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Zusammenfassung: 

Vor kurzem wurde entdeckt, dass Telomere in eine nicht-kodierende RNA genannt telomeric 

repeat containing RNA (TERRA) oder auch telomerische RNA (telRNA) transkribiert 

werden. TERRA fungiert als natürlicher Ligand und Hemmstoff für die Telomerase, dem 

Enzym das von ca. 85% der Tumorzellen verwendet wird, um Telomerlängen aufrecht zu 

erhalten und damit eine uneingeschränkte Anzahl von Zellteilungen zu ermöglichen. In der 

Literatur ist bekannt, dass unterschiedliche Promotoren für die Expression zuständig sind und 

das polyadenylierte und nicht-polyadenylierte TERRAs existieren, wobei nur die Nicht-

polyadenylierte an den Chromosomenenden lokalisiert ist. 

Der Transkriptionsstartpunkt von TERRA Transkripten ist in der subtelomerischen Region 

lokalisiert. Aus diesem Grund besteht auch ein Teil der TERRA Transkripte aus 

subtelomerischen Sequenzen. 

Der Methylierungsgrad der subtelomerischen Regionen unterscheidet sich in verschiedenen 

Tumor Zelllinien. In einer unserer vorangegangenen Studien wurde der Methylierungsgrad 

der CpG Inseln der Chromosomenenden 2p TERRA Promoter Regionen von Saos-2 und T98-

G mittels aufwendiger Bisulfit Konvertierung untersucht. Wir fanden eine CpG Position in 

dieser Promoter Region die sich in der Erkennungssequenz und Schnittstelle eines 

Restriktionsenzym befindet. 

In meiner Studie wurden pENTR-Vektoren und anschließend adenovirale Vektoren mit 

Promtoren für verschieden RNA-Polymerasen, mit einem 0,8kb Telomer-Fragment in sense 

und antisense Orientierung produziert. Diese Vektoren dienen zukünftigen Expressions- und 

Inhibitorstudien. 

Zell-Zyklus-FACS Analysen zeigten den Einfluss der Konfluenz auf den Zell-Zyklus Status 

und Real-Time PCRs den Einfluss der Konfluenz auf das TERRA Expressionslevel. Die 

untersuchten Telomerase negativen Zelllinien die ALT (Alternative lengthening of telomeres) 

assoziiert sind, zeigten im Vergleich mit den Telomerase positiven Zelllinien allgemein 

höhere TERRA-Werte. Ausserdem konnte bei allen Zelllinien ein Trend von erhöhter 

TERRA-Expression mit steigender Konfluenz ermittelt werden. 

Chromosomenenden spezifische 2p, 18p, 10p und 10q TERRA Expression wurde mit 

spezifischen Primern gemessen und es wurden unterschiedliche Expressionslevels in den 

untersuchten Zelllinien gefunden. 

Der neu entwickelte methylierungsspezifische Real-Time PCR Assay ermöglicht die 

Berechnung des Methylierungsgrades einer CpG-Insel im Chromosomenende 2p TERRA 
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Promoter. Wenn es möglich ist andere Loci wie diesen in anderen subtelomerischen TERRA 

Promoter Regionen zu finden, könnten weitere Assays entwickelt werden. 

Die Erkenntnisse dieser Studie werden als Startpunkt für zukünftige Studien und 

Untersuchungen dienen. Die erstellten Konstrukte spielen eine wichtige Rolle um neue 

Erkenntnisse über TERRA-Expression, -Regulierung und -Funktion zu gewinnen und dienen 

vielleicht dazu neue Mechanismen der Telomerase Inhibierung und damit auch der 

Tumorinhibierung zu entwickeln.  
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1. Abstract: 

Recently it was discovered that telomeres are transcribed into a non-coding RNA called 

telomeric repeat-containing RNA (TERRA) or telomeric RNA (telRNA). TERRA acts as a 

natural ligand and inhibitor of telomerase, the enzyme that is used by about 85% of tumor 

cells to maintain telomere length, which allows an unlimited number of cell divisions. In the 

literature it is known that different promoters are responsible for TERRA-expression and that 

non-polyadenylated and polyadenylated TERRAs exist, but only non-polyadenylated is 

localized at chromosome ends. 

The transcription start point of TERRA transcripts is localized in the subtelomeric region. For 

this reason, parts of TERRA transcripts are subtelomeric derivation. 

The methylation levels of subtelomeric regions differ in several tumor cell lines. In our 

previous study, methylation levels of CpG islands of chromosome end 2p TERRA promoter 

region of Saos-2 and T98-G were examined, by the laborious technique of bisulfit conversion. 

We found a CpG position in this promoter region, located in the recognition and cutting site 

of a restriction enzyme. 

In my study, pENTR vectors and then adenoviral vectors were produced with promotors for 

different RNA polymerases and with a 0.8kb telomere fragment in sense and antisense 

orientation. These vectors serve for future expression and inhibitor studies. 

Cell cycle FACS analysis showed the influence of confluence on cell cycle state and Real-

time PCR the effect of confluence on TERRA expression level. The investigated telomerase 

negative cell lines which are associated to ALT (alternative lengthening of telomeres), 

showed, in comparison to telomerase positive cell line generally higher TERRA levels. Also 

in all cell lines a trend of increasing TERRA expression by increasing confluence could be 

determined. 

Chromosome end specific 2p, 18p, 10p and 10q TERRA expression levels were measured 

using specific primers and determined levels differ in the examined cell lines. 

The newly developed methylation-specific Real-time PCR assay allows calculations of 

methylation grade of a CpG island of chromosome end 2p TERRA promoter. Perhaps it is 

possible to find other loci such as those in other subtelomeric TERRA promoter regions and 

to develop additional assays. 

The findings from this study will serve as a starting point for future studies and investigations. 

The generated constructs play an important role to new insights into TERRA-expression, 
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regulation and function and perhaps serve to develope new mechanism of telomerase 

inhibition and hence tumor inhibition.  
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2. Introduction: 

 

2.1 Telomere: 

Telomeres are the physical ends of chromosomes (Figure 2.1.). First proclaimed and named 

by Herman Muller 1938[1], who described them in Drosophila melanogaster. He already 

knew that a chromosome cannot exist without telomeres. The structure and function of 

telomeres are highly conserved in eukaryotes [2]. 

 

 

Figure 2.1.: Telomeres: Schematic representation of karyotype chromosomes with shown 

localization of telomeres. Scheme taken from [3]. 

 

2.1.1. Structure: 

Telomeres consist of DNA-repeat sequences which are the same in all vertebrates. In 

vertebrates this exists as a repeated sequence of 6 nucleotides 5‟-TTAGGG-3‟ built up as a 

double strand (ds) DNA with a length of a few thousand base pairs (bp) (Figure 2.2.) [4]. 
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Figure 2.2.: Telomeres are located at the ends of the linear chromosomes and consists of 

TTAGGG repeats in human: Schematic representation of chromosomal and telomere 

assembly. Chromosomes which are located in the nucleus are dsDNA which get their 

constitution by wrapping around histones. At the end of chromosomes (telomeres) the DNA 

are only single stranded. Schema taken from [5]. 

 

The two telomeric DNA strands called G-rich strand for the one with 5‟-TTAGGG-3‟ repeats 

and C-rich strand for the one with the reverse complement 5‟-CCCTAA-3‟ repeats. 

Structurally important, the telomeric dsDNA ends with a telomeric single strand (ss) DNA 

sequence (Figure 2.2.) The G-rich strand has a 3‟overhang, the so called G-tail which forms a 

loop called telomere loop (t-loop). The ssDNA G-tail strand invades the dsDNA and binds to 

complementary sequences of C-rich strand (Figure 2.3.). The displaced former dsDNA forms 

a loop called displacement loop (d-loop) [6, 7]. These loops have an important function for 
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protecting chromosome ends because the enable two possible conformations of telomere ends 

(Figure 2.3.). 

 

 

Figure 2.3.: Telomere cycling between (A) closed and (B) open conformations. 

A: Closed T-loop conformation: G-overhang invades double stranded teloemric DNA and 

builds T-loop (telomeric loop) and D-loop (displacement loop) 

B: Open conformation with 3‟ G-overhang 

Schema taken from [8]. 

  

Human telomeric DNA is not presented as classical linear dsDNA with helix strucuture. The 

telomeric repeats form hybrid-type intramolecular G-quadruplex structures with mixed 

parallel/antiparallel strands (Figure 2.4.) [9]. This special structure stabilizes telomeric DNA 

and blocks telomerase activity [10]. 
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Figure 2.4.: Schema of hybrid-type intramolecular G-quadruplex structures with mixed 

parallel/antiparallel strands: 

(A): Telomere forms propeller-type parallel-stranded intramolecular G-quadruplex with anti-

parallel (anti) strands found in the presence of pottasium in crystalline state. 

(B): Telomere forms second Basket-type with both parallel (syn)/antiparallel (anti) strands. 

This intramolecular G-quadruplex structure was reached in sodium solution determined by 

NMR (nuclear magnetic resonance) spectroscopy. 

Arrows show direction of DNA (5‟ to 3‟). Schema taken from [9]. 

 

The telomeres within cells consist not only of telomeric DNA, but also of proteins that are 

capable to bind and are found associated with telomeres. Biochemical purification of the 

telomeric proteome mentioned 210 proteins that interacts with telomeric structure and also 

may influence them [11]. The most important proteins in mammalian are 6 proteins, which 

together are called shelterins. 

 

2.1.2. Shelterins: 

The whole telomere is coated by a multiprotein complex called shelterins which protects and 

stabilizes mammalian telomeres, as described in the following text [12]. It consists of six 

proteins, TRF1 (Telomeric Repeat binding Factor 1), TRF2. RAP1 (Repressor/Activator 
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Protein 1), TIN2 (TRF1 INteracting protein 1), TPP1 (TINT1/PIP1/PTOP 1) and POT 1 

(Protection Of Telomeres 1) (Figure 2.5.). 

TRF1 and TRF2 bind constitutively at dsDNA telomeric repeats and recruit the other four 

shelterin proteins [12]. It was also shown, that TRF1 has DNA remodeling activity [13, 14] 

and promote efficient replication of telomeres [15]. TRF2 plays a role at t-loop formation [16] 

and chromosome end protection [17]. A recent study proclaimed that there is also an 

influence on chromatin formation [18]. 

RAP1 is not well characterized but it‟s an important factor for telomere protection and could 

be necessary for TRF2 telomeric localization and stability [19].  

TIN2 functions as bridge between TRF1. TRF2 and TPP1 and has no DNA binding domain. 

It‟s important for stabilizing the whole shelterin complex [20, 21]. 

Another connecting function has TPP1 that produces a bridge between POT1 and TIN2 [22]. 

TPP1 forms a heterodimer with POT1 and interacts with telomerase and might influences 

recruitment or regulation [23, 24]. High affinity of POT1 to the single stranded overhang 

leads to the assumption, that it might bind to the displaced G-strand and stabilize loop 

structure. 

The shelterin complex has a very important function for building the t-loop and thereby for 

capping the ends of chromosomes (Figure 2.5.). Uncapping of telomeres leads to double 

strand breaks, non-homologous end-joining (NHEJ) and erosion of telomeres. This may 

inactivate different pathways like ATM, p53. and p21CIP1 and may result in senescence 

or/and apoptosis. p16/INK4 could also play a role, but this hypothesis has not yet been fully 

investigated [25-27]. 
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Figure 2.5.: Telomere Structure: Mammalian telomeres are long repeats of 5‟-TTAGGG-3‟ 

repeats and telomere associated proteins, the 6 most important are called shelterins (upper 

left). The shelterin complex binds specific to telomeric DNA (lower left) and is composed of 

TRF1 and TRF2 which bind double stranded telomeric DNA, POT1 which binds to single 

stranded telomeric sequence. Rap1 binds to TRF2 and TIN2 and TPP1 connect TRF1 and 

TRF2. Telomeres build a loop which is called t-loop and a loop which is called d-loop (upper 

right). By invasion of single stranded telomere overhang into double stranded telomeric DNA 

these two loops are formed. This whole structure is associated which shlelterins (lower right). 

Schema taken from [28]. 

 

2.1.3. Functions: 

Telomeres play an important role for chromosome stability [25]. They protect the end of 

chromosomes from erosion, recombination and recognition as damaged DNA and end-to-end 

fusion with other chromosomes. Due to the end-replication problem every cell cycle 

chromosomes get shorten 50-100 bp. This shortening was first discovered by James Watson 

[29] and already before he developed his hypothesis Hayflick investigated that human cells 

derived from embryonic tissues are not able to divide infinitely. He suggested a dividing 

potential of 50 times and this became known as Hayflick limit [30]. The reason for this 

shortening is the DNA polymerase, which is not able to synthesis a full, new strand (Figure 

2.6.). The strand which is not constantly synthesized is called lagging strand. The replication 

starts a few times and these parts become connected. For every start a new start point is 
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necessary which is created by primase. This start point is an RNA fragment and has to be 

eliminated by RNase H. The occurring cavity gets filled up and connected by the enzyme 

ligase. At the 3‟ end of the newly synthesized strand there is no possibility to fill this cavity, 

which results in the DNA becoming shorter with every replication. Telomeres function, so to 

say, as buffer to save important coding genomic DNA sequences [31, 32]. 

 

 

Figure 2.6.: End-replication problem: At DNA replication two new strands are synthesized 

in 5‟-3‟ direction. One new strand could becomeget synthesized without an intermission 

(leading strand). The other synthesis has to start a few times and these synthesized DNA parts 

are called Okazaki fragments and have to be connected. DNA polymerase needs for every 

synthesis start an RNA primer which is depleted after synthesis initiation. This leads to the 

end-replication problem. As synthesis is only possible in the 5‟-3‟ direction the last part of a 

5‟end of new strands where RNA primer binds were not able to be synthesized. Schema taken 

from [33]. 
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2.1.4. Dysfunction of telomeres: 

If telomeres can no longer exert end protective functions they are called dysfunctional. One of 

the most important dysfunctions of telomeres is the end-replication problem, which leads to 

the shortening of telomeres. If a critical length is reached, this results into replicative 

senescence or apoptosis [31, 32]. Senescence or apoptosis is not initiated because of the short 

length, but rather because of the altered structure [34]. 

Also direct damage of telomeres can affect the function of telomeres. Mainly direct damages 

are produced by cellular stress, for instance oxidative stress which is the major source of 

DNA damages or by mutations of genes related to telomere associated proteins [35, 36]. 

These damages influence telomere length and integrity and can lead to senescence and/or 

apoptosis. 

 

2.1.4.1. Damage response: 

Dysfunctional telomeres are examined like DNA damages and, consequentially, like DNA 

double strand breaks (DSB). The reaction to these damages is a DNA damage response. 

Telomeres become marked with phosphorylated H2AX (γ-H2AX), a variant of histone H2A 

that localize to sites of DNA damage. A method for detecting dysfunctional telomeres is 

based on fluorescence called telomere-dysfunction induced foci (TIF) [37]. Also other 

proteins are located at dysfunctional telomeres like DNA damage inducible kinases ataxia 

telangiectasia mutated (ATM), ataxia telangiectasia- and Rad3-related (ATR), DNA-

dependent protein kinase DNA-PK, CHK1 and CHK2 also the RMN complex and the BRCT 

motif proteins MDC1/NFBD1 and 53BP1 [26, 38-41]. This composition is similar to that at 

DNA double strand breaks. 

Dysfunctional telomeres are a high risk factor for organism. Like irreparable DNA damages 

they can enhance developing of tumors. Because of this such cells go into senescence or 

apoptosis as tumor suppression mechanism. Cells which go into apoptosis die and cells which 

go into senescence stay into a G1 cell cycle arrest and stop proliferating [42]. 

To enforce this ways of self-protection for the organism p53 and p16 plays an important role.  

Both of them suppress the cancer genesis and can induce senescence or apoptosis [43-45] 

(Figure 2.7., p16 not shown in figure). p53 is a transcriptional regulator which influences cell 
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cycle and is able to activate or represses genes in response to stress [45]. These genes induce a 

DNA repair mechanism, which leads to senescence or programmed cell death. Which 

mechanism is enhanced depends on cell type, degree and type of damage [46]. Under normal 

conditions p53 is bound to the negative regulator Mdm2. which under cellular stress p53 

becomes phosphorylated and active [47]. p16 which acts through the p16/Ink4a RB pathway 

is also a cell cycle regulator and stabilize p53 [42]. 

 

Figure 2.7.: DNA damage response at dysfunctional telomeres: The shelterin complex 

covers and protects telomeres. This complex is composed of 6 subunits (TRF1. TRF2. POT1. 

Tin2. TPP1 and Rap1). Cause for loss of these proteins is not wholly clear, however it leads to 

unprotected telomeres and in a row to DNA damage response signaling. This includes p53 

binding protein 1 (53BP1) which acts as a transcriptional co-activator of the p53 tumor 

suppression [48], γ-H2AX a phosphorylated H2AX variant of histone 2A [37], MRN complex 

(MRE11/RAD50/NBS1) [49] which acts as activator for ATM (in absence of ATM, ATR 

kinase is activated) [26]. ATM kinase leads to DNA double stand break repair or with p53 to 

senescence or apoptosis. Schema taken from [50]. 
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2.2. Cancer and telomeres: 

The potential of dysfunctional telomeres to initiate cancer development are inhibited by p53 

and p16 function [42, 44, 45]. Tumor cells have to overcome this suppressing mechanism. 

Even p53 and/or p16 are eliminated by mutations or suppressing mechanism, tumor cells have 

to protect and maintain their telomeres. Otherwise the unregulated and advanced proliferation 

of tumor cells would lead to shortening of chromosomes and, as consequence, to the loss of 

genetic information. To prevent this, tumor cells have to develop a telomere maintenance 

mechanism. 

 

2.2.1. Telomere Maintenance Mechanism (TMM): 

Tumor cells need the ability to maintain their telomeres, otherwise they would not be able to 

reach a state of immortality with unlimited proliferation. Today, two mechanisms in tumor 

cells are known. 

About 80-85% of tumor cells use the function of telomerase [51]. Telomerase is a 

ribonucleoprotein complex which acts as reverse transcriptase and adds TTAGGG repeats at 

the end of chromosomes [52] (Figure 2.8.). The catalytic subunit called TERT (telomerase 

reverse transcriptase) forms a dimer, which is connected with a RNA component called TR or 

TERC (telomerase RNA) which acts as template for the ssDNA TTAGGG repeats. The 

complementary strand is then synthesized by DNA polymerases. Another part of telomerase 

is dyskerin which binds and stabilizes TERC [53]. 
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Figure 2.8.: Action of telomerase: Chromosome ends have a 3‟ end overhang on the leading 

strand. Telomerase bind to the overhang, the RNA component TERC binds to the 

complementary sequence of the single strand. Part of TERC acts as template and the catalytic 

subunit (TERT) adds bases to the 3‟ end. The complementary strand is synthesized by DNA 

polymerases. Schema taken from [54]. 

 

At least 15% of tumor cells express and use no telomerase for telomere maintenance but 

rather a mechanism called Alternative Lengthening of Telomeres (ALT) [55]. ALT shows 

some special features that are not present in telomerase positive cells or normal somatic cells. 
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Extrachromosomal telomeric DNA is present in the forms of double stranded telomeric circles 

(T-circles) and single stranded C-circles, depending on C-rich strand [56, 57]. T-circles, 

which are derived from recombinations, are also detectable in telomerase positive cells if 

telomeres are elongated [58, 59]. Unique features are the C-circles, the derivation of which is 

unclear, but they seem to be markers for ALT positive tumor cells [60]. Telomeric DNA and 

associated binding proteins are found in promyelocytic leukaemia nuclear bodies (PML 

nuclear bodies). PML nuclear bodies are spherical structures which are associated with 

several functions, including DNA repair, senescence, apoptosis, viral defense, proteolysis and 

stress response, and which is named after one of its constitutive components, promyelocytic 

leukaemia (PML) protein. If these bodies include telomeric DNA they are called ALT-

associated PML bodies (APBs) [61]. ALT positive cells also show a very heterogeneous 

telomere length that ranges from undetectable to over 50kb, perhaps due to recombination 

events [62]. 

The mechanism of telomere elongation is uncertain. Two models are proposed today, the 

unequal telomere sister chromatid exchange (T-SCE) model and the homologous 

recombination-dependent DNA replication model (Figure 2.9.). These models are not 

mutually exclusive.  

T-SCEs occur much more frequently in ALT cells than in telomerase-positive cell lines or 

normal cells [63]. This strengths the hypothesis that one daughter cell with a lengthened 

telomere and one with a shortened telomere can arise provided there is a mechanism for 

segregating chromosomes with lengthened telomere into one and chromosomes with 

shortened telomere into the other cell [64]. 

The second and more favored model, the homologous recombination-dependent DNA 

replication model new telomeric DNA is synthesized by an existing telomeric sequence from 

an adjacent chromosomal telomere as a copy template. The template has not to be the 

telomere of another chromosome. Possibilities include copying itself via t-loop formation, 

sister chromatid as template, linear extrachromosomal DNA as template or rolling circle 

mechanism with c-circles as template [65]. 
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Figure 2.9.: Models of ALT mechanism: Two models of ALT are proposed. a) Unequal T-

SCE (telomere sister chromatid exchange): After DNA replication re-combination between 

sister chromatids happens and results in two different daughter cells. One with elongated 

telomeres with an increased proliferation capacity and the second one with shortened 

telomeres and decreased proliferation capacity. To reach an unlimited proliferation of the cell 

population it is necessary that a mechanism segregate longer elongated telomeres into one cell 

and shortened in the other cell. This mechanism is not yet known. b) Homologous 

recombination-dependent DNA replication: The second proposed mechanism hypnotizes the 

existing telomeric DNA is used with a recombination-mediated synthesis to add telomeric 

DNA at telomeres. The donor of this telomeric DNA can either be sister chromatids, linear 

extrachromosomal DNAs, rolling circle mechanism with c-circles or the DNA itself via t-loop 

formation. Schema taken from [66]. 
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Telomerase activity and ALT do not have to be exclusive. Evidences for activity of both 

mechanisms in the same cells exist and also small numbers of tumors express telomerase and 

simultaneously show markers for ALT [67]. 

 

2.3. TERRA: 

For a long time telomeres were seen as heterochromatic region because of heterochromatic 

marks as trimethylation at lysine 9 on histone H3. trimethylation at lysine 20 on Histone H4. 

histone hypoacetylation, association of heterochromatinprotein 1 (HP1) and hypermethylation 

of cytosines of CpG islands present in the subtelmeric region [68, 69]. A position effect was 

also noticeable by the fact that genes nearby can be transcriptional silenced [43]. Because of 

these heterochromatic marks and the geneless nature of telomeres, telomeres were seen as 

transcriptional silence. 

A few years ago it was found that mammalian telomeres are transcriptional active. A non-

coding RNA is transcribed called TERRA (telomeric repeat containing RNA) or telRNA [70, 

71]. 

TERRA consists of UUAGGG- repeats of the telomeric DNA, but it also contains a part of 

subtelomeric DNA that becomes transcribed. Promoters for TERRA could be identified in the 

subtelomeric region and seem to be located not more than 1kb upstream of telomeric 

sequence [72]. In-silico analyze with these promoter elements predicts that half of the 

subtelomeres may be transcriptional active and express chromosome specific TERRA (see 

supplement information of [72]). 

The length of TERRA transcripts is seen as very heterogeneous with size up to some thousand 

nucleotides (nts) [70, 71]. A new study has showen that the length of telomeric repeat of 

TERRA, the UUAGGG-repeats, is only about 200 nts [73]. This indicates that most of 

TERRA sequences originate from the subtelomeric parts of individual chromosomes. 

Telomeric RNA is highly conserved. It not only exists in human, it was also found in several 

eukaryotes, including yeasts, birds, fishes, plants and mammals [70, 71, 74, 75]. 
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2.3.1. TERRA transcription: 

Investigation has shown that many subtelomeres exhibit a conserved repetitive region in a 

centromere to telomere direction. This repetitive region includes a 61bp repeat, a 29 bp repeat 

and a 37bp repeat, together called 61-29-37 repeats. Two of them, the 29bp and the 37bp 

repeats form a CpG dinucleotide rich DNA island. Such CpG islands are associated with 

many mammalian RNA polymerase II promoter sequences. In silico analysis and in situ 

hybridizations detecting at least 20 human chromosome ends with this 61-29-37 repeats and 

so on potential start points for TERRA transcription [72]. These promoters are heavily 

methylated by DNA-methyltransferases (DNMTs). Studies showed double knock out of 

DNMT1 and DNMT3b in human tumor cells leads to hypomethylation of TERRA promoter 

and in succession to increased TERRA levels [76]. 

Because the starting point is located in the subtelomeric region, the longest part of TERRA 

molecules may consists of subtelomeric sequences [72, 73]. TERRA is largely transcribed by 

RNA polymerase II. Experiments showed that RNA polymerase II is associated with human 

telomeres and with TRF1 [71]. About 7% of TERRA transcripts are 3‟end polyadenylated 

like most of RNA polymerase II transcripts. Treatment with α-amanitin, a specific RNA 

polymerase II inhibitor reduces TERRA level extremely. But actinomycin D treatment, which 

is a general transcription inhibitor, reduces TERRA level more than α-amanitin. This may be 

an indicator that another polymerase (RNA polymerase I or RNA polymeras III) is also used 

to transcribe TERRA [70, 71]. The 5‟ end of TERRA contain 7-methylguanosine cap 

structures which together with the poly(A) tail contributes to their stability. A very interesting 

discovery was that only not polyadenylated TERRA is associated with chromatin [73]. The 

reason for the different distribution is unclear, maybe different localization signals exist at the 

end of polyadenylated and not polyadenylated TERRA. 

 

2.3.2. Function of TERRA: 

TERRA was discovered recently and only a limited amount of original research reports are 

available. Therefore, functions and effects of TERRA are not fully identified. 
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2.3.2.1. Telomerase inhibition: 

The amount of TERRA is very low at telomerase positive tumor cells. Normal somatic cells 

and ALT tumor cells however possesses a high TERRA expression level [77]. In vitro 

reconstituted telomerase and synthetic TERRA molecules showed the inhibitory function of 

TERRA on telomerase. A new study showed that TERRA binds to enzymatic subunit TERT 

and acts as a natural ligand and inhibitor of human telomerase [78]. How this exactly occurs 

has not yet been investigated, but there are currently three models suggested (Figure 2.10.). 

The first model states that TERRA prevents access of telomerase to telomeres by binding 

telomere-proximal telomerase molecules. The second model states that TERRA is bound to 

telomeric heterochromatin and sequesters telomerase and inhibits possibility to access 3‟ end 

of telomere. The third model states that TERRA binds to telomerase which is then bound to 

telomeric chromatin and inhibits the possibility of telomerase to access 3‟ end of telomere. 

 

 

Figure 2.10.: Possible actions of telomerase inhibiting by TERRA: TERRA interacts with 

TERT and also base pairs with the RNA TERC. Today there are three possible models of 

interaction. (1) TERRA binds telomerase without connection to telomeres. (2) TERRA, binds 

to telomeric chromatin (gray oval) and then binds and sequesters telo-merase. Access and 

action of telomerase telomere end is inhibited. (3) TERRA interacts with telomere-bound 

telomerase (gray oval) and inhibits access to 3‟ end. Schema taken from [78]. 
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2.3.2.2. Influence on heterochromatin: 

Large non-coding RNAs (ncRNAs) have the ability to influence heterochromatic state by 

recruiting chromatin remodeling complexes. One example is Xist which is necessary for X 

chromosome inactivation in females during embryogenesis. Similarities between Xist and 

TERRA implicate a possible function of TERRA in maintaining a heterochromatic state at 

chromosome ends. 

TERRA is also co-localized at the distal telomere of the inactivated X chromosome in female 

mouse embryos [79]. It seems that this localization does not correlate directly, as the 

localization of TERRA does not depend on Xist expression. 

 

2.3.2.3. TERRA and development: 

TERRA may be regulated developmentally, which induces the assumption that it plays a role 

during development and for chromosomal transactions occurring during cellular 

differentiation [71, 79, 80]. It also can be found in undifferentiated embryonic stem cells (ES 

cells). There it‟s been associated with X and Y chromosome of males and both X 

chromosomes of females. During differentiation this changes as only inactivated X 

chromosome of females and Y chromosomes of males are connected with TERRA [79]. 

Another analogy of TERRA and Xist is that both are controlled by nonsense mediated RNA 

decay [81, 82]. 

TERRA also occurs during reprogramming. Experiments with differentiated fibroblasts which 

are induced to become pluripotent stem cells with the reprogramming factors Sox 2, c-myc, 

Klf 4, and Oct 3/4 showed an increase in TERRA [80, 83]. Why this increase in TERRA 

levels occurs is not yet clear. It is speculated by the authors that one or few of the 

reprogramming factor acts as transcriptional regulator or that some other mechanism during 

differentiation and reprogramming enhance TERRA expression. 

  

2.3.3. Regulation of TERRA:  

The whole, complex regulation mechanism of TERRA expression and maintenance is not 

fully understood today. Some correlations have been investigated and have given a brief 

insight into the TERRA regulation mechanism. 
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2.3.3.1. Nonsense mediated decay (NMD) RNA decay: 

Nonsense mediated decay is a highly conserved cellular mechanism in eukaryotes [84]. After 

transcription, pre-mRNA is marked by ribonucleoprotein components and then processed. 

Introns get cut out and exons get connected to mRNA which is called splicing. The exon-

exon-border stay marked with protein complexes, called exon-junction-complex. During first 

translation round (pioneer round) these protein complexes are removed and a stop-codon 

terminates translation and activates termination factors. Because of mutation stop-codons 

could arise somewhere in the open reading frame at which point the pioneer round stops. If 

this happens, downstream of this stop codon existing exon-junction-complex with still 

remained associated protein complexes. Following these complexes recruiting decapping 

enzymes and it resulted into degradation. This is only possible if the pre-mature stop codon is 

not located more than 50-55bp upstream of the last exon-junction-complex, due to the size of 

this complex and if it is not in the last intron [84]. 

NMD RNA decay also influences TERRA at telomeres. TERRA sequences contain stop 

codon sequences in the repeating sequence. Studies have shown that depletion of NMD 

factors increases TERRA locally at telomeres [70, 81]. An important fact is that whole 

TERRA levels are not effected, therefore the half-life of TERRA molecules is not reduced. 

Two possibilities of interacting between TERRA and NMD machinery exist. NMD proteins 

could be involved into local degradation of TERRA at telomeres or they are involved into 

displacement of TERRA from telomeres. 

 

2.3.3.2. RNA interference: 

RNA interference (RNAi) is also a highly conserved mechanism in many different organisms 

[85]. Normal functions of this mechanism include defense against viruses, regulation of gene 

expressions and control of transposons. Double stranded RNA is recognized by ribonuclease 

proteins drosha and/or dicer and cut into small RNA molecules with 20-25bp length called 

small interfering RNAs (siRNAs) (Figure 2.11.). After that siRNA is separated into single 

strands and one of the strands (guide strand) is integrated into a RNA-induced silencing 

complex (RISC). There it is bound to the argonaute proteins which are endonucleases and 

every time a complementary RNA is present they destroy it [86]. 
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Figure 2.11.: A simple model of RNAi pathway: dsRNA or miRNA primary transcripts are 

detected and cut into small dsRNAs with 20-25bp length by RNaseII enzymes (Dicer and 

Drosha). They are called small interfering RNAs (siRNAs). The effector complex RNA-

induced silencing complex (RISC) recognizes siRNAs and during assembly double strands 

get separated and one of the single strands binds to RISC. This RNA acts as a template for 

RNAs which is cleaved by the RNaseH enzyme Argonaute that is bound to RISC. If RISC 

bound siRNA and target mRNA have mismatches, the RISC complex stays bound but mRNA 

will not be cleaved. This results in a translation block. Schema taken from [87]. 

 

RNAi may be directly involved in heterochromatin formation of telomeres in yeast [88]. The 

possibility exists that TERRA triggers heterochromatization of telomeres by RNAi as 

precursor to generate siRNA. It has also been shown that in mouse cells transfected with 

synthetic RNAi an increased association of Argonaute1 with telomeres is noticeable and 

TERRA is overproduced [89]. It was also shown that mouse embryonic stem (ES) cells with a 

knock-out of Dicer showed a decreased in TERRA levels when compared with wildtype (wt) 

counterparts [71]. 
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2.3.3.3. Cell cycle and TERRA: 

A new study proclaimed different TERRA level during cell cycle [78]. They investigated that 

TERRA accumulates in early G1. during S phase TERRA level decreases continuously and 

reaches lowest expression levels at the transition between late S and G2. A reason for this 

could be because low TERRA level during S-phase allows telomerase to extend telomeres. 

Another argument is that it plays a role for replication of chromosome ends by the canonical 

DNA replication machinery [78]. 

Different TERRA levels during cell cycle may also be important for chromosome stability. 

TERRA, together with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and POT1, 

seems to regulate replication protein A (RPA) displacing after DNA replication. This is 

important for telomere capping after DNA replication in order to maintain chromosome 

integrity [90]. 

 

2.3.3.4. Mixed lineage leukemia (MLL) protein: 

The MLL protein is a histone methyltransferase, which acts as positive global regulator of 

gene expression [91]. The MLL protein is normally cleaved into a N-terminal fragment and a 

C-terminal fragment. N-terminal is associated with chromosomal sites, C-terminal contains a 

SET (Suvar3-9. enhancer-of-zeste, Trithorax) domain that manifests H3/K4 histone 

methyltransferase activity. It has been shown, that MLL binds to telomeres and affects the 

epigenetic status [91]. MLL was also seen to interact with p53 which increased the TERRA 

expression in response to progressive telomere uncapping. The conclusion of this discovery 

was that MLL dependent TERRA expression could be a cellular response by reason of 

telomere uncapping. Possible features could be preventing DNA damage response and the 

induction of cellular senescence [91]. 
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3. Aims of this study: 

 

Establishment of methods for determination and influence of TERRA expression in tumor 

cells: 

 

- In silico construction of vectors for TERRA sense and antisense expression for 

TERRA inhibition and elevation and telomerase inhibition. 

  

- Cloning of telomere fragment into pENTR gateway vector with hH1 promoter and 

terminator as donor vector. Deletion of hH1 promoter within the pENTR vectors for 

using RNA polymerase II promoter expression vectors. 

 

- Transfer telomere fragment expression cassettes of pENTR vectors into lentiviral and 

adenoviral vectors to result ectopic expression vectors for TERRA sense and antisense 

expression under control of hH1, CMV and Ubc6 promoters. 

 

- Cell cycle dependent TERRA level, subtelomer specific TERRA levels and telomere 

length screening of different tumor cell lines via Real-Time PCR to determine 

endogenous basis level. 

 

-  Establishing methylation dependent Real-Time PCR assay for subteomeric region of 

chromosome 2p. 
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4. Material and Methods: 

 

4.1. Cell culture: 

 

4.1.1. Cell Lines: 

All cell lines were grown under specified cell culture conditions (Table 4.1.) for a few months 

in T25 tissue culture flasks (25cm
2
) from Sarstedt (#83.1810.002). 
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Table 4.1.: Used cell lines which were grown under cell culture conditions: 

Cell line: Origin: Medium: Notes: Passage: 

T98-G 

(CRL-1690) ATCC 

Minimum essential 

medium (MEM) + 10% 

FCS (both Sigma 

Aldrich, #56419C, 

#12238C) 

T98G is a glioblastoma 

multiforme cell line from a 

61 years old male Caucasian 412 

U-2 OS 

(HTB-96) ATCC 

Iscove‟s Modified 

Dulbecco‟s medium 

(IMDM) + 10% FCS 

(both Sigma-Aldrich, 

#I3390) 

U-2 OS is an osteosarcoma 

cell line from a 15 years old 

female Caucasian 21 

Saos-2 

(HTB-85) ATCC 

McCoy‟s 5A medium + 

10% FCS (both Sigma-

Aldrich, #M4892) 

Saos-2 is an osteosarcoma 

cell line from an 11 years old 

female Caucasian 54 

SW-480 

(CCL-228) ATCC 

RPMI-1640 medium + 

10% FCS (both Sigma-

Aldrich, #M3817) 

SW-480 is a colorectal 

adenocarcinoma cell line 

from a 50 years old male 

Caucasian 

SW480R: 

110. 

SW480B 

unknown, 

Passage 10 

after 

genome 

analyses 

Fibroblasts 

Dr. 

Shehata 

α-MEM + 20% FCS 

(both Sigma-Aldrich, 

#M8042) 

The fibroblast cells were 

isolated from a patient by 

courtesy of Dr. Medhat 

Shehata (Medical University 

Vienna, Internal Medicine I) 8 

HEK293 FT ATCC 

DNP + 10%FCS (both 

Sigma-Aldrich) 

HEK293 FT is an embryonic 

kidney cell line which can be 

used for lentiviral infections 

as production cell line. 24 

HEK293 ATCC 

DMEM (Dulbecco‟s 

Modified Eagle‟s 

Medium - high glucose) 

+ 10% FCS (both 

Sigma-Aldrich, #D5796) 

HEK293 is an embryonic 

kidney cell line transformed 

with adenovirus 5 DNA and 

can be used as adenoviral 

production cell line. 42 

YTBO Patient RPMI-1640 + 10% FCS 

Established from patient 

astrocytoma at the institution 85 

 

During long time passaging (at least 20 years cell culture) of SW-480 cells at the labor of 

Prof. Brigitte Marian (Division of Cancer, Department of Medicine I, Comprehensive Cancer 

Center, Medical University Vienna) some isolate of those cultures created a new phenotype. 

Sandra Sampl discovered that new phenotype represented decreased cell doubling time as 

compared to initial SW-480 culture and much longer telomeres (unpublished). 



36 
 

We hypothesized the presence of ALT in those cells. This new cell line is called SW480 B, 

and the other original, with shorter telomeres, is called SW480 R. 

Cell lines in table 4.2. were not cultivated by myself. RNAs and DNAs of these cell lines 

which used for experiments were originally isolated by Monika Hunjadi (diploma thesis in 

progress). 

 

Table 4.2.: Cell lines used by Monika Hunjadi 

Cell line: Notes: 

Caco-2 

Caco-2 is a colorectal adenocarcinoma cell line isolated from a 72 years old male 

Caucasian 

Vaco235 Vaco235 is a adenoma cell line 

HCT 116 HCT 116 is a colorectal carcinoma cell line 

LT97 

LT97 is a premalignant cell line established out of small colorectal polyps of a 

patient with familial polyposis coli 

HT-29 

HT-29 is a primary tumor colorectal adenocarcinoma cell line isolated from a 44 

years old female Caucasian 

SW-620 SW-620 is a metastasis of the same tumor SW480 originates 

 

4.1.2. Thawing cells: 

Most of the cell lines are frozen in cryo-vials in liquid nitrogen. Before use they had to be 

thawed. This was done according to protocol group holzmann laboratory (“Auftauen von 

Zellen”) 

 

Material: 

Required medium for the cell line 

 

Procedure: 

 Thaw cells in a water bath 

 Carry over cells into 15ml tube 

 Centrifuge 800g, 10‟ 

 Discard supernatant 
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 Resuspend pellet in 3ml medium 

 Carry over into tissue culture flask 

 37°C 

 

4.1.3. Passaging: 

Passaging was done at confluences between 70 – 100% with a ratio of 1:5 according to 

protocol group holzmann laboratory (“Splitten und Einfrieren von Zellen”). 

 

Material: 

Medium 

Trypsin/EDTA (Invitrogen, #15400054) 

PBS (Invitrogen, #AM9624) 

 

Procedure: 

 Suck of medium 

 Add 2ml PBS 

 Suck of PBS 

 Add 1ml Trypsin/EDTA 

 37°C, ~5‟ 

 Control if cells detach via microscope 

 Add 2ml medium 

 Discard solution depending on splitting ratio 

 Add medium to 3ml 

 

4.1.4. Freezing cells: 

This was done according to protocol group holzmann laboratory (“Splitten und Einfrieren von 

Zellen”) 

 

Material: 

FCS + 10% DMSO (both Sigma Aldrich, #D2650) 

Trypsin/EDTA 
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PBS 

 

Procedure: 

 Suck of medium 

 Add 2ml PBS 

 Suck of PBS 

 Add 1ml Trypsin/EDTA 

 37°C, ~5‟ 

 Control if cells detach via microscope 

 Carry over into 15ml tube 

 Centrifuge 1.000g, 5‟ 

 Discard medium 

 Resuspend pellet in 1.5ml FCS + 10% DMSO 

 Carry over into cryo vial 

 On dry ice, 30‟ 

 At -80°C, 24h 

 Stored in liquid nitrogen 

 

4.1.5. Cell line transfection: 

Cells can uptake nutrient and other substances via vesicles. This capability is used to transfer 

DNA into cells. Desired DNA is packaged into vesicles and put in front of them so they can 

take it up. 

For transfection of cell lines Lipofectamine
TM

 2000 Transfection reagent (Invitrogen, # 

11668019) was used. 

 

Material: 

Lipofectamine
TM

 2000 

Serum free medium 

 

Procedure: 

 Cells were settled into 6wells so the next a confluence of about 50% was present 

 1µg Plasmid mixed with 250µl serum free medium into 1.5ml tube 
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 4µl Lipofectamine
TM

 2000 mixed with 250µl serum free medium into 1.5ml tube 

 RT, 5‟ 

 Mixing of the two tubes 

 RT, 20‟ 

 Dripping the 500µl on cells 

 37°C, 6h 

 Medium change 

 After three days RNA can be isolated 

 

4.1.6. Cellcounter: 

Cells were counted with Casy Cellcounter (Schärfe System GmbH). This is necessary for 

transfections and antibiotic-dosage-determinations. 

 

Material: 

PBS 

Trypsin 

100% EtOH 

Casyton 

Casy clean 

 

Procedure: 

 Medium of attached cells was sucked off 

 Add 2ml PBS 

 Suck of PBS 

 Add 1ml trypsin at cells 

 37°C, ~5‟ 

 Control of detaching via microscope 

 100µl for cells counting into 1.5ml tube 

 Casy Cellcounter has to be clean, so measuring with clean Casyton was done to ensure 

this 

 If it was found to not be clean, cleaning with Casy clean was done 

 Mix 50µl with 400µl 100% EtOH 

 Invert a few times 
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 Mix 50µl of this with Casyton 

 Measuring at Casy Cellcounter 

These peaks show the area of death cells. This could be stored for every cell line and for 

following measures only the right adjustments are necessary. 

 Mix 50µl of cells with Casyton 

 Measuring at Casy Cellcounter 

 Number of cells is announced 

 

4.1.7. Blasticidin dosage determination: 

Blasticidin (PAA, #P05-017) is a eukaryote antibiotic which inhibits peptide-bond formation 

in the ribosomal machinery and can be used for selection of lentiviral constructs from 

Invitrogen. 

 

Material: 

Medium 

Blasticidin stock solution (5mg/ml) 

 

Procedure: 

 Settling 10
4
cells/well into a 96 well plate with 100µl medium.  

 Used cell lines: U2OS, SW480-B, Saos2. SW480-R 

 37°C, o.n. 

 100µl of medium mixed with blasticidin with different concentrations with fivefold 

repetitions 

 37°C for one week 

 Daily control of cytotoxic effects with microscope 

 Neutral-red-uptake 
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Table 4.3.: Schema of 96well plate for blasticidin dosage determination: 

                        

  0 0 0 0 0 0 0 0 0 0   

  3 3 3 3 3 3 3 3 3 3   

  5 5 5 5 5 5 5 5 5 5   

  6 6 6 6 6 6 6 6 6 6   

  8 8 8 8 8 8 8 8 8 8   

  10 10 10 10 10 10 10 10 10 10   

                        

Number deals with used Blasticidin concentration. Unit was µg/ml. External wells were left 

blank. Two cell lines could be tested per 96well plate. First and second cell line (bold) had the 

same conditions, every row had the same blasticidin concentration, in every well of a cell line 

the same account of cells were settled. 

 

4.1.8. Neutral red uptake: 

Neutralred (Invitrogen, #N3246) are uncharged at neutral pH. It diffuses into lysozymes and 

because of the acidic pH it becomes an ion and cannot move out. Dead or hardly tattered cells 

do not have intact lysozymes and so they do not become red. 

For determination of effects of antibiotics neutral red uptake was done to count living cells 

according to protocol of laboratory of Brigitte Marian (Division of Cancer, Department of 

Medicine I, Comprehensive Cancer Center, Medical University Vienna). 

 

Material: 

Neutral red solution: 

 1mg neutral red 

 20ml serum free medium 

 37°C, 1h 

 Filtering 

PBS 
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NR-fix: 

 5ml glacial acetic acid 

 365ml 96% EtOH 

 130ml ddH2O 

 

Procedure: 

 Suck off medium 

 Add 0.2ml/96well neutral red solution 

 37°C, 2h 

 Suck off neutral red solution 

 Add 200µl/96well PBS 

 Shake gently 

 Suck of PBS 

 Add 100µl/96well NR-fix 

 Shaking gently, 5‟ 

 Measuring at photometer at 562nm and 620nm (as reference) 

 

4.1.9. Fluorescence activated cell sorting (FACS): 

FACS is a method for counting and examining cells and cellular particles. A stream of fluid 

with cells passing an electronic detection apparatus allows the analysis of light scattering and 

the associated fluorescent characteristics.  

Two different FACS-analyses were conducted. A GFP-FACS and a cell cycle FACS. FACS 

analyses were conducted by Dr. Irene Herbacek (Division of Cancer, Department of Medicine 

I, Comprehensive Cancer Center, Medical University Vienna). 

 

4.1.10. GFP-FACS: 

With GFP-vectors transient transfected cells were counted. 

 

Material: 

PBS 
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Procedure: 

 Suck of medium 

 Add 2ml PBS 

 Scratch 

 Carry over into FACS tube 

 FACS analyses were conducted by Dr. Irene Herbacek (Division of Cancer, 

Department of Medicine I, Comprehensive Cancer Center, Medical University 

Vienna) 

 

4.1.11. Cell cycle FACS: 

Cell cycle state of cells was determined by FACS analysis. 

 

Material: 

Trypsin/EDTA 

PBS 

10%FCS-MEM 

Nuclear isolation buffer: 

 10.5g citric acid (0.5M) 

 0.5ml TWEEN 

 ddH2O to 100ml 

RNase A: 

 Mix RNase A with PBS with a concentration of 1mg/ml 

 Aliquots in 1.5ml tubes 

 100°C, 15‟ 

 On ice 

 Stored at -20°C 

Propidium iodide: 

 Mix propidium iodide with PBS with a concentration of 0.5mg/ml 

 Stored away from light 
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Staining solution: 

 0.05ml RNase A 

 0.05ml propidium iodide 

 0.5ml PBS 

 

Procedure: 

Trypsinized: 

 Suck of medium 

 Add 2ml PBS 

 Suck of PBS 

 Add 2ml PBS 

 Suck of PBS 

 Add 500µl Trypsin/EDTA 

 37°C, 5‟ 

 5ml 10% FCS-MEM 

 Carry over into 15ml tube 

Scratched: 

 Suck of medium 

 Add 2ml PBS 

 Scratch 

 Carry over into 15ml tube 

Following steps were the same for both experimental approaches. 

 Centrifuge 1.000g, 5‟ 

 Discard supernatant 

 Resupend pellet in 1ml PBS 

 Centrifuge 1.000g, 2‟ 

 Every further work has to be done on ice 

 Add 1ml cold Nuclear isolation buffer 

 Mix well 

 On ice, 5‟ 

 Mix with pipette 

 Quality of nuclear disposal is visible via microscope 
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 Centrifuge 2.000g, 5‟, 4°C 

 Resuspend nuclear pellet in 0.5ml staining solution 

 Carry over into FACS-tube 

 Protect with aluminum foil 

 Measurements were conducted by Dr. Irene Herbacek 

 

4.2. Molecular Biology: 

 

4.2.1. Bacteria: 

Plasmid uptake of normal bacteria is not very efficient. Due to this bacteria have to become 

competent. This procedure destabilizes the bacterial membrane and enhances plasmid uptake. 

 

4.2.1.1. TOP10 Chemically Competent E. coli: 

The One Shot® TOP10 Chemically Competent E. coli strain (Invitrogen, #C404010) was 

highly competent (about 10
8
 per µg plasmid DNA) used for transformations if needed. 

 

4.2.1.2. DB3.1 Competent Cells: 

LIBRARY EFFICIENCY DB3.1 Competent Cells (Invitrogen, #11782-018) contains the 

gyrA462 allele which renders the strain resistance to the toxic effect of the ccdB gene which 

is present in destination-vectors for gateway reactions. 

 

4.2.1.3. Conditions for bacterial growth: 

LB Broth (Sigma-Aldrich Chemie GmbH, #L3022) were used as growing medium and if 

necessary antibiotics were added (kanamycin 50µg/ml, ampicillin 100µg/ml, chloramphenicol 

30µg/ml all Sigma-Aldrich Chemie GmbH #K1876. #A9393. #C0378). 
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Growth at: 

37°C 

o.n. (overnight)       on incubator (GFL 3031) 

200rpm 

If plates were used: 

 LB Broth with select agar (Sigma-Aldrich Chemie GmbH, #A5054) were mixed 

 Heated at microwave until select agar was dissolved 

 After this cooled down, the antibiotics were added (a temperature which is too high 

would destroy the antibiotics) 

 5-10 ml per plate were used 

 

4.2.2. Cloning Methods: 

 

4.2.2.1. SEM-Transformation of bacteria: 

SEM-transformation was done for transforming plasmids into competent E. coli TOP10 and 

DB3.1 cells as described [92].  

 

4.2.2.1.1. Producing competent cells: 

Self-produced competent cells transformation efficiency was about 10
6
 transformants per µg 

plasmid DNA as tested with pUC19. 
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Materials: 

10x TB-Buffer: 

 100mM Pipes 

 150mM CaCl2 

 2.5M KCl 

 With KOH at pH 6.7 regulated 

 Autoclaved 

550mM MnCl2 (sterile filtered, stored at +4°C, light protected) 

1x TB: 

 320ml ddH2O 

 40ml 10xTB 

 40ml 550mM MnCl2 

 

Procedure: 

 Single streak of competent cell on LB plate with antibiotics (Streptomycin, Sigma-

Aldrich, #S6501) 

 Picking colony 

 Overnight culture (LB with antibiotics) 

 2x 20-50µl of the o.n. culture in 2x 200ml LB without antibiotics (in two 1l bulb) 

 o.n. , ~200rpm, RT until an OD600 of 0.6 

 Cool down on ice 

 LB in 8x 50ml falcons, 20‟ on ice 

 15‟, 2.500g, 4°C 

 Supernatant is discarded 

 Every pellet is re-suspended with 5ml 1xTB 

 Merge into two falcons 

 10‟ on ice 

 10‟, 2.500g, 4°C 

 Supernatant is discarded 

 Every pellet is re-suspended into 5ml 1xTB 

 Merge into one falcon 

 DMSO (7 Vol%) 

 10‟ on ice 

 Portion every 700µl into 1.5ml tubes 
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 Quick-freeze with N2 

 Storing at -80°C 

 

4.2.2.1.2. Transformation of bacteria: 

 

Materials: 

SOB-medium: 

 20g Trypton/Pepton out of casein (Roth, #8952.1) 

 5g Select yeast extract (Sigma-Aldrich, #Y0500) 

 0.5g NaCl 

 10ml 250mM KCl 

 ddH2O to 1L 

 with NaOH to pH 7 

 autoclave 

SOC-medium: 

 SOB-medium 

 1/100 volume 1M MgCL2 

 1/100 volume 2M glucose 

 

Procedure: 

 Thaw competent cells on ice 

 Plasmid in 1.5ml tube on ice 

 Adding 200µl competent cells (blue tip with chopped end), mixing VERY carefully 

 20‟, on ice 

 Heatshock, 35‟‟, 42°C (waterbath) 

 Adding 800µl SOC-medium 

 Inverting 2x 

 Transferred into overnight culture tube 

 1h, 37°C, 200rpm 

 Transfer in 1.5ml tube 

 Centrifuge 1.000g, 3‟, RT 

 Discard large part of supernatant 
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 Resuspend pellet 

 Transfer on LB-plate (if necessary with antibiotics) 

 Dunk Trigalski spattle into EtOH, burn off 

 Plate bacterias with spittle 

 O.n. into incubator at 37°C 

 

4.2.2.2. Plasmid DNA isolation: 

 

4.2.2.2.1. STET Boiling Plasmid DNA Miniprep: 

The DNA isolation with a shortened protocol of the original STET Boiling Plasmid DNA 

Miniprep [93] does contain remaining proteins and other compounds potentially hindering 

cloning, so it was only used for screening of resulting transformants after cloning steps. 

 

Materials: 

STET-buffer: 

 8% Saccharose (Sigma-Aldrich, #84097) 

 0.5% Triton X-100 (Sigma-Aldrich, #T8787) 

 50mM Tris pH8 (Sigma-Aldrich, #T87602) 

 50mM EDTA (Sigma-Aldrich, #431788) 

 ddH2O to 1l and autoclaved 

 stored at +4°C 

Lysozyme: 50mg/ml stock (stored at -20°C, Invitrogen, #GIC207) 

RNase A: 100mg/ml stock (in 10mM Tris-HCL pH 7.5 and 15mm NaCl heat to 100°C and 

cool it to room temperature, stored -20°C) 

Isopropanol 

EtOH 75% 

 

Procedure: 

 1.5 ml of an overnight E.coli culture is transferred into 1.5ml tubes 

 Centrifuge 3‟, 10.000g 

 Supernatant is discarded 
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 This steps can be repeated (2-4x) to increase the plasmid yield 

 For each isolation mix 100µl STET buffer and 10µl Lysozyme 

 This 110µl are added, re-suspend pellet 

 5‟, RT 

 1‟, 95°C 

 Centrifuge 10.000g, 10‟, 4°C 

 Pellet carefully discard with a tooth peak prior soaked with RNase A solution 

 110µl isopropanol, mix 

 Centrifuge 10.000g, 15‟, 4°C 

 Supernatant is discarded 

 200µl EtOH 75% (4°C), not resolving 

 Supernatant is discarded 

 Pellet dry about 15‟ at RT 

 Pellet is re-suspended in 50µl 1xTE 

 Stored at -20°C 

 

4.2.2.2.2. Wizard
®
 Plus SV Minipreps DNA Purification Systems: 

The kit was used according to Promegas manufacturer's recommendations. All Materials 

required are contained in the kit (Promega, #A1460). 

 

Materials: 

Cell Re-suspension Solution 

Cell Lysis Solution 

Alkaline Protease 

Neutralization Solution 

Column Wash Solution 

Wizard SV Minicolumns 

Collection tubes 

 

Procedure: 

 Transferring 1.5 ml of an overnight E.coli culture into 1.5ml tubes 

 Centrifuge 2‟, 10.000g 

 Supernatant is discarded 
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 This steps was repeated (2-4x) to increase the plasmid yield 

 Re-suspend in 250µl Resuspension solution 

 250µl Lysis solution 

 Mix, incubate for 3‟ 

 10µl alkaline protease solution 

 Mix, incubate for 5‟ 

 350µl neutralization solution 

 10‟, 14.000g 

 Supernatant is transferred into spin column which is plugged into a collection tube 

 1‟, 14.000g 

 Flow-through is discarded 

 750µl wash solution 

 1‟, 14.000g 

 Flow-through is discarded 

 250µl wash solution 

 1‟, 14.000g 

 Flow-through is discarded 

 2‟, 14.000g 

 Put column on new clean 1.5ml tube 

 30µl nuclease free water 

 Incubation for 2‟ at room temperature 

 1‟, 14 000g 

 The flow-through is transferred on the spin column again (this increases the plasmid 

yield) 

 Incubation for 2‟ at room temperature 

 1‟, 14.000g 

 DNA stored at -20°C 

 

4.2.2.2.3. S.N.A.P.
TM

 MidiPrep Kit: 

This kit was used for isolate destination vectors for gateway reactions. It is necessary, because 

gateway reactions aren‟t work if other isolation kits are used (#K191001). 
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Material: 

S.N.A.P.
TM

 MidiPrep Column A (Filtering) 

S.N.A.P.
TM

 MidiPrep Column B (Binding) 

Resuspension Buffer with RNase A 

Lysis Buffer 

Precipitation Salt 

Binding Buffer 

Wash Buffer 

1x Final Wash Buffer 

 

Procedure: 

 Transfer bacterial culture into 50ml tubes 

 Centrifuge at 4°C with 4.000g, 10‟ 

 Discard supernatant 

 Transfer bacterial culture into 50ml tubes 

 Centrifuge at 4°C with 4.000g, 10‟ 

 Re-suspend with 4ml Resuspension Buffer 

 Add4ml Lysis Buffer 

 Invert 3-5 times 

 3‟, RT 

 Add 4ml Precipitation Salt 

 Invert 6-8 times 

 5‟ on ice, inverting twice during incubation 

 Transfer into Column A which is into a 50ml tube 

 Centrifuged 3.000g, 5‟ 

 Discard Column A 

 Add 12ml Binding Buffer to filtrate 

 Inverting twice 

 Transfer into Column B which is into a 50ml tube 

 Centrifuge 1.000g, 2‟ 

 Discard flow through 

 Add 5ml Wash buffer 

 Centrifuge 2.000g, 1‟ 

 Discard flow through 
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 Add 5ml 1x Final Wash Buffer 

 Centrifuge 2000g, 2‟ 

 Add 10ml 1x Final Wash Buffer 

 Centrifuge 2.000g, 2‟ 

 Discard flow through 

 Centrifuge 4.000g, 5‟ 

 Transfer column into a new 50ml tube 

 Add 750µl ddH2O 

 3‟, RT 

 Centrifuge 4.000g, 5‟ 

 Stored at -20°C 

 

4.2.2.3. Determination of nucleotide concentrations: 

Two different methods were used to determine the concentration of DNAs and RNAs, the 

Nanodrop ND-1000 Spectrophotometer (Peqlab) and the Qubit® Fluorometer (Invitrogen, 

Fisher Scientific). Both instruments were used according to the manufacturer's 

recommendations. Nanodrop measures optical density based on nucleotides and calculates 

their concentrations with a special formula. Qubit measures a dye that becomes fluorescent if 

it binds to DNA or RNA. 

Advantage of the Nanodrop: very quick, cheap 

Advantage of the Qubit: Only intact molecules are detected  

 

4.2.2.3.1. Nanodrop ND-1000 Spectrophotometer (Peqlab): 

 

Material: 

Solvent of nucleotide probe 

 

Procedure: 

 Starting program on PC 

 2µl ddH2O or 1xTE (depending on the solvent) to blank 
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 For every measurement 1-2µl sample 

 The instrument connected with a computer shows concentrations of the DNA or RNA 

and also purity (260/280 and 230/280 values shows containing salt, alcohol, proteins 

and other factors which absorb light at 260 or 230nm) 

 

4.2.2.3.2. Qubit® Fluorometer (Invitrogen, Fisher Scientific): 

All Materials are contained in the kit. Different kits for dsDNA, dsRNA, ssDNA and ssRNA 

are useable. For dsDNA Qubit® dsDNA BR Assay Kit (Invitrogen, #Q32850) was used. 

 

Materials: 

Quant-iT™ buffer 

Quant-iT™ reagent 

Quant-iT™ Standard #1 

Quant-iT™ Standard #2 

Qubit™ assay tubes 

 

Procedure: 

 All reagents should be at room temperature 

 Qubit™ assay tubes were used to mix the samples 

 Mix 199µl Quant-iT™ buffer with 1µl Quant-iT™ reagent for every sample plus two 

for the standards. That‟s the Quant-iT™ working solution 

 Mix Quant-iT™ Standard #1 and Quant-iT™ Standard #2 with ever 190µl working 

solution 

 1µl of every sample get mixed with 199µl working solution (if bigger amounts are 

needed more sample and in return less working solution can be used) 

 Vortex 

 2‟, RT 

 Starting program on PC 

 Calibrate with standards 

 

The formula to calculate the concentration is: 

Concentration of DNA = QF value × (200)/µl of sample 
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4.2.2.4. DNA-restriction: 

To cut DNA restriction endonucleases can be used. These enzymes detect special nucleotide 

sequences and cut at a determined position. 

DNAs were cut with restriction endonucleases from Fermentas. All of them were used with 

the recommended buffers of Roche and at 37°C for 90 minutes if not other mentioned. 

 

4.2.2.5. DNA-Ligation: 

To link DNA fragments ligation is necessary. Under ATP consumption 5‟ end and 3‟ of DNA 

are connected. Only phosphorylated nucleotides can be connected at this way. 

For ligations Fast-Link™ DNA Ligation Kit (Epicentre biotechnology, #LK11025) was used. 

All Materials are contained in the kit. 

 

Material: 

10x Fast-Link buffer 

ATP (10mM) 

Fast-Link DNA ligase (2u/µl) 

 

Procedure: 

For blunt end ligations: 

 1.5µl Fast-Link buffer into 1.5ml tube 

 Add 0.75µl ATP 

 Add vector DNA (1) 

 Add insert DNA (5) 

 Add ddH2O to 14.5µl 

 Add 0.5ml Fast-Link DNA ligase 

 RT, 15‟ 

 Heat inactivation, 70°C, 15‟ 

For cohesive ends ligation: 

 1.5µl Fast-Link buffer into 1.5ml tube 

 Add 1.5µl ATP 

 Add vector DNA (1) 
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 Add insert DNA (2) 

 Add ddH2O to 14.5µl 

 Add 0.5ml Fast-Link DNA ligase 

 RT, 5‟ 

 Heat inactivation, 70°C, 15‟ 

 

4.2.2.6. Linker preparation: 

Before use the linker that is necessary for the cloning strategy had to be perpetrated. 

The linker had to be annealed, phosphorylated and into the pENTR/D/hH1 vector ligated. The 

sequence was: AATTGTCGAC. This includes a SalI restriction site and EcoRI recognition 

sites at the ends. A self-annealing was so possible and a new SalI restriction site was included 

into pENTR/D/hH1 vector. 

 

4.2.2.6.1. Linker dsDNA annealing: 

Procedure from http://strucutre.biochem.queensu.ca/protocols/linkerligation.pdf 

 

Material: 

1M NaCl 

 

Procedure: 

 18µl Linker (5.4µg) into PCR-tube 

 Add 2µl 1M NaCl 

 95°C, 2‟ 

 52°C, 10‟ 

 4°C 

Before ligation nucleotide phosphorylation was necessary. 

 

 

 

http://strucutre.biochem.queensu.ca/protocols/linkerligation.pdf


57 
 

4.2.2.6.2. Linker DNA phosphorylation: 

The phosphorylation step adds a phosphate at the 5‟ end of the linker. T4 Polyonucleotide 

Kinase (Fermentas, #EK0031) was used. All Materials required are contained in the kit. 

 

Material: 

10x Reaction Buffer A 

ATP (10mM) 

T4 Polynucleotide Kinase (10u/µl) 

 

Procedure: 

 2µl Linker (546ng) into 1.5ml tube 

 Add 2µl 10x Buffer A 

 Add 1µl ATP 

 Add 14µl ddH2O 

 Add 1µl T4 Polynucleotide Kinase 

 37°C, 30‟ 

 65°C, 15‟ 

 4°C 

 

4.2.2.6.3. Linker plus DNA plasmid ligation and transformation: 

After phosphorylation linker was integrated into pENTR/D/hH1 via ligation. Materials like 

described at point 4.2.2.6.2. 

 

Procedure: 

 1µl Linker (27ng) into 1.5ml tube 

 Add 2µl Ligation Buffer 

 Add 2µl ATP 

 Add 10µl Plasmid DNA (pENTR/D/hH1. 223ng) cut with EcoRI 

 Add 3µl ddH2O 

 Add 2µl Ligase 

 16°C, o.n. 

 Heat inactivation, 65°C, 20‟ 
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Before transformation EcoRI recut was conducted. 

 

Procedure: 

 10µl of ligation solution into 1.5ml tube 

 Add 3µl H-Buffer (Roche) 

 Add 16µl ddH2O 

 Add 1µl EcoRI (10U/µl) 

 37°C, 60‟ 

 Heat inactivation, 65°C, 20‟ 

 Transformation like described 4.2.2.1. 

 

4.2.2.7. Fill in and partial fill in of restricted DNA overhangs: 

As Klenow fragment the bigger protein part of DNA polymerase I from E.coli is called after 

cleavage with subtilisin. This fragment has the ability for 5‟-> 3‟ polymerase activity and 3‟ -

> 5‟ exonuclease activity (proof reading). 5‟ -> 3‟ exonuclease activity is not available any 

more. 

Klenow fragment kit (Fermentas, #EP0051) was used. The kit was used according to the 

manufacturer's recommendations for partial and complete fill in in different steps during the 

establishment of the plasmid construct. For partial fill in the dNTP Mix wasn‟t used. Instead 

single dNTPs at the same concentration as for dNTPs were used. All Materials are contained 

in the kit. 

 

Material: 

10x Reaction Buffer for Klenow fragment 

dNTP Mix (2nM each) 

Klenow fragment (10u/µl) 

 

Procedure: 

 DNA (100-400ng) into 1.5ml tube 

 Add 2µl 10x Reaction Buffer 

 Add 0.5µl dNTP Mix (final concentration of 0.05mM) 

 Add ddH2O to 19.5µl 
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 Add 0.5µl Klenow fragment (10u/µl) 

 37°C, 10‟ 

 Heat inactivation, 75°C, 10‟ 

For partial fill in: 

For psp73 with telomere fragment after BglII and BamHI cut, dGTP and dATP were used. 

For pENTR/D/hH1 Linker after SalI cut, dTTP and dCTP were used. 

For promoter deletion: Deletion of hH1 promoter of pENTR/D/hH1 Antisense Tel only 

required a fill in after BamHI and ClaI cut. Deletion of hH1 promoter of pENTR/D/hH1 

Sense Tel after BamHI and SacI cut, exonucleolytic activity of Klenow fragment was used to 

create blunt ends. At this reaction solution without dNTP Mix was incubated 10‟ on 37°C, the 

dNTP Mix were added and 10‟ at 37°C incubated. 

 

4.2.2.8. Gel-extraction: 

For gel-extraction QIAEX II Gel Extraction Kit (Qiagen, #20021) were used. The kit was 

used according to the manufacture‟s recommendations and all materials are contained in the 

kit. 

 

Material: 

Buffer QX1 

QIAEX II 

Buffer PE 

 

Procedure: 

 DNA was cut out from gel with a scalpel 

 Transfer into 1.5ml tube 

 Weight the out cut gel 

 Add 3 volumes of Buffer QX1 (for instance: 100mg sample = 300µl Buffer QX1) 

 Vortex QIAEX II 

 Add 10µl QIAEX II (if more than 2µg DNA is present, than more QIAEX II is 

necessary) 

 50°C, 10‟, shaking with 600rpm 
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 Centrifuge 13.000rpm, 30sec. 

 Discard supernatant 

 Add 500µl Buffer QX1. vortex 

 Centrifuge 13.000rpm, 30sec. 

 Discard supernatant 

 Add 500µl Buffer PE, vortex 

 Centrifuge 13.000rpm, 30sec. 

 Discard supernatant 

 Add 500µl Buffer PE, vortex 

 Centrifuge 13.000rpm, 30sec. 

 Discard supernatant 

 Air-dry pellet 

 Add 10µl ddH2O and re-suspend 

 Centrifuge 13.000rpm, 30sec. 

 Pipet supernatant into clean tube 

 Stored at -20°C 

 

4.2.2.9. Gateway cloning system: 

Gateway® Cloning of Invitrogen gives the ability to transfer DNA fragments directly without 

cutting steps and searching for compatible restriction enzyme sites. It based on the recombi-

nation system of viruses which are able to transfer their DNA without the cutting of genomic 

DNA. DNA fragment has to be in the rfb-cassette of an ENTR-vector. This cassette is flanked 

by att R sites, which serve as recognition sites for exchange. With a LR-reaction the fragment 

is exchanged with the fragment of a Destination-vector that is flanked by att L sites. If 

necessary the reaction is reversible with a BP-reaction. Advantages are that easy transfer of 

DNA is possible and selection is very easy (Figure 4.1.). ENTR-vectors of Invitrogen always 

have gene coding for kanamycin resistance and Destination-vectors always have a gene 

coding for ampicillin resistance. Destination vector cassettes also include a gene for 

chloramphenicol resistance and a ccd B gene which has lethal effects except of some bacterial 

strains which contain gyrA462 allele. Gateway® LR Clonase® enzyme mix (Invitrogen, 

#11791019) was used. 
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Figure 4.1.: Gateway® technology: If the gene of interest is cloned into an ENTR-vector 

(middle circle) it‟s possible to transfer it into every destination vectors of interest (other 

circles) via site specific recombination. Also it‟s possible to transfer the gene back from 

destination vectors into an ENTR-vector. Schema taken from [94]. 

 

Material: 

1x TE Buffer 

 10mM Tris, pH 7.4 

 1mM EDTA, pH 8.0 

LR Clonase
TM

 II enzyme mix 

Proteinase K 

 

Procedure: 

 pENTR-vector (10fmol) into a 1.5ml tube 

 Add Destination-vector (20fmol) 

 Add 1x TE buffer to 4µl 

 Add 1µl LR Clonase
TM

 II enzyme mix 

 Vortex 
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 25°C, o.n. 

 Add 1µl Proteinase K 

 37°C, 10‟ 

 Transformation 

 

4.2.2.10. Plasmid constructs: 

Table 4.4.: Plasmids used and/or constructed in this study: pAd means Adenoviralvectors, 

Kan = Kanamycin, Amp = Ampicilin 

Plasmid: Origin/Construction: Resistance: 

pENTR/D/hH1-

shNMP265 
pENTR/D/hH1 vector with an shNMP265 insert 

Kan 

pENTR/D/hH1-

shNMP265 ΔSalI 

Elimination of SalI restriction site by cuting and fill in 

(5.1.2.1.) Kan 

pENTR/D/hH1 

ΔshNMP265 ΔSalI 

Elimination of shNMP265 by EcoRI cut end 

religation (5.1.2.2.) Kan 

pENTR/D/hH1 Linker Insert of Linker (5.1.2.3.) Kan 

pENTR/D/hH1 Sense 

Tel 

Insert of telomere fragment in sense orientation 

(5.1.3.2.) Kan 

pENTR/D/hH1 

Antisense Tel 

Insert of telomere fragment in antisense orientation 

(5.1.3.1.) Kan 

pENTR/D/Sense Tel 

ΔhH1 

Elimination of hH1 promoter of pENTR/D/hH1 Sense 

Tel (5.1.4.1.1.) Kan 

pENTR/D/Antisense 

Tel ΔhH1 

Elimination of hH1 promoter of pENTR/D/hH1 

Antisense Tel (5.1.4.1.2.) Kan 

psp73 Tel 

psp73 vector with an integrated 800bp telomere repeat 

(TTAGGG), Received from Dr. Yasuhiko Kiyozuka 

M.D., PH.D:, Department of Pathology II, Kansai 

Medical University Osaka Amp 

pAd/PL-DEST™ 

Gateway® Vector 

Invitrogen, #V494-20. adenoviral promoterless 

gateway vector Amp 

pAd/pl Sense Tel 
Gateway reaction of pENTR/D/hH1 Sense with 

pAd/pl (5.1.5.1.2.) Amp 

pAd/pl Antisense Tel 
Gateway reaction of pENTR/D/hH1 Antisense with 

pAd/pl (5.1.5.1.2.) Amp 

pAd/CMV/V5-DEST™ 

Gateway® Vector 

Invitrogen, #V493-20. adenoviral gateway vector with 

CMV promoter Amp 

pAd/CMV Sense –hH1 

Tel 

Gateway reaction of pENTR/D/Sense ΔhH1 with 

pAd/CMV (5.1.5.1.2.) Amp 

pEGFP-C1 
Used as efficiency control for transfection 

experiments (Clontech) Kan 

pLenti6/Block-itTM-

DEST 

Lentiviral promoterless expression vector from 

Invitrogen (#K4943-00) Amp 

pLenti6/UbC/V5-DEST 
Lentiviral expression vector with UbC promoter from 

Invitrogen (#V499-10) Amp 
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4.2.3. RNA-Isolation by Trizol: 

RNAs isolated from cell lines were used for expression study experiments. 

 

Materials: 

TRIzol® Reagent (Invitrogen, #15596026) 

Chloroform 

Isopropanol 

Ethanol 75% 

RNasin Plus RNase Inhibitor (Promega, 40u/µl, #N2611) 

1x TE as solvent 

 

Procedure: 

 Cell lines of 6wells or T25 were pelletized, shock frozen in liquid nitrogen and stored 

at -80°C 

 Frozen pellets were immediately mixed with Trizol (depending on cell count 250-

1000µl) to save RNA from degradation as good as possible 

 Mixed 

 For expression studies cells under culture conditions were directly, after suction of 

medium sheeted with Trizol (depending on cell count 250-1000µl) and scrapped to 

dissociate from bottom 

 This cells were transferred into a 1.5ml tube 

Now the following procedures were the same. 

 5‟, RT 

 Add chloroform (100µl/500µl trizol) 

 Vortex 15‟‟ 

 2-3‟, RT 

 Centrifuge 12.000g, 15‟, +2-8°C 

 3 phases (bottom red organic phase, middle interphase, above clear aqueous phase) 

 Aqueous phase in new tube (RNase free!) 

 Rest storing for DNA and protein isolation 

 Add Isopropanol (250µl/500µl trizol) => precipitation 

 Mix 

 10‟, RT 
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 Centrifuge 12.000g, 10‟, +2-8°C 

 Discard supernatant 

 Add 75% Ethanol (500µl/500µl trizol) 

 Short vortexing 

 Centrifuge 7.600g, 5‟, 4°C 

 Discard supernatant 

 Dry pellets at RT 

 Resolve pellets in 30µl RNase free ddH2O with 1/100 volume heat stable RNasin Plus 

(Promega 40U/µl) 

 Store at -80°C 

After thawing and before measuring RNA has to be heat to 55-60°C for 10‟ to prevent 

accumulation of RNA-aggregates. 

 

4.2.4. Genomic DNA-Isolation by Trizol: 

Remains of RNA-Isolation by Trizol used for genomic DNA-Isolation. 

 

Material: 

100% EtOH 

0.1M Na-Citrat in 10% EtOH 

75% EtOH 

8mM NaOH (pH 9) 

0.1M HEPES (Invitrogen, #15630049) 

15mM EDTA 

 

Procedure: 

 Remains of RNA Isolation at RT 

 Centrifuge 12.000g, 10‟, 4°C 

 If part of aqueous phase is already there, removing 

 Add 100% EtOH (150µl/500µl Trizol) 

 Inverting a few times 

 RT, 2-3„ 

 Centrifuge 2.000g, 5„, 4°C 
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 Pellet should be visible 

 Upper one (phenol-ethanol phase) discarded (could be used for protein isolation, but 

wasn‟t used in this study) 

 Add 0.1M Na-citrat in 10% EtOH (500µl/500µl Trizol) 

 Mix 

 RT, 30‟ 

 Centrifuge 2.000g, 5‟, 4°C 

 Discard supernatant 

 Add 0.1M Na-citrat in 10% EtOH (500µl/500µl Trizol) 

 Mix 

 RT, 30‟ 

 Centrifuge 2.000g, 5‟, 4°C 

 Discard supernatant 

 Add 0.1M Na-citrat in 10% EtOH (500µl/500µl Trizol) 

 Mix 

 RT, 30‟ 

 Centrifuge 2.000g, 5‟, 4°C 

 Discard supernatant 

 Re-suspend pellet in 75% EtOH (1ml/500µl Trizol) 

 RT, 15‟ 

 Centrifuge 2.000g, 5‟, 4°C 

 Discard supernatant 

 Air-dry 

 Add 50µl 8mM NaOH 

 30‟ dissolving 

 Add 7µl 0.1M HEPES 

 Add 4µl 15mM EDTA 

 Stored at -20°C 

 

4.2.5. Genomic DNA isolation by Maxwell® DNA Purification Kit: 

Genomic DNA isolated with (Promega) leads to a higher purification than with Trizol isolated 

gDNA. DNAs isolated with Trizol also aren‟t able to be cut by restriction enzymes (reference 

diploma thesis of Sandra Sampl). DNA is isolated automatically as shown in Figure 4.2. 
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Figure 4.2.: Maxwell® DNA Purification Kit cartridge: Sample is loaded into well 1 

containing lysis buffer. In Maxwell Purification System sample is automatically transferred 

from well to well. At the end clean genomic DNA is eluted in elution buffer into elution tube 

(not shown). Schema taken from [95]. 

 

Material: 

Cartridge 

Plunger 

Elution Tube 

Elution Buffer 

 

Procedure: 

 300µl Elution buffer is added into elution tube 

 Sample is added into well 1 containing lysis buffer 

 Cartridge is put into Maxwell®16 instrument 

 Program Tissue is used 

 After procedure DNA is contained in elution buffer 

 Transferred into 1.5ml tube 

 Stored at -20°C 

 

4.2.6. Complementary DNA-synthesis: 

RNA is very sensitive for depletion and degradation and PCR systems are optimized for 

DNAs. So RNA get converted to so called complementary DNA (cDNA) via reverse 



67 
 

transcriptase activity of RNA-viruses which use them to transcript their RNA genome into 

DNA to integrate it into host cells. 

 

cDNA-synthesis was used for gene expression experiments with real-time PCR. RNAs used 

for cDNA-synthesis were reverse transcribed with RevertAid™ Premium First Strand cDNA 

Synthesis Kit (Fermentas Molecular Biology Tools, #K1621). 

 

Material: 

5x RT-buffer 

dNTP mix (10nM) 

Random hexamer primer 

RevertAid™ Premium Enzyme Mix (containing RevertAid™ M-MuLV Reverse Transcrip-

tase, 200u/µl) 

RNase Inhibitor (20u/µl) 

 

Procedure: 

 500ng RNA into PCR tube 

 Add 0.5µl Random hexamer primer 

 Add nuclease free H2O to 6µl 

 70°C, 5‟ 

 On ice 

 Add 4µl Mastermix 

o 2µl 5x RT-buffer 

o 0.5µl RNase Inhibitor 

o 1µl dNTP mix 

o 0.5µl RevertAid™ Premium Enzyme Mix 

 Mix 

 Tubes into PCR-cycler 

 28°C, 15‟ 

 42°C, 60‟ 

 70°C, 10‟ 

 On ice, 5‟ 

 Fill up with ddH2O at 250µl (resulting concentration: 2ng/µl) 
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4.2.7. Gel-electrophoresis: 

Gel-electrophoresis is used to spate DNA fragments addicted to size and conformation. Two 

different types of gel-electrophoreses were used, agarose-gel-electrophoresis and 

polyacrylamide gel electrophoresis (PAGE) essentially performed as described in 4.2.7.1. and 

4.2.7.2. Longer DNA fragments (over 500bp) were identified with agarose-gel-

electrophoresis, shorter or short differences were identified with PAGE. Also a denaturing 

RNA-agarose-gel was done to check up RNA quality. 

 

4.2.7.1. Agarose gel-electrophoresis: 

Agarose gel-electrophoresis as a standard molecular biological method was very often used 

normally under the same conditions. 

 

Material: 

SeaKem® LE agarose (Boizym, #849001) 

50x TAE Buffer: 

 242g Tris base 

 57.1ml glacial acetic acid 

 100ml 0.5M EDTA (pH 8) 

 ddH2O to 1l 

 autoclave 

6x Loading Buffer: 

 60mM EDTA 

 10mM Tris HCl (pH 7.6) 

 0.03% Bromophenol blue 

 0.03% Xylen blue 

 60% glycerol 
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λ-Marker III: 

 50µg λ-DNA 

 42µl buffer B (Roche) 

 4µl HindIII 

 4µl EcoRI 

 ddH2O to 417µl 

 37°C, o.n. 

 83µl 6x loading buffer 

Mass Ruler
TM

 High Range DNA Ladder, ready to use (Fermentas, #SM0393) 

 

Procedure: 

 Weigh Agarose powder and fill up with water (normally 1% agarose-gels were used, 

1g at 100ml) 

 Solution heated at microwave until powder was dissolved 

 Add 50x TAE Buffer (2ml at 100ml) 

 Agarose cooled and then fuelled into gel chamber 

 Putting a ridge in the gel and the whole gel cooled until agarose becomes solid 

 Removing ridge 

 Putting gel with chamber into gel apparatus 

 Filling gel apparatus with 1x TAE Buffer 

 Adding 6x Loading Buffer to each sample 

 Samples are loaded into slots 

 Adding also a marker (Mass Ruler
TM

 High Range DNA Ladder and/or λ-Marker III) 

into s slot 

 Running gel with 80V, 120‟ (power supply: BioRad Power Pac Basic) 
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4.2.7.2. Polyacrylamid gel electrophoresis (PAGE): 

 

Material: 

40 x TAE: 

 96.8 g Tris base 

 22.8 ml glacial acetic acid 

 40ml EDTA (pH 8. 0.5 M) and fill to 1000 ml with ddH2O and autoclave 

Acrylamide/Bis 19:1 Solution (Biorad, # 161-0144) 

25% APS (Ammoniumperoxodisulfate, Sigma-Aldrich, #A3678) 

TEMED (N,N,N´,N´-Tetramethylethylenediamine, Sigma-Aldrich, #T9281) 

GeneRuler™ 50bp DNA Ladder Mix, ready to use (Fermentas, #SM0333) 

 

Procedure: 

 12.6ml ddH2O 

 Add 375µl 40x TAE 

 Add 1.95ml Acrylamide/Bis 19:1 Solution (Biorad) 

 Add 20.8µl 25% APS (Ammoniumperoxodisulfate, MERCK, Germany) 

 Add 20.8µl TEMED (N,N,N´,N´-Tetramethylethylenediamine, Sigma, USA) 

 Mix 

 Poor in prepared trays for gels (BioRAd PAGE system3) 

 Put ridge in gel 

 Wait until gel is solid 

 Remove ridge 

 Add 6x Loading Buffer to each sample 

 Loading sample into slots 

 Loading GeneRuler™ 50bp DNA Ladder in one slot 

 Running gel with 80V, 1h, with a power supply (Power Pac 3.000. Biorad, USA) 

 

4.2.7.3. RNA-agarose-gel: 

Denaturing RNA-agarose-gel was done to check up RNA quality before cDNA synthesis. 

Ratio of 28S to 18S RNA bands shows the status of RNA degradation. Procedure as described 

in Atlas® Pure Total RNA Labeling System [96]. 
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Material: 

SeaKem® LE agarose  

10x MOPS Buffer: 

 41.85g MOPS (Sigma-Aldrich, #M3183) 

 3.68g NaOAc*3H2O 

 1.86g EDTA 

 ddH2O to 200ml 

 5N NaOH 

 pH 7 

 ddH2O to 250ml 

 Autoclave 

12.3M formaldehyde 

Loading solution: 

 45µl formamide 

 45µl 12.3M formaldehyde 

 10µl 10x MOPS Buffer 

 3.5µl Ethidium bromide (10mg/ml) 

 1.5µl 0.1M EDTA (pH 7.5) 

 8µl bromphenol blue dye and xylene dye (in 50% gycerol) 

 

Procedure: 

 1g agarose 

 82.5ml ddH2O 

 Add magnetic stir bar 

 Heating at microwave until agarose is dissolved 

 Cool down on magnetic stir-plate 

 Add 10ml 10x MOPS 

 Add 7.5ml 12.3M formaldehyde 

 Pour onto gel tray 

 Put ridge into gel 

 Waiting until gel is solid 

 Remove ridge 

 Fill gel apparatus with 1x MOPS as running buffer 
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 Before use RNA-samples is heated to 56°C, 10‟ to prevent accumulation of RNA-

aggregates 

 1µg RNA into 1.5ml tube 

 Add 10µl Loading solution 

 70°C, 15‟ 

 Cool on ice 

 Load on gel 

 Run gel with 80V until lower band reach last third of gel 

 

4.2.7.4. Visualisation: 

To visualize DNA on agaraose-gel or PAGE, gels were stained by Ethidium Bromide 

(1:10.000 dilution, Sigma-Aldrich, #160539) for 10‟ and UV irradiated with GelDoc System 

(BioRad) or Typhoon TRO Variable Mode Imanger (GE Healthcare). 

 

4.2.7.5. Marker: 

Used markers for length determination of nucleotides after gel electrophoresis (Figure 4.3.). 

(a)       (b) 

 

Figure 4.3.: Used length markers 

(a): λ-marker map 

(b): Mass Ruler map 
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4.2.8. Real time polymerase chain reaction (Real Time-PCR): 

PCR is a molecular biological assay that allows amplifying specific DNA sequences. This 

method, invented by Kary Mullis, is today one of the most used techniques in molecular 

biological laboratories. 

Primers, which are short oligonucleotides which bind to complementary sequences at 

template DNA, define amplifying part. Normally they have a length of 15 – 30 nucleotides. 

DNA-polymerase produces with free dNTPs (deoxy-nucleo-triphosphates) a new DNA. They 

are regulated by different steps. Polymerase derived from thermus aquaticus, a bacterium that, 

lives in geysers. This polymerase, called taq-polymerase survives high temperatures like 

appear in PCR-steps. 

PCR-steps: 

 Denaturation: 

DNA-strands are separated by heating to 95°C 

 Annealing: 

Primers bind to complementary sequence at single strand template DNA. Temperature 

is primer dependent. Primer has to be in molar excess over DNA to force binding. 

 Extension: 

Polymerase recognizes free 3‟ of primer and adds nucleotides. A new DNA strand is 

produced. Polymerase works as long as temperature permits it or until template ends. 

These steps are repeated 40 times to produce billions of requested DNA fragments. Often 

annealing step and extension step are combined to reduce time. 

Real Time-PCR was used to investigate expression of TERRA, telomere length and for 

determination of 2p subtelomeric methylation. 

 

4.2.8.1. Apparatus and Software for analyses: 

All measurements were done at the same apparatus, 7500 Fast Real Time PCR System 

(Applied Biosystem) and analysed with 7500 software v2.0.3. 
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4.2.8.2. Gene expression and telomere length Real Time-PCR: 

Real Time-PCRs were done with GoTaq® qPCR Master Mix (Promega, #A6001). Telomere 

length measuring based onto O‟Callaghan et al. [97]. 

 

Material: 

2x GoTaq® qPCR Master Mix 

100x CRX Reference Dye 

Tel1b primer 

Tel2b primer 

 

Procedure: 

 For telomere length 30ng/96well were used 

 For TERRA expression analyses 8ng/96well were used 

 Before use of 2x GoTaq® qPCR Master Mix it had to be mixed with 100x CRX 

Reference Dye (1µl 100x CRX Reference Dye with 99µl 2x GoTaq® qPCR Master 

Mix) 

 Mix Tel1b and Tel2b as forward and reverse primer 

 Add 0.16µl primer mix (200nM) with 4µl 2x GoTaq® qPCR Master Mix with 100x 

CRX Reference Dye per sample 

 Mix 

 Pipetting 4µl master mix/96well with a low retention tip 

 Pipetting 4µl sample/96well 

 Sealing plate 

 PCR-Program: 

o 95°C, 5‟ initial denaturation 

o 95°C, 30‟‟ denaturation      40 cycles 

o 60°C, 1‟ annealing/extension 

o 60°C, 5‟ final extension 

o Melt curve 

 

4.2.8.3. 2p subtelomeric methylation specific RT-PCR: 

Based on recent publication of Kanel et al. (2010) [98]. 
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FastDigest® MspI and FastDigest® HpaII (Fermentas, #FD0544. #FD0514) were used as 

restriction enzymes. RT-PCRs were done with Maxima® SYBR Green/ROX qPCR Master 

Mix (Fermentas, #K0251). 

 

Sequence of 2p TERRA promoter region: 

CTGCATAAGCGCACAGTCGCAAGCCGCCAGGCGCGGAGCGTGGGGGTGGCGGGG

TGCAGGCGCAGAGACGGACGTCCCCGGGGGCGCGGCACAGAGACAGGTGGAAC

CTCAATAATCCGAAAAGCCGGGCTC 

Figure 4.4.: Sequence of amplified 2p TERRA promoter region by 2p(new) primer 

(Table 4.7.): Bold and underlined nucleotides show recognition sequence for restriction 

enzymes MspI and HpaII. 

 

Material: 

Sham-buffer: 

 10mM Tris 

 100mM NaCl 

 1mM dithiothreitol (Sigma-Aldrich, #43817) 

 0.1nM EDTA 

 200g/L BSA (Sigma-Aldrich, #A2153) 

 500ml/L glycerol 

MspI, non-methylation sensitive restriction enzyme 

HspII, methylation sensitive restriction enzyme with the same recognition sequence as MspI 

 

Procedure: 

 For 2p subtelomeric methylation specific RT-PCR 30ng/96well were used 

 Mix CFTR as forward and reverse primer for housekeeping control MP_HC2 forward 

and reverse for 2p subtelomeric region 

 Add 0.16µl primer mix (200nM) with 4µl Master Mix per sample 

 Pipetting 4µl master mix/96well with a low retention tip 

 Pipetting 4µl sample/96well 

 Short before PCR-start 0.3µl of restriction enzyme was added or sham buffer as 

control 

 Sealing plate 
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 PCR-Program: 

o 37°C, 10‟ restriction enzymes cuts 

o 95°C, 2‟ initial denaturation 

o 95°C, 15‟‟ denaturation        40 cycles 

o 60°C, 1‟ annealing/extension 

o 60°C, 5‟ final extension 

o Melt curve 

For determination of methylation percentage following formula was used [98]: 

Methylation percentage = 2
(CTuncut – CTHpaII)

*100 

Also percentage of successful cut was determined as control by a self developed formula: 

Cut percentage = (1 - 2
(CTuncut – CTMspI)

)*100 

 

4.2.8.4. Primer design and in-silico validation: 

Primers for RT-PCR were designed with the program CloneManager 9 (Scientific & 

Educational Software). Primers and target sequences were validated for product size and 

melting properties. DNA sequences were obtained from public database at the National 

Center Of Biotechnology Information (http.//www.ncbi.nlm.nih.gov). 

 

4.2.8.5. Primer sequences: 

Primer for housekeeping gene 36B4 and β-actin were self-designed. Primers for TERRA and 

telomere length were also taken from literature [97] and have some special properties: 

 The polymerase can start at the 3´-end, but only if primers are bound to telomeric 

sequence. If two primers bind themself and produce a dimer polymerase it is not able 

to work, because every fifth and sixth base pair will give a mismatch. So the base on 

the 3´ end remains unpaired and polymerase cannot start elongation. 

 These primers have six bases on their 5‟ end, which do not pair, when the rest of the 

primers are annealed to telomeric sequence. The counterpart for these six bases is built 

on the 3‟ end of each produced amplicon and should inhibit binding of primers 

somewhere in the middle of the amplicon. 
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Subtelomeric TERRA specific primers were self-designed or taken from literature. 10q [73] 

and 10p [72] were from literature, 18p and 2p self-designed with CloneManager 9 (Table 4.5., 

4.6. and 4.7.). 

 

Table 4.5.: Primers for housekeeping genes: Optimal Tm and GC-content were determined 

by Clonemanager9 

Gene: Primer: Sequence: 

optimal 

Tm: 

GC-

content: 

36B4 
36B4-fwd 5´-CAG CAA GTG GGA AGG TGT AAT CC-3´ 65°C 52% 

36B4-rev 

5´-CCC ATT CTA TCA TCA ACG GGT ACA A-

3´ 64°C 44% 

β-actin: 

β-actin-

fwd 5„-GGA TGC AGA AGG AGA TCA CTG-3„ 62°C 52% 

β-actin-

rev 5„-CGA TCC ACA CGG AGT ACT TG-3„ 62°C 55% 

 

Table 4.6.: Primers for telomere length and TERRA: Optimal Tm and GC-content were 

determined by Clonemanager9 

Gene: Primer: Sequence: 

optimal 

Tm: 

GC-

content: 

TERRA/telo-

mere length 

tel1b 

5´-CGG TTT GTT TGG GTT TGG GTT 

TGG GTT TGG GTT TGG GGT-3´ 78°C 51% 

tel2b 

5´-GGC TTG CCT TAC CCT TAC CCT 

TAC CCT TAC CCT TAC CCT-3´ 77°C 53% 

Chromosome 

2p: 

chr2_590 

5´-TAA GCC GAA GCC TAA CTC GTG 

TC-3´ 66°C 52% 

chr2_738 

5´-GTA AAG GCG AAG CAG CAT 

TCT CC-3´ 66°C 52% 

Chromosome 

18p: 

chr18_617 

5´- CCT AAC CCT CAC CCT TCT 

AAC-3´ 61°C 52% 

chr18_725 

5´-ACC AGC CAC CAC TTT CTG ATA 

GG-3´ 66°C 52% 

Chromosome 

10p: 

chr10p_fwd 

5´-TAA AAA TGT TTC CCG GTT GC-

3´ 59°C 40% 

chr10p_rev 

5´-CAC CCT CAC CCT AAG CAC AT-

3´ 63°C 59% 

Chromosome 

10q: 

chr10q_fwd 5‟-GAA TCC TGC GCA CCG AGA T-3‟ 64°C 40% 

chr10q_rev 

5‟-CTG CAC TTG AAC CCT GCA ATA 

C-3‟ 64°C 50% 
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Table 4.7.: Primers for 2p subtelomeric methylation specific Real time-PCR: Optimal 

Tm and GC-content were determined by Clonemanager9 

Gene: Primer: Sequence: 

optimal 

Tm: 

GC-

content: 

CFTR: 
CFTR fwd 5'-TTC CAG GTC CGT GTC CTT A-3' 62°C 51% 

CFTR rev 5'-GAA GGA GGG TCT AGG AAG C-3' 60°C 57% 

2p (new): 
HC2_fwd 5'-CTG CAT AAG CGC ACA GTC-3' 60°C 55% 

HC2_rev 5'-GAG CCC GGC TTT TCG GAT-3' 64°C 61% 

 

4.2.8.6. Evaluation of Real-Time PCRs: 

Efficiency (E) of β-actin, 36B4 and TERRA were measured prior. β-actin has an efficiency of 

0.93 (93%), 36B4 of 0.97 (97%) and TERRA of 0.83 (83%). 

Analyse with BestKeeper calculates and evaluates the performance of the housekeeping 

genes. Geometric and arithmetic means of CT values, then all possible pair combinations 

between the candidates are calculated and the correlated with Pearson correlation. This results 

in Pearson correlation coefficients (r) and error probability (p-value). In addition the Best 

Keeper index (BK) is formed and the individual Housekeeping genes are then ultimately 

correlated with the BK-index. Correlation coefficients (r), coefficient of determination (R2) 

and error probability (p) are calculated. The coefficient of determination (R2) specifies how 

exact statements about the correlation coefficient (r) could be made. 

Validations of results were determined by standard deviation of cycle-thresholds. Standard 

deviations below 0.5 were esteemed as valid. 

Relative quantitation showed the differemce between the amounts of a sample in comparison 

with a reference sample. 

RQ = (Etarget + 1) 
ΔCt target (sample-reference sample)

 / (EHousekeeping +1) 
ΔCt housekeeping (sample-reference sample) 

 

4.3. Statistics: 

Statistics calculations were done with GraphPad Prism 5.02. One-way Anova to determine if 

differences between RQs are significant different and Post-test to determine if TERRA 

expressions and confluences show a linear trend were done. P-values below 5% (0.0500) were 
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assessed as significant different and also for linear trend analysis, P-value of 5% (0.0500) was 

used as threshold. 
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5. Results: 

 

5.1. Construction of TERRA expressing vectors: 

The cloning-strategy was a multistep process which started from two vectors, pSP73 with the 

telomere fragment and the pENTR/D/hH1-shNMP265. At the end the telomere fragment 

should be in viral vectors, pAd/L-DEST
TM

, pAd/CMV/V5-DEST
TM

, pLenti6/UbC/V5-DEST 

and pLenti6/BLOCK-iT
TM

-DEST. Plasmid-DNA were isolated with Wizard
®
 Plus SV 

Minipreps DNA Purification Systems like described in material and methods, otherwise it is 

mentioned. Figure 5.1. shows a schematic presentation of the cloning stragedy which are 

described at the next chapters. 
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Figure 5.1.: Schema of cloning stragedy: 

Deletion of SalI restriction site (marked with arrow) from pENTR/D/hH1 shRNA NMP265 

(Chapter 5.1.2.1.) 

pENTR/D/hH1 shRNA NMP265 

pENTR/D/hH1 shNMP265 Delta SalI 
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Figure 5.1. (continued): Schematic vector maps of shRNA NMP265 deletion. Clamp shows 

removed part (Chapter 5.1.2.2.). 

  

pENTR/D/hH1 shNMP265 Delta SalI 

pENTR/D/hH1 delta shNMP265 
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Figure 5.1. (continued): Schema of linker insertation. Cut at EcoRI restriction site (marked 

with arrow), integration of Linker and formation of new SalI restriction site (marked with 

arrow) (Chapter 5.1.2.3.). 

pENTR/D/hH1 delta shNMP265 

pENTR/D/hH1 Linker 
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Figure 5.1. (continued): Cut of Vector pSP73 with telomere fragment (marked with clamp) 

with BamHI and BglII (marked with arrows), partial fill-in and transfer into pENTR/D/hH1 

Linker cutted with SalI and following partial fill-in. Two vectors with different telomere 

fragment orientation were produced, sense and antisense orientation (Chapter 5.1.3.). 

pENTR/D/hH1 Sense Tel pENTR/D/hH1 Antisense Tel 

pSP73 with 0.8kbTelomere fragment 
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Figure 5.1. (continued): Deletion of hH1 promoter regions of pENTR/D/hH1 Sense Tel and 

pENTR/D/hH1 Antisense Tel (Chapter 5.1.4.). 

 

5.1.1. Sequencing of pSP73 with telomere fragment: 

First sequencing of pSP73 with the telomere fragment was carried out. For this the plasmid 

was sent to VBC genomics and was sequenced from both sites of the inserted fragment. From 

one site it was sequenced from T7 promoter and from the other from SP6 promoter (Figure 

5.2.). This displayed that the telomere sequence is contained in the vector and also showed the 

orientation. 

pENTR/D/hH1 Sense Tel pENTR/D/hH1 Antisense Tel 

pENTR/D/hH1 Sense Tel delta hH1 pENTR/D/hH1 Antisense Tel delta hH1 
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(a) 

 

 

 

(b) 

ACTCGAGCAGCTGAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGT

ACCGAGCTCGAATTCCGCGGAATTCCGGTTGGGGTTGGGGTTGGGGTTGGGGTTG

GGGTTAGGGTTGGGGTTAGGGTTAGCGTTAGGGTTAGGGTTAGGGTTGGGGTTAG

GGTTAGGGTTAGGGTTAGGGTTA 

Figure 5.2.: Sequence of pSP73 with telomere fragment from VBC genomics 

(a) Graphic illustration of the sequence of pSP73 with telomere fragment received from VBC 

genomics from T7 promoter site (1
st
 sequencing) 

(b) Sequence of pSP73 with telomere fragment from T7 promoter site (1
st
 sequencing). 

Underlined: EcoRI restriction sites, underlined with points: BamHI restriction site 
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(c) 

 

 

(d) 

CTCGAGCAGCTGAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGTA

CCGAGCTCGAATTCCGCGGAATTCCGGTTGGGGTTGGGGTTGGGGTTGGGGTTGG

GGTTA 

Figure 5.2. (continued): 

(c) Graphic illustration of the sequence received from VBC genomics from T7 promoter site 

(2
nd

 sequencing) 

(d) Sequence of pSP73 with telomere fragment from T7 promoter site (2
nd

 sequencing). 

Underlined: EcoRI restriction sites, underlined with points: BamHI restriction site 
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(e) 

 

 
 

Figure 5.2. (continued): 

(e) Graphic illustration of the sequence received from VBC genomics from SP6 promoter site 
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(f) 

CTTATGTATCATACACATACGATTTAGGTGACACTATAGAACCAGATCTGATATC

ATCGATGAATTCCGAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT

AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA

ACCCTAACCCTAACCCCAACCCCAACCCCAACCCCAACCCTAACCCTAACCCTAA

CCCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCTAACCCCAACCCCAAC

CCCAACCCCAACCCCAACCCCAACCCTAACCCTAACCCCAACCCCAACCCCAACC

CCAACCCTAACCCTAACCCTAACCCCAACC 

Figure 5.2. (continued): 

(f) Sequence of pSP73 with telomere fragment from SP6 promoter site. Underlined with 

points: BglII restriction site. Underlined: EcoRI restriction site 

 

The sequencing showed us the existence of the telomere sequence and of the restriction 

enzyme sites located in the neighborhood of the telomere fragment (Figure 5.2.). Sequencing 

from T7 site was done two times, because the sequencing broke off early. From T7 site 180nt 

and from SP6 site 410 were sequenced. The fragment is estimated 800nt long so coverage of 

about 74% (590nt/800nt) is reached. The sense orientation (TTAGGG repeats) started from 

the T7 promoter site. 

 

5.1.2. Modifying pENTR/D/hH1-shNMP265: 

pENTR/D/hH1-shNMP265 was the gateway compatible ENTR-vector which was used, but 

had to be modified before use. 

 

5.1.2.1. Elimination of SalI restriction site: 

The first steps were to modify the pENTR/D/hH1-shNMP265 vector (supplement Figure 

10.1.). A SalI restriction site which would disturb the further cloning steps had to be 

eliminated. Cutting the plasmid with SalI and fill in with Klenow fragment solved this 

problem. After transformation of competent E.coli bacteria two clones were picked and tested. 

Isolated plasmid DNA of clone 1 showed no SalI restriction site (Figure 5.3.). The clone was 
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termed pENTR/D/hH1 deltaSalI (supplement Figure 10.2.) and was used for further cloning 

steps. 

(a)                (b) 

.  

 1     2     3     4          5     6   7    8    9   10 11 

Figure 5.3.: 1% agarose-gel of SalI restriction site elimination of pENTR/D/hH1 

shNMP265: 

(a) pENTR/D/hH1 shNMP265 before SalI restriction site elimination: (1) λ-marker, (2) 

pENTR/D/hH1 shNMP265 uncut, (3) pENTR/D/hH1 shNMP265 digested with SalI resulted 

2744bps, (4) Mass ruler 

(b) Analysed clones (5) λ-marker, (6) clone 1 SalI cut, (7) clone 1 BamHI cut, (8) clone 1 

uncut, (9) clone 2 SalI cut, (10) clone 2 BamHI cut, (11) clone 2 uncut. Arrows show uncut 

and clone with SalI cut with no SalI restriction site (Clone 1. lane 6 - 8) 

 

5.1.2.2. Elimination of shNMP265 expression cassette: 

With EcoRI the shNMP265 expression cassette was cut out and after the vector was ligated. 

This led in regulatory elements for polymerase III expression, like the start nucleotide 
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position and the poly-T sequence, as stop signal. Transformation, picking four clones and 

DNA-isolation followed. Vector was controlled with XhoI and BamHI cuts on 5% PAGE gel 

(Figure 5.4). Clone C showed a shift of banding patterns (33bps) and was so identified as 

correct clone, termed pENTR/D/hH1 delta shNMP265 (supplement Figure 10.3.) and was 

used for further cloning steps. 

 

        1    2    3    4     5    6    7     8    9   10  11  12   13  14   15 

Figure 5.4.: Removing shNMP265 expression cassette of pENTR/D/hH1 NMP265-

shRNA: 

5% PAGE-gel: (1) clone C uncut, (2) pENTR NMP265-shRNA uncut, (3) pENTR NMP265-

shRNA XhoI + BamHI cut, (4) clone C XhoI + BamHI cut, (5) clone B XhoI + BamHI cut, 

(6) clone A XhoI + BamHI cut, (7) pENTR NMP265-shRNA BamHI cut, (8) pENTR 

NMP265-shRNA XhoI cut, (9) clone C BamHI cut, (10) clone C XhoI cut, (11) clone B 

BamHI cut, (12) clone B XhoI cut, (13) clone A BamHI cut, (14) clone A XhoI, (15) 50bps 

marker. Shift of about 33bps is visible (marked with arrows) 

 

5.1.2.3. Insert new SalI restriction site with a linker into polymerase III expression 

cassette: 

To insert a new SalI restriction site on a desired position a linker was ordered from VBC 

genomics. This linker had a SalI restriction site and EcoRI recognition sites (Figure 5.5. b). 
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Before use, the linker had to be phosphorylated and annealed as described in material and 

methods. With EcoRI cut and ligation the linker was infixed. Before transformation EcoRI 

recut was conducted to cut vectors without an integrated linker. After transformation two 

clones were picked and plasmid-DNA was isolated for restriction analyses. Clone II showed 

the existence of a SalI restriction site and with a double cut using SalI and MluI which 

showed fragments of 1212bps, 932bps and 581bps, the correct position within the expression 

cassette was determined (Figure 5.5.a). The clone was termed pENTR/D/hH1 Linker 

(supplement Figure 10.4.) 

(a) 

 

         1       2    3     4     5     6     7      8      9 

Figure 5.5.: Linker integration into pENTR/D/hH1 expression cassette: 

(a) 1% agarose-gel, pENTR/D/hH1 with linker integrated, (1) λ-marker, (2) clone I uncut (not 

visible), (3) clone I SalI cut, (4) clone I MluI cut, (5) clone I SalI and MluI cut, (6) clone II 

uncut, (7) clone II SalI cut resulted 2725bps, (8) clone II MluI cut resulted 1793bps and 

932bps, (9) clone II SalI and MluI cut resulted 1212bps, 932bps and 581bps. Plasmid 

fragments of predicted sizes are marked with arrows 
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(b) 

Linker: 5‟-AATTGTCGAC-3„ 

 

                            
(P)

AATTGTCGAC 

Figure 5.5. (continued): 

(b) Schematic demonstration of linker preconditioning before cloning into the EcoRI site of 

plasmid DNA to insert new SalI restriction site 

 

5.1.3. Cloning the telomere fragment: 

The telomere fragment was cloned from pSP73 to pENTR/D/hH1 and in addition transferred 

into gateway compatible pDEST viral expression vectors. 

 

5.1.3.1. pENTR/D/Linker antisense Tel: 

Plasmid DNA pSP73 with telomere fragment (supplement Figure 10.5.) was restricted with 

BamHI and BglII, this produced a predicted 866bps telomere fragment and a 2435bps 

remaining vector backbone with ampicillin resistance (Figrue 5.6). After gel-purification of 

the telomere fragment, partial fill in with Klenow-fragment and dGTP and dATP followed as 

described in material and methods. 

Plasmid DNA pENTR/D/hH1 Linker was restricted with SalI (Figure 5.6.) and a partial fill in 

with Klenow-fragment and dTTP and dCTP resulted into a complementary overhang for the 

inserting-step of the telomere fragment. 

After the ligation before transformation, SalI recut was done to get rid of vectors without 

telomere fragment. 

Phosphorylation 

Annealing 
SalI recognition site 
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 1     2    3     4      5      6     7     8 

Figure 5.6.: pSP73 and pENTR/D/hH1 Linker restriction: 

1% agarose-gel, (1) λ-marker, (2) pENTR/D/hH1 Linker SalI cut resulted predicted and seen 

3kb fragment, (3) pENTR/D/ Linker uncut differs to fragment of lane 2. (4) λ-marker, (5) 

pSP73 Tel BamHI cut resulted 3291bps, (6) pSP73 Tel BglII cut resulted 3291bps, (7) pSP73 

Tel BamHI and BglII cut resulted 2425bps and 866bps, (8) pSP73 Tel uncut differs to single 

(lane 5 and 6) and double cuts (lane 7) .  

 

Efficiency of transformation was very low, although control transformation with pUC19 DNA 

reaches 10
6
 transformants per µg plasmid (data not showen). Few transformations had to be 

done to obtain one E.coli colony with a correct insert. Plasmid DNA from colony was 

checked with EcoRI cut which showed the telomere fragment with the expected size of about 

817bps and fragments with 2769 bps and 10bps. Orientation was checked by a double 

restriction cut with ClaI and NruI (Figure 5.7). NruI cut outside of the inserted fragment, ClaI 

cut inside and showed bands of 2350bps and 1245bps which were predicted. So 

pENTR/D/Linker with a telomere fragment with an antisense orientation was identified and 

termed pENTR/D/hH1 Antisense Tel (supplement Figure 10.6.). 
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(a)           (b) 

 

   1   2    3   4   5   6   7   8   9   10         11  12  13 14 15 16 

Figure 5.7.: pENTR/D/hH1 Antisense Tel identification 

(a) 1% agarose-gel for examination if telomere fragment was inside (1) other experiment, (2) 

λ-marker, (3) – (8) other experiment, (9) pENTR/D/hH1 antisense Tel uncut, (10) 

pENTR/D/hH1 antisense Tel EcoRI cut. This partial cut showed a single clear band of 

telomere fragment with predicted size of 817bps (marked with arrow) and together with the 

detected size of 2768bps and 10bps of the vector backbone resulted size of 3595bps for the 

linear plasmid 

(b) 1% agarose-gel to check-up orientation of insert, (11) λ-marker, (12) pENTR/D/hH1 

antisense Tel uncut, (13) pENTR/D/hH1 antisense Tel ClaI cut resulted 3595bps, (14) 

pENTR/D/hH1 antisense Tel NruI cut resulted 3595bps, (15) pENTR/D/hH1 antisense Tel 

ClaI and NruI cut resulted 2350bps and 1245bps, (16) pENTR/D/hH1 antisense Tel uncut 

 

5.1.3.2. pENTR/D/Linker sense Tel: 

Because of the low transformation efficiency results of the cloning strategy described under 

5.1.3.1., other procedures were applied. For instance an EcoRI cut of the pENTR/D/Linker 

antisense Tel followed up by ligation was tried. This should lead to a vector with both, a 
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telomere fragment with sense and anti-sense orientation, but after transformation and 

investigation of some clones no vector with telomere fragment with sense orientation could be 

found (data not showen). Specific modifications of the cloning strategy and new experiments 

finally led to a more efficient procedure (Figure 5.9). 

To produce a pENTR/D/Linker with a telomere fragment with a sense orientation the 

experimental application flow was changed as described in brief. Cut of pSP73 with telomere 

fragment with BamHI and BglII and pENTR/D/hH1 cut with SalI still remained the same. But 

then gel purification-step and Klenow fill in were flipped. This strategy finally resulted with a 

pENTR vector with a telomere fragment with sense orientation. SalI recut after ligation and 

transformation were the same as at producing of pENTR/Linker antisense Tel vector. Using 

this strategy four colonies were obtained. Plasmid DNA of clone IV showed expected size of 

3595bps which is the size of the vector with Tel fragment (Figure 5.8.). Orientation was 

checked with NruI and ClaI restriction as it was done at pENTR/D/hH1 Antisense Tel. Clone 

IV showed banding patterns of 3192bps and 403bps which were predicted. This identified 

clone was termed pENTR/D/hH1 Sense Tel (supplement Figure 10.7). 
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(a)            (b) 

 

       1  2  3  4  5  6  7  8  9 10 11 1213141516      17  18   19    20    21 

Figure 5.8.: pENTR/D/hH1 Sense Tel identification: 

(a): 1% agarose-gel for examination if  telomere fragment was inside, (1) λ-marker, (2) clone 

I uncut, (3)clone I NruI and ClaI cut, (4) clone I NruI cut, (5) clone I ClaI cut, (6) clone II 

uncut, (7) clone II NruI and ClaI cut, (8) clone II NruI cut, (9) clone II ClaI cut, (10) clone III 

uncut, (11) clone III NruI and ClaI cut, (12) clone III NruI cut, (13) clone III ClaI cut, (14) 

clone IV uncut, (15) λ-marker, (16) clone IV BamHI cut. Clone IV showed correct size 

(marked with arrow) 

(b): 1% agarose-gel to check-up orientation of insert, (17) λ-marker, (18) clone IV uncut, (19) 

clone IV NruI and ClaI cut resulted 3192bps and 403bps, (20) clone IV NruI cut resulted 

3595bps, (21) clone IV ClaI cut resulted 3595bps 

 

Schematic presentation of cloning steps (Figure 5.9.) gives an overview about the production 

of pENTR vectors with telomere fragments in sense and antisense orientation. 
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pENTR/D/hH1 Antisense Tel: 

 

1.) pENTR/D/hH1 Linker cut with SalI 

 

2.) pSP73 Tel cut with BamHI and BglII 

 

3.) Gel purification 

 

4.) Partial fill-in 

SalI restriction site:  

 

 

 

 

 

 

BglII restriction site:  

 

 

 

 

 

 

BamHI restriction site:  

 

 

 

 

 

 

5.) Ligation 

 

6.) Recut with SalI 

 

pENTR/D/hH1 Sense Tel: 

 

1.) pENTR/D/hH1 Linker cut with SalI 

 

2.) pSP73 Tel cut with BamHI and BglII 

 

3.) Partial fill-in 

SalI restriction site:  

 

 

 

 

 

 

BglII restriction site: 

 

 

 

 

 

 

BamHI restriction site: 

 

 

 

 

 

 

4.) Gel purification 

 

5.) Ligation 

 

6.) Recut with SalI 
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7.) Transformation into competent E.coli 

 

8.) pENTR/D/hH1 Antisense Tel 

7.) Transformation into competent E.coli 

 

8.) pENTR/D/hH1 Sense Tel 

Figure 5.9.: Schematic illustration of strategy for production of pENTR/D/hH1 with 

telomere fragment in sense and anti-sense orientation: 

1.), 2.): Cut of the two provenience vectors pENTR/D/hH1 Linker with SalI and pSP73 Tel 

with BamHI and BglII 

3.), 4.): These two steps were different between the constructions of the two vectors. At 

pENTR/D/hH1 Antisense Tel construction gel purification was first done and then Klenow 

fill-in. At pENTR/D/hH1 Sense Tel construction first Klenow fill-in was done and then gel 

purification. This resulted in a higher efficiency of resulting transformants. The pictures of 

Klenow fill-in show the partial fill-in assembly of the specific bases (black) into the 

5‟overhangs of the restriction sites (white) 

5.) – 7.): These steps were done as usual like described into material and methods. Recut with 

SalI avoided self-ligation of outcome vector 

8.) Vector maps of pENTR/D/hH1 Sense Tel and pENTR/D/hH1 Antisense Tel. Clamps show 

region of telomeric repeats. Arrows show restriction enzyme sites of NruI and ClaI for 

orientation check of telomeric region 

 

5.1.4. Creating promoter-less constructs: 

Deletion of hH1 promoter allows the use of constructs with promoters other than 

polymeraseIII in Gateway expression vectors with built in expression cassettes. 

 

5.1.4.1. Promoter deletion: 

The hH1 promoter was cut out and the ends blunted. Religation, recut and transformation 

resulted into pENTR/D/linker with telomere fragments in both orientations and without 

functional promoter sequences. 
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5.1.4.1.1. Deletion of hH1 in pENTR/D/Linker sense Tel: 

pENTR/D/Linker Sense Tel was cut with SacI and BamHI to cut out hH1 promoter and 

showed bands of 3464bps and 131bps (Figure 5.10). Because of the 3„overhang which 

resulted from SacI cut, exonucleolytic activity of Klenow fragment was used to create blunt 

ends. Fill in of BamHI 5‟ overhang with Klenow fragment, ligation and recut with SacI and 

BamHI were done to reduce original vector background. After transformation and plasmid 

DNA isolation from two colonies, clone 1 showed shift of estimated 131bps and no SacI or 

BamHI restriction site was found (Figure 5.11). This clone was termed pENTR/D/ Sense Tel 

ΔhH1 (supplement Figure 10.8.). 

 

5.1.4.1.2. Deletion of hH1 in pENTR/D/Linker antisense Tel: 

For creating the pENTR/D/Linker antisense Tel vector with deleted hH1 promoter, vector was 

cut with ClaI and BamHI and showed bands of 3470bps and 125bps (Figure 5.10.). Fill in 

with Klenow fragment, ligation and recut with ClaI and BamHI. After transformation and 

plasmid DNA isolation, clone 1 showed a shift of estimated 125bps and no BamHI or ClaI 

restriction site was found (Figure 5.11.). This clone was termed pENTR/D/ Antisense Tel 

ΔhH1 (supplement Figure 10.9.). 
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    1    2    3    4   5   6   7   8   9   10  11 12 

Figure 5.10.: Promotor deletion construction of pENTR/D/hH1 Tel plasmids: 

1% agarose-gel: (1)λ-marker, (2) pENTR/D/hH1 Sense Tel NruI cut resulted 3595bps, (3) 

pENTR/D/hH1 Sense Tel ClaI cut resulted 3595bps, (4) pENTR/D/hH1 Sense Tel NruI and 

ClaI cut resulted 3192bps and 403bps, (5) pENTR/D/hH1 Sense Tel uncut, (6) pENTR/D/hH1 

Sense Tel BamHI and SacI cut resulted 3464bps and 131bps, (7) pENTR/D/hH1 Sense Tel 

BamHI cut resulted 3595bps, (8) pENTR/D/hH1 Sense Tel SacI cut resulted 3595bps, (9) 

pENTR/D/hH1 Antisense Tel uncut, (10) pENTR/D/hH1 Antisense Tel BamHI and ClaI cut 

resulted 3470bps and 125bps, (11) pENTR/D/hH1 Antisense Tel BamHI cut resulted 

3595bps, (12) pENTR/D/hH1 Antisense Tel ClaI cut resulted 3595bps 
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(a)            (b) 

 

  1   2  3  4  5   6  7   8  9  1011 12 1314 1516   17   18  19  20 

Figure 5.11.: Identification of promotor deletion of pENTR/D/hH1 Sense Tel and 

pENTR/D/hH1 Antisense Tel: 1% agarose-gels 

(a): (1) λ-marker, (2) pENTR/D/hH1 Antisense Tel uncut, (3) pENTR/D/hH1 Sense Tel 

BamHI cut, (4) pENTR/D/hH1 Sense Tel SacI cut, (5) clone 1 Sense Tel ΔhH1 uncut, (6) 

clone 1 Sense Tel ΔhH1 BamHI cut, (7) clone 1 Sense Tel ΔhH1 SacI cut, (8) clone 2 Sense 

Tel ΔhH1 uncut, (9) clone 2 Sense Tel ΔhH1 BamHI cut, (10) clone 2 Sense Tel ΔhH1 SacI 

cut, (11) pENTR/D/hH1 Antisense Tel uncut, (12) pENTR/D/hH1 Antisense Tel BamHI cut, 

(13) pENTR/D/hH1 Antisense Tel ClaI cut, (14) clone 1 Antisense Tel ΔhH1 uncut, (15) 

clone 1 Antisense Tel ΔhH1 BamHI cut, (16) clone 1 Antisense Tel ΔhH1 ClaI cut  

(b) (17) clone 2 Antisense Tel ΔhH1 uncut, (18) clone 2 Antisense Tel ΔhH1 BamHI cut, (19) 

clone 2 Antisense Tel ΔhH1 ClaI cut, (20) λ-marker 

 

5.1.5. Transfer telomere fragment into viral vectors: 

All used viral vectors are Gateway compatible destination vectors as described under material 

and methods. 
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5.1.5.1. Gateway system: 

For successful Gateway reactions the viral destination vectors had to be isolated with SNAP-

plasmid DNA preparation as described under material and methods. Trying to execute the 

Gateway reaction with DNA isolated with Wizard
®
 Plus SV Minipreps DNA Purification 

Systems did not work with adenoviral expression vectors (not shown). 

 

5.1.5.1.2. Producing recombinant adenoviral vectors: 

Three different adenoviral vectors were produced with the gateway-system as described under 

material and methods. pAd/CMV sense Tel, pAd/CMV antisense Tel and pAd/pl sense Tel 

ΔhH1 constructs resulted from LR reactions between respective pENTR and pDEST 

plasmids. After, transformation into high competent E.coli cells (10
8
 transformants/µg) was 

conducted. Single colonies were further characterized with restriction enzymes. As controls, 

adenoviral vectors were cut with XhoI. All ten analyzed clones showed predicted banding 

patterns (Figure 5.12 and Table 5.1.). 

 

Table 5.1.: Banding patterns of adenoviral vectors after XhoI cut: All counts are bps 

Vector Banding pattern 

pAd/pL sense Tel 14502 + 11832 + 2466 + 2331 + 1445 + 1089 + 595 

pAd/pl antisense Tel  14502 + 11832 + 2466 + 2331 + 1445 + 1089+ 595 

pAd/CMV sense –hH1  14502 + 11832 + 2698 + 2466 + 1853 + 1445 + 595 

 

Three of them, (clone III, IV and VI) were stored as reference stocks and termed pAd/pL 

sense Tel 1 to 3. Also clone B as pAd/CMV vector with sense –hH1 construct termed 

pAd/CMV sense –hH1 Tel and clone H as pAd/pl vector with antisense construct termed 

pAd/pl antisense Tel showed predicted banding patterns (Figure 5.12.) and were stored. The 

productions of the adenoviruses were taken over by Doris Mejri and Sandra Sampl due to lack 

of time. 
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(a)           (b) 

  

     1    2     3     4     5    6     7     8      9     10       11   12   13  14   15   16   17   18    19   20 

Figure 5.12.: Identification of adenoviral vectors: 1% agarose gel 

(a) (1) λ-marker, (2) clone I XhoI cut, (3) clone II XhoI cut, (4) clone III XhoI cut, (5) clone 

IV XhoI cut, (6) clone V XhoI cut, (7) clone VI XhoI cut, (8) clone VII XhoI cut, (9) clone 

VIII XhoI cut, (10) clone IX XhoI cut 

(b) (11) clone A XhoI cut, (12) clone B XhoI cut, (13) clone C XhoI cut, (14) clone D XhoI 

cut, (15) λ-marker, (16) clone E XhoI cut, (17) clone F XhoI cut, (18) clone G XhoI cut, (19) 

clone H XhoI cut, (20) mass ruler 

Clone I to IX are pAd/pl vectors with sense constructs, clone A to D are pAd/CMV vectors 

with sense –hH1 constructs and clone E to H are pAd/pl vectors with antisense constructs. 

 

5.1.5.1.2. Producing recombinant lentiviral vectors: 

Although much effort was given, it was not possible to produce any lentiviral vectors. 

Gateway reactions were tried with lentiviral vectors pLenti6/BLOCK-iT
TM

-DEST and 

pLenti6/UbC/V5-DEST in combination with pENTR/D/hH1 with telomere fragment. 

However after transformation no clones with plasmid with telomere fragment could be found. 
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5.2. Pre-test for production of recombinant adenoviruses using HEK293 FT cells: 

 

5.2.1.  Determining transfection efficiency of HEK293 FT by GFP transfection and 

FACS analyses: 

HEK293 FT cells were transfrected with GFP-plasmid constructs isolated by different 

methods. Optical valuation via microscope and FACS analysis showed numbers of transfected 

and non-transfected cells. pEGFP-C1 was isolated with Wizard® Plus Midipreps DNA 

Purification System (Promega) or Wizard® Plus Minipreps DNA Purification System 

(Promega) and GFP-lentiviral vector was isolated with S.N.A.P.
TM

 MidiPrep Kit (Invitrogen). 

These vectors were used as comparison for transfection efficiency. 

 

5.2.1.1. Optical valuation of transfection: 

Cells were settled well (Figure 5.13. a and b), but after lipofection they were accumulated to 

clusters (Figure 5.13. c-f). 

 

(a)            (b) 

 

Figure 5.13.: Lipofection of HEK293 FT with different isolated eGFPC1 vector: 

Microscopical investigation scale bar in µm. Only examples are showen.  

(a) Before lipofection, HEK293 FT with confluence 50%, 4x optical zoom. With an enlarged 

part 

(b) Before lipofection, HEK293 FT with confluence 90%, 4x optical zoom. With an enlarged 

part 
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(c)            (d) 

 

(e)                 (f) 

 
Figure 5.13. (continued): Microscopical investigation. Scale bar in µm. Only examples are 

shown 

(c) After lipofection, HEK293 FT with 90% confluence, Wizard® Plus Midipreps DNA 

Purification System, 10x optical zoom. With an enlarged part 

(d) After lipofection, HEK293 FT with 90% confluence, Wizard® Plus Midipreps DNA 

Purification System, phase, 10x optical zoom. With an enlarged part 

(e) After lipofection, HEK293 FT with 50% confluence, Wizard® Plus Minipreps DNA 

Purification System, 4x optical zoom. With an enlarged part 

(f) After lipofection, HEK293 FT with 50% confluence, Wizard® Plus Minipreps DNA 

Purification System, phase, 4x optical zoom. With an enlarged part 

 

Lipofection was successful in every experiment with different efficiencies (Figure 5.13 c, d, e 

and f). To determine efficiency, GFP-FACSs were done. 
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5.2.1.2. FACS of GFP-transfection: 

 

(a)    (b)    (c)  

 

(d)    (e)    (f) 

 
Figure 5.14.: FACS analyses with differently isolated GFP-vectors, transfected into 

HEK293-FT cells with partwise different confluences: Cells in the defined region (R1) (g) 

were seen as fluoreszenting cells. FL1-H = height of fluorescence intensity 

(a) Transfection rate of GFP C1 vector isolated with Wizard® Plus Midipreps DNA 

Purification System in HEK293-FT cells with 90% confluence 

(b) Transfection rate of GFP C1 vector isolated with Wizard® Plus Midipreps DNA 

Purification System in HEK293-FT cells with 70% confluence 

(c) Transfection rate of GFP C1 vector isolated with Wizard® Plus Midipreps DNA 

Purification System in HEK293-FT cells with 50% confluence 

(d) Transfection rate of GFP-lenti vector isolated with Wizard® Plus Midipreps DNA 

Purification System in HEK293-FT cells with 50% confluence 

(e) Transfection rate of GFP C1 vector isolated with Wizard® Plus Minipreps DNA 

Purification System in HEK293-FT cells with 50% confluence 

(f) Gated cells (R1). SSC-H = Sideward scatter height (cell complexity or granularity), FSSC-

H = Forward scatter height (cell size) 

 

 

 

 

 

FSC-H 
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Table 5.2.: Transfection rates of different GFP vectors differently isolated: 

Vector: Transfection rate: 

GFP Midi 90% 9.46% 

GFP Midi 70% 15.48% 

GFP Midi 95% 23.64% 

GFP Lenti 50% 12.21% 

GFP Mini 50% 41.63% 

Percentage at vectors show confluence of cells, Midi stands for Wizard® Plus Midipreps 

DNA Purification System, Mini stands for Wizard® Plus Minipreps DNA Purification 

System, Lenti stands for GFP-lenti vector isolated with Wizard® Plus Midipreps DNA 

Purification System. The highest efficiency was shown by transfection of the GFP construct 

which was isolated by Wizard® Plus Minipreps DNA Purification System 

 

Transfection rates were different between HEK293-FT cells with different confluences 

(Figure 5.14 and Table 5.2.). Transfection of cells with confluence of 50% showed the highest 

efficiency, 90% confluence the lowest. In comparison of different isolation methods Wizard® 

Plus Minipreps DNA Purification System showed the highest efficiency. 

 

5.2.2. Blasticidin dose determination: 

Blasticidin as eukaryote antibiotic serves as selection marker for the lentiviral vectors of 

company Invitrogen. To determine the best concentration for selection of stable cells, a 

pretest had been conducted as described in material and methods. Cells were settled into 96 

well plates in 5 biological repetitions. 

 

5.2.2.1. Optical estimation of blasticidin effects: 

With microscope the cytotoxic effect of blasticidin was seen and an estimation of the best 

concentration for further experiments was possible (Figure 5.15.). 
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(a)        (b) 

 
 

(c)        (d)            

 
Figure 5.15: Cell lines under blasticidin treatment for dosage determination: 

Microscopical investigation of treated cell lines in 96well plates 

(a) U2OS before blasticidin addition 

(b) SW480 B before blasticdin addition 

(c) U2OS, 10µg/ml blastcidin after two days 

(d) SW480 B, 10 µg/ml blasticidin after two days 
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(e)        (f)             (g)  

 

(h)        (i)           (j) 

 
Figure 5.15. (continued): Microscopical investigation 

(e) U2OS, 0 µg/ml blasticidin after six days. With an enlarged part 

(f) U2OS, 3 µg/ml blasticidin after six days. With an enlarged part 

(g) U2OS, 5 µg/ml blasticidin after six days. With an enlarged part 

(h) U2OS, 6 µg/ml blasticidin after six days. With an enlarged part 

(i) U2OS, 8 µg/ml blasticidin after six days. With an enlarged part 

(j) U2OS, 10 µg/ml blasticidin after six days. With an enlarged part 
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(k)        (l)           (m) 

 

(n)        (o)           (p) 

 

Figure 5.15. (continued): Microscopical investigation 

(k) SW480 B, 0 µg/ml blasticidin after six days. With an enlarged part 

(l) SW480 B, 3 µg/ml blasticidin after six days. With an enlarged part 

(m) SW480 B, 5 µg/ml blasticidin after six days. With an enlarged part 

(n) SW480 B, 6 µg/ml blasticidin after six days. With an enlarged part 

(o) SW480 B, 8 µg/ml blasticidin after six days. With an enlarged part 

(p) SW480 B, 10 µg/ml blasticidin after six days. With an enlarged part 

 

First cytotoxic effects were visible after two days (Figure 5.15.). SW480B bore a higher 

blasticidin dosage than U2OS. After six days, neutral-red uptake was done. 

 

5.2.2.2 Neutral-red uptake of blasticidin dosage determination: 

To determine the percentage of living cells after treatment neutral-red uptake as substantiation 

was also conducted. Fivefold repetition was done to enhance the significance. 

U2OS showed a high sensitivity against blasticidin. For selection experiments a dose of 

3µg/ml was considered sufficient. SW480 B showed a higher resistance against blasticidin. A 

dose of 10µg/ml was the only dose which resulted in an adequate selection pressure (Table 

5.3.). 
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Table 5.3.: Neutralred results of blasticidin dose experiments after 7 days of treatment: 
(a) 

 
U2OS 

  Blasticidin (µg/ml) Absorption (562nm - 620nm) Mean Abs. SD 

0 0.196 0.155 0.149 0.153 0.164 0.163 0.017 

3 0.003 0.003 0.003 0.002 0.003 0.003 0.001 

5 0.002 0.003 0.004 0.004 0.002 0.003 0.001 

6 0.003 0.003 0.003 0.003 0.003 0.003 0.000 

8 0.003 0.003 0.003 0.011 0.003 0.005 0.003 

10 0.004 0.003 0.003 0.004 0.003 0.003 0.001 

 

(b) 

 
SW480B 

  Blasticidin (µg/ml) Absorption (562nm - 620nm) Mean Abs. SD 

0 0.079 0.262 0.207 0.213 0.223 0.197 0.062 

3 0.207 0.237 0.202 0.258 0.184 0.218 0.026 

5 0.166 0.126 0.128 0.179 0.187 0.157 0.026 

6 0.220 0.140 0.086 0.084 0.144 0.135 0.050 

8 0.088 0.069 0.018 0.030 0.007 0.031 0.031 

10 0.009 0.003 0.003 0.004 0.004 0.005 0.002 

Absorption at 562nm minus absorption at 620nm showed relative quantity of living cells. 

Mean absorption (Mean Abs.) and standard deviation (SD) were calculated. 

(a) Results of Blasticidin treatment of U2OS  

(b) Results of Blasticidin treatment of SW480B 

 

5.3. TERRA expression: 

 

5.3.1. Cell cycle FACS: 

A cell cycle FACS of SW480 B and SW480 R showed unanticipated results (not shown). The 

reason was that confluence has influence on cell cycle state and also on expression. Due to 

this SW480 B and SW480 R settled with different confluences. Two different methods to 

detach cells were used, scratching and trypsin. FACS analysis showed the relative percentage 

of cells in different cell cycle phase. 
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5.3.1.1. Optical control of confluence: 

Confluences were controlled and estimated by microscope (Figure 5.16) and also measured 

with Casy Cellcounter (data not showen). 

(a)            (b)  

 

(c)            (d) 

 
Figure 5.16.: Examples of cells used for cell cycle FACS analyses under microscopical 

investigation: 

(a) SW480R with 100% confluence. With enlarged part 

(b) SW480R with 25% confluence. With enlarged part 

(c) SW480B with 80% confluence. With enlarged part 

(d) SW480B with 25% confluence. With enlarged part 
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5.3.1.2. Cell cycle FACS analyses of cell line with different confluences: 

Nuclear disposal was controlled by microscope (example: Figure 5.17). The efficiencies were 

calculated and were between 96 and 100% (not showen) which were sufficient for cell cycle 

FACS. 

  
Figure 5.17.: Example of nuclear disposal: Blue dots are cell nuclei 

 

 

 

(a)      (b) 

 

Figure 5.18: Examples of cell cycle FACS results of SW480 B and SW480 R detached by 

scratching or by Trizol: Percentage of cells in different cell cycle state was shown. 

Distinction between G0/G1. G2/M and S phase was done. Arrows at channel about 50 (2n 

state) showed G0/G1 cell cycle state, arrows at channel about 100 (4n state) showed G2/M 

cell cycle state. Cell cycle state S is detected between 50 and 100. Y-axis showed the number 

of measured cells 

(a) SW480 B 80% confluence, detached by trypsin 

(b) SW480 B 5% confluence, detached by trypsin 

 



115 
 

Raw data of FACS analysis (Figure 5.18.) were summarized into diagrams (Figure 5.19.) and 

tables (Table 5.4.). 

 

Table 5.4.: Cell cycle FACS results of SW480 B and SW480 R with different confluences 

and differently detached: Cell cycle states in percentage 

(a) SW480 B scratched        (b) SW480 B detached with trypsin 

 

 

 

 

 

 

 

(c) SW480R scratched        (d) SW480 B detached with trypsin 

Confluence: G0/G1: S: G2/M: 

100% 79.70 15.36 4.94 

80% 72.20 23.68 4.12 

50% 70.48 24.70 4.81 

30% 61.70 32.10 6.20 

15% 53.59 38.23 8.18 

10% 49.85 46.72 3.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confluence: G0/G1: S: G2/M: 

80% 38.23 50.01 11.76 

50% 38.16 55.21 6.63 

25% 29.70 57.44 12.86 

10% 25.62 61.00 13.38 

7% 23.11 57.41 19.48 

<5% 26.26 40.92 32.82 

Confluence: G0/G1: S: G2/M: 

80% 60.48 34.16 5.36 

50% 53.90 37.47 8.63 

25% 48.43 43.92 7.64 

15% 45.60 46.03 8.37 

10% 40.87 48.64 10.49 

5% 36.61 52.03 11.36 

Confluence: G0/G1: S: G2/M: 

  100% 73.71 21.32 4.97 

80% 66.14 24.13 9.72 

50% 61.12 30.04 8.84 

25% 58.83 26.86 14.31 

15% 61.47 27.17 11.36 

8% 63.49 29.66 6.86 
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(a) 

 
(b) 

 
Figure 5.19.: Cell cycle state of SW480 B and SW480 R with different confluences and 

differently isolated: 

(a) Diagram of cell cycle state of SW480 B scratched in percentage 

(b) Diagram of cell cycle state of SW480 B detached by trypsin in percentage 
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(c) 

 
 

(d) 

 
Figure 5.19. (continued): 

(c) Diagram of cell cycle state of SW480 R scratched in percentage 

(d) Diagram of cell cycle state of SW480 R detached by trypsin in percentage 
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Figure 5.20.: Percentage of SW480 B and SW480 R with different confluences in cell 

cycle state G0/G1: Detached by s(cratching) or with t(rypsin). Confluence in percentage. 

(a) Percentage of SW480 B and SW480 R detached by scratching in cell cycle state G0/G1 

(b) Percentage of SW480 B and SW480 R detached with trypsin in cell cycle state G0/G1 

 

Table 5.5.: Trendlines G0/G1 cell cycle state of SW480 B and SW480 R differently 

detached: 

Cell line Trendline R
2
 P-value 

SW480 B s y = 0.2046x + 24.143 0.8728 0.0063 

SW480 B t y = 0.2889x + 38.741 0.925 0.0022 

SW480 R s* y = 0.1142x + 58.836 0.6437 0.0568 

SW480 R t y = 0.3061x + 50.049 0.9244 0.0022 

Formula of trendline, goodness of fix (R
2
) and P-value of slope deviation from zero are 

mentioned. P-value below 5% (0.0500) was seen as significant different to zero. Cell lines 

with no significant difference were marked with an *. Detached by s(cratching) or with 

t(rypsin). 
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By comparison SW480 R cells showed a higher percentage from about 8% to 30% of cells in 

G0/G1 phase than SW480B cells (Table 5.4. and Figure 5.19.). Cell detached with trypsin 

showed a higher percentage from about 6% to 22% of G0/G1 than scratched cell lines, except 

SW480 R at 15% confluence. The percentage of cells in G0/G1 phase increased with 

confluence in both cell lines. SW480R detached by scratching show no significant trend 

(0.0558), but it‟s very close to significance and a low trend is visible (Table 5.5. and Figure 

5.20.). 
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Figure 5.21.: Percentage of SW480 B and SW480 R with different confluences in cell 

cycle state S: Detached by s(cratching) or with t(rypsin). Confluence in percentage. 

(a) Percentage of SW480 B and SW480 R detached by scratching in cell cycle state S 

(b) Percentage of SW480 B and SW480 R detached with trypsin in cell cycle state S 
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Table 5.6.: Trendlines S cell cycle state of SW480 B and SW480 R differently detached: 

Cell line Trendline R
2
 P-value 

SW480 B s* y = -0.019x + 54.225 0.0062 0.8822 

SW480 B t y = -0.2265x + 50.692 0.9341 0.0017 

SW480 R s* y = -0.0713x + 29.835 0.6353 0.0573 

SW480 R t y = -0.2912x + 43.965 0.8813 0.0055 

Formula of trendline, goodness of fix (R
2
) and P-value of slope deviation from zero are 

mentioned. P-value below 5% (0.0500) was seen as significant different to zero. Cell lines 

with no significant difference were marked with an *. Detached by s(cratching) or with 

t(rypsin). 

 

SW480B cells showed a higher percentage from about 2% to 25% of cells in S phase than 

SW480R cells (Table 5.4. and Figure 5.20). Percentage of cells in S cell cycle state decreased 

with increasing confluence (Figure 5.21.). Cells deatched with trypsin showed a significant 

trend , cell lines detached by scratching show no significant trend, but SW480 R with a P-

value of 0.0573 was very close to significance (Table 5.6.). 
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Figure 5.22.: Percentage of SW480 B and SW480 R with different confluences in cell 

cycle state G2/M: Detached by s(cratching) or with t(rypsin). Confluence in percentage. 

(a) Percentage of SW480 B and SW480 R detached by scratching in cell cycle state S 
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(b) 
G2/M

0 20 40 60 80 100
0

5

10

15

20

SW480 B t

SW480 R t

Confluence

P
e
r
c
e
n

ta
g

e
 o

f 
c
e
ll

s 
in

 G
2

/M

 
Figure 5.22. (continued): 

(b) Percentage of SW480 B and SW480 R detached with trypsin in cell cycle state S 

 

Table 5.7.: Trendlines G2/M cell cycle state of SW480 B and SW480 R differently 

detached: 

Cell line Trendline R
2
 P-value 

SW480 B s* y = -0.1857x + 21.633 0.3699 0.2002 

SW480 B t y = -0.043x + 11.334 0.2351 0.0336 

SW480 R s* y = -0.0148x + 5.9845 0.1009 0.3375 

SW480 R t* y = -0.043x + 11.334 0.2351 0.5396 

Trendline, goodness of fix (R
2
) and P-value of slope deviation from zero are mentioned. P-

value below 5% (0.0500) was seen as significant different to zero. Cell lines with no 

significant difference were marked with an *. Detached by s(cratching) or with t(rypsin). 

 

Only SW480B detached with trypsin showed a significant trend (Table 5.7.) by decreasing 

phase G2/M at increasing confluence (Table 5.4., Figure 5.19. and Figure 5.22.). 

 

5.3.2. Best Keeper: 

Best Keeper analysis housekeeping genes of confluence dependent TERRA expression (Table 

5.9.) and determined betaactin as more stable in comparison to 36B4 (Table 5.8.). All samples 

were related to beatactin. 
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Table 5.8.: Best Keeper analysis of 36B4 and beatActin: p-value = level of significance, 

SE = Standard error 

  36B4 betaActin 

coefficient of correlation [r] 0,98 0,99 

coefficient of detection [r^2] 0,95 0,98 

intercept [CP] 4,25 -3,56 

slope [CP] 0,87 1,10 

SE [CP] ±0,42 ±0,36 

p-value 0,001 0,001 

Power [x-fold] 1,83 2,15 

 

5.3.2. Confluence dependent totalTERRA expression level: 

 

Total TERRA expression level was measured by Real Time-PCR (Figure 5.23.). The isolated 

RNA (Table 10.1.) showed a 28S to 18S ratio between 1.5-2:5:1 (Supplement Figure 10.10. 

and Table 10.2.). Different confluences should be in correlation with cell cycle state influence 

expression of TERRA. 

(a) 

 
Figure 5.23: Amplification plots of TERRA expression of HEK293 FT and Saos-2 as 

examples: 0.035676 = threshold for TERRA. ΔRn = normalized fluorescence. Percentages = 

confluences 

(a): Amplification plot of HEK293 FT 
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(b)  

 
Figure 5.23 (continued): 

(b): Amplification plot of Saos2 

 

Raw data and RQ-values were summarized into diagrams (Table 5.9. and Figure 5.24.). 
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Table 5.9.: Real-Time PCR results of total TERRA expression of different cell lines and 

different confluences: 

Cell line Confluence   Cт   Cт Mean SD RQ    RQ Min RQ Max 

 

100% 18.98 19.20 19.47 19.22 0.20 1.000 0.754 1.327 

T98G 70% 20.70 20.20 20.49 20.46 0.20 0.263 0.195 0.355 

 

35% 19.51 19.55 19.96 19.67 0.20 0.710 0.496 1.018 

  20% 20.46 20.26 20.83 20.52 0.23 0.158 0.114 0.220 

 

95%* 26.52 25.43 26.74 26.23 0.57 0.018 0.008 0.040 

HEK293 75% 22.14 22.52 22.67 22.44 0.22 0.128 0.090 0.184 

 

30% 23.87 23.37 24.17 23.80 0.33 0.060 0.036 0.101 

  10% 24.37 23.67 24.51 24.18 0.37 0.030 0.017 0.054 

 

90% 19.10 18.66 19.38 19.05 0.30 1.393 0.929 2.090 

HEK293 FT 60% 19.67 19.49 20.37 19.84 0.38 0.945 0.558 1.601 

 

30% 23.97 23.79 23.62 23.79 0.14 0.099 0.081 0.121 

  10% 19.66 18.72 19.47 19.28 0.41 0.556 0.320 0.967 

 

100% 16.94 16.72 16.93 16.86 0.10 2.602 2.258 2.998 

Saos-2 95% 18.64 18.22 18.66 18.51 0.20 91.541 67.796 123.601 

 

75% 17.71 17.37 17.70 17.60 0.16 1.394 1.075 1.807 

  30% 19.65 20.22 20.31 20.06 0.29 0.248 0.166 0.372 

 

100% 18.33 18.19 19.27 18.60 0.48 0.619 0.323 1.189 

 

75% 14.24 14.38 15.01 14.54 0.33 8.931 5.629 14.170 

U2OS 70%* 15.89 15.68 16.89 16.16 0.53 2.259 1.101 4.634 

 

35% 16.13 16.14 16.68 16.31 0.26 1.802 1.271 2.556 

  20% 14.45 14.10 14.58 14.38 0.20 13.546 10.298 17.817 

 

100% 20.45 20.82 20.57 20.61 0.15 3.721 2.906 4.765 

 

75%* 20.23 19.80 20.14 20.06 0.19 4.953 3.703 6.625 

SW480 B 40% 23.61 23.66     0.03 0.739 0.636 0.859 

 

35% 20.39 20.63 21.09 20.70 0.29 0.355 0.232 0.543 

  10% 24.48 24.33 24.68 24.50 0.14 0.462 0.364 0.587 

 

80% 20.24 20.43 20.81 20.49 0.24 6.394 4.554 8.978 

 

80%(2) 22.21 21.92 22.65 22.26 0.30 2.704 1.739 4.205 

SW480 R 40% 18.73 18.66 19.28 18.89 0.28 8.881 6.105 12.919 

 

20% 21.54 20.55 20.84 20.98 0.42 4.651 2.640 8.194 

  10% 25.99 26.48 26.56 26.35 0.25 0.113 0.080 0.160 

SW620 70% 25.51 25.17 25.61 25.43 0.19 0.249 0.158 0.394 

LT97 100% 27.21 27.54   27.37 0.17 0.197 0.124 0.314 

Vaco 50% 24.96 25.20 24.98 25.05 0.11 0.567 0.488 0.659 

Caco 100% 26.93 26.75 27.21 26.96 0.19 0.154 0.112 0.211 

HTC116 60% 26.44 25.44 25.97 25.95 0.41 0.342 0.196 0.598 

HT29 70% 24.13 23.52 23.63 23.76 0.26 1.032 0.717 1.485 

As reference cell line T98G 100% confluence and gene β-actin were used. Triplicates were 

measured. If no third value for cycle threshold (CT) is mentioned, it was omitted. Samples 

with standard deviation (SD) over 0.5 are seen as not valid and marked with *. 
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Figure 5.24.: Scattered dot plot of confluence dependend total TERRA levels of different 

cell lines: Points show single values, middle bar shows mean, upper and lower bar show SEM 

(standard error of the mean). Values at cell lines are percentage of confluence. 

(a) Cell lines: T98-G, HEK293 and HEK293 FT 

(b) Cell lines: U2OS and Saos-2 
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Figure 5.24. (continued): 

(c) Cell lines: SW480 R and SW480 B 

(d) Cell lines: LT97, HT29, SW620, HTC116, Vaco, Caco 
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Table 5.10.: Trend analysis of confluence dependent TERRA expression: 

Cell lines One-way analysis of variance Post test for linear trend 

  P value P value R² 

T98G < 0.0001 < 0.0001 0.4447 

HEK293* < 0.0001 0.4142 0.0067 

HEK293 FT 0.0005 0.0003 0.5361 

Saos-2 < 0.0001 0.0008 0.0757 

U2OS < 0.0001 < 0.0001 0.2644 

SW480B < 0.0001 < 0.0001 0.6788 

SW480R < 0.0001 0.0073 0.0949 

Cell lines with a P-value for linear trend excess 5% (0.0500) are marked with * 

 

Except HEK293 with 95% confluence, U2OS with 70% confluence and SW480 B with 75% 

confluence all cycle thresholds (Ct) showed a standard deviation below 0.5 and are seen as 

valid (Table 5.9.). Trend analysis of confluence dependent TERRA expression show in all cell 

lines a statistical trend except HEK293 cells (Table 5.10.) TERRA expression increases with 

increasing confluence in all cell lines (Table 5.9.). Saos-2, U2OS, SW480 B and SW480 R 

showed the highest TERRA expression levels (Table 5.9., Figure 5.24.). Lowest TERRA 

expression levels were reached by HEK293. 

 

5.3.3. Subtelomer specific TERRA-level: 

From different cell lines subtelomere specific TERRA-level were measured with primer for 

subtelomeric region of chromosome 2p, 18p, 10p and 10q. Confluences of the samples were 

not known. 

Table 5.11.: Subtelomere specific TERRA expression: CT = Cycle threshold. SD = 

standard deviation, Samples with standard deviation over 0.5 are not valid and are marked 

with * 

(a) Chromosome 10p TERRA 

Cell line   Cт   Cт Mean SD RQ    RQ Min RQ Max 

T98G 23.47 23.41 23.43 23.44 0.02 1.000 0.855 1.169 

HEK293 24.40 24.75 24.77 24.64 0.17 0.908 0.544 1.514 

HEK293 FT 22.58 22.56 22.55 22.56 0.01 11.829 0.881 158.791 

U2OS 25.42 25.34 25.47 25.41 0.05 0.177 0.152 0.206 

Saos-2 23.94 24.38 24.39 24.24 0.21 0.577 0.498 0.667 

SW480R 23.45 23.58 23.72 23.58 0.11 27.003 21.142 34.487 

SW480B 29.95 29.69 30.28 29.97 0.24 0.182 0.124 0.268 
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Table 5.11. (continued): 
(b) Chromosome 10q TERRA 

Cell line   Cт   Cт Mean SD RQ    RQ Min RQ Max 

T98G 25.75 25.82 25.78 25.78 0.03 1.000 0.853 1.173 

HEK293 27.52 27.49 27.50 27.50 0.01 0.632 0.408 0.979 

HEK293 FT* 28.89 25.17   27.03 1.86 2.713 0.004 1933.482 

U2OS 27.29 27.07 27.29 27.22 0.10 0.257 0.209 0.316 

Saos2 26.44 26.38 26.41 26.41 0.03 0.650 0.639 0.662 

SW480R 25.51 25.25 25.51 25.42 0.12 38.290 29.578 49.568 

SW480B 31.75 31.50 31.40 31.55 0.15 0.310 0.243 0.395 

 

(c) Chromosome 18p TERRA 

Cell line   Cт   Cт Mean SD RQ    RQ Min RQ Max 

T98G 27.97 28.30 28.42 28.23 0.19 1.000 0.715 1.398 

HEK293 28.62 28.38 29.23 28.74 0.36 1.461 0.717 2.974 

HEK293 FT 26.60 26.55 27.09 26.75 0.24 18.002 1.305 248.413 

U2OS 31.57 31.75 31.18 31.50 0.24 0.072 0.048 0.108 

Saos2 27.32 27.74 27.54 27.53 0.17 1.629 1.445 1.837 

SW480R 26.81 26.69 26.58 26.70 0.09 86.513 68.978 108.507 

SW480B* 31.27 32.31 34.64 32.74 1.41 0.743 0.082 6.700 

 

(d) Chromosome 2p TERRA 

Cell line   Cт   Cт Mean SD RQ    RQ Min RQ Max 

T98G 27.56 27.62 27.55 27.58 0.03 1.000 0.852 1.174 

HEK293 27.85 27.73   27.79 0.06 1.797 0.972 3.321 

HEK293 FT 25.96 25.92 25.92 25.93 0.02 20.121 1.499 270.158 

U2OS* 30.22 31.21 29.75 30.39 0.61 0.099 0.038 0.258 

Saos2 28.70 28.71 28.99 28.80 0.13 0.429 0.391 0.471 

SW480R 26.35 26.44 25.98 26.26 0.20 74.394 52.171 106.082 

SW480B* 32.42 31.78 33.07 32.42 0.53 0.587 0.256 1.345 

 

10q subtelomeric TERRA level of HEK293 FT, 18p subtelomeric TERRA level of SW480 B 

and 2p subtelomeric TERRA levels of U2OS and SW480 B showed standard deviation over 

0.5 and are determined as not valid. The highest RQ-values were measured in cell lines 

SW480R and HEK293 FT which showed a 2.7 to 86 times higher RQ level than T98G in all 

measured subtelomeric TERRA levels (Table 5.11. and Figure 5.25.). The lowest reached 

subtelomeric TERRA levels were reached by U2OS and SW480 B (till 1/10 of T98G). 

TERRA levels of chromosome 18p showed the highest level in comparison with other 

measured subtelomeric TERRA levels in cell lines Saos-2, SW480B and SW480R (Table 
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5.11. and Figure 5.25.). TERRA levels of chromosome 2p showed the highest level in 

comparison to other subtelomeric TERRAs in cell lines HEK293 and HEK293 FT. TERRA 

level of chromosome 10q TERRA showed the highest level in comparison to other 

subtelomeric TERRAs in cell line U2OS. 

Statistic analysis with one-way ANOVA showed that means differ significantly (Table 5.12.) 

 

(a) 

10p

T
98

G

H
E
K

29
3

H
E
K

29
3 

FT

U
2O

S

Sao
s-

2

SW
48

0 
R

SW
48

0 
B

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Cell lines

L
o

g
 R

Q

 

Figure 5.25.: Scattered dot plot of logRQ subtelomeric TERRA levels: Points show single 

values, middle bar shows mean, upper and lower bar show SEM (standard error of the mean) 

(a) Scatter dot plot of chromosome 10p subtelomeric TERRA expression 
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Figure 5.25. (continued): 

(b) Scatter dot plot of chromosome 10q subtelomeric TERRA expression 

(c) Scatter dot plot of chromosome 18p subtelomeric TERRA expression 
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 Figure 5.25. (continued): 

(d) Scatter dot plot of chromosome 18p subtelomeric TERRA expression 

 

Table 5.12.: One-way ANOVA of subtelomere specific TERRA expression: P-values 

below 0.0500 (=5%) shows a statistically significant difference. 

Gene One way analysis of variance 

  P-value 

10p < 0.0001 

10q < 0.0001 

18p < 0.0001 

2p < 0.0001 

 

 

5.4. Relative telomere length by Real Time-PCR: 

Telomere lengths were also determined by RT-PCR. This method only gives information 

about relative length but not about absolute length. For absolute length determination TRF 

must be conducted. For telomere length genomic DNA isolated with Maxwell® DNA 

Purification Kit from Promega as described in material and methods were used. 
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Table 5.13.: Relative quantities of telomere length: As reference sample T98G and gene β-

actin were used. Samples were measured in duplicates. Two measurements were done (a) 1
st
 

measurement, (b) 2
nd

measurement, CT = Cycle threshold. SD = Standard deviation, SD over 

0.5 were seen as not valid and are marked with * 

(a) 

1st Measurement 

Cell line CT CT mean SD RQ RQmin RQmax 

T98G 23,21 22,44 22,83 0,38 1,000 0,349 2,867 

HEK293 FT* 16,64 14,66 15,65 0,99 0,121 0,008 1,784 

U2OS 16,57 16,10 16,34 0,24 42,837 23,081 79,504 

Saos2 21,37 21,12 21,25 0,13 3,936 3,626 4,249 

SW480R 22,68 22,45 22,56 0,12 0,554 0,381 0,807 

SW480B 21,97 21,29 21,63 0,34 2,352 0,849 6,517 

HT29 11,98 12,77 12,38 0,39 1,118 0,338 3,692 

HTC116 13,71 13,88 13,80 0,08 0,800 0,293 2,184 

LT97 15,08 15,81 15,45 0,37 0,281 0,045 1,765 

Vaco 25,87 25,63 25,75 0,12 0,179 0,122 0,264 

YTBO* 14,38 12,84 13,61 0,77 0,658 0,066 6,533 

Fibroblasten* 24,75 22,81 23,78 0,97 2,710 0,209 35,119 

 

(b) 

2nd Measurement 

Cell line CT CT mean SD RQ RQmin RQmax 

T98G 23,72 23,76 23,74 0,02 1,000 0,773 1,293 

HEK293 FT* 16,19 17,28 16,74 0,55 0,123 0,029 0,530 

U2OS 16,27 16,98 16,62 0,36 56,598 22,322 143,508 

Saos2 22,05 22,92 22,49 0,43 2,952 0,954 9,134 

SW480R 22,87 23,66 23,26 0,40 0,652 0,191 2,221 

SW480B 21,41 21,14 21,27 0,13 3,708 2,193 6,269 

HT29 12,87 12,72 12,79 0,08 1,346 0,959 1,890 

HTC116 15,49 15,30 15,40 0,09 0,332 0,227 0,486 

LT97 14,53 15,20 14,87 0,34 0,285 0,090 0,904 

Vaco 26,67 26,74 26,70 0,04 0,182 0,137 0,243 

YTBO 13,93 14,22 14,07 0,15 0,769 0,181 3,265 

Fibroblasten 23,98 23,87 23,92 0,05 1,338 0,008 228,012 

(a) First measurement of relative telomere length by Real-Time PCR 

(b) Second measurement of relative telomere length by Real-Time PCR 

 

Cell line HEK293 FT showed no valid values adverted to SDs, but both measured RQs are 

very similar (0.121 and 0.123), so it could be seen as valid data (Table 5.13.). YTBO and 

fibroblasts showed each one not valid value adverted to SDs. Values of both measurements 

were calculated to an RQ mean (Table 5.13.c). 
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Table 5.13. (continued): RQ means of RQs of first and second measurement. SD RQ = 

Standard deviation of RQs of first and second measurement, %SD RQ = percentage of 

standard deviation in reference to RQ mean 

(c) 

Cell line RQ mean SD RQ %SD RQ 

T98G 1.000 0.000 0.00 

HEK293 FT 0.122 0.001 1.16 

U2OS 49.718 6.881 13.84 

Saos2 3.444 0.492 14.30 

SW480R 0.603 0.049 8.08 

SW480B 3.030 0.678 22.36 

HT29 1.232 0.114 9.28 

HTC116 0.566 0.234 41.30 

LT97 0.283 0.002 0.71 

Vaco 0.181 0.002 0.93 

YTBO 0.714 0.056 7.82 

Fibroblasten 2.024 0.686 33.90 

(c) Mean RQ of first and second measurement 
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Figure 5.26.: Scattered dot plot of telomere lengths of both measurements. Points show single 

values, middle bar shows mean, upper and lower bar show SEM (standard error of the mean) 
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The ALT cell lines U2OS and Saos-2 reached a 3.4 to 49.7 times higher RQ than T98-G and 

also SW480 B reached a 3 times higher RQ than T98-G (Figure 5.26. and Table 5.12.c). 

Lowest RQ values were reached in HEK293-FT (0.112), Vaco (0.181) and LT97 (0.283) in 

comparison to T98-G. 

 

5.5. Chromosome 2p subtelomeric methylation specific RT-PCR: 

 
Figure 5.27: Amplification plot of 2p subtelomeric methylation specific Real Time-PCR 

pretesting: Test if sham buffer influences PCR-reaction. Samples have the same cycle 

threshold regardless if buffer was added or not 

 

No difference was detectable between PCR with sham buffer, which was used as control for 

samples which were not cut by restriction enzymes and without this buffer. Due to this further 

studies with sham buffer were omitted (Figure 5.27). 

 

 

2p with and without sham buffer 

2p HpaII 2p MspI 

NTC 

Saos-2 
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(a) 

 

(b) 

 
Figure 5.28: RQ values of 2p subtelomeric methylation specific Real Time-PCR: Saos2 

was used as references sample. Saos2 and T98G were cut with MspI, HpaII or stayed uncut to 

check up methylation state. 

(a): Amplification plot of Saos-2 

(b): Amplification plot of T98-G 
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Chromosome 2p subtelomeric methylation specific RT-PCR of Saos-2 and T98-G (Figure 

5.28.) allowed to calculate cut and methylation percentages. 

 

Cut percentages were calculated with fomula: 

Saos-2: 

 CFTR: 100% 

 Chromosome 2p TERRA: 100% 

T98-G: 

 CFTR: 99.9% 

 Chromosome 2p TERRA: 98.5% 

 

Methylation percentages were calculated with formula: 

Saos-2: 

 CFTR: 7.7% 

 Chromosome 2p TERRA: 0.4% 

T98-G: 

 CFTR: 25.8% 

 Chromosome 2p TERRA: 34.4% 

 

Efficiency of cut was very high, 100% at Saos-2 and 98.5% for chromosome 2p TERRA and 

99.9% for CFTR at T98-G. T98-G showed a more than 3 times higher methylation percentage 

at CFTR and an 86 times higher methylation percentage at chromosome 2p TERRA promoter 

region.  
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6. Discussion: 

The inhibitory function of the non-coding RNA called TERRA [70, 71] at telomerase activity 

was recently demonstrated [73, 78] and rises the possibility for a new anticancer mechanism. 

One of the major aims of this thesis was to develop expression vectors for telomere 

sequences. 

Cloning of the telomere fragment showed some difficulties. Different modifications were 

necessary to transfer the telomere fragement into the pENTR- vector. Reason for these 

difficulties at cloning steps could be the intramolecular G-quadruplex structure that is adopted 

by telomeric repeats [9]. It is known, that this special structure could influence potency on 

very different targets. G-quadruplex structures show an inhibitory function against telomerase 

[99] and in a few eukaryotic promoter regions it was found that it could influence 

transcription activity [100]. It is possible that this structure could also have more effects on a 

variety of different targets, but this is not investigated. Due to examples with known functions 

of this special DNA-structure, I would speculate that enzyme functions important for cloning 

in bacteria are hindered acting near the telomere sequence.  

We reasoned that transferring the telomere fragment between plasmids or vectors by 

recombination would be easier and more efficient than using standard cloning techniques. 

Using promoters, other than RNA polymerase II was also an aim of my diploma thesis. It is 

not clear that RNA polymerase II is responsible for TERRA transcription [71]. The known 

association of only non polyadenylated TERRA with telomeres was one reason behind my 

decision to use a different RNA polymerase than RNA polymerase II [73]. 

The 0.8kbp telomere fragment was finally successfully cloned with standard techniques into 

pENTR plasmids, in sense and anti-sense orientation, with and without hH1 promoter and 

terminator for RNA-polymerase III. With gateway recombination adenoviral vectors pAd/pl 

Sense Tel, pAd/pl Antisense Tel and pAd/CMV Sense ΔhH1 with the deleted hH1 but under 

control of CMV promoter and Herpes Simplex Virus thymidine kinase (TK) polyadenylation 

sequence termination signal were produced. 

In first attempts I tried to create lentiviral vectors via the same gateway recombination 

reaction, but it did not work with telomere fragments. The used vector pLenti6/UbC/V5-

DEST worked in a gateway reaction with another fragment for another project. The reasons 

for this failed attempt are not clear however it may be that the telomere fragment and its 

structure interfered with the lentiviral vector backbone and inhibited the gateway reaction. 
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Unfortunately there was not enough time to repeat these experiments and discover the reasons 

for this problem. In the near future replications of experiments using lentiviral vectors will 

arise if a general problem does indeed exist. However, my results demonstrate that with the 

gateway recombination system adenoviral expression vectors for telomere sequences can be 

constructed. 

The production of recombinant adenoviruses was performed with HEK293 FT, transfected 

with adenoviral plasmid constructs. To optimize this transfection, I first performed 

experiments with pEGFP expression vectors. The efficiency was measured with FACS and 

microscopy. The GFP-FACS showed that the highest efficiency for transfection with 

lipofectamine 2000 was with 50% confluence and with Wizard® Plus Minipreps DNA 

Purification System. HEK293 FT cells settled well with a good distribution and confluence 

but after treatment with lipofectamine they built up agglomerates. This could influence uptake 

efficiency. The reason for this agglomerates were, that the cells stayed too long at room 

temperature and together with the lipofectamine treatment they detached and settled down 

again. This temperature sensitivity is also known in literature [101]. 

With the produced constructs the level of TERRA in cells should be altered. The endogeneous 

ground level has to be determined. Recent publication showed that TERRA level is influenced 

by cell cycle state [73]. Different confluences showed influence on cell cycle. Detaching with 

trypsin led in both cell lines to a higher percentage of cells in G0/G1 and a lower percentage 

of cells in S cell cycle state in comparison to detaching by scratching. Treatment with Trypsin 

required a few minutes of treatment, maybe this could influence the cell cycle state. SW480 R 

showed more cells in G0/G1 cell cycle state than SW480 B, regardless of detaching 

technique.  In both cell lines higher confluences showed less cells in S and G2/M cell cycle 

state (up to 3 times lower). Detaching with trizol showed also a clear trend of increasing 

percentage of cells in S phase by decreasing confluence state. 

Real-Time PCR of total TERRA expression in dependency of confluence was done. TERRA 

expression increased up to 10 times with increasing confluence in all measured cell lines 

except U2OS. But also U2OS showed a significant trend of increasing TERRA expression 

level by increasing confluence. A relationship between confluence and cell cycle state was 

shown. These results accompany with literature, that during S phase TERRA level decreases 

and reached the lowest level at the transition state between S and G2 [73]. TERRA level in 

U2OS and Saos-2 were about 1 to 450 times higher than in T98-G. In general, higher TERRA 

levels in ALT cell lines like U2OS and Saos-2 are in agreement with literature [77]. 
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Interestingly, two of the studied telomerase positive cells, SW480 B and SW480 R showed in 

nearly all confluence states higher TERRA expression levels in comparison to T98-G of about 

0.5 to 3 and 0.7 up to 10 fold, respectively. Why these elevated TERRA levels occurred at 

these two telomerase positive cell lines is not yet clear. Maybe in these cell lines both 

telomere maintain mechanism (TMM), telomerase activity (TA) and ALT, are active as 

known in literature [67]. At least for SW480 B, extreme long telomeres could be detected by 

TRF southern blotting and the existence of c-circles within the cells, both indicating the 

existence of ALT (S.Sampl, personal communication). Telomerase positive cell lines like 

HEK293 showed about 2 to 50 times lower TERRA expression levels and HEK293 FT 

showed nearly similar TERRA expression levels than T98-G as in accordance with literature 

[77]. These results were investigated, because lack of time only by a single experiment and 

were not repeated. So the results should not be overestimated and repeating is necessary. We 

demonstrated in a further study, that a correlation of TERRA levels and TMM in 

astrocytomas [103]. Further planned in vitro experiments with TERRA expression constructs 

may demonstrate if a functional correlation between TERRA expression and TMM may exist 

in tumor cells. Such results may have implication for anti-telomerase tumor therapy concepts. 

Collaboration with Geron Corporation, which has the telomerase inhibitor drug Imetelstat 

(GRN162L), currently in clinical phase II trials [102] is already in progress and further 

experiments are planned. 

It can be estimated from literature that a large part of TERRA molecules consist of 

subtelomeric sequences [72, 73]. It could be an interesting point which chromosome ends 

expresses TERRA and how strong these chromosome-end specific expressions are. 

Measurements showed differences between subtelomeric expression levels in different cell 

lines. HEK293 and HEK293 FT showed both the highest RQs at chromosome 2p 

subtelomeric TERRA and SW480 R and SW480 B showed both the highest RQs at 

chromosome 18p subtelomeric TERRA. Because this cell lines have respectively the same 

origin, it could be that the ratios of chromosome end specific TERRAs stay constant, but this 

hypothesis needs validation. Between telomerase positive and negative cell lines, no relation 

is visible. Reasons for these different levels of subtelomeric TERRA expression levels are not 

clear. In our further study we investigated chromosome end 18p and 2p TERRA expressions 

among other samples [103]. In our further study chromosome end 18p was similar expressed 

in Saos-2 as in T98-G, in this study Saos-2 showed a 1.6 higher expression as T98-G, which 

are not quiet different. Chromosome end 2p was expressed 2.5 to 5 times higher in Saos-2 as 

in T98-Gand our further study, in this study T98-G showed about 2 times higher expression in 
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comparison to Saos-2. Why this difference at chromosome end 2p expression level exists is 

not known, but the results of this study are based on a sinlge experiment and were not 

repeated, so the validity is not very high and a repeating should be done. 

Due to TMM tumor cells retain a constant telomere length. Treatment with TERRA which 

acts as telomerase inhibitor [78] should decrease telomere length in telomerase positive tumor 

cells. U2OS and Saos-2, two known ALT cell lines reached about 49.7 and 3.4 times higher 

relative high telomere length as T98-G, respectively. Heterogeneous and high teleomere 

lengths of ALT tumor cell lines are known in literature [66], and in our further study we also 

mentioned an about 3.2 times higher Saos-2 relative telomere length in comparison to T98-G. 

Telomere length of fibroblasts depends on time grown in cell culture, because they have not 

got the ability to maintain their telomere length. In further experiments telomere lengths of 

treated and untreated cells have to be compared. SW480-B also showed an about 3 times 

higher telomere length in comparison to T98-G. This was also mentioned in further studies in 

our lab and enforces the assumption that long time passaging of SW480 led to a change of 

TMM maintance. 

Expression of TERRA depends strong on methylation of CpG islands of their promoters [72]. 

Based on the publication of Kanel et al. [98], my colleague Sandra Sampl and I established a 

one-step methylation specific Real-Time PCR assay for one CpG loci of the TERRA 

promoter on chromosome end 2p. The methylation sensitive restriction endonuclease HpaII 

cuts at this defined CpG position if it is not methylated. MspI cuts at the same position, but 

isn‟t methylation sensitive so it is always cut and serves as a control. The cutting efficiencies 

were 98.5% to 100% and so the DNA should be restrictable. With HpaII methylation 

percentage of this CpG-position is ascertainable. T98-G showed a more than 3 times higher 

methylation percentage at CFTR (25.8% to 7.7%) and an 86 times higher methylation 

percentage at the chromosome 2p TERRA promoter region (34.4% to 0.4%) as Saos-2. This 

methylation results correlates with our former study based on epigenetic allelic sequencing 

which determined, a higher methylation grade of T98-G in comparison to Saos-2 [103]. In 

this study we measured a mean methylation grade of subtelomeric region 2p of 95.8% in T98-

G and 17.3% in Saos-2. To optimize this assay further experiments have to be done, incuding 

other tumor cell lines and tissus. Investigation of other subtelomeric regions, more CpG 

islands of TERRA promoter regions with the right sequence for restriction enzyme cuts could 

be found and allows extension of this assay. This would be an easy and fast way to compare 

different subtelomeric methylation state. 
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The TERRA expressing constructs of this study should now be tested in vitro. TERRA and 

antisense TERRA could be produced to increase TERRA concentration or to inhibit 

enogeneous TERRA in cells. They may grant the ability to learn more about the function and 

potential of TERRA in tumor cell suppression. My data about cell cycle state dependency of 

TERRA expression and the connection with confluences of cell growth on monolayer will be 

a starting point for detailed in vitro studies. The expression system developed in this study can 

be used to express chromosome-end specific TERRA transcripts. With such a strategy the 

chromosome end specific effects of subtelomeric TERRA and TMM may be studied. In 

connection with qTelo-FISH (quantitative telomere fluorescent-in-situ-hybridization) for cells 

with normal karyotype and STELA (single telomere length analyses) for tumor cell the effects 

of subtelomeric TERRA on individual telomere lengths may be investigated. Furthermore, as 

anti-telomerase tumor therapies with small molecules like Imetelstat [102] reach the clinics, it 

may be interesting to see if TERRA interferes with the success of anti-telomerase treatments. 

Summing up, TERRA expression systems will be an important starting point for research of 

TERRA function, anti-telomerase potency and may be helpful to investigate new important 

anti-cancer mechanism. 
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9. Supplement:  

 

Figure 10.1.: 

Start vector for cloning strategy. pENTR/D/hH1 vector with an shNMP265 insert. 

 

pENTR/D/hH1 shRNA NMP265 
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Figure 10.2.: 

Deletion of SalI restricition site of pENTR/D/hH1 shRNA NMP265. Cut with SalI, fill in of 

overhangs with Klenow fragment and relegation were done. 

pENTR/D/hH1 shNMP265 Delta SalI 
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Figure 10.3.: 

Elimination of shRNA NMP265 gene from vector pENTR/D/hH1 shNMP265 delta SalI. Cut 

with EcoRI and relegation eliminated gene for shRNA NMP265 were done. 

pENTR/D/hH1 delta shNMP265 
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Figure 10.4.: 

Insert of linker into pENTR/D/hH1delta shNMP265. Cut with EcoRI and annealing of pre-

phosphorylated linker were done. 

 

pENTR/D/hH1 Linker 
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 Figure 10.5.: 

pSP73 with Tel fragement 

pSP73 with 0.8kb telomere fragment 
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Figure 10.6.: 

Integration of telomere fragment into pENTR/D/hH1 linker in anti-sense orientation. Cut of 

pENTR/D/hH1 linker with SalI and cut of pSP73 Tel with BamHI and BglII were done. Then 

gel purification, partial fill-in (Fill in with dTTP and dCTP at SalI overhangs and with dATP 

and dGTP at BamHI and BglII overhangs) and ligation were done. 

pENTR/D/hH1 Antisense Tel 
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Figure 10.7.: 

Integration of telomere fragment into pENTR/D/hH1 linker in sense orientation. Cut of 

pENTR/D/hH1 linker with SalI and cut of pSP73 Tel with BamHI and BglII were done. Then 

partial fill-in (Fill in with dTTP and dCTP at SalI overhangs and with dATP and dGTP at 

BamHI and BglII overhangs), gel purification and ligation were done. 

 

 

pENTR/D/hH1 Sense Tel 
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Figure 10.8.: 

Deletion of hH1 promoter of pENTR/D/hH1 Sense Tel. Cut of pENTR/D/hH1 Sense Tel with 

SacI and BamHI, exonucleolytic activity at SacI overhang, fill-in at BamHI overhang and 

religation. 

pENTR/D/ Sense Tel delta hH1 
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Figure 10.9.: 

Deletion of hH1 promoter of pENTR/D/hH1 Antisense Tel.  Cut of pENTR/D/hH1 Antisense 

Tel with BamHI and ClaI, fill-in and religation. 

 

10.1. RNA isolation efficiency and RNA quality for TERRA expression analysis: 

Cell pellets of cell lines were produced as described in material and methods. These pellets 

were used for expression studies. 

RNA-isolation by Trizol was done for TERRA expression determination (Figure 10.10.). 

cDNA, synthesized as described in material and methods were used for Real Time-PCR.  

pENTR/D/Antisense Tel delta hH1 
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RNA concentration of cell lines with different confluences, isolated by trizol: 

Cell line: ng/µl total RNA (µg) 260/280 µl/500ng Cell line: ng/µl total RNA (µg) 260/280 µl/500ng 

U2OS 35% 91.2 2.7 1.86 5.5 HEK293 FT 10% 62.9 1.9 1.77 7.9 

U2OS 70% 201.0 6.0 1.94 2.5 SW480R 80% 1122.9 33.7 2.07 0.5 

U2OS 100% 830.0 24.9 2.04 0.6 SW480R 10% 112.9 3.4 1.78 4.4 

U2OS 75% 298.4 9.0 1.92 1.7 SW480R 40% 785.6 23.6 2.05 0.6 

U2OS 20% 28.5 0.9 1.86 17.5 SW480R 20% 115.1 3.5 1.95 4.4 

T98G 100% 696.0 20.9 2.00 0.7 SW480R_2 80% 917.0 27.5 2.11 0.6 

T98G 70% 455.5 13.7 1.98 1.1 SW480R 35% 80.3 2.4 1.84 6.2 

T98G 35% 106.9 3.2 1.75 4.7 SW480B 75% 577.0 17.3 2.08 0.9 

T98G 20% 47.3 1.4 1.79 10.6 SW480B 40% 301.7 9.1 1.91 1.7 

Saos2 100% 138.2 4.1 1.92 3.6 SW480B 10% 108.4 3.3 1.96 4.6 

Saos2 75% 59.6 1.8 1.92 8.4 SW480B 100% 1010.8 30.3 2.04 0.5 

Saos2 30% 49.8 1.5 1.57 10.0 SW480B 35% 51.6 1.5 1.81 9.7 

HEK293 95% 1548.8 46.5 2.03 0.3 Caco 100% 4294.1 128.8 1.67 0.1 

HEK293 75% 549.5 16.5 2.03 0.9 HT29 70% 3909.8 117.3 1.81 0.1 

HEK293 30% 153.5 4.6 2.02 3.3 HCT 116 60% 4592.8 137.8 1.40 0.1 

HEK293 10% 73.6 2.2 1.83 6.8 LT97 100% 4549.4 136.5 1.28 0.1 

HEK293 FT 60% 442.4 13.3 1.95 1.1 SW620 70% 4140.4 124.2 1.79 0.1 

HEK293 FT 90% 1022.2 30.7 2.03 0.5 Vaco 50% 4471.8 134.2 1.40 0.1 

HEK293 FT 30% 125.9 3.8 1.80 4.0 

     Table 10.1.: RNA concentration of cell lines with different confluences isolated by trizol: Concentrations were measured by Nanodrop1000. All 

samples with a µl/500ng value below 0.5 were diluted 1:10 before use. Percentage show confluences of cell lines 
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10.1.1. Quality check with RNA-Gel:  

28S and 18S bands are clearly visible at the RNA-agarosegel (Figure 10.11.). Smear and 

slight bands corresponding to 5S rRNAs, tRNAs and mRNAs. 

 
    1      2     3    4      5     6    7      8    9 

Figure 10.10.: RNA-agaosegel for quality check-up: 

Denaturating RNA-agarosegel. 28S RNAs and 18S RNAs are visible as two big bands. Ratio 

should be1.5-2.5:1 

(1)HT29. (2) Caco, (3) Vaco, (4) LT97. (5) HCT116. (6) SW620. (7) T98G 70%, (8) SW480 

B 75%, (9) HEK293 FT 90% 

 

All tested RNAs showed a sufficient ratio between 1.5-2:1 of 28S and 18S (Table 10.1.). 

Because of this they were used for cDNA synthesis and expression studies.  

 

 

 

 

28S 

18S 

Smear and light bands 

Smear and light bands 
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Table 10.2.: Ratio between 28S and 18S of RNA-agarosegel 

Lane 28S/18S 

Lane 1: 2.05 

Lane 2: 2.07 

Lane 3: 2.01 

Lane 4: 2.30 

Lane 5: 2.48 

Lane 6: 1.90 

Lane 7: 1.77 

Lane 8: 2.24 

Lane 9: 1.88 
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