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Zusammenfassung

Theoretische Ab-initio Methoden haben sich in der Materialphysik etabliert, da sie wichtige
Erkenntnisse liefern als Bestätigung, Ergänzung und Erweiterung von experimentellen Be-
funden. Die gegenständliche Studie berechnet physikalische Eigenschaften von kristallinem
Siliziumnitrid und amorphen Silizium-Stickstoff Legierungen mit dem Vienna Ab-initio
Simulation Package VASP, welches auf der Dichtefunktionaltheorie basiert. Die Arbeit im-
plementiert ein optimiertes Potential zur Behandlung der amorphen Legierungen mittels
vorhergehender Bestimmung der strukturellen, elektronischen, optischen und Schwingung-
seigenschaften von α-, β-, und γ-Si3N4 mit einem regulären Potential.
Es wird bestätigt, dass es sich bei der Raumgruppe der stabilen Phase, β-Si3N4, um
P63m handelt. Die generelle Bandstruktur von kristallinem Siliziumnitrid zeigt zwei flache
Valenzbänder, welche durch eine Lücke getrennt werden. Breite indirekte Kohn-Sham PBE
Bandlücken zwischen 3.3 eV und 4.7 eV werden beobachtet, wie auch optische Absorption
ab Photonenenergien von 5.0 eV. Schwingungsfrequenzen von 180 cm−1 bis 1030 cm−1

treten auf. Sodann werden die Berechnungen der kristallinen Phasen mit den optimierten
Potentialen durchgeführt und verglichen. Es wird gezeigt, dass die Potentiale zur Be-
handlung der amorphen Legierungen angemessen sind. Ein optimiertes Potential wird
ausgewählt und zur Berechnung der strukturellen und elektronischen Eigenschaften von
hydrierten und unhydrierten amorphen Silizium-Stickstoff Legierungen eingesetzt.
Den Hauptfokus stellen die Legierungen a-Si3N3, a-Si3N4, a-Si3N3:H und a-Si3N4:H
dar. Eine Bestimmung der mittleren Abstandsquadrate und Diffusionskoeffizienten, der
partiellen Paarkorrelationsfunktionen, der Bindungswinkelverteilungen, der Koordination-
szahlen und der strukturellen Defekte wird durchgeführt. Die elektronische Struktur von
Valenzband, Leitungsband und Bandlücke sind ähnlich wie die der kristallinen Phasen.
Die amorphen Silizium-Stickstoff Legierungen weisen KS PBE Bandlücken von 1.4 eV bis
2.8 eV auf, je nach Stöchiometrie Si/N und Wasserstoffgehalt. Festgestellt wird eine Ten-
denz zur Bandlückenaufweitung für an Si3N4 annähernde Stöchiometrien sowie, obwohl
weniger ausgeprägt, für hydrierte Legierungen. Die Hydrierung zeigt einen ausheilenden
Effekt auf elektronische Defektzustände durch Reduzierung der Lokalisierung von Valen-
zelektronen. Wasserstoff bildet Bindungen zu N sowie Si in a-Si3N3:H, aber bevorzugt N
in a-Si3N4:H. Zustände in der Bandlücke werden in a-Si3N3 und a-Si3N3:H beobachtet.
Energielevels in der Nähe des Valenzbandes stammen großteils von Koordinierungsdefek-
ten, jedoch Zustände beim Leitungsband sind durch Beiträge von Atomen innerhalb des
Si Perkolationsnetzwerkes ausgezeichnet. Es wird bestätigt, dass, neben dem Auftreten
struktureller Defekte, je mehr Si Atome Teil des Perkolationsnetzwerkes sind, desto mehr
schrumpft die Bandlücke aufgrund Lokalisierung von Defektzuständen.
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Abstract

Theoretical ab-initio methods have been established in materials physics, as they supply im-
portant insights to verify, supplement and extend experimental findings. The present study
calculates physical properties of crystalline silicon nitride and amorphous silicon-nitrogen
alloys with the Vienna ab-initio simulation package VASP, based on density functional
theory. We implement an optimized potential for treating the amorphous alloys by first
determining structural, electronic, optical and vibrational properties of α-, β-, and γ-Si3N4

with a regular potential.
The space group of the stable polymorph, β-Si3N4, is confirmed as P63m. In general,
the band structure of crystlline silicon nitride exhibits two flat valence bands separated
by a gap. Wide indirect Kohn-Sham PBE band gaps between 3.3 eV and 4.7 eV are ob-
served as well as an absorption of photons above 5.0 eV. Vibrational frequencies range from
180 cm−1 to 1030 cm−1. Then the calculations of the crystalline phases are performed with
the optimized potentials and compared. In following we establish that the potentials are
adequate for treating the amorphous alloys. One optimized potential is selected and used
for obtaining the structural and electronic properties of amorphous silicon-nitrogen alloys,
unhydrogenated and hydrogenated.
The main focus is placed on a-Si3N3, a-Si3N4, a-Si3N3:H and a-Si3N4:H. A determination
of mean square displacements and diffusion coefficients, partial pair correlation functions,
bond angle distributions, coordination numbers and structural defects is conducted. The
electronic structures of valence band, conduction band and band gap are similar to those of
the crystalline phases. The amorphous silicon nitrogen alloys display KS PBE band gaps
between 1.4 eV and 2.8 eV, depending on stoichiometry and hydrogen content. We observe
a tendency of band gap widening for stoichiometry approaching a-Si3N4 and, less distinct
but noticeable, for hydrogenated alloys. Hydrogenation has a curing effect on the electronic
levels of defects, by reducing the localization of valence electrons. Hydrogen bonds to N
and Si in a-Si3N3:H, but prefers N in a-Si3N4:H. Gap states are observed in a-Si3N3 and
a-Si3N3:H. Levels close to the valence band originate mainly from coordination defects,
whereas the levels in the vicinity of the conduction band are dominated by contributions
from atoms within the Si random percolation network. We confirm that, aside from struc-
tural defects, the more Si atoms are part of the random percolation network, the more the
band gap decreases due to tailing of levels into the gap.
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Chapter 1

Introduction

The present work applies density functional theory with the Vienna ab-initio simulation
package VASP to the insulator silicon nitride. Silicon nitride is used as deposited surface
layer for high performance silicon solar cells [1]. It is also suitable for high temperature
ceramics applications [2], due to its tensile strength. In the amorphous alloys there is
an uncertainty in stoichiometry depending on the formation process, additionally usually
some hydrogen is present. Thus the formula Si3N4 is only applicable for the crystalline
phases or for the pure amorphous alloy.

The main focus of this work is the modelling of amorphous silicon nitride and amorphous
silicon-nitrogen alloys. Specifically of interest is the issue of structural defects and the
connection to electronic states, as well as possible curing of defects through hydrogenation.
Hydrogen has been found to have a passivating effect [3], thus the principal bonding
partner and the effect of hydrogenation on the electronic defect levels are investigated in
this work. A previous study [4] suggests that structural defects are not easily assigned to
specific electronic levels in the band structure of the amorphous silicon-nitrogen alloys.
Therefore a thorough analysis of the local environment is performed in combination with
an assignment of localized electronic states at certain energy levels to specific atoms.

The considered structural defects are under- and overcoordinated atoms, Si clusters and
random percolation networks, square structures, N vacancies and Si antisites. Si clusters
and random percolation networks are bound to exist if not sufficient N is present to
saturate every Si dangling bond. Experimental findings are scarce and show conflicting
tendencies [5, 6]. Recent calculations point to formation of such networks [4]. Thus the
conditions for appearance of a Si network are investigated by performing calculations with
two different Si/N-ratios.
The square structure has been previously documented in ab-initio simulations [7] and
experimentally as nitrogen defect in amorphous silicon [8]. It is best described as a
four-membered ring of alternating Si and N atoms arranged in a quasi-planar square.
As each Si atom shares two N atoms with another Si atom in this configuration, the
resulting tetrahedra centered on the Si atoms are edge-sharing. The regular configuration
in crystalline α- and β-Si3N4 contains only corner-sharing SiN4 tetrahedra, whereas in the
high pressure phase γ-Si3N4 edge-sharing tetrahedra are present. The dominance of one
type of configuration over the other is inspected in the amorphous silicon-nitrogen alloys.
Reference [9] suggests two more structural defects, the N vacancy and the Si antisite.
Basically, in reference [9] the N vacancy was modelled by removing one nitrogen atom
from a crystalline Si3N4 network, thus the silicon neighbors are left undercoordinated.
In this work the N vacancy is not treated as a separate defect, but considered indirectly
through threefold coordinated Si atoms. The Si antisite in reference [9] was obtained by
replacing one nitrogen atom in a crystalline Si3N4 network by a silicon atom. This can
be regarded as an extreme case of a percolation network, in which one quarter of the Si
atoms are threefold coordinated. In the present work, the Si antisite is analysed together
with other Si atoms within the random percolation network.
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Chapter 1 Introduction

Creation of the amorphous models requires long and slow annealing, therefore optimized
potentials are used that need to be tested beforehand. This diploma thesis first gives
a short introduction on density functional theory and the applied methods in chapter 2.
Chapter 3 contains the results of calculations for the crystalline phases with a regular
reference potential. These are treated as reference values for the same calculations with
two different optimized potentials in chapter 4, a soft and a very soft potential. After the
reliability of the optimized potentials has been established, the very soft potential is used
in chapter 5 to obtain the amorphous model structures. The conclusions in chapter 6 sum
up the findings of this work.
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Chapter 2

Density functional theory

This chapter begins with the time-independent many electron Schrödinger equation for
describing solids quantum mechanically. Then the basic theorems of density functional
theory are given and the energy functional in Kohn-Sham formalism is presented. The
quantum mechanic harmonic theory of vibrations is used to determine the crystal’s
potential energy and the Bloch theorem is applied to electronic wave functions in the
crystal’s periodic potential. Implementation of the density functional theory procedure
and methods in VASP is then outlined. The computational details selected in this work
are given.

2.1 Many electron Schrödinger Equation

Quantum mechanically, properties of solids are obtained with the time-independent many
particle Schrödinger equation. This partial differential equation handles solids as a system
of electrons and nuclei through stationary wave functions. The time-independent many
particle Schrödinger equation is

Ĥ fundψ(r1, r2, ..., rN ;R1,R2, ...,RM ) = Efundψ(r1, r2, ..., rN ;R1,R2, ...,RM ) , (2.1)

where Efund is the total energy of the system and the eigenvalue of the fundamental Hamil-
tonian Ĥ fund. The ψ(r1, r2, ..., rN ;R1,R2, ...,RM ) denote stationary wave functions that
depend on the positions r1, r2, ..., rN of the electrons and R1,R2, ...,RM of the nuclei.
Contributions to the total energy Efund from electrons as well as from nuclei have to be
regarded. This is performed with the fundamental Hamiltonian

Ĥ fund = T̂e + T̂n + Ûee + Ûen + Ûnn . (2.2)

The index e stands for electronic contributions and n for contributions from nuclei in the
kinetic energies T̂ and potential energies Û . This Hamiltonian is more explicitly given as

Ĥ fund =−
~
2

2me

N
∑

i=1

∇2
i −

M
∑

n=1

~
2

2Mn
∇2
n +

e2

2

N
∑

i,j=1;i 6=j

1

|ri − rj |

−
M
∑

n

N
∑

i

Zne
2

|ri −Rn|
+
e2

2

M
∑

n,m=1;n 6=m

ZnZm
|Rn −Rm|

.

(2.3)

In equation (2.3) N and M are the number of electrons and nuclei, respectively. ri, rj
denote the locations of the electrons and Rn,Rm those of the nuclei. e = 1.60219 ·10−19 C
is the elementary charge, ~ = 1.054572 · 10−34Js = 6.582119 · 10−16eV s the reduced
Planck constant, me = 9.1096 · 10−31 kg the electron mass, Mn = 1.6726 · 10−27 kg the
proton mass and Z the atomic number. The first and second term in the Hamiltonian
Ĥ fund describe the kinetic energy of electrons T̂e and nuclei T̂n, respectively. The third
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Chapter 2 Density functional theory

and fifth term give the repulsive interactions between particles of the same type, namely
electron-electron interaction Ûee and nuclei-nuclei interaction Ûnn. The fourth term in
equation (2.3) denotes the electron-nuclei interaction Ûen. The kinetic energy contribution
T̂n of the nuclei is a constant shift and can therefore be chosen as T̂n = 0 , reducing the
terms of the fundamental Hamiltonian to

Ĥ fund = T̂e + Ûee + Ûen + Ûnn . (2.4)

In the static nuclei approximation, as applicable for a crystal lattice or an amorphous
solid, the classical positions R1,R2, ...,RM of the nuclei in the structure are fixed. Thus
in the Hamiltonian for constant positions of the nuclei the term Ûnn is also constant.
The potential energy contribution Ûen is considered as a lattice periodic potential for the
electrons

V ext(r+R) = V ext(r) , (2.5)

where R is an arbitrary lattice vector. The static nuclei Hamiltonian is

Ĥ = T̂e + Ûee + V ext . (2.6)

The static nuclei Hamiltonian Ĥ solves the many electron Schrödinger equation

Ĥψ(r1, r2, ..., rN ) = Eψ(r1, r2, ..., rN ) , (2.7)

with the many electron wave functions ψ(r1, r2, ..., rN ).

2.2 Hohenberg-Kohn theorems and Kohn-Sham method

The theoretical foundation of density functional theory are the Hohenberg-Kohn theo-
rems [10]. They state that for a class of Hamiltonians of the form of equation (2.6) the
energy is a functional of the density. The energy functional is expressed as

E[n(r)] ≡

∫

V ext(r)n(r)d3r + F [n] (2.8)

with a universal functional

F [n] = min
ψ|n

[

〈ψ| T̂e + Ûee |ψ〉
]

. (2.9)

It results in the correct ground state energy associated with V ext(r). In the Kohn-Sham
method [11] a one particle Hamiltonian for a non-interacting reference system is defined

ĤKS = T̂e + V KS . (2.10)

The ansatz for the Kohn-Sham potential is

V KS(r) = V ext(r) + V H(r) + V XC(r) . (2.11)

V ext(r) is the lattice periodic potential of the nuclei, V H(r) is the electrostatic or Hartree
potential and V XC(r) is the exchange-correlation potential.
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2.2 Hohenberg-Kohn theorems and Kohn-Sham method

Thus the energy functional is

E[n] = T̂e[ψ1, ψ2, . . . , ψN ] + EH[n] + Eext[n] + EXC[n] + Eion , (2.12)

with

T̂e = −
~
2

2me

N
∑

i

〈

ψi(r)|∇
2
i |ψi(r)

〉

the electronic kinetic energy

EH[n] =
e2

2

∫

d3rd3r′n(r′)
1

|r− r′|
n(r) the (electrostatic) Hartree energy

Eext[n] =

∫

d3rV ext(r)n(r) the electronic energy in potential of nuclei

EXC[n] the exchange-correlation energy

and Eion the electrostatic energy from nuclei-nuclei interaction.
The Kohn-Sham potential V KS(r) solves the Kohn-Sham equations

εiψi(r) =

[

−
~
2

2me
∇2 + V KS(r)

]

ψi(r) , (2.13)

n(r) =

N
∑

i

|ψi(r)|
2 , (2.14)

where equation (2.14) is the condition for self consistency. Summation over the energy
eigenvalues εi results in

N
∑

i=1

εi =

N
∑

i=1

〈

ψi(r)|Ĥ
KS|ψi(r)

〉

=

=T̂e[ψ1, ψ2, . . . , ψN ] + 2EH[n0] + Eext[n0] +

∫

d3rn0(r)E
XC[n0(r)] . (2.15)

By comparison with the energy functional in equation (2.12) the Kohn-Sham energy func-
tional for the ground state density n0 results in

EKS
+ E[n0] =

N
∑

i=1

εi − EH[n0] + EXC[n0]−

∫

d3rV XC[n0(r)]n0(r) + Eion . (2.16)
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Chapter 2 Density functional theory

2.3 Quantum harmonic crystal

The potential energy of the nuclei in the crystal lattice is obtained within the framework
of the quantum theory of crystals [12]. The Hamiltonian for the movement of the nuclei is
formulated in the harmonic approximation

Ĥharm = T̂n + Ûnn . (2.17)

The energy eigenvalues E′
i of stationary state i of the crystal are obtained from considera-

tions concerning the lattice vibrations, or phonons. A N -atomic crystal can be described
as a system of coupled harmonic oscillators. With linear transformation normal coordi-
nates can be introduced which lead to equations of motion for independent oscillators.
Each of the 3N normal modes with frequency ωs(k) contributes a discrete set of values
(nks +

1
2)~ωs(k) to the energy of the crystal in the stationary state i

E′
i =

∑

ks

(nks +
1

2
)~ωs(k) . (2.18)

nks = 0, 1, 2, . . . are the excitation numbers of the normal mode of branch s with wave
vector k. s (s = 1, . . . , 3N) denotes the different dispersion branches. Instead of using the
description that the normal mode of branch s with wave vector k is in its nksth excited
state, it is equivalent to say that there are nks phonons of type s with wave vector k

present in the crystal. The frequency branches ωs(k) have the periodicity of the reciprocal
lattice. The acoustic branches with ω = ck are characteristic of sound waves, at small k.
They vanish linearly with k in the long-wavelength limit. Optical branches do not vanish
in the long-wavelength limit. The phonon dispersion curve of a N -atomic crystal has 3
acoustic and 3(N − 1) optical branches, totalling 3N .

The expectation value of the crystal’s energy is formulated in the canonical ensemble as

Eharm =

∑

iE
′
i exp(−βE

′
i)

∑

i exp(−βE
′
i)

, (2.19)

where E′
i is the energy of stationary state i of the crystal and β = 1/kBT with the

Boltzmann constant kB = 8.617 eV K−1. By inserting the E′
i from equation (2.18) the

expectation value of the energy of a quantum mechanic harmonic crystal at temperature
T is

Eharm = Eeq +
∑

ks

1

2
~ωs(k) +

∑

ks

~ωs(k)

exp(β~ωs(k))− 1
. (2.20)

The second term denotes the zero point vibrations of the normal modes and Eeq the energy
of the equilibrium configuration. The energy of the equilibrium configuration is

Eeq =
1

2

∑

rr′

φ(r− r′) =
N

2

∑

r 6=0

φ(r) . (2.21)

if φ(r− r′) is the potential contribution from a pair of nuclei and the summation goes over
pairs rr′ of nuclei.
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2.4 Bloch electrons in a periodic potential

2.4 Bloch electrons in a periodic potential

Any three dimensional crystal consists of a lattice {n1R1 + n2R2 + n3R3, ni ∈ Z}. Recip-
rocal lattice vectors {G1,G2,G3} can be defined that relate to the lattice vectors through

RiGj = 2πδij . (2.22)

According to the Bloch theorem the eigenstates or wave functions ψ to the single electron
Hamiltonian with lattice periodicity can be described as

ψnk(r) = unk(r) exp(ikr) =
∑

G

cnk(k+G) exp(ir(k+G)) . (2.23)

The condition is that the function unk is lattice periodic unk(r) = unk(r + R). As the
single electron wave functions ψ are used in the Kohn-Sham equations (2.13), the Bloch
theorem is applicable in density functional theory for periodic structures. Amorphous
structures can also be calculated if the super cell contains sufficient formula units so
that after simulated annealing, which is discussed later, the resulting distribution can
be considered random. This super cell is periodically repeated into all three spatial
dimensions and a quasi-random crystal is used for the determination of the amorphous
solid’s properties.

2.5 Vienna Ab-Initio Simulation Package

In this work the Vienna Ab-Initio Simulation Package (VASP) is used to perform density
functional theory calculations. A number of methods are implemented to efficiently solve
the Kohn-Sham equations. Specifically, the Bloch theorem is used. Thus only the smallest
unit cell is required to build up the crystal. Also, that the single electron energies can be
obtained as continuous functions of crystal impulse k is considered by k-point sampling.
Lastly, the wave functions can be formulated with the PAW method.

Numerically a basis set is constructed to describe the Bloch electrons, for which VASP
applies a cut-off energy Ecut

~
2

2m
|k+Gmax|

2 < Ecut , (2.24)

where Gmax is the maximal reciprocal lattice vector used in the plane wave expansion.
The cut-off energy is related to the choice of k-point mesh. The larger the number of
k-points, the lower Ecut can be. If the expansion of the potential from equation (2.11),
V KS(r) = V ext(r) + V H(r) + V XC(r), is performed with lattice periodic plane waves

V (r) =
∑

G

V (G) exp (irG) , (2.25)

the Kohn-Sham equations present themselves as a system of equations for coefficients
cnk(k+G) of wave functions ψnk(r) for a fixed value of k

∑

G′

ĤKS
G,G′cnk(k+G) = εnkcnk(k+G) , (2.26)

11



Chapter 2 Density functional theory

where the Kohn-Sham Hamiltonian is

ĤKS
G,G′ = −

~
2

2me
|k+G′|2δG,G′ + V (G−G′) . (2.27)

The procedure implemented in VASP is as follows. First, from the coefficients cnk(k+G)
the cell periodic part of the wave functions ψnk(r) in equation (2.23) is calculated. Then the
multiplication of V (r)unk(r) is performed in real space. Finally, the result is transformed
into reciprocal space. This is done by implementing the fast fourier transform (FFT) [13]
for any periodic function, here given for the three dimensional case

fk1,k2,k3 =

N
∑

n1,n2,n3=0

cn1,n2,n3
e−2πi

n1k1+n2k2+n3k3
N , (2.28)

cn1,n2,n3
=

1

N3

N
∑

k1,k2,k3=0

fk1,k2,k3e
2πi

n1k1+n2k2+n3k3
N (2.29)

to transform results between real and reciprocal space.

k-point sampling describes the method of replacing the integral with a weighted sum

1

ΩBZ

∫

ΩBZ

→
∑

ki

ωki
(2.30)

at certain k-points. By including symmetries of the first Brillouin zone the number of
required ki is reduced further. In addition to k-point sampling so called smearing methods
with partial occupancies f are applied to speed up convergence, in which the discontinu-
ous Heaviside step function Θ is replaced by a smooth function. Commonly used is the
Gaussian method [13]

f(εnk) = 2Θ(εF − εnk) → fGs (εnk) = 1− erf(
εnk − εF

σ
) . (2.31)

It contains the smearing parameter σ as a variable of the Gaussian error function. A
generalized free energy F (σ) = E(σ) − σS(σ) is minimized instead of the energy E and
then the energy is extrapolated to σ → 0 with

Eσ→0 =
F (σ) −E(σ)

2
. (2.32)

Another smearing method used in VASP is the Methfessel-Paxton scheme [14]. This
further development of the Gaussian method expands the smooth function fs(εnk) into
Hermite polynomials. Usually one correction term is sufficient. In this work, most
calculations with VASP are performed with the linear tetrahedron method with Blöchl
corrections [15]. This algorithm interpolates the energy eigenstates between values at
selected k-points. Its greatest drawback is that the forces acting on ions cannot be
accurately calculated, which makes this method unsuitable for relaxation runs with VASP.

As the properties of solids are mostly determined through their valence electrons, which
participate in bonding, the projector augmented-wave (PAW) method [16,17] is applied for
construction of the wave functions. It is a full potential all-electron method and retains

12
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the nodal structure inside the augmentation spheres. The softer a potential, the less plane
waves it applies to construct the wave functions. This causes calculation time to decrease,
but might deteriorate the results. The PAW method gives a Hamiltonian HPAW for the
Kohn-Sham equations. The energy eigenvalues are obtained by solving the system of
equations

HPAW|ψ̃n〉 = εnS|ψ̃n〉 , (2.33)

where ψ̃n are the pseudo wave functions of the method. The overlap matrix S can be
constructed from the condition that the all-electron wave functions |ψn〉 are orthogonal to
one another.

In reciprocal space this problem presents itself as
∑

G′

ĤG,G′cnk(G
′) = εnk

∑

G′

ŜG,G′cnk(G
′) (2.34)

for Bloch vector k. Equivalent to minimizing the energy E of the system is to solve this
eigenvalue problem numerically by diagonalization of the Hamiltonian matrix, but direct
diagonalization schemes have a high computational cost. A more effective way are iterative
schemes based on the variational principle. The lowest eigenvalue is obtained by variation
of

ε̂(c) =
〈ψ|H|ψ〉

〈ψ|S|ψ〉
=

c†Ĥc

c†Ŝc
, (2.35)

where Ĥ and Ŝ are matrices with respect to lattice periodic plane waves and c is the vector
of expansion coefficients of the wave function ψ. The global minimum of the energy ε̂(c)
is obtained if ψ is eigenvector with the lowest eigenvalue. For normalized wave functions
this leads to the gradient vector or residual vector g

g(c) = (Ĥ− c†Ĥc)c = (Ĥ− ε̂)c . (2.36)

Thus the residual vector g requires minimization. Among the methods available to VASP
are steepest descent, conjugate gradient, and jacobi relaxation [13]. Higher eigenstates can
be obtained by keeping the orbital orthogonal to previously calculated states.

In VASP it is possible to perform ionic relaxations, which is a minimization of the total
energy with respect to the ionic configuration. The negative derivative of the total energy
with respect to ion I, if the electronic configuration describes the ground state and the
wave functions are normalized, is exactly the force fI acting on ion I

fI = −
dE

dRI
= −

∂E

∂RI
. (2.37)

The practical approach to relaxation is to start with an ionic configuration, from which
the electronic ground state and forces on separate ions I are calculated. Then the new
ionic configuration is determined with a minimization algorithm, such as the conjugate
gradient method. For this new ionic configuration the electronic ground state and forces
are determined and the procedure repeated until the total energy is well-converged. A
possible source of errors in the calculation is that the electronic ground state is obtained
iteratively, and thus approximatively, thus convergence of the total energy is important.
Another factor is the dependency of basis vectors on ionic coordinates. In plane wave
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Chapter 2 Density functional theory

basis codes this applies only if the basis vectors of the super cell and with them the size
of the Brillouin zone are changed. With constant cut-off energy Ecut the number of plane
waves used in the expansion vary. In the PAW method the augmentation regions depend
on the ionic positions and the forces acting on an ion result in additional terms, see
reference [17] for details. Small super cells are treated with PAW projectors in reciprocal
space, whereas large cells with many atoms are calculated in real space. The former is
more exact but requires more computational time than the latter. Another way VASP
handles different super cells is that in the relaxation quasi-Newton schemes are applied
for small cells, such as RMM-DIIS [18]. For large cells damped molecular dynamics
are conducted, which are implemented through a velocity Verlet algorithm or Störmer
algorithm [13]. Ionic relaxation schemes, unlike electronic relaxations, can lead to different
configurations with local total energy minima. To search for other minima outside the
region of phase space sampled by ionic relaxation simulated annealing [13] is applied. In
this method intermediate configurations with higher energy than the ground state can be
overcome to reach a global minimum.

2.6 Computational details

The following settings are applied in VASP throughout this work. The crystalline and
amorphous phases of silicon nitride are calculated without considering spin orientations.
k-point sampling is conducted with the Monkhorst-Pack scheme [19], which applies
an equidistant mesh of k -points. For the occupancy of the energy eigenvalues the
1st order method of Methfessel-Paxton [14] as well as the linear tetrahedron method
with Blöchl corrections [15] are applied. The wave functions are constructed with the
PAW method [16]. The exchange-correlation energy functional per electron and its
gradient are parametrized with the Perdew-Burke-Ernzerhof (PBE) scheme [20] in the
generalized gradient approximation (GGA). The calculations in the following chapters are
performed on the phases of silicon nitride for three distinct pairs of plane wave potentials.
Specifically, three different combinations of silicon and nitrogen potentials are applied by
file concatenation.

The valence electrons of nitrogen are highly localized in real space. Therefore they
span a wide range in reciprocal space, making high cut-off energies Ecut necessary.
Silicon shows hybrid orbitals of covalent character that require only low cut-off energies,
but in combination with nitrogen higher Ecut are used. The first VASP potential file,
POTCAR.SiN, with a cut-off energy of 520 eV (for variable cell volume calculations) or
400 eV (for fixed cell volume) permits the construction of a plane waves basis set with
250 plane waves per atom. The softer potential file, POTCAR.SisNvs, needs a cut-off
energy of 260 eV (variable volume) or 200 eV (fixed volume). The softest used potential,
POTCAR.SivsNes, requires a cut-off energy of 210 eV (variable volume) or 160 eV (fixed
volume) for 32 plane waves per atom.
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Chapter 3

Fundamental properties of crystalline

silicon nitride

Three crystalline phases of silicon nitride, α-, β- and γ-Si3N4, exist. Two phases of
crystalline silicon nitride occur naturally, namely the α- and β-phase. Additionally a high
pressure γ-phase exists. Transformations of α to β [21] as well as γ to β [22] can be
observed.

The calculations in this chapter are conducted with the hard PAW PBE potential. It leads
to roughly 250 plane waves per atom at a plane wave cut-off of 520 eV. The structural,
electronic, optical and vibrational properties of the crystalline phases of silicon nitride
are examined. Optimization of the structure is carried out at a set of volumes. At each
volume all parameters, specifically the lattice constants as well as the atomic positions,
are optimized. The values are fitted with the non-linear Birch-Murnaghan equation of
state to obtain the ground state energy and bulk modulus. The transition pressures from
α- to γ-Si3N4 and from β- to γ-Si3N4 are then calculated. Elastic constants are calculated
separately. Band structure and density of states are determined as well. The optical
properties are characterized by determination of the dielectric tensor. An examination of
zone center phonons is carried out.

3.1 Convergence tests

As discussed in chapter 2.5 the cut-off energy Ecut as well as the k-point mesh affect the
absolute and relative convergence of the calculation significantly. Therefore it is important
to establish the most suitable settings. The cut-off energy is set to Ecut = 520 eV. For
the insulator silicon nitride the k-point mesh is optimized, to allow for further efficient
calculations.

α-Si3N4
a β-Si3N4

b γ-Si3N4
c

a (Å) 7.7545 7.608 7.7339
c (Å) 5.6215 2.911
c
a

0.7249 0.383
V (Å3

) 73.186 72.960 57.824
k-point mesh 4× 4× 4 4× 4× 8 6× 6× 6

aHigh-resolution synchrotron powder diffraction data from ref. [23].
bX-ray diffraction data from ref. [24].
cSynchrotron powder diffraction data for a from ref. [25].

Table 3.1: Optimized k-point mesh and unit cell parameters of crystalline silicon nitride
phases.
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Figure 3.1: k-Point optimization for alpha phase of crystalline silicon nitride. The inset
shows a close-up when results are converged.
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Figure 3.2: k-Point optimization for beta phase of crystalline silicon nitride. The inset
shows a close-up when results are converged.

Initial calculations for each k-point mesh are carried out at the experimental volume with
a Gaussian smearing of 0.1 eV. The volumes V per formula unit of α-, β- and γ-Si3N4

are calculated from the respective experimental references of the lattice constants a and c.
Table 3.1 shows all used unit cell parameters. Specifically, the lattice constants a and c of
α-Si3N4 are given in reference [23]. Experimental results for a and c of β-silicon nitride
are taken from reference [26], which presents the original results of reference [24]. The
cubic γ-phase has only the lattice constant a, which is taken from reference [25]. The
ratio c/a determines whether the k-point mesh should be chosen symmetric. Alpha and
gamma silicon nitride are therefore calculated with a mesh of k × k × k, whereas for the
beta phase a k × k × 2k mesh is used. In the calculation the structure is allowed to relax
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3.1 Convergence tests

with the quasi-Newton algorithm RMM-DIIS [18] into the ground state by changing cell
shape as well as adjusting the atomic positions. The resulting structure is relaxed twice
to ensure a sufficiently converged energy. Then the number of k-points is increased and
the entire procedure repeated.

The figures 3.1, 3.2 and 3.3 show the ground state energy per formula unit in relation
to the number of k-points for the α-, β- and γ-phase, respectively. The insets present a
close-up of the values for four to eight k-points, where the calculations reach the required
convergence accuracy. As an upper bound a difference in ground state energy between two
consecutive calculations of ∆E = 10 µeV per formula unit is reasonable. The calculations
for alpha silicon nitride result in convergence for a 4 × 4 × 4 mesh. β-Si3N4 converges
sufficiently with a 4× 4× 8 mesh. The gamma phase should be calculated with a mesh of
6× 6× 6.

0 1 2 3 4 5 6 7 8 9 10 11 
k-Points

-59 

-58 

-57 

-56 

-55 

-54 

-53 

-52 

-51 

-50 

-49 

-48 

-47 

-46 

E
ne

rg
y 

(e
V

/ f
or

m
ul

a 
un

it)

4 5 6 7 8 
-56.242 

-56.241 

-56.240 

-56.239 

Figure 3.3: k-Point optimization for gamma phase of crystalline silicon nitride. The inset
shows a close-up when results are converged.
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Chapter 3 Fundamental properties of crystalline silicon nitride

3.2 Structural properties

First the build-up of each unit cell is considered and the correct space group established.
Then the ground state energy as well as energy differences between phases are determined.
A calculation of the elastic constants and bulk moduli is conducted. Finally the transition
pressure between β-Si3N4 and γ-Si3N4 is determined, as well as between the α- and γ-phase.

3.2.1 Symmetry considerations

The basic building unit of both the α- and β-phase are tetrahedra of SiN4, with silicon at
the center and one nitrogen in each corner. These tetrahedra form a spatial structure by
sharing corners in a way that each nitrogen has three silicon neighbors. α- and β-Si3N4

can be described in a hexagonal lattice. In the γ-phase, the nitrogen atoms form a roughly
face centered cubic (fcc) lattice. This permits SiN6 octahedra in γ-Si3N4, in addition to
the SiN4 tetrahedra that are also present in both other phases. Thus silicon not only lies in
the tetrahedral interstices, but also in some of the octahedral sites of the nitrogen lattice.
A simplified view of the chemical bonding of neighboring atoms in the crystalline phases
of Si3N4 is a bonding between sp3 hybrid orbitals of Si atoms and sp2 hybrid orbitals of N
atoms. One non-bonding p orbital of each nitrogen atom remains with a two electrons.

Figure 3.4: α-phase of crystalline silicon nitride. Si atoms are yellow and N atoms are blue.

α-Si3N4 atomic positions a

site Wyckoff atomic environment x y z

Si1 6c tetrahedron N4 0.08194 0.51161 0.65788
Si2 6c tetrahedron N4 0.25362 0.16730 0.45090
N1 6c almost coplanar triangle Si3 0.65368 0.6100 0.4301
N2 6c almost coplanar triangle Si3 0.3159 0.3189 0.6974
N3 2b coplanar triangle Si3 1/3 2/3 0.5990
N4 2a coplanar triangle Si3 0.0 0.0 0.4502

aHigh-resolution synchrotron powder diffraction data from ref. [23]. Coordinates are given in fractional
units.

Table 3.2: Structural data of α-silicon nitride. The space group number is 159, the symbol
P31c, the Miers crystal class ditrigonal polar, the Lewis crystal class rhombo-
hedral V, and the Schönflies notation C4

3v.
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3.2 Structural properties

α-Si3N4 is of the Miers crystal class ditrigonal polar, in Schönflies notation C4
3v , and

crystallizes in space group P31c [27]. It is a metastable phase of silicon nitride. For
historical reasons it was labelled as α-phase, even though the stable modification is β-Si3N4.
The unit cell of α-Si3N4, illustrated in figure 3.4, is hexagonal with 28 atoms (four formula
units per unit cell) [23, 28]. The unit cell of the α-phase consists of . . . ABCDABCD . . .
layers in the direction of the c-axis. AB as well as CD layers show a similar structure as
the β-phase, but instead of having the same spatial alignment the CD layers are rotated
by 180◦ with respect to AB layers.
The atomic environment of nitrogen in α-Si3N4 are triangles of Si3. Silicon forms tetrahedra
with nitrogen at the cornes. The atoms can be labelled as Si1, Si2, N1, N2, N3 and N4,
as shown in table 3.2. Their respective multiplicity is given by the Wyckoff-position. The
symmetry operations required for the atomic positions of the duplicates are taken from
reference [29]. Si1 and Si2 atoms are in a tetrahedral configuration, fourfold coordinated,
and in special positions (6c). N1 and N2 atoms are in almost coplanar configuration,
threefold coordinated, and also in special positions (6c). N3 atoms are in a coplanar
configuration, threefold coordinated, in positions (2b) and N4 atoms are in a coplanar
configuration, threefold coordinated, in special positions (2a).

Figure 3.5: β-phase of crystalline silicon nitride. Si atoms are yellow and N atoms are blue.

The unit cell of β-Si3N4 is hexagonal with 14 atoms, but there has been ongoing scientific
dispute for over 50 years as to the exact symmetry. The earliest classification was to the
space group P63m [24,26,30–35] and therefore to Miers crystal class hexagonal equatorial
C2
6h. Then other experiments found that β-Si3N4 has only space group P63 [36, 37], i.e.

the mirror plane is lacking, and belongs to class hexagonal polar with Schönflies notation
C6
6 . Other groups found that bulk β-Si3N4 displays the horizontal symmetry that places

its structure within the space group P63m, whereas thin crystals may show the tendency
to form P63 structure [38]. Recent experimental findings [39], as well as results from
ab-initio calculations [40, 41], suggest that this is indeed the correct description of this
structure.

To correctly establish which space group of β-Si3N4 is thermodynamically more stable two
separate VASP calculations are performed with relaxation, one starting from the structure
with space group P63 and the other with P63m. Selective dynamics are applied to fix
the position of the silicon atom Si1 at z = 0.25. Thus the atomic positions between the
two possible β-phases can easily be compared. After the calculation the structure has
relaxed P63 to P63m symmetry, as shown in the rightmost column of table 3.3. This
holds regardless of the initial structure, as the nitrogens’ z-coordinates of the calculation
with the P63m symmetry remained at z = 0.25 within VASP’s precision. The atomic
positions that differ in these two symmetry groups have a remaining difference of ≤ 0.0005
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Chapter 3 Fundamental properties of crystalline silicon nitride

site ∆((P63)i − (P63)r)
a (%) ∆ ((P63m)r − (P63)r) (%)

Si1 0.0 0.0
N1 1.275 0.005
N2 -1.039 -0.041

aSingle-crystal x-ray diffraction data for the P63 structure from ref. [37]. Single crystal photograph data
for the P63m structure from ref. [26].

Table 3.3: Differences in z-coordinates of atoms in β-Si3N4 from the plane z = 0.25, stated
in percent of the lattice parameter c. The first column of values describes the
difference of the positions between the initial and the relaxed P63 structure cal-
culated with VASP. The second column gives the difference between the atomic
positions of the relaxed P63 and relaxed P63m structure.

in relative coordinates or ≤ 0.05 % of the lattice parameter c = 2.911Å. This is negligable.
The relaxation of β-Si3N4 to P63m has also been found by other groups, for example
in reference [40]. Therefore, in this work, the atomic positions for β-Si3N4 are selected
according to the space group P63m, as depicted in figure 3.5. The sequence of the layers
along the c-axis is . . . ABAB . . .. Half of the atoms are located in the plane z = 1

4c and
the other half in the plane z = 3

4c.
β-Si3N4 has nitrogen in coplanar and non-coplanar configurations, with one N and three
Si atoms each. The atomic environment of silicon are again tetrahedra of SiN4. Table 3.4
contains the atoms labelled as Si1, N1 and N2 as well as their respective multiplicity. The
symmetry operations are taken from reference [42]. Si1 atoms are in a distorted tetrahedral
configuration, fourfold coordinated, and in special positions (6h). N1 atoms are in a non-
coplanar configuration, threefold coordinated, in special positions (6h), wheras N2 atoms
are in a coplanar configuration, threefold coordinated, in fixed positions (2c) at (13 ,

2
3 ,

1
4)

and (23 ,
1
3 ,

3
4).

β-Si3N4 atomic positions a

site Wyckoff atomic environment x y z

Si1 6h tetrahedron N4 0.1733 -0.2306 1/4
N1 6h non-coplanar triangle Si3 0.3323 0.0314 1/4
N2 2c coplanar triangle Si3 1/3 2/3 1/4

aSingle crystal photograph data from ref. [26] . Coordinates are given in fractional units.

Table 3.4: Structural data of β-silicon nitride. The space group number is 176, the sym-
bol P63m, the Miers crystal class hexagonal equatorial, the Lewis crystal class
hexagonal II, and the Schönflies notation C2

6h.

γ-Si3N4 has the inverse spinel structure and does not occur naturally. It is a high pressure
phase used in ceramics applications [2]. γ-Si3N4 has space group Fd3m [25, 43–45] and
falls into the Miers crystal class ditesseral central with Schönflies notation O7

h . The cubic
unit cell consists of 56 atoms, whereas a smaller primitive fcc cell can be constructed from
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3.2 Structural properties

14 atoms (6 silicon and 8 nitrogen atoms). Figure 3.6 illustrates the γ-phase.
The silicon atoms in γ-Si3N4 are either tetrahedrally or octahedrally coordinated, with
the nitrogen atoms located in the center of non-coplanar triangles. Table 3.4 contains the
atoms labelled as Si1, Si2 and N1. The multiplicity of the atoms needs to be divided by
four to obtain the correct number of atoms used in the primitive fcc cell. The symmetry
operations are taken from reference [46]. Si1 atoms are in tetrahedral configuration, fourfold
coordinated. They make up one third of the unit cell’s Si atoms, and are in fixed position
(8a) at (0, 0, 0). Si2 atoms are in octahedral configuration, sixfold coordinated. These
silicon atoms, which make up two thirds of all Si atoms of the unit cell, are in fixed position
(16d) at (58 ,

5
8 ,

5
8). N1 atoms are in a non-coplanar configuration, threefold coordinated, and

in fixed positions (32e) at (x, x, x) where x = 0.3833. They form an fcc lattice.

Figure 3.6: γ-phase of crystalline silicon nitride. Si atoms are yellow and N atoms are blue.

γ-Si3N4 atomic positions a

site Wyckoff atomic environment x y z

Si1 8a tetrahedron N4 0.0 0.0 0.0
Si2 16d octahedron N6 5/8 5/8 5/8
N1 32e non-coplanar triangle Si3 0.3833 0.3833 0.3833

aX-ray powder diffraction data from ref. [25]. Coordinates are given in fractional units.

Table 3.5: Structural data of γ-silicon nitride. The space group number is 227, the symbol
Fd3m, the Miers crystal class ditesseral central, the Lewis crystal class cubic II,
and the Schönflies notation O7

h.
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Chapter 3 Fundamental properties of crystalline silicon nitride

3.2.2 Equilibrium volume

The equilibrium volumes as well as the ground state energies of the crystalline silicon
nitride phases are obtained by relaxing the cell structure and atomic positions for each
volume. Then the energy-volume curve is fitted to the Birch-Murnaghan equation of state
(EoS) to extract the minimum. The Birch-Murnaghan equation of state [47] is given as

E(V ) = E0 +B0V0
9
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where E0 is the ground state energy, V0 is the equilibrium volume, B0 is the bulk modulus
and B′

0 is the first derivative of the bulk modulus.

α-Si3N4 β-Si3N4 γ-Si3N4

present present present
property exp. a sim. b work exp. c sim. d work exp. e sim. f work

a0 (Å) 7.755 7.808 7.8083 7.608 7.667 7.6612 7.734 7.789 7.7839
c0 (Å) 5.622 5.660 5.6590 2.911 2.928 2.9246
c
a

0.725 0.725 0.7247 0.383 0.382 0.3817
V0 (Å3

) 73.19 74.71 74.70 72.96 74.53 74.33 57.82 59.07 58.96
E0 (eV) -57.267 -57.269 -56.218
∆E (meV) 1.4 0.0 1050.2

aHigh-resolution synchrotron powder diffraction data from reference [23].
bAb-initio data from reference [48]. VASP calculations with the Perdew-Zunger parametrization of the
Ceperly-Alder functional within local density approximation (LDA) are performed. The wave functions
are constructed with the PAW method.

cSingle crystal photograph data from reference [26].
dAb-initio data from reference [49]. VASP calculations with the Perdew-Wang parametrization of the
exchange-correlation energy functional within GGA as well as some calculations with the Ceperly-Alder
functional within LDA are performed. The wave functions are constructed with the PAW method.

eX-ray powder diffraction data from reference [25].
fAb-initio data from reference [50]. VASP calculations within GGA as well as LDA are performed. The
exchange-correlation energy functionals are not stated. The wave functions are constructed with the PAW
method.

Table 3.6: Lattice constants a0 and c0 as well as ratio c/a of unit cells after relaxation.
Equilibrium volume V0 and ground state energy E0, both per formula unit, of
the crystalline silicon nitride phases. The difference in ground state energy to
the stable phase β-Si3N4 is given in meV.

The atomic positions for all three POSCAR files are constructed from experimental values
in combination with space group considerations, and are listed in tables 3.2, 3.4 and 3.5.
The applied script first calculates the minimal energy at a given volume with a relaxation of
both cell shape and atomic positions for a Γ-centered k-point mesh. Γ-centered meshes are
centered around the origin (0, 0, 0). The relaxation is controlled using the tag ISIF=4 in file
INCAR. This relaxes all internal degrees of freedom (DoF) except the volume. IBRION=2
selects the conjugated gradient algorithm as relaxation method [13]. Initially this mesh
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3.2 Structural properties

contains 1×1×1 k-points. For β-Si3N4 a mesh of k×k×2k is applied instead, due to the
smaller ratio c0/a0. The first relaxation therefore uses a 1 × 1 × 2 mesh. After this first
relaxation the output file of the cell dimension and atomic positions, the file CONTCAR,
is renamed to POSCAR to be used as input file for another calculation with identical
relaxation parameters. This procedure is repeated a second time to further optimize the
positions. Then the script continues with a new calculation of the minimal energy for
the next larger cell volume using the optimized CONTCAR file from the previous volume.
After the entire set of curves has been calculated in this manner, the number of k-points
are manually increased by 1 in each direction and the calculation is then started again.
To speed up the calculation, the CONTCAR files with k-point mesh 1 × 1 × 1 from the
respective volumes are used here. This procedure is carried out for α-Si3N4 up to a mesh
of 4× 4× 4 k-points, for β-Si3N4 to 4× 4× 8 (k× k× 2k), and up to 6× 6× 6 for γ-Si3N4.
Table 3.6 lists the calculated lattice constants a0 and c0, the ratio c/a, the cell volume per
formula unit of the silicon nitride phases as well as their ground state energy per formula
unit and the relative energy difference between the phases. The ground state energy is
derived from the parameter E0 in equation (3.1), whereas the cell volume is given by V0.
To obtain E0 and V0 per formula unit (Si3N4), the calculated total ground state energy
and cell volume are divided by 4, 2 and 2 for α-, β- and γ-silicon nitride, respectively.
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Figure 3.7: Equations of state of crystalline silicon nitride for all three phases. The EoS of
the α-phase is orange, of the β-phase red and of the γ-phase indigo.

The lattice constants of α-Si3N4 are determined as a0 = 7.8083 Å and c0 = 5.6590 Å.
The β-phase is built up from a unit cell with a0 = 7.6612 Å and c0 = 2.9246 Å, and
the lattice constant of the cubic γ-phase is a0 = 7.7839 Å. The lattice constants of
all three crystalline silicon nitride phases are in good agreement with experimental
results [23, 25, 26], as shown in table 3.6. The VASP calculations tend to overestimate the
lattice constants, but only in the order of a few picometers. Previous VASP calculations
conducted by other groups [48–50] report slightly higher results for the lattice constants
a0 and c0. The ratios c/a for α-Si3N4 and β-Si3N4 are obtained as 0.7247 and 0.3817,
respectively. The equilibrium volume of α-Si3N4 is V0 = 74.70 Å3. The result for the
β-phase is V0 = 74.33 Å3, and γ-Si3N4 has an equilibrium volume of V0 = 58.96 Å3. The
equilibrium volumes of the three crystalline silicon nitride phases are each in accordance
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Chapter 3 Fundamental properties of crystalline silicon nitride

with the referenced experiments and ab-initio calculations. The volume of β-Si3N4 is
slightly less than that of α-Si3N4. The high pressure γ-phase has the smallest equilibrium
volume.

The α- and β-phase have a very similar energy at the minimum. The energy difference
between these two naturally occuring phases is below 20 meV per formula unit. γ-Si3N4

on the other hand can easily be differentiated from the other two phases due to its higher
ground state energy. The ground state energy difference between α- and γ-phase or β-
and γ-phase is ≈ 1.0 eV per fomula unit. The chart in figure 3.7 shows the values that
are calculated for the three phases including the respective fits. In the inset the fits of the
α- and β-phase around the minimum are displayed. It can be easily seen that the β-phase
has the lowest ground state energy of the three crystalline silicon nitride phases. This
low ground state energy indicates unambiguously that β-Si3N4 is the thermodynamically
stable phase.

3.2.3 Elastic constants and bulk modulus

Classical elastic theory [12] gives the potential energy of the harmonic crystal as

Uharm =
1

2

∑

στµν

∫

dr(
∂

∂xσ
uµ(r))(

∂

∂xτ
uν(r))Ēσµτν , (3.2)

where u(r) is a continuous displacement field. With the volume v of the primitive cell the
elastic tensor Eσµτν = vĒσµτν is obtained. From the elastic tensor Eσµτν of the fourth
rank describing all possible displacements of a harmonic crystal the strain tensor εσµ can
be derived. The strain tensor εσµ is commonly described by the stain components eµν ,
which are simplified to eα using the Voigt notation

xx→ 1, yy → 2, zz → 3, yz → 4, zx→ 5, xy → 6 . (3.3)

The potential energy of the crystal is thus given as

U =
1

2

∑

αβ

∫

dreαCαβeβ . (3.4)

The number of independent elastic constants Cαβ varies for different crystal classes.
Reference [51] states that crystals of class C3v have six, crystals of class C6h have five,
and cubic systems, such as class Oh, have only three independent elastic constants.
Specificially, the elastic constants C11, C12 C13, C15, C33 and C44 are independent for
α-Si3N4. For β-silicon nitride the constants C11, C12, C13, C33 and C44 are independent
and for the γ-phase the elastic constants C11, C12 and C44 are independent.

Apart from the elastic constants the bulk modulus B0 is calculated from the equation
of state. The bulk modulus B0 corresponds to the mean tension or pressure as type of
stress [51]. Mean tension or pressure on a solid results in cubical dilatation as strain type.
The bulk modulus B0 is also known as modulus of compression and given by

B0 =
1

K
= −V

∂P

∂V
, (3.5)
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where K is the compressibility, V is the volume and P is the pressure.

A special VASP simulation is carried out to determine the elastic constants, in which finite
distortions of the lattice are applied. The used settings in the INCAR file are IBRION=6
and ISIF=3. For calculation of the bulk modulus an optimization of the structure is carried
out at a set of volumes. At each volume all parameters, specifically the lattice constants
as well as the atomic positions, are optimized. The corresponding tag in the INCAR file
is ISIF=4. This procedure is detailed in chapter 3.2.2. The values are fitted with the
non-linear Birch-Murnaghan equation of state (3.1) to obtain the bulk modulus B0 and
the results are given in table 3.7.

α-Si3N4 β-Si3N4 γ-Si3N4

property present present present
(GPa) ref. a work ref. b work ref. c work

bulk modulus B0 256 220 273 234 300 292
∆B0 (%) 14.1 14.3 2.7

C11 526 399.7 409.3 413.3 499.6 514.2
C12 128 136.3 271.2 198.4 191.0 182.7
C13 106 119.1 200.6 115.6
C15 13.5
C33 574 435.1 603.6 544.0
C44 124.9 108.0 98.8 349.4 327.0

aX-ray diffraction data for bulk modulus and ab-initio data for elastic constants from reference [23]. C15 and
C44 are not stated. The ab-initio data is obtained from VASP calculations with the PBE parametrization
of the exchange-correlation energy functional within GGA. The wave functions are constructed with the
PAW method.

bX-ray diffraction data for bulk modulus from reference [52]. Ab-initio data for elastic constants from
reference [53], which is obtained from an orthogonalized linear combination of atomic orbitals (OLCAO)
approach based on DFT/LDA.

cRaman spectroscopy, TEM and EDX data for bulk modulus from reference [45]. Ab-initio data for elastic
constants from reference [44]. VASP calculations with the Perdew-91 (PW91) parametrization of the
exchange-correlation energy functional within GGA as well as with the Ceperly-Alder functional within
LDA are performed. The wave functions are constructed with the Vanderbilt ultrasoft pseudopotential
(US-PP) method.

Table 3.7: Calculated bulk moduli B0 and elastic constants of crystalline silicon nitride
phases. ∆B0 denotes the deviation of the present results to experimental refer-
ence values in percent.

The elastic constants C11 and C33 of α-Si3N4 are lower than the reference values. The
elastic constant C11 is only marginally lower than C33, as in the literature. The difference
of ≈ 9 % implies a fairly isotropic behaviour. The elastic constants C12 and C13 are
slightly higher when compared to literature, by ≈ 10 % and have almost the same
values. This implies only minimal anisotropy in response to shear stresses. Reference [23]
does not state values for C15 and C44. In reference [53] the elastic constant C44 is
given as 119-132 GPa, in excellent agreement with the present result. The calculated
elastic constants of β-Si3N4 are lower than the reference values, except for C11. C11

is only higher by ≤ 1 % and can be regarded as being in very good agreement. C12
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Chapter 3 Fundamental properties of crystalline silicon nitride

and C13 are much lower, whereas C33 and C44 are lower by ≈ 10 %. The significant
difference between the elastic constants C11 and C33 of β-Si3N4 points to a higher elastic
anisotropy of the β-phase compared to α-Si3N4. The elastic constant C11 of γ-Si3N4 is
slightly higher, by ≤ 3 %, than the reference value. C12 is lower by ≈ 6 % and C44 is
also lower than in the literature. The degree of Cauchy violation C44/C12 6= 1, as sug-
gested in reference [44], is found to be C44/C12 = 1.79 and thus indicates covalent bonding.

All calculated bulk moduli are lower than the reference values. The greatest deviation,
14.3 %, of B0 to reported results is for β-Si3N4, as shown in table 3.7. The underestimation
of the bulk modulus in α-Si3N4 is very similar. The results for the bulk modulus in
γ-Si3N4 show a very good agreement with the reference value.

3.2.4 Transition pressure

A solid with a certain configuration can transform into a different phase of the same
material. Thermodynamically this corresponds to a transition pressure which must be
overcome. From the ground state energy E0 and volume V0

E = H − pV , −
∂E

∂V
= p (3.6)

the transition pressure pt is obtained by constructing a common tangent between the two
phases in question. This can be either performed geometrically or analytically. Here
the transitions of Si3N4 from the stable β-phase to the high pressure γ-phase as well as
from the metastable α- to the γ-phase are discussed. The values for E0 and V0 are taken
from table 3.6. The slopes of the tangents yield the transition pressures pβ→γ

t and pα→γ
t ,

respectively, as shown in table 3.8.

transition pressure present
(GPa) ref. a work

pβ→γ
t 13.0 11.0
pα→γ
t 10.7

aRaman spectroscopy, TEM and EDX data for β-γ transition pressure from reference [45].

Table 3.8: Transition pressures of crystalline silicon nitride phases for the transition from
stable β-Si3N4 to γ-Si3N4 as well as from the metastable α- to the γ-phase.

As the α- and β-phase show similar E0 and V0 the corresponding transition pressures
pα→γ
t and pβ→γ

t are also close to each other. The transition pressure pβ→γ
t of β-Si3N4 to

γ-Si3N4 is in good agreement with experiments. Compared to the experimental results of
reference [45], the calculation with VASP underestimates the transition pressure of β to
γ-phase. This is most likely a DFT/PBE error, as the method is known to overestimate
the equilibrium volume, which in turn may cause the calculated transition pressure to
decrease. The deviation from experimental findings is within 16% for the transition of
β-Si3N4 to γ-Si3N4.
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3.3 Electronic properties

The following electronic properties of the crystalline silicon nitride phases are calculated.
First a calculation of the density of states and band structure is performed. Then the local
density of states are interpreted.

3.3.1 Density of states and band structure

The insulator silicon nitride forms crystals with predominantly covalent character and due
to the presence of nitrogen, an element from group III, the bonds are slightly ionic. Hybrid
orbitals between Si and N are formed, which differ considerably from the original atomic
orbitals. More specifically, the energy levels of the valence electrons in the presence of the
ion cores’ periodic potential need to be taken into account, as discussed in chapter 2.4. As a
result, the electron levels form bands and forbidden zones in between. The forbidden zone
between occupied and unoccupied energy levels, within DFT, is called the Kohn-Sham one
electron energy gap (KS band gap)

Eg = εc − εv . (3.7)

It is obtained from the energy difference between the conduction band (CB) minima εc,
the lowest unoccupied crystal orbital (LUCO), and the valence band (VB) maxima εv ,
the highest occupied crystal orbital (HOCO). The band gap can be crossed by valence
electrons through either direct or indirect interband transitions, if sufficient energy in form
of temperature or photonic excitation is supplied. When a photon with energy ~ω and
momentum ~q is absorbed in the crystal lattice, a crystal momentum conservation law
applies to the possible change in the electron wave vector k′ because of the translational
symmetry of the nuclei’s periodic potential. It is given by

k′ = k+ q+G , (3.8)

where G describes a shift by a vector of the reciprocal lattice and q is a wave vector of
the absorbed or emitted photon. A comparison of energies leads to the conclusion that
the wave vector of a Bloch electron is essentially unchanged when it absorbs a photon at
typical optical energies in the range 150− 400 nm [12]. The change of the electron energy
by ~ω of the order of a few eV by transition from one electronic band to another, without
significant change in wave vector, is the direct interband transition, where the frequency
of the optical threshold is ω = Eg/~. In indirect interband transitions the electron wave
vector k is not conserved and a phonon is created. Here the optical threshold occurs
at Eg/~ − ω(q) because the necessary phonon with crystal momentum ~q additionally
supplies an energy ~ω(q), effectively lowering the KS gap. This effect is in general around
10−200 meV and thus only important in materials with small band gaps. If the interband
transitions within a material result in an observable conductivity below the melting point,
the material is a semiconductor. Crystalline silicon nitride has a fairly wide KS gap,
comparable to diamond, with only photons in the UV range containing enough energy to
bridge the band gap, thus it is considered an insulator.

First a self consistent structural relaxation is performed with VASP by using the tag
ISMEAR=-5 in INCAR file for the tetrahedron method with Blöchl corrections [15].
The number of grid points in the density of states (DoS) calculation is set to NEDOS=2001.
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α-Si3N4, β-Si3N4 γ-Si3N4

symmetry point x y z x y z

Γ 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 0.0 0.5
H -0.333 0.667 0.5
K -0.333 0.667 0.0 0.375 0.75 0.375
L 0.0 0.5 0.5 0.5 0.5 0.5
M 0.0 0.5 0.0
W 0.25 0.5 0.75
X 0.0 0.5 0.5

Table 3.9: Symmetry points of the three crystalline polymorphs of silicon nitride. The
positions of the symmetry points are given in fractional coordinates, in terms of
the reciprocal lattice of the primitive cell.

The tag IBRION=1 selects the quasi-Newton algorithm RMM-DIIS [18], and with ISIF=3
all internal degrees of freedom are relaxed. Then the optimization of DoS and band
structure is carried out along a designated path in k-space with the Gaussian smearing
method ISMEAR=0 and SIGMA=0.1 at the equilibrium volume V0. Again the tag
NEDOS=2001 is used to specify the number of grid points in the DoS. Some empty
bands are included in the optimization run with the tag NBANDS set to a larger value
than the number of valence electrons in the unit cell. In this second VASP run the
charge density from the self consistent calculation is applied. This is achieved by setting
the tag ICHARG=11, which reads in the file CHGCAR from the previous run and
then keeps the charge density constant during the electronic minimization. Therefore
energy eigenvalues and DoS for each k-point are obtained independently. The energy
eigenvalues are used for band structure plots. The sampling path in k-space for α- and
β-Si3N4 is selected as Γ − K − H − A − Γ − M − L − A and for γ-Si3N4 as
Γ − K − X − Γ − L − X − W − L . The positions of these specific points
is given in table 3.9. The number of bands in α-Si3N4 is twice as large as in β-Si3N4 or
γ-Si3N4, because the unit cell of the α-phase contains four formula units instead of two.
The results obtained for the band structure and density of states of the three crystalline
polymorphs of Si3N4 are shown in figures 3.8, 3.9 and 3.10 and summed up in table 3.10.
They are in overall excellent agreement with experiments and ab-initio calculations.

The width of the valence band of α-Si3N4 is 18.4 eV using PBE. The lower part of the VB
is between −18.4 eV and −14.5 eV. The upper part of α-Si3N4’s VB starts at −9.7 eV
and goes up to 0.0 eV. VASP places the Fermi level εF not at mid gap, but close to
the top of the VB. The band structure calculations for the α-phase of crystalline silicon
nitride indicate that the highest point of the VB is the K-point. The energy difference
between K- and M -point however is only 0.2 meV, which can be argued is below the
certainty of the method. Ab-initio calculations [54] performed by another group have
found the M -point to be the maximum of the VB. The conduction band minimum of α-
Si3N4 is at the Γ-point. Thus the indirect Kohn-Sham PBE band gap Eg of the α-phase
is established as 4.7 eV. Compared to the experimental result of the optical threshhold
4.4 eV in reference [55] the KS PBE band gap Eg is overestimated. This overestimation

28



3.3 Electronic properties

indicates that the experimental findings may be too low, as DFT underestimates the band
gaps always [48]. In crystalline silicon nitride the error is expected to be 1 − 2 eV. In
comparison to other ab-initio results [48,54], the calculated KS PBE band gap of α-Si3N4

is slightly larger, but within a few meV. The direct KS PBE band gap at the Γ-point is
calculated as 4.7 eV, which is also in excellent agreement with other ab-initio results [54].

α-Si3N4 β-Si3N4 γ-Si3N4

property present present present
(eV) exp. a ref. b work exp. c ref. d work ref. e, f work

CB min. Γ Γ Γ Γ Γ Γ
VB max. M M , K Γ → A Γ → A Γ → K Γ → K
Eg min. 4.4 4.63 4.65 4.6-5.5 4.3 4.25 3.40 3.34
Eg at Γ 4.67 4.71 4.5 4.45 3.45 3.38
bottom 1st VB -12 -10.15 -9.73 -10.2 -10.14 -10.25 -10.90
top 2nd VB -16 -14.20 -14.45 -14.0 -14.73 -13.50 -13.72
bottom 2nd VB -22 -18.36 -18.41 -18.2 -18.52 -18.82 -19.23
width 1st VB 12 10.15 9.73 10-12 10.2 10.14 10.25 10.90
width 2nd VB 6 4.16 3.96 4-5 4.2 3.79 5.32 5.51
full width VB 22 18.36 18.41 18.2 18.52 18.82 19.23

aSoft x-ray spectroscopy and photoelectron spectroscopy (PES) data from reference [55].
bAb-initio data from reference [54], which is obtained from an OLCAO approach based on DFT/LDA.
cData cited in reference [41], which is obtained from XPS and Bremsstrahlung isochromat spectroscopy
(BIS) as well as from photoemission experiments.

dAb-initio data from reference [41], which is obtained from a pseudopotential method based on DFT/LDA.
eNo experimental data on optical threshold or bandwidths known to the author at the time of research,
thus the column is omitted.

fAb-initio data from reference [56], which is obtained from an OLCAO approach based on DFT/LDA.

Table 3.10: Kohn-Sham PBE band gap Eg of the three crystalline phases of Si3N4, mini-
mum as well as direct at the Γ-point. The other ab-initio results are DFT band
gaps, whereas the experimental values for Eg denote the optical band gaps.
The location of the CB minimum, the VB maximum and the bandwidths of
the valence bands are also detailed.

The β-phase of crystalline silicon nitride shows a VB with a bandwidth of 18.5 eV. The
lower part of the VB of β-Si3N4 lies between −18.5 eV and −14.7 eV. The upper VB
starts at −10.1 eV and the VB maximum lies partway between the Γ-point and the
A-point. The lowest point of the CB is located at the Γ-point. Therefore the minimal KS
PBE band gap Eg of β-Si3N4 is 4.3 eV, an indirect interband threshold. The direct KS
PBE band gap of the β-phase at the Γ-point is 4.5 eV. Both the direct and the indirect
Kohn-Sham PBE band gaps of β-Si3N4 are within the range of ab-initio results reported
by other groups, specifically 4.2 eV from reference [48] and 4.3 eV from reference [41].
Experimentally determined optical band gaps, as cited in reference [41], are larger by
approximately 0.3 − 1.2 eV, which is likely to be attributable to the aforementioned
deficiency of density functional theory.
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Figure 3.8: Band structure and DoS for α-silicon nitride. The DoS is of the first Brillouin
zone, as obtained in chapter 3.3.2.
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Figure 3.9: Band structure and DoS for β-silicon nitride. The DoS is of the first Brillouin
zone, as obtained in chapter 3.3.2.

The width of the valence band of γ-Si3N4 is 19.2 eV. The lower part of the valence band
is between −19.2 eV and −13.7 eV. The upper VB of γ-Si3N4 lies above −10.9 eV. The
VB maximum is located between the Γ-point and the K-point. The lowest point of the
γ-phase’s conduction band is at the Γ-point. Thus the indirect Kohn-Sham PBE band
gap Eg of γ-Si3N4 is 3.3 eV, slightly smaller than other ab-initio calculations [56]. The
direct KS PBE band gap of the γ-phase is obtained as 3.4 eV.

The crystalline polymorphs of Si3N4 show very similar characteristics in their band
structure. The k-point sampling path is the same for the α-phase as for β-Si3N4, thus the
band structure of these two can be especially well compared. Of the valence bandwidths
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Figure 3.10: Band structure and DoS for γ-silicon nitride. The DoS is of the first Brillouin
zone, as obtained in chapter 3.3.2.

of the three crystalline silicon nitride polymorphs the α-phase has the smallest VB and
γ-Si3N4 has the largest VB. The VB maximum lies at different points in reciprocal space
for α-, β- and γ-Si3N4. The CB minima of the crystalline phases of Si3N4 are each located
at the respective Γ-point. Thus all three polymorphs of crystalline silicon nitride have
indirect interband thresholds as minimal Kohn-Sham PBE band gaps Eg. γ-Si3N4 has
the smallest indirect KS PBE band gap, followed by β-Si3N4 and finally α-Si3N4 with
the largest indirect KS PBE band gap of the three polymorphs. This tendency is also
observed for the direct Kohn-Sham PBE band gaps. The high pressure γ-phase has the
smallest direct KS PBE band gap. The direct KS PBE band gap Eg of the metastable
α-phase is larger than that of the stable β-phase.

3.3.2 Partial density of states

The orbital-resolved partial density of states gives insight into the origin of the valence
band and the conduction band by supplying data about which types of electrons are
predominant in which band. The different orbitals are assigned to the bands of the
bulk material by projecting the wavefunctions onto the according spherical harmonic of
the atomic orbital. Thus the type of bonding between the atoms can be deducted. If
bands cross hybridization can occur. As can be seen from figures 3.8, 3.9 and 3.10 in
the previous chapter 3.3.1, the band structure in the crystalline polymorphs of silicon
nitride displays many crossings of bands, indicating a high degree of hybridization. A
large energy dispersion of bands indicates a large overlap of the orbitals and therefore a
high probability for electrons between the atoms. These bands are often similar to the
parabolic bands of free electrons. Bands with little dispersion are associated with a high
electron probability around the nucleus.

In the present work the s and p orbital-resolved partial density of states (PDoS) of the
three crystalline polymorphs of Si3N4 are determined. s and p electrons are found in bands
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Figure 3.11: PDoS for α-silicon nitride.
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Figure 3.12: PDoS for β-silicon nitride.
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with large dispersion. Of interest in γ-Si3N4 are the orbital- and site-resolved partial
DoS (local DoS or LDoS) of the silicon atoms, as they are either tetrahedrally (Si1) or
octahedrally (Si2) coordinated. In order to obtain the PDoS for α-Si3N4 and β-Si3N4,
and the LDoS for γ-Si3N4, a similar procedure as for the DoS calculation is carried out,
albeit in the entire first Brillouin zone and not along a designated path in k-space. A Γ-
centered k-point mesh is used, with the according values from table 3.1 for each polymorph.
Both the structural relaxation and the following optimization at the equilibrium volume
V0 are carried out with the tetrahedron method including Blöchl corrections [15]. The
number of grid points in the calculations is set to NEDOS=2001. The relaxation run is
performed with the quasi-Newton algorithm RMM-DIIS [18] and the setting ISIF=3. In
the optimization run the charge density from the first calculation is applied, by setting
the tag ICHARG=11. The tag NBANDS is increased as well to include empty conduction
bands. The file vasprun.xml was processed with Python4VASP (p4v) for the construction
of figures 3.11, 3.12 and 3.13.
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Figure 3.13: Orbital- and site-resolved partial DoS (LDoS) for γ-silicon nitride.

The PDoS of the three crystalline polymorphs of silicon nitride are very similar to one
another. A phenomenological approach for describing the PDoS and bonding properties is
conducted in reference [57] as well as in reference [58], by construction of a crystal orbital
scheme. With the crystal orbital scheme the calculated PDoS of the three crystalline
phases of Si3N4 are verified together, before further interpretation of their differences. The
present findings are consistent with previous experimental findings [5, 55] and ab-initio
results [48, 54, 56].

The general VB structure of all three crystalline phases are two distinct bands, the lower
or 2nd VB and the upper or 1st VB. The 2nd valence band mainly consists of contributions
from N (2s) electrons, with some Si (3s) and Si (3p) electrons. More specifically, the
bonding σ orbitals of N (2s) and Si (3s) make up the lowest energy levels in the 2nd

VB. The sp interaction between N (2s) and Si (3p) are mostly found in the 2nd valence
band’s higher levels. The 1st valence band reaches from approximately −10 eV up to
the Fermi level EF . Different groups [5, 55, 58] have described the 1st VB as consisting
of three peaks. One group [54] suggested a five peak structure in the 1st VB. The three
peak structure in the 1st VB is also indicated by the present results. It is most prominent
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in the α-phase of crystalline Si3N4. The lowest peak in the 1st VB mainly consists of N
(2p) and Si (3s) hybrid orbitals. The center peak in the 1st VB contains contributions
from pp interaction between N (2p) and Si (3p) electrons. The VB peak closest to the
Fermi level εF originates from N (2p) non-bonding lone pairs of electrons. Thus, the N
(2p) bonding bands predominant in the center peak and N (2p) non-bonding bands found
in the highest peak are merged in the 1st valence band of all three crystalline polymorphs
of Si3N4. The boundary of these two sets of bands is indicated by the deep dip in the
PDoS at approximately −2.5 eV, which has been reported by other groups as well [54]. In
γ-Si3N4 this boundary is not as distinct as in the other two phases. The fairly delocalized
N (2p) non-bonding lone pairs of electrons which dominate at the Fermi level result in
flat bands for the VB in all three phases. The conduction band of the three crystalline
polymorphs of Si3N4 contain linear combinations of the anti-bonding levels, mostly Si (3p)
and N (2p).

The electronic structure of the crystalline Si3N4 polymorphs is mainly determined through
the local short-range order, as observed in reference [59]. Since the local short-range
order is very similar in α-, β- and γ-Si3N4, it is expected that their electronic structures
should also share the main characteristics. Especially the PDoS of α-Si3N4 and β-Si3N4

match very well. The PDoS of γ-Si3N4 shows noteworthy differences. This is due to the
octahedrally coordinated Si atoms (Si2 or Sioct). Their (3s) electrons dominate the lower
part of the 2nd VB, together with nitrogen (2s) electrons, as reported in reference [56].
This indicates an energetically favourable state compared to the tetragonal configuration
Sitetr. The CB edge in γ-Si3N4 mainly consists of Sioct (3s) and Sitetr (3p) anti-bonding
states.

3.4 Optical properties - dielectric tensor

The determination of macroscopic optical properties from microscopic parameters in
this work is based on density functional perturbation theory. The macroscopic optical
properties are obtained with the macroscopic dielectric tensor, which relates the total
electric field in a material to a slowly-varying external field. The microscopic dielectric
tensor takes into account that on the atomic scale the microscopic electric field undergoes
rapid oscillations. In the independent particle approximation (IPA), the macroscopic
dielectric tensor is approximately described by the microscopic frequency dependent
dielectric tensor, specifically by the long wavelength limit of the real part of the frequency
dependent dielectric tensor. The implementation in VASP is the calculation of the
response function in the framework of the PAW method. Detailed accounts are given
in references [60] and [61]. In crystals of high symmetry, such as cubic and hexagonal
crystals, the nomenclature of the isotropic medium can still be applied along high
symmetry directions. A high symmetry direction can be a 3-, 4- or 6-fold rotation axis.
In the two phases with hexagonal unit cells, α- and β-Si3N4, therefore the components of
the dielectric tensor parallel (‖) and perpendicular (⊥) to the c-axes are inspected. The
cubic unit cell of γ-Si3N4 indicates an isotropic dielectric tensor.

First the static-ion clamped (microscopic) dielectric tensor is obtained, without local field
effects. For this the tag LEPSILON is set in INCAR. No summation over empty conduction
bands is necessary. Gaussian smearing, ISMEAR=0 with SIGMA=0.1, is applied. k-
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3.4 Optical properties - dielectric tensor

point sampling is perfomed with the optimized Γ-centered mesh for each of the three
crystalline polymorphs. Following the determination of the static dielectric tensor, a second
VASP calculation is performed for the frequency dependent dielectric tensor, with identical
smearing and k-point sampling parameters but with the tag LOPTICS activated in INCAR.
The summation over empty states leads to the imaginary part of the (Cartesian) dielectric
tensor

ε
(2)
αβ(q̂, ω) =

4π2e2

V
lim
q→0

1

q2

∑

n,m,k

2fnk〈umk+eαq|unk〉〈unk|umk+eβq〉×

× [δ(ǫmk − ǫnk − ω)− δ(ǫmk − ǫnk + ω)] .

(3.9)

Here q̂ = q/|q| is the unit vector, V is the cell volume, fnk is the occupation function, e
is the microscopic total electric field, ǫ is the one particle energy, and ω = ǫmk − ǫnk is
the transition energy. In insulators as well as semiconductors only interband transitions
(n 6= m) need to be considered, because no partially filled bands occur, unlike in metals.
The real part of frequency dependent dielectric tensor is given by a Hilbert transform, the
Kramers-Kronig transform as

ε
(1)
αβ(ω) = 1 +

2

π
P

∫ ∞

0

ε
(2)
αβ(ω

′)ω′

ω′2 − ω2 + iη
dω′ , (3.10)

where P denotes the principal value and η a complex shift of frequency ωc = ω + iη to
perform a slight Lorentzian broadening. To optimize the summation over empty bands
the tag NBANDS is adjusted until the diagonal values of the real frequency dependent
dielectric tensor for zero frequency match the diagonal values of the microscopic static
dielectric tensor from the first run. Thus a NBANDS value of 384, 192 and 192 was
found for α-, β- and γ-Si3N4, respectively. The imaginary and real parts of the frequency
dependent dielectric tensor are obtained from output file OUTCAR.
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Figure 3.14: Absorption spectrum of α-Si3N4. Perpendicular to c-axis, parallel to a- and
b-axis it is orange, whereas parallel to c-axis it is black.

The imaginary part of the frequency dependent dielectric tensor represents the absorption
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Chapter 3 Fundamental properties of crystalline silicon nitride

spectrum of a material. The components parallel (‖) and perpendicular (⊥) to the c-axes
are plotted in figures 3.14 and 3.15 for the phases with hexagonal cells. For cubic γ-Si3N4

one direction is sufficient, which is shown in figure 3.16. All three phases are transparent
to photons 0.0 − 5.0 eV and exhibit an absorption peak structure with a main peak or
peaks around 9.5 eV that slopes down with increasing photon energies.
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Figure 3.15: Absorption spectrum of β-Si3N4. Perpendicular to c-axis, parallel to a- and
b-axis it is red, whereas parallel to c-axis it is black.
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Figure 3.16: Absorption spectrum of γ-Si3N4. The cubic unit cell accounts for the isotropic
behaviour of this phase.

In α-Si3N4 the imaginary frequency dependent dielectric tensor along the c-axis displays
a slightly lower peak at 7.0 eV than in the other two directions, as well as a higher main
peak at 9.5 eV. The peak at 14.0 eV is shifted to higher photon energies by 1.0 eV
and more distinct. The absorption spectrum of β-Si3N4 has a comparatively high peak
structure between 8.5 eV and 10.5 eV along the c-axis. Additionally a smaller peak at
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3.4 Optical properties - dielectric tensor

14.8 eV is found. These features are lacking in the direction of the a- and b-axes. The
main peak in the absorption spectrum of γ-Si3N4 is located at 9.0 eV. Clearly γ-Si3N4

shows optical isotropy, whereas α- and β-Si3N4 have slightly anisotropic characteristics
parallel to the c-axis due to the hexagonal unit cells.

Table 3.11 shows the diagonal terms, xx, yy and zz, of the static dielectric tensor εstatic

including and excluding local field effects and of the frequency dependent real dielectric
function at zero frequency ε(1)(0). The static dielectric tensor perpendicular to the c-axis,
εstatic(⊥), including local field effects of α-Si3N4 is higher than εstatic(‖). It is the opposite
in β-Si3N4, where εstatic(‖) including local field effects is slightly larger than εstatic(⊥).
εstatic including local field effects of γ-Si3N4 is somewhat lower than the calculation without
local field effects. A trend is observed, more specifically that the values with local field
effects included are lower than their counterparts obtained without considering local field
effects. In the lower part of table 3.11 the results excluding local field effects are given. The
values of the frequency dependent real dielectric tensor at the zero frequency limit agree
well with the values obtained for εstatic, in all three polymorphs. Compared to published
values of other ab-initio groups, as shown in table 3.11, both the α- and β-phase display
less optical anisotropy in this work. The obtained value for γ-Si3N4 is considerably higher
than the quoted reference [56], conceivably due to the different approach. Most likely the
deviation of the present results to other published values is caused by using to few k-points
in the calculation, as these quantities converge slowly with k-points.

α-Si3N4 β-Si3N4 γ-Si3N4

present present present
property ref. a work ref. b work ref. c work

εstatic (‖), incl. local field effects 4.244 4.324 5.285
εstatic(⊥), incl. local field effects 4.300 4.237 5.285

εstatic (‖) 4.397 4.462 5.440
εstatic(⊥) 4.452 4.388 5.440
ε(1)(0) (‖) 4.45 4.388 4.01 4.453 4.7 5.432
ε(1)(0)(⊥) 4.09 4.442 3.67 4.379 4.7 5.432

aAb-initio data from reference [54], which is obtained from an OLCAO approach based on DFT/LDA.
bAb-initio data from reference [54], which is obtained from an OLCAO approach based on DFT/LDA.
cAb-initio data from reference [56], which is obtained from an OLCAO approach based on DFT/LDA.

Table 3.11: Static dielectric tensor εstatic and frequency dependent real dielectric tensor at
zero frequency limit ε(1)(0), parallel to the c-axis (‖) and perpendicular to the
c-axis (⊥), of the three crystalline phases of Si3N4 in the independent particle
approximation (IPA). Top two lines give values including local field effects,
whereas the remaining table states values without local field effects.
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Chapter 3 Fundamental properties of crystalline silicon nitride

3.5 Vibrational properties - zone center phonons

According to the symmetry of the crystal structure different phonons occur. The phonons
can be classified as acoustic and optical phonons. Acoustic phonons are used to determine
the elastic properties of a crystalline phase, whereas optical phonons give insight into the
vibrational modes of the atoms in the crystal. The mathematical formulation is based
on group theory. This rather lengthy procedure is detailed in reference [62]. If N is the
number of atoms in the lattice, each value of k has 3N phonons or normal modes, where
3 branches are acoustic and 3(N − 1) are optical. Only the resulting optical phonons for
each crystalline polymorph of silicon nitride with respect to the zone center, or Γ-point,
are given here.

In general, at points of high symmetry the possible displacements of a crystal’s atoms are
described as unitary irreducible representations of the group corresponding to the crystal’s
space group. A set of generators or generating elements give the defining relations for
each group. From these defining relations the group multiplication table can be derived,
which completely defines the group. The unitary irreducible representations of a group
are labelled according to Mulliken (1933), see reference [62]. This notation uses the labels
A, B, E and T for real unitary irreducible representations of dimensions 1, 1, 2, and
3, respectively. This means that the A and B modes have single degeneracy, E modes
are double degenerate and T modes are triple degenerate. Additionally the labelling 1E,
2E is applied for conjugate pairs of complex unitary irreducible representations, each of
dimension 1. The indices g and u denote the unitary irreducible representations which
only differ in the sign of the group’s character χ. The character χ of a group Λ of matrices
D is defined as a function χ(D) = tr(D). Therefore g modes are symmetric modes with
respect to inversion and reflection and u modes are antisymmetric modes.

The crystal symmetry of α-Si3N4 places this phase in space group 159 or C4
3v in Schönflies

notation, as discussed in chapter 3.2.1. At the Γ-point the single valued representation of
space group 159 is G2

6, with the generating elements P = {C+
3 |000} and Q = {σd1|00

1
2}.

Formally, G2
6 denotes the second group of order six. The point group of the representation

G2
6 is 3m (C3v). The labels of the space group representation G2

6 are A1, A2 and E. The
E modes are double degenerate. More specifically, the decomposition at the Γ-point is

Γαopt = 13A1 + 14A2 + 27E, (3.11)

as stated in reference [53]. The 13A1 and 27E modes of α-Si3N4 are both infrared and
Raman active, whereas the 14A2 modes are inactive.

β-Si3N4 has space group 176 (C2
6h). The single valued representation at the Γ-point is

G2
12. The generating elements are P = {C+

3 |000}, Q = {C2|00
1
2} and R = {I|001

2}. The
point group of the representation G2

12 is 6/m (C6h). The labelling of the space group
representation G2

12 at the Γ-point leads to

Γβopt = 2Au + 4Ag + 3Bg + 4Bu + 2(1E1g +
2E1g) + 4(1E1u +

2E1u)+

2(1E2u +
2E2u) + 5(1E2g +

2E2g),
(3.12)

as given in reference [53]. The E modes consist of conjugate phonon pairs E =1E +2E,
each of dimension 1. Six modes of β-Si3N4, 2Au and 4E1u, are infrared active. The 4Ag,
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3.5 Vibrational properties - zone center phonons

α-Si3N4 present (contd.) present
phonon type exp.a ref.b work phonon type exp. ref. work

E 1142 1306.6 1000.2 E 512, 514 601.4 577.9
E 1107 1273.2 990.9 E 499 589.9 547.3
A2 inactive 1262.8 987.0 A1 470 544.2 543.0
A1 1040 1279.1 983.9 A2 inactive 571.9 522.4
A2 inactive 1201.1 954.5 A2 inactive 522.6 495.1
E 1032 1225.2 942.6 A1 460, 463 528.3 483.0
E 995 1141.6 921.5 E 440 528.5 468.0
A1 975 974.4 912.8 E 412 518.2 441.7
E 951 1017.5 896.9 A2 inactive 500.3 433.9
E 935 919.5 892.6 A2 inactive 452.3 419.8
E 909, 914 835.9 884.6 E 391 468.4 410.0
A2 inactive 1156.6 878.9 A1 383 443.4 387.8
E 895 764.5 874.4 E 375 444.9 385.1
A2 inactive 1113.8 864.1 A2 inactive 383.7 360.2
A1 868, 874 786.8 862.6 E 361 397.7 356.8
E 855 742.9 854.7 A1 355, 356 413.1 350.1
E 848 701.3 841.7 E 337 386.6 340.4
E 763 675.3 835.0 E 321 344.7 335.0
A1 688, 691 659.9 822.7 E 306 310.0 292.6
E 667 647.9 819.1 A2 inactive 371.4 290.9

gap A1 298, 300 336.9 287.1
A2 inactive 865.0 689.9 E 282 261.8 268.2
A2 inactive 715.9 674.4 A2 inactive 264.5 257.6
E 600, 601 640.8 670.6 A1 258 245.7 249.5
A1 580 638.8 663.9 E 231 220.2 222.6
E 569 613.0 656.9 A1 202 215.0 222.3
A1 537 587.3 647.2 E 153 194.9 192.8
A2 inactive 679.8 597.3

aRaman and infrared absorption spectroscopy data from reference [63], in which the observed peaks are
not associated with the phonon type. Additionally a total of 48 instead of 40 IR and Raman active peaks
are measured.

bAb-initio data from reference [53], which is obtained from an OLCAO approach based on DFT/LDA. The
results include a phonon type assignment, thus the phonons are not necessarily in order of decreasing
frequencies.

Table 3.12: Wave numbers (cm−1) of zone center phonons in crystalline α-Si3N4. E modes
are double degenerate. 13 A1 and 27 E modes are Raman and infrared active.
A2 modes are inactive.
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Chapter 3 Fundamental properties of crystalline silicon nitride

2E1g and 5E2g modes of the β-phase are Raman active, adding up to eleven modes. The
nine remaining modes of β-Si3N4, labeled Bg, Bu and E2u, are inactive.

The space group of γ-Si3N4 is 227 (O7
h). At the Γ-point the single valued representation

is G7
48. The generating elements of the group are P = {S−

61|
1
4
1
4
1
4}, Q = {σx|

1
4
1
4
1
4}, R =

{σz|
1
4
1
4
1
4} and S = {C2c|

1
4
1
4
1
4}. The point group of the representation G7

48 is m3m (Oh).
The labels of the space group representation G7

48 for the phonon modes of γ-Si3N4 at the
Γ-point are given as

Γγopt = A1g + 2A2u + Eg + 2Eu + T1g + 4T1u + 2T2u + 3T2g (3.13)

in reference [50], where the E modes are double degenerate and the T modes are triple
degenerate. The phonon modes 4T1u are infrared active. The 1A1g, 1Eg and 3T2g modes
are Raman active in γ-Si3N4, whereas the A2u, Eu, T1g and T2u modes are inactive.

β-Si3N4 present (contd.) present
phonon type exp.a ref.b work phonon type exp. ref. work

Bu inactive 1296.8 1029.5 E2g 619 638.1 597.2
E2g 1047 1309.5 1007.9 E1u 580 573.2 550.6
E1u 1040 1156.1 995.3 Bu inactive 475.4 541.7
Ag 939 1183.2 908.6 Ag 451 513.9 442.5
E2g 928 990.7 896.0 E2g 229 474.1 431.5
E1u 985 807.8 863.4 E1u 447 478.7 411.1
Bg inactive 789.1 852.8 Bg inactive 434.6 394.1
E2u inactive 651.4 838.7 Au 380 401.7 356.9
E1g 865 700.6 834.8 E2u inactive 233.0 297.4
Au 910 598.4 825.5 Bg inactive 241.5 262.6

gap Bu inactive 212.8 243.2
Ag 732 690.2 705.8 E1g 210 295.7 218.9

gap Ag 186 208.7 198.3
Bu inactive 601.5 631.8 E2g 144 133.9 177.6

aRaman and infrared absorption spectroscopy data from reference [63], in which the measured peaks are
not associated with the phonon type. 6 IR and 11 Raman active peaks are observed in accordance
with group theory, which permits an approximate phonon type assignment. Thus the phonons are not
necessarily in order of decreasing frequencies.

bAb-initio data from reference [53], which is obtained from an OLCAO approach based on DFT/LDA. The
results include a phonon type assignment, thus the phonons are not necessarily in order of decreasing
frequencies. Additionally a total of 6 instead of 5 E2g modes are stated. The omitted mode has a wave
number of 233.4 cm−1 and is conceivably a typo.

Table 3.13: Wave numbers (cm−1) of zone center phonons in crystalline β-Si3N4. E =1

E +2E modes are conjugate phonon pairs, each of dimension 1. 2 Au and 4
E1u modes are Raman active. 4 Ag, 2 E1g and 5 E2g modes are infrared active.
3 Bg, 4 Bu and 2 E2u modes are inactive.

The VASP determination of phonon frequencies via interatomic force constants is per-
formed with density functional perturbation theory. The PAW method for constructing
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3.5 Vibrational properties - zone center phonons

the wave functions is applied. Specifically the tags IBRION=8 and LEPSILON=.TRUE.
are set in the INCAR file. LEPSILON calculates the Born effective charge tensor from
Hellmann-Feynman forces and IBRION=8 the Hessian matrix. The Hessian matrix is the
matrix of the second derivatives of the energy with respect to the atomic positions. With
it atomic force constants are obtained required for the calculation of phonon frequencies.
The symmetries of each system are used to reduce the number of displacements that are
considered.

γ-Si3N4 present (contd.) present
phonon type exp.a ref.b work phonon type exp. ref. work

A1g 979.5 972 938.3 T2u inactive 631 604.8
A2u inactive 946 912.7 T1u (IR) 619 588.4
T2g 845 840 810.2 Eg 522 522 502.0
T1u (IR) 819 782.5 T1g inactive 504 486.0
A2u inactive 782 759.9 Eu inactive 455 431.1
Eu inactive 775 752.3 T2g 420 415 404.1
T1u (IR) 729 709.0 T1u (IR) 406 396.1
T2g 727 726 698.3 T2u inactive 317 304.4

aRietveld refinement of synchrotron x-ray powder diffraction data from reference [25], in which some of
the observed Raman peaks are associated with Raman active modes. The phonon type assignment is not
in accordance with group theory, as the Eg mode is assigned twice. Thus the assignment of the reference
is only regarded for the low Eg mode at 522 cm−1 and the T2g mode at 727 cm−1 in this table. Infrared
(IR) active modes are not obtained.

bAb-initio data from reference [50]. VASP calculations within GGA as well as LDA are performed. The
exchange-correlation energy functionals are not stated. The wave functions are constructed with the PAW
method. The results include a phonon type assignment.

Table 3.14: Wave numbers (cm−1) of zone center phonons in crystalline γ-Si3N4. E modes
are double degenerate and T modes are triple degenerate. 1 A1g, 1 Eg and 3
T2g modes are Raman active. 4 T1u modes are infrared active. 2 A2u, 2 Eu, 1
T1g and 2 T2u modes are inactive.

In α-Si3N4 the phonon frequencies at the Γ-point are between 193 − 671 cm−1 and
819 − 1000 cm−1, whereas in the gap only inactive modes are present. Compared to
ab-initio results of reference [53] the phonons in α-Si3N4 with the largest wave numbers
are approximately softer by 20%. More specifically, this applies to the top 4 E modes, the
top 2 A1 modes and the top 5 A2 modes. The A1 modes in α-Si3N4 obtained are slightly
harder than the other ab-initio values of reference [53]. The experimental values [63] show
a phonon gap between 700 and 820 cm−1. The region above is between 820 and 1040 cm−1,
disregarding the top 2 modes around 1200 cm−1, and the region below contains modes
from 700 to below 200 cm−1. Both regions and the gap are indicated by the results in
this work and are in very good agreement. β-Si3N4 shows phonon frequencies between
178 − 597 cm−1 and 825 − 1029 cm−1, with only the Ag mode in the gap at 706 cm−1.
In comparison to ab-initio findings [53], the upper Au and E1g modes are considerably
harder in this work, thus these phonons are moved out of the gap in agreement with the
experiment. The Raman active modes are consistent with the calculations of reference [53].
Compared to experimental findings of reference [63], a trend of infrared active modes to be
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Chapter 3 Fundamental properties of crystalline silicon nitride

underestimated by ≈ 10% can be noticed. The Raman active modes agree excellent with
the experiment, with only the E2g mode at 431 cm−1 sticking out. It has a considerably
higher frequency than in the experiment, 240 cm−1. The phonon frequencies of γ-Si3N4 are
in the range 304−938 cm−1, without any noteworthy gap. This is in contrast to the modes
of the other two crystalline polymorphs of silicon nitride. All vibrational modes, infrared
and Raman active as well as inactive modes, of γ-Si3N4 are in fair agreement, although
slightly softer, compared to ab-initio results of reference [50]. The phonon type assignment
is identical. With respect to experimental results of reference [25], in which the first assign-
ment of modes to Raman bands is performed, the modes in this work are also slightly lower.

For the three crystalline phases, α-, β- and γ-Si3N4, the calculated phonon modes are in
general slightly softer, approximately by 5 − 10%, than reported in the references, with
larger discrepancies for increasing wave number. This effect may be due to the selected
method. Frequencies are very volume dependent. PBE yields too large volumes and
therefore too low frequencies. In all three polymorphs the modes at higher frequencies
mostly contain contributions from nitrogen atoms. The low frequency modes are mainly
dominated by the displacements of the silicon atoms. Notably, the octahedral Si atoms
of the γ-phase contribute to the infrared active modes T1u. The octahedrally coordinated
silicon atoms are also found to be dominant in most inactive modes of γ-silicon nitride.
The Raman active modes can be assigned to the tetrahedral Si atoms and the N atoms.
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Chapter 4

Optimized soft potentials

In computational applications the required cpu time is exceedingly important. Thus this
chapter compares the results of the VASP calculations from the last chapter, chapter 3,
to calculations performed with softer PAW PBE potentials, which are more efficient. A
soft and a very soft potential are inspected in addition to the regular potential previously
discussed, in order to determine whether one or both are suitable for calculating the
properties of the amorphous phases of silicon nitride in chapter 5. The VASP potential file
applied in chapter 3, POTCAR.SiN, requires a cut-off energy Ecut, SiN = 520 eV (400 eV)
for variable (fixed) cell volume calculations and constructs basis sets with 250 plane
waves per atom. The softer potential file, POTCAR.SisNvs, needs a cut-off energy
Ecut, SisNvs

of 260 eV (200 eV). The softest used potential, POTCAR.SivsNes, only re-
quires a cut-off energy Ecut, SivsNes

= 210 eV (160 eV) and applies 32 plane waves per atom.

In general, higher k-point meshes are required for softer potentials to obtain similar smooth
energy volume curves. This has been taken into account in the selection of meshes in
table 3.1, during the preliminary testing of the k-point convergence. Thus a 4×4×4 mesh
is applied for α-Si3N4, a 4× 4 × 8 mesh for β-Si3N4 and a mesh of 6 × 6 × 6 for γ-Si3N4.
In table 4.1 the core radii for each l quantum numbers of the used potentials is given.

core radii (Å) POTCAR.∗

l SiN SisNvs SivsNes

0 1.9 1.8 1.9
1 1.9 2.1 2.4
2 1.9 2.1 2.4

Table 4.1: Core radii for each l quantum number as applied by VASP.

For testing the two softer potentials the ground state energy of crystalline α-, β- and
γ-silicon nitride are determined. One phase is then selected for further comparison of
electronic and vibrational properties. Specifically, the density of states of β-Si3N4 is
compared to the values from chapter 3.3. To obtain results concerning lattice vibrations
the zone center phonons of β-Si3N4 are calculated, assigned and compared to the values
from chapter 3.5. The calculation of the properties with the two optimized potentials is
performed as detailed in the respective chapters, 3.2.2, 3.3.1 and 3.5.
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Chapter 4 Optimized soft potentials

4.1 Electronic properties

4.1.1 Ground state energy

Ground state energy E0 and cell volume V0 are derived from the Birch-Murnaghan equation
of state (3.1). The chart in figure 4.1 shows the data points including fit that are calculated
with each POTCAR for the three crystalline phases. A general trend of rising ground state
energy relative to the atom with lower plane wave cut-off can be clearly seen for all three
polymorphs of silicon nitride.
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Figure 4.1: Equations of state of crystalline Si3N4. The solid lines represent the fits to re-
sults obtained with the regular potential POTCAR.SiN, the dashed lines those
of the soft POTCAR.SisNvs, and the dotted lines are fits to values obtained
with the very soft POTCAR.SivsNes. The inset shows the region around the
minimum of α- and β-Si3N4.

E0 (eV/formula unit) POTCAR.∗

SiN SisNvs SivsNes

phase E0 ∆E (meV) E0 ∆E (meV) E0 ∆E (meV)

α-Si3N4 -57.267 0.0 -56.946 0.561 -56.622 1.126
β-Si3N4 -57.269 0.0 -56.956 0.547 -56.643 1.093
γ-Si3N4 -56.218 0.0 -55.966 0.448 -55.543 1.201

Table 4.2: Ground state energy E0 of the crystalline silicon nitride phases (per formula
unit). The difference in ground state energy to results obtained with the regular
potential POTCAR.SiN is given in meV. Energies are specified with respect to
spherical non-spin polarized atoms.
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4.1 Electronic properties

Table 4.2 lists the calculated ground state energy E0 per formula unit of the silicon nitride
phases for the three inspected potentials. With all three potentials the naturally stable
β-phase has the lowest ground state energy, as expected. The inset in figure 4.1 shows the
region around the minimum of α- and β-Si3N4. The fits to results of the β-phase lie lower
than those of the α-phase, indicating that β-Si3N4 is the stable polymorph. The energy
difference between α- and β-Si3N4 slightly increases for the optimized potentials. The high
pressure polymorph γ-Si3N4 has a higher ground state energy with respect to the α- and
β-phase obtained with the same potential. The difference in ground state energy ∆E0 in
meV for results of each phase between regular and soft potential as well as regular and
very soft potential are given in table 4.2. Noteworthy is the similar tendency of higher E0

for both optimized potentials, regardless of the particular phase, i.e. a uniform shift of the
energy is observed.

V0 (Å3/formula unit) POTCAR.∗

phase SiN SisNvs SivsNes

α-Si3N4 74.70 75.85 74.16
β-Si3N4 74.33 74.40 73.69
γ-Si3N4 58.96 59.12 59.35

Table 4.3: Equilibrium cell volume V0 of the crystalline silicon nitride phases (per formula
unit).

Table 4.3 displays the equilibrium cell volume V0 per formula unit of α-, β- and γ-Si3N4 for
comparison. Interestingly α-Si3N4 shows a somewhat "mixed" tendency for the applied
potentials. The lowest ground state energy is achieved with the SiN-potential but the
smallest cell volume with SivsNes-potential. Nonetheless, the calculated cell volume is in
both cases very close to the results obtained with the regular potential, as the values for
V0 differ by less than 0.8%. VASP calculations of β-Si3N4 show that the P63-modification
tends to converge towards the P63m-structure, see table 3.3 in chapter 3.2.1. In prelimi-
nary tests this is also verified for the optimized soft potentials, before further calculations
are performed. All three potentials lead to comparable results. The cell volume obtained
with the SisNvs-potential has the greatest deviation, approximately 0.6%. The third phase,
γ-Si3N4, shows reasonable results with both optimized soft potentials. The difference is
less than 1.0% when comparing the SisNvs-potential to the SiN-potential. Even the softest
potential leads to results only 1.5% off.

The results obtained with the very soft potential for α-Si3N4 and β-Si3N4 are closer
to experimental values, see table 3.6, than those from the calculation with the regular
potential, indicating that the SivsNes-potential is an excellent compromise for further
calculations with amorphous phases to ensure both accuracy and high efficiency.
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Chapter 4 Optimized soft potentials

4.1.2 Density of states

From here on only the properties of β-Si3N4 are inspected and compared, as the results for
ground state energy E0 and equilibrium cell volume V0 obtained in chapter 4.1.1 displayed
an overall consistency in accordance with the applied potential, for all three crystalline
polymorphs of silicon nitride.

β-Si3N4 present work, POTCAR.∗

property (eV) exp. a SiN SisNvs SivsNes

CB min. Γ Γ Γ
VB max. Γ → A Γ → A Γ → A
Eg min. 4.6-5.5 4.25 4.20 4.17
Eg at Γ 4.45 4.41 4.40
bottom 1st VB -10.14 -9.96 -10.07
top 2nd VB -14.73 -14.62 -14.94
width 1st VB 10-12 10.14 9.96 10.07
width 2nd VB 4-5 3.79 3.70 3.52
full width VB 18.52 18.32 18.46

aData cited in reference [41], from XPS and BIS as well as from photoemission experiments.

Table 4.4: KS PBE band gap Eg of β-Si3N4 with the three potentials, min. and direct at
the Γ-point. The experimental values for Eg denote the optical band gap. The
VB widths and the location of the CB min. and VB max. are detailed.
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Figure 4.2: DoS and band structure of β-Si3N4 with regular potential POTCAR.SiN.
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4.1 Electronic properties

The k-point path is selected as in table 3.9. The DoS and band structure of β-Si3N4 are in
excellent agreement for both optimized potentials. Figures 4.2, 4.3 and 4.4 show the density
of states and band structure for VASP calculation with the regular SiN-potential, soft
SisNvs-potential, and very soft SivsNes-potential, respectively. The results are summarized
in table 4.4.
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Figure 4.3: DoS and band structure of β-Si3N4, obtained with soft potential
POTCAR.SisNvs.
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Figure 4.4: DoS and band structure of β-Si3N4, obtained with very soft potential
POTCAR.SivsNes.

The full valence band in β-Si3N4 calculated with the soft potential is the narrowest, with
18.4 eV. It consists of a 1st and 2nd VB with a width of 10.0 eV and 3.7 eV, respectively.
The widths obtained with the very soft potential are slightly larger for the 1st VB, 10.1 eV,
and smaller for the 2nd VB, 3.5 eV. The full width of the VB is 18.5 eV. This indicates
an increase in the separating gap between the 1st and 2nd VB in calculations with the very
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Chapter 4 Optimized soft potentials

soft potential of 0.3 eV compared to the regular potential and of 0.2 eV in comparison to
the soft potential. The VB maximum as well as the CB minimum of β-Si3N4 are at the
same respective points in k-space for both of the optimized potentials as they are in the
calculation with the regular potential. The experimental reference values for Eg min. of
β-Si3N4 listed in table 4.4 are larger by ≈ 10−30 % for all three inspected potentials. This
is due to the general band gap underestimation in density functional theory. Within DFT,
the results for the indirect Kohn-Sham PBE band gap, Eg min., and direct KS PBE band
gap, Eg at Γ, are consistent for both optimized potentials. A trend of slightly decreasing
indirect and direct KS PBE band gap with softer potential is observed. On the other hand,
even results with the very soft potential deviate by less than 2 % from values obtained
with the regular potential, which is very reasonable.

4.2 Vibrational properties - zone center phonons

The zone center phonons of β-Si3N4 obtained with the optimized potentials are compared
to the phonons calculated with the regular potential. The results are given in table 4.5. A
general tendency can be observed. The softer the potential, the lower the modes with large
wave numbers and the higher the modes with small wave numbers. For the soft potential
POTCAR.SisNvs the trend goes from slight underestimation to overestimation with the
Ag mode at 708.8 cm−1, whereas this occurs lower, with the E1u mode at 554.0 cm−1, in
calculations with the very soft potential POTCAR.SivsNes. A comparison of the potentials
shows that the phonon frequencies may differ in absolute values, but the phonon assignment
remains largely the same. One exception is the very soft potential POTCAR.SivsNes, which
switches two phonon frequencies by placing the E2g mode at 443.5 cm−1 and the Ag mode
at 440.5 cm−1.

4.3 Discussion

Compared to the regular potential SiN, the ground state energy shows a minimum at
the same cell volume, within 1.5 %, for both optimized potentials SisNvs and SivsNes.
Similarly, the density of states are in exceptional agreement for all three potentials.
The Kohn-Sham PBE band gap is reproduced accurately, within 2.0 %. The calculated
phonons and their respective type assignments agree well. Even the very soft potential
exhibits only errors of 50 cm−1 for the high frequency modes and only 10 cm−1 for modes
with a frequency below 400 cm−1. On average, the errors remain well below 5.0 %, which
is in fact small compared to the DFT/PBE errors, and tiny compared to effective many
body potentials. Using such a potential the the number of plane waves per atom can be
reduced to about 30 PW, very respectable, at a modest loss of accuracy.

It is concluded that both optimized potentials can be used for VASP calculations of amor-
phous silicon nitride and the amorphous silicon-nitrogen alloys. Since the very soft poten-
tial SivsNes is quite accurate, and is the most efficient regarding computational time, it is
selected for further calculations.
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4.3 Discussion

β-Si3N4 POTCAR.∗

phonon type exp.a ref.b SiN SisNvs SivsNes

Bu inactive 1296.8 1029.5 1022.9 973.3
E2g 1047 1309.5 1007.9 1004.4 953.7
E1u 1040 1156.1 995.3 992.2 936.3
Ag 939 1183.2 908.6 906.0 850.9
E2g 928 990.7 896.0 895.7 835.6
E1u 985 807.8 863.4 862.8 799.4
Bg inactive 789.1 852.8 851.2 791.8
E2u inactive 651.4 838.7 836.8 776.2
E1g 865 700.6 834.8 832.2 771.5
Au 910 598.4 825.5 822.5 761.4

gap
Ag 732 690.2 705.8 708.8 698.7

gap
Bu inactive 601.5 631.8 630.1 601.3
E2g 619 638.1 597.2 600.0 582.0
E1u 580 573.2 550.6 555.5 554.0
Bu inactive 475.4 541.7 538.2 523.4
Ag 451 513.9 442.5 445.4 443.5 (E2g)
E2g 229 474.1 431.5 438.6 440.5 (Ag)
E1u 447 478.7 411.1 416.1 421.3
Bg inactive 434.6 394.1 401.4 416.5
Au 380 401.7 356.9 364.3 379.6
E2u inactive 233.0 297.4 299.0 304.4
Bg inactive 241.5 262.6 266.1 272.6
Bu inactive 212.8 243.2 248.0 258.7
E1g 210 295.7 218.9 220.5 223.9
Ag 186 208.7 198.3 199.0 198.7
E2g 144 133.9 177.6 175.4 183.4

aRaman and infrared absorption spectroscopy data from reference [63], in which the measured peaks are
not associated with the phonon type. 6 IR and 11 Raman active peaks are observed in accordance
with group theory, which permits an approximate phonon type assignment. Thus the phonons are not
necessarily in order of decreasing frequencies.

bAb-initio data from reference [53], which is obtained from an OLCAO approach based on DFT/LDA. The
results include a phonon type assignment, thus the phonons are not necessarily in order of decreasing
frequencies. Additionally a total of 6 instead of 5 E2g modes are stated. The omitted mode has a wave
number of 233.4 cm−1 and is conceivably a typo.

Table 4.5: Comparison of wave numbers (cm−1) of zone center phonons in β-Si3N4 obtained
with the three potentials to experimental and ab-initio references. E =1E +2E
modes are conjugate phonon pairs, each of dimension 1. 2 Au and 4 E1u modes
are Raman active. 4 Ag, 2 E1g and 5 E2g modes are infrared active. 3 Bg, 4 Bu
and 2 E2u modes are inactive.
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Chapter 5

Amorphous silicon-nitrogen alloys

Here amorphous silicon nitride a-Si3N4 and the amorphous silicon-nitrogen alloys a-SixNy

are inspected. In addition an analysis of the according hydrogenated structures, a-Si3N4:H
and a-SixNy:H, is performed. More specifically, the alloys indicated in table 5.1 are taken
into consideration.

atoms in super cell H content

alloy Si N H total (at.%)

a-Si 96 96
a-Si3N 96 32 128
a-Si3N2 96 64 160
a-Si3N3 96 96 192
a-Si3N4 96 118 224
a-Si3N5 84 140 224

a-Si3N3:H 96 96 32 224 14.3
a-Si3N4:H 87 116 20 223 9.0
a-Si3N4:NH3 84 119 21 224 9.4

Table 5.1: Number of atoms in the super cells of the amorphous silicon-nitrogen alloys.
Hydrogen content, where applicable, is given in a percentage of the total number
of atoms per super cell.

The structural and electronic properties of amorphous unhydrogenated and hydrogenated
silicon nitride, a-Si3N4 and a-Si3N4:H, and silicon-nitrogen alloys a-SixNy and a-SixNy:H
are derived. Where available, the results are compared to experimental data and to other
simulation results. The focus is placed on a-Si3N3, a-Si3N4, a-Si3N3:H and a-Si3N4:H.
These specific alloys are selected because they are in the stoichiometric range of technical
applications [2, 64]. One important aspect is to verify whether hydrogen acts as an
electron donor or acceptor in amorphous hydrogenated silicon nitride a-Si3N4:H and in
the silicon-nitrogen alloy a-Si3N3:H, as both tendencies have been reported [64, 65]. As
outlined in chapter 1, the main areas of interest are structural defects, their correlation
with electronic defect levels as well as the formation of Si random percolation networks in
the amorphous silicon-nitrogen alloys.

VASP is used for simulated annealing [13] performed with the optimized very soft potential
POTCAR.SivsNes. These ab-initio molecular dynamics (MD) simulations are performed
within density functional theory. The electron-ion interaction is handled with the PAW
method [16]. The exchange-correlation energy functional is parametrized with the PBE
scheme [20]. The core radii for the l quantum numbers is given in table 4.1. The calculations
are performed with a cut-off energy of Ecut = 160 eV, as discussed in chapter 4. Where
possible without compromising the results, a lower cut-off energy Ecut of 120 eV is used for
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Chapter 5 Amorphous silicon-nitrogen alloys

the expansion of the plane wave basis set. Only the Γ-point is used to sample the Brillouin
zone. The simulations are conducted with velocity scaling, in which every 50 steps v is
rescaled to yield

v2

2m
=

3

2
kBT . (5.1)

The model structures are generated from crystalline α-Si3N4, with certain atoms replaced
by others in the POSCAR file to account for the different stoichiometry. The model
structure of amorphous silicon a-Si is constructed from crystalline silicon with a fcc
diamond unit cell and the amorphous silicon-nitrogen alloy a-Si3N4:NH3 is created
from α-Si3N4 and ammonia. Vegard’s law is applied to calculate the change in cell
volume when atoms of one element are substituted by atoms of another element.
With the model structures simulated annealing calculations are performed at a high
temperature, 5500 K. At this temperature the structures melt and are in a liquid
state. Then the temperature is lowered, in general in increments of 500 K, for each
consecutive MD run until amorphous structures are obtained. Finally a quenched MD
run relaxes the ions into the local minimum. This is called the quenched-from-melt
procedure. The temperature at which the quenched-from-melt procedure is carried out
depends on the properties that are to be deduced and are stated in each chapter separately.
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5.1 Structural properties

5.1 Structural properties

The structural properties of amorphous silicon nitride and of the amorphous silicon-
nitrogen alloys are investigated through the quenched-from-melt structures. Initially, the
volume per atom and density are calculated, followed by an inspection of the temperature
history. Then the mean square displacement and diffusion coefficient are obtained to
deduct the dynamical properties of the liquid alloys. The pair correlation function is
interpreted after this and the bond angle distribution as well. The calculation of the
coordination numbers of atoms to gain insight into the local environment, occurrence of
structural defects and the possibility of formation of a random percolation network of
silicon concludes the chapter.

5.1.1 Volume per atom and density

The volume per atom V PA and from it the mass density ρ is calculated. This is performed
to evaluate whether the model structures are comparable to experimental findings and other
simulation results. Experimentally a wide range of densities is observed in the amorphous
silicon-nitrogen alloys including stoichiometric silicon nitride, although densities between
2.8 eV and 3.0 eV are preferable in most technical applications [64].

V PA (Å3/atom) ρ (g/cm3)

alloy exp. a sim. b present work exp. c sim. d present work

a-Si 19.66 20.51 2.37 2.27
a-Si3N 15.69 16.08 2.60 2.54
a-Si3N2 13.30 13.42 2.80 2.78
a-Si3N3 11.71 11.68 11.65 2.98 2.99 3.00
a-Si3N4 10.57 10.08e, 10.60 10.38 3.15 3.14 3.20
a-Si3N5 9.72 10.38 3.29 3.08

a-Si3N3:H 11.71 11.65 2.98 3.02
a-Si3N4:H 10.57 10.84 2.77f, 3.15 3.09
a-Si3N4:NH3 10.34 10.84 3.18 3.05

aXPS and IR absorption data from reference [6] of hydrogenated alloys.
bMD simulation data from reference [66], which is based on a classical force field approach.
cXPS and IR absorption data from reference [6] of hydrogenated alloys.
dMD simulation data from reference [66], which is based on a classical force field approach.
eAb-initio data from reference [48]. VASP calculations with the Perdew-Zunger parametrization of the
Ceperly-Alder functional within LDA are performed. The wave functions are constructed with the PAW
method.

fIR absorption data from reference [67] with ratios N/Si = 1.3 and H/Si = 0.9.

Table 5.2: Volume per atom V PA and mass density ρ of amorphous silicon-nitrogen alloys.
Reference values are quoted where available. In experimental samples there
is always some hydrogen present, due to the small volume and molar mass
compared to Si or N it is usually disregarded. The density obtained in the
present work includes the hydrogen contribution as can be taken from table 5.1.
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The V PA and density ρ of the amorphous silicon-nitrogen alloys and of a-Si are obtained
from the quenched-from-melt structures, which are first annealed down to a temperature
of 1500 K and 500 K, respectively. The results, given in table 5.2, are well within the
range indicated by available references.

In amorphous silicon a-Si the volume per atom is 20.51 Å3. The Si-richest alloy a-Si3N
has a smaller V PA of 16.08 Å3. The remaining substoichiometric alloys display decreasing
volumes per atom from 13.42 Å3 to 11.65 Å3 in a-Si3N2 and a-Si3N3, respectively. Amor-
phous silicon nitride a-Si3N4 and the suprastoichiometric alloy a-Si3N5 are found to have
an volume per atom of 10.38 Å3. The largest decrease in V PA is observed between a-Si
and a-Si3N. The density ρ increases by 8 − 11% for each alloy from 2.27 g/cm−3 in a-Si
to 3.20 g/cm−3 in a-Si3N4, whereas it decreases in the suprastoichiometric alloy a-Si3N5

to 3.08 g/cm−3.
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Figure 5.1: Annealing history of MD runs including quenched MD.

The actual annealing history for the MD calculations is shown in figure 5.1. The regular
MD runs are performed over 10 ps, whereas the long MD runs over 30 ps. Afterwards a
quenched MD run relaxes the atoms into the instantaneous ground state.
To ensure that the simulated annealing procedure yields amorphous structures of sufficient
quality, the running average of the energy is compared to the energy after ionic relaxation.
Specifically, from the VASP calculations carried out at 2500 K a running average of the
energy is taken over 1000 time steps. Simultaneously, every 1000 time steps a snapshot
of the structure is taken and relaxed into the local minimum with a quenched MD run.
For a-Si3N4 at 2500 K this is illustrated over 10 ps in figure 5.2. It is easily seen that
the relaxed configuration roughly follows the average energy in simulated annealing and
the tendency of lower energies with longer run duration is achieved. Therefore it is of
importance to determine at which run times this decrease in energy stops. Typically, the
energy settles in 5 ps, but it is also possible that the energy increases during a MD run.
There is no guarantee that a longer simulation time actually lowers the energy.

Previous work [66] suggests that temperatures above 5000 K combined with long simula-
tion times of 100 ps are required to obtain a stable amorphous state instead of a metastable
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Figure 5.2: DFT energy, running average and relaxed energy of amorphous silicon nitride
a-Si3N4 at 2500 K.

state in the quenched-from-melt structure. The high temperatures are used in the initial
simulated annealing procedure. Regarding the MD run time a VASP run of 30 ps is
performed at 2500 K, as shown in figure 5.2. The structure relaxes into a minimum after
approximately 10 ps, but begins to settle into an energetically more unfavourable state after
25 ps. This indicates that jump diffusion processes, stochastic processes where one atom
jumps to another site, accumulate defects in the structure. Therefore a MD time between
10 ps and 20 ps at each temperature is suggested, in order to avoid accumulation of defects.

5.1.2 Mean square displacement and diffusion coefficient
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Figure 5.3: Diffusion coefficients of amorphous silicon nitride a-Si3N4. Comparison of sim-
ulations with different plane wave cut-off energies 120 eV and 160 eV.
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The diffusion of atoms in materials is described by Fick’s first and second law of diffusion.
First step for determining the diffusion coefficients of the amorphous silicon-nitrogen alloys
is to identify the minimal cut-off energy Ecut of the plane wave basis set. For this, a-Si3N4

is calculated with two settings of the flag ENCUT in the INCAR file. The comparison
of diffusion coefficients obtained with different cut-off energies for a-Si3N4 is pictured in
figure 5.3 on a semi-logarithmic scale. The agreement is good, within statistical uncertain-
ties. Merely the curve with the lower Ecut shows an uncharacteristic dent between 2500 K
and 4000 K which is not reproduced by the calculation with the higher cut-off energy.
Therefore it is recommended to apply a cut-off energy of Ecut = 160 eV for determining
the diffusion coefficients.
VASP, during the quenching of the structure from the molecular dynamics simulation,
stores the positions of all sets in the file XDATCAR. From this the mean square displace-
ment (msd) is calculated, which can be used to obtain the diffusion coefficient D(t). A
linear mean square displacement shows that the phase is liquid. At and below 0.3 Å2 the
msd is considered constant, indicating a solid phase.

0 2 4 6 8 10 
Time (ps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n 
sq

ua
re

 d
is

pl
ac

em
en

t (
Å

2 )

2500 K
2000 K
1500 K

Figure 5.4: Mean square displacement (msd) of amorphous silicon nitride a-Si3N4 at differ-
ent temperatures. A constant msd indicates a solid, whereas a linearly increas-
ing msd shows a liquid phase.

The mean square displacement of amorphous silicon nitride at different temperatures is
plotted in figure 5.4. The experimental melting point of crystalline Si3N4 is 2173 K [68].
Thus the transition from solid to liquid in amorphous silicon nitride is to be expected
somewhere around 2200 K. This agrees with the simulation results, where at 1500 K we
see no liquid-like diffusion. At 2000 K, and even more so at 2500 K, the msd displays liquid
characteristics. Interestingly, the msd of amorphous silicon nitride a-Si3N4 at 2500 K
exhibits features similar to plateaus between 1.5 ps and 4.5 ps, between 5.0 ps and 6.0 ps
as well as after 8.5 ps. This indicates that the structure spontaneously "freezes" in certain
configurations, which is facilitated by the stoichiometric Si and N content. Therefore
even higher temperatures than in experiments are required to observe significant dif-
fusion in amorphous silicon nitride or to successfully melt the structure in MD simulations.

The diffusion coefficients D(t) of amorphous silicon a-Si and silicon-nitrogen alloys a-Si3Ny
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Figure 5.5: Diffusion coefficient of amorphous silicon and silicon-nitrogen alloys with vary-
ing stoichiometry. The substoichiometric alloys as well as the suprastoichiomet-
ric silicon nitrogen alloy a-Si3N5 display a higher diffusivity than a-Si3N4.

with y = 1, 2, 3, 4, 5 are plotted in figure 5.5. Clearly the substoichiometric structures as
well as the suprastoichiometric alloy show higher diffusion at lower temperatures. Amor-
phous silicon nitride a-Si3N4 exhibits the lowest diffusivity at any given temperature. To
obtain a rough feeling for the temperature at which the amorphous silicon-nitrogen alloys
freeze in our simulations we arbitrarily set a threshold of 0.1 Å2

/ps for the diffusion coef-
ficient and determined at which temperature D(t) drops below this value. Table 5.3 gives
the temperature at which the onset of diffusion occurs.

alloy TSi,N (K) TH (K)

a-Si 960
a-Si3N 1420
a-Si3N2 2020
a-Si3N3 2580
a-Si3N4 3210
a-Si3N5 2640

a-Si3N3:H 2350 1650
a-Si3N4:H 2740 1550
a-Si3N4:NH3 3160 1720

Table 5.3: Onset of diffusion for Si, N as well as for H in amorphous silicon and amorphous
silicon-nitrogen alloys. The threshold for diffusion is set to be 0.1 Å2

/ps.

The diffusion of hydrogen is displayed separately, to account for the different diffusive
character of hydrogen in comparison to Si or N. In the silicon-nitrogen alloy derived from
silicon nitride and ammonia a-Si3N4:NH3 the H atoms are slightly less diffusive than in a-
Si3N3:H or a-Si3N4:H, and cross the threshold at a temperature of 1720 K. Si and N atoms
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in a-Si3N4:NH3 begin diffusing above 3160 K, as given in table 5.3. This is the highest onset
of diffusion in the inspected hydrogenated alloys. The diffusion coefficients of figure 5.5
are used as a "scale" for a-Si3N3:H and a-Si3N4:H in figures 5.6 and 5.7, respectively. The
diffusion of Si and N atoms in a-Si3N3:H takes place at lower temperatures than in the
unhydrogenated alloy a-Si3N3, starting at approximately 2350 K. At temperatures upward
of 2800 K the diffusivity follows the curve obtained for a-Si3N3, albeit at slightly higher
values. Diffusion of H in a-Si3N3:H is observed at temperatures above 1650 K. In a-Si3N4:H
the H atoms remain diffusive down to a significantly lower temperature than for Si and N
diffusion in the same alloy. The H diffusion coefficient in hydrogenated amorphous silicon
nitride crosses the threshold of 0.1 Å2

/ps at 1550 K. For Si and N atoms diffusion takes
place upward of 2740 K.
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Figure 5.6: Diffusion coefficient of hydrogenated amorphous a-Si3N3:H.
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Figure 5.7: Diffusion coefficient of hydrogenated amorphous silicon nitride a-Si3N4:H.
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5.1.3 Pair correlation function

In crystals the atomic configuration leads to sharp peaks of the neighboring atoms at certain
distances from each atom. However, in amorphous materials this order is not given and
the pair correlation function represents a statistical measure for the number of neighboring
atoms. The pair correlation function (pcf) is defined as

g(r) =
V

4πr2N2
〈
∑

i

∑

j 6=i

δ (r− rij)〉 , (5.2)

where V is the volume, N is the number of atoms and the indices i, j = 1, . . . , N . It is the
conditional probability density of finding an atom at r, if there is one at the coordinate
origin. Close to any central atom the pair correlation function is approximately zero.
It then rises to the first maximum, where the nearest neighbor atoms are located. The
minima of the pair correlation function indicate the regions at which there is only a low
probability of finding another atom. The maxima correspond to the typical or average
neighbor distances between the atoms. In amorphous materials, far from each atom the
pair correlation function approaches unity, as there is no long range order. To obtain
the various bond lengths the element specific local environments are considered. More
specifically, the neighbor pairs Si-Si, Si-N, Si-H, N-N, and N-H are taken into account
in the partial pcf. The data is obtained from the quenched-from-melt structures of the
molecular dynamics simulations performed at a temperature of 500 K for a-Si, at 2000 K
for a-Si3N3:H and at 1500 K for the remaining amorphous silicon-nitrogen alloys. An
average of 200 sets from VASP’s XDATCAR output file are inspected.
As done for the diffusion coefficient, prior to calculation of all alloys the cut-off energy’s
effect on the pair correlation function in the structure a-Si3N4 is evaluated using
Ecut = 120 eV and Ecut = 160 eV. The results with Ecut = 160 eV are almost the same
as with Ecut = 120 eV, which can be seen by comparing the panels in the top row of
figure 5.8. The lower cut-off energy leads to virtually identical pair correlation functions.
Thus Ecut = 120 eV is used in the remaining calculations.

From the first maximum in the partial pcf the average bond length is deduced. The bond
lengths are in excellent agreement with reference values of other groups [7,69]. The results
of bond lengths as well as the selected cut-off radii of all inspected structures are given
in table 5.4. The rcut are used for calculating the bond angle distributions as well as the
coordination numbers of the atoms in the discussion of their local environments.
The first inspected phase is amorphous silicon, a-Si, see the center left panel in figure 5.8.
It shows the characteristic average Si-Si bond distance of 2.3 Å, as documented in
references [7, 69]. A smaller, wider peak is located at 3.7 Å. With the trigonometric
relation a2 = b2 + c2 − 2bc cos θ it is easily verified that, for b = c = 2.3 Å and the
bond angle θ = 105◦ typical for tetrahedral coordination, this results in a second nearest
neighbor distance of 3.7 Å for Si-Si in corner-sharing tetrahedral configurations. Thus the
peak around 3.7 Å gives indication of the predominance of corner-sharing Si tetrahedra in
amorphous silicon a-Si.
The introduction of nitrogen into the structure causes the appearance of the Si-N bond,
as can be taken from the partial pcf of a-Si3N3 and a-Si3N4 in figure 5.8. The typical
value of the Si-N bond length is 1.7 Å for the amorphous alloys, in excellent agreement
with experimental findings from reference [8] and ab-initio results given in reference [7].
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Figure 5.8: Partial pair correlation functions of the amorphous silicon-nitrogen alloys. The
top row shows a comparison between amorphous stoichiometric silicon nitride
a-Si3N4 with a cut-off energy Ecut of 120 eV and 160 eV. The center row gives
the partial pcf of a-Si3N3, a-Si and a-Si3N5. The bottom row displays the
hydrogenated alloys a-Si3N3:H and a-Si3N4:H, where in addition to the partial
pcf for Si-Si, Si-N, and N-N those for H-Si and H-N are shown.

By applying the same reasoning as above, for Si-N bonds of about 1.7 Å an occurrence
of Si-Si peaks at 2.9 Å with an angle of 117◦ for Si-N-Si units as well as N-N peaks at
2.7 Å with an angle of 105◦ for N-Si-N units is expected in corner-sharing SiN4 tetra-
hedral configuration. These Si-Si and N-N peaks are indeed observed in the amorphous
silicon-nitrogen alloys. In the alloys the Si-Si peak at 2.9 Å increases with increasing
nitrogen content, while the Si-Si peak at 2.3 Å decreases. Where Si-Si distances of
2.3 Å are indicative of true Si-Si bonds and therefore of Si-Si pairs and Si-Si clusters
in the amorphous silicon-nitrogen alloys, Si-Si peaks around 2.4 Å rather point to
edge-sharing SiN4 tetrahedra. Edge-sharing SiN4 tetrahedra are obtained with an angle
of approximately 90◦ for participating Si-N-Si as well as N-Si-N units and they result in
twofold rings, specifically in quasi-planar squares with alternating Si and N atoms at the
vertices. They have been experimentally found to be the dominant nitrogen pair defects
in silicon [8]. Due to the similar values the Si-Si distances in edge-sharing SiN4 tetrahedra
are almost indistinguishable from true Si-Si bonds in the partial pair correlation function.
Therefore the edge-sharing SiN4 tetrahedra which constitute the square structures are
further discussed with the other structural defects in chapter 5.1.5. The N-N nearest
neighbor peaks occur at distances approximately 2.7 Å from the central atom in the
substoichiometric silicon-nitrogen alloys and in stoichiometric silicon nitride, and are
therefore indicative of the corner-sharing SiN4 tetrahedral coordination. Merely in the
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suprastoichiometric silicon-nitrogen alloy a-Si3N5, shown in the center right panel in
figure 5.8, a true N-N bond is observed, which is located at 1.6 Å.

alloy dSi−Si (Å) dSi−N (Å) dN−N (Å) dH−N (Å) dH−Si (Å)

a-Si 2.3
a-Si3N 2.3 1.7 2.8
a-Si3N2 2.3 1.7 2.8
a-Si3N3 2.3 1.7 2.8
a-Si3N4 2.9 1.7 2.8
a-Si3N5 3.0 1.7 1.6

a-Si3N3:H 2.3 1.7 2.8 1.1 1.5
a-Si3N4:H 3.0 1.7 2.8 1.1 1.5
a-Si3N4:NH3 3.0 1.7 2.8 1.1 2.4

rcut (Å) 2.6 2.1 1.8 1.3 1.8

Table 5.4: Average Si-N bond lengths dSi−N as well as the other nearest neighbor distances
d between atom types of amorphous silicon-nitrogen alloys. The cut-off radii
rcut are deduced from the partial pair correlation function of amorphous silicon-
nitrogen alloys.

Hydrogenated phases are also inspected. The dominant Si-N bonds in the hydrogenated
amorphous alloys show the same lengths as in the unhydrogenated silicon-nitrogen
structures. The distances of H to N as well as H to Si are presented for the hydrogenated
substoichiometric alloy a-Si3N3:H at the bottom left panel in figure 5.8. Clearly the Si-Si
peak, located at 2.3 Å in a-Si3N3 and a-Si3N3:H, is lower in the hydrogenated than in the
unhydrogenated phase, due to the bonding of hydrogen to silicon. Hydrogen thus cures
some Si defects in this structure and reduces the tendency to form Si-Si pairs and Si-Si
clusters. In a-Si3N3:H hydrogen is also found at distances of 1.1 Å from N atoms. The
bottom right panel in figure 5.8 shows the distances of hydrogen to nitrogen and silicon in
hydrogenated stoichiometric silicon nitride a-Si3N4:H. The hydrogen atoms in a-Si3N4:H
are generally located approximately 1.1 Å from nitrogen neighbors and 1.5 Å from silicon
atoms. This correlates with the fact that nitrogen has a smaller covalent radius than
silicon. The results for a-Si3N4:NH3 are similar, as can be seen in table 5.4. Hydrogen
clearly is located closer to nitrogen atoms, the distance being 1.1 Å again, than to silicon,
where the Si-H distance is 2.4 Å. Summed up, hydrogen bonds to nitrogen and silicon in
the Si-rich alloy a-Si3N3:H, whereas in a-Si3N4:H and a-Si3N4:NH3 hydrogen primarily
bonds to nitrogen.

5.1.4 Bond angle distribution

In the amorphous silicon-nitrogen alloys the bond angles within the Si-N-Si and N-Si-N
bonding units can be in a range of values. This results in a distribution of bond angles in
contrast to the distinct bond angles in the crystalline phases. The bond angle distribution
has an effect on the band gap of the structure [70]. Together with the previously determined
bond lengths it facilitates an analysis of the short range order. The quenched-from-melt
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Chapter 5 Amorphous silicon-nitrogen alloys

structures of the VASP molecular dynamics simulation are used. As cut-off radii the
values corresponding to each alloy from table 5.4 are used. By averaging over 200 sets,
as performed in the previous chapter for the pair correlation function, the bond angle
distribution becomes statistically more significant.

bonding unit angle θ (◦)

Si−N− Si 117
N− Si−N 105

Table 5.5: Average bond angle distribution of amorphous silicon nitride phases.

The bond angle distribution of amorphous silicon, devoid of nitrogen, has a peak at 105◦

and is illustrated in figure 5.9. All inspected amorphous silicon-nitrogen alloys show a very
similar picture. This is independent of the stoichiometry of the phase and can easily be
verified by comparing figures 5.9, 5.10 and 5.11. The maximum of the Si-N-Si bonding
unit’s distribution lies at 117◦ for all structures. The N-Si-N maximum is located at 105◦,
very close to the result for the pure silicon phase. The hydrogenated alloys exhibit a very
similar bond angle distribution and are therefore not illustrated separately. The calculated
average bond angles are given in table 5.5.
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Figure 5.9: Bond angle distribution of the amorphous substoichiometric silicon-nitrogen
alloy a-Si3N3 in an overlay plot with the bond angle distribution of amorphous
silicon a-Si at 500 K.

These results lead to the conclusion that all amorphous silicon-nitrogen alloys consist
mainly of SiN4 tetrahedral units as well as NSi3 triangular units. This has been reported
extensively [7, 69, 71]. In off-stoichiometric alloys the majority atom type apparently func-
tions as the bonding partner for silicon as well as nitrogen without significant change to
the bond angle distribution. Aside from this a smaller peak or shoulder at 90◦ in the dis-
tribution of the Si-N-Si bonding unit is apparent in most alloys. It indicates the presence
of twofold rings with alternating Si and N atoms, as discussed in the previous chapter and
documented by reference [8].
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Figure 5.10: Bond angle distribution of amorphous stoichiometric silicon nitride a-Si3N4.
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Figure 5.11: Bond angle distribution of the amorphous suprastoichiometric silicon-nitrogen
alloy a-Si3N5.
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5.1.5 Local environment

The coordination number of an atom describes how many nearest neighbors are present.
This value changes significantly for different distances from the central atom. Thus the
coordination number depends critically on the applied cut-off radius rcut. Here the respec-
tive cut-off radii from table 5.4 in chapter 5.1.3 are used, after preliminary tests whether
the selected rcut leads to stable results. The focus is placed on a-Si3N3, a-Si3N4, and the
respective hydrogenated alloys.

Figure 5.12: Silicon defects in the amorphous silicon-nitrogen alloys. (far left) 2-fold coor-
dinated Si, (left) 3-fold coordinated Si, more specifically a K center, (right)
5-fold coordinated Si, (far right) a Si-Si unit or Si cluster with one Si-Si bond.

Two interesting aspects of the inspected phases can be obtained from this analysis. First
there is the issue of structural defects, caused by under- and overcoordination. Structural
defects are an indication what to expect concerning the electronic defects of these structures.
The possible structural defects include 2-fold, 3-fold and 5-fold coordinated silicon atoms,
the Si-Si unit as well as 2-fold and 4-fold coordinated nitrogen atoms [3]. 2-fold and 3-fold
coordinated Si, illustrated in figure 5.12, as well as 2-fold coordinated N, in figure 5.13, are
characterized by dangling bonds. A Si dangling bond, if it consists of a Si central atom
with three N nearest neighbors, is called a K center. K centers cause gap states close to
the middle of the band gap [72]. The N dangling bond, if it is a N atom bonded to two Si
atoms, is denoted a N or N2 center. N2 centers lead to additional levels above the valence
band maximum. Both types of dangling bonds are localized according to reference [73]. It
is also possible that a threefold coordinated Si atom has one or more Si nearest neighbors
instead of nitrogen and that a twofold N atom possesses other nitrogen nearest neighbors.
In these cases the term dangling bond applies, but not the more specific terms K center or
N2 center, respectively.

Figure 5.13: Square structure and nitrogen defects in the amorphous silicon-nitrogen alloys.
(left) Square structure, four-membered ring, twofold ring or edge-sharing tetra-
hedra, (center) 2-fold coordinated N, more specifically a N center or N2 center,
(right) 4-fold coordinated N.

Figure 5.13 also illustrates 4-fold coordinated nitrogen and figure 5.12 shows 5-fold
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coordinated silicon and a Si cluster with a Si-Si bond. 4-fold coordinated nitrogen and
5-fold coordinated silicon are called floating bonds. In reference [9] two more structural
defects are proposed, in analogy to the defects in crystal structures. A N vacancy as
well as a Si antisite is considered. The N vacancy is best described by a Si3N4 unit
missing one N atom. This defect is considered in the present work through the analysis
of threefold coordinated Si atoms. In the Si antisite, an additional Si atom fills the empty
place of the N vacancy. The Si antisite can be regarded as a Si cluster of at least three
neighboring Si atoms and is discussed in the present work by inspecting Si clusters. The
findings in reference [9] are of most interest for electronic defects and their correlation to
structural defects. In chapter 5.2.2 the PDoS of the amorphous silicon-nitrogen alloys
are inspected and the consequences of structural defects for the respective electronic
structure are interpreted. Another noteworthy structural defect is the so called square
structure [4], four-membered ring or twofold ring [7]. It consists of a quasi-planar square
with alternating Si and N atoms at the corners as shown in figure 5.13 and gives rise
to what has been described as two edge-sharing tetrahedra, each with a Si central atom
joined by two N atoms.
Secondly, through the analysis of Si-Si units it is possible to deduce whether silicon tends
to form clusters or random percolation networks in non-stoichiometric silicon-nitrogen
alloys obtained with the quenched-from-melt procedure, which are indicators of structural
heterogeneity and phase separation. If, for instance, most silicon atoms feature at least
one silicon nearest neighbor, this fact points to a tendency of clustering and if most silicon
atoms have more than one silicon nearest neighbor it indicates the presence of random
percolation networks. On the other hand, the more the amorphous network contains SiN4

tetrahedra and triangular NSi3 units, the less probable it is to observe Si clusters or even
networks. The matter of hydrogen restoring this general structure is discussed as well.
Experimental findings exist that do not indicate structural heterogeneity [6], but on the
other hand reference [5] reports segregation of amorphous silicon-nitrogen alloys into Si
clusters and SiN4 units. Structural heterogeneity has been documented in previous VASP
simulations for molten Si-rich oxides [74] as well as for the hydrogenated amorphous
silicon-nitrogen alloy a-Si3N3:H [4].

Due to the relative low number of atoms in the applied super cells and the fast annealing
compared to experiment, it is possible that the concentration of structural defects is over-
estimated. This issue has been previously researched [7]. For example, an approximate
experimental concentration is given as 1017 cm−3 for twofold coordinated nitrogen. As
there are about 1022 atoms/cm3 it implies that at least 105 atoms are required in a super
cell for realistic defect concentrations. Thus the discussion in this work is to be viewed as
phenomenological and qualitative. By further optimizing the applied potentials as well as
the implemented methods, larger super cells may be used, therefore future work is expected
to deliver quantitative results as well.
The VASP calculations are performed in long MD simulations with 30000 steps, at 1 fs
each. The liquid structures from the MDs at 3000 K are used. Gradually the temperature
is decreased until solidification, from an initial value of 2800 K to 2500 K for a-Si3N3

and a-Si3N4. The long MD runs for the hydrogenated alloys are performed down to lower
temperatures due to the higher diffusivity of hydrogen. Specifically, they are additionally
carried out at 2250 K and 2000 K for a-Si3N3:H and at 1500 K for a-Si3N4:H. It is impor-
tant to take into account that if the temperature is too high in the MD simulations and
the structure is still liquid, the probability of observing phase separation in the quenched
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structure diminishes. On the other hand, if the temperature is too low, then there is too
little diffusion. Since diffusion facilitates the possibility of segregation, the temperatures
are selected according to the results presented in table 5.3 of chapter 5.1.2. The cut-off
radii are chosen as given in table 5.4 of chapter 5.1.3. After the long MD simulations a
quenched MD run is conducted to ensure that the obtained structures represent the ener-
getically most favourable configuration. The states are assigned to geometric defects by
setting the INCAR-flag LORBIT = 10. Thus a PROCAR output file is written, which de-
scribes the spatial arrangement of electronic states. More localized states are viewed with
the respective POSCAR atom number. From the OUTCAR output file the coordination
of these atoms is obtained.

alloy (%) Si[2] Si[3] Si[4] Si[5] N[2] N[3] N[4]

a-Si3N4 99.0 1.0 2.3 94.5 3.1
a-Si3N4:H 1.1 9.2 83.9 5.7 0.9 87.9 11.2

a-Si3N3 1.0 6.3 82.3 10.4 1.0 94.8 4.2
a-Si3N3:H 1.0 8.3 74.0 16.7 1.0 90.6 8.3

Table 5.6: Percentage of coordination types occurring for Si and N atoms of amorphous
silicon-nitrogen alloys in the quenched-from-melt structures. The total percent-
age of each element adds up to (100.0 ± 0.1) %, because of truncating effects.
The index in brackets indicates the coordination number. Artificial Si bonds
due to square structures are not included in the count.

alloy (%) 0 Si NN 1 Si NN 2 Si NN 3 Si NN 4 Si NN

a-Si3N4 100.0
a-Si3N4:H 82.8 16.1 1.1

a-Si3N3 expecteda 31.6 42.2 21.1 4.7 0.4
a-Si3N3 42.7 29.2 19.8 4.2 4.2
a-Si3N3:H 52.1 26.0 9.4 7.3 5.2

aEstimate obtained with the binomial distribution for 4-fold coordinated silicon.

Table 5.7: Percentage of Si nearest neighbors (NN) of Si atoms in amorphous silicon-
nitrogen alloys. The total percentage of each alloy adds up to (100.0 ± 0.1) %,
because of truncating effects. All Si atoms with one or more Si NN form either
Si clusters or a random percolation network. Artificial Si bonds due to square
structures are not included in the count.

The results for the coordination numbers are given in table 5.6. No experimental findings
of overcoordination defects are known to exist and they are likely to be calculation relics,
therefore the interpretation of 5-fold coordinated silicon and 4-fold coordinated nitrogen is
omitted. Concerning the matter of structural defects, the Si-rich alloy a-Si3N3, possesses
far more undercoordinated N and Si atoms than the stoichiometric a-Si3N4. In amorphous
silicon nitride a-Si3N4 only some defects are present. Specifically, slight concentrations
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of 2-fold coordinated N are found. Both hydrogenated alloys display more coordination
defects than the respective unhydrogenated structures, except for 2-fold coordinated N
atoms in a-Si3N4:H. The hydrogenated amorphous silicon-nitrogen alloy a-Si3N3:H shows
an increase by 2.0 % for threefold coordinated silicon compared to a-Si3N3. The the same
number of undercoordinated N atoms are observed in a-Si3N3 and a-Si3N3:H. Amorphous
silicon nitride initially contains no undercoordinated silicon, but hydrogenated silicon
nitride a-Si3N4:H has 1.1 % and 9.2 % two- and threefold coordinated Si atoms. There
are fewer twofold coordinated N atoms, by 1.4 %, in a-Si3N4:H. The square structure
is observed in all inspected amorphous alloys in low concentrations. A precise count is
not conducted, but approximate values around 5.0 − 10.0 % are observed. Findings of
reference [4] are in fair agreement.

Table 5.7 states the number of Si atoms that display zero, one or more Si nearest neighbor
and the figures 5.14, 5.15, 5.16 and 5.17 give an illustration of the super cells for the
interpretation regarding the possibility of structural heterogeneity in the quenched-from-
melt structures.

Figure 5.14: Super cell of a-Si3N3. Nitrogen is indicated by blue atoms, silicon with nitro-
gen neighbors by yellow atoms and silicon with one or more silicon nearest
neighbor by red atoms. The Si atoms with Si nearest neighbors are found
throughout the super cell and form a random percolation network, thus indi-
cating structural heterogeneity. Additionally a square structure and its loca-
tion in the super cell is illustrated.

In a-Si3N3 there is a strong indication of structural heterogeneity, because the super cell
contains a random percolation network of silicon apart from the SiN4 tetrahedra linked
through nitrogen atoms. The super cell with the Si-Si network colored in red is shown in
figure 5.14. By considering Si atoms with 2 or more Si nearest neighbors it is observed that
at least 28.2 % of the Si atoms are part of the Si-Si network. In total, more than half of the
silicon atoms display one or more Si nearest neighbors. No N-N bonds are present, due to
the substoichiometric nitrogen content in a-Si3N3. For a rough estimate to compare these
results to, the binomial distribution P (k) =

(

n
k

)

pk(1−p)n−k for 4-fold coordinated Si gives,
with n = 4 the total number of bonds per Si atom, k = 0, 1, 2, 3, 4 the number of Si-Si
bonds on one Si atom and p = 0.25 the probability of Si-Si bonds, percentages of 31.6 %,
42.2 %, 21.1 %, 4.7 % and 0.4 % for Si atoms with 0, 1, 2, 3 or 4 Si nearest neighbors,
respectively. It shows that the quenched-from-melt structure of a-Si3N3 contains more Si
atoms without any Si nearest neighbors, fewer with one Si NN and slightly more silicon
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atoms that are part of the Si-Si network than are expected from a binomial distribution.

Figure 5.15: Super cell of a-Si3N3:H. Nitrogen is indicated by blue atoms, hydrogen by
grey atoms, silicon with nitrogen neighbors by yellow atoms and silicon with
one or more silicon nearest neighbor by red atoms. The Si atoms with Si
nearest neighbors are observed throughout the super cell, albeit less than
in the unhydrogenated alloy. This indicates curing of defects by hydrogen.
Additionally a hydrogen dimer and its location in the super cell is shown.

The hydrogenated silicon-nitrogen alloy a-Si3N3:H also exhibits structural heterogeneity,
but noticeably less than a-Si3N3. A region with a Si-Si network as well as SiN4 tetrahedra
linked through N atoms are again found in the super cell, as illustrated in figure 5.15. Just
as with a-Si3N3, no N-N bonds are present in a-Si3N3:H. Hydrogen significantly bonds
more to Si atoms than to N atoms, which can be explained with the substoichiometric
nitrogen content. A single hydrogen dimer is observed in a-Si3N3:H, but not in a-Si3N4:H.
The two H atoms are located 0.77 Å from each other, without any other nearest neighbors.

Figure 5.16: Super cell of a-Si3N4. Nitrogen is indicated by blue atoms and silicon with
nitrogen neighbors by yellow atoms. No Si-Si bonds are observed. Addition-
ally two adjoining square structures and their location in the super cell are
depicted.

No indication of structural heterogeneity or phase separation is found in quenched-from-
melt a-Si3N4, because only Si-N bonds are present in this stoichiometric structure. This
finding, illustrated in figure 5.16, is given through the absence of any Si nearest neighbors
of silicon central atoms. It can be also verified in table 5.7.
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Figure 5.17: Super cell of a-Si3N4:H. Nitrogen is indicated by blue atoms, hydrogen by grey
atoms, silicon with nitrogen neighbors by yellow atoms and silicon with one
or more silicon nearest neighbor by red atoms. Some Si-Si bonds are observed.
Additionally three neighboring Si atoms and their location in the super cell
are shown.

In a-Si3N4:H randomly some Si-Si neighbors are introduced, see figure 5.17. Therefore
a few Si clusters are present, more than in a-Si3N4, where there are no such clusters,
but significantly less than in a-Si3N3 or a-Si3N3:H. Hydrogen tends to bond to N atoms,
which is the opposite as in a-Si3N3:H. Nitrogen is more electronegative than silicon, thus
if enough nitrogen is available for bonding hydrogen prefers nitrogen [75]. This is the
case in a-Si3N4:H. Because of this, some silicon atoms do not have sufficient nitrogen
nearest neighbors, leaving them either undercoordinated or prone to bond to other silicon
atoms. It can be concluded that hydrogen leads to the occurrence of Si-Si neighbors in
the quenched-from-melt structure of amorphous silicon nitride a-Si3N4, whereas in the
Si-rich silicon-nitrogen alloy a-Si3N3 hydrogen restores the regular configuration of SiN4

tetrahedra and mostly planar NSi3 triangles.
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5.2 Electronic properties

The electronic properties of amorphous silicon nitride a-Si3N4 and silicon-nitrogen alloys
a-Si3N3, a-Si3N3:H and a-Si3N4:H are determined. A calculation of the density of states
is performed, in order to obtain characteristics of valence bands, conduction bands as well
as Kohn-Sham PBE band gaps. The partial density of states is interpreted as well, with
focus on the electronic levels of possible structural defects and on random percolation
networks of silicon nearest neighbors.

5.2.1 Density of states

The density of states (DoS) in a-Si3N3, a-Si3N4, a-Si3N3:H and a-Si3N4:H are inspected.
Information regarding the valence and conduction bandwidths as well as the fundamental
band gap are derived and compared to available reference values. For the purpose of
determining the fundamental band gaps of the amorphous silicon-nitrogen alloys the energy
levels of the valence electrons in the quenched-from-melt structures are considered as crystal
orbitals [57]. The KS PBE band gap between highest occupied crystal orbital (HOCO) and
lowest unoccupied crystal orbital (LUCO) is determined. Since the electronic structure
of crystalline silicon nitride is controlled by the short-range order, it is expected that the
amorphous alloys show a nearly identical DoS, as suggested by reference [59]. Furthermore,
due to the amorphous nature of the systems and thus to the possibility of coordination
defects, impurity states within the gap as well as tailing of bands into the gap are expected.
A general problem in DFT is deciding where to exactly place the VB maximum and CB
minimum, and further whether a certain level is considered as a defect level or as the top
of the band. In the present work the VB maximum is the highest level with full occupation
as derived by VASP, and the CB minimum is the lowest level with zero occupation. All
levels between these two are considered as defect levels.
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Figure 5.18: Density of states (DoS) of the amorphous silicon-nitrogen alloy a-Si3N3 and
amorphous silicon nitride a-Si3N4, as well as of hydrogenated a-Si3N3:H and
a-Si3N4:H.
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In the VASP calculations, the solidified structures from the long MD simulations with
30 ps at 1500 K are applied. A quenched MD run then relaxes the structure into the
energetically most favourable configuration. For the quenched MD the flag LORBIT=10
is set in the INCAR file for output of the DOSCAR file, which contains information about
the density of states.
In figure 5.18 the density of states (DoS) of the inspected alloys are shown. The Γ-point
of the Brillouin zone is inspected, as there are no distinct symmetry points in amorphous
structures. The DoS are divided by the number of Si and N atoms in the respective unit
cell to facilitate comparison. The Fermi level in the plots is set to 0.0 eV and represents
the highest fully occupied energy level.

a-Si3N3 a-Si3N4

property present present
(eV) exp. a ref. b work exp. c ref. d work

Eg min. 2.6 2.4 1.43 3.85e, 4.55 4.5, 5.3f 2.79
bottom 1st VB -12.2 -14.2 -10.82 -12.2 -11.8 -10.36
top 2nd VB -14.4 -17.0 -14.18 -14.3 -16.6 -14.00
bottom 2nd VB -21.1 -21.4 -19.46 -21.4 -19.9 -19.15
width 1st VB 12.2 14.2 10.82 12.2 11.8 10.36
width 2nd VB 6.7 4.4 5.28 7.1 3.3 5.15
full width VB 21.1 21.4 19.46 21.4 19.9 19.15

aPES and XPS data from reference [76].
bTight-binding data from reference [57].
cOptical absorption data from reference [77] for Eg min. PES and XPS data from reference [76].
dTight-binding data from reference [78].
ePhotoemission data from reference [79].
fTight-binding data from reference [57].

Table 5.8: Kohn-Sham PBE band gap Eg and the VB widths of the amorphous silicon-
nitrogen alloy a-Si3N3 and of amorphous silicon nitride a-Si3N4. The Γ-point of
the Brillouin zone is inspected.

In tables 5.8 and 5.9 the results concerning conduction band (CB), Kohn-Sham PBE band
gap Eg and valence band (VB) are given. The values, albeit slightly lower, are in reason-
able agreement with results from ab-initio methods [4, 57, 78, 80] and from experimental
findings [6, 76, 77, 79, 81]. As in the crystalline polymorphs of silicon nitride the VB in
general consists of two parts, the upper or 1st VB and the lower or 2nd VB, separated by a
gap. In unhydrogenated and hydrogenated a-Si3N3 and a-Si3N4 the full VB width ranges
between 19.2 eV and 19.7 eV. The lower VB exhibits widths between 4.9 eV and 5.3 eV.
The separating gap is around 3.4−3.8 eV and the upper VB width is between 10.3 eV and
11.2 eV. In the Si-rich a-Si3N3 the KS PBE band gap Eg between the VB maximum and
the conduction band (CB) minimum is 1.43 eV, with defect levels located within the gap.
The KS PBE band gap Eg of the hydrogenated amorphous silicon-nitrogen alloy a-Si3N3:H
is 1.52 eV, also with defect levels in the gap. Amorphous silicon nitride a-Si3N4 has a KS
PBE band gap Eg of 2.79 eV, and in a-Si3N4:H the KS PBE band gap Eg is 2.61 eV.
In unhydrogenated as well as hydrogenated amorphous silicon nitride no defect levels are
observed in the KS PBE band gap.
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a-Si3N3:H a-Si3N4:H

property present present
(eV) exp. a ref. b work exp. c,d work

Eg min. 2.6, 3.2e 1.7, 2.2 1.52 5.1f, 5.5 2.61
bottom 1st VB -11.5 -10.0, -11.0 -11.23 -11.7 -10.32
top 2nd VB -13.3 -14.5, -15.5 -14.73 -13.8 -14.09
bottom 2nd VB -18.5, -19.5 -19.65 -21.2 -19.15
width 1st VB 11.5 10.0, 11.0 11.23 11.7 10.32
width 2nd VB 4.0, 4.5 4.92 7.4 5.06
full width VB 18.5, 19.5 19.65 21.2 19.15

aOptical absorption data from reference [81] for Eg min. PES and XPS data from reference [76].
bAb-initio data from reference [4]. The first value is of the low density alloy, 2 g/cm3, whereas the second
value is of the high density alloy, 3 g/cm3.

cOptical absorption data from reference [81] for Eg min. XPS data from reference [80] of a-SiNx:H, x = 1.4.
dNo ab-initio data on band gap or bandwidths known to the author at the time of research, thus the
column is omitted.

eOptical absorption data from reference [6].
fOptical absorption data from reference [6].

Table 5.9: Kohn-Sham PBE band gap Eg and the VB widths of the hydrogenated amor-
phous silicon-nitrogen alloy a-Si3N3:H and of hydrogenated amorphous silicon
nitride a-Si3N4:H. The Γ-point of the Brillouin zone is inspected.

The amorphous silicon-nitrogen alloy a-Si3N3 and amorphous silicon nitride a-Si3N4

have a similar VB. A difference is that in a-Si3N3 both the upper and lower VB are
slightly wider and thus shifted towards lower energies, by 0.2 − 0.5 eV. Additionally the
bands exhibit tails that reach into the gaps. The tailing indicates undercoordination
and overcoordination and will be discussed further in the context of partial DoS, see
chapter 5.2.2. Another noteworthy difference is the smaller Kohn-Sham PBE band gap of
a-Si3N3 compared to the stoichiometric a-Si3N4. The general band gap underestimation
of the applied method, as noted previously in chapter 3.3.1, is an issue to be addressed
in further work, for example by implementation of other functionals. In amorphous
silicon-nitrogen alloys with a Si random percolation network a small optical gap around
2.0 eV is found experimentally [82]. For DFT calculations this indicates an even smaller
Kohn-Sham PBE band gap in such structures, in line with the present results.
Regarding the curing effect of hydrogenation, it is observed that the unhydrogenated
amorphous silicon-nitrogen alloy a-Si3N3 has more electronic states in the KS PBE band
gap, because the Eg of hydrogenated amorphous silicon-nitrogen alloy a-Si3N3:H is larger
and shows less tailing into the KS PBE band gap as well as VB gap. This effect is not
reproduced in a-Si3N4:H, as the addition of hydrogen to stoichiometric amorphous silicon
nitride a-Si3N4 adds valence electrons. Thus the KS PBE band gap Eg even shows a slight
decrease from a-Si3N4 to a-Si3N4:H. Nevertheless, the KS PBE band gap of a-Si3N4:H is
larger than of a-Si3N3:H. It is concluded that of relevance to the KS PBE band gap in
amorphous silicon-nitrogen alloys is foremost stoichiometry of the structure and secondly
the curing of defects through hydrogen in Si-rich alloys.
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5.2.2 Partial density of states

The orbital-resolved partial density of states (PDoS) in a-Si3N3, a-Si3N4, a-Si3N3:H and
a-Si3N4:H are presented for determining the electronic contributions to the valence band
(VB) and conduction band (CB). Then levels at the edge of the band gap or within the gap
are inspected to deduce the corresponding electronic defects. Electronic defects are often
closely associated with structural defects, because under- or overcoordination commonly
results in states located at mid gap or at the band edges.
For instance, the potential of twofold coordinated nitrogen atoms is more negative or
repulsive than of their threefold coordinated counterparts. Similarly, threefold coordinated
silicon atoms display a more positive or attractive potential than fourfold coordinated
silicon. The wrongly coordinated atoms have an effect on the PDoS. Undercoordination of
silicon leads to an additional level in the silicon PDoS, lower in energy than the ideal DoS
of the conduction band. Undercoordination of nitrogen on the other hand adds a level to
the nitrogen PDoS of the valence band which is higher in energy [3]. The levels associated
with Si-Si bonds lie in the gap just above the VB maximum. In reference [9] an electronic
defect is presented in the form of the DoS of a so called Si antisite. The Si antisite is if one
N atom of the Si3N4 unit is replaced by a Si atom. It reportedly leads to a fully occupied
gap level and a single electron below the conduction band minimum. The Si antisite can
be viewed as a description of the Si network or a Si cluster with Si-Si bonds. Thus, for
large super cells the band gap is expected to shrink in structures where there are more
Si clusters or a Si random percolation network present, due to the accumulation of defect
levels in the gap [82].
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Figure 5.19: Orbital-resolved partial density of states (PDoS) of the amorphous silicon-
nitrogen alloy a-Si3N3.

The results of two different VASP calculations are interpreted. First the quenched-from-
melt structures from chapter 5.2.1 are applied for obtaining the orbital-resolved partial
density of states (PDoS). In the quenched MD simulation the flag LORBIT=10 is set in
the INCAR file to obtain the required information. The Γ-point of the Brillouin zone is
inspected. For comparison the PDoS are divided by the number of Si and N atoms in the
respective unit cell. The highest fully occupied energy level is located at 0.0 eV.
Secondly, for observing electronic defects the quenched-from-melt structures from chap-
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ter 5.1.5 are used.

Figures 5.19, 5.20, 5.21 and 5.22 display the orbital-resolved partial DoS of a-Si3N3, a-
Si3N4, a-Si3N3:H and a-Si3N4:H, respectively. In amorphous silicon nitride a-Si3N4 and in
the amorphous silicon-nitrogen alloy a-Si3N3 a high degree of hybridization occurs. Much
as in the crystalline phases of Si3N4 the Si valence electrons form sp3 hybrid orbitals and
nitrogen shows sp2 hybridization as well as a non-bonding lone pair of N (2p) electrons.
The hybrid orbitals from both atomic species make up the σ and σ∗ orbitals of the amor-
phous silicon-nitrogen alloys including a-Si3N4 and the non-bonding N (2p) electrons form
π orbitals [57].
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Figure 5.20: Orbital-resolved partial density of states (PDoS) of the amorphous silicon-
nitrogen alloy a-Si3N4.
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Figure 5.21: Orbital-resolved partial density of states (PDoS) of the amorphous silicon-
nitrogen alloy a-Si3N3:H.
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The lower valence band (VB) mostly contains contributions from N (2s) and Si (3s) elec-
trons at deeper levels and from N (2s) and Si (3p) electrons at higher energies. The upper
VB shows indication of the characteristic three peak structure, as discussed in chapter 3.3.2.
Contributions to the peak at deep levels arise mainly from N (2p) and Si (3s) electrons.
The middle peak is from N (2p) and Si (3p) electrons and the peak closest to the Fermi
level predominantly originates from N (2p) electrons.
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Figure 5.22: Orbital-resolved partial density of states (PDoS) of the amorphous silicon-
nitrogen alloy a-Si3N4:H.

In the Si-rich alloy a-Si3N3, due to the substoichiometric nitrogen content, some valence
electrons deviate from the octet rule. This causes N (2p) electrons to recede from the
Kohn-Sham PBE band gap Eg with Si (3p) electrons filling part of the levels as well as
significant tailing of all electronic contributions into the KS PBE band gap. Tailing is also
observed in hydrogenated a-Si3N3:H. The H (1s) electrons in a-Si3N3:H are mainly found
in the upper VB and most likely originate from Si-H bonds, whereas in a-Si3N4:H they
occur in the higher levels of the lower VB as well as in the upper VB, where they indicate
N-H bonds and Si-H bonds, respectively.

To deduce the nature of the highest occupied crystal orbital (HOCO), the lowest unoc-
cupied crystal orbital (LUCO) and the gap states in a-Si3N3 and a-Si3N3:H as well as
the HOCO and LUCO in a-Si3N4 and a-Si3N4 an analysis of localizations of electrons is
performed with the quenched-from-melt structures from chapter 5.1.5. The results are
presented in tables 5.10, 5.11, 5.12 and 5.13.
The HOCO in a-Si3N3 mainly consists of Si (3p) electrons that are part of the Si-Si network.
The localization of electrons at the HOCO is less than the localizations at defect levels.
The first defect level or gap state shows a localization of Si (3p) electrons of a fourfold co-
ordinated silicon atom that has one Si nearest neighbor atom (NN). The nitrogen nearest
neighbor atoms of the silicon atom display localized N (2p) electrons at this level. To the
second gap state above the HOCO in a-Si3N3 mainly a twofold and a threefold coordinated
silicon atom, hence both undercoordinated, contribute to the level with Si (3s) electrons
and a twofold coordinated nitrogen atom adds N (2p) electrons. The third defect level
is dominated by localizations of Si (3p) and Si (3p) electrons. These Si atoms constitute
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part of the Si-Si network and one Si atom in close proximity is threefold coordinated. The
next higher defect level also consists mainly of Si (3s) and Si (3p) electrons of Si atoms
in the Si-Si network with a slight contribution from a threefold coordinated Si. Addition-
ally an undercoordinated N atom shows localization of N (2p) electrons at this level. The
fifth defect level above the HOCO arises mostly from Si (3s) and Si (3p) electrons within
the Si-Si network. A contribution from a threefold coordinated Si atom is observed. The
LUCO in a-Si3N3 mainly displays a localization of Si (3p) electrons from the Si-Si network.
The results for a-Si3N3 are in general agreement with reference [72], which states that Si
dangling bonds give rise to levels near the middle of the gap and N dangling bonds create
levels slightly above the VB edge.

a-Si3N3 gap state contribution description

LUCO Si (3p) Si-Si network: Si[3], Si[4]
5 Si (3s), (3p) Si-Si network: Si[3], Si[4]
4 Si (3s), (3p) Si-Si network: Si[3], Si[4]

N (2p) N[2] (N2 center)
3 Si (3s), (3p) Si-Si network: Si[3], Si[4]
2 Si (3p) Si[2], Si[3] (K center)

N (2p) N[2] (N2 center)
1 Si (3s), (3p) Si[4]

N (2p) N[3]

HOCO Si (3p) Si-Si network: Si[4]
N (2p) N[3]

Table 5.10: HOCO, LUCO and gap states in the amorphous silicon-nitrogen alloy a-Si3N3.
The column labelled "contribution" describes which electrons show a high lo-
calization and the last column states which atoms participate in the forming
of the levels.

a-Si3N3:H gap state contribution description

LUCO Si (3s), (3p) Si-Si cluster: Si[4]
5 Si (3p) Si[2], Si[3] with 1H NN
4 Si (3p) Si[2], Si[3] with 1H NN
3 Si (3p) Si-Si network: Si[4]

N (2p) N[2] (N2 center)
2 Si (3s), (3p) Si-Si network: Si[4]
1 Si (3s), (3p) Si-Si network with 1H NN: Si[4]

HOCO Si (3p) Si-Si network with 1H NN: Si[4]

Table 5.11: HOCO, LUCO and gap states in the hydrogenated amorphous silicon-nitrogen
alloy a-Si3N3:H. The column labelled "contribution" describes which electrons
show a high localization and the last column states which atoms participate in
the forming of the levels. NN is the abbreviation for nearest neighbor atom.

The hydrogenated amorphous silicon-nitrogen alloy a-Si3N3:H has a HOCO that shows a

76



5.2 Electronic properties

localization of Si (2p) electrons originating from Si atoms within the Si-Si network that
partially have hydrogen nearest neighbors. The first three defect levels above the HOCO
lie very close to each other and share noteworthy characteristics. They mostly contain
contributions from Si (3p) electrons and to a lesser extent from Si (3s) electrons, both of Si
atoms that constitute the Si-Si network. The first defect level displays Si atoms which have
hydrogen nearest neighbor. The third defect level above the HOCO additionally consists
of localizations of N (2p) electrons from a twofold coordinated N atom. The fourth and
fifth defect level above the HOCO mainly arise from Si (3p) electrons belonging to twofold
and threefold coordinated Si atoms. The LUCO is found to contain contributions from Si
(3s) and Si (3p) electrons of a Si-Si cluster.

a-Si3N4 state contribution description

+1 Si (3s) Si[5]
LUCO Si (3p) Si[3] (K center)
HOCO N (2p) N[2] (N2 center)

-1 N (2p) N[2] (N2 center)

Table 5.12: HOCO, LUCO and states directly above the LUCO and below the HOCO
in amorphous silicon nitride a-Si3N4. The column labelled "contribution" de-
scribes which electrons show a high localization and the last column states
which atoms participate in the forming of the levels.

a-Si3N4:H state contribution description

+1 Si (3s), (3p) Si[3] with 1H NN
N (2s), (2p) N[2] (N2 center)

LUCO Si (3s), (3p) Si-Si cluster: Si[3], Si[4]
N (2s), (2p) N[3]

HOCO Si (3s), (3p) Si-Si unit: Si[4]
N (2p) N[3] with 1H NN

-1 Si (3s), (3p) Si-Si unit: Si[4]
N (2p) N[3] with 1H NN
N (2p) N[2] (N2 center)

Table 5.13: HOCO, LUCO and states directly above the LUCO and below the HOCO in
hydrogenated amorphous silicon nitride a-Si3N4:H. The column labelled "con-
tribution" describes which electrons show a high localization and the last col-
umn states which atoms participate in the forming of the levels. NN is the
abbreviation for nearest neighbor atom.

In amorphous silicon-nitride a-Si3N4 a defect free Kohn-Sham PBE band gap Eg is
observed. The HOCO, as well as the occupied level 0.40 eV below, displays a localization
of N (2p) electrons from a N-center or twofold coordinated nitrogen atom. The LUCO
is located 1.52 eV above the HOCO at a temperature and contains contributions mainly
from localizations of Si (3p) electrons from a K-center or threefold coordinated Si atom
backbonded to three N atoms. The level above the LUCO exhibits localized Si(3s)
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electrons from a fivefold coordinated silicon atom.
The HOCO of a-Si3N4:H shows a localization of Si (3s) and Si (3p) electrons from a Si
dimer and of N (2p) electrons from a threefold coordinated N atom with one hydrogen
nearest neighbor atom. The LUCO mostly consists of electronic Si (3s) an Si (3p)
contributions from three Si atoms, threefold and fourfold coordinated, bonded to one
another and of N (2s) and N (2p) electrons from a threefold coordinated nitrogen adjacent
to the threefold coordinated Si atom.

We find that twofold coordinated nitrogen N (2p) electrons dominate the HOCO in
a-Si3N4, whereas in a-Si3N3 N (2p) and Si (3p) electrons are present. The gap states
in a-Si3N3 are mostly from Si atoms within the Si random percolation network. The
hydrogenated amorphous alloy a-Si3N3:H incidentally has the same number of defect
states as a-Si3N3. The contributions to defect states in a-Si3N3:H mainly arise from Si
atoms that belong to the Si-Si network, as in a-Si3N3. Hydrogen nearest neighbors to Si
atoms with localized electrons are found in three defect levels as well as in the HOCO. In
a-Si3N3:H hydrogen bonds to nitrogen and silicon. Hydrogenated a-Si3N4:H exhibits Si-Si
nearest neighbors not observed in stoichiometric a-Si3N4. Hydrogen atoms are localized
at the HOCO and immediately below, but are bonded predominantly to nitrogen atoms.
The localization of electrons from wrongly coordinated atoms depends on the degree of
hybridization of these atoms. The more hybridization occurs the less localized the valence
electrons are. The hydrogenated alloys show significantly less localization of electronic
defects with energies close to the band gap as given by VASP, almost by an order of
magnitude at HOCO and LUCO. This indicates that the addition of hydrogen to a-Si3N3

or a-Si3N4 facilitates hybridization of orbitals.
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Conclusions

In chapter 3 the structural, electronic, optical and vibrational properties of crystalline sili-
con nitride are presented. The VASP calculations are performed with the regular potential
POTCAR.SiN (cut-off energy Ecut = 400 eV). A convergence of energy is obtained with a
4× 4× 4 k-point mesh for α-Si3N4, with a 4× 4× 8 k-point mesh for β-Si3N4 and with a
6× 6× 6 mesh for γ-Si3N4.
By comparison of ground state energies E0 it is confirmed that β-Si3N4 is the stable
polymorph of crystalline silicon nitride, while α-Si3N4 is a metastable phase. The high
pressure phase γ-Si3N4 exhibits a significantly higher energy than α-Si3N4 and β-Si3N4,
indicating that it does not form in standard conditions. The space group of α-Si3N4 is
P31c. The hexagonal unit cell contains 28 atoms, with lattice constants a0 = 7.81 Å and
c0 = 5.66 Å. The ratio c/a in α-Si3N4 therefore is determined as 0.727 and the equilibrium
volume as V0 = 74.70 Å3 per formula unit. In α-Si3N4 a bulk modulus B0 = 220 GPa is
obtained. For β-Si3N4 space group P63 is ruled out and P63m is established as the correct
space group. The unit cell of β-Si3N4 is hexagonal with 14 atoms. Lattice constants
a0 = 7.66 Å and c0 = 2.92 Å of β-Si3N4 result in a ratio c/a = 0.382 as well as in an
equilibrium volume V0 = 74.33 Å3 per formula unit. The bulk modulus in β-Si3N4 is
calculated to be B0 = 234 GPa. A significant difference between the elastic constants C11

and C33 is observed, indicating a high degree of elastic anisotropy in β-Si3N4. γ-Si3N4

has the inverse spinel structure, thus octahedrally coordinated Si atoms are present, in
addition to tetrahedrally coordinated Si atoms. The space group of γ-Si3N4 is Fd3m and
the primitive fcc unit cell contains 14 atoms. The fcc unit cell has a lattice constant
a0 = 7.7839 Å and the equilibrium volume is V0 = 58.96 Å3 per formula unit. The bulk
modulus in γ-Si3N4 is determined as B0 = 292 GPa. The transition pressure of α-Si3N4

and β-Si3N4 to γ-Si3N4 are established as pα→γ
t = 10.7 GPa and pβ→γ

t = 11.0 GPa.
The chemical bonds in the crystalline polymorphs of Si3N4 are found to be sp3 hybrid
orbitals of Si atoms and sp2 hybrid orbitals of N atoms. A pair of N (2p) electrons does not
participate in bonding but forms a non-bonding π orbital. The electronic band structures
of the three crystalline phases exhibit similar characteristics. Two wide valence bands (VB)
are separated by a gap of 2.8-4.8 eV in the DFT calculations. The lower VB, 3.8-5.5 eV, is
found to be dominated by N (2s) electrons. The upper VB consists of three peaks, with a
total width of 9.7-10.9 eV. The lowest peak in the upper VB originates from N (2p) and Si
(3s) hybrid orbitals. The center peak mostly consists of N (2p) as well as Si (3p) electrons.
The highest peak in the upper VB, which is separated by a deep dip at -2.5 eV from the
center peak, mainly contains non-bonding N (2p) electrons. Flat bands for the VB are
observed due to the delocalized nature of the non-bonding N (2p) electrons. The minimal
Kohn-Sham PBE band gaps Eg are indirect interband thresholds in the three crystalline
polymorphs of Si3N4. It is determined that α-Si3N4 has the largest KS PBE band gap
Eg, 4.65 eV, followed by 4.25 eV in β-Si3N4 and 3.34 eV in γ-Si3N4. The anti-bonding
octahedrally coordinated Sioct (3s) states and the anti-bonding tetrahedrally coordinated
Sitetr (3p) states in the conduction band (CB) of γ-Si3N4, which are significantly lower in
energy than the Sitetr (3s) and the Sioct (3p), respectively, result in the smaller KS PBE
band gap of the γ-phase compared to α-Si3N4 and β-Si3N4.
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As an approximation to the macroscopic dielectric tensor the static dielectric tensor with
and without local field effects is calculated using density functional theory. The results ob-
tained for the static dielectric tensor including local field effects are slightly lower than the
values excluding local field effects. In α-Si3N4 the static dielectric constant perpendicular
to the c-axis, εstatic(⊥), is larger than εstatic (‖), whereas in β-Si3N4 the static dielec-
tric constant parallel to the c-axis, εstatic (‖), is larger than εstatic(⊥). γ-Si3N4 displays
optically isotropic behaviour. The absorption spectra of α-Si3N4, β-Si3N4 and γ-Si3N4

indicate transparency towards photons with energies below 5.0 eV as well as an increase in
absorption which peaks at 9.0− 9.5 eV.

The vibrational modes of the crystalline Si3N4 polymorphs are established for the Γ-point
in accordance with group theory. In α-Si3N4 14 A1 and 27 E modes occur, which are both
infrared and Raman active, as well as 14 inactive A2 modes. The phonon wave numbers
are in the range 193−1000 cm−1, with a gap between 671 cm−1 and 819 cm−1. In the gap
only 2 inactive A2 modes are present, close to the low wave number end. β-Si3N4 displays
6 infrared active modes, 2Au and 4 E1u, 11 Raman active modes, 4 Ag, 2 E1g and 5 E2g,
as well as 9 inactive modes, 3 Bg, 4 Bu and 2 E2u. As in the α-phase, the high wave
number phonons are separated by a gap from the low wave number phonons. Specifically,
the phonon wave numbers in β-Si3N4 lie between 178 − 597 cm−1 and 825 − 1029 cm−1.
One Raman active Ag mode is centered in the gap at 706 cm−1 and an inactive Bg mode
is located at the low wave number end of the gap. In γ-Si3N4, 4 infrared active T1u modes,
5 Raman active modes, 1 A1g, 1 Eg and 3 T2g, as well as 7 inactive modes, 2 A2u, 2
Eu, 1T1g and 2 T2u, are found between 304 cm−1 and 938 cm−1, without any significant
gap. The three inspected Si3N4 polymorphs mainly show contributions from Si atoms
to vibrational modes at low wave numbers. Notably, the infrared active T1u modes in
γ-Si3N4 are dominated by the displacements of octahedrally coordinated Sioct atoms. At
high wave numbers contributions from N atoms to the vibrational modes in α-, β- and
γ-Si3N4 are predominantly observed.

The VASP calculations with the regular potential POTCAR.SiN reproduce the properties
of crystalline Si3N4 exceptionally well. In order to verify the accuracy of the optimized soft
potentials POTCAR.SisNvs (cut-off energy Ecut = 200 eV) and POTCAR.SivsNes (cut-off
energy Ecut = 160 eV) for further application with the amorphous silicon-nitrogen alloys
the results for the electronic and vibrational properties of the crystalline Si3N4 polymorphs
are compared in chapter 4.

All three potentials confirm β-Si3N4 as the stable crystalline phase. A slight shift to higher
ground state energies E0 for softer potentials is observed in the three inspected polymorphs
of crystalline Si3N4. Interestingly, the equilibrium volume V0 of α- and β-Si3N4 obtained
with the very soft potential POTCAR.SivsNes is closer to experimental findings than from
calculations with the regular potential POTCAR.SiN. The equilibrium volume V0 per
formula unit with the very soft potential is established as 74.16 Å3 in α-Si3N4, as 73.69 Å3

in β-Si3N4 and as 59.35 Å3 in γ-Si3N4. The results for E0 and V0 show sufficient consistency
across the applied potentials. Thus a further comparison of the three crystalline phases is
not necessary and β-Si3N4 is selected as reference structure. The full valence bandwidth
obtained with the soft potential POTCAR.SisNvs is the narrowest and therefore closest
to other ab-initio calculations. The separating gap between upper and lower VB tends to
increase with softer potentials, whereas the widths of upper and lower VB decrease. VB
maximum and CB minimum are located between Γ → A and at the Γ-point, respectively,
for all three potentials. The indirect Kohn-Sham PBE band gap, Eg min., and the direct
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KS PBE band gap, Eg at Γ, are found to be in excellent agreement for the optimized soft
potentials. It is observed that for softer potentials the KS PBE band gaps Eg min. as well
as Eg at Γ tend to decrease. This difference is only small, less than 2 % for both optimized
potentials.

For the zone center phonons of β-Si3N4 a comparison is conducted. The vibrational modes
are in fair agreement for the three potentials, although the high wave number modes are
shifted to higher values and low wave number modes come to be located at lower values for
the potential POTCAR.SisNvs and even more so for POTCAR.SivsNes. The phonon type
assignment and the relative order of phonons in calculations with the regular potential
POTCAR.SiN are identical to those in the optimized soft potentials. An exception is
the switching of positions of a Ag and a E2g mode for the potential POTCAR.SivsNes

around 442 cm−1. From the calculations conducted with the optimized soft potentials it
is concluded that both are suitable for VASP calculations of amorphous silicon nitride
and silicon-nitrogen alloys.

The very soft potential POTCAR.SivsNes is selected for the calculations in chapter 5,
due to the greater efficiency compared to the potential POTCAR.SisNvs regarding
computational time. The model structures of the amorphous silicon-nitrogen alloys are
obtained from crystalline α-Si3N4, with approximately 200 atoms per super cell. More
specifically, the super cells of a-Si, a-Si3N, a-Si3N2, a-Si3N3, a-Si3N4, a-Si3N5, a-Si3N3:H,
a-Si3N4:H and a-Si3N4:NH3 are constructed by variation of the nitrogen and hydrogen
content. Simulated annealing is performed in increments of −500 K starting at 5500 K.
This high temperature guarantees rapid melting and equilibration. The structural and
electronic properties are studied in detail for structures quenched (relaxed) from the melt.

The determination of the structural properties for the amorphous silicon-nitrogen alloys
as well as a-Si includes mean square displacements and diffusion coefficients D(t), the
partial pair correlation functions, bond angle distributions and finally an analysis of the
local environment. The volume per atom gradually decreases with increasing nitrogen
content from 20.51 Å3 in a-Si to 10.38 Å3 in a-Si3N5, whereas the density ρ increases from
2.27 g/cm−3 in a-Si to 3.20 g/cm−3 in a-Si3N4 and then decreases to 3.08 g/cm−3 in the
suprastoichiometric alloy a-Si3N5.

As dynamical properties the mean square displacements and from them the diffusion coef-
ficients are calculated. Amorphous silicon nitride a-Si3N4 displays a constant small mean
square displacement below 2000 K, which means that the structure is solid. At higher tem-
peratures the mean square displacement begins to increase linearly with time, indicating a
molten or liquid phase. Plateaus in the mean square displacement of a-Si3N4 are observed
even at 2500 K, which shows that the structure spontaneously freezes in a configuration
during the MD. Therefore higher temperatures are required in the simulations to avoid
this. The onset of diffusion in a-Si3N4, at which the diffusion coefficient becomes size-
able (D(t) = 0.1Å2

/ps), is determined at a temperature of 3210 K. The substoichiometric
alloys as well as the suprastoichiometric alloy exhibit a greater diffusivity, thus a lower
temperature at which diffusion occurs. In a-Si3N3 the onset of diffusion is at 2580 K. The
diffusion of hydrogen is evaluated separately from Si and N diffusivity. The hydrogenated
alloys have a lower temperature at which diffusion is observed than the respective unhy-
drogenated alloys. In a-Si3N3:H diffusion of Si and N takes place upward of 2350 K and in
a-Si3N4:H above 2740 K. Hydrogen is significantly more diffusive. In a-Si3N3:H hydrogen
diffusion is present above 1650 K, whereas the onset of diffusion for H in a-Si3N4:H lies at
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a slightly lower temperature, 1550 K.

Partial pair correlation functions and bond angle distributions are deduced by averaging
over 200 sets of the MD evaluated at a a temperature below freezing, as monitored by the
mean square displacement. a-Si displays a pair correlation function with a Si-Si bond length
of 2.3 Å and a second nearest neighbor distance of 3.7 Å, in agreement with corner-sharing
tetrahedral configuration. In the substoichiometric silicon-nitrogen alloys, in a-Si3N4 and in
the inspected hydrogenated alloys the partial pair correlation functions indicate that the Si-
N bond with an average length of 1.7 Å is dominant and no N-N bonds are observed. Merely
in the suprastoichiometric silicon-nitrogen alloy a-Si3N5 true N-N bonds are observed at
a distance of 1.6 Å in addition to the Si-N bonds at 1.7 Å. The Si-Si nearest neighbor
peak at 2.3 − 2.4 Å is indicative of either a true Si-Si bond or a nitrogen pair defect
arranged in a quasi-planar square structure (Si-N-Si-N). It is found to decrease in the
alloys with increasing nitrogen content in favour of the Si-Si second nearest neighbor peak
at 2.9 Å. This tendency in the partial pair correlation functions, together with the N-N
first neighbor peak at 2.7 Å, is evidence for mostly corner-sharing SiN4 tetrahedra in the
amorphous silicon-nitrogen alloys. The hydrogenated alloy a-Si3N3:H displays a lower Si-Si
peak at 2.3 Å than a-Si3N3, pointing to curing of Si defects and reduction of Si-Si pairs
as well as clusters through hydrogen. In the Si-rich alloy a-Si3N3:H, hydrogen bonds to
nitrogen and to silicon, whereas in a-Si3N4:H and a-Si3N4:NH3 hydrogen prefers nitrogen.

The bond angle distribution in the unhydrogenated as well as hydrogenated alloys shows
a maximum at 117◦ for the Si-N-Si bonding unit and a maximum of 105◦ for the N-Si-N
bonding unit. It is concluded that all inspected amorphous silicon-nitrogen alloys mainly
contain SiN4 tetrahedra and NSi3 triangular units. To some extent a shoulder at 90◦ in the
Si-N-Si distribution is found in all inspected alloys, which indicates a small number of the
quasi-planar square structures that result from the presence of edge-sharing tetrahedra.

The analysis of the local environment concludes the calculation of the structural properties.
In order to relate the findings to the interpretation of the electronic properties the focus
is placed on the technically relevant alloys, a-Si3N3, a-Si3N4, a-Si3N3:H and a-Si3N4:H.
Two aspects are considered, namely the occurrence of structural defects and the issue of
random Si percolation networks including possible H induced curing. Structural defects
are coordination defects, such as Si[2], Si[3], Si[5], N[2] and N[4], as well as defects originating
from variations in bonding partners, such as the aforementioned square structures and
Si-Si clusters with one or more Si-Si bond. In the Si-rich amorphous alloy a-Si3N3,
significantly more coordination defects are observed than in amorphous silicon nitride
a-Si3N4. Specifically, silicon defects dominate in a-Si3N3, whereas in a-Si3N4 nitrogen
defects are mostly found. The hydrogenated alloys, a-Si3N3:H and a-Si3N4:H, display a
greater number of undercoordinated Si and N atoms than the according unhydrogenated
alloys. The only exception are twofold coordinated N atoms, which are less common in
a-Si3N4:H than in a-Si3N4. No N-N bonds are found in any of these four alloys, thus Si-N,
Si-Si as well as N-H in a-Si3N4:H and additionally Si-H in a-Si3N3:H occur. The formation
of a Si percolation network is observed in a-Si3N3 and in a-Si3N3:H, albeit more in the
unhydrogenated alloy. a-Si3N4:H displays a few randomly introduced Si-Si neighbors,
whereas no such tendency is found in stoichiometric a-Si3N4. Hydrogen functions to
restore the regular configuration of SiN4 tetrahedra and NSi3 triangular units in the Si-rich
alloy a-Si3N3:H, but in a-Si3N4:H hydrogen increases the likelihood of Si-Si neighbors.

The inspected electronic properties are the density of states (DoS) and electronic gaps
as well as the orbital-resolved partial density of states (PDoS) to obtain the electronic
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levels in the vicinity of the gaps. The density of states of the amorphous alloys exhibits
similarities to the DoS of the crystalline Si3N4 polymorphs. As in the crystalline phases,
a lower VB and an upper VB, separated by a gap, is present. The upper VB shows the
same electronic contributions that result in its three peak structure, although less distinct.
The Kohn-Sham PBE band gap in the Si-rich alloy a-Si3N3, Eg = 1.43 eV, is significantly
smaller than in a-Si3N4, Eg = 2.79 eV, due to tailing of levels into the gap. Hydrogenation
induces a slight widening of the KS PBE band gap to 1.52 eV in a-Si3N3:H, whereas the
addition of hydrogen to the stoichiometric alloys results in a small decrease of the KS PBE
band gap to 2.61 eV in a-Si3N4:H. As there is less tailing into the gap in a-Si3N3:H than
in a-Si3N3, but more in a-Si3N4:H than in a-Si3N4, it is concluded that incorporation of
hydrogen into the Si-rich alloy cures defects, whereas it adds levels in the stoichiometric
case. The hydrogenated alloy a-Si3N4:H shows Si-Si bonds, whereas in a-Si3N4 no such
bonds are present. The curing effect of hydrogen is small compared to the change in the
KS PBE band gap from substoichiometric a-Si3N3 to amorphous silicon nitride a-Si3N4,
indicating stoichiometry as a primary factor determining the gap.

The orbital-resolved partial density of states in the amorphous silicon-nitrogen alloys show
a high degree of hybridization, much as in the crystalline polymorphs of Si3N4. As is
observed in the crystalline phases, the Si valence electrons form sp3 hybrid orbitals and
the N valence electrons display sp2 hybridization as well as a non-bonding pair of N (2p)
electrons. In a-Si3N3 the Si (3p) electrons dominate the VB maximum, whereas in a-Si3N4

the N (2p) electrons reside just below the top of the VB. Tailing of Si (3s) and (3p) electrons
into the gap from the VB and tailing of all electronic contributions from the CB is found
in a-Si3N3 as well as in a-Si3N3:H. H (1s) electrons mainly occur in the upper VB of the
Si-rich alloy a-Si3N3:H, but in a-Si3N4:H they additionally contribute to the higher levels
of the lower VB. The high degree of hybridization in the amorphous silicon-nitrogen alloys
results in a low localization of electrons at any energy level. The addition of hydrogen to
a-Si3N3 or a-Si3N4 decreases the localization further, thereby showing smearing of levels
over the super cell.

A defect analysis of the highest occupied crystal orbital (HOCO) levels and lowest
unoccupied crystal orbital (LUCO) levels as well as of gap states is carried out. Notably,
in stoichiometric amorphous silicon nitride a-Si3N4 the N (2p) electrons at the HOCO
originate from an undercoordinated N[2] atom and the Si (3p) electrons at the LUCO from
an undercoordinated Si[3] atom. In the Si-rich alloy a-Si3N3, the main contribution at the
HOCO arises from N (2p) electrons of a N[3] atom as well as from Si (3p) electrons of a
Si[4] atom within the random percolation network. No gap states are observed in a-Si3N4

or a-Si3N4:H, whereas in a-Si3N3 and a-Si3N3:H some defect levels are located in the
band gap. The lower gap states in a-Si3N3 consist of localized electrons from structural
defects and the upper gap states as well as the LUCO in a-Si3N3 are mainly dominated
by Si (3s) and (3p) electrons from Si atoms within the random percolation network. The
gap states and the LUCO in a-Si3N3:H mostly originate from Si atoms in the network
as well. Hydrogen atoms in the substoichiometric alloy a-Si3N3:H are found as nearest
neighbor atoms to Si atoms with localizations at some gap states as well as at the HOCO.
In a-Si3N4:H, where hydrogen prefers nitrogen as a bonding partner, the N atoms with
localizations at the HOCO and immediately below possess hydrogen nearest neighbors.
Additionally, Si-Si nearest neighbors are randomly introduced in a-Si3N4:H, similar as in
a-Si3N3:H. A trend is observed, that the greater the number of Si atoms in the network,
the more this appears to lead to a shrinking of the band gap. Therefore it is concluded
that in the substoichiometric alloys a-Si3N3 and a-Si3N3:H the band gap is comparatively
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small due to accumulation of energy levels within the gap, from electronic contributions
of structural defects or of Si atoms that are located close to other Si atoms in clusters or
in a random percolation network.

This work presents important physical properties of crystalline silicon nitride and of the
amorphous silicon-nitrogen alloys from ab-initio calculations performed with VASP. It aims
to function as a vantage point for further studies on this scientifically demanding and
technologically interesting material.
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