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Abstract

Bulk nanocrystalline intermetallic materials receive increasing scientific interest
since they often show novel properties. In the present work intermetallic FeAl
was made nanocrystalline by high pressure torsion deformation of a B2 ordered
Fe-45at.%Al alloy. The resulting structures consist of nanoscaled grains with high
defect densities and highly irregular grain boundaries. For their detailed character-
ization transmission electron microscopy studies combining imaging and diffraction
are used. The complex image contrasts of deformation induced nanograins necessi-
tate the development of new analysis techniques. A method yielding profile analysis
from selected area electron diffraction patterns (PASAD) is worked out allowing
a quantitative analysis of nanomaterials on a local scale. PASAD is applied suc-
cessfully to analyse small nanocrystalline regions that are formed in FeAl during
deformation showing the unexpected result that the coherently scattering domain
(CSD) size is not changing as a function of strain. By applying PASAD to tilt
series of diffraction patterns, a new method is derived that allows the determina-
tion of the average size and morphology of the CSD in 3D. It is shown that the
average CSD is elongated in the shear plane. It was reported in the literature that
in FeAl the long-range order is lost during deformation. In contrast, the present
work shows that the disorder is not complete since it is revealed that chemically
ordered nanodomains of about 2 nm are observed after deformation. Thermal an-
nealing leads to the recurrence of the order, the recovery of dislocations and the
rearrangement of grain boundaries. To study these processes, the ordered domain
size, the CSD size and the grain size are monitored during annealing. The analysis
yields the surprising result that during annealing the grain size is reduced by a
factor of 2, while the CSD size increases by a factor of 2 and the ordered domain
size by a factor of 15. Based on the coarsening of the chemically ordered nan-
odomains a model for the reordering process is developed and fitted to the results
from differential scanning calorimetry. The model allows to determine the vacancy
concentration, the vacancy migration enthalpy and the vacancy migration volume.
Finally, by annealing of specimens deformed by high pressure torsion without un-
loading, i.e. maintaining the hydrostatic pressure, the vacancy concentration is
determined and compared to that after unloading, thus confirming the occurrence
of vacancy relaxation during unloading.





Zusammenfassung

Nanokristalline intermetallische Werkstoffe stoßen aufgrund ihrer oft unerwarteten
Eigenschaften auf zunehmendes wissenschaftliches Interesse. In der vorliegenden
Arbeit wurde nanokristallines intermetallisches FeAl durch Verformung der B2
geordneten Fe-45at.%Al Legierung mittels Hochdrucktorsion hergestellt. Die resul-
tierende Struktur besteht aus nanoskaligen Körnern mit hohen Versetzungsdichten
und unregelmäßigen Korngrenzen. Für die detaillierte Charakterisierung wurden
Beugungsmodus und Abbildungsmodus im Transmissionelektronenmikroskop kom-
biniert. Die komplexen Bildkontraste der verformungsinduzierten Nanokörner er-
fordern die Entwicklung neuer Analysemethoden. Hier wird eine Methode für Pro-
filanalyse aus Feinbereichsbeugungsbildern (PASAD) vorgestellt, die lokal aufgelöste
quantitative Analyse von Nanomaterialien erlaubt. PASAD wird erfolgreich auf
nanokristalline Strukturen angewendet, die sich bei der Verformung von FeAl aus-
bilden. Es zeigt sich das unerwartete Resultat, dass sich die Größe der kohärenten
Streuvolumina (CSD) mit zunehmendem Verformungsgrad nicht ändert. Durch
Anwendung von PASAD auf eine Kippserie von Beugungsbildern wird eine Meth-
ode entwickelt, die erlaubt die mittlere Größe und Form der CSD in 3D zu bes-
timmen. Es zeigt sich, dass die CSD in der Torsionsebene elongiert sind. Es
wurde in der Literatur berichtet, dass Verformung die Ordnung in FeAl zerstört.
Im Gegensatz dazu wird in der vorliegenden Arbeit gezeigt, dass die Entordnung
nicht vollständig ist, da nach der Verformung chemisch geordnete Nanodomänen
vorhanden sind (ca. 2 nm). Eine thermische Behandlung führt zu Ordnungsein-
stellung, Erholung sowie der Neuordnung der Korngrenzen. Um diese Prozesse
genauer zu untersuchen, werden die Größe der Ordnungsdomänen, die Größe der
CSD und die Korngröße beim Aufheizen gemessen. Durch die thermische Be-
handlung reduziert sich die Korngröße um einen Faktor 2, wobei gleichzeitig die
Größe der CSD um einen Faktor 2 und die Größe der Ordnungsdomänen um
einen Faktor 15 anwachsen. Basierend auf der Vergröberung der Ordnungsdomä-
nen wird ein Modell für die Ordnungseinstellung entwickelt und an die Resul-
tate von dynamischer Differenzkalorimetrie angepasst. Das Modell erlaubt die
Bestimmung der Leerstellendichte, der Leerstellen-Wanderungsenthalpie und des
Leerstellen-Wanderungsvolumens. Durch gezieltes Ausheilen von Proben, die mit-
tels Hochdrucktorsion verformt wurden, ohne zu entlasten, wird die Leerstellen-
dichte bestimmt und mit jener nach Entlastung verglichen. Dabei wird eine Re-
duktion der Leerstellendichte beim Entlasten bestätigt.
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Outline of this Work

• In chapter 1 the necessary background on the intermetallic compound FeAl

including its structure and deformation behaviour is given. Furthermore the

main differences in structure and deformation behaviour between coarse crys-

talline and nanostructured materials are presented.

• Chapter 2 gives a detailed description of the experimental procedures used

in this work. This chapter presents both, a short introduction for readers

not familiar with the experimental procedures and a detailed description of

each experiment presented in this work. A large section is devoted to the

determination of microstructural parameters by line profile analysis. Due to

the large amount of literature in this field that contains conflicting views, a

systematic discussion is presented that starts from the principles of diffraction.

• Chapter 3 contains the development of new TEM methods for analysing

nanocrystalline materials. These methods are essential for the quantitative

analysis of nanocrystalline materials.

• The nanocrystallisation of FeAl during high pressure torsion deformation is

discussed in chapter 4.

• Chapter 5 analyses the processes occurring in FeAl during heating using meth-

ods of transmission electron microscopy and differential scanning calorimetry.

• Based on these findings a model describing the reordering behaviour is devel-

oped in chapter 6.

• In chapter 7 an overall discussion and conclusions are given.





1 Introduction

“Science may be described as the art of systematic oversimplification.”

– Karl R. Popper

1.1 Chemical Order in FeAl

1.1.1 Phase Diagram

An intermetallic compound is an alloy made of metals including metallodis (e.g.

Ge). It appears in the phase diagram as a separate phase within a certain concen-

tration range. In the present work an intermetallic compound made from iron and

aluminium is examined. In the phase diagram (cf. Fig. 1.1) the different phases

are represented in dependence of the temperature as well as the composition. Fe-

45at%Al is studied, since this concentration (indicated by an arrow in the phase

diagram) is well inside the range of the intermetallic compound FeAl (indicated as

a filled region in the phase diagram).

1.1.2 Chemical Order

In an ordered intermetallic compound, the different elements occupy certain places

in the unit cell. In contrast to that, one calls an intermetallic compound disor-

dered if the atoms occupy the places in the unit cell randomly, independent of the

element. FeAl is based on the body-centred cubic (bcc) lattice. Ordered FeAl is

B2 structured and disordered FeAl is A2 structured (cf. Fig. 1.2) according to

the “Strukturbericht” by Ewald and Hermann [Ewald31]. The lattice parameter of

FeAl is 0.2907 nm [Kraan86].

In materials science there are different ways to describe order. The short-range

order is a measure for the “order” in the surrounding of an atom, i.e. it indicates

how strongly neighbouring atoms are correlated. In the case of perfectly ordered

FeAl, one Al-atom would have 8 neighbouring Fe-atoms (cf. Fig. 1.2) and in the
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Figure 1.1: Phase diagram of FeAl [Kattner86]. The diagram shows the different
phases in dependence of temperature and composition. The region of the intermetal-
lic compound FeAl is filled in the diagram. The arrow indicates the composition
(Fe-45at%Al) that was used in the present work.

Figure 1.2: Diagram representing the A2-structure (left) and B2-structure (right):
The Fe-atoms are represented in black and the Al-atoms in white. A grey atom in-
dicates, that on this lattice place there is an equal probability to find an Fe- or Al-
atom.
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case of disordered FeAl on average 4 Fe-atoms and 4 Al-atoms. It is also possible

to describe the correlation of an atom with its next nearest neighbours or with its

mth nearest neighbours. In many materials order extends up to larger interatomic

distances in the range of 0.5–2 nm. In this case the order is often called medium

range order [Phillips79].

In this work we are specifically interested in long-range order. In an ordered alloy,

the different elements are sitting on different lattice positions. The long-range order

is essentially a measure for the percentage of atoms that are sitting on the correct

lattice positions. The long-range order can be quantified using the order parameter

S [Bragg34]. In a perfectly ordered alloy every α atom is sitting at an α lattice

position and every β atom on a β lattice position. In general only a certain fraction

of α atoms occupies α lattice positions (indicated by pα,α). To describe the order

parameter we also need the fraction of α atoms in the alloy (Aα) and the fraction of

α lattice places (Wα). Analogous expressions for β atoms can also be introduced.

S =
pα,α −Aα
1−Wα

=
pβ,β −Aβ
1−Wβ

(1.1)

For the case of the B2 structure Fe-45at%Al (Wα = 0.5, Aα = 0.45) the order

parameter simplifies to

S = 2pα,α − 0.9 = 2pβ,β − 1.1 (1.2)

Long-range order can be understood as order extending over the whole mate-

rial or can prevail in distinct areas, which are then called ordered domains. It is

usually demanded that the areas with long-range order extend over at least a few

nanometers.

1.1.3 Ordered Domains

Ordered domains are volumes with perfect long-range order. On the one hand

an ordered domain can be neighbouring a lattice with different orientation or be

surrounded by disordered material and on the other hand ordered domains can be

separated by antiphase boundaries (cf. Fig. 1.3). At the antiphase boundaries

there is a change of the elements occupying the different sublattices and therefore
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Figure 1.3: Schematic illustration of an antiphase boundary.

the order is disturbed. Antiphase boundaries can be described as the displacement

of two parts of the crystal against each other. The corresponding displacement

vector in FeAl is ~u = [111]. The energy of a APB is γ110 = 0.3 J
m2 [Westbrook00a].

In L12 ordered Ni3Al a slight distortion of the lattice was detected in addition to

the chemical fault [Rentenberger03].

1.1.4 Thermodynamics of the Ordered State

As the binding energies depend on the configurations of the atoms, intermetallic

compounds have a lower free energy in the ordered state than in the disordered

state and are therefore normally present in the ordered state. The energy difference

between the ordered and the disordered state is called ordering energy. In contrary

the configurational entropy is larger for the disordered state and can therefore

lead at higher temperatures to a stable disordered state. This phase transition is

called order-disorder transition [Haasen86], but it does not occur up to the melting

point in FeAl, because of its high ordering energy. The ordering energy in FeAl is

estimated to be 6.0 kJ/mol from experimental data and to be 6.62 kJ/mol from

theoretical calculations [Qi96].

It should be noted that the ordering energy is defined as the work needed to

convert a perfectly ordered alloy into one with a random atomic distribution or as

the work required to interchange a correct pair of atoms. It should not be confused

with the energy of formation of an ordered alloy phase which represents the energy

needed for the transition from the pure constituents to the compound and is much

higher than the ordering energy [Bragg35, Cahn02].
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Figure 1.4: (a) A grain boundary is the boundary between crystalline regions hav-
ing a different orientation. The detailed structure of the grain boundary is omitted.
(b) Schematic illustration showing the grain interior, the grain boundaries and the
triple junction.

1.2 Structure of Crystalline Materials

1.2.1 Defects

Materials are usually not single crystalline, i.e. they do not represent a perfect

periodic lattice. Faults in the lattice are called defects [Kelly00]. The simplest type

of defects are the zero-dimensional defects or point defects, which are not extended

in space in any dimension. Examples of point defects are vacancies, interstitials

and antisites. One dimensional defects are linear distortions of an otherwise perfect

lattice. They are called dislocations and are divided into screw dislocations and

edge dislocations [Hirth67].

Especially for high deformations at moderate temperatures, it is important to

note that screw dislocations of different signs (i.e. having opposite Burgers vectors)

can easily annihilate by cross-slip, but edge dislocations that do not lie on the same

slip plane have to climb in order to annihilate and can therefore be present in a

high density for severely deformed materials [Schafler01].

1.2.2 Grains

Areas within a material having different lattice orientations are called grains (cf.

Fig. 1.4). The interfaces are called grain boundaries and can be classified into two

types. If the grains are rotated against each other less than ≈15°, they are called

small-angle grain boundaries and otherwise large-angle grain boundaries. These
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distinction is made because small-angle grain boundaries can be represented as a

periodical arrangement of dislocations. For tilted grains, the grain boundary can

be represented by edge dislocations and for twisted grains by screw dislocations.

Large-angle grain boundaries are more difficult to describe. They can be described

by structural units or by using disclinations [Mikaekyan00]. It is important to note

that large-angle grain boundaries can act as sources of dislocations [Hurtado95].

In nanocrystalline materials grain boundaries are often present in non-equilibrium

conditions. In contrast to coarse crystalline materials, large-angle grain boundaries

are frequently high-energy stepped or curved grain boundaries [Huang03] and the

grain boundaries have a high excess free volume [Divinski11]. Non-equilibrium grain

boundaries are very important for the deformation behaviour of nanocrystalline

materials [Nazarov93, Valiev94]. Furthermore triple junctions (regions where three

grains intersect, cf. Fig 1.4b) are very important in nanocrystalline materials be-

cause they often exhibit a disordered structure, which is to be expected as atoms

present in triple junctions are influenced by all three neighbouring grains.

For tetrakaidecahedron grain shapes the volume fraction of grain boundaries and

triple junctions can be calculated (d denotes the grain size and w the grain boundary

thickness) [Palumbo90]. The results are plotted in Figure 1.5.

fgrain core =

(
d− w
d

)3

(1.3)

fgrain boundary =
3w(d− w)2

d3
(1.4)

ftripple junction = 1− fgrain core − fgrain boundary (1.5)

A term that is very important for diffraction experiments is the coherently scat-

tering domain. Dislocations (cf. chapter 1.2.1) in the grain interior can disturb

the periodic structure of the lattice and lead to strain fields and therefore to small

orientation changes within the grain. The regions in the grains having the same

orientation are called coherently scattering domains, they represent the sizes that

are measured when using diffraction (i.e. electron or X-ray diffraction).
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Figure 1.5: Plot of the volume fraction of grain boundaries and triple junctions in
dependence of the grain size for tetrakaidecahedron grain shapes and an assumed
grain boundary thickness of 1 nm.

1.3 Nanocrystalline Materials

1.3.1 Production of Nanocrystalline Materials

Nanocrystalline materials are defined as materials with a grain size smaller than

100 nm [Gleiter00]. In the last years nanocrystalline materials have attracted in-

creasing scientific interest, as they often exhibit improved mechanical properties

with respect to their coarse crystalline counterparts. Especially the combination be-

tween high strength with high ductility at room temperature is unique in nanocrys-

talline materials [Wang02, Zhu04].

Methods of fabrication of nanocrystalline materials can be separated into two

categories [Koch06]. In the “bottom up” approach the nanocrystals are built up

from atoms. Methods belonging to this category are e.g. “inert gas condensation”,

“electrodeposition” or “sputter deposition”. These methods are widely used for the

production of thin films or of nanocrystalline powder, but cannot be used for the

production of non-porous bulk samples. Furthermore, impurities are often prob-

lematic for materials produced using this methods. Bulk samples can be obtained

from compacting the powder, which is often done at higher temperatures leading

to recrystallisation and therefore to the loss of the nanocrystalline structure.
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A second approach which can be used for the production of bulk nanocrystalline

materials is the “top down” approach. In these methods coarse crystalline materials

are rendered nanocrystalline by “severe plastic deformation” (SPD) [Valiev06a].

Examples of this technique are: Torsion of a material under high pressure – “high

pressure torsion” (HPT) [Zhilyaev08]; pressing a material through two channels,

that are inclined against each other – “equal channel angular pressing” (ECAP)

[Valiev06b]; repeatedly rolling a material and folding it – “repeated cold rolling”

(RCR) [Saito98, Wilde05]. An other top-down method is ball milling [Fecht07],

but using this method it is not possible to produce in one step bulk specimens.

The powder that is obtained has to be compacted leading again to problems with

recrystallisation and impurities.

1.3.2 Deformation of Nanocrystalline Materials

Deformation is usually described through dislocations (cf. Fig. 1.6). Slip occurs by

the movement of dislocations on glide planes rather than by the rigid displacement

over the entire plane. When stress is applied, existing dislocations and dislocations

generated by Frank-Read sources will move through the crystal [Hirth67]. A lower

density of grown-in dislocations drastically increases the yield strength of a mate-

rial, as was shown in deformation tests of micropillars [Bei08]. This effect plays

an important role in the deformation of nanosized specimens or nanocrystalline

materials, where the deformed volume and the dislocation spacing have a similar

length scale.

Furthermore it is known that by reducing the grain size d, the yield stress σ

increases. This relation is called Hall-Petch and can be described by the following

law [Hall51]

σ ∝ d−0.5. (1.6)

This dependence is usually analysed in terms of dislocation “pile ups” at grain

boundaries. This means that the smaller the grain size the higher the applied stress

needed to propagate dislocations through the grain boundaries as less dislocations

pile up at the grain boundaries [Pande93]. Other models consider the grain size

dependent accumulation of dislocations by intragranular plasticity [Saada05] with

the generation of geometrically necessary dislocations [Ashby70].

For grain sizes smaller than about 30 nm a breakdown of this relationship can
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Figure 1.6: Deformation by dislocations. Slip occurs through the movement of dis-
locations.

be observed that leads to a decrease of the shear strength for decreasing grain

size. (The grain size at which this breakdown occurs is strongly dependent on the

structure of the nanocrystalline material, e.g. sharp grain boundaries can shift

the breakdown to sizes lower than 10 nm [Lu93].) This mechanism is usually

called inverse Hall-Petch relation [Carlton07, Chokshi89] (cf. Fig.1.7). It is usually

explained by a change in the dominant deformation process. Grain boundary me-

diated processes start to play a crucial role when grains become sufficiently small

and nucleation of dislocations is increasingly difficult [Yamakov04].

Deformation in nanocrystalline materials [Meyers06, Ovidko05, Hemker04] is usu-

ally described in four different ways: two-phase-based models, dislocation-based

models, diffusion-based models and grain-boundary-shearing models [Carlton07].

Two-phase-based models are based on geometric considerations in terms of the

fraction of crystalline and intercrystalline volume, which is often just assumed as

amorphous (cf. also Fig. 1.5 and Fig. 1.4) in nanocrystalline materials [Wang95].

The hardness also depends on the glide of a dislocation through a dislocation

network. At large spacings of the dislocation network, the critical stress is given by

the dislocation cutting mechanism and at smaller spacings by the Orowan bypassing

mechanism changing the grain size dependence [Scattergood92]. Furthermore an

exact solution to the dislocation pile up in very small grains gives rise to a staircase

function deviating from the ideal Hall-Petch behaviour [Pande93].

Partial dislocations are expected to play a crucial effect when the grain size is

reduced and the generation of a full dislocation is hindered in the grain (as it has

a bigger Burgers vector). A deformation mechanism that is frequently proposed is
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Figure 1.7: Schematic illustration of the Hall-Petch relation. The hardness or
strength is proportional to the square root of the inverse grain size. It is experi-
mentally observed that the Hall-Petch relation holds very well for coarse crystalline
materials, but breaks down for nanocrystalline materials with very small grain sizes.

the emission of partial dislocations from grain boundaries that run across the grain

and are then absorbed into the opposing grain boundary [Hemker04] (cf. Fig. 1.8).

This has been shown by molecular dynamic simulations [Swygenhoven02] and has

been supported experimentally by the reversibility of the peak broadening using in-

situ peak profile analysis of deformed nanocrystalline Ni [Budrovic04] and by the

TEM observation of twins and stacking faults (e.g. in nanocrystalline Al [Chen03]).

Twinning is also sometimes put forward as deformation mechanism for nanocrys-

talline materials [Liao04]. Although deformation twinning is observed in TEM stud-

ies of nanocrystalline materials, their density is not high enough to make twinning

a dominant deformation mechanism.

For nanocrystalline materials it is expected that deformations tied to diffusion

can become important even at low homologous temperatures [Cai99]. To describe

creep mechanisms [Meyers06], typically the following dependence of the strain rate

(ε̇) on the stress (σ) and the grain size (d) is used (where D represents the diffusion

coefficient, kB the Boltzmann constant, T the temperature, n the stress exponent

and p the size exponent)

ε̇ ∝ D

kBT

σn

dp
. (1.7)

In Nabaroo Herring creep [Herring50] (D = Dbulk, p = 2, n = 1) the diffusion

occurs through the main body of the grain (cf. Fig. 1.9a). It can be found at

higher temperatures. In Coble creep [Coble63] (D = Dgrain boundary, p = 3, n = 1)
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Figure 1.8: Deformation by the emission of partial dislocations. A partial dislo-
cation is emitted from the grain boundary. The partial dislocation runs across the
grain and is absorbed in the grain boundary again.

(b)(a)

Figure 1.9: (a) In Nabaroo-Herring creep the diffusion occurs through the main
body of the grain. (b) In Coble creep the diffusion occurs through the grain bound-
aries.

the diffusion occurs through the grain boundaries (cf. Fig. 1.9b). Due to the lower

diffusion constant of grain boundaries it can be activated at lower temperatures. A

special case of Coble creep is the triple junction creep (D = Dtriple junctions, p = 4,

n = 1) which can be activated for very fine grained materials (∼10 nm), where

triple junctions start to make up a significant volume fraction of the material. It

is important to note that the diffusivity in triple junctions is much higher than in

grain boundaries due to the presence of excess free volumes. In addition to the

diffusion driven creep, there is also dislocation creep (D = Dself diffusion, n = 4− 6,

and p = 0) which does not show any grain size dependence.

Superplasticity denotes the ability of a material to undergo a large plastic de-

formation (>100%) without failure. It has been found in various metals, inter-

metallic compounds and ceramic systems at homologous temperatures higher than

0.5. In contrast to that superplasticity is observed in nanocrystalline materials at

relatively low temperatures [Mukherjee02]. In Ni3Al with a grain size of 50 nm

superplasticity was observed at a homologous temperature of 0.36 [McFadden99].
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Superplasticity in nanocrystalline materials can be explained by grain boundary

sliding [Padmanabhan04]. Further evidence for grain boundary sliding also comes

from molecular dynamic simulations [Swygenhoven99].

Grain boundary sliding [Gifkins67] denotes the relative shear of neighbouring

grains against each other localised in the grain boundary. In addition to the grain

boundary sliding, a plastic accommodation term has to be added to account for

the incompatibility of deformation (cf. Fig. 1.10). Grain boundary sliding can be

accompanied by the emission of partial dislocations or by diffusion. Using diffusion

through grain boundaries as accommodating mechanism leads to a Coble creep type

dependence of the strain rate from the stress [Meyers06, Raj71] (cf. Fig. 1.11). The

shear of two grains against each other can also be accommodated by the rotation

of a third grain [Wang08]. If the grain boundary sliding is not accommodated, a

crack forms.

Padmanabhan [Padmanabhan04] formulated a model in which the grain bound-

aries are straightened first and then sliding occurs (cf. Fig. 1.12). The rearrange-

ment of the grain boundaries can be based on dislocations or diffusion, and thresh-

old stresses can be worked out for the formation of a plane interface necessary for

grain boundary sliding to occur both based on dislocations or diffusion:

σ0,dislocatios = 1.42(GΓBr)
0.5 1

d
(1.8)

σ0,diffusion = 0.269

(
GkBT ε̇

DGBacV

)0.5

d0.5 (1.9)

where d represents the grain size, σ the stress, ε the strain, G the bulk modulus, ΓB

the grain boundary energy, r the residual misfit which results because the initial

misfit does not have to be a multiple of the Burgers vector, kB the Boltzmann

constant, T the temperature, DGB the grain boundary diffusion, a the lattice con-

stant and cV the vacancy density. These equations intersect at some grain size

and for smaller grains diffusion based and for larger grains dislocation based grain

boundary sliding is dominant. The mesoscopic sliding process is then described by

discrete shear events.

It should be noted that in nanocrystalline materials shear localisation in the form

of shear bands can occur [Wei02]. Furthermore in nanocrystalline materials stress

driven grain boundary migration can be observed [Jin04]. Dynamic recrystallisa-
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Figure 1.10: When shearing grains against each other stress builds up in the triple
junction. There are several ways to dissipate the stress. (a) Emission of a disloca-
tion. (b) Emission of a partial dislocation. (c) Grain rotation. (d) Diffusion of mate-
rial. (e) If the stress is not dissipated, i.e. if the grain boundary sliding is unaccom-
modated, a crack forms.

Figure 1.11: Schematic illustration of grain boundary sliding accommodated by
diffusion. The grains slide against each other as can be seen from the straight lines
drawn on the grains. The grain boundary sliding is accommodated by a flow of ma-
terial which leads to the elongation of the grains.

tion during deformation can play a crucial role for nanocrystalline materials. This

is especially the case for methods of severe plastic deformation, e.g. high pressure

torsion deformation (cf. chapter 2.2). In severe plastic deformation the material

reaches a final grain size which can be explained in two different ways: (i) the gen-

eration of dislocations combined with dynamic recrystallisation [Hafok06, Geist10]

as shown in Figure 1.13a or (ii) grain boundary sliding (cf. Fig. 1.13b).

1.4 Mechanical Properties of FeAl

To understand the deformation in a material it is important to consider its slip

systems. Slip preferentially occurs along the closed packed directions, which leads

for B2 to the following slip systems: {110}<111>, {112}<111> and {123}<111>
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Figure 1.12: Schematic illustration of superplastic flow by grain boundary sliding.
The grain boundaries are straightened before grain boundary sliding occurs.

(a)

(b)

Figure 1.13: Schematic diagram of possible deformation mechanisms explaining
why a steady state grain size is reached during severe plastic deformation. (a) The
grains are elongated during the shear deformation, dynamic recrystallization leads to
the annihilation of grain boundaries in the very thin grains. The generation of dislo-
cations breaks apart the elongated grains forming again the initial configuration. (b)
While the grains stay unchanged deformation happens by grain boundary sliding.
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Figure 1.14: Schematic illustration of a super dislocation. Two a0

2 <111> disloca-
tions carry an antiphase boundary between them.

[Hirth67]. In FeAl slip mainly occurs along the {110}<111> and the {112}<111>

systems [Yamagata73]. Two a0
2 <111> dislocations are favourable to one a0<111>

dislocation (a0 denotes the lattice parameter) as they have a smaller energy. These

two dislocations have to carry an antiphase boundary between them. This ar-

rangement is called super dislocation (cf. Fig. 1.14). The splitting distance of the

dislocations is usually around 2 nm, as in this case the energy is minimised [Wu03].

An other important parameter to consider in deformation is the bulk shear mod-

ulus G =112 GPa. The elastic constants of FeAl are summarised in the following

table [Sang02]:

C11 199 GPa

C12 74 GPa

C44 91 GPa

FeAl is very brittle, especially at low temperatures and with a high Al-content.

Ductility for Fe-45at%Al is less than 2%. Fracture usually appears at grain-

boundaries. The yield strength is about 400 MPa and Vickers hardness about

300 MPa [Liu98, Deevi96]. In compression tests of single crystalline FeAl pro-

nounced shear banding can be observed [Yamagata73, Yoshimi98].

1.5 Potential Applications of Nanocrystalline FeAl

Intermetallic FeAl has a great potential as a medium to high-temperature structural

material. It does not only show good mechanical properties and an excellent corro-

sion resistance even at high temperatures, but this compound is also extremely light

weight and both of the raw materials (Fe and Al) are cheap and abundant. Still for

the commercial utilisation of FeAl its poor room-temperature ductility and its poor

high-temperature creep-resistance pose a big problem [Sundar03, Westbrook00b].
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The utilisation of nanocrystalline FeAl could drastically improve the properties of

FeAl. Thus especially bulk nanocrystalline FeAl is a promising candidate for the

replacement of iron-base and nickel-base superalloys.

1.6 Previous Work

1.6.1 HPT Deformation of Intermetallic Compounds

The greatest amount of work on the production of nanocrystalline structures using

HPT has been focused on pure metals [Zhilyaev08]. When looking at the HPT de-

formation of intermetallic compounds, some work on the shape-memory alloy NiTi

can be found (e.g. [Peterlechner09b]). A lot of work is focused on L12 structured

compounds (e.g. Cu3Au [Rentenberger08] and Ni3Al [Rentenberger05]). Signifi-

cantly less work can be found on B2 structures as they usually have a much higher

intrinsic brittleness (e.g. TiAl [Korznikov99]). In general a chemically disordered

nanocrystalline structure results from the HPT deformation of intermetallic com-

pounds.

1.6.2 Ball Milling of FeAl

Ball milling has been used for the deformation of a large range of intermetallic com-

pounds, as it also allows the deformation of very brittle compounds. Still a major

disadvantage over HPT deformation is the presence of impurities which can strongly

influence the results. Furthermore to obtain a compact specimen the powder has

to be pressed under elevated temperatures leading to an increased grain size. Simi-

larly to HPT deformation, the formation of the nanocrystalline structure during ball

milling is accompanied by loss of the long-range order [Bakker95]. For B2-ordered

FeAl, both the disordering by ball milling and the subsequent reordering during

annealing has been studied using different integral methods, like differential scan-

ning calorimetry, X-ray and neutron diffraction, as well as magnetometer measure-

ments [Hernando98, Amils99, Varin99, Amils01, Gialanella98, Zeng06, Amils00].
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“A theory is something nobody believes, except the person who made it.

An experiment is something everybody believes, except the person who

made it.”

– Albert Einstein

2.1 Production of the Raw Material

Fe-45at.%Al was alloyed at the Department of Solid State Physics at the Technical

University of Vienna from high purity Fe (99,99 %) and Al (99,9997 %) using the

cold boat technique under argon atmosphere. Single crystals were grown in our

lab from the alloyed compound under vacuum in alumina crucibles. A modified

vertical Bridgman technique was used, where the crucible used for single crystal

growth remained fixed and the furnace was moved [Fischer76]. The single crystals

were grown at a speed of 10 mm/h at 1460°C under vacuum (<10−6 mbar). In order

to maximise the long-range order and to minimise the vacancy concentration, the

Fe-45at.%Al single crystals were annealed for one week at 400°C under vacuum

(<10−6 mbar) [Xiao95].

To check the quality of the single crystal growth, the top and the bottom of one

sample were cut off by spark erosion, grinded and polished and then etched for

30 s using the Keller etching solution [Schumann91]. This solution consists of 2 ml

hydrofluoric acid, 3 ml hydrochloric acid, 5 ml nitric acid and 10 ml aqua dest.

Optical microscopy inspection of the etched surface revealed an uniform brightness

and no grain boundaries, thus indicating the good quality of the single crystal.

Furthermore the composition of all FeAl single crystals was analysed on a Zeiss

Supra 55 VP scanning electron microscope equipped with energy-dispersive X-ray

spectroscopy (Oxford INCA) present in our faculty. The composition of Fe and

Al content was measured several times in the top and bottom slices of the single
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crystals leading to the conclusion, that the deviation of composition between the

top and bottom of the single crystals was less than 2 at.%.

Finally the orientation of all single crystals was measured using the back-reflection

Laue method. In this method a film-plate is placed between the X-ray source and

the sample. The beam emitted from the X-ray source passes through a hole in the

film and hits the sample. The beams that are diffracted from the sample hit the

film forming a spot pattern. From the spot pattern the orientation of the crystal

can be deduced. Laue images were taken on a W-anode line using an acceleration

voltage of 22 kV on a device present in our group. The distance between sample

and film was chosen to be 30 mm. To evaluate the orientation the QxLaue Software

was used [QxLaue].

2.2 High Pressure Torsion

2.2.1 Illustration of the HPT Deformation

During the high pressure torsion (HPT) deformation [Bridgman43, Zhilyaev08] a

coin-shaped sample is pressed between two steel anvils having a cavity so that a

quasi-hydrostatic pressure acts on the sample. The anvils are rotated against each

other leading to a plastic deformation of the sample (cf. Fig. 2.1). The shear strain

depends on the thickness of the sample d and the number of turns N . It is not

homogeneous across the sample, but increases with increasing radius R. As the

shape of the sample stays constant during deformation, very high deformations (up

to 100,000 %) can be achieved by HPT. The shear strain can be calculated using

the following formula [Schrivastava82]

γ =
2πNR

d
. (2.1)

2.2.2 HPT Deformation of FeAl

From the FeAl single crystal, which was approximately 30 mm long and had a di-

ameter of 10 mm, disks with a thickness of 0.8 mm were cut using spark erosion.

Spark erosion was carried out in our lab using a Charmilles Isopulse P25 device.

From the disks the HPT samples were punched-out by spark erosion leading to

HPT-samples with a diameter of 8 mm (cf. Fig. 2.2a). For an improved second
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Figure 2.1: Schematic diagram of the HPT deformation. A coin-shaped sample is
pressed under high pressure between two steel anvils. The anvils are rotated against
each other leading to the deformation of the sample.
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generation of samples, disks with a diameter of 6 mm were punched-out and em-

bedded in a 1 mm steel ring leading again to a sample with a diameter of 8 mm

(cf. Fig. 2.2b). The ring was used to improve the deformation behaviour, as in the

first generation of samples the FeAl disks were often cold welded to the steel anvils

at the edge of the cavity due to the high pressure.

The samples were grinded and sand-blasted in order to remove impurities coming

from spark erosion and above all to enhance the surface roughness and thus pre-

venting the sample from slipping during deformation. The friction between sample

and anvil was further improved by sand blasting the anvils after every deforma-

tion. To detect any slipping during deformation (i) the samples were marked with

a fineliner on the lower and upper surface (cf. Fig. 2.2) and (ii) the torque was

recorded. The shape of the torque curve gives information on the quality of the

HPT deformation, as slipping, misalignment or cold welding of the anvils can be

easily detected. A typical curve is shown in [Gammer11d].

The HPT deformation was performed at room temperature using a pressure of

8 GPa and a speed of 0.2 turns per minute, which corresponds to a maximum

deformation rate of γ̇ ≈ 0.1. From the recorded torque curve the stress-strain

dependence can be calculated. Figure 2.3 shows that the stress saturates at strain

γ ≈ 50 reaching a plateau stress τ = 1.2 GPa.

Figure 2.2c shows a HPT sample after deformation. Due to the high pressure

during the deformation some of the material is pressed out of the cavity in the anvil.

Since FeAl is very hard and brittle, this portion is small and leads to a thickness

reduction of approximately 10%.

2.3 Preparation of the TEM Samples

2.3.1 Preparation of Plan-View TEM Samples

For the TEM investigations disks with a diameter of 2.3 mm were cut from the

outer rim of the HPT disk using spark erosion (cf. Fig. 2.4c). The HPT samples

were marked in radial direction using spark erosion in order to be able to correlate

TEM investigations with the shear direction (cf. Fig. 2.4a). The TEM samples

were thinned to approximately 0.15 mm thickness by mechanical grinding. Using

an electropolishing equipment of the type Struers Tenupol 3 present in our lab,

the samples were further thinned using as electrolyte methanol with 33 % nitric

acid cooled to a temperature of -25°C [Yoshimi98]. The equipment was adjusted in
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Figure 2.2: (a) FeAl sample before HPT deformation. (b) FeAl sample embedded
in a steel ring before HPT deformation and (c) after deformation. The marks can be
seen clearly, indicating the sample did not slip during deformation. All samples had
a diameter of 8 mm and a thickness of about 0.8 mm before and of about 0.75 mm
after HPT deformation.
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Figure 2.3: Stress strain curve of the HPT deformation calculated from the torque
measured during the deformation The sample shows hardening and saturates after
around half a rotation, corresponding to a strain of ≈ 50, at a stress-value of about
1.2 GPa.
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Figure 2.4: (a) Image of a TEM sample prepared by electropolishing recorded with
an optical microscope. The sample shows a mark at the edge indicating the radial
direction. Around the hole the sample is sufficiently thin for the TEM-investigations.
(b) Schematic illustration of a TEM sample prepared by electropolishing. (c) Areas
of the HPT disk from where the TEM samples were cut out.

such a way, that polishing was terminated with the first occurrence of a hole in the

sample. Electropolishing usually lasted approximately 5 minutes. The tension was

set to 4 V, the current was measured and was usually around 50 mA. Figure 2.4b

shows a schematic representation of a prepared TEM sample. Around the hole, the

sample is sufficiently thin for TEM investigations (≈ 50 nm).

2.3.2 Preparation of Cross-Section TEM Samples

Especially in the case of samples made by HPT most TEM investigations are

based on plan-view samples only (cf. Fig. 2.4c), probably due to experimen-

tal difficulties in preparing cross-section TEM specimens of the rather thin HPT

disks. Still, when analysing nanocrystalline structures with non-equiaxed grains

or non-homogeneous structures, the analysis of different TEM sections is neces-

sary [Huang07, Peterlechner09b]. Therefore, in addition to conventional plan-view

TEM samples (cf. Fig. 2.4c), various cross-section samples were cut from the HPT

disk (cf. Fig. 2.5).

The preparation of the cross-section TEM samples was done by electropolishing.

As the HPT disk has a height of ∼0.7 mm only, the cross-section sample had to

be put between dummy material prior to electropolishing. In the first step, a thin

stripe was cut out of the HPT disk using spark erosion. The location of the stripe
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Figure 2.5: Sketch showing the location of different TEM sections in the HPT-disk.
The plan view (or top view) sample lies horizontally in the HPT-disk, the tangential
cross section contains the shear direction and has its plane normal parallel to the ra-
dial direction, the radial cross section contains the radial direction and has its plane
normal parallel to the shear direction.

for different cross-sections is indicated in Figure 2.5. The stripe was laid down and

put between two stripes of dummy material. As dummy material remainders of a

FeAl single crystal were used. A disk with a diameter of 2.3 mm was punched out

from the stripes using spark erosion so that the sample stripe was in the middle

of the disk. (It is recommended to release the electrolyte first and then retract

the pipe that is used for punching as otherwise the small stripes will get lost.

This is achieved by turning of the main switch of the spark erosion machine while

punching.) For stability reasons the stripes were glued together and glued into a

brass ring using a very thin layer of conducting epoxy glue (cf. Fig. 2.6a). For the

electropolishing process a conducting glue had to be used. The resulting“sandwich”

sample was thinned to approximately 0.15 mm thickness by mechanical grinding.

In order to ensure that the hole forms in the sample and not the dummy material,

the sample was dimpled from both sides reaching a final thickness of approximately

0.05 mm (cf. Fig. 2.6b). The electropolishing was performed in the same way as

for the plan-view TEM samples (cf. chapter 2.3.1).
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Figure 2.6: (a) Schematic drawing showing a “sandwich” sample that can be used
to prepare TEM cross-sections by electropolishing. The desired cross section sample
is glued between two stripes of dummy material (in this case single crystalline FeAl)
and glued into a brass ring for stability reasons. To allow electropolishing a conduct-
ing epoxy glue was used. The sample is then thinned to 0.15 mm and dimpled from
both sides to 0.05 mm. An image of the resulting ”sandwich” sample is shown in (b).
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2.4 Diffraction and Imaging as Fourier Transforms

Before starting the chapters about transmission electron microscopy and diffrac-

tion, the basics of diffraction and imaging are discussed. A unified treatment of

diffraction and imaging using only the Fourier transform is developed.

Irrespective whether light, X-ray, electrons or neutrons are used for imaging,

they can be described using waves [Cowley95, Goodman05, Warren90]. Two special

kinds of waves are of importance

ψ(~x,t) = ψ0 exp (i(ωt− k~n0 · ~x)) , (2.2)

which represents a plane wave travelling in the direction of the unit vector ~n0 at

the position ~x and

ψ(r,t) = ψ0 exp

(
i(ωt− kr)

r

)
, (2.3)

the spherical wave radiating from the origin at a radius r (k = 2π
λ denotes the

wave number and ω is the angular frequency). Other waves can by constructed by

superposition (which is a simple addition of the wave functions). It is important to

note that what is actually measured is the intensity of the wave which is given by

I = |ψ|2 = ψ∗ψ. (2.4)

This gives rise to the interference of waves and implies that the phase is lost in the

measurement of the wave.

Consider first the diffraction of a parallel beam of radiation on a sample (ψin(~x) =

ψ0 exp (ik~n0 · ~x)). For simplification it will be assumed that the distance at which

the diffracted radiation is studied is large in comparison to the dimension of the

specimen (Frauenhofer far-field approximation) and that diffracted beams will not

be diffracted again (kinematic theory). Furthermore we consider elastic scattering

only, i.e. scattering where the energy is conserved. The specimen can be described

by a 3D function describing the scattering power (fsample(~x)), e.g. the electron den-

sity in X-ray diffraction or the electrostatic potential for electron diffraction. Every

point of the specimen gives rise to a spherical wave (Huygens principle [Huygens90])

which is proportional to the scattering power at this specific point of the sample ~x
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(cf. Fig. 2.7). At the position of observation (~R) the diffracted radiation is

ψ(~R) = f(~x)ψ0 exp (ik~n0 · ~x)
exp (ik|~R− ~x|)
|~R− ~x|

. (2.5)

To get the whole diffracted intensity it is necessary to integrate over the whole

sample. Furthermore we apply the following far-field approximation

exp (ik|~R− ~x|)
|~R− ~x|

≈ exp (ikR)

kR
exp (−ik~n · ~x), (2.6)

where R denotes the magnitude of ~R and ~n the normal vector in direction of ~R.

The approximation is valid as we assumed that x� R. Thus we receive

ψdif(~R) ∝
∫
R3

fsample(~x) exp (ik(~n− ~n0) · ~x)d~x. (2.7)

Usually the scattering vector ~g = k
2π (~n−~n0) is used (crystallographers convention)

leading to

ψdif(~g) =
exp (ikR)

kR

∫
R3

fsample(~x) exp (−2πi~g · ~x)d~x. (2.8)

Thus the mathematical basis of the kinematic theory of diffraction is the Fourier

transform [Goodman05]

ψdif(~g) ∝ F [fsample(~x)]. (2.9)

Still it is important to note that there is a significant difference between the Fourier

transform and diffraction, in the case of diffraction ~g can not take any values in R3

but is limited to the difference between two unit vectors times the wave number

(as we are in the far field only the direction matters and not the distance). This is

the basis of the Ewald construction (cf. chapter 2.5.3).

Thus we can make use of the vast methodology that has been developed for the

Fourier transformation [Gammer07, Stein75] including the following properties:

• The Fourier transform is unique and has an inverse.

• Symmetry: FF [f(x)] = f(−x).

• Linearity: F [a1f1(x) + a2f2(x)] = a1F [f1(x)] + a2F [f2(x)].
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Figure 2.7: An incident plane wave travelling in the direction ~n0 hits a sample.
Every point of the sample emits a spherical wave, that depends on the scattering
power of the sample at this position f(~x). The wave detected in the far field in the
direction ~n is determined by the Fourier transformation of the scattering power of
the sample.

• Friedel’s law states that symmetry or anti-symmetry is preserved by the

Fourier transform.

• The convolution theorem is the most useful property of the Fourier transform:

F [f1 ⊗ f1] = F [f1]F [f2].

• The Parseval theorem implies the conservation of the norm upon Fourier

transform and thus the conservation of the radiation in diffraction.

Now consider a lens as the simplest imaging system (cf. Fig. 2.8). The object exit

wave ψ0(x,y) will pass through the lens and form a diffraction pattern in the back

focal plane F [ψ0] (the back focal plane corresponds to an infinite distance and thus

the far-field approximation is perfectly applicable). It is enough to consider the two-

dimensional case as we will not be able to get a 3D image. The diffraction pattern

will be again Fourier transformed forming an image ψ = FF [ψ0]. The resulting

image is identical with the object exit wave, but it will be inverted resulting from the

symmetry property of the Fourier transformation (the image will be also magnified

by a factor d2
d1

because the relevant variable for the 2D Fourier transform is x̃ = x
d ).

Let us now consider an imperfect optical system, the diffracted beams are influenced

(usually beams with a higher spatial frequency g are influenced more strongly),

which is expressed by the optical transfer function T (g), which leads to the following
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Figure 2.8: This sketch shows how imaging using a single lens can be described by
the Fourier transform. The diffraction pattern formed in the back focal plane corre-
sponds to the Fourier transform of the object exit wave. A second Fourier transform
forms the image.

expression for the “disturbed” diffracted beams:

F [ψ0](g)T (g). (2.10)

Thus (apart from the magnification) by the convolution theorem we get

ψ(x,y) = ψ0(x,y)⊗ t(x,y), (2.11)

where t(x,y) is defined as the inverse Fourier transform of T (g).
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2.5 Transmission Electron Microscopy1

2.5.1 Electron Waves and Lenses

In an electron microscope electrons instead of light are used for imaging. To un-

derstand all the modes of the TEM it is important to take a look at the interaction

of electrons with matter (cf. Fig. 2.9). When an incident beam of electrons inter-

acts with a thin sample, some electrons are elastically scattered (diffracted beam)

and some electrons pass the material (transmitted beam). These beams can be

used for diffraction and conventional imaging in the transmission electron micro-

scope (TEM). Electrons that are inelastically scattered are used in electron energy

loss spectroscopy (EELS). One form of inelastic scattering is the inner-shell ioniza-

tions and can be used for a determination of the atomic composition. Furthermore

inelastically scattered electrons give rise to Kikuchi-lines. Atoms emit character-

istic X-rays which are used in the TEM for composition measurements (EDX). In

the scanning electron microscope (SEM) the sample does not have to be electron

transparent as not transmitted but backscattered electrons are used for imaging.

Secondary electrons are used for topographic contrast and backscattered electrons

for a contrast that depends on the atomic number.

A TEM of the type Philips CM200T (capable of reaching an acceleration voltage

of 200 kV) was used for conventional electron microscopy and an electron micro-

scope of the type Philips CM30ST (capable of reaching an acceleration voltage of

300 kV) for the high resolution transmission electron microscopy, both equipped

with a LaB6-cathode. Both microscopes are present in our labs. The wavelength

of an electron [Broglie25, Davisson27] results from the deBroglie Wavelength,

λ =
h

mev

√
1− v2

c2
, (2.12)

where v represents the speed and me the rest mass of the electron (h denotes the

Planck constant and c the speed of light). As fast electrons have a much shorter

wavelength than light, it is possible to achieve higher resolutions than in a light

microscope.

Instead of glass lenses in the electron microscope magnetic lenses are used. En-

largement is based on the Lorenz-force acting on moving electrons. Electron lenses

1A more detailed introduction to electron microscopy can be found for example in [Williams96,
DeGraef03, Fultz05, Reimer08].
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Figure 2.9: This figure shows the interactions of electrons with matter. The dashed
lines represent the interactions that are used for imaging in SEM. The character-
istic X-rays can be used for composition measurements (SEM+TEM). Elastically
scattered and unscattered electrons are used in TEM for imaging and diffraction. In-
elastically scattered electrons carry a lot of information (e.g. chemical composition)
that can be exploited in EELS. The grey lines represent interactions that are rarely
used in electron microscopy.
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contain many aberrations. The aberration function χ of a lens can be described

using the even Zernike polynomial (g denotes the modulus of ~g and φ its angle)

χ(g,φ) =
2π

λ

∑
m≥n≥0,m∈2N

wnm
(λg)n

n
cos(m(φ− φnm)), (2.13)

with aberration coefficients wnm where n − 1 denotes the order of the aberration

and m its symmetry [Born80]. The following table gives a summary of the most

important coherent aberrations. As for electron lenses usually a slightly different

notation is used [Uhlemann98], this is also added in the table:

aberration name wnm TEM notation

First order aberrations

defocus w20 Z (or 4)

twofold astigmatism w22 A1

Second order aberrations

axial coma w31 3B2

threefold astigmatism w33 A2

Third order aberrations

spherical aberration w40 Cs

star aberration w42 4S3

fourfold astigmatism w44 A3

In addition to these aberrations there are also the incoherent aberrations that

lead to a damping (these are the chromatic aberration and time-dependent per-

turbations). Most aberrations can be corrected for, but the spherical aberration

is very difficult to correct for and is thus the limiting factor in most transmission

electron microscopes. The ray aberrations can be deduced from the wave aberra-

tions by differentiation [Born80], therefore the limiting resolution due the spherical

aberration becomes

ds = Cs · α3, (2.14)

whereby Cs is the constant of the spherical aberration and α (= λg) the aper-

ture angle. The limiting resolution due to the wavelength of the electrons after

Abbe [Abbe1873] is

db =
0.61λ

sinα
. (2.15)
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The minimum of the sum ds + db defines the resolving power of the microscope,

which is approximately 0.2 nm for the Philips CM200T and approximately 0.17 nm

for the Philips CM30ST. Lately Cs-corrected microscopes became widely available

reaching values smaller than 0.05 nm [Nellist04, Dahmen09].

In addition to the instrumental resolution (di), the resolution is further reduced

by the resolution governed by noise

d =
√
d2
i + d2

noise (2.16)

dnoise =
SNRlim

C
√
D

(2.17)

where D denotes the dose and C the contrast and SNR the signal to noise ratio.

2.5.2 Schematics of a TEM

A schematic representation of a TEM can be found in Figure 2.10. The imaging

mode is illustrated in Figure 2.10a. The condenser-lens focuses the electron-beam

on the sample. Using the condenser aperture, only rays close to the optical axis

are selected as beams far away from the optical axis give rise to large aberrations.

The objective lens creates a magnified image, which is then further magnified by a

set of projector lenses. In the back focal plane of the objective-lens the objective

aperture can be inserted to select which beams contribute to the image formation.

2.5.3 Diffraction

A great strength of TEM is the ability to switch between imaging mode and diffrac-

tion mode. Figure 2.10b shows a TEM operating in diffraction mode, where the

intermediate lens is focused on the back-focal plane of the objective-lens, thus show-

ing a diffraction pattern on the screen. In the image-plane of the objective-lens the

selected area aperture can be inserted, which acts as a virtual aperture on top of

the sample. Using this aperture it is possible to take diffraction patterns of ar-

eas selected in the imaging mode. For this reason the diffraction mode is usually

referred to as selected area electron diffraction (SAD).

Crystalline samples only allow diffraction in specific directions θ, which can be

determined using Bragg’s law

2dhkl · sin θhkl = n · λ (2.18)
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Figure 2.10: Sketch of the layout of a transmission electron microscope. (a) In the
imaging mode a magnified image of the sample is projected on a screen. (b) In the
diffraction mode the back focal plane of the objective lens is magnified on the screen,
showing a diffraction pattern.
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whereby n is an integer, λ represents the wavelength and d the lattice spacing. The

lattice spacing can be calculated for a cubic lattice with lattice constant a

dhkl =
a√

h2 + k2 + l2
, (2.19)

whereas h,k,l represent the Miller indices.

For small diffraction angles 2θ, the sinus of the angle can be approximated by

the angle

n · λ = dhkl · 2θ = 2
G

2L
(2.20)

L represents the camera length and G the distance of the diffraction spot to the

central beam. This leads to the following equation, which can be used to index

reflections in a diffraction pattern

λL = G · dhkl. (2.21)

For a more advanced treatment of diffraction refer to chapter 2.6.

2.5.4 Contrasting

To improve the contrast of an image in the TEM, the objective aperture can be

inserted to select which beams contribute to the image formation. For bright-field

images only the central beam is selected and for dark-field images only diffracted

beams are selected (cf. Fig. 2.11a,b). Lens aberrations increase drastically for

beams far from the optical axis, therefore in the dark-field image the objective

aperture is kept on the optical axis, and the incoming electron beam is tilted to

select a diffracted beam (cf. Fig. 2.11c).

For crystalline samples, the intensities of the central and diffracted beams depend

on the local orientation of a crystal. Also defects lead to a local distortion of the

crystal lattice and therefore to a local change of the intensities. These effects lead

to spatial intensity variations in dark- and bright-field images called diffraction-

contrast. Besides the diffraction contrast there are also the thickness contrast (i.e.

the contrast depends on the thickness of the sample) and the mass contrast (i.e areas

with heavier elements act as thicker regions). These contrasts arise from incoherent

scattering of electrons. For thin crystalline samples, the diffraction contrast plays

the most important effect.
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Figure 2.11: Schematic representation of the possibilities to increase the contrast
in TEM images. (a) In the bright-field image, the transmitted beam is selected. (b)
In the dark-field image a diffracted beam is selected. (c) To increase the image qual-
ity, rather than moving the aperture, the incoming beam is tilted.

Figure 2.12a shows a typical dark-field image and 2.12b a typical bright-field

image of nanocrystalline FeAl. Especially in the bright-field image it is clearly

visible that the contrast is very complex due to the overlapping of grains and the

very high defect density present in nanocrystalline materials [Rentenberger04]. An

exact analysis of the defect and grain structure is therefore very difficult. From the

dark-field images grain sizes and domain sizes can be estimated.

2.5.5 HRTEM

In contrast to dark- or bright-field imaging (cf. chapter 2.5.4) in high resolution

transmission electron microscopy (HRTEM) no aperture or a very large aperture

is used. Thus the central and the diffracted beams interfere forming an image that

contains information on the atomic structure of the material making it possible

to measure inter-atomic distances, determine the atomic structure, visualise sin-

gle defects or investigate the structure of interfaces. In contrast to conventional

TEM which is based on amplitude changes (e.g. diffraction-contrast or thickness-

contrast), in HRTEM the phase shift induced by the specimen is used for the image

formation, i.e. HRTEM is a phase-contrast microscopy method.

Consider a crystal oriented in zone-axis, then the specimen consists of columns

of atoms. If the sample is thin the incoming plane wave interacts with the sample

in such a way that its amplitude stays unchanged, but the phase is changed, i.e.

the wave vector k of the plane wave is changed. This can be understood because

the electric potential of the atom columns V (x,y) accelerates the electrons basically

just as if the acceleration voltage of the microscope would have been changed. Due

to the high acceleration voltages used in the TEM it is safe to assume that V � V0,
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Figure 2.12: Typical dark-field (a) and bright-field (b) image of the same area of
nanocrystalline FeAl deformed by HPT.

where V0 represents the acceleration voltage leading to

k̃ ≈ k
(

1 +
V (x,y)

V0

)
. (2.22)

This is called phase object approximation (POA) and means that the exit wave is

determined by multiplying the incident wave with

exp (iσV (x,y)), (2.23)

where σ = π
λV0

denotes the interaction constant (without relativistic corrections)

and V (x,y) is called projected potential [DeGraef03]. For a higher precision it is

possible to divide the sample into multiple slices and calculate and propagate the

exit wave from slice to slice. This method commonly used in computer algorithms

is called multislice algorithm. If the sample is sufficiently thin (i.e. σV � 1), it is

possible to expand the exponential function to

1− iσV (x,y), (2.24)

which is called the weak phase object approximation (WPOA).

Knowing the exit wave, it is possible to apply the Fourier optics developed in
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chapter 2.4 to obtain the image. This is done by a convolution of the exit wave

with the Fourier transform of the contrast transfer function CTF (g). The contrast

transfer function contains the aperture function A(g), the envelope function E(g)

that represents damping of higher spatial frequencies and the aberrations of the

microscope exp (iχ(g)). For the phase object we are only interested in the imaginary

part and thus it simplifies to

CTF (g) = A(g)E(g)2 sin(χ(g)) (2.25)

and the resulting image wave is

ψ(x,y) = exp (ikx)(1− iσV (x,y))⊗F [CTF (g)]. (2.26)

The detected image represents the absolute square value of the wave [Williams96]

I ≈ 1 + 2σV (x,y)⊗F [CTF (g)]. (2.27)

For perfect phase imaging we would need a transfer function that is 0 at g=0

and large and negative otherwise, then atoms would appear as black spots in the

image (a positive value would lead to “bright” atoms). Unfortunately in the case of

HRTEM the situation is not as easy as that. As shown in chapter 2.5.1 the most

important aberrations are

χ(g) =
π

2
Csλ

3g4 − π4fλg2, (2.28)

thus it is clear that the transfer function depends on the defocus and the spherical

aberration coefficient. The defocus can be chosen freely and is usually set to the

Scherzer defocus

4fScherzer = −1.2
√
Csλ. (2.29)

Figure 2.13 shows the transfer function for the CM30 at Scherzer defocus. The

CTF is 0, decreases and and stays almost constant thus providing a broad band

of good transmittance. The crossover of the CTF with the origin is called point

resolution. At higher spatial frequencies the transfer function shows an oscillation

behaviour and changes sign, leading to complicated contrast. The highest spatial

frequency where the CTF is nonzero, is called information limit. By using focal
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Figure 2.13: Contrast transfer function for the CM30 equipped with a LaB6 cath-
ode at Scherzer defocus. The CTF is 0 at 0 nm−1 and provides a broad band of
good transmittance up to spacial frequencies of about 5 nm−1. The crossover of the
CTF with the origin is called point resolution. The highest spatial frequency where
the CTF is nonzero, is called information limit. The function was simulated using
the JEMS software package [Stadelmann87].

series reconstructionn, the information limit of the microscope can be reached. The

microscope used was equipped with a LaB6 electron source and therefore the infor-

mation limit almost coincides with the point resolution. For microscopes equipped

with a field emission gun the information limit goes well beyond point resolution

limit (due to high spatial and temporal coherency). Special care has to be taken

in these case when interpreting contrasts.

In any case, since the contrast depends on the sample thickness and the defocus,

one has to be extremely careful with the interpretation of HRTEM images. For this

reason usually a matrix of images for a given range of defocus and sample thickness

values is simulated. Figure 2.14 shows such a map for FeAl.
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Figure 2.14: HRTEM map showing simulated images for different values of defocus
and sample thickness. A FeAl crystal is simulated having a [100] orientation (cf. top
left corner). It should be noted that the atom positions correspond either to bright
or dark contrasts in the image. The map was simulated using the JEMS software
package [Stadelmann87].
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2.6 Diffraction

2.6.1 Diffraction and the Ewald Constuction

After a simple description of diffraction at lattice planes in chapter 2.5.3, a more

elaborated description of diffraction using the Fourier transform will be developed.

In chapter 2.4 it was shown that diffraction corresponds to the Fourier transform

of the sample scattering power

ψdif(~g) ∝ F(fsample(~x)) =

∫
R3

fsample(~x) exp (−2πi~g · ~x)d~x, (2.30)

whereas ~g could not take any value in R3 but was restricted to ~g = k(~n − ~n0) (cf.

Fig. 2.15a).

Let us now consider an infinite lattice with basic vectors ~ar. The reciprocal

lattice ~a+
s is defined by

~ar · ~a+
s = δrs. (2.31)

It is the Fourier transform of the real lattice. Using this definition, the diffracted

beams show only intensity if ~g lies on the reciprocal lattice as then the expression

~g · ~x in the Fourier transform is not zero (cf. Fig. 2.15b). The next very helpful

consequence of the reciprocal lattice is the possibility to use the Fourier convolution

theorem. Consider for example a thin TEM specimen. The Fourier transform of

a sample gives an elongated rod, thus using the Fourier convolution theorem, we

just have to place the rod at every lattice point (cf. Fig. 2.15c). Similarly if we put

atoms in the unit cell, we just have to superimpose the reciprocal lattice with the

Fourier transform of the unit cell.

2.6.2 The Intensity of the Diffracted Beams

In detail this means that the lattice is given by

f(~x) = fu(~x)⊗
∑

δ(~x− ~xn), (2.32)

where fu represents the function of the unit cell which is repeated at every lattice

point ~xn. The Fourier transform of the real lattice is the reciprocal lattice. Each

position of the reciprocal lattice hast to be superimposed with the Fourier transform

of fu, which is called structure factor. The structure factor can be represented as
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Figure 2.15: (a) The diffraction vector ~g is limited to values k(~n − ~n0). This leads
to the Ewald construction, the vector k~n0 is drawn in such a way that its ending
point is the origin. Now a circle is constructed having this vector as radius. The
diffraction vector ~g has to end on the circle. (b) If the reciprocal lattice is drawn,
the points touching the Ewald circle lead to constructive interference. (c) Thin
films used in the TEM give rise to elongated lattice rods (thin objects have a broad
Fourier transform) and thus more diffraction spots are visible in the TEM.

a sum of all the atoms in the unit cell

F (~g) =
∑
j

fi exp(−2πi~g~rj), (2.33)

here fi represents the atomic form factor of the atom sitting on this lattice place

and ~rj its position in the unit cell. It should be noted that the atomic form factor

is different for X-ray diffraction and electron diffraction [DeGraef03]. The main

properties of the atomic form factor for electron diffraction are that it decreases

with decreasing atomic number and increasing scattering angle.

The diffracted beam is therefore the Fourier transform of f(~x) which is simply

the reciprocal lattice weighted with the structure factor. Using Miller indices (hkl)

(meaning ~g = h~a+
1 + k~a+

2 + l~a+
3 ) we reach for the intensity of the diffracted beam

Ihkl = KvV −2|F (hkl)|2, (2.34)

where V denotes the volume of the unit cell, v is the effective diffracting volume

and K a scaling factor containing only factors that do not depend on the sample

or reflection used. In addition also the Debye-Waller factor that describes the

influence of the temperature can be included. For the intensity of a diffraction

ring resulting from a polycrystalline sample, the number of symmetry-equivalent
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reflections H{hkl} and a Lorentz factor has to be added that takes into account

geometric effects (in this simple case dhkl) [Reimer08]

I{hkl} = KvH{hkl}V
−2|F (hkl)|2dhkl. (2.35)

It should be noted that this relation is only valid for untextured samples, and strong

deviations from the expected intensity can occur in textured materials.

For this work the structure factor of A2 and B2 structured FeAl are of importance.

B2 structured FeAl has an Fe-atom at the origin [000] and an Al-atom at the

position 1
2 [111] thus leading to

FB2(hkl) = fFe exp (0) + fAl exp (−iπ(h+ k + l))

=

fFe + fAl h+ k + l even

fFe − fAl h+ k + l odd
(2.36)

In the A2 structure at both positions a Fe- and an Al-atom can be found with equal

probability

FA2(hkl) =(0.5fFe + 0.5fAl) exp (0)+

(0.5fFe + 0.5fAl) exp (−iπ(h+ k + l))

=

fFe + fAl h+ k + l even

0 h+ k + l odd
(2.37)

The reflections with h+k+ l = odd are thus called superlattice reflections, and the

other reflections matrix reflections. For a partly ordered material with a long-range

order parameter S

F (hkl) =(pα,αfFe + pβ,αfAl) exp (0)+

(pα,βfFe + pβ,βfAl) exp (−iπ(h+ k + l))

=

fFe + fAl h+ k + l even

S(fFe − fAl) h+ k + l odd
(2.38)

(using pβ,α = 1− pβ,β , pα,β = 1− pα,α and S = 2pα,α − 1 = 2pβ,β − 1).

This means that the long-range order parameter can be determined from the

intensity of a superlattice reflection. To exclude other effects on the intensity
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(such as texture), the quotient of the intensity of a superlattice reflection and

the corresponding matrix reflection is used [Warren90]

S2 =
I(100)

I(200)

Iordered(200)

Iordered(100)
∝ I(100)

I(200)
. (2.39)

2.6.3 Dynamic Effects in Electron Diffraction

As in electron diffraction the interaction with matter is very high (the intensity of

the diffracted beam is about a factor of 104 larger as compared to X-ray diffrac-

tion) the assumption that the diffracted beams will not be diffracted again is not

valid. Therefore we need to apply the dynamic theory of diffraction to calculate

the intensities of the diffracted beams correctly. The following table gives a short

overview of the most prominent diffraction techniques:

type of typical typical scattering dynamic/

diffraction wavelength cross section kinematic

electron 2.5 pm (200 kV) 106 barn dynamic

X-ray 154 pm (CuKα) 400 barn kinematic

neutron 100 pm 10 barn kinematic

In the theory of dynamic diffraction, scattering of diffracted beams has to be

accounted for. Therefore the intensities of different reflections are not independent

of each other and are dependent strongly on the thickness of the crystal. The

intensities can be determined by solving a set of coupled differential equations (for

each diffracted beam one equation) called Howie-Whelan equations [Howie62]. For

the simple two-beam case (i.e. the crystallite is oriented in such a way that only

the transmitted beam and one diffracted beam are excited) these equations can be

solved [Fultz05] leading to the following intensity for the diffracted beam (Ig). The

intensity of the transmitted beam is I0 − Ig in this case.

Ig =
sin2(πtseff )

(ξgseff )2
(2.40)

where

ξg =
πV cos θB
λFg

(2.41)
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denotes the extinction distance, t the thickness of the crystallite in direction of the

transmission, s the excitation error and

seff =

√
s2 +

1

ξ2
g

(2.42)

the effective excitation error.

2.6.4 The Width of the Diffracted Peaks

In addition to the intensity of the diffraction peaks, their shape is important because

it gives information on the microstructure. The main effects that can be observed

are shifting, broadening and asymmetric broadening of the peaks. Consider first

peak broadening; many effects give rise to peak broadening:

• The instrumental broadening

• The limited size of the crystallites (coherently scattering domains)

• Non-uniform lattice distortions (strains)

• Planar faults

• More specialized effects such as solid solution inhomogeneities

The resulting signal is a convolution of all these effects plus the background

I(g) = Iinstrumental ⊗ Isize ⊗ Istrain ⊗ Iplanar faults ⊗ ...+ Background. (2.43)

The background is very difficult to simulate using a physical function and is thus

generally fitted empirically. The instrumental broadening can be determined by

measuring a coarse crystalline sample, where size and strain broadening is negli-

gible. A detailed description of size and strain broadening will be given in the

following chapters.

2.6.5 Size Broadening

Consider a finite crystallite. The sample function changes from equation 2.32 to

f(~x) = fu(~x)⊗
∑

δ(~x− ~xn)s(~x) (2.44)
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whereby s, the shape function, takes a value of 1 inside of the crystallite and 0 else.

Taking the squared Fourier transform (neglecting cross terms) leads to

I(~g) ∝ F 2F [s]2 (2.45)

Using F [s]2 = F [s⊗ s] leads to the new expression

V · V (t) = s⊗ s, (2.46)

where V is the volume of the crystallite and V (t) has an interpretation as the

volume common to a crystallite with itself shifted a distance t (for a specific peak

the shift has to be normal to the diffracting planes). Thus the relevant additional

factor in the intensity of the diffracted beam due to the finite size is [Beyerlein11]

V F [V (t)]. (2.47)

Diffraction from a perfect crystal gives rise to sharp diffraction spots. Consider a

crystallite with a limited number of scattering planes, thickness=D (cf. Fig. 2.16).

For this case V (t) is simply a triangle function (∧) and the corresponding intensity

is proportional to

I(g) ∝ F [∧] =
sin2(πDg)

(πg)2
, (2.48)

showing that a limited crystal size gives rise to a broadened peak. The width of

the peak depends inversely on the size of the crystallite. The intensity of a 3D

crystallite can be calculated in an analogous way.

It is important to point out that the crystallite size is a measure of the coher-

ently diffracting domain. It is not the same thing as the grain size or particle size

(Dcrystallite < Dgrain < Dparticle). Coherence is broken down by orientation varia-

tions as small as 1° [Ungar05]. In severely deformed materials the crystallite size

would correspond to the size of the dislocation cells [Ungar05].

Consider now an ensemble of crystallites (cf. Fig. 2.17a). Only crystallites in

Bragg-position give rise to scattering into the (hkl) reflection. For the sake of sim-

plicity the coordinate system is chosen such that the z-axis points in the direction

of the diffraction vector (i.e. perpendicular to the scattering planes).

The integral width β is defined as the area of the peak divided by its maximum
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Figure 2.16: Diffraction on a small crystallite consisting of only few lattice planes.
V (t) of the crystallite is a triangle function (∧) and the diffracted intensity, which
is given by the Fourier transform is a squared sinc-function. The width of the sinc-
function is inversely proportional to the size of the crystallite.

x

y

z

incident beam beam reflected in
hkl direction

(a) (b)

z

Figure 2.17: (a) Derivation of the Scherrer equation. An incident beam is scat-
tered on crystallites that have a limited size. The crystallites are drawn such that
the reflecting planes are normal to the z-axis. (b) If the diffraction is not done in
reflection but in transmission not the height but the width of the crystallites is mea-
sured).
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(the width of a rectangle with the same area as the peak). As the area of the peak

( sin2(πDg)
(πg)2

) is proportional to D and the maximum to D2, we get if we integrate

over the ensemble of crystallites

β =
Area

Maximum
=

∫
D(x,y)dxdy∫
D(x,y)2dxdy

, (2.49)

and using D =
∫
dz and

∫
D(x,y)dxdy = V

β−1 =
1

V

∫
DdV. (2.50)

Thus the integral width is inversely proportional to the volume weighted mean

height of the crystallites in Bragg positions measured in direction of the diffraction

vector (usually called volume-weighted column-length) [Langford78]

〈D〉V = β−1. (2.51)

An other way to express the integral width is by using V (t) leading to

〈D〉V =
1

V

∫
V (t)dt. (2.52)

It should be pointed out that when the diffraction is not done in reflection (as

shown in Fig. 2.17a) but in transmission as it is the case in a TEM, not the height

but the width of the crystallites is measured (cf. Fig. 2.17b).

An other measure of the peak width that is often used is the full width at half

maximum (FWHM). The FWHM (∆g) is slightly larger than the integral width

leading to the following relation, which is usually called Scherrer equation

〈D〉V =
0.85

∆g
. (2.53)

Different values can be found for this constant in literature and it can change

slightly depending on the crystallite form and distribution. Still it is important to

note that the inverse relation to the integral width is exact.

The true volume weighted size

〈D〉V,true =

∑
iDi ·D3

i∑
iD

3
i

(2.54)
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(whereas Di represents the diameter of an equivalent sphere with the same volume

as particle i) however depends on the crystallite form and distribution. This is

often expressed by

〈D〉V,true = K〈D〉V , (2.55)

where K is called Scherrer constant [Langford78]. Assuming spherical crystallites

K = 4
3 . It should be noted that if the crystallites are elongated and the elongation

has a specific relation to the crystal orientation, the peak width will be different

for different peaks. This is called anisotropic size broadening [Langford78].

A completely different approach to measure the crystallite size is the Warren-

Averbach method [Warren50]. It can be used to determine the area weighted mean

height of the crystallites in Bragg positions measured in direction of the scattering

vector (usually called area-weighted column-length), which is given by (applying

the Leibnitz integral rule)

〈D〉A = − V (0)

V ′(0)
. (2.56)

From this equation it follows that by plotting the Fourier transform of the peak

(which is V (t)), the intercept of the tangent at t = 0 with the t-axis is the area

weighted mean (cf. Fig. 2.18). Usually instead of t the column length L is used

that is measured in units of the lattice spacing. In practice a Fourier series is

computed and the Fourier coefficients A(L) are used for the analysis. This method

is described in [Warren90].

By this method it is also possible to determine the crystallite size distribu-

tion [Kril98]. Still in general a complementary method (such as TEM) is necessary

for an unequivocal determination of the crystallite size distribution. Furthermore

very broad or multimodal size distributions make a profile analysis very difficult.

Special care has to be taken when comparing different statistical parameters that

can be used to describe the crystallite size distribution. An overview of different

“sizes” is given in Figure 2.19. Most frequently mean diameters are used that are

computed by assuming that all crystallites have a circular shape. Large discrepan-

cies exist however in the weighting.

Usually the situation is quite complicated and the diffracted beam depends on

the shape and the distribution of the crystallites. It has been shown that the

Voigt [Balzar99] function can be used to fit peaks. The Voigt function is a convo-
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Figure 2.18: Light grey curves: The diffracted peak of an idealised crystallite is a
sinc-function. Taking the Fourier transform of the diffracted peak gives V (t), which
is in this case a triangle function where the width of the triangle function represents
the size of the crystallite. Black curves: A more realistic diffracted peak is shown.
Taking the Fourier transform gives a function that deviates from the ideal triangle
function. The size is determined in this case by putting a tangent to the function
and taking its intersect with the t-axis.

lution of a Gauss

I ∝ exp

(
−π x

2

β2
G

)
(2.57)

and a Lorentz function

I ∝
(
β2
L

π2
+ x2

)−1

. (2.58)

As the Voigt function is rather difficult to compute often the pseudo-Voigt

function (which is the sum of a Gaussian and a Lorentz curve) is used to fit

peaks [Thompson87, Lin97]

pV = I0

ν 1

πw

(
1 +

(
x− x0

w

)2
)−1

+ (1− ν)

√
ln(2)

πw2
exp

(
− ln(2)(

x− x0

w
)2

) ,

(2.59)

where I0 denotes the area under the peak, ν the mixing parameter, x0 the position
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Number of
crystallites

Area
weighted
number of
crystallites

Volume 
fraction of
crystallites

n

D n2

D n3

Median

Mode

<D>

<D>A,true

<D>A

<D>V,true

<D>V

Mean

mode of the crystallite diameters
The most frequently
occurring crystallite
diameter.

median crystallite diameter
50% of the crystallites
are larger/smaller than
this size.

mean crystallite diameter
〈D〉 The average of
all the crystallite
diameters.

area-weighted column-length
〈D〉A The area
weighted mean size
measured in direc-
tion of the diffraction
vector.

area-weighted mean diameter 〈D〉A,true The mean crystallite diameter,
whereas each crystallite is weighted with D2. (〈D〉A,true = 3

2〈D〉A
for spherical crystallites)

volume-weighted column-length 〈D〉V The volume weighted mean size
measured in direction of the diffraction vector.

volume-weighted mean diameter 〈D〉V,true The mean crystallite diame-
ter, whereas each crystallite is weighted with D3, i.e. the volume
fraction. (〈D〉V,true = 4

3〈D〉V for spherical crystallites)

Figure 2.19: If there is not one sharp crystallite size but a distribution of sizes dif-
ferent statistical measures can be used to define the size. The mean value is most
often used. The mean crystallite diameter is determined when counting crystallites
(as is done when using TEM dark-field images, but in this case the grain size is mea-
sured). In diffraction not the number of crystallites is relevant but the area weighted
or volume weighted crystallite diameter (depending on which method is used). In
addition to that it should be noted that the size extracted from profile analysis is
not the mean diameter but a mean column-length and thus a correction factor has
to be used.
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and 2w the FWHM. The integral width can be calculated using

β =
w

(1− ν)

√
ln(2)
π + ν 1

π

. (2.60)

The use of the pseudo-Voigt function is justified as for a wide range of shapes and

distributions. Simulations of the size-broadening for spherical crystallites and typi-

cal (i.e. not to broad) lognormal or gamma distributions show that the line profiles

can be satisfactorily modelled using pseudo-Voigt functions [Popa02, Reimann02].

Broader crystallite size distributions yield a higher contribution of the Lorentzian

part in the Voigt function, which is obvious as a Lorentz function has a more pro-

nounced tail in comparison to the Gaussian. The Gaussian contribution to the

Voigt function is therefore often used to describe the width of the crystallite size

distribution. The exact expression for the peak profile of spherical crystallites with

a log-normal distribution can be found for example in [Ribarik01].

2.6.6 Strain Broadening

If a grain contains a uniform strain, this leads to a change in lattice spacing and

thus to a simple shift of the diffracted peak, but not to a broadening of the peak. If

g0 denotes the equilibrium diffraction vector, a compressive stress leads to g > g0

and a tensile stress to a g < g0.

If the strain is not uniform, there is a combination between compressive and

tensile stresses. The resulting diffracted peak will consist of many peaks with a

slightly different position and therefore appear as an additionally broadened peak.

To analyse the strain broadening consider the Bragg equation

g =
1

d
(2.61)

by differentiation follows

dg

dd
= − 1

d2
(2.62)

or

∆g = −∆d
1

d2
= −g∆d

d
(2.63)
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which leads to the conclusion that the peak width is proportional to g times the

lattice strain. The strain broadening is thus dependent on g, which can be used

to separate the size broadening from the strain broadening. For this purpose the

apparent strain e was introduced [Stokes44]

e =
βstrain

2g
(2.64)

which has an interpretation as maximum strain.

How the strain and size broadening are convoluted depends on the assumption of

the peak broadening [Balzar96]. The Williamson-Hall plot [Williamson53] follows

directly by assuming a Cauchy peak shape for both the size and strain broadening

β = βsize + βstrain =
1

〈D〉V
+ 2eg. (2.65)

Assuming a Gaussian broadening leads to

β2 = β2
size + β2

strain =
1

〈D〉2V
+ 4e2g2. (2.66)

For a more detailed analysis it is best to start with the Warren-Averbach method

[Warren50, Warren90]. If for two lattice planes the distance is slightly different from

the ideal distance, the strain can be defined as

ε(L) =
∆L(L)

L
, (2.67)

where L denotes the lattice separation distance. The effect of the strain on the

Fourier coefficient thus follows by averaging over all cells with a distance L

Adistortion(L,g) = 〈exp (−2πigLε(L))〉). (2.68)

For not too large L

Adistortion(L,g) ≈ exp (−2π2g2L2〈ε2(L)〉). (2.69)

Assuming the broadening results from a size and a strain broadening, the Fourier

coefficient can be written as A(L) = Asize(L)Adistortion(L) or taking the logarithm
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lnA(L) = lnAsize(L)− 2π2g2L2〈ε2(L)〉. (2.70)

Thus using the Warren-Averbach method, size and strain broadening can be sepa-

rated. To calculate the intensity profile, the inverse Fourier transform of A(L) has

to be taken

I(g) = 2

∫ ∞
0

A(L) cos(2πLg)dL. (2.71)

A second very popular method to separate size and strain is the double-Voigt

method [Balzar93, Balzar99]. Assuming that both the size and the strain have a

Gauss and a Lorentz part leads to the following expressions

βC = βCsize + aCg2︸ ︷︷ ︸
βC
strain

(2.72)

βG = βGsize + aGg2︸ ︷︷ ︸
βG
strain

(2.73)

where the superscripts C and G denote the Cauchy and the Gauss parts. The

fact that in contrary to the Williamson-Hall plot, the mean-square strain depends

quadratically also on both, the Lorentz and the Gaussian part, results from the

different definition of strain.

By taking the Fourier transform of a Voigt-profile and comparing to the defini-

tions of size and strain the following expressions can be deduced [Balzar93]

〈D〉V =
1

βsize
(2.74)

〈D〉A =
1

2βCsize
(2.75)

〈ε2(L)〉 =
1

g2

(
βGstrain

2π
+
βCstrain
Lπ2

)
(2.76)
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Thus the double Voigt approach is equivalent to the Warren-Averbach approxi-

mation and it is thus built into a many whole profile analysis computer programs

based on Rietveld refinement such as the commercially available TOPAS [Topas]

or the freeware BREADTH [Breadth]. From these equations it can be immediately

seen that for a Gaussian strain distribution the strain is independent of L and it

follows that

√
〈ε2〉 =

√
2

π
e. (2.77)

Further approaches are the momentum or variance method, where the asymptotic

behaviour of a peak is used [Groma98, Borbely01] or the whole powder pattern

modelling. Here in contrast to whole profile analysis no analytical functions are

used to fit the peaks but ab-initio theoretical profile functions are constructed using

a model based on microstructural parameters and fitted to the profile. Software

packages based on this method are MWP-fit [Ribarik01] and PM2K [Leoni06].

2.6.7 Strain Field of Dislocations

To evaluate the strain field of an arrangement of dislocations is quite complex and

depends not only on the density and type of defect but also on their correlation.

Wilkens [Wilkens70] has introduced a very popular model to describe the mean

square strain due to dislocations (here only the leading term is presented, the

abbreviation L∗ = 0.5 exp(−0.25) · L is used)

〈ε2(L)〉 =
ρCb2

4π

− ln( L∗

Reff
) + ..., if

Reff

L > 1

Reff

L + ...,, if 1.81
Reff

L∗ ≤ 1
(2.78)

In this formula ρ represents the dislocation density, b the Burgers vector, Reff

the cutoff radius of the dislocation strain field and C the contrast factor, which

represents the visibility of dislocations in different reflections. This definition is

introduced as dislocations lead to an anisotropic broadening, e.g. for b · g = 0 no

broadening is visible. The average dislocation contrast factor for untextured cubic

crystals with equally populated slip systems is given by

C = Ch00

(
1− qh

2k2 + h2l2 + k2l2

(h2 + k2 + l2)2

)
(2.79)
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where Ch00 and q depend on the elastic constants and the type of dislocations and

lead to 0.35 and 2.77 for screw dislocations and 0.39 and 2.77 for edge dislocations in

FeAl. Thus to get rid of the anisotropic broadening C · g is used instead of g in the

modified Williamson-Hall plot or the modified Warren-Averbach plot [Ungar96,

Ungar99]. It should be noted that the contrast factors of dislocations for most

crystal systems can be calculated on the AnizC website [AnizC].

2.6.8 The Modified Williamson-Hall Plot

Now it is possible to formulate the modified Williamson-Hall plot

β =
1

〈D〉V
+ 2e · (

√
Cg) (2.80)

or when expressed as a function of the dislocation density

β =
1

〈D〉V
+
√

0.5 ln(P )A ρ b (
√
Cg). (2.81)

It should be noted that if the FWHM is used rather than the integral width 0.85
〈D〉V has

to be used. The modified Williamson-Hall plot proposed by Ungar [Ungar96] takes

not only the dislocation density into account but also the dislocation correlations

(Q = 〈ρ2〉 − 〈ρ〉2) but for the present work it was decided to limit the number of

fitting parameters to a minimum in order to increase the reliability. Still it should

be noted that the Williamson-Hall plot can also contain higher orders of g, therefore

it is often observed that the points lie on a curve that is in between a linear and a

quadratic one.

2.6.9 Other Effects Leading to Peak Broadening

Extended defects such as stacking faults or twins can lead to the termination of

the coherency and thus to an additional broadening [Balogh06, Ungar98]. The

broadening is very different for different reflections as only certain lattice planes

are affected by planar faults. Furthermore stacking faults introduce an asymmetric

broadening and can also lead to peak shifts.

Stacking faults and twins are not of importance for nanocrystalline FeAl. But in

FeAl the order is destroyed by APB. APB also lead to an additional peak broadening

that affects only superlattice reflections. Thus superlattice reflections have to be
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(a) (b) hkl dhkl g = d−1
hkl

[nm] [nm−1]

100 0.291 3.440
110 0.206 4.865
111 0.168 5.958
200 0.145 6.880
210 0.130 7.692
211 0.119 8.426
220 0.103 9.730
221,300 0.097 10.32
310 0.092 10.88

Figure 2.20: (a) Indexed diffraction pattern of FeAl annealed to 220°C. Superlat-
tice reflections are indicated in bold. (b) Table showing the lattice distances dhkl
and diffraction vectors ghkl of the reflections appearing in FeAl.

treated separately and the size determined from the superlattice reflections is not

the crystallite size but the size of the ordered domains.

2.6.10 Peak Positions

Not only the intensity or the width of the peaks can be evaluated but also their

positions. As discussed already in chapter 2.6.6 a homogeneous lattice strain leads

to a change in lattice constant and thus to a shift of the peak. Thus a lattice

expansion or a lattice compression can be detected by a precise measurement of

the peak positions.

Furthermore there can also exist lattice strains that are orientation dependent

resulting from residual stresses. In a material that contains many grains, an in-

dividual grain is not free to deform in the same way as an isolated grain as it is

restrained by its neighbours. This can lead to residual stress after deformation

or production of thin films. Especially in thin films there can be also residual

stresses arising from lattice misfits or impurities. These stresses lead to a direction-

dependent lattice strain that can be measured by diffraction stress analysis, which

is done by tilting and rotating the specimen and measuring the change in lattice

constant [Welzel05].
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Figure 2.21: (a) Schematic drawing of a reciprocal lattice spot. The lattice spot
is extended in all directions (sx, sy, sz). sz is measured in direction of ~g and sx, sy
normal to that. It should be noted that the broadening in direction of sz is usually
much smaller than in the other two directions. (b) Schematic drawing showing that
the rocking curve sx can be measured by tilting the sample and thus the Laue circle.

2.6.11 Diffraction in FeAl

Figure 2.20a shows a typical electron diffraction pattern of nanocrystalline FeAl.

The diffraction pattern shows a ring pattern as the grains are randomly distributed.

The diffraction rings are indexed. Bold reflections are superlattice reflections, they

appear only in the B2, but not in the A2 structure (cf. chapter 2.6.2). Furthermore

Figure 2.20b shows a table of diffraction rings appearing in FeAl including the

lattice distance d and diffraction vector g = d−1, which can be used for indexing

diffraction patterns. .

2.7 Peak Broadening in 3D

The diffraction spots of a material extend in the reciprocal space in all directions

(sx, sy, sz) (cf. Fig.2.21a). In the previous chapter only the profile in the direction

of ~g was considered. In this case the relevant dimension is sz and the broadening,

called line broadening, provides information on the crystallite size and strain in the

material. In addition there is also a broadening normal to that (sx, often called

simply s). By tilting the sample and thus the Ewald sphere it is possible to record

a curve in the direction sx, called rocking curve (cf. Fig.2.21b). The rocking curve

can be important for materials deformed to a low degree. These materials contain

deformation cells that are slightly tilted against each other and thus give rise to a

broadening in the rocking curve [Jakobsen06].
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2.8 Texture

In general in a polycrystalline material all grains are oriented in a random way.

If this is not the case and the grains have some preferred directions this is called

texture [Kocks98, Engler09]. There are two ways of recording texture: by using

diffraction it is possible to detect the intensity changes of a certain reflection with

orientation and on the other hand by methods like electron backscatter diffraction

(EBSD) the orientation of each individual grain can be mapped [Suwas08].

Also selected area diffraction provides information about the texture of a sam-

ple. If a material is nano- or polycrystalline, rings can be seen in the diffraction

pattern. If the intensity of some of these rings is very weak or if the rings are not

uniform, this is an indication of texture [Schwarzer93]. For a detailed analysis the

sample has to be tilted to several orientations. In general texture is very impor-

tant in deformation as usually some orientations are unstable (thus their volume

fraction decreases) and some are stable (thus their volume fraction increases) with

respect to the deformation imposed and hence texture develops. Thus also in ma-

terials processed by severe plastic deformation, usually pronounced textures can be

observed [Kilmametov04].

There exist two very prominent types of texture. If the crystals are oriented in

such a way that the same crystallographic direction [uvw] in most of the grains is

nearly parallel to an axis, this is called a [uvw] fibre texture and the axis is called

fibre axis. A fibre texture usually is present in extruded materials. If the crystals

are oriented in such a way that the same crystallographic plane (hkl) in most of

the grains is nearly parallel to the sheet surface and a certain direction in that

plane is roughly parallel to a direction [uvw] called rolling direction, this is called

a (hkl)[uvw] sheet texture. Such textures can be found in materials after torsion.

In cold-rolled materials, the texture can occur as combinations of many different

sheet textures and is thus in the most general way described by fibre textures. In

the following all texture components relevant for bcc are summarized [Kocks98]:
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Deformation mode texture components

extrusion < 110 >

compression < 111 >,< 100 >

shear {112} < 110 > (D component)

{110} < 001 > (E component)

rolling {001} < 110 >,{111} < 110 > (i.e. < 110 > ‖ RD, α-fibre)

{111} < 110 >,{111} < 112 > (i.e. < 111 > ‖ ND, γ-fibre)

{001} < 110 >,{111} < 112 > (i.e. < 110 > ‖ TD, ε-fibre)

2.9 Microhardness Measurements

The hardness of a solid is a measure for its resistance to plastic deformation. Hard-

ness is not an intrinsic material property and does not have a precise definition. It

is a property value of the material that is determined using a defined measurement

procedure. The most common way to measure hardness is by indentation [Tabor96].

A tip is pressed into the material using a defined force. From the size of the formed

impression the hardness can be determined. It has been shown that there is a lin-

ear correlation between indentation hardness HV and tensile strength σ for metals

(HV ≈ 3σ) [Pavlina08]. Thus in industry indentation hardness measurements are

often used for a nondestructive testing of bulk metals.

In the present case the Vickers microhardness [Smith22] method was used, where

the indenter is a diamond tip with the shape of a squared pyramid with a top angle

of 136◦ (cf. Fig. 2.22a). The tip was pressed into the material. The applied force

was increased with a rate of 0.1 N/s. The maximum force of 2 N was held for

10 seconds before the tip was retracted. The maximum force was chosen so that

the size of the imprint is between 20 and 30 µm as in this range the maximum

precision is reached. Indentation was performed in our faculty using a Paar MHT-

4 indenter. The imprints were recorded using a Zeiss Axioplan optical microscope

equipped with a CCD-camera. Figure 2.22b shows an image of a typical imprint

in FeAl. From the size of the diagonal of the imprint (d) and the maximum force

(F ) the Vickers hardness can be calculated using the following relation

HV = 1.8544
F

d2
[Pa]. (2.82)

For a good statistics for every microhardness measurement at least 10 imprints
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Figure 2.22: Figure showing the Vickers microhardness measurement. (a) The in-
denter has a diamond tip with the shape of a squared pyramid and a top angle of
136◦. From the size of the imprint of the tip (b), the hardness can be determined.

were recorded and the mean and standard deviation was determined.

2.10 Differential Scanning Calorimetry

2.10.1 Schematic Representation of a DSC

Differential scanning calorimetry (DSC) is a procedure for the determination of

the heat flow to a sample (endothermic) or from a sample (exothermic) at a given

temperature T (t). One can differentiate between isothermal measurements (mea-

surements at a constant temperature) and isochronal measurements (measurements

with a constant heating rate and cooling rate). Figure 2.23 shows a schematic rep-

resentation of a heat flow DSC, which measures the heat flow between a sample

and a reference. A furnace is heated using a defined temperature program. Two

crucibles are placed on the sensor, an empty crucible as reference (R) and a second

crucible filled with the sample (S). The sensor is a heat conducting disc with a well

defined heat conductivity. In the sensor thermocouples are integrated that measure

the temperature difference ∆T between the reference and the sample. As the sensor

has a well defined heat conductivity, the temperature difference is proportional to

the heat flow ∆W = k∆T . The device-specific proportionality constant k can be

calibrated using a set of standard samples [Hoehne96].

Beside the heat flow DSC there is a also the power-compensated DSC. In this de-



62 2 Experimental Procedure

temperature program
T(t)

ΔW=k ΔT
heat flow measurment   

R

oven

S

ΔT

ΔW

T(t)

Figure 2.23: Schematic representation of a heat flow DSC. A furnace is subjected
to a given temperature program T (t). The temperature difference ∆T between the
reference and the sample is measured. Since there is a well defined thermal resis-
tance between sample and reference, the temperature difference is proportional to
the heat flow ∆W .

sign both the reference and the sample are heated separately and kept at the same

temperature. Therefore the heat flow needed to heat the samples can be measured

directly. The power compensated DSC is usually used for isothermal measure-

ments. A rather new technique is the modulated DSC where a sinusoidal signal is

superimposed with a linear heating/cooling to distinguish between reversible and

non-reversible heat flow [Reading94]. Differential Thermal Analysis (DTA) is sim-

ilar to the heat-flow DSC with the difference that the sample and reference are not

connected. Still there is a temperature difference between sample and reference

as for example the sample absorbs energy in the case of an endothermic process

and the sample temperature starts to lag behind. DTA is used particularly at

higher temperatures or in aggressive environments, where a heat-flux DSC would

not be able to operate. Devices that can measure heat flows smaller than 1 µW are

called microcalorimeters. Furthermore there exist also combined devices such as

the thermalgravimeter, which contains a microbalance and can be used for oxidizing

measurements.
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2.10.2 Evaluation of DSC Curves

DSC experiments can be used to determine a broad range of processes [Hoehne96].

Processes giving rise to a heat flow/absorption or a change in specific heat can be

quantified. For this work we will be mainly interested in reordering, recovery (i.e.

the annihilation of dislocations) and grain growth, all giving rise to an exothermic

peak.

2.10.3 Determination of the Activation Energy from a DSC Curve

Thermally activated reactions can be very complex, but usually as a simplification it

is assumed that the transformation rate dα
dt can be described as product of a function

depending on the transformed fraction α and one depending on the temperature T

dα

dt
= f(α)K(T ). (2.83)

Furthermore it is assumed that the temperature dependent function follows an

Arrhenius type dependency

K = k0 exp

(
− Ea
RT

)
, (2.84)

where k0 is a constant and Ea represents the activation energy of the process.

For a set of isothermal measurements performed at different temperatures Ti, the

activation energy can be easily derived from the following equation which simply

follows by combining equation 2.83 and 2.84

ln (tf (Ti)) =
E

RTi
+ C. (2.85)

Here tf is the time needed to reach a certain transformed fraction and C is a

constant. For a set of isochronal measurements T = βt performed at different

heating rates β, the analysis is more complex. Integration by separation of the

variables yields∫ α

0

dα

f(α)
=
k0

β

∫ Tf

0
exp− E

RT
dT =

REa
βkB

∫ ∞
yf

exp(−y)

y2
dy, (2.86)

where the substitution y = E
RT was used. Assuming a constant fraction trans-
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formed, the left hand side gives a constant. The integral on the right hand side

has to be solved using some approximation. Different types of approximations

lead to different equations, here the most important ones are listed. For a review

containing a more complete list of methods see [Starink04].

The most popular approach is the Kissinger-Akahira-Sunose (KAS) method,

where for various heating rates ln(βT 2
f ) is plotted against 1

RTf
and the activa-

tion energy is determined by taking the negative slope of the linear interpola-

tion [Mittemeijer92]

ln

(
β

T 2
f

)
= − Ea

RTf
+ C. (2.87)

A variation with a better accuracy is the type B-1.92 method [Starink03]

ln

(
β

T 1.92
f

)
= −1.0008

Ea
RTf

+ C. (2.88)

If the rate of transformation at Tf is known it is not necessary to make any

approximations. This approach is called Friedman method [Gupta88]. Combining

equation 2.83 and 2.84 and taking the logarithm gives

ln

(
dα

dt

)
= − Ea

RTf
− ln f(α) (2.89)

again assuming a constant fraction transformed and T = βt leads to

ln

(
β
dα

dT

)
= − Ea

RTf
− ln f(α). (2.90)

Usually it is very difficult to determine a temperature where a certain fraction

has transformed, therefore the peak temperature Tp is used. The peak temperature,

i.e. the temperature where the reaction rate is maximal occurs to a good approxi-

mation at the same transformed fraction for different heating rates [Mittemeijer92].

Therefore it is justified to use Tp rather than Tf , which also leads to the Kissinger

method [Kissinger56, Kissinger57]

ln

(
β

T 2
p

)
= − Ea

RTp
+ C. (2.91)
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It should be noted that it is not necessary to assume a specific kinetic model to

derive this equation, although this is often read in papers [Starink04].

2.10.4 Reordering

To reorder a disordered material, the atoms have to move to the correct lattice

positions, which is energetically favourable and thus energy is released and the

DSC curve shows an exothermic peak. The reordering is closely linked to va-

cancy movement as the migration of vacancies allows the atoms to change posi-

tions [Reimann01]. If the alloy is completely disordered before the peak and ordered

after the peak, the area under the peak represents the ordering energy [Cahn02].

2.10.5 Recovery

DSC curves can be used to determine dislocation or vacancy densities if the area

of the peak related to the annihilation of dislocations/vacancies can be deter-

mined [Gao09, Schafler05b]. The energy of the dislocation peak is given by

H = Gb2
N

4πκ
ln((b

√
N)−1), (2.92)

were G is the shear modulus, b the Burgers vector, N the dislocation density and

κ = 1− ν
2 , with ν being the Poisson ratio. Determining the vacancy concentration

is done by dividing the energy of the vacancy peak by the formation energy of a

single vacancy. Additionally Kissinger type analysis can be used to determine the

activation energies of the recovery processes.

2.10.6 Grain Growth

In normal grain growth, the grains grow reducing the amount of grain boundaries

and thus the interfacial free energy. Besides the activation energy of grain growth

that can be determined by a Kissinger type analysis of the grain-growth peak,

addition of information can be derived using DSC [Chen09, Huang93]. The total

energy due to grain boundaries is given by

H = γGB
V

r
, (2.93)

where V is the molar volume, r the average grain radius and γGB the grain bound-

ary energy. Thus if the grain size is known before (r1) and after (r2) an exothermic
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heat release ∆H, the grain boundary energy can be determined using the equa-

tion [Huang93]

∆H = γGBV

(
1

r1
− 1

r2

)
. (2.94)

A more advanced analysis can be done by modelling the grain growth. The

increase of the average grain radius r with time t can be expressed as [Chen09]

dr

dt
=
cMλnγ

rn−1
(2.95)

where c is a constant, λ the interatomic distance, γ the interfacial tension and n

the grain growth exponent (n = 2 would be predicted by theoretical grain growth

models, but in practise values between 1.5 and 4 are encountered).

2.10.7 Other Kinetic Models

In general a large variety of kinetic models exist [Christian65, Liu07]. Most of

them are based on equations 2.83 and 2.84. The kinetics is described through an

appropriate selection of f(α), k0 and Ea. The most popular model is the John-

son–Mehl–Avrami–Kolmogorov (JMAK) kinetics [Avrami39]

dα

dt
= K(T )n(1− α)(−ln(1− α))1−1/n (2.96)

or in its integral form

α(t) = 1− exp (−(Kt)n). (2.97)

The JMAK kinetics can be used for the description of phase transformations and

is often applied to crystallization in an amorphous phase. The kinetic exponent

n is related to both the nucleation and the growth of the new phase in the old

phase (in the case of crystallization the crystalline phase in the amorphous phase).

The exponent can be interpreted as the dimension of the growth plus the rate of

nucleation. Three dimensional growth (3) and constant nucleation rate (1) would

result in n = 3 + 1 = 4. It should be noted that there is a set of prerequisites

for JMAK kinetics to be applicable, i.e. the processes should be random without

heterogeneities and time dependencies. The exponent is determined by a double

logarithmic plot of equation 2.97 which directly results in the so called Avrami plot
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for an isothermal analysis

ln(− ln(1− α)) = n ln(t) + C. (2.98)

For the isochronal case follows after some calculations [Malek95]

ln(− ln(1− α)) ≈ −nEa
kBT

+ C. (2.99)

It is interesting to note that in an isothermal experiment nucleation and growth as

expressed by the JMAK kinetics gives a peak (except for the rare case n < 1), while

normal growth gives a monotonically decreasing signal, thus this is an indication

whether nucleation and growth or only growth take place [Chen09].

2.10.8 Experimental Realisation of the DSC Measurements

For the DSC measurements a Netzsch DSC 204 Phoenix was used present in our

research group. A Netzsch TASC 414/4 served as controller and cooling was done

with a Netzsch CC200 L using gaseous nitrogen. The DSC samples were heated

two times from room temperature to 500°C with a rate of 20 K/min and cooled

down with a rate of 20 K/min. At the beginning of each heating or cooling step

some deviation from the baseline in the form of an oscillation can be noticed, as the

device needs some time to reach a linear heating rate. Therefore the very beginning

has to be omitted for the final results. As no reversible process occurs in FeAl, the

cooling curves contain no information. The DSC curve obtained during the first

heating shows exothermic peaks corresponding to processes that release heat. The

second heating run was used as a base line (this can be done as no reversible

processes are present and all irreversible transformations happened already in the

first run). Subtracting the baseline is very important as there is some deviation of

the baseline from a straight line, which can influence results when determining peak

areas. Before starting with the actual measurements the empty DSC was heated

to 500°C and cooled twice to make sure that vapour or other kind of dirt would

evaporate. Furthermore care was taken to use only samples with a mass greater

than 10 mg to obtain a good signal to noise ratio.





3 Advanced Transmission Electron Microscopy

Tools for Nanocrystalline Materials

“Seeing is believing.”

– Manfred Von Heimendahl

3.1 Focused Local Profile Analysis by Electron Diffraction

3.1.1 The Need for PASAD

For inhomogeneous nanocrystalline materials [Ciuca10, Sauvage07, Wei02] it is nec-

essary to obtain local quantitative information on the microstructural parameters

(e.g.: grain size, domain size and order parameter). Up till now quantitative inte-

gral information can be gained by standard X-ray diffraction profile analysis (XPA)

methods whereas quantitative local profile analysis of selected features was not read-

ily accessible. For XPA of nanomaterials methods and evaluation procedures have

been improved over the past years [Ungar04, Schafler05]. Still, for inhomogeneous

nanostructured materials, nanocomposites, nanoparticles or nanolayers [Nanu05] it

is necessary to apply new methods for the quantitative characterization of the mi-

crostructure on a local scale. Furthermore bulk nanostructured materials made by

different methods of severe plastic deformation [Zhilyaev08, Valiev06a, Morris02a]

are frequently inhomogeneous [Ciuca10, Sauvage07, Wei02, Revesz06, Morris02b,

Peterlechner09b, Rentenberger05, Geist10]. In all these cases where microstructural

information of selected features is needed it is necessary to apply TEM methods

yielding quantitative results. This is shown in Figure 3.1. Whereas XPA provides

an integral information on the sample, quantitative profile analysis of nanomateri-

als based on electron diffraction can be carried out focused on the areas of interest

that are selected in TEM images at high magnifications. To achieve this, a profile

analysis of the SAD pattern (PASAD) is carried out.
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Figure 3.1: (a) X-ray profile analysis provides an integral information on the sam-
ple. (b) By using selected area electron diffraction it is possible to perform profile
analysis of areas selected in the TEM images.

3.1.2 Performing a PASAD Evaluation

PASAD is performed in three steps: (i) A SAD pattern is recorded from the area

of interest. (ii) An intensity profile (intensity versus diffraction vector ~g) can be

achieved from the SAD pattern by azimuthal integration. (iii) The microstructural

parameters are determined by profile analysis in an analogous way as done in XPA.

To record the diffraction pattern, care has to be taken that the illumination is

parallel as a convergent illumination would lead to additional peak broadening. A

good approach is to first focus the sample, then go to diffraction mode and use

the demagnetize function to reset the lenses. After that it is best to remove the

selected area aperture and change the illumination area until the central spot is as

sharp as possible. The microscope should always be well aligned and there should

not be any astigmatism in the diffraction pattern.

It is also important that the recording device has a sufficient resolution. Fig-

ure 3.2 shows the measured peak width for different resolutions of the imaging

device. If the resolution is not sufficient the measured peak width is larger than

the true peak width. This is usually not a problem for modern CCD cameras. For a

quantitative evaluation it is important that all intensities lie in the linear dynamic

range of the recording device. Therefore no pixel should be oversaturated but the

recording time should be adjusted in such a way that the dynamic range is utilized.
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Figure 3.2: Measured peak width divided by the true peak width in dependence of
the resolution of the imaging device. If the resolution is not sufficient the measured
peak width is larger than the true peak width.

As the central beam is very bright it is best to cover it with the beam stop. Care

has to be taken when recording images on a film as the characteristic curve of the

film is not linear but has a sigmoidal shape. This is demonstrated in Figure 3.3,

where radial averages of two diffraction patterns are shown, one acquired with a

rather short exposure time and the second one with a longer exposure time. In

the image recorded with a long exposure time, the first strong peak is overexposed

whereas in the other case the weak peaks are underexposed.

After having recorded a good diffraction pattern, the azimuthal integration is

performed. For this step it is crucial to use the correct centre of integration, as

any deviation has a huge impact on the resulting profile. When the centre of

integration is the true centre of the SAD pattern, the resulting profile shows sharp

peaks (cf. Fig. 3.4a), whereas a deviation from the correct centre of integration can

cause artificial peak broadening and even double peaks as shown in Figure 3.4b.

Therefore in an implementation of PASAD, special care is taken that the centre is

refined automatically by the program. A good method to refine the centre can be

deduced from Figure 3.4. Whereas the azimuthal integral shows sharp and thus very

high peaks when the centre is correct it shows broad but not so high peaks when

the centre of integration is shifted. Thus by shifting the centre around until the

peak height reaches a maximum the true centre can be found. Figure 3.5 shows the

peak height against the 2D deviation from the true centre for a typical diffraction

pattern. It can be seen that the true centre really gives a sharp maximum.
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Figure 3.3: This image demonstrates the nonlinearity of conventional films. Radial
averages of two diffraction patterns are shown. One acquired with a rather short ex-
posure time and the second one with a longer exposure time. In the image recorded
with a long exposure time, the first strong peak is overexposed whereas in the other
case the weak peaks are underexposed. The peaks right in the middle of the inten-
sity regime can be trusted. This can be explained as films do not have a linear char-
acteristic curve but rather a sigmoidal one.

The resulting profile can now be used for a profile analysis. As unfiltered elec-

tron diffraction patterns show a significant background, the background has to be

subtracted. After that the peak parameters of all the peaks can be subtracted

from all the Bragg peaks by fitting some peak function (such as a pseudo-Voigt

function). These parameters can be used for a profile analysis in the same way as

done in X-ray. To ensure reproducibility and to make the routine automatic, it is

important to determine the background and fit the peaks automatically using some

stable and precise routines.

It should be noted that the resulting peak-widths are a convolution of the in-

strumental broadening and the broadening due to the sample. Therefore it is im-

portant to deconvolute the peak-widths for the instrumental peak broadening. In

the present work Voigt deconvolution was used. The deconvolution was performed

by recording a diffraction pattern from a single crystalline sample using the same

parameters and fitting pseudo-Voigt functions to the diffraction spots. It should

be mentioned that there was no significant variation in the width of the diffraction

spots or central beam, indicating that there is no significant dependence of the

instrumental broadening on the diffraction angle.
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Figure 3.4: (a) When the centre of integration corresponds to the true centre the
profile resulting from the azimuthal integration shows sharp peaks. One integration
ring is indicated in the diffraction pattern. (b) If the centre of integration is slightly
shifted, the resulting profile shows artificial peak broadening or even double peaks.
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Figure 3.5: Plot showing the peak height observed in the azimuthal integral
against the deviation of the centre of integration from the correct centre. As this
curve has a sharp maximum it can be used to refine the centre of integration.
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3.1.3 The DigitalMicrograph Plugin PASAD-Tools: Functions and Usage

As shown in the previous chapter for a precise PASAD evaluation it is important

to use computer assisted routines for the centre determination, the azimuthal in-

tegration and the peak fitting. To provide a software for that PASAD-tools was

written. It was programmed as a DigitalMicrograph plugin with graphical inter-

face, as this is the most popular software used amongst electron microscopists for

recording images. Therefore PASAD can be performed without having to open any

additional software. The software can be used free of charge under the condition a

reference is made to the publication [Gammer10]. PASAD-tools can be downloaded

from the homepage www.univie.ac.at/pasad. If there are any questions, bug reports

or feature requests please feel free to contact the author using the e-mail address

christoph.gammer@univie.ac.at. For an improved speed the PASAD-tools were pro-

grammed in C++, therefore they do not only consist of a DigitalMicrograph script

file but also of a dynamic link library. To install the PASAD tools copy the files

“PASAD-tools.dll” and “PASAD-tools.gt1” to the DigitalMicrograph plugins direc-

tory (C:/Program Files/Gatan/DigitalMicrograph/Plugins). Menu entries called

“PASAD-tools” and “PASAD preferences” will be created in the Custom Menu. To

uninstall PASAD-tools just delete the files from the DigitalMicrograph plugins di-

rectory. Please note that the software provides useful information in the “Results”

and “Progress”-windows.

A screenshot is shown in Figure 3.6. Screenshots of the PASAD menu and the

preferences menu are shown in Figure 3.7a and b, respectively. The menu offers a

variety of functions. Using the dialog box “Adjust image”, the SAD pattern can be

cropped inverted or calibrated easily. To crop the SAD pattern select the desired

region with the DigitalMicrograph ROI tool and press “Crop Image”, the SAD

pattern can be calibrated to reciprocal lattice distance in crystallographer units.

The calibration menu (cf. Fig 3.7c) provides different methods: (i) If a scanned

film or imaging plate is used, the user has to enter voltage, camera length and

resolution (in dpi) to calibrate the image. (ii) For a CCD camera this is done by

providing the pixel size, camera length and acceleration voltage. (iii) There is also

the possibility to define two custom microscopes and calibrate different camera

lengths for these microscopes. After this was done, the user only has to enter

the voltage and select the camera length for the desired microscope. Up to ten

camera lengths can be calibrated for each TEM. To calibrate a camera length,

use a known specimen, measure the position of a known reflection in pixel (R),

http://www.univie.ac.at/pasad
mailto:christoph.gammer@univie.ac.at
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Figure 3.6: Screenshot of the software PASAD-tools. The software provides a
graphical user interface for all functions and is fully integrated into DigitalMicro-
graph.
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calculate the reciprocal lattice distance (g) and calculate the ratio (g [nm−1])/(R

[Pixel]) to get the calibration factor. As this value also depends on the voltage

it has to be multiplied with the wavelength [nm] at which the calibration was

performed. Now enter the camera length together with the corresponding calculated

value (calibration·wavelength). Repeat this for all desired camera lengths. (iv)

Furthermore the software offers the possibility to calibrate the SAD pattern from

a known distance. This is done by selecting a reflection with a known reciprocal

lattice distance either in the SAD pattern or in the integrated profile. The script

tries to get as much information as possible from the image tags. The calibration

is written to the image. If a calibration is already present, it will be used.

Furthermore the beamstop can be cropped, which is very important if integration

with high precision is performed. As the beamstop influences the integration it is

important to crop the beamstop (cf. Fig. 3.8). There are two different possibilities:

(i) Select “Crop Beamstop” and click on a point of the beamstop. All points with

intensities lower than the intensity at this pixel multiplied with a factor (crop-

beamstop factor) will be set to 0. The selected region will be dilated by a certain

amount (dilate beamstop) in order to exclude the edge of the beamstop. Both

values can be changed in the PASAD preferences. (ii) Use the DigitalMicrograph

Magic Wand tool to select the beamstop (the region indicated in the histogram can

be changed for fine-tuning). When ready select “Crop Beamstop”.

Using the dialog box “Find center”, the centre of the SAD pattern can be found

(cf. Fig. 3.9). A guess for the centre can be selected manually using the ROI

(region of interest) tools; either using the cross or by drawing a square around it.

A second possibility of selecting the centre manually is to draw a circle along a

ring. The centre can also be guessed by choosing three points on a ring. The centre

can also be guessed automatically using the centre of gravity (COG). The guess

will be indicated by drawing a circle along the strongest ring. The ring can be

changed manually if wanted. After guessing the centre, the centre can be refined

to a sub-pixel precision using “Refine Center”. If no centre was guessed, the middle

of the image will be used as a first guess. For a roughly centred SAD pattern this

is usually sufficient. The centre refinement is done using the Downhill-Simplex-

algorithm. The most intense ring is chosen, and the centre of integration is moved

until the peak in the azimuthal integral is maximally sharp, which is the case if

the peak height reaches its maximum as explained in the previous chapter. The

method is extremely fast (about a second per image) and very robust. It can also
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be applied to sectors of SAD patterns, that can be very useful if higher orders are

to be studied without losing the possibility of determining the peak width precisely.

Furthermore it gives much better results than fitting a circle into a ring or using

the Hough Transform. In addition to refining the centre, the distortion of the

projector lens, which can lead to an elliptical diffraction pattern, can be corrected

by integration along an ellipse instead of along a circle. Distortion correction is

also done using the Downhill-Simplex-algorithm. The orientation and distortion of

the ellipse are varied until the integral gives a maximum. The refined centre and

elliptical distortion will be written into the Image Tag of the SAD pattern using

the same convention as used by Diffpack. To use some manual values simply edit

this Tags.

After having a precise centre, the azimuthal integration can be performed using

the dialog box “Fit peaks”. This can either be done using the whole image or

just a sector between two angles (e.g. from 45°-90°). The angles are measured

in the mathematical sense (anti-clockwise, starting from the x-axis). The resulting

diffraction profile will be normalized so that the maximum value is set to 10000. To

obtain an azimuthal average rather than an azimuthal integral press the “Integrate”

button while holding the ALT key. It is also possible to map the diffraction pattern

to an image containing radius vs. angle by selecting “Azimuthal Projection” (cf.

Fig. 3.10). Holding the ALT button gives a full resolution image.

Now that the electron diffraction profile was obtained by azimuthal integration,

the dialog box “Fit peaks” allows fitting peaks to the profile. In a first step the de-

sired region has to be selected using the region of interest tool. After that the peaks

can be determined automatically using the “Find Peaks” button. The peakheight

threshold determines the minimum height necessary for a peak to be detected.

Splinepoints are put in between the peaks if the peaks do not overlap, which is deter-

mined by the peak-overlap threshold. The background determined by a monotone

piecewise cubic spline is subtracted from the profile. The peaks are pre-fitted using

a Voigt peak-fit and peaks as well as the background are plotted (cf. Fig. 3.11). It

is also possible to add and delete peaks or splinepoints manually. After selecting

“Add Peaks manually” peaks are indicated by ROIs and splinepoints are indicated

by small circles in the profile (cf. Fig. 3.12). To add a peak click on the desired

position using the left mouse-button. Click on a peak using the left mouse-button

while holding ALT to delete this peak. To add a splinepoint click on the desired

position using the middle mouse-button. Click on a splinepoint using the middle
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mouse-button while holding ALT to delete this splinepoint. When ready press ESC.

For help press “h”. When ready select “Fit peaks” to fit a model including all the

peaks to the background subtracted profile. The splinepoints are moved according

to the value of the fit and a second fit is performed to the corrected profile. Peak-

parameters are stored in a hidden image. As all images are found by their name it

is important not to change any image names or close the hidden images.

PASAD-tools provides various possibilities to save the results using the dialog

box “Save results”. By selecting “Create Annotated TIFF” a SAD pattern with

an inserted background subtracted profile is created (cf. Fig. 3.13). Furthermore

the profile and the peakparameters can be exported as Excel-sheet or DAT-file

(Exporting a large amount of data to an Excel sheet can take some time). It is

possible to save all data at once by selecting the desired points in the dialog.

3.1.4 Outlook

In addition to the focused local profile analysis of inhomogeneous nanocrystalline

(NC) materials, PASAD can be applied to study ultrathin NC films and nanopar-

ticles where standard X-ray investigations yield an insufficient signal to noise ratio.

The reason is that for electron diffraction the diffracted intensity is about a factor

104 larger than that of XRD which corresponds to the difference of the scattering

factors. Due to the short exposure times needed, electron diffraction also facilitates

a quick and detailed focused analysis including the possibility to obtain 3D infor-

mation by tilting the sample and to perform in-situ TEM experiments (e.g. in-situ

deformation or heating) with time resolved parameters. This is currently achieved

with synchrotron experiments [Budrovic04]. Still, most important is the possibility

in the TEM to combine the information gained from the image mode by taking

bright-field or dark-field images of a selected region with the PASAD information

of exactly the same region. This makes the interpretation of the results obtained

by diffraction straightforward and more precise. Investigations of the local vari-

ations of the degree of long-range order are possible by studying the diffraction

rings of superlattice reflections. The analysis of diffracted rings of amorphous ma-

terial [Borisenko09] is another potential application for PASAD, since in the case of

diffuse rings it is not trivial to determine their centre exactly. In general, PASAD

is a very powerful method for quickly analysing NC materials quantitatively on a

local scale by correlating the results with regions specifically selected by TEM im-

ages. Finally, the method is extendible and due to its clear and automatic routine
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Figure 3.7: Menus of the software PASAD-tools. (a) The main menu is opened as
a side bar and contains all functions that are needed. (b) In the preferences default
values can be adjusted. (c) The dialog for the calibration of SAD patterns contains
various methods.



3.2 Dark Field Scanning 81

Figure 3.8: The software PASAD-tools allows to crop the beamstop.

it has the potential for a broad spectrum of applications.

3.2 Dark Field Scanning

For a precise grain size determination it is important to measure local orientation

variations in a material. Electron backscatter diffraction (EBSD) used in scanning

electron microscopes (SEM) offers a simple automatic method to obtain orientation

maps of large sample areas with grain sizes down to 100 nm [Humphreys04]. Still

for HPT deformed FeAl the small grain size and the large density of dislocations

demand for a method with a greater spacial resolution. A TEM offers a much better

resolution as compared to a SEM, therefore the development of a method that allows

to generate orientation maps in a TEM is of big interest for the characterization of

nanocrystalline materials [Wu09]. Furthermore the TEM offers the possibility to

image the microstructure in addition to mapping the crystal orientations.

One approach for orientation imaging in the TEM is to use convergent beam

electron diffraction with a small convergence angle. By scanning across the sample

and evaluating the recorded diffraction pattern it is possible to generate an orien-
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Figure 3.9: PASAD-tools refines the centre automatically. To allow the user to
check if the centre has been detected correctly, the brightest ring is marked.

Figure 3.10: PASAD-tools allows to map the diffraction pattern to a radius
against angle plot.
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Figure 3.11: Typical diffraction profile obtained after fitting in PASAD-tools. The
filled curve represents the raw data, the background is indicated by a line, the curve-
fit (green) shows a very good agreement with the background subtracted data (blue)
therefore this two curves are not distinguishable.

Figure 3.12: For the “Add Peaks manually” function peaks are indicated by ROIs
and splinepoints are indicated by small circles in the profile. By using the mouse,
peaks and splinepoints can be moved, added or deleted.
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Figure 3.13: PASAD-tools provides the possibility to create automatically an an-
notated diffraction pattern containing a scale bar and an overlayed profile.
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tation map. A commercial implementation of this method is available [ASTAR].

This approach scans in the real space and records in the reciprocal space similar to

the way EBSD works in the SEM.

An alternative and very elegant approach is to scan in the reciprocal space and

record in the real space also recording the full data cube [Dingley06, Liu11]. Fig-

ure 3.14 shows a schematic representation of this method. In conventional diffrac-

tion the problem is that many grains give rise to diffraction spots leading to the

typical ring pattern that is observed in SAD diffraction of nanocrystalline materi-

als. Two grains are highlighted in this schematic drawing (one in dark grey and

one in light grey) both of which give rise to a spot pattern, that is hidden in the

diffraction pattern (cf. Fig. 3.14a). When using dark-field imaging, a grain only

lights up if the aperture position lies on a diffraction spot. In Figure 3.14b the

aperture position is on a diffraction spot corresponding to the dark grey grain and

thus only this grain lights up. The same is valid in Figure 3.14c for the light grey

grain. By taking dark-field images with the aperture position moving across the en-

tire reciprocal space it is possible to reconstruct a diffraction pattern for each pixel

in the real space. This is simply done by examining at which aperture positions

the pixel is lighting up.

Therefore for a practical implementation of orientation imaging by dark-field

scanning, a large set of dark-field scanning has to be acquired. This was achieved

by writing a DigitalMicrograph script that uses the tilt coils to acquire tilted dark-

field images from a selected range of the reciprocal space. The images are stored

to a selected folder, while all parameters are recorded as image tags. To correct for

drift, bright-field images are recorded in between the dark-field images and using a

cross correlation allows to calculate the drift. To reconstruct a diffraction pattern,

a set of areas can be selected in the bright-field area and diffraction patterns are

reconstructed from the dark-field images. After recording the full set of dark-field

images it is therefore possible to do “selected area diffraction” from areas with an

arbitrary shape and a size down to a nanometre. Indexing the reconstructed diffrac-

tion patterns allows to do orientation imaging down to a nanometre resolution. It

should be noted that a big limitation of orientation imaging is the overlapping sig-

nal of overlapping grains, which can be overcome by using very thin samples in the

TEM.
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Dark field scanning

Diffraction(a) (b)

(c)

Figure 3.14: Diffraction pattern reconstruction by dark-field scanning. (a) Two
grains are highlighted in this schematic drawing (one in dark grey and one in light
grey) both of which give rise to a spot pattern, that is hidden in the diffraction pat-
tern. When using dark-field imaging, a grain only lights up if the aperture position
lies on a diffraction spot. (b) The aperture is sitting on a diffraction spot corre-
sponding to the dark-grey grain and therefore this grain lights up but the light grey
grain does not light up. (c) If a diffraction spot corresponding to the light-grey grain
is selected the situation is the other way round. Therefore it is possible to recon-
struct a diffraction pattern for a grain by evaluating at which dark-field images it
lights up.



4 Nanocrystallisation of FeAl by High Pressure

Torsion Deformation1

“There is plenty of room at the bottom.”

– Richard Feynman

4.1 Evolution of the Nanocrystalline Structure

4.1.1 TEM Investigations

HPT can be used as a method of severe plastic deformation to make a bulk

nanocrystalline material since a gradual grain refinement is expected to occur with

increasing deformation [Zhilyaev08]. When deforming single crystalline FeAl, the

situation is rather different. This is shown by preparing TEM samples of HPT

discs deformed to different deformation grades. The TEM bright-field images and

corresponding SAD patterns shown in Figure 4.1 illustrate the evolution of the

nanocrystalline structure as a function of shear strain γ. At γ = (1200±300)% nar-

row bands containing a nanocrystalline (NC) structure are observed (cf. Fig. 4.1a

and b). At this strain the volume fraction of the NC structure is small (∼ 1% of the

specimen as estimated from TEM images). With increasing γ, the volume fraction

of the NC material increases and is ∼ 50% at γ = (2300± 400)% (cf. Fig. 4.1c and

d). At γ > 5000% the whole volume of the specimen contains the NC structure,

this is shown in Figure 4.1e and f corresponding to γ = (7100± 1100)%. The TEM

bright-field images show that the grain boundaries in the NC structure are not

1 A detailed treatment of the inhomogeneous formation of the nanocrystalline structure can be
found in [Mangler09]. The results included in this chapter were published in the following
peer-reviewed papers:

• The quantitative focused profile analysis in [Gammer10].

• The the 3D analysis of the nanocrystalline structure in [Gammer11b].
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well defined which is typical for nanocrystalline materials made by severe plastic

deformation [Zhilyaev08, Rentenberger04].

4.1.2 Using PASAD for a Focused Local Analysis

It is very surprising that the evolution of the nanocrystalline structure occurs in

a non-homogeneous way. To study the evolution in more detail it is the aim to

analyse locally the nanocrystalline structure as a function of strain and to determine

quantitatively the evolution of the coherently scattering domain (CSD) size. In

chapter 3.1 it was shown that quantitative local profile analysis of nanomaterials

based on electron diffraction can be carried out focused on the areas of interest

that are selected in TEM images at high magnifications using PASAD.

For the quantitative local analysis focused on the regions containing the NC

structure, SAD patterns (cf. Fig. 4.1b,d,f) were taken from the areas of interest

selected in the TEM images (cf. Fig. 4.1a,c,e). The SAD patterns of the NC

material show rings as grain orientations are randomly distributed in the sample;

as compared to the undeformed material the superlattice reflections are missing

(e.g. {100}), which indicates that the NC material is disordered in contrast to

the starting material that is B2 long-range ordered. The peak profiles obtained by

azimuthal integration of the SAD patterns from the samples deformed to different

strains are shown in Figure 4.2, the profiles are used for the following analysis. The

strong interaction of electrons with matter leads to a very high signal to noise ratio

and thus to a smooth profile. The peaks are rather broad indicating that the CSD

size is small.

The full width at half maximum (FWHM) of the peaks was determined from the

fitted curve using the PASAD-tools. The evaluation can also be carried out focused

on other parameters, e.g. the integral width. The instrumental peak broadening

was deduced from spots of undeformed material. To compensate for it, all values

of the NC structures were deconvoluted with the instrumental peak broadening,

leading to the corrected FWHM. To obtain a good statistical analysis at least 10

SAD patterns were analysed for each sample and the mean value and the standard

deviation were calculated. The SAD patterns were recorded from different areas

having a diameter of 180 or 910 nm.

The volume weighted mean CSD size (〈D〉V ) was calculated from the corrected

FWHM (∆g) of the diffraction peaks using a Williamson-Hall plot [Williamson53]

(cf. Fig. 4.3). For the Williamson-Hall plot only the {110}, {211} and {220}
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Figure 4.1: TEM study of the NC structures occurring in HPT deformed FeAl
as a function of shear strain γ. (a) γ ∼ 1200%; bright-field (BF) image showing
a band containing disordered NC material embedded in the single crystalline (SC)
material. (b) SAD of the area indicated in (a). (c) γ ∼ 2300%; the BF-image shows
two distinct structural phases: NC and SC. (d) SAD of the NC region of (c). (e) At
γ ∼ 7100% the sample is homogeneously NC. (f) SAD of (e).
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peaks were used; the {200} peaks were not considered, as the anisotropic strain

broadening caused by dislocations leads to a higher strain broadening for the {200}
reflections than for the other ones [Ungar99]. (The lines represent linear regressions

through the {110}, {211} and {220} reflections.) Details on the Williamson-Hall

plot are given in chapter 2.6.8. As the grains are highly fragmented (cf. Fig. 4.1),

the relevant size obtained in peak broadening analysis represents the CSD size and

not the grain size [Schafler05]. In NC materials effects of dynamic diffraction are

small as the CSD size is small compared to the extinction length. Still dynamic

effects can influence the intensities of diffracted beams but they do not influence

this analysis. In the present case the intensities and not the width of the peaks are

affected since integrating over peaks with different intensities but equal peak width

yields the same peak width.

Using PASAD we obtain CSD sizes of 15 ± 3, 17 ± 3 and 18 ± 4 nm for the

samples deformed 1200, 2300 and 7100%, respectively. As the CSD size does not

change significantly with the deformation, it is concluded that the nanograins are

not further refined during the deformation. This means that the NC regions locally

formed during the early stages of deformation (γ ∼ 1200%) must have similar

structures as the homogeneous NC materials finally achieved at high strains (γ >

5000%).

For the homogeneous nanocrystalline sample the PASAD results can be compared

with those from X-ray measurements of the CSD size, leading to a good agreement

(18±4 nm using PASAD and 14±7 nm using XRD). This demonstrates that electron

diffraction is a valid tool for determining quantitative CSD sizes of selected local

regions in NC materials. Analysing the grain sizes statistically directly from the

TEM images would not have been an alternative, since due to the severe plastic

deformation the grains are frequently fragmented and have highly irregular fuzzy

grain boundaries (cf. Fig. 4.1). This makes segmentation very difficult and it

is further disturbed by strong moiré effects of overlapping nanograins frequently

observed in TEM images of bulk NC materials [Rentenberger04].

4.1.3 Modified Williamson-Hall Plot

With the installation of a new CCD camera on the CM200 it became possible to

record diffraction patterns up to higher reflections. Figure 4.4a shows an electron

diffraction profile deduced from the SAD ring pattern of homogeneously nanocrys-

talline sample by azimuthal integration. Seven fundamental reflections (indicated



4.1 Evolution of the Nanocrystalline Structure 91

In
te

n
s
it

y
 [

a
.u

.]

0

100

k [nm-1]
4 6 8 10

γ=1200%
γ=2300%
γ=7100%

110

200

211

220
310

Figure 4.2: Background subtracted diffraction profiles of the NC regions in FeAl
deformed by HPT to shear strains of 1200, 2300 and 7100%, respectively. The three
profiles are very similar indicating that the NC structure does not change with in-
creasing shear strain.
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Figure 4.3: Williamson-Hall plot of the NC regions in HPT-deformed FeAl to sep-
arate the size broadening from the strain broadening. From the size broadening the
median CSD sizes were calculated indicating that the samples with different shear
strains have similar CSD sizes. The resulting CSD sizes are 15 ± 3, 17 ± 3 and
18 ± 4 nm for the samples deformed 1200, 2300 and 7100%, respectively. The lat-
ter is consistent with the CSD size determined by X-ray diffraction (14± 7 nm). The
{200} reflections were not considered as they show a higher strain broadening from
dislocations than the other reflections [Ungar99].
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Figure 4.4: (a) Diffraction profile of nanocrystalline FeAl produced by high pres-
sure torsion. The diffraction profile was deduced from a SAD pattern taken from the
plan view of the sample. (b) Corresponding modified Williamson-Hall plot. The vol-
ume weighted mean coherently scattering domain size (〈D〉V ) can be calculated from
the intercept corresponding to the size broadening.

in bold) are visible, the superlattice reflections are absent as the sample is dis-

ordered. To further increase the precision, a modified Williamson-Hall was used,

where the contrast factors of the dislocations [Ungar99] are taken into account (cf.

chapter 2.6.8). Figure 4.4b shows the modified Williamson-Hall plot deduced from

the electron diffraction profile shown in Figure 4.4a. The solid line represents the

linear regression. From this analysis a resulting 〈D〉V = 20±2 nm is deduced. The

error was calculated from the linear regression. This value is slightly different from

the value determined in the previous chapter as the modified Williamson-Hall plot

was used. Although this value is more accurate it should be noted that the results

presented in the previous chapter still remain valid as they were mainly used for a

comparison between the different nanocrystalline regions.
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Microscope untilted tilted to +30◦

CM200 20± 2 nm 18± 1 nm

G20 20± 1 nm 17± 2 nm

G20, energy filtered 19± 2 nm 18± 2 nm

Table 4.1: Comparison of the volume weighted mean CSD size obtained from dif-
ferent microscopes at two different tilt positions

4.1.4 Reproducibility of the PASAD Analysis

To check the dependence of the CSD size on the acquisition parameters, SAD pat-

terns were recorded from sample areas with different thicknesses and using different

illuminated areas. The results did not differ significantly, but by using thicker sam-

ples an increased background can be noted. The area of diffraction that can be

used is limited by the maximum size of parallel illumination in the TEM.

To exclude any influence of inelastic scattering on the measured peak width

energy filtered SAD patterns were recorded with a slit width of 1 eV for both, an

untilted position and a position where the sample was tilted to +30◦. Integrating

the entire SAD pattern, the volume weighted mean CSD size was determined. For

a comparison the energy filter was switched off and the measurement was repeated.

As shown in Table 4.1, the values measured on the Tecnai G20 lie within the errors

of the values obtained on the CM200 when the instrumental peak broadening is

taken into account. This indicates that neither energy filtering nor the microscope

used have much influence on the results of the measured CSD size. It should be

mentioned however that energy filtering leads to a reduction of the background

in the diffraction profile. This might be beneficial for complicated profiles with

overlapping peaks, where it is not straightforward to subtract the background.

4.2 3D Analysis of the Nanocrystalline Structure

4.2.1 TEM Investigations

The TEM studies presented previously have been based on plan view samples only

and provide only information on a projection of the nanostructures. Also in liter-

ature most TEM investigations of samples made by HPT have been based on plan

view samples only, probably due to experimental difficulties in preparing cross-

section TEM specimens of the rather thin HPT samples. Still, for nanocrystalline

structures with non-equiaxed grains, the analysis of different TEM sections would
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be necessary for a 3D analysis of the nanostructures [Huang07, Peterlechner09b].

Therefore as described in chapter 2.3 from the deformed samples TEM specimens

were cut in two different ways: (i) plan view sections and (ii) tangential cross

sections both of them correlated to the geometry of the deformed samples in a

given way. The tangential cross section has its plane normal parallel to the radial

direction of the HPT disc.

Figure 4.1e,f shows a bright-field image and diffraction pattern of a TEM speci-

men of HPT deformed FeAl having plan-view orientation. The specimen is nanocrys-

talline, the grain boundaries are not well defined and the grains are about equiaxed

and contain a high density of defects. The contrast features observed are domi-

nated by strong moiré effects [Rentenberger04]. Figure 4.5 shows a bright-field and

dark-field image of a tangential cross section of HPT deformed FeAl. The grains

are elongated in the shear direction indicating that the grains have a platelet shape.

The platelets lie almost parallel to the shear plane in the HPT disk (their inclina-

tion angle is only ∼ 10◦). The nanocrystalline grains are rather homogeneous in

size, show fuzzy non-equilibrium grain boundaries and a high density of defects.

An estimation of the size of the grains from the TEM images shows that the grains

have a length of about 80± 20 nm and a height of around 20± 10 nm, which is in

good agreement with previous studies on HPT deformed FeAl [Mangler10].

The contrast features in the TEM bright-field image of Figure 4.5a are complex,

but when comparing them with the TEM image taken from plan view (cf. Fig. 4.1e)

it is clearly visible that moiré effects are less dominant in the cross section image.

In plan view the platelet shaped grains overlap very strongly whereas in the cross

section view the platelets are standing vertically expanding in many cases through

the entire TEM foil. Therefore, it can be concluded that TEM images from the

cross section are necessary to study features that are linked to the shear plane.

Figure 4.5b shows a TEM dark-field image taken from the same region as Fig-

ure 4.5a. The dark-field image was recorded using a small section of the {110}
reflection ring. To avoid complex contrasts from neighbouring orientations, a small

aperture was used for imaging (0.6 nm−1 diameter in reciprocal space). A compar-

ison of the TEM bright-field image with the dark-field image shows that isolated

regions lighting up in the dark-field image are much smaller than the grains seen

in the bright-field image. Therefore it can be concluded that the grains contain

substructures caused by the high density of dislocations, e.g.: small-angle grain

boundaries.
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Figure 4.5: Tangential cross-section of high pressure torsion deformed FeAl. (a)
TEM bright-field image showing elongated grains. (b) In the TEM dark-field im-
age taken from the same region small areas show up that correspond to coherently
scattering domains. The shear plane is indicated by a dashed line.
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4.2.2 3D Analysis by Electron Diffraction

Figure 4.6a shows a proposed average shape of a CSD. From the top view the CSD

is equiaxed whereas in the cross-section it is elongated. The value of 〈D〉V deduced

from the profile analysis represents the CSD size parallel to the diffraction vector,

i.e. the volume weighted size of horizontal cuts through the CSD. When the CSD

is untilted, it is cut through its longest axes and the resulting 〈D〉V value has its

maximum. When tilting the sample (cf. Fig. 4.6b), the value of 〈D〉V is reduced.

To obtain a quantitative information on the average CSD size in 3D it is neces-

sary to analyse each SAD pattern along the tilt axis and the axis normal to that

separately. As shown in Figure 4.6a and b, 〈D〉V measured along the tilt axis (indi-

cated by f) does not change when tilting the sample, whereas for an elongated CSD

〈D〉V measured along the axis normal to the tilt axis (indicated by e) is reduced.

Therefore, two sets of diffraction profiles were deduced from selected regions of the

SAD patterns only. As shown in Figure 4c a region of 10 degrees around the tilt

axis was taken into account and in addition a region around the axis normal to

that. For both sets of diffraction profiles a modified Williamson-Hall plot was used

to determine the volume weighted mean CSD size.

Figure 4.7a shows the plot of 〈D〉V measured in the direction normal to the tilt

axis as a function of the tilt angle. A plan view specimen was used and SAD patterns

were recorded within a large range of tilt angles: Tilting angles of the incident beam

ranging from −52.5◦ to +52.5◦ in steps of 5◦ were applied. Assuming that the CSD

has an ellipsoid shape allows to calculate the variation of 〈D〉V with the tilt angle.

The model for ellipsoidal shaped CSD is fitted to the experimental data (cf. solid

line in Fig. 4.7a) showing a good agreement. From the fit it is deduced that the

platelet shaped CSD have a length of 18±1 and a height of 10±1 nm. This leads to

an aspect ratio of 1.8. Figure 4.7b shows the plot of 〈D〉V against the tilt angle for

the measurement along the tilt axis. The data show some scattering but no trend

can be deduced. As expected, 〈D〉V measured along the tilt axis does not change

when tilting. The mean of all data points is 19±2 nm. Therefore it can be deduced

from the diffraction analysis that the assumption of an ellipsoid average shape for

the CSD is valid and that the CSD has a width of 19±2 nm, a length of 18±1 nm

and a height of 10±1 nm.

The method presented here allows to determine the average width of the CSD

in 3D by evaluating the SAD pattern along different directions with respect to the

tilt axis for a large range of tilt angles. The fact that 〈D〉V measured along the
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Figure 4.6: Schematic representation of a platelet shaped ellipsoidal CSD. The ef-
fect of tilting on the measured volume weighted mean coherently scattering domain
sizes (〈D〉V ) is shown. (a) 〈D〉V measured in the direction of the tilt axis f and the
direction normal to that e are shown. (b) Tilting the sample leads to a reduction of
e whereas f stays constant. (c) The regions of the SAD pattern used for the evalua-
tion of e and f are shown.



98 4 Nanocrystallisation of FeAl by High Pressure Torsion Deformation

C
S

D
 [

n
m

]

8

10

12

14

16

18

20

22

24

Tilt angle [°]
-60 -40 -20 0 20 40 60

C
S

D
 [

n
m

]

12

14

16

18

20

22

24

26

Tilt angle [°]
-60 -40 -20 0 20 40 60

(a)

(b)

Figure 4.7: Variation of the volume weighted mean coherently scattering domain
(CSD) sizes (〈D〉V ) with the tilt angle. (a) 〈D〉V measured along the axis normal
to the tilt axis (cf. axis e in Fig. 4.6). The line is calculated for ellipsoidal CSD and
shows good agreement to the experimental data. (b) 〈D〉V measured along the tilt
axis (cf. axis f in Fig. 4.6). No clear trend of the change with the tilt angle is ob-
served. The solid line represents the mean value.
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tilt axis does not change when tilting while a large change is seen when measuring

along the axis normal indicates the validity of the method. While the elongation of

the average CSD size could have been determined by using less tilting angles, the

fine sampling has the advantage of reducing the error of the overall measurement.

Using TEM for the diffraction experiment allows a quick and automatic acquisition

of tilt series due to the short exposure time needed to collect diffraction patterns

and the possibility to use scripting for the microscope control [Kolb07].

The quantitative 3D result of Figure 4.7 confirms the estimate resulting of the

dark-field image of the specimen with cross section view (cf. Fig. 4.5b). The

result that the dimensions of the CSD are smaller and less elongated than those

of the grains is related to the occurrence of substructures (e.g.: small-angle grain

boundaries) that fragment the elongated grain into smaller less elongated CSD.

Also the present results of FeAl agree with those of Ti [Zhu03] indicating that in

nanocrystalline materials produced by severe plastic deformation it is important to

distinguish between CSD and grain sizes.

4.2.3 Applicability of 3D Profile Analysis

The method presented here is different from 3D reconstructions using tomography

methods found in the literature [Midgley09, Arslan05]. These methods are based

on TEM images showing a contrast that is a monotonic function of some physical

property (e.g. mass diffraction contrast as in the case of biological specimens). In

these cases the sample is tilted and images are recorded thus allowing to reconstruct

isolated or embedded nanostructures. Still these methods can not be applied to

nanocrystalline materials as their contrast is dominated by the specific diffraction

condition during the tilting series. In contrast the method presented here is based

on electron diffraction and allows the reconstruction of the size and shape of the av-

erage coherently scattering domain. It should be noted that the evaluation of 〈D〉V
is based on the fact that a large number of CSD is present in the illuminated area.

The set of CSD that contributes to the broadening of a diffraction peak changes

with the tilt position since tilting leads to a change of the diffraction condition.

But the information that is obtained only from the set of CSD having a reflecting

plane near Bragg condition is sufficient due to the large number of CSD present.

Therefore, the method is applicable to all kinds of nanocrystalline materials allow-

ing to determine the average size and morphology of the CSD without the need to

prepare multiple sections.
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Analysing the CSD sizes statistically directly from the TEM images would not

have been an alternative because complex contrast features are frequently observed

in TEM images of bulk nanocrystalline materials due to high dislocation densities

in the fragmented grains and strong moiré effects of overlapping nanograins or

CSD [Rentenberger04]. Therefore, the segmentation of the CSD in the dark-field

images can be quite difficult. In contrast grain sizes can only be determined from

TEM images. Therefore the possibility of TEM to switch between imaging and

diffraction mode allows to acquire information on both the CSD size and the grain

size. Electron back scattered diffraction is frequently applied to cross sections of

HPT discs to determine the elongation of the grains [Pippan10], however in the

case of intermetallic compounds the grain size reached after HPT is too small and

the dislocation density too large for the applicability of this method.



5 Thermal Stability of Nanocrystalline FeAl1

“Tantum elementa queunt permutato ordine solo.”

– Titus Lucretius Carus

5.1 DSC and TEM Investigations

To investigate the thermal stability of nanocrystalline FeAl, DSC measurements

were conducted. Figure 5.1 shows a DSC curve from a homogeneous nanocrystalline

sample. Three peaks are visible corresponding to three exothermic processes. To

determine which processes are occurring, TEM investigations were conducted of a

deformed sample and samples that were deformed and then heated to 220°C, 370°C
and 500°C. These temperatures were chosen as they lie right between the peaks as

indicated with an arrow in Figure 5.1.

Figure 5.2 shows a sample deformed by HPT to a shear strain of γ = 63±7. The

sample is homogeneously nanocrystalline. The bright-field image (cf. Fig. 5.2a)

shows very complicated contrasts that are typically observed in nanocrystalline

samples. The nanograins contain a high density of dislocations and small-angle

grain boundaries resulting in frequent moiré contrasts. In the dark-field image the

grains are more clearly visible. The grains are around 80 nm in size and contain

many substructures. Figure 5.2b shows a dark-field image of a nanograin that was

encircled for a better visibility. The corresponding SAD pattern from a region of

1.2 µm (cf. Fig. 5.2c) shows a ring pattern as the sample is nanocrystalline. No

pronounced texture is observable. The diffraction pattern shows clearly that the

sample is disordered as the superstructure is absent.

1 The results included in this chapter were published in the following peer-reviewed papers:

• The DSC and TEM studies in [Mangler10].

• The studies on the reordering of nanocrystalline FeAl in [Gammer11a].
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Figure 5.1: Baseline corrected DSC curve of nanocrystalline FeAl obtained by
HPT deformation, recorded using a heating rate of 20 K/min. Three exothermic
peaks can be observed. To analyse the exothermic processes, TEM investigations
were conducted of samples heated to different temperatures (indicated in the image
by arrows).
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TEM images of a sample deformed to a shear strain of γ = 63±7 and subsequently

heated to 220°C are shown in Figure 5.3. No significant changes are visible in

the bright- and dark-field images as compared to the deformed sample. In the

diffraction pattern however it can be noticed that superlattice reflections start to

appear. This is even more clearly visible in the diffraction profile shown as an insert

in the SAD pattern. Thus it can be concluded that the first exothermic peak in

the DSC curve corresponds to the reordering process.

Figure 5.4 shows a sample deformed to a shear strain of γ = 67±7 and heated to

370°C. From the bright-field images it can be seen that most of the dislocations have

annealed out. The corresponding dark-field image shows this even more clearly

as grains with a homogeneous contrast are visible. The nanograins have rather

sharp grain boundaries and are free of dislocations. Therefore it can be deduced

that the second very broad exothermic peak in the DSC curve corresponds to the

annihilation of dislocations. It is very surprising that the grains as deduced from the

dark-field image have a size of around 35 nm only, meaning the grain size is reduced

upon annealing by a factor of 0.5. The grain size reduction will be analysed in more

detail in the next chapter. The diffraction pattern shows that still some ordering

occurs between 220°C and 370°C leading to the conclusion that the ordering peak

is not symmetric but extended towards higher temperatures.

Figure 5.5 shows a sample deformed to a shear strain of γ = 63±7 and heated to

500°C. The bright-field image shows that the grains have already grown consider-

ably. The grains are now completely free of dislocations and have very sharp grain

boundaries. In the diffraction pattern no continuous rings are visible but rather

distinct spots, as now less orientations are present in the area that was used for

taking the SAD pattern. Therefore it can be concluded that the third peak in the

DSC-curve corresponds to grain growth.



104 5 Thermal Stability of Nanocrystalline FeAl

Figure 5.2: (a) Bright-field image of a FeAl sample after HPT deformation. The
grains are not clearly defined showing complex contrasts. (b) Corresponding dark-
field image. A grain can be seen, it is surrounded by a dashed line for better visi-
bility. The grain contains a lot of defects. (c) The diffraction ring pattern shows no
superlattice reflections (indicated by dashed lines) as the sample is disorded.

Figure 5.3: (a) Bright-field image of a FeAl sample after HPT deformation and
subsequent heating to 220°C. The grains are not clearly defined showing complex
contrasts. (b) Corresponding dark-field image. A grain can be seen, it is surrounded
by a dashed line for better visibility. The grain contains a lot of defects. The struc-
ture looks the same as that of the as-deformed sample. (c) The diffraction ring pat-
tern shows superlattice reflections (indicated by dashed lines) as the sample is par-
tially ordered.
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Figure 5.4: (a) Bright-field image of a FeAl sample after HPT deformation and
subsequent heating to 370°C. The grains are clearly defined, only few dislocations
are visible. (b) Corresponding dark-field image. Three grain are visible showing a
homogeneous contrast thus indicating that they are free of dislocations. (c) The
diffraction pattern shows a clear presence of superlattice reflections (indicated by
dashed lines) as the sample is ordered.

Figure 5.5: (a) Bright-field image of a FeAl sample after HPT deformation and
subsequent heating to 500°C. Rather large grains are visible that are free of dislo-
cations and have sharp grain boundaries. (b) The diffraction pattern shows spots
rather than rings due to the large grain size. The sample is ordered as can be de-
duced from the presence of superlattice reflections (indicated by dashed lines).
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From the TEM investigations of samples heated to 220°C, 370°C and 500°C it

is therefore possible to understand all three exothermic processes occurring dur-

ing heating of nanocrystalline FeAl, produced by HPT deformation [Mangler09].

Figure 5.6 shows a schematic fit of the three processes to a DSC-curve. The first

peak that is caused by reordering is centred around 170°C and asymmetric. An

approximate peak shape is indicated in the DSC-curve using a solid line. Its large

area can be explained by the high ordering energy of FeAl. The second very broad

peak, centred around 320°C that is caused by annihilation of defects is indicated

by a dashed line in the DSC curve. The third peak centred around 420°C is due to

grain growth. It is indicated in the DSC curve with a dotted line.
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Figure 5.6: Separation of the different processes in the DSC curve of HPT de-
formed nanocrystalline FeAl. Three exothermic peaks are visible. The first peak,
caused by reordering is indicated using a solid line. The second peak, caused by the
annealing of dislocations is indicated using a dashed line and the third peak that is
due to grain growth is indicated by a dotted line. [Gammer11d]

5.2 Grain Size Evolution During Heating

To study the evolution of the grain size, grain size histograms were determined from

dark-field images using the free image-processing software ImageJ. In Figure 5.7 as

an example two histograms are shown, the histogram of the sample heated to 220°C
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and that of the sample heated to 370°C. The histograms are rather different. While

the sample heated to 220°C shows a rather broad range of grain sizes that range up

to 200 nm and are most frequently somewhere around 60 nm, the sample heated to

370°C shows a quite narrow histogram with much smaller grain sizes ranging most

frequently around 30 nm.

The volume weighted grain sizes of the as-deformed sample and those heated

to 170°C, 220°C, 370°C and 500°C were computed from the data. The results are

summarized in Figure 5.8. It should be noted that the error bars are asymmetric

as by grain size determination from dark-field images grain sizes can easily be

underestimated.

5.3 Using Dark Field Series to Determine the Grain Size Reduction

It is very surprising that the grain size decreases upon heating between 220°C and

370°C. To check that the grain size reduction is not an artefact of the dark-field

image segmentation it is necessary to use a method that can measure tilt angles

with a high precision. Figure 5.9 shows a TEM study of HPT deformed FeAl. As

already shown in the previous chapter, the TEM bright-field image (cf. Fig. 5.9a)

shows strong contrast variations indicating that the sample is nanocrystalline. The

grain boundaries are not well defined and the grains contain a high density of

defects. The corresponding SAD (cf. Fig. 5.9c) shows no superlattice reflections

(e.g. {100}) as the sample is disordered. Figure 5.9b shows a TEM dark-field image

taken from the same region as Figure 5.9a. The position of the aperture used for

the dark-field image is indicated in the SAD pattern (cf. Fig. 5.9c). The contrasts

in the dark-field image are very complicated as the defect density is very high.

To determine whether the intensity variations are due to dislocations, grain

boundaries or sub-grain boundaries it is necessary to measure small local orien-

tation variations. Standard methods to determine orientation variations are elec-

tron backscatter diffraction used in scanning electron microscopes; in TEM SAD

patterns, Kichuchi diffraction patterns or small-angle convergent beam electron

diffraction are used. In the case of highly deformed nanocrystalline materials it is

not always possible to apply these methods successfully. As shown in chapter 3.2,

by using dark-field scanning local orientations can be measured even in a highly

deformed material.

Consider e.g. the dark-field image in Figure 5.9b. Only crystals that are near
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Figure 5.7: (a) Grain size histogram of a HPT deformed FeAl sample after heating
to 220°C. (b) Grain size histogram of a HPT deformed FeAl sample after heating to
370°C. A log-normal distribution is fitted to the grain size histograms.
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Figure 5.8: Evolution of the volume weighted grain size with heating temperature.
No change is visible when heating up to 220°C. By heating to 370°C the grain size is
reduced. Heating to 500°C leads to grain growth.

Bragg-position for the given aperture position (cf. Fig. 5.9c) light up. In the

present dark-field image the region indicated as d lights up whereas the region

indicated as e does not light up. In order to allow a precise reconstruction of the

diffraction patterns more than 300 dark-field images were recorded, scanning along

the {110} and {200} diffraction rings (drift correction was performed by recording

intermediate bright-field images). For each dark-field image the mean intensity

in the selected region was evaluated to find out the corresponding intensity in

the diffraction pattern. As the diffraction rings were heavily oversampled, it is

possible to deconvolute for the size of the aperture, thus obtaining the position of

the diffraction spots with a high precision.

Figure 5.9d represents the reconstructed diffraction pattern corresponding to

region d. (The intensities of the diffraction spots are indicated by their size.) The

diffraction pattern corresponds to a [100] orientation. Figure 5.9e represents the

reconstructed diffraction pattern corresponding to region e again showing a [100]

orientation, but is rotated by 8◦ with respect to region d. Therefore it is concluded

that the two regions are separated by a small-angle grain boundary. In a similar way

the tilt between other regions was measured revealing again the presence of small-

angle grain boundaries (cf. Fig. 5.9b). In addition to the presented grain, further
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Figure 5.9: Nanocrystalline FeAl processed by HPT. (a) Bright-field image (b)
dark-field image and (c) diffraction pattern of the as-deformed sample. (d-e) Recon-
structed diffraction patterns of areas d and e encircled in (b) indicate the presence of
small-angle grain boundaries.
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Figure 5.10: Nanocrystalline FeAl processed by HPT and heated up to 370◦C.
(a) Bright-field image (b) dark-field image and (c) diffraction pattern of the heated
sample. (d-e) Reconstructed diffraction patterns of the grains d and e indicated in
(b) showing a large-angle grain boundary.
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grains were studied showing the presence of small-angle grain boundaries within

the grains. It should be pointed out that grains are defined as being separated by

large-angle grain boundaries (i.e. grain boundaries ≥ 15◦).

Figure 5.10 shows a TEM study of HPT deformed FeAl heated to 370◦C. As

already shown in the previous chapter, the TEM bright-field image (cf. Fig. 5.10a)

shows that the dislocation density is strongly reduced and most grains show rather

sharp grain boundaries. This is also confirmed in the TEM dark-field image (cf.

Fig. 5.10b), where an isolated grain showing rather homogeneous contrast lights

up. The corresponding SAD pattern (cf. Fig. 5.10c) shows superlattice reflections

(e.g. {100}) indicating that long-range order was restored during annealing of the

sample.

To ensure that the region lighting up in the TEM dark-field image (cf. Fig. 5.10b)

really represents a grain, it is necessary to show that it is separated by a large-

angle grain boundary from the neighbouring regions. Thus the orientation dif-

ferences have been measured by reconstructing diffraction patterns. More than

450 dark-field images were recorded, scanning along the {110}, {200} and {211}
diffraction rings. Figures 5.10d and e show the reconstructed diffraction patterns

corresponding to the regions indicated as d and e in the the TEM dark-field image

(cf. Fig. 5.10b). Both diffraction patterns show a [111] orientation, but they are ro-

tated against each other by 28◦, thus clearly being separated by a large-angle grain

boundary. An additional large-angle grain boundary is indicated in Figure 5.10b

and it should be mentioned that many areas of the sample were studied giving

similar results.

5.4 Evolution of the Coherently Scattering Domain Size

In addition to the grain size measured by TEM images it is of interest to study the

coherently scattering domain size. X-ray profile analysis (XPA) is widely used for

determining the CSD size of nanomaterials [Schafler05]. As shown in chapter 3.1 it

is possible to perform profile analysis based on SAD patterns by PASAD. Electron

diffraction profiles were deduced from the SAD patterns by azimuthal integration

(cf. Fig. 5.11).

The full width half maximum (FWHM) of the diffraction peaks were deduced by

fitting pseudo-Voigt functions to all the peaks using the PASAD-tools [Gammer10].

All FWHM values were deconvoluted for the instrumental peak broadening. A
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Figure 5.11: Diffraction profiles of HPT deformed FeAl. The profiles were obtained
by azimuthal integration of TEM diffraction patterns taken from the as deformed
state and from samples heated to 170, 220 and 500◦C. The fundamental reflections
({110},{200},{211} and {220}) are present in all temperatures whereas the intensity
of the superlattice reflections (indicated in bold) rises with increasing temperature.

modified Williamson-Hall plot using only the fundamental reflections was used to

determine the volume weighted mean CSD size (〈D〉V ). To obtain a good statistical

analysis at least 10 SAD patterns were analysed for each sample and the mean value

and the standard deviation were computed. Figure 5.12 shows the evolution of the

coherently scattering domain size with heating. 〈D〉V increases with increasing

temperature.

5.5 Growth of Nanosized Ordered Domains

In addition to the fundamental reflections that were used in the previous chapter

to determine the evolution of the CSD size with temperature, the rise of super-

lattice reflections with temperature can be observed in the diffraction profiles (the

corresponding indices are indicated in bold in Fig. 5.11). In the profile of the as-

deformed sample the superlattice reflections are not observed clearly; only a very

broad hump near the position of the {100} peak gives some indication of residual

order. Heating the sample leads to a clear appearance of the superlattice reflections
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Figure 5.12: Evolution of the volume weighted mean coherently scattering domain
size with temperature.
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Figure 5.13: Variation of the ordered domain size of FeAl deformed by high pres-
sure torsion and heated to different temperatures. The increase reveals that reorder-
ing takes place by the growth of ordered domains until they reach the size of the
grains.
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Figure 5.14: TEM dark-field images of nanocrystalline FeAl taken with the {200}
fundamental reflection (left column) and images of the same grain taken with the
corresponding {100} superlattice reflection (right column) to reveal the ordered do-
mains. (a, b) show the as-deformed state; (c, d) and (e, f) samples heated to 170
and 220◦C, respectively. (g, h) show a sample annealed for one hour at 220◦C and
(i, j) a sample heated to 370◦C. The ordered domains grow with temperature and
time until they reach the size of the grains as shown in (i) and (j).



116 5 Thermal Stability of Nanocrystalline FeAl

Figure 5.15: FeAl deformed by high pressure torsion and annealed to 170◦C. (a)
High resolution TEM image revealing the presence of long-range ordered domains
({100} lattice planes are marked by lines). (b) Sketch of the atomic structure of the
region indicated by a square in (a) showing an APB fault. (c) Fourier filtered image
of (a) to make the ordered domains clearly visible. This image is formed using two
{100} superlattice reflections indicated in the diffractogram (d).
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(e.g. the {100}, {111} reflection) in the diffraction profiles giving evidence of the

restoration of the B2 superstructure. With increasing temperature the intensity of

the superlattice reflections rises according to an increase in long-range order. From

the width of the superlattice reflection, it can be concluded that the chemically

ordered domains are still very small at 170◦C and grow during further heating as

indicated by the sharpening of superlattice reflections.

For a quantitative analysis of the size of the chemically ordered domains again

a modified Williamson-Hall plot [Williamson53, Ungar96] was used, but this time

taking into account the superlattice reflections only. The volume weighted mean

ordered domain size (〈D〉ord) was determined from the FWHM of the {100}, {111}
and {210} superlattice diffraction peaks of the diffraction profile. At least 10 SAD

patterns were analysed for each sample and the mean value and the standard de-

viation were computed. All values were deconvoluted for the instrumental peak

broadening. It should be pointed out that a direct comparison of the present pro-

files with X-ray profiles measured on the same samples reveals that the strong

interaction of electrons with matter compared to X-rays facilitates the detection of

superlattice peaks especially at the early stages of reordering. In the case of the

as-deformed sample the superlattice reflections are not clearly observable as they

are very broad and weak due to the small ordered domain size; therefore the value

of 〈D〉ord had to be estimated from dark-field images of the ordered domains. The

increase of the ordered domain size with temperature is plotted in Figure 5.13: At

170◦C, the ordered domains are 4.1 ± 1 nm, growing to 7.8 ± 1 nm at 220◦C and

to 29± 5 nm at 370◦C. These results show that reordering is linked to the growth

of ordered domains. The process of domain coarsening proceeds until the order is

fully restored within the grains.

In addition the evolution of the nanosized ordered domains was monitored in

dark-field images of samples heated up to different temperatures. For each struc-

tural state dark-field images were taken using the {200} fundamental reflection and

the corresponding {100} superlattice reflection (cf. Fig. 5.14). The contrast fea-

tures appearing in the superlattice reflection are sensitive to both structural defects

and the chemical long-range order whereas contrasts visible in the fundamental re-

flection depend on structural defects only. Since in B2 alloys the APB faults are

pure chemical faults as indicated by pair potential calculations [Yamaguchi81] it

can be concluded that the contrasts appearing in the image formed by superlat-

tice reflection but not in that formed by the fundamental reflection are caused
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by APB faults. Figures 5.14a and b show dark-field images of the as-deformed

sample. Figure 5.14a obtained by using a fundamental reflection shows contrast

variations within one grain indicating some fragmentation of the grain due to sub-

grains. Figure 5.14b shows a dark-field image taken with the {100} superlattice

reflection. Although only a weak hump is observed in the intensity profile deduced

from the diffraction ring pattern, the dark-field image reveals clearly the presence

of very small chemically ordered domains of medium range size (∼2 nm) in the

as-deformed state.

Due to their small size and their very weak and broad peak in the diffraction

pattern, this state is different from that of a sample with residual long-range or-

der. The residual order can not be explained by a statistically partially ordered

structure, but rather by a structure composed of chemically ordered nanodomains

of medium range size. These nanodomains are densely distributed within the grain

and quite homogeneous in size. Therefore, it can be concluded that severe plastic

deformation of FeAl, an intermetallic compound with a high ordering energy, does

not destroy the long-range order completely but leads to a high density of APB and

thus to the formation of chemically ordered nanodomains. This result is consistent

with that of the deformation-induced process of fragmentation of ordered domains

in Cu3Au as observed by TEM dark-field images [Rentenberger08].

Heating the sample to 170◦C shows significant differences in the dark-field image

taken using the superlattice reflection indicating that the ordered domains have

grown (cf. Fig. 5.14d). In the sample heated to 220◦C further coarsening of ordered

domains is observed (cf. Fig. 5.14f). This result agrees well with that obtained

from the diffraction data. When annealing the sample for one hour at 220◦C the

ordered domains grow even further (cf. Fig. 5.14h) indicating the time dependent

mean domain size at constant temperature. Therefore, for the determination of

the temperature dependent domain size a well defined heating procedure (e.g. as

it is used in a DSC) is essential. It should be noted that even the comparison of

samples stored for different times at room temperature show that storage times of

several months change the domain structure. Heating the sample up to 370◦C, the

dark-field images taken using the superlattice and the fundamental reflection show

similar contrasts of the same region, indicating that the ordered domain size has

reached the grain size (cf. Fig. 5.14i+j). Again a reduction of the grain size when

heating to 370◦C is observed. It should be emphasised that the quantitative results

for the ordered domain size resulting from PASAD agree very well with the size
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deduced from the dark-field images using superlattice reflections. Therefore, the

results deduced from both, diffraction patterns and dark-field images provide clear

evidence that the reordering process occurs by coarsening of chemically ordered

domains by reducing APB faults.

The small nanosized ordered domains present in the sample heated up to 170◦C

were studied in more detail using high resolution TEM. In Figure 5.15a the super-

lattice is visible (marked by lines along {100} lattice planes). The {100} lattice

planes are interrupted by APB faults; the atomic structure at one APB fault (indi-

cated by a square in Figure 5.15a) is drawn in detail in Figure 5.15b. The presence

of chemical long-range order is evident from the power spectrum of the high res-

olution TEM image, showing {100} superlattice reflections (cf. Fig. 5.15d). To

enhance the visibility of the ordered domains, a Fourier filtered image using only

two (100) superlattice reflections (marked in Figure 5.15d) is presented in Figure

5.15c. Therefore, the results show that chemically ordered domains are separated

by sharp APB faults. This result is in good accordance with that of dark-field

images (cf. Fig. 5.14d) showing densely and homogeneously distributed nanosized

ordered domains of similar size deduced from electron diffraction results.

The results of the present study can be compared with the results of DSC mea-

surements (cf. Fig. 5.1) revealing that the heating induced growth of the ordered

domains starts at temperatures of about 130◦C and continues up to 370◦C. For com-

parison in-situ neutron diffraction experiments of mechanically milled Fe-30at%Al

indicate that the growth of the ordered domains starts at considerably larger tem-

peratures of 340◦C [Apinaniz03]. Furthermore, it should be pointed out that the

process of reordering by growth of the chemically ordered domains as encountered

in the present study is different to the change of the long-range order parameter

that takes place in other B2 structured alloys that have an order-disorder transition

below the melting temperature (e.g. CuZn [Shewmon69]).

It should be pointed out that in the present case it is safe to assume that the

structure of the ordered nanodomains in the as-deformed samples is hardly in-

fluenced by the temperature rise caused by the HPT deformation. Based on the

experimental conditions and the experimental findings it is concluded that this tem-

perature rise is less than 30 K. The reasons are as follows: (i) The speed of the HPT

deformation is low (5 min/revolution). (ii) The surface temperature of the anvils of

the HPT sample stays at room temperature. Assuming that the total deformation

energy turns into heat, the calculated temperature rise of the sample is well below
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Figure 5.16: Evolution of the ordered domain size, the coherently scattering do-
main size and the grain size with temperature.

30 K at the present conditions. (iii) The fact that the domain structure of the

as-deformed sample is affected when they are stored at room temperature (several

months) indicates that the samples have not been exposed to a temperature much

above room temperature. (iv) In the samples deformed by HPT in the same way,

the change in the deformation-induced ferromagnetism indicates structural changes

when heated up to 50◦C [Mangler11]. However, when different conditions for the

HPT deformation are used, it is possible, that considerable heating of the samples

can occur as it was reported [Edalati09].

5.6 Grain Size Reduction by Heating

The complete TEM analysis leads to the following picture of recrystallization in

HPT deformed FeAl. Figure 5.16 shows the evolution of the ordered domain size,

the CSD size and the grain size with temperature. From these results a schematic

model of the different processes occurring in the course of grain size reduction was

developed. Figure 5.17a shows the situation prior to heating: One grain (large-

angle grain boundaries are indicated by thick black lines) is separated into two

subgrains by a small-angle grain boundary (indicated by the dashed line). The

small-angle grain boundary is formed by dislocations. The subgrains are divided
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Figure 5.17: Schematic model of the different processes occurring in the course of
grain size reduction. (a) Prior to heating a grain (thick black lines) is separated into
two subgrains by a small-angle grain boundary (indicated by the dashed line). The
subgrains are divided into small ordered domains (grey lines). (b) Upon heating a
coarsening of the ordered domains occurs. The growth of only one ordered domain
is shown schematically. Some dislocations annihilate (indicated green), but oth-
ers (indicated in blue and red) are moved by the APB into the grain and subgrain
boundaries. The dislocations indicated with a superscript are incorporated into the
subgrain boundary thus increasing the dislocation density at the subgrain boundary
and increasing the tilt angle thus transforming it eventually into a large-angle grain
boundary (c).



122 5 Thermal Stability of Nanocrystalline FeAl

into small ordered domains by APB (grey lines) and contain a large density of

dislocations that interact with the APB. Heating leads to a drastic growth of the

ordered domains, but the grain and subgrain size stays about constant. This means

that the temperature is well below the temperature at which grain growth starts.

As the dislocations strongly interact with the APB, movement of the APB and

dislocations are coupled. Figure 5.17b shows schematically the growth of one or-

dered domain. Some dislocations annihilate (indicated green), but others (indicated

in blue and red) are moved by the APB into the grain and subgrain boundaries.

The dislocations indicated with a superscript are incorporated into the subgrain

boundary thus increasing the dislocation density at the subgrain boundary and

increasing the tilt angle. This process does not just occur for one ordered domain

but across the entire grain. By this process, once there are enough dislocations

in the subgrain boundary, the subgrain boundaries can transform into large-angle

grain boundaries (cf. Fig. 5.17c). Due to this mechanism it is possible that starting

from large grains containing a high dislocation density, APB and sub-grain bound-

aries, recrystallization leads to smaller, fully ordered grains that are almost free of

dislocations.

Annealing metals usually leads to the rearrangement of dislocations and to the

annihilation of dislocation of opposite sign, further annealing leads to grain growth.

The situation presented here is different. Dislocations do not only move through a

thermal activation, but their movement is coupled very strongly to the movement of

the APB. As FeAl shows a strong tendency to reorder, this leads to the movement

of dislocations already at very low temperatures, far below the temperature where

grain growth starts to occur. As the energy of the APB acts as strong driving force

for the rearrangement of dislocations dislocations of the same sign move into the

subgrain boundaries and low energy dislocation structures are formed. Thus it can

be concluded that grain size reduction by thermal annealing is possible for SPD

deformed intermetallics with a high ordering energy if a heating treatment below

the temperature of grain growth is applied.
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“Give me four parameters and I can fit an elephant, give me five and I

can make him wiggle his trunk.”

– John von Neumann

6.1 Kinetics of the Vacancy Diffusion

The reordering of a solid takes place by diffusion, i.e. by the change of lattice places

of atoms or vacancies. The simplest diffusion process is the interchange between

a vacancy and an atom. Figure 6.1 shows the evolution of the energy during the

jump of an atom into a vacancy. At the lattice positions the atom has its energy

minimum, while during the jump it has to cross an energy barrier. Atoms in a

solid constantly oscillate around their equilibrium position. The mean frequency of

atomic vibration is called attempt frequency ν0 and can be approximated well by

the Debye frequency (≈ 1013 s−1). The atom can pass the energy barrier ∆E only

if its energy is large enough. The Boltzmann factor determines the probability for

the atom to have an energy E at the temperature T

P (T,E) = exp

(
− E

kB · T

)
, (6.1)

where kB denotes the Boltzmann constant. Successful jumps of atoms can be

determined by multiplying the attempt frequency and the probability for the atom

to overcome the barrier, leading to the following jump frequency

ν = ν0 · exp

(
− ∆E

kB · T

)
. (6.2)

The process of diffusion is usually described as the movement of vacancies through

the solid and the energy barrier is called vacancy migration enthalphy HM
V . Other
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Figure 6.1: Schematic representation of the change of lattice place of an atom with
a vacancy. At the lattice position the atom is in an energy minimum. During the
jump the atom has to overcome an energetically unfavourable position until return-
ing again to a lattice position.

diffusion processes like the the direct exchange of two neighbouring atoms are very

unlikely in solids.

6.2 Reordering via Ordering Jumps

In a statistically disordered material, disorder means that some Fe-atoms occupy

Al-lattice position and vice versa (cf. chapter 1.1.2). As the atoms cannot change

place with their neighbours, a vacancy is used to order the material by moving the

atoms onto the correct sublattice. To reorder the material the vacancy has to meet

an atom that is sitting on the wrong lattice position. The fraction of atoms on

the wrong sublattice can be related to the order parameter using the relation (cf.

chapter 1.1.2)

pα,β = 1− pα,α =
1

2
(1− S). (6.3)

The jump frequency of a vacancy ν was derived in the previous chapter. For FeAl it

has to be taken into account that the energy barrier for a vacancy jump depends on

the local environment of the vacancy which depends on the order parameter. Using

the mean field-theory after Girifalco [Girifalco64] the vacancy migration enthalpy

can be expressed in terms of the order parameter S

HM
V = HM

V,S=0 + a · S2. (6.4)
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In total the rate of ordering jumps dS
dt (neglecting the factor 1

2) results in

dS(t)

dt
= (1− S(t)) · cV · ν0 · exp

(
−
HM
V,S=0 + a · S(t)2

kB · T (t)

)
, (6.5)

where cV denotes the vacancy concentration. It should be noted that this equation

takes into account only jumps that lead to a reordering of the material. Furthermore

jumps back to the wrong sublattice are ignored as they are energetically more

unfavourable.

The model was used by Reimann [Reimann02] to simulate the reordering in

nanocrystalline FeAl produced by ball-milling. The simulated long-range order

parameter S was fitted to values of S determined by XRD measurements. This

approach is very complicated, as it requires precise XRD measurements of many

samples annealed at different temperatures. In the diploma thesis [Gammer11d]

this model was adapted to describe the heat flow of the DSC. Due to the experi-

mental results obtained by TEM (cf. chapter 5.5) a new reordering model is derived

that is based on the coarsening of ordered domains.

6.3 Reordering via the Coarsening of Ordered Domains

6.3.1 Derivation of the Model

As shown in chapter 5.5, HPT deformed FeAl is not statistically disordered but

rather contains very small ordered domains (∼2 nm). The reordering does not

occur by atoms changing to the correct sublattice, but through the coarsening of

the ordered domains. As shown in Figure 6.2, a vacancy can shift the APB by

diffusion. Two APB can meet and annihilate or an APB can be pushed into a

grain boundary, leading to the coarsening of the ordered domains (cf. the TEM

images in Fig. 5.14 and the schematic drawing in Fig. 6.3).

The system can be described by the APB density ρAPB, but for simulation it is

easier to use the fraction of atoms in APB fAPB, a parameter without a unit. To

convert the APB density measured in m−2 to the fraction of atoms in APB it is

necessary to calculate the average spacing of the atoms in FeAl. The unit cell of

FeAl contains 2 atoms and therefore the average spacing can be calculated from

the lattice parameter d0/
3
√

2 = 2.28 · 10−10 m leading to

fAPB = 2.28 · 10−10ρAPB. (6.6)
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(c)

[100] [010]

Figure 6.2: Schematic representation of the shift of an APB by vacancy diffusion.
(a) shows an APB. (b) A vacancy moves along the APB shifting the atoms and
thus moves the APB. (c) The position of the APB is shifted by one atomic plane.
[Gammer11d]

Figure 6.3: Schematic representation of the coarsening of the ordered domains.
The grain is cut into small ordered domains by APB (gray lines). With increasing
temperature the APB annihilate leading to a growth of the ordered domains until all
APB have been annihilated.
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The movement of the APB can be best described by a random walk. Assuming

the APB have a distance of D atoms, then it takes D2 jumps for two atoms in

APB to meet and to annihilate. The average spacing of two APB is D = fAPB
−1

atoms. For the simulation it is easier to use the fraction of atoms not in APB

(fS = 1− fAPB) as parameter. Therefore on average

jumps

ordering jump
=

1

2
(1− fS)−2. (6.7)

In equation 6.2 the jump frequency was derived as

jumps

time
= cV · ν0 · exp

(
−

HM
V

kB · T

)
. (6.8)

Combining the expressions we get

dfS(t)

dt
=

ordering jumps

time
= 2(1− fS(t))2 · cV · ν0 · exp

(
HM
V

kB · T (t)

)
(6.9)

The fraction of APB will not be 100% after deformation. Instead there is a value

f0
S representing the fraction of atoms not in APB after deformation. This value

acts as boundary condition to the differential equation

fS(0) = f0
S . (6.10)

Furthermore it is expected that the vacancy concentration after deformation is

much higher than the equilibrium concentration. Therefore a dynamic vacancy

concentration cV (fS(t)) is used. The initial vacancy concentration c0
V is taken as

free parameter, while for the equilibrium vacancy concentration a value of ceqV =

3 · 10−6 is used. Assuming a linear decrease with fS and taking into account the

starting value of fS leads to

cV (fS) = c0
V +

fS − f0
S

1− f0
S

· (ceqV − c
0
V ). (6.11)

To convert dfS(t)
dt to a heat flow W (t) it is necessary to calculate how many joules

are in a gram of FeAl that is completely filled with APB. As can be seen from the

density, one gram of FeAl corresponds to (5.80 · 106)−1m3, which can be converted

to an area of (5.80 · 106 · 2.28 · 10−10)−1m2. Multiplying with an APB energy of
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γ = 0.3 Jm−2 [Westbrook00a] yields a value of c = 226 J/g. Furthermore the

following correspondence can be derived

W (t) = c · dfS(t)

dt
. (6.12)

The average radius of the ordered domains can be derived by assuming spherical

ordered domains. The fraction of surface to volume yields 6
d , or rather 3

d as one

surface of a sphere always counts for two ordered domains. Converting the fraction

of atoms into a length measure we yield

dord = 3
2.28 · 10−10

fAPB
m. (6.13)

For the most general case any temperature program T (t) can be used in the

differential equation (cf. equation 6.9), but in the following only two special cases

will be regarded. Firstly a isothermal annealing at a temperature T0. In this case

the model reads

dfS(t)

dt
= 2(1− fS(t))2 · cV (fS(t)) · ν0 · exp

(
−HM

V

kB · T0

)
(6.14)

and in the case of isochronal heating with a heating rate T (t) = h · t

h · dfS(T )

dT
= 2(1− fS(T ))2 · cV (fS(T )) · ν0 · exp

(
−HM

V

kB · T

)
. (6.15)

6.3.2 Parameters

In the following we will fit the model to a isochronal DSC-curve. Summarizing the

model we get

h · dfS(T )

dT
= 2(1− fS(T ))2 · cV (fS(T )) · ν0 · exp

(
−HM

V

kB · T

)
W (T ) = c · h · dfS(T )

dT
(6.16)

fS(0) = f0
S

The differential equation was solved using the software MAPLE™. A summary of

variables and fit parameters used in the model is given in the following table:
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variables

W heat flow

fS = (1− fAPB) fraction of atoms not in APB

T temperature

constants

kB = 8.6 · 10−5 eV Boltzmann constant

ν0 = 1013 s−1 attempt frequency

c = 226 J/g specific energy of FeAl completely filled with APB

h = 20 K/min heating rate (can be changed)

ceqv = 3 · 10−6 equilibrium vacancy concentration

fit parameters

HM
V vacancy migration enthalpy

c0
V vacancy concentration after deformation

f0
S fraction of atoms not in APB after deformation

6.3.3 Influence of Parameter Changes

In the following the influence of a parameter change on the model will be discussed.

There are three fit parameters: HM
V , c0

V and f0
S . Two fit parameters will be kept

fixed while the third is varied. The simulated heat flow, ordered domain size and

APB density will be compared for the different parameter values.

Figure 6.4a shows the influence of the change of the vacancy migration enthalpy

HM
V on the simulated heat flow. This parameter has a very strong effect on the

peak temperature. Furthermore the width of the peak increases with increasing

HM
V . This behaviour is reasonable, an increase in the energy barrier for the vacancy

jump means that a higher temperature is needed for vacancy diffusion to take place.

The evolution of the ordered domain size and the APB density also reflects the shift

to higher temperatures (cf. Fig. 6.4b+c).

The influence of the vacancy concentration c0
V on the simulated heat flow is

shown in Figure 6.5a. Again a change of the parameter has an influence on the

peak temperature; increasing the vacancy concentration leads to a decrease of the

peak temperature. But in the case of the vacancy concentration the effect on the

peak width is much stronger than in the case of the vacancy migration enthalpy

leading to a strongly increased peak width with decreasing vacancy concentration.

The reason is that decreasing the vacancy concentration slows down the reordering

process because there are less vacancies to move the APB. The simulated APB
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density and ordered domain size reflects this result (cf. Fig. 6.5b+c).

The initial fraction of atoms not in APB, i.e. the initial ordered domain size, is

changed in Figure 6.6. The simulated heat flow is shown in Figure 6.6a. Increasing

the initial ordered domain size leads to a decrease in the area of the peaks. This

can be explained as the area under the curve represents the energy of the total

amount of APB in the material. Some shift of the peak position and an increase

of the peak width can also be observed, but not in such a strong manner as in

the case of the previous parameters. Figure 6.5b+c shows that the initial ordered

domain size and initial APB density is changed but the curves approach at higher

temperatures.

It is interesting to note that the variation of all the parameters has only little

effect on the asymmetry of the heat flow peak. In all cases the fraction of the area

before the maximum is 38.5±0.4%. The problem contains three parameters and

the heat flow shows three very distinct features (the position of the maximum, the

peak width and the area of the peak), therefore fitting the model to a DSC curve

works well. The initial fraction of APB can be estimated very precisely from the fit,

because a small change has a strong effect on the area and thus height of the peak.

An estimation yields an error of about 5% when fitting to a DSC curve (assuming

an error in the DSC curve of 0.1 mW and a sample mass of 10 mg). As the vacancy

concentration and the vacancy migration enthalpy act differently on the width and

position of the peak in the heat flow, it is possible to fit them simultaneously.

A change in the vacancy migration enthalpy has a big effect and thus it can be

concluded that HM
V can be determined with a very high precision (about 2% error).

Changing the vacancy density has less effect and thus the precision is lower (about

10% error).

6.4 Fitting the Model to a DSC Curve

The fit parameters (HM
V , c0

V , f0
S) were varied until the simulated heat flow gave the

best correspondence to an experimental DSC curve of HPT deformed nanocrys-

talline FeAl. As shown in chapter 5.1, there are three distinct processes giving rise

to the exothermic signal in the DSC curve (cf. Fig. 5.6). For the fit the first peak

was used, as it can be attributed to the reordering process. Figure 6.7 shows the

best fit. The following values were determined for the fit parameters (the errors

are estimated from the parameter dependence):
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Figure 6.4: (a) Dependence of the simulated heat flow on the vacancy migra-
tion enthalpy HM

V . (b) Simulated ordered domain size and (c) APB density in de-
pendence on HM

V . An increase in HM
V leads to a shift of the reordering to higher

temperatures. The remaining parameters were kept fixed during the simulations
(c0V =10−2, f0S=0.67).
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Figure 6.5: Dependence of (a) the simulated heat flow, (b) the ordered domain size
and (c) the APB density in dependence on the vacancy concentration after deforma-
tion c0V . An increase in c0V leads to a shift of the reordering to lower temperatures
and to a strongly reduced peak width. The remaining parameters were kept fixed
during the simulations (HM

V =1.04 eV, f0S=0.67).
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Figure 6.6: (a) Simulated heat flow, (b) ordered domain size and (c) APB density
in dependence on the initial fraction of atoms that are not in APB f0S . Changing f0S
changes the initial APB density and initial ordered domain size. In the simulated
heat flow the area under the peak decreases with increasing f0S . The remaining pa-
rameters were kept fixed during the simulations (HM

V =1.04 eV, c0V =10−2).
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Figure 6.7: Fit of the reordering model to an experimental DSC curve of HPT de-
formed FeAl. Only the first peak was taken into account for the fit because it repre-
sents the heat flow caused by the reordering process.

parameter value

cV (2± 0.5) · 10−3

HM
V 1.04± 0.02 eV

f0
S 0.67± 0.01

Figure 6.8 shows the evolution of the ordered domain size with temperature. The

simulation was done using the parameters from the fit. The simulation is compared

to the values of the ordered domain size obtained experimentally in chapter 5.5. For

HPT deformed FeAl measured directly after deformation and after heating to 170°C
there is a good accordance between the simulation and the experimental data. It

should be noted that for the initial ordered domain size there is a perfect agreement

strongly supporting the assumption of disordering by APB. The ordered domain

size measured for the sample heated to 220°C is significantly smaller than the result

from the simulation. This is not surprising, as the model presented here takes only

into account APB but not dislocations and other effects. In chapter 5.6 it was shown

that the APB and the dislocations interact. While before around 200°C heating

leads to a reordering by the coarsening of the APB only, at higher temperatures the
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Figure 6.8: Simulated ordered domain size in dependence of temperature. The
simulation is compared with experimental data taken from chapter 5.5. While the
model shows a good accordance at low temperatures, where purely reordering takes
place, a deviation can be observed at higher temperatures.

movement of the APB starts to be strongly hindered by dislocations and small-angle

grain boundaries slowing down the reordering process.

The evolution of the APB density with temperature is shown in Figure 6.9. The

initial density is very high due to the severe plastic deformation. Heating leads to

a rapid decay of the APB density. At higher temperatures the decay slows down

as the APB need to travel a larger distance to annihilate.

6.5 Fitting the Model to a DSC Curve of an Annealed Sample

It is also possible to fit the model to the DSC curve of nanocrystalline FeAl that

was preannealed. When the sample is annealed, the ordered domain size grows and

therefore an other starting value for the fS has to be used. This means that in

equation 6.16 the boundary condition changes to

fS(0) = f∗S , (6.17)

where f∗S is the fraction of atoms not in APB after the annealing treatment. (It

should be noted that in the expression for the vacancy concentration, f0
S still rep-

resents the value directly after deformation because c0
V also represents the vacancy
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Figure 6.9: Simulated APB density in dependence of temperature. Initially the
density is very high due to the severe plastic deformation but drops quickly when
increasing the temperature.

density after deformation.)

To determine f∗S the reordering model is used to calculate fS for the specific

treatment. Heating to 220°C leads for example to f∗S = fS(220◦C). More compli-

cated annealing programs containing multiple isothermal and isochronal steps can

be solved by using the corresponding models after each other.

To check the reliability of the model two samples were used, one annealed at

185°C and a second one annealed at 220°C. For the annealing treatment a DSC

was used. The samples were heated to the desired temperature with a rate of

20 K/min followed by an annealing step for 10 minutes and subsequently cooled

back to room temperature with 20 K/min. While directly after deformation fS is

0.67, after annealing at 185°C it rises to f∗S = 0.957. Annealing at 220°C decreases

the APB density even more leading to a f∗S = 0.983.

Figure 6.10 shows the DSC curves of the annealed samples and the corresponding

simulated heat flow. It is important to note that for the simulations no parameters

were adjusted. The parameters used are those obtained in chapter 6.4 and the

boundary condition f∗S was obtained from solving the model. The onset of the
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Figure 6.10: DSC curves of HPT deformed FeAl samples annealed for 10 minutes
at 185°C and at 220°C. The simulated curves were obtained using the parameters
determined in chapter 6.4 without adjusting any free parameters. The onset of the
curves is represented well by the simulations, but there is a big difference in the area
of the curves that can be explained because of the heat flow coming from recovery
and grain growth taking place after 220°C.

curves is represented well by the simulations. The big differences between the DSC

curves and the simulations can be explained because recovery and grain growth

take place after 220°C (cf. Fig. 5.6).

6.6 Comparison of the Values with Literature Data

In the following the parameters determined from the model are compared with

values from the literature. A vacancy concentration of 10−4 is typically observed

in metals close to the melting temperature. In FeAl the situation is quite differ-

ent, vacancy densities as high 5 · 10−3 can be reached after quenching from the

melt [Jordan03]. During severe plastic deformation and especially HPT deforma-

tion it is assumed that a very high vacancy concentration is reached [Sauvage05].

In this light the value of 2 · 10−3 determined in this work is realistic.

For highly deformed materials, vacancy densities > 10−3 cannot be determined

experimentally. In positron annihilation vacancy concentrations in the range of

around 10−6 to 10−3 can be measured [Krause92]. To determine quenched-in ther-

mal vacancies there are other experimental methods, e.g. the measurement of
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density changes. These methods are not applicable to deformed materials, as de-

formed materials usually contain a wide range of different kinds of defects that

cannot be separated from each other. Therefore the possibility to measure the va-

cancy concentration in intermetallic compounds by fitting a reordering model to a

DSC curve gives very valuable insight into HPT deformed materials.

The fraction of atoms not in APB after deformation of 0.67 is best expressed as

an ordered domain size of 2.07 nm. This value is plausible as shown in the TEM

investigations (cf. chapter 5.5) but it is not possible to compare the value with

literature data from ball-milled FeAl, as the disordering by APB was not described

in the literature prior to this work.

When comparing the vacancy migration enthalpy HV
M with literature data, it is

important to remember that HV
M strongly depends on the order parameter S. A

review of experimental values measured for FeAl is given in [Jordan03] and most

measured values lie around 1.7 eV. The significantly lower value of 1.04 eV measured

in this work can be explained as the vacancies have to move along the APB rather

than through the ordered material. Therefore the value determined here represents

the value for disordered FeAl.

6.7 The Effect of Pressure on the Reordering

In a next step the reordering of FeAl under pressure is investigated. When a

hydrostatic pressure p is applied to the sample the vacancy migration is hindered,

because the enthalpy increases to

HM
V + p · VM

V . (6.18)

Here VM
V denotes the vacancy migration volume, i.e. the volume change during the

migration jump.

Figure 6.11 shows DSC curves of HPT deformed FeAl samples that were annealed

for 10 minutes at 220°C, one sample was annealed at ambient pressure, one at 4 GPa

and one at 8 GPa. The annealing under pressure was done using the HPT machine.

For the hydrostatic pressure the sample was compressed between the HPT anvils

and heating was achieved by a induction coil while the temperature was measured

using a pyrometer.

The DSC curves of the samples annealed under pressure show an onset at lower

temperatures as compared to the sample annealed at ambient pressure. This can
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Figure 6.11: DSC curves of HPT deformed FeAl that was annealed at 220°C un-
der various hydrostatic pressures. With increasing pressure the onset is shifted to
lower temperatures. The reason is that due to the increase of the vacancy migration
enthalpy with pressure, the reordering during annealing is slowed down. The fits of
the reordering model to the DSC curves were used to determine the change in the
vacancy migration enthalpy.

be explained as the reordering under pressure is more difficult. Therefore less

reordering is achieved, i.e. a smaller f∗S is reached. As shown in Figure 6.6 a

smaller initial fS leads to an onset of the heat flow at lower temperature.

The fraction of atoms not in APB after annealing under pressure f∗S was deter-

mined by fitting the reordering model to the DSC curves (cf. Fig. 6.11). In the fit

it was tried to reach a good agreement to the onset. The area of the curve was not

taken into account as in this temperature region the heat flow due to relaxation

and grain growth starts to be of importance. For the sample annealed at 8 GPa

a value of f∗S = 0.95 was determined and for that annealed at 4 GPa a value of

f∗S = 0.96. These values are smaller as compared to the value simulated for the

sample annealed at ambient pressure f∗S = 0.983 (cf. chapter 6.5). It is interesting

to note annealing at 220°C under a pressure of 8 GPa has about the same effect

as annealing at a considerably lower temperature of 185°C at ambient pressure

(f∗S = 0.95 and 0.957 respectively).

After determining the vacancy migration enthalpy in dependence of the pressure

it is possible to determine the vacancy migration volume. Figure 6.12 shows a plot

of p·VM
V against p. From a linear fit VM

V was determined to be 0.013±0.002 eV/GPa

or (2.1±0.3)·10−30 m3. Expressing the volume in terms of the average atom volume
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Figure 6.12: Plot of the change in the vacancy migration enthalpy due to the hy-
drostatic pressure p · VM

V in dependence of the pressure p. The points should lie on a
straight line where the slope corresponds to the vacancy migration volume VM

V . The
line represents a linear regression that was used to determine VM

V .

Va yields

VM
V = (0.175± 0.025) · Va. (6.19)

This value is in the range expected for vacancy migration volumes. A value of

0.15 · Va was reported in the case of gold [Emrick61] and aluminium [Mendelev07].

Measurements of VM
V in ordered Fe39at.%Al by positron annihilation report a value

as high as 4.6 ·Va [Müller00, Müller01]. This value is explained by a complex diffu-

sion process in the ordered compound and by divacancies. The value determined in

the present work on the other hand is linked to single vacancy jumps in the APB.

6.8 The Effect of Unloading

The possibility to determine the vacancy concentration indirectly from the reorder-

ing behaviour allows to study the vacancy concentration after the HPT deforma-

tion. HPT deformation is carried out under a very high pressure, therefore the

defect concentration and especially the vacancy concentration that can accumulate

is much higher than in conventional deformation processes, because annihilation is
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Figure 6.13: Experimental setup for the determination of the vacancy concentra-
tion in HPT deformed FeAl before and after unloading. While in (a) a sample is de-
formed and annealing is performed without unloading, in (b) the sample is unloaded
before annealing thus allowing vacancies to leave the material. The difference in the
vacancy concentration can be determined as it has an effect on the reordering during
annealing.

more difficult under pressure. It is expected that a lot of non-equilibrium vacan-

cies are lost upon unloading. Therefore it is of interest to compare the vacancy

concentration in HPT deformed FeAl before and after unloading.

Figure 6.13 shows the experimental setup used to study the effect of unloading.

In a first experiment HPT deformation is carried out followed by an annealing

treatment at 220°C without releasing the pressure (cf. Fig. 6.13a). In the second

experiment the sample is unloaded after deformation. Upon unloading the vacancy

concentration decreases. After unloading, the sample is loaded again and the an-

nealing is performed in the same way as in the previous experiment (cf. Fig. 6.13b).

Therefore, the only difference is the unloading step and thus the change in vacancy

concentration.

In Figure 6.14 the resulting DSC curves are shown. The DSC curve of the sample

annealed at 8 GPa after unloading was already shown in Figure 6.11. The onset
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of the DSC curve of the sample not unloaded before annealing shows a shift to

higher temperatures. The reason for that is the higher vacancy concentration after

deformation c0
V causing a higher reordering and at the given pressure thus a higher

f∗S . As shown in Figure 6.6 a bigger initial fS shifts the onset of the heat flow to

higher temperatures. To quantify the change, a model with an increased vacancy

concentration was fitted to the DSC curve of the sample that was not unloaded

(the higher vacancy concentration has to be used also for modelling the annealing

treatment). The onset of the fitted curve is reproduced well by the modelled heat

flow. From the fit the vacancy concentration prior to unloading was determined

c0
V (prior to unloading) = 4.3 · 10−3.

This value is about a factor 2 larger than the value determined after unloading

(2·10−3), meaning that about half of the vacancies leave the sample upon unloading.

It is important to note that vacancies leaving the sample upon unloading do not

participate in the reordering as they use fast pathways such as dislocation networks

and end up very quickly in sinks. To check the effect of the unloading time two

samples were annealed under pressure. One that has been unloaded for 1 second

and one that has been unloaded for 1 hour. No difference was visible between the

samples and therefore it can be concluded that the vacancies leave the sample very

quickly after unloading.

The role of hydrostatic pressure and the effect of unloading is a widely discussed

issue in the field of SPD and especially HPT deformation [Zehetbauer03]. Recently

synchrotron experiments of deformed Cu samples frozen in liquid nitrogen prior

to unloading have shown a considerable effect of the unloading on the microstruc-

ture [Schafler10, Schafler11]. In the present result, the vacancy decrease upon

unloading and the slowed down vacancy migration were verified experimentally.

This results give new insight into the effect of the hydrostatic pressure.
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Figure 6.14: DSC curves of HPT deformed FeAl that was annealed at 220°C un-
der a pressure of 8 GPa. One curve was obtained from a sample unloaded prior to
annealing while the other sample was not unloaded. The onset of the DSC curve of
the sample that was not unloaded is shifted to higher temperatures. The higher va-
cancy density prior to unloading leads to an increased reordering during annealing
(and thus to a higher f∗S). A fit of the reordering model to the curves is shown. It
was used to determine the vacancy concentration prior to unloading.
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“It’s more fun to arrive at a conclusion than to justify it.”

– Malcolm Forbes

Transmission electron microscopy (TEM) is a valuable tool for the structural

characterization of bulk nanocrystalline materials produced by severe plastic defor-

mation (SPD). In the present work, by applying state-of-the-art and newly devel-

oped TEM methods combining imaging and diffraction contrast, an in-depth struc-

tural analysis of nanostructured FeAl is obtained. Profile analysis using selected

area diffraction patterns (PASAD) is successfully applied for a quantitative analysis

of nanocrystalline FeAl. In addition PASAD is applicable to various nanomateri-

als. A selected area diffraction pattern is recorded from the area of interest that is

selected in TEM images at high magnifications. The large amount of nanograins

present in the selected area aperture gives rise to a ring pattern in the diffraction

plane. An intensity profile can be obtained from the ring pattern by azimuthal in-

tegration. Key microstructural parameters can be determined from the diffracted

intensity by profile analysis as it has been done previously only for X-ray diffrac-

tion. A state-of-the-art profile analysis using the modified Williamson-Hall plot

was carried out to get the coherently scattering domain (CSD) size. Diffraction

patterns were recorded on a 7 megapixel CCD-camera, allowing to obtain diffrac-

tion profiles up to very high angles. In order to achieve a high precision, computer

assisted routines for the centre determination, the azimuthal integration and the

peak fitting were developed. To make the method widely available, an elaborate

software with more than 7500 lines of code was written and implemented as a plu-

gin for DigitalMicrograph. The software has an intuitive graphical user interface

and was released for free to the community.

The B2 ordered intermetallic Fe-45at.%Al alloy was made by induction melting

from pure components and was grown to a single crystal using a modified Bridgman

method. Slices of the single crystal were deformed by high pressure torsion (HPT)
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to achieve a nanocrystalline structure. Samples were cut from the deformed disks

and thinned for the TEM investigations using twin-jet electropolishing. In the case

of FeAl, the evolution of the nanocrystalline structure occurs in an inhomogeneous

way. In the beginning of the deformation narrow bands (∼300 nm wide) containing

a nanocrystalline structure are observed. With increasing shear strain γ the volume

fraction of the nanocrystalline material increases until at γ > 5000% the whole

volume of the specimen is nanocrystalline. PASAD was used to determine the

evolution of the CSD size in the small nanocrystalline regions that are formed

during deformation. As a main result it was found that the CSD size is not changing

as a function of strain, which is rather unexpected. It should be pointed out that

the result obtained in the case of the band-shaped nanostructure could only be

obtained by using a local profile analysis as developed in this work. In the case of

the homogeneously nanocrystalline sample, the results were compared with those

of X-ray diffraction showing a good agreement.

To analyse nanocrystalline structures quantitatively in 3D a novel method was

developed based on electron diffraction. It allows to reconstruct the average size

and morphology of the CSD in a straightforward way using a single TEM specimen.

PASAD is applied using different tilt positions of the sample. As a result the average

CSD size in three orthogonal directions is obtained. This is achieved by integrating

over the corresponding sector of the diffraction rings. Standard tomography can

not be applied to the analysis of bulk nanocrystalline materials since the contrast

of the grains sensitively depends on the tilt of the specimen. Contrary to that the

present method can be successfully applied to bulk nanocrystalline materials, as

shown in the case of nanocrystalline FeAl, where the average size of the CSD was

determined in 3D. It was deduced that the CSD are elongated parallel to the shear

plane, having a width of 19±2 nm, a length of 18±1 nm and a height of 10±1 nm.

A comparison with TEM images obtained from cross-section samples showed that

the dimensions of the average CSD are smaller and less elongated than those of the

grains indicating the occurrence of subgrain boundaries.

To study the thermal stability, methods of TEM and differential scanning calorime-

try (DSC) were applied to nanocrystalline FeAl. The signal obtained from an

isochronal DSC measurement shows three overlapping exothermic peaks. The three

exothermic peaks correspond to reordering, the recovery of dislocations and grain

growth. For a systematic TEM study samples were heated to different tempera-

tures.
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It was reported in the literature that in FeAl the B2 long-range order is lost during

SPD. In contrast the present work revealed that the disorder is not complete. The

partial destruction of the long-range order in FeAl caused by HPT deformation

and the process of reordering by heating were analysed in detail. TEM methods

combining the findings of diffraction contrast (using PASAD), dark-field images

(taken with both fundamental and superlattice reflections) and high resolution

images (including Fourier filtered images of selected superlattice reflections) were

used. For ordered domains >3 nm diffraction methods can be applied to determine

the size of the ordered domains whereas for smaller ordered domains TEM dark-

field images with superlattice reflections have to be used to reveal the ordered

domains clearly. It was shown that by HPT deformation ordered nanodomains

of about 2 nm (the typical length scale of medium range order) are formed. The

nanodomains, separated by antiphase boundaries (APB), are densely packed and

homogeneously distributed within the grains. Upon heating, reordering occurs by

the coarsening of the nanodomains until the ordered domains reach the size of the

grains. The deformation induced disordering by nanodomains separated by sharp

APB is different from a thermally induced one occurring in other alloys with a

order-disorder transition.

Thermal treatment does not only lead to chemical reordering, but also to the

recovery of dislocations and the rearrangement of grain boundaries. To study these

processes, the ordered domain size, the CSD size and the grain size were monitored

at the same time during annealing. The grain size was determined from dark-

field images, while the CSD size was determined by PASAD. Using diffraction

pattern reconstruction from dark-field images it was shown that the grains of the

as-deformed state contain substructures separated by small-angle grain boundaries.

Annealing up to 220◦C leads to reordering by the growth of nanosized ordered

domains. The dislocation density is reduced while the grain and subgrain size

stays constant. The movement of the dislocations is linked to the movement of the

APB. Annealing further to 370◦C leads to a reduction in grain size by a factor of

2, while the CSD size increases by a factor of 2 and the ordered domain size by a

factor of 15. Diffraction pattern reconstruction revealed that only large-angle grain

boundaries are present in the annealed sample. The grain size reduction is explained

by the following model: A high density of dislocations is present in the sample

after SPD. The coarsening of the ordered domains acts as a driving force moving

the dislocations to the subgrain boundaries and the large-angle boundaries thus
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converting the subgrain boundaries into large-angle boundaries. The reordering

starts at temperatures as low as 130◦C. Therefore the driving force is effective at a

temperature below the temperature at which the dislocations annihilate by climb.

Furthermore, the present results help to clarify a widely discussed discrepancy

between the grain size and the crystallite size (equal to the CSD size). Both values

were measured in the TEM from the same regions of the sample. In the case of

as-deformed FeAl the CSD size is smaller or equal than the grain size, because the

nanograins contain subgrain boundaries, but they approach a common value upon

heating. This leads to the result that the crystallite size is smaller than the grain

size.

Based on the coarsening of the chemically ordered nanodomains, a model for the

reordering process was developed that can be fitted to the exothermal heat flow

measured by DSC using a constant heating rate. From the results of the modelling

the vacancy migration enthalpy, the vacancy concentration after deformation, the

APB density after deformation and their effects on the reordering process were

determined. From the APB density after deformation an ordered domain size of

2 nm was deduced, which is in good accordance with the value measured by TEM

investigations. The rather low vacancy migration enthalpy of 1.04 eV represents

the value for disordered FeAl as the vacancies have to move along the APB rather

than through the ordered material. A high vacancy concentration of 2 · 10−3 was

obtained as it is expected after HPT deformation. The present model allows to

determine important macroscopic parameters in intermetallics, e.g. the vacancy

densities after SPD, which are usually very difficult to measure experimentally.

Applying the model to a sample that was preannealed also allows to determine the

APB density after the annealing treatment.

An extended model was used to investigate the reordering of FeAl under pressure.

When a hydrostatic pressure is applied to the sample the vacancy migration is

hindered because the vacancy migration enthalpy increases. To anneal the samples

under high pressures, a heating element was mounted on the HPT machine. It

was shown that the APB density after annealing at 220°C changes when pressure

is applied during the heat treatment. The higher the pressure, the less reordering

is achieved. This can be explained by the fact that processes of reordering under

pressure are hindered as compared to those occurring without pressure. By applying

different pressures it was determined that the vacancy migration volume is 17.5%

of the average atom volume. This value is in the range that is expected for vacancy
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migration volumes.

The possibility to determine the vacancy concentration from the reordering be-

haviour allows to study the effect of pressure release on the vacancy concentra-

tion. HPT deformation is carried out under a very high pressure, therefore the

defect concentration and especially the vacancy concentration that can accumulate

is much higher than in conventional deformation processes. It is expected that a

large fraction of the non-equilibrium vacancies is lost upon unloading. To compare

the vacancy concentration in HPT deformed FeAl before and after unloading, HPT

deformation was carried out followed by an annealing treatment at 220°C without

releasing the pressure. In a second experiment, the pressure was released and after

unloading the sample was loaded again and the annealing was performed in the

same way as in the experiment without unloading. From the fit the vacancy con-

centration prior to unloading was determined to be about a factor 2 larger than

the value determined after unloading. The role of hydrostatic pressure for HPT

deformation and the effect of unloading is widely discussed. In the present work,

the decrease of the vacancy concentration upon unloading and the reduced vacancy

migration were verified experimentally.
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