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ABSTRACT 

 
Modeling habitat suitability has become increasingly popular in conservational science and wildlife 

management in recent years. For a species of conservation interest as the black grouse this approach 

gives researchers and conservationists the opportunity to acquire a helpful management tool. In this 

study we used incidence data from black grouse surveys conducted in July-August 2011 along 51 

point-stop transects (mean length: 5.10 km) at the Natura 2000 site “Niedere Tauern” in Styria 

(Austria) to construct a habitat suitability model. Of 45 measured or estimated environmental variables 

only 16 variables, which proved to significantly affect black grouse occurrence, were further 

considered. After accounting for multi-collinearity, 10 variables remained for subsequent modeling. 

Effects of variables on black grouse occurrence were evaluated using a stepwise-forward and 

stepwise-backward model selection approach. Five explanatory variables significantly affecting 

occurrence of black grouse remained in the final generalized linear model: dwarf shrub cover, mean 

perimeter-area ratio (quantifying habitat heterogeneity within a 100 m radius), steepness of slope, 

topographical heterogeneity and distance to huts. Only for the last four variables GIS layers covering 

the whole study area were available. Therefore only these variables were subsequently used to 

calculate a habitat suitability map, which can be used as a preliminary tool to evaluate to what extent 

high quality habitat areas are covered by the currently designated area of the Natura 2000 site 

“Niedere Tauern”. 

 

 

Key words: alpine landscapes, black grouse, ecotones, habitat heterogeneity, habitat model, habitat 

suitability, logistic regression, Tetrao tetrix 
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INTRODUCTION 

 
Alpine landscapes are increasingly influenced by tourism such as winter sports and hiking (Patthey et 

al. 2008), and the abandonment of traditional agricultural use like grazing and cutting of mountain 

pine (Pinus mugo) changes the landscapes composition (Dullinger et al. 2003, Pearce-Higgins et al. 

2007). This combination of circumstances makes survival difficult for animals adapted to mountainous 

habitats, which in the past were characterized by extensive traditional land use and only slight human 

disturbance. Therefore, monitoring measures documenting changes in distribution patterns and 

population density have to be implemented to quantify the impact on alpine species. Additionally, 

habitat requirements of endangered species have to be identified to develop effective conservation 

strategies.   

When Austria became a member of the European Union in 1995, a significant data deficit regarding 

the national distribution and the conservation status of endangered species has led to several 

condemnations by the EU. Since borders of conservation areas were designated only based on 

literature not necessarily reflecting a species’ current distribution status, and the practiced hunting 

seasons were not in accordance with the Natura 2000 guidelines, conservation measures for 

endangered species proved to be insufficiently implemented, particularly in the remote alpine regions 

(Praschk 2004). This also holds for the black grouse (Tetrao tetrix). Most black grouse populations in 

Central Europe decreased in the last decades (Baines et al. 2000, BirdLife International 2011). 

Common reasons for the decline are habitat degradation, habitat loss, small population sizes, 

disturbance and predation (Storch 2000a). Especially human activities in winter months like skiing and 

snowshoe hiking aside of trails can be a serious threat (Patthey et al. 2008).  

In Austria the black grouse is included in the bird directive with the current IUCN Red List category 

of Least Concern (LC) (BirdLife International 2011). However, to maintain stable populations nature 

reserves have to be designated and adequate conservation measures (e.g. visitor management, wild 

sanctuary zones, hunting plans and adequate forest management) have to be implemented for 

endangered species, such as the black grouse, listed in Annex 1 of the bird directive (Ostermann 1998, 

Storch 2002). 

The black grouse is a species of ecotones such as transition zones between forest and steppe, moor, 

heath or mountain thicket. In alpine areas it inhabits larch and spruce dominated loose forests and 

alpine meadows with a high amount of dwarf shrub cover (Klaus et al. 1990, del Hoyo et al. 1994, 

Grant and Dawson 2005). As an umbrella species of alpine timberland ecosystems its survival can be 

seen elementary for the whole area (Glutz et al. 1973, Patthey et al. 2011).  

Several studies on habitat requirements of the capercaillie (Tetrao urogallus) were conducted in the 

last decade, inter alia to develop habitat suitability models for alpine populations of the species 

(Segelbacher and Storch 2002, Storch 2002, Graf et al. 2006)(Segelbacher and Storch 2002). By 
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contrast, to our knowledge, so far only one profound habitat model for an alpine population of black 

grouse was published (Schweiger et al. 2011). 

According to Morrison et al. (2006 p.10) a “Habitat... is an area with the combination of resources 

(like food, cover, water) and environmental conditions (temperature, precipitation, presence or 

absence of predators and competitors) that promotes occupancy by individuals of a given species (or 

population) and allow those individuals to survive and to reproduce”. In reality, it is impossible to 

measure or estimate all of the abiotic and biotic factors that potentially affect the occurrence of 

species, including the black grouse. For this reason habitat models based on a certain subset of such 

factors are used as tools in ecology, nature conservation and management. They establish relationships 

between a species occurrence and measured and estimated habitat variables and allow predictions of a 

species’ potential distribution as a function of current environmental conditions (Schröder and 

Reinecking 2004, Schweiger et al. 2011). According to Van Horne and Wiens (1991) a useful habitat 

model should satisfy three criteria: (1) It should be based on assumptions and mathematical functions 

that are logically sound and biologically relevant (2) it should be general and (3) simple and useable. 

The objective of this study was to identify habitat variables that best explain the occurrence of black 

grouse at the Natura 2000 site “Niedere Tauern”, embedded in the Important Bird Area “Niedere 

Tauern”, which contains a black grouse population with a minimum of 2,050 estimated males 

(BirdLife International 2011). A more detailed knowledge about the species’ habitat requirements in 

the area of „Niedere Tauern“ is an important precondition to evaluate its local conservation status 

according to the Natura 2000 framework. Furthermore, this case study may contribute a brick to our 

general understanding of the conservation needs for protecting the species’ alpine populations. 

Recent studies demonstrated that several habitat variables (e.g. dwarf shrub cover, alder, ground 

vegetation height) appear to affect the occurrence of grouse species (capercaillie and black grouse) on 

large spatial scales up to 1,000 m (Storch 2002, Angelstam et al. 2004, Graf et al. 2005). However, the 

focus of this study was on habitat parameters potentially affecting the occurrence of black grouse on 

smaller spatial scales of up to 200 m. We particularly tested to what extent variables which proved to 

be important predictors for the occurrence of black grouse in other regions are useful for modeling the 

species’ local distribution at the Natura 2000 site “Niedere Tauern”. For example, in other studies 

occurrence probability of black grouse was shown to be affected by habitat heterogeneity, the amount 

of dwarf shrub cover (especially blueberry) and the presence of anthills (Baines 1995, Ludwig et al. 

2000, Etzold 2005, Grant and Dawson 2005, Patthey et al. 2011, Schweiger et al. 2011). 
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METHODS 

Study area 

 
The Natura 2000 site “Niedere Tauern” is situated in Styria, Austria and has a size of 120.000 ha 

(Figure 1). Elevation ranges between 600 m a.s.l. at the major valley bottoms and 2,862 m a.s.l. at the 

summit of Mount Hochgolling. The study area is embedded between the Enns valley in the north and 

the upper Mur valley in the south. The area is spread over the mountain ranges Schladminger Tauern, 

Rottenmanner and Wölzer Tauern as well as the Seckauer Tauern (from west to east) (Praschk 2004). 

Annual precipitation ranges from 1,000-1,800 mm and rises towards higher altitudes (Pilger et al. 

2010). A total of 30% of the study area is covered by forest which corresponds to 36,000 ha. Main tree 

species are the Norway spruce (Picea abies), European larch (Larix decidua), Swiss pine (Pinus 

zembra), Mountain pine (Pinus mugo) and Green alder (Alnus viridis). The understory vegetation in 

the forested parts is beside dwarf shrubs dominated by grasses and ferns (own observation). The whole 

area is rich in dwarf shrubs like blueberry (Vaccinium myrtillus), lingonbeery (Vaccinium vitis-idea) 

and two species of alpine roses (Rhododendron ferrugineum, Rhododendron hirsutum). While in the 

forested parts browsing keeps the vegetation small, above the tree line dwarf shrubs are naturally 

much smaller and assorted with rocky patches (Dullinger et al. 2003). In the whole area extensive 

pasturing is pursued, mainly with cattle and horses during the summer months (Galaun et al. 2006). 

The “Niedere Tauern” used to be a poor region in the last centuries. Having not much industry and 

infrastructure, tourism is relatively new and the density of hiking trails and huts in the area is lower 

than in other parts of the Central Alps. Nevertheless, cross country skiing is becoming a big problem 

especially for grouse in the winter months (Arlettaz et al. 2007, Patthey et al. 2008, Nopp-Mayr and 

Grünschachner-Berger 2011). There is also an intensive forestry usage and many forest roads dissect 

the area. Furthermore, hunting activities are very high, in particular for red deer (Cervus elaphus), roe 

deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). Black grouse are hunted in small 

numbers during mating season. The numbers vary for each hunting district (Praschk 2004). 
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Figure 1: Maps showing the location of the Natura 2000 site ”Niedere Tauern” in Styria, Austria 

(small box) and the position of black grouse transects (red lines). 

 

Black grouse survey 

 

Black grouse were surveyed along a total of 51 transects (Figure 1) of 3.2-8.6 km length (mean  SD = 

5.1501.019 km) using the point stop method (Bibby et al. 1998, Storch 2002). Transects were 

selected to cover a substantial part of the study area between 1,600 and 2,100 m a.s.l. reflecting the 

major altitudinal distribution range of the species at Niedere Tauern (own data, unpublished). 

Furthermore, transects and survey points were situated to consider all habitat quality categories of an 

existing expert model which will not be further considered in this study (for more information see 

Galaun et al. 2006). Variables classified as important for black grouse by the expert model, were half 

open landscapes, hilly terrain with wide hillsides, well developed dwarf shrub cover dominated by 

Ericaceae, softwood for winter feeding and snow cover (Galaun et al. 2006). 

Each transect connected about 9-19 points (meanSD = 145 points) with a minimum distance of 300 

m between points. Besides considering the habitat quality categories of the existing expert model 

(Galaun et al. 2006), points were randomly placed with the restriction of topographic accessibility. 

Each transect point was visited once between dawn and dusk in the period from July to August 

inclusive (02.07.–30.08.2010). A point survey lasted 15 min. All visual and acoustic records were 

noted up to a distance of 100 m. We searched for faeces and feathers within a radius of 5 m. The 

survey was conducted in July and August due to moulting of black grouse cocks and hens without 
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chicks, which increases the chance to find feathers (Novatschin 2007). Because capercaillie and 

ptarmigan (Lagopus muta) also occur and signs of both species can be similar, it was important to 

document all signs for later verification of species identification. We therefore took photos from 

feaces and collected feathers for a subsequent expert evaluation in case of doubt. Additionally, all 

birds as well as signs and tracks were recorded when encountered between transect points. 

 

Habitat variables 

 

For each of our selected transect points as well as for points where black grouse was recorded between 

those, we measured or estimated a total of 28 habitat parameters within a 20 m radius and extracted 

information on further 18 variables from a geographic information system (GIS) (see Appendix Table 

A).  

As a bird of ecotones and transition zones we hypothesize that black grouse would prefer habitats 

having a high patchiness i.e. a distinct vertical and horizontal heterogeneity of vegetation layers 

(number of tree layers, gaps) (del Hoyo et al. 1994). We therefore developed variables including 

information about vegetational heterogeneity. We quantified the number of tree layers by counting the 

number of dominant and subdominant tree species. We also used GIS data provided by the Johanneum 

Research company in Graz, Styria (Johanneum Research 2011). Digital terrain models (DGM) exist 

for the whole area in a 10 m resolution and were provided by GIS Steiermark (GIS Steiermark 2011). 

Parameters like elevation, slope, exposition and human facilities were extracted. For all GIS analyses 

we used ArcGIS (ArcGIS version 9.3. ESRI Redland California www.esri.com). Using the Euclidian 

distance tool in Spatial Analyst, for each point we exported the distance from roads, hiking trails, 

water bodies and huts. A land covers layer was used to calculate the mean perimeter area ratio index 

MPAR which is the mean perimeter-area ratio of habitat patches (Moser et al. 2002). MPAR can be 

seen as a measure of habitat heterogeneity (Helzer and Jelinski 1999, Lukasch et al. 2011). We 

calculated the MPAR index for different spatial scales. Therefore, transect mapping points were 

buffered with a 50, 100 and 200 meter radius and then intersected with the land cover layer.  

STATISTICAL ANALYSES 

Data reduction 

 
 

Transects and survey points were selected to cover areas of different habitat suitability according to 

the expert model (Galaun et al. 2006). Spacing between mapping points on transects was at least 300 

m in this design. For the purpose of model building we had to consider black grouse records between 
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selected mapping points. However, this increased spatial autocorrelation, hence redundancy in our 

data. We therefore reduced the data set such that the distance between two points was at least 150 m.  

For points and additional signs less than 150 m apart we had to decide which of the two to retain. We 

therefore applied the following procedure: If the selected survey point did not contain a sign, it was 

excluded, otherwise we retained the one with the higher ranking, i.e. direct observation > feather > 

faeces. If the records were of equal ranking, we retained the original mapping point. 

However, even when including records between selected survey points, absence points predominated 

the data set. To account for this imbalanced ratio of presence and absence, we subsequently reduced 

the number of survey points without black grouse records.  Since we only collected data during one 

season and each transect was mapped only once, the chance to fail detecting black grouse signs was 

high. Black grouse are sedentary birds with relatively small home ranges during summer and their 

activity rate is not very high. Males stay near to the leks while females stay close to breeding places 

(Caizergues and Ellison 2002) especially when having chicks. We therefore made the assumption that 

habitat suitability exceeds the area close to a point with a black grouse sign. According to the 

literature, we assumed a mean home range size of 65 ha for males and females in summer (Novatschin 

2007, BirdLife International 2011). This corresponds to a circle with a radius of 455 meters. We 

excluded all absence points within this radius around presence points. With this procedure we 

attempted to reduce false absences and to improve the balance between presence and absence data. 

 

Model building 

 

With having the response variable “incidence” in a binary form “1- 0” we chose a binary logistic 

regression model to evaluate effects of habitat parameters on the occurrence of black grouse. Logistic 

regression models are widely used in habitat modelling (Brooks 1997, Guisan and Zimmermann 2000, 

Pearce and Ferrier 2000, Menard 2002, Dormann et al. 2003, Schröder and Reineking 2003, Brotons et 

al. 2004, Graf et al. 2005, Schweiger et al. 2011). 

To avoid overestimation of the habitat model, we reduced the number of habitat variables used for 

modeling. We only considered variables that had a p < 0.1 in binary logistic regressions testing for 

effects on the likelihood of black grouse occurrence (Hosmer and Lemeshow 2000). In all of our 

modeling, we included untransformed variables, since normality is not required, and errors terms are 

allowed to have non Gaussian distribution (Guisan and Zimmermann 2000). All the statistical analyses 

were calculated with SPSS (PAWS Statistics Version 18.0.0 www.spss.com).  

Because multicollinarity of explanatory variables can cause problems in logistic regression models 

(Harrell 2001, Menard 2002) the second step was to test for relationships between all remaining 

variables in a correlation matrix. For this purpose we chose the two sided Spearman rank-correlation 

test. If two variables were highly correlated |rs| > 0.7 we excluded the one with a lower p- value 
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regarding the response variable “incidence” (for correlation matrix see Appendix Table B) (Fielding 

and Haworth 1995, Dormann et al. 2003). 

The last step in model building was to check for quadratic relationships. Variables that model 

incidence with a quadratic term suggest an optimum or pessimum regarding black grouse presence 

probability. 

For model validation we used the random sample function in SPSS to have a data set for calibration 

(66% of points) and one set for the validation (34% of points) of the best model. With the remaining 

variables we built a GLM with a logit link function and the binary response variable incidence 1/0. In 

a first try we reduced variables with the stepwise backwards selection and then a forward selection 

(Manel et al. 2001). We build two models, one including also the quadratic relations and one which 

only included the variables that had had a p value < 0.1. We chose the final model using the Akaike 

information criterion (Akaike 1973), which indicates the goodness of the fit. AIC values have to stay 

low with the basic assumption that if AIC value is at 0, 100% of the model is explained. Additionally 

we calculated the Hosmer-Lemeshow goodness-of-fit statistics (Hosmer and Lemeshow 2000) and the 

Nagelkerke R² (Nagelkerke 1991). We ended modeling when all remaining variables had a p < 0.05. 

Finally we checked for spatial autocorrelations using the Moran´s Index in ArcGIS. 

 

Model evaluation 

 
Evaluation of the performance in presence-absence models is based on the confusion matrix (see Table 

1). This is an approach that faces the actual incidences 1/0 to the predicted incidences 1/0. The matrix 

identifies true positive presences (a), false positive presences (b), false negative absences (c) and true 

negative absences (d) that were predicted by the GLM (Fielding and Bell 1997, Manel et al. 2001).  

 

Table 1: Confusion matrix that faces the actual incidences to the predicted incidences being (+) the 

presence and (–) the absence data, (a) the true positive, (b) the false negative, (c) the false negative, 

and (d) true negative cases that were predicted by the GLM. 

 

 
 

Actual 
 

 
 + - 

Predicted + a b 

 
- c d 

 

Subsequently, we applied the SimTest developed by Zimmermann (2001) to test for the predictive 

power of our habitat model. Most of the measures used are described in Fielding and Bell (1997) and 

Zimmermann (2001). The SimTest calculates different quality criterions at their best thresholds.  
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The prevalence (Prv) indicates the proportion of observed presences P = (a+c) (for a and c see Table 

1). The overall diagnostic power (ODP) on the other hand stands for the proportion of observed 

absences. The positive predictive power (PPP) estimates the probability of the accordance between the 

observed "presence" and the "presence" calculated by the model. The negative predictive power (NPP) 

is the opposite of the (PPP) comparing the absences. Where NPP and PPP are maximized an 

optimized threshold can be obtained. Sensitivity can be seen as the probability that a true "presence" is 

classified correctly. Two measures picture the simulation errors – type 1 and type 2. Type 1 errors are 

falsely predicted “presences” of black grouse when in reality there are “absences”. Type 2 errors are 

the inversion of the former - falsely predicted “absences” (Zimmermann 2001). The SimTest calculates 

additional values like the Cohen’s kappa coefficient. According to (Landis and Koch 1977) kappa 

values over 0.4 indicate moderate to good results. 

The model was also evaluated by the Receiver Operating Characteristic (ROC) curve. This curve is 

achieved by plotting the sensitivity vs. 1-specificity for varying probability thresholds. In this case 

sensitivity is the true positive rate predicted by the model whereas the specificity describes the true 

negative rate. A good model performance is characterized by a curve that maximizes sensitivity with 

having on the other site low values of 1-specificity. High performance models are indicated by large 

area under the curve (AUC) values (Manel et al. 2001). AUC values range between 0.5 and 1.0. AUC 

values of 0.5–0.7 indicate low accuracy, while values of 0.7–1.0 indicate useful applications (Fielding 

and Bell 1997, Manel et al. 2001). The AUC is considered to be acceptable if it is larger than 0.7. That 

means that 70% of the random selection from the positive group will have scored greater than a 

random selection from the negative class (Fielding and Bell 1997). Because we have partitioned the 

data we have values for both data sets. 

Habitat suitability map 

The habitat suitability map was produced in ArcMap with the spatial analysis tool “map algebra” 

connecting the modeled probability of occurrence P with the available GIS layers using the following 

formula:  

          (                              )) 

 

Beta values represent the Beta coefficients of the habitat variables remaining in the habitat model. 
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RESULTS 

 

Black grouse could be recorded at a total of 8.41% of the 452 selected transect points, corresponding 

to 38 points. Additionally, birds or signs were found at 45 locations between selected transect points, 

resulting in a total of 83 “presence” points. After data reduction 482 points remained for model 

building and model validation. The calibration data set (N=318) consists of 39 points with grouse 

records and 279 without records. For the validation data set (N=164) the relation between points with 

presences and absences was 27 to 137. A total of 16 environmental variables remained after univariate 

statistics (see Table 2).  

 

Table 2: Variables significantly affecting black grouse occurrence. HUTS and CCLOSURE are still 

included since they showed significant p values in quadratic relationships.  

 

Variable Code p unvaried R² Nagelkerke 

Elevation ELEV <0.001 0.057 

Steepness of slope SLOPE 0.002 0.037 

Topographical heterogeneity TPHETG 0.044 0.015 

Open/Gap GAP 0.015 0.031 

number of vaccinium VACNUMB 0.008 0.024 

MeanPerimeterAreaRatio Index MPAR50 0.015 0.022 

MeanPerimeterAreaRatio Index MPAR100 <0.001 0.067 

MeanPerimeterAreaRatio Index MPAR200 0.002 0.034 

Count 50 C50 0.003 0.032 

Count 100 C100 <0.001 0.055 

Count 200 C200 0.002 0.033 

Distance to huts HUTS 0.048 0.016 

Distance to huts² HUTS² 0.392 0.003 

Succession SUCC 0.063 0.017 

Canopy/Crown closure CCLOSURE 0.992 0.006 

Canopy/Crown closure² CCLOSURE² 0.044 0.020 

Dwarf shrub cover DWCOVER 0.005 0.031 

Blueberry cover BLCOVER 0.020 0.020 

 

 

The evaluation of multicollinarity of these remaining variables by Spearman rank correlations showed 

that the explanatory variables MPAR50, MPAR100, MPAR200, C50, C100, C200 where highly 

related as well as DWCOVER and BILBCOVER with |rs|> 0.7 (see Appendix Table B). For the final 

model we retained MPAR100, C200 and DWCOVER having a stronger influence on the response 

variable incidence. For two variables, CCLOSURE and HUTS, effects on black grouse occurrence 

were best explained by a quadratic regression. Because of inhomogeneous distribution among the 

categories we excluded Succession (SUCC).  

Finally ten explanatory variables remained for the final model building: SLOPE, ELEV, TPHETG, 

GAP, VACNUMB, MPAR100, C200, HUTS
2
, CCLOSURE

2
 and DWCOVER.  
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Final model for black grouse 

 

The best results gave the model which included quadratic relations. The five explanatory variables that 

were contained in the final calibration model were SLOPE, TPHETG, MPAR100, DWCOVER and 

HUTS
2
. The final model showed a Nagelkerke R² of 0.29. The AIC for the null model was 238.7 and 

197.7 for the final model, i.e. deviation explained was 17% (238.7-197.7= 41; 41/238=0.172). An 

AUC value of 0.813 indicated good discrimination ability for the calibration data. The accuracy 0.682 

for validation data was relatively low (Figure 2). The p-value of the Hosmer-Lemeshow goodness-of-

fit statistic of 0.151 indicated good model fit, i.e. the model was not significantly different from a 

logistic curve. Results of the SimTest (Table 3) showed a prevalence of 0.12 which is very low what 

influences all other results from this test (Zimmermann 2001). The overall diagnostic power (ODP) 

0.88 is very high. Best Kappa values were at 0.424 which indicating a good predictive power of the 

habitat model.  

Which threshold to take and what value to prefer depends on the data and the goal the study has in the 

end. The SimTest suggests a value of 0.37 as the cut for best classification rate. 

 

Table 3: Accuracy Assessment of the SimTest by Zimmermann 2011. Numbers in [] indicates the 

optimized threshold. Threshold ranges from 0.0 to 1.0 

 

ACCURACY ASSESSMENT Values  

Prevalence:                                             0.12  

Overall diagnostiv power:                      0.88  

Area under the curve (AUC):                              0.809    

Optimal correct classification rate(CCR):         0.896    

Optimal Kappa:                                           0.424    

Commission of best CCR (=false pos.):     0.018  

Omission of best CCR (=false neg.):          0.718    

Cut for best classification rate:                   0.37  

Minimum acc. error (90% of positives):   0.54  

Minimum acc. error (75% of positives):   0.38  

Cross-over of misclassification rates:        0.14  

At optimized threshold:                                                     At 0.50 threshold: 

Correct classification rate (CCR): 0.896 [0.37] 0.889 

Kappa statistics:                 0.424 [0.26] 0.196 

Misclassification rate (MCR):            0.877 [<0.01] 0.110  

Positive predictive power (PPP):   1.000 [0.51] 0.833  

Negative predictive power (NPP): 1.000 [0.01] 0.891  

Odds-ratio (OR):                                   5.176 [0.04] 40.883 

 

A high spatial autocorrelation was found for the calibration data (Moran’s Index = 0.06; z-scores = 

2.68; p = 0.007; N=318) as well as the whole data set (Moran’s Index = 0.15; z-scores = 5.50; p < 

0.001; N=482). 
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Figure 2: Receiver operator curve for the calibration data set (N=318) and the validation data set 

(N=164) with an AUC value of 0.813 and 0.682, respectively. 

 

Variables for black grouse 

 
Table 4: Variables included in the final model of the calibration data (N=318). 

 
 

The final model included five variables (see Table 4 and Figure 3) of which only dwarf shrub cover 

was mapped in the field - all other explanatory variables were extracted from available GIS layers.  

All categories of dwarf shrub cover (0-100%) where recorded on the mapping points. Black grouse 

occurrence increased with the amount of cover and was highest between 80-90% (Figure 3; a)).  

Highly represented in the final model were the topographic explanatory variables. Two of them slope 

and topographical heterogeneity contributed significantly to the models information content. 

Topographic heterogeneity was classified in five categories from 1 (very high) to 5 (very low). The 

negative regression coefficient indicated what can be seen in Figure 3, b) - if the topographical 

heterogeneity is too high, black grouse occurrence will decrease.  

On the mapped points slope varied between 0-40
o
 degrees. The influence of slope regarding the 

response variable was quite low (Table 4). Nevertheless the probability of occurrence for black grouse 

increased slightly with the steepness of slope (Table 4; Figure 3 c)). 

Because of intercorrelation only one variable reflecting the habitat heterogeneity remained in the final 

model. The mean perimeter area ratio index with a spatial resolution of 100 meter showed the 

variables coefficient of the 

parameters 

Standard 

error Wald Sig. Exp(B) 

SLOPE 0.064 0.030 4.520 0.033 1.066 

TOPHETG -0.480 0.162 8.796 0.003 0.619 

MPAR100 53.323 11.469 21.617 <0.001 1.438E23 

DWCOVER 0.022 0.008 8.226 0.004 1.023 

HUTS 0.004 0.001 10.266 0.001 1.004 

HUTS2 <0.001 <0.001 9.074 0.003 1.000 

Constant -10.295 1.846 31.099 <0.001 <0.001 
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strongest positive influence on black grouse occurrence (Table 4) and black grouse occurrence 

increased drastically with higher MPAR values (Figure 3 d)).  

The only quadratic relation included in the final model was the mean distance to huts. The distances to 

huts ranged from 500 m to 5 km. Black grouse occurrence was at its peak in a mean distance to huts at 

around 2000 m (Figure 3 e)).   

 

 

 

 

 

Figure 3: Probability of black grouse occurrence 

predicted by the final habitat model plotted 

against (a) dwarf shrub cover (b) topographical 

heterogeneity, (c) slope, (d) MPAR (measured 

within r = 100m), and (e) the Euclidean distance 

to huts. Lines visualising the relationships 

between probabilities and the five variables are 

fitted using the Loess function. 
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Habitat suitability map for black grouse 

 

 
An important part of habitat modelling is the visualisation of the results. For further management such 

as the designation of core zones or habitat improvement measures, they can serve as a practical tool. 

To build a proper habitat suitability map all variables influencing the occurrence probability of black 

grouse have to be available in a GIS shapefile. For our data this was not the case for dwarf shrub 

cover. Therefore, Figure 5 shows a preliminary map considering all variables included in the final 

model (SLOPE, TPHETG, MPAR100 and HUT
2
) except DWCOVER. The map shows five different 

categories of habitat suitability from green (probability of black grouse occurrence ~ 80-100%) to red 

(probability of black grouse occurrence 0 to ~ 4%). The map shows large areas of good habitat 

suitability especially in the core zones of the Natura 2000 area.  Areas with low and moderate habitat 

suitability are mainly situated at the boundaries reflecting the existing borders of the Natura 2000 site. 

Green zones in the centre of the study area are partly overestimated because they include major valleys 

where no data was collected. The formula used to create the map in “map algebra”: 

 

 

P=1/(1+exp(-(-7.007+[SLOPE]*0.064-[TPHETG]*0.31+[MPAR100]*38.775+  

[HUTS] * 0.003 - [HUTS
2
] *0.00000060563))) 
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Figure 5: A map showing the habitat suitability with a spatial resolution of 10 m for black grouse in the study area. Colors indicate different probabilities of 

occurrence ranging from a high probability (>77%; green) to a low probability (< 4%; red).The map is based on all variables included in the final habitat model 

except dwarf shrub cover, for which no GIS data were available. 
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DISCUSSION 

 

 

Habitat modeling has become very popular in recent years, partly because new technical tools 

improved and simplified data acquisition (Store and Jokimaki 2003). Results should help 

conservationists to understand habitat requirements of (endangered) species and should facilitate the 

development of effective habitat management strategies aiming to maintain or even increase existing 

populations (Bissonette and Storch 2003). Since financing and available time for field work are often 

the limiting factors, and predictions of habitat suitability can be limited regarding spatial and temporal 

scale (Kleyer et al. 1999). Due to the large size of our study area and the relatively short field season, 

we also could only account for a relatively small number of factors potentially influencing the 

occurrence of black grouse. Our habitat model for the occurrence of black grouse at the Natura 2000 

site “Niedere Tauern” was based on data collected during the summer months July and August and our 

transects only covered a relatively small part of the entire study area. Additionally to the low density 

of transects and survey points, the number of absences and presences was very imbalanced towards 

points without grouse records. 

The absence of a species can have three causes (Hirzel et al. 2002): (1) The species was present but 

could not be detected, (2) the habitat is suitable, but the species is not present or (3) the habitat is 

currently not suitable for the species. The failure to record the species’ presence can be given due to 

our low survey effort of only one 15 min visit per point and the difficulty to detect the species. During 

the post-breeding season the black grouse is a highly secretive bird due to its sedentary habits, 

particularly during moulting when birds spend most of the day preening (del Hoyo et al. 1994). The 

main time for dispersal starts in late autumn and has its peak in the end of October (Caizergues and 

Ellison 2002, Warren and Baines 2002). As it was neither dispersal nor mating season and the species 

action radius most likely is very small during this time of the year (July-August) it can be rather 

difficult to detect. Another possibility for potentially false absences could be that molted feathers had 

been blown away before our survey.  

The second reason for the absence of a species is given when the habitat is suitable, but the species is 

not yet/no more present in the study area. Northern populations of black grouse have pronounced 

population cycles (Ludwig et al. 2006), which can have a profound effect for modeling habitat 

suitability. When the population size is at its minimum the suitability of an area for black grouse can 

be underestimated, while in years when black grouse numbers peak, habitat suitability can be 

overestimated (Nopp-Mayr and Grünschachner-Berger 2011). However, while population cycles are 

typical for northern populations they seem to be largely absent at the species´ more central and 

southern distribution range, including the Alps (Glutz von Blotzheim et al. 1973, Cattadori and 

Hudson 1999). Additionally, habitat fragmentation can lead to the absence in otherwise suitable 
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habitats due to low reproductive success and dispersal ability of black grouse (Bissonette and Storch 

2002, Graf et al. 2005).  

A falsely predicted presence for points where the species does not occur can be also the result of a 

failure to consider important habitat variables. For example we were not able to measure the real 

impact of tourism because we had no information about the disturbance regime caused by hiking trails 

and forest roads. Furthermore, our habitat model did not consider effects of predators such as the red 

fox (Vulpes vulpes), common raven (Corvus corax), carrion crows (Corvus corone) or the golden 

eagle (Aquila chrysaetos) (Angelstam 1986, Nopp-Mayr and Grünschachner-Berger 2011). A total of 

≥25 breeding pairs of the Golden Eagle are estimated to occur at the Niedere Tauern (BirdLife 

International 2011). Grouse represent an important prey (up to 13.8%) for alpine populations of the 

Golden Eagle (Glutz von Blotzheim 1989). While the effect of the carrion crow should be moderate 

above the tree line (Klosius 2008), red fox and raven can play an important role as black grouse 

predators especially during breeding season (Angelstam 1986). Furthermore, the importance of 

predation seems to be increased in fragmented habitats or small and therefore more vulnerable 

populations (Klaus et al. 1990, Baines 1996, Storch 2000b). 

 

Predictive ability of the model 

 

 
Our final model contained five variables explaining the small-scale occurrence of black grouse at the 

Natura 2000 site “Niedere Tauern”. The AUC of 0.813 indicates a good performance of our final 

habitat model based on the calibration data. Unfortunately, the AUC value 0.692 of the model based 

on the validation data is just below the threshold of 0.7, therefore indicating a relatively low accuracy 

of our resulting habitat model (Fielding and Bell 1997). The SimTest by Zimmermann (2001) builds a 

new optimized threshold for datasets where the chance of overlooking incidences is high. Because our 

model should serve to determine areas of a high conservation relevance for black grouse in the Natura 

2000 site “Niedere Tauern”, a high number of falsely predicted presences will be more costly in terms 

of conservation than a high number of falsely predicted absences (Fielding and Bell 1997, Reineking 

B, Schröder B 2003). Another weakness of our habitat model is that Moran’s autocorrelation 

coefficient indicates a high spatial autocorrelation for the whole data set as well as for the calibration 

data of the final model. High spatial autocorrelation can increase prediction errors in the model 

because the key assumption of statistical analyses that residuals should be independent and 

homogenously distributed is violated. Spatial autocorrelation can occur because of environmental and 

historical factors. The spatial distribution of a species depends on its dispersal mechanism and other 

behavioral factors. Especially lekking behavior of black grouse males can cause spatial aggregation of 

records. Because spatial autocorrelation can be found at different spatial scales it is rather hard to 

avoid autocorrelation in unexplored areas (Legendre 1993, Dormann et al. 2007).  
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The predictions of our final model have so far been restricted to the summer months since we did not 

collect presence and absence data for black grouse during breeding season and winter months where 

habitat requirements can be different. During breeding season the presence of shelter against predators 

and weather conditions would be more important, whereas in the winter months the presence of 

conifers as an important food source, drive the distribution of black grouse (Klaus et al. 1990, Baines 

1995, Baines et al. 1996, Grant and Dawson 2005).  

 

Variables selected by the model and their biological relevance 

 

 

Our final habitat model for black grouse included the variables SLOPE, MPAR 100m, TPHETG, 

DWCOVER, HUT and HUT
2
. Of all variables quantified by ground surveys, only DWCOVER 

remained in the final model. Our data indicate that black grouse positively respond to an increased 

dwarf shrub cover. Dwarf shrubs represent an important food source and offer protection against 

predators and harsh weather conditions (Glutz et al. 1973, del Hoyo et al. 1994, Schweiger et al. 

2011). Other variables such as ground vegetation height, which has proven to be an important 

explanatory variable in previous studies (Klaus et al. 1990, Baines 1996, Schweiger et al. 2011), did 

not show a significant effect on black grouse occurrence. Vegetation height can be particularly 

important during the breeding season when chicks need to feed on insects and also reduces predation 

risk through increased cover (Angelstam 1986, Klaus et al. 1990). However, ground vegetation height 

only varied slightly in our study area. At >90% of our survey points vegetation height was between 10 

and 30 cm and it did not differ between points with (mean vegetation height  SD = 20.9110.34 cm) 

and without black grouse records (21.759.65 cm; t-test considering all data: t = 0.631, p = 0.530).  

Another explanatory variable, which did not contribute to explaining black grouse occurrence, is the 

availability of anthills, although it appeared to strongly affect the black grouse occurrence in other 

alpine populations (Schweiger et al. 2011). Ants present an important protein resource for black 

grouse chicks in the first weeks after hedging (Glutz v. Blotzheim et al. 1973). In our study area ant 

hills were recorded at 33% of our survey points, but black grouse were not recorded with a 

significantly higher frequency at survey points with ant hills compared to survey points without ant 

hills (Chi-square test: 2
 = 2.10, p = 0.1472). 

Of the variables measured in ArcMap, MPAR100 most strongly affected black grouse occurrence, 

which emphasizes the importance of high habitat heterogeneity. Structural heterogeneity already 

proved to be an important habitat variable for black grouse occurrence in other studies (e.g. Patthey et 

al. 2011). In our study the MPAR Index was found to significantly affect black grouse occurrence on 

different spatial resolutions (50, 100 and 200m radius), but due to a high multicollinarity only 

MPAR100m was considered for modelling. 
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TPHETG also remained in the final model but only weakly affected black grouse occurrence showing 

a weakly decreasing probability of occurrence with increasing topographical heterogeneity. The relief 

can have a strong influence on the soil and thereupon on the vegetation (Etzold 2005). Variation of 

topographical heterogeneity paired with differences in vegetation structure can lead to differences in 

snow cover and the capacity to retain water. Topographical heterogeneity can also affect the extent of 

insolation and wind exposure which again both can affect the duration of snow cover (Link and Marks 

1999). Also the steepness of slope, another variable remaining in our final habitat model, can influence 

the snow cover duration. Additionally, the variable can have an impact on human activities such as 

skiing and hiking (Braunisch et al. 2011). 

Our habitat model also indicates an effect of hut distance on black grouse occurrence. In the “Niedere 

Tauern” huts are often run during the summer months, attracting local visitors, tourists and cattle 

farmers, which keep their cattle grazing on alpine meadows in the vicinity. Therefore, the 

surroundings of huts may represent “hotspots” of human disturbance decreasing the habitat quality for 

black grouse. Although disturbance levels may not necessarily have an impact on fecundity, at least 

not until disturbance frequencies exceed a certain level (Baines and Richardson 2007). Pasturing in 

vicinity of huts can be even positive for black grouse due to reduced Mountain Pine cover (Ludwig, 

personal communication). An increased density of predators around huts can have a further negative 

effect on black grouse. Particularly potential predators such as carrion crows and ravens appear to be 

attracted by huts, which can have a negative effect on breeding success (Storch and Leidenberger 

2003). The significant effect of the squared term of hut distance could be explained through an 

optimum distance to huts. This could be achieved when black grouse still benefit from pasturing 

around huts but are not exposed to higher human disturbance levels and predator density in the 

immediate vicinity to huts.  

 

CONCLUSIONS 

 

When compared to other studies from different regions of the Alps (e.g. Patthey et al. 2011, Schweiger 

et al. 2011), our results identified partly identical habitat requirements for black grouse at the Natura 

2000 site “Niedere Tauern”. This is an indication that habitat use of different alpine populations is 

shaped by similar habitat requirements. A major weakness of all studies on habitat use of black grouse 

in the Alps is that existing data do not cover all seasons of the year. Although seasonal differences 

may exist concerning the importance of environmental variables for predicting the small and large 

scale habitat quality. Furthermore, the application of other modeling tools such as the ecological niche 

factor analysis (ENFA) (Hirzel et al. 2002) may help to understand to what extent predictions of the 

spatial distribution of black grouse can be generalized. An ENFA additionally would have the 

advantage of only considering presence data, thereby avoiding false absences, which may have a 
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major impact on model performance particularly in species such as the black grouse with rather cryptic 

habits during most of the year. 

Beside the mentioned weaknesses, our habitat model makes some first preliminary predictions of the 

spatial distribution and size of high quality habitat areas at the Natura 2000 site “Niedere Tauern, 

which should be validated by subsequent ground surveys. Although minor spatial adaptations may be 

necessary, large areas of high quality habitat appear to be located in the core area of the Natura 2000 

site “Niedere Tauern”, emphasizing that at least a substantial part of the black grouse population is 

situated within the currently designed borders of the Natura 2000 site. 

Beside the designation of protected areas and the development of adequate management strategies 

(e.g. to reduce human disturbance) aiming to maintain existing black grouse populations, long-term 

monitoring schemes should be established to detect a potential prospective population change. Such 

monitoring schemes are necessary to evaluate the effectiveness of conservation actions and the mid- to 

long-term impact of land-use and climate change. While first negative effects of climate change on the 

survival and population size of northern black grouse populations were reported (Ludwig et al. 2006), 

such data are not available for alpine populations, which could suffer by a reduction of suitable habitat 

due to an upward shift of the current tree line as demonstrated for other bird species (Graf 2009).  
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APPENDIX 

 
Table A: List of all Variables tested in logistic regressions. 

Variable shortcut Definition Source Data 

type 

Elevation ELEV m above sea level GIS Steiermark
1 

metric 

Steepness of slope SLOPE Degree GIS Steiermark metric 

Topographical heterogeneity TPHETG in categories 1..very high, 2..high, 3..mean, 4..low, 5..very low GIS Johanneum
2 

ordinal 

Dead wood standing DWOODS 3 categories; 1..single,2..groups,3..covered From data sheet ordinal 

Dead wood laying DWOODL 3 categories; 1..single,2..groups,3..covered From data sheet ordinal 

Anthills ANTS Number of Anthills From data sheet metric 

Open/Gap GAP 2 categories 0..no,1..yes wider than stand is high From data sheet nominal 

Needles NEEDL 2 categories 0..no,1..yes absence or presence of pine or fir From data sheet nominal 

Ground cover height GCOVERH Vegetation height in 10cm intervals From data sheet metric 

Wet soil WETSOIL 2 categories 0..no,1..yes From data sheet nominal 

Stone STONE 2 categories 0..no, 1..yes From data sheet nominal 

Cattle CATTLE 2 categories 0..no, 1..yes From data sheet nominal 

Number of vaccinium VACNUMB number Vaccinium From data sheet ordinal 

Vertical heterogeneity VERTHETG number tree layer From data sheet ordinal 

MeanPerimeterAreaRatio Index 

50m MPAR50 Relation of Perimeter and Area in a radius of 50m GIS  metric 

MeanPerimeterAreaRatio Index 

100m MPAR100 Relation of Perimeter and Area in a radius of 100m GIS metric 

MeanPerimeterAreaRatio Index 

200m MPAR200 Relation of Perimeter and Area in a radius of 200m GIS metric 

Count 50 C50 Number of Land cover types in a radius of 50m GIS ordinal 

Count 100 C100 Number of Land cover types in a radius of 100m GIS ordinal 

Count 200 C200 Number of Land cover types in a radius of 200m GIS ordinal 

Huts HUT Euclidean distance to huts GIS Johanneum metric 

Forest roads ROAD Euclidean distance to roads GIS Johanneum metric 

Distance to hiking trails HIKING Euclidean distance to hiking trails GIS Johanneum metric 

Distance to water bodies WATER Euclidean distance to water bodies GIS Johanneum metric 

Distance to OEAV huts OEAV Euclidean distance to OEAV huts GIS Johanneum metric 

Succession SUCC 8 categories 1..young/rejuvenation, 2..thicket, 3..polestage, 4..medium From data sheet nominal 
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age,5..old forest, 6..single tree treat, 7..treeline, 8..not forested 

Canopy/Crown cover CCOVER percentage of floor covered by trees in10 percentage interval From data sheet metric 

Main Tree species MTREE By name of the two dominant species; spruce, beech, fir, pine, alder, 

mugo, uncinata, zembra 

From data sheet nominal 

Subdominant Tree species SUPTREE By name of the two subdominant species; spruce, beech, fir, pine, alder, 

mugo, uncinata, zembra 

From data sheet nominal 

Alder all ALDALL Presence of alder on points with incidence 0/1 GIS  ordinal 

Alder 50 ALDER50 Percentage of alder in a radius of 50 meters GIS ordinal 

Alder 100 ALDER100 Percentage of alder in a radius of 100 meters GIS ordinal 

Alder 200 ALDER200 Percentage of alder in a radius of 200 meters GIS ordinal 

Rejuvenation cover REJCOVER percentage 1<25, 2<50, 3<75, 4>75 From data sheet ordinal 

Ground Vegetation GVEG By name of the two dominant species; none, grass, moss, fern, 

blackberry, raspberry, blueberry, lingonberry, alpine rose, rocks, other 

From data sheet nominal 

Dwarf shrub cover DWCOVER percentage of ground cover From data sheet metric 

Blueberry cover BLCOVER percentage of ground cover From data sheet metric 

Vaccinium vitis-idea VVIDEA 2 categories 0..no,1..yes From data sheet nominal 

Vaccinium uliginosum VLIGINOSUM 2 categories 0..no,1..yes From data sheet nominal 

Vaccinium oxycoccus VOXY 2 categories 0..no,1..yes From data sheet nominal 

Juniperus comunes JUNIPER 2 categories 0..no,1..yes From data sheet nominal 

Caluna vulgaris CALUNA 2 categories 0..no,1..yes From data sheet nominal 

Rhododendron 

ferruginium/hirsutum RHODO 2 categories 0..no,1..yes From data sheet nominal 

Field of Pinus mugo MUGFIELD 2 categories 0..no,1..yes From data sheet nominal 

 
 

1 
GIS Steiermark. 2011. Geographisches Informationssystem - Land Steiermark. Downloaded July 13, 2011, from http://www.gis.steiermark.at/. 

2 
Johanneum Research. 2011. http://www.joanneum.at/jr.html. Downloaded July 13, 2011, from http://www.joanneum.at/jr.html. 
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Table B: Correlation matrix showing the regression coefficients and p values of the two sided Spearman rank testing for correlation of habitat variables. 

 

  C50 C100 C200 TPHETG GAP VACNUMB SLOPE CCOVER MPAR50 MPAR100 MPAR200 DWCOVER BLCOVER HUT ELEV 

C50 Correlation 

Coefficient 

1.000 0.666 0.422 0.120 0.113 -0.028 -0.022 0.064 0.819 0.755 0.505 0.003 -0.038 -0.124 0.006 

Sig. (2-

tailed) 

. <0.001 <0.001 0.008 0.013 0.546 0.635 0.158 <0.001 <0.001 <0.001 0.949 0.399 0.006 0.903 

C100 Correlation 

Coefficient 

0.666 1.000 0.610 0.084 0.068 -0.044 0.004 0.024 0.546 0.817 0.672 -0.052 -0.065 -0.039 0.036 

Sig. (2-

tailed) 

<0.001 . <0.001 0.064 0.136 0.333 0.926 0.602 <0.001 <0.001 <0.001 0.253 0.157 0.397 0.426 

C200 Correlation 

Coefficient 

0.422 0.610 1.000 0.050 0.059 -0.042 0.017 0.029 0.339 0.560 0.915 0.014 -0.105 -0.085 0.161 

Sig. (2-

tailed) 

<0.001 <0.001 . 0.271 0.193 0.358 0.714 0.532 <0.001 <0.001 <0.001 0.751 0.021 0.063 <0.001 

TPHETG Correlation 

Coefficient 

0.120 0.084 0.050 1.000 0.003 -0.048 -0.038 0.023 0.058 0.072 0.063 0.018 -0.032 0.047 -0.020 

Sig. (2-

tailed) 

0.008 0.064 0.271 . 0.951 0.297 0.407 0.612 0.202 0.116 0.166 0.688 0.482 0.308 0.662 

GAP Correlation 

Coefficient 

0.113 0.068 0.059 0.003 1.000 0.035 -0.016 -0.023 0.153 0.106 0.082 0.083 0.093 -0.129 -0.052 

Sig. (2-

tailed) 

0.013 0.136 0.193 0.951 . 0.443 0.721 0.615 0.001 0.020 0.074 0.067 0.040 0.005 0.254 

VACNUMB Correlation 

Coefficient 

-0.028 -0.044 -0.042 -0.048 0.035 1.000 0.029 0.045 -0.083 -0.075 -0.047 0.428 0.353 0.057 0.090 

Sig. (2-

tailed) 

0.546 0.333 0.358 0.297 0.443 . 0.529 0.324 0.067 0.099 0.303 <0.001 <0.001 0.213 0.048 

SLOPE Correlation 

Coefficient 

-0.022 0.004 0.017 -0.038 -0.016 0.029 1.000 0.088 -0.026 -0.054 -0.007 0.143 0.045 -0.163 0.080 

Sig. (2-

tailed) 

0.635 0.926 0.714 0.407 0.721 0.529 . 0.054 0.569 0.238 0.880 0.002 0.327 <0.001 0.078 

CCLOSURE Correlation 

Coefficient 

0.064 0.024 0.029 0.023 -0.023 0.045 0.088 1.000 0.058 0.024 0.054 0.062 0.162 -0.056 -0.049 

Sig. (2-

tailed) 

0.158 0.602 0.532 0.612 0.615 0.324 0.054 . 0.202 0.603 0.238 0.172 0.000 0.222 0.287 

MPAR50 Correlation 

Coefficient 

0.819 0.546 0.339 0.058 0.153 -0.083 -0.026 0.058 1.000 0.753 0.450 -0.035 -0.053 -0.132 -0.001 

Sig. (2-

tailed) 

<0.001 <0.001 <0.001 0.202 0.001 0.067 0.569 0.202 . <0.001 <0.001 0.440 0.244 0.004 0.989 

MPAR100 Correlation 

Coefficient 

0.755 0.817 0.560 0.072 0.106 -0.075 -0.054 0.024 0.753 1.000 0.703 -0.068 -0.073 -0.053 0.045 
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Sig. (2-

tailed) 

<0.001 <0.001 <0.001 0.116 0.020 0.099 0.238 0.603 0.000 . <0.001 0.136 0.107 0.248 0.322 

MPAR200 Correlation 

Coefficient 

0.505 0.672 0.915 0.063 0.082 -0.047 -0.007 0.054 0.450 0.703 1.000 0.023 -0.070 -0.051 0.145 

Sig. (2-

tailed) 

<0.001 <0.001 <0.001 0.166 0.074 0.303 0.880 0.238 <0.001 <0.001 . 0.608 0.124 0.266 0.001 

DWCOVER Correlation 

Coefficient 

0.003 -0.052 0.014 0.018 0.083 0.428 0.143 0.062 -0.035 -0.068 0.023 1.000 0.731 0.081 0.138 

Sig. (2-

tailed) 

0.949 0.253 0.751 0.688 0.067 <0.001 0.002 0.172 0.440 0.136 0.608 . <0.001 0.077 0.002 

BLCOVER Correlation 

Coefficient 

-0.038 -0.065 -0.105 -0.032 0.093 0.353 0.045 0.162 -0.053 -0.073 -0.070 0.731 1.000 0.032 -0.128 

Sig. (2-

tailed) 

0.399 0.157 0.021 0.482 0.040 <0.001 0.327 <0.001 0.244 0.107 0.124 <0.001 . 0.482 0.005 

HUT Correlation 

Coefficient 

-0.124 -0.039 -0.085 0.047 -0.129 0.057 -0.163 -0.056 -0.132 -0.053 -0.051 0.081 0.032 1.000 0.302 

Sig. (2-

tailed) 

0.006 0.397 0.063 0.308 0.005 0.213 <0.001 0.222 0.004 0.248 0.266 0.077 0.482 . <0.001 

ELEV Correlation 

Coefficient 

0.006 0.036 0.161 -0.020 -0.052 0.090 0.080 -0.049 -0.001 0.045 0.145 0.138 -0.128 0.302 1.000 

Sig. (2-

tailed) 

0.903 0.426 <0.001 0.662 0.254 0.048 0.078 0.287 0.989 0.322 0.001 0.002 0.005 <0.001 . 

 

 

 

 

 



30 

 

ZUSAMMENFASSUNG 

 

Modellierung von Habitateignung hat in den letzten Jahren zunehmend an Bedeutung für Naturschutz 

und Wildtiermanagement gewonnen. Durch die Weiterentwicklung technischer Werkzeuge wie 

Geoinformationssysteme (GIS) kann die Datenerfassung und Darstellung vereinfacht werden. 

Habitatmodelle können somit einen wertvollen Beitrag zur Beurteilung von Lebensräumen und 

Habitatpräferenzen liefern. Mit gewonnenen Daten können artspezifische Schutzgebiete eingerichtet 

und geeignete Managementmaßnahmen ergriffen werden. In Rahmen dieser Masterarbeit konnten wir 

mit Hilfe von Freilanddaten und Daten aus dem GIS die Habitat Präferenzen des Birkwildes im 

alpinen Lebensraum des Natura 2000 Gebietes „Nieder Tauern“ Steiermark modellieren. Hierfür 

wurden in einem Untersuchungszeitraum vom 1. Juli bis 30 August 2010 entlang von Transekten 

mittels erweiterter Punkt-Stopp Methode Daten erhoben. Mit der Information über Präsens/Absenz an 

verschiedenen Punkten als abhängige Variable und aufgenommenen und errechneten Habitat 

Parametern als Prädiktorvariablen waren wir in der Lage ein Habitatmodell für diese Art zu berechnen. 

Um die Rolle von Habitat Heterogenität und räumlicher Auflösung zu berücksichtigen, berechneten 

wir den Mean perimeter area ratio index (MPAR) sowie verschiedene Variablen auf unterschiedlichen 

räumlichen Maßstäben/Radien. Fünf Prädiktorvariablen zeigten im finalen Model einen signifikanten 

Einfluss auf die Vorkommenswahrscheinlichkeit von Birkwild im Untersuchungsgebiet: 

Zwergstrauchdeckung, der Mean perimeter area ratio index in einem Radius von 100 m, die Neigung 

des Geländes, die Reliefenergie/Kammerung sowie der Quadratische Zusammenhang der mittleren 

Distanz zu Hütten. Unsere Ergebnisse zeigen, dass es heute möglich ist wichtige Habitatparameter aus 

dem GIS zu generieren, die die Feldarbeit zukünftig unterstützen können. Unsere Ergebnisse zeigten 

zudem, dass die Heterogenität der Habitatstrukturen ein wichtiges Indiz für das Vorkommen von 

Birkwild im alpinen Lebensraum ist und auch zukünftig eine große Bedeutung in Habitatmodelierung 

und Managementmaßnahmen besitzen sollte. Unser Modell kann somit dazu beitragen schutzwürdige 

Gebiete für Birkwild zu identifizieren und Verbesserungsmaßnahmen im Habitat vorzunehmen. 

 

 

 

 

 

 

 

 

 



31 

 

LEBENSLAUF 

 

 

   

 

 

 Name  Jelte Lisa Schember 
 Adresse  Marktgasse 8-10 2/50, 1090 Wien 

 Telefonnummer  0043 (0)6649438941 

0043 (0)12766274 

 E-Mail 

 

 Jelte-s@web.de 

 Staatsangehörigkeit 

Geburtsort 

 Deutsch 

Hildesheim 

 Geburtsdatum 

 

 06.03.1985  

Ausbildung   

    

 2009-  

voraussichtlich 

September 2011 

 Universität Wien 

Masterstudium „Naturschutz und Biodiversitätsmanagement“ als 

Hauptfach 

Masterabschlussarbeit „ Habitat use of black grouse Tetrao tetrix at 

the Natura 2000 site “Niedere Tauern” (Austria)” 

 

 2009-2011  Universität für Bodenkultur Wien 

Masterstudium „Wildtierökologie und Wildtiermanagement“ als  

Als Nebenstudium - wird nicht abgeschlossen 

 

 2005-2008  Albert-Ludwigs Universität Freiburg im Breisgau 

Bachelorstudium  „Waldwirtschaft und Umwelt“  

Nebenfach „Naturschutz und Landschaftspflege“ 

Bachelorarbeit „Landschaftswahrnehmung und Landschaftsnutzung 

durch Migranten“ 

 

 2004  Freie Waldorfschule Freiburg Wiehre 

Mit Abitur abgeschlossen 

 

Arbeitserfahrung 
 

  

 Dezember 2010                          Universität Wien: Tutorien  im Projektpraktikum 

„Auwaldvögel“ 

Kartierung von Vogelgemeinschaften mittels Punkt-Stopp Methode 

im Vergleich zwischen Hart- und Weichholzaue 

 

 Juni-August 2010  Ziviltechnikkanzlei Dr. Hugo Kofler: Kartierung von Birkwild in 

den Niederen Tauern Steiermark 

Suche nach indirekten und direkten Nachweisen entlang von 

Transekten 

 

 Mai- August 2009  Aufenthalt in Kanada (British Columbia, Yukon Territories) 

mit Besuch diverser Nationalparke 

 

 März 2009  Forschungsanstalt für Waldökologie und Forstwirtschaft 

(FAWF) Rheinland Pfalz: Mitarbeit an einer Kartierung  

Sammeln von Rotwildlosung zur Genotypisierung 

 

 August- Dezember 2008-

2009 

 Nationalpark Bayerischer Wald: Praktikum und Mitarbeit  

Diverse Tätigkeiten im Bereich Forschung, Besucherlenkung, 



32 

 

 

 

 
 

Verwaltung ( Rotwildstörungsversuche, Borkenkäferkontrolle, Junior 

Ranger, u.a.) 

 

 Mai- August 2005  Diakoniekrankenhauses in Freiburg im Breisgau 

Praktikum im Kreissaal   

 

 Januar-April 2005  Ecole sacre coeur Ruanda, Afrika 

Praktikum in einer Grundschule: Unterrichten von Grundschülern in 

den Fächern Französisch und Englisch 

 

Persönliche Fähigkeiten 

und Kompetenzen 

 

  

 Sprachen  Deutsch – Muttersprache 

   Englisch – fließend in Wort und Schrift 

   Französisch – fließend in Word und Schrift 

 

 Soziale Fähigkeiten und 

Kompetenzen 

 Internationale Erfahrungen durch diverse Auslandsaufenthalte u.a. 

zweijähriger Aufenthalt in Frankreich während der Schulzeit. 

Überzeugungskraft bei unterschiedlichen Stakeholdergruppen, 

Teamfähigkeit, Organisationsfähigkeit. 

 

 Technische Fähigkeiten 

und Kompetenzen 

 MS Office (Word, Excel, Power Point, Access), ArcGIS 9.3, SPSS 

18, Statgraphics, Internet, sicherer Umgang mit GPS Garmin 

 

 Sonstige Fähigkeiten 

und Kompetenzen 

 Jagdschein 

Rhetorik und Präsentationstechnick (Zentrum für 

Schlüsselqualifikationen (ZFS) Albert- Ludwigs Universität 

Freiburg) 

Sustainability Leadership Training (ZFS Albert- Ludwigs Universität 

Freiburg) 

 

 Führerscheine  B 

 

 Hobbies   Wandern, Reisen, Turnen, Ballett 

    


