

characterize the set Ω0. A zero-discord state is of the form χ = p1|ψ1⟩⟨ψ1| ⊗ ρ1 +

p2|ψ2⟩⟨ψ2| ⊗ ρ2, where {|ψ1⟩, |ψ2⟩} is a single-qubit orthonormal basis, ρ1,2 are 2 × 2

density matrices, and p1,2 are non-negative numbers such that p1 + p2 = 1. We define

t = p1 − p2 and three vectors

e⃗ = ⟨ψ1|σ⃗|ψ1⟩, (2.23)

s⃗± = Tr(p1ρ1 ± p2ρ2)σ⃗. (2.24)

It can easily be shown that te⃗ and s⃗+ represent the local Bloch vectors of the first and

second qubit, respectively, while the vector s⃗− is directly related to the correlation

tensor which is of the product form T = e⃗s⃗T
−. Therefore, a state of zero-discord χ has

Bloch representation χ⃗ = {te⃗, s⃗+, e⃗s⃗T
−}, where ||⃗e|| = 1, ||s⃗±|| ≤ 1 and t ∈ [−1, 1]. The

distance between states ρ and χ is given by

||ρ − χ||2 = ||ρ||2 − 2Trρχ + ||χ||2 (2.25)

=
1
4

(1 + ||x⃗||2 + ||⃗y||2 + ||T ||2)

− 1
2

(1 + tx⃗e⃗ + y⃗s⃗+ + e⃗T s⃗−)

+
1
4

(1 + t2 + ||s⃗+||2 + ||s⃗−||2),

where ||T ||2 = TrT TT . First, we optimize the distance over parameters s⃗± and t. The

function of equation (2.25) is convex and quadratic in its variables t, s⃗±. It is straight-

forward to see that its Hessian is a positive and non-singular matrix. Therefore the

function has a unique global minimum. The minimum occurs when the derivative is

zero:

||ρ − χ||2
∂t

=
1
2

(−x⃗e⃗ + t) = 0, (2.26)

||ρ − χ||2
∂s⃗+

=
1
2

(−y⃗ + s⃗+) = 0, (2.27)

||ρ − χ||2
∂s⃗−

=
1
2

(−T Te⃗ + s⃗−) = 0, (2.28)
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8-1, -1, -1<

8-1, 1, 1<

81, -1, 1<

81, 1, -1<

8-1, 0, 0<

80, 1, 0<

80, 0, -1<

80, 0, 1<

80, -1, 0<

81, 0, 0<

Figure 2.10: The set of two-qubit states with maximally mixed marginals (i.e. the reduced

states of individual qubits are completely mixed). Physical states belong to the tetrahedron,

among which separable ones are confined to the octahedron. The zero-discord states are labeled

by the red lines (it is therefore clear that almost all states have non-zero discord [68]). The

states with maximal value of discord correspond to the vertices of the tetrahedron (the four

Bell states). Among the set of separable states, those which maximize discord are the centers

of octahedron facets (±1,±1,±1)/3 (black dots).

which gives the solution t = x⃗e⃗, s⃗+ = y⃗ and s⃗− = T Te⃗. Since the solution lies within

the range of parameters, |x⃗e⃗|, ||⃗y||, ||T Te⃗|| ≤ 1 it represents the global minimum. After

substituting the solution we obtain ||ρ − χ||2 = 1
4

(
||x⃗||2 + ||T ||2 − e⃗(x⃗x⃗T + TT T)⃗e

)
which

attains the minimum when e⃗ is an eigenvector of matrix K = x⃗x⃗T + TT T for the largest

eigenvalue. Therefore, we have:

D(2)
A (ρ) =

1
4

(||x⃗||2 + ||T ||2 − kmax), (2.29)

where kmax is the largest eigenvalue of matrix K = x⃗x⃗T + TT T. Next, we apply our

criterion to a class of states.

States with maximally mixed marginals

We consider an example of two qubit states with maximally mixed marginals. Such a

state is locally equivalent (under some local unitary transformation U1 ⊗U2) to a state

ρ(⃗t) = (11 ⊗ 11 +
∑3

i=1 tiσi ⊗ σi)/4, where t⃗ = (t1, t2, t3). The state ρ(⃗t) is physical if

t⃗ belongs to the tetrahedron (Figure 2.10) defined by the set of vertices (−1,−1,−1),

(−1, 1, 1), (1,−1, 1) and (1, 1,−1), while is separable if t⃗ belongs to the octahedron de-

fined by the set of vertices (±1, 0, 0), (0,±1, 0) and (0, 0,±1) [103]. Simple calculation
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shows that D(2)
A (⃗t) = 1

4 (t2
1 + t2

2 + t2
3 − max{t2

1, t
2
2, t

2
3}). The zero-discord states have at

most one non-zero component of vector t⃗ (Figure 2.10, red lines). The function D(2)
A (⃗t)

reaches its maximal value of D(2)
A = 1/2 at the vertices of tetrahedron which repre-

sent the four Bell states. Within the set of separable states (octahedron) its maximal

value of D(2)
A = 1/6 is attained at the centers of octahedron facets (±1,±1,±1)/3. They

represent the states

ρi1i2i3 =
1
4

(11 ⊗ 11 +
1
3

3∑
k=1

(−1)ikσk ⊗ σk), (2.30)

where ik = ±1, and can intuitively be understood as equal mixture of “maximally non-

orthogonal” states. The states are symmetric under exchange of subsystems, thus they

have the same value of “left” and “right” discord DA = DB.

2.3.4 DQC1 model

In [114], Knill and Laflamme introduced the model of mixed-state quantum com-

puting which preforms the task of evaluating the normalized trace of a unitary matrix

efficiently. The corresponding quantum circuit is shown in Figure 2.11. The input state

is a highly mixed separable state and consists of a control qubit in the state 1
2 (11+ασ3),

where α describes the purity, and a collection of n qubits in the maximally mixed state
1
2n 11n, where 11n is the n-qubit identity. The DQC1 circuit consists of the Hadamard

gate applied to the control qubit and a control n-qubit unitary gate Un. The output state

is:

ρ =
1

2n+1 (111 ⊗ 11n + α|1⟩⟨0| ⊗ Un + α|0⟩⟨1| ⊗ U†n). (2.31)

We consider only the cases α , 0, otherwise the state at the output is completely

mixed and therefore cannot accomplish the task. After measuring the control qubit

at the output in the eigenbasis of σ1 and σ2, we retrieve the normalized trace of the

unitary matrix τ = TrUn/2n with the polynomial overhead scaling 1/α2 [54].

The control qubit is completely separable from the rest of the qubits. The out-

put state has vanishingly small entanglement across any bipartite split that groups the

control qubit with some of the mixed qubits [114]. However, there is strong evidence

that DQC1 task cannot be preformed efficiently using classical computation [55]. The

question is what brings a “speed-up” in the considered task? The quantum discord

was proposed as a figure of merit for characterizing the resources present in DQC1

model [54]. It has been shown that for almost every unitary matrix Un (random uni-

tary) the discord in the output state (2.31) is non-vanishing. Here we derive an explicit
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Figure 2.11: The quantum circuit for estimating the normalized trace of the unitary matrix Un

using the model of deterministic computing with one quantum bit (DQC1). H stands for the

Hadamard gate. The control (top) qubit is measured in the σ1 and σ2 basis, and the expectation

values give the real and imaginary part of normalized trace τ = TrUn/2n with the overhead

scaling as 1
α2 [54].

condition for characterizing the correlations in the output state and show that the dis-

cord is unlikely to be the source of speedup. We re-write it into a form:

ρ =
1

2n+1

(
111 ⊗ 11n + ασ1 ⊗

Un + U†n
2

+ ασ2 ⊗
Un − U†n

2i

)
. (2.32)

Now, we apply the condition (2.20). The operators σ1 and σ2 do not commute, there-

fore, the state ρ is of the zero-discord if and only if the operators Un+U†n
2 and Un−U†n

2i are

linearly dependent, or equivalently U†n = kUn. This is possible if and only if Un = eiϕA,

where A2 = 11 is a binary observable. For such a unitary all the correlations at the out-

put of DQC1 circuit are classical. However, it is very unlikely that the normalized trace

of eiϕA can be evaluated efficiently on a classical computer, since all it’s eigenvectors

can be arbitrarily complex (random states).

We emphasize that our measure of discord is not monotonic under local operations.

This, however, is not a shortcoming, as discord, unlike entanglement and mutual infor-

mation, can in fact increase as well as decrease under local operations (even without

the presence of classical correlations). A simple example of the local increase is to

start from a zero-discord state |00⟩⟨00| + |11⟩⟨11| and transform, say the first qubit, so

that |0⟩ → |ψ0⟩ and |1⟩ → |ψ1⟩, such that |ψ0⟩ and |ψ1⟩ are not orthogonal. The resulting

state, |0Ψ0⟩⟨0Ψ0| + |1ψ1⟩⟨1ψ1| clearly has a non-vanishing discord. Finally, we point

out that our method can be extended to any number of subsystems, though evaluating

the measure of discord becomes progressively more difficult with increasing number

of subsystems and their dimensionality.

Note added.—A related work was done by Datta [52].
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Summary and Outlook

In the summary, I give a brief overview and outlook of the work presented here. There

are six topics in total that are covered by the thesis:

• Limited information content, as a fundamental principle of nature was inves-

tigated from the operational perspective. Based on this principle the whole hi-

erarchy of “quantum-like” theories is derived for an elementary system. The

information encoded in the system supposed to be fundamentally limited to one

bit, therefore no underlying hidden structure (in the form of hidden variables) is

possible, and the results are irreducibly random. As a final remark, the exam-

ples of generalized theories are given which share some essential features with

quantum mechanics but nevertheless differ from it. This perhaps suggests that

either Nature admits additional principles that single out quantum theory from

the more general class of theories or the alternatives are also realized in some

domain that is still beyond our observations. The work is based on the follow-

ing publication: B. Dakić, T. Paterek, and Č. Brukner, Theories of systems with

limited information content, New J. Phys. 12, 053037 (2010).

• Mutually unbiased bases, and their connection to orthogonal Latin squares was

analyzed. Certain results for Latin squares can be applied to disprove the exis-

tence of certain classes of mutually unbiased bases when the system’s dimen-

sions is not a power of prime. Finally, using the Latin squares, the hidden-

variable model are constructed that efficiently reproduce the measurement statis-

tics of MUBs. The work is based on the following publication: T. Paterek, B.

Dakić, and Č. Brukner, Mutually unbiased bases, orthogonal Latin squares, and

hidden-variable models , Phys. Rev. A 79, 012109 (2009).

• Reconstruction of quantum theory is the procedure of recovering quantum for-

malism from a set of physically motivated assumptions (principles or axioms).

In the work presented here such a task was accomplished by employing three

simple physical principles: information capacity, locality and reversibility. In

such a framework there was a room for quantum and classical probability the-

ory, the only two theories for which we have an empirical evidences. A sig-

nificant result that follows from the reconstruction is that no probability theory

other than quantum theory can exhibit entanglement without contradicting one

or more axioms. Perhaps, this suggest that going beyond quantum theory in a

103
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“reasonable” way would require some new physical concepts that may go even

beyond probabilistic description of Nature. The work is based on the following

publication: B. Dakić, and Č. Brukner, Quantum Theory and Beyond: Is Entan-

glement Special?, in “Deep Beauty: Understanding the Quantum World through

Mathematical Innovation”, Eds. H. Halvorson, (Cambridge University Press,

2011), 365-392.

• The expense of classical simulation of quantum statistics was investigated.

An interesting result has been found that only polynomial number Poly(N) of

classical states (hidden-variables) is needed to reproduce the quantum statistics

based on N measurement settings for an arbitrary quantum state. The model in

the limit of continuous number of measurement settings converges to the model

where each quantum state is a hidden-variable itself (a non-deterministic model).

In the conclusion, we could say that quantum mechanics is indeed the most ef-

ficient description of itself. The work is based on the following publication: B.

Dakić, M. Šuvakov, T. Paterek, and Č. Brukner, Efficient Hidden-Variable Simu-

lation of Measurements in Quantum Experiments, Phys. Rev. Lett. 101, 190402

(2008).

• Quantum simulation of a frustrated spin tetramer was investigated. The tetramer

was experimentally realized using polarization of four entangled photons. The

adiabatic evolution was achieved by employing a tunable gate capable of creat-

ing exotic states such as valence bond liquid. In the conclusion we could say

that the field of quantum information greatly benefits from small-scale quantum

simulators, such as one presented here in a way that they provide a technological

and innovation insights towards building universal quantum simulator. The work

is based on the following publication: X. Ma, B. Dakić, W. Naylor, A. Zeilinger,

P. Walther, Quantum simulation of the wavefunction to probe frustrated Heisen-

berg spin systems, Nat. Phys. 7, 399–405 (2011).

• Quantum correlations captured by quantum discord were analyzed. A handy

necessary and sufficient condition for non-zero discord is found. Based on this,

the presence of quantum discord can be verified directly from the measurement

results. The geometric measure of quantum discord is introduced, with the sig-

nificant difference to other measures, i.e. easy evaluation without need of mini-

mization procedures. At the end, the resources in mixed-state computation setup

were analyzed. What was found is that quantum discord is unlikely to be the

reason of speedup in such a model. The work is based on the following publica-
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tion: B. Dakić, V. Vedral, and Č. Brukner, Necessary and sufficient condition for

non-zero quantum discord, Phys. Rev. Lett. 105, 190502 (2010).
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Magyar Fizikai Folyóirat, 22:33. Thesis, in Hungarian.
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