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1 Introduction

This thesis faces the question whether Non-Expected Utility models are better
in explaining individual behavior in dynamic settings than Expected Utility
Theory. In particular, we concentrate on two Non-Expected Utility models,
namely Rank-Dependent Utility Theory proposed by Quiggin (1982) and Cu-
mulative Prospect Theory put forward by Kahneman and Tversky (1992). For
the evaluation of the performance of the theories we use a structural buffer
stock consumption model for households, based on Laibson, Repetto and To-
bacman (2007). Our theoretical framework nests all three theories, i.e. Ex-
pected Utility Theory, Rank-Dependent Utility Theory and Cumulative Prospect
Theory. The distinction of these theories is pinned down by two parameters,
which we estimate in a Method of Simulated Moments approach.

To the best of our knowledge, this is the first comparison of Expected Util-
ity Theory and Rank-Dependent Utility and/or Cumulative Prospect Theory
in a dynamic environment. In general, the development of Non-Expected Util-
ity theories was motivated by experimental evidence indicating that people
violate principles of Expected Utility Theory. These experiments, like from
e.g. Allais (1953), Ellsberg (1961) and Kahneman and Tversky (1979, 1992),
considered one time decisions, i.e. not various decisions made over a longer
time period. In contrast to those we simulate consumption and savings deci-
sions of households over the whole life cycle and compare these with real life
data, which we take from the SOEP1 survey and the SAVE2 study. Our main
objective is to find the theory that minimizes the distance between the simu-
lated and the empirical profiles. The simulation procedure we apply exhibits
a stochastic income process and the risk of survival. These elements define
the risky components in the model, which are evaluated by the households
over their life cycle, in order to make their decisions. The way in which risk
is evaluated represents the main difference between Expected Utility Theory
and Rank-Dependent Utility or Cumulative Prospect Theory. However, using
Non-Expected Utility models in a dynamic setting is prone to some critique,
mainly outlined in Machina (1989). The critique deals with some undesirable

1Socio-Economic Panel (SOEP), data for years 1984-2008, SOEP, 2009.
2SAVE (Sparen und Altersvorsorge in Deutschland), data for the years 2000 to 2008, SAVE

2009.
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implications on economic behavior. This is, at least to our understanding,
why Rank-Dependent Utility and Cumulative Prospect Theory are not used
in dynamic models in the literature so far. In order to overcome these critique
points we find that for the derivation of the dynamic decisions in our model
one should use Folding Back3 and especially should not apply the Reduction
of Compound Lotteries Axiom. One consequence of this solution procedure
is that it requires an evaluation of a large decision tree to obtain a simulation
of the consumption and savings decisions of the households. This numerical
simulation process is based on the work of Carroll (1992, 1997), Deaton (1991),
Zeldes (1989), Gourinchas and Parker (2002), Hubbard, Skinner and Zeldes
(1994,1995) and Laibson, Repetto and Tobacman (2007).

The Method of Simulated Moments approach, first introduced by McFad-
den (1989), Pakes and Pollard (1989), Duffie and Singleton (1993), which we
apply consists of two stages. The first stage, sometimes called the calibration
section, pins down parameters e.g. for the stochastic income process, the vari-
ation of the effective household size, interest rates and so forth. In the second
stage the parameters of interest, which distinguish the three risk evaluation
theories, are estimated. This is done by minimizing the distance between the
simulated moments, which we obtain from the solution of our model, and the
empirical moments, which we estimate from the available data. We can not
show that the estimated parameters are asymptotically normally distributed.
Due to this aspect we perform a bootstrap method to check the significance
of our estimates. The final result of the estimation procedure is that Rank-
Dependent Utility Theory is the risk evaluation theory which fits the data best.

The thesis is organized as follows: First, the model and the extensions to
and deviations from the approach of Laibson, Repetto and Tobacman (2007)
are described. The subsequent section displays some empirical evidence being
responsible for the development of Non-Expected Utility Theories and intro-
duces the corresponding value and probability weighting functions for Rank-
Dependent Utility and Cumulative Prospect Theory. Section 4 gives a simpli-
fied example of the dynamic setting occurring in the model and considers two
ways how such a dynamic problem can be solved. Section 5 discusses the im-
plications of the proposed procedure of Section 4 in combination with Rank-

3Synonymous expressions in the literature are Backwards Induction or Rolling Back.
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Dependent Utility and Cumulative Prospect Theory on the critique given in
the literature. The following section concludes the theoretical part. Section
7 gives a rough description of the SOEP and SAVE datasets we use. Section 8
gives a brief overview of the estimation procedure. Sections 9 and 10 deal with
the calibration of the first stage parameters needed for the simulated moments.
Then, the empirical moments are defined and estimated from data. Section 12
gives detailed information about the simulation process. Section 13 defines
the Method of Simulated Moments estimator. Then, the results from the esti-
mation are presented and the significance of these is discussed. The next two
sections interpret and check the robustness of the results. Section 17 discusses
some extensions and future research questions. The last section concludes.

2 Framework

The model, which we use, is based on the simulation literature pioneered by
Carroll (1992, 1997), Deaton (1991), Hubbard, Skinner and Zeldes (1994,1995),
Gourinchas and Parker (2002), and Laibson, Repetto and Tobacman (2003).
In most terms, the model is very similar to Laibson, Repetto and Tobacman
(2007). We deviate in the way that we use a more general form of the in-
stantaneous utility or value function, respectively. This enables us to compare
various risk evaluation systems in the context of consumption and savings
decisions over the life cycle within the estimation process. These risk evalua-
tion systems are in particular Expected Utility Theory, Rank-Dependent Utility
and Cumulative Prospect Theory. Furthermore, the model uses exponential
discounting instead of hyperbolic discounting4 as in Laibson, Repetto and To-
bacman (2007).

The general model consists of 7 parts: demographics, income, liquid assets,
illiquid assets, dynamic and static budget constraint, utility/value function,
and equilibrium.

4Actually, Laibson, Repetto and Tobacman (2007) use a quasi-hyperbolic discount function
in their model.
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2.1 Demographics

In a household, which is considered as one decision unit, always lives a head
and a spouse. The number of children and dependent adults in the household
varies over time. Economic life of a household starts with the age of 20 and
ends at 90.5 The household is retired if the household is older than T , which
will be estimated from data later on. There is an exogenous probability of
surviving period t, labeled st. The effective household size in period t, nt,
is equal to the number of adults and 0.4 times the number of children in the
household. The factor 0.4 stems from Blundell, Browning, Meghir (1994) to
achieve "equivalent" household size. The idea is to control for the different
needs of adults and children.6

For the simulation and calibration in the upcoming sections households
will be categorized by their education. This is due to the aspect that there are
differences in retirement age and especially in income.

2.2 Income

The income Yt contains all after-tax transfers and wages, i.e. labor income,
inheritances, private defined-benefit pensions and all government payments
of period t. It is assumed that labor is supplied inelastically, according to this
Yt is exogenous. The income equation is separated over time: i) the income
while the household is in the workforce, i.e. younger than T, and ii) the income
when the household is retired. The working age income is modeled as

ln(Yt) = yt = HHt + fW (t) + ut + vWt ,

where fW (t) is a polynomial in age, vWt is an iid shock and ut is an AR(1) pro-
cess, which later on will be substituted by a Markov process to reduce com-
putation time for the solution of the model.7 The AR(1) process is included to
cover shocks, which are influencing income over more periods, whereas vWt

5The reference age for the household is the age of the head of the household.
6Blundell, Browning, Meghir (1994) note that one could also use more sophisticated equiv-

alence scales that allow for economies of scale and age differences of children.
7The particular form of the income equations for working life and retirement will be es-

timated later on in the calibration section. There will be also a detailed discussion about the
substitution of the AR(1) process by a Markov Process.
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are transitory shocks affecting only one period. Additionally we implement
variables concerning household composition, summarized in HHt.

The income process during retirement is modeled in a simpler way and
without persistent shocks, i.e.

ln(Yt) = yt = c+ vRt ,

where c is a constant and vRt represents transitory shocks in retirement. As
mentioned before these income processes will be estimated later on.

2.3 Liquid Assets

The liquid assets at the beginning of period t are denoted by Xt. Hence, the
disposable money of a household in period t is Yt +Xt, i.e. income plus liquid
assets. It is allowed that Xt can be negative, i.e. the households have the pos-
sibility to borrow on credit cards or overdraft credits. A credit line is assumed
to restrict the credits and is defined byXt ≥ −λ · Ȳt, where Ȳt is the age-specific
income at age t and λ is a fraction calibrated later on.

2.4 Illiquid Assets

The illiquid assets at the beginning of period t are denoted by Zt. This variable
is supposed to be positive throughout the life cycle, i.e. Zt ≥ 0,∀t. There are
two types of returns: i.) capital gains from interest and ii.) a consumption flow.
The consumption flow in period t is defined as γ ·Zt = 0.05 ·Zt, and can be seen
e.g. as the consumption of living in a house you own.8 Transaction costs for
selling the illiquid assets are assumed to be so high, that Z is only increasing
over time, until it is bequeathed to the next generation. Laibson, Repetto and
Tobacman (2007) argue, that the construction of Z does not match any illiquid
asset in particular, but has some properties of home equity.9 They justify these

8The assumption of γ = 0.05 is taken from Laibson, Repetto and Tobacman (2007). We
check the influence of other values for γ in the robustness section.

9The intuition Laibson, Repetto and Tobacman (2007) give is: “Consider a consumer who
owns a house of fixed real value H and derives annual consumption flows from the house of γ · H .
Suppose the consumer has a mortgage of size M and home equity of H-M. The real cost of the mortgage
is η ·M , where η = i · (1 − τT ) − π is the nominal mortgage interest rate adjusted for inflation and
the tax deductibility of interest payments. If we assume η ≈ γ, the net benefit to the homeowner is
γ ·H − η ·M ≈ γ · (H −M) = γ · Z.”
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assumptions by four observations, whereas in the environment of our setting
only two of these apply, as the other two are linked to quasi-hyperbolic dis-
counting. Their first argument is, that selling houses, cars or pension plans
entails at least small transaction costs and delays. The second, and for the ap-
proach here the most important, is that one extremely reduces the choice set of
each household, i.e. computation time of the Method of Simulated Moments
is enormously decreased by this construction of the illiquid asset.

2.5 Dynamic and Static Budget Constraints

The net investments in liquid and illiquid assets in period t are IXt and IZt ,
respectively. The dynamic budget constraints are defined by

Xt+1 = RX · (Xt + IXt )

Zt+1 = RZ · (Zt + IZt ),

where RX and RZ are the interest rates for the liquid and illiquid asset, re-
spectively. As mentioned in the description of the liquid asset, X can also be
negative - this case was interpreted as borrowing on credit cards or overdraft
credits. Therefore, the interest rate for the liquid asset has to be defined for
positive and negative holdings, i.e.

RX =

RX
CC if Xt + IXt < 0

RX if Xt + IXt ≥ 0.

The static budget constraint for each period t is given by

Ct = Yt − IXt − IZt ,

where Ct is the consumption in period t. Consumption is calculated as the
residual of the right hand side of the above equation throughout the whole
simulation procedure.
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2.6 Utility/Value Function

At this point we deviate from the approach of Laibson, Repetto and Tobacman
(2007). We extend the instantaneous payoff function by a reference point rref ,
which will be later on estimated in the Method of Simulated Moments pro-
cedure. This utility function can be used for Cumulative Prospect Theory, as
this theory contains such a reference point to describe a particular status quo,
like e.g. past consumption. Hence, a representative household experiences at
period t the instantaneous value/utility

u(Ct, Zt, nt) =


nt ·

(
Ct+γZt−rref

nt

)1−ρ
−1

1−ρ for Ct + γZt − rref ≥ 0

−λL · nt
(
−
(
Ct+γZt−rref

nt

))1−τ

1−τ for Ct + γZt − rref < 0.

The function is twofold, as with a reference point the evaluation of the con-
sumption (inclusive consumption flows from the illiquid asset) can be per-
ceived as a loss. The construction of this utility function is based on the idea
of Kahneman and Tversky (1992), which we will discuss in more detail in the
next section.

For now, let ρ and τ be parameters determining the curvature of the func-
tions, normally ρ, τ ∈ [0; 1], and λL is a weighting parameter if the consump-
tion in relation to the reference point is perceived as negative.10 The reference
point was interpreted by Kahneman and Tversky (1979) as the current wealth
level, when an individual was faced with an uncertain or risky problem. Here
it will be interpreted as a reference consumption level - indicating whether
current consumption is considered as a loss or a gain. This concept is called
Habit Formation or Habit Persistence in the literature, see e.g. Duesenberry
(1949), Pollak (1970) or Constantinides (1990). In these papers the reference
point is defined by the consumption of the previous period or periods. The
idea is that people/families tend to maintain their standard of living and per-
ceive consumption below past consumption as a loss. In contrast to this kind
of determination of the reference point, we will not use any past levels of con-
sumption. The main reason why we proceed this way is that the concept of

10The weight λL refers to a concept labeled Loss Aversion by Kahneman and Tversky
(1979). We will describe this aspect in more detail in the next section.
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Habit Formation would enormously increase computation time in the simula-
tion process. We will describe later on how we set up the reference points over
the life cycle.

Finally, in order to determine the utility of a household over the whole time
horizon, let us define the continuation payoff. However, the continuation pay-
off can only be calculated after the whole dynamic system, which is described
in the next subsection, is solved. That is, after all investment decisions for X
and Z in each period over the life cycle are made. Together with the expec-
tations of the income these decisions determine consumption. Given that the
continuation value in t, denoted Vt, is defined by

Vt =
N−t∑
i=1

δi

(
i−1∏
j=1

wh,l(st+j)

)
[wh,l(st+i) · u(Ct+i, Zt+i, nt+i)

+ (1− wh,l(st+i)) · b(Xt+i, Zt+i)],

where δ is the discount factor and st the survival rate. The functionwh,l (h=high
and l=low) is determined by a probability weighting function π and whether
u plus the corresponding continuation value is bigger or smaller than b, i.e.

wh(st) = π(st) if u(Ct, Zt, nt) + Vt ≥ b(Xt, Zt)

wl(st) = 1− π(1− st) if u(Ct, Zt, nt) + Vt < b(Xt, Zt).

The reason why the function w is constructed that way and how the informa-
tion about u(Ct, Zt, nt) + Vt

<
=
>
b(Xt, Zt) is received will be clarified later on.

At the moment, it is just important to mention that this kind of representation
enables the model to capture Expected Utility Theory11, Rank-Dependent Util-
ity and Cumulative Prospect Theory, at least the version used in this thesis.
Recall, for the latter two theories the model has first to be solved, before the
continuation payoff can be calculated. Actually, the overall value, i.e. over the
whole life cycle, is not used for further examinations in this thesis, but would
be necessary if this model is used for any kind of policy evaluation.

The function b represents a bequest motive of the household and is defined

11Note, if π is the identity function, thenwh = wl = st. This leads to the continuation payoff
for Expected Utility Theory.
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by
b(X,Z) = (R− 1) ·max(0, X + 2/3 · Z) · bB.

As in Laibson, Repetto and Tobacman (2007), liquidated bequeathed wealth is
consumed by heirs as an annuity, therefore the factor of interest (R − 1). The
illiquid asset Z is multiplied by 2/3, because liquidating such assets is often
associated with large transaction costs. The parameter bB is a weighting unit to
reach an appropriate equivalence to the instantaneous utility/value function.
Laibson, Repetto and Tobacman (2007) set bB = u1(ŷ,0,n̂)

1−δ , where u1 is the partial
derivative of the instantaneous utility function u, ŷ is the average labor income
over the life cycle and n̂ is the average effective household size.

2.7 Equilibrium

For the solution of the model, it is assumed that each period t is associated with
a "Self t", the decision maker in period t. These Selves, for t = (20, 21, 22, ...90),12

are the players in an intra-personal game. This approach follows Strotz (1956),
Pollak (1968), Phelps and Pollak (1968), and is also used by Laibson et al.
(2007). At first, each Self t, i.e. player, realizes the state it is in. A state is
defined by a vector of state variables Λt =

{
t, Ȳt +Xt, Zt,mt, vt

}
, where t is the

current period, Ȳt the age-specific household income, Xt and Zt the liquid and
illiquid asset holdings at the beginning of t, ut is the Markov State of the in-
come in period t and vt is the transitory shock in t.13 After the realization of its
state, Self t chooses a strategy by determining IXt and IZt , taking the strategies
of all the other Selves as given. Accordingly, the equilibrium is defined as: all
strategies are optimal given the strategies of the other players. The optimal
strategies for each period and its corresponding decisions are found via nu-
merical Backward Induction - also called Folding Back or Rolling Back in the
literature.14 The objective function of Self t is given by

u(Ct, Zt, nt) + δEtVt,t+1(Λt+1),

12A finite horizon is assumed, as this implies a unique equilibrium - for details see Laibson
(1997).

13Recall, the Markov process represents an AR(1) process - this will be discussed in more
detail later.

14Note, the model described in this section can not be solved analytically, even under Ex-
pected Utility Theory.
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where Vt,t+1(Λt+1) is the t + 1 continuation payoff of Self t. The operator Et
represents the value of expectations according to the risk evaluation system
used in the model, i.e. Expected Utility Theory, Rank-Dependent Utility or
Cumulative Prospect Theory. This equation is maximized by choosing IXt and
IZt , which determine Ct.15 The sequence of continuation payoffs is defined as

Vt,t+1(Λt+1) = wh,l(st+1) [u(Ct+1, Zt+1, nt+1) + δEtVt+1,t+2(Λt+2)]

+ (1− wh,l(st+1))Etb(Λt+2).

Here, the weighting function wh,l is as described above - due to the usage of
Rank-Dependent Utility and Cumulative Prospect Theory. Recall, if the value
of the term in the squared brackets is bigger than the value from the bequest
function b, then wh is used and vice versa. As a final remark, note, that the
solution of the system starts at t = 90, which is the maximum age a household
can reach, and runs backwards.

3 Non-Expected Utility in Decisions under Risk

This section deals with empirical evidence showing violations of Expected
Utility Theory and introduces two Non-Expected Utility Theories, which are
able to capture the empirical findings. These two alternative theories are Rank-
Dependent Utility proposed by Quiggin (1982) and Cumulative Prospect The-
ory by Kahneman and Tversky (1992). The upcoming experiments and choice
theories only consider decisions under risk, i.e. the probabilities of the pos-
sible events are known, in contrast to decisions under uncertainty, when the
probabilities are not known.16 Recall, in the model description in the previous
section the utility/value function and the continuation payoffs were defined
in such a way to permit the usage of Expected Utility Theory, Rank-Dependent
Utility or Cumulative Prospect Theory.

15Consumption was defined by the static budget constraint: Ct = Yt − IXt − IZt , where IXt
and IZt are chosen by Self t and Yt is given by the age-specific income Ȳ , the Markov state ut
and transitory shock vWt , which occur in period t.

16An example for a decision under risk is if the outcome is determined by rolling a die,
whereas betting on horse races is an example for decision under uncertainty.
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3.1 Why Non-Expected Utility Models?

Apart from the standard economic theory for choice under risk, namely Ex-
pected Utility Theory, there are many others, generally called Non-Expected
Utility Models.17 We will concentrate on two of those, namely Rank-Dependent
Utility, also known as Anticipated Utility Theory, and Cumulative Prospect
Theory. The reason why there exist so many alternative theories for choice
under risk18, is that there are empirical observations showing that decision
makers systematically violate basic principles of Expected Utility Theory or
indicating in some parts a different evaluation method.19 In order to give a
general impression, the upcoming part will exhibit some of the experiments
executed by Kahneman and Tversky (1979).

First of all, let us define lotteries or prospects (these two terms are used syn-
onymously) before we turn to the empirical evidence. A lottery (x1; p1|...|xn; pn)

is a gamble that yields with probability p1 outcome x1 and so forth. The prob-
abilities of all the outcomes sum up to 1, i.e.

∑n
i=1 pi = 1. The evaluation of

such a lottery according to Expected Utility Theory is defined by

U(x1; p1|...|xn; pn) =
n∑
i=1

pi · u(xi),

where u(xi) is a function, standardly used in economics, associating an utility
value to an outcome xi and pi is the weight of this utility value, which it con-
tributes to the value of the whole lottery.

One of the most famous experiments, which violates Expected Utility The-
ory, stems from Allais (1953) and is known as the Allais Paradox. A variation of
Allais’s experiment was executed by Kahneman and Tversky (1979) and they
labeled this phenomenon the Certainty Effect. This effect refers to problem
sets, where at least one lottery is involved, which provides an outcome with
probability 1, i.e. with certainty. Consider the following example: People were
asked to choose lottery A or B in Problem 1, and lottery C or D in Problem 2.

17For a list of some of these alternative models see Table C.1 in the Appendix and for a
summary see Starmer (2000).

18There are also many alternative theories for choice under uncertainty, but these are not
under consideration in this thesis.

19See e.g. Allais (1953), Ellsberg (1961), Kahneman and Tversky (1979, 1992) - for an
overview see Yaqub, Haz and Hussain (2009).

11



Problem 1:20 N=72

A: (2500;0.33|2400;0.66|0;0.01) [18]

B: (2400;1) [82*]

The number of participants was N=72, and the percentages of the chosen op-
tion are given in the squared brackets, i.e. in Problem 1 82 percent of the re-
spondents preferred lottery B, namely receiving 2400 with certainty. The aster-
isk indicates that the results are significant at the 0.01 level.

Problem 2: N=72

C: (2500;0.33|0;0.67) [83*]

D: (2400;0.34|0;0.66) [17]

The choices from Problem 1 and 2, namely preferring B over A and C over D,
are not consistent with Expected Utility Theory, at least for the majority of the
respondents. This can be shown by using the evaluation principle of Expected
Utility Theory, as defined above - with u(0) = 0. The preferences of Problem 1
yield the following inequation

u(2400) > 0.33 · u(2500) + 0.66 · u(2400)

or rewritten, if one summarizes equal outcomes

0.34 · u(2400) > 0.33 · u(2500).

But, looking at the preferences given by Problem 2, one gets

0.34 · u(2400) < 0.33 · u(2500).

20Kahneman and Tversky (1979) p.264: "The outcomes refer to Israeli currency. To appreciate
the significance of the amounts involved, note that the median net monthly income for a family is about
3000 Israeli pounds. The respondents were asked to imagine that they were actually faced with the
choice described in the problem, and to indicate the decision they would have made in such a case. The
responses were anonymous, and the instructions specified that there was no ’correct’ answer to such
problems, and that the aim of the study was to find out how people choose among risky prospects."
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These preferences obviously contradict each other, correspondingly the re-
spondents did not obey Expected Utility Theory. The results of the above
example exhibits a pattern, which has become known as the Common Con-
sequence Effect. This effect disagrees with Expected Utility Theory in a similar
way, only from another perspective. It is possible to show this by reformulat-
ing the lotteries A,B,C and D, without changing the actual problem.

Table 1: Common Consequence Effect
probability 0.01 0.33 0.66

A 0 2500 2400
B 2400 2400 2400
C 0 2500 0
D 2400 2400 0

In Table 1 one can see that in column 2 and 3 the lottery pairs A/B and C/D
face the same probability-outcome composition, namely 0 and 2400 for the
probability 0.01, and 2500 and 2400 for the probability 0.33. Thus, the only
difference between Problem 1 and 2 is in column 3, where A and B share a
same consequence (2400 for the probability 0.66), as well as C and D (0 with
a probability of 0.66). According to Expected Utility Theory the common con-
sequence in Problem 1 should not affect the preference between the lotteries
A and B. The same should hold for the lotteries C and D. This implies that an
individual confronted with Problem 1 and 2 should ignore the third column
and concentrate on the first two columns to make her/his decision. As stated,
the problems are identical, if the third column is omitted. Hence, according to
Expected Utility Theory a decision maker should either prefer A over B and C
over D, or B over A and D over C, but the above experiment indicates other-
wise.

Another example, which violates Expected Utility Theory and also demon-
strates the Certainty Effect, is the following problem pair:

Problem 3: N=95

A: (4000;0.80|0;0.20) [20]

B: (3000;1) [80*]

13



Problem 4: N=95

C: (4000;0.20|0;0.80) [65*]

D: (3000;0.25|0;0.75) [35]

Here, we apply the evaluation principle of Expected Utility Theory once again
to see the violation. For Problem 3 one gets

0.8 · u(4000) < u(3000)⇔ u(3000)

u(4000)
>

4

5
.

But, Problem 4 implies the opposite, namely

0.2 · u(4000) > 0.25 · u(3000)⇔ u(3000)

u(4000)
<

4

5
.

An important feature of this problem pair is that lottery C=(4000;0.8|0;0.2) can
be written in terms of lottery A. This yields the lottery (A;0.25|0;0.75), i.e. lot-
tery C is now a chance of 0.25 winning lottery A and 0.75 getting nothing. The
same is possible for D, which leads to D=(B;0.25|0;0.75). The point to see is
that the reformulations of C and D share the same ratio, i.e. a chance of 0.25
winning A or B, respectively. Hence, it should be again a choice between A
and B as in Problem 3. This logic is apparently not obeyed by the test sub-
jects. This effect is called the Common Ratio Effect in the literature and is a di-
rect violation of the Independence Axiom, which is central in Expected Utility
Theory. This axiom states that if B is preferred to A, then any probability mix-
ture (B;p|0;1-p) must be preferred to the corresponding mixture (A;p|0;1-p)21.
These kind of experimental results were also found by others, like Tversky
(1975), Hagen (1979), MacCrimmon and Larsson (1979), and Chew and Waller
(1986).

Another aspect, which Kahneman and Tversky (1979) found, is labeled the
Reflection Effect. This effect deals with the question of how do people act if
the outcomes of lotteries are negative. According to this finding, there is no
direct violation of Expected Utility Theory, but it exhibits a new aspect which
Kahneman and Tversky incorporated in their new theory. For the examination

21The Independence Axiom will be discussed in more detail in Section 5.2.
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of this question they simply reversed the outcomes of the Problems 3 and 4.
Their results are displayed in Table 2.

Table 2: Positive and negative prospects

positive outcomes negative outcomes
Problem 3 (4000;0.8)a ≺ (3000;1) (-4000;0.8) � (-3000;1)

N=95 [20] [80*] [92*] [8]
Problem 4 (4000;0.2) � (3000;0.25) (-4000;0.2) ≺ (-3000;0.25)

N=95 [65*] [35] [42] [58]
a The lotteries in the table are reduced - the outcomes equal to 0 and the corresponding

probabilities are omitted, i.e. lottery A (4000; 0.8|0; 0.2) is now in short (4000;0.8).

The percentage values (in squared brackets) indicate that the pattern of choice
from positive to negative outcomes has changed - is reflected. These find-
ings imply a risk averse attitude in the positive domain, i.e. faced with posi-
tive outcomes, and a risk seeking attitude in the negative domain. Hence, the
utility/value function of a corresponding respondent ought to be convex for
negative values and concave for positive ones. This kind of behavior was also
detected by e.g. Markowitz (1959), Williams (1966), and Fishburn and Kochen-
berger (1979).

As stated above, there are many other experiments, which exhibit viola-
tions of Expected Utility Theory. However, this section is intended to give
just a small impression about how such experiments were conducted to iden-
tify deviations from Expected Utility Theory. In the next section, we will
show some further empirical examples, which are responsible for the particu-
lar development of Prospect Theory, Rank-Dependent Utility and Cumulative
Prospect Theory.

3.2 (Cumulative) Prospect Theory and Rank-Dependent Util-

ity

Based on their experiments Kahneman and Tversky (1979) derived an alterna-
tive to Expected Utility Theory, called Prospect Theory. This new theory is able
to capture most of their empirical findings. The innovations are a new kind of
value function and a weighting function for the probabilities.

The evaluation of a lottery (x1; p1|...|xn; pn) according to Prospect Theory,
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in order to calculate the value V, is defined as

V = π(p1) · v(x1) + ...+ π(pn) · v(xn),

where v is a value function and π is a probability weighting function. The
value function has properties like the one displayed in Figure 1.

Figure 1: Hypothetical Value Function

gainslosses

v(x)

The value function is defined for the positive as well as the negative domain,
in order to cope with positive and negative outcomes in a lottery. These are
interpreted as gains or losses relative to a predetermined reference point, like
e.g. previous (i.e. before a decision maker is faced with a decision problem)
asset holdings, wealth or consumption. For the introduction of a reference
point Kahneman and Tversky (1979) give an intuitive justification22 as well as

22They reason that "an object at a given temperature may be experienced as hot or cold to the touch
depending on the temperature to which one has adapted. The same principle applies to non-sensory
attributes such as health, prestige, and wealth. The same level of wealth, for example, may imply abject
poverty for one person and great riches for another - depending on their current assets." - Kahneman
and Tversky (1979), p. 277.
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empirical evidence. The following two problems were given to two different
groups.

Problem 5: In addition to whatever you own, you have been given 1000.
You are now asked to choose between (N=70):

A: (1000;0.50|0;0.50) [16]

B: (500;1) [84*]

Problem 6: In addition to whatever you own, you have been given 2000.
You are now asked to choose between (N=68):

C: (-1000;0.50|0;0.50) [69*]

D: (-500;1) [31]

In the above example one can observe again the Reflection Effect. Note, if
regarded in final states, i.e. implementing the "pre-payments" into the lotteries,
then the problems are identical

A = (2000; 0.50|1000; 0.50) = C and B = (1500; 1) = D.

Due to this experiment Kahneman and Tversky (1979) conclude that the car-
riers of value or utility are changes in wealth, rather than final asset holdings
that include current wealth. There are also some other empirical examples
in the literature, indicating that individuals tend to evaluate from a reference
point, e.g. Kahneman, Knetsch and Thaler (1990).

Furthermore, the function in Figure 1 is concave in the positive and con-
vex in the negative domain. This feature stems from experiments like the one
shown in Table 2 in the previous section - indicating that individuals are risk
averse if faced with positive outcomes and risk seeking if faced with negative
ones.

Another property of the function in Figure 1, is that it is steeper in the neg-
ative than in the positive domain. This aspect, called Loss Aversion, is often
phrased in the literature as "losses loom larger than gains". The observation
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stems from the fact that most individuals dislike symmetric bets, i.e. lotteries
of the form (−x; 0.5|x; 0.5).23 Kahneman and Tversky (1979) also claim that the
aversiveness of symmetric fair bets increases with the size of stake. Suppose
x > y ≥ 0, then according to their proposition (−y; 0.5|y; 0.5) � (−x; 0.5|x; 0.5).
This implies - using Prospect Theory -

π(0.5) · v(y) + π(0.5) · v(−y) > π(0.5) · v(x) + π(0.5) · v(−x)

or

v(−y)− v(−x) > v(x)− v(y).

If y is set equal to 0, then one gets −v(−x) > v(x). Now, let y converge to x ,
so that v(x)− v(y) and v(−y)− v(−x) approximately represent the slope in the
corresponding intervals24, i.e. v′(−x) > v′(x) - assuming that the derivative v′

of v exists.
According to the finding that the carriers of value or utility are gains and

losses, and the argument of Loss Aversion, Kahneman and Tversky (1992) de-
fined the value function as

v(x) =

{
xρ, x ≥ 0

−λL(−x)τ , x < 0,

where λL is a coefficient of Loss Aversion. The parameters ρ and τ can be
interpreted as coefficients of risk aversion and risk seeking, respectively, and
represent, if ρ, τ ∈ [0, 1], a psychological principle known as Diminishing Sen-
sitivity. This principle declares that people are more sensitive to changes close
to their reference point than to changes more far away. For example, the differ-
ence between €100 and €200 is perceived as greater than the difference between
€1 100 and €1 200, although the bigger gains are in general preferred.

One final remark should be made to conclude the introduction of the value
23Dislike means that e.g. if people are asked to choose between (−x; 0.5|x; 0.5) and not

participating in any lottery, the majority decides not to play, although both options have the
same expected value. In contrast to the aspects discussed before Expected Utility Theory does
not violate this one.

24The derivation is as follows: v(−x)−v(−y)−x+y > v(x)−v(y)
x−y the denominator is on both sides of

the inequation equal in magnitude, i.e. one can conclude that v′(−x) > v′(x) if y converges to
x.
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function of Prospect Theory. The convex and concave curvature of the value
function is not necessarily required to impose risk seeking and risk averse be-
havior, as these attitudes can also be captured by the probability weighting
function. But, Kahneman and Tversky (1979) justify their approach by the fact
that other independent studies from various fields, like Barnes and Reinmuth
(1976), Grayson (1960), Grether and Plott (1979), Halter and Dean (1971), and
Swalm (1966), came up with similar results, i.e. most utility functions were
concave for gains and convex for losses, and also exhibited steeper slopes for
the negative domain.

Before we turn to the probability weighting function, mentioned as the sec-
ond innovation of Prospect Theory above, we will introduce two new theo-
ries for choice under risk, namely Rank-Dependent Utility and Cumulative
Prospect Theory. There are two reasons for this: First, in their 1979 paper Kah-
neman and Tversky solely sketched some properties of a hypothetical weight-
ing function and did not define the function over the whole probability inter-
val, especially near the endpoints 0 and 1. Second, the features Kahneman and
Tversky (1979) outlined for a weighting function, mainly that π(p) 6= p and
p + q = 1 but π(p) + π(q) < 1, gave rise to the critique of violations of domi-
nance.25 Due to this critique a new way of handling the probability weighting
function was brought forward. The first of these new theories was proposed
by Quiggin (1982)26 and is called Rank-Dependent Utility (or Anticipated Util-
ity Theory as in the original paper).

According to this theory, the evaluation of a lottery (x1; p1|...|xn; pn) is exe-
cuted in the following way. First, all the outcomes of the lottery are ranked in
an ascending (or descending)27 manner, so that x1 < x2 < ... < xn

28. Then, the
value V of the lottery is calculated by29

V =
n∑
i=1

hi(p) · u(xi),

25Violations of stochastic dominance for simple lotteries - see Appendix A for an example.
26Quiggin (1982) for decisions under risk and Schmeidler (1989) for decisions under uncer-

tainty.
27It does not matter in which order the outcomes are ranked, the principle stays the same,

it is only reversed.
28If there are two identical outcomes, then the probabilities of these are combined to one

outcome/probability pair.
29In the equation p = (p1, p2, ..., pn).

19



where u is a utility function as used in Expected Utility Theory. Here, the
decision weights hi(p), satisfying

∑n
i=1 hi(p) = 1, depend on all p′s and are

defined as

hi(p) = π

(
n∑
j=i

pj

)
− π

(
n∑

j=i+1

pj

)
,

where π, with π(1) = 1 and π(0) = 0, is a probability weighting function as
in Prospect Theory, which will be defined in more detail below. The above
equation exhibits the difference between "the chance of winning an outcome at
least as good as xi" and "the chance of winning an outcome strictly better than xi".
To illustrate the evaluation procedure consider the following game.30 You roll
a die once and observe the result x = 1, ..., 6. If x is even, you receive $ x and
if it is odd you pay $ x. The outcomes are equiprobable, i.e. each is obtained
with probability 1/6. Ranking the outcomes in an ascending fashion yields the
lottery (−5; 1/6|−3; 1/6|−1; 1/6|2; 1/6|4; 1/6|6; 1/6). The value V of this lottery
is given by

V = [π(1)− π(5/6)] · u(−5)

+ [π(5/6)− π(4/6)] · u(−3)

+ [π(4/6)− π(3/6)] · u(−1)

+ [π(3/6)− π(2/6)] · u(2)

+ [π(2/6)− π(1/6)] · u(4)

+ [π(1/6)− π(0)] · u(6).

For example, the last line of the above equation describes the weighted cumu-
lative chance of receiving an outcome equal to or better than $ 6. That is, a
weighted probability of 1/6 receiving an outcome at least as good as $ 6, mi-
nus the weighted chance of winning an outcome strictly better than $ 6, which
is 0 in the given lottery.

The second theory we want to introduce, is Cumulative Prospect Theory
put forward by Kahneman and Tversky (1992), which is in principle an ex-

30This example is from Kahneman and Tversky (1992) - only the evaluation of the lottery is
a little different, as they do not apply Rank-Dependent Utility.
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tension of the original Prospect Theory by the cumulative functional used by
Quiggin (1982). The main difference between Rank-Dependent Utility and Cu-
mulative Prospect Theory is that the latter uses gains and losses as the carrier
of values, instead of final terms. Hence, the value function is defined as in
Prospect Theory with a predetermined reference point, which is responsible
for outcomes being considered as positive or negative. The evaluation proce-
dure is, at the beginning similar to Rank-Dependent Utility. That means all the
outcomes are first ranked in an ascending (or descending) order. In the next
step, the outcomes are divided in negative and positive ones, corresponding
to the reference point, and evaluated separately. This leads to the fact that the
calculation of the overall value V of a lottery (x1; p1|...|xn; pn) is twofold31, in
the sense of

V = V + + V −.

The outcomes (x1, ..., xm) are perceived as losses and (xm+1, ..., xn) as gains
according to the reference point.

V − =
m∑
i=1

h−i (p)v(xi), V + =
n∑

i=m+1

h+i (p)v(xi)

Hence, V + summarizes the value of all positive outcomes and V − the value
of all negative outcomes. The cumulative weightings of the positive outcomes
are calculated according to the intuition "the chance of winning an outcome at
least as good as xi" minus "the chance of winning an outcome strictly better than
xi", whereas for the negative outcomes the prevailing intuition is "the risk of
receiving an outcome at least as bad as xi" minus "the risk of receiving an outcome
strictly worse than xi". Furthermore, Kahneman and Tversky (1992) use dif-
ferent probability weighting functions for the positive and negative parts of
the lottery, namely π+ and π−. This leads to the following definition of the
cumulative weighting functions

h+i (p) = π+

(
n∑
j=i

pj

)
− π+

(
n∑

j=i+1

pj

)
,∀i > m

31Twofold only if the lottery contains positive and negative outcomes according to the ref-
erence point.
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and

h−i (p) = π−
(

i∑
j=1

pj

)
− π−

(
i−1∑
j=1

pj

)
,∀i ≤ m.

Although, this representation implies that the sum of all cumulative weights
can be smaller or greater than 1,32 it does not exhibit violations of stochastic
dominance as Prospect Theory.

Kahneman and Tversky (1992) set up an experiment to receive detailed
information about the value and the weighting functions. The general exper-
iment setting was that the participants were confronted with a two-outcome
lottery (e.g. (x;0.75|0;0.25) - a 75 percent chance of winning $ x and a 25 per-
cent chance of zero) and seven sure outcomes, logarithmically spaced between
the two outcomes of the lottery, i.e. $ x and 0. The subjects were asked to reveal
their preferences between the lottery and each of the sure outcomes. In order
to obtain more detailed information about the certainty equivalent33 a second
round was executed. In this round, the same question was posted, with the
difference that the sure outcomes were now linearly spaced between a value
25 percent higher than the lowest amount accepted in the first round and a
value 25 percent lower than the highest amount rejected. Then, the certainty
equivalent was obtained by the middle of the lowest value accepted and the
highest value rejected of the second round. The interpretation of the results
was based on the principle that people who revealed a certainty equivalent,
which was close to the expected value of the lottery were risk neutral. Risk
neutrality means that the value function and the probability weighting func-
tion are the identity functions. On the other hand, if the certainty equivalent
was smaller (bigger) than the expected value an individual was assumed to be
risk averse (risk seeking). According to this approach, the fourfold pattern of
risk attitudes was obtained - see Table 3.
The fourfold pattern describes that people seem to be risk averse if it comes
to losses with low probabilities or gains with high probabilities, and to risk
seeking behavior if it comes to losses with high probabilities or gains with low
probabilities. The lotteries and their certainty equivalents are taken from the

32The sum can only be unequal 1, if there are positive and negative outcomes in the lottery.
33The certainty equivalent is the sure payoff, when the subject is indifferent between the

risky lottery and this sure payoff.
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Table 3: The Fourfold Pattern of Risk Attitudesa

Gain Loss

Low probability C(100;0.05)=14
Risk Seeking

C(-100;0.05)=-8
Risk Aversion

High probability C(100;0.95)=78
Risk Aversion

C(-100;0.95)=-84
Risk Seeking

a The source of this table is Tversky and Wakker (1995).

experiment results of Kahneman and Tversky (1992). For illustration, consider
the example (100;0.05)=14 for a gain with low probability. The certainty equiv-
alent of 14 stems from the experiment and is the median of the certainty equiv-
alents of all participants. The expected value of the lottery (100;0.05|0;0.95) is
0.05 · 100 + 0 · 0.95=5. Apparently, the certainty equivalent is bigger than the
expected value. Thus, the subjects of the experiment exhibited a risk seek-
ing attitude for the combination of gain and low probability. The fourfold
pattern of risk was also detected in various other studies, like e.g. Fishburn
and Kochenberger (1979), Kahneman and Tversky (1979), Hershey and Schoe-
maker (1980), Payne, Laughhunn and Crum (1981), Cohen, Jaffray and Said
(1987), and Wehrung (1989).

Figure 2 shows some probability weighting functions featuring the four-
fold pattern. One property of the functions, which has not been mentioned yet
is that a change of moderate probabilities, like e.g. from 0.35 to 0.40, has less
impact than a change at the endpoints, like e.g. from 0.95 to 1.00. This aspect
is simply visible by the steep turns of the functions at the endpoints. In gen-
eral, the weighting functions have an inverted S-shape and cross the 45-degree
line at probabilities of around 0.3 to 0.4. This implies that low probabilities are
overweighted and high probabilities are underweighted.

The functions in Figure 2 stem from different studies/estimates:

• π(p) = pϕ

(pϕ+(1−p)ϕ)(1/ϕ) from Kahneman and Tversky (1992) with estimates
of ϕ = 0.61 for gains and ϕ = 0.69 for losses (dashed curves: nor-
mal=gains and bold=losses)

• π(p) = δppϕ

(δppϕ+(1−p)ϕ) Fox and Tversky (1995) with estimates for ϕ from 0.69
to 0.72 and for δp from 0.76 to 0.77 (dotted curve)
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Figure 2: Probability Weighting Functions
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• π(p) = exp(−β(−ln(p))α) Prelec (1998), with a suggestion of α = 0.65 and
β = 1 (continuous curve)

The functions have the property that, for particular parameters, they reduce to
the function π(p) = p. This property will be used in the estimation procedure
later on. In order to show this, consider the weighting function from Prelec
(1998), with β = 1 and α = 1,34 i.e.

π(p) = exp(−β(−ln(p))α) = exp(−(−ln(p))) = p.

The above equation shows that, with this parameter setting, the weighting
function reduces to the identity function, i.e. as used in Expected Utility The-
ory. The only drawback of Prelec’s proposal is that the function is not defined
for p = 0. Thus, one has to determine π(0) = 0.

34Figure B.1 in the Appendix shows Prelec’s probability weighting function for different α
- the parameter α is restricted to the interval [0;1].
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In the remaining part we will deviate in some respects from the defini-
tion of Kahneman and Tversky (1992). In the sense that the evaluation pro-
cedure under Cumulative Prospect Theory will be the same as under Rank-
Dependent Utility. This implies that gains and losses are treated in the same
way concerning the probability weighting function, i.e. there will be only one
function for both domains. Thus, the value of a lottery (x1; p1|...|xn; pn) under
"quasi" Cumulative Prospect Theory will be determined by

V =
n∑
i=1

hi(p) · v(xi),

where

hi(p) = π

(
n∑
j=i

pj

)
− π

(
n∑

j=i+1

pj

)
,

with e.g.

π(p) = exp(−(−ln(p))α) and v(x̃) =

{
(x̃)ρ, x̃ = x− rref ≥ 0

−λL(−x̃)τ , x̃ = x− rref < 0.

This kind of representation will be used within the Method of Simulated Mo-
ments approach, as it permits to compare Expected Utility, Rank-Dependent
Utility and Cumulative Prospect Theory in one estimation run. The idea is to
estimate the crucial parameters in the setting, which are responsible for the
differences between these theories. This implies the following cases for the
estimation.

• If α and rref are significantly different from 1 and 0, respectively, then
Cumulative Prospect Theory35 fits the data best.

• If α is significantly different from 1 and rref is not significantly different
from 0, then Rank-Dependent Utility is the preferred theory by the data.

• If α and rref are not significantly different from 1 and 0, respectively, then
the data suggests that Expected Utility Theory is the prevailing theory.

35As the deviations from Cumulative Prospect Theory of Kahneman and Tversky (1992) do
not violate any basic principles of this theory, we believe that the conclusions of the estimation
can be drawn for the original version as well.
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4 Dynamic Choice in the Model

In the model described in Section 2 a financial independent household exists
from the age of 20 to the age of 90. This implies there are 71 periods in which
the household has to decide how much investments it should put in liquid
and illiquid assets each year, thereby determining the consumption each pe-
riod. But, before a household can make its investment decisions, the risk of
income, as there are transitory shocks and persistent shocks each year, has to
resolve. Furthermore, there is also the risk of surviving the current period,
which also influences the savings decisions.

In the model of Section 2, the dynamic choice problem over the life cycle is
treated as an intra-personal game, i.e. a household at each period t is a player,
denoted "Self t", in this game. Each Self t is in a particular state, which is deter-
mined by the decisions of the players and the resolution of risk in the previous
periods. At the beginning of period t, the persistent and the transitory shocks
are realized, thereby the income of the current year, i.e. age-specific income
plus persistent shock plus transitory shock, is determined. Thus, Self t’s state
is defined by the asset holdings, the income and age-specific household size.
After the perception of its situation the player has to make its investment de-
cisions and is finally faced with the risk of survival of the current period. For
optimal behavior in the context of the whole life cycle each player has also to
take into account the decisions of all the subsequent players.

In order to illustrate the dynamic choice problem and how it is solved, con-
sider the following example, which is very reduced in comparison to the prob-
lem arising in the model of Section 2, but still exhibits the same pattern. In the
example, which is displayed in form of a decision tree in Figure 3, a house-
hold can live two periods, with a probability of 0.9 surviving the first year.
The household consists of one person and the age-specific incomes are equal
to €34 500 in the first and €35 000 in the second period. At the beginning of the
second period, a transitory shock arises either reducing the income by €2 000
or increasing income by €2 000, each with probability 0.5. In contrast to the
model, persistent shocks are omitted.

For the sake of simplicity the household has in each period only two op-
tions to choose, either saving an amount of €10 000 in liquid assets X (moving
downwards in the tree) or saving nothing and consume all income (moving
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upwards in the tree). The rectangles in Figure 3 denote a node where a decision
is made by the household, i.e. it chooses up or down. The possible decisions
are represented by the small letters a to j. The circles describe nodes where na-
ture is moving, i.e. at these points risk is incorporated and the corresponding
probabilities of each event are given in the middle of the branches. The risk of
survival is displayed at the nodes 1 and 2, with a 0.9 chance of surviving and
a hazard of 0.1 to die. The transitory shocks occur at the nodes 3 and 4, each
with probability 0.5. This example corresponds to an intra-personal game with
two players. Self 2 - the player in the second period - has to make its decision
in one of the four nodes II , III , IV or V . It depends on the decision of Self 1
- the player in period 1 - and how nature was moving at the chance nodes 1-4,
in which of these four nodes Self 2 will end up and has to make its decision.
Self 1 decides at node I and has to take into account the risky components at
the nodes 1 to 4 and the decisions Self 2 would make when it is in the various
possible states.

Finally, assume that the last thing happening in period 1 is the resolution
of the risk of survival and the first thing in period 2, if the household lives in
the second year, is the move of nature resolving the transitory shock.

For the evaluation of the tree let u(C) = C0.6 be the utility function for con-
sumption, and b(B) = B0.5 be the bequest function. The probability function
is π(p) = exp(−(−ln(p))0.5), with π(0) = 0. For this example discounting of
the second period outcomes is omitted. Furthermore, assume that a hypothet-
ical reference point is equal to 0, which implies that the evaluation procedure
of Rank-Dependent Utility and Cumulative Prospect Theory is identical, as
there are only gains and no losses. As already stated above such a game can
be solved via Folding Back, i.e. the evaluation starts at the right side of the
decision tree. Thus, start with the choice problems of Self 2 at the right upper
rectangle in the tree, namely decision node II . At this node the situation of
Self 2 is defined by having an income of Y1 = €37 000 (€35 000 from the age-
specific income plus €2 000 from a positive transitory shock) and liquid assets
of X1 = €0 - this information is given above and below each decision node.
Player 2 has at this point two options, either choosing the upper branch c or
the lower branch d. The value V of such a branch is simply given by the sum
of the utility from consumption and bequest. Hence, the value of branch c at
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Figure 3: Two Period Example
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node II , V c
II , and of branch d, V d

II , are given by

V c
II = u(37000) + b(0) = 370000.6 + 0 = 550.71

V d
II = u(27000) + b(10000) = 270000.6 + 100000.5 = 555.85.

These values state that, if Self 2 is at decision node II , it will decide to choose
branch d, as V d

II > V c
II , i.e. at this point the player would spend €27 000 of its

disposable money for consumption and save €10 000 for bequest. The same
is done for the rest of the possible decision nodes of Self 2. In summary the
possible decisions of Self 2 are

• II : V c
II = 550.71 < 555.85 = V d

II ⇒ player 2 chooses d

• III : V e
III = 514.17 > 514.03 = V f

III ⇒ player 2 chooses e

• IV : V g
IV = 635.71 < 650.71 = V h

II ⇒ player 2 chooses h
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• V : V i
V = 602.67 < 614.17 = V j

V ⇒ player 2 chooses j.

Thus, after the decisions of Self 2 at each possible node are known, the deci-
sion of Self 1 has to be considered. The problem at this point is that player 1
has to take into account the risk stemming from the transitory shock and the
hazard of death, i.e. it has to deal with a lottery. In the approach applied here,
the risky components are evaluated separately, i.e. first the risky lottery oc-
curring from the income shock and then the risky lottery arising from the risk
of survival are considered. This approach is called the Certainty Equivalent
Mechanism in the literature, which is implicitly used in the Folding Back pro-
cedure applied here. Later on we will describe another way, usually applied
in economics, of dealing with more than one risky component appearing in a
subsequent fashion.

Now, consider chance node 3, on the time line this is the very beginning
of period 2, when nature is moving and realizes a positive or a negative in-
come shock, each with a probability of 0.5. It is known from the examina-
tion of the decision behavior of Self 2, that a positive income shock leading to
node II generates the utility of V d

II = 555.85, as Self 2 would choose branch
d at this node. A negative shock, which leads to the decision node III , pro-
vides the utility V e

III = 514.17. Thus, the lottery at chance node 3 is given by
(555.85; 0.5|514.17; 0.5), i.e. a chance of 0.5 ending up with an utility of either
555.85 or 514.17. This lottery is now evaluated according to Rank-Dependent
Utility. First of all, as described in the previous section, the outcomes are
ranked in an ascending fashion - that is 514.17 < 555.85. The value of this
lottery, denoted by v3, is defined by36

v3 = [(π(1)− π(0.5)] · 514.17

+ [(π(0.5)− π(0)] · 555.85

= [exp(−(−ln(1)0.5)− exp(−(−ln(0.5)0.5)] · 514.17

+ [exp(−(−ln(0.5)0.5)− 0] · 555.85

= 532.3.

The same procedure is applied to the lottery occurring at chance node 4. This

36Recall, the weighting function from Prelec (1998), namely π(p) = exp(−β(−ln(p))α), is
not defined for p = 0, therefore one has to assume that π(0) = 0.
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yields v4 = 630.06. Now, let us proceed to the nodes 1 and 2, which represent
the risk of survival. In order to arrive at chance node 1 Self 1 has to choose
branch a. This implies that all the income of period 1 is used for consumption,
i.e. C0 = €34 500. The lottery arising at node 1 is surviving period 1 with
probability 0.9 and yielding the value of the lottery occurring at chance node
3, v3 = 532.3, or not surviving and ending up with a bequest of B0 = €0, as
nothing was saved by Self 1, with probability 0.1. This lottery (0; 0.1|532.3; 0.9)

is again evaluated by Rank-Dependent Utility and results in the value v1 =

384.76. Note, that the value v3 is already expressed in terms of utility, but B0 =

€0 has still to be transformed by the bequest function, before the outcomes
are ranked. This aspect is important, because it is necessary to express all
outcomes in the same terms before the ranking is executed. Hence, the lottery
at node 2 is correctly defined by (100; 0.1|630.06; 0.9) and has the value v2 =

483.14.
Now, there is only the decision node I left and Self 1 has to choose the

branch (either a or b), which provides the highest utility to it over the whole
time horizon. Branch a leads to the value v1 and to the consumption of C0 =

€34 500, i.e. the value of this branch is

Va = u(C0) + v1 = 345000.6 + 384.76 = 912.83.

On the other side, branch b provides the value v2 and the consumption of C0 =

€24 500, i.e.
Vb = u(C0) + v2 = 245000.6 + 483.14 = 913.17.

As the value of branch b is bigger than the value of branch a, i.e. Va < Vb, Self
1 will choose b.

This course of action, namely Folding Back, can also be executed with Ex-
pected Utility Theory or Cumulative Prospect Theory. Though, for the latter,
it is necessary to determine a reference point and define the utility function ac-
cording to this point, like shown in Section 3. It would also be possible to use a
reference point for the bequest, but we will stick here to the interpretation that
the reference point is related to a particular level of consumption.

As mentioned above, there is also another way to solve dynamic choice
problems, like the one in the example above. This approach is usually applied
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in economics and uses the Reduction of Compound Lotteries Axiom, which is
an axiom of Expected Utility Theory.

Reduction of Compound Lotteries Axiom: Let X = (x1; p|x2; (1 − p))

and Y = (y1; q|y2; (1 − q)) be simple one-stage lotteries, and A =

(X; r|Y ; (1 − r)) a compound lottery, leading with probability r to
lottery X and with probability 1 − r to Y . Then, the Reduction of
Compound Lotteries axiom states that

A ∼ (x1; p · r|x2; (1− p) · r|y1; q · (1− r)|y2; (1− q) · (1− r)).

Hence, the axiom permits that probabilities of different, but connected, stages
can be multiplied. The main implication is that a decision maker is indiffer-
ent according to the timing of the resolution of risk. This also includes that an
individual is indifferent if nature is resolving the existing risk in one move or
more. The application of the axiom results in lotteries with only one stage, i.e.
nature is moving only once.

The intuitive assumption behind this axiom is that an individual has no
other economic activities or decisions (including consumption/savings deci-
sions) to undertake in the meantime (i.e. between the resolution of risk of
different stages), so that it has no incentive to prefer single-stage lotteries over
compound lotteries because of impatience and/or planning benefits - Machina
(1989, pp. 1625-26).

There are also others, like Kreps and Porteus (1975), arguing that there is
no reason to make this reduction assumption, if a sufficiently large time span
is between different stages of a dynamic problem. This is the case in the model
described in Section 2, as between two decisions passes a whole year.

The application of the Reduction of Compound Lotteries Axiom implies,
that the decisions made along a decision tree are summarized in a strategy,
which contains a choice for all possibly occurring decision nodes. For example
in Figure 3 a decision maker can choose a at point I , if it survives the first pe-
riod and a positive shock occurs, then it could take branch c at node II . In the
case of survival and a negative shock it could choose e. These choices a,c, and e
are called a strategy - in the following denoted by <ace>. A strategy contains a
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decision for each possible outcome of the risky elements in the dynamic prob-
lem. In the example of Figure 3 a decision maker can choose between 8 such
strategies and will choose the one generating the highest utility according to
its preferences. The strategies and the corresponding lotteries are displayed in
Figure 4.

At the chance nodes 1-8 the lotteries belonging to the various strategies
are exhibited, e.g. for strategy <ace> the three possible events are:

1. surviving the first period (probability of 0.9) and realization of a positive
shock (probability of 0.5), i.e. a 0.9·0.5=0.45 chance37 to end up with a
consumption of C0 = €34 500 in the first period, C1 = €37 000 in the
second period and a bequest of B1 = €0 after death in the second period,

2. surviving the first period and realization of a negative shock, i.e. a chance
of 0.45 for C0 = €34 500, C1 = €33 000 and B1 = €0,

3. not surviving the first period with a probability of 0.1 yielding a con-
sumption of C0 = €34 500 in the first period and a bequest of B0 = €0
after death in the first period.

Now, these strategies are evaluated by Rank-Dependent Utility. Note, that at
first the outcomes of each branch have to be transformed by the correspond-
ing utility/bequest function and then the sum of these utilities is used for the
ranking, i.e.

u(C1
0) + u(C1

1) + b(B1
0)

<
=
>
u(C2

0) + u(C2
1) + b(B2

0)
<
=
>
u(C3

0) + b(B3
0)

has to be clarified before starting the evaluation. The value of strategy <ace>,
denoted by Vace, is given by

Vace = [1− π(0.9)] · u(C3
0)

+ [π(0.9)− π(0.45)] · (u(C2
0) + u(C2

1) + b(B2
1))

+ [π(0.45)− π(0)] · (u(C1
0) + u(C1

1) + b(B1
1))

= 914.67.

37The calculation of the event "surviving first period and positive income shock" is possible
because of the Reduction of Compound Lotteries Axiom.
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Figure 4: Decision Tree in Normal Form
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The values of the remaining strategies are

Vacf = 914.63

Vade = 916.78

Vadf = 916.73

Vbgi = 906.89

Vbgj = 910.50

Vbhi = 913.03

Vbhj = 916.64.

Comparing the results, a decision maker would choose strategy <ade>, if the
dynamic problem is evaluated according to the procedure suggested by the
Reduction of Compound Lotteries Axiom. However, the choice of this strat-
egy differs from the choice obtained by the Backward Induction routine. As
the results are not identical, the question arises, which procedure is the one
to apply if preferences according to Rank Dependent Utility or Cumulative
Prospect Theory prevail.

First, in order to answer this question, there is empirical evidence indicat-
ing that individuals do not obey the Reduction of Compound Lotteries Axiom,
see e.g. Ronen (1971), Snowball and Brown (1979), Kahneman and Tversky
(1979, 1981), Holler (1983) or Starmer and Sugden (1991). In an example from
Kahneman and Tversky (1979) the participants were faced with the following
problem.

Problem 7: Consider the following two-stage game. In the first stage, there
is a probability of 0.75 to end the game without winning anything, and a
probability of 0.25 to move on to the second stage. If you reach the second
stage you have a choice between:

C’: (4000;0.80|0;0.20) [22]

D’: (3000;1) [78*]

Your choice must be made before the game starts, i.e. before the outcome
of the first stage is known.
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Again, the values in the squared brackets give the percentages of each option
chosen by 141 participants. The graphical representation of Problem 7 in ex-
tensive form, i.e. without the usage of the Reduction of Compound Lotteries
Axiom, is displayed in Figure 5. The decision tree in normal form, i.e. the
sequential lottery was first reduced to a one-stage lottery by applying the Re-
duction of Compound Lotteries Axiom, is shown in Figure 6. Note, that the
decision occurring in Figure 6 is the same as in Problem 4, where the major-
ity preferred the lottery (4000; 0.2|0; 0.8). Although, the Problems 4 and 7 are
regarded as equivalent by the Reduction of Compound Lotteries Axiom, the
choices in the two problem sets differ. Hence, it can be concluded that people
do not obey this axiom, at least most of the people in the experiment of Kah-
neman and Tversky (1979). 38

Furthermore, a central aspect is that strategies found with the Reduc-

Figure 5: Problem 7 in sequential form

0.25

30001

40000.8

00.2

0
0.75

tion of Compound Lotteries Axiom, if Rank-Dependent Utility or Cumulative
Prospect Theory are used for evaluation, can be dynamically inconsistent. In
this thesis Dynamic Consistency is considered as the feature that the choice
at a any decision node, when arriving at this node, is equal to the planned
choice made at the beginning of the dynamic problem - see also e.g. Machina
(1989). Another definition of Dynamic Consistency, like in Epstein (1992) or
Sarin and Wakker (1998), is equality in choice in both representations of a dy-
namic problem, i.e. extensive (Figure 3) and normal form (Figure 4). This

38Kahneman and Tversky state that this is a possible conclusion, but there could also be
another unknown effect being responsible for the violation of the principles of Expected Utility
Theory.
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Figure 6: Problem 7 with Reduction Axiom
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40000.2
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definition actually implies that the Reduction of Compound Lotteries Axiom
holds and therefore is rather inappropriate for the approach put forward in
this thesis.

The possible Dynamic Inconsistency arising with Rank-Dependent Utility
preferences39 and the application of the Reduction of Compound Lotteries Ax-
iom can be observed in the problem given in Figure 7, which stems from Jaf-
fray and Nielsen (2006). For the example the probability weighting function
is again given by π(p) = exp(−(−ln(p))0.5) and the values at the leaves of the
decision tree are already expressed in terms of utility.

There are - from the root (rectangle I) of the decision tree - three strate-
gies <ac>, <ad> and <b>, which evaluated by Rank-Dependent Utility with
the Reduction of Compound Lotteries Axiom lead to

Vac = (1− π(0.5)) · 5 + (π(0.5)− π(0.25)) · 10 + π(0.25) · 20 = 10.26

Vad = (1− π(0.75)) · 2 + (π(0.75)− π(0.25)) · 5 + π(0.25) · 30 = 11.46

Vb = (1− π(0.73)) · 2 + (π(0.73)− π(0.25)) · 5 + π(0.25) · 30 = 11.41.

Hence, a decision maker, using this evaluation approach, would choose strat-
egy <ad>. However, the choice of this strategy implies that if the decision
maker happens to find itself, after the move of nature, at the decision node II ,

39Again, the same holds for Cumulative Prospect Theory - it just has to be assumed, that
the utility values were obtained after the transformation with the reference point.
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Figure 7: Example from Jaffray and Nielsen (2006)
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it has no longer an incentive to obey the initial strategy of choosing d. This can
be seen by evaluating the lotteries at chance nodes 3 and 4, namely

V3 = (1− π(0.5)) ∗ 10 + π(0.5) ∗ 20 = 14.35

V4 = (1− π(0.5)) ∗ 2 + π(0.5) ∗ 30 = 14.18.

Lottery 3 yields a bigger value as lottery 4, thus a decision maker would select
branch c. This obviously differs from the strategy chosen at the very beginning
of the decision tree. This kind of behavior pattern is dynamically inconsistent
and can occur if Rank-Dependent Utility is used in combination with the Re-
duction of Compound Lotteries Axiom in dynamic problems with more than
one stage requiring a decision.

A further problem arising if these preferences prevail and the Reduction of
Compound Lotteries is used, is that past or irrelevant consequences do mat-
ter in the evaluation procedure. The following example illustrating this aspect
stems also from Jaffray and Nielsen (2006) - see Figure 8.

From the examination of Figure 7 it is known that a decision maker with
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Figure 8: Violation of Consequentialism
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Rank-Dependent Utility preferences applying the Reduction of Compound
Lotteries axiom would choose strategy <ad>, as 10.26 = Vac < Vad = 11.46

- for now the lower subtree is omitted. Figure 8 exhibits a similar dynamic
problem with the only difference that the outcome 5 is replaced by the out-
come 9.5. The evaluation of the strategies in this problem, with V ′ac and V ′ad
denoting the values of the strategies in the example of Figure 8, yields

V ′ac = (1− π(0.5)) · 9.5 + (π(0.5)− π(0.25)) · 10 + π(0.25) · 20 = 12.80

V ′ad = (1− π(0.75)) · 2 + (π(0.75)− π(0.25)) · 9.5 + π(0.25) · 30 = 12.70.

In this example a decision maker would choose strategy <ac>. This implies
that in the evaluation procedure with the Reduction of Compound Lotteries
Axiom the outcome change from 5 to 9.5 in the first stage changes the decision
in the second stage, namely from d to c. This aspect violates the principle that
irrelevant consequences should not influence the decision process. In the liter-
ature this principle is known as Consequentialism - see e.g. Hammond (1988)
- and is automatically satisfied if Folding Back is applied to solve a decision
tree. The intuitive question behind Consequentialism for the examples above
is why should the outcomes 5 or 9.5 have any influence on the decisions in
the second stage, although the first stage has already resolved and these two
outcomes did not occur.

In summary, we will not use the Reduction of Compound Lotteries Ax-
iom, due to these aspects. Hence, the answer to the question posed above,
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which procedure should be applied in a dynamic setting like in the example
displayed in Figure 3, if preferences according to Rank-Dependent Utility or
Cumulative Prospect Theory prevail, is that the Backward Induction routine
should be used.

There is also a paper by Segal (1990), who suggests the usage of Rank-
Dependent Utility preferences without the Reduction of Compound Lotteries
Axiom, at least for two-stage lotteries. In contrast to the example used in this
section Segal (1990) refers to two-stage lotteries as lotteries having other lotter-
ies as outcomes.

5 Critique on Backwards Induction

The procedure of solving dynamic problems under Non-Expected Utility The-
ory preferences with Backward Induction, without the usage of the Reduction
of Compound Lotteries Axiom, has some implications on the critique given in
the literature, especially concerning Rank-Dependent Utility and Cumulative
Prospect Theory.40

5.1 Stochastic Dominance

Before we consider the critique against Folding Back as outlined in Machina
(1989), let us consider an argument put forward by Jaffray and Nielsen (2006).
In their paper they also use Rank-Dependent Utility for dynamic decision
making, but in contrast to the approach proposed in this thesis they use the
Reduction of Compound Lotteries Axiom. Their procedure for solving dy-
namic problems is a form of Rolling Back with a rejection mechanism for dom-
inated strategies. The argument by Jaffray and Nielsen (2006) is that Fold-
ing Back and Rank-Dependent Utility preferences alone lead to first-order-
stochastically dominated strategies. Recall, each strategy in a dynamic set-
ting, like in Figure 3, implies a one-stage lottery, see Figure 4, if the Reduction
of Compound Lotteries Axiom is applied. Therefore, First-Order-Stochastic
Dominance for strategies can be defined in terms of the corresponding one-
stage lottery.

40At least for the version of Cumulative Prospect Theory used in this thesis.
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(Strict) First-Order-Stochastic Dominance: The lottery L (strictly) stochas-
tically dominates lottery L’ in first order if:∑

i:u(ci)≤κ
pi ≤

∑
i:u(ci)≤κ

p′i, for all κ ∈ < and ∑
i:u(ci)≤κ

pi <
∑

i:u(ci)≤κ
p′i, for at least one κ ∈ < .


In the example of Figure 7 strategy <b> would be chosen by a decision maker
with Rank-Dependent Utility preferences applying the Backward Induction
procedure. Following Jaffray and Nielsen (2006), this strategy is first-order-
stochastically dominated by the strategy <ad>. This can be seen by comparing
the cumulative distributions of the two lotteries, namely (2; 0.27|5; 0.48|30; 0.25)

for strategy <b> and (2; 0.25|5; 0.5|30; 0.25) for strategy <ad>. Here, for κ only
the possible outcomes 2, 5 and 30 are relevant.∑

i:u(ci)≤30
padi = 1 ≤ 1 =

∑
i:u(ci)≤30

pbi∑
i:u(ci)≤5

padi = 0.75 ≤ 0.75 =
∑

i:u(ci)≤5
pbi∑

i:u(ci)≤2
padi = 0.25 < 0.27 =

∑
i:u(ci)≤2

pbi

According to the definition the lottery arising from strategy <b> is first-order-
stochastically dominated by the lottery provided by strategy <ad>. Thus,
Jaffray and Nielsen (2006) conclude that the Backward Induction procedure
selects a dominated strategy. But, this approach to determine First-Order-
Stochastic Dominance uses the Reduction of Compound Lotteries Axiom to
reduce the two-stage lottery of strategy <ad> to a one-stage lottery in order
to calculate the cumulative distributions. This is necessary, as First-Order-
Stochastic Dominance is a measure between one-stage lotteries. Due to this
aspect it is questionable if First-Order-Stochastic Dominance is an appropriate
measure to compare a one-stage lottery with a two-stage lottery.41

41Later on we will introduce a concept from Segal (1990) dealing with stochastic dominance
for two-stage lotteries, that is implicitly based on First-Order-Stochastic Dominance, but does
not require the usage of the Reduction of Compound Lotteries Axiom.
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Independent of this question is the fact that a strategy not chosen from the
procedure of Rolling Back the decision tree could be dynamically inconsistent,
like shown in the previous section for the example of Figure 7.42 This implies
that such a strategy, even if it is dominant in the sense of the definition of
First-Order-Stochastic Dominance, will not be obeyed by at least one of the
players deciding at intermediate or final stages. Thus, in our opinion the ap-
proach to assess strategies should be, first to determine all dynamically consis-
tent strategies and then to choose among these the one providing the highest
overall value, i.e. the value over all stages. Especially in the dynamic setting
occurring in our model, when the players of each stage are different Selves of
the same decision maker. We do not see any incentive, why one should de-
viate from this principle, even if there are strategies first-order-stochastically
dominating the one chosen by the Backward Induction routine. The reason
is that every Self acts optimally given the decisions of the others Selves. This
way the equilibrium was defined in Section 2 and results in the fact that no
player has an incentive to deviate from the strategy obtained by Backward In-
duction. Hence, given the optimal behavior, i.e. selecting the option at each
decision node providing the highest overall value, and Dynamic Consistency
inevitably leads to the strategy found via Backwards Induction.

Another problem, which is similar to the problem put forward by Jaffray
and Nielsen (2006), but differs in the origin of the underlying decision tree,
concerns two-stage lotteries with solely chance nodes. See Figure 9 for a de-
cision between two two-stage lotteries, where A, ..., H ∈ <. The problem is
that the evaluation process of such two-stage lotteries under Non-Expected
Utility Theory preferences using the Reduction of Compound Lotteries Axiom
can also yield first-order-stochastically dominated lotteries. In contrast to the
Jaffray-Nielsen example above it is not possible to argue that dynamic consis-
tency is not satisfied, as there is only one decision to make.

For such two-stage lotteries, having other lotteries as outcomes, Segal (1990)
proposes alternative ways to compare these with regard to stochastic domi-
nance, but without the usage of the Reduction of Compound Lotteries Axiom.
This is mainly due to the empirical evidence suggesting that individuals do
not always obey this axiom. Furthermore, this new definition of stochastic

42At least as long as there are no commitments between the players acting at the different
stages.
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Figure 9: Two-stage lotteries with only chance nodes
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dominance for two-stage lotteries leads to a more general setting distinguish-
ing between one and two-stage lotteries. Segal (1990) also shows that one of
these new concepts of stochastic dominance, which he calls Compound Dom-
inance, is compatible with Rank-Dependent Utility.

However, in the dynamic setting occurring in our model there are three-
stage lotteries, i.e. three chance nodes between two consecutive decision nodes.
For an example, see Figure 10, where a decision maker has to choose between
two three-stage lotteries at choice node I , i.e. either choosing branch a or b.
The three stages are determined in the model by

1. the chance of survival - chance nodes 1 and 2,

2. the risk of being in the high (upper branch) or in the low (lower branch)
income class 43 - chance nodes 3 and 4, and

3. the risk of a high or a low transitory income shock - chance nodes 5 to 8.

Note, that the probabilities - in the upper and lower tree in Figure 10 - are
identical at each branch in the three-stage lotteries. This circumstance stems

43This is the part of income represented by the Markov Process, which approximates an
AR(1) process - this will be described in more detail in the calibration section
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Figure 10: Three-stage Lottery Example
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from the fact, that in each period the risk of survival and income are the same
at each decision node, the only difference are the investments in the liquid and
illiquid assets.

In order to determine stochastic dominance for lotteries, like those in Fig-
ure 10, we adopt a concept of Segal (1990) and extend it to such three-stage
lotteries. The concept of Two-Stage-Stochastic Dominance by Segal (1990) is
based on an idea of Kamae, Krengel and O’Brien (1977), and can be defined
as44:

(Strict) Two-Stage-Stochastic Dominance: The two-stage lottery A =

(X1; q1| . . . | Xm; qm) stochastically dominates the two-stage lottery B
= (Y1; q1| . . . |Ym; qm), whereXi and Yi, for i = 1, ...,m, are simple (one-
stage) lotteries, by (strict) two-stage stochastic dominance, if and only
if Xi first-order-stochastically dominates Yi for all i = 1, ...,m (and
Xi strictly first-order-stochastically dominates Yi for at least one i =

1, ...,m).
44This is not exactly the definition given by Segal (1990), but captures the concept.
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The three-stage lotteries in Figure 10 for the choices a and b are denoted by La
and Lb, respectively, and can be written as

La = ([(A; 0.5|B; 0.5); 0.5|(C; 0.5|D; 0.5); 0.5] ; 0.9|Bu; 0.1)

and

Lb = ([(E; 0.5|F ; 0.5); 0.5|(G; 0.5|H; 0.5); 0.5] ; 0.9|Bd; 0.1) .

In the squared brackets are the two-stage lotteries, if the household survives,
and on the right hand side is the bequest of the current period, if the household
does not survive - with A,B,C,D,E, F,G,H,Bu, Bd ∈ <, i.e. these are real
numbers and no further lotteries. Substituting the simple lotteries (A; 0.5|B; 0.5)

by LAB etc., we get

La = ([LAB; 0.5|LCD; 0.5] ; 0.9|Bu; 0.1)

and

Lb = ([LEF ; 0.5|LGH ; 0.5] ; 0.9|Bd; 0.1) .

Assume that the certainty equivalent45 of LAB, CE(LAB), is bigger than that
of LCD, and also CE(LEF ) > CE(LGH). This assumption relies on the fact
that the first lottery in the squared brackets is the one after nature has chosen
that the decision maker is in the high income class, i.e. the household has
more disposable income before the transitory shocks are resolved. Therefore,
this lottery yields a higher value than the second lottery, as everything else is
equal. Now, we propose a definition of stochastic dominance for the three-
stage lotteries arising in the model.46

Definition: The three-stage lotteryLa stochastically dominates the three-
stage lottery Lb if and only if:

C-1: LAB first-order-stochastically dominates LEF ,

45Received from the evaluation by Expected Utility Theory, Rank-Dependent Utility or Cu-
mulative Prospect Theory.

46Actually, the three-stage lotteries consist of more outcome-probability pairs in the second
and third stage. However, the principle used here for the simple setting is also applicable for
these "bigger" three-stage lotteries.
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C-2: LCD first-order-stochastically dominates LGH ,

C-3: Bu first-order-stochastically dominates Bd,

and La strictly stochastically dominates Lb, if at least one of these
conditions satisfies strict First-Order-Stochastic Dominance.

Conditions C-1 and C-2 consider the lotteries in squared brackets. Actually,
this is a comparison by Two-Stage-Stochastic Dominance, as defined above.
The third condition is solely a comparison of real values from the bequest -
with the possible relations Bu>Bd, Bu=Bd, or Bu<Bd. The proof that Rank-
Dependent Utility47 is compatible with this concept is shown in Appendix E.
Note, this definition solely corresponds to the kind of three-stage lotteries oc-
curring in the model described in Section 2.

5.2 Strategical Equivalence

Further points of criticism for Folding Back with Non-Expected Utility prefer-
ences - in general - are summarized and given by Machina (1989). The point
is that such a procedure implies some "undesirable" properties of behavior - at
least "undesirable" from the perspective of the approach proposed in Machina
(1989), which throughout uses the Reduction of Compound Lotteries Axiom.

The first of these properties is that a decision maker using Backward Induc-
tion with Non-Expected Utility preferences is not indifferent between strate-
gically equivalent decision trees, which are trees with the same opportunity
set. An opportunity set is the set of outcomes of all possible strategies in
a dynamic problem - an example is given below. This aspect was also pre-
sented by Keeney and Winkler (1985), LaValle and Wapman (1986) and Ham-
mond (1988). Consider the decision trees in Figure 11, where Situation I repre-
sents the dynamic problem in extensive form and Situation 2 in normal form.48

Note, that the trees differ in accordance to the place of the decision node. Both
representations share the same opportunity set, namely

47The same holds for the version of Cumulative Prospect Theory we use, as the probability
weighting function has the same properties and the value function, even though twofold, is
monotonically increasing as under Rank-Dependent Utility.

48This example is taken from LaValle and Wapman (1986).
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Figure 11: Strategically Equivalent Decision Trees
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• Situation I : strategy a: (β;P |1− β;R), strategy b: (β;Q|1− β;R)

• Situation II : strategy A: (β;P |1− β;R), strategy B: (β;Q|1− β;R).

Due to this aspect, a decision maker should be indifferent between the two
trees in Figure 11. LaValle and Wapman (1986) use the Chew-MacCrimmon
utility function49 and some specific lotteries for P, Q and R, to show that in
the absence of the Independence Axiom (see definition below) Rolling Back
a decision tree is not an appropriate approach. This conclusion refers to the
aspect that the two representations of Figure 11 can lead to different strategies
under the standard assumptions. However, this argument holds for Rank-
Dependent Utility and Cumulative Prospect Theory only if the Reduction of
Compound Lotteries Axiom is used, as the usage of this axiom results in the
non-adherence of the Independence Axiom, which is defined as

Independence Axiom: Let X = (x1; p|x2; (1 − p)) and Y = (y1; q|y2; (1 −
q)) be simple one-stage lotteries. The lottery X is preferred (indiffer-
ent) to lottery Y, if and only if (X; r|Z; (1−r)) is preferred (indifferent)

49This is another Non-Expected Utility model proposed by Chew and MacCrimmon (1979).
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to (Y ; r|Z; (1− r)) for all lotteries Z and probabilities r, i.e.

X � (∼)Y ⇔ (X; r|Z; (1− r)) � (∼)(Y ; r|Z; (1− r)).

Appendix F contains the proof that the Independence Axiom is satisfied by
Rank-Dependent Utility50 preferences, at least for the constellation used in the
definition above, i.e. for lotteries having two lotteries as outcomes. The central
aspect of the proof is the usage of the Folding Back procedure instead of the
Reduction of Compound Lotteries Axiom.

A remaining problem is that a decision maker with Rank-Dependent Util-
ity or Cumulative Prospect Theory preferences is not indifferent between the
extensive and normal form, although these share the same opportunity set.
The result of this indifference are different lottery values for the extensive and
normal form. However, this has only implications if different forms of repre-
sentation are used in subtrees at the same level. In the dynamic setting of our
model all subtrees are represented in extensive form. This simply stems from
the construction of the risky components over time, i.e. hazard of survival,
persistent and transitory shocks.

There is also another point of view in the literature put forward by Hazan
(1987), who directly comments on the article of Lavalle and Wapman (1986).
He states that the usage of extensive form is mostly perfectly proper in the ab-
sence of the Independence Axiom (in his argumentation the Independence Ax-
iom is not fulfilled, as the Reduction of Compound Lotteries Axiom is applied),
but the transformation from extensive form to normal form is impermissible.
The argument of Hazan (1987) is based on the fact that Non-Expected Util-
ity preferences, like the Chew-MacCrimmon functional used by Lavalle and
Wapman (1986), lead to dynamically inconsistent strategies, if the Reduction
of Compound Lotteries Axiom and the transformation from extensive to nor-
mal from is used.

50Again, the proof also applies for the version of Cumulative Prospect Theory used in this
thesis, because the probability weighting function and the value function feature in principle
the same properties as those of Rank-Dependent Utility.
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5.3 Aversion to Information

Another objection listed by Machina (1989) is that Non-Expected Utility max-
imizers exhibit Aversion to Information. Whenever there prevail preferences
of the form X � Y, i.e. lottery X is preferred to Y, and (Y if E; Z if ¬E) � (X
if E; Z if ¬E), i.e. the lottery, which provides lottery Y if event E occurs and
lottery Z if event ¬ E (that is "not" E) occurs, is preferred. A decision maker
with these kind of preferences would choose (Y if E; Z if ¬E) without any fur-
ther information about the uncertain event E. However, if the decision maker
could learn whether E will occur before choosing, then she/he would realize
that she/he would decide to get X if E will occur. This leads to the conclu-
sion that the decision maker would choose (X if E; Z if ¬E), which is the less
preferred (compound) lottery in accordance to the preferences assumed above.
Hence, the decision maker is averse to information, as the information would
make him worse off. This argument was also found by Keasey (1984), Loomes
and Sugden (1984), Wakker (1988) and Hilton (1989). But as in the subsection
above, this argument holds because the assumed preferences violate the In-
dependence Axiom. As noted above the Independence Axiom is not violated
by Rank-Dependent Utility and Cumulative Prospect Theory, if the Reduc-
tion of Compound Lotteries Axiom is not used. This implies that this kind of
preferences do not prevail under these theories and therefore the Aversion of
Information critique does not apply.

5.4 Folding Back as a Formal Optimization Tool

The last critique point by Machina (1989, pp.1655-56), and according to him a
more fundamental one, is that:

"...as a formal optimization tool, folding back is appropriate only when
the objective function is separable across the various subdecisions of a
problem, and this is simply not true for an individual with general non-
separable (that is, general non-expected utility) preferences who is facing
a dynamic choice situation."

In order to see why Non-Expected Utility preferences are considered as gener-
ally non-separable in Machina (1989), regard the following two examples. The
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first example is a problem set showing again the Allais Paradox, as the one
described in Section 2.

Problem 8a:

a1: ($1 000 000; 1)

a2: ($ 5 000 000 ; 0.1 |$ 1 000 000 ; 0.89 |$ 0 ; 0.01)

Problem 8b:

a3: ($ 5 000 000 ; 0.1 | $ 0 ; 0.9)

a4: ($ 1 000 000 ; 0.11 |$ 0 ; 0.89)

This example violates Expected Utility Theory, as the majority of the subjects
in these kind of choice problems prefer a1 over a2, and a3 over a4. Recall, this
phenomenon was called the Common Consequence Effect in Subsection 3.1.
For illustration the Reduction of Compound Lotteries Axiom is used to show
why these choices violate Expected Utility Theory - consider Figure 12, where
$1M is $ 1 000 000.51

Note, the only difference between the upper and the lower trees is that the
lower branch (from the roots of the trees) is receiving $1M with a chance of 0.89
for a1 and a2, and $0 also with a chance of 0.89 for a3 and a4. The upper tree pair
indicates, as a1 was preferred to a2, that an individual with such preferences
would be willing to replace the upper sublottery ($5M; 10/11|$ 0; 1/11) by a
sure gain of $1M. However, the lower tree pair with a3 preferred to a4 shows,
that such a change would not be accepted. This is a violation of a principle
called Replacement Separability over Sublotteries and is the first aspect why
Non-Expected Utility preferences are considered as non-separable in Machina
(1989). This conclusion is drawn because Non-Expected Utility models are
capable to capture the choices of individuals in such Allais-type problems. In
order to see this, consider the evaluation of Problems 8a and 8b with Rank-
Dependent Utility with the utility function u(x) = ln(x+1) and the probability

51This figure is from Machina (1989).
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Figure 12: Example for Replacement Separability
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weighting function π(p) = exp(−(−ln(p))0.5).

Va1 = ln(1M + 1) = 13.82

Va2 = (π(0.99)− π(0.1)) ∗ ln(1M + 1) + π(0.1) ∗ ln(5M + 1) = 12.85

and

Va3 = π(0.1) ∗ ln(5M + 1) = 3.38

Va4 = π(0.11) ∗ ln(1M + 1) = 3.13

Hence, Rank-Dependent Utility hits the preferences of the Allais Paradox ex-
ample, as Va1 > Va2 and Va3 > Va4 . But, not all combinations of utility and
probability weighting functions imply this kind of preferences, e.g. the combi-
nation u(x) = x and π(p) does not.

Now, let us have a look at the lotteries displayed in Figure 12, which were
generated by application of the Reduction of Compound Lotteries Axiom.52

For the evaluation we use Folding Back with Rank-Dependent Utility. For the

52Here, the axiom is used to extend a one-stage lottery to a two-stage lottery.
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lotteries a1 and a4 nothing changes, but for a2 and a3 the value V’ of sublottery
($5M;10/11|$0;1/11) has to be calculated first, i.e.

V ′ = π(10/11) ∗ ln(5M + 1) = 11.33.

Accordingly, the choice problems a2 and a3 are now determined by the lotter-
ies53 (11.33;0.11|ln(1M+1);0.89) and (11.33;0.11|ln(0+1);0.89), respectively. The
values of the lotteries are54

Va1 = 13.82

V F
a2

= (1− π(0.89)) ∗ 11.33 + π(0.89) ∗ ln(1M + 1) = 13.10

and

V F
a3

= π(0.11) ∗ 11.33 = 2.56

Va4 = 3.13.

In contrast to above, the choice pattern has changed - a1 is still preferred to
a2, but a4 is now chosen over a3. This implies that Replacement Separabil-
ity over Sublotteries is no longer violated in this example. Furthermore, as
shown above the Independence Axiom (without the usage of the Reduction of
Compound Lotteries Axiom) is satisfied in general by Rank-Dependent Utility.
Therefore, Replacement Separability over Sublotteries is not violated, as the
Independence Axiom implies separability. Thus, the first aspect in Machina
(1989) can be rejected for Rank-Dependent Utility and Cumulative Prospect
Theory, at least for the type used in this thesis.

The second example, which is used in Machina (1989) to show the non-
separability of Non-Expected Utility, is the same as the one presented in Sub-
section 3.1 by Problems 3 and 4.

Problem 3: N=95

A: (4000;0.80|0;0.20) [20]
53Note, the value V’ is already in terms of utility, therefore the outcomes have to be trans-

formed before the evaluation proceeds.
54Superscript F stands for Folding Back.
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B: (3000;1) [80*]

Problem 4: N=95

C: (4000;0.20|0;0.80) [65*]

D: (3000;0.25|0;0.75) [35]

The majority selected B in Problem 3, and most people chose lottery C in Prob-
lem 4. This phenomenon was called the Common Ratio Effect, as the sec-
ond lottery pair is equal to the first pair multiplied by 0.25. Figure 13 shows
that with the Reduction of Compound Lotteries Axiom these two problem sets
share an identical choice situation.
In Figure 13, the upper sublotteries of C and D are the same as the lotteries

Figure 13: Example for Mixture Separability
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given by A and B.55 The rest of the trees of C and D is identical, thus it should
be actual a choice between the two lotteries A and B. However, the results from

55This figure is also from Machina (1989).
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Kahneman and Tversky (1979) and others indicate that people do not consider
these choice patterns as generally equivalent. This is a violation of a princi-
ple called Mixture Separability over Sublotteries, which is the second aspect
why Machina Non-Expected Utility models are regarded in Machina (1989) as
generally non-separable, because they can capture preferences found in these
kind of experiments.

At this point, let us again show that Rank-Dependent Utility is compati-
ble with the choices given in the example above. Let u(x) = x and π(p) =

exp(−(−ln(p))0.5), then the values of the lotteries are

VA = π(0.8) · 4000 = 2494.1

VB = π(1) · 3000 = 3000

and

VC = π(0.2) · 4000 = 1124.9

VD = π(0.25) · 3000 = 924.2.

Thus, according to Rank-Dependent Utility lottery B is chosen over A, and
lottery C is preferred to D - these are the same preferences as found in the ex-
periment.

Now, consider the Folding Back evaluation of the lower lottery pair in Fig-
ure 13. As stated above, the sublotteries are identical to A and B, therefore
the values of these are already calculated by VA and VB. This yields the lot-
teries (2949.1;0.25|0;0.75) and (3000;0.25|0;0.75) for C and D, respectively. As
the ranking is equal in both lotteries, i.e. VA > 0 and VB > 0, and the prob-
abilities are identical it is obvious (as long as u(x) is continuously increasing)
that lottery D will be chosen over C. This choice pattern is actually the same,
as required by the Independence Axiom, which is generally satisfied by Rank-
Dependent Utility. Hence, the critique that Mixture Separability over Sublot-
teries is violated and the conclusion that Rank-Dependent Utility, as well as
Cumulative Prospect Theory, are non-separable is not justified, at least from
the perspective of the procedure proposed in this thesis.
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6 Conclusion Theoretical Part

The previous sections suggest that the model proposed in Section 2 should
be solved via Folding Back without the application of the Reduction of Com-
pound Lotteries Axiom, if preferences according to Rank-Dependent Utility
or Cumulative Prospect Theory prevail. The most driving aspect of this sug-
gestion is that this procedure ensures that the optimal or chosen strategy in
a dynamic setting is dynamically consistent, i.e. this strategy is obeyed over
the various stages of the dynamic problem. This is especially of interest in our
consumption/savings model, as each year another Self of the household has
to decide how to proceed. This implies that in each period, a household has
sufficient time to reconsider the plan or strategy it had made earlier in life.
The model was due to this aspect described as an intra-personal game with
as many players as years in the life cycle setting. The Folding Back procedure
guarantees that each player behaves optimal according to the decisions of the
other players, which is exactly the definition of the equilibrium of the model.

Furthermore, a decision maker applying Backwards Induction without the
Reduction of Compound Lotteries Axiom is a consequentialist, i.e. only rele-
vant consequences influence his or her evaluation process. This implies for the
model that each Self t solely considers the decisions of the players acting after
period t. The decisions of the previous players only influence the situation,
determined by the amount of the liquid and illiquid assets, Self t is in, which
is the starting point of its evaluation process.

The central conclusion is that the Reduction of Compound Lotteries Axiom
is not used to solve the dynamics of the model. This is due to the aspect that
this axiom is the basis of the critique given in the literature that Non-Expected
Utility preferences are generally non-separable, lead to dynamically inconsis-
tent strategies and Aversion to Information. These points of criticism, as dis-
cussed in Section 5, can be overcome if Folding Back is used instead, at least for
Rank-Dependent Utility and Cumulative Prospect Theory. This is mainly due
to the fact that under the procedure, proposed in this thesis, the Independence
Axiom is satisfied for these two theories. The aspect that Rank-Dependent
Utility and Cumulative Prospect Theory preferences imply that strategically
equivalent decision trees (normal form and extensive form) are not considered
as indifferent can not be solved by the Backwards Induction routine. But, this
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does not influence the solution process of the model, as the dynamic structure
is throughout in extensive form.

Most convincing, apart from the theoretical aspects, for the non-adherence
of the Reduction of Compound Lotteries, is the empirical evidence that indi-
viduals do not obey this axiom, at least the majority of the participants in the
various experiments. This is a crucial factor (at least in our opinion) as the
introduction of the Non-Expected Utility Theories is based and justified by
empirical evidence, indicating that human behavior according to choices un-
der risk violate basic principles of Expected Utility Theory.

However, at this point it has to be mentioned that Expected Utility Theory
is a normative theory and the alternative theories are descriptive. We analyze
if consumption/savings decisions over the life cycle can be better explained
by Rank-Dependent Utility or Cumulative Prospect Theory than by Expected
Utility Theory. This implies that on the one hand theories are used in the model
that are based on empirical findings and on the other hand a normative theory
suggesting how people should behave based on logical grounds. It is exactly
this comparison, which lies at the heart of the upcoming part.

As a final remark for the theoretical part, note that a special application
property of the Reduction of Compound Lotteries Axiom is that most dynamic
models can be solved analytically and thereby enabling the researchers to ex-
amine different scenarios in their models. However, the model proposed in
Section 2 can only be solved numerically, because of the ranking procedure
in Rank-Dependent Utility and Cumulative Prospect Theory. Therefore, the
only advantage remaining of this axiom for application would be reducing the
stages of risk between the various decisions. But, as discussed above this leads
to some undesirable properties.

7 Data Description

For the estimations we use the SOEP dataset of the years 2000 to 2008. Only
for the estimation of the empirical moments we take the data from the SAVE
study 2007, because the SOEP survey does not contain enough detailed in-
formation about the wealth of households. In order to achieve a compara-
ble basis between these two datasets, the weights provided by each survey
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are applied in the estimation procedures. These weights are, in both surveys,
based on the German Micro Zensus, so that the datasets combined with the
corresponding weights provide a representative sample of the German popu-
lation.56 The base year for the monetary variables in the datasets is 2008, i.e.
the earlier years are transformed according to the yearly inflation.57 For all
estimations we use information on the household level. For those variables,
which are not available on the household level, person level data is used to cal-
culate the corresponding household information, e.g. for highest educational
level in the household.58 We use only German59 households with a household
head, a spouse, with kids or no kids and with dependent adults or no depen-
dent adults. Financially dependent persons in the household are considered as
kids if they are younger than 17, otherwise they are considered as dependent
adults. Furthermore, we separate the datasets into three different educational
groups based on the CASMIN-Classification, see Table C.2 in the Appendix
and Brauns and Steinmann (1999). In the following we concentrate only on
the lowest educational group, as this offers the most observations.

8 Estimation Procedure

In this section we will briefly describe the procedure of the Method of Sim-
ulated Moments estimation, which is illustrated in Figure 14. A detailed de-
scription of each step will be given in the following sections. The aim of the
Method of Simulated Moments is to achieve estimates of the parameters α and
rref - see bottom of Figure 14. These are obtained by minimization of an objec-
tive function, which measures the difference between empirical and simulated
values. The empirical moments (left branch in Figure 14) in the objective func-
tion are simply obtained from the SAVE dataset, i.e. we estimate wealth to
income ratios of 4 age cohorts. The simulated input of the objective function
is a bit more involved (right branch in Figure 14). We start by estimating the

56For details of the calibration of the weights see Frick and Haisken-DeNew (2005) for SOEP
and Börsch-Supan et al. (2009) for SAVE.

57The inflation values are taken from the Statistisches Bundesamt Deutschland.
58We determine that the highest educational level is given by the highest education of the

household head or the spouse. We define it that way, as we assume that these two are respon-
sible for the financial decisions in the household.

59A household is considered as German if the household head has German citizenship.
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income, the number of kids and the number of dependent adults for the ages
20 to 90 from the SOEP dataset.

The results of these estimations and reasonable values for other parame-
ters, like e.g. the interest rate or coefficient of relative risk aversion, are used
to calibrate the model of Section 2. Then, the model is solved via Backwards
Induction. The setup is designed in such a way that all possibilities, which can
occur in the simulation are taken into account. From the solution of the model
we get a decision matrix, which contains the optimal strategies at any age, i.e.
20 to 90, and any possible state a household could be in in the model.

Independent of that, we use the results of the income estimation to simu-
late 5000 individual income streams for the age 20 to 90. The difference of the
income streams stems from the possible income shocks, which can occur each
period. In particular, in the model we allow for 3 persistent and 5 transitory
shocks. Each period and for each household there is a combination of these
two kind of shocks.

Then, the simulated income profile of each household is considered, in or-
der to get the information which income shocks occurred in each period. The
income shocks and the holdings of liquid and illiquid assets, which depend
on the decisions of previous periods, determine the state in a certain period a
household is in.

The decisions in the decisions matrix, which we obtained from the solution
of our model are stored in the same way, i.e. by income shocks, asset holdings
and age. Thus, we can look up the optimal decisions for each household.

This procedure yields a simulated dataset with 5000 observations over the
ages 20 to 90. Then, this dataset is used to calculate the simulated moments,
i.e. the wealth to income ratios of 4 age-cohorts.

Now, we can put the empirical and simulated moments into the objective
function of the Method of Simulated Moments and estimate the parameters α
and rref .
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Figure 14: Estimation Procedure
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9 Calibration

This and the next section deals with the calibration and estimation of necessary
parameters for the simulation process. In the literature this is sometimes also
called the first stage of the Method of Simulated Moments approach.

9.1 Parameters

Table 4 summarizes the parameters for the base case estimation. The values
for the coefficient of relative risk aversion, the consumption flow, the credit
limit, the discount rate and the interest rate for the illiquid assets are taken
from Laibson et al. (2007). The interest rate for positive liquid assets is the
average of the "Basiszins" of the Deutsche Bundesbank of the years 2000 to
2008. The retirement age T for the low educational group is the average of the
households in the panel sample, which retire in the observed years from 2001
to 2008.

The survival rates are from the Statistisches Bundesamt Deutschland60 and
are displayed in Figure 15. We took the values for men61 to proxy the survival
rates for households. Recall, in our model we defined a household to have at
least a head and a spouse, i.e. if one of these two dies then according to the
definition in the model the household does not exist any longer, so to speak.
Also the drop to zero in Figure 15 at the age of 90 is due to the assumption in
the model that a household does not get older than 90 years. In general, the
survival rates represent the probability of having reached a certain age and
to live on for one year. This probability is near to 1 until it starts decreasing
around the age of 60.

Note, this is the base case calibration. Later on we will conduct a robust-
ness check, in order to analyze if changes in the parameter calibration have an
influence on the Method of Simulated Moments estimator.

60See https://www.genesis.destatis.de.
61One could also use the data for women. But, we do not think that this would change the

results, as there is not so much difference between the rates for women and men, only that
women tend to live a bit longer in probabilities.
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Figure 15: Survival rates
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Table 4: Base case parameter calibration

coefficient of relative
riskaversion ρ

2 -

consumption flow γ 0.05 -

discount rate δ 0.95 -

credit limit λ 0.318 (0.017)

interest rate positive
liquid assets RX

1.0241 (0.0135)

interest rate negative
liquid assets RX

CC

1.1 -

interest rate illiquid assets
RZ

1 -

retirement age T 66 (4.4071)

Available standard errors are given in parentheses.
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9.2 Number of Kids and Dependent Adults

For the simulation of the household size we estimate the number of kids and
financially dependent adults in a household over time.

The estimation model is selected by backward elimination. This means we
start with a quite big model and eliminate all variables, which are not signif-
icant at the 5% level, i.e. if the t-value is smaller than 1.96 in absolut terms.
This procedure yields the same model for kids and dependent adults. Thus,
in Equation 1 xit denotes either the number of kids or dependent adults in the
household i in period t. The error process is assumed to be i.i.d.. In the estima-
tion no fixed (or random) effects are included, although it might be reasonable
to control for it. The reason why fixed (or random) effects are not considered is
simply that it would increase the computation time of the simulation process
enormously. In other words the individual effect of each household i is part of
the error process in our estimations and is assumed to be zero in the simula-
tion process.

xit = β0 ∗ exp(β1 ∗ ageit − β2 ∗ age2it) + εkit (1)

We estimate the above equation by Weighted Nonlinear Least-Squares, where
the weights are given by the population weights from the SOEP survey. The
parameter estimates for number of kids and dependent adults are displayed
in Table 5. The estimated values are significant at the 5% level. Note that the
parameter estimates of β0 for both are not significantly different from 0, but
if we set this factor equal to zero, then the number of kids and dependent
adults is equal to 0 over all ages.62 Due to this attribute of the specification,
we use as a null hypothesis value for this parameter the value 1. This implies
if the parameter estimate of β0 is not significantly different from 1, then the
next smaller model specification would be just the term of the exponential
function. However, the estimates of β0 are significantly different from 1, as the
t-values for kids tk = (1.01e−5−1)/6.34e−6 = −1.58e5 and for dependent adults
ta = (2.23e−12 − 1)/3.77e−12 = −2.65e11 are in absolute terms bigger than 1.96.

We also tested linear models, but these came up with negative values for
young households. A negative number of kids or dependent adults is not

62For β = 0 we get: xit = 0 ∗ exp(β1 ∗ ageit − β2 ∗ age2it) + εkit = 0.
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reasonable for the simulation, thus we dropped these specifications.
Figures 16 and 17 show the predicted profiles over the life cycle for kids and

dependent adults in a representative household, respectively. These profiles
are later on used in the simulation process for all simulated households, as we
set the fixed effects of the individual households equal to 0 due to computation
time.

Table 5: Parameter estimates for kids and adults

kids adults

β0 1.01e−5 2.23e−12

(6.34e−6) (3.77e−12)

β1 0.6536 1.076

(0.032) (0.068)

β2 0.009 0.011

(4.08e−4) (6.78e−4)

The standard deviations are given in parentheses.

The number of kids peaks at the age around 38 and the number of dependent
adults around 50. This pattern is partly depending on the definition of kids in
the household. Recall, a person in the household is considered as a kid, if it is
younger than 17 years. Thus, kids older than 17 who still stay in the household
(for some years) are treated as dependent adults in the household.

10 Income Estimation

The estimation of income is separated in the two categories i.) when the house-
hold is in the workforce and ii.) when the household is retired. A household
is considered to be in the working force if both, head and spouse, are work-
ing. On the other hand a household is considered to be in retirement if both,
head and spouse, answered in the questionnaire that they are retired. The
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Figure 16: Number of kids by age
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Figure 17: Number of dep. adults by age
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households with either the head or the spouse retired were dropped from the
sample, but were used to determine the average retirement age of each educa-
tional category.

The endogenous variable Yt includes all regular after tax income from trans-
fers and wages, inheritances, any kind of retirement pensions, and transfers
from the government including Social Security. The equation for the estima-
tion of the working households is given by
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ln(Yit) = yit = β0 + β1 ∗ ageit + β2 ∗ (age2it/100)

+ β3 ∗ kidsit + β4 ∗ dep.adultsit + ξit (2)

and is estimated by Weighted Least Squares. The weights are taken from the
SOEP data survey. We also executed estimates with different polynomials of
age (3. to 4. degree), but these were not significant at the 5% level.63

The abbreviations kids and dep.adults stand for number of kids and num-
ber of dependent adults in the household, respectively. Furthermore, included
in Equation 2 are birth cohorts (10 year intervals) and it is assumed that the
time effect is related to the business cycle, which is represented by the unem-
ployment rate. This is done to rule out that time, age and cohort are perfectly
correlated, as in Laibson et al. (2003). The results are displayed in Table C.3 in
the Appendix.

The error term is defined by a fixed effect ηi, an AR(1) process uit and a
transitory shock vTit , i.e.

ξit = ηi + uit + vTit = ηi + a · uit−1 + εit + vTit .

The fixed effect will be ignored in the simulation, like in the case for kids and
dependent adults in the household, as it would also increase the computation
time enormously. The estimation is only based on the lowest educational cat-
egory, so some of the individual effect is captured. The crucial parameters for
the simulation of the volatility or uncertainty/risk of income are a and σ2

ε , the
coefficient and variance of the error of the AR(1) process, and σ2

v , the variance
of the transitory shock. Following Laibson et al. (2007), we estimate these
parameters by a weighted General Method of Moments approach. The the-
oretical moments for the estimation are the first eight autocovariances of ∆ξ,
labeled Ck for k = 1, ..., 8, and defined by

Ck = E(∆ξt,∆ξt−k).

The first differences of ξ are used to circumvent the estimation of ηi, the fixed
63This means the t-value, in absolute terms, was bigger than 1.96.
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effect which is not used in the simulation. In particular, the first eight autoco-
variances are given by64

C0 =
2σ2

ε

1 + α
+ 2σ2

v

C1 =
−σ2

ε · (1− α)

1 + α
− σ2

v

...

Ck =
−αk−1σ2

ε · (1− α)

1 + α
.

The objective of the Generalized Method of Moments is to minimize the fol-
lowing expression



Cov(∆et,∆et)− C0

Cov(∆et,∆et−1)− C1

Cov(∆et,∆et−2)− C2

.

.

.

Cov(∆et,∆et−k)− Ck)



′

∗W ∗



Cov(∆et,∆et)− C0

Cov(∆et,∆et−1)− C1

Cov(∆et,∆et−2)− C2

.

.

.

Cov(∆et,∆et−k)− Ck)


.

where Cov(∆ξt,∆ξt−k) are the empirical autocovariances obtained by the esti-
mation of the income process and W is the optimal weighting matrix, which
is given by the variance-covariance matrix of the moment conditions.65 Intu-
itively, the objective function measures the difference between the theoretical
and empirical moments, which is to be minimized by the parameters a, σ2

ε and
σ2
v . Let us define the objective function, in short, by

o(a, σ2
ε , σ

2
v) = mcov(a, σ

2
ε , σ

2
v)
′ ·W ·mcov(a, σ

2
ε , σ

2
v).

The results of the GMM estimation are displayed in Table 6. We apply an
overidentification test, called J-Test and proposed by Hansen (1982), as there

64For a detailed derivation of the autocovariances see Appendix F.
65In a two-step Generalized Method of Moments procedure one setsW = I in the first step,

as the variance-covariance matrix of the moment conditions is not known. Then, in a second
step the estimated variance-covariance matrix of the first step is used as the optimal weighting
matrix.
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are more moment conditions than parameters to be estimated. The test statis-
tic, given by

ψ(â, σ̂2
ε , σ̂

2
v) = mcov(â, σ̂2

ε , σ̂
2
v)
′ ·Wopt ·mcov(â, σ̂2

ε , σ̂
2
v),

and is chi-square distributed with Nm − NP degrees of freedom, if the model
is correctly specified, where Nm is the number of moments conditions and NP

the number of estimated parameters.66

Table 6: Parameter estimates
for income error term

a 0.7425

(0.2981)

σ2
ε 0.023

(0.0081)

σ2
v 0.0129

(0.0057)

The standard deviations are
given in parentheses.

We have 5 degrees of freedom, as we use 8 moment conditions and estimate 3
parameters. The 5 percent critical value of the chi-square distribution is 12.83
and the value of the objective function is 0.0001. Thus, the null hypothesis that
the model specification is valid can not be rejected at the 5% level.

Now, the AR(1) component of the income error process is approximated
by a 3-state Markov process. This is done to reduce the computation time of
the simulation procedure. Actually, an AR(1) process is a continuous Markov
process and we represent this by a discrete Markov process with three possible
states.

Figure 18 exhibits the 3-state Markov process, which is used in the simu-

66Note, this only holds in the case where the optimal weighting matrix Wopt is used.
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Figure 18: Three state Markov process
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lation. We assume a symmetric process, i.e. the two states m and n are equal
in magnitude, labeled ϕ, and the third state is equal to 0. This implies that the
3-state Markov process applied here is defined by two parameters, namely the
magnitude ϕ and the transition probability p. In order to illustrate the pro-
cess, assume that you are in state m in Figure 18. In this state there are three
possibilities

1. staying in state m with probability p,

2. changing to state 0 with probability 1−p
2

or

3. changing to state n also with probability 1−p
2

.

The same principal holds for the two other states as well. For the approxima-
tion of the AR(1) process we generate 5000 time series of the process by using
the estimates of a and σ2

ε from above, i.e. we take draws from N ~(0, σ2
ε ), the

distribution of the error of the autoregressive process. One time series consists
of 71 periods as this is the life cycle span of a household in the model.67 These
draws and a parameter combination of ϕ and p for the 3-state Markov process

67We assume that in the first period the time series starts at 0, i.e. ui1 = 0 + εi1.
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are used to calculate the difference between the AR(1) and the Markov process.
The criterion for the distance is the mean squared error, given by

1

71

71∑
t=1

(xt −mt)
2,

where xt is one series of the AR(1) process and mt is a 3-state Markov process
with a particular parameter combination. The same is done for the rest of the
5000 drawn time series of the autoregressive process. The sum of these mean
squared errors is the objective function, given by

1

5000

5000∑
j=1

1

71

71∑
t=1

(xjt −mjt)
2. (3)

The parameter combination of ϕ and p which minimizes68 the objective func-
tion, is the combination defining the 3-state Markov process that is used to
approximate the AR(1) process of the income error. The minimization of equa-
tion 3 is repeated 1000 times, in order to get estimates of the standard devi-
ations of the parameters. The mean of the parameter combinations and its
corresponding standard deviations (stdx) are displayed in Table 7.

Table 7: Markov state and transition probability

ϕ p

mean 0.2088 0.7240

stdx (0.0072) (0.0239)

The standard deviations are given in parentheses.

Given these estimates the Markov process applied in the simulation is exhib-
ited in Figure 19.

In order to get an impression of how the three state Markov process ap-
proximates a draw of the AR(1) process see Figure 20.

We also compared the three state Markov process used here with a two
state Markov process69, as in Laibson et al. (2007). Intuitively any increase of

68The minimization is executed by an algorithm - Nelder Mead Simplex standard algorithm
within Matlab command "fminsearch".

69The two states are given by m and n - the state 0 is simply dropped.
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Figure 19: Three state Markov process
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the states in the Markov process yields a better approximation of the AR(1)
process, as it is itself a continuous Markov process with infinite states. But, as
mentioned above it would be to time consuming to use many states in the sim-
ulation procedure. Thus, there is a trade-off between a better approximation
and the time needed to run the simulation. In order to check whether there is a
significant improvement from a two state to a three state Markov process, we
compared the mean squared error and its corresponding standard deviation
of both processes.

Table 8: Two vs. three state Markov process

two state three state

msqe 0.0274 0.0224

(0.00042) (0.00037)

The standard deviations are given in parentheses.

The standard deviations of the mean squared errors are estimated by, first,
minimizing Equation 3 for both m being a two state and a three state Markov
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Figure 20: AR(1) and Markov process
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process. The obtained parameters by the minimization are then used to com-
pute the mean squared errors of 100 additional draws of the AR(1) process.
These 100 values of mean squared errors are finally used to get estimates of the
mean of the mean squared error and the corresponding standard deviations of
the two and three state Markov process, displayed in Table 8. The means and
the standard deviations indicate that the three state Markov process is signifi-
cantly better than the two state Markov process. We did not consider a further
state, i.e. a four state Markov process, as three states already increased the sim-
ulation time enormously. Furthermore, in our opinion it was solely important
to implement a state, which has a magnitude of 0, for a better approximation.

The estimation procedure just described is different to the approach of

Laibson et al. (2003), who set ϕ =
√

σ2
ε

1−a2 and p = a+1
2

, and state that this
matches the variance and autocovariance of ut. However, taking the parame-
ter estimates of a and σε they found for the AR(1) process and comparing their
calibration with the approach we use, we find that the estimation procedure
provides a better fit, at least according to the mean squared error we use as a
performance criterion.

Finally, we define the income process of the retired households simply by
the average and the corresponding variance of the data, namely in logarithmic
terms 10.0170 and 0.0637, respectively. The estimation of the retired income
process like e.g. in Laibson et al. (2007) yields very bad results, i.e. the esti-
mates are highly insignificant for all tested specifications. The income process
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Figure 21: Average income process over the life cycle
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over the life cycle (working and retired combined) for a representative house-
hold is displayed in Figure 21. These values are used in the simulation process
as the age-specific income of a household. The overall income at a certain age
is defined by this age-specific income, the Markov state a household is in and
a transitory shock occurring at this age. A more detailed description will be
given in the simulation section.

11 Empirical Moments - Wealth to Income Ratio

This section estimates the empirical moments for the Method of Simulated Mo-
ments procedure. These moments are the counterpart to the moments, which
are generated by the simulation procedure. We use the wealth to income ratios
for the age cohorts 20 to 29, 30 to 39, 40 to 49 and 50 to 59. One could chose
also other moments, like e.g. Laibson et al. (2007), who use:

1. %V isa - fraction of households borrowing on any type of credit cards, i.e.
paying interest on credit card debts.

2. meanV isa - average outstanding credit card debt in relation to mean in-
come of the age cohorts.

3. CY - marginal propensity of consumption to expected income changes.
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4. wealth - wealth to income ratio of the households aged 50 to 59.

The first two of these moments together with the fourth moment are a set to
estimate (quasi-) hyperbolic discounting, which is the main objective in Laib-
son et al. (2007). However, we solely use exponential discounting and do not
see a direct connection of the first two moments to our interest. The third one
would have been of interest for our research, but the estimation attempts of the
marginal propensity to consume with the available data did not come up with
any useful results. This means, that nearly all coefficients were highly insignif-
icant. Due to these aspects we defined as our empirical moments the wealth
to income ratio of the age cohorts 20 to 29, 30 to 39, 40 to 49 and 50 to 59. We
do not use older age cohorts, as in our model the illiquid assets (representing
wealth) is constructed in such a way that it can not decrease. In reality, wealth
is for example used to maintain a particular standard of living, especially if a
household becomes retired.

Intuitively, the wealth to income ratio can be interpreted as the number
of years, which wealth can compensate a complete loss of income. Thus, the
ratio indicates the intensity of precautionary saving due to uncertain or risky
events. As we deal in this thesis especially with the aspect how households
act according to risky components, this ratio seems to be a good moment con-
dition for our estimation. Recall, in the probability weighting function high
probabilities are underestimated, i.e. that for example the chance to get quite
old is underrated. This would imply that the wealth to income ratios should
be rather low.

For the estimation of the wealth to income ratios we use cross sectional data
from the SAVE study 2007. The data consists of 5 imputed datasets - imputa-
tion of datasets is a method to deal with nonresponse in a survey for variables
of interest. This is done to overcome the drawback of too few observations,
because the simplest way to handle nonresponse is to drop all observations
with missing values.70

The regression equation for the wealth to income ratio (wr) is determined
by

70For a description of the imputation method in the SAVE study, see Schunk (2007). The
details about the estimation procedure with those 5 imputed datasets is shown in Appendix
G.
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wr = β0 + β1 · kids+ β2 · dep.adults+ cohorts+ ε.

We use Weighted Least Squares for the estimation. Recall, the usage of the
weights is important, as we have two different datasets in the Method of Simu-
lated Moments approach. The term cohorts represents 5 cohort dummies, with
the oldest cohort being the reference group, and ε is a normally distributed er-
ror term.71 The results of the (multiple-imputation) estimation are displayed
in Table C.4 in the Appendix.

The constant, the cohort reference group72, and the cohorts coefficients are
highly significant. The results for number of kids and dependent adults are
only nearly significantly different from 0 at the 10% level.73 Nevertheless, we
keep these variables, as we believe (from an economic point of view) that the
number of kids and dependent adults influence the possibilty of a household
to accumulate wealth.

These regression results are used to calculate the average wealth to income
ratios of the 4 aforementioned age cohorts, which are shown in Table 9. The
wealth to income ratios are increasing by age, i.e. wealth could compensate a
loss of income over a longer time period the older a household gets. This could
mean that the intensity of precautionary savings behavior increases with age.

The results for retired households are not displayed and used as moments
here for two reasons. First, we believe that the wealth to income ratio is slowly
decreasing after the household stops working, although there is a drop in in-
come. But, wealth is also used to compensate this drop in income, which im-
plies a continuous reduction of wealth over the years in retirement and thereby
a decrease in the wealth to income ratio. However, the setup of the model ex-
cludes the possibility to use wealth (illiquid assets) for consumption implying
that the wealth to income ratio can only decrease if income increases. Second,
the estimation results predict that there is a small drop to 7.2851 for the age co-

71In contrast to Laibson et al. (2007) we do not use the unemployment rate as a proxy for
the business cycle effects, as we only deal with cross sectional data.

72The reference group in the estimation is the oldest age cohort, but the results do not
change if we change the reference group to the youngest cohort - this is due to the aspect that
the dummies only represent relations to each other.

73The critical value of the onesided t-test for the 10 % level is 1.2816 - the t-values for num-
ber of kids and number of adults are 0.9812/0.7972=1.2309 and 1.5269/1.2649=1.2071.
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hort 60 to 69, which is followed by an increase to 9.9312 in the last cohort, age
70 to 90. One can see from the data that this last result is due to some extreme
outliers. One could control for this problem by smoothing or dropping the
outliers for example. But in combination with the first argument we decided
to omit these two age cohorts as empirical moments.

Table 9: Wealth to Income ratio by cohorts

mean stdx

age 20 to 29 2.8775 (0.2707)

age 30 to 39 3.4109 (0.2661)

age 40 to 49 4.1555 (0.1246)

age 50 to 59 7.7314 (0.3367)

The standard deviations are given in the stdx column.

The vector containing the empirical moments, i.e. the wealth to income ratios
of the 4 age cohorts, is given by

mjm =


2.8775

3.4109

4.1555

7.7314

 .

This vector will later on be part of the objective function of the Method of
Simulated Moments approach.

12 Simulation

This section deals with the details about the simulation process. First, there
will be a description about how the consumption/savings decisions of house-
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holds are derived. In this part the evaluation of risk is important, i.e. the gen-
eral utility function and the probability weighting function of Prelec (1998)74

from subsections 2.6 and 3.2 are used. Recall, it depends on the values of
the parameters α and rref if Expected Utility Theory, Rank-Dependent Utility
Theory or Cumulative Prospect Theory prevails. The second part shows the
generation of the income streams for 5000 households, which are used for the
Method of Simulated Moments estimation.

12.1 Simulation of Household Decisions

The setup for the simulation of the decisions of the households is constructed
in such a way that all possible events and possible decisions that can occur or
be made in the model are considered. This is done in order to circumvent that
the decisions process has to be calculated for all 5000 households separately.
Actually, the decisions are only calculated once in each iteration of the algo-
rithmic search procedure. This means the decisions are recomputed in each
run with new parameter values for α and rref until the objective function con-
verges to a minimum. This will be explained in more detail later on.

Now, let us consider the setup of the model for the decisions, which can
be imagined as a really big decision tree. This tree is too huge to display it
entirely. Thus, we look just at parts of it, which will repeatedly occur in the
whole tree - at least in the same pattern. Figure 22 shows what kind of deci-
sions a household can make in each period t. It is assumed that a household
has to make two decisions in each period simultaneously, that is how much
money to invest in the liquid asset and how much in the illiquid asset. Recall,
these two decisions are sufficient to determine the consumption of the current
period - see static budget constraint in Section 2.
A household has to perceive in period t the state it is in, which is determined
by the disposable income Yt, the liquid asset holdings in t, Xt, and the illiquid
asset holdings in t, Zt. In Figure 22 this is summarized at rectangle I . In the
model we set the maximum amount of liquid assets and illiquid assets equal
to €400 000 and €1 000 000, respectively. These upper limits were chosen to
restrict the possibilities that have to be computed. However, these values are

74We set β = 1 in the function of Prelec (1998), in order to reduce the number of parameters
to be estimated.
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Figure 22: Investment decisions each period
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also not exceeded if one uses higher limits.
Recall, in decision trees the notation is that at each rectangle a decision has

to be made and at each circle nature is moving, i.e. risk is resolved. This im-
plies in the figure that after the decision is made a move of nature follows,
which we will consider in a next step. In Figure 22 at point I a household has
several options for its investment decisions, e.g. taking the branch leading to
point N would mean that a household would withdraw €90 000 from the liq-
uid asset holdings and invest €100 000 in the illiquid asset. Thus, there must be
also a contribution of €10 000 from the disposable income to reach the €100 000
investment in the illiquid asset. This implies that for this option consumption
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would be equal to Yt − IX − IZ = Yt − 10000.
From Figure 22 one can see that the stepsize for the investments is €2 000

for the liquid and €50 000 for the illiquid asset. These relative high stepsizes
are due to the aspect that the computation of the decisions in each iteration is
not too time consuming . The high stepsize of the illiquid asset implies that
the liquid asset has to be used as an intermediate step if a household wants to
put money in the illiquid holdings. This is caused by the fact that the income
(no matter what age) is not greater than €50 000. Note, we are dealing with
disposable income, i.e. after taxes and other regular payments, and it is also
assumed that at least €6 000 are used for basic consumption each year, includ-
ing especially expenses for food, clothes etc..

Finally, a household has to make its decisions in each period, which de-
pend on its state and the future decisions and possible moves of nature - this
was explained in more detail in the example in Section 4. This implies that a
household is in one of the points 1 to N, after choosing its investments. Then,
nature is moving, i.e. in particular first the hazard of survival, then the risk
of the Markov process and finally the risk of the transitory shock resolve. As-
sume that a household moved for example to point N in Figure 22. Actually,
it does make no difference which point one takes, as the risky components are
all the same at the same stage, i.e. in the same period. The resulting event tree
of the risky elements is displayed in Figure 23. The timing of the occurrence of
the risk in each stage75 is assumed to be:

1. The risk of survival is the last event in each period - either the household
lives on to the next period or not.

2. The very first thing happening at the beginning of each period is the
resolution of the Markov state.

3. After that the transitory shock arises.

In order to give an impression of the model let us describe the whole decision
tree. At the root of the tree there are three starting states (decision nodes),
which share the same asset holdings, namely X0 = 0 and Z0 = 0, and have the
same income but differ in the Markov state. The different Markov states can
be interpreted as being in the

75Note, “stage” is not equal to “period” in our setting.
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Figure 23: Risky elements in one stage
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1. low76 income group, i.e. Markov state 1

2. middle income group, i.e. Markov state 2

3. high income group, i.e. Markov state 3.

Then, the various investment decisions follow, as shown in Figure 22. After
that the eventtree of the risky elements, Figure 23, is connected to the tree
at each final node of Figure 22. The final nodes of all the event trees in the

76Note, a households does not stay in the group to which it initially belonged. There are
probabilities each period that it moves to one of the other groups - see the Markov process in
Figure 19.
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combined tree are the docking points for the decision trees. This procedure
continues until we have 70 stages, which represent the age from 20 to 90 and
the corresponding decisions in each period. As described in Section 4 this tree
is solved via Folding Back. The optimal decisions at each decision node in each
period are stored. The vector of the state variables, which defines the state of a
household at the beginning of each period, before anything happens, is given
by

Λt =
{
t,Xt, Zt, Ȳt,mt−1

}
, (4)

where t is the period, Xt and Zt are one of the various combinations of liquid
and illiquid assets held at the beginning of period t, Ȳt is the age specific in-
come and mt−1 is the Markov state a household was in in the previous period.

These states are followed by the resolution of the Markov state and a tran-
sitory shock in period t. Thus, the decision nodes in each period t, when the
investment decisions concerning the liquid and illiquid assets are made, are
uniquely defined by the following vector

Λd
t =

{
t,Xt, Zt, Ȳt,mt, vt

}
. (5)

Here, the vector is expanded by the Markov state and the transitory shock of
period t - the Markov state of the previous period does no longer matter. After
the realization of this state a household can make its investment decisions. At
each of these nodes Λd

t the optimal decision is stored while Folding Back.
In order to give a rough impression about the number of states in the tree - t
runs from 1 to 70, X from 1 to 200, Z from 1 to 20 and m from 1 to 3 (this loop
runs two times, for the current and the previous Markov state) and v from 1 to
5. This yields altogether 12.6 million states where a decision has to be made.
At each of these points there are up to 4 000 decision opportunities. In most
cases the number of options is smaller, as the illiquid asset is defined to be not
decreasing over time.

For completeness one should mention the resolution of the risk of survival,
which is also part of the tree. However, this component has only one branch
with subsequent nodes, i.e. it does not blow up the tree as the other elements.
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12.2 Income Simulation

We generate, like Laibson et al. (2007), 5 000 independent income streams, i.e.
the simulated dataset consists of 5 000 households. For the simulation of the
income we use the estimation results and the Markov process from Section 10.

First of all the income in each period is determined by the age-specific in-
come, displayed in Figure 21. The second part of the income is determined
by the Markov state in the current period, which is depending on the Markov
state of the previous period. This implies that the generation of the Markov
states starts at period 0. At the beginning a household has, by assumption, an
equal chance, i.e. 33.33 percent, to be in Markov state 1,2 or 3. The initial state
of a household is determined by taking a random draw dr out of the interval
[0; 1], if

• dr < 1/3 then a household is in Markov state 1.

• 1/3 ≤ dr < 2/3 then a household is in Markov state 2.

• dr ≥ 2/3 then a household is in Markov state 3.

The Markov states of the following periods are determined by the process de-
fined in Section 10. This is also based on a random draw dr out of the inter-
val [0; 1], but the categorization is now according to the transition probability
p = 0.724. There are three different cases - if the previous state is

1. Markov state 1, then if

• dr < 0.724 then a household stays in state 1.

• 0.724 ≤ dr < 0.862 then a household moves to state 2.

• dr ≥ 0.862 then a household moves to state 3.

2. Markov state 2, then if

• dr < 0.138 then a household moves to state 1.

• 0.138 ≤ dr < 0.862 then a household stays in state 2.

• dr ≥ 0.862 then a household moves to state 3.

3. Markov state 3, then if
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• dr < 0.138 then a household moves to state 1.

• 0.138 ≤ dr < 0.276 then a household moves to state 2.

• dr ≥ 0.276 then a household stays in state 3.

The random draw procedure for the Markov process is repeated 46 times, be-
cause we assumed that there are no persistent shocks in retirement.

Furthermore, there are transitory income shocks in each period. We al-
low for 5 different income shocks which can occur each year. The magni-
tude of the shocks is defined in terms of its estimated standard deviation
from Section 10, namely σv =

√
0.0129 = 0.1136 for working households and

σrv =
√

0.0637 = 0.2524 for retired ones. In general, the 5 shocks are defined by
−5 · σv, −2 · σv, 0, 2 · σv and 5 · σv while in the workforce and for retirement σrv
is used instead of σr.

The generation of the transitory shocks is based on the normal distribution
assumption. The values of the probability density function for the defined de-
viations from the mean are for all kind of normal distributions the same - see
Table 10. The values are interpreted as the relative frequency of occurrence.

Table 10: Values probability density function

−5 · σv −2 · σv 0 2 · σv 5 · σv

0.039 0.4753 3.5118 0.4753 0.039

The values of the probability density function are now used to derive the prob-
abilities of the transitory shocks to arise in each period. First, the values are
normalized by dividing by the sum of all, which is 0.039 + 0.4753 + 3.5228 +

0.4753 + 0.039 = 4.5404. This leads to the corresponding probabilities of the
shocks, which are displayed in Table 11.
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Table 11: Probabilities of transitory shocks

−5 · σv −2 · σv 0 2 · σv 5 · σv

0.0086 0.1047 0.7735 0.1047 0.0086

Now, in a last step, the transitory shock which occurs in each period is iden-
tified by drawing a random number out of the interval [0; 1]. The intervals
which relate the random number to a particular shock are given in Table 12.

Table 12: Intervals for transitory shocks

bound −5 · σv −2 · σv 0 2 · σv 5 · σv

lower 0 0.0086 0.1133 0.8867 0.9914

upper 0.0086 0.1133 0.8867 0.9914 1

For example assume that the draw of the random number for the transitory
shock in period t is 0.9213. This implies, as 0.8867 < 0.9213 ≤ 0.9914, that in
period t a positive shock of 2 times the standard deviation occurs. Finally, to
give an impression of how a generated income stream of one household looks
like, see Figure 24.

Recall, we generate such income streams for 5 000 different households,
which form the simulated dataset. For a last illustration of the simulation pro-
cess of the income, consider the peak in Figure 24 at age 49. Here, this simu-
lated household has a disposable income of €55 062. The components, which
are still logarithmized from the income estimation, yielding this outcome are

1. age-specific income e10.4802 =€35 604,

2. Markov state e10.4802+0.2088 − e10.4802 =€8 267,
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Figure 24: Example Income Stream
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3. transitory shock e10.4802+0.2088+2·0.1136 − e10.4802+0.2088 =€11 191.

Note, we do not simulate the survival of the households. We assume that each
household lives until the age of 90. The main reason why we proceed that way
is to obtain a balanced simulated panel data set. Also, with a large number of
simulated observations the inclusion of survival would not change the results
for the simulated wealth to income ratios, especially in the way we estimate
those. The important aspect is that it is part of the decision process, i.e. the
households are aware of the fact that there is a chance to get 90 years old.

12.3 Combination

This subsection deals with the procedure how the two simulation steps, of
subsections 11.1 and 11.2, are combined to get the dataset of 5 000 households.
For every household we start at period 0. The liquid and illiquid asset holdings
are, by assumption, equal to zero at the beginning. The first step is to deter-
mine the initial Markov state. Then, at the beginning at period 1 (age 20) the
Markov state and the transitory shock of period 1 are simulated, as described
in the section above. Thus, we get the first state Λd

1 where a decision has to be
made. In order to get the optimal decision at this point we take the decision
of this state, which we saved while the Folding Back procedure of the overall
tree. Now, we can calculate the liquid and illiquid asset holdings at the end
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of period 1. The investment decisions and the disposable income given, we
can calculate the consumption of period 1. According to the definition of the
timing, the resolution of survival would be next, but as explained above we
omit this part and assume that the household exists until the age of 90. Thus,
the household survives the first period and the state at the very beginning of
period 2 is given by vector Λ2.

Then, the Markov state and the transitory shock of period 2 are simulated.
This leads again to a decision node Λd

2. Here, we again look for the optimal
decision, which we have saved while Folding Back. This is continued until
period 70 is reached, i.e. the age of 90.

We repeat this procedure 5000 times to get our simulated dataset for the de-
termination of the simulated moments for the Method of Simulated Moments
approach. The simulated moments are denoted by mJS and defined as

mJS =


m1
JS

m2
JS

m3
JS

m4
JS

 ,

where mr
JS

, for r = 1, 2, 3, 4, are the simulated wealth to income ratios of 4 age
cohorts from the simulated dataset. The wealth to income ratios are estimated
in the same way and for the same age cohorts as the empirical moments in
Section 11.

13 MSM Estimation

The Method of Simulated Moments77 approach estimates the parameters of
interest in the model. We follow the approach of Laibson et al. (2007) and
Gourinchas and Parker (2002). The parameter vector, which will be estimated
is given by

θ = (α, rref ).

77The Method of Simulated Moments goes back to McFadden (1989), Pakes and Pollard
(1989) and Duffie and Singleton (1993). See Stern (1997) for a review of simulation-based
estimation techniques.
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Recall, the parameter α belongs to the probability weighting function of Rank-
Dependent Utility and Cumulative Prospect Theory, respectively. The param-
eter rref is a reference point and exhibits the distinction of Rank-Dependent
Utility and Cumulative Prospect Theory, at least in the way it is applied here.
The null hypothesis in our estimation is Expected Utility Theory. For α = 1 the
probability weighting function is the identity function, i.e. as already shown
above

π(p) = exp(−(− ln(p))α) = exp(−(− ln(p))1) = p.

We define the reference point rref as a fraction of the age-specific income in
the estimation model. Recall that rref = 0 and α = 1 implies Expected Utility
Theory.

See Figure 25 for an illustration of possible reference point curves. The
dash-dotted line for rref = 0 implies that for the evaluation of outcomes a ref-
erence point is not incorporated, i.e. either Rank-Dependent Utility, if α 6= 1,
or Expected Utility Theory, if α = 1, are used.

Before we come to the actual estimation, let us repeat and formulate some
definitions.78 Let mJm be the vector of empirical moments, which was deter-
mined in Section 11, where Jm is the number of observation used for the es-
timation. The vector m(θ, χ) consists of the theoretical population moment
counterparts to mjm and mJS(θ, χ) is the vector of simulated moments, where
JS is the number of simulated households. The parameter χ contains the pa-
rameters, which were calibrated and estimated in Sections 9 and 10. In the
following we will refer to these sections as the first stage estimation or calibra-
tion phase.79

Let us now define the two relevant moment conditions

g(θ, χ) = [m(θ, χ)−mJm ]

and

gJS(θ, χ) = [mJS(θ, χ)−mJm ] .

78The notation is as in Laibson et al. (2007).
79A list summarizing these parameters is displayed in Table C.6 in the Appendix.
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Figure 25: Example Reference Curves
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For Jm and JS going to infinity it must hold that

g(θ0, χ0) = gJS(θ0, χ0) = 0,

where (θ0, χ0) is the true parameter vector.
The objective function of the method of moments estimation is defined as

q(θ, χ) = gJS(θ, χ)′ ×W × gJS(θ, χ) (6)

where W is a positive definite weighting matrix, with the size N × N and N

representing the number of moments.
The function q(θ, χ) has to be minimized with respect to the parameter vec-

tor θ. Recall, the vector χwas already estimated in the first stage of the Method
of Simulated Moments approach, i.e. in the calibration sections, and is treated
as constant in this step. Thus, the parameter estimate can be defined as

θ̂ = arg min
θ

q(θ, χ̂). (7)

This estimator is consistent and asymptotically normally distributed if certain
regularity conditions, see Pakes and Pollard (1989), are satisfied.
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The minimization of the objective function is executed by an algorithm.80

The algorithm continues to iterate, i.e. calculates the value of q(θ, χ̂) with a
new parameter combination α and rref , until the objective function converges
to a minimum.81

Let Σg be the variance matrix of the population moments and Ωg be the
variance matrix of the second stage moments condition82, which is defined by

Ωg = E [g(θ0, χ0)g(θ0, χ0)
′] .

At this point, one is normally also interested in the variance matrix of θ̂ to ob-
tain the standard errors of α̂ and r̂ref . These are usually used to analyze if the
parameter estimates are significantly different from the values which define
the null hypothesis. However, the usage of the standard errors for signifi-
cance checks is only reasonable if the estimator is (asymptotically) normally
distributed. But, this is not the case in our setting, i.e. we can not proof that
the regularity conditions from Pakes and Pollard (1989) for asymptotic nor-
mality are satisfied. Due to this we do not derive the variance matrix of θ̂. We
will deal with the implications of this aspect in the next section.83

The proceeding of the estimation is as in a two-step Generalized Method of
Moments estimation. This means, in a first run the weighting matrix W is the
identity matrix. In the second run the inverse of the estimated variance matrix
of the moments, Ω̂g, of the first run is used as the optimal weighting matrix.
The usage of the inverse of the estimated variance matrix implies that those
conditions, where the distance between the empirical and simulated moments
is relatively high, are weighted relatively low.

Finally, the model we use for the estimation is said to be overidentified, as
we use more moments than parameters to be estimated. We use the J-Test as for

80We use as Laibson et al. (2007) the Nelder-Mead Simplex algorithm, which is the default
in the "fminsearch" command in Matlab. Laibson et al. (2007) state that this algorithm is slower
but more robust than derivative-based methods, and they prefer it because of the nonconvex-
ities in quasi hyperbolic policy functions. In our setup there also prevail nonconvexities, due
to the usage of Rank-Dependent Utility and Cumulative Prospect Theory.

81As one can not be sure with this method to have reached a global minimum, we repeat
the estimation with different starting values.

82In contrast to Laibson et al. (2007) it holds that Ωg = Σg/Jm, as we use the same number
of observations to derive the empirical moments.

83See Laibson et al. (2007) for a description how the variance matrix of the Method of
Simulated Moments estimator can be derived.
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the Generalized Method of Moments estimation in Section 10 for the Method
of Simulated Moments setup - see also Laibson et al. (2007) and Gourinchas
and Parker (2002). If the model is correct, than

ξ(θ̂, χ̂) = gJS(θ̂, χ̂)′ ·Wopt · gJS(θ̂, χ̂)

will be chi-squared distributed withN−Nθ degrees of freedom, whereN is the
number of moments and Nθ is the number of parameters. This test statistic is
equal to q(θ̂, χ̂) if the optimal weighting matrix Wopt is used, which here is Ω̂−1g .
In our case we have 2 degrees of freedom and the critical value is χ2

0.05 = 5.99.
Thus, if q(θ̂, χ̂) is smaller than 5.99 than the model is valid at a significance
level of 5 percent.

14 Results and Hypothesis Testing

The results of the Method of Simulated Moments estimation are displayed in
Table 13. The value of α is different from 1, which is the value of the null
hypothesis. Recall, the probability function from Prelec (1998) is equal to the
identity function if the curvature parameter α = 1 . Furthermore, the coeffi-
cient for the reference curve is different from 0, which is the case in Expected
Utility Theory and Rank-Dependent Utility Theory. Thus, our estimates sug-
gest for now that Cumulative Prospect Theory is the evaluation principle,
which explains the data in use best. Figures 26 and 27 show the probability
function and the reference curve, respectively, with the estimated parameters.

Table 13: MSM Estimation Results

α rref

coef 0.3328 0.1105

However, as mentioned above, we could not show that the regularity condi-
tions, listed in Pakes and Pollard (1989), are satisfied. This implies that we
have no indication that the estimator of the Method of Simulated Moments
estimation is asymptotically normally distributed. That is why we can not use
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Figure 26: Probability function with estimated α
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the standard errors to check whether the estimates of α and rref are signifi-
cantly different from their null hypothesis values.

Due to this fact, we apply a bootstrapping84 approach. We use the model of
Section 2 to generate 10 000 artificial datasets under the null hypothesis, that
is Expected Utility Theory. Hence, we set α = 1 and rref = 0 in the model. We
proceed that way as we want to know whether our estimates are significantly
different from the values determined under Expected Utility Theory. In order
to analyze that we are interested in the distribution of the estimates under the
null hypothesis, i.e. the values for α̂ and r̂ref which are generated when Ex-
pected Utility Theory is the prevailing system in our model. This means if the
results of Table 13 lay in the tails of this distribution, then the estimates are
significantly different from the null hypothesis values.

The difference of the bootstrap datasets stems from the different seeds,
which are used to simulate the transitory shocks and the Markov process for

84The idea of bootstrap methods goes back to Efron (1979).
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Figure 27: Age-specific income and reference curve
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the persistent shocks. For each dataset i (for i=1,2,...,10 000) the wealth to in-
come ratio for the 4 age cohorts are estimated, as described in Section 11. The
bootstrap moments are denoted by

mi
b(θb, χ̂) =


mi
b
1

mi
b
2

mi
b
3

mi
b
4

 ,

where

θb =

(
1

0

)
,

i.e. with α = 1 and rref = 0, and χ̂ is the parameter vector from the first stage of
the Method of Simulated Moments estimation. Recall, the simulated moments
were defined by

mJS(θ, χ̂) =


m1
JS

m2
JS

m3
JS

m4
JS

 .

The bootstrap moment conditions are determined by
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gib(θ, χ̂) = [mJS(θ, χ̂)−mi
b(θb, χ̂)],

where the index i stands again for one of the 10 000 generated datasets. The
objective functions, which measure the distance between the bootstrap and the
simulated moments, are given by

qib(θ, χ̂) = gib(θ, χ̂)′ ×W × gib(θ, χ̂). (8)

Now, we minimize these functions with respect to θ. This yields 10 000 es-
timates of α and rref . As the estimation procedure, which was described in
the previous sections, is very time consuming we will not use an algorithm
to find the minimum of the objective functions. Instead, we will perform a
grid search. This means we will for both parameters α and rref solely con-
centrate on the interval [0;1], with a stepsize of 0.01. This implies the sets
sα = srref = {0, 0.01, 0.02, 0.03, ..., 1}. A value smaller than 0 is not reasonable
for both parameters, at least from a theoretical point of view. First, a negative
reference point is not according to the concept of Cumulative Prospect Theory
and, furthermore, in our setting rref < 0 would imply that the reference curve
falls when the age-specific income increases. Second, for α < 0 the probability
weighting function turns its end points and smaller probabilities are perceived
as higher than bigger probabilities - see Figure B.2 in the Appendix. Similar
arguments apply for values bigger than 1. A reference point greater than the
age-specific income might be reasonable for some ages for some households,
but not over the whole life cycle and especially not over all households in av-
erage. The probability function again changes its features if α is bigger than
1. In this case low probabilities are underestimated and high probabilities are
overestimated - see Figure B.3. This contradicts the concept of Cumulative
Prospect Theory and Rank-Dependent Utility Theory. Due to these aspects,
we restrict our search on the interval [0;1] for both parameters. This yields 10
201 combinations of the two parameters, as the stepsize for both is 0.01. For
each of these combination pairs the simulated wealth to income ratios are cal-
culated.

In a next step the distances between the simulated moments of all combi-
nations and the moments of the 1st (i=1) dataset from the bootstrapping are
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calculated by the objective functions 8. The combination pair α and rref of the
10 201 possibilities, which yields the smallest value of q1b (θ, χ̂) is the estimator
of the first round, which uses the identity matrix as a weighting matrix. For the
second run, we take the inverse of the estimated variance-covariance matrix of
the moment conditions of the first run as the weighting matrix W in Equation
8.

This procedure is executed for all the artificial datasets from the bootstrap-
ping approach. Thus, we finally have 10 000 estimates of the parameters α and
rref . A first impression of the distribution of the parameter estimates can be
obtained by looking at the histograms, see Figures 28 and 29.

Now, we focus on the question whether the estimated parameters α and
rref are significantly different from the values of the null hypothesis. For that
reason we look at the percentiles of the distributions of the parameters. For α
we are interested in the threshold, which declares that 99 % of the distribution
lies right of it, as the value of the null hypothesis is equal to 1 . This threshold
is 0.63 and, hence, is bigger than 0.3328. This implies that α is significantly
different from 1 at a significance level of 1%. In order to check the significance
of rref , we look at the threshold, where 99% of the observations lie left of it.
This yields the interval [0;0.32]. The estimate rref = 0.1105 is in this interval
and is therefore not significantly different from 0 at the level of 1%. The same
holds for a significance level of 10%, where the interval is given by [0;0.42].

Hence, the final result of the significance check is that Rank-Dependent

Figure 28: Distribution of α under Expected Utility Theory
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Figure 29: Distribution of rref under Expected Utility Theory
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Utility Theory is the risk evaluation system recommended by our estimation
procedure, and not as suggested above Cumulative Prospect Theory.
At this point recall, we restricted our search on the interval [0;1]. Thus, there
are probably values beyond the boundaries 0 and 1, which belong to the dis-
tribution of the parameter estimates under the null hypothesis. Though, these
are in some cases not reasonable from a theoretical point of view. Neverthe-
less, this implies that the critical values of the percentiles could change, if one
does not stick to the interval [0;1]. However, we believe that these possible
changes would not be in favor of the null hypotheses. This is due to the aspect
that for example estimates of α would more likely be to the right of 1 than to
the left of 0, as the bootstrap datasets are generated under the null hypothesis
with α = 1. For the percentiles this means that the critical value for α would
be pushed to the right and for rref to the left.

Note that one should also take into the account the variance of the first
stage parameter vector χ̂, in order to simulate the distributions of α̂ and r̂ref .
However, this is at the moment way beyond the computing capabilities we
have.

Finally, as mentioned above, we perform a J-Test, because we use more
moments than parameters to be estimated, i.e. the model is overidentified.
The value of the objective function q(θ̂, χ̂) = 5.1812 and thereby smaller than
the critical value of the chi-square distribution with two degrees of freedom,
which is 5.99. This implies that our the specification is valid at the 5% level.
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15 Interpretation

The result that rref = 0.1105 would indicate that a reference point is used to
evaluate outcomes. But, as the estimate is not significantly different from 0,
we come to the conclusion that households do not link the evaluation of their
consumption to the development of their age-specific income. This means the
carriers of value or utility are the absolute terms of consumption.

The parameter estimate for the probability function suggests some atti-
tudes of the households how they evaluate risk. These attitudes partly depend
on particular situations a household is in. The following interpretations are
made under the assumption that households act according to Rank-Dependent
Utility Theory with the estimated parameter. In order to give an impression
of the deviations from Expected Utility Theory, we use it as a base case for the
interpretation. Table 14 displays, in the first line the probabilities of the 5 tran-
sitory shocks in the model and in the second line the transformed probabilities
used to evaluate the risk of these shocks in each period. From comparing the
values we see that the lowest probabilities (0.0086) are overestimated and the
highest probability (0.7735) is underestimated. For the two moderate shocks
(2 times the standard deviation) the transformed values go in different direc-
tions. The probability for the negative shock is overestimated, whereas it is
underestimated for the positive one. However, the most remarkable result is
that the transformation for the extreme shocks is over 20 times higher than its
chance of occurring. Furthermore, the distribution is no longer symmetric.

Table 14: Probabilities and weights of transitory shocks

−5 · σv −2 · σv 0 2 · σv 5 · σv

0.0086 0.1047 0.7735 0.1047 0.0086

0.1853 0.2045 0.3365 0.0874 0.1863

Let us now consider the transition weights of the Markov process. The initial
and transformed probabilities for the different states are shown in Table 15.
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The first column lists the initial state a household is in. The row pairs "initial"
and "trans" give the probabilities from the Markov process and the weights
used by the evaluation process of Rank-Dependent Utility Theory. The first
row represents the states a household could move to or stay in.

Table 15: Weights for change in Markov states

low zero high

low - initial 0.724 0.138 0.138

low - trans 0.6630 0.0520 0.2850

zero - initial 0.138 0.724 0.138

zero - trans 0.4114 0.3036 0.2850

high - initial 0.138 0.138 0.724

high - trans 0.4114 0.0852 0.5034

If a household is in the low income state (1st row pair) then the probability of
staying is underestimated. Hence, the general chance of a change to a better
state is highly weighted, especially a move to the high income level. One could
interpret this as a quite optimistic attitude by the households in this situation.
In contrast to that, if a household is in the high income state (3rd row pair), the
values suggest a quite pessimistic tendency. The chance of staying in the same
state is here even more underestimated than in the case of being initially in the
low income situation. The lowest weight for the probability to stay in the same
state we find if a household is in the middle income position (2nd row pair).
Thus, the probability of a change is overestimated, with again a pessimistic
tendency, as the value of a move to the low income state is higher than the one
for the high income state.

Now, let us turn to the risk of survival. Here, also the aspect that high prob-
abilities are underestimated prevails. For example a survival rate of 0.9994
(age 20) yields a weight of 0.9188. Considering the survival rates separately
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this does not seem to have so much influence. But, over the whole life cycle
this leads to quite big differences. The weight of the contribution of the 90th
year at the age of 20, in the model, is equal to 1.55e-7, although the conditional
probability of living from 20 to 90 is 0.1573. Hence, this can be interpreted
in that way that young households intensely underestimate the probability of
getting quite old.

We believe that the interpretations about the risk evaluation of the simu-
lated households remain valid, even if some aspects in the model setup are
changed. For example if the number of transitory shocks in each period is
increased. A detailed analysis may be subject to future work.

16 Robustness Check

This section checks the robustness of the results of Section 14. We reestimate α̂
and r̂ref with different values for the coefficient of relative risk aversion ρ, the
consumption flow parameter γ, and the interest rate for negative liquid asset
holdings RCC

X . We apply the same bootstrap method as in Section 14 as we still
can not assume that the estimator is asymptotically normally distributed. In
contrast to the approach above, we reduce the stepsize in the interval [0;1] to
0.025 for the grid search, due to computation time.

We set the coefficient of relative risk aversion ρ equal 1 and 3, respectively.
Laibson et al. (2007) state that in most life cycle consumption models the co-
efficient of relative risk aversion lies between 0.5 and 5, but there is no gen-
erally accepted value. Nevertheless, we use these two values, in order to get
an impression of the reaction of the estimates for α and rref . The estimates,
displayed in Table 16, are quite close to those we obtained in the base case, for
both alternative values of ρ.

The bootstrap approach indicates that α̂ is different from 1 at a significance
level of 1%, with ρ = 1. In contrast to the base case, here the estimate of rref is
also sginificantly different from its null hypothesis value at the 1% level. Ac-
cording to this, the estimation procedure with ρ = 1 suggests that Cumulative
Prospect Theory is the prevailing risk evaluation theory in the model. In the
case with ρ = 3 the parameter estimate of α is also significantly different from
1 at the 1% level. But, r̂ref is not significantly different from 0 at the 1%, 5% or
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10% level. Thus, this setting comes to the same conclusion as the base case.
For the consumption flow, which is generated by the illiquid asset, we set

the parameter γ equal to 0.03 and 0.07. Recall, the illiquid holdings in the
model can be interpreted as home equity. The return on home equity is not
easy to determine, as there are various aspects, which one has to take into ac-
count, like capital gains, use-value, maintenance and taxes.85 Furthermore, it
is surely relevant if a houseowner lives in the house or gets paid a rent. Here,
we orientate again on Laibson et al. (2007), who set γ equal to 0.0338 and
0.0659. The changes of the parameter estimates of α and rref are negligible.
The results of the bootstrap indicate, as in the base case, that α̂ is significantly
different from 1 and r̂ref is not significantly different from 0, for both calibra-
tion cases.

Now, we look at changes of the interest rate for credits, namelyRCC
X . We set

this rate equal to 8% and 12%. The intuition behind these changes is to vary the
price to borrow money. If getting money is cheaper, then households have an
incentive to borrow more money, especially in younger years, and vice versa.
We find that the estimates of α and rref nearly stay the same as in the base case.
The bootstrap approach shows that the parameter estimates are both signifi-
cantly different from their null hypothesis values at the 1% level. This implies
that these two calibration cases also suggest that Cumulative Prospect Theory
fits the data best.
Note, it is also possible to simultaneously estimate the parameters, considered
in this section, together with α̂ and r̂ref . For example Laibson et al. (2007) do
so for the coefficient of relative aversion, as the sensitivity of their parameter
estimates is quite high to changes of the coefficient of relative risk aversion.
However, our robustness checks do not indicate any high sensitivities.

We perform an overidentification test, i.e. a J-Test as above, for all different
cases and find that the specifications are all valid at the 5% level.

The robustness check shows that the estimates of α and rref are not sen-
sitive to changes of the coefficient of relative risk aversion, the consumption
flow parameter or the interest rate for negative, liquid asset holdings. We find
for some cases that the significance of the results has changed in comparison
to the base case. In these cases Cumulative Prospect Theory is preferred, in-

85See Flavin and Yamashita (2002).
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stead of Rank-Dependent Utility Theory. This is a shift more away from the
null hypothesis, namely Expected Utility Theory, as this implies that also a ref-
erence curve is used to evaluate risky situations. However, the grid we used
for the bootstrap approach in the base case is tighter, therefore we give that
result more weight and stay with the conclusion that Rank-Dependent Utility
Theory is the risk evaluation system prevailing in our model.

Table 16: Estimation results robustness check

α rref

ρ = 0.99 0.3229 0.1143

ρ = 3 0.3328 0.1103

γ = 0.03 0.3308 0.1090

γ = 0.07 0.3327 0.1005

RCC
X = 0.08 0.3328 0.1102

RCC
X = 0.12 0.3328 0.1103

17 Extensions

In the setup of the model and the simulation we introduced some restrictions,
which were mainly due to the aspect to reduce the computation time of the
Method of Simulated Moments approach. Relaxing these would be one way to
extend the model or to test if our results are robust to such changes. However,
there are also some other ideas which can be applied to the setup of the model
or the simulation procedure.86

86As we use nearly the same model as Laibson et al. (2007), some of the aspects mentioned
in this section can also be found in their paper.
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17.1 Relaxing Restrictions

A quite unrealistic assumption in the design of the model concerns the fea-
tures of the illiquid asset. It is assumed that it is completely illiquid over the
lifetime of a household. This implies that it can not be used to compensate any
kind of shock which occurs. Moreover, it can not be used to increase the dis-
posable income when a household is retired. A way of relaxing this restriction
is to permit that these holdings can be liquidated, but in connection with some
transaction costs and perhaps a particular time delay. This would be necessary
to maintain a difference between liquid and illiquid assets.

One could also think of separating the illiquid asset, e.g. in illiquid wealth
and pension plans. The pension plans would then generate additional income
for a household if it is in retirement, without causing any transaction costs.

Furthermore, the interest rate of the illiquid asset is set equal to 1. This is
mainly due to the point that we considered wealth as some sort of home eq-
uity. But, doing so one could also account for the possibility to borrow against
this property.

Another possibility would be to increase the number of transitory shocks
or the states for the Markov process. But, one would face a direct trade-off
between obtaining a better approximation of the income process versus a sub-
stantial increase in the computation time of the Method of Simulated Moments
estimation. The same holds for the stepsizes we have chosen for the liquid and
illiquid assets. Recall, we determined that the liquid holdings can increase or
decrease in steps of €2 000 and the illiquid asset can only increase by steps of
€50 000. We do not believe that a reduction in the stepsize of the liquid asset
would change our results. In contrast to that, the stepsize of the illiquid asset
is pretty high. This implies that in the model the accumulation of wealth could
be delayed by some periods, as a household has to save money in the liquid
holdings first if it has decided to invest in the illiquid asset. In combination
with the wealth to income ratios we have chosen as the moments, this could
have an influence on the results. However, this would also extremely increase
the computation time. For example, if we cut down the stepsize of the illiquid
asset to €10 000, the computing time would increase by more than the factor 5.

Another idea, which we also did not consider due to the same argument, is
another determination of the time unit. In reality households do not only make
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one decision in a year concerning their investments and especially consump-
tion. Thus, a richer model could use months, weeks or even days to simulate
the decisions of a household.

17.2 Options

For the estimation we used the wealth to income ratios of the age cohorts 20
to 29, 30 to 39, 40 to 49 and 50 to 59, as the moments in Method of Simulated
Moments procedure. There are a lot of other potential moments one could
choose, like the marginal propensity to consume87, consumption to income
ratio for different age cohorts, the fraction of wealth that is illiquid, etc.. The
choice of the moments, as pointed out in the theory of the Generalized Method
of Moments approach, is important for the estimation results. But, if the model
is correctly specified by the chosen moments, then a change of these would not
alter the estimated parameter values. Nevertheless, this could be a test of the
model and we leave that to future work.

The way in which we use the theory of Kahneman and Tversky (1992) devi-
ates in some aspects from their original paper. We did this in order to achieve
equality between Rank-Dependent Utility and Cumulative Prospect Theory.
This made it possible to nest all three theories in the same model and simula-
tion process, respectively. The main deviation is that we do not use different
probability functions for gains and losses. This could perhaps alter the estima-
tion results, but therefore a different setting in the model would be necessary.

According to Cumulative Prospect Theory one could also use another defi-
nition for the reference point or points, which categorizes outcomes into gains
and losses. One possibility would be a concept from the Habit Formation or
Habit Persistence literature88 , which determines the reference point in terms
of past consumption. However, as long as we solve our model via Backwards
Induction this would imply some serious computational burdens.

87As mentioned, we tried to estimate the propensity to consume from our available data,
but did not come up with any useful results.

88See e.g. Duesenberry (1949), Pollak (1970) or Constantinides (1990).
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17.3 Future Research

The model could be extended by allowing the possibility of quasi-hyperbolic
discounting, as in Laibson et al. (2007). Here, the question arises if the two con-
cepts, preferences like Rank-Dependent Utility or Cumulative Prospect Theory
and hyperbolic discounting, do influence each other, i.e. that they are highly
correlated. For example, using hyperbolic discounting is a way to capture
the fact that individuals do not save sufficiently for old age. The probability
function of Rank-Dependent Utility or Cumulative Prospect Theory89 has the
feature to underestimate high probabilities. This means that households like
in our model underestimate the probability of getting really old. This implies
that a household also does not save sufficiently for old age, due to the charac-
teristics of the probability function. However, one could also examine if such
an ambiguous effect exists.

Another possibility for future research is to account for heterogeneity in
preferences. If one considers the experiments, like those of Kahneman and
Tversky (1979) described in Section 3.1, the results indicate that solely a major-
ity of the participants, but not all, violate Expected Utility Theory. This implies
that there is also a fraction, which acts according to the standard theory in eco-
nomics. Thus, our model could be extended by a further parameter, which
separates the households into those following Expected Utility Theory and
those having Rank-Dependent Utility or Cumulative Prospect Theory prefer-
ences. Such a parameter could also be estimated in the Method of Simulated
Moments procedure. One could also think of intra-household heterogeneity.
The idea is that households could change their attitudes over time. For exam-
ple a household could learn that its way of evaluating the future is wrong and
therefore changes its preferences. However, before going in that direction one
should first have a look at some data if there is any evidence for that kind of
heterogeneity.

Finally, an aspect, which also Laibson et al. (2007) mention, is the pos-
sibility that people are acting naively. Recall from Section 4, if preferences
like Rank-Dependent Utility or Cumulative Prospect Theory prevail and the
model is not solved via Backwards Induction, but with the usage of the Re-

89Recall, the probability functions of these theories are equal in our setting, but differ a little
bit in the original papers of Quiggin (1982) and Kahneman and Tversky (1992).

101



duction of Compound Lotteries Axiom, this leads to dynamically inconsistent
decisions. The assumption that individuals can solve a model, like the one pre-
sented here, by Folding Back probably might be beyond their computational
capabilities. Thus, it could be reasonable to assume that individuals do not
apply Folding Back. This, as stated, would imply dynamically inconsistent
preferences. Strotz (1955), Akerlof (1991) and O’Donoghue and Rabin (1999a,
1999b) suggest that people with that kind of preferences could act naively, i.e.
they believe that later selfs behave according to the optimal initial plan they
set up earlier. Hence, one could assume this kind of behavior for the solution
of the model. It could also be possible to permit both ways, i.e. a fraction of
households using Folding Back and the others acting naive - as above hetero-
geneous households in the simulation. In general, the objective of any of these
ideas about heterogeneity should be if these are able to explain reality better
than others, i.e. if they fit the available data better or not.

18 Conclusion

The model in this thesis is designed in such a way, that two parameters indi-
cate which risk evaluation theory is used, i.e. Expected Utility Theory, Rank-
Dependent Utility Theory or Cumulative Prospect Theory. For the solution
of our model we find that Folding Back should be used in the case of Rank-
Dependent Utility or Cumulative Prospect Theory, in order to circumvent dy-
namic inconsistencies. Furthermore, we show that the critique given in the
literature about the usage of Folding Back in combination with Non-Expected
Utility theories does not apply, if one does not assume the Reduction of Com-
pound Lotteries Axiom, at least for the two theories we use.

The Method of Simulated Moments procedure provides an estimate of the
curvature parameter α of the probability weighting function equal to 0.3328.
For the reference parameter rref we get an estimate of 0.1105. The estimates
of the two parameters α and rref indicate that Cumulative Prospect Theory is
the risk evaluation model, which matches the real life data from the SAVE and
SOEP survey best. However, we could not show that the parameter estimates
are asymptotically normally distributed.

Due to this we apply a bootstrap method, in order to check whether the esti-
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mated values are significantly different from the values of the null hypothesis,
which is Expected Utility Theory. We find that the estimate of α is significantly
different from 1 at the 1% level. The estimated value of rref is not significantly
different from 0, even at the 10% level. This leads to the conclusion that Rank-
Dependent Utility Theory is the risk evaluation system recommended by our
model. This implies that the households in our setup do not define consump-
tion in terms of gains and losses due to a reference, but they overestimate low
probabilities and underestimate high probabilities. These results are also ro-
bust to changes in the calibration. Nevertheless, future work will be required
to confirm these estimation results with other models and/or data.
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Appendix

A Violation of First-Order Stochastic Dominance

Kahneman and Tversky (1979) state that π(p) < p, except for low probabilities.
However, this feature can exhibit violations of dominance with probabilities of
the form 1/n. The following example stems from Quiggin (1982). Suppose, the
outcome X is received with certainty and is compared to a lottery, where all
outcomes are of the form X+xi for i = 1, ..., n, with x being a random variable
0 < x ≤ ε, and each outcome with probability 1/n. If π(1/n) < 1/n and for a
sufficiently small ε it can be that

U(X) >
n∑
i=1

π(1/n)U(X + xi).

This violates dominance, as the lottery always yields X plus something pos-
itive (even if it is very small), which is apparently greater than X from the
certain option.
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B Additional Figures

Figure B.1: Prelec’s Function for diverse α
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Figure B.2: Probability Function with α = −0.5
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Figure B.3: Probability Function with α = 1.5
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C Additional Tables

Table C.1: Non-Expected Utility Models

Prospect Theory Ward Edwards (1955, 1962),
Kahneman and Tversky (1979)

Subjectively Weighted Utility Uday Karmarkar (1978, 1979)

Weighted Utility Chew and MacCrimmon (1979),
Chew (1983), Fishburn (1983)

Anticipated Utility John Quiggin (1982)

Optimism/Pessimism John Hey (1984)

Ordinal Independence Segal (1984),
Green and Jullien (1988)

General Quadratic Chew, Epstein and Segal (1991)

Cumulative Prospect Theory Kahneman and Tversky (1992)

3rd Generation Prospect Theory Schmidt, Starmer and Sugden (2008)

This list, except for the last two, is from Machina (1989).
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Table C.3: Parameter estimates for income error term

value stdx

constant 9.3965 (0.1418)

age 0.0505 (0.0061)

age2/100 -0.0546 (0.006)

kids 0.036 (0.0066)

dep.adults 0.1455 (0.0069)

unemploymentrate 0.071 (0.004)

cohort2 -0.3063 (0.0519)

cohort3 -0.2674 (0.061)

cohort4 -0.4189 (0.0681)

cohort5 -0.3109 (0.0706)

cohort6 -0.3139 (0.0747)
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Table C.4: Wealth to Income ratios with cohorts

value stdx

constant 9.9300 (0.9740)

kids 0.9813 (0.7972)

dep.adults 1.5269 (1.2649)

cohort2 -2.7693 (1.2206)

cohort3 -3.1256 (1.1874)

cohort4 -7.5563 (1.3439)

cohort5 -8.1138 (1.3981)

cohort6 -7.5333 (1.9017)
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Table C.5: Parameter Vector χ - Part I

value stdx

coefficient of relative
riskaversion ρ

2 -

consumption flow γ 0.05 -

discount rate δ 0.95 -

credit limit λ 0.318 (0.017)

interest rate pos. liquid assets
RX

1.0241 (0.0135)

interest rate neg. liquid assets
RCC
X

1.1 -

Kids estimation

β1 0.25 (0.002)

β2 0.89 (0.321)

β3 0.12 (0.102)

Dependent Adults estimation

β1 0.34 (0.055)

β2 0.1 (0.03)

β3 0.44 (0.78)
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Table C.6: Parameter Vector χ - Part II

value stdx

income working

constant 9.3965 (0.1418)

age 0.0505 (0.0061)

age2/100 -0.0546 (0.006)

kids 0.036 (0.0066)

dep.adults 0.1455 (0.0069)

unemploymentrate 0.071 (0.004)

cohort2 -0.3063 (0.0519)

cohort3 -0.2674 (0.061)

cohort4 -0.4189 (0.0681)

cohort5 -0.3109 (0.0706)

cohort6 -0.3139 (0.0747)

income error term

α 0.7425 (0.2981)

σ2
ε 0.023 (0.0081)

σ2
v 0.0129 (0.0057)

income retireda

mean 10.017 (0.0637)

a For income in retirement both, the mean and the standard deviation,
are used for the simulation.
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D Proof: Rank-Dependent Utility fits the Alterna-

tive Stochastic Dominance Definition

In contrast to the example in the text we use a more general setting. In partic-
ular, we replace the given probabilities by s for the probability of survival, m
for the probability to end up in the high income class, and p for the chance of
receiving a positive income shock:

La = ([(A; p|B; 1− p);m|(C; p|D; 1− p); 1−m] ; s|Bu; 1− s)

Lb = ([(E; p|F ; 1− p);m|(G; p|H; 1− p); 1−m] ; s|Bd; 1− s) .

Recall, the two simple lotteries in squared brackets are already ordered, i.e.
the value of the left lottery is bigger (high income class) than the value of the
right lottery (low income class). The definition of stochastic dominance for
the three-stage lotteries arising in our model states that La stochastically dom-
inates Lb if the following conditions are true:

C-1: (A;p|B;1-p) first-order-stochastically dominates (E;p|F;1-p)

C-2: (C;p|D;1-p) first-order-stochastically dominates (G;p|H;1-p)

C-3: Bu first-order-stochastically dominates Bd

and La strictly stochastically dominates Lb, if at least one of these conditions
satisfies strict First-Order-Stochastic Dominance.

It is known that Rank-Dependent Utility satisfies First-Order-Stochastic
Dominance - see for example Machina (1989). Hence, the conditions C-1 and
C-2 imply that VAB, the value of lottery (A;p|B;1-p), is at least as big as VEF , or
for strict First-Order-Stochastic Dominance bigger than VEF - the same holds
for VCD and VGH . Now, consider the two-stage lotteries in the squared brackets
[(A;p|B;1-p);m|(C;p|D;1-p);1-m] and [(E;p|F;1-p);m|(G;p|H;1-p);1-m], and
label these W and Q, respectively. There are two possible relations, given the
conditions above, for the two-stage lotteries W and Q according to the defini-
tion of Two-Stage-Stochastic Dominance - ("fosd" is for first-order-stochastically
dominates, "tssd" for two-stage-stochastically dominates, and VW and VQ are
the values of W and Q from Rank-Dependent Utility provided by Folding
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Back.):

• W strictly tssd Q, if

– (A;p|B;1-p) strictly fosd (E;p|F;1-p) and (C;p|D;1-p) strictly fosd
(G;p|H;1-p) or

– (A;p|B;1-p) strictly fosd (E;p|F;1-p) and (C;p|D;1-p) fosd (G;p|H;1-
p) or

– (A;p|B;1-p) fosd (E;p|F;1-p) and (C;p|D;1-p) strictly fosd (G;p|H;1-
p)

all implying VW > VQ.

• W tssd Q, if (A;p|B;1-p) fosd (E;p|F;1-p) and (C;p|D;1-p) fosd (G;p|H;1-
p) - implying VW ≥ VQ.

The implications for the relation of VW and VQ are simply derived from the
combinations of first-order-stochastic dominance of the two lottery pairs. Re-
member, the simple lotteries are already ordered, then according to Rank-
Dependent Utility the values of the two-stage lotteries W and Q (with V(A;p|B;1-
p) being the value of lottery (A;p|B;1-p) etc.) are:

VW = (1− π(m)) · V (C; p|D; 1− p) + π(m) · V (A; p|B; 1− p)

VQ = (1− π(m)) · V (G; p|H; 1− p) + π(m) · V (E; p|F ; 1− p).

The weights from the cumulative weighting functions are identical for both
equations and the relations between the simple lotteries are clarified by the
conditions C-1 and C-2 from the definition. That is, if La stochastically dom-
inates Lb, then by condition C-2 V (C; p|D; 1 − p) ≥ V (G; p|H; 1 − p) and by
condition C-1 V (A; p|B; 1− p) ≥ V (E; p|F ; 1− p). This implies that

VW ≥ VQ. (D.1)

Now, consider the remaining first stage of the lotteries La and Lb:
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La = (VW ; s|Bu; 1− s)

Lb = (VQ; s|Bd; 1− s) .

From condition 3 it is known that Bu ≥ Bd, which implies VBu ≥ VBd . Accord-
ing to the ordering required for the evaluation with Rank-Dependent Utility
preferences there are two cases for each lottery La and Lb - see Table D.1.

Table D.1: Possible Rankings
La Lb

a1 : VW ≥ VBu b1 : VQ ≥ VBd
a2 : VW < VBu b2 : VQ < VBd

Altogether 4 possible ranking combinations for the comparison of the two lot-
teries under Rank-Dependent Utility can occur - (a1, b1), (a1, b2), (a2, b1) and
(a2, b2). In the setting of the model there are never more than these 4 possibili-
ties, as the first-stage of the three-stage lotteries is the risk of either survival or
death of the household.

Now, it is necessary to show that each evaluation by Rank-Dependent Util-
ity of these possibilities yields VLa ≥ VLb , as it was assumed that La stochasti-
cally dominates Lb. In order to proof this, assume the opposite, i.e. VLa < VLb
and check if this can be true. Note, in some cases it can be that VW is equal
to VBu and/or VQ is equal to VBd . For these constellations the outcomes are
ranked in the evaluation, although they are equal, as it suits best for the proof.
This is permitted as both outcomes in the lottery are equal and the cumulative
probabilities by definition sum up to 1.

Case 1: VW ≥ VBu and VQ ≥ VBd - Given these rankings evaluate the lotteries
La and Lb by Rank-Dependent Utility:

(1− π(s)) · VBu + π(s) · VW < (1− π(s)) · VBd + π(s) · VQ.

The cumulative weighting functions are identical on both sides, therefore one

124



can rewrite the inequality. This leads to

(1− π(s)) · (VBu − VBd) + π(s) · (VW − VQ) < 0.

It was shown above that VW ≥ VQ by equation E.1. C-3 in the definition states
that VBu ≥ VBd and the definition of the probability weighting function deter-
mines that π(s) ∈ [0; 1] for s ∈ [0; 1]. Hence, the above inequality can not be
true.

Case 2: VW ≥ VBu and VQ < VBd

(1− π(s)) · VBu + π(s) · VW < (1− π(1− s)) · VQ + π(1− s) · VBd .

One can rewrite by the assumptions of this case - VW = VBu+ε and VBd = VQ+η,
with ε, η ≥ 0. This yields

(1− π(s)) · VBu + π(s) · (VBu + ε) < (1− π(1− s)) · VQ + π(1− s) · (VQ + η)

⇒VBu − π(s) · VBu + π(s) · VBu + π(s) · ε
< VQ − π(1− s) · VQ + π(1− s) · VQ + π(1− s) · η

⇒VBu + π(s) · ε < VQ + π(1− s) · η
⇒π(s) · ε < VQ + π(1− s) · η − VBu .

We know π(s) · ε ≥ 0, as π(s) ∈ [0; 1] for s ∈ [0; 1] and ε ≥ 0. For the right
hand side it holds that VQ + π(1 − s) · η ≤ VBd , because of the substitution
VBd = VQ + η and π(s) ∈ [0; 1]. In combination with the implication from C-3,
namely VBu ≥ VBd , this leads to the conclusion that VQ + π(1− s) · η− VBu ≤ 0.
Hence, the resulting inequality

0 ≤ π(s) · ε < VQ + π(1− s) · η − VBu ≤ 0

is not true.

Case 3: VW < VBu and VQ ≥ VBd

(1− π(1− s)) · VW + π(s) · VBu < (1− π(s)) · VBd + π(s) · VQ.
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Similar to Case 2 set VBu = VW + ε and VQ = VBd + η, with ε, η ≥ 0:

(1− π(1− s)) · VW + π(1− s) · (VW + ε) < (1− π(s)) · VBd + π(s) · (VBd + η)

⇒VW − π(1− s) · VW + π(1− s) · VW + π(1− s) · ε
< VBd − π(s) · VBd + π(s) · VBd + π(s) · η

⇒VW + π(1− s) · ε < VBd + π(s) · η
⇒π(1− s) · ε < VBd + π(s) · η − VW .

For the left hand side holds again π(1−s) ·ε ≥ 0, as π(1−s) ∈ [0; 1] for s ∈ [0; 1]

and ε ≥ 0. From π(s) ∈ [0; 1] and the substitution VQ = VBd + η it follows
that VBd + π(s) · η ≤ VQ. Together with equation E.1 one gets the upcoming
inequality, which is obviously not true

0 ≤ π(1− s) · ε < VBd + π(s) · η − VW ≤ 0.

Case 4: VW < VBu and VQ < VBd

(1− π(1− s)) · VW + π(1− s) · VBu < (1− π(1− s)) · VQ + π(1− s) · VBd .

Like in Case 1 the cumulative weighting functions are identical - yielding

(1− π(1− s)) · (VW − VQ) + π(1− s) · (VBu − VBd) < 0.

From Equation E.1 it is known that VW ≥ VQ. Condition C-3 implies that
VBu ≥ VBd and it is known that π(1 − s) ∈ [0; 1] for s ∈ [0; 1]. Therefore, the
above inequality can not be true.

Conclusion: The cases 1-4 show that Rank-Dependent Utility preferences se-
lect the three-stage lottery, which is stochastically dominant, at least by the
definition introduced in this thesis.
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E Rank-Dependent Utility and the Independence

Axiom

Let LX , LY and LZ be the values of the lotteries X , Y and Z. The preference
X � (�)Y implies for the evaluation with Rank-Dependent Utility that LX >

(≥)LY . The probability function is denoted by π and exhibits the same features
as shown in Section 3. Note, the evaluation process applied here does not use
the Reduction of Compound Lotteries Axiom, but Folding Back.

Part 1: The first statement of the Independence Axiom is

X � Y ⇔ (X; p|Z; 1− p) � (Y ; p|Z; 1− p). (E.1)

To show that the above equation holds in general under Rank-Dependent Util-
ity preferences, we first consider the left to right direction of statement E.1,
namely

X � Y ⇒ (X; p|Z; 1− p) � (Y ; p|Z; 1− p),

and check if this is true.
There are five cases for the ranking of the three lotteries X , Y and Z, under

the condition X � Y . Some of these cases can be summarized to one case, as
these share the same patterns in the evaluation process

1. Z ≺ Y ≺ X or Y ≺ X ≺ Z

2. Y ∼ Z ≺ X or Y ≺ Z ∼ X

3. Y ≺ Z ≺ X .

Case 1: The rankings in the two-stage lotteries (X; p|Z; 1−p) and (Y ; p|Z; 1−p)
are LZ < LX and LZ < LY . This leads under Rank-Dependent Utility to

(1− π(p)) · LZ + π(p) · LX > (1− π(p)) · LZ + π(p) · LY
LX > LY .

The above inequation is true, as the preference X � Y implies LX > LY . The
argumentation for the case Y ≺ X ≺ Z is in principle the same.

127



Case 2: The ranking in the two-stage lottery (X; p|Z; 1− p) is LZ < LX . For the
lottery (Y ; p|Z; 1 − p) there is actually no ranking, as Y ∼ Z implies LY = LZ .
Recall the intuition of the evaluation procedure under Rank-Dependent Utility
preferences for each outcome x - the cumulative weighting function for x is
defined by the difference of "the chance of winning an outcome at least as good as
x" and "the chance of winning an outcome strictly better than x". This implies for
(Y ; p|Z; 1 − p) that "the chance of winning an outcome at least as good as Z" is 1
and "the chance of winning an outcome strictly better than Z" is 0 - the same holds
if one starts with Y . This implies that the lottery (Y ; p|Z; 1− p) can be written
as (Y ; 1) or (Z; 1), because of the indifference of Y and Z, which also implies
that LY = LZ . For the expression (X; p|Z; 1− p) � (Y ; p|Z; 1− p) this yields

(1− π(p)) · LY + π(p) · LX > (1− π(0)) · LY
(1− π(p)) · LY + π(p) · LX > LY

π(p) · LX − π(p) · LY > 0

LX > LY .

According to the ranking above, we know that this inequation is true. The
same argument holds for Y ≺ Z ∼ X .

Case 3: This case is responsible for the fact that Rank-Dependent Utility is
not compatible with the Independence Axiom, if the Reduction of Compound
Lotteries Axiom is used. The rankings in the two-stage lotteries (X; p|Z; 1− p)
and (Y ; p|Z; 1− p) are LZ < LX and LZ > LY , respectively. With Folding Back
and without the Reduction of Compound Lotteries Axiom this leads to

(1− π(p)) · LZ + π(p) · LX > (1− π(1− p)) · LY + π(1− p) · LZ
LZ − π(p) · LZ + π(p) · LX > LY − π(1− p) · LY + π(1− p) · LZ

LZ + π(p) · (LX − LZ) > LY − π(1− p) · (LY − LZ)

π(p) · (LX − LZ) > LY − LZ − π(1− p) · (LY − LZ)

π(p) · (LX − LZ) > (1− π(1− p)) · (LY − LZ).

The left hand side is greater than 0, as 0 < π(p) < 1 and LX − LZ > 0. It also
holds that 0 < π(1− p) < 1 for all p ∈]0; 1[. This implies (1− π(1− p)) > 0. The
above assumed preference Y ≺ Z results in LY < LZ or LY − LZ < 0. Hence,
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the right hand side is negative and therefore the above inequation is true.

Now, we consider the other direction of statement E.1, namely

X � Y ⇐ (X; p|Z; 1− p) � (Y ; p|Z; 1− p), (E.2)

and check if this is also true. The difference to the approach above is the infor-
mation one starts with, i.e. one knows it holds that

(X; p|Z; 1− p) � (Y ; p|Z; 1− p). (E.3)

In order to evaluate the compound lotteries in E.3, we have to make assump-
tions about the relation of X and Y , although we do not know which is true.
There are three possibilities, namely

A: X ≺ Y

B : X ∼ Y

C: X � Y .

Now, we check whether the preference E.3, which we know is true, holds un-
der A or B. For the case that neither A nor B is the correct assumption, then we
know that X � Y must be true.

Case A: For X ≺ Y we get the following three ranking cases (with different
patterns in the evaluation) for the three lotteries X , Y and Z, namely

1. X ≺ Y ≺ Z or Z ≺ X ≺ Y

2. X ∼ Z ≺ Y or X ≺ Z ∼ Y

3. X ≺ Z ≺ Y .

Case 1: Here, we again only consider X ≺ Y ≺ Z, as the other case has the
same patterns. Evaluating E.3 according to Rank-Dependent Utility yields

(1− π(1− p)) · LX + π(1− p) · LZ > (1− π(1− p)) · LY + π(1− p) · LZ
LX > LY .
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We know that the above inequation must hold, therefore the assumption X ≺
Y can not be true in this case.

Case 2: Here, we also consider only X ∼ Z ≺ Y . The relation X ∼ Z implies
that LX = LZ , which yields

LX > (1− π(p)) · LX + π(p) · LY
LX > LX − π(p) · LX + π(p) · LY
LX > LY .

Again, we know that the above inequation must hold, therefore the assump-
tion X ≺ Y can not be true in this case.

Case 3:

(1− π(1− p)) · LX + π(1− p) · LZ > (1− π(p)) · LZ + π(p) · LY
LX − π(1− p) · LX + π(1− p) · LZ > LZ − π(p) · LZ + π(p) · LY

LX − LZ − π(1− p) · LX + π(1− p) · LZ > π(p) · (LY − LZ)

LX − LZ − π(1− p) · (LX − LZ) > π(p) · (LY − LZ)

(1− π(1− p)) · (LX − LZ) > π(p) · (LY − LZ).

We know that (1 − π(1 − p)) > 0 and that (LX − LZ) < 0 by the ranking as-
sumption, therefore the left hand side is smaller than 0. The right hand side is
positive, as π(p) > 0 and (LY −LZ) > 0. This implies that the above inequation
can not be true under the assumptions of this case. However, we know that
the inequation is true, therefore we get to the conclusion that the assumption
X < Y is not correct in this case

Conclusion Case A: All three subcases come up with wrong expressions, there-
fore the assumption X < Y for the evaluation of the compound lotteries can
not be true, if preference E.3 is true.

Case B: There are three different possibilities for the ranking of the three lot-
teries, which can be summarized in the two cases

1. X ∼ Y ≺ Z or Z ≺ X ∼ Y

2. X ∼ Y ∼ Z.
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Case 1: We consider X ∼ Y ≺ Z, which yields

(1− π(1− p)) · LX + π(1− p) · LZ > (1− π(1− p)) · LX + π(1− p) · LZ
LX > LY .

The assumptionX ∼ Y contradicts the above inequation and therefore can not
be true.

Case 2: The indifference implies that we can write (X; p|Z; 1−p) as (X; 1), and
(X; p|Z; 1− p) as (Y ; 1). This leads to

LX > LY .

This implies that X ∼ Y can not be true.

Conclusion Case B: In both cases we find contradictions, that is why we con-
clude, as above, that the assumption X ∼ Y can not be true, as long as E.3 is
true.

Conclusion: We showed that the assumptions X ≺ Y and X ∼ Y disagree
with preference E.3, which we know is true. We also know that one of the
assumptions A, B and C must hold. Due to this we conclude that X � Y must
be true if (X; p|Z; 1− p) � (Y ; p|Z; 1− p) prevails. This implies that statement
E.2 must be true.

Part 2: The other part of the Independence Axiom states that

X ∼ Y ⇔ (X; p|Z; 1− p) ∼ (Y ; p|Z; 1− p). (E.4)

We again start with the left to right direction, namely

X ∼ Y ⇒ (X; p|Z; 1− p) ∼ (Y ; p|Z; 1− p).

Under the condition that X is indifferent to Y , there are two possibilities with
different patterns for the ordering of all three lotteries, namely

1. X ∼ Y ≺ Z or Z ≺ X ∼ Y .

2. X ∼ Y ∼ Z
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Case 1: We only consider the case X ∼ Y ≺ Z. This leads to

(1− π(1− p)) · LX + π(1− p) · LZ = (1− π(1− p)) · LY + π(1− p) · LZ
π(1− p) · LX = π(1− p) · LY .

The equality holds, as X ∼ Y implies that LX = LY .

Case 2: The indifference between all three lotteries implies that (X; p|Z; 1− p)
can be written as (X; 1), and (Y ; p|Z; 1− p) as (Y ; 1). This leads to

LX = LY .

This implies that X ∼ Y , which is the initial condition.

The proof in the other direction of E.4 is in principle the same, as in Part 1. We
know that

(X; p|Z; 1− p) ∼ (Y ; p|Z; 1− p) (E.5)

is true. In order to evaluate the compound lotteries, we have to make assump-
tions about the relation of X and Y . As above there the three possibilities

A: X ≺ Y

B : X � Y

C: X ∼ Y .

One has to check if A and B can be true under E.5, as we are interested whether
X ∼ Y is the correct assumption.

Case A: We have the rankings

1. X ≺ Y ≺ Z or Z ≺ X ≺ Y

2. X ∼ Z ≺ Y or X ≺ Z ∼ Y

3. X ≺ Z ≺ Y .

Case 1: We considerX ≺ Y ≺ Z. Evaluating E.5 according to Rank-Dependent
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Utility yields

(1− π(1− p)) · LX + π(1− p) · LZ ∼ (1− π(1− p)) · LY + π(1− p) · LZ
LX ∼ LY .

We know that the above inequation must hold, therefore the assumption X ≺
Y can not be true in this case.

Case 2: We consider X ∼ Z ≺ Y . The relation X ∼ Z implies that LX = LZ ,
which yields

LX ∼ (1− π(p)) · LX + π(p) · LY
LX ∼ LX − π(p) · LX + π(p) · LY
LX ∼ LY .

Again, we know that the above inequation must hold, therefore the assump-
tion X ≺ Y can not be true in this case.

Case 3:

(1− π(1− p)) · LX + π(1− p) · LZ ∼ (1− π(p)) · LZ + π(p) · LY
LX − π(1− p) · LX + π(1− p) · LZ ∼ LZ − π(p) · LZ + π(p) · LY

LX − LZ − π(1− p) · LX + π(1− p) · LZ ∼ π(p) · (LY − LZ)

LX − LZ − π(1− p) · (LX − LZ) ∼ π(p) · (LY − LZ)

(1− π(1− p)) · (LX − LZ) ∼ π(p) · (LY − LZ)

We know that (1 − π(1 − p)) > 0 and that (LX − LZ) < 0 by the ranking as-
sumption, therefore the left hand side is smaller than 0. The right hand side is
positive, as π(p) > 0 and (LY − LZ) > 0. This implies that the above indiffer-
ence does not hold under the assumption of this case. However, we know that
it holds, therefore we conclude that X ≺ Y can not be correct in this case

Conclusion Case A: We have seen that the assumption X ≺ Y can not be true
if indifference E.5 is true.

Case B: The rankings are

1. Z ≺ Y ≺ X or Y ≺ X ≺ Z
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2. Y ∼ Z ≺ X or Y ≺ Z ∼ X

3. Y ≺ Z ≺ X .

Case 1: We consider Z ≺ Y ≺ X . This yields

(1− π(p)) · LZ + π(p) · LX ∼ (1− π(p)) · LZ + π(p) · LY
LX ∼ LY .

The assumption X � Y contradicts this indifference and therefore can not be
true in this case.

Case 2: We consider Y ∼ Z ≺ X . Recall, the indifference implies that LY = LZ

and yields

(1− π(p)) · LY + π(p) · LX ∼ LY

(1− π(p)) · LY + π(p) · LX ∼ LY

π(p) · LX − π(p) · LY ∼ 0

LX ∼ LY .

This indifference is not satisfied under the assumption X � Y . This implies
that the assumption is also not true in this case.

Case 3:

(1− π(p)) · LZ + π(p) · LX ∼ (1− π(1− p)) · LY + π(1− p) · LZ
LZ − π(p) · LZ + π(p) · LX ∼ LY − π(1− p) · LY + π(1− p) · LZ

LZ + π(p) · (LX − LZ) ∼ LY − π(1− p) · (LY − LZ)

π(p) · (LX − LZ) ∼ LY − LZ − π(1− p) · (LY − LZ)

π(p) · (LX − LZ) ∼ (1− π(1− p)) · (LY − LZ).

The left hand side is greater than 0, as 0 < π(p) < 1 and LX − LZ > 0. We
know that (1− π(1− p)) > 0. The above assumed preference Y ≺ Z results in
LY < LZ or LY − LZ < 0. Hence, the right hand side is negative and therefore
the above indifference is not true under the assumed relation. However, we
know that the indifference is true. Due to this we conclude that the assump-
tion X � Y can not be true here.
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Conclusion Case C: We get contradictions for all three rankings of Case B. This
implies that the assumption X can not be true under the indifference E.5.

Conclusion: We showed that under both assumptions A and B the indifference
(X; p|Z; 1−p) ∼ (Y ; p|Z; 1−p) does not hold, although we know that it is true.
Due to these findings we conclude that the correct assumption in this case is
X ∼ Y . This implies that the statement

X ∼ Y ⇐ (X; p|Z; 1− p) ∼ (Y ; p|Z; 1− p)

is true.

Summary: Part 1 and 2 with the corresponding subcases show that Rank-
Dependent Utility satisfies the Independence Axiom, if Folding Back is ap-
plied instead of the Reduction of Compound Lotteries Axiom. However, the
proof considers solely lotteries with two lotteries as outcomes, but it can be
shown with the same procedure that this is also true for lotteries with three,
four etc. lotteries as outcomes.
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F Empirical Moments for GMM Estimation of the

Income AR(1) Error Process

The error in t of the income estimation consists of an individual effect vi, an
AR(1) process and a transitory shock νit:

eit = vi + uit + νit = vi + αuit−1 + εit + νit.

In matrix notation for all i = 1, ..., N this reduces to

et = v + ut + νt = v + αut−1 + εt + νt,

where v, u, ν and ε are all column vectors of the size N × 1 and α is a scalar.
For the upcoming transformation define σ2

ν as the variance of the transitory
shock ν, and σ2

ε as the variance of ε - both are independent and identically
distributed random variables. The parameters σ2

v , σ2
ε

and α are estimated via
GMM (Generalized Method of Moments) by minimizing the objective function



Cov(∆et,∆et)− C0

Cov(∆et,∆et−1)− C1

Cov(∆et,∆et−2)− C2

.

.

.

Cov(∆et,∆et−k)− Ck)



′

∗W ∗



Cov(∆et,∆et)− C0

Cov(∆et,∆et−1)− C1

Cov(∆et,∆et−2)− C2

.

.

.

Cov(∆et,∆et−k)− Ck)


.

The theoretical covariancesCk for k = 0, ..., 6, which are used in the estimation,
are obtained by some transformations. Here, the example for Cov(∆et,∆et−1)

is considered - the remaining covariances follow in principal the same trans-
formations:

C1 = Cov(∆et,∆et−1)

= E [(∆et − E(∆et))(∆et−1 − E(∆et−1))
′] .

In order to simplify the above equation regard the expectation of ∆et:
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E(∆et) = E(v + ut + νt − v − ut−1 − νt−1)
= E(αut−1 + εt + νt − ut−1 − νt−1)
= (α− 1)E(ut−1) + E(νt)− E(νt−1).

The assumption that ν is normally distributed implies thatE(νt) = E(νt−1) = 0

etc.. This leads to
E(∆et) = (α− 1)E(ut−1).

Now, consider the expectation of ut−1 and assume as a starting value for the
AR(1) process ut−n = 0 with n → ∞ (this assumption states that ut−n is no
longer a vector of random variables and implies that E(ut−n) = 0) and recall
that E(εt) = 0:

E(ut−1) = E(αut−2 + εt−1) = E(α(αut−3 + εt−2) + εt−1)

= . . . = E

(
αn−1ut−n +

n−1∑
j=1

αj−1εt−j

)

= αn−1E(ut−n) +
n−1∑
j=1

αj−1E(εt−j) = 0.

Hence, the definition of the covariance C1 is given by:

C1 = E(∆et∆e
′
t−1)

= E((v + ut + νt − v − ut−1 − νt−1)(ut−1 + νt−1 − ut−2 − νt−2)′)
= E [((α− 1)ut−1 + εt + νt − νt−1)((α− 1) · ut−2 + εt−1 + νt−1 − νt−2)′]
= E[(α− 1)2ut−1u

′
t−2 + (α− 1)ut−1ε

′
t−1 + (α− 1)ut−1ν

′
t−1

− (α− 1)ut−1ν
′
t−2

+ εt(α− 1)u′t−2 + εtε
′
t−1 + εtν

′
t−1 − εtν ′t−2

+ νt(α− 1)u′t−2 + νtε
′
t−1 + νtν

′
t−1 − νtν ′t−2

− νt−1(α− 1)u′t−2 − νt−1ε′t−1 − νt−1ν ′t−1 + νt−1ν
′
t−2].

Now, applying two properties of the expectation operator (E(X+Y ) = E(X)+

E(Y ) and E(aX) = aE(X) - where X and Y are random variables and a is a
constant) in combination with the assumptions that E(εt−iε′t−j) = 0,∀i 6= j,
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E(νt−iν ′t−j) = 0,∀i 6= j and E(εt−iν ′t−j) = 0,∀i, j reduces the above equation.
These assumptions are sufficient as ut−1 can be written in terms of ε, namely
ut−1 = εt−1 + αεt−2 + . . . + αn−1εt−n - as above for E(ut−1) with ut−n = 0 as a
starting point:

C1 = (α− 1)2E(ut−1u
′
t−2) + (α− 1)E(ut−1ε

′
t−1)− E(νt−1ν

′
t−1)

= (α− 1)2E
(
(εt−1 + αεt−2 + . . .+ αn−1εt−n)(εt−2 + αεt−3 + . . .+ αn−2εt−n)′

)
+ (α− 1)E

(
(εt−1 + αεt−2 + . . .+ αn−1εt−n)ε′t−1

)
− E(νt−1ν

′
t−1)

= (α− 1)2
(
αE(εt−2ε

′
t−2) + α3E(εt−3ε

′
t−3) + . . .+ α2n−3E(εt−nε

′
t−n)

)
+ (α− 1)E(εt−1ε

′
t−1)− E(νt−1ν

′
t−1).

By definition σ2
ε INT = E(εt−iε′t−i), ∀i and σ2

νINT = E(νt−1ν ′t−1):

C1 = (α− 1)2(α + α3 + . . .+ α2n−3)σ2
ε INT + (α− 1)σ2

ε INT − σ2
νINT

=
[
(α− 1)2(α + α3 + . . .+ α2n−3)σ2

ε + (α− 1)σ2
ε − σ2

ν

]
INT .

The following part just deals with the term in the squared brackets, as this
contains the parameters to be estimated in the GMM procedure.
Excursion: Convergence of a geometric series

s = (α + α3 + . . .+ α2n−3)

s− α2s = (α + α3 + . . .+ α2n−3)− (α3 + α5 + . . .+ α2n−1)

(1− α2)s = α− α2n−1

s =
α− α2n−1

(1− α2)
.

This converges to
s =

α

(1− α2)
,
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as n → ∞ implies that α2n−1 → 0 for 0 < α < 1, which is the stationarity
condition of the AR(1) process. Now, the covariance C1 is determined by:

C1 = (α− 1)2
α

(1− α2)
σ2
ε + (α− 1)σ2

ε − σ2
ν

=
(α− 1)(−1)(1− α)α

(1− α)(1 + α)
σ2
ε + (α− 1)σ2

ε − σ2
ν

=
α− α2

1 + α
σ2
ε +

α2 − 1

1 + α
σ2
ε − σ2

ν

=
α− 1

1 + α
σ2
ε − σ2

ν .
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G Estimation of the 5 imputed SAVE Datasets

The procedure how the estimation results of the 5 imputed datasets from the
SAVE study are combined goes back to Rubin (1987) and is also described, for
the SAVE data, in Schunk (2007). Each dataset is used for a separate estimation,
i.e. one gets 5 results for each coefficient and its corresponding variance. Let
θ̂m be the estimated coefficient of the m (m = 1, ..., 5) imputed dataset, and σ̂2

m

the related standard deviation. The overall estimate Θ̄ is simply the average of
the estimates from the 5 imputed datasets:

Θ̄ =
1

5

5∑
m=1

Θ̂m.

For the overall variance of the parameter of interest, following Rubin (1987),
one first has to compute the within-imputation variance, which is defined by

σ̄2 =
1

5

5∑
m=1

σ̂2
m.

Second, the between-imputation variance must be calculated, given by

b̄ =
1

5− 1

5∑
m=1

(Θ̂m − Θ̄)2.

Finally, the overall variance of the multiple-imputation method is determined
by

σ2 = σ̄2 + (1 +
1

5
) · b̄.

and the standard deviation is, of course, σ =
√
σ2.
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H Abstract

English Version:

This thesis deals with the question if Rank-Dependent Utility or Cumulative
Prospect Theory, belonging to the so called Non-Expected Utility models, are
better in explaining real life data on consumption and savings decisions than
Expected Utility Theory. We use a consumption/savings model and the Method
of Simulated Moments to estimate two parameters, which distinguish Expected
Utility, Rank-Dependent Utility and Cumulative Prospect Theory in our set-
ting. For the solution of the model we propose a method to which the conven-
tional critique on Non-Expected Utility in dynamic settings does not apply.
Our main finding is that Rank-Dependent Utility Theory is the theory which
fits the data best.

Deutsche Version:

Diese Dissertation beschäftigt sich mit der Frage, ob die Rank-Dependent Util-
ity Theorie oder die Cumulative Prospect Theorie, welche zu den sogenannten
Nicht-Erwartungsnutzen Theorien gehören, reale Daten über Konsum- und
Sparentscheidungen besser abbilden können als die Erwartungsnutzentheo-
rie. Wir verwenden ein Konsum/Spar Modell and die Methode der Simulierten
Momente um zwei Parameter zu schätzen, welche in unserem Aufbau die
Rank-Dependent Utility Theory, die Cumulative Prospect Theorie und die Er-
wartungsnutzentheorie unterscheiden. Wir schlagen für das Auflösen des Mod-
ells eine Methode vor, für welche die Kritik hinsichtlich dem Gebrauch von
Nicht-Erwartungsnutzen Theorien in dynamischen Modellen nicht zutreffend
ist. Das Endergebnis ist, dass die Rank-Dependent Utility Theorie die Daten
am besten abbilden kann.
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