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Abstract 

Peroxisomes are highly dynamic organelles present in nearly all eukaryotic cells. In higher plants, 

peroxisomes (PX) are involved in a variety of essential physiological and biochemical processes 

such as photorespiration, lipid catabolism and biosynthesis of plant hormones such as auxin and 

jasmonic acid. Over 30 proteins, the so-called peroxins (PEX proteins), are known to be involved 

in PX biogenesis. Among these the PEROXIN 11 (PEX11) protein family members were identified 

as PX proliferation factors. In a collaborative effort we studied the effects on PX appearance 

mediated by the three PEX11 family members of Saccharomyces cerevisiae (ScPEX11, ScPEX25 

and ScPEX27), the three human (PEX11α, β and γ), and the five Arabidopsis PEX11 protein family 

members (AtPEX11-A to E). My study focused on the effect and function of the PEX11 proteins in 

plants and aimed to tackle two aspects. 

i) The capacity of PEX11-protein family members of the three kingdoms (yeast, animal and plant) 

to induce peroxisomal proliferation in N. benthamiana and A. thaliana plants. PEX11 proteins 

from the three different organisms were over-expressed transiently by agro-infiltration and by 

production of stable A. thalinana transgenic lines. By evaluating the PX appearance (size and 

number) the degree of functional conservation of the PX proliferation factors was evaluated as 

well as their effects on plant growth. Our experiment showed that all PEX11 proteins, despite 

their origin (yeast, human or plant), are efficiently targeted to the peroxisomal membrane. The 

overexpression of the various PEX11 proteins affected the peroxisome appearance and induced 

the formation of peroxisomal cluster to different degrees. This suggests that although the 

localisation to peroxisomes is conserved throughout the three kingdoms the individual PEX11 

proteins may differ in some of their functions. 

ii) The transcription factors regulating PEX11 expression in plants are not known, thus we 

studied in detail the expression of AtPEX11D facilitating the idendification of a putative 

transcription factor regulating AtPEX11D expression. AtPEX11D was chosen as it showed the 

strongest effect on PX shape and number. First I studied the expression pattern of A. thaliana 

PEX11D under various conditions. Next I performed a promoter deletion studies. Five different 

deletion constructs of the AtPEX11D promoter region were created and cloned into a GUS 

reporter system to study their expression activity in plants. By this means, a short promoter 

region sufficient to mediate expression was identified. This region was cloned into the yeast 

One-Hybrid system and a screen for transcription factor(s) binding specifically to this AtPEX11D 

promoter sequence was performed. This approach allowed me to identify a number of potential 



 

10 
 

transcription factors. One selected transcription factor could be confirmed to induce AtPEX11D 

promoter activity and PX formation in plant cells. 
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Zusammenfassung 

Peroxisomen sind Organellen, die in fast allen eukaryotischen Zellen vorkommen und von einer 

einfachen Membran umhüllt sind und spezielle metabolische Funktionen ausfuehren. In höheren 

Pflanzen sind Peroxisome (PX) in eine Vielzahl von physiologischen und biochemischen 

Stoffwechselfunktionen involviert, wie z.B. in der Photorespiration und der Biosynthese von 

Lipiden und Hormonen, wie Auxin oder Jasmonaten. Es sind 30 sogenannten Peroxine (PEX 

Proteine) bekannt, die eine wesentliche Rolle in der Biogenese von PX spielen. Innerhalb dieser 

Proteingruppe spielt vor allem die PEROXIN11 (PEX11) Protein Familie eine wesentliche Rolle in 

der Proliferation von PX. 

In einer gemeinschaftlichen Studie mit zwei anderen Arbeitsgruppen wurde die Auswirkung von 

PEX11 Proteine aus drei unterschiedlichen Organismen, Hefe (S. cerevisiae: ScPEX11, ScPEX25 

und ScPEX27), Mensch (in Humanen Nierenzellen: PEX11α, β und γ) und Pflanzen (A. thaliana: 

AtPEX11A bis-E), auf die Erscheinungsform und Anzahl der Peroxisome untersucht. 

Meine Arbeit bezieht sich hauptsaechlich auf die Untersuchung aller PEX11 Proteinen aus den 

unterschiedlichen Organismen (Hefe, Mensch und Pflanze)  und deren Auswirkung auf die 

Erscheinungsform und Anzahl von Peroxisomen in pflanzlichen Organismen wie Arabidopsis 

thaliana und N. benthamiana. Diese Untersuchungen wurden einerseits transient in Blätter von 

N. benthamiana, andererseits in stabilen transgenen A. thaliana Linien vorgenommen. Alle 

PEX11 Proteine aus den drei verschiedenen Organismen konnten an die peroxisomale Membran 

binden und die meisten PEX11 Proteine hatten einen starken Effekt auf die Anzahl und 

Erscheinungsform von Peroxisomen. Diese Ergebnisse zeigen, dass die PEX11 Proteinfamilie 

einen hohen Konservierungsgrad bezüglich der Lokalisierung der PEX11 Proteine zwischen den 

unterschiedlichen Organismen aufweist.  

Ein weiterer Aspekt meiner Arbeit war die Analyse des AtPEX11D Promoters und die Suche nach 

möglichen Transkriptionsfaktoren. Es ist nur sehr wenig darüber bekannt,  wie die PX 

Proliferation sowie die Expression von PEX11 Genen in Pflanzen reguliert wird. Um die 

Expression und einen moeglichen Trankriptionsfaktor zu identifizieren haben wir die 

Promoteraktivitaet von AtPEX11D analysiert. AtPEX11D wurde naeher untersucht da dieses 

Protein bei Überexpression die stärksten Effekte auf PX zeigte. Die Promoteraktivität dieses 

Genes wurde mit Hilfe eines GUS Reporter Systems unter verschiedenen Bedingungen 

untersucht. Mit Hilfe von Deletionskonstrukten wurde ein essentieller Bereich in der 

Promotersequenz von AtPEX11D ermittelt, welcher die Expression reguliert.  Mittels eines Hefe 
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One-Hybrid Screens wurden moegliche Transkriptionsfaktoren isoliert und für einen konnte ein 

Einfluss auf die AtPEX11D Promoter Expression  und induktion von PX  gezeigt werden. 
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A. Introduction  

A.1. Peroxisomes 

Peroxisomes are single-membrane-bounded organelles present in nearly all eukaryotic cells like 

yeast, plant and mammalian cells. They are highly dynamic and unlike mitochondria or 

chloroplasts they do not contain own DNA or ribosomes. Therefore, all proteins necessary for 

the assembly and biogenesis of peroxisomes, such as matrix or membrane-associated proteins 

are encoded in the nucleus, and thought to be synthesized on free cytosolic ribosomes (Lazarow 

and Fujiki 1985) and imported into the peroxisomes (Johnson and Olsen 2001; Mano and 

Nishimura 2005).  

Peroxisomes have been first described by Rhodin in 1958 as distinctive organelles surrounded by 

a single membrane, containing a core granular like structure and biochemically characterised by 

deDuve in 1966. Originally the central function of peroxsiomes was believed to be the 

metabolism of fatty acids and detoxification of hydrogen peroxide. In the meantime, it was 

shown that peroxisomes are also involved in other important metabolic processes and have 

species-specific functions (Mano and Nishimura 2005; Hayashi and Nishimura 2006; Brown and 

Baker 2008). In mammals key enzymes are found in peroxisomes, involved in cholesterol, bile 

acids, and plasmalogen synthesis (Brown and Baker 2008). In single cell organisms such as H. 

polymorpha peroxisomes are involved in the process of methanol oxidation as well as in the 

metabolism of alkylated amine or alkane (Veenhuis et al. 1987; Brown and Baker 2008). In plant 

cells peroxisomes take part in the biosynthesis of essential hormones (reviewed in Kaur et al. 

2009) and in photorespiration (Hu et al. 2002). However, it seems that the detoxification of 

hydrogen peroxide is a common feature in almost all eukaryotic peroxisomes (Corpas et al. 2001; 

Hayashi and Nishimura 2006). 

 

A.1.1. Plant peroxisomes 

In higher plants, peroxisomes are divided into five groups based on their different functions 

(Hayashi and Nishimura 2006). 

(1) Leaf peroxisomes are involved in the processes of photorespiration and 

photomorphogenesis, a light-mediated developmental process. (2) The so-called glyoxysomes 
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located in germinating seeds are involved in the lipid metabolisation and the gyoxylate cycle. (3) 

The gerontosomes are located in senescent tissues, using glyoxysomal enzymes to catabolise 

lipids whereas (4) root nodule peroxisomes are involved in nitrogen fixation by biosynthesis of 

ureide, which is then transported from the nodules to the above ground parts of the plant in 

leguminoses. (5) The last group represent unspecialized peroxisomes, which are relatively 

undifferentiated peroxisomes located throughout the whole plant. A common feature of all 

peroxisomes is the detoxification of reactive oxygen species. (Hu et al. 2002; Lipka et al. 2005;  

Hayashi and Nishimura 2006; Mullen and Trelase 2006). 

 

A.1.1.1. Metabolic function of peroxisomes in plant cells 

A.1.1.1.1.  Detoxification of reactive oxygen species (ROS) 

In peroxisomes reactive oxygen species (ROS) like hydrogen peroxide (H2O2) or superoxide 

radicals (O2.
-) occur as by-products of various metabolic reactions such as the photorespiration 

pathway, ß-oxidation of lipids, or during polyamine oxidation (Corpas et al. 2001; Kaur et al. 

2009). Therefore peroxisomes contain several enzymes, such as catalase (CAT), necessary for the 

removal and degradation of these toxic by-products. Catalase can use the produced H2O2 in 

order to oxidize other substrates and thereby detoxify it or H2O2 can be directly detoxified by 

converting it into water (H2O) (Corpas et al. 2001). 

However in plants, it has been shown that not only catalase but also ascorbat peroxidase (APX) 

(Bukelmann and Trelase 1996) or superoxide dismutase (del Rio et al. 1998) play an important 

role in the degradation of reactive oxygen species (Mano and Nishimura 2005). APX has a higher 

affinity of binding H2O2 compared to catalase and is therefore involved in the degradation of low 

concentrations of hydrogen peroxide by reducing it to water via the ascorbat-gluthatione cycle 

(Kaur et al. 2009). The superoxide dismutase is crucial for the detoxification of O2.
- into O2 and 

H2O2 (del Rio et al. 1998) which is then converted  to H2O and O2 by catalase (Figure 1, modified 

after Kaur et al. 2009). 
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Figure 1: Detoxification of ROS in peroxisomes via catalase (CAT) or ascorbat peroxidise (APX) via the 
ascorbate-gluthation cycle (modified Figure after Kaur et al. 2009).  

CAT: catalase; APX: ascorbat peroxidise; MDA: monohydroascorbat; MDAR: monodehydroascorbat 
reductase; ASC: ascorbat.  

 

A.1.1.1.2.  Lipid Metabolism 

Oilseed plants such as the brassicaceae Arabidopsis are not able to gain energy from starch or 

sugars during germination (Mano and Nishimura 2005). Therefore lipids, mainly triacylglycerols 

(e.g. palmetic acid) are stored in so-called oil bodies located in cells of the endosperm and 

cotyledons and used as energy and carbon source for germination (Hayashi and Nishimura 

2006). The conversion of fatty acids into succinate occurs in peroxisomes via ß-oxidation and the 

glyoxylate cycle (Cooper and Beevers 1969). During germination this succinate is used to provide 

the carbon to build sucrose until photosynthesis (calvin-benson cycle) can take place (Hayashi 

and Nishimura 2006). 

In higher plants these specific peroxisomes are called glyoxysomes and are the site of fatty acid 

ß-oxidation and the glyoxylate cycle (Hayashi and Nishimura 2006). In contrast, in human cells 

the breakdown of fatty acids is split between two different cell organelles, the peroxisomes and 

mitochondria. In mammalian cells peroxisomes are not able to degrade short-chain fatty acids, 

the breakdown of these fatty acids occur in mitochondria (Hashimoto 1996; Wanders and 

Waterham 2006, Mano and Nishimura 2005). 
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A.1.1.1.3.  Peroxisomal fatty acid ß-oxidation 

In plant peroxisomes the degradation of all fatty acids into acetyl-CoA takes place (Figure 2). 

During ß-oxidation, two carbon units are released via an oxidation reaction and are available to 

bind to Coenzym A (CoA) forming acyl-CoA by an acyl-CoA synthetase (ACX). Then the acyl-CoA is 

converted by cycling through the multifunctional protein (MFP), followed by 3-ketoacyl-CoA 

thiolase (KAT) activity into acetyl-CoA, representing the end product of the fatty acid ß-oxidation 

pathway (Mano and Nishimura 2005). 

                                            

Figure 2: Peroxisomal fatty acid ß-oxidation. Figure based on Hashimoto (1996) and Mano and Nishimura 

(2005). Conversion of fatty acid 2,4D (2,4-Dichlorphenoxy acetic acid) a synthetic auxin into acetyl-CoA. 

 

A.1.1.1.4.  Glyoxylate Cycle 

In plants, the end product of ß-oxidation, Acetyl-CoA, serves as a substrate for the glyoxylate 

cycle which produces succinat during peroxisomal ß-oxidation (Hashimoto 1996, Mano and 

Nishimura 2005). In mammalian cells the generated acetyl-CoA from the ß-oxidation pathway 

enters the citric acid cycle (TCA cycle) where it is fully oxidized to carbon dioxide allowing cells to 

obtain energy from lipids.  However in higher plants, the stored lipids are not only used for the 

generation of energy for growth but also for the biosynthesis of complex structures, needing a 

high amount of carbohydrates like cellulose or chitin (Mano and Nishimura 2005). Therefore the 

glyoxylate cycle is an additional metabolic pathway in higher plants by-passing the 

decarboxylation steps of the citric acid cycle to allow the synthesis of monosaccharides (Mano 

and Nishimura 2005). The main activity sites of these processes are the glyoxysomes in 

germinating seeds (Korneberg and Krebs 1957) and key enzymes involved in the glyoxylate cycle 

in glyoxysoms are: aconitase (ACO), malate dehydrogenase (MDH), citrate synthase (CSY), 

isocitrate lyase (ICL) and malate synthase (MLS) (Figure 3: modified from Hayashi and Nishimura 

2006). During the glyoxylate cycle the acetyl-CoA gained from the fatty acid ß-oxidation pathway 
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is converted into succinate required for an efficient gluconeogenesis or for respiration (Mano 

and Nishimura 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The entire gluconeogenesis pathway from seeds containing stored TAG (triacylglycerol) during 
germination (Figure modified after Hayashi and Nishimura 2006). 

Conversion of fatty acids to succinate via the fatty acid ß-oxidation pathway and the glyoxylate cycle in 

glyoxysomes. Enzymes involved in the glyoxylate cycle are: malat synthase, malat dehydrogensae, 

citrate synthase, actonitase (not located in the glyoxysome), and isocitrat lyase. 

 

However recent studies have shown that glyoxylate activity also occurs in senescent leafs, 

cotyledons and flowers (Pistelli et al. 1995) as well as in pollen (Zhang et al. 1994), indicating a 

developmental and metabolic control of the key enzymes involved in these processes. 

 

A.1.1.1.5.  Photorespiration and the Glycolate pathway 

The early atmosphere of the earth contained low amounts of oxygen. It is believed that 

peroxisomes have originally been responsible for the detoxification of cells by decreasing the O2 
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levels, which were toxic for most forms of life at that time (Nayidu et al.  2008). This suggests 

that photorespiration is an evolutionary relict.  

Nowadays it is believed that the process of photorespiration operates alongside carbon 

assimilation in C3 plants in special peroxisomes, the so-called leaf peroxisomes, and seems to 

have a major effect on the cellular metabolism (Foyer et al. 2009). Photorespiration occurs 

during photosynthesis and is a process defined as a light depending O2 uptake and CO2 release 

(Tolbert 1971). 

It occurs especially under high light or high temperature conditions as well as under low CO2 

levels or water deficits. For example during drought stress the stomata of the cells close to 

prevent water loss, which leads to reduced CO2 levels. The low CO2 levels then trigger the 

activation of the photorespiratory pathway (Foyer et al. 2009). 

The photorespiration pathway utilizes O2 and releases CO2 and is based on recycling 

phosphoglycolate. The process of photorespiration is divided between three different 

organelles: chloroplasts, leaf peroxisomes and mitochondria, forming a cycling glycolate 

pathway (Figure 4 based on Hayashi and Nishimura 2006 and Kaur et al. 2009). 

The glycolate pathway is initiated in the chloroplast by the oxygenase activity of RubisCO, a key 

enzyme of CO2 fixation in photosynthesis, which can bind O2 instead of CO2. This activity results 

in the formation of 2-phosphoglycolate, which are converted into glycolate by a 

phosphoglycolate phosphatase (PGLP1) (Hayashi and Nishimura 2006; Kaur et al. 2009). The 

glycolate is then passed on to leaf peroxisomes, where several enzymes such as the glycolate 

oxidase (GO), the hyroxypyruvat reductase and different aminotransferases convert the 

glycolate into the amino acid glycine (Hayashi and Nishimura  2006). The glycine is transported 

into mitochondria, where it is converted to serine by a glycin decarboxylase (GDC) and a serine 

hydroxymethyl transferase (SHMT) (Kaur et al. 2009). In the end the serine re-enters the leaf 

peroxisomes where it is converted into glycerate and then transported into chloroplast. The 

glycerate is then phosphorylated to 3-phosphoglycerate and enters the calvin-benson cycle, 

closing the glycolate pathway (Kaur et al. 2009). 
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Figure 4: Photorespiratory glycolate pahthway in C3 plants (Figure modified after Hayashi and Nishimura 
2006 and Kaur et al. 2009). 

phospgoglycolate phosphatase (PGLP1) glycolate oxidase (GO) glu:glyoxylate aminotransferase 
(GGT) glycin decarboxylase (GDC) serine hydroxymethyl transferase (SHMT) ser:glyoxylate 
aminotransferase (SGT) hydroxypyruvat reductase.  

 

Even though the process of photorespiration lowers the photosynthetic activity and therefore 

often has a negative effect on plant growth, it is suggested to play a role in multiple signalling 

pathways, especially in plant hormone responses controlling growth or environmental and 

defence responses (Foyer et al. 2009). 

 

A.1.1.1.6.  Photomorphogenesis 

A study by Hu et al. (2002) indicates a role of peroxisomes in light-mediated development, called 

photomorphogenesis. The authors could identify TED3 as a homologous gene to the yeast and 

mammalian PEX2, which is involved in matrix protein import and peroxisome assembly. TED3-

GFP fusion proteins showed a punctuated structure co-localising with the peroxisomal enzyme 

catalase, showing that the TED3-GFP is targeted to peroxisomes (Hu et al. 2002). 
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Interestingly, ted3 mutants show some similarities to TED3 overexpression plants, indicating that 

the ted3 mutations lead to an increase in peroxisomal function (Hu et al. 2002). 

The main result of this study (Hu et al. 2002) was that ted3 mutants were able to rescue a det1 

mutant phenotype. det1 mutants grown in the dark developed like wild-type plants grown under 

normal light conditions, whereas when grown under normal light conditions, they exhibit various 

growth defects, like smaller and paler leaves. Therefore, DET1 is assumed to be a negative 

regulator of photomorphogenesis in plants. 

Regarding the result, that det1 mutants can be rescued by a ted3 mutation, the authors 

suggested that ted3 and therefore also peroxisomes could play a role in the photomorphogenic 

pathway which is negatively regulated by DET1 (Hu et al. 2002). 

 

A.1.1.1.7.  Biosynthesis of Hormones 

Plant hormones are a group of naturally occurring substances which influence various 

physiological processes in plants. They occur in very low concentrations and mainly affect the 

growth and development of plants at specific time points. They are essential for the appropriate 

growth of plants and also influence cell death (Davies 2004). 

So far, peroxisomes have been shown to play a role in the biosynthesis of three plant hormones: 

jasmonates (JA), auxins (e.g. IAA) and salicylic aicd (SA) which are essential key players in a 

various number of metabolic and developmental processes (Woodward and Bartel 2005; 

Wasternack et al. 2007; Zolman et al. 2008; Reumann 2004; Kaur et al. 2009).  

 

(A) Jasmonates 

Jasmonates represent a group of plant hormones including jasmonic acid (JA) and methyl 

jasmonate (MeJA). They belong to the family of oxylipins produced by the oxidative metabolism 

of polyunsaturated fatty acids (Wasternack et al. 2007). Oxylipins are signalling molecules and 

capable of regulating genes involved in cell growth and biotic and abiotic stress responses (Kazan 

and Manner 2008). 

The biosynthesis of JA is partitioned between two different organelles; the chloroplast and the 

peroxisome (Figure 5).  It is initiated in the chloroplast, where - linolenic acid (α-LeA), the 

substrate for numerous oxylipins, is subsequently converted into 12-oxo-phytodienoic acid 
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(OPDA). Afterwards the OAPD is transported via an ABC transporter (PAX1) through the 

peroxisomal membrane into their matrix. Upon import the OPDA is reduced to 3-oxo-2-

cyclopentane-1-octanic acid (OPC:8), followed by 3 rounds of ß-oxidation and conversion into 

jasmonic acid (Kaur et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Biosynthesis of jasmonic acid (based on Wasternack et al. 2007 and Kaur et al. 2009).  

Chloroplast: A conversion of alpha linolenic acid (α-LeA) into 12-oxo-phytodienoic acid (OPDA) by 
lipoxygenase (LOX), allene oxide synthase (AOS) and allene oxide cyclise (AOC) takes place. 

Peroxisome: A conversion of OPDA to 3-oxo-2-cyclopentane-1-octanic acid (OPC:8) by oxophytodienoic 
acid reductase 3 (ORP3) occurs, followed by an activation to their responding CoA ester (OPC:8-CoA) with 
an OPC:8 CoA ligase1 (OPCL1). In the end JA-CoA is released after undergoing 3 rounds of ß-oxidation. 

 

Jasmonic acid can then be further modified in the cytosol into various jasmonic acid derivatives 

such as MeJA by a JA methyl transferase (Kazan and Manner 2008).  

The produced JA as well as its derivates can act as signalling molecules regulating a large number 

of JA-responsive genes (Kazan and Manner 2008) involved in various processes of plant 

development, as well as in plant defence (Wasternack et al. 2007). 

Staswick et al. (1992) presented evidence that MeJA is involved in root elongation of Arabidopsis 

plants. Treatment with MeJA led to reduced root length in wild-type plants, allowing the 
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identification of JA signalling mutants.  One of the first JA signalling mutants identified was the 

coronatine insensitive1 (coi1) mutant showing a reduced sensitivity to MeJA compared to wild 

type plants (Kazan and Manner 2008). This suggests that COI1 is somehow necessary for 

inhibiting root growth (Wasterneack et al. 2007).  It is believed that COI1 is required as a 

repressor of the JA signalling pathway (Xie et al. 1998). 

In addition it was also shown that JAs are involved in flower development in Arabidopsis plants 

by the analysis of opr3 mutant plants, which have unviable pollen and are male sterile. This 

phenotype is due to a mutation in 12-oxophytodienoate reductase 3 (OPR3) and can be partially 

rescued by the addition of exogenous MeJA, but not by 12-oxo-phytodienoic acid OPDA (Stintzi 

and Browse 2000; Mano and Nishimura 2005).  As shown in Figure 5, OPR3 protein is located in 

the peroxisomes and necessary for the conversion of OPDA into OPC:8. Therefore peroxisomes 

are believed to play an essential role in the biosynthesis of JA and in flower development 

(Wasternack et al. 2007). 

JAs also plays a major role in the defence mechanisms against various plant pathogens such as 

fungi (Vijayan et al. 1998) or insects (McConn et al. 1997). For example Arabidopsis fad3-2, fad7-

2 and fad8 mutant plants are extremely vulnerable to the fungal root pathogen Pythium 

mastophorum, leading to root rot. It was shown that these mutants are not able to accumulate 

JA, due to low levels of linolic acid (Vijayan et al. 1998) used as a precursor for the biosynthesis 

of JA in peroxisomes (Figure 5). This phenotype can be rescued by treatment with exogenous 

MeJA, leading to plants that are unaffected by the fungus. The protective effect observed is 

thought to be mediated by a plant defence mechanism rather than the by a direct effect of the 

MeJA on the pathogen, due to no effect of exogenous MeJA on the growth of the fungus. It is 

therefore believed that MeJA represents a signalling molecule, which can initiate and coordinate 

plant defence mechanism after plant infection (Vijayan et al. 1998). Xu et al. (1994) have 

demonstrated that MeJA, together with ethylene, regulates the expression of osmotin, a 

pathogenesis-related (PR) protein involved in plant defence responses. 

The JAs signalling pathways are involved in a various number of plant physiological processes 

and therefore need tight regulation. The biosynthesis of JA is regulated by a positive feedback 

loop, in which genes encoding for the biosynthesis of JA are activated by JA and MeJA.  In 

general JAs play an important role in plant development as well as in the defence against various 

pathogens, by either regulating directly the biosynthesis of JAs or using JAs as signalling 

molecules regulating genes involved in the defence mechanisms (Kazan and Manner 2008). 
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(B)  Auxin 

Auxins are essential plant hormones playing a key role in a various number of plant growth 

related process, such as vascular tissue development, root initiation, tropistic response, leaf 

senescence or flower and fruit development (Davies 1994; Estelle and Somerville 1987).  

So far, four naturally occurring auxins in plants are known (Figure 6): the indole-3-acetic acid 

(IAA), the indole-3-butyric acid (IBA), the 4-chloroindole-3-acetic acid (4-Cl-IAA) and the 2-

phenylacetic acid (PAA) (Simon and Petrašek 2011). 

 

 

 

 

 

Figure 6: The four endogenous auxins occurring in plants (Figure modified after Simon and Petrašek 
2011). 

A) indole-3-acetic acid (IAA) B) indole-3-butryic acid (IBA)  C) 4-chloroindole-3-acetic acid (4-Cl-IAA)  and D) 
2-phenylacetic acid (PAA)  . 

 

Plants have evolved several pathways for the synthesis of auxins like tryptophan (Trp) 

dependent or Trp-independent pathways, using tryptophan or indole as precursor, respectively 

(Woodward and Bartel 2005). However, none of these pathways is fully understood. 

In addition a role of peroxisomes was suggested in the biosynthesis of the natural occurring 

auxin IAA. IAA is the most abundant native auxin involved in a various number of developmental 

processes in plant cells (Davies 1994). 

IBA, like IAA, is a naturally occurring auxin involved in the regulation of lateral root formation. It 

was suggested that IBA is converted into IAA by a process similar to the ß-oxidation in 

peroxisomes (Fawcett et al. 1960).  

This hypothesis found support by a genetic screen for IBA-resistant Arabidopsis plants, providing 

additional evidence that the conversion of IBA into IAA is performed by a process similar to ß-

oxidation (Zolman et al. 2000). They identified Arabidopsis mutants show a resistance to the 

inhibitory effect of IBA on root elongation, but remain sensitive to IAA. Some of the identified 

IBA-resistant mutants also showed a sucrose dependent growth phenotype, growing only very 
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slowly on media without sucrose, as well as a 2,4-DB-resistance. This implicates that these 

mutants were unable to utilise fatty acids to gain energy for growth by ß-oxidation, thereby 

indicating that the conversion of IBA to IAA is achieved by a ß-oxidation activity (Hayashi et al. 

1998, Zolman et al. 2000). 

Some of the IBA-responsive mutants found during the screen did not show a sucrose dependent 

or 2,4-DB resistant phenotype. This suggests that the general fatty acid ß-oxidation is not 

affected in these mutants, but they might be unable to catalyze specific IBA ß-oxidation 

(reviewed in Kaur et al. 2009).  

Zolman et al. (2007) revealed evidence that IBR3, a putative acyl-CoA dehydrogenase, seems to 

act in the first step of IBA ß-oxidation, which yields the corresponding CoA ester, whereas IBR1 

and IBR10 have been implicated to be involved in the following steps of the IBA ß-oxidation. IBR1 

encodes for a short chain dehydrogenase/reductase (SDR), whereas IBR10 resembles an enoyl-

CoA hydratase/isomerase (Zolman et al. 2007, 2008; reviewed in Kaur et al. 2009). 

 

(C) Salicylic acid 

Salicylic acid (SA) is a phenolic phytohormone and plays an important role in plant growth and 

development as well as in pathogen response (Davies 2004). Hoft van Huijsduijen (1986) already 

showed that SA treatment of tobacco plants induced the synthesis of pathogenesis-related (PR) 

proteins, as well as resistance to viruses like the alfalfa mosaic virus (AIMV).  Nearly one decade 

later Xu et al. (1994) showed that SA, like JAs, are important signalling molecules involved in the 

regulation of plant defence mechanisms, by inducing in combination with MeJA the gene 

expression of PR-1b proteins. 

In addition SA or a derviate seems to act as a long-distance signal initiated at the site of 

infection, leading to the induction of a resistance in other parts of the plant. This process is 

called systemic acquired resistance (SAR) (Vijayan et al. 1998). 

However, despite the importance of SA in plant defence its biosynthesis is not well understood. 

It is believed to be synthesized via the shikimate pathway, mainly localized in chloroplasts, by 

the processing of chorismate by the isochorismate synthase (ICS) to isochorismate and then 

further to salicylic acid and pyruvat via pyruvat lyase (PL) (Wildermuth et al. 2001).  
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Even though the main site of SA biosynthesis is probably located in chloroplasts, there is 

evidence indicating that peroxisome are maybe also involved in the biosynthesis of SA (Reuman 

et al. 2004; reviewed in Kaur et al. 2009).  

An Arabidopsis genome-wide screen was performed to identify new proteins from peroxisomes, 

by searching for proteins carrying a putative major or minor peroxisomal targeting signal PTS1 or 

PTS2. Several proteins were found and proposed to be involved in the biosynthesis of plant 

hormones such as SA (Reuman et al. 2004). 

Another possible pathway for the biosynthesis of SA was suggested by processing of 

phenylalanine, derived from the shikimate pathway, to a trans-cinnamic acid. The further 

processing of the cinnamic acid to SA involves the reduction of two carbons via a ß-oxidation, 

suggesting that this step is localized in peroxisomes (Wildermuth et al. 2001, reviewed in Kaur et 

al. 2009).  

 

A.1.1.1.8.  Pathogen response 

Several studies have revealed an important role of peroxisomes in pathogen response. The 

strongest evidence has been provided by pen mutants, identified during a screen aimed to 

identify non-invasive pathogens in Arabidopsis (Lipka et al. 2005; reviewed in Kauer et al. 2009).  

The PEN2 gene encodes a glycosyl hydrolase, which has catalytic activities and is localised in 

peroxisomes. It was shown that PEN2 induces callose deposition at the site of infection as well as 

the activation of glucosinolates, when exposed to microbe-associated molecules (MAMPs) such 

as bacterial flagellin (Clay et al. 2009).  pen2 mutant plants fail to induce callose deposition after 

treatment with Flg22, a synthetic molecule resembling flagellin, providing evidence that PEN2 

plays an important role in the innate immune response (Clay et al. 2009; reviewed in Kaur et al. 

2009). 

Localisation experiments showed that PEN2-GFP fusion proteins localize to peroxisomes and that 

they accumulate at the site of infection (Lipka et al. 2005). It is suggested that the H2O2 produced 

beside the generation of glyoxylate, triggers the pathogen resistance in plants (reviewed in Kaur 

et al. 2009). 
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A.1.2. Peroxisome Biogenesis 

The formation and assembly of peroxisomes has long been a matter of debate. Since the early 

1970s different model systems have been proposed and rebutted. The prevailing model during 

the early 1970 was the “ER-vesiclulation model”, where the organelles were believed to be 

derived from the rough endoplasmatic reticulum (ER) (reviewed in Mullen et al. 2001).  

This model was then replaced by the “growth and division model” in 1985 by Lazarow and Fujiki, 

in which the peroxisomal proteins were synthesized on free polyribosomes in the cytosol rather 

than on the ER (Lazarow and Fujiki 1985). It was suggested that a post-translational import of 

peroxisomal proteins occurs, which are responsible to induce growth and fission of mature pre-

existing peroxisomes. Since the 1980 this “growth and division model” has been generally 

accepted (reviewed in Mullen et al. 2001).   

However, recent studies have led to a modification of the “growth and division model” once 

again, suggesting a role of the ER, proposing an “ER semi-autonomous peroxisome and 

replication” model in plant peroxisome biogenesis (reviewed in Mullen and Trelease 2006). This 

model suggests that the peroxisomal membrane proteins group I (PMPI, such as PEX16 and 

PEX10), as well as ascorbate peroxidase (APX), after being translated in the cytosol, are sorted to 

the ER. Both, APX and ER-inserted PMPs, travel through the ER membrane towards a specialised 

region of the ER the so-called peroxisomal ER (pER). Here nascent ER-vesicle are formed and 

released into the cytoplasm, and mature into an intermediate sorting compartment 

(ERPIC)(reviewed in Mullen et al. 2001; Kaur et al. 2009). In plant cells these ERPICS can be 

transported and fused to pre-existing mature peroxisomes, delivering the PMPs as well as 

membrane lipids to the peroxisomes (reviewed in Kaur et al. 2009).  

Currently, due to the lack of available pex mutants a de novo formation of peroxisomes has not 

been observed in plant cells. However, the PEX proteins in yeast and mammalian species 

inducing the EPRICs to assembly to intermediate vesicles, which eventually form new 

peroxisomes (reviewed in Titorenko and Mullen 2006 and Mullen and Trelease 2006), are 

present indicating that a similar mechanism exists in plants. 

 

A.1.2.1. Peroxins 

Extensive research in yeast as well as in human and rat have identified a group of genes essential 

for the function of peroxisomes (Distel et al. 1996; Fujiki 2000; Mano and Nishimura 2005). 

These genes are called the PEX genes and their protein products are referred to as peroxins 
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(Brown and Baker 2008). To date 31 PEX proteins (see Table 1) have been identified in yeast and 

are known to be involved in the general process of peroxisome biogenesis (Kiel et al. 1996). So 

far 20 orthologues in mammals (Brocard and Hartig 2007; Platta and Erdman 2007) and 16 

orthologues in plants have been identified (Mullen et al. 2001; Hayashi and Nishimura 2006). 

These proteins can be divided into three groups depending on their different function (see Table 

1):  

i) PEX proteins involved in membrane protein import. 

ii) PEX proteins involved in the matrix protein import. 

iii) PEX proteins involved in the proliferation machinery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The 31 Peroxins and their ortholuges in mammals and plants (adapted from Mullen et al. 2001; 
Hayashi and Nishimura 2006; Brocard and Hartig 2007; Platta and Erdmann 2007). 
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AAA: ATPase associated with diverse cellular activities; CAAX-box: farnesylation motif; DysF: Dysferlin 
domain; Hs: Homo sapiens PMP: peroxisomal membrane protein; PX: peroxisome; PXXP: class II SH3 
interacting motif; RING: really interesting new gene; Sc: Sacharomyces cerevisie; SH3: Src homology 3; 
TPR: tetratricopeptide repeat; Ubc: ubiquitin-conjugating enzyme; WD40: 40amino acid long domain 
containing conserved Trp-Asp; YI: Yeresiniae  

 

A.1.2.2. Peroxisome Assembly and Formation 

The formation and assembly of peroxisomes is a multi-step process including three key stages: 

(1) The formation of peroxisomal membrane, (2) the import of peroxisome matrix proteins, (3) 

and the proliferation of pre-existing peroxisomes. 

A) The formation of peroxisomal membrane 

So far, two classes of peroxisomal membrane proteins (PMPs), the Class I and Class II PMPs, are 

known to be involved in the formation of peroxisomal membranes. The Class II PMPs (like 

AtPEX3 or AtPEX19) are synthesized on free cytosolic ribosomes and are then subsequently 

imported into the peroxisomal membrane leading to the growth of pre-existing mature 

peroxisomes. In contrast, the Class I PMPs (AtPEX16 and AtPEX10) are thought to route via the 

ER towards their final destination, which is either a pre-existing mature peroxisome or a nascent 

“mature” peroxisome via the de novo pathway (Mullen et al. 2001; Mullen and Trelease 2006; 

Fang et al. 2004; reviewed in Platta and Erdmann 2007). 

The following three PMPs – PEX3, PEX16 and PEX19 have been shown to have orthologues in 

Arabidopsis, playing an essential role during the early steps of peroxisomal membrane assembly 

and maintenance in a various number of organisms. Their absence leads to no detectable 

peroxisomes (Mullen and Trelase 2006; reviewed in Kaur et al. 2009). 

 

B) The import of peroxisome matrix proteins 

The peroxisomal import of matrix proteins can be divided into four steps: i) a receptor-cargo 

interaction ii) a receptor-cargo docking to the peroxisome membrane iii) a receptor-cargo 

translocation and iv) the cargo release into the cytosol (Platta and Erdmann 2007; Brown and 

Baker 2009). 

Proteins which are designated to be transported into peroxisomes contain specific peroxisome 

targeting signals (PTSs) necessary for the sufficient recognition and transport into the 

peroxisomal matrix. So far, two main peroxisome-targeting signals (PTSs) are known to be 

involved in this process, PTS1 or PTS2 (Johnson and Olsen 2001). PTS1 is localized at the C-
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terminus of the protein containing a carboxyl terminal tripeptide consisting of the three amino 

acids Ser-Lys-Leu (SKL) or similar variants such as (Ser/Ala/Cys)-(Lys/Arg/His)-Leu (Gould et al. 

1994). Although the sequence of this carboxyl terminal tripeptide is conserved throughout the 

different kingdoms (yeast, mammals and plants) slight divergences could be observed (Hayashi 

et al. 1995; Brocard and Hartig 2006; Kragler et al. 1998). PTS2 is localised at the N-terminal side 

of the proteins with a consensus sequence (Arg/Lys)-(Leu/Val/Ile)-X5_(His/QIn)-(Leu/Ala) and 

was first described by Swinkels et.al in 1991. 

Besides the peroxisomal targeting signals cytosolic receptors are essential for a proper transport 

of these proteins to the peroxisomes (Brown and Baker 2008). 

PEROXIN5 (PEX5) and PEROXIN7 (PEX7) have been identified as the two major cytosolic 

receptors binding to the PTSs of the proteins and targeting them to the peroxisomal membrane 

(Kragler et al. 1998; Brocard and Hartig 2006). Even though PEX5 and PEX7 are present in all 

three kingdoms the mechanism of protein transport is slightly different (Figure7 based on Brown 

and Baker 2008). In plants like Arabidopsis the PTS1 pathway with PEX5 depends also on the 

PTS2 receptor PEX7 (Ramón and Bartel 2010). In mammals two splicing variants of PEX5 exist, 

leading to two different transport pathways both involving PEX5. In yeast two completely 

independent transport pathways exist, the PTS1 with PEX5 as the cytosolic receptor and PTS2 

with PEX7 and two additional co-receptors, PEX18 and PEX21 (Figure 7 modified after Brown and 

Baker 2008). 

 

 

 

 

 

 

Figure 7: PTS1 and PTS2 receptor-cargo recognition in various organisms (based on Brown and Baker 
2008).  

(A) In Arabidopsis the PTS2 pathway is completely depended on the PTS1 binding to the PEX5 receptor. (B) 
In mammals two splicing variants exists: PEX5S (short isoform) and PEX5L (long isoform). PEX5L and PEX5S 
both function as PTS1 receptors, whereas PEX5L is also required together with PEX7 for PTS2 binding. (C) 
In yeast PEX5 requires PTS1, and in addition co-receptors PRX18 and PEX21 are required for the binding of 
PTS2 two. 
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The docking complex necessary for the appropriate transport of matrix proteins through the 

peroxisomal membrane consists of two PEROXINS (PEX13 and PEX14) in plants and in mammals 

and additionally PEX17 in yeast (Brown and Baker 2008). In Arabidopsis it has been shown that 

PEX13, an integral membrane protein, binds to the PEX7-PEX5 complex via the PTS2 pathway 

(Mano et al. 2006), whereas PEX14 binds directly to PEX5 (Nito et al. 2002). 

The mechanism underlying the translocation of the proteins across the peroxisomal membrane 

and their release into the lumen of the peroxisomes is still unknown. The current knowledge 

suggests that RING-domain-containing PEROXINS (PEX2, PEX10 and PEX12) allow a translocation 

of the receptor-cargo complex through the peroxisomal membrane (Platta and Erdmann 2007; 

Brown and Baker 2008). Concerning the release of the proteins into the lumen of the 

peroxisomes it is suggested that Pex8p together with Pex20p interacts with Pex5p in yeast 

(Wang et al. 2003). 

 

 

 

 

 

 

 

 

 

 

Figure 8: Overview of peroxisomal matrix protein import (based on Brown and Baker 2008). 

The matrix proteins are binding to either a PTS1 or PTS2 targeting signal binding to a cytosolic receptor 
PEX5 and/or PEX7, the so called receptor-cargo interaction. This complex than targets the proteins of the 
docking complex (PEX13, PEX14 and PEX17) and are translocated through the peroxisomal membrane into 
the peroxisomal matrix. There the cargo (matrix protein) is released into the lumen and the receptors are 
recycled via the RING finger complex (PEX2, PEX10 and PEX12) back into the cytosol, with the support of 
PEX8 (in yeast) together with PEX4, which is anchored to the membrane by PEX22. 
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C) Proliferation 

Eukaryotic cells are able to regulate the number, area and size of their organelles responding to 

environmental changes. The inhibition or division of the nucleus as well as the Golgi apparatus is 

coupled to the cell cycle, whereas the division of organelles like the chloroplasts, mitochondria 

or the peroxisomes are regulated by division processes (Osteryoung and Nunnari 2003; Yan et al. 

2005). 

An important process regulating the size and number of peroxisomes in eukaryotic cells is the 

so-called proliferation. This process leads to a significant increase of peroxisomes per cell. It 

allows the cells to quickly react upon environmental changes like herbicides, ozone or during 

senescence (Pastori and Del Rio 1997; Lazarow and Fujiki 1985). 

This process consisting of several partially overlapping steps:  (i) enlargement of pre-existing 

peroxisomes (ii) elongation of peroxisomes (iii) membrane constriction (iv) fission of the 

peroxisomes and finally (v) distribution (Fagarasanu et al. 2007; Kaur et al. 2009). 

 

 

 

 

 

 

 

 

 

 

Figure 9: Model of peroxisome proliferation in Arabidopsis (modified after Lingrad and Trelase 2008 and 
Kaur et al. 2009).  

Peroxisome proliferation can be induced by hydrogen peroxide, ozone, jasmonates (JA) or light. It’s a 
process consistent of several overlapping steps: i-ii) growth and elongation: PEX11 (PEX11C, -D and –E) is 
involved in the early steps of PX proliferation. iii) membrane constriction: not much is known about the 
constriction of peroxisomal membranes. iv) fission of peroxisomes: fission is enabled by the scission 
activities of DRP3A which is recruited to the peroxisomal membrane by FIS1b, which is previously 
recruited by the PEX11 gene family. v) distribution: finally the peroxisomes are distributed throughout the 
cell by various myosin proteins via the actin filaments. 
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In yeast a number of peroxisome membrane proteins (PMPs), like PEX11/PEX25/PEX27, 

PEX28/PEX29 and PEX30/PEX31/PEX32 have been identified to play an important role in the 

early steps of PX proliferation (Rottensteiner et al. 2003, Vizeacoumar et al. 2004, reviewed in 

Brocard and Hartig 2007). Among these, PEX11 was the first one to be identified and closer 

analyzed, revealing an important role in the enlargement and elongation steps during 

proliferation (Erdman and Blobel 1995). 

Not much is known about the control of the constriction step, whereas several proteins have 

been revealed to be involved in the division and fission steps during proliferation (Kaur et al. 

2009) 

Recent studies in yeast and mammals have shown that specific dynamins and dynamine-related 

proteins (DRPs) are required for the fission process during proliferation (reviewed in Kaur et al. 

2009). They belong to the group of large GTPases, a family of hydrolase enzymes, involved in 

various processes like vesicle trafficking in and out of the Golgi and cell and organelle division 

(Bliek 1999; Hinshow 2000; Kauer et al.2009).  

In yeast the dynamin-like protein Vps1p is involved in the fission event and required for the 

regulation of peroxisome abundance. Yeast vps1 null mutants lead to few giant peroxismes per 

cell and were not able to promote a normal peroxisome division (Hoepfner et al. 2001). 

In human cells the dynamin-like GTPase DLP1 has been identified as a homolog to the yeast VPS1 

and is known to regulate the dynamics of mitochondria as well as the ER (Li and Gould 2003). 

Recent studies have suggested a role of DLP1 in the division process of peroxisomes. Silencing of 

DLP1 dynamin leads to a significant decrease of peroxisome number. It is believed that PEX11 

recruits DPL1 to the peroxisomal membrane and by this means peroxisome division is initiated 

(Li and Gould 2003; Koch et al. 2003). 

In Arabidopsis two dynamin-related proteins, DRP3A and DRP3B, have been reported to play a 

role in the division process of two organelles: mitochondria and peroxisomes (Mano et al. 2004; 

Zhang and Hu 2009; reviewed in Kauer et al. 2009). In an Arabidopsis mutant screen a protein 

named aberrant peroxisome morphology 1 (AMP1), functioning in the maintenance of 

peroxisome numbers, was identified. Mutant plants have significantly larger peroxisomes and a 

decreased number of organelles (Mano et al. 2004; Zhang and Hu 2009).  

Beside the DRPs another protein family, the FISSION1 (FIS1) gene product is involved in the 

peroxisomal and mitochondrial division machinery. FIS1 related proteins are integral membrane 

proteins targeting both membrane systems (Zhang and Hu 2008, 2009). In yeast and mammals, 
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FIS1 acts as an adaptor for DPL1 (mammals) or VSP1 (yeast), by recruiting them to peroxisomes 

or mitochondria, which leads to membrane fission (Zhang and Hu 2008, 2009). In human cells 

PEX11, FIS1 and DRP are involved in the process of peroxisome proliferation. Studies by Li and 

Gould (2003) as well as Koch et al. (2004, 2005) have shown that PEX11 and FIS1 are involved in 

peroxisome elongation and constriction and that the human FIS1 and DLP1 interact witch each 

other directly. This is not the case for PEX11 and DLP1 (Koch et al. 2010). 

In Arabidopsis two homologues of FIS1, FIS1A and FIS1B, have been identified and shown to 

support peroxisomal and mitochondrial division (Lingard and Trelase 2008; Zhang and Hu 2009). 

A study from Lingard and Trelase in 2008 revealed that all five AtPEX11 homologues (AtPEX11A 

to E) physically interact with FIS1b, whereas no interaction could be observed with FIS1a or 

DRP3A. They suggest that PEX11 promotes peroxisome elongation as well as the recruitment of 

FIS1b to the peroxisomal membrane. Afterwards FIS1b seems to recruit DRP3A to the 

membrane, initiating the fission step of peroxisome proliferation (Lingard and Trelase 2008). The 

divided peroxisomes are then transported inside the cell with the help of various myosin 

proteins via actin filaments (Lingard and Trelase 2008).   

 

A.1.3. Induction and regulation of Peroxisomes Proliferation 

Peroxisomes are highly sensitive organelles which can adapt to environmental changes. In order 

to do that, they must quickly react upon external stimuli by changing their size, number and 

protein content, defined as proliferation. 

In yeast such as Sacharomyces cerevisiae, peroxisome proliferation is induced by fatty acids, e.g. 

oleic acid.  So called oleate responsive elements (ORE) were found in the promoter region of 

several genes encoding peroxisomal proteins like the POX1 as well as the ScPEX11 gene 

(Karpichev et al. 1997, 1998; Gurvitz et al. 2001). So far, two proteins, OAF1 and OAF2, also 

named PIP2, (Karpichev et al. 1998; Rottensteiner et al. 1997), have been identified to act as 

transcription factors binding to such ORE sequences by forming a heterodimer OAF1/PIP2 

(Rottensteiner et al. 1997). 

 
In mammals, a peroxisome proliferator activator receptor α (PPARα) was identified playing an 

important role in the regulation of genes involved in the lipid homeostasis, including all 

peroxisomal ß-oxidation genes in mammalian cells (Lemberger et al. 1996). This receptor binds 

to the peroxisome proliferator response element (PPRE) located in the promoter region of genes 
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involved in the lipid homeostasis, thereby activating their gene transcription (Berger and Moller 

2002). 

Beside PPARα, two additional isoforms PPARδ/β and PPARу are known: PPARδ/β is ubiquitously 

expressed, whereas PPARу is mainly expressed in adipose tissue and PPARα is highly expressed 

in liver, kidney, heart and muscles cells (Schoonjans et al. 1996; Berger and Moller 2002). A 

various number of proliferation agents (PA) such as clofibrate, a hypolipidemic drug, was shown 

to induce expression of HsPEX11α and thereby promoting peroxisome division in mammalian 

cells (Li et al. 2002b).  

In contrast to the yeast and mammalian systems, very little is known about plant factors 

regulating the expression of genes involved in the peroxisomal proliferation machinery, like the 

AtPEX11 gene family. No genes were found coding for PPAR homologous proteins or OAF1/PIP2 

homolog proteins in the plant genome (Leon 2008, Kaur and Hu 2009).  

A recent study could show that far red light can induce peroxisome proliferation in plant cells, 

requiring phytochrom A (phyA) and the up-regulation of the AtPEX11B gene, mediated by the 

bZIP transcription factor HY5 HOMOLOG (HYH) (Desai and Hu 2008).   

The authors could show that phyA, as well as cryptochrom1 (cry1) and phyB led to a decrease in 

AtPEX11B expression in null mutant plants of these genes, with the strongest decrease observed 

in phyA null mutant plants, indicating an effect of phyA on AtPEX11B (Desai and Hu 2008).  

Based on an in silco analyses of the 219-bp promoter region upstream of the transcription start 

site (TSS) of the AtPEX11B promoter, a large number of light-response elements (LREs) like 

GATA, GT1, and I boxes, were found. These elements have been show to bind transcription 

factors, thereby regulating light-dependent gene activation (reviewed in Desai and Hu 2008). 

HYH and its homolog HY5, which are very common transcription factors shown to play a role in 

the regulation of genes during photomorphogenesis, were analysed for their binding activity to 

the AtPEX11B promoter (Desai and Hu 2008). Desai and Hu (2008) could show that even though 

HYH and HY5 share about 88% amino acid identity in their bZIP DNA-binding domain, only HYH 

was observed to bind to the AtPEX11B promoter analysed by an electrophoretic mobility shift 

assay (EMSA), indicating a specific binding of HYH to the promoter region of AtPEX11B. 

In addition, it is known that peroxisome proliferation in plant cells can be induced in post-

germinative growth as a response to herbicides, ozone or during senescence (Pastori and del Rio 

1997; Lopez-Huertas et al. 2000) but the mechanism underlying these processes are still 

unknown. 
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A.1.4. The PEX11 gene family 

PEROXIN11 (PEX11) protein family members are peroxisomal membrane proteins (PMP) which 

seem to play a key role in peroxisome proliferation in nearly all eukaryotic cells. All PEX11 

proteins of higher organisms are similar in their amino acid composition and harbour a 

conserved PEX11 domain similar to the one found in yeast ScPEX11 (formerly PMP27) (Erdmann 

and Blobel 1995).  

A.1.4.1. Yeast PEX11 

The yeast ScPEX11 protein has been shown to play a key role in the proliferation machinery of 

peroxisomes. Yeast cells lacking PEX11 are able to grow on glucose and ethanol media, whereas 

the utilization of oleate is limited. PEX11 lacking cells harbour few giant peroxisomes per cell, 

suggesting a role in the division and fission process during proliferation (Erdmann and Blobel 

1995; Marshall et al. 1995). As expected for a proliferation factor over-expression of ScPEX11 

leads to a significant increase of peroxisomes per cell (Sakai et al. 1995; Marshall et al. 1995; Li 

and Gould 2002; Tam et al. 2003). 

Recently additional PMPs have been identified such as PEX25/PEX27 belonging to the PEX11 

protein family as well as Pex28p/Pex29p or Pex30p/Pex31p/Pex32p, playing a role in peroxisome 

proliferation in yeast (Rottensteiner et al. 2003; Tam et al. 2003). ScPex11, ScPex25 and ScPex27 

share common structural motifs (~10% identity and ~18% similarity) and ScPex11 is thought to 

be peripheral membrane protein (Marshall et al. 1995).  

A.1.4.2. Human PEX11 

In mammalian cells three PEX11 genes, HsPex11, HsPex11ß and HsPex11, have been 

identified. A phylogenetic analysis revealed that HsPex11 is more closely related to HsPex11ß 

than to HsPex11  (Abe and Fujiki 1998; Tanaka et al. 2003).  

All three human PEX11 proteins are peroxisomal membrane proteins and HsPEX11α and 

HsPEX11ß exposes both N- and C-terminal ends to the cytosol, like shown by 

immunofluorescence microscopy experiments. The human HsPEX11β seems to be essential for 

the survival of mammalian cells. It has been shown that PEX11ß-deficient mice have 

developmental delays, hypotonia and enhanced neuronal apoptosis, resembling the effects of 

the Zellweger Syndrom in humans (Li et al. 2002a).  

In contrast, mice lacking PEX11α are externally indistinguishable from wild-type mice, having a 

normal developmental pattern and showing no detectable defect of peroxisome proliferation (Li 
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et al.  2002b). Overproduction of PEX11α led to an induced peroxisome proliferation in mouse 

and human cultured cells (Li and Gould 2002b).  

 

The over-expression of the HsPEX11 leads to an enlargement and clustering of peroxisomes (Li 

et al. 2002a).  

In addition, we could observe that over time the expression of all human PEX11 proteins clearly 

led to the formation of PX clusters after an previous increase in PX number as well as an 

elongation of PX in human kidney cells (HEK293T) compared to a control (Koch et al. 2010). 

A.1.4.3. Plant PEX11 

Recent studies have identified five orthologues of the yeast ScPEX11 gene in the plant 

Arabidopsis thaliana, referred to as AtPEX11A to E. The amino acid sequence alignment in Figure 

10 (Lingrad and Trelease 2006) shows that the PEX11 proteins can be divided into two distinct 

classes. AtPEX11C, -D and –E belong to Class I, showing a high similarity to each other (75% 

average identity and 92% average similarity), whereas AtPEX11A and -B, belonging to Class II, are 

more divergent (exhibit 31% identity and 51% similarity to each other) (Figure 10 taken from 

Lingard and Trelase 2006).  

 

 

 

 

 

 

 

 

 

Figure 10: Amino acid sequence alignment of AtPEX11A, -B, -C, -D and -E. AtPEX11 protein sequences 
were aligned using the ClustalW algorithm (Figure modified after Lingrad and Trelease 2006). 

(http://www.ch.embnet.org/software/ClustalW.html). Identical and similar residues were shaded black 
and gray, respectively, with BOXSHADE (http://www.ch.embnet.org/software/BOX_form.html) 
Transmembrane domains were predicted using TMpred 

 

http://www.ch.embnet.org/software/BOX_form.html
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(http://www.ch.embnet.org/software/TMPRED_form.html), and are over-lined in black. Basic clusters of 
amino acid residues are over-lined with dashes. Dilysine motifs are boxed in red.  

Interestingly, the Class I AtPEX11 gene family members possess a C-terminal dilysine motif with 

the sequence–KXKXX (Figure 10, indicated with a green box), also known as the ER retrieval 

motif. This motif is thought to facilitate binding of coatomers and was first observed in rats. It is 

believed that the dilysin motif of PEX11 binds to a coat protein 1 (COP1), thereby recruiting an 

ADP-ribosylatation factor (ARF1) (Passreiter et al. 1998). Studies by Anton et al. (2000) provide 

some evidence that together PEX11 and coatomers are involved in the process of peroxisome 

division by promoting membrane vesiculation (reviewed in Kaur et al. 2009). 

Recent studies revealed that all five AtPEX11 proteins localize to peroxisomes in cell suspension 

cultures (Lingard and Trelease 2006) as well as in transgenic A. thaliana plants (Orth et al. 2007).  

The orientation of the N- and C-termini of the AtPEX11 family members relative to the 

peroxisomal membrane was determined by myc-tagged versions of the proteins in cell 

suspension cultures of A. thaliana as well as in tobacco BY2 cells. The results revealed that both 

termini of AtPEX11B, -C, -D and –E face the cytosol, whereas AtPEX11A exposes its C-terminus to 

the peroxisomal matrix (Lingard and Trelease 2006). 

In addition, the AtPEX11A protein possesses three predicted trans-membrane domains (TMDs), 

whereas the other four AtPEX11 proteins (AtPEX11B, -C, -D and -E) have four TMDs, highlighted 

in Figure 10 with solid lines (Lingard and Trelase 2006).  

Orth et al. (2007) analysed the subcellular localisation of the different AtPEX11 isoforms in 

transgenic plants expressing CFP-PEX11 fusion proteins under control of the strong 35S 

promoter, together with an YFP-PTS1 fusion protein. They observed a consistent pattern of 

distinct morphological changes to the organelles in 10 to 15 independent T2 lines overexpressing 

each of the five CFP-AtPEX11 fusion proteins (Orth et al. 2007). 

They could observe an elongation as well as an increased proliferation of peroxisomes. Over-

expression of CFP-PEX11A or CFP-PEX11B fusion proteins mainly resulted in peroxisome 

elongation (Orth et al. 2007). 

Over-expression of the CFP-PEX11C, CFP-PEX11E and CFP-PEX11D fusion proteins, belonging to 

Class I, mostly lead to peroxisomal clustering and an increased number of peroxisomes (Orth et 

al. 2007).   

In addition, analysis of RNAi silencing plants with different degrees of silencing of AtPEX11A, 

AtPEX11B or AtPEX11E (as a representative for Class I AtPEX11) show that the AtPEX11 proteins 
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are to some part redundant in their regulation of peroxisome proliferation. AtPEX11A, AtPEX11C, 

AtPEX11D and AtPEX11E appear to play a stronger role in peroxisome proliferation than 

AtPEX11B (Orth et al. 2007). 

Different results were obtained by Lingard and Trelease (2006), who found that in cell 

suspension cultures of Arabidopsis, myc-tagged versions of PEX11C and PEX11D initiate 

peroxisome elongation without fission, whereas PEX11E leads to an increase in peroxisomal 

number without elongation. PEX11B leads to peroxisome aggregation without changes in 

peroxisome abundance or length. Cells transformed with myc-AtPEX11A show a significant 

difference regarding the amount of elongated peroxisomes over a time period of 72h. First only 

a small percentage  (about 5%) of the cells show elongated peroxisomes, increasing to about 

37% after 36h and then declining to the same level as the control (Lingrad and Trelase 2006).  

These differences may be due to the different experimental setups used:  a transient expression 

in Arabidopsis and BY2 tobacco cell suspension cultures by Lingard and Trelase (2006) versus 

constitutiveexpression in transgenic A. thaliana plants by Orth et al. (2007). 

.  
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B.2. Results 

B1.  Expression profiles of the five AtPEX11 members in A. 

thaliana plants 

The five Arabidopsis PEX11 genes were previously shown to be expressed in siliques, leaves, 

roots and suspension cultures, except for AtPEX11A (Lingard and Trelase 2006). 

An own database research (eGFPbar.utoronto.ca/ status 2011) suggests a high expression of 

AtPEX11A (At1G47750) in water imbibed seeds (after 24h) and pollen (especially in tricellular 

pollen). Tissue specific expression of AtPEX11A was predicted in stamen and guard cells.  

AtPEX11B (At3G47430) shows an induction of expression after light exposure and a quite high 

expression in cotyledons, cauline and rosette leaves and flowers (especially in sepals) as well as 

in water imbibed seeds. A tissue specific expression is measured in mesophyll cells of leaves and 

the stigma.  

AtPEX11C  (At1G01820) shows a high expression in cauline and senescent leaves as well as in dry 

seeds. The gene is highly expressed in the vascular tissue and less in the mesophyll cells and 

guard cells of the leaf. In addition the expression seems to be light induced.  

AtPEX11D (At2G45740) is highly expressed in cotyledons, cauline, adult or senescent leaves as 

well as in sepals or water imbibed seeds after 24h. A tissue specific expression of AtPEX11D is 

detected in mesophyll cells of leaves as well as in guard cells and in the lateral root cap. 

The last PEX11 member, AtPEX11E (At3G61070) shows a high expression in pollen and water 

imbibed seeds (24h). A lower expression is detected in flower tissues (especially petals) and the 

stamen. No or very weak expression is measured in cotyledons, cauline or rosette leaves. 

To evaluate the microarray data, a Northern Blot analyses was performed with the help of Nikola 

Winter with PEX11 specific probes (Figure 11). Here AtPEX11A and AtPEX11E could not be 

detected and AtPEX11B showed a very low expression in seedlings and flowers and was barely 

detectable in senescent leaves. Our own analysis on existing microarray data as well as the 

Northern Blot analyses revealed a very low or no expression of the AtPEX11E gen in the analysed 

tissues.  
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AtPEX11C and AtPEX11D expression pattern appeared similar high in all examined tissues with 

the exception that AtPEX11C which was not detected in rosette leaves.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taken together, the AtPEX11D transcripts showed the highest expression levels among all five 

family members, followed by AtPEX11C, whereas the two homologues belonging to the ClassII, 

AtPEX11A and AtPEX11B, exhibit low expression levels. Noteworthy, in the microarray analysis 

neither AtPEX11B, -C or -D were detected in pollen. Also AtPEX11E expression was not detected 

in the analyzed tissues in our study; a previous study by Orth et al. (2007) predicted a high 

expression of the AtPEX11E gene in a various number of tissues like leaf, senescent leaf, flower 

or seed based on their online microarray data. 

 

 

Figure 11: Analysis of the expression levels of the five A. 
thalianaPEX11genes in different wild-type plant tissues. 
A) Northern Blot expression analysis of the AtPEX11 gene 
family in wild-type A. thaliana plants: approx. 15ug total 
RNA from different plant tissues were loaded. The PEX11 
mRNAs were detected with specific labeled DNA probes 
obtained by PCR. B) Relative expression of AtPEX11A to -
E compared to ACTIN 2 quantified with the ImageJ Quant 
program. C) Summary ofthehighest expression values of 
AtPEX11A to -E from different tissues based on existing 
microarray data from Arabidopsis (eFP Browser at 
bar.utoronto.ca/ Winter et. al. 2007 Plos One 2(8):e718 
Status from 2009. 
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B.2. Intracellular distribution of yeast, human and plant PEX11 

fusion proteins in epidermal cells of N. benthamiana 

To clarify whether the functions of the various PEX11 proteins are conserved throughout the 

three kingdoms we performed peroxisomal co-localisation experiments of transiently expressed 

fluorescent fusion proteins. This allowed us to compare the potential of plant, yeast and human 

PEX11 proteins to associate with peroxisomes (PX) and to analyse their capacity to induce 

peroxisomal proliferation in plant cells. The wild-type appearance of PX in epidermal cells of N. 

benthamiana leaves were evaluated with a red fluorescence protein (mCherry) carrying a C-

terminal peroxisomal targeting signal (mCherry-SKL).  Here the tagged PX appeared round 

shaped, well separated and most organelles were highly mobile (Figure. 12_A). To analyse the 

effect of plant, yeast and human PEX11 proteins on the localisation and shape of PX we 

transiently co-expressed PEX11 yellow fluorescent protein fusions (YFP-PEX11) under the control 

of a 35S CaMV promoter, together with mCherry-SKL under the control of an estradiol induced 

promoter system (Curtis and Grossniklaus 2003; Koch et al. 2010). 

Here all tested PEX11 fusion proteins localised to the peroxisomal membranous structures, 

which were at least partially tagged by mCherry–SKL (Figure 12_B to 12_D). In addition, a strong 

clustering of PX was observed for all tested plant PEX11-fusion proteins, ScPEX11, HsPEX11α and 

HsPEX11у (Figure 12_B to 12_D, close ups). Exceptions were found with the two yeast fusion 

proteins ScPEX25 and ScPEX27 as well as the human HsPEX11β fusion proteins. Here no large 

clusters of PX were detected. About half of the PXs were located in small clusters, whereas the 

remaining PX resembled the wild-type situation with normal shaped and mobile peroxisomes 

(Figure 14). As an additional control to ensure that the N-terminal YFP tag had no effect on the 

PEX11 function we performed co-expression studies with mCherry-SKL and estradiol induced 

AtPEX11D without an YFP-tag (Figure 12_B6). Here we could observe clustering of peroxisomes 

induced by AtPEX11D without an YFP-tag. 

 

Taken together, our experiment suggests that all PEX11 proteins despite their origin are 

efficiently targeted to the peroxisomal membrane. However, their potential to affect 

peroxisomal proliferation appeared quite distinct.  
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Figure 12:Co-expression of YFP-PEX11 fusion proteins from plant, human and yeast together with a red 
fluorescent PX marker (mCherry-SKL) 48h post infiltration in epidermal plant cells of N. benthamiana: 
(A) Control: estradiol-induced expression of the peroxisomal marker protein mCherry-SKL. Small, well-
separated red-tagged PXs were visible. (B) Arabidopsis 35S promoter expressed YFP-PEX11 fusion 
proteins AtPEX11A, AtPEX11B, AtPEX11C, AtPEX11D and AtPEX11E, are detected at the membrane of PX 
in plant cells. Moreover, all these proteins and estradiol inducible AtPEX11D induce formation of PX 
clusters. (C) 35S promoter expressed YFP-ScPEX11, -25 and - 27 Yeast fusion proteins. The tagged yeast 
PEX11 family members appear at the PX membrane and induce to various degrees PX clustering. (D) 
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Human derived PEX11 fusion proteins expressed by 35S::YFP-HsPEX11α, 35S::YFP-HsPEX11βand 35S::YFP-
HsPEX11γ. The human PEX11 proteins are detected at the PX membrane and except for HsPEX11βseem to 
induce PX clusters similar to the ones observed with the plant and yeast PEX11 fusion proteins. To allow 
high resolution imaging the cells were treated with F-actin depolymerizing cytochalasin D for 0.5h prior to 
imaging. This immobilized the movement of PX but did not induce clustering or alter the appearance of PX. 
Images are projected Z-stacks (20µm deep) of 6 optical slices, distance 4 µm; Scale bar: 40µm; small 
images: close-up of PX clusters, bar: 5µm; green channel: YFP, red channel: mCherry-SKL, blue channel: 
chloroplast auto-fluorescence. 

 

B.3. Plant, yeast and human PEX11 fusion proteins change the 

appearance of peroxisomes in plant cells. 

To study the effects of the various yeast, human and plants PEX11 proteins on PX, we quantified 

the size, number and distribution of peroxisomes (PX) in the epidermal cells. The various PEX11-

fusion proteins were co-expressed with mCherry-SKL and PX appearance was analysed 48h post 

infiltration. For each PEX11-fusion protein at least 3 independent co-expression assays were 

performed and in total 30 images (projected Z-stacks of 6 optical slices, distance 4 µm) were 

taken. The images were used to quantify the number, size and clustering of PX with the help of 

the ImagJ software (Collins 2007). We divided the PX into four categories with increasing size in 

µm of diameter (Table 2) and two additional categories for small and large peroxisomal clusters. 

Categories I and II represent very small and small PX, whereas category III encloses the normal-

sized PX. Category IV represents enlarged PX, which are not clustered. The two categories A and 

B represent the small and large clusters formed after over-expression of PEX11 fusion proteins 

(Table 2). To calculate the total number of PX we included the PX appearing in small and large 

clusters. To achieve this we used 5 high-resolution images of small and large clusters from each 

PEX11-fusion protein from yeast, human and plant (see also materials and methods chapter 

D.6.4). 

 

 

 

 

Table 2: Six categories of peroxisomal sizes and clusters were assigned: Category I and II for very small 
and small PX (0.0-0.87µm in diameter), Category III for normal sized PX (0.88-1.9µm) and categories IV for 
enlarged PX (1.91-2.75µm). The categories A and B represent small (2.96-7.16µm) and large (6.17-
27.55µm) peroxisomal clusters formed after over-expression of the different PEX11 fusion proteins. 
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By quantifying the number and size of PX of the different PEX11 fusion proteins we could answer 

two questions:  

1) Does the average size and/or number of peroxisomes (PX) change due to the expression 

of yeast, human and plant PEX11 fusion proteins? 

2) Does the over-expression of the PEX11 fusion proteins alter the distribution of 

peroxisomes (PX) in plant cells?  

 

B.3.1. Heterologous PEX11 fusion proteins alter the size and number of 

peroxisomes in plant cells 

First, ass a control, epidermal leaf cells of N. benthamiana were transformed with the 

peroxisomal marker protein signal mCherry-PTS1 (SKL) alone to evaluate the shape, size and 

abundance of PX in the infiltrated plant tissues under normal conditions. A single epidermal cell 

shows an average of 25 PX (Figure 13: control), which are round shaped, well separated and 

highly mobile.  

The over-expression of the five plant PEX11 fusion proteins led to a change in number and area 

of PX for four AtPEX11 fusion proteins (Figure 13), except for the AtPEX11A fusion protein 

showing a slight decrease in PX number and area compared to the control. AtPEX11C, AtPEX11B 

and AtPEX11D led to approx. twice as many PX per cell compared to the control, whereas 

AtPEX11E only induced a slight increase in PX numbers. AtPEX11A, AtPEX11C, AtPEX11D and 

AtPEX11E cover a smaller area indicating that these fusions induced the formation of smaller PX 

compared to the control.  

Concerning the yeast homologues ScPEX25 and ScPEX27, the over-expression of these proteins 

led to an increase of PX number and area. Especially the over-expression of the ScPEX27 fusion 

protein led to three times more PX per cell compared to the control (approx.75 PX per cell/ 

control approx. 25 PX per cell). In contrast, the yeast ScPEX11 fusion protein had no obvious 

effect on the number of PX per cell, but they cover a smaller area, suggesting that the PX are 

smaller in size compared to the control. Concerning the three human PEX11 orthologues, no 

obvious changes regarding the number or area of PX were observed induced by HsPEX11α fusion 

protein, whereas in the presence of the HsPEX11у fusion protein a larger area of PX as well as a 

higher amount of PX per cell were observed. Note that the human HsPEX11β seemed to increase 

the number of PX per cell, but due to a to small number of successful infiltrations and images 
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(n=3) available, no quantification was performed and is therefore marked as not determined 

(n/d). 

 

 

 

 

 

 

 

 

 

Figure 13: Statistical analysis of peroxisome (PX) abundance and area 48h post infiltration. Blue bars: 
Average area of all PX per cell in µm

2
. Red bars: Average number of PX per cell. Error Bars: Standard error 

of means; 3 independent infiltration experiments were performed with a total n= 30 images representing 
approximately 190 cells. *n/d = not determined. 

Beside the analysis of the size, number and area of PX we also evaluated the effect on the 

morphology of PX. 

 

B3.2. Over-expressing yeast, human and plant PEX11 fusion proteins lead 

to cluster formation of peroxisomes 

Considering the question, whether over-expression of the various PEX11 fusion proteins effects 

the distribution of peroxisomes (PX), we evaluated the appearance of clusters.  

We were able to observe a significant shift induced by each PEX11-fusion protein towards the 

formation of small or large peroxisomal clusters and a decrease of the abundance of separated 

small and normal sized PX, summarized in category I to IV (seeFigure 14). All five Arabidopsis 

PEX11 fusion proteins led to cluster formation containing nearly all PX inside small and large 

clusters (Figure 14: Category A and B). The two human PEX11 fusion proteins HsPEX11α and 

HsPEX11у as well as the yeast ScPEX11 showed about 80% cluster formation (both categories A 

and B taken together), whereas for the two remaining yeast PEX11 fusion proteins, ScPEX25 and 
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ScPEX27, only 50% of the PX were located in clusters, which were small. In contrast to the other 

PEX11 fusion proteins the over-expression of ScPEX25 and ScPEX27 did not lead to the formation 

of large PX clusters (Figure 14). Again no quantification of PX clusters was performed for the 

human HsPEX11β fusion protein, due to the small number of images. However, the few obtained 

images (see example in Figure 12) seem to indicate the formation of a lower number of clusters 

compared to the plant or the two other human PEX11 fusion proteins. Here the situation 

resembles more that of the two yeast PEX11 proteins, ScPEX25 and ScPEX27 (Figure 12_C2/C3 

and 14). 

 

 

 

 

 

 

 

 

Figure 14: Peroxisomal cluster formation after over-expressing yeast, human and plant YFP-PEX11 
fusion proteins in epidermal leaf cells of N. benthamiana. Blue bars: summarized percentage of PX of 
category I to IV.  Red bars: Category A: percentage of PX located in small clusters.  Green bars: Category B: 
percentage of PX located in large clusters; Error bars: Standard error of means; 3 independent infiltration 
experiments were performed analysing n= 30 images (represent approximately 190 cells), n/d* = not 
determined.  

 

B.4. Over-expression of the plant AtPEX11D fusion protein leads 

to the formation of aberrant membrane structures 

Of all five AtPEX11 proteins, AtPEX11D seemed to be the most interesting. The gene is highly 

expressed in all analysed tissues and over-expression did not only lead to the formation of (PX) 

clusters, but also induced aberrant membrane structures (AMS) tagged by the YFP fusion protein 

(Figure 15). Also in infiltrated epidermal cells the protein appeared readily in association with 

endoplasmic reticulum (ER)-like structures. To further analyse its subcellular distribution, we 

infiltrated N. benthamiana leaves expressing a GFP version tagging the endoplasmic reticulum 

(ER-GFP-KDL, line 16c; Ruiz et al. 1998) with agrobacteria harbouring the mCherry-PTS1 

 

n/d* 
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construct. This allowed us to evaluate the appearance of the ER mesh and the relative 

localization and appearance of PX under wild-type conditions.  

The microscopic images indicate that the ER appears normal as a cortical net and that PX are 

well separated forming no clusters and they were often found in the proximity of the ER (Figure 

15_A).  Most importantly the red and green fluorescent signals never overlapped and no 

aberrant ER-structure or clustering of PXs were observed. Note that PXs were often found 

adjacent to the chloroplast (CP) and that a weak red fluorescenc mCherry-PTS1 signal also 

appeared in nuclei (N).  

In contrast, after co-infiltration of mCherry-SKL (red) with YFP-PEX11D fusion constructs (green) 

in wild-type N. benthamiana leaves, peroxisomal clusters (PXC) (Figure 15_B and 15_C1) 

appeared together with aberrant membrane structures (AMS) (Figure 15_C and 15_C2). 

Noteworthy, the mCherry-PTS1 construct was not found to tag the AMS. 

 

 

Figure 15: ER-like and aberrant membrane structures appeared after over-expression of YFP-AtPEX11D. 
A) Control: transgenic N. benthamiana epidermal leaf cells expressing a green fluorescent endoplasmic 
reticulum (ER)-tag. 48h post infiltration the peroxisomal marker mCherry-SKL (red) and the ER-GFP 
markerare shown. Peroxisomes (PX) are small round shaped dots in the proximity to chloroplasts (CP) and 
the ER appeared normal as a cortical mesh and forms a netlike structure and encircles the nucleus (green). 
An mCherry-SKL signals was also found in the nucleus (N. B) Co-expression of mCherry-SKL with 35S::YFP-
AtPEX11D. Aberrant membrane structures (AMS) could be detected and peroxisomal cluster are formed 
(PXC). Image taken at the surface of the epidermal leaf cell shows the presence of the YFP-AtPEX11D 
fusion protein at ER-like structures. C) Image of same epidermal leaf cell taken at a focal plane through 
the interior of the cell. Images: green channel: ER-GFP (A) or YFP-AtPEX11D (B and C). red channel: 
mCherry-SKL, blue channel: chloroplasts auto-fluorescence. Scale bar: 20µm; 5µm 

 

However, beside its association to PX membranes the AtPEX11D fusion protein was also 

detected in association to these aberrant membrane structures (AMS). In addition we observed 

an YFP-AtPEX11D-tagged mesh structure resembling the cortical ER (Figure 15_B and 16_B). 
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To identify the origin of the AMS and whether AtPEX11D also associates to the ER, we co-

infiltrated constructs expressing the YFP-AtPEX11D protein and an ER-RFP marker (ER-RFP) and 

evaluated their distribution pattern 48h post infiltration. As shown in Figure 16, the AMS 

appeared to be filled with ER-RFP marker protein.  

     

Figure 16: ER-like structures and aberrant membrane structures appeared after over-expressing 
35S::YFP-AtPEX11D in N. benthamiana epidermal leaf cells 48h post infiltration: A) Overviews of two 
epidermal leaf cells taken at the surface of the cells: Co-infiltration of the ER-KDL-RFP marker (red) with 
the YFP-AtPEX11D fusion protein (green). Peroxisomes (PX) are not directly visible, only the peroxisomal 
membranes are tagged (green). The endoplasmatic reticulum (ER) is tagged in red and forms a netlike 
structure. Large aberrant membrane structures (AMS) are visible. B) Crop Image of an aberrant 
membrane structure (AMS) taken at the surface of the cells: In cells with a high AtPEX11D expression, no 
tagging of the ER with the AtPEX11D fusion protein is visible; instead the ER-RFP marker is trapped inside 
these aberrant membrane structures (AMS). C) Crop Image of an aberrant membrane structure (AMS) 
taken at the interior of the cells: Localisation of the ER-KDL marker in these structures visible, as well as a 
large cluster of peroxisomes embedded in the middle of the AMS structure. Images: green channel: YFP, 
red channel: ER-KDL-RFP, blue channel: chloroplasts auto-fluorescence. Scale bar: 20µm 

 

A closer look at these AMS structures revealed a connection between the appearance of these 

AMS structures and a co-localization with an ER-RFP marker.  

Like shown in Figure 17_A, in cells, which did not show a high fluorescence of the YFP-AtPEX11D 

fusion protein, no AMS structure can be observed. In addition co-localization of the YFP-

AtPRX11D fusion protein (Figure 17A_green) with the ER-RFP marker (Figure 17A_red) can be 

observed at mesh-like structures.    

In Figure 17_B, a cell is shown, containing a higher YFP-AtPEX11D expression as well as a few 

AMS structures. The ER-RFP marker is found to be entrapped inside of these AMS structures and 

therefore no netlike ER-structure is visible anymore with the ER-RFP marker (see arrows 

indicating no netlike ER-structures and the entrapped ER-RFP marker inside the AMS structures). 
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At the same time the YFP-PEX11D fusion proteins is still associated to a netlike ER structure 

(green, 17_B arrow). 

In Figure 17_C, a cell was observed containing a large number of AMS structures filled with the 

ER-RFP marker. In contrast to Figure 17_B the YFP-AtPEX11D fusion protein did not associate to 

ER-like structures anymore (Figure 17_C, green) and a complete disintegration of the ER-netlike 

structures occurred. This indicates a correlation between the appearance of these AMS 

structures, and the tagging of ER-like structure by the YFP-AtPEX11D fusion protein.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17: ER-like structure and aberrant membrane structures appeared after over-expressing 35S::YFP-
AtPEX11D in N. benthamiana epidermal leaf cells 48h post infiltration: (A) Cells showing a co-localisation 
of the ER-like structure tagged with the YFP-AtPEX11D fusion protein and with the ER-RFP marker. No AMS 
structures visible. (B)The ER-like meshwork tagged with the YFP-AtPEX11D fusion protein starts to 
disintegrate and the ER-RFP marker is trapped inside the AMS structures. (C)Complete disintegration of 
the ER structure. The ER-RFP marker is trapped inside the AMS structures, filling a large cell area. No ER-
like structures are associated with the YFP-AtPEX11D fusion protein anymore; instead the entrapped ER-
RFP marker is surrounded by the YFP-AtPEX11D fusion protein. Images: green channel: YFP-AtPEX11D, red 
channel: ER-KDL-RFP, blue channel: chloroplasts auto-fluorescence. Scale bar: 20µm or 40µm. 

In addition we evaluated, if the other PEX11 fusion proteins from yeast, plant and human also 

associate to the ER. Therefore, we had a closer look at the cell periphery of N. benthamiana 

epidermal leave cells, infiltrated with the different YFP-PEX11 fusion proteins together with the 

mCherry-SKL, 48h post infiltration. These experiments revealed, that nearly all the transiently 

over-expressed PEX11 fusion proteins, except for the two yeast fusion proteins ScPEX25 and 
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ScPEX27 as well as the HsPEX11β fusion protein, showed an association to an ER-like structure in 

green with the YFP-PEX11 fusion proteins (see Table 3).  

 

 

 

 

 

 

 

 

 

 

Table 3: Summary of the transient overexpression studies and observed peroxisome effects of yeast, 

plant and human PEX11 fusion proteins in plant cells. Custer formation from no or low formation (+/-) to 

high amount of cluster formation (+++).* data not determined n/d . 

 

To confirm these data, co-infiltration studies with one of the yeast PEX11 fusion protein 

(ScPEX25) as well as with one human PEX11 fusion protein (HsPEX11у) were performed and 

analyzed 24h to 72h post infiltration. As a control (Figure 18_A), transgenic N. benthamiana 16c 

leave tissues expressing the green ER marker protein (ER-GFP) were infiltrated with a red 

peroxisomal matrix protein PTS1 (mCherry-SKL). 

This control experiment revealed the localization of the mCherry-SKL protein to small round 

shaped peroxisomes, whereas no association to the netlike ER structure or aberrant membrane 

structures (AMS) could be detected (Figure 18_A). In addition, a newly constructed ER-RFP 

marker was infiltrated in these transgenic N. benthamiana 16c plants (Figure 18_A) to confirm 

the appropriate localization of the ER-RFP marker, used for further analyses. As shown in Figure 

18_B the co-expression of the yeast ScPEX25 fusion protein with the ER-RFP marker did not lead 

to an detectable association of the ScPEX25 fusion protein (green) to the ER-structure (red), 
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whereas a co-localization of the human HsPEX11у fusion protein (green) with the ER-meshwork 

(red) was observed (Figure 18_C). 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Association of yeast and human PEX11 fusion proteins with the ER. (A) left: Control: Co-
expression of a peroxisomal matrix protein Cherry-SKL has been observed 72h post infiltration in 
transgenic N. benthamiana leaves (16C) carrying an ER-GFP marker. The ER appears as a typical meshwork 
at the cell periphery in green, whereas the mCherry-SkL marker localizes to small round shaped PX. No 
association of the mCherry-SKL marker to the ER can be observed. (A) right: In addition, co-localisation of 
a red ER-RFP marker with the green ER-GFP marker in transgenic 16C plants was shown. (B)No tagging of 
the ER netlike structure can be observed after over-expression of the yeast PEX11 fusion protein ScPEX25 
in green, see arrow. (C) In contrast, the human HsPEX11у fusion protein (in green) associates to the ER 
meshwork (in red). Scale bar: 40µm and 20µm.  

 

B.4.1. Analysis of the dynamics of aberrant membrane and ER-like structures 

after over-expressing AtPEX11D 

To get a better insight into the formation of these aberrant membrane structures  (AMS) as well 

as the observed ER-like structures we performed a timeline experiment and studied the 

dynamics and structure of the ER at three different time points (24h, 48h and 72 hours post 

infiltration). Co-infiltration experiments with the AtPEX11D fusion construct and an ER-RFP 

marker (ER-RFP-KDL) were performed as well as co-infiltration experiments with members of the 

yeast (ScPEX25) and human (HsPEX11у) PEX11 gene family.  
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As a control ER-RFP-KDL was infiltrated alone and the ER-structures were analyzed over a time 

period of three days. No AMS were visible and no significant differences concerning the ER-

structure could be observed (Figure 19_a1-a3).  

Twenty-four hours post infiltration of the AtPEX11D fusion protein together with an ER-RFP 

marker, a cortical netlike ER-structure was visible (red channel, Figure 19_b1), whereas no 

sorting to the ER-like structures was observed of the YFP-AtPEX11D fusion protein (green 

channel). Peroxisomes already started to form small cluster and no aberrant membrane 

structures were visible.  

The situation changed 48h post infiltration. In cells where the YFP-AtPEX11D was not expressed 

(Fig 19_b2 left side) no AMS or ER-structures were observed with the ER-RFP marker, whereas 

cells expressing AtPEX11D (right side) showed a wide mashed pattern of an ER-like meshwork 

tagged by the YFP-AtPEX11D fusion protein. In these cells, no co-localization of the ER-RFP 

marker with the cortical netlike structure of the YFP-AtPEX11D could be observed. The ER-RFP 

marker got trapped inside the AMS (Figure 17_B and Figure 19_b2) and disintegration of the ER-

structures occurred. Seventy-two hours post infiltration an even more sever disintegration of the 

ER structures (Figure 19-b3) could be observed.  

The co-expression of the ER-RFP marker together with the human HsPEX11у led to a co-

localization of the human YFP-HsPEX11у fusion proteins (green) with ER-RFP marker protein 

(red) 24 hours post infiltration, see Figure 19_c1. PXs were small and round shaped and no 

aberrant membrane structures were observed. At 48 hours post infiltration PX were mainly 

located in small and large clusters, but still no aberrant membrane structures were visible. After 

72h no association of the YFP-HsPEX11у fusion protein with the ER-RFP marker was observed 

and a sever disintegration of the ER could be detected (Figure 19_c3). 
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Figure 19: Dynamics of ER-structure after over-expression of YFP-PEX11 family members in N. 
benthamiana 24h, 48h and 72h post infiltration. (a1-3) Control: ER-RFP-KDL: no aberrant membrane 
structures visible, ER-structure constant over 3 days. (b) Co-expression of YFP-ATPEX11D and ER-RFP 
marker. (b1) 24h post infiltration: netlike ER-structure visible with the ER-RFP marker, no tagging of ER-
like structures with the YFP-AtPEX11D fusion protein, no aberrant membrane structures observed, normal 
peroxisomes as well as small clusters of peroxisomes. (b2) 48h post infiltration: ER-RFP marker associates 
to the ER in cells were the YFP-AtPEX11D is not highly expressed. In cells were the YFP-ATPEX11D gen is 
highly expressed ER-like structures are tagged by the YFP-AtPEX11D fusion protein, leading to a more wide 
mashed pattern of the ER. In addition the ER-RFP-KDL marker is trapped inside the aberrant membrane 
structures (AMS). (b3)72h post infiltration: Disintegration of the ER-like structures tagged by the YFP-
AtPEX11D fusion protein. ER-RFP marker trapped inside the AMS structures. (c1-3) Co-infiltration of 
human HsPEX11у with an ER-RFP-KDL marker: ER-RFP marker co-localized with the YFP HsPEX11у fusion 
protein already 24h post infiltration. The ER starts to disintegrate 48h to 72h post infiltration but no AMS 
appeared. (d1-3) Co-infiltration of yeast ScPEX25 with an ER-RFP-KDL marker: No AMS structures were 
detected throughout the whole experiments. In addition no association of the YFP-ScPEX25 fusion to the 
ER could be observed at any time point analysed. Images: green channel: YFP, red channel: ER-KDL-RFP, 
blue channel: chloroplasts auto-fluorescence. Scale bar: 20µm 
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The over-expression of the yeast YFP-ScPEX25 fusion protein did not lead to the formation of 

large peroxisomal cluster or AMS (Figure 19_d1-d3). No association of the YFP fusion protein to 

the ER structures was observed at any time point analyzed. (Figure19_d).  

 

B.5. Analysis of transgenic A. thaliana lines expressing PEX11 

fusion proteins 

Transgenic A. thaliana lines expressing the various PEX11 proteins from yeast, human and plant 

under the control of the constitutive Cauliflower mosaic virus (CaMV) 35S promoter were 

established in the Col0 ecotype and analysed. All PEX11 proteins from yeast, human and plant 

were tagged with an N-terminal green fluorescence (YFP) marker.  

As a control, transgenic plants harbouring a peroxisomal red fluorescence mCherry marker 

(mCherry-SKL) expressed under the control of an estradiol inducible promoter (see methods) 

were analysed. 

At least three transgenic lines were established and analyzed for each AtPEX11 construct. Note 

that after several trials for the AtPEX11A construct only two independent stable transgenic lines 

could be established. 

 

B.5.1. Over-expression of AtPEX11A lead to significant smaller plants with 

upward curved leafs 

Figure 20 shows transgenic plants harbouring the five different AtPEX11A-E fusion proteins as 

well as control transgenic mCherry-SKL, at different developmental stages. Plants overexpressing 

AtPEX11A were significantly smaller compared to wild-type Col0 plants and the development of 

the inflorescence and flowers was delayed (Figure20_C and 20_D). Besides the significant 

reduction of size, a change in the morphology of rosette leafs could be observed. The leaves 

were curved upwards and in addition often bleaching of these leaves was observed (Figure20_C 

and Figure21_A1). Plants without an AtPEX11A expression resembled wild-type Col0 plants and 

did not show this phenotype (Figure21_A2 and 21_a2). No significant change concerning flower 

morphology was observed after overexpressing AtPEX11A. Plants overexpressing AtPEX11C 

showed a similar but less severe delay in leaf development as AtPEX11A. No changes in leaf 

shape or flower development of these plants could be observed. The over-expression of the 



                                                              B. Results 

55 
 

remaining three plant PEX11 proteins AtPEX11B, AtPEX11D and AtPEX11C did not lead to any 

significant phenotypical changes. They resemble Col0 plants as well as transgenic mCherry-SKL 

plants.  

 

 

 

 

 

 

 

 

 

Figure20: Phenotypical studies on transgenic A. thaliana plants overexpressing the plant AtPEX11 
proteins at different developmental stages.(A) Two weeks old plants.(B) 22days old plants.(C) Rosette(D) 
Flowers. Control plants: wild-type Col0 plants and transgenic mCherry-SKL expressing plants. 

 

 

 

 

 

 

 

Figure21: Phenotypical analysis of transgenic AtPEX11A plants. (A1) Transgenic YFP-AtPEX11A plants are  
smaller with upwards curved leaves. (a1) CLSM image showing peroxisomal cluster formation in leaf tissue 
of the same plant. (A2) Transgenic AtPEX11A plants without expression are similar to Col0 wild type 
plants; (a2) no expression of the YFP-AtPEX11A protein is detected in this plant. 
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B.5.2. Over expression of ScPEX27 and HsPEX11γ lead to a delayed plant 

growth 

The over-expression of the yeast ScPEX11 fusion protein as well as the human HsPEX11у fusion 

led to a delay in plant growth. The plants appeared to be smaller compared to the wild-type Col0 

plants or the transgenic mCherry-SKL plants at the same developmental stage like shown in 

Figure 22_A to22_B. In addition the development of the inflorescence as well as flowering was 

delayed, but no morphological changes concerning leaf or flower structure were observed 

(Figure 22_B and 22_D). This could be observed in two independent transgenic lines 

overexpressing ScPEX27 and HsPEX11у. The over-expression of the two remaining yeast PEX11 

homologues, ScPEX11 and SCPEX25 as well as the human PEX11 orthologue HsPEX11α, did not 

have any significant effect on plant growth or plant morphology. Note that no transgenic plants 

overexpressing the human HsPEX11β were established and analyzed. 

 

protein 

 

 

 

 

 

 

 

Figure 22: Phenotypical analysis of transgenic A. thaliana plants expressing the yeast and human PEX11 
proteins. (A)Two weeks old plants. (B) 22days old plant (C) Rosette leaves (D) Flowers. Control plants: 
wild-type Col0 plants and mCherry-SKL expressing plants. 
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B.5.3. Distribution and effect of PEX11 fusion proteins on peroxisomes in 

A. thaliana plants 

The control line harbouring the mCherry-SKL showed small, round shaped peroxisomes (PX) of 

approx. 1µm in diameter (Figure 23_A), which were highly mobile and often found in proximity 

of chloroplasts. In contrast, the five Arabidopsis PEX11 fusions proteins sorted to the 

peroxisomal membrane and except YFP-AtPEX11B induced a shift towards formation of 

peroxisomal clusters (Figure 23_B to F).  

As shown in Figure 23, expression of the AtPEX11A, -C, -D and –E proteins led to the formation of 

more or less round shaped clusters in which the core area appeared devoid of the fusion 

proteins. The clusters were found to be closely associated to chloroplasts and often showed a 

slow movement. The only exception was AtPEX11B (Figure 23_C). In this case the expressed YFP 

fusion was barely detectable and the PX appeared normal and well separated. Here no or few 

small clusters were detected which resembled the mCerry-SKL control shown in Figure 23_A. 

 

 

 

 

 

 

 

 

 

Figure 23: CLSM images of epidermal leaf cells of transgenic A. thaliana plants expressing one of the five 
AtPEX11 YFP fusion proteins (A) Control: Transgenic line expressing the mCherry-SKL construct tagging 
the PX.  Here PX appeared normal as small, round shaped and highly mobile organelles. (B) YFP-AtPEX11A 
transgenic: Small and large PX clusters were detected and YFP- AtPEX11A was found at the PX membrane 
(see crop) and PX clusters. (C) YFP-AtPEX11B transgenic: PX appeared small and only a few small clusters 
were visible.  (D-F) YFP-AtPEX11D to -E transgenic: Small and large peroxisomal clusters were visible. 
CLSM Images: green channel: YFP, red channel: mCherry-SKL, blue channel: chloroplasts auto-
fluorescence. Scale bar: 40µm; 5µm. 
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To confirm that the observed cluster structures tagged with the various YFP-AtPEX11 fusion 

proteins are really PX, transgenic plants harbouring a YFP-PEX11 fusion protein together with a 

peroxisomal matrix protein (mCherry-SKL) were established and analysed for two of the five 

constructs: AtPEX11A and AtPEX11D (Figure 24 below). Therefore transgenic plants 

overexpressing YFP-AtPEX11A or YFP-AtPEX11D were transformed (see materials and methods) 

with the mCherry-SKL construct, and selected on growth medium via Basta (YFP-PEX11) and 

Hygromycin (mCherry-SKL) selection (see materials and methods). 

In both cases the previously observed PX clusters (green) were now filled with the mCherry-SKL 

fusion protein (red) like shown in Figure 24 below. 

 

 

 

 

 

 

 

 

 

 

Figure 24: CLSM images of epidermal leaf cells of transgenic A. thaliana plants expressing an YFP-
AtPEX11 fusion protein together with the peroxisomal matrix targeting signal (mCherry-SKL)(A) 
Transgenic plants overexpressing the YFP-AtPEX11A fusion protein together with the mCherry-SKL fusion 
protein. PX clusters can be observed in which the peroxisomal membrane is tagged by the YFP-AtPEX11A 
fusion protein (Crop: green), whereas the mCherry-SKL localises to the peroxisomal (Crop: red). (B) 
Transgenic plant overexpressing the YFP-ATPEX11D fusion protein together with mCHerry-SKL. Again a 
localisation of the YFP-AtPEX11D fusion protein (Crop: green) to the peroxisomal membrane and the 
localisation of mCherry-SKL to the peroxisomal matrix (Crop: red). CLSM Images: green channel: YFP, red 
channel: mCherry-SKL, blue channel: chloroplasts auto-fluorescence. Scale bar: 50µm; 10µm and 5µm. 

 

Besides the five Arabidopsis PEX11 fusion proteins, transgenic lines expressing the three yeast 

PEX11 homologues ScPEX11, ScPEX25 and ScPEX27 as well as two of the three human PEX11 

orthologues, HsPEX11α and HsPEX11у, were established and analysed. In these lines the tested 
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yeast and human YFP-PEX11 fusion proteins localised to the peroxisomal membrane. The 

ScPEX11 fusion proteins (Figure 25_B) as well as the two human fusion proteins HsPEX11α 

(Figure 25_E) and HsPEx11γ (Figure 25_F) led to the formation of PX clusters. The expression of 

the two yeast YFP-ScPEX25 and YFP-ScPEX27 constructs (Figure 25_C and 25_D) had no effect on 

the peroxisomal appearance and their distribution and size resembled that of the control (Figure 

25_A). 

 

 

 

 

 

 

 

 

 

Figure 25: CLSM images of epidermal leaf cells of transgenic A. thaliana plants expressing the various 
PEX11 proteins from yeast and human. (A) Control: Transgenic line expressing the peroxisomal marker 
protein mCherry-SKL. Here PX appeared small, round shaped and highly mobile. (B) YFP-ScPEX11: PX 
cluster formation. (C) YFP-ScPEX25:  small, well separated PX, only few and small clusters. (D) YFP-
ScPEX27: same as ScPEX25. (E) YFP-HsPEX11α: large PX cluster. (F) YFP-HsPEX11γ: PX cluster were visible. 
CLSM Images: green channel: YFP, red channel: mCherry-SKL, blue channel: chloroplasts auto-
fluorescence. Scale bar: 40µm; 5µm. 

 

In addition cryo-cuttings of different plant organs were performed, to determine whether cluster 

formation of PX was restricted to a specific plant organ. Here representative transgenic plants 

expressing YFP fusions of ScPEX11 (yeast), HsPEX11у (human) or AtPEX11D (plant) were used to 

perform cryo-cuttings of a rosette leaf, a whole flower bud, an ovule and the anthers. As shown 

in Figure 26, in all three transgenic lines and all analysed plant organs PX clusters could be 

detected in all tested plant tissues. No expression from the 35S promoter was observed in the 

ovules of ScPEX11 and HsPEX11у, whereas overexpression of AtPEX11D showed a few PX inside 

of the ovule. No expression from the 35S promoter was observed in the pollen for any of the 

 



                                                              B. Results 

60 
 

analysed plants. Summarized the confocal inspection of the tissues revealed that the PX clusters 

appear throughout the various plant organs and no organ specific differences could be observed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: CLSM images of cyro-cuttings through different plant organs of transgenic A. thaliana plants. 
Analysed PEX11 proteins: YFP-ScPEX11, YFP-HsPEX11у and YFP-AtPEX11D. Analysed plant organs: rosette 
leaf, flower bud, ovule, pollen. Crop: PX. CLSM Images: green channel: YFP, blue channel: chloroplasts 
auto-fluorescence. Scale bar: 5µm.  

 

B.5.4. The effect of hormones and sucrose on the growth of PEX11 

transgenic seedlings 

To analyse the effect of different hormone treatments as well as sucrose on the primary root 

growth, two independent transgenic A. thaliana lines expressing one of the five AtPEX11 fusion 

proteins (AtPEX11A-E) were grown on ½ MS medium.  To test the effect of sucrose and/or 

hormones the medium was supplemented with 3% sucrose, in addition with methyl-jasmonate 

(10µM MJ), abscisic acid (1µM ABA), 1-Naphthaleneacetic acid (1µM NAA), or gibberellic acid 

(5µM GA). Their influence on growth was studied 7 days after germination under standard long 

day conditions (16h light/ 8h dark, 22°C). In addition, the growth effect of salt stress (100mM 

NaCl) was tested. 

As shown in Figure 27_A a significant defect in root elongation and a dwarf phenotype was 

observed for transgenic seedlings overexpressing AtPEX11A, AtPEX11B or AtPEX11C, whereas 

seedlings overexpressing AtPEX11D showed only a slight reduction of the root length compared 
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to wild-type Col0 plants. No significant difference in the root length of seedlings overexpressing 

AtPEX11E was observed compared to wild-type Col0 plants. 

The addition of 3% sucrose into the growth medium led to an increase in the root length of 

transgenic seedlings overexpressing AtPEX11A, AtPEX11B or AtPEX11C (Figure 27_B) compared 

to seedlings grown on medium without sucrose (Figure 27_A). This suggests a partially rescue of 

the root elongation defect in transgenic lines expressing AtPEX11A, AtPEX11B or AtPEX11C 

fusion proteins observed on medium without sucrose. Seedlings overexpressing AtPEX11D did 

show a similar root growth as the control Col0 plants, whereas seedlings overexpressing YFP-

AtPEX11E showed a slight increase in the primary root length compared to the control plants 

(Figure 27_B). 

The addition of 10µM methyljasmonate (MJ) into the growth medium (½ MS medium with 3% 

sucrose) led to a rescue of the dwarf root phenotype observed for seedlings overexpressing 

AtPEX11A and AtPEX11B (compare Figure 27_A, B and C), even though the root elongation of all 

plants, including the wild type plants are generally shorter. Seedlings overexpressing AtPEX11C, 

AtPEX11D or AtPEX11E did not show any significant differences in the root growth compared to 

plants grown on growth medium with 3% sucrose. For these plants the addition of MJ did not 

have any effect on root elongation, compared to plants grown on ½ MS medium with sucrose. 

The supplementation of 1µM abscisic acid (ABA) into the growth medium led to an increase in 

the root length of seedlings overexpressing AtPEX11A, AtPEX11D or AtPEX11E compared to Col0 

plants. Here ABA rescued the deficiency of the transgenic YFP-AtPEX11A line root growth 

observed on sucrose. In contrast, seedlings overexpressing AtPEX11B or AtPEX11C had a 

significant defect in root elongation and a dwarf phenotype similar to the situation observed for 

seedlings grown on ½ MS medium alone (Figure 27_D and 27_A).  
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Figure 27: Effects of sucrose and various hormone treatments on the root growth of transgenic A. 
thaliana plants overexpressing the different plant PEX11 fusion proteins. T2 progenies of these plants 
and wild type Col0 plants were grown for 7 days on ½ MS medium containing 0,5g MES, 4g Mourashige 
and Skoog medium with vitamins and 6g plant agar under normal light conditions (16h light/ 8h dark, 
22°C). All plants were previously checked for their expression with a fluorescence microscope. (A) ½ MS 
medium without sucrose. (B) ½ MS medium with 3% sucrose.(C) ½ MS medium with 3% sucrose and 10µM 
MJ.(D) ½ MS medium with 3% sucrose and 1µM ABA.(E) ½ MS medium with 3% sucrose and 1µM NAA.(F) 
½ MS medium with 3% sucrose and 5µM GA. (G) ½ MS medium with 100mM NaCl. n: two technical replica 
with 20 plants in total analysed. 
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The addition of 1-Naphthaleneacetic acid (NAA), a synthetict hormone of the auxin family, into 

the growth medium led to a rescue of the dwarf root phenotype observed for AtPEX11A and 

AtPEX11C on MS medium (Figure 27_E). In contrast seedlings overexpressing YFP-AtPEX11B 

were either not able to germinate properly on medium supplemented with 1µM NAA (Figure 

27_E) or showed a strong reduction of growth suggesting hypersensitivity to auxin.  

Again, the root growth of plants overexpressing AtPEX11D and AtPEX11E did not show any 

differences compared to Col0 plants.  

Gibberelic acid (GA) was the last hormone analysed and showed a slight increase on root 

elongation for plants overexpressing AtPEX11D and AtPEX11E (Figure 27_F). For seedlings 

overexpressing AtPEX11A, AtPEX11B and AtPEX11C the addition of 5µM GA did not lead to any 

positive or negative effect concerning root growth. These plants resembled the control situation 

on growth medium with 3% sucrose (compare Figure 27_B an 27_F), showing shorter roots 

compared to Col0 plants. 

Finally I also analyzed the effect of salt stress (100mM NaCl) on root growth. In general, the 

addition of 100mM NaCl to the ½ MS medium (without sucrose) led to smaller plants. However, 

a slight negative effect on the root growth was observed for YFP-AtPEX11D transgenic plants 

(Figure 27_G). YFP-AtPEX11E transgenic did not show any negative effect on root elongation 

compared to ½ MS medium.  

Taken together, the most severe effects after the hormone treatment were shown for seedlings 

overexpressing AtPEX11A, AtPEX11B and AtPEX11C N-terminal YFP fusions. Seedlings 

overexpressing YFP-AtPEX11A showed a rescue of the dwarf phenotype after addition of 10µM 

MJ and 1µM NAA, and even a significant increase in root length was detected after 

supplementation of 1µM ABA. At the same time a rescue of the root phenotype of plants 

overexpressing YFP-AtPEX11B was only observed after the addition of 10µM MJ into the growth 

medium. The addition of MJ led to a partially rescue of the dwarf phenotype, whereas auxin led 

to a complete rescue of the phenotype. Plants overexpressing AtPEX11C, could be partially 

rescued with 10µM MeJA and completely after the addition of auxin, whereas ABA did not have 

any positive effects on root elongation. 

GA and NaCl did not show a significant positive or negative effect on the root growth, for all 

overexpression lines analysed. 
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B.6. Promoter activity of AtPEX11D 

In contrast to the yeast and mammalian systems, nothing is known about factors regulating the 

expression of AtPEX11 genes in plants. To get a better understanding of the dynamics of 

peroxisomes in living plants I studied the expression activity of one of the five endogenous 

AtPEX11 genes. Therefore, an in silico analyses as well as a promoter activity study of the A. 

thaliana PEX11D under various conditions was performed.  

AtPEX11D was chosen, due to its high endogenous expression impact on PX shape and number 

in transient assays and strong association to the ER (see chapter B3). According to the most 

recent available microarray data at bar.utoronto.ca/ status 2011), AtPEX11D is highly expressed 

in cotyledons, cauline, adult or senescent leaves as well as in sepals or water imbibed seeds 

(after 24h). Tissue specific expression of AtPEX11D was suggested to be in guard and mesophyll 

cells of leaves as well as in the lateral root cap and the procambium of roots. No expression was 

detected in the epidermis of the leaves and pollen. It was also predicted to be induced by heat 

stress, absisic acid (ABA) as well as light. 

 

 B.6.1. In silico prediction of AtPEX11D promoter elements 

According to our in silico analysis of the AtPEX11D promoter sequence (Figure 28) several 

regulatory motifs such as Y patches or regulatory elements (REG) might be present. Y patches 

are direction-sensitive plant corepromoter elements, appearing around the major transcription 

start sites (TSS). REGs are direction-insensitive elements that are preferentially found 100bp 

upstream of the TSS, containing many established cis-regulatory sequences (source: 

http://www.ppdb.gene.nagoya-u.aB.jp; Yamamoto and Obokata 2008).For the regulatory 

elements (REGs) anabsisic acid responsive element and heat shock (stress) element were 

predicted. 

 

 

 

 

 

 

Figure 28: Predicted upstream promoter domains of AtPEX11D (AT2G45740) according to 
http://ppdb.gene.nagoya-u.aB.jp (Yamamoto and Obokata 2008). 

 

http://www.ppdb.gene.nagoya-u.ac.jp/
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B.6.2. A minimal promoter region of 258bp is essential for the appropriate 

expression of AtPEX11D 

To identify the essential promoter region driving the expression of the AtPEX11D five different 

deletion constructs (Figure30_A) were generated and fused to a GUS/GFP reporter system 

(AtPEX11Dprom::EGFP-GUS; vector pKGWFS7), which allowed to follow the in situ expression by 

GUS staining. Based on the predicted regulatory motifs (Figure 28 and 29) the full-length 

upstream promoter of AtPEX11D (-732bp relative to the start codon) was divided into three 

different regions determined as region III (violet), region II (yellow) and region I (green) starting -

- 151bp upstream of the UTR ( -181 relative to the start codon; see sequence Figure 29). Five 

deletion constructs lacking one or two of these regions or part of them were established 

(Figure30_A): ΔII: The complete region II of the AtPEX11D promoter, from -525bp to -409bp 

(relative to the UTR) was deleted.  ΔIa: Part region I (first 129bp) was removed (-409bp to -

280bp); ΔIb: The second part of region I was eliminated, (- 280bp to -151bp); ΔIa/ΔIb: The 

complete region I has been deleted (-409bp to -151bp). ΔIII/ΔII: Both regions (III and II) were 

removed (-715bp to -409bp), here only region I remained intact.  

Next transgenic plants harbouring the various promoter fragments were established and the 

tissue specific GUS expression, driven by the various deletion constructs was evaluated by GUS 

staining assays on seedlings (Figure 30_B). 

The full-length promoter drives expression of the GUS reporter (shown as blue staining) in 

cotyledons, young leaves, the hypocotyl and primary root in seedlings seven days after 

germination (Figure 30_B1). A closer look at the deletion constructs revealed significant 

differences in their expression pattern compared to the full-length AtPEX11D promoter. A 

deletion of the complete region II led to a similar, but stronger expression pattern compared to 

the complete promoter region of AtPEX11D (Figure 30_B2). The removal of the first 129bp of 

region I, defined as ΔIa, led to a significantly higher expression of the GUS reporter system in 

young leaves and primary roots. 

 

 

 

 

Figure 29: Sequence of the ATPEX11D promoter. Yellow: upstream sequence used for the 
generation of the five deletion constructs; Grey: UTR; Bold: start codon. 
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Figure 30: Promoter study of AtPEX11D: (A) Five different deletion constructs of the AtPEX11D promoter 
region (-732bp relative to the UTR as indicated in figure). Result of the GUS reporter analysis is shown on 
the right side. Thin lines: deleted promoter region, thick black lines: remaining promoter parts. (B) Beta-
glucuronidase (GUS) assay: (1-6) 7 days old seedlings grown on MS medium with 3% sucrose under 
normal light conditions. (1) Full-length promoter drives expression of AtPEX11D in cotyledons, young 
leaves and primary root. (2) ΔII: GUS expression pattern similar to that line with the full-length promoter. 
Note the stronger GUS signal. (3) ΔIa: very weak expression in cotyledons, very strong expression in young 
leafs, similar expression in primary root. (4) ΔIb: similar to full-length promoter. (5) ΔIa/ΔIb: no GUS 
expression at all. (6) ΔIII/ΔII: expression in cotyledons, very strong expression in young leafs and primary 
root. 

 

The deletion of the second part of region I, defined as ΔIb, showed a similar expression as the 

full-length promoter, except for a somewhat weaker expression in cotyledons (Figure 30_B4). 

No gene expression was observed after the deletion of the complete region I (30_B5), indicating 

that this part of the promoter region is essential for an appropriate expression of the gene.  

The complementary construct including only the region I(ΔIII/ΔII), referred to as minimal 

promoter, led to a significant increase in the expression of the GUS reporter system in young 

leaves compared to the full-length promoter region (Figure 30_B6), which suggests that some 

negative regulatory sequences are existing upstream of region I. 
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By this means we identified a short DNA region of approximately 250bp (region I) necessary and 

sufficient for the expression activity, which was used in the following studies aiming to identify 

transcription factor(s) driving AtPEX11D expression (see chapter B.7.). The construct (ΔIII/ΔII) will 

further be referred to as minimal promoter. 

B.6.3. The AtPEX11D promoter drives expression in a light cycle depended manner 

Based on online microarray data from the eFP Browser at bar.utoronto.ca (Winter et. al. 2007 / 

Status 2011) a light cycle depended expression of the AtPEX11D (At2G45740) gene was 

proposed with the strongest expression between 8 and 12 hours after light exposure.  

To confirm this data and to scrutinize the light exposure time necessary for the strongest gene 

expression, a time line experiment with the full-length promoter region of AtPEX11D was 

performed.  

7 days old seedlings of transgenic A. thaliana plants were harvested after different times of light 

exposure (3h, 6h, 10h and 12h) and afterwards a GUS staining assay was performed. As shown in 

Figure 31 an increase in GUS expression was observed after 10h of light exposure. Especially in 

the cotyledons and the primary root and root tip a stronger expression of the GUS reporter 

system was detected compared to 3h of light exposure. No obvious differences were detected 

regarding the expression pattern and strength in young leaves. After 12h of light exposure a 

slight decrease in the strength of the GUS signal could be detected compared to 10h of light 

exposure.  

Based on these results all following GUS expression experiments have been performed after 10h 

of light exposure to visualize possible differences between the constructs. 

 

 

 

 

 

 

 



                                                              B. Results 

68 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Light exposure experiment on transgenic A. thaliana plants harbouring the full-length 
promoter of AtPEX11D driving a GUS reporter system. 7days old seedlings were grown on ½ MS medium 
with 3% sucrose at 22°C and standard light conditions (16h light/ 8h dark). The GUS expression of these 
seedlings was analysed at 4 different light exposure time points (3h, 6h, 10h and 12h). Plant organs 
analysed:  whole seedlings, cotyledons, young leaf, hypocotyls, root and root tip. Two independent 
GUS::promoter lines regulated by the full length region were analysed showing the same GUS expression:   
lines #4 and #6. 

 

A shading experiment was performed to analyse the effect of light absence on the expression 

level driven by the AtPEX11D promoter. Unfortunately, the ß-glucuronidase (GUS) assay of adult 

rosette leaves was not very informative due to a very patchy and irregular staining. For this 

fluorometric GUS measurement were performed using rosette leaves of adult transgenic plants 

with GUS under the control of the full-length and the minimal promoter. In addition the relative 

GUS activity regulated by the not active promoter of AtPEX11D (ΔIa/ΔIb construct) as well as the 

general background activity of Col0 wild-type plants were evaluated. 

As shown in Figure 32, a decrease in the GUS expression level of shaded plants compared to not-

shaded plants was observed for minimal and full-length promoter constructs. Here the relative 

GUS activity of the not active promoter is barely above the background levels measured for the 

wild type Col0 plants. Also this experiment might suggest that shading has an effect on the 
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AtPEX11 full length and minimal promoter, this result has to be further confirmed due to only 

one technical replica with two independent measurements.   

 

                            

Figure32: Fluorometric GUS measurements of plants after two days of shading. Relative GUS activity 
decreases in plants after shading compared to plants exposed to long day light conditions (16h/8h). 
Decreased GUS activity can be observed with both full-length and minimal AtPEX11D promoter fragments. 
The measured GUS activity of the not active promoter fragment (ΔIa/ΔIb) is similar the wild type.  Gray 
bars: Shading, Black bars: Control, long day light exposure. Error bars: standard error of means; n=2 
independent measurements of one biological replica. 

 

B.6.4. The minimal promoter is more active than the full-length promoter. 

A more detailed analysis of the minimal promoter fragment (see chapter B.6.2 and Figure 30) 

revealed a significantly higher GUS expression in young leaves as well as a slightly higher 

expression in the primary root compared to the whole AtPEX11D promoter (Figure 33 below). 

However, no GUS expression was observed in the root tip of transgenic A. thaliana plants 

harbouring only the minimal promoter. In addition the GUS expression seems to be higher in the 

primary root in plants harbouring the minimal promoter region compared to plants regulated by 

the full length promoter. The cotyledons and the hypocotyl did not show significant difference 

between the whole and minimal promoter.  
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Figure 33: Beta-glucuronidase (GUS) assay on transgenic plants. GUS under the control of the whole 
promoter of AtPEX11D versus the minimal promoter fragment. All pictures were taken from 9 days old 
seedling grown on ½ MS medium with 3 % sucrose under normal light conditions. Following plant tissue 
were analysed in two independent plant lines for each GUS promoter construct: cotyledons, young leaf, 
young leaf crop, hypocotyls, primary root and root tip and inflorescence. Two independent GUS::promoter 
lines regulated by either the full length or the minimal promoter region were analysed showing the same 
GUS expression: Full length promoter (#4 and #6); minimal promoter (#5 and #6). 

 

Regarding rosette leaves a slightly higher activity of rosette leaves in plants regulated by the 

minimal promoter region compared to the full length promoter can be observed (Figure 34 

below). In addition, the GUS activity of the non-active promoter region (ΔIa/ΔIb compare 

chapter B6.2) showed only a very slight activity compared to measured background activity of 

the GUS staining in wild type Col0 plants (Figure 34). 

 

 

 

 

 

 

Figure 34: Fluorometric GUS measurement of GUS activity in rosette leaves of transgenic plants 
regulated by the full length AtPEX11D promoter versus the minimal promoter fragment. n: 2 
independent replicas with 5 independent measurements in total. 
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Cross sections revealed also differences of GUS expression from the full-length or minimal 

AtPEX11D promoter, in addition to the results obtained for 9 days old seedlings grown on ½ Ms 

medium with sucrose (Figure 35).  

The cross section through the stem showed a strong GUS staining of parenchyma cells as well as 

in the phloem (Figure 35) in plants regulated by the full length promoter of AtPEX11D. In 

contrast, no expression was detected in phloem cells of plants with GUS expression driven by the 

minimal promoter fragment and lower GUS staining in the parenchyma cells (Figure 35).  

A cross section through a flower bud, showed a high expression in sepals, whereas only a very 

weak signal can be detected in the petals of the flower for both promoter constructs (Figure 35: 

Flower bud). A closer look at the carpel and ovules, revealed that the full length promoter drives 

a higher expression in ovules compared to the minimal promoter region (Figure 35: Carpel with 

ovule). In addition, a cross section through the primary root confirmed a stronger expression 

driven by the minimal promoter region compared to the expression observed in 9 days old 

seedlings regulated by the full-length promoter (Figure 35: root).  

 

 

 

 

 

 

 

Figure 35: Cuttings of paraffin embedded tissues from transgenic A. thaliana plants expressing GUS 
under the control of an intact or minimal promoter. Tissues analysed: cross section through a stem, 
flower bud and through a primary root. Only one independent GUS::promoter line regulated by either the 
full length or the minimal promoter region was analysed: Full length promoter (#6); minimal promoter 
(#6). 
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C.6.5. Heat shock did not alter expression from the AtPEX11D promoter 

Based on online microarray data from AtGenExpress (Abiotic Stress by Kilian et. al., 2007, 

bar.utoronto.ca/ Status 2011) a slight induction of AtPEX11D expression was predicted after a 

heat shock treatment: 18day old Col0 plants were stressed for 3h at 38°C, followed by a recovery 

at 25°C for 4 to 6 hours. Then a slight increase in the gene expression was detected in rosette 

leaves, indicated by arrows in Figure 36. In addition the in silico analysis of the AtPEX11D 

promoter predicted the localization of a heat shock (stress) element. 

 

 

 

 

 

 

Figure 36: Heat shock experiment of 18 day old A. thaliana Col0 plants analyzed for AtPEX11DmRNA 
levels (picture taken from eGFP Browser; http://bar.utoronto.ca/efp_Arabidopsis/cgi-bin/efpWeb.cgi). 
As according to the online information the plants were grown under long day conditions (16h light/ 8h 
light) at 24°C and afterwards the RNA was isolated and hybridized to the ATH1 Gen Chip. (A) Control: 
plants grown under normal long day conditions at 24°B.(B)Heat shock: plants were stressed for 3hours at 
38°C and afterwards recovered at 25°C (taken from eGFP Browser Stress series by Kilian et. al., 2007: 
bar.utoronto.ca/ Status 2011). 

 

Therefore, a heat shock experiment with transgenic plants with GUS under the control of the 

complete AtPEX11D promoter or the minimal promoter fragment was performed. No significant 

differences between 9 days old seedlings exposed to 37°C for 4 hours compared to plants under 

control conditions (22°C) could be detected (Figure 37_A). This was also the case for plants with 

GUS regulated by the minimal promoter region (Figure 37_B). 
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Figure 37: Heat shock experiment on 9 days old transgenic A. thaliana plants with GUS under the control 
of the full-length or the minimal promoter of AtPEX11D. Plants were grown under long day conditions 
(16h light/ 8h light) at 22°C on ½ MS medium with 3% sucrose. Plants were heat stressed at 37°C for 4h 
while control plants remained at 22°C. After a recovery of 4 hours a GUS staining assay was performed. (A) 
Seedlings with GUS regulated by the full-length promoter (B) Seedlings with GUS regulated by the minimal 
promoter. Plant material analyzed: (1) seedling, (2) young leaf, (3) trichome, (4) primary root and (5) root 
tip. Two independent GUS::promoter lines regulated by either the full length or the minimal promoter 
region were analysed showing the same GUS expression: Full length promoter (#4 and #6); minimal 
promoter (#5 and #6). 

 

In addition, we noticed again a significantly higher expression of the GUS reporter in young 

leaves and the primary root, when it was regulated by the minimal promoter region (compare 

Figure 37_A2, A4 to 37_B2, B4). As before no GUS expression was detected in the root tip of 

plants regulated by the minimal promoter (Figure 37_B5). 

 

B.6.6. Auxin, methyljasmonate, absisic acid and tween induces the 

AtPEX11D promoter. 

Based on our results concerning root development of transgenic A. thaliana plants 

overexpressing YFP-AtPEX11D as well as the predicted induction of expression after addition of 

absisic acid (ABA), a hormone assay was performed on the AtPEX11D promoter::GUS lines , to 

analyse the effect of various hormones on the promoter activity.  
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Figure 38: Effect of various hormone treatments on the GUS expression regulated by the full length or 
minimal promoter region of AtPEX11Dintransgenic A. thaliana plants. Beta-glucuronidase (GUS) assayof 
9 day old seedlings grown on different growth media under long day conditions at 22°B.Plant material 
analysed:(A) Cotyledons, (B) Young leaf, (C) Hypocotyl, (D) Primary root and (E) Root tip. Growth 
medium:(1) ½ MS alone (- sucrose), (2) 100mM NaCl, (3) 0,2% Tween, (4) ½ MS with 3% sucrose,(5-8) ½ 
MS with 3% sucrose supplemented with (6) 5µM gibberellic acid (GA), (7) 10µM abscisic acid (ABA) or (8) 
10µM methyljasmonate (MJ). Two independent GUS::promoter lines regulated by either the full length or 
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the minimal promoter region were analysed showing the same GUS expression: Full length promoter (#4 
and #6); minimal promoter (#5 and #6). 

 

As shown in Figure 38 (A to C), an induction of the GUS reporter system after the addition of 

0,2% Tween was observed in cotyledons, young leaves, the hypocotyl and the root tip in plants 

regulated by the whole AtPEX11D promoter. A similar result was observed for the minimal 

promoter.  

In contrast, 100mM NaCl only led to a significantly higher GUS expression level in young leaves 

compared to plants grown on ½ MS alone, whereas no changes in the expression level were 

detected in the other plant organs like cotyledon or the hypocotyls (Figure 38_A, C to E, lane 2). 

The supplementation of GA, ABA, NAA and MJ into a ½ MS growth medium with 3% sucrose led 

to a higher GUS expression in young leaves compared to control plants (compare Figure 38_B4 

with 38_B5 to B8). Both promoter fragments analysed showed the same effect. No changes in 

GUS expression were observed in cotyledons on growth medium containing 5µM GA (Figure 

38_A5), whereas all the other hormones (ABA, NAA and MJ) also induced GUS expression in 

cotyledons (Figure 38_A6 to A8).  

Only MJ led to significantly higher GUS expression levels in the primary root (compare Figure 

38_D4 with 38_D8), whereas the other hormones (GA, ABA and NAA) mediated a similar 

expression like the control (see 38_D4 to D7). A slight repression of the GUS signal was observed 

in the hypocotyl of plants grown on medium containing GA and NAA (Figure 38_C5 and C6). 

 Again, no expression was detected in the root tips of plants with GUS regulated by the minimal 

promoter region, independent of hormone addition (Figure 36_E4 to E8), whereas plants 

controlled by the whole promoter region showed a broader GUS expression in the root tip after 

the addition of GA (Figure 38_E6).  

A summary of visually quantified GUS expression levels under various hormone treatments and 

in diverse plant tissues is listed in Table 4 below. 
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Table 4: Visual evaluation of GUS expression levels after a ß- glucuronidase assay in 9 days old seedlings 
grown on different ½ MS media with additional hormones. (A) GUS expression regulated by the full-
length promoter region (B) GUS expression regulated by the minimal promoter region. Expression was 

quantified visually from no expression (-) to high (++) or very high expression (+++++). 
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B.7. Search for a potential transcription factor regulating 

AtPEX11D 

In contrast to the yeast and mammalian systems nothing is known about transcription factors 

regulating AtPEX11 gene expression in plants. Therefore a yeast one-hybrid screen was 

performed to screen for potential transcription factors binding to the AtPEX11D promoter and 

potentially regulating AtPEX11D expression. 

 

B.7.1. A yeast one-hybrid screen identified the transcription factor SOL1 as 

a potential regulator of AtPEX11Dexpression 

In order to search for potential transcription factors regulating the expression of the AtPEX11D 

gen an appropriate yeast screen strain had to be established. For this the minimal promoter 

region (ΔIII/ΔII) identified in course of the GUS promoter studies of AtPEX11D (see chapter 

B.6.2.) was introduced into modified integrative yeast YIPlac204 vector (see materials and 

methods: D.2.1), which allows for screening of putative binding factors fused to the activation 

domain and inducing a yeast reporter allowing growth on minimal media lacking the essential 

amino acid histidine (SC-HIS medium). In addition the promoter region lacking transcriptional 

activity (ΔIa/ΔIb, see chapter B.6.2.) was introduced into the integrative original yeast YIPlac211 

vector with a LacZ interaction marker, which allowed the screening for beta GAL activity (blue 

stain). The strains carrying these two markers (minimal promoter allowing growth on SC-HIS and 

deficient promoter driving beta GAL activity) were combined by mating, resulting in a strain 

carrying both reporter systems, and was named screen strain 8.1. Interaction partners of the 

minimal promoter could then be identified by -His selection, whereas false positives could be 

identified and excluded by the additional LacZ (blue stain) reporter. 

A high efficiency yeast transformation of the screen strain 8.1 was performed with two different 

cDNA libraries (see materials and methods D.2.1) and then selected on a SC-Ura, -Leu, -Trp, -His 

with 3mM ATZ medium used to counteract the basic minimal promoter activity. Of the originally 

786 obtained clones for the library A, only 91 clones show consistent growth on the drop out 

medium (SC-Ura, -Leu, -Trp, -His + 3mM ATZ) after re-plating. In contrast, 356 clones were 

originally obtained after transformation with library B, from which only 11 clones could be 

confirmed to be stable on the drop out medium. Based on PCR analysis clones resembling the 

empty cDNA library vector were excluded from further analysis. For the remaining 89 clones a 

filter lift beta-GAL (blue stain) assay was performed to exclude potential false positive activator 
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clones, which also activate the deficient promoter region.  As shown in Figure 39, no false 

positive clones could be detected.  

 

 

 

 

 

 

Figure 39: Filter lift assay of yeast one hybrid clones were performed to exclude potential false positive 
activator clones. (A) 11 exemplary clones of the library A together with a positive control (KNB1-KNAT) 
and negative control (empty pGAD10 vector) are shown. No blue staining (LacZ activity) can be detected 
for the potential interaction partners as well as the negative control. An intense blue signal (beta GAL 
activity) was detected for the positive control but not with the picked yeast colonies. (B) 11 clones of the 
library B were tested and also showed no staining.  

 

Therefore all remaining 89 clones were sequenced and analysed further in silico (see 

supplementary table 4) for their potential to express a transcription factor. Based on this 23 

potential candidates remained and were chosen for a re-transformation and re-evaluation in the 

screening strain 8.1. This revealed that only 7 of the 23 candidates again facilitate to grow on the 

selective HIS lacking medium supplemented with 3mM ATZ (Figure 40 and table 5). 

 

 

 

 

 

 

 

 

Table 5: Summary of the 6 most interesting candidates based on data from the His assay and sequencing 
data. His assay: Re-trafo of the candidates into the screen strain 8.1 and growth on selection medium (SC-
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Ura-Leu-Trp-His + 3mM ATZ). Liquid ß-gal: Transformation of candidates into delta 6/1 strain and further 
analysis of the activation of the LacZ reporter system driven by the minimal promoter. Orientation: 
orientation of the inserted fragment (candidate) in the pGAD10 vector.  AD-fusion: are the candidates in 
an ORF with the promoter. ORF: open reading frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To confirm the 6 potential candidates, an integrative yeast YIplac211 vector carrying the minimal 

promoter region driving LacZ expression was integrated into the YM4271 yeast strain referred to 

as delta 6/1 strain. A transformation of the candidates into this LacZ reporter delta6/1 strain 

allowed us to analyse the activation of the reporter in a different genomic context by the ß-gal 

activity assay. As shown in Figure 41B, only two of the remaining six candidates, clones A685 and 

A691 (red box), showed a weak activation of the used AtPEX11D minimal promoter region. As a 

negative control, the same candidates were analysed with a liquid ß-gal assay in the yeast screen 

strain 8.1, showing no induction of the LacZ reporter for negative selection and, thus, no 

unspecific activation of the promoter system. 

Figure 40: -HIS growth assay of 18 potential 
candidates. Four re-transformed screen strain 
colonies expressing each candidate construct 
were picked and tested on the SC-Ura,-Leu, -Trp, -
His + 3mM ATZ for growth. Candidates with 
framed labels were able to grow on selective 
medium suggesting interaction of the expressed 
construct with the minimal promoter.  
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Figure 41: Liquid ß-gal assay of 6 potential candidates. The relative ß-gal activity is stated in percentage 
(%). (A) Control: Candidates transformed into the screen strain 8.1, in which interaction partners can be 
identified by His selection, whereas false positives can be identified and excluded by a not active promoter 
via the LacZ interaction marker. No activation of the deficient AtPEX11D promoter (ΔIa/ΔIb) was observed, 
reavling no unspecific binding of the candidates to the minimal promoter region. (B) Candidates 
transformed into the delta 6/1 LacZ reporter strain, in which potential candidates can be identified via the 
LacZ marker by binding to the minimal promtoter region. An activation of the minimal promoter region 
(ΔIII/ΔII) was observed with two candidate factors, A685 and A691 (highlighted with a red box). This 
indicates that the two candidates are specifically binding to the minimal promoter region of AtPEX11D. n: 
two to three independent technical replicas with 5 to 8 independent biological measurements.  

 

Based on the sequences and the results of the two reporter assays clone A685 was chosen as the 

most promising transcription factor candidate binding to the minimal promoter. The isolated 

clone harboured the full length cDNA sequence encoding the transcription factor SOL1 (TSO1-

like; At3G22760). 
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B.8. SOL1 expression increases the number of peroxisomes and 

the formation of small peroxisome clusters 

To confirm that the identified putative transcription factor SOL1 is affecting AtPEX11 expression 

and, thus, the number of peroxisomes (PX), SOL1 was cloned into a vector carrying an N-terminal 

YFP under the control of a strong 35S promoter (YFP-SOL1). Co-infiltration of constructs 

expressing YFP-SOL1 fusion proteins together with the peroxisomal matrix marker mCherry-SKL 

were analysed. In addition controls were performed by co-infiltration of constructs expressing a 

false positive 1 hybrid clone (YFP-TCTP) and a homeodomain transcription factor (YFP-KNAT1) to 

test whether the specific presence of SOL1 induced the formation of PX 96 h post infiltration due 

to its PEX11D promoter binding activity (Figure 42_C and quantification results).  

An obvious higher amount of PX/cell was observed in infiltrated N. benthamiana leaves, 

compared to plants infiltrated with the peroxisomal matrix protein alone (mCherry-SKL, Figure 

42_A) or YFP-TCTP or an YFP-KNAT1 fusion protein (provided by Daniela Fichtenbauer, Figure 

42_B). In addition, a SOL1 over-expression construct (in vector pEG100) without a tag (SOL1-no 

tag) was designed and compared to a KNB36-TAP tag control construct (provided by Daniela 

Fichtenbauer). This approach provided evidence that the observed cluster formation after SOL1 

infiltration was not an effect of infiltration and expression of a protein or the YFP tag. As shown 

in Figure 42 the induction of small PX cluster formation as well as a significant increase in PX 

numbers per cell was observed only in the presence of a SOL1 construct compared to the control 

constructs (Figure 42: quantification). 

          

Figure 42: Co-expression of a peroxisomal matrix protein, mCherry-SKL with a potential transcription 
factor SOL1 and different controls. (A) mCherry-SKL control. (B) YFP-KNAT1 control. (C) YFP-SOL1. (D) YFP-
TCTP constructs. (E) KNB36-TAP tag control. (F) SOL1-no tag. CLSM Images: green channel: YFP, red 
channel: mCherry-SKL, blue channel: chloroplasts auto-fluorescence. Scale bar: 40µm; 5µm; 
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Quantification: n = 6 independent images of two independent infiltration experiments (represent about 39 
cells), Error bars: Standard Error of means. 

 

B.9. SOL1 influences AtPEX11D promoter driven GUS expression 

Protoplasts from transgenic A. thaliana plants harbouring a GUS/GFP reporter system under the 

control of the full-length promoter region of AtPEX11D were isolated and transformed with the 

YFP-SOL1 or the YFP-KNAT1 control construct. Fluorometric GUS measurements showed that 

YFP-SOL1 significantly increased the relative GUS activity regulated by the full-length promoter 

compared to the controls (Figure 43).  

 

 

 

 

 

 

 

 

 

Figure 43: Fluorometric GUS measurements of protoplasts transformation with an YFP-SOL1 or control 
constructs. GUS expression is driven by the full-length promoter of AtPEX11D. 

After the transfection of isolated protoplasts with a YFP-SOL1 construct a significant increase in the 
relative GUS activity in % compared to the controls was observed. Controls: transfection with KNAT1, 
background activity of full-length promoter alone and background activity of ArabidopsisCol0. n: two 
technical replica with 3 biological measurmennts for each one. 
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C. Discussion 

C.1. PEX11 from the three kingdoms 

Even though the metabolic pathways mediated by peroxisomes vary significantly between 

different eukaryotic organisms (Titorenko and Rachubinsky 2004) some general features 

concerning peroxisome biogenesis seem to be conserved throughout the kingdoms.  

The PEROXIN11 (PEX11) gene family, which encodes for peroxisomal membrane proteins 

involved in the proliferation of peroxisomes in yeast (Erdmann and Blobel 1995; Marshall et al. 

1995) human (Schrader et al. 1998) and plant cells (Lingard and Trelase 2006; Orth et al. 2007), 

seems to be a conserved part of the cellular pathway building peroxisomes. A phylogenetic 

analysis of protein sequences of the PEX11 family revealed a conserved amino acid region, which 

puts PEX11 proteins in a monophyletic group, in which the various PEX11 proteins can be divided 

into fungal (yeast), animal and plant subgroups (Orth et al. 2007). This suggests a single ancient 

PEX11 gene, which evolved into the PEX11 gene family and later on developed independently 

after the separation of these kingdoms (Orth et al. 2007, Nayidu et al. 2008). 

Part of my work was based on the idea, that while some functions of the PEX11 gen family 

members regulating peroxisome proliferation may have been conserved throughout evolution, 

others may be kingdom or species specific. Therefore, one main focus of my work was to 

evaluate the capacity of the different PEX11 proteins from human (HsPEX11α, -β, and –у), plant 

Arabidopsis thaliana (AtPEX11A-E), and yeast Saccharomyces cerevisiae (ScPEX11, ScPEX25 and 

ScPEX27) to induce peroxisomal proliferation in plant cells. 

PEX11 proteins from these different organisms were over-expressed either transiently by agro-

infiltration in N. benthamiana or stable in A. thaliana transgenic lines. This approach allowed us 

to better understand the degree of evolutionary conservation of the PEX11 proteins and to 

deepen our knowledge concerning their function. 

 

 

 



                                                        C. Discussion 

84 
 

C.2. Sorting of the PEX11-fusion proteins to the peroxisomal 

membrane is conserved throughout the three kingdoms 

First the subcellular distribution of the five plant AtPEX11 fusion proteins has been analyzed in 

transient overexepression assays in epidermal leaf cells of N. benthamiana.  For this the five 

different 35S::YFP-AtPEX11 fusion constructs have been co-expressed with the peroxisomal 

marker protein mCherry-SKL.  The result of these studies suggested that each of the five plant 

AtPEX11 fusion proteins localizes to the peroxisomal membrane.  This observation is in 

agreement with the AtPEX11 peroxisomal membrane association reported by Lingard and 

Trelase in 2006. In their study, myc-tagged versions of the different plant PEX11 proteins have 

been established and analyzed in cell suspension cultures. They observed that both the N- and C- 

termini of myc-tagged versions of AtPEX11B, -C, -D and -E proteins are facing the cytosol, 

whereas the N- and C- termini of AtPEX11A are facing opposite sides of the membrane (Lingard 

and Trelease 2006). All five plant PEX11 proteins remained attached to the peroxisomal 

membrane in the presence of harsh alkaline conditions (such as 0.1MNa2Co3). Under these 

conditions peripheral membrane proteins are normally released, indicating that all plant PEX11 

proteins are integral membrane proteins (Fujiki et al. 1982). 

Concerning PEX11 proteins found in other species, it was show that in yeast and human cells the 

endogenous PEX11 proteins localize to the peroxisomal membrane. For example, Marshall et al. 

(1995) and Rottensteiner et al. (2003) reported the localization of the three yeast PEX11 proteins 

at peroxisomal membranes. The ScPEX11 (former name Pmp27) protein could be extracted from 

peroxisomal membranes by high pH, suggesting that the protein is a peripheral peroxisomal 

membrane protein (Marshall et al. 1995). Rottensteiner et al. (2003) characterized the two 

remaining yeast PEX11 proteins, ScEX25 and ScPEX27, which also were found in association with 

the peroxisomal membrane in yeast cells. 

Studies on mammalian PEX11 proteins revealed, that the HsPEX11α protein localizes to the 

peroxisomal membrane (Schrader et al. 1998). Localization to the peroxisomal membrane was 

also observed for EGFP–HsPEX11α and EGFP–HsPEX11β fusion proteins in human HEK293T cells 

(Koch et al. 2010). 

However, so far it was not analysed whether PEX11 proteins from organism such as yeast or 

human would be targeted to peroxisomal membranes in evolutionary distant cells such as plant 

cells. For this I performed transient expression experiments by agrobacterial transfection of 

leaves. Yeast or human YFP-PEX11 fusions were expressed and their intracellular distribution 

analyzed. All PEX11 fusion proteins from all three organisms (yeast, human and Arabidopsis) 
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localize to structures surrounding the peroxisomal matrix (see chapter B2. Figure 12). A cross-

species study performed in co-operation with the laboratories of Andreas Hartig and Cecile 

Brocard (MFPL, University of Vienna) was conducted. The overexpression of yeast, human and 

plant EGFP-PEX11 fusion proteins in human embryonic kidney cells (HEK293T) revealed a similar 

result like observed for the expression of the YFP-PEX11 fusion proteins in epidermal leaf cells of 

N. benthamiana. All PEX11 fusion proteins from all three kingdoms were able to localize to 

peroxisomal membranes in human cells (Koch et al. 2010). 

Based on the result, that all tested PEX11 fusion proteins are found in association to the 

peroxisomal membrane in plant cells as well as in human kidney cells, we suggest that the 

targeting of PEX11 proteins to peroxisomes is evolutionarily conserved. 

 

C.3. Overexpression of PEX11 proteins leads to peroxisome 

proliferation and cluster formation 

In general it is thought that PEX11 proteins are key components of the peroxisome (PX) 

proliferation pathway and that their function in plants equals that of other organisms. By 

analyzing yeast cells lacking ScPEX11 (pex11Δ) it has been shown that ScPEX11 is a key player in 

the division and fission process during PX proliferation (Erdmann and Blobel, 1995; Marshall et 

al. 1995). These mutant cells contain only one or two large PX, and are unable to utilize oleate, 

whereas overexpression of ScPEX11 results in a significant increase of the peroxisomal number 

per cell. In mouse and human cell cultures it was shown that the overexpression of HsPEX11α 

induces PX proliferation (Li and Gould, 2002) and Koch et al. (2010) found supporting evidence 

for a participation of the human PEX11 in the early steps of PX proliferation. However, to 

confirm this notion in plants and to evaluate the changes imposed by PEX11 proteins on PX 

number, size and shape, we performed a quantification study considering the size, number and 

average area of PX. We could show that in transient overexpression studies all yeast, human and 

plant PEX11 fusion proteins induces PX clustering and/or proliferation in various amounts in 

epidermal leaf cells of N. benthamiana. To exclude the possibility that the observed cluster 

formation of the PX was a byproduct of the dimerization activity of the used YFP-marker, we 

generated an AtPEX11D fusion protein without a tag under the control of the strong 35S 

promoter. As shown in chapter B.2. (Figure 12_B6) cluster formation of PX, visualized with a 

peroxisomal matrix protein in red (mCherry-SKL), can be observed for the AtPEX11D protein. This 

test allowed us to confirm that the effects imposed by PEX11 on PX shape and numbers are 

independent of the YFP dimerization activity. 
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One interesting observation was that particularly strong changes on PX size and number were 

observed by the expression of the heterologous yeast ScPEX27 or the human HsPEX11у fusion 

proteins. Both PEX11 proteins induced a significant increase of PX number as well as area 

(chapter B.3.1., Figure 13). In contrast significant smaller PX were observed for nearly all plant 

PEX11 proteins after the ectopic expression of the fusion construct in epidermal leave cells. An 

exception was AtPEX11B, which did not induce any significant changes concerning the size of PX. 

Also the number of PX was increased due to expression of AtPEX11B, AtPEX11C, and AtPEX11D. 

The significance of the observed changes was confirmed by analyzing a high number of as well as 

by biometrical computer-assisted measurements (ImageJ) of the intracellular fluorescence 

distribution. Beside the changes in size and number of PX per cell a significant shift of all PEX11 

fusion proteins towards the formation of peroxisomal clusters was observed. 

Our data are at least to some degree inconsistent with published data. Lingrad and Trelase 

(2006) have observed in cell suspension cultures that AtPEX11B leads to PX aggregation without 

changes in PX abundance or length. In our experiments in different cell types suggest a 

significant increase in PX number induced by AtPEX11B. However, I could not detect elongation 

of PX as describe for AtPEX11A, AtPEX11C and AtPEX11D by Lingrad and Trelase (2006) in our 

transient expression studies. This discrepancy might be explained by the usage of different 

expression levels or use of cell systems. The authors used a cell suspension culture whereas we 

used a transient expression system (agro-infiltration) of epidermal leave cells of N. benthamian 

plants. In addition, Lingrad and Trelase (2006) expressed myc-tagged N-or C terminal AtPEX11 

proteins, whereas we used N-terminal tagged YFP-PEX11 fusion proteins. 

To evaluate the effect of PEX11 proteins on PX appearance, we established stable transgenic 

Arabidopsis thaliana Col0 lines constitutively expressing the YFP fusion proteins driven by a 35S 

promoter. By this means we could confirm our results from the transient expression 

experiments, showing that all yeast, human and plant PEX11 fusion proteins associate to 

peroxisomal membranes in plant cells and induce the formation of peroxisomal clusters.  

Our results are consistent with the observations reported by Orth et al. (2007) during the time I 

performed the studies. The authors show that all plant PEX11 fusion proteins (CFP-PEX11) 

localize to PX. In addition the Class I members AtPEX11C, AtPEX11D and AtPEX11E led to the 

formation of PX clusters and an increase of PX number, like shown in our own studies. Only in 

few cases elongation of PX could be observed in transgenic A. thaliana lines overexpressing 

AtEX11A, AtPEX11B and AtPEX11D in plants showing a weaker fluorescence.  
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However, in general we could confirm these published data and showed that the five plant 

PEX11 proteins are involved in the early steps of PX proliferation. We suggest that the observed 

peroxisomal cluster formation represent an incomplete fission and/or separation step in the 

process of PX proliferation due to a hyperproliferation of peroxisomes. This in turn, results in an 

imbalance in the proliferation machinery process, leading to insufficient separation and 

therefore to the formation of the observed cluster.  

On a molecular level, members of two protein families might play a role in the observed cluster 

formation and reduced separation. 

It is believed that in Arabidopsis, besides PEX11, two additional components are involved in the 

division and fission process of peroxisomes:  a member of the dynamin-like protein (DRPs) 

family, DRP3A, and a member of the FISSION1 (FIS1) protein family, FIS1B. 

A study by Lingard and Trelase in 2008 revealed evidence that all five Arabidopsis PEX11 

homologs interact with the FIS1B, but not with FIS1A, both homologs to the yeast and 

mammalian FIS1 protein. FIS1 has been previously reported to anchor a dynamin-like protein 

DLP1 in mammals (Koch et al. 2003) or a dynamin-like protein VPS1 in yeast (Hoepfner et al. 

2001) to the peroxisomal membrane, thereby leading to membrane fission in yeast and 

mammalian cells.  

In Arabidopsis, two dynamin-related proteins, DRP3A and DRP3B, have been identified as playing 

a role in the fission process of peroxisome (Zhang and Hu 2009; reviewed in Kaur et al. 2009).  A 

study by Lingard and Trelease (2008) suggested that PEX11 recruits FIS1B to the peroxisomal 

membrane, which in turn interacts with DRP3A, localizing it to the peroxisomal membrane and 

thereby initiating the fission step of PX replication in dividing Arabidopsis cell suspension culture. 

Zhang and Hu (2009) revealed evidence that not only DRP3A, but also DRP3B, as well as FIS1A 

are involved in the fission steps in PX and that PEX11 is not actually necessary for the 

recruitment of FIS1A or FIS1B to the peroxisomal membrane. They suggest that the different 

roles of FIS1A and FIS1B observed by Lingard and Trelase (2008) may be due to the analyses of 

FIS1 in cell-cycle-associated PX divisions in cell suspension culture, compared to PX division in 

Arabidopsis plants (Zhang and Hu 2009). 

However, both studies showed the two protein families: FISSION1 (FIS1) and DYNAMIN-RELATED 

PROTEIN 3 (DRP3) are involved in PX division in Arabidopsis plants. 

The observed cluster formation upon overexpression of the plant PEX11 fusion proteins could 

maybe lead to an inhibition of PX division due to the unattainability of PX localised in these 
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clusters and/or the saturation of the fission system by abundant PEX11 proteins. The 

endogenous produced FIS1 might be limited or unable to bind to the peroxisomal membrane 

and therefore also not recruit DRP3 to the membrane, which is necessary for an appropriate 

initiation of the fission step. 

 

Since the over-expression of each one of the PEX11 family members from yeast, human and 

plant affected the PX appearance in human kidney cells (Koch et al. 2010) and in plant cells, they 

seem to be functional in both plant and human cells. This suggests that one or more common 

elements must exist in the PEX11-proteins of the three kingdoms.  

To get a better insight into the functional conservation of the various PEX11 proteins, a 

functional complementation assay in the yeast S. cerevisiae was performed by Anja Huber, a 

memeber of our collaborating group of Andreas Hartig (MFPL, University of Vienna). Like shown 

in previous studies by Erdmann and Blobel (1995) yeast cells lacking PEX11 (pex11Δ) contain only 

a few large PX and lack the ability to utilize oleate as a carbon source. Therefore all eleven 

PEX11-proteins from yeast, human and plant have been expressed in pex11Δ-cells, and the 

consumption of oleate on agar-plates was analyzed as well as the number and size of PXs (Anja 

Huber et al.; manuscript submitted). Our collaborators could show that plant AtPEX11E can 

compensate for both defects (low number of PX as well as no utilization of oleat), whereas the 

human HsPEX11у and the plant AtPEX11A did not complement any of these defects. The 

remaining heterologous PEX11 proteins were able to compensate only one of the two defects of 

pex11Δ yeast cells (manuscript in preparation). In these assays AtPEX11B could only partially and 

AtPEX11C, -D, and -E could rescue the pex11 oleat consumption deficit. 

Similar assays were performed by Orth et al. (2007). Complementation assay of S. cerevisiae 

pex11 null mutants with the five Arabidopsis PEX11 proteins, showe that pex11 yeast 

transformants expressing AtPEX11C and AtPEX11E grew significantly better in liquid media 

supplemented with oleic acid compared to Sc pex11 null mutants. At the same time immune 

electron-microscopy showed that the mutants contain a high percentage of enlarged and giant 

PX. This phenotype can be partially rescued upon expression of AtPEX11E, leading again to 

mainly small or only enlarged PX, similar to the situation observed in wild type cells (Orth et al. 

2007). The remaining three plant PEX11 proteins AtPEX11A, AtPEX11B and AtPEX11D were not 

able to rescue the observed pex11 phenotype (Orth et al. 2007).  

A standard protein BLAST search, similar to the one performed by Orth et al. (2007), using the 

ScPEX11 protein (YOL147c) as a query showed that the Arabidopsis AtPEX11E homologue had 
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the highest similarity to ScPEX11 (E = 0.67), followed by AtPEX11C (E=0.72) and AtPEX11D (E= 

3.2), whereas AtPEX11A and AtPEX11B, belonging to Class II seem to be to distantly related to be 

identified as similar. Also no high sequence similarities could be detected for any of the plant 

PEX11 proteins to the yeast ScPEX25 or ScPEX27 proteins, indicating a quite divergent sequence. 

This is in line with the strong clustering of PX upon expression of ScPEX11, as observed upon 

overexpression of the five plant PEX11 fusion proteins, while SCPEX25 and SCPEX27 

overexpression causes less clustering. 

The BLAST data together with the ability of AtPEX11C and especially AtPEX11E shown to rescue a 

pex11 mutant phenotype by Orth et al. (2007) indicates that the plant PEX11 proteins C, D and E 

belonging to the Class I, could represent functional homologues of the yeast ScPEX11 protein. In 

addition this data indicate that the functionality of the plant PEX11 proteins may depend on the 

degree of sequence similarity, as AtPEX11E shows the highest rescue of the pex11 mutant 

phenotype and the highest similarity to ScPEX11.  

A correlation between a high sequence similarity and potential homologous function observed 

for the yeast ScPEX11 protein might also be found for the human PEX11 proteins. A default 

protein BLAST search with the human HsPEX11α (NP_003838), HsPEX1ß (NP_003837) and 

HsPEX11у (NP_542393) as a query was performed. The human HsPEX11α showed only a 

relatively high similarity to AtPEX11B (E= 0.009), whereas the other four seem to be too distantly 

related, to be identified as similar. In contrast, HsPEX11ß showed high similarity to the plant 

Class II PEX11 proteins: AtPEX11A (E=0.012) and AtPEX11B (E= 0.07), whereas the plant Class I 

PEX11 proteins were more divergent AtPEX11D (E= 0.17), AtPEX11E (E=1.2) and AtPEX11C 

(E=2.4). HsPEX11у did not show any similarity to the plant PEX11 proteins.  

This data suggest that the plant AtPEX11B is the most promissing candidate for a functional 

homologue of the human protein HsPEX11α, as it is the only one showing a significant sequence 

similarity. In addition, the Class II plant proteins AtPEX11A and AtPEX11B could represent a 

potential functional homologue to the human HsPEX11ß, based on their higher sequence 

similarity compared to the Class I PEX11 proteins. 

Despite low sequence similarities of HsPEX11у to plant PEX11 proteins, this PEX11 member 

shows the most sever clustering among the three human PEX11 homologe in plants cells, but did 

not lead to a complementation of the the yeast  Sc pex11 mutant phenotype. 

Our results taken together with the data available from our collaboration partners and the 

literature suggest that although the localisation to PX is conserved throughout the three 

kingdoms the individual PEX11 proteins may differ in their function.  
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C.3.1. Overexpression of AtPEX11D led to a disintegration of ER 

membrane structures  

An interesting aspect of our studies was the observation that some of the YFP-tagged PEX11 

fusion proteins from all three kingdoms were found associated to a meshwork localized at the 

plant cell periphery. A closer look revealed that this netlike structure represent the 

endoplasmatic reticulum (ER). In transient over-expression assays nearly all PEX11 fusion 

proteins from all three organisms, except ScPEX25, ScPEX27 and HsPEX11β fusion proteins, were 

found in association with this ER-like structures.  

Whereas the most PEX11 protein associated to the ER-like structures lead to a wide mashed ER 

pattern, only the overexpression of the AtPEX11D fusion protein led to the formation of aberrant 

ER membrane structures and induced a complete collapse of the ER already 48h post infiltration. 

Recent studies suggest that some peroxisomal membrane proteins (PMPs group I) as well as 

ascorbate peroxidase (APX), after being translated in the cytosol, can travel through the ER 

membrane towards a specialized region of the ER, the so called peroxisomal ER (pER).  There 

nascent ER-vesicle are formed and released into the cytoplasm which are then probably 

transported and fused with pre-existing mature peroxisomes, delivering the PMPs as well as 

membrane lipids to the peroxisomes (reviewed in Mullen et al. 2001 an in Kaur et al. 2009).   

It was proposed that key peroxins such as PEX2, PEX3 and PEX16 traffic to PX via the ER in yeast 

cells of Yarrowia lipolytica and Sacharomyces cerevisiae (Titorenko and Rachubinski 1998). In 

addition plant AtPEX16 was found to traffic via an intermediate compartment to pre-existing PX 

in cell suspension cultures of Arabidopsis (Karnik and Trelease 2007). In mammalian cells PEX16 

was also found to localise to PX as well as to the ER in COS-7 cells co-expressing a PEX16-GFP 

(Kim et al. 2006).  

This resembles the situation we observed after overexpression of some of the YFP-PEX11 fusion 

proteins, which partially co-localise with an ER marker in our agro-infiltration studies in N. 

benthamiana. 

In a recent study Knoblach and Rachubinski (2010) suggest that the yeast PEX11 protein may also 

traffic to the ER in cells of Sacharomyces cerevisieae. The authors could show that the PEX11 

protein is phosphorylated at positions Ser165 and/or Ser167 and that the wild type PEX11 protein 

can translocate between the ER and PX due to changes in the phosphorylation state, indicating 

trafficking of the PEX11 to the ER during the early steps of peroxisome biogenesis (Knoblach and 

Rachubinski 2010). 
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In addition a study by Saray et al. (2011) provided evidence that a member of the PEX11 protein 

family in Hansenula polymorpha, PEX25 together with Rho1, is required to reintroduce 

peroxisomes in peroxisome-deficient pex3 in H. polymorpha.  

In regard to available literature data, it is possible that the observed co-localisation of YFP-PEX11 

fusion proteins with an ER marker in our infiltration studies in N. benthamiana indicates a 

connection between the various PEX11 proteins and the ER in plant cells. Maybe PEX11 proteins 

can also travel to peroxisomes via the ER as previously reported for other PMPs like PEX16 or 

traffic to the ER like proposed for the yeast PEX11 protein. High levels of especially AtPEX11D 

might disturb the ER integrity.  

 

C.4. Overexpression of PEX11 might cause a dominant negative 

effect on peroxisomes 

To observe if the overexpression of the plant PEX11 fusion proteins and the observed cluster 

formation has any effect on the functionality of the peroxisomes, sugar and various hormone 

dependent assays were performed.  

Fatty acid ß-oxidation in peroxisomes (=glyoxysomes) of young seedlings is important for the 

production of sucrose from storage lipids during germination (see introduction Figure 2 and 3). A 

defect in this process leads to an insufficient supply of sucrose and therefore energy, which is 

necessary for the germination and growth of plants. By addition of sucrose into the growth 

medium, these effects can be partially compensated.  

This effect was observed upon overexpression of several PEX11 proteins in transgenic 

Arabidopsis plants (see chapter B.5.4 Figure 26_A and _B). Plants overexpressing AtPEX11A, 

AtPEX11B and AtPEX11C showed a strong inhibition of root elongation when grown on ½ MS 

medium without sucrose compared to wild-type plants. In addition, overexpression of AtPEX11D 

led to slightly shorter roots, whereas no obvious difference was detected upon overexpression 

of AtPEX11E (see chapter B.5.4 Figure 26_A). After addition of 3% sucrose to the growth medium 

in some instances partial or full rescue of the root elongation phenotype was observed for 

AtPEX11A, AtPEX11B, AtPEX11C, and AtPEX11D (see chapter B.5.4 Figure 26_B), whereas no 

significant difference was observed after the overexpression of AtPEX11E. 

A similar sugar dependence phenotype for growth was reported by Hayashi et al. (1998). They 

applied 2,4- dichlorophenoxybutyric acid (2,4-DB) to plants, which was believed to be converted 
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into 2,4-dichlorophenoxyacetic acid (2,4-D) by the ß-oxidation pathway in peroxisomes (Wain 

and Wightman 1954). 2,4-D in turn is toxic for plants at high levels and lead to a strong inhibition 

of root elongationand growth in Arabidopsis plants (Estelle and Sommerville 1987). 

By an Arabidopsis mutant screen several so called ped (peroxisomes defective) mutants have 

been identified, showing a similar inhibition of root elongation with 2,4-DB (Hayashi et al. 1998), 

indicating that these plants have a defect in the fatty acid ß-oxidation. These ped mutants are 

suggested to be inhibited in the conversion of 2,4-DB into 2,4-D indicating an impaired fatty acid 

ß-oxidation pathway. This was supported by the fact that post-germinative growth of these 

mutants requires sucrose, circumventing the need for peroxisomal ß-oxidation to supply energy 

for growth (Hayashi et al. 1998). 

The root growth defect of plants overexpressing AtPEX11A to -D was also at least partially 

rescued by addition of 3% sucrose to the growth medium. Similar to the ped mutants this 

indicates an inhibited or at least slowed down fatty acid ß-oxidation after overexpression of 

these PEX11 proteins. Based on the fact that PEX11 proteins are membrane and not matrix 

proteins this is probably an indirect effect on ß-oxidation. 

In contrast to our results Orth et al. (2007) observed no sucrose dependency of PEX11-

overexpression plants (CFPP35-PEX11). They report slightly longer hypocotyls of overexpression 

plants on sucrose free medium compared to control plants, suggesting that glyoxysomes 

function properly. 

In addition, RNAi silencing lines targeting single PEX11 mRNAs showed a significant decrease in 

PX abundance but did not reveal a sugar depended phenotype (Orth et al. 2007). This suggests 

that the reduced PX abundance does not affect glyoxysomal function and that the five AtPEX11 

proteins are to some part redundant. 

A second study by Nito et al. (2007) failed two detect any morphological changes in single 

mutant knockdown plants as observed by Orth et al. (2007). At the same time, they could show 

that double and triple RNAi knockdown mutants like pex11a/11bi and pex11c/11d/11ei with a 20 

and 31% decrease of gene expression, led to significantly larger PX (1.5µm and 2.4µm), 

compared to PX in wild type plants (approx. 1µm).  However, both mutants did not require 

sucrose for post-germination growth and were sensitive to 2,4-DB, indicating a sufficient 

peroxisomal fatty acid ß-oxidation. Again a functional redundancy was suggested (Nito et al. 

2007). 
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However, we observed a growth phenotype (short roots) in the different PEX11 overexpression 

plants as well as a partial rescue of this defect by sucrose. The discrepancy between the 

inhibitory effects on elongation observed in some of our overexpression plants compared to no 

significant inhibition in the overexpression plants by Orth et al. (2007) might be explained by 

looking at the fluorescently tagged fusion proteins on a cellular level. The main difference is that 

I observed extreme cluster formation with hardly any free PXs, while Orth et al. (2007) observed 

less dens clusters in plants and more well separated as well as elongated PXs.  We suggest that 

the clusters observed after the overexpression of the YFP-PEX11 fusion proteins are probably 

formed due to an insufficient fission and separation process during proliferation and may have a 

negative effect on the proper function of these PXs.  Due to the fact that all plant PEX11 proteins 

are transmembrane proteins, the extreme overexpression of the PEX11 fusion proteins might 

lead to an overaccumulation of PEX11 at the PX membrane, thus having a negative effect on 

other membrane based mechanisms like fatty acid import or translocation of fatty acid 

degrading enzymes into PX. In addition, the observed cluster formation in our overexpression 

plants means that the PX inside the cluster do not face the cytosol and therefore are probably 

impaired in efficient uptake of fatty acids. So the actual PX surface that might be functional is 

much higher in the overexpression plants of Orth et al. (2007) who still observed many free PX. 

This might explain why PX are functional inhibited or at least reduced in our overexpression lines 

compared to overexpression plants studied by Orth et al. (2007).  

Taken together the dominant negative effect of PEX11 could be based on the observed 

proliferation and clustering of PX in the overexpression lines. 

In the future it will be necessary to established mutant plants in which all five PEX11 genes are 

completely disrupted to gain new insights into the role of the PEX11 gene family during 

peroxisome proliferation as well as the fatty acid ß-oxidation. This could further confirm the role 

of PEX11 proteins in PX biogenesis. In addition a 2,4-DB screen similar to the screen performed 

by Hayashi et al. (1998) with our AtPEX11 overexpression lines would be necessary, to confirm 

disrupted fatty acid ß-oxidation and further support our data obtained by the sugar depended 

growth assay. Also YFP-PEX11 protein should be expressed driven by its native promoter to 

study their dynamics and whether similar cellular structures such as the ER can be tagged by the 

PEX11 members. 
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C.5. Overexpression of AtPEX11A causes growth defects 

The established transgenic A. thaliana PEX11 overepression lines not only confirm our results 

from the transient expression assays, but also allowed us to analyze possible developmental 

phenotypes, which may occur due to the overexpression of the PEX11 proteins.  

As shown in chapter B.5.1 the overexpression of the plant AtPEX11A led to a dwarfed phenotype 

of the plants compared to control wild type Col0 or mCherry-SKL expressing plants (harbouring 

the peroxisomal matrix protein PTS1). Also, the rosette leaves were curved upwards and 

sometimes bleaching was observed. In addition, overexpression of the AtPEX11C fusion protein 

led to a delay in plant development, but without any further effects on plant morphology. Plants 

overexpressing the remaining three plant PEX11 proteins, AtPEX11B, -E and –D did not display 

any obvious growth or pigmentation changes.  

In contrast, Orth et al. (2007) did not observe a significant developmental phenotype after 

overexpression of the plant PEX11 proteins. As discussed in the previous chapter this might be 

due to a higher amount of free and elongated PX versus clustering PX in our plants. 

Arabidopsis pex6 mutant plants have a defect in peroxisomal matrix protein import (Zoleman 

and Bartel 2004). The pex6 mutant was isolated based on the inhibitory effects of indole-3-

butyric acid (IBA), a naturally occurring auxin in some plant species, on root elongation in 

Arabidopsis (Zolman et al. 2000).   

Arabidopsis pex6 mutants show severe seedling defects in root and hypocotyl elongation when 

grown on medium without sucrose (Zolman and Bartl, 2004). The defects can be partially 

complemented when sucrose is added, indicating an inhibition of the fatty acid ß-oxidation. In 

addition, development was also disturbed at later stages, leading to smaller rosettes, fewer 

leaves, shorter siliques as well as a shorter inflorescence stems.  

A very similar phenotype can be observed in our transgenic plants overexpressing AtPEX11A. 

Plants grown on growth medium without sucrose showed a sever inhibition of root elongation 

compared to wild type Col0 plants. The supplementation of 3% sucrose led to a partial rescue of 

the phenotype, but roots were still shorter than in wild type plants. Adult plants overexpressing 

AtPEX11A resemble adult pex6 plants: they are generally smaller, with smaller rosette leaves and 

shorter inflorescence stems. In addition only few siliques per inflorescence developed (see 

chapter B.5.1. Figure 20).  
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Zoleman and Bartel (2004) suggested that PEX6 plays a role in the peroxisomal matrix protein 

import in recycling of PEX5 to the cytoplasm. The insufficient recycling of PEX5 in the pex6 

mutants would than lead to a decreased fatty acid ß-oxidation and the observed sucrose 

dependency. In addition, studies by Delker et al. (2007) revealed that PEX6 also plays a role in 

wound-induced synthesis of jasmonic acid and confirms the role of peroxisomal fatty acid ß-

oxidation in the biosynthesis of jasmonic acid. They suggested that pex6 mutants are affected in 

the conversion of a precursor substrate OPDA, synthesised in chloroplast, into JA in 

peroxisomes. The pex6 mutant plants show a significantly lower amount of jasmonic acid 

compared to wild type plants. The observed phenotype for the pex6 mutant plants could 

therefore also be partially induced by an insufficient fatty acid ß-oxidation involved in the JA 

biosynthesis.  

While the growth phenotype of YFP-AtPEX11A on MS medium was only partially rescued by 

sucrose, the addition of 10µM methyl jasmonate (MJ) led to a complete rescue of the observed 

dwarf phenotype (see chapter B.5.4. Figure 26 A to B), again indicating a negative effect of 

PEX11A overexpression on PX function. 

The strong expression of YFP-AtPEX11A could lead to the production of less amounts of JA, due 

to cluster formation, and thereby to negative effect on energy recovery from storage lipids. Both 

processes depend on fatty acid ß-oxidation, which is probably highly affected in these plants.  

In contrast to the other PEX11 overexpression plants AtPEX11A plants might show a phenotype, 

because no increase in PX numbers was detected in our agro-infiltration studies (see chapter 

B.3.1. Figure 13 and Figure 14) compared to plants overexpressing the four other PEX11 fusion. 

This means that the same amount of PX is present as in wild-type plants, but these are now 

clustered and their membranes are overloaded with AtPEX11A. This could lead to less cytosol-

facing PX membrane surface available for import of matrix proteins than in the other 

overexpression plants and therefore could maybe lead to the observed phenotype. 

Regarding the developmental delay observed for plants overexpressing the plant AtPEX11C 

fusion protein as well as the human HsPEX11у fusion protein, are also probably due to the 

observed strong PX cluster formation. The observed developmental delay after overexpression 

of the yeast ScPEX27 fusion protein remains unclear, as the observed cluster formation is not 

that dominant as observed for the other PEX11 fusion proteins leading to a phenotype after 

overexpression of some of the PEX11 fusion proteins. 
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C.6. Some hormones affect PEX11 overexpression plants 

Another interesting aspect was the observation that the supplementation of a synthetic auxin 

(1µM NAA) into the growth medium (1/2 MS with 3% sucrose) lead to a complete rescue of the 

observed root phenotype (shorter roots compared to wild type plant) in overexpression lines of 

AtPEX11A and AtPEX11C when grown on MS medium without sucrose, whereas AtPEX11B, 

AtPEX1D and AtPEX11E remained unaffected. 

Several studies have implicated a role of peroxisomes in the biosynthesis of the endogenous 

auxin indole-3-acetic acid (IAA). It was suggested, that indole-3-butyric acid (IBA) is converted 

into IAA, by a ß-oxidation pathway similar to the fatty acid ß-oxidation occurring in peroxisomes 

(Fawcett et al. 1960, reviewed in Kaur et al. 2009).  

An Arabidopsis mutants screen led to the identification of so called IBR-resistant (ibr) plants, due 

to the inhibitory effect of IBA on the root elongation. Mutant plants showing a resistance to the 

inhibitory effect of IBA on root elongation, but remaining sensitive to indole-3-acetic acid (IAA), 

where thought to have a defect in the ß-oxidation pathway (Zolmann et al. 2000). This was 

supported by the finding that some of these IBA-resistant mutants also showed a sucrose 

dependent growth phenotype as well as a 2,4DB-resistance, indicating lower fatty acid ß-

oxidation efficiency (Zolman et al. 2000). This implicates that the conversion of IBA to IAA was 

also disrupted in these mutants (Hayashi et al. 1998; Zolman et al. 2000).  

This suggest that the impaired ß-oxidation in plants overexpressing AtPEX11A and AtPEX11C also 

may have an effect on the conversion of IBA into IAA, leading to reduced level of IAA in these 

plants, thereby leading to shorter roots compared to wild type plants on ½ MS medium without 

sucrose. The observed root elongation rescue by the addition of NAA can therefore probably be 

explained by the compensation of the low levels of IAA, by the exogenous addition of the 

syntetic auxin (NAA). 

 

Interestingly, the addition of ABA into the growth medium led to a complementation of the root-

length phenotype in lines overexpressing AtPEX11A and has a positive effect on root growth in 

plants overexpressing AtPEX11D and AtPEX11E, even though no data are available connecting 

the biosynthesis of ABA to peroxisomes. 

However, it was reported that ABA is a key inducer of H2O2 production in plant cells upon water 

stress and that exogenous applied ABA lead to an increase of H2O2 in plant cells (Hu et al. 2006). 

It was shown that exogenous application of H2O2 can induce PEX genes in plant and animal cells 



                                                        C. Discussion 

97 
 

upon a direct response to H2O2 (Lopez-Huertas et al 2000). Therefore the application of ABA 

could lead to an increase of the H2O2 level in the plant cells affecting the expression of 

endogenous PEX genes, which in turn could maybe compensate the observed growth deficiency 

in the transgenic AtPEX11A lines on MS medium.  

 

In contrast, the addition of GA did not have any effects on the root elongation of plants 

overxepressing AtPEX11A-D, and only a slight increase of root length was observed for 

AtPEX11E, suggesting no positive or negative effect of GA. 

A recent study in by Mitsuya et al. (2010) revealed that salt stress induces AtPEX11E expression 

and peroxisome proliferation. At the same time overexpression of AtPEX11E does not increase 

salt resistance as reported by Mitsuya et al. (2010). We could confirm this, with our own 

experiments, showing that AtPEX11E overexpression plants grown on 1
/2 MS supplemented with 

100mM NaCl did not contain shorter or longer roots compared to wild-type plants.  In general, 

addition of NaCl leads to reduced root growth in all plants, also the Col0 control. Summarized 

this suggests that presence of high NaCl concentrations has no effect on root elongation and 

growth in our PEX11 overexpression lines. 

 

C.7. A minimal promoter region sufficient for the expression of 

the AtPEX11D gene as well as the search for potential regulatory 

factors 

The design of five different AtPEX11D promoter deletion constructs allowed us to find a 

promoter fragment sufficient for expression of AtPEX11D, which can be used as a bait region for 

a Yeast One Hybrid Screen. The screen should reveal possible regulatory factors binding to the 

promoter of AtPEX11D. To identify regions that might be of interest, an in silico analysis of the 

AtPEX11D promoter (see chapter B.6.1. Figure 27) was performed. This approach predicted 

several regulatory motifs such as Y patches or regulatory elements (REG) (source: 

http://www.ppdb.gene.nagoya-u.aB.jp; Yamamoto and Obokata 2008). According to this 

analysis various deletion constructs were made and fused to a GUS/GFP reporter system (EGFP-

GUS, pKGWFS7, Karimi 2002) and transgenic A. thaliana plants were established. By this means I 

could follow the in situ expression pattern and quantity by GUS staining and measurements 

(Jefferson et al. 1987).  

http://www.ppdb.gene.nagoya-u.ac.jp/
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The results from the GUS expression assays revealed a short DNA region from - 424bp to -165bp 

upstream the ATG start codon of AtPEX11D, further referred to as minimal promoter region. The 

AtPEX11D promoter did not show any GUS activity after the deletion of this area (see chapter: 

B.6.2. Figure 28). This indicates, that this promoter region is necessary and sufficient for 

expression of AtPEX11D (At2G45740) in most tissues.  

An additional in silico analysis of the AtPEX11D promoter region revealed the localization of one 

cis-regulatory site (source: ATTED-II database http://atted.jp, Obayashi et al. 2008) in the 

minimal promoter region of AtPEX11D (Figure 44 below). Cis-regulatory elements are DNA 

fragments where transcription factors can bind, leading to regulation of the expression of nearby 

genes (Davidson, 2006). This in silico data further proposed the minimal promoter as a necessary 

region for sufficient expression and regulation of the AtPEX11D gene.  

 

 

 

 

 

 

 

 

 

Figure 44: Predicted cis-regulatory elements for the AtPEX11D promoter by the ATTED–II database 

(http://atted.jp; Obayashi et al. 2008).  

The cis-element 178bp upstream of the UTR is located in the minimal promoter region of AtPEX11D. CEG 

value = correlation between cis-element appearance and relative expression of genes. TTS: transcription 
start site. Wt: full-length promoter of AtPEX11D. ΔIa/ΔIb: minimal promoter region of AtPEX11D. 

Our results from GUS expression assays revealed a promoter fragment (424bp to 161bp 

upstream the ATG) sufficient and necessary for the expression of the gen, which can be used as a 

bait for the Yeast One hybrid screen.  

 

 

http://atted.jp/
http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/Regulation_of_gene_expression
http://en.wikipedia.org/wiki/Gene
http://atted.jp/
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C.8. Tissue specific regulatory elements are present upstream of 

the minimal promoter 

Our in situ GUS assays of seedlings not only allowed us to search for a minimal promoter region 

but also enabled us to analyze the tissue specific expression of the AtPEX11D gene. Our results 

revealed that the full-length promoter drives expression of the GUS reporter in cotyledons, 

young leaves, the hypocotyl and primary root in 7 day old seedlings (Figure 28_B).  In contrast, 

the construct including only the minimal promoter region led to an obvious increase in the GUS 

expression in young leaves and a slight increase in the primary root (see chapter: C6.2. Figure 

28), whereas no expression could be observed in the root tip of plants, carrying only the minimal 

promoter region. 

Cross section of various plant organs and a closer analysis of the tissue specific GUS expression 

were performed to further analyse the observed differences. 

On the one hand the promoter region (715bp to 424bp) upstream of the minimal promoter 

seemed to be essential for an appropriate GUS expression in the apical differentiation/division 

zone of the root tip, (no GUS expression with the minimal promoter region alone) as well as for a 

sufficient expression in the ovules. On the other hand, the same area seems to act as a 

suppressor for GUS expression in the vasculature of young leaves and in mesophyll cells, where 

GUS expression was increased with the minimal promoter, in comparison to the full-length 

promoter. In addition an expression could also be observed in the parenchymatic cortex of the 

elongation and differentiation zone of the primary root, and sometimes also in the root 

vascualture.   

On one hand these results suggest the potential presence of a suppressor sequence for young 

leaves and the primary root upstream in the minimal promoter region. On the other hand the 

upstream sequence appeared to drive expression in the root tip and partially also in ovules.  

Summarized we conclude that the minimal promoter region (424bp to 161bp upstream the ATG) 

is essential for expression of the whole gen, whereas distinct tissue specific regulatory 

sequences seem to be present in both the upstream region of the AtPEX11D promoter (715bp to 

424bp) and in the minimal promoter region. 
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C.9. The expression of AtPEX11D seems to be light but not heat 

induced. 

Based on online data (eGFP bar.utoronto.ca/ status 2011) a light induced expression of the 

AtPEX11D gen was predicted with the strongest expression between 8 and 12 hours after light 

exposure (Figure 45).  

 

 

 

 

 

Figure 45: Microarray data from eFP Browser at bar.utoronto.ca/ (Winter et. al., 2007 Plos One 2(8):e718 
Status from 2011) indicate a light dependent expression of the AtPEX11D (At2G457450) gen.  Leaves 
from 35 days or 29 days old Col0 plants grown on soil at 22°C and 12h light. 

 

Our results (see chapter B.6.3. Figure 29) are in agreement with the predicted light cycle 

dependent expression pattern of the AtPEX11D gene. We could observe the highest expression 

level after 10 hours of light exposure, under standard growth conditions (16h light cycle). In 

contrast, a lower GUS expression level was observed after 3h of light exposure and a slight 

decrease of the expression could be detected after 12h. A similar result was obtained for GUS 

expression under the control of the minimal promoter region (see supplemental Figure S2). 

Again the highest GUS expression was observed 10h after light exposure, even though the 

general expression was higher compared to the full length promoter (see chapter B.6.3. Figure 

29) and no expression was detected in the root tip.   

In addition, light experiments of N. benthamiana leaves infiltrated with a GUS reporter system 

under the control of the minimal promoter region, as well as the GUS vector without a promoter 

region were performed 24h post infiltration (see supplemental Figure S3). GUS staining showed 

that even though the expression was very weak a slight increase after 8h of light exposure 

compared to 2h light exposure was detected. No expression was observed after 11h of light 

exposure.  
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Beside our light cycle dependent experiments, shading experiments have been performed, 

indicating a negative effect of shading on the expression level of the AtPEX11D gene. Due to a to 

small amount of samples (1 experiment with two biological measurements), these results are 

only preliminary, and the experiment has to be repeated to confirm this effect. 

In contrast, the predicted heat induced expression of AtPEX11D (Abiotic Stress by Kilian et. al., 

2007, bar.utoronto.ca/ Status 2011) seemed not to take place. We were not able to observe any 

significant differences between plants exposed to 37°C for 4 hours compared to plants grown 

under control conditions (22°C) (see chapter B.  Figure 35_A). This suggests that AtPEX11D is 

either not heat induced as suggested, or that potentially other stress conditions are altering the 

expression such as salt stress or light stress. 

 

C.10. The transcription factor SOL1 affects AtPEX11D expression 

in plant cells 

So far only very little is known about factors regulating the expression of genes involved in 

peroxisome proliferation in plant cells, compared to yeast and human systems.  

In yeast three proteins, ADR1, OAF1, and PIP2, have been identified to act as transcription 

factors binding to a conserved upstream activation sequence (UAS1) and an oleat responsive 

element (ORE) localized in the promoter region of some genes encoding peroxisomal proteins 

such as the POX1 gene, encoding a peroxisomal acyl coenzyme A oxidase or the yeast ScPEX11 

gene (Karpichev et al. 1997, Gurvitz et al. 2001). It was shown that OAF1 and PIP2 are forming a 

heterodimer before binding to the ORE of peroxisomal genes. The presence of oleic acid induces 

the formation of the PIP2/OAF1 dimer, which then together with ARD1 binds to the overlapping 

area of the UAS1 and the ORE in the promoter region of ScPEX11, thereby activating peroxisome 

proliferation (Figure 46; modified after Kaur and Hu 2009). 

In mammalian cells, ligand-dependent transcription factors, the so-called peroxisome 

proliferator activator receptors (PPARs) have been identified, regulating peroxisomal genes by 

binding to a peroxisome proliferator response element (PPREs) (Berger and Moller 2002; 

reviewed in Kaur and Hu 2009). So far three isoforms of PPAR have been identified: PPARα, 

PPARβ and PPARδ, each of them interacting with a retinoid X receptor (RXR), thereby forming a 

heterodimer which binds to the PPRE (Figure 46, modified after Kaur and Hu 2009, Berger and 

Moller 2002).  
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Whereas in yeast cells, the only function of the OAF1/PIP2 dimer is regulating PX, the PPARs in 

mammalian cells show additional functions in stress, inflammation or immune response (Berger 

and Moller 2002).  

 A various number of PPAR activating ligands have been identified such as the natural ligands 

oleic, palmetic or linoleic acid activating PPARα or PPARδ. In addition synthetic ligands like 

thiazolidinedione (TZD) or clofibrate (CFB) are shown to increase the activity of PPARα (Berger 

and Moller 2002). 

A recent study by Desai and Hu (2008) in Arabidopsis plants showed that Arabidopsis null mutant 

plants of phytochrom A (phyA) have decreased AtPEX11B expression levels. In addition they 

could show that the transcription factor LONG HYPOCOTYL5 HY5 HOMOLOG (HYH), a regulator 

of photomorphogenesis, can bind to light-response elements (LREs) located in the promoter 

region of AtPEX11B. This indicates that far red light can induce peroxisome proliferation via phyA 

and up-regulation of AtPEX11B see Figure 46 (modified after Kaur and Hu 2009 and Desai and Hu 

2008). 

 

 

 

 

 

 

 

 

 

 

Figure 46: Comparative model of the regulation of a member of the PEX11 gene family in yeast 
(ScPEX11), in human (HsPEX11α) and in plant (AtPEX11B) modified after Kaur and Hu 2009 and Desai 
and Hu 2009. In yeast the presence of oleic acid induces the formation of the OAF1/PIP2 dimerization 
complex, which then together with Ardp1 binds to the overlapping area of the upstream activation 
sequence 1 (UAS1) and the oleat response element (ORE) in the promoter region of ScPEX11, thereby 
activating peroxisome proliferation. In mammals, the peroxisome proliferator-activated receptor alpha 
(PPARα) interacts with the retinoid X receptor (XRX), forming a heterodimer complex, which now can bind 
to the peroxisome proliferator response element (PPRE) in the human HsPEX11α promoter, induced by 
the addition of clofibrate. In plants, far red light induces the expression from the AtPEX11B promoter via 
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the light receptor phytochrom A (phyA) and a direct binding of the bZIP transcription factor HY5 
HOMOLOG (HYH) to suggested light-response elements (LREs) predicted to be located in a promoter 
region 200bp upstream the TTS site. 

 

Despite intensive database searches no orthologues to the mammalian PPARs or the yeast 

OAF1/PIP2 could be identified so far in the plant genome (Kaur and Hu 2009). In addition, LONG 

HYPOCOTYL5 (HY5), a homolog of the AtPEX11B promoter binding HY5 HOMOLOG (HYH), has 

more than 3000 chromosomal binding sites in Arabidopsis promoters, suggesting that HYH might 

also bind to wide range of promoters, making it a rather unspecific transcription factors (Lee et 

al. 2007). 

Thus we decided to perform a yeast one-hybrid screen to search for potential transcription 

factors binding to the AtPEX11D promoter and potentially regulating AtPEX11D expression. This 

particular PEX11 gene was selected as it showed the strongest effect upon overexpression 

regarding PX shape and number in transient assays as well as a strong effect on membrane 

structures. Also AtPEX11D has a relative simple promoter region arrangement and the gene 

shows high tissue specific expression levels. 

In our Yeast One Hybrid screen we could identify a promising candidate transcription factor 

binding to the minimal promoter of AtPEX11D. The isolated clone carried the full-length cDNA 

sequence encoding the transcription factor SOL1 (TSO1-Like, also called TCX3 for TSO1-like CXC). 

I could show that SOL1 increases the relative GUS activity regulated by the full-length promoter 

of AtPEX11D in protoplasts from A. thaliana (see chapter B.9. Figure 43). This confirms an effect 

of SOL1 on the AtPEX11D promoter in A. thaliana cells and indicates that SOL1 might be a 

positive regulator of AtPEX11D expression. 

In line with this is the effect of transient overexpression of YFP-SOL1 in epidermal leaf cells of N. 

benthamiana, which increased the number of peroxisomes per cell. In addition peroxisomes 

showed clustering. Two control constructs, YFP-TCTP, which is a false positive 1 hybrid clone, 

and YFP-KNAT1, a homeodomain transcription factor, had no effect on peroxisome numbers or 

clustering (see chapter B.8. Figure 43).  This indicates that SOL1 is able to bind to the 

endogenous promoters of N. benthamiana PEX11 orthologous genes, thereby inducing their 

expression. This in turn could cause the observed clustering of PX. 

These results suggest that the transcription factor SOL1 positively regulates AtPEX11D 

expression, leading to higher AtPEX11D protein levels. This, in turn, induces peroxisome 
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proliferation, which results in higher peroxisome numbers and clustering of peroxisomes in plant 

cells.   

SOL1 (TSO1-Like) and SOL2 (TSO2-Like) are both Arabidopsis paralogs of the TSO1 gene, 

identified by a database research by Hauser et al. (2000). A protein sequence alignment of TSO1 

with SOL1 and SOL2 showed a significant sequence conservation throughout their lengths, 

especially in two cystein-X-cystein (CXC) motifs shaded in gray in Figure 47 below (taken from 

Hauser et al. 2000). In addition an arginine-glycin-asperate (RGD) sequence was identified in 

TSO1 (see red box in Figure 47), which is suggested to be sufficient for binding receptors that 

mediate attachment between cells or the extracellular matrix, so called integrins (Hauser et al. 

2000). No RGD domain could be detected in SOL1 and SOL2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

It was shown that the CXC domain in tesmin/TSO1-like proteins binds zinc in vitro, indicating a 

binding function of this domain towards DNA, RNA, proteins, or small molecules (Andersen et al. 

2007). In addition a recent study provided evidence that the CXC domain actually represent a 

DNA binding domain of the male-specific lethal 2 (MSL2) gene in Drosophila (Fauth et al. 2009).  

 

 

Figure 47: Protein sequence alignment of 
TSO1 with SOL1 (TSO1-Like) and SOL2 (TSO2-
Like) proteins. A high similarity throughout 
the whole protein sequence can be 
observed. Two extremely conserved cystein-
X-csytein (CXC) motifs can be detected 
(shaded in gray), whereas the arginine-
glycin-asperate (RGD) (red box) identified in 
TSO1 is missing in SOL1 and SOL2. Figure 
taken from Hauser et al. 2000. 

http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
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The TSO1 gene is involved in the cytokinesis and cell expansion as well as in male and female 

fertility in Arabidopsis plants, whereas the function of SOL1 and SOL2 is not known (Hauser et al., 

2000; Andersen et al., 2007).  

RNA quantification experiments of TSO1 and its paralog SOL1 by Hauser et al. (2000) showed 

similar levels of mRNA in nearly all organs examined, except for rosette leaves where SOL1 levels 

are higher than TSO1 transcript levels (Hauser et al. 2000). In RNA in situ experiments levels of 

both genes are highest in flowers, especially in microspores and ovules, whereas the SOL1 

transcript is more abundant than TSO1 in sepals (Hauser et al. 2000). Despite their sequence and 

expression pattern similarity SOL1 and TSO1 proteins are not redundant as SOL1 does not 

complement the tso1 mutation (Hauser et al. 2000). 

Regarding the expression pattern of the AtPEX11D gene compared to the SOL1 gene as detected 

by Hauser et al. (2000) shows some overlaps in several tissues. The AtPEX11D promoter is highly 

active in cotyledons, cauline, adult, senescent leaves as well as in sepals and SOL1 mRNA was 

detected in rosette leaves and sepals. Online microarry data (bar.utoronto.ca/, status 2011) 

indicate low expression of SOL1 in the protophloem as well as in the columella of roots, where 

the AtPEX11D promoter also drives GUS expression.  

At the same time, SOL1 mRNA levels are highest in ovules and especially pollen, where only very 

low or no AtPEX11D promoter activity was detected. This suggests that SOL1 might need at least 

in some tissues co-factors regulating the AtPEX11D expression see model Figure 48. 

In addition our GUS expression experiments indicate the presence of a tissue specific regulatory 

sequence for young leaves and the primary root upstream of the minimal promoter region of the 

AtPEX11D promoter (see Figure 48). The same promoter region might be important for binding 

of a transcription factor other than SOL1, activating AtPEX11D expression in the root tip, as the 

minimal promoter does not drive GUS expression in this region. 

This indicates that SOL1 is not the only transcription factor driving AtPEX11D expression. 
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Figure 48: A model of the regulation of the AtPEX11D promoter. Light, MeJA, ABA, Auxin and Tween 
upregulated the AtPEX11D promoter activity in our GUS expression analysis. SOL1 together with an 
unknown co-factor might be involved in the regulation of the AtPEX11D gene by directly binding to the 
minimal promoter region. In addition, based on our GUS expression experiments, a potential regulatory 
element was predicted upstream of the minimal promoter region.  

 

To further confirm the positive regulation of the AtPEX11D expression by SOL1, like observed in 

the infiltration studies in N. benthamiana, transgenic Arabidopsis plants expressing a SOL1 fusion 

protein together with a peroxisomal matrix protein would be necessary to be establish and 

further analysed. In addition, binding of SOL1 to the AtPEX11D promoter can be further 

confirmed by an Electrophoretic Mobility Shift Assay (EMSA) and a Chromatin 

Immunoprecipitation (CHIP). 

In co-operation with the service group of the Gregor Mendel Institute (GMI) Borries Luberacki 

and Stefan Ferscha already tried to express the SOL1 gene from a various number of gen-

expression vectors (plasmid service group pSG1, pSG7 and pSG8) for further analysis via an 

EMSA assay. So far from none of the tested vectors SOL1 was successfully express. 

In addition a comparative promoter analysis of all five AtPEX11 genes would show whether SOL1 

and/or HYH are also regulating promoters other than AtPEX11D and AtPEX11B respectively. 

 

 

 

 

http://en.wikipedia.org/wiki/Chromatin_immunoprecipitation
http://en.wikipedia.org/wiki/Chromatin_immunoprecipitation
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C.11. Conclusions 

Taken together I could show that: 

 all tested PEX11 fusion proteins from yeast, human and plant are found in association to 

the peroxisomal membrane in plant cells as well as in human kidney cells (shown by 

Johannes Koch), suggesting that the targeting of PEX11 proteins to peroxisomes is 

evolutionarily conserved throughout the three kingdoms. 

 based on the different effects upon overexpression of the various PEX11 fusion proteins 

on the size, number and morphology of peroxisomes in plant cells, it seems that even 

though the localisation is conserved throughout the three kingdoms, the individual 

PEX11 proteins may differ in their function. 

 most of the PEX11 proteins show a connection to the ER or ER-like structures, indicating 

that PEX11 maybe also travel to peroxisomes via the ER as previously reported for other 

PMPs like AtPEX16 or traffic to the ER like proposed for the yeast PEX11 protein. High 

levels of especially AtPEX11D might disturb the ER integrity.  

 the overexpression of PEX11 might cause a dominant negative effect on peroxisomes, 

based on the observed proliferation and clustering of PX in the overexpression lines, 

thereby  indirectly affecting the ß-oxidation pathway. 

 the identified minimal promoter region (424bp to 161bp upstream the ATG) is essential 

for expression of the AtPEX11D gene, whereas distinct tissue specific regulatory 

sequences are present in both the upstream region of the AtPEX11D minimal promoter 

region (715bp to 409bp) as well as in the minimal promoter region itself. 

 light and the addition of the hormones MeJA, ABA, Auxin as well as Tween lead to an 

upregulation of the AtPEX11D promoter activity in our GUS expression analysis. 

 SOL1 together with an unknown co-factor might be involved in the regulation of the 

AtPEX11D gene by directly binding to the minimal promoter region. 
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D. Materials and Methods 

D.1. Bacteria 

D.1.1. Bacterial strains 

The electro or chemical competent Escherichia coli strains TOP10 or DH5α were used for 

standard cloning procedures as well as the electro competent DB3.1 E. coli strain for propagation 

of vectors containing toxic ccdB genes. The electro competent Agrobacterium tumefaciens strain 

AgL1 was used for plant transformation.  

D.1.2. Bacterial stock 

Mix 500μl of dense bacterial overnight culture with 500μl of 50%glycerol. Store at -80"C. 

D.1.3. Bacterial media 

Luria-Bertani (LB) medium/ 1l 

 10g tryptone 

 5g NaCl 

 5g yeast extract 

 for LB plates add additionally 10g agar 

 store at 4°C until use 

Antibiotics were added after cooling to approximately 55°C. The following concentrations of 

antibiotics were prepared as 100x stocks: 

• Carbenicillin as Ampicillin substitute: 100mg/ml in water. 

• Chloramphenicol: 34mg/ml in ethanol. 

• Kanamycin: 50mg/ml in water. 

• Spectinomycin: 100mg/ml in water. 

• Zeocin: 50mg/ml in water, use in LB pH = 7,5 (light sensitive) 

SOC medium 

 2% w/v bacto tryptone 

 0.5% w/v yeast extract 

 10mM NaCl 

 2.5mM KCl 



                                D. Materials and Methods 

110 
 

 10mM MgCl2 

 10mM MgSO4 

 20mM D-glucose 

 

D.1.4. Preparation of electro competent E. coli TOP10, DH5α or DB3.1 cells 

A 3 ml LB over night culture was inoculated. The next day a 1:100 dilution with the appropriate 

antibiotic was grown to an OD600 of 0.8-1.2. Afterwards the cells were harvested by 

centrifugation at 5.800 rcf for 12 minutes at 4°C and washed 3 times with ice cold ddH2O. The 

last washing step was performed with ice cold 10% glycerol. The pellet was than resuspended in 

1 ml ice cold 10% glycerol and shock frozen with liquid nitrogen. The cells were than stored at -

80°C until use. 

 

D.1.5. Transformation of electrocompetent E. coli and A. tumerfaciens 

cells 

For the transformation 100-500µg of plasmid DNA together with 50µl of competent cells were 

transferred into dry and sterile elecroporation cuvettes. For the electroporation a Gene 

PulserTM from BioRad was set to 1.7kV (E. coli) or 0.85kV (Agro), 15µF and 200Ohm. Afterwards 

500µl LB or SOC medium was added and incubated at 37°C (E. coli) or 28°C (Agro) for 1 hour and 

plated on LB media with the appropriate antibiotic. 

 

D.1.6. Transformation of chemically competent E. coli 

Approximately 1µg of plasmid DNA was gently mixed with 25µl of chemically competent TOP10 

cells (Invitrogen) and incubated on ice for 10min. Afterwards the cells were heat shocked at 42°C 

for 45sec. 250µl LB or SOC medium was added and incubated for 1 hour at 37°C before plating 

on LB containing the necessary antibiotics. 
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D.2. Yeast 

D.2.1. Yeast strains 

YM4271: MATa, ura3-52,his2-200,ade2-101,ade5,lys2-801,leu2-801,leu2-3;112, trp1-901,tyr1-

501,gal4D,gal8D,ade5::hisG.  

W303-1B: MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}.   

Screen strain 8.1: The minimal promoter region (ΔIII/ΔII) of AtPEX11D (see chapter B.6.2.) was 

introduced via a gateway reaction into a modified integrative yeast YIPlac204 vector. For this, 

first a gateway cassette was cloned into the multiple cloning sites (MCS) of the original YIplac204 

vector, via HindIII and XbaI restriction sites (Figure 49_A and 49_B). Afterwards the lacZ reporter 

system was replaced by a His interaction marker.  For this, the His3 reporter gen was amplified 

with the following primer pair (GCG TCT AGA ATG ACA GAG CAG AAA GCC C) and (CGC GGC GCC TCA 

CAT AAG AAC ACC TTT G) introducing XbaI and NarI restriction sites for a standard cloning into the 

modified YIplac204 vector (Figure 49_C). This newly created vector allows now screening of 

potential transcription factors binding to the minimal promoter region with the help of a His 

interaction marker. This vector was then transformed into the YM4271a yeast strain. 

In addition the not active promoter region (ΔIa/ΔIb, see chapter C.6.2.) was introduced into the 

modified integrative yeast YIPlac211 vector (Figure 46_D) with a LacZ interaction marker: A 

gateway cassette was cloned via HindIII and XbaI restriction sites into the YIplac211 yeast vector 

and afterwards a gateway reaction was performed, introducing the ΔIa/ΔIb region. The modified 

YIplac211 vector was than transformed into the W303-1Bαyeast strain.  

Both plasmids were then combined in a new yeast strain by mating the YM4271 yeast strain 

(harbouring the plasmid with the minimal promoter region of AtPEX11D) and W303strain 

(harbouring the plasmid with the not active promoter of AtPEX11D). This yeast strain was used 

for the Yeast One Hybrid Screen and will further be referred to as screen strain 8.1. Interaction 

partners of the minimal promoter can now be identified by His selection, whereas false positives 

can be identified and excluded by not active promoter via the LacZ interaction marker. 

 

 

 



                                D. Materials and Methods 

112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

YIplac211 + gateway casette

5535 bps

1000

2000

3000

4000

5000

HindIII
BstBI
EcoRI
Acc65I
KpnI
ApaI
PspOMI
AvaI
SmaI
XmaI

BamHI
Bpu10I

BsmI
EcoRI

NcoI
SspI

BsmI
BamHI

BbvCI
Bpu10I

SrfI
AvaI
SmaI
XmaI

BstXI
Cfr10I

XbaI
BamHI
AvaI
SmaI
XmaI
Acc65I
KpnI
Ecl136II
SacI
EcoRI

BbeI
KasI
NarI
SfoI

BstAPI
BfrBI
NsiI
Ppu10I
PsiI

Bpu10I

StuI
ApaI

PspOMI
BsmI

BbsI
BstBI

NcoI
EcoRV

EcoO109I++
XcmI

BsgI

AatII

SspI

XmnI

Cfr10I

AhdI

lacZprom
attR1

attR2

lacZ

Ura3

Ura3prom

ampR

 

YIplac204

3545 bps

500

1000

15002000

2500

3000

3500

HindIII
SphI
SbfI
PstI
HincII
SalI
XbaI
BamHI
SmaI
XmaI
Acc65I
KpnI
Ecl136II
SacI
EcoRI

BbeI
KasI
NarI
SfoI

NdeI

AarI

BsgI

BstXI
EcoRV

Bsu36I

MunI

Bst1107I
PmlI

AatII
SspI

XmnI

ScaI

BpmI
Cfr10I

BsaI

AhdI

AlwNI

AflIII
PciI

SapI

LacZprom

LacZreporter

TRP1

AmpR

 

YIplac204 + gateway casette

5283 bps

1000

2000

3000

4000

5000

HindIII
EcoRI
Acc65I
KpnI
SmaI
XmaI

BamHI

EcoRI

BpmI

SspI
ScaI
AflIII
BamHI

Bst1107I

BbvCI
AlwNI

SrfI
SmaI
XmaI

BstXI
Cfr10I
BsaI

XbaI
BamHI
SmaI
XmaI
Acc65I
KpnI
Ecl136II
SacI
EcoRI

BbeI
KasI
NarI
SfoI

NdeI

AarI
BsgI

BstXI
EcoRV

Bsu36I
MunI

Bst1107I
PmlI

AatII

SspI

XmnI

ScaI

BpmI
Cfr10I

BsaI
AhdI

AlwNI

AflIII
PciI

SapI

lacZprom attR1

attR2

LacZreporter

TrpI

AmpR

 

YIPlac204 His3

5758 bps

1000

2000

3000

4000

5000

EaeI
BsrBI

HindIII
BstBI
EcoRI
Acc65I
KpnI
Bsp1286I
SmaI
XmaI

EaeI
BamHI

BsmI
EcoRI

BpmI
Eco57MI

EaeI
MscI
SspI

BsmI
ScaI
AflIII
BamHI

Bst1107I

MslI

BbvCI
AlwNI

SrfI
SmaI
XmaI
BsaBI
EaeI
MscI
BsiHKAI
Bsp1286I

BstXI ++
Cfr10I
BsaI

XbaI++

BsiHKAI++

NdeI++
Eco57I++

BstXI ++
NheI++

OliI
Acc65I
KpnI

NarI
NdeI
BsiHKAI
Bsp1286I

NspI
BsiHKAI

Bsp1286I
Bsp1286I

AarI
BsgI

MslI
BstXI

EcoRV
Bsu36I

MunI
Bsp1286I
BsiHKAI++

Bsp1286I++

Bsp1286I

AatII
BsrBI
SspI++

Eco57I++
Bsp1286I++

Bsp1286I

ScaI

MslI
EaeI

MslI

BglI
BpmI

Eco57MI
Cfr10I

BsaI
AhdI

Eco57I
Eco57MI

AlwNI
BsiHKAI

Bsp1286I
AflIII
NspI
PciI
BsrBI

SapI

lacZpromattR1

attR2

His3 reportergen

TrpI

AmpR

 

Figure 49: (A) Original integrative yeast vector 
YIplac204 with a LacZ interaction marker. (B) 
Modified YIplac204 with introduced gateway 
cassette. (C) Modified YIplac204 vector with a His 
reporter instead of a LacZ reporter. (D) Original 
yeast vector YIplac211 with a LacZ interaction 
marker. (E) Modified yeast vector YIplac211 with 
an introduced gateway cassette for the cloning of 
the not active promoter region of AtPEX11D into 
the vector. Vector maps taken from LabLife 
addGene Vector Database. 
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Delta 6/1 LacZ strain: In addition a yeast strain was constructed by introduction of the minimal 

promoter region into the modified yeast YIPlac211 vector (Figure B1-E). This vector was then 

transformed into the YM4271 yeast train. The newly created vector will be referred to as delta 

6/1 LacZ. Potential candidates can now be additionally analysed with the LacZ marker via a liquid 

ß-gal assay. 

D.2.2 Yeast media 

Yeast extract peptone dextrose (YPD) 

 2% difco peptone 

 1% yeast extract 

 2% glucose- include in plates, 

 add fresh before use to liquid medium 

 2% agar for plates 

SC-medium 

 6,7g YNB 

 20g Glucose 

 55mg Tyrosin 

 55mg Adenin 

 20-30g Agar 

 For selective media appropriate AS have been added. 

 

D.2.3. One step yeast transformation 

Take approximately 50µl stationary yeast cells from a plate and resuspend them in 200µl 

transformation buffer. Add 1g plasmid DNA and 10µg heringsperm DNAand vortex it for 30 

seconds. Incubate the cells at 45°C for 45min with light shaking. Afterwards spin the cells down 

(30sec at 1000g) and resuspend the pellet in 100µl water. Plate it on selective medium and 

incubate the plates for two to four days at 30°C. 

Transformation buffer 

 0,2N lithium acetate 

 40% polyethylene glycol (PEG) 3350 pH 5.0 

 100mM dithiothreitol (DTT) 
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D.2.3. High efficiency yeast transformation 

A high efficiency yeast transformation was performed like described by Gietz and Schiestl (2007). 

Inoculate 30ml o/n culture in YPD. Dilute it then to an OD of 0.2 to 0.3 in 300ml YPD and let it 

grow until an OD of 0.8 (4-5 hours). When the cells reach this density, wash them 3 times by 

centrifugation (10min at 2500rpm) and resuspension in 50 ml distilled water. Wash the cells 

afterwards 1 time with 1x TE/LiOAc (10min, 2500rpm) and resuspend them in 1ml of 1xTE/LiOAc. 

Incubate the cells for 30min at RT. In the meanwhile heat a water bath to 42°C and boil the 

single stranded carrier DNA (heringsperm 10mg/ml stock; Sigma) at 95°C for 5min and transfer it 

immediately to ice until use. Now add 10-50µg plasmid DNA (cDNA library A or B) to the yeast 

pellet, as well as 200µl carrier DNA and 6ml of a PRG/LiOAc /TE mixture and incubate for 30min 

at 30°C. Afterwards add 700µl of fresh DMSO and incubate for 20min in a 42°C water bath. 

Harvest the cells by centrifugation (5min at 2500rpm) and resuspend them in 8ml 1xTE buffer. 

Plate 1.5ml on SC-Ura-Leu-Trp-His plates containing 3mM ATZ (Gietz and Schiestl 2007). 

Solutions for high efficiency yeast transformation 

 YPD medium 

 Selection medium:  

o SC-Ura-Leu-His-Trp +3mM ATZ 

 Lithium acetate (LiOAc) (1.0 M): 

o 10.2 g of lithium acetate in 100 ml of water. 

 PEG MW 3350 (50% w/v):  

o 50 g of PEG 3350 in 30 ml of distilled/deionized 

o  filter sterilized using a Nalgene filter unit and a vacuum pump 

 Single-stranded carrier DNA (2.0 mg ml-1, stock 10mg/ml, Sigma) 

 6 ml PEG/ LiOAc /TE mixture: 8ml PEG 3350 50% (w/v)/1ml 10x TE/1ml 10xLiOAc 

D.2.4. Plasmid isolation from yeast 

Inoculate yeast cells from plate in an appropriate selection medium (SC) and grow them over 

night. Dilute the cells afterwards to an OD of 0.2 and grow them in YPD to an OD of 0.8. 

Centrifuge the cells for 10min at 3000rpm and resuspend them in 600µl lysis buffer and add 

300µl glass beads and 600µl phenol:chloroform:isoamyl alcohol (25:24:1). Break the cells up in a 

fast beater for 2min at full speed and harvest them by centrifugation for 2min (full speed). 

Transfer the supernatant into a new 2ml microcentrifuge tube and add 800µl 70% EtOH. Harvest 
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the plasmids by centrifugation at full speed for 15min. Wash the pellet with 500µl 70% EtOH, 

centrifuge for 2min (full speed) and resuspend it after drying in 50µl 1xTE. 

Lysis solution: 

 0,5 ml 10% SDS 

 1ml TRitonX-100 10% 

 1 ml NaCl, 5M 

 0,5 ml tris, ph8, 1M 

 100µl EDTA, 0,5M, ph 0,8 

 Ad 50ml dh2O 

D.2.5. Filter Lift Assay 

Colonies are grown on a cellulose nitrate membrane (Whatman, pore size 8μm) placed on YPD 

medium for 2 days. Colonies on the membrane are broken up by two freeze and thaw cycles in 

liquid N2. The membrane is placed on two layers of Whatman 17 Chr paper (0,92mm) soaked in Z 

buffer and incubated in the dark. 

Z-buffer: 

10x Buffer A: 600mM Na2HPO4,  

400mM NaH2PO4. 

10x Buffer B:  100mM KCl, 

10mM MgSO4. 

Mix buffer A and B to 1x concentration and add 0,24μl β-mercaptoethanol and 1,74% X-gal 

solution (5-bromo-4-chloro-3-indolyl- beta-D-galactopyranoside, 20mg/ml stock in DMF). 

D.2.6. Liquid ß-galactosidase assay 

An overnight culture (50ml) was grown to an OD600 between 0,5 and 1. Afterwards cells were 

harvested by centrifugation (2500 rpm) for 2 minutes and washed with ice cold water. The 

pellets were than stored at -80°C. They were resuspended in 200µl bufferA and 200µl glass 

beads were added. The cells were broken up by using a vibrax for 20 minutes at 4°C. The cell 

debris were removed by centrifugation (10 min at full speed) at 4°C.  Afterwards 10-20µl of the 

protein containing supernatant was used to measure the protein concentration at 280nm.The 

same amount of protein was used for the liquid ß-gal assay. 1 ml of Z-buffer was added to the 
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proteins as well as 200µl of ONPG buffer to start the reaction. The reaction was stoped with 

500µl 1M Na2CO3 after the colorless liquid changed to yellow. The ß-gal activity was measured at 

an OD420nm. 

Formula used for ß-gal unit calculation: (1700+sample volume in µl)×A420/(0,0045× time in 

min×sample volume))/protein OD420.  

Solutions for liquid ß-gal assay 

BufferA_1:  20% glycerin 

0,1M Tris-Cl pH 8 

     Buffer Z : BufferA_2  BufferB  

60mM Na2HPO4   10mM KCl  

                             40mM NaH2PO4   1mM MgCl2 

 

Mix BufferA_1 with BufferB and add 2-mercaptoethanol (50mM). 

30ml ONPG buffer:   120mg o-Nitrophenyl-ß-D-galactopyrosid 

  add 1,5 ml 1M KH2PO4 

               add 28,5 ml H2O 

 

D.3. Plant 

D.3.1. Growth medium 

½ Murashige and Skoog Medium (MS) / 1l 

 0,5g MES 

 4g Murashige and Skoog medium including vitamins 

 6g plant agar for plates 

 Adjust pH to 5,7 with KOH 

 Antibiotics:        

o Hygromycin 20mg/l 

o Kanamycin 50mg/ml 

o BASTA 25mg/ml 
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o BASTA for spraying: 200mg 

 

D.3.2. Growth condition 

Two soil mixes were used: First, 70l autoclaved soil (Erde/Spezialsubstrat "Max Planck Institut", 

Stender) containing 2g Confidor diluted in 10l of water and 75g Osmocote "Start".  

Second, soil containing 70l of N3 Humin Substrat N3 (Neuhaus) and 1 part perlit sand together 

with 0.3g Trianum-P (Koppert biological Syst.), 180µl Companion G (Loeffler) in 2l water and 

225g Osmocote.  

A. thaliana and Nicotiana benthamiana plants were cultivated in  climate chambers with a light 

intensity of 800 to 1000 µmol.m-2.s-1and a temperature of 22°C and 16h of light (for Arabidopsis) 

and 12h (for Nicotiana). Osram Lumilux Cool white fluorescent tubes were used as light source 

and mounted approximately 40cm above the shelves.  

 

D.3.3. Sterilization of Arabidopsis thaliana and Nicotiana benthamiana 

seeds. 

1 ml of sterilization solution (10mg/ml bayrochlor tablets, 100µl dH2O and 900µl EtOH per ml) 

was mixed with the seeds and incubated for 10 min. The supernatant was discarded and the 

seeds were washed in 1mlEtOH three times. The seeds were then dried over night. 

 

D.3.4. Transient expression in N. benthamiana leaves 

N. benthamiana plants were grown on soil in a greenhouse at 22°C-25°C, with 16 hours of light. 

Six-week old plants were used for leaf infiltration experiments. Agrobacterial solutions 

harbouring the relevant binary plasmids were grown in LB medium supplemented with the 

appropriate antibiotic. For single expression studies the OD600 was 0.15 or for equally mixed 

cultures a final OD600 of 0.3 for double expression was used. Afterwards the cells were harvested 

by centrifugation (10min, 3500g) and the bacteria were resuspended in 2ml infiltration medium, 

incubate 2h up to 1 week. Afterwards a 1ml syringe was used to gently infiltrate the bottom side 

of young and healthy N. benthamiana leaves and then they were rinsed with water to remove 

excess bacteria. Place the infiltrated plants under a plastic bag and keep them out of strong light 

for 24h.I Infiltrated plants were then kept under standard growth conditions until used.  The 

expression can be analysed after 24h-72h. 
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For estradiol-mediated expression estradiol (final concentration of 10µM, stock 50mM in 

ethanol, Sigma) was added to the infiltration solution.  

Infiltration medium 50ml: 

o 500μl 1M MgSO4 (autoclaved) 

o 500μl 1M MES (sterile filtered) 

o 75μl 100mM acetosyringone 

 

D.3.5. Floral Dip of A. thaliana plants 

B.3.5.1. Culture preparation 

Grow an overnight culture of A. tumefaciens cells harboring the plasmid of interestin LB with the 

appropriate antibiotics at 30°C. Dilute it in 200ml LB with antibiotics and grow until an OD600 of 

approximately 0,8. Spin the culture down (30min, 3000g) and resuspend it in 200ml 0,5x MS with 

5% saccharose. Add 0,01% Silwet L-77 and mix well. 

5x MS medium for dip:  3.25M sorbitol 

 325mM MES  

 pH 5.5 

 

D.3.5.2. Plant preparation 

Grow A. thaliana under long day conditions until flowering and remove the open flowers and 

siliques. The above-ground parts of plant are dipped into the A. tumefaciens solution for 20s 

with gentle agitation. Place the dipped plants under a plastic bag for 1day and keep them out of 

direct light. Afterwards return them to the growth chamber. Selection of the transgenic plants 

on growth medium supplemented with the appropriate selection marker, depending on the used 

vector construct for transformation. 

 

D.3.6. Isolation of genomic DNA from plants 

Put plant material into 2ml microcentrifuge tube with 2 steel beads and freeze in liquid N2. 

Homogenize in a cooled TissueLyser (Qiagen) with two runs of 30s each at 30 oscillations/s and 

add 700µl extraction buffer and vortex shortly. Centrifuge for 1min at 16000g. Transfer the 

supernatant into a new microcentrifuge tube and add 600μl isopropanol. Vortex briefly and 
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centrifuge for 10min at 16000g. Wash the pellet with 70% and 100% ethanol and dry it at 60°C 

and dissolve in 150μl water. 

Extraction Buffer for genomic DNA isolation 

 200mM tris pH 8,8 

 250mM NaCl 

 25mM EDTA 

 0,5% SDS 

 

D.3.6. Protoplast isolation of A. thaliana 

About 4 weeks old Arabidopsis leaves or 9 days old seedlings (0.5 - 1.0 g) are cut into 1-2 mm 

strips and transferred into 10 ml of digestion buffer in a Petri dish. The samples are then vacuum 

infiltrated for 30 min and placed in the dark for 6 hours at room temperature (25 °C). Afterwards 

10 ml of W5 buffer is added to the Petri dish and the protoplast suspension is filtered into a 50 

ml tube through a 100 μm nylon mesh. The protoplasts are harvested by centrifugation at 100×g 

for 3 min (no brake) and washed two times in 10 ml of W5 buffer. Then the protoplasts are 

resuspended in 10 ml of W5 solution and kept at 4 °C for 30 min. The protoplast are again 

collected by centrifugation at 100×g for 3 min (no brake) and washed in 5 ml of MMg solution. 

The protoplast pellet is resuspended in 5 ml MMg solution and stored at 4°C until use (Sheen 

2002). 

Buffers for protoplast isolation 

Digestion buffer:  

o 1%(w/v) cellulase from Tricoderma viride (Serva 1,10U/mg) 

o 0.25%(w/v) pectinase from Aspergillus niger (Fluka 1.32 U/mg)  

o 0.4 M mannitol 

o 20 mM MES (pH 5.7) 

o 20 mM KCl  

o 10 mM CaCl2 

W5 buffer: 

o 154 mM NaCl 

o 125 mM CaCl2 

o 5 mM KCl 

o 2 mM MES (pH 5.7)  
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MMg  solution: 

o 0.4 M mannitol 

o 15 mM MgCl2 

o 4mM MES (pH5.7) 

D.3.7. Protoplast transformation of A. thaliana 

Use about 5µg plasmid for each transformation reaction. Add 100µl of isolated protoplasts into 

each tube (2ml) and mix by ticking against the tube. Add immediately 300µl PEG solution and 

mix gently. Incubate the mixture for 12-15 min at room temperature in the dark. Remove the 

PEG by adding 1.5ml 0.275M (Ca(N03)2 and mix by inverting the tub a few time. Spin for 7 min at 

800rpm (no brake) and remove the supernatant. Add 300-500µl of B5-0.34M GM and keep the 

tubes on a dark place. Check the fluorescence 24hours later (Sheen 2002).  

0.275M Ca(NO3)2: 64.94g/l Ca(NO3)2x 4 H2O 

PEG solution:  

o PEG 6000  60g 

o Mannitol  16.4g 

o Ca(NO3)2 x 4 H2O 4.7g 

o in 200ml H2O (pH: 9.0 with KOH) 

   B5_0.34M GM: 

o B5 Powder (growth medium, Duchefa) 

o 96g/l sucrose 

o pH 5.5 with KOH 

o cool to 4°C before use 

 

D.2.8. Fluorometric GUS measurements of A. thaliana protoplasts 

Collect protoplasts by centrifugation 3 min at 800rpm (no brake) and add 500µl of GUS 

extraction buffer to the transformed protoplasts and vortex the mixture briefly. Centrifuge at 

13000rpm for 15min at 4°C. Transfer the supernatant to a new tube and use a small aliquot to 

measure the protein concentration via the Bradford assay.  

Incubate the rest for 24hours at 37°C and stop the reaction with 1ml Na2CO3solution. Measure 

the fluorescence using the following parameters: For GUS measurements the excitation 
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wavelength was 355nm, whereas the emission wavelength was 460nm. For YFP measurements 

the excitation wavelength was 510nm and the emission wavelength was 530nm. 

2ml GUS extraction buffer: 

1.1ml  4-MUG in sodiumphosphat (stock 0.004g in 5.7 ml 
sodiumphosphatbuffer pH: 7) 

 40µl  0.5M EDTA (pH 8) 

 20µl  10% SDS 

 20µl  10% Triton 

 13.8µl  ß-mercaptoethanol 

 807µl  dH2O 

Bradford measurement OD420:  

o 500µl Bradford solution (1:5 diluted with dH2O) with 5µl supernatant after extraction. 

o BSA (0.1, 0.5, 1, 2 and 5 mg/ml) used for calibration of the protein measurements  

(mg/ml). 

Formula for calculation of protein content: =0,05*EXP(x*OD595). 

Calculation of relative activity protein/GUS (mg/ml): GUS(355/460) / protein (mg/ml) 

 

D.3.8. GUS staining 

The plant material was collected after 8-10 hours light exposure and vacuum infiltrated in 80% 

aceton for 15 min and incubated for 1 hour at -20°C. The material was then washed twice with 

100mM sodium phosphate buffer and afterwards transferred into the GUS staining solution and 

vacuum infiltrated for 20 minutes (Hemerly et al. 1993). The samples were incubated at 37°C in a 

light protected environment over night. Afterwards, the GUS staining solution was replaced by 

10%, 30%, 50% and 70% EtOH for 20 minutes and afterwards cleared with a 1:1 mixture of acetic 

acid and EtOH over night. Store in 70% EtOH (based on Hemerly et al 1993, Vitha et al. 1995). 

Beta-glucuronidase (GUS) staining solution 

According to Hemerly et al. (1993) and Vitha et al. (1995). 
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Mix before use: 

o 50mM sodium phosphat buffer ph 7,2 

o 2mM potassium ferrocyanide: K4Fe(CN)6 [100mM stock] 

o 2mM potassium ferricyanide: K3Fe(CN)6 [100mM stock] 

o 2mM 5-bromo-chloro-3-indolyl-ß-glucurinic acid (X-Gluc in DMSO, fresh) 

o 0,1% Triton-X100 

o 2mM X-Gluc [dissolve 20mM in DMSO] 

 Pipes Buffer [100mM} 

o 37,86g Pipes 

o 3,804g EGTA 

o 0,241g MgSO4 

o Add 800 ml ddH2O 

 Clearing solution 

Mix acetic acid and EtOH(absolute) in a ratio 1:1. 

 

D.3.9. Paraffin Embedding 

The GUS stained plant material was transferred into embedding cassettes and the cassettes 

were put into a tissue processing machine (Thermo Shandon Tissue Excelsior) following a 

standard embedding protocol over night. 

Afterwards the material was manually infiltrated by liquid paraffin in the embedding Thermo 

Electron Shandon Histocenter3. After about 30 min of cooling, the paraffin blocks were removed  

For cutting, the paraffin blocks were trimmed and the dispensable wax has to be removed 

before sectioning. Depending on the plant material 10-40µm thick sections were produced with 

the help of a rotary microtom (Micron HM 500 OM). The samples (paraffin sections) were placed 

on a preheated glass slide covered with a dH2O:EtOH mixture. Afterwards the slides were dried 

at 42°C-45°C for at least 3 hours and afterwards stored at 4°C until further use. The glass slides 

were dewaxed 2 times with Neo-Clear (Xylolersatz, Merck) for 10 min, air dried and afterwards 

mounted and sealed with Entellan (Mercke). 
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D.3.10. Cyro-cuttings of agarose embedded samples 

Before usage add 1% DMSO to the fixative (PFA solution) to improve the penetration of the plant 

tissue. Pour 2.5% PFA into vials and collect your samples into them while they are on ice. Put the 

vials with the samples into a vacuum pump for about 30 min and let them then shake at 4°C over 

night. Exchange the 2.5% PFA solution gradually with fresh 1% PFA solution containing raising 

sucrose concentration of 10%, 20% and finally 30%, each for 30min. Prepare 7% low melting 

point agarose by dissolving it in water in a microwave at 90Watt for about 15 minutes. Prepare a 

small Petri dish for each and pour the low melting agarose into it. Take your samples out of the 

fixative, dryit for few seconds on a paper and then immediately put them into the liquid agarose. 

Use forceps and tooth picks to orient your sample properly. 

For slicing of the tissue we used a Leica 2000 microtome with a freezing facility. We have found 

that for Arabidopsissamples the best longitudinal sections are 20 micron thick for vegetative 

stage and 25 micron for reproductive stage. Transverse sections should be 35-40 microns for 

vegetative and 40-50 microns for reproductive stage. Before slicing the block with the tissue 

should be cut out of the gel and placed at a desired angel at the microtome stage, then tissue-

tek (Hartenstein) is used to fix the block to the stage. For freezing dry ice is used. An antifade 

reagent was added to preserve the GFP/YFP fluorescence up to one week. 

10xPBS:  1.3M NaCl 

0.07M Na2HPO4 

0.3M NaH2PO4 

2.5 % PFA solution pH7.4: 

 12,5 gr. of PFA in 200 ml of H2O at 60°C 

 Add NaOH until solution gets clear. 

 Add 50ml of 10xPBS 

 Cool down to 4°C 

 Fill volume to 500ml with ddH20 

 Adjust pH to 7.4  

Materials and equipment: 

 Paraformaldehyde (PFA)(Sigma P-6148), 

 Agarose LM-GQT (Conda, Pronadisa, Cat# 8088) 

 Leica microsystems Sliding Microtome SM-2000 with freezing facility. 

 Tissue- tek® O.C.T Compaund (Cat #62550-01) 
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 Glass slides(25x75x1mm Menzel-Glaser, Super Frost® Plus, Art No J1800AMNZ) 

 ProLong® Gold antifade reagent (Invitrogen, Molecular Probes TM Cat # P36934) 

 

D.4. DNA 

D.4.1. Buffers and solutions 

10xPBS 

1.3M NaCl 

0.07M Na2HPO4 

0.3M NaH2PO4 

10xPBST 

PBS + 0.05% v/v Tween-20 

1xTBE 

89mM Tris 

89mM boric acid 

2.5mM EDTA disodium salt 

pH 8.2 (with HCl) 

TBS(T) 

50mM Tris 

150mM NaCl 

(0.05% v/v Tween 20) 

TE 

10mM Tris 

1mM EDTA disodium salt 

pH 7.7 with HCl 
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D.4.2. Polymerase chain reaction (PCR) 

The standard PCR reaction was as following:  

10x buffer 

dNTPs 

Enzyme 

Primer F 

Primer R 

DNA 

MQ 

5µl 

1µl 

0,5µl 

1µl 

1µl 

1µl 

40,5µl 

 

PCRs were performed utilizing either a Primus (HVD life Science) Cycler or a 

RobocyclerGradient96 (Stratagen) with the following standard PCR program:  

 

 

 

 

 

 

 

X depends on the primers use, y on the length of the insert. PCR products were analyzed with 

standard gel electrophoresis as described below.  

 

D.4.3. Agarose gel elecrtrophoresis 

Agarose gel electrophoresis was performed to separate DNA fragments due to their different 

size. 1% agarose gels were used if not stated otherwise. The agarose was mixed with 1xTAE 

buffer and heated in a microwave until completely dissolved. After cooling to approximately 

55◦C add 5% (v/v) ethidiumbromide solution (10mg/ml) and pour into the gel casting equipment. 

 °     C Time  

Denaturation 94°C 2`  

Denaturation 

Annealing 

Elongation 

94°C 

x °C 

72°C 

30`` 

30` 

y` 

 

Cycles 30-35 

 

Final Elongation 72°C 10`  
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Allow the gel to solidify for at least 30 min. Mix DNA with 20% loading dye. Run gels in 1xTAE at 

100V constant voltage. 

1% agarose 

1g agarose 

100ml 1x TAE buffer 

5µl 10mg/ml etidiumbromid solution in aqua 

Loading dye 

4M Urea 

             50% (w/v) sucrose 

             50mM EDTA 

             0,1% bromphenole blue 

50x TAE 

242g Tris base 

57,1ml acetic acid 

100ml 0,5M ethylenediaminetetracetic acid (EDTA) pH 8,0 

 

D.4.4. Restriction digest 

Digests were performed according to the manufacturer’s instruction unless otherwise stated. All 

restriction enzymes and corresponding buffers were purchased from Roche, Fermentas or New 

England BioLabs. Digests are normally incubated at 37◦C for 1 to 2h. 

Digestion reaction with an end volume of 20µl: 

 2µl DNA of a Quick and dirty mini or 1µl of a kit mini 

 2µl of restriction enzyme buffer 10x 

 0,2µl of enzyme 

 add water to a volume of 20 µl 

Digestion reaction with an end volume of 50µl: 

 1µl of a clean DNA (kit) 

 5µl of restriction enzyme buffer 10x 

 1µl of enzyme 

 add water to a volume of 50 µl 
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D.4.5. Ligation 

To achieve the optimal ligation rate different ratios (4:1 - 1:2) of vector: insert have been used.  

In addition 1 µl of a 10x ligase buffer, 0.2µl DNA ligase (NEB) and water to a final volume of 10µl 

were added.  The whole reaction was incubated over night at 16◦C. 

 

D.4.6. Clean plasmid isolation from bacteria with a kit 

The Wizard Plus SV 96 Plasmid DNA Purification System (Promega) is used for small scale plasmid 

isolation (mini prep). All steps, except eluation are performed according to manufacturer’s 

instruction. DNA is eluted twice in 25-50μl of water (depending on concentration required) from 

the column by centrifugation. 

 

D.4.7. Quick and Dirty plasmid isolation from bacteria 

Isolated plasmids are only used for restriction digests to identify bacterial colonies containing 

the desired plasmid. Harvest the 3ml o/n culture by centrifugation for 1min and resuspend in 

300µl P1 buffer. Add 300µl P2 buffer and invert the tube 4 times. Add 300µl P3 buffer and mix 

again by inverting the tube 2 times. Centrifuge for 10min at RT at 14000rpm and transfer the 

supernatant into a fresh tube (850ul). Add 650ul isopropanol and mix it gently. Incubate for 10 

min at RT and centrifuge for 15min at 14000rpm at 4°C. Wash the pellet 2x with 70% EtOH and 

dry it, afterwards resuspend it in 50ul ddH2O. 

P1: Resuspension buffer 

50mM Tris HCl pH 7.5 

10mM EDTA disodium salt pH: 8 

100μg/ml RNAse A 

P2: Lysis buffer 

200mM NaOH 

1% w/v sodium dodycesyl sulfat SDS 

P3: Neutralisation buffer 

3M KOAc 

pH 5 with HCl 
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D.4.8. DNA purification from an agarose gel 

The DNA was purified from agarose gels with a Wizard SV Gel and PCR Clean-Up System or an 

QIAquick Gel Extraction Kit according to manufacturer’s instructions. 

 

D.4.9. Gateway® cloning 

The gateway® technology provided by Invitrogen was used to create various yeast, human and 

plant PEX11-fusion proteins. The tag (N-terminal YFP) is part of the destination vector, while the 

protein of interest is coded in the entry vector pENTR4 or pDONORzeo. Both vectors contain so 

called att-sites. The entry vectors contain attL sites, whereas the destination vector possesses 

attR sites. With the help of an enzyme, called clonase, a recombination reaction takes place, 

where the gene of interest, previously located in the entry vectors is placed in frame with the tag 

in the destination vector. This product is called expression vector. With this technique we were 

able to create various numbers of expression vectors by using the same entry vectors as a 

starting point. This recombination reaction is defined as LR-reaction (Early et al. 2006). 

The standard mixture and conditions for an LR-reaction used are: 

• vector:insert ratio (1:1 or 3:1) 

• 0.5μl clonase enzyme mix 

• 1μl 10x clonase buffer 

• add water to 10µl end volume 

• incubate o/n to improve the recombination efficiency. 

• treat with Proteinase K (10’, 37°C), 

• transform into electro competent TOP10 E. coli  

 

Beside the LR-reaction, it is also possible to use a PCR product flanked by attB recombination 

sites and recombine it directly into a donor vector (pDONORzeo ) containing attP recombination 

sites. This recombination gives than rise to an entry vector with attL sites. This new entry vector 

is now harboring the protein sequence of interest and can be used in an LR-recombination 

reaction like described above. The resulting binary vectors allow 35S promoter -driven 

expression of N-terminal tagged YFP-PEX11 fusion proteins in planta(Early et al 2006). 
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Entry Gateway Cloning vectors: 

 

 

 

 

 

 

Figure 50: Maps of the Entry Gateway Vectors used in this study, pENTR4 and pDONOR
zeo 

. 

 

Destination Gateway cloning vectors: 

 

 

 

 

 

 

 

 

 

 

 

pEarleyGate103 (C-GFP)

12410 bp

bar

35S

ccdB

mGFP5 6xhis

KanR

ori

LB

RB

CamR

tOCS

attR1

attR2

 

pEarleyGate100

11648  bp
CamR

attR1

ccdB

attR2

RB

LB

baRKanR

35S

OCSt

 

pEarleyGate104 (N-YFP)

12504 bp

ccdB

KanR

BASTA R

eYFP

CamR

tOCS

tMS

p35S

RB

LB

attR1

attR2

 

pMDC7

13227 bp

XVE

hygromycin resistance

chloramphenicol resistance

ccdB

RB

LB

8xLexA operator

Xba/Bgl bluntfusion

FKG16 rev  (TM61)

FKG15 fwd (TM61)

G10-90

lexA -46 35S promoter

T3A

SpecR

attR1

attR2

 

pKGWFS7,0

12700 bp

Egfp

gus

CmR

ccdB

Sm/SpR Kan

T35S

SpecR (genau?)

attR1

attR2

LB

RB  

pENTR4

2720 bp

ccdB

Kan(R)

pUC origin

rrnB T1 transcription terminator

rrnB T2 transcription terminator

attL1

attL2

BamHI (486)

NcoI (462)

PstI (1062)

SmaI (699)

XmaI (697)

ApaLI (728)

ApaLI (2401)

EcoRI (498)

EcoRI (921)

AvaI (57)

AvaI (350)

AvaI (697)

AvaI (936)

 

pDONR/Zeo

4291 bp

ccdB

Cm(R)

Zeo(R)

M13 (-20) forward primer

M13 (-40) forward primer

M13 rev erse primer

T7 primer

EM7 promoter

T7 promoter

rrnB T1 transcription terminator

rrnB T2 transcription terminator

attP1

attP2

BamHI (1833)EcoRI (2289)

PstI (1168)

NcoI (1988)

NcoI (3483)

SmaI (1419)

SmaI (3395)

XmaI (1417)

XmaI (3393)

ApaLI (1386)

ApaLI (3136)

ApaLI (3972)

AvaI (561)

AvaI (1417)

AvaI (3393)

AvaI (3403)

 

Figure 51: Maps of Destination 
Gateway Vectors used in this study: 
pEG100 (no tag), pEG103 (C-
terminal GFP), pEG104 (N-terminal 
YFP), pMDC7 (estradiol inducible), 
pKGSW7 (GUS/GFP reporter 
system). Vector Maps after Early et 
al. (2006). 
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D.4.10. TOPO-TA cloning 

TOPO TA Cloning Kits are designed for a rapid and easy cloning of PCR products, directly from a 

PCR reaction. In this study the Dual Promoter TOPO TA Cloning Kit pCR II-TOPO Vector 

(Invitrogen) was used. For a standard cloning reaction 2µl of a purified PCR-product together 

with 0.5µl salt solution, 0.5µl of the pCR II-TOPO vector and 2µl sterile water (all components 

provided in the kit) have been used. The reaction is then gently mixed and incubated at RT for 5 

minutes. 

 

D.4.11. Cloning of PEX11 fusion proteins from yeast, human and plant 

The coding regions of the ArabidopsisAtPEX11A (At1g01820), AtPEX11B (At3g47430), AtPEX11C 

(At1g47750), AtPEX11D (At2g45740) and AtPEX11E (At3g61070) as well as the human HsPEX11α 

(NP_003838), HsPEX11β (NP_003837), HsPEX11γ (NP_542393) and the yeast ScPEX11 

(YOL147C), ScPEX25 (YPL112C) and ScPEX27 (YOR193W) were amplified using the primers in 

Table 6. 

The purified cDNAs from AtPEX11C, AtPEX11E and AtPEX11D were directly cloned into the 

pENTR4 gateway vector with the help of the XhoI and NcoI sites and checked by PstI 

digestion.The cDNA from AtPEX11A and AtPEX11B were first cloned into a pCRII-Topo TA vector 

and checked with a PvuI digest before transferring them into a pENTR4 gateway vector. The 

resulting pENTR4-PEX11 entry plasmids from yeast, human and plants were sequenced and used 

for a Gateway recombination reaction into the binary plant expression vector pEarlyGate104 

(Earley et al. 2006). 

In addition a non-tagged version of the AtPEX11D was designed using an estradiol inducible 

pMDC7 binary vector (Curtis and Grossniklaus 2003). 
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Table 6: Primers used for the amplification of the various PEX11 gen members from yeast, human and 

plant. 
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As a control, a red fluorescent peroxisomal marker protein PST1 (mCherry-SKL) was produced via 

a BP Gateway reaction into the pDONOR plasmid (Invitrogen). The donor vector was then used 

for an LR gateway recombination into the estradiol inducible pMDC7 binary expression vector 

(Curtis and Grossniklaus 2003). 

 

D.4.11. Mutagenesis of the full length AtPEX11D promoter 

In the Figure 52 below, the full-length promoter sequence of the AtPEX11D (AT2G45740) 

promoter is shown (sequence obtained from TAIR-database) as well as a scheme, showing the 

exact position of the primers to clone the various deletion constructs. 

 

 

 

 

 

 

 

Figure 52: Full-lenght promotor sequence of AtPEX11D and the localisation of the primer pairs used for 

the cloning of the deltion constructs. 

 

The primers used for the in vitro mutagenesis of the AtPEX11D promoter are listed in Table 6. 

The obtained PCR fragments are carrying a BP cloning site for recombination into a pDONR 

vector, followed by LR gateway cloning into the pKGWs7 gateway vector (Gateway cloning: 

Figure 13).  
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Table 7: Primers used for the cloning of the five different deletion constructs of the AtPEX11D promoter. 

 

D.5. RNA 

D.5.1. RNA isolation with TRIzol from plant material 

Homogenize 100-200mg plant tissue without thawing and add 500μl TRIzol per 100mg and 

vortex vigorously. Incubate for 5min at room temperature and centrifuge 10min, at 4°C with 

16000g. Transfer the supernatant into a fresh tube and add 100μl chloroform per 100mg tissue, 

vortex vigorously. Centrifuge for 15min at 4°C with 16000g and transfer upper, transparent 

phase into fresh tube. Add 1μl DNAse (1U) and 1μl RNAsin and vortex. Incubate for 15min at 

room temperature. Add first 300μl TRIzol then 50µl chloroform and vortex after each step. 

Centrifuge for 5min at 4°C with 16000g and transfer upper, transparent phase into fresh tube. 

Precipitate RNA with 1 volume isopropanol (-20"C) and 3M sodium acetate pH 5,5. Invert the 

tube three times and incubate 10min at -20"C. Centrifuge for 30min at 4°C with 16000g and 

remove supernatant. Wash the pellet twice with 0,5ml 80% ethanol (-20"C) and centrifuge 

(5min, 4"C, 16000g). Wash the pellet again with 0,5ml 99% ethanol (-20"C), centrifuge (5min, 
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4"C, 16000g). Remove the ethanol completely and dry the pellet. Dissolve it in 10-25μl 

DEPCwater. Run the RNA on an agarose gel to estimate RNA concentration. Prepare a 2% 

agarose gel in TBE (89mM tris, 2mM EDTA, 89mM boric acid) and load 1μl RNA . 

 

D.5.2. Reverse transcriptase (RT) reaction 

For a standard RT reaction 2μg RNA together with 20pM 3’ or polyT primer are used and filled up 

to final volume of 12,5μl with DEPC water. Incubate then 10min at 70°C and add following 

components to the reaction: 

 2μl 10mM dNTPs 

 4μl 5x RT buffer (Promega) 

 0,5μl RNAsin (Promega) 

 

Incubate for 5min at 37°C and add 1μl reverse transcriptase (AMV-RT fromPromega). Incubate 

for 1,5h at 42°C and add 1μl reverse transcriptase. Incubate again for 1,5h at 42°C and 

afterwards for 10min at 70°C. Add 1µl RNAseA and store at 4°C for up to two weeks. For a PCR 

reaction 2μl are used. 

 

D.6. Microscopy and photography 

D.6.1. Stereo microscopy 

Samples were analyzed using the Zeiss Discovery V12 Stereo-microscope and documented with 

the AxioCamMRc5 Zeiss color camera or with the LeicaEL600 microscope and pictures were 

taken with the LeicaDFC300FX colure camera. 

 

D.6.2. Light microscopy 

GUS stained plant parts and cross sections were analyzed using the ZEISS Axio Imager M1 upright 

microscope. Pictures were taken using an AxioCamMRc5 Zeiss colore camera and AxioVision 

software. 
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D.6.3. Confocal microscopy of plant peroxisomes 

Sample preparation 

For the analyses and quantification of peroxisomes, infiltration experiments in N. benthamiana 

were performed. The infiltrated leaf parts were removed 48h after infiltration and incubated in 

500µl of a 100µM F-actin depolymerizing CythochalsainD (Sigma, in DMSO) solution for 0.5 

hours. This treatment led to immobile but otherwise normal PX (Mathur et al. 2002) and 

therefore allows high resolution imaging of the epidermal plant cells and peroxisomes (Koch et 

al 2010).  

Settings 

All confocal images of plant cells were acquired with a LeicaTCS SP microscope utilising a Kr/Ar 

laser and the following settings:  The excitation of YFP and cherry-SKL were performed at 

476nm/568nm and detected at 500-535nm/ 600-635nm, respectively. The auto fluorescence of 

chloroplasts was detected at 665-795nm. The pinhole was set to 1.5 Airy Units (AU) and the 

detector gain and amplifier offset was adjusted to avoid clipping (Koch et al. 2010).  

 

D.6.4. Statistical analyses 

To evaluate the total number of peroxisomes we included free and clustered peroxisomes from 

at least three independent infiltration experiments per construct. In each infiltration experiment 

at least 10 expressing epidermal cells were scanned. All images were processed using ImageJ 

(Collins 2007). Usually, images were despeckled (radius 1.0) and converted to 8-bit. To highlight 

the peroxisomal associated fluorescence a “Maximum Entropy” threshold was set using the 

“Multithresholder”.  

To measure all fluorescently tagged peroxisomes in epidermal cells we performed 20µm deep z-

stack projections (6 z-scans, distance 4 µm). The particle analysis feature of ImageJ was used to 

count the number and average size of peroxisomes and clusters in pixel^2. These data set has 

been used to calculate the average size of PX in µm^2 (using following calculation: pixel^2 x 

0,0596044775390625). The actual size (diameter) of peroxisomes was calculated with the 

formula: d= 2 x (square root A/pi) (pi = 3,141596). Peroxisomes have been divided into six 

categories concerning their size and area: I (very small PX), II (small PX), III (normal PX), IV (large 

PX), A (small cluster) and B (large cluster) see table 8 below. 
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Table 8: Six categories of peroxisomal size were assigned: Category I and II for very small and small 
peroxisomes (0.0-0.87µm in diameter), Category III for normal sized peroxisomes (0.88-1.9µm) and 
categories IV for enlarged peroxisomes (1.91-2.75µm). The categories A and B represents small (2.96-
7.16µm) and large peroxisomal cluster (6.17-27.55µm) formed after over-expression of the different 
PEX11 fusion proteins. 

To evaluate the total number of peroxisomes we have to include the peroxisomes located in 

small and large clusters (category V and VI). Therefore we used high resolution scans (63x or 

100x Objective, single xy scans) to measure the diameter of peroxisomes within clusters. The 

resulting average peroxisomal diameter allowed us to calculate the number of peroxisomes 

within clusters using the average area of clusters (AK= d2* π/4).  

An example is shown below in Figure 15 for the human HsPEX11γ fusion protein.  

 A single peroxisomeis 1.1µm in diameter= d2*(evaluated by 5 individual high resolution 

images of PX clusters). 

 AK= d2* π/4: (1,1* 3,14159)/4 = 0,9μm2 

 The total area of the cluster is 59 µm2 (calculated by the ImageJ program).  

 Therefore the total number of peroxisomes  in the cluster is 65: 59 µm2 / 0,9μm2 = 65 

 

 

 

 

Figure 53: A high-resolution image of the human HsPEX11γ fusion protein for. 

 

D.6.5. Digital photography 

All photographs were taken using the digital camera Olympus E-410 carrying the objectives 

Olympus Zuiko Digital (35mm 1:3.5 Macro, Ø 52) or the Olypmus Digital (14-42mm 1:3.5-5.6). 
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Supplemental 

 

 

 

 

 

 

 

 

 

 

Figure S1: Data set used for the statistical analysis of peroxisome (PX) abundance and area as well as the 
amount of PX localised in clusters. 

(A) Summarized Data of 3 independent infiltration experiments peroxisome (PX) abundance and 
area 48h post infiltration per cell: Average area of all peroxisomes per cell in µm

2
. Average 

number of peroxisomes per cell. Calculation of Standard error of means; n: representing 
approximately 190 cells.*n/d = not determined. 

(B) Summarized Data of 3 independent infiltration experiments counting the peroxisomes localised 
in the different categories in percentage % per cell:  

Sum I-IV: all PX localised in the categories I to IV, representing small to large PX which are not 
clustered. Category A: Percentage of PX located in small clusters.  Category B: percentage of PX 
located in large clusters; Calculation of Standard error of means; n= represent approximately 190 
cells, n/d* = not determined.  

Definition of Categories see matherials and methods chapter D.6.3, Table8.  
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Figure S2: Light exposure experiment of transgenic A. thaliana plants harbouring the minimal promoter 
of AtPEX11D driving a GUS reporter system. 7days old seedlings were grown on ½ MS medium with 3% 
sucrose at 22°C and standard light conditions (16h light/ 8h dark). The GUS expression of these seedlings 
was analysed at 4 different light exposure time points (3h, 6h, 10h and 12h) and following plant organs 
have been analysed:  overview of seedlings, cotyledons, young leaf, hypocotyls, root and root tip. 
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Figure S3: Light exposure experiment of infiltrated N. benthamiana harbouring the minimal promoter of 
AtPEX11D driving a GUS reporter system. A GUS staining of N. benthamiana leaves 24h post infiltration 
has been performed together control plants infiltrated with the GUS vector alone. The light exposure time 
points were 2h, 8h and 11h. No background activity of the GUS staining was observed in the plants 
infiltrated with the GUS vector alone, whereas a slight increase in the GUS expression after 8h of light 
exposure compared to 2h of light exposure could be observed. No GUS expression was detected after 11h 
of light exposure.  
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S4: Sequencing data of all yeast one hybrid candidates re-grown on SC-drop out medium. Orientation: 
orientation of the inserted fragment (candidate) in the pGAD10 vector.  AD-fusion: are the candidates in 
an ORF with the promoter. ORF: open reading frame. 
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Abbreviations 
 
ABA absisic acid 

AMS aberrant membrane structures 

ER endoplasmic reticulum 

JA jasmonates 

GA gibberellic acid  

HEK human embryonic kidney 

MeJA methyl jasmonate 

MS-medium Murashig and Skoog medium 

ORE oleate-responsive element 

PMP peroxisomal membrane protein 

PPAR peroxisome proliferator activated receptor 

PPRE peroxisome proliferator responsive element 

PTS peroxisomal targeting sequence 

ROS reactive oxygen species 

RT room temperature 

PX peroxisome(s) 

PXC peroxisomal cluster 

TMD transmembrane domain 

SA salicylic acid 

At Arabidopsis thaliana 

Hs Homo sapiens 

Sc Saccharomyces cerevisiae 
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