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1 EINLEITUNG 

 

Biologische Toxine sind Produkte, welche zumeist schädlich für all jene Organismen sind, 

welche das Toxin selbst nicht produzieren (Cameron 1974), vor allem für nicht resistente 

Zielorganismen. Toxizität ist in den meisten Lebensräumen anzutreffen und spielt in vielen 

ökologischen Prozessen – bei Konkurrenzverhalten (Cameron 1974) und insbesondere bei 

Räuber-Beute-Beziehungen – eine wichtige Rolle. Forschungsdisziplinen aus den 

verschiedensten Themenbereichen befassen sich mit Toxizität, welche bisher bei einer Fülle von 

Organismen aus den verschiedensten systematischen Gruppen beschrieben wurde: Arthropoden 

wie Coleoptera, Formicidae, Acari und Myriapoda, sowie über 800 Amphibien-Arten mit 

Hautalkaloiden (Daly et al. 2005); im marinen Bereich die Porifera (Proksch 1994), Gorgonien 

(Pawlik und Fenical 1992, Epifanio et. al 1999, Koh et al. 2000), Steinkorallen (Gunthrope und 

Cameron 1990), Ascidien (Pisut und Pawlik 2002), sowie Echinodermaten (Bakus 1981, Lippert 

et al. 2004) und Fische (Pawlowsky 1927).  

Innerhalb dieser Vielzahl an toxischen Tieren gibt es große Unterschiede hinsichtlich der 

chemischen Zusammensetzung und Funktion von Giften. Ihre Wirkung ist abhängig von 

geographischen Bedingungen und Jahreszeiten, sowie der vom Empfänger aufgenommenen 

Giftdosis (im Verhältnis zum Körpergewicht), der Form, in welcher Gift in einen Organismus 

eindringt (gasförmig, über die Verdauung oder auf indirektem Weg über die Haut zum Blut), und 

nicht zuletzt auch von der Empfindlichkeit des Empfängers. Letale Gifte, wie etwa 

Schlangengift, können zum Beispiel ihre Wirkung verlieren wenn sie nicht über den 

Blutkreislauf sondern über die Verdauung in den Körper gelangen (Pawlowsky 1927). 

Grundsätzlich sind Toxine auf keine bestimmte Körperregion beschränkt und können überall 

lokalisiert sein. Die Klassifizierung von Toxinen erfolgt primär über die Produktionsweise und 

Toxinabgabe (Halstead 1970). Man unterscheidet zwischen aktiv giftigen Tieren, welche mit 

Hilfe von Stechapparaten das Gift zuführen, und passiv giftigen Tieren, bei welchen die 

Giftigkeit eine Folge der chemischen Beschaffenheit von Geweben und Organen ist (Pawlowsky 

1927). Bei toxischen Fischen (Klasse Teleostei; Knochenfische) unterscheiden Primor und 

Zlotkin (1975) neben aktiv (engl.: venomous) und passiv (engl.: poisonous) giftigen Fischen eine 

dritte Giftklasse: Ichthyokrinotoxine (Halstead 1970), bei welchen sich die Toxine in der Haut 

befinden. 

Zu den ichthyokrinotoxischen Fisch-Familien zählen unter anderem Schleimaale 

(Myxinidae) (Lim et al. 2005), Welsartige (Siluriformes) (Manivasagan et al. 2009), Igelfische 
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(Diodontidae, Tetradontiformes) (Battley et al. 2008), Seifenbarsche (Grammistidae) (Sugiyama 

et al. 2005), Kofferfische (Ostraciidae, Tetradontiformes) (Thomson 1964) und 

Korallengrundeln (Gobiidae) (Hashimoto et al. 1974).  Obgleich der mannigfaltigen Funktionen 

und Wirkungen von Toxinen ist festzuhalten, dass die Entwicklung eines Giftes keinem 

eindeutig beschreibbaren Vorgang folgt, sondern individuell zu betrachten und damit auch zu 

untersuchen ist (Williams et al. 2003).  

Vor diesem Hintergrund toxischer Wehrsubstanzen, gilt diese Arbeit der Untersuchung 

der Toxizität von Korallengrundeln der Gattung Gobiodon, welche in Korallenriffen leben und 

einen hohen Spezialisierungsgrad aufweisen (Munday et al. 1997, Dirnwöber und Herler 2007). 

Dieser basiert auf einer hohen Bindungsaffinität zu ihrem Wirt, Steinkorallen der Gattung 

Acropora. Innerhalb dieser Beziehung zwischen Grundel und Koralle gibt es jedoch 

Unterschiede bezüglich der Lebensweise in einer Koralle, wobei zwischen Arten mit kryptischer 

Lebensweise und damit einhergehender angepasster Körperfärbung (meist dunkel) und zwischen 

weniger kryptisch lebenden Arten mit meist auffälliger Färbung (und Musterung) zu 

unterscheiden ist. Arten mit kryptischer Lebensweise sind insbesondere für Prädatoren (= 

Räuber) schwerer zugänglich und weisen vermutlich geringere Migrationsraten auf (Herler, pers. 

Kommentar). Vor allem wenn die Korallengrundeln mit einem Brutpartner zusammen leben, mit 

dem sie vermutlich monogam leben, vermeiden es die meisten Fische die Wirtskoralle zu 

verlassen (Wall und Herler 2009). Neben der monogamen Lebensweise besitzen Gobiodon Arten 

auch die Fähigkeit im Fall von Partnerverlust das Geschlecht in bi-direktionaler Richtung zu 

wechseln (Munday et al. 1998). Beide Strategien geben einen Hinweis darauf, dass die Fische 

die Koralle möglichst selten verlassen, vermutlich um großem Raubdruck zu entgehen. 

Aufgrund der vielfach spezialisierten Lebensweise ist anzunehmen, dass Gobiodon Arten stark 

von ihrer Wirtskoralle profitieren. Trotz des Schutzes, den sie durch ihre Koralle genießen, 

weisen Korallengrundeln Toxine in ihrer unbeschuppten Haut auf (Hashimoto et al. 1974). Die 

ersten histologischen und chemischen Untersuchungen über Beschaffenheit und Funktion des 

Hautgiftes liefert Hashimoto et al. (1974). Lassig (1981) beschäftigte sich ebenfalls mit der 

Wirkung der Toxine und stellte erstmals “bioassay”-Untersuchungen an, eine Methode mit der 

man die Giftwirkung einer Substanz an einem anderen lebenden Organismus testet. Ein 

Vergleich mit dem nahe verwandten und beschuppten Paragobiodon echinocephalus (Rüppell, 

1830) zeigte, dass ausschließlich der Hautschleim von Gobiodon negative Auswirkungen auf die 

lokomotorischen Fähigkeiten von anderen Fischen hat und damit womöglich sowohl zur 

Verteidigung der Wirtskoralle gegenüber korallivoren Fischen, als auch zur Abwehr von anderen 
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korallenbewohnenden Fischen dient. Munday et al. (2003) entdeckten außerdem, dass eine 

Kohärenz zwischen Parasiten und deren Lokalisierung am Körper der Korallengrundel besteht, 

wobei diese sich auf die nicht giftigen Flossen beschränken. Schubert et al. (2003) untersuchten 

erstmals experimentell einen möglichen Zusammenhang zwischen Giftigkeit und Raubdruck 

(Prädation) mittels künstlich präparierten Nahrungspellets (mit und ohne Gobiodon-

Hautsekreten) und konnte zeigen, dass Räuber ein Vermeidungsverhalten aufweisen. Des 

Weiteren stellten die Wissenschaftler einen Zusammenhang zwischen Toxizität und Färbung 

fest, wobei kryptisch-lebende und -gefärbte Tiere weniger giftig waren als auffällig gefärbte 

Arten. Ein möglicher Zusammenhang zwischen Toxizität und Prädatorpräferenz wurde 

aufgezeigt. Bisher wurden mögliche Effekte, welche die Toxizität eines Tieres auf das 

Räuberverhalten haben kann, üblicherweise mittels künstlich manipulierter Experimente (engl.: 

feeding bioassay) untersucht (Pawlik und Fenical 1992, Nagle und Paul 1998, McClintock et al. 

1999, Pisut und Pawlik 2002, Mahon et al. 2003, Schubert et al. 2003). Im Feld der Toxikologie 

und der Ökologie von Toxinen sind naturnahe Experimente jedoch rar. Einige wenige Studien 

haben direkte Räuber-Beute-Interaktionen verschiedenster Tiergruppen direkt mittels 

Videoanalyse untersucht (Christensen 1996, Nemeth 1997, Mahjoub et al. 2008, Staudinger et al. 

2011). Es gibt jedoch kaum direkte Beobachtungen des Verhaltens von Räubern gegenüber 

toxischen Beutetieren.  

Um präzisere Informationen über Gobiodon-Räuber-Interaktionen und die Rolle der 

Toxizität zu erhalten, habe ich in meiner Diplomarbeit Videoexperimente durchgeführt. Diese 

sollten Aufschluss darüber geben, ob und von welchen Räubern Korallengrundeln generell 

gefressen werden und ob sie selbst dann gefressen werden, wenn andere, nicht giftige 

Beutefische verfügbar sind. Letzterer war der beschuppte und mit starken Flossenstrahlen 

bewehrte Riffbarsch C. viridis. Weiters soll dieses Experiment über Prädatorpräferenzen 

gegenüber unterschiedlichen Gobiodon-Arten Aufschluss geben und damit die Annahme 

untersuchen, ob ein Zusammenhang zwischen Giftigkeit bzw. Färbung von Korallengrundeln 

und entsprechender Prädatorpräferenz besteht. Um das Räuberverhalten besser interpretieren zu 

können, war es notwendig grundlegende Experimente zur Bestimmung der Toxizität zweier 

Gobiodon-Arten aus dem Roten Meer durchzuführen, wobei ich jeweils einen häufig 

vorkommenden Vertreter der kryptisch bzw. der auffällig gefärbten Arten wählte. Dadurch 

wurde zusätzlich ein Vergleich mit den Gobiodon-Arten in Japan (Hashimoto et al. 1974) und 

Arten im großen Barriereriff vor Australien möglich (Schubert et al. 2003). Unterschiede der 

Toxizität wurden mittels bioassay getestet, bei dem Effekte von im Meerwasser gelösten 
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Gobiodon-Hautsekreten auf das Verhalten einer sensiblen bioassay-Art (die Riffbarschart 

Chromis viridis) beobachtet wurden. Weitere wichtige Informationen, die für das darauf 

folgende Prädationsexperiment hilfreich waren, betrafen: (1) jene Zeitspanne die notwendig war 

bis eine Korallengrundel ihr gesamtes Toxin abgegeben hat (durch manuelle, mechanische 

Stimulation); (2) Kenntnisse über jene Zeit, innerhalb welcher das Toxin, einmal exprimiert, 

seine vollständige Giftigkeit beibehält, und (3) die Dauer, die eine Korallengrundel nach Abgabe 

der schädlichen Giftmenge zur Wiederherstellung einer toxischen Wirkung benötigt. Durch diese 

Informationen war es mir möglich verschiedene Ereignisse im Prädatorexperiment besser 

erklären zu können und entsprechende ökologische Interpretationen anzustellen. Damit liefert 

diese Arbeit einen wichtigen Beitrag zur Ökologie häufig vorkommender korallenassoziierter 

Meergrundeln und zum besseren Verständnis spezifischer Giftwirkungen bei hochspezialisierten 

Rifffischen. 
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2 ABSTRACT 

 

Coral-dwelling gobies of the genus Gobiodon primarily live in scleractinian corals of the genus 

Acropora. Preferences of coral species are species-specific and highly variable among 

Gobiodon. The degree of association is possibly correlated with conspicuousness and crypticity 

of body colouration, respectively. An explanation for the close attachment to their host coral and 

other particular traits such as bidirectional sex-change, high mate fidelity and especially for the 

development of skin toxins is that predation risk is particularly high for small gobies. In the 

scope of my diploma thesis I compared two crinotoxic (skin toxins) coral gobies, Gobiodon 

histrio (Valenciennes, 1837), representative for a conspicuously coloured species, and Gobiodon 

sp.3 (in sensu Herler and Hilgers 2005) with cryptic colouration, with respect to toxicity levels 

and predator preferences. Toxicity was tested using a standardised bioassay method, in which a 

damselfish species, Chromis viridis (Cuvier, 1830), was employed for measuring loss of 

equilibrium times. It was revealed that both Gobiodon species are toxic with a significant 

difference at the beginning (Mann-Whitney-U-test: p < 0.05) but toxicity equally declines until 

60 minutes after toxin release in both species - regardless of basic toxicity levels (ANCOVA: p = 

0.61 for homogeneity of slopes). Predator preferences were studied after a suitable piscivorous 

predator – Epinephelus fasciatus (Forsskål, 1775) – was selected and its behaviour studied using 

video-analysis in an experimental aquaria. Both Gobiodon species and a non-toxic control (C. 

viridis) were offered to the predator and predator-prey interactions were recorded in 

approximately 9.5 hours trials. Video analysis revealed that E. fasciatus preferred the non-toxic 

control fish (C. viridis) over Gobiodon. Both coral gobies appeared to be potential prey of E. 

fasciatus, but gobies were repeatedly and quickly expelled after capture and were ingested only 

after a certain time of manipulation by the predator. Gobiodon histrio was slightly preferred over 

G. sp.3. With this work I have shown that Gobiodon has a great potential for the survival of 

predator encounters in the field due to proposed skin toxins. I suggest that their host coral may 

provide additional protection since some gobies may be consumed after repeated expel and that 

toxic deterrence appears to be more efficient than physical deterrence provided by body 

squamation and strong fin spines. 
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3 INTRODUCTION 

 
3.1 Predator-prey interactions 

Most toxic species occur in species-rich environments that comprise high rates of competition 

and strong predation pressure. One of the most diverse habitats in the world, the rainforest, 

occupies a high number of toxic species. Well-known representatives are frogs of the family 

Dendrobatidae, which contain lethal toxins in their epidermis and use aposematic signals as a 

warning for predators (Saporito et al. 2007). Other habitats comparable with rainforests 

concerning species richness, competition and enhanced predation are coral reefs, an ecosystem 

characterised by constrained food availability and shelter. Thereby interactions between 

predators and prey have a great impact on population dynamics, which is reflected in the 

numerous strategies developed by animals for efficient prey capture and defence against 

predators. Typically, a predator-prey interaction starts with the predator searching for prey, 

followed by encountering, attacking, capturing and, finally, ingesting the prey. Naturally, a prey 

would try to interrupt this course as soon as possible (Brönmark and Hansson 2000). Different 

strategies are used by prey to avoid capture: hiding, escaping in space or time or by behavioural, 

physical or chemical defence mechanisms (Pawlowsky 1927, Brönmark and Hansson 2000, 

Duffy and Hay 2001). The most common strategy used by both predators and prey is toxicity, 

either actively by venomous animals to harm others, or passively by possessing toxic body parts 

– a defence mechanism occurring frequently in areas with constantly high predation pressure 

(Beukers-Stewart and Jones 2004). This suggests that the ultimate cause of toxicity is natural 

selection under high intensities of predation (Bakus 1981). But toxicity also affects intra- and 

interspecific interactions and serves as avoidance of parasites, fouling, microbial activity, 

pathogens and infections (Mahon et al. 2003, Munday et al. 2003).  

The evolvement of lethal toxins and resistance to them are an evolutionary paradoxon, 

even though toxicity occurs in a broad spectrum of organisms. On the one hand it is obvious that 

self-defence via production of a lethal toxin is an advantage since it enhances the prey’s survival 

rate. On the other hand no selection for an increased resistance can take place, if predators do not 

survive attacks of toxic prey. But not only toxins, also other mechanisms such as distastefulness 

and alarm cues constitute a similar evolutionary enigma: distastefulness is a repellent effect 

without lethal consequences for the predator, whereas preys usually would not survive (Williams 

et al. 2003) and chemical alarm cues simply indicate predation threat to conspecifics of the 

sender without deterring predators (McCormick and Larson 2007). All these mechanisms 
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primarily suggest a selective advantage for the species since the affected species does not receive 

any direct benefits. 

 

3.2 Ichthyotoxic fishes 

Besides actively (venomous) and passively (poisonous) toxic fishes, ichthyocrinotoxic fishes 

(Halstead 1970) are specified, with the latter being distinguished regarding to cytological toxin 

production and release between (1) mucous secreting cells, typically occurring as goblet cells 

and (2) proteinaceous epidermal toxins (crinotoxins and venoms) that are produced by gland 

cells. Crinotoxic fishes tend to have reduced squamation and fishes with either type of toxin 

often adopt a sedentary, station-keeping, and sometimes cryptic mode of life. The crinotoxic 

products of gland cells can only be released after damage to the epidermis, leading to the 

assumption that they play a major role for the protection against other organisms (Cameron and 

Endean 1973) such as viruses, bacteria and fouling organisms (Lassig 1981), fungus, algae, 

settling invertebrate larvae or predators (Cameron and Endean 1973). About 50 species of 14 

teleost families were reported to be crinotoxic (Halstead 1970) and some of these species are 

avoided by predators, suggesting that the toxins function as predation deterrent (Randall et al. 

1971, Shiomi et al. 2000). Commonly, the toxins are capable of lysing both mammalian and 

bacterial cells similar to toxins from the bee venom (melittin), thereby intoxicating other fish 

while making the surrounding seawater foamy (Hashimoto 1979, Shiomi et al. 2000). They 

comprise great structural diversity (Sugiyama et al. 2005). Thomson (1964) observed that the 

introduction of a highly excited boxfish ((Ostracion lentiginosus) into an aquarium with other 

fishes often results in death of others, a result of pahutoxin (formerly: ostracitoxin). Boxin, a 

related ichthyotoxin from a trunkfish was described by Kalmanzon and Zlotkin (2000). Both 

toxins do not show any effect by a subcutaneous injection but achieve their ichthyotoxicity only 

upon delivery to the surrounding water suggesting the lethal effect on other fishes is mediated by 

externally allocated target sites, such as the gills. Crinotoxins were also found in flatfishes 

(Primor and Zlotkin 1975) and soapfishes (Grammistidae) (Randall et al. 1971), which release 

grammistin, a simple peptide, related to melittin (bee venom) and paradaxin (soles) (Shiomi et 

al. 2000). Apart from soapfishes, a clingfish (family Gobiesocidae) (Goldberg et al. 1988) and 

gobiids of the genus Gobiodon (Hashimoto et al. 1974) have been reported to secrete skin toxins 

possibly related to grammistin.  
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3.3 Biology of coral gobies (genus Gobiodon) 

Coral gobies are highly specialised, because they show strong associations with coral colonies of 

the genus Acropora (Dirnwöber and Herler 2007, Munday et al. 1997). As many crinotoxic 

fishes, they lack squamation and live a sedentary mode of life. These fishes spend their entire 

postlarval life-span among branches of patchily distributed colonies and rarely move between 

them (Munday 2004, Feary et al. 2007, Wall and Herler 2009). This association seems to be 

generated by the habitat selection of previously pelagic larvae at or near the time of settlement to 

the reef (Munday 2001). Among species of Gobiodon the habitat specialisation degree is variable 

(Munday et al. 1997, Dirnwöber and Herler 2007) and association intensity with coral host as 

well as colour (ranging from conspicuously to cryptically coloured) are variable as well 

(Munday et al. 1999, Herler and Hilgers 2005). Typically, coral gobies form breeding pairs 

(Lassig 1977) and pairs often remain in the same host coral for most of their adult life (Munday 

2004). They show high fidelity to their partners (Wall and Herler 2009) and are capable of bi-

directional sex-change (Munday et al. 1998). The diet of Gobiodon spp. includes coral tissue, 

filamentous algae and copepods (Riedlecker & Herler 2009, Brooker et al. 2010). 

It is apparent that coral gobies rely on their coral host for their entire post-larval life for 

many reasons: shelter, food and nest sites (Lassig 1981), suggesting that the coral host is highly 

advantageous for the survival of the gobies. This specialisation and relatedness on the host could 

be evidence for a high predation pressure in the surrounding environment outside the coral 

(Schubert et al. 2003). Movements outside the coral host may be particularly hazardous for coral 

gobies due to their small body size, and conspicuousness, their poor long-distance swimming 

ability and poor swimming speed (Lassig 1981), as well as their possible reduced visual acuity 

(Niedermüller, personal communication). A possible tool deterring predators may be the toxic 

skin secretions of Gobiodon (Schubert et al. 2003) since their toxins are ichthyotoxic and 

haemolytic (Hashimoto et al. 1974). Toxins may also play a role in increasing the effectiveness 

of attacks against corallivorous predators besides physical aggression (Lassig 1981). Toxicity 

may also act as a deterrence of interspecific competitors (Lassig 1981) and as a possible 

protection against pathogens (e.g. parasites, bacteria) (Munday et al. 2003). 

Skin toxins in Gobiodon are assumed to be secreted by epidermal peculiar secretory 

glands, which surround the body except for the fins (Hashimoto et al. 1974). Usually, crinotoxins 

are only released in the course of physical destruction of the stratified epithelium (Lawrence and 

Smith 1989, Lassig 1981). Though, it is discussed whether coral gobies may be capable of 

actively controlling the production and secretion of mucus (and toxin) (Lassig 1981), but this has 
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not been investigated yet. Once released, the toxin disappears rapidly, probably due to enzymatic 

degradation (Hashimoto et al. 1974). 

It is expected to have toxic representatives in both cryptic and exposed species, with a 

higher incidence of toxicity occurring in exposed species, because a higher predation pressure 

requires higher investment into defensive mechanisms (Bakus 1981, Proksch 1994, Schubert et 

al. 2003). Schubert et al. (2003) investigated species-specific toxicity levels within six Gobiodon 

species of the Great Barrier Reef via the bioassay method and found evidence that cryptic 

specimens are less toxic. Bioassays were firstly applied by Thomson (1964) to measure the 

effects of a toxin on another toxin-sensitive living organism (Bakus 1981, Lassig 1981). Further 

it was shown by the use of syntheticised food pellets that predators would avoid food containing 

Gobiodon-skin extracts (Schubert et al. 2003).  

Usually, such feeding bioassay methods are used to investigate possible predator 

deterrence effects of toxic substances (Pawlik and Fenical 1992, Nagle and Paul 1998, 

McClintock et al. 1999, Pisut and Pawlik 2002, Mahon et al. 2003, Schubert et al. 2003). 

However, near-natural observations are sparse in the field of toxicology, and only a few studies 

have used video monitoring to gain information about predator-prey relationships and predation 

risk on a more realistic level (Christensen 1996, Nemeth 1997, Mahjoub et al. 2008, Staudinger 

et al. 2011). I decided to directly assess predator-Gobiodon interactions and the potential benefits 

gobies derive from toxicity for the first time by using experimental video analysis. I 

hypothesised (1) that toxicity acts as predation deterrent, suggesting coral gobies are despised if 

another non-toxic prey is optionally offered, and (2) that predation risk of Gobiodon spp. is 

variable and related to the species-specific life style (cryptic versus conspicuous habit and 

colour) (Hashimoto et al. 1974), therefore showing a predator-preference for more cryptic 

species. Based on the results from Schubert et al. (2003), I further hypothesised (3) that predator 

preferences are related to differing toxicity levels. To identify variations in toxicity of Gobiodon 

species in the Red Sea I conducted bioassay experiments similar to Schubert et al. (2003). I 

chose one representative of both conspicuous (G. histrio) and cryptic species (Gobiodon sp.3) 

for experiments. For understanding predator-prey interactions better, I also investigated the 

persistence of toxins in the water over time, as well as the release and recovery times of harmful 

doses of toxicity.  



12 

 

4 MATERIAL AND METHODS  

 

4.1 Study area  

This thesis was produced at the Department of Integrative Zoology at the University of Vienna. 

The field work was carried out between October and December 2010 at Dahab, Sinai (28°28’ N, 

34°30’ E), southern Gulf of Aqaba, northern Red Sea, Egypt (figure 1). Experimental work was 

performed in the Dahab Marine Research Centre (DMRC), which was located about 1 km from 

the study sites. 

 

 

Fig. 1: Geographic location of Dahab, Sinai, Egypt. Reference: Google Maps JavaScript API, 

Version3: http://g.co/maps/2rt8p 

 

 

Depending on habitat preferences of the different fish species required for my experiments, three 

sites were chosen (figure 2): predators were either collected in the „Soliman Reef“ (sea grass 

habitat) or in the „Napoleon Reef“ (relatively continuous coral cover on the reef flat), where also 

G. histrio and G. sp.3 were collected. Bioassay and control species (Chromis viridis) for all my 

experiments were collected in the „Lagoon” (dispersed coral patches with large sandy areas). 

 

4.2 Experimental design for bioassay experiments 

To examine variable toxicity levels among two species of Gobiodon from the Red Sea and to 

determine the time when toxicity decreases after release, I conducted bioassay studies for both 

G. histrio and G. sp.3.   
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Fig. 2: Geographical location of study sites in the area of Dahab, Egypt. Dotted line indicates 

shore with adjacent fringing coral reefs. Thick lines approximately indicate named reefs. 

Reference: Google Maps JavaScript API, Version 3: http://g.co/maps/rdan3 

 

 

4.2.1 Preliminary studies and fish collection  

Although effects on locomoter capacity was evident in several other species tested as bioassay 

fish, I chose C. viridis (= C. vir) for my experiments, a common planctivorous coral-associated 

damselfish, because collection was easy within large schools of uniformly sized individuals with 

similar post-settlement history and toxin-related symptoms appeared clearly fast. This assured 

their sensibility to Gobiodon skin secretions, which was in particular important because C. 

viridis potentially shares habitat with Gobiodon species (Mohamed Negm, personal 

communication).  

A total of 10 G. histrio (= G. his) and nine G. sp.3 and 228 C. viridis were caught within 

8 days (total length (TL) in cm: G. histrio = 4.5 ± 0.3, G. sp.3 = 4.5 ± 0.3, C. viridis = 3.7 ± 0.5) 

by anaesthetisation using clove oil (10 ml in 40 ml of 95% ethanol, diluted with 200 ml 

seawater), which is efficient even in low concentrations without causing permanent damage to 

the fish narcotised (Munday and Wilson 1997, Hajek et al. 2006). Specimens of C. viridis were 

kept in one large tank supplied with stones for shelter for acclimatisation, whereas gobies were 

kept individually and separately. 
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4.2.2 Species-specific toxicity using bioassay   

For each trial one Gobiodon was stressed for 20 seconds by gently rubbing the fish inside a 

plastic bag containing 10 ml of seawater, yielding a foamy, milky, mucous secretion (Schubert et 

al. 2003). The plastic bag was rinsed with 90 ml of seawater and added up to a total of 600 ml. 

The seawater used for dilution was taken from the tank where C. viridis were maintained 

overnight to exclude undesirable side-effects. The mixture was shaken for equal dilution and 

then poured into two 300 ml examination buckets. One C. viridis was put into each of the two 

buckets by not later than 1 minute after the donator goby was rubbed. Using two individuals for 

each run instead of one (Schubert et al. 2003) enabled a slight correction of potential differences 

in sensitivity between bioassay specimens. Thereby, a total of 38 C. viridis (2 for each goby) 

were used for this experiment. Time to loss of equilibrium was measured using a stop watch and 

behaviour of individuals was noted. Loss of equilibrium time, referred to as time until a bioassay 

specimen shows loss of locomotory abilities and balance in response to a chemical, is a 

standardized method (Munday and Wilson 1997, Schubert et al. 2003, Hajek et al. 2006) to 

generate an estimate of the toxin’s effect. A control specimen of C. viridis, which was kept in 

300 ml of pure seawater and changed with each pair of experimental fish, assured good general 

condition within the setup and excluded side-effects. After loss of equilibrium, fish were 

weighed, total body length was measured and condition factors (Cf) were calculated as Cf = 

100*weight[g]*length
-3

[cm]. Loss of equilibrium time of each trial was calculated as the mean 

loss of equilibrium time of both C. viridis used in this trial. E. fasciatus (n = 1), G. histrio and G. 

sp.3 (n = 2) were also tested as bioassay fishes, using the same method as described above, 

except for using 1800 ml and skin secretions of 6 G. histrio (yielding the approximately same 

concentration) for E. fasciatus.  

 

4.2.3 Decrease of toxicity over time using repeated bioassay  

To investigate species-specific declines of toxicity over time, I repeated bioassays. Therefore, I 

continued using the same two 300 ml mucus-seawater-solution as in the bioassay tests above. 

This means that each goby (10 replicate G. histrio and 9 replicate G. sp.3, respectively) was 

rubbed only once at the very beginning of the first bioassay test. Afterwards, loss of equilibrium 

time was analysed at different intervals (10, 30, 60, 120 and 240 minutes) employing two other 

specimens of C. viridis and one control at each interval. The solution was stirred one minute 

before each trial started, because a homogenous solution was required for comparable results. If 

no effect on the bioassay species was apparent, the experiment was terminated after 30 minutes. 
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During the whole procedure (240 min) the water was not aerated, because preliminary 

experiments have shown that C. viridis survives in 300 ml of seawater without aeration for more 

than 24 hours. 

 

4.2.4 Recovery of skin toxins 

The time-span of toxin recovery of G. histrio after previous loss of the harmful dose of toxicity 

was measured. A total of 21 specimens were collected in the field as described above. Each 

individual was rubbed for a mean time of 124 (± 20.8 S.D.) seconds in plastic bags containing 10 

ml seawater each. Bags were changed every 30 seconds until secretion of toxins stopped, i.e. no 

milky liquid visible anymore. To assure that toxicity was eliminated, bioassay tests as described 

above were performed by employing the content of the last plastic bag. Subsequently, gobies 

were separately kept in aerated 500 ml aquariums without feeding. Only the water was changed 

once a day. After different time-spans (6, 12, 24, 36, 48, 120 hours) bioassay experiments were 

repeated to determine the required amount of time for recovery of toxicity (the number of G. 

histrio at each interval was between 3 and 5). 

 

4.3 Experimental design for predator preferences using video-monitoring 

4.3.1 Identification of Gobiodon-predators and fish collection 

For identification of potential predators of Gobiodon in the field narcotised Gobiodon specimens 

were offered to different predator species: S. cyanostigma, Gymnothorax griseus (Lacepède 

1803), Thalassoma klunzingeri (1871, Klunzinger), and E. fasciatus (Forsskål, 1775). Positive 

results (i.e. gobies were attacked and eaten when narcotised) were shown by T. klunzingeri, a 

small-gaped part-time resident, and E. fasciatus, a large-gaped full-time resident predator. While 

T. klunzingeri turned out to be unsuitable for aquarium experiments due to its high swimming 

activity, E. fasciatus, which is usually closely associated with the substratum, showed less 

activity and a much less nervous behaviour in captivity (Randall and Ben-Tuvia 1983). It was 

therefore chosen for the subsequent aquarium experiments. For the non-toxic control species I 

chose C. viridis that represents an important prey species for many reef-based predators (Leis 

and Carson-Ewart 2002, Lecchini et al. 2007). Other than Gobiodon, C. viridis exhibits full-body 

squamation and strong fin spines.  

In total 18 E. fasciatus were caught within 10 days (total length (TL): mean ± S.D. = 16.3 

± 2.8 cm), each within three hours in the morning three days before recordings started using a 

handnet with a prismatically bended wire mesh (diameter of opening: ~ 40 cm) fixed to a PVC 
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pipe of 1m length. Predators were attracted by canned fish. All 54 prey specimens, 18 specimens 

per species (TL ± S.D.: G. histrio = 3.9 ± 0.5 cm; G. sp.3 = 4.0 ± 0.5; C. viridis = 3.9 ± 0.8 cm), 

were collected one day before video recordings started by anaesthetisation using clove oil 

solution (10 ml clove oil in 40 ml 95% ethanol and diluted with 200 ml seawater).  

4.3.2 Aquarium setup 

Before video-recording started, E. fasciatus were starved for 2.5 days to assure fish were 

motivated to feed. For the first 1.5 days they were kept in outdoor aquariums with continuous 

water flow and then transported to indoor aquariums to allow adaptation to indoor light and 

temperature conditions one day before recordings started. All aquariums were aerated and 

equipped with separation walls. Total body length was measured during transportation in a box 

(using nets caused much greater excitement). In the evening predators were relocated from the 

acclimatisation tank into the aquariums provided for video recordings (figure 3), one predator in 

each container. Containers (each of a volume of 20 litres) were installed in two tanks (A1 and 

A2), of 130 litres capacity each, and were equipped with white bottoms for good contrast in 

video recordings. Above each container, cameras were fixed to a base frame to allow for a 

permanent set. The third tank (A3) provided additional water supply and assured consistent 

water quality through filtering and aeration (volume: 200 litres).  

 

 

 

Fig. 3: Aquarium setup. A1 and A2 indicate tanks for video analysis containing two containers 

with video cameras above (C = Cameras). Tank A3 was equipped with a circulator pump for 

continuous water flow, filter pump and aeration. Dotted lines indicate base frame for holding 

cameras in place, small arrows represent the direction of water flow and the large arrow points 

out the downpipe assuring even water surface for video recording.  
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Preliminary experiments revealed that the stress level of predators was kept low by allowing for 

acclimatisation to environmental conditions over night. In the morning of day 4 after video 

recordings were started between 8 and 9 am using a Neostar (MPEG 4) digital video recorder. 

One prey specimen of each species (G. histrio, G. sp.3 and C. viridis) was introduced to each E. 

fasciatus after size measurements and weighing. To minimize predator-prey size differences, 

smaller prey specimens were attributed to smaller predators and larger prey to larger predators. 

Recordings yielded a total of about 9.5 hours of video footage for each predator. Predators were 

then weighed and kept for observation of their health condition overnight. All specimens were 

released back to the reef in the following morning. 

 

4.3.3 Video analysis 

At the University of Vienna video analysis was conducted twice to exclude variations due to 

learning processes in the course of this survey. Videos were analysed using “BACKUP Player” 

included in CMS- (Central Management Service) Software. The behavioural categories of 

predators and preys which were analysed are listed in table 1 and 2.  

The duration until an event occurred was recorded, calculated as the time from when prey 

specimens entered the water to a predator’s action - determined by prey crypticity and predator 

sensory capacities (Christensen 1996). Also noted were the number (one, two or all three prey 

species) (Christensen 1996) and condition (alive or dead) of predator-affected prey species as 

well as distances between all fishes at the moment immediately before an event occurred (i.e., a 

maximum of three predator-prey-, and three prey-prey-distances) (Mahjoub et al. 2008, Nemeth 

1997). Distances were measured from each fish’s snout tip. Although distances measured in 2D 

did not align parallel to the camera view, this was neglected since distance was only used as an 

approximate variable.  
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Tab. 1: Categories used for quantification of predator-prey interactions. ’’x” indicates 

categories that may include a preceding approach (recorded only if there was a short time gap 

between approach and a following behaviour). Italics indicate categories accompanied by strike 

capture.  

 

Category Abbr.    Characterisation Reference 

approach A definite active movement of a predator 

towards the direction of at least one prey 

specimen; sometimes followed by strike 

capture 

 

Mahjoub et al. 

(2008) 

strike capture 
x
 SC sometimes preceding to approach; sudden 

jump of the predator towards the prey to 

engulf it successfully; possibly followed by 

ingestion/consumption (whole prey) 

 

Mahjoub et al. 

(2008) 

consumption  additionally recorded as “fish dead” Christensen (1996) 

Mahjoub et al. 

(2008) 

Staudinger et al. 

(2011) 

 

manipulation 

time 

MT handling time of a prey in the predator’s 

mouth 

 

 

strike capture 

partially 
x
 

(rarely) 

 

SCP prey was not captured completely   

strike failure 
x
 SF failed targeted attack in which predator 

initiated an aggressive movement towards 

prey and opened its mouth, but either prey 

fled or attack was abandoned 

 

Staudinger et al. 

(2011)  

Mahjoub et al. 

(2008) 

total 

regurgitation 

TR expel of a prey’s total body (both alive or 

dead) 

 

 

partial 

regurgitation 

 

PR body part (fins, head or tail) was expelled 

and visible outside the predator’s mouth 

(followed by total TR or ingestion) 
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Tab. 2: Categories used for quantification of predator (first three) and prey (last three) behaviour. 

 

Category 

 

Characterisation 

 

Reference 

 

approach/strike (A/S) 

velocity
 

 

fast or slow Christensen (1996) 

Mahjoub et al. (2008) 

 

multistaged assembly 

of approaches and 

strikes
 

 

approach/strike was not realised at once, 

but serially 

 

touch physical contact with prey (predators 

frequently touch prey with their nose) 

 

 

initial movement 

(before event)
 

 

corresponding to the predator’s attention 

(active or motionless prey) 

 

anti-predator responses attempts to escape from a predator’s 

approach or strike (fleeing or even jumping 

out of the water); sometimes followed by 

strike capture 

 

Christensen (1996) 

Staudinger et al. 

(2011) 

 

behaviour after 

regurgitation 
 

prey moving or motionless  

 

 

4.4 Statistical analysis  

4.4.1 Bioassay experiments  

For analysis of species-specific loss of equilibrium times Mann-Whitney-U-test was used. For 

analysis of toxicity decrease, I employed a one-way-ANCOVA (analysis of covariance), which 

tests the equality of means for several univariate groups (loss of equilibrium times for all 

intervals). ANOVA and t-tests were used to test for homogenous means of weight and condition 

factor data for all C. viridis used in all intervals, because samples were normally distributed and 

had similar variances.   

For the predator preference experiments I used Chi-square-tests (Chi²) for direct 

comparisons between C. viridis and both gobies regarding to pre-capture events (move, nearest 

prey) or for comparisons among observed and expected values of preys eaten. Mann-Whitney-U 

and Kruskal-Wallis tests were employed for pair-wise comparisons or across all three groups 

regarding to distances, preferences among single or grouped prey and regurgitation rates. All 

analyses were carried out with PAST, ver. 2.12 (Hammer et al. 2001). 
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4.4.2 Predator preferences experiments  

To estimate survival probabilities, a survival analysis was carried out, within which the time to 

an event is modeled. More advanced analyses are used to compare between two or more groups 

to estimate the effects of certain variables (covariates) on the event. During data analysis 

attention must be paid to censored data, e.g. observations, where the event to be modeled 

(usually death) did not occur during the observation period. Ignoring these data would bias 

calculations towards low survival rates, as long-term survivors would be eliminated from the 

data set. The development of statistical methods such as Kaplan-Meier-estimator or Cox-

regression has helped dealing with this kind of data (Glantz 1998).  

Within the present study the Kaplan-Meier-estimator was used for graphic representation 

of the survival rates, to calculate mean and median survival times. It is a non-parametric method 

to calculate the survival function for a specific group of observations. Whenever a relevant event 

occurs (in this study: a fish was eaten or dead) the probability of one individual of the given 

population to survive past time t is: 

 

S(t) = (ni – di) / ni 

 

where ni = the individuals at risk at time t (e.g. survivor minus number of censored observations since the last event) 

and di = number of individuals, for which the event occurred at time t. In this analysis the survival probability does 

not change between events. The Kaplan-Meier-estimator is the product of all survival probabilities observed.  

 

The Cox-regression or proportional hazard model (Hill and Lewicki 2007), which is 

commonly used in medical studies, was used for estimating the influence of certain covariates on 

survival times (Cox 1972, Ziegler et al. 2007, Staudinger and Juanes 2010). This model assumes 

that the hazard function for an individual depends on the values of the covariates and the value 

of the baseline hazard. Within the predator preferences experiment, covariates were 

regurgitation, manipulation, type of species and number of species alive, condition factors and 

weights of predators and preys. Covariates employed in the Cox-regression must not be 

correlated with each other and were previously checked for intercorrelation. Since there 

was a significant negative correlation between total length of both Gobiodon species and their 

condition factor (G. histrio: R² = 0.8, p < 0.001; G.sp.3: R² = 0.2, p = 0.1) and a correlation 

between total length and weight (G. histrio: R² = 0.84, p < 0.001; G. sp.3: R² = 0.96, p < 0.001), 

I employed condition factor and weight only. 
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The model may be written as: 

 

h{(t), (z1, z2, ..., zm)} = h0(t)*exp(b1*z1 + ... + bm*zm) 

 

where h(t,...) represents the resultant hazard (= risk of an individual to die), given the values of the m covariates for 

the respective case (z1, z2, ..., zm) and the respective survival time (t). The term h0(t) indicates the baseline hazard.  

 

Both Kaplan-Meier-estimator and Cox-regression were carried out in IBM SPSS 

Statistics 20 for Windows 7.  
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5 RESULTS 

 

5.1 Bioassay  

5.1.1 Species-specific toxicity using bioassay 

Compared to control specimens of C. viridis, who kept well during all experiments, C. viridis 

exhibited symptoms of initial irritability and motor excitation, as well as loss of equilibrium in 

response to skin secretions of both G. histrio and G. sp.3 during all 38 trails proceeded [(9 + 

10)*2]. The time to loss of equilibrium of C. viridis one minute after gobies were rubbed 

constitutes a median of 75 sec (55.5, 82; lower quartile, upper quartile) for G. histrio and 105 sec 

(80, 131.5) for G. sp.3, indicating a significance difference between both species (Mann-

Whitney-U-test: U = 79, p = 0.003). Weights of experimentally used C. viridis did not show 

significant differences between trials with both goby species (mean ± S.D. for G. histrio trials = 

1.0 ± 0.4 grams (g) and for G. sp.3 trials = 1.1 ± 0.4 g , Mann-Whitney-U-test: U = 165.5, p = 

0.6). The condition factor of all C. viridis also showed no significant differences (mean ± S.D. = 

1.8 ± 0.2 for G. histrio trials and 1.8 ± 0.3 for G. sp.3 trials, Mann-Whitney-U-test: U = 169.5, p 

= 0.7). This confirms homogeneity of individuals between the two experimental series. Contrary 

to G. histrio and G. sp.3, which did not show any signs of stress after exposure to toxins of both 

G. histrio and G. sp.3, E. fasciatus (n = 1) exhibited loss of equilibrium after 40 minutes.  

 

5.1.2 Decrease of toxicity over time using repeated bioassay  

In the test intervals up to 30 minutes all C. viridis lost equilibrium and out of the 38 C. viridis 

tested after 60 minutes 37 exhibited loss of equilibrium. In contrast, at longer intervals (120 and 

240 minutes) a greater number of C. viridis did not exhibit loss of equilibrium within the 

observation time of 30 minutes (at 120 minutes G. histrio: 15%, G. sp.3: 11% and at 240 min G. 

histrio: 70%, G. sp.3: 50% of all C. viridis). Due to the respective lack of loss of equilibrium 

data at 120 and 240 minutes intervals, only test intervals of up to 60 minutes were further 

analysed (figure 4). The toxicity-level of G. histrio was significantly higher than that of G. sp.3 

at the 1 minute-interval (Mann-Whitney-U-test for log data: U = 17, p = 0.02) and close to 

significant difference at the 10 minutes–interval (Mann-Whitney-U-test for log data: U = 21, p = 

0.055), but not significant in the longer intervals (figure 4a). ANCOVA (figure 4b) also revealed 

a significantly higher basic toxicity of G. histrio (group mean difference: p = 0.002). A decrease 

of toxicity over time is obvious and equal in both species (homogeneity of slopes: F = 0.26, p = 

0.61).  
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Fig. 4: Loss of equilibrium times of Chromis viridis when exposed to skin toxins of Gobiodon 

histrio (white) and G. sp.3 (grey). a: mean time to loss of equilibrium in log10 of seconds. Boxes 

represent quartiles, central lines the medians, and whiskers the range of data. Horizontal line 

indicates significant difference (p < 0.05; Mann-Whitney-U-test). b: One-way-ANCOVA for G. 

histrio (black) and G. sp.3 (grey).  

 

 

Chromis viridis specimens did not differ significantly between intervals, neither in their weight 

(ANOVA: p > 0.07 for all pairwise comparisons: G. histrio trials = 1.1 ± 0.4 g, G. sp.3 trials = 

1.2 ± 0.4 g) nor in their condition factors (ANOVA: p > 0.05 for all pairwise comparisons (G. 

histrio trials = 1.8 ± 02, G. sp.3 trials = 1.9 ± 0.3). In the case of G. histrio, toxicity was related 

to fish size, exhibited by a significantly positive correlation between loss of equilibrium time of 

C. viridis and the length of the 10 G. histrio toxin donators in the most relevant test intervals (R² 

> 0.41, p < 0.01 for the intervals 1 to 60 min). No such correlation was found for G. sp.3. 

 

5.1.3 Recovery of toxins 

Gobiodon histrio specimens which were deprived of their entire epidermal skin toxins, were not 

able to rebuilt toxicity before 48 hours (n gobies per interval = 3) (figure 5). The first apparent 

effect on the equilibrium of C. viridis bioassay specimens was shown after 48 hours (n = 5) with 

a median loss of equilibrium time of 341 seconds (225, 341; lower, upper quartile) and, after 120 

hours (n = 4), 389 seconds (258, 638).  

a b 
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Fig. 5: Loss of equilibrium time of C. viridis-bioassay specimens after 48 (n = 5) and 120 (n = 4) 

hours of skin toxin recovery of G. histrio (in log10 of seconds). 

 

5.2 Predator preferences using video-monitoring 

Out of a total of 18 predators, 16 predators consumed at least one prey, yielding a total of 33 

consumed prey specimens. Fourteen predators consumed C. viridis, eleven predators consumed 

G. histrio and eight predators consumed G. sp.3. A total of 1139 events were recorded during 

165 hours of video, whereas 58.5 % of all events were approaches, 21.3 % were strikes and 20.2 

% represented other behavioural categories.   

 

5.2.1 Pre-capture events 

The sixteen active predators performed a total of 668 approaches during recordings. Each 

predator approached at least one prey species, and most of them approached more than one 

(figure 6a). Only 14 % of all approaches were followed by a strike. Though, by far most 

approaches (86 %) did not result in a strike (figure 6b). Only Gobiodon species were touched by 

predators (with their snout), which occurred most often during approaches (table 3). Escaping 

from a predator, referred to as anti-predator response, was exhibited by all three species, 

although more C. viridis fled when experiencing an approach or a subsequent strike capture. The 

four strike failures towards Gobiodon, which did not exhibit a response, indicate that the strikes 

were aborted by predators and not due to escape behaviour of the prey. Jumping out of the water 

was only occasionally used by any of the three species. 
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Fig. 6: Analysis of approaches of E. fasciatus towards three different prey species. a: Frequency 

of approaches arranged in the sequence by which species were approached by predators within 

trials (number of predators = 16). Repeated approaches of the same species are neglected. Ranks 

are slightly biased by consumptions without approaches. b: Approaches leading to a strike (left) 

or not (right).  

 

 

Tab. 3: Analysis of predator and prey behaviour.  

 

  

touch 

anti-predator 

response 

 

jump 

Species  0 (%) 

 

≥ 1 (%) 

 

0 (%) 

 

1 (%) 

 

0 (%) 

 

≥ 1 (%) 

 

C. vir 

 

approach 90 (100)           0  15 (17)   75 (83)   80 (89) 10 (11) 

 

strike capt. 16 (100)           0    6 (38)   10 (62)   14 (88)    2 (12) 

 

strike fail.   6 (100)           0            0      6 (1)     3 (50)   3 (50) 

 

G. his 

approach 222 (77) 66 (23) 170 (59) 118 (41) 252 (88) 36 (12) 

 

strike capt.   67 (84) 13 (16)   36 (45)   44 (55)   77 (96)     3 (4) 

 

strike fail.   33 (97)     1 (3)       2 (6)   32 (94)   27 (79)   7 (21) 

 

G. sp.3 

approach 199 (78) 56 (22)  192 (75)   63 (25) 237 (93)   18 (7) 

 

strike capt.   52 (95)     3 (5)   29 (53)   26 (47)   51 (93)     4 (7) 

 

strike fail.   22 (92)     2 (8)       2 (8)   22 (92)   20 (83)    4 (17) 
 

Touch: predator touching prey once or more often (≥ 1) or not (0); anti-predator responses of prey (1) versus no 

anti-predator responses (0); one or more jumps of prey out of the water (≥ 1) versus no jump (0); (n of predators: 

approaches = 16; strike captures = 17; strike failures =14). 

a b 
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Chromis viridis moved significantly more often than both coral gobies before approaches 

(percentage of “move” and “no move” for C. viridis versus pooled gobies:  Chi² = 184, df = 1, p 

< 0.001), suggesting C. viridis is the most active prey species. In contrast, strikes were 

performed regardless of the movement of an aimed prey. Multi-staged approaches are generally 

used by predators to overcome long distances. Because C. viridis was usually approached from 

greater distance, more multi-stage approaches occurred. The velocity performed by predators 

towards prey generally appeared to be rather low. In most cases, approached or strike captured 

prey was closest to a predator (= nearest neighbour). However, approaches were – compared to 

strike captures – less often performed towards the nearest neighbour, in particular for C. viridis. 

The latter species was more frequently approached when not being the nearest neighbour 

compared to both gobies (C. viridis versus mean of pooled gobies: proportion of approaches 

towards nearest versus not nearest neighbour: Chi² = 28.6; df = 1, p < 0.001) (table 4), and was 

also approached from a greater total distance (figure 7). All three species were usually the 

nearest neighbour when experiencing a strike capture (C. viridis versus mean of pooled gobies: 

proportion of strike captures towards nearest versus not nearest neighbour: Chi² = 0.7; df = 1, p < 

0.03). Generally, approach distances for all species are significantly longer than strike capture 

distances (Mann-Whitney-U-test for C. viridis: U = 223, p < 0.001, for G. histrio: U = 3834, p < 

0.001, and for G. sp.3: U = 2468, p < 0.001) (figure 7).  

 

 

Fig. 7: Reactive distances of predators to each prey species before an approach (A, white 

boxplots) or strike capture (SC, grey boxplots). 
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Distances are significantly longer for C. viridis than for each of the two gobies before 

approaches (C. viridis versus both gobies: Mann-Whitney-U-test: p < 0.001, Bonferroni 

corrected) and before strike captures (C. viridis versus both gobies: Mann-Whitney-U-test: p < 

0.03, Bonferroni corrected), whereas there was no difference between the two goby species 

(Mann-Whitney-U-test: p > 0.6 for approaches and strike captures). 

 

Tab. 4: Analysis of predator and prey behaviour. 
 

  
nearest 

NB (%) 

move multi-stage A/S A/S velocity 

species 

 

category 

 
0 (%) 1 (%) 0 (%) 1 (%) slow(%) fast (%) 

C. vir 

approach 30.0   16 (18) 74 (82)   34 (38)   56 (62)   77 (86) 13 (14) 

 

strike capt. 78.3     8 (50)   8 (50)   11 (69)     5 (31)       1 (6) 15 (94) 

 

strike fail. 

 

     2 (33) 

 

  4 (67) 

 

    5 (83) 

 

    1 (17) 

 

           0 

 

6 (100) 

 

G. his 

approach 66.6 269 (93)   19 (7) 139 (48) 149 (52) 242 (84) 46 (16) 

 

strike capt. 89.2   43 (54) 37 (46)   50 (63)   30 (37)   27 (34) 53 (66) 

 

strike fail. 

 

   17 (50) 

 

17 (50) 

 

  26 (77) 

 

    8 (23) 

    

    6 (18) 

 

28 (83) 

 

G. sp.3 

approach 69.1 244 (96)   11 (4) 122 (48) 133 (52) 219 (86) 36 (14) 

 

strike capt. 76.7   28 (51) 27 (49)   34 (62)   21 (38)   18 (33) 37 (67) 

 

strike fail.      9 (37) 15 (63)   18 (75)     6 (25)     3 (13) 21 (87) 
 

Nearest neighbour: attacked prey is closest to predator; move: at time shortly before an event prey actively moves 

(1) or does not move (0); multi-stage A/S: either predator performs approach (A) or strike (S) at once (0) or in 

several steps (1); A/S velocity: A predator’s slow or fast speed during an approach (A) or strike (S). Number of 

predators: approaches = 16; strike captures = 17; strike failures =14. 

 

 

More approaches were performed towards grouped prey specimens compared to single 

individuals, although not significant (Mann-Whitney-U-test: U = 0, p = 0.08), suggesting prey-

groups are appealing for predators. In contrast, preferably single specimens were captured, 

although not significant (Mann-Whitney-U-test: U = 2, p = 0.3), even when more than one prey 

species was alive. Strike failures seemed not to be triggered by the number of species affected by 

a strike, because predators of striking both single and groups of preys experienced failures 

(figure 8).  
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Fig. 8: Number of species affected by predators’ approaches or strikes with respect to number of 

species alive at that moment. One specimen alive: 1 species alive and affected; Grouped prey: 2 

or 3 prey species alive and affected; Single prey: 2 or 3 preys alive, 1 prey affected (total n of 

predators: A = 16, SC = 16, SF = 12). Each frequency for each species is counted (e.g. if an 

approach is performed towards all three species, it is counted for each species, thereby enhancing 

the total value of approaches by doubling or three-folding some total frequencies). Numbers in 

or above bars indicate total number of cases. 

 

 

5.2.2 Strikes and post-capture events 

All analyses of strike captures and regurgitations (figures 8, 9 and 11) only include strike 

captures and regurgitations of prey fishes that were still alive, because, although happening 

rarely, some prey fishes died during manipulation by the predator but were still repeatedly 

regurgitated and captured. 

Within all three prey species regurgitations after strike capture occurred, though regurgitation 

rates varied greatly among species. All captured specimens of C. viridis were finally consumed, 

regardless of regurgitations. Survivors of captured specimens only occurred among G. histrio 

and G. sp.3, suggesting an interest of predators in all prey species but with different rates of final 

consumption. As clearly demonstrated (figure 9, table 5) the number of C. viridis immediately 

eaten (= without regurgitation) is significantly higher than in gobies (12 of 18 C. viridis and 6 of 

36 gobies immediately eaten (= observed) and 14 of 18 C. viridis and 19 of 36 gobies (= 

expected): calculated with proportional ratio for observed and expected versus total individuals 

offered: Chi² = 54.4, df = 2, p < 0.001).  
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Fig. 9: Strike capture and total regurgitations for C. viridis, G. histrio, and G. sp.3 for all 18 

predators. “X” indicates specimens, which survived the experiment despite single or multiple 

captures. In all other cases prey species were consumed during the experiment: either 

immediately (= one strike capture, which is not neccessarily the first strike performed by a 

predator, without subsequent regurgitation), or after preceding regurgitations. 

 

Because most strike captures towards gobies resulted in regurgitation instead of immediate 

consumption, the number of species affected by strike capture (with or without subsequent 

regurgitation) and the rank of consumption differ, whereas only in the latter clear preferences 
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were apparent (figure 10a and 10b). Of all 16 preys consumed (figure 10c) first, 10 specimens 

(62.5%) were C. viridis, 4 specimens (25 %) were G. histrio and 2 specimens (12.5%) were G. 

sp.3 (Chi
2
-test on proportional data (62.5% for C. viridis and 37.5% for both gobies observed 

versus 33.3% and 66.6% expected): Chi
2 

= 38.3, df = 1, p < 0.001). 

 

 

Tab. 5: Strike captures and consumptions of all three prey species from 16 predator preference 

experiments.  

 

species 
total n eaten 

(% of 16) 

immediately 

eaten (% of 

16) 

survivors 

(% of 16) 

alive: SC 

with TR (% 

of all SC) 

dead: SC 

with TR (% 

of all SC) 

C. vir 14 (88) 12 (75)        0    2 (1) 10 (6) 

 

G. his 11 (69)   3 (19) 4 (25) 77 (44) 16 (9) 

 

G. sp.3   8 (50)   3 (19) 3 (19) 52 (30)        0 
 

Total n eaten: total number of specimens eaten during experiments; immediately eaten: eaten without regurgitation 

(not necessarily at first); survivors: captured and regurgitated prey without final consumption; alive: SC with TR: 

strike captures of live specimens; dead: SC with TR: strike captures of specimens that had died from predator 

manipulation; (total number of strike captures = 175). 

 

 

 

            

Fig. 10: Analysis of strike captures of E. fasciatus towards 3 different prey species. a: Frequency 

of strike captures of all preys regardless of subsequent consumption, arranged in the sequence by 

which species were captured for their first time. The frequency of second and third strike 

captures may be influenced by prey eaten at the first consumption (n predators = 17). b: Rank of 

strike captures with subsequent consumption (n predators =16). c: Prey selection depending on 

first prey eaten (left: C. viridis, right: goby); white: all three prey fishes consumed; light grey: 

one C. viridis and one goby consumed; dark grey: either a C. viridis or a goby consumed.  

a b c 
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Furthermore, out of 16 predators, five consumed only one prey in total, five consumed two prey 

specimens (C. viridis or goby first) and six predators consumed all three preys. Of all predators 

consuming C. viridis at first, 70% consumed also at least one goby and 66% of predators 

consuming a goby first consumed also a C. viridis and/or a second goby. It never occurred that a 

predator consumed 2 gobies only.  

In contrast to the high frequencies of strike captures, strike failures occured rarely and the 

frequency per predator had a mean ± S.D. of 1.2 ± 0.5 for C. viridis (n = 5), 3.4 ± 2.6 for G. 

histrio (n = 10) and 2.4 ± 1.4 for G. sp.3 (n = 10).  

Of all preys finally consumed regurgitation frequency (analysed for totally regurgitated 

prey only) was the highest for G. histrio, although not significantly different from G. sp.3 

(Mann-Whitney-U-test: p = 1, Bonferroni corrected) (figure 11) and was significantly higher for 

both gobies compared to C. viridis (Mann-Whitney-U-test: G. histrio p = 0.004, G. sp.3: p = 

0.02, Bonferroni corrected), because they were frequently captured but regurgitated after very 

short manipulation times. Chromis viridis experienced a regurgitation frequency close to zero 

(the only regurgitated specimens were dead and regurgitated simultaneously with a previously 

captured goby). The maximum number of regurgitations for prey specimens not consumed 

finally was much lower and only occurred for G. histrio and G. sp.3, with the latter having a 

slightly higher regurgitation frequency (figure 11). 

 

 

 

Fig. 11: Frequency of regurgitations for all prey species, shown separately for prey finally 

consumed and not consumed. 

 



32 

 

Manipulation time was strikingly increased by some predators after a certain 

cumulativemanipulation time of G. histrio: (n = 5, mean of 100 sec) and G. sp.3 (n = 5, 52 sec), 

accompanied by a decrease in regurgitation frequency, where upon gobies were finally 

consumed. Manipulation time per capture did not differ remarkably among species (table 6), 

whereas manipulation times at the first strike capture were much lower and cumulative 

manipulation times until death were much higher in the gobies.  In contrast to gobies, 

manipulation time of C. viridis remained relatively constant between first strike, per capture and 

until death (table 6), due to the great amount of immediate consumptions of C. viridis. 

 

 

Tab. 6: Manipulation times of all three prey species from 16 predator preference experiments.  

 

Species  
Median MT at first 

SC (lq, uq) 

Median MT/SC    

(lq, uq) 

Median MT of prey 

alive (lq, uq) 

C. vir 25 (7, 32) 26 (7, 68) 26 (7, 68) 

 

G. his 7 (4, 28) 24 (14, 61) 89 (45, 212) 

 

G. sp.3 4 (1, 45) 16 (6, 63) 107 (9, 174) 
 

MT: Manipulation time (in a predator’s mouth) in seconds; MT at first SC: MT at first strike capture of a prey 

species (in sec); MT/SC: MT per strike capture; MT of prey alive: cumulative MT until a prey’s death. lq = 

lower quartile; uq = upper quartile. 

 

 

The cumulative survival rate for C. viridis was much lower than in both Gobiodon species, but 

almost equal for both coral gobies (figure 12). The Cox-regression, which was used for 

estimating the influence on certain covariates on survival times, revealed that there were no 

significant influences of covariates on the survival of C. viridis (p > 0.1 for the covariates 

regurgitation rate per hour, mean manipulation time, condition factor of prey and predator). 

Overall, the Cox-regression for both Gobiodon species (table 7) was highly significant (p < 

0.001), indicating important effects of covariates on the probability of survival. A positive 

coefficient B predicts a greater risk of being eaten. Therefore, in this analysis, higher 

regurgitation rates affect the survival of both gobies negatively, and a high condition factor 

increases predation risk. 

.   
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Fig. 12: Kaplan-Mayer estimator in seconds, censored prey species are survivors. Black: G. 

histrio, dark grey: G. sp.3, light grey: C. viridis. Cumulative survival: y = 1/16 (n = 16 for all 

predators which consumed prey). Censored specimens indicate survivors. 

 

 

The longer a coral goby is manipulated in relation to its condition factor, the higher is the 

probability of getting eaten finally, although the covariate of cumulative manipulation time was 

not significant. The analysis revealed that the condition factor of prey was strongly positively 

correlated with the manipulation time of gobies by a predator. Therefore I used the residue of 

manipulation time in the analysis.  

 

 

Tab. 7: Cox-Regression for two species of Gobiodon (influence of covariates on survival).  

 

covariates 

 

B 

 

df 

 

significance 

 

Exp(B) 

 

regurgitation (per hour)  1.67 1 0.001 5.33 

 

condition factor (prey)  1.07 1 0.003 2.91 

 

RES (cumulative MT) 0.003 1 0.074 1.00 
 

Regurgitation (per hour): regurgitations extrapolated on the time-span per hour until eventual death 

occurred (log10 of sec); condition factor of prey; RES: residue of cumulative manipulation time.  B = 

coefficient B, Exp(B) = exponentiation of the B coefficient (relative risk to die). 
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6 DISCUSSION 

 

Both species of Gobiodon in the Red Sea, G. histrio and G. sp.3, release skin secretions under 

circumstances of stress, which efficiently affect the locomotor abilities and even survival of 

fishes exposed to these secretions. Both potential space competitors and predators are negatively 

affected when exposed, suggesting that the secretions are toxic. In the course of bioassay studies 

conducted for studies on species-specific toxicity levels, a possible space competitor, C. viridis, 

exhibited loss of equilibrium when exposed to toxins of both cryptically (G. sp.3) and non-

cryptically coloured (G. histrio) gobies. In contrast, a non-stressed goby shows no negative 

effect on C. viridis, suggesting that only mechanical friction stimulates toxicity release as also 

suggested by Lassig (1981). Toxicity may also be activated only during secretion, as shown for 

trunkfishes (Thomson 1964). 

Because G. unicolor, the cryptically coloured representative used in bioassay studies of 

Schubert et al. (2003), is closely related to or even identical with G. sp.3 based on molecular data 

(Herler, unpublished data), my study can be well compared with Schubert et al. (2003), who 

found interspecific differences in toxicity related to colouration, standing in contrast to 

Hashimoto et al. (1974), who found no remarkable differences between species of Gobiodon. In 

the present study, the cryptically coloured species was also found to be less toxic, although 

toxicity was not much lower than in G. histrio, somehow contrasting the results of Schubert et al. 

(2003). These differences may be due to distinct geographic regions or varying sensibility of 

both bioassay species. For the first time it was investigated here how potent toxins of G. histrio 

and G. sp.3 are after a certain time. Remarkable differences in toxicity between both Gobiodon 

species were only apparent until 10 minutes (significant differences even only until 1 minute 

after release) after rubbing while loss of equilibrium times became equal in later experiments. 

This suggests that predation pressure may be generally high for both coral gobies causing 

relatively high levels of toxicity for both. However, G. sp.3 may be less exposed to predation due 

to its structurally more complex host coral (Herler, personal communication), leading to less 

investment into skin toxins since the advantage of toxins must outweigh costly production 

(Williams et al. 2003, McCormick and Larson 2008). In the present study, all bioassay 

specimens showed loss of equilibrium when exposed to toxins that were taken from gobies 30 

minutes or less before trials started, indicating that toxins are potent within this time-span. After 

60 minutes from yielding toxins, the first bioassay species lacked a loss of equilibrium, 

indicating non-toxicity. This might be due to enzymatic degradation (Hashimoto et al. 1974) or 
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indicates bacterial detoxification (Thomson 1964). Apart from toxins, oxygen decline may be a 

factor possibly initiating loss of equilibrium. However, this effect can be excluded since time to 

loss of equilibrium is increasing with experimental time and does frequently even not occur in 

the longer intervals. Furthermore, preliminary investigations have shown that keeping C. viridis 

in non-aerated water over 24 hours did not cause mortality.  

Toxicity is most common among sessile, slow-moving and site-attached reef inhabitants 

(Cameron 1974, Bakus 1981), which is possibly linked to high predation pressure. On that 

account, the main focus of this study was paid on how a Gobiodon predator would deal with a 

coral goby under natural circumstances, rather than carrying out a detailed examination of 

predator or prey behaviour. Thereby it was shown that post-capture behaviour of predators 

stands in sharp contrast to pre-capture behaviour, depending on prey species. It was observed 

that skin secretions of living cryptically and non-cryptically coloured coral gobies function as 

predation deterrence. As shown in pre-capture events, predators (E. fasciatus) were equally 

interested in all three species, suggesting that gobies may be potential prey species in their 

natural environment. Approaches were basically performed to draw nearer, since approaches 

usually start from further distances than strikes. They also served to check prey for suitability, 

since many approaches were performed without subsequent action, possibly because predators 

may be able to detect toxins prior to physical contact (Bakus 1981, Schubert et al. 2003). 

Nevertheless many predators attacked both C. viridis and Gobiodon. Most captures were 

performed towards the nearest prey, suggesting that the primary trigger for prey selectivity was 

prey accessibility (passive selection) rather than the prey species (active selection) (Clements 

and Livingston 1984). To draw nearer without causing anti-predator responses and to overcome 

longer distances, predators frequently broke approaches down to multi-stage approaches. The 

longest distances covered by a predator during approaches or strikes were towards C. viridis, 

because its higher swimming activity (referred to as “moving”) is certainly attracting predators. 

In contrast, both Gobiodon species moved rarely and many even did not exhibit anti-predator-

responses if approached or attacked. This behaviour may be caused by their acclimatisation to 

secure shelter in nature, which was missing during experiments, and by their typically less active 

life-style, which is both connected to the close association with their coral host. It indicates that 

coral gobies have had no influence on their predation risk by enhancing anti-predator behaviour 

(McCormick and Holmes 2006). Most toxicological predator-prey experiments used feeding 

bioassays with tissue or secretions of toxic organisms rather than living specimens to establish 

that predation deterrence was not caused by behavioural defence (McQuaid et al. 1999). During 
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this study, coral gobies did not exhibit relevant anti-predator behaviour and in general, the 

difference between pre- and post-capture behaviour of the predator was much more important 

than the predators’ reaction on prey behaviour. Predators were also attracted by groups of two or 

three prey specimens, demonstrated by higher approach rates, because usually groups cause 

attention more quickly (Botham et al. 2005). Nevertheless, most strike captures were performed 

towards single specimens, implying that approaches not only helped to come closer but also 

served for separation of groups, since single specimens are easier to catch.  

Despite pre-capture events did not show clear predator preferences, choices for 

consumption became explicit during post-capture behaviour. Chromis viridis was not only 

consumed most often and clearly was a predator’s first choice of prey, but was in almost all 

cases also consumed immediately without expel after capture. As shown for other toxic or 

unpalatable species (Bakus 1981, Wiklund and Järvi 1982), both Gobiodon species experienced 

repeated expels after predators sampled preys. Although some died after exceptionally long 

manipulation times, specimens usually survived regurgitations as confirmed for other species 

(Bakus 1981, Wiklund and Järvi 1982), providing evidence for a dramatic increase of individual 

fitness. The level of toxicity is assessed by individual predators relative to their own resistance 

and prey species that possess the most potent toxins are rejected (Williams et al. 2003). Despite 

preceding rejections most coral gobies were finally consumed after a time of cumulative 

manipulation in a predator’s mouth, which was accompanied by a high regurgitation frequency. 

The very soon expel (after a few seconds) following the first capture of gobies signalises either 

unpalatability or quickly ascertained toxicity or both. Hashimoto et al. (1974) described a 

stinging and bitter taste when a coral goby is put on the tongue, suggesting distastefulness by all 

means. In natural environments a predator usually has only one chance to catch a prey. A prey, 

which is regurgitated after a few seconds of manipulation time, possesses a very high chance of 

survival. Close associations with the substrate, in particular with a complex structure and many 

close refuges, as present in the habitat of coral gobies, may further enhance survival (Feary et al. 

2007, Wall and Herler 2009). 

One would expect that ingestion of C. viridis is more difficult compared to coral gobies, 

because C. viridis exhibits full body squamation and robust fin spines. Nevertheless, the 

cumulative manipulation time to final ingestion of C. viridis was much shorter than in gobies. 

Manipulations in the mouth of a predator are in accord with Lassig (1981), who also noticed that 

gobies were rarely swallowed without prior manipulation. The repeated expel of Gobiodon 

species and the according prey preferences of predators suggest that chemical deterrence, in 
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particular if combined with toxicity, is more efficient than mechanical/physical deterrence 

mechanisms. Despite final consumption and digestion of gobies there was no negative effect on 

predators apparent even after observations overnight, agreeing with Schubert et al. (2003) and 

Lassig (1981). This may be explained by the observed coherence between cumulative 

manipulation times of gobies (about 120 seconds) and the time required for yielding most of the 

toxins through mechanical friction (about 90-120 seconds), as performed in bioassay studies. I 

therefore suggest that predators may repeatedly manipulate coral gobies before ingestion to 

cause release of most of the toxins.  

Even though toxins had no apparent effect on E. fasciatus after digestion, a predator 

exposed to skin secretions of gobies suffered loss of equilibrium. This may indicate that the 

toxins lose their haemolytic property upon digestion and may primarily target the blood 

circulation via the gills of predators by disruption of the red cell membrane, resulting in 

haemolysis (Primor and Zlotkin 1975). Boxin for example, related to pahutoxin, achieves its 

ichthyotoxicity only upon delivery through the water column, suggesting that it affects externally 

allocated targets (Kalmanzon and Zlotkin 2000). However, further research is needed to address 

the true nature and physiological function of Gobiodon toxins.  

Predator preferences may not only be influenced by distance or olfactory stimuli but 

colouration differences between preys may as well influence a predator’s choice. However, it 

was previously shown that feeding preferences are usually not influenced by colouration (Bakus 

1981, Dunlap and Pawlik 1996). Further, predators appeared to prefer prey with high condition 

factors, as revealed by the Cox-regression. Because of the negative correlation between 

condition factor and total body length, I suggest that small gobies are at a higher risk of being 

eaten. This might be due to easier handling of smaller fish, but possibly also because of lower 

toxicity levels since there was also a significant negative correlation between length and toxicity 

in G. histrio. Another factor possibly affecting a predator’s choice of prey during experiments 

may be its potential naivety towards the prey, since results may be biased if a predator had 

previous encounter-experiences with one or more of the experimentally used prey species. 

Nevertheless, it has been shown in this study that, although predators showed a preference for 

prey other than gobies, they do consume gobies even in the first place and continue consuming a 

second and sometimes a third prey, suggesting that predators are still stimulated by gobies and 

are keen on consuming them. Thereby, the post-capture treatment of preys by predators during 

experiments may reflect very well how predators would possibly deal with a coral goby in 

nature. If gobies are subject to predatory attacks without protection, as it was shown in the 
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course of this study, they may be eaten even though they possess such strong defensive chemical 

deterrence. Thus, a noteworthy proportion was finally consumed after repeated regurgitations 

and long manipulation time. They appear to release a harmful dose of toxins after intensive 

manipulation, and individuals of G. histrio required about 48 hours to rebuild toxic skin 

secretions, although not as highly potent as in the primarily release of toxins, as I have shown in 

the course of this study. Therefore the coral host may be an important refuge. I suggest that their 

close attachment to a coral host may be essential by providing additional protection.  

One of the possible causes of the evolution of toxicity of coral gobies may be migration, 

although it occurs rarely in all life-stages (Feary et al. 2007, Wall and Herler 2009). During early 

life stages where they lack the secure shelter of a certain host coral colony, a phase generally 

characterised by high mortality rates as naïve individuals enter new habitats (Carr and Hixon 

1995, Alamany and Webster 2006), coral gobies frequently move between corals (Wall and 

Herler 2009). They may also move if they outgrew the coral colony size, as shown for other 

coral-dwelling reef fishes (Belmaker et al. 2009). The relation between toxicity and migration 

leads to the conclusion that G. sp.3 may be less toxic than G. histrio due to its lower migration 

rate between corals (Herler, personal comment), thereby leading to less investment into skin 

toxins. Arising questions, such as if gobies in areas of isolated reef patches are more toxic than 

in continuous reefs, where migration may be less dangerous, or if toxins play a possible role in 

deterring larval settlement, a process that would be important for the defence against space 

competitors, are needed to be solved.  

In general, more toxicological research (chemical and biomolecular) on toxins of 

Gobiodon needs to be performed to determine the nature of the toxins, since two different toxin 

classifications have been proposed by Hashimoto et al. (1974): grammistin, a simple peptide 

(Sugiyama et al. 2005), or pahutoxin, a choline ester with fatty acids (Shiomi et al. 2000) and 

being not effective by intramuscularly injections (Kalmanzon and Zlotkin 2000). The biologic 

activity of the toxin (effect on animals of different phyla, such as Crustaceans and other coral 

inhabitants) should be tested, as done for boxfishes (Thomson 1964), as well as lethal 

concentration (LC50) values have to be investigated. Finally, more field research and experiments 

are necessary to evaluate additional roles the toxins may hold within the environment of coral 

gobies of the genus Gobiodon, as assumed above.  
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7 ZUSAMMENFASSUNG 

 

Ein grundlegendes Ziel dieser Arbeit war es herauszufinden, ob lebende Korallengrundeln der 

Gattung Gobiodon als Beute in Frage kommen, insbesondere dann, wenn alternatives 

Nahrungsangebot besteht, und ob sich hinsichtlich zweier unterschiedlicher Gobiodon-Arten 

(eine auffällig und eine kryptisch gefärbte Art) eine Präferenz des Prädators abzeichnet. Im 

zentralen Interesse standen dabei die Hauttoxine der Korallengrundeln. Bioassay-

Untersuchungen mit C. viridis als Bioassay-Art, welche zum einen Aufschluss über die 

Giftstärke und zum anderen über interspezifische Unterschiede zeigten, haben ergeben, dass die 

kryptische Art, G. sp.3, weniger starke Hauttoxine besitzt, obwohl der Toxizitätsunterschied zu 

G. histrio nicht groß und vor allem nur von kurzer Dauer war. Zehn Minuten nach der 

Giftabgabe war der Unterschied vernachlässigbar und durch die stetige Wirkungsabnahme bei 

beiden Arten zeigte sich nach 60 Minuten die erste Wirkungslosigkeit des Toxins, welche nach 

120 bzw. 240 Minuten häufiger wurde. Damit wurde zum ersten Mal getestet, wie lange das Gift 

von G. histrio und G. sp.3 wirksam bleibt. Die potentielle Giftwirkung, die Giftstärke und die 

Wirkungsdauer des Giftes unterstützen die Vermutung, dass der Prädationsdruck außerhalb der 

Wirtskoralle stark ist, wobei G. sp.3 einen höheren Schutz durch seine strukturell komplexere 

Koralle genießt, was mit der geringeren Basistoxizität in Zusammenhang stehen könnte.  

Es hat sich gezeigt, dass die meisten Räuber ein grundsächliches Interesse an allen drei 

angebotenen Beutefischen hatten (C. viridis, G. histrio, G. sp.3), verdeutlicht durch das Beute-

Annäherungs-Verhalten der Räuber. Annäherungen an die Beute (engl.: approaches), sowie 

Attacken (engl.: strikes) erfolgten artunspezifisch. Mit Ausnahme von C. viridis, welcher häufig 

aus großen Distanzen angenähert wurde, waren die Nähe der Beute zum Prädator (am häufigsten 

wurden nahestehende Beuteindividuen angegriffen) und auf Gruppierungen der Beute 

(Annäherungen erfolgten zumeist bei Gruppen) ausschlaggebender für eine Annäherung bzw. 

einen Angriff. Eindeutige Unterschiede bezüglich der Präferenz haben sich erst beim Fressen 

bzw. nach der Aufnahme ins Maul verdeutlicht, denn die ungiftige Kontrolle wurde trotz 

starkem mechanischen Schutzstrukturen (beschuppter Körper, harte Flossenstrahlen) mit 

wenigen Ausnahmen gleich bei ihrer ersten Aufnahme gefressen. Von insgesamt 54 angebotenen 

Fischen wurden 33 (14 C. viridis, 11 G. histrio und 8 G. sp.3) von insgesamt 16 Prädatoren 

gefressen. Von den 16 Beutefischen, welche als erstes gefressen wurden, waren 10 (63%) C. 

viridis, 4 (25 %) waren G. histrio und 2  (13%) waren G. sp.3. Während nur zwei C. viridis 

ausgespuckt wurden, wurde die große Mehrheit der beiden Korallengrundelarten nach 



40 

 

mehrmaliger kurzer Manipulationszeit im Maul des Räubers wiederholt ausgespuckt. Die 

Manipulationszeit pro Aufnahme im Maul des Räubers blieb dabei bei allen 3 Beutefischen 

gleich war. Im Unterschied dazu war die Manipulationszeit der ersten Aufnahme im Maul stark 

variabel zwischen dem Kontrollfisch, mit langer Dauer (Median (unteres, oberes Quartil) in 

Sekunden: 25 (7, 32)), und den beiden Korallengrundeln, bei denen sie nur wenige Sekunden 

dauert (G. histrio: 7 Sek. (4, 28), G. sp.3: 4 Sek. (1, 45)). Die Korallengrundeln weisen im 

Gegensatz zu C. viridis (26 Sek. (7, 68)) auch eine höhere kumulative  Manipulationszeit bis 

zum Tod bzw. Gefressen-werden auf  (G. histrio: 89 Sek. (45, 212), G. sp.3: 107 Sek. (9, 174)), 

welche sich aus dem wiederholten Ausspucken ergibt. Ab einem bestimmten Wert (100 

Sekunden bei G. histrio, 54 bei G. sp.3) der kumulativen Manipulationszeit erhöht sich diese 

auffallend bei ca. der Hälfte der Individuen beider Meergrundelarten. 

Im natürlichen Umfeld würde das bedeuten, dass eine Korallengrundel nach dem ersten 

Fressversuch meist entkommen könnte und damit bedeutend höhere Überlebenschancen im Falle 

eines Angriffes durch einen Räuber aufweist. Dass etwa die Hälfte aller Korallengrundeln 

letztendlich dennoch gefressen wurde, liefert eine mögliche Erklärung dafür, warum Gobiodon 

Arten trotz ihrer Giftigkeit den Schutz ihrer Wirtskoralle genießen. Denn prinzipiell scheinen 

Korallengrundeln eine durchaus interessante Beute für einen Räuber zu sein und insbesondere 

durch Hunger motivierte Räuber betreiben sogar einen hohen Aufwand durch mehrmaliges 

Aufnehmen und Manipulieren im Maul, um die Fische fressen zu können. Unklar bleibt aus 

welchem Grund die Fische gleich nach dem ersten Fressversuch wieder ausgespuckt und erst so 

lange manipuliert werden müssen, bevor sie konsumiert werden. Es wäre möglich, dass die 

Grundeln neben ihrer Toxizität auch schlecht schmecken - ein Umstand, auf den schon 

Hashimoto et al. (1974) aufmerksam machte – und der Geschmack und nicht die Toxizität der 

primäre Auslöser für das Zurückweisen ist. Dabei wäre es naheliegend, dass das Hauttoxin über 

den Verdauungsweg seine Giftigkeit verliert, wie im Fall von Schlangengift (Pawlowsky 1927). 

Des Weiteren wäre es anhand der dargelegten Ergebnisse denkbar, dass eine Grundel zumindest 

den Großteil ihrer Giftigkeit durch die mechanische Manipulation im Mund eines Prädators 

verliert. Ein Hinweis darauf ist, dass ein Zusammenhang zwischen jener Dauer, bis zu der eine 

Korallengrundel durch manuelle Manipulation ungiftig wird (90 bis 120 Sekunden), und der 

Manipulationszeit, welche eine Korallengrundel im Mund eines Prädators verbringt bevor sie 

gefressen wird (ca. 60 bis 120 Sekunden), besteht.  

Eindeutig geht aus dieser Arbeit sich jedenfalls hervor, dass toxische 

Abwehrmechanismen bzw. schlechter Geschmack einen Vorteil gegenüber physikalischen 
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Schutzstrukturen (z.B. Beschuppung und harte Flossenstrahlen) bieten, denn selbst 

gegebenenfalls, dass Gobiodon-Individuen den Schutz ihrer Wirtskoralle verlassen, überleben 

sie, im Gegensatz zu Riffbarschen (Chromis) ,eine oder mehrere räuberische Attacken in den 

meisten Fällen. 
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9 APPENDIX 

 

Species used for all experiments: 

 

 

 

 

 

 

 

 

 

 

 

 

Epinephelus fasciatus 

Chromis viridis 

Gobiodon histrio 

Gobiodon sp.3 
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Bioassay – experiment: 

                       
  

 

 

Predator preference – experiment: 

  

 

 

 

Rubbing of G. histrio (red arrow) in 10ml seawater 

inside a plastic bag. Note the milky, foamy water.  

Measurements of time to loss of 

equilibrium of C. viridis inside 

buckets, which contain skin 

secretions of Gobiodon. 

 

Aquarium setup for video analysis, showing two tanks with two 

containers inside each and cameras inside base frame above. 

 

Example picture for analysing video 

recordings. In the middle: E. fasciatus, right: 

C. viridis, top left G. sp.3, bottom left: G. 

histrio. 
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Meer 

 

Wenn man ans Meer kommt 

soll man zu schweigen beginnen 

bei den letzten Grashalmen 

soll man den Faden verlieren 

 

und den Salzschaum 

und das scharfe Zischen des Windes einatmen 

und ausatmen 

und wieder einatmen 

 

Wenn man den Sand sägen hört 

und das Schlurfen der kleinen Steine 

in langen Wellen 

soll man aufhören zu sollen 

und nichts mehr wollen wollen, nur Meer  

Nur Meer 

 

 

Erich Fried 
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