
DISSERTATION

Titel der Dissertation

Improving reliability and performance of

telecommunications systems by using autonomic,

self-learning and self-adaptive systems

Verfasser

Mag. Michael Nussbaumer

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2011

Studienkennzahl lt. Studienblatt: A 786 175
Dissertationsgebiet lt. Studienblatt: Wirtschaftsinformatik
Betreuer: Ao.Univ.Prof. Dr. Helmut Hlavacs

fghfd

Michael Nussbaumer:
Improving reliability and performance of telecommunications systems by using
autonomic, self-learning and self-adaptive systems

Department of Distributed and Multimedia Systems
Faculty of Computer Science
University of Vienna, Austria

This research has been supported by Softnet Austria, Kapsch CarrierCom

ii

Abstract

My dissertation will be about autonomic, self-learning and self-adaptive sys-

tems. Usually an autonomic and self-learning system must be able to know

its own status and the external operations, must be able to monitor system

changes and must be able to self-adapt to them. Within this area my disser-

tation will present two case studies of autonomic and self-learning systems.

Improving reliability of multimedia communication:

While testing a commercial VoIP server it became obvious that the SIP proto-

col, used to initiate VoIP calls, is defined in a very open standard. That fact

results in a great number of different SIP dialects, leading to the problem that

some VoIP devices (hard and soft phones) may not be able to communicate

with each other, even though they use the same protocol. Therefore an au-

tonomic, self-learning SIP translator will be presented, that will decrease the

rate of rejected SIP messages.

Automatic adaptation of system parameters to improve system performance:

The performance of a commercial system that collects data from various mo-

bile devices is critical, because of the high amount of incoming data. There-

fore performance tests will be initiated and automatically evaluated. Through

self-learning techniques the system will self-adapt to the environment and the

hardware on which the system is currently running, with the goal to improve

the systems performance.

Acknowledgement

Many people deserve my deepest gratitude.

First of all I would like to thank my thesis advisor, Helmut Hlavacs, for his

continued support throughout my work at the University. He always helped

and encouraged me to pursue the goal of writing this thesis.

Also I would like to thank another advisor at the University, Karin Anna

Hummel, for her support, especially during the first part of my work.

Then I would like to thank Christof Puntigam, Andrea Hess and Roman Wei-

dlich, my colleagues in certain parts of the projects. It has been great working

with them.

I developed the basic idea of my thesis within a cooperation of my univer-

sity with the Softnet Austria Competence Network and the company Kap-

sch CarrierCom. The people there were willing to help with their hints and

background knowledge: Werner Weissenbacher (Kapsch Mississippi), Gerhard

Gruber (Kapsch Mississippi), Dieter Melnizky (Kapsch DataXtender), Nico-

las Damour (Kapsch DataXtender), Wolfgang Scherer (Kapsch DataXtender),

Karl-Heinz Driza (Kapsch DataXtender), Auguste Stastny (Kapsch Missis-

sippi, DataXtender).

Most of all, I owe many thanks to my family and friends, who supported

me throughout my whole professional career. None of my achievements would

have been possible without their patience, understanding and advice. Thank

you very much!

This work is especially dedicated to my parents, who had a terrible car ac-

cident while I was working on this thesis and are slowly recovering from it.

Contents

1 Introduction 2

1.1 Publications . 5

1.2 Synopsis . 7

2 Automated Systems and Related Work 12

3 Self-Adaptive Network Protocols 18

3.1 Basic Idea and Motivation . 19

3.2 Related Work . 19

3.3 Background: Voice over IP . 21

3.3.1 Setup scenarios . 23

3.4 Background: The Session Initiation Protocol 26

3.4.1 SIP dialects . 30

3.5 Testing SIP VoIP systems . 42

3.5.1 Motivation . 42

3.5.2 Call Scenarios . 43

3.5.3 Testing different call scenarios with a commercial test tool 54

3.5.4 SIPGenerator . 62

3.5.5 SIPParameterShuffler . 65

3.6 Autonomic SIP Adaption . 73

3.6.1 Motivation and Introduction to Babel-SIP 73

3.6.2 C4.5 Decision Trees . 75

3.6.3 Babel-SIP . 77

3.6.4 Experiments and Results 78

3.6.5 Qualitative Analysis of Decision Trees 88

3.7 Conclusion . 95

i

CONTENTS

4 Automatically adapting software to specific hardware 96

4.1 Basic Idea and Motivation . 97

4.2 Self-Adaptive Systems and Related Work 97

4.3 Background: Queueing Networks 102

4.3.1 Background: Kendall’s Notation 104

4.4 Software using queueing networks 105

4.4.1 The model . 105

4.4.2 Usage . 107

4.4.3 M/M/k/B Queues . 108

4.4.4 M/G/k/B Queues . 112

4.5 Improving performance by using self-adaptive software 113

4.5.1 Analytical Model . 114

4.5.2 Measurement . 119

4.5.3 Simulation . 128

4.5.4 Experiments . 136

4.5.5 Autonomic Adaption Tool 146

4.5.6 Excursus: Speeding up database operations 149

4.5.7 Excursus: Using an enhanced queueing network for fur-

ther analytical analysis 151

4.5.8 Excursus: Using artificial nodes and a fictional host for

further analytical analysis 154

4.5.9 Conclusion . 161

5 Conclusion 162

A SIPGenerator GUI 166

B SIPParameterShuffler GUI 168

C C4.5 tree, REGISTER messages 170

D C4.5 tree, INVITE messages 174

E Configurations of a fictional system (see Section 4.5.8): Cu-

mulated service rates for all nodes and the maximum external

arrival rate where all nodes are utilized under 80%. 178

1

Chapter 1

Introduction

Especially in the last two decades telecommunication systems have become

more and more important. [Wik09b] shows that 1997 just nearly 20 percent

of people owned a cell phone, while today almost everybody owns a cell phone.

There are two aspects that are crucial for telecommunication systems today:

• Today everybody who uses telecommunication systems expects them to

function at all times. Therefore telecommunication systems have to be

highly available, but also have to guarantee that the system performs

according to its specification. A reliable system should be able to correctly

respond to proper requests.

• Due to the huge amount of requests sent minutes after midnight on Jan-

uary 1st, the New Year’s Day traffic is a good indicator for the maximum

workload of a telecommunication system. Thus, telecommunication sys-

tems must be built to handle New Year’s Day traffic. Of course, there

or other events (e.g.: human crises) which could lead to an extremely

increased number of requests. If a telecommunication system is able to

handle these kinds of workload bursts, it will very likely be able to handle

all other workloads as well.

In my dissertation I worked on two different approaches to improve the relia-

bility and the performance of telecommunication systems. In both cases I used

autonomic, self-learning and self-adaptive systems or techniques to achieve an

improvement.

2

Problem Definition I

The development of new Internet protocols can lead to a number of problems.

Standards may be formulated in a very open way; software developers may

only implement a subset of the protocol in early software versions, while other

software developers are using the entire standard right from the start; there

could be code faults and errors; and so forth. All these problems could lead

to the fact that software implementing these new protocols may reject cor-

rect protocol messages resulting in a situation where devices using the same

protocol may not be able to communicate with each other.

Problem Definition II

Server software that is constructed and designed to handle an enormous amount

of load, might be overloaded at certain peak moments, which could lead to the

fact that requests may be lost. Software that handles incoming data and splits

its work into atomic tasks is often designed as a data-flow graph, where every

incoming request passes a number of nodes where certain tasks are executed.

State-of-the-art multi-core machines are used to improve the performance of

the server software, by delegating certain tasks to individual cores. To improve

the performance of the system even further, the tasks of over-utilized nodes

can be allocated to idle cores. A number of cores can then in parallel handle a

greater amount of requests in the same amount of time. Finding an algorithm

on how to optimally delegate which task to which core can have enormous

effects on this kind of multi-thread data-flow server software.

Improving voice over IP related systems is the main focus of my work, but

finding solutions to the mentioned problems, could also lead to benefits in

other information technology areas.

Operational Areas I

New ideas and technologies often result in the development of new Internet

protocols. All these newly developed protocols share the same problems in the

early stages of development, where communication between certain software

products or devices fails. In my dissertation I focused on the Session Initiation

Protocol (SIP), a text-based protocol that is used for creating, managing and

3

terminating multimedia sessions, but finding a solution to improve the reliabil-

ity of SIP-based communication could also have an effect on other operational

areas. The Universal Plug and Play Audio/Video (UPnP AV) protocol for in-

stance, is used for communication between certain (in most cases) audio/video

multimedia devices. These devices could use the same protocol, but often

software developers are using their own communication protocols for setting

up multimedia sessions or communications. The communication between two

devices using a slightly different protocol, but with identical purposes and fea-

tures might fail. The development of self-adaptive network protocols, which

identify the purpose of certain messages and then alter incoming messages in

a way to make two devices conform and therefore enable communication be-

tween them, could be a huge scientific progress in all information technology

areas.

Operational Areas II

Optimizing server software is an important task. In my dissertation I worked

with a multi-thread data-flow software used by a telecommunication system in

the area of Voice over IP. Besides telephone servers, web servers and database

servers, banks could use that kind of software for Internet online banking

requests. For all these operational areas it is crucial that the software uses

the hardware of a certain server in the best possible way to obtain the best

possible performance.

Self-Learning Approach I

In my dissertation I try to solve the two mentioned problems by using au-

tonomic, self-learning and self-adaptive techniques. The basic idea behind

solving the problem of communication problems between two devices using

the same protocol, is to identify the problematic parts of the messages used to

set-up the sessions between them. These problematic message parts can then

be altered to make a communication possible. The solution is to continuously

learn which messages are rejected by the server, compare them to other re-

jected messages and by doing that, identify the aforementioned problematic

message parts. This solution approach includes a way to classify incoming mes-

sages and a way to find a message which is as similar to the incoming, rejected

message as possible and is known to be accepted by the server. By comparing

4

1.1. PUBLICATIONS

the two messages, differences can then be eliminated and the possibility that

the incoming message will be rejected, should be reduced. Reaching this goal

could be the first step to develop self-adaptive network protocols, which could

have a benefit for all the previously mentioned operational areas.

Self-Adaptive Approach II

As mentioned before, multi-thread data-flow software is used in a great num-

ber of operational areas. Finding the optimal configuration for that kind of

software for given hosts should be possible easily and quickly. The solution

proposed in my dissertation presents an analytical approach, a measurement

approach and a simulation approach. The idea behind all these approaches is

to recursively add threads to over-utilized tasks. The multi-thread data-flow

software uses multi-core servers to take advantage of the software structure by

assigning tasks to threads which are executed on individual cores. The solu-

tion to finding the optimal number of threads per task is using an autonomic,

self-adaptive system that is testing the used tasks and is finding out which

task and thread is over-utilized. By recursively adding threads to over-utilized

tasks, and thereby parallelizing the work, the system stabilizes itself, find-

ing the optimal configuration of the system that can then handle the highest

possible external request arrival rate.

1.1 Publications

The content of my dissertation was already published in four publications.

These publications present the ideas and results of the work also discussed in

this dissertation, but focus on specific parts of my work, whereas my disserta-

tion presents my work in every detail. This section presents the abstracts of

these publications.

Software implementing open standards like SIP evolves over time, and often

during the first years of deployment, products are either immature or do not

implement the whole standard but rather only a subset. As a result, standard

compliant messages are sometimes wrongly rejected and communication fails.

In this paper we describe a novel approach called Babel-SIP for increasing the

rate of acceptance for SIP messages. Babel-SIP is a filter that can be put in

5

1.1. PUBLICATIONS

front of the actual SIP parser of a SIP proxy. By training a C4.5 decision tree,

it gradually learns, which SIP messages are accepted by the parser, and which

are not. The same tree can then be used for classifying incoming SIP messages.

Those classified as not accepted can then be pro-actively changed into the most

similar message that is known to be accepted from the past. By running ex-

periments using a commercial SIP proxy, we demonstrate that Babel-SIP can

drastically increase the message acceptance rate ([HAAM08]).

Software implementing open standards like SIP evolves over time, and often

during the first years of deployment, products are either immature or do not

implement the whole standard but rather only a subset. As a result, messages

compliant to the standard are sometimes wrongly rejected and communication

fails. In this paper we describe a novel approach called Babel-SIP for increasing

the rate of acceptance for SIP messages.

Babel-SIP is a filter that is put in front of a SIP parser and analyzes incom-

ing SIP messages. It gradually learns which messages are likely to be accepted

by the parser, and which are not. Those classified as probably rejected are then

adapted such that the probability for acceptance is increased. In a number of

experiments we demonstrate that our filter is able to drastically increase the

acceptance rate of problematic SIP REGISTER and INVITE messages. Addi-

tionally we show that our approach can be used to analyze the faulty behavior

of a SIP parser by using the generated decision trees ([HNHH08]).

[HAAM08] presents Babel-SIP, a tool to improve the rate of accepted SIP

messages and focuses on the results conducted with SIP REGISTER messages

only, whereas [HNHH08] presents a more detailed description of Babel-SIP

and the used decision trees and also includes experiments conducted with SIP

INVITE messages.

This work presents a special class of a data flow oriented optimization tool

that finds the optimal number of threads for multi-thread software. Threads

are assumed to encapsulate concurrent executable key functionalities, are con-

nected through finite capacity queues, and require certain hardware resources.

We show how a combination of measurement and calculation, based on Queue-

ing Theory, leads to an algorithm which recursively determines the best com-

6

1.2. SYNOPSIS

bination of threads, i.e. the best configuration of the multi-thread software

on a specific host. The algorithm proceeds on the directed graph of a queueing

network which models this software. Optimization towards hardware consolida-

tion, where CPU cores, memory, disk space and speed, and network bandwidth

are constraints, but also towards throughput is described. Two experiments on

different SUN machines verify our optimization approach ([WNH10]).

This work presents an optimization tool that finds the optimal number of

threads for multi-thread data-flow software. Threads are assumed to encapsu-

late parallel executable key functionalities, are connected through finite capacity

queues, and require certain hardware resources. We show how a combination

of measurement and calculation, based on queueing theory, leads to an algo-

rithm that recursively determines the best combination of threads, i.e. the best

configuration of the multi-thread data-flow software on a given host. The al-

gorithm proceeds on the directed graph of a queueing network that models this

software. Experiments on different machines verify our optimization approach

([NH11]).

[WNH10] presents the idea of the calculation and measurement approach on

how to find the optimal configuration for multi-thread data-flow software on

a specific host, whereas [NH11] focuses more on validating the mentioned ap-

proaches by conducting extensive experiments.

1.2 Synopsis

The following section gives a detailed content overview of my dissertation to

present a synopsis and an introduction to my work.

Chapter 2 presents the idea behind autonomic, self-learning and self-adaptive

systems. It mainly presents work related to the topic of self-adaption and the

idea behind creating these types of software.

Chapter 3 and Chapter 4 both deal with improving Voice over IP telecom-

munications systems, by using self-learning or self-adaption techniques. On

the one hand, my work tries to make telecommunications systems more re-

7

1.2. SYNOPSIS

liable, by finding a way to accept more correct incoming messages. On the

other hand, my work tries to improve the performance of telecommunications

systems by using the hardware of a specific host in the best possible way.

Chapter 3 presents my approach to create self-adaptive network protocols.

The chapter deals with my work on a commercial VoIP server, which uses the

SIP protocol to handle multimedia sessions. The SIP protocol uses text mes-

sages with a number of mandatory and optional headers to create, modify and

terminate multimedia calls. Each header consists of certain mandatory and

optional parameters. These parameter-combinations lead to different dialects

that may cause problems for the VoIP server.

The chapter picks up these problems and uses self-learning techniques to im-

prove the acceptance rate of the VoIP server, when handling incoming, RFC-

correct, SIP messages.

At first, the basic idea and the motivation behind my work is presented (see

Section 3.1), followed by work related to improving the reliability of VoIP sys-

tems and testing these systems (see Section 3.2).

Section 3.3 gives a background on Voice over IP and especially shows sce-

narios on how to set up a VoIP environment within companies.

Section 3.4 presents a background on the Session Initiation Protocol (SIP)

and focuses mainly on different SIP dialects.

Different SIP dialects resulting in problems that two SIP devices may not

be able to communicate with each other, even though they are using the same

protocol, became the main focus of the first part of my work. Therefore, Sec-

tion 3.4.1 presents different SIP messages and SIP dialects and also gives an

overview of which headers and parameters are used by which VoIP hard and

soft phone.

The goal of the first part of my dissertation was to make VoIP servers more

reliable, therefore, it was necessary to test these systems. For every software

developer, testing their product is crucial. For my work it was a necessary

8

1.2. SYNOPSIS

step to get a feeling of the SIP protocol as well as understand different VoIP

call scenarios. Of course, in the second step, testing a VoIP server with differ-

ent SIP dialects showed which of these dialects were causing the VoIP server

problems. Section 3.5 presents VoIP call scenarios and a way to test VoIP

systems with a commercial test tool used to implement these call scenarios.

Furthermore, the section presents two Java test tools I developed, which are

used for further experiments.

Section 3.6 presents Babel-SIP, a self-learning tool using C4.5 decision trees

to classify incoming SIP messages, extract the parameters of the incoming

message, identify the problematic parameters of the incoming message and

suggest to alter these problematic parameters. The section also presents an

introduction and a qualitative analysis of decision trees, the extensive experi-

ments conducted with Babel-SIP and discusses the results.

Like Chapter 3, Chapter 4 also deals with improving the work of VoIP-related

telecommunications systems. The first part of my work tries to improve the

availability and reliability of a VoIP server, while the second part of my work

tries to improve the performance of software used for handling and storing

telephone call data.

Telephone devices send Diameter tickets to the server software and the data is

stored for (e.g.) the billing of calls. Of course, relative to the time of the day

and the number of costumers, the amount of incoming tickets can be huge.

The goal of my work is to automatically adapt the software in a way that it

uses the hardware of the server in the best possible way.

Again, the motivation behind my work is presented (see Section 4.1), followed

by related work and other approaches where a system tries to automatically

find an optimal configuration for specific software on a given host (see Section

4.2).

The telecommunications software used in this second part of my work is struc-

tured like a queueing network. Therefore, Section 4.3 gives an overview on

queueing networks and explains the difference between open and closed queue-

9

1.2. SYNOPSIS

ing networks.

Section 4.4 then presents software using queueing network, which is used in

my entire dissertation. The section focuses on the structure and the usage of

the software and also presents the goals for the optimization of the software.

Section 4.5 presents the different approaches that can be used to find the

optimal configuration for a given host. This work not only describes one single

approach, but covers all bases by presenting an analytical approach, a measure-

ment approach and a simulation approach. Finally, experiments will confirm

results from the presented optimization approaches.

The developed ideas and tools presented in my thesis were developed in a

working relationship with a global telecommunication company and are there-

fore tested with real software used in the telecommunication industry.

Finally, Chapter 5 presents a conclusion and sums up the ideas presented

in my dissertation.

10

1.2. SYNOPSIS

fghfd

11

Chapter 2

Automated Systems and

Related Work

Self-adaptive, self-learning and automated systems are (in most cases) used

to handle the complexity of software system, which are getting bigger and

more complex due to the development of new hardware technologies such as

multi-core machines. Self-adaptive systems are furthermore used to minimize

the involvement of human administrators. In my dissertation self-adaptive

and self-learning techniques and systems are used to improve the reliability

and performance of telecommunications systems without constant human in-

tervention.

”Self-adaptive software evaluates its own behavior and changes

behavior when the evaluation indicates that it is not accomplishing

what the software is intended to do, or when better functionality or

performance is possible.” (see [HT03])

The Defense Advanced Research Projects Agency (DARPA) provided this def-

inition of self-adaptive software in 1997 and is quoted in numerous works, in-

cluding [HT03].

In [KC03] IBM introduced their vision on automated systems. According to

IBM a self-managing software system has to be self-configuring, self-optimizing,

self-healing and self-protecting. Because software systems become bigger and

12

more interconnected, the challenge of the configuration and maintenance of

these systems will be too complex for human administrators. Automated, self-

managing systems should therefore free the system administrators from the

details of maintenance and system operation. Another goal for automated

systems is to guarantee the best possible system performance.

A big part of self-managing systems is monitoring. An autonomic element

must be able to monitor external conditions and its own status.

Furthermore, two or more autonomic elements must be able to communicate

with each other. Therefore such an autonomic element must specify input and

output services; locate input services of other elements; negotiate with other

elements to use services; provision their internal resources; operate with each

other and terminate the connection.

[GVAGM08] takes IBMs approach on autonomic computing and adds the per-

vasive computing paradigm. [GVAGM08] takes each of the four attributes

(self-configuring, self-optimizing, self-healing and self-protecting) described by

IBM and adds the pervasive aspect to create smart spaces.

[KM07] defines a self-managed software architecture as one in which compo-

nents automatically configure their interaction. This should be done to achieve

the goals of the system, but by meeting an overall architectural specification.

Within these specifications, the goal is to not just guarantee functional behav-

ior, but self-managed systems also have to concentrate on performance, relia-

bility and security issues. Also, such a self-managed system not only should

meet the requirements, but the goal should be to optimize a system to a given

specification.

[HL08] concentrates on security issues of autonomic systems. The component-

based software paradigm is used to realize self-protected systems, that are

running with almost no human administrator intervention.

In [HM08] the idea of autonomic computing is discussed. Like the autonomic

nervous system in the human body takes care of unconscious reflexes that do

13

not require our attention (e.g.: bodily adjustments such as the size of the

pupil), the goal of autonomic systems is to decrease the human involvement.

Also, [HM08] discusses the Autonomic Computing Adoption Model Levels in-

troduces by IBM. These levels basically classify software on a scale from Basic

to Autonomic:

• Level 1, Basic: software is managed by administrators who perform

changes manually.

• Level 2, Managed: through intelligent monitoring, the administrators

work is reduced.

• Level 3, Predictive: system monitoring recognizes system behavior pat-

terns and suggests changes.

• Level 4, Adaptive: software is more capable of not only suggest changes,

but take action.

• Level 5, Autonomic: self-managed (see [KC03]) components that are

driven by policies.

[ST09] states that autonomic software must be able to adapt itself triggered

by either ”internal causes” or ”external events” (e.g.: changes within the

entire body of the software or the entire external operating environment).

Furthermore [ST09] states that

”such a system is required to monitor itself and its context, de-

tect significant changes, decide how to react, and act to execute such

decisions.”

[ST09] also defines that self-adaptive software must be able to do so ”at a

reasonable cost and in a timely matter”. Furthermore the following reasons for

creating and using self-adaptive software are mentioned:

• managing the complexity of a software system,

• decreasing the costs for monitoring, managing and adapting software,

• guaranteeing the reliability of a software system in case of unexpected

conditions and

14

• changing the software at runtime to achieve the desired goals.

According to [ST09], the requirements of self-adaptive software can be best

explained by answering the questions where, when, what, why, who and how :

• By answering the question ”Where?”, the system states which layer of

the software needs to be changed.

• By answering the question ”When?”, the system states when changing

the software can be done or has to be done.

• By answering the question ”What?”, the system states what parameters

or components of the software have to be changed.

• By answering the question ”Why?”, the system states the reasons why

the software has to be adapted.

• By answering the question ”Who?”, the system states if changes are done

automatically or require human intervention.

• By answering the question ”How?”, the system states the process on how

to adapt the behavior of the software.

[NRS10] states that self-adaptive systems usually use FCLs (Feedback Control

Loops) to achieve the mentioned requirement goals. [HGB10] notes that

”available techniques to describe the software architecture of such

systems do not support to make the control loops explicit.”

Therefore, [HGB10] tries to extend UML modeling concepts to guarantee that

control loops are treated as ”first class entities” in such architectures.

[DDKM08] states that

”by observing its internal state and surrounding context contin-

uously using feedback loops, an adaptive system is able to analyze

its effectiveness by evaluating quality criteria and then self-tune to

improve its operations.”

[DDKM08] uses the reflection mechanisms of programming languages, like

Java, to monitor itself and the external environment.

15

As mentioned before, control loops are often used for achieving some sort

of self-adaptive behavior. [SILM07] adds another control loop that manages

the autonomic system, ”to improve the ability of an autonomic control loop to

modify itself with changes in its environment”.

[Pin08] introduces a three-step concept to automatically create a web per-

formance simulation and also provide a trend analysis. In the first step per-

formance parameters of a system are monitored and recorded. In the second

step the monitored performance parameters are used to automatically create

a simulation model. And in the third step, results of the first two components

are used to predict possible scenarios and longterm trend analysis.

In [BPA+08] adaptive techniques based on machine learning are used to avoid

distributed attacks and flooding. Every element in a network learns about

the behavior of the network. A training set, including samples of attacks and

abuses, is used to train each node within the network. Then, a Naive Bayes

method is used to predict if an attack will happen. In a local model or clas-

sifier, information about the local traffic patterns of a node is collected and

shared with all other nodes.

The basic goal of autonomic computing, self-managing or self-organizing (see

[HdM08]) systems is to decrease the complexity and work for human admin-

istrators. With this as a goal, self-adaptive systems are becoming more and

more important. [KRG+10] introduces a set of criteria, which can be used to

evaluate the quality of the design of self-adaptive systems. Case study results

helped to group the criteria into the categories ”methodological, architectural,

intrinsic, and runtime evaluation”.

As mentioned before, monitoring external and internal states and conditions

is an important factor of self-adaptive software. Of course, the bigger and

more complex the software and the external environment gets, the harder it

becomes to monitor the entire system. [WSF10] discusses the role of a human

administrator in monitoring such a system, where human commentary should

help adapt the software. Decisions based on information about the software

or the environment that cannot be monitored automatically, are then possible,

16

because of human input.

[DMSFR10] uses metadata to improve self-organising systems. The idea of

the proposed approach is that

”at run-time, both the components and the run-time infrastruc-

ture exploit metadata to support decision-making and adaptation based

on the dynamic enforcement of instantiated policies.”

Policies are also used in [KKSJ10] to ”control and adapt the system behavior”.

This Chapter presented the basic idea of self-adaptive, self-learning and au-

tomated systems. The most important part for my dissertation is that self-

adaptive and self-learning systems should be able to know the system that they

are used for (e.g.: software and hardware) and the environment (e.g.: incom-

ing data). To improve the reliability and performance of telecommunications

systems, the developed tools have to adapt themselves or the incoming data

automatically without constant human intervention.

In my dissertation I use self-learning and self-adaptive techniques and systems

in the area of telecommunications systems to improve these software systems

without increasing the cost for administrative manpower.

Work that is even closer related to my dissertation topic will be presented

in Section 3.2 and Section 4.2.

17

Chapter 3

Self-Adaptive Network

Protocols

Network protocols, like the SIP protocol, used to create Voice over IP sessions,

are defined in published open standards. Software implementing these stan-

dards often evolve over time and not necessarily handle all possible features.

Therefore new products using these protocols are often immature at the be-

ginning or do not implement the whole standard but rather only a subset.

In the recent years voice over IP became very popular. In the early stages,

products using the SIP protocol to create and manage VoIP sessions showed

the mentioned symptoms and problems. As a result, SIP messages compliant

to the standard are sometimes wrongly rejected by VoIP systems and commu-

nication fails.

This chapter introduces a novel approach called Babel-SIP for increasing the

rate of acceptance for SIP messages. Section 3.1 deals with the basic idea and

the motivation behind my work. Section 3.2 describes related work. Section

3.3 provides an overview of voice over IP (VoIP) in general. Section 3.4 spe-

cializes on the most popular used protocol with VoIP, the Session Initiation

Protocol (SIP). Section 3.5 presents my work while testing VoIP systems. And

finally Section 3.6 shifts the focus to autonomic and self learning systems and

presents an approach on how to automatically and autonomically adapt SIP

messages.

18

3.1. BASIC IDEA AND MOTIVATION

3.1 Basic Idea and Motivation

In recent years voice over IP (VoIP) became very popular. Telecommunication

providers are now offering products using VoIP to their costumers. Companies

are changing from their old telephone network to a VoIP network to reduce

costs. Through that hype more and more VoIP hard and soft phones have been

produced and commercial and open source VoIP systems have been developed.

The initial idea behind my work was to test VoIP systems and additionally to

improve their performance. Through researches it became obvious, that VoIP

system developers often demand special types of VoIP phones to be used with

their product. The main reason is that SIP, which is defined in RFC 3261

[RSC+02], is a very open protocol and leaves room for different interpreta-

tions. That fact leads to the problem that VoIP phones are sending messages

in their own SIP dialect (see Section 3.4.1). For instance, for a commercial

VoIP server, during recent versions, several hard and soft phones were known

that would not be able to register themselves to the proxy, due to yet RFC

conform, but still problematic SIP messages.

During my work I found that valid SIP messages may not work with cer-

tain VoIP servers. Therefore as my work emerged, the focus and motivation

changed from simply testing the VoIP system, to dealing with different SIP

dialects. The main goal was to develop independent software that would im-

prove this situation, making it possible for a wider range of VoIP phones to

function with different VoIP servers.

3.2 Related Work

In the application area of VoIP and SIP, authors both investigate traffic be-

havior and failures in particular software implementations. In [KZRN07] the

authors describe the need and their solution for profiling SIP-based VoIP traf-

fic (protocol behavior) to automatically detect anomalies. They demonstrate

that SIP traffic can be modeled well with their profiling and that anomalies

could be detected.

In [APWW07] it is argued that based on the SIP specification, a formal testing

19

3.2. RELATED WORK

of an open source and a commercial SIP proxy leads to errors with the SIP

registrar. Both findings are encouraging to propose a method for not only

detecting incompatibilities and testing SIP proxies, but further to provide a

solution for messages rejected due to slightly different interpretations of the

standard or software faults [HNHH08].

In [ASF07] a stateful fuzzer was used to test the SIP compatibility of User

Agents and proxies by sending different (faulty) messages both in terms of

syntax and in terms of protocol behavior. The idea here is only to find weak-

nesses in the parser implementation, without trying to adapt messages online.

In [AWW+07a] and [AWW07b], incoming and outgoing SIP messages of a

proxy are analyzed by an in-kernel Linux classification engine. Hereby, a rule-

based approach is proposed, where the rules are pre-defined (static) [HNHH08].

In [RN09] a self-healing approach is introduced to recognize and restart failed

SIP servers. [RN09] uses the Windows filtering Platform (WFP) to monitor

outgoing SIP traffic on a VoIP system. When the monitor detects no outgoing

traffic for a pre-defined time period it injects a SIP INVITE message without

a Call-ID header. If the VoIP system works it should respond with a 400

Bad Request message. If there is no such respond from the VoIP system, the

monitor will declare the system as crashed. In the second step the VoIP server

is restarted. During that time all incoming SIP requests will be stored and

handled after the restart.

Decision trees, and in particular the used C4.5 tree, allow classifying arbi-

trary entities or objects that can be used, for instance for computer vision

(applied to robotics) [WR05] or characterization of computer resource usage

[HM04]. In [WR05] decision trees were used for learning about the visual en-

vironment that was modeled in terms of simple and complex attributes and

successfully implemented for improving recognition possibilities of Sony Aibo

robots (e.g., the surface area or angles). Decision trees that use further linear

regression have been proposed for the characterization of computer resource

usage in [HM04]. Parameters like the CPU, I/O, and memory were used as

attributes and the classification tree was finally used to successfully determine

20

3.3. BACKGROUND: VOICE OVER IP

anomalies of the system’s parameters. The authors claim that the configu-

ration of the learning process was time consuming (e.g., finding the trade-off

between accurate history knowledge and time-consuming training).

In [ABR04] intrusion detection was introduced based on a combination of

pattern matching and decision tree-based protocol analysis. This tree-based

approach allows adapting to new attack types and forms while the traditional

patterns are integrated into the tree and benefit from refinement of crucial

parameters [HNHH08].

[Sub09] presents an architecture (KitCAT) for testing converged applications.

The system under test is a Web/VoIP server and includes a web portal, a VoIP

server and a media server. The goal is to test converged applications which

include multiple sources, multiple user interfaces and use a number of differ-

ent protocols for communication purposes. Therefore the proposed system not

only tests SIP-based traffic, but also uses HtmlUnit to test the web-based ap-

plications within the SUT.

[FNKC07] tries to improve the reliability of SIP telecommunications systems

by using a combination of a centralized infrastructure and a Peer-to-Peer (P2P)

approach, where besides using a centralized VoIP server, user agents form a

P2P network. By using a P2P approach, the proposed system CoSIP (Co-

operative SIP), can replace VoIP server in case they are not responding and

thereby improving the systems reliability.

3.3 Background: Voice over IP

Phone service over the Internet was first introduced in 1995 by an Israeli

company called VocalTec. Their ’Internet Phone’ used a half-duplex commu-

nication system that only allowed alternate talking. The real breakthrough for

VoIP came 2004 with Skype [Lim09]. Skype uses a proprietary protocol for

Internet telephone calls. The reasons for using VoIP are mainly lower costs

and increased functionality. For example, VoIP provides features that would

be very difficult or even impossible to provide with traditional phone services.

Furthermore VoIP calls are automatically routed to the current position within

a network [VI09a].

21

3.3. BACKGROUND: VOICE OVER IP

The most important part of a VoIP system is the proxy. The proxy handles

the routing of Internet telephone calls and is responsible for the call setup,

call management and call tear down. Also the proxy provides advanced fea-

tures like conference calls, presence indication and the possibility to forward

or redirect calls.

Most of the times VoIP developers use media servers for managing voice

recordings, voice messages and early media functions.

A VoIP system usually also contains a gateway that connects the VoIP

telephone network with the traditional phone network. The gateway can be

part of the own network architecture, but is usually provided by a telephone

company.

To use a VoIP system with a traditional phone network an ADC (Analog-

to-Digital-Converter) must also be used.

VoIP end users then use either VoIP hard or soft phones for communica-

tion. VoIP hard phones are digital stand-alone phones with, most of the time,

two Ethernet ports (LAN, PC), so they can be installed between the Local

Area Network and the user’s computer. A VoIP soft phone is installed on a

computer and needs a microphone and a headset or speakers. A soft phone

is typically cheaper than a hard phone (e.g.: open source soft phones) and

usually provides advanced features and services like video communication or

online messaging.

Table 3.1 presents a list of commonly used VoIP codecs. Codecs are used

to convert an analog voice signal to a digitally encoded version [VI09a]. Usu-

ally each VoIP soft or hard phone supports several codecs.

Codec kbit/s

G.711 64
G.722 48/56/64
G.723 5.3/6.3
G.726 16/24/32/40
G.728 16
G.729 8
GSM 13
iLBC 15
Speex 2.15 - 44.2

Table 3.1: VoIP codecs.

22

3.3. BACKGROUND: VOICE OVER IP

The mentioned codecs usually differ in bandwidth requirements (e.g.: voice

payload size, packets per second) and the voice quality (e.g.: codec bit rate),

to achieve a balance between the quality of a call and the bandwidth efficiency.

3.3.1 Setup scenarios

Usually there are two possibilities for companies to set up a VoIP solution:

Either a phone provider offers a VoIP solution for a company and only the

end devices (hard and soft phones) are set up within the company (see Figure

3.1), or the company sets up the entire VoIP system within the company. In

the latter case the VoIP phones, the proxy and the media server are located

within the company (see Figure 3.2).

Provider Solution

Figure 3.1 shows a VoIP solution offered by a phone provider. Within a com-

pany hard and soft phones are located on the desks of the employees. These

phones are then connected through a switch. Often this system is then pro-

tected by a firewall and connected to the provider backbone through a modem.

The VoIP system within the provider backbone usually consists of a VoIP

server, handling the VoIP call scenarios, and a media server, for e.g. storing

voice messages. The system is then connected to the PSTN network through

a gateway.

Definition: The Public Switched Telephone Network (PSTN) is the name of

the connected global telephone network. It was usually invented as an analog

all fixed-line telephone system, but does now include a digital system as well

as mobile devices.

Definition: A gateway connects internet devices and is used for the communi-

cation between devices using different network protocols.

Of course the configuration and maintenance of the VoIP system itself is han-

dled by the provider and most of the time it means that users are able to talk

to other costumers within the provider’s backbone with no additional costs.

On the other hand such a solution mostly comes with monthly costs.

Advantages of a VoIP provider solution are

23

3.3. BACKGROUND: VOICE OVER IP

Figure 3.1: VoIP system, provider solution.

• no VoIP knowledge needed by the company,

• configuration of the VoIP system is done by the provider,

• maintenance of the VoIP system is done by the provider, and

• no additional costs for communication between companies within the

provider backbone.

Possible disadvantages include

• expanding has to be done by the provider,

• the company has to contact the provider with every problem/request, or

• monthly costs.

Company Solution

Figure 3.2 shows an in-house VoIP solution. Usually this means that VoIP

hard and soft phones, analog phones and fax, and the company server are all

connected through a switch.

24

3.3. BACKGROUND: VOICE OVER IP

The VoIP server and the media server are also set up within the company and

connected through the switch. In most cases the switch is protected through

a firewall and connected to the Internet through a modem.

Within the company an ISDN system handles incoming calls from the PSTN

network and forwards them to an analog phone or an ISDN phone. The VoIP

system handles PSTN calls that are intended for VoIP recipients.

Definition: The Integrated Services Digital Network (ISDN) is a standard

for an international telecommunications network.

Figure 3.2: VoIP system, company solution.

Of course purchasing and setting up an entire VoIP system may be very ex-

pensive. And seeing as the company is responsible for configuration and main-

tenance, an administrator with knowledge on VoIP is necessary. On the other

hand the company can decide on which hard and soft phones to use and on

when and how to expand the VoIP system.

Advantages of a VoIP company solution are

• managing the VoIP system is done within the company,

• the VoIP system is easy to expand, and

• the company can specify hard and software components.

25

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

Disadvantages include

• an administrator with knowledge on VoIP is necessary,

• costs for setting up an entire VoIP system, or

• configuration and maintenance can be expensive and time-consuming.

The following section shifts the focus to the Session Initiation Protocol, which

is used to set up voice over IP sessions.

3.4 Background: The Session Initiation Protocol

The Session Initiation Protocol (SIP) has become the main protocol when

dealing with VoIP. SIP basically works as ”a signaling protocol and is used

to create, modify and terminate sessions” (see [RSC+02]). A session would

mainly be an Internet telephone call, but it can also be a multimedia distribu-

tion, a multimedia conference and so on.

As mentioned in [RSC+02] there are five facets of establishing and terminating

sessions that SIP deals with. First: the location of an end point (user loca-

tion). Second: determine if the called party is willing to engage in a started

session (user availability). Third: determine the media and media parameters

that should be used within a session (user capabilities). Fourth: setting up

the session and establishing the session parameters at both parties (session

setup). Fifth: modifying established session, invoking services and terminat-

ing sessions (session management).

Usually within Internet telephone calls the Session Initiation Protocol (SIP)

is used to establish, modify and terminate sessions. Furthermore the Session

Description Protocol (SDP) is used to describe the actual session. Between

two or more parties it is used to agree on transport protocols and addresses as

well as multimedia codecs [HJP06]. Finally the Real-Time Transport Proto-

col (RTP) is used for continuous transmission of, usually audio, data streams

[SCFJ03].

With SIP being a text-based protocol, SIP messages can either be requests

(messages from a client to a server) or responses (messages from a server to a

26

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

client). SIP requests start with a request line, while SIP responses start with

a status line. The following shows a typical SIP request line which starts with

the method used (REGISTER, INVITE, ACK, CANCEL, BYE, OPTIONS),

followed by a request URI and the SIP version.

INVITE sip:1001@myDomain SIP/2.0

The following shows a typical SIP response line. Such a response line starts

with the SIP version, followed by a status code and a reason phrase.

SIP/2.0 200 OK

The status code is a 3-digit number, where the first digit defines the class of

response. There are six possible response classes [RSC+02]:

• 1xx: Provisional Response. The request was received and the VoIP server

is continuing to process the request. Example: 100 Trying.

• 2xx: Success. The request was successfully received and accepted. Ex-

ample: 200 OK.

• 3xx: Redirection. Further action is needed to complete the request. Ex-

ample: 302 Moved Temporarily.

• 4xx: Client Error. The request contains bad syntax. Example: 407 Proxy

Authentication Required.

• 5xx: Server Error. A valid request could not be completed. Example:

503 Service Unavailable.

• 6xx: Global Failure. Example: 600 Busy Everywhere.

An extended list of SIP response codes can be found at [RSC+02] and [Wik09a].

Usually the first thing a user agent has to do is to register at the VoIP server.

Most VoIP systems are using a registrar and a location server for handling the

user location.

A user agent sends REGISTER messages, containing the user’s ID and the IP

address of the user agent, to a local registrar server. The registrar server then

27

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

updates the received locality information in the location server (see Figure

3.3). From this time the user can be reached at the sent address [HAAM08].

The 200 OK response of the VoIP server signalizes that the register process

was successful.

Figure 3.3: SIP registration of a user agent.

After a user agent is successfully registered at a local server it can send or

receive call invitations. Handling calls is then the task of a so called proxy

server. A SIP call scenario starts by a user (Alice) picking up either a VoIP

hard or soft phone and calling another user by dialing the user’s SIP URI (like

bob@biloxy.com). The user agent (Alice) then sends a SIP INVITE message to

the proxy it is registered at (atlanta.com). The local proxy then forwards the

INVITE message to the proxy server of the called party (biloxy.com), which

asks the local location server where to find the called party’s user agent. If

Bob’s user agent has already been registered, the proxy forwards the INVITE

message to Bob’s user agent (see Figures 3.4 and 3.5) [HNHH08].

Figure 3.4: SIP call setup.

The initial SIP INVITE message also contains a Session Description Protocol

(SDP) part. Table 3.2 shows a typical SIP INVITE message, including the in-

28

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

formation regarding the session description. After the initial INVITE message

has been delivered to the called user agent, that user agent usually responds

with a 180 Ringing message. At the moment when the called party has ac-

cepted the incoming call and picks up the phone, the user agent sends a 200

OK message back to the caller’s user agent. After the caller’s user agent has

acknowledged the incoming 200 OK message by sending an acknowledgement

(ACK) message, the call is successfully set up.

Figure 3.5: SIP trapezoid.

From that moment on the audio stream is transmitted via the Real-Time

Transport Protocol (RTP) directly between the users. A basic call usually

ends by a user hanging up the phone. At that moment the user agent sends

a BYE message to the second party, which has to acknowledge the incoming

BYE message by answering with a 200 OK message (see Figure 3.5). Table

3.2 shows an example of a basic SIP INVITE message [RSC+02].

29

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

Of course commercial VoIP systems offer a lot more features then just ba-

sic calls between two parties.

INVITE sip:bob@biloxy.com SIP/2.0

Via: SIP/2.0/UDP IPAddress:Port

From: <sip:a lice@atlanta.com>

To: <sip:bob@biloxy.com>

Call-ID: 972238000055610

CSeq: 1 INVITE

Max-Forwards: 70

Contact: <sip:alice@IPAddress:Port>

Content-Type: application/sdp

Content-Length: 185

v=0

o=root 431065466 431065466 IN IP4 IPAddress

s=call

c=IN IP4 IPAddress

t=0 0

m=audio 40000 RTP/AVP 8 101

a=rtpmap:8 pcma/8000

Table 3.2: SIP basic INVITE message.

The following section presents different SIP dialects and Section 3.5 describes

common call scenarios.

3.4.1 SIP dialects

One strong motivation behind my work was that some VoIP servers only allow

certain SIP hard and soft phones. The reason is that the VoIP servers may

not work with other VoIP devices because they send different, problematic

messages. In most cases these problematic messages are correct SIP messages

according to RFC 3261, which nevertheless may cause problems. One of the

reasons is that RFC 3261 defines a very open standard and leaves room for

different interpretations. Another reason is that VoIP servers may not include

all SIP features in early stages of the development phase.

RFC 3261 defines that only certain header fields are necessary for a SIP mes-

sage to work properly, but of course there are many optional header fields that

can be used by a VoIP phone within a SIP message as well [HNHH08].

As seen in Table 3.3 a SIP REGISTER message according to RFC 3261 has

to contain a request line and the headers To, From, Call-ID and CSeq.

30

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

REGISTER sip:Domain SIP/2.0

To: <sip:UserID@Domain>

From: <sip:UserID@Domain>

Call-ID: NDYzYzMwNjJhMDRjYTFj

CSeq: 1 REGISTER

Table 3.3: SIP REGISTER message, RFC minimum.

Additional to the request line and the headers To, From, Call-ID and CSeq,

SIP requests like the INVITE message, according to RFC 3261, have to con-

tain the headers Via and Max-Forwards, as seen in Table 3.4.

The fact that SIP devices apparently send different messages made it necessary

to examine some VoIP phones to get a sense what messages where sent and

what headers and attributes were used.

INVITE sip:CalleeUserID@CalleeDomain SIP/2.0

To: <sip:CalleeUserID@CalleeDomain>

From: <sip:CallerUserID@CallerDomain>

Via: SIP/2.0/UDP IPAdress:Port

Call-ID: NDYzYzMwNjJhMDRjYTFj

CSeq: 1 INVITE

Max-Forwards: 70

Table 3.4: SIP INVITE message, RFC minimum.

It was important to get a set of test phones that included VoIP phones used

by the commercial VoIP server I worked with, but also get other popular and

often used VoIP phones. After my research I gathered nine VoIP hard phones.

Also I chose five popular VoIP soft phones and added them to my list.

Table 3.5 shows a list of the VoIP hard and soft phones that I used to identify

different SIP dialects. The first step was to set up a test environment. I there-

fore connected each phone to the commercial VoIP server. In the next step

I monitored the messages sent from each VoIP phone during the REGISTER

process. Furthermore to see the differences within INVITE messages I initi-

ated various basic call scenarios. To get a full overview I made calls with every

phone being the calling party and the called party once and again monitored

the sent SIP messages.

An extended list of VoIP hard and soft phones can be found at [VI09b].

31

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

Hard Phones

Snom 300
Polycom SoundPoint IP 330
Linksys SPA IP Phone SPA 941
DLink VoIP IP-Phone DPH-120S
Thomson ST2030
Allnet 7950
Grandstream GXP2000 Enterprise IP Phone
Elmeg IP 290
Siemens

Soft Phones

X-Lite
PortSIP
BOL
Express Talk
3CX

Table 3.5: Tested VoIP hard and soft phones.

Figure 3.6 shows the basic testing environment used to monitor the SIP traffic

of the tested VoIP hard and soft phones. The VoIP server consists of the VoIP

proxy, the location server and the media server. SIP hard phones, as well as

the soft phones installed on a personal computer, are connected to the VoIP

server via a switch.

Figure 3.6: VoIP test environment, monitoring the SIP traffic.

After monitoring the traffic and gathering the various SIP messages from the

different VoIP phones it became obvious that every phone sends different mes-

32

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

sages.

Table 3.6 shows the SIP REGISTER message of the DLink VoIP IP-Phone.

The differences between the RFC minimum (see Table 3.3) and the message

sent from the DLink VoIP phone (see Table 3.6) are apparent.

REGISTER sip:Domain:Port SIP/2.0

To: <sip:UserID@Domain:Port>

From: <sip:UserID@Domain:Port>;tag=1f54431a

Via: SIP/2.0/UDP IPAdress:Port;branch=z9hG4bK-

Call-ID: NRjYTFjMmI5NTE3NDRkOGFkYzY3OTc.

CSeq: 1 REGISTER

Contact: <sip:UserID@IPAdress:Port>

Max-Forwards: 70

Expires: 3600

User-Agent: DLink

Content-Length: 0

Table 3.6: DLink VoIP IP-Phone DPH-120S REGISTER message.

Additional to the request line and the headers To, From, Call-ID and CSeq,

the DPH-120S also uses the headers Via, Contact, Max-Forwards, Expires,

User-Agent and Content-Length within its REGISTER message. The DPH-

120S also inserts the used Port into the request line and the To and From

headers.

To compare the different SIP dialects, Table 3.7 shows the SIP REGISTER

message sent by the Elmeg VoIP phone. Additional to the headers defined in

RFC 3261 (To, From, Call-ID and CSeq) and the headers used by the DLink

VoIP phone (Via, Contact, Max-Forwards, Expires, User-Agent and Content-

Length), the Elmeg IP 290 VoIP phone uses the headers Allow-Events, X-Real-

IP, WWW-Contact and Supported in its REGISTER message. Furthermore

the Elmeg IP 290 uses the rport parameter within the Via header and inserts

the Display Name into the headers To and From. Also the Elmeg IP 290 uses

a greater set of parameters within the Contact header.

The mentioned SIP REGISTER messages show that there are vast differences

between the tested phones. Every tested phone uses a different set of SIP

headers, so the open SIP standard could lead to the problem that some VoIP

phones are unable to register at a VoIP server. Of course it is a big problem

33

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

REGISTER sip:Domain SIP/2.0

Via: SIP/2.0/UDP IPAdress:Port;branch=z9hG4bK-;rport

From: "Name" <sip:UserID@Domain>;tag=1f54431a

To: "Name" <sip:UserID@Domain>

Call-ID: NDYzYzMwNjJhMDRjYTFjMmI5NTE3NDRkOGFkYzY3OTc.

CSeq: 1 REGISTER

Max-Forwards: 70

Contact: <sip:UserID@IPAdress:Port;line=abUserID>;

q=1.0;audio;mobility=’fixed’;duplex=’full’;

+sip.instance=’<urn:uuid:767e30a9-0c85-4238-ab02>’;

methods=’INVITE,ACK,CANCEL,BYE,NOTIFY,REFER,OPTIONS’

User-Agent: Elmeg

Allow-Events: dialog

X-Real-IP: ServerIP

WWW-Contact: <http://IPAdress:Port>

WWW-Contact: <https://IPAdress:Port>

Expires: 3600

Content-Length: 0

Supported: gruu

Table 3.7: Elmeg IP 290 REGISTER message.

if a phone is unable to register itself, because that means that the phone will

not work with the particular VoIP server. Although the experiments showed

that the register process has not been a problem for most of the tested phones,

the different SIP dialects would probably be more critical within more com-

plex call scenarios. Therefore it was necessary to examine the different SIP

INVITE messages.

Table 3.8 shows an INVITE message created by the VoIP soft phone XLite.

It can be noted that within SIP REGISTER messages as well as within SIP

INVITE messages real VoIP phones use more than the mandatory SIP head-

ers prescribed by RFC 3261. SIP requests, like INVITE messages, have to

contain a request line and the SIP headers To, From, Via, Call-ID, CSeq and

Max-Forwards according to RFC 3261.

Table 3.8 shows that INVITE messages created by the soft phone XLite ad-

ditionally contain the headers Contact, User-Agent, Allow, Content-Type and

Content-Length. Also the From header includes a From-tag and the Via header

includes the Via-branch and the rport parameter.

Table 3.9 shows a SIP INVITE message created by the Thomson ST2030 VoIP

34

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

INVITE sip:CalleeUserID@Domain SIP/2.0

To: <sip:CalleeUserID@Domain>

From: <sip:CallerUserID@Domain>;tag=1f54431a

Via: SIP/2.0/UDP SenderIP:Port;branch=z9hG4bK;rport

Call-ID: NDYzYz.

CSeq: 1 INVITE

Contact: <sip:CallerUserID@SenderIP:Port>

Max-Forwards: 70

User-Agent: XLite

Allow: INVITE,ACK,CANCEL,BYE,REFER,OPTIONS,NOTIFY,

SUBSCRIBE,MESSAGE,INFO

Content-Type: application/sdp

Content-Length: 303

v=0

o=- 3 2 IN IP4 SenderIP

s=CounterPath X-Lite 3.0

c=IN IP4 SenderIP

t=0 0

m=audio 5062 RTP/AVP 119 6 0 8 102 3 5 101

a=alt:1 1 : nnXz/c07 dA+YPE1r SenderIP 5062

a=fmtp:101 0-15

a=rtpmap:119 BV32-FEC/16000

a=rtpmap:102 L16/16000

a=rtpmap:101 telephone-event/8000

a=sendrecv

Table 3.8: XLite INVITE message.

phone. In addition to the headers used by the XLite soft phone, the ST2030

uses the headers Supported and Session-Expires. Also the ST2030 inserts the

Port and the user=phone parameter in the request line and the headers To,

From and Contact.

Table 3.10 shows an INVITE message created by the VoIP phone Snom 300

that adds the headers P-Key-Flags, Accept, Allow-Events and Min-SE to the

already mentioned SIP headers.

Analyzing the message flow of all fourteen tested VoIP hard and soft phones,

in addition to a request line and the headers To, From, Via, Call-ID, CSeq

and Max-Forwards (according to RFC 3261), the phones also used the headers

Contact, P-Key-Flags, User-Agent, Accept, Allow-Events, Allow, Supported,

Session-Expires, Min-SE, Content-Type, Content-Length, Proxy-Authorization,

Authorization, Event, X-Real-IP, WWW-Contact, Expires, Route, Record-

35

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

INVITE sip:CalleeUserID@Domain:Port;user=phone SIP/2.0

To: <sip:CalleeUserID@Domain:Port;user=phone>

From: <sip:CallerUserID@Domain:Port;user=phone>;tag=1f54431a

Via: SIP/2.0/UDP SenderIP:Port;branch=z9hG4bK

Call-ID: NDYzYz.

CSeq: 1 INVITE

Contact: <sip:CallerUserID@SenderIP:Port;user=phone>

Max-Forwards: 70

User-Agent: Thomson

Allow: INVITE,ACK,CANCEL,BYE,REFER,OPTIONS,NOTIFY,SUBSCRIBE,

PRACK,UPDATE,INFO,REGISTER

Supported: timer, replaces

Session-Expires: 1800

Content-Type: application/sdp

Content-Length: 268

v=0

o=CallerUserID 431065466 431065466 IN IP4 SenderIP

s=-

c=IN IP4 SenderIP

t=0 0

m=audio 41000 RTP/AVP 8 0 18 4 97

a=rtpmap:8 PCMA/8000

a=rtpmap:0 PCMU/8000

a=rtpmap:18 G729/8000

a=rtpmap:4 G723/8000

a=rtpmap:97 telephone-event/8000

a=fmtp:97 0-15

a=sendrecv

Table 3.9: Thomson ST2030 INVITE message.

Route, Require, RSeq and Server.

Of course there are further additional headers that can be used by SIP VoIP

phones. A full list of SIP headers and the according parameters can be found

at [Aut09].

Tables 3.11 and 3.12 show a complete list of all the headers, header parameters

and attributes used by each tested phone. Table 3.11 provides an overview of

the different SIP dialects used within the SIP REGISTER messages. Table

3.12 concentrates on the SIP INVITE messages and presents the content of

the different messages.

The following list will describe and explain most of the headers used by the

36

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

tested hard and soft phones (see [RSC+02]).

INVITE sip:CalleeUserID@Domain;user=phone SIP/2.0

To: <sip:CalleeUserID@Domain;user=phone>

From: <sip:CallerUserID@Domain>;tag=1f54431a

Via: SIP/2.0/UDP SenderIP:Port;branch=z9hG4bK;rport

Call-ID: NDYzYz.

CSeq: 1 INVITE

Contact: <sip:CallerUserID@SenderIP:5060;line=ab1001>;

flow-id=1

Max-Forwards: 70

P-Key-Flags: keys=’3’

User-Agent: Snom

Accept: application/sdp

Allow-Events: talk, hold, refer

Allow: INVITE,ACK,CANCEL,BYE,REFER,OPTIONS,NOTIFY,

SUBSCRIBE,PRACK,MESSAGE,INFO

Supported: timer, 100rel, replaces, callerid

Session-Expires: 3600;refresher=uas

Min-SE: 90

Content-Type: application/sdp

Content-Length: 368

v=0

o=root 431065466 431065466 IN IP4 SenderIP

s=call

c=IN IP4 SenderIP

t=0 0

m=audio 40000 RTP/AVP 0 8 9 2 3 18 4 101

a=rtpmap:0 pcmu/8000

a=rtpmap:8 pcma/8000

a=rtpmap:9 g722/8000

a=rtpmap:2 g726-32/8000

a=rtpmap:3 gsm/8000

a=rtpmap:18 g729/8000

a=rtpmap:4 g723/8000

a=fmtp:101 0-16

a=ptime:20

a=sendrecv

Table 3.10: Snom 300 INVITE message.

• The request line of a SIP message has to contain the method, a Request-

URI and the SIP version. It is used to declare the message type. The

Request-URI names the domain of the location service and it is used to

locate the VoIP system.

37

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

Within a SIP REGISTER message the Request-URI is just the name

of the domain of the location service, whereas within other SIP requests,

the Request-URI must contain the user info as well. Also, the Request-

URI of a SIP message should be set to the value of the URI in the To

header.

• The Via header is on the one hand used to indicate the used transport

protocol and on the other hand to specify the location where the response

is to be sent.

Besides the protocol name and version, the Via header must include a

branch parameter. This parameter is used to identify the call created

by a request and is used by both the client and the server. Table 3.11

shows that the BOL soft phone does not use a branch parameter in its

Via header.

The rport paramter is introduced in [RS03] and is used for symmetric

response routing. By using the rport paramter the client requests that

the server sends the response back to the source IP address and port

where the request came from.

• The From header is used to indicate the identity of the initiator of a

request. The Display Name is used to display the name of the initiator

in a human user interface.

Additionally to the URI a From header has to contain a from tag pa-

rameter. The from tag, along with the to tag and the Call-ID, is used

to identify a dialog. The epid parameter (endpoint ID) is used by some

hard phones to uniquely identify a SIP device.

Routing, authentication and registration can benefit from the use of an

epid parameter. The parameter user=phone indicates that the User-ID

of the SIP URI should be treated as a telephone URI (a regular global

telephone number).

• The To header is used to specify the recipient of a request. It usually just

contains the SIP URI of the called party.

• The Call-ID header identifies a series of messages that form one call

scenario. Usually the Call-ID should be the same in each registration

process from a user agent.

38

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

• The CSeq header consists of a sequence number and the used method (e.g.

REGISTER, INVITE). The sequence number orders a set of messages

and the method must be the same as the method used in the request line

header.

• The Max-Forwards header indicates the number of hops a message can

transit to the destination. Usually the value should be decremented by

one at each hop. Most of the phones set the Max-Forwards value to the

suggested value 70 (see [RSC+02]).

• The Contact header is used to provide a SIP URI where the user agent

can be reached for further requests. Tables 3.11 and 3.12 show that there

are many parameters that can be used within the Contact header.

For example the flow-id parameter is used to tell the SIP proxy the dif-

ference between a re-register request and registering an additional con-

nection.

• The User-Agent header contains information on the used hard or soft

phone.

• The Allow and Allow-Events headers are used to specify supported meth-

ods and features.

• The Supported header contains a list of option tags supported by the user

agent.

• The Authorization and the Proxy-Authorization headers contain authen-

tication credentials of a user agent.

• The Route header is used to force the message to be routed to specified

proxies.

• The Content-Length header specifies the size of the message body (SDP).

• The Content-Type header specifies the media type of the message body

(SDP).

• The Expires header specifies the time after which the message expires.

39

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

H
ea

d
er

P
ar

am
.

S
n
om

G
ra

n
d
s.

E
lm

eg

S
ie

m
en

s

T
h
om

so
n

L
in

k
sy

s

P
ol

y
co

m

D
L
in

k

A
ll
n
et

X
-L

it
e

B
O

L

P
or

tS
IP

E
x
p
re

ss
T

.

3C
X

Request L.
Domain x x x x x x x x x x x x x x

transport x
Port x x

Via

IP Address x x x x x x x x x x x x x x
Port x x x x x x x x x x x x

branch x x x x x x x x x x x x x
rport x x x x x

From

Disp.Name x x x x x x x
User ID x x x x x x x x x x x x x x
Domain x x x x x x x x x x x x x x

tag x x x x x x x x x x x x x x
epid x x
Port x x

To

Disp.Name x x x x
User ID x x x x x x x x x x x x x x
Domain x x x x x x x x x x x x x x

Port x x
Call-ID x x x x x x x x x x x x x x

CSeq x x x x x x x x x x x x x x
Max-Forw. x x x x x x x x x x x x x x

Contact

User-ID x x x x x x x x x x x x x
IP Address x x x x x x x x x x x x x x

Port x x x x x x x x x x x x
Disp.Name x x

line x x
flow-id x

q x x x
audio x

transport x
expires x x x

user=phone x
* x

methods x x
User-Agent x x x x x x x x x x x x x x

Allow-Ev.
dialog x x

presence x
X-Real-IP x x

www-Cont. x x
Authorizat. x x x x x x x x x x x x x x

Expires x x x x x x x x x x
Cont.-L. x x x x x x x x x x x x x x

Allow x x x
Supported x

Route x
Event x

Table 3.11: SIP messages: differences between the tested phones. REGISTER messages.

40

3.4. BACKGROUND: THE SESSION INITIATION PROTOCOL

H
ea

d
er

P
ar

am
.

S
n
om

G
ra

n
d
s.

E
lm

eg

T
h
om

so
n

L
in

k
sy

s

P
ol

y
co

m

D
L
in

k

A
ll
n
et

X
-L

it
e

Request Line

UserID x x x x x x x x x
Domain x x x x x x x x x

user=phone x x x x
Port x x x

Via

IP Address x x x x x x x x x
Port x x x x x x x x

branch x x x x x x x x x
rport x x x

From

User ID x x x x x x x x x
Domain x x x x x x x x x

tag x x x x x x x x x
user=phone x

Port x x

To

User ID x x x x x x x x x
Domain x x x x x x x x x

user=phone x x x x
Port x x x

Call-ID x x x x x x x x x
CSeq x x x x x x x x x

Max-Forwards x x x x x x x x x

Contact

User-ID x x x x x x x x x
IP Address x x x x x x x x x

Port x x x x x x x x
line x x

flow-id x
user=phone x

User-Agent x x x x x x x x x

Allow-Events

talk x x x
hold x x x
refer x x

conference x
Expires x

Content-Length x x x x x x x x x
Allow x x x x x x x x x

Supported

timer x x x x x x
100rel x x x x x

replaces x x x x x x x
callerid x

P-Key-Flags x x
Accept application/sdp x x

Session-Expires
Seconds x x x
refresher x

Min-SE x
Proxy-Authorization x x x x x x x x x

Content-Type x x x x x x x x x

Table 3.12: SIP messages: differences between the tested phones. INVITE messages.

41

3.5. TESTING SIP VOIP SYSTEMS

3.5 Testing SIP VoIP systems

The demanded reliability of a VoIP system has to be as high as the reliability

of a regular telephone system, thus testing the reliability of software products

is crucial. Therefore a big part of the motivation behind my work was to test

the reliability of state-of-the-art VoIP systems. Section 3.5.1 presents the basic

motivation for testing VoIP servers. Section 3.5.2 focuses on the different call

scenarios that can occur within a VoIP system and which therefore have to be

tested. Section 3.5.3 presents the test cases I created with a commercial SIP

test tool. These test cases enable companies to automatically test their VoIP

system. Sections 3.5.4 and 3.5.5 present the two SIP test tools I developed

and explain the basic idea behind these test tools.

3.5.1 Motivation

For VoIP to replace regular telephone systems it is necessary to guarantee high

reliability. For VoIP system vendors testing their systems by writing and mod-

eling test cases and testing software is a very time consuming task. Therefore

software developers have to find a way to automatically test their software.

For instance, our industrial partner used a commercial test tool, the Spirent

Protocol Tester (SPT) [Spi06], to create test cases and automatically run these

test cases against their VoIP server.

Of course many different call scenarios can occur within VoIP systems (see

Section 3.5.2). The optimal situation for a VoIP system developer is to have

test cases for each scenario and then run these tests randomly and automati-

cally. Of course, with a greater set of test cases, companies can achieve broader

test coverage. Therefore my first task was to create such test cases with the

Spirent Protocol Tester to get a feeling of the SIP protocol (see Section 3.5.3).

As the focus of my work shifted to different SIP dialects and the problems

resulting from them, the need arose to not only work with the commercial

test tool, but to develop individual test tools that are designed for my special

needs.

Therefore simultaneously with creating test cases with the Spirent Protocol

Tester, I developed two different SIP Test tools that focused on the problem

with different SIP dialects (see Chapters 3.5.4 and 3.5.5).

42

3.5. TESTING SIP VOIP SYSTEMS

As test environment I used the same environment I used to monitor the SIP

traffic of the VoIP hard and soft phones and added the two created test tools,

which were simulating yet another VoIP device (see Figure 3.7).

Figure 3.7: VoIP test environment.

Again, the tested hard and soft phones, along with the two created soft phone

imitating test tools where connected to the VoIP proxy through a switch.

The soft phones and the developed Java test tools were installed on a stan-

dard personal computer. All including elements (VoIP server, hard phones,

soft phones and test tools) were then passing SIP messages via the UDP pro-

tocol through the switch to each other.

3.5.2 Call Scenarios

This section describes various call scenarios that occur within a VoIP system.

For the two most important and most often used scenarios, the register process

and the basic call, the entire message flow will be discussed. The message flow

for complex scenarios can be pretty extensive, so all the other scenarios will

be discussed in general.

Register

As mentioned in Section 3.4 every phone within a VoIP network has to first

register itself at the VoIP system before it is possible to establish or receive

calls. So even though no call will be created, there is still the need to men-

tion the register process because of its importance for all future call scenarios.

Figure 3.8 shows the message flow within the register process of a typical SIP

43

3.5. TESTING SIP VOIP SYSTEMS

VoIP phone. When the phone is first connected to the VoIP system, and con-

tinuously repeatedly after that when it is connected, it sends a REGISTER

message to the VoIP proxy. The VoIP proxy usually responds with a 401

Unauthorized message, signaling the phone that it needs to authorize itself.

The phone then re-sends the REGISTER message with an additional Autho-

rization header.

Figure 3.8: Call Flow, Register.

If the authorization process was correct, the VoIP proxy responds with a 200

OK message and the phone is successfully registered at the VoIP system. Sec-

tion 3.4 gives additional information on the register process and also on the

headers used within a SIP REGISTER message.

Basic Call

The simplest and most often used scenario is a basic call between two parties.

Figure 3.9 shows the message flow of a simple basic call scenario.

To initiate a call, user A dials the number of user B and the SIP VoIP phone

then sends an INVITE message to the VoIP proxy. Usually the SIP VoIP proxy

responds with a 100 Trying and 407 Proxy Authorization Required message

telling the phone to re-send the INVITE message with an additional Proxy-

Authorization header. If the authorization process was correct, the proxy

sends the INVITE message to user B. The SIP VoIP phone of user B responds

with a 180 Ringing message and when the phone is picked up with a 200 OK

message. User A receives these messages and then responds with an ACK

(acknowledgement) message. After that the call is established. The call ends

when one party hangs up the phone, sending a BYE message, followed by a 200

OK response. After the 200 OK message was received the call is successfully

44

3.5. TESTING SIP VOIP SYSTEMS

terminated.

Figure 3.9: Call Flow, Basic Call.

Basic Call, Cancel

Of course it is possible that the called party is not available at the moment or

cannot take the call. This scenario shows what happens if the caller does not

want to wait any longer for the called party to pick up the phone.

Figure 3.10 shows the basic idea of a user calling another user who does not

pick up the phone, either because he is busy at the moment or not available at

the moment. User A then hangs up the phone sending a CANCEL message and

gets a 487 Request Terminated response, successfully terminating the scenario.

45

3.5. TESTING SIP VOIP SYSTEMS

Figure 3.10: Call Flow (extract), Basic Call (no answer, cancel).

Basic Call, Deny

Another possibility, if the called party is busy at the moment the call is re-

ceived, is to manually deny the incoming call. Figure 3.11 shows the idea that

the called party denies an incoming call by sending a 486 Busy Here message

terminating the scenario.

Figure 3.11: Call Flow (extract), Basic Call (busy, deny).

Parallel Ringing

Most VoIP systems allow users to activate certain features, like in this case

parallel ringing. The user can specify one or more additional parties who will

receive every incoming call that was intended for this user as well.

Figure 3.12 shows the basic message flow within a parallel ringing scenario.

User A initiates the call by sending an INVITE message to user B. User B

has activated the parallel ringing feature with (in this case) two additional

receiving parties.

The proxy therefore forwards the initial INVITE message to user B, user C

46

3.5. TESTING SIP VOIP SYSTEMS

and user D. Every party sends a 180 Ringing response back to the caller. One

party then picks up the phone sending a 200 OK message to the caller and the

call is successfully set up.

The proxy then sends CANCEL messages to the two other receiving parties

stopping the ringing at the two phones.

Figure 3.12: Call Flow (extract), Parallel Ringing.

Call Pickup

Another feature that can be activated is call-pickup. The basic idea is that

one additional party gets notified on a specific call and is then able to pick up

the call initially intended for someone else.

Figure 3.13 shows the basic idea that user A calls user B, who has the call-

pickup feature activated with (in this case) one additional party, user C, who

receives a NOTIFY message on the call. User C can then pickup the call

sending a new INVITE message to the initial caller user A. After that, a

47

3.5. TESTING SIP VOIP SYSTEMS

CANCEL message is sent to user B to successfully terminate the first initiated

call and the call between user A and user C is successfully connected.

Figure 3.13: Call Flow (extract), Call Pickup.

Call Forwarding, Busy here

Another important feature is the call forwarding to a third party. There are

different possibilities for a user to use this feature.

Figure 3.14 shows the first example of call forwarding to a third party. User

A calls user B who is busy at the moment and denies the call by sending a

486 Busy Here message.

User B has the call forwarding on deny feature activated so after the 486

Busy Here message is received by the proxy, it sends the INVITE message to

the specified third party, user C, who picks up the phone sending a 200 OK

message to user A and the call is successfully established.

48

3.5. TESTING SIP VOIP SYSTEMS

Figure 3.14: Call Flow (extract), Call Forwarding (busy here).

Call Forwarding, No response

Another form of call forwarding to a third party is if there is no response from

the called party, the call gets automatically forwarded to a third party. Figure

3.15 shows that user A calls user B and after a certain time of no response

from user B the proxy sends a CANCEL message to user B, who responds with

a 486 Request Terminated message. After that the proxy sends the INVITE

message to a specified third party, user C. User C picks up the phone sending

a 200 OK message to successfully establish the call.

Figure 3.15: Call Flow (extract), Call Forwarding (no response).

49

3.5. TESTING SIP VOIP SYSTEMS

Unattended Call Transfer

Sometimes during a call it is necessary to transfer the call to a third party, so

two different calls have to be established. Figure 3.16 shows the basic idea of

an unattended call transfer. User A calls user B who picks up the phone and

at step a) the call between user A and user B is established.

User B then wants to transfer user A to a third party, user C, and therefore

sends an INVITE message back to user A and also sends a REFER message

to user A, containing all the information on user C necessary to establish a

second call.

User A responds with a 202 Accepted message and sends a new INVITE mes-

sage to user C, creating a new call. After the new call between user A and

user C was successfully set up, user B is no longer involved in the call.

Figure 3.16: Call Flow (extract), Unattended Call Transfer.

50

3.5. TESTING SIP VOIP SYSTEMS

During the conversation user B receives NOTIFY messages, keeping him in-

formed on the status of the call between user A and user C.

Attended Call Transfer

A slightly different scenario is the attended call transfer. Sometimes, before

transferring a call to a third party, it is necessary to call and inform the third

party about the transfer. Figure 3.17 shows the basic idea of an attended call

transfer. User A calls user B who picks up the phone and at step a) the call

between those two parties is successfully established.

Figure 3.17: Call Flow (extract), Attended Call Transfer.

51

3.5. TESTING SIP VOIP SYSTEMS

Then user B wants to transfer the call to user C, but first wants to talk to

user C about referring the call. Therefore user B sends an INVITE (hold)

message to user A, putting user A on hold, and an INVITE message to user

C. User C picks up the phone and at step b) the call between user B and

user C is established. If user C agreed to the call transfer, user B sends the

REFER message, containing the important information on user C, to user A,

who responds with a 202 Accepted message. After that user A sends a new

INVITE message to user C and sends NOTIFY messages to user B, keeping

user B informed on the status of the third call. So at step d) the call between

user A and user C is successfully established.

ChefSec Call Transfer

An often used scenario is the so called Chef/Secretary (ChefSec) feature. The

basic idea is that every incoming call that is intended for the chef is automat-

ically forwarded to the secretary.

Figure 3.18: Call Flow (extract), ChefSec.

52

3.5. TESTING SIP VOIP SYSTEMS

Figure 3.18 shows the basic idea of the Chef/Secretary (ChefSec) scenario.

User A calls the chef who has the ChefSec feature activated, therefore the IN-

VITE message is automatically forwarded to the secretary. Then after talking

to user A, the secretary can transfer the call to the chef.

Again there are basically two possibilities for the secretary to do that, either

an unattended call transfer where the call is automatically transferred to the

chef (see Figure 3.18), or an attended call transfer where the secretary first

establishes a call to the chef and then transfers the call.

Early Media

A user can also activate the early media feature so the caller not only hears a

ringing noise, but a music or sound file played while waiting for the called user

to pick up the phone and answer the call. Figure 3.19 shows the basic idea of

the early media feature. User A calls user B and receives a 180 Ringing with

Early Media response.

Usually the media files used in this type of scenarios are stored on the media

server. The early media feature does not say anything about the scenario

that follows after the 180 Ringing with Early Media message was received, but

VoIP developers still need to test this scenario to guarantee that the feature

was properly developed.

Figure 3.19: Call Flow (extract), Early Media.

More details on the exact SIP message flow within certain call scenarios can

be found at [TI09].

53

3.5. TESTING SIP VOIP SYSTEMS

3.5.3 Testing different call scenarios with a commercial test tool

The testing of VoIP systems requires test tools that offer high levels of scala-

bility, re-usability and most important high levels of testing automation. Of

course there are many SIP test tools available, so the first step was to evaluate

the differences between these test tools. The following list presents some SIP

test tools.

SIPsak [SIP02] is a command line tool for simple tests on SIP applications.

It sends SIP requests via text files and, among other things, can be used for

flooding tests and random character trashed tests. [HCL06] offers a SIP test

tool for test automation. ProLab SIP test Solution [Rad06] offers stress and

performance testing as well as media testing. The Codenomicon SIP Test Tool

[Cod06] uses multiple carefully crafted messages to stress nodes in the SIP net-

work. Also to capture and display SIP traffic the Sipient SIPFlow Standard

[Sip06a] can be used.

The research of SIP test tools showed that SIPp [SIP06b] and the Spirent

Protocol Tester [Spi06] offered the best features.

SIPp

SIPp is an open source SIP test tool with integrated scenarios that can be

used for performance testing. Additionally to the included test cases, other

test cases can be created in XML files to use them to test VoIP systems.

SIPp offers a command line monitoring that allows the tester to dynamically

adjust the used call rates. To analyze completed test cases SIPp offers a set

of statistics including the total number of created calls, the call rate (calls per

second), the number of successful and failed calls, the total time of one call

and the response time of the VoIP system. Advantages of SIPp are

• dynamical display during the testing period,

• the possibility to dynamically increase/decrease the call rate,

• user agent can be used both as client and server,

• a great set of counters to analyze test scenarios,

• offers TCP and UDP over multiple sockets,

• available Third Party Call Control (3PCC),

54

3.5. TESTING SIP VOIP SYSTEMS

• RTP echo feature to listen for RTP media, and

• the possibility to create and send XML call scenarios.

Spirent Protocol Tester (SPT)

With SIPp being a good open source test tool, I still chose the Spirent Protocol

Tester to use as a test tool, because it offered a broader range of features.

Advantages of SPT include

• a GUI (graphical user interface) that offers an easy way to create new call

flows and call scenarios,

• the possibility to send up to 42.000 simultaneous calls,

• offers extensive diagnostics including an graphical call flow that can also

be used for troubleshooting,

• includes a test suite manager that offers fully automated testing,

• includes high performance media generation and analysis for voice and

video (RTP), and

• offers an easy way to manipulate (use, add, remove) any parameter of a

SIP message.

Test case creation process with the SPT

The basic idea of the SPT is to create call scenarios recreating the message

flow for all involved parties. For each party (SIP hard phone, SIP soft phone)

at least one state machine has to be created simulating the message flow of

(for example) a SIP hard phone. Multiple state machines are then combined

into a test case that can then be executed.

So for each call scenario a single test case has to be created including state

machines for the involved clients. To automatically test more than one test

case at a time, one or more test cases can be combined into a test suite that

can then be executed. SPT also contains a scheduler that allows the test case

designer to start test cases or test suites at specified times. Test suites and

the included scheduler provide great possibilities for test automation. Other

features of the SPT include a database editor (to store user data like SIP

URI, password, etc.), a load profile editor (to determine the outgoing call rate

55

3.5. TESTING SIP VOIP SYSTEMS

for each state machine), a message editor (to create user defined message tem-

plates) and a report viewer (to read and verify call execution results, to display

call flows and call sequence details).

To illustrate the test case creation process with the SPT, Figure 3.20 again

shows the message flow of a basic call scenario. To get an executable basic

call test scenario, two SPT state machines have to be created. The first step

is to observe the outgoing and incoming messages within the message flow of a

basic call for the caller side A. Figure 3.20 shows every message user A sends

Figure 3.20: Call Flow, Basic Call, Side A.

and receives during a basic call. At (1) user A sends an INVITE message and

then receives a 100 Trying (2) and a 407 Proxy Authorization Required (3)

56

3.5. TESTING SIP VOIP SYSTEMS

message. Then user A sends an ACK (4) and again an INVITE (5) message

and receives a 100 Trying (6), 180 Ringing (7) and 200 OK (8) message. After

sending an ACK (9) message, the call is set up (10). After a certain time user

A sends a BYE (11) message and receives a 200 OK (12) message terminating

the scenario.

The next step is to create an SPT state machine that reproduces the men-

tioned message flow. The SPT state machine is a call flow design diagram

which is composed of a set of states and transitions between states. All state

machines begin with a Start state and end with a Stop state. In every state

there are procedures that can be executed (sending messages, manipulating

data, database operations, etc.).

The transition is a trigger event that initiates a change from one state to

another. There are a few different condition types that trigger the transition

from one state to the next state:

Unconditional Transition (Auto Transition):

The call flow diagram will automatically change from one state to the next

state.

Receive Message:

A transition to next state will happen when a message is received.

Timer Expired:

The transition to the next state happens after a predefined period of time.

Criteria:

A transition to the next state occurs when a specific criteria is satisfied.

SPT also provides the possibility to extract certain parts of incoming mes-

sages and save the data into buffers enabling the call flow designer to use the

data for creating other messages.

Figure 3.21 shows the state machine for user A during a basic call, recre-

ating the message flow shown in Figure 3.20. Within the SPT state machine,

boxes are used to display states and the arrows between the states show tran-

sitions. The state machine starts in the start state and follows the transitions

to other states. Every state is used to execute certain tasks (e.g. writing data

57

3.5. TESTING SIP VOIP SYSTEMS

into buffers).

Figure 3.21: SPT State Machine, Basic Call, Side A.

At (1) all the initial buffers needed to run this scenario are set and the initial

INVITE message is sent. Then there are the possibilities of an incoming 100

Trying, an incoming 180 Ringing or an incoming 200 OK message, represented

by the three transitions. The state machine shown in Figure 3.21 therefore

remains in the current state and waits for incoming messages.

Figure 3.21 shows that after a certain time the tested VoIP server responded

to the sent INVITE message and answered with a 100 Trying message. So at

(2) a 100 Trying message is received, followed by a 407 Proxy Authentication

Required (3) message, that was also sent by the VoIP server.

At (4) the state machine has reached a new state. Within that state the

ACK message is sent. Through an unconditional transition the state machine

then jumps to (5). Within this new state the INVITE message will be re-

58

3.5. TESTING SIP VOIP SYSTEMS

sent, this time including an Authorization header. After the second INVITE

message was sent, the state machine remains in that state and again waits for

incoming messages.

The VoIP server received the new INVITE message including the Authoriza-

tion header and answers with an 100 Trying message that is then received by

the state machine (6). Now the message flow brings the state machine back to

the state in which a 100 Trying message was received. This time the Autho-

rization header was included within the INVITE message and the VoIP server

sends an 180 Ringing message which is then received by the state machine (7).

Now the state machine waits for an incoming 200 OK message from the tested

VoIP server. After the 200 OK message was sent by the VoIP server and re-

ceived by the state machine (8), an ACK message is sent by the state machine

in state (9).

After the call is set up (10), the transition to end the call with sending a

BYE message (11) happens after a predefined 5 second time period (timer

expired transition).

The state machine then remains in that state and waits for the closing 200

OK message from the VoIP server. After the 200 OK message is received by

the state machine in (12), the message flow ends up in the stop state, success-

fully ending the created test case.

Figure 3.21 also shows on the bottom right corner the Catch All state, which is

a special state that catches all messages that are not defined within the regular

call flow diagram. It will therefore be used especially for failure handling.

To finish the entire basic call scenario, the user B side of the call has to be

recreated as well. Figure 3.22 again shows the message flow shown in Figure

3.20, but with the incoming and outgoing messages of user B highlighted.

Figure 3.22 shows that the scenario for user B starts by receiving the IN-

VITE message from user A. User B responds with sending a 180 Ringing and

59

3.5. TESTING SIP VOIP SYSTEMS

a 200 OK message. The call is set up after receiving the ACK message from

user A. The receiving of the BYE message indicates the end of the call and user

B responds with a 200 OK message terminating the call. Figure 3.23 shows

the SPT call flow diagram for user B and the mentioned message flow. During

Figure 3.22: Call Flow, Basic Call, Side B.

my work I used the SPT to create 60 different test cases covering all the call

scenarios mentioned in 3.5.2. Working with the SPT it became obvious that

it was pretty easy to create new test scenarios by the simple drag and drop

GUI.

Given a specific call flow the outgoing messages were simply represented by

boxes and the incoming messages where represented by the transitions. Of

60

3.5. TESTING SIP VOIP SYSTEMS

course the complexity grew with the difficulty of a test scenario. Especially

with more then two involved parties it was a challenge to manage incom-

ing messages, selecting the important parameters from that message, writing

them into buffers and re-using them in newly created messages. These prob-

lems arose just out of the complexity of the call scenarios and, of course, would

have been even bigger with other SIP test tools, like SIPp.

Figure 3.23: SPT State Machine, Basic Call, Side B.

The most important feature of the SPT for companies is the easy and perfect

way to automatically test their developed VoIP system. The test suite man-

ager along with the possibility to select different call rate distributions allows

companies to run test cases in a highly automated way. With a great set of

test cases the SPT is the right tool for companies to test their SIP product.

However as my work evolved, it became clear that test automation and just

running the same test cases that are known to work with the VoIP server,

would not be my main focus.

My focus shifted to exploring the different types of SIP dialects and therefore

61

3.5. TESTING SIP VOIP SYSTEMS

it was necessary to have a test tool that allows you to simply and quickly

change values of SIP messages and test them against a VoIP server. Of course

that would have been possible with the SPT, but changing buffer values and

message values cannot be done in a fast manner.

The idea behind the SPT is to take your time and create a message or a test

case once, and have then the opportunity to test the test case at every time.

For my purposes I thought there could be a better and easier way to quickly

change values of SIP message and send them to a VoIP system. Therefore I

decided to develop my own SIP test tool to meet my needs.

3.5.4 SIPGenerator

As I looked at different SIP test tools and created a great amount of test sce-

narios and test cases with the SPT, I got a good feeling about what my test

tool should be focused on.

The main goal was to have a simple tool to send REGISTER and INVITE

messages and the possibility to quickly change values of headers, header pa-

rameters and header values of a single SIP message. I therefore created a Java

SIP test tool that met the following requirements:

• The possibility to send REGISTER and INVITE messages.

• The possibility to check if the call flow was successful and the SIP message

created was accepted by the VoIP server.

• A possibility to choose from a set of predefined SIP messages, recreating

already existing phones.

• A possibility to change certain details within the SIP message to check

how false header details affect the acceptance of SIP messages.

• A simple GUI that shows the differences between certain SIP dialects,

with the possibility to change SIP message details manually.

Appendix A shows the GUI of the Java program SIPGenerator. On the upper

left corner Appendix A shows the SIP message that will be sent to the VoIP

62

3.5. TESTING SIP VOIP SYSTEMS

server, where almost all the details of the SIP message can be changed manu-

ally. On the upper right corner you can choose between predefined hard and

soft phones. And at the bottom the message flow will be displayed.

As mentioned before, the SIPGenerator offered the possibility to change values

manually and very quickly; send the message to the VoIP system and check the

result; change the values again and offered the possibility to directly compare

the results or test new ideas.

The basic idea was to use the SIPGenerator to send SIP messages includ-

ing faulty values to check the response from the VoIP system. The objective

was to answer the following questions:

• What is the response from the VoIP server to a faulty message, header or

value?

• Is there a response from the VoIP server?

• Does the VoIP server return the right error responses?

• Does the VoIP server crash, because of the faulty message?

After creating a REGISTER or INVITE message, the Java program creates a

DatagramPacket with the SIP text message. This DatagramPacket will then

be sent via a UDP socket to the VoIP server. Then the responses will be

processed and new messages created and sent, to successfully terminate the

scenario.

Listing 3.1 shows the important parts of the Java code that is necessary to

send and receive SIP messages. The string variable SIPResponse is used to

extract details from incoming messages that are needed to create additional

SIP messages.

A challenge there is to create the REGISTER or INVITE message with the Au-

thorization or Proxy-Authorization header, because the MD5 algorithm has to

be used to generate all the details needed for these headers. Listing 3.2 shows

63

3.5. TESTING SIP VOIP SYSTEMS

the parts usually used within an Authorization header.

1 [. .]

//Datagram De t a i l s

3 public DatagramPacket pack=null ;

public St r ing Mi s s i s s i pp i IP = ”XXX.XXX.XXX.XXX” ;

5 public f ina l int MaxSize = 66000 ;

public byte [] pbuf = new byte [MaxSize] ;

7 //DatagramSocket

public DatagramSocket socke t=null ;

9 //UDP Socket

socke t = new DatagramSocket (5060) ;

11 socke t . s e tRe c e i v eBu f f e r S i z e (1000000) ;

socke t . setSoTimeout (5000) ;

13 [. .]

//SIP message

15 SIPMessage = ”REGISTER s ip : [. .] ” ;

//Sending SIP message

17 pack = new DatagramPacket (SIPMessage . getBytes () , SIPMessage . l ength () ,new

InetSocketAddress (InetAddress . getByName(Mi s s i s s i pp i IP) ,5060)) ;

socke t . send (pack) ;

19 // Rece iv ing Response

pack = new DatagramPacket (pbuf , MaxSize) ;

21 socke t . r e c e i v e (pack) ;

SIPResponse = new St r ing (pack . getData () ,0 , pack . getLength ()) ;

23 [. .]

Listing 3.1: SIPGenerator Java code: sending and receiving SIP UDP messages.

fghfd

The important thing creating the Authorization or Proxy-Authorization header

is to generate the response header detail.

1 Author i zat ion : Digest username=”” , realm=”” , nonce=”” , u r i=”” , qop=auth , nc

=00000001 , cnonce=”” , re sponse=”” , opaque=”” , a lgor i thm=md5

Listing 3.2: SIPGenerator Java code: Authorization header.

fghfd

Listing 3.3 shows the Java code using the MD5 algorithm especially for creat-

ing the response header detail for the Authorization header.

64

3.5. TESTING SIP VOIP SYSTEMS

1 //MD5 fo r response va lue

A1 = ToUserID + ” : ” + ToDomain + ” : ” + Password ;

3 A2 = ”REGISTER: s i p : ” + ToDomain ;

MessageDigest md = MessageDigest . g e t In s tance (”MD5”) ;

5 md. update (A1 . getBytes ()) ;

MD5A1 = HexString . bufferToHex (md. d i g e s t ()) ;

7 md. update (A2 . getBytes ()) ;

MD5A2 = HexString . bufferToHex (md. d i g e s t ()) ;

9 MD5A1 = MD5A1. toLowerCase () ;

MD5A2 = MD5A2. toLowerCase () ;

11 RespClear = MD5A1 + ” : ” + Nonce + ” :00000001 : ” + Cnonce + ” : auth : ” +

MD5A2;

md. update (RespClear . getBytes ()) ;

13 Response = HexString . bufferToHex (md. d i g e s t ()) ;

Response = Response . toLowerCase () ;

Listing 3.3: SIPGenerator Java code: MD5 algorithm for authorization.

3.5.5 SIPParameterShuffler

The basic idea behind the SIPGenerator test tool was to be able to manu-

ally change details and entries within a SIP message. The first approach was

to generate SIP messages that would probably not be accepted by the VoIP

server. The created message tried to create buffer overloads or used not ex-

pected data types to simulate SIP messages that a possible attacker would

send to attack or trouble the VoIP server.

During the tests the focus shifted to the question: which SIP messages would

not be accepted by a certain VoIP server, even though they follow the rules of

RFC 3261? As mentioned in Section 3.4.1 different VoIP phones send different

SIP messages in different dialects and therefore some VoIP proxy vendors only

accept a small set of VoIP devices to be used with their system.

So in addition to the monitored hard and soft phones mentioned in Table

3.5 (see Section 3.4.1) there was a need to generate different SIP dialects that

follow the rules of RFC 3261. For that purpose I had to create a test tool that

met the following requirements:

• The possibility to send REGISTER and INVITE messages.

65

3.5. TESTING SIP VOIP SYSTEMS

• The possibility to check if the call flow was successful and the SIP message

created was accepted by the VoIP server.

• A possibility to choose from a set of predefined SIP messages, recreating

already existing hard and soft phones.

• A possibility to manually choose a subset of SIP headers, header details

and attributes from a predefined set.

• A possibility to randomly choose such a subset.

• A possibility to automatically create a SIP message using these chosen

SIP headers, header details and attributes according to RFC 3261.

• A possibility to create a large amount of different SIP dialects and pa-

rameter combinations.

• A simple GUI that shows what attributes and header details are chosen

to form the SIP message.

The reason I changed the testing process quickly, was to answer a more im-

portant question than with the first SIP test tool. The fundamental idea was

the same as before: To get the VoIP server to reject messages or function in-

correctly and thereby explain possible weaknesses or failures within the VoIP

server.

With the SIPGenerator I tried to answer that question by mostly using faulty

values within SIP messages. The objective with the SIPParameterShuffler was

to answer the following questions:

• Can correct SIP message create problems for the VoIP server?

• Can certain headers or header combinations create problems for the VoIP

server?

• Can certain parameters or parameter combinations create problems for

the VoIP server?

Given these new requirements it did not make sense to just change the SIP-

Generator test tool and therefore I created an additional Java test tool, the

SIPParameterShuffler. Prior to that, a set of SIP headers, header details and

66

3.5. TESTING SIP VOIP SYSTEMS

attributes had to be created. With the information found in [RSC+02] and the

observations of the different VoIP phones mentioned in Table 3.5 (see Section

3.4.1), a set of the 53 most often used SIP headers, with 145 attributes, was

created.

Appendix B shows the GUI of the SIPParameterShuffler test tool where at

the upper right corner the user can choose the predefined SIP phones and on

the bottom right corner the SIP message flow will be displayed.

On the left side the 53 SIP headers are shown, which are used to generate

the different SIP messages. Furthermore each of the 145 attributes is repre-

sented by a checkbox, so when a new SIP message is created, every checkbox

will be examined and the new message will be created.

Random selection of SIP headers and attributes

The most important requirement for the SIPParameterShuffler test tool was

to create a set of very different SIP messages. So instead of manually creating

every single message, a set of 145 SIP attributes was generated and the idea

was to randomly choose a subset of attributes.

Even though the SIP messages should be a random combination of headers

and attributes, the messages created should still look like they could have

been sent from a real VoIP phone. So the idea was to create an intelligent

fuzzing testing tool. Usually a fuzzing tool creates random and unexpected

data [Wik10a].

My goal was to create random and unexpected data, but use correct and

SIP-typical content. Therefore it was necessary to randomly choose a set of

attributes but with consideration of the importance of every single header and

attribute.

So with the knowledge of the messages sent from the tested VoIP phones shown

in Table 3.5 and the messages created with the SPT test tool (see Section 3.5.3)

a possibility was set for every attribute. The following three examples show

the knowledge-based random selection of attributes:

67

3.5. TESTING SIP VOIP SYSTEMS

Random selection, high probability, e.g.: Content-Length Header

Table 3.13 shows all header parameters that were used in more than 85% of

all SIP REGISTER and INVITE messages of the tested real VoIP hard and

soft phones (see Table 3.5). The third column presents how often a header

parameter was used within the real phones, while the fourth column gives the

probability the SIPParamterShuffler used to decide whether a header param-

eter should be included in a new message.

H
ea

d
er

P
ar

am
et

er

%
P

h
on

es

%
S
h
u
ffl

er

Request Line UserID 100% 97%

Via
IP Address 100% 97%

Port 86.96% 97%
branch 95.65% 97%

From
User-ID 100% 97%
Domain 100% 97%

tag 95.65% 97%

To
User-ID 100% 97%
Domain 100% 97%

Call-ID 100% 97%
CSeq 100% 97%

Max-Forwards 100% 95%

Contact

User-ID 95.65% 97%
IP Address 100% 97%

Port 86.96% 85%
User-Agent 100% 75%

Content-Length 100% 90%

Table 3.13: SIP messages: high probability header parameters.

Based on the observed knowledge of SIP messages, the Content-Length header

appears in every real SIP message. So for the Content-Length attribute a

random number between 1 and 100 was generated and to simulate a selection

rate of 90%, the Content-Length header will appear in a newly created SIP

message, if the random number created is between 1 and 90. The probability

of 90% was chosen, because the Content-Length header appeared in every SIP

message, but is not a mandatory header according to RFC 3261.

All headers and header parameters that are mandatory parts of a SIP message

received a probability of 97%. The idea here is to get a few non-RFC-conform

message to show if our proposed method would find these faulty messages in-

tentionally created with the SIPParameterShuffler.

68

3.5. TESTING SIP VOIP SYSTEMS

The header User-Agent appeared in every SIP REGISTER and INVITE mes-

sage, but the chosen probability is still just 75%, because the User-Agent

header has no important value within a SIP message.

Random selection, medium probability, e.g.: Expires Header

Table 3.14 shows the SIP header parameters that received a medium probabil-

ity of being chosen by the SIPParameterShuffler to occur in a newly created

SIP message.
H

ea
d
er

P
ar

am
et

er

%
P

h
on

es

%
S
h
u
ffl

er

Via rport 34.78% 50%
From Display Name 30.43% 40%

Expires 43.48% 50%

Allow

Invite 52.17% 45%
Ack 52.17% 45%

Cancel 52.17% 45%
Bye 52.17% 45%

Notify 52.17% 45%
Refer 52.17% 45%

Options 52.17% 45%
Info 52.17% 45%

Subscribe 43.48% 35%
Prack 34.78% 30%

Content-Type application/sdp 39.13% 50%

Table 3.14: SIP messages: medium probability header parameters.

The Expires header appears in approximately half of the SIP messages gen-

erated by real SIP phones. Again a random number between 1 and 100 was

generated and if the number lies between 1 and 50, the Expires header will be

used in the new SIP message.

Random selection, low probability, e.g.: Subject Header

Table 3.15 shows some header parameters that received a low probability to

occur in a newly created SIP message.

The Subject header is hardly used by any real SIP phone, so it will only appear

in a newly created message if the random number created between 1 and 100

lies between 1 and 5. Headers or header parameters which never occurred in

messages derived from the tested VoIP phones either received a probability of

69

3.5. TESTING SIP VOIP SYSTEMS

H
ea

d
er

P
ar

am
et

er

%
P

h
on

es

%
S
h
u
ffl

er

Request Line user=phone 21.74% 25%
Contact Display Name 13.04% 10%
Subject 0% 5%

Timestamp 0% 10%

Table 3.15: SIP messages: low probability header parameters.

5% or 10%, so that there is still a slight chance that they will be used in a

newly created SIP message.

Listing 3.4 shows the basic mechanism for creating the knowledge-based ran-

dom SIP messages.

As mentioned earlier for every SIP header and attribute there is one checkbox

and every checkbox will be handled like the ContentLength checkbox shown in

Listing 3.4. The SIP message itself will then be built by adding new text to

the SIPMessage variable.

With this technique I generated 344 different SIP REGISTER messages and

122 different SIP INVITE messages. These messages will be used for further

experiments.

[. .]

2 Random r = new Random() ;

[. .]

4 p r obab i l i t y = r . next Int (101) ;

i f (p robab i l i t y <91) { content l ength . s e t S e l e c t e d (true) ;}

6 else { content l ength . s e t S e l e c t e d (fa l se) ;}

[. .]

8 i f (content l ength . i s S e l e c t e d ()==true) {SIPMessage=SIPMessage+”Content−

Length : 0” ;}

[. .]

Listing 3.4: SIPParameterShuffler Java code: Random selection.

70

3.5. TESTING SIP VOIP SYSTEMS

SIPParameterShuffler Results

In our experiments we concentrated on the two most important SIP messages

the INVITE and the REGISTER messages. As mentioned before 344 different

REGISTER and 122 different INVITE messages were created with the SIPPa-

rameterShuffler. These messages were sent to the VoIP system and classified

as either accepted or rejected.

A REGISTER message was marked accepted if the register process was suc-

cessful, the 200 OK response was received and the user agent was successfully

registered at the server. Otherwise it was marked rejected.

In case of the INVITE messages a basic call scenario was initiated and the

INVITE message was marked accepted if the 180 Ringing response was suc-

cessfully received. This means that a basic call would have been possible with

the sent INVITE message. If there was no 180 Ringing response, the INVITE

message was marked rejected.

Table 3.16 shows that out of the 344 REGISTER messages 266 were accepted

and 78 were rejected by the VoIP server. Out of the 122 INVITE messages 53

were accepted and 69 were rejected by the VoIP server.

REGISTER messages
Accepted 266
Rejected 78
Total 344

INVITE messages
Accepted 53
Rejected 69
Total 122

Table 3.16: Test set, REGISTER and INVITE messages.

As mentioned before, the SIPParameterShuffler randomly created new SIP

REGISTER and INVITE messages. The goal was to create messages that

used different parameter combinations. For example Table 3.17 shows a SIP

REGISTER message created with the SIPParameterShuffler. This message

was sent to the commercial VoIP proxy and was then marked as accepted by

the server.

Table 3.17 shows that the created SIP REGISTER message uses some SIP

headers that did not occur in messages sent by the tested VoIP phones (e.g.:

71

3.5. TESTING SIP VOIP SYSTEMS

REGISTER sip:SoftNetUniWien:5060 SIP/2.0

Via: SIP/2.0/UDP 131.130.32.52:5060;branch=z9hG4bK-d87543;rport

From: <sip:2001@SoftNetUniWien;user=phone>;tag=1f54431a

To: "V2001 N2001" <sip:2001@SoftNetUniWien;user=phone>

Call-ID: NDYzYzMwNjJhMDRjYTFjMmI5NTE3NDRkOGFkYzY3OTc.

CSeq: 1 REGISTER

Max-Forwards: 70

Contact: <sip:2001@131.130.32.52:5060;line=ab2001;transport=udp>;

+sip.instance="<urn:uuid:767e30a9-0c85-4238-ab02-e04eb40f3722>"

User-Agent: SIPRegParameterShuffler

Allow-Events: hold

X-Real-IP: 131.130.32.16

WWW-Contact: <https://131.130.32.52:443>

Content-Length: 0

Supported: gruu

Route: <sip:131.130.32.16;transport=udp;lr>

Record-Route: <sip:131.130.32.16:5060;lr>

Accept-Encoding: gzip

Date: Sat, 13 Nov 2010

Timestamp: 54

Unsupported: gruu,replaces

Table 3.17: SIP REGISTER message created with the SIPParameterShuffler: Accepted.

Date, Timestamp, Unsupported and so forth). Nevertheless the VoIP proxy

accepted this message and a phone would have been able to register itself at

the VoIP server using this message.

Table 3.18 shows another SIP message created with the SIPParameterShuf-

fler. This time the message is marked as rejected. Table 3.18 shows that the

SIP REGISTER message does not include a Via header. Although the Via

header is not a mandatory SIP header in a SIP REGISTER message, the ex-

periments showed that the tested commercial VoIP server needed a Via header

to accept incoming messages.

Table 3.19 shows a SIP INVITE message created by the SIPParameterShuf-

fler. Again, many optional headers (e.g.: Subject, Content-Encoding and so

forth) are used within this message, but again, this message has been able to

successfully start a SIP call.

Finally Table 3.20 shows a SIP INVITE message created by the SIPParame-

terShuffler that was marked rejected. The created message does not include

the IP Address within the Contact header. Even though the Contact header

72

3.6. AUTONOMIC SIP ADAPTION

REGISTER sip:SoftNetUniWien SIP/2.0

From: <sip:2001@SoftNetUniWien>;tag=vh347gh43f7

To: <sip:2001@SoftNetUniWien>

Call-ID: sdbajdbbvfdjcajskaxvhjs

CSeq: 1 REGISTER

Max-Forwards: 70

User-Agent: SIPGeneratorMN

Contact: <sip:2001@131.130.32.52>

Expires: 3600

Content-Length: 0

Table 3.18: SIP REGISTER message created with the SIPParameterShuffler: Rejected.

is not a mandatory SIP header, if the header is included, the IP Address has

to be included as well.

3.6 Autonomic SIP Adaption

This section deals with the autonomic adaption of SIP messages and the de-

veloped module Babel-SIP. Section 3.6.1 explains the basic motivation and the

idea behind our approach. Section 3.6.2 deals with C4.5 Decision Trees and

how they will be used by Babel-SIP. Section 3.6.3 presents the functionality

of the Babel-SIP module. And Section 3.6.4 describes the experiments and

shows the results we achieved with our approach.

3.6.1 Motivation and Introduction to Babel-SIP

When dealing with new protocols that are defined in a very open standard,

like SIP, and defined in one or in many cases several RFCs, there are a few

problems that may present themselves. First of all an open standard leaves a

lot of room for interpretation which can lead to the problem that end devices

may not be able to communicate with each other, even if they use the same

protocol. In the case of SIP, that can lead to a great number of different di-

alects making it impossible to use a certain hard or soft phone with the used

VoIP server.

Another problem for software developers, especially in early stages of develop-

ment, is that software implementing open standards like SIP evolves over time,

and often during the first years of deployment, products are either immature

or do not implement the whole standard right away but rather only a subset.

73

3.6. AUTONOMIC SIP ADAPTION

INVITE sip:1001@SoftNetUniWien;user=phone SIP/2.0

Via: SIP/2.0/UDP 131.130.32.52:5060;branch=z9hG4bK-d87543-

From: "V2001 N2001" <sip:2001@SoftNetUniWien:5060>;tag=1f54431a

To: <sip:1001@SoftNetUniWien;user=phone>

Call-ID: NDYzYzMwNjJhMDRjYTFjMmI5NTE3NDRkOGFkYzY3OTc.

CSeq: 1 INVITE

Max-Forwards: 70

Contact: <sip:2001@131.130.32.52:5060;line=ab2001;

rinstance=e81d72cc1e7e2768>;expires=3600

User-Agent: SIPRegParameterShuffler

Allow-Events: dialog,presence,hold

X-Real-IP: 131.130.32.16

Content-Length: 368

Event: message-summary

Accept: application/sdp

RSeq: 437322310

Content-Type: application/sdp

Authentication-Info: nextnonce="d62ws4942bd3okj362fc144c1dd8acf5"

Call-Info: <http://www.example.com/photo/pic1.jpg>;purpose=icon

Content-Encoding: tar

Subject: Test

Unsupported: callerid

Table 3.19: SIP INVITE (SDP part not shown) message created with the SIPParameter-
Shuffler: Accepted.

As a result, standard compliant messages are sometimes wrongly rejected and

communication fails [HAAM08].

So the basic idea was to create a system that can automatically adapt mes-

sages to improve acceptance rates, classify incoming messages, remember if

an incoming message was successfully and correctly processed by the server,

continuously learns which messages were problematic and suggests a way to

alter problematic messages into messages that will probably be accepted by

the server.

We therefore had to develop an independent software module that can be put

in front of a VoIP proxy without affecting the code of the VoIP proxy (see

Figure 3.24). That way Babel-SIP was of course developed for the use with a

VoIP system, but the functionality of Babel-SIP can be reused with any other

new protocols.

Figure 3.24 and 3.25 show Babel-SIP being installed right in front of the VoIP

system. Incoming SIP messages will be intercepted by Babel-SIP, possibly

74

3.6. AUTONOMIC SIP ADAPTION

INVITE sip:1001@SoftNetUniWien;user=phone SIP/2.0

Via: SIP/2.0/UDP 131.130.32.52:5060;branch=z9hG4bK-d87543-;rport

From: <sip:2001@SoftNetUniWien>;tag=1f54431a

To: <sip:1001@SoftNetUniWien;user=phone>

Call-ID: NDYzYzMwNjJhMDRjYTFjMmI5NTE3NDRkOGFkYzY3OTc.

CSeq: 1 INVITE

Max-Forwards: 70

Contact: <sip:2001@5060;line=ab2001>;expires=3600

User-Agent: SIPRegParameterShuffler

Allow-Events: hold,conference

WWW-Contact: <https://131.130.32.52:443>

Expires: 3600

Content-Length: 368

Session-Expires: 3600;refresher=uas

Content-Type: application/sdp

Require: timer

Timestamp: 54

Table 3.20: SIP INVITE (SDP part not shown) message created with the SIPParameter-
Shuffler: Rejected.

Figure 3.24: SIP registration of a user agent with Babel-SIP.

adapted and then forwarded to the VoIP server. Babel-SIP maintains a C4.5

decision tree, and observes which messages are accepted by the proxy, and

which are not. This information is fed into the decision tree, the tree thus

learns which headers are likely to cause trouble for this particular release of

the proxy software [HNHH08].

The functionality of Babel-SIP will be presented in the following sections.

3.6.2 C4.5 Decision Trees

The first job of Babel-SIP is to classify incoming SIP messages. For classifica-

tion a C4.5 decision tree is used, which is capable of further identifying relevant

75

3.6. AUTONOMIC SIP ADAPTION

Figure 3.25: SIP call setup with Babel-SIP.

header parameters causing rejections. The C4.5 decision tree implementation

(J48) used is based on the Weka machine learning library [WF05].

All 145 mentioned headers and parameters used by the SIPParameterShuf-

fler (see Section 3.5.5), plus some additional headers, header fields and header

field values (defined by RFC 3261) are defined as attributes. Altogether 274

attributes were defined and for each attribute a numerical value is defined

to describe an incoming SIP message. So for every SIP message a vector of

dimension d=274 is created. The value for each attribute can be 0 (if the

corresponding header is not present), 1 (if the corresponding header is present

and of type string), or any numerical value (if the corresponding header/header

parameter is present and of numeric type) (see Listing 3.5) [HNHH08].

Note: String formats are not checked in our approach, because we assume that

incoming messages are RFC 3261 conform.

1 Input : a t t r i b u t e vec to r A

Output : a t t r i b u t e vec to r A with new va lue s

3

FOREACH (Ai in A)

5 Ai . va lue = 0

IF (Ai . name in SIP message) THEN

7 IF (SIP message f i e l d i s numeric) THEN

Ai . va lue = value o f SIP message f i e l d

9 ELSE Ai . va lue = 1

Listing 3.5: Translation of SIP header into C4.5 attribute values.

76

3.6. AUTONOMIC SIP ADAPTION

After an incoming message is classified, a C4.5 decision tree is used to deter-

mine if the message is likely to be accepted or might be rejected by the server.

A C4.5 decision tree basically represents a hierarchy of nested if-then rules.

Table 3.21 shows one example rule that can occur in such a form in a C4.5

decision tree. The two lines displayed in Table 3.21 represent leaves of the

decision tree that are used to classify an incoming message. For example if the

SIP header Call-ID occurs in the SIP message, the message will be classified as

probably accepted. Otherwise the message will be marked probably rejected.

Call-ID <= 0: REJECTED

Call-ID > 0: ACCEPTED

Table 3.21: C4.5 example if-then rule.

Sections 3.6.3 and 3.6.4 will present further information on the usage of C4.5

decision trees by Babel-SIP.

3.6.3 Babel-SIP

Babel-SIP is an automatic protocol adapter and is placed in front of the SIP

proxy that processes incoming messages (see [HNHH08] and [HAAM08]). Ba-

sically Babel-SIP handles four tasks:

• Classify incoming messages. An incoming message should be represented

as a d=274 vector (see Chapter 3.6.2).

• A C4.5 decision tree should be generated with SIP messages (see Section

3.6.4).

• New incoming messages should be classified with the created decision tree

in probably accepted and probably rejected (see section 3.6.4).

• For messages that are classified as probably rejected, the vector should

be used to find a similar message that is known to be accepted and a

suggestion should be made to change the incoming message accordingly.

Note: Within our experiments, the problematic SIP messages were ac-

tually altered, since our goal was to see if Babel-SIP provides an im-

provement. In real-time applications altering messages should be done

77

3.6. AUTONOMIC SIP ADAPTION

carefully and semantics of the individual headers must also be taken into

account (which has not been addressed here). Therefore if a message is

classified to be probably rejected by the server, Babel-SIP tries to adapt

messages in such a way that the result turns into a probably accept. For

that purposes Babel-SIP stores messages that have been accepted in a lo-

cal database M. For every message that is classified as probably rejected,

Babel-SIP searches through its database to find the closest similar mes-

sage that has already been accepted. The distances between two messages

will be estimated with the Euclidean distance metric provided by Weka.

mc = arg min
mi∈M∧mi 6=m1

d(m1,mi).

identifies the new incoming message as m1 and the nearest accepted mes-

sage within the database as mc. Once a message mc is found, Babel-SIP

identifies those headers of m1 that are classified as being problematic.

These headers and header fields are then compared to the reference mes-

sage. If the same header or header field is found in both messages, the

values of mc are copied into m1. If a header or header field from m1 is

not found in mc, it will be erased. If header or header fields of mc are not

used in m1, they are inserted into m1. The final step is to forward the

new message to the proxy.

3.6.4 Experiments and Results

This chapter presents the experiments we made in our lab at the Department

of Distributed and Multimedia Systems (now Entertainment Computing). In

our lab we again used the same test environment as before, using the commer-

cial VoIP system created by an industrial partner. We used the SIP messages

created with the SIPParameterShuffler and ran several tests to evaluate the

effectiveness of Babel-SIP, which is measured by the improvement of accep-

tance of previously rejected messages.

Figure 3.26 shows the test environment we used for our tests of Babel-SIP.

Babel-SIP was installed in front of the VoIP proxy. Therefore every SIP mes-

sage created with the SIPParameterShuffler was sent to the SIP proxy, but

intercepted by Babel-SIP.

78

3.6. AUTONOMIC SIP ADAPTION

Figure 3.26: VoIP test environment, with Babel-SIP.

As mentioned in Section 3.5.5, 344 different REGISTER and 122 different

INVITE messages were created.

REGISTER messages

The first thing Babel-SIP had to do was create a starting C4.5 decision tree.

We therefore had to choose a training set out of the created messages.

In the first experiments we concentrated on the SIP REGISTER messages. To

create a starting C4.5 decision tree a set of 50 REGISTER messages (of which

22% are known to be rejected) were randomly selected from the artificial mes-

sages created (see Table 3.22) [HNHH08].

REGISTER messages

Training data set
Accepted 39 78%
Rejected 11 22%
Total 50 100%

Test data set
Accepted 227 77.21%
Rejected 67 22.79%
Total 294 100%

Table 3.22: Initial training and test data sets (REGISTER messages).

Figure 3.27 shows a C4.5 example tree generated by the training set. As men-

tioned in Section 3.6.2 the C4.5 decision tree shows a list of if-then rules. This

79

3.6. AUTONOMIC SIP ADAPTION

starting tree helps to classify new incoming messages in probably accepted or

probably rejected. For example, if the parameter message-summary of the

Event header occurs in a new incoming message, it will be classified as proba-

bly rejected, otherwise the next rule of the decision tree is taken into account.

Event_message-summary <= 0

| Error-Info <= 0

| | Contact_transport <= 0: ACCEPTED (46.0/4.0)

| | Contact_transport > 0

| | | Via_rport <= 0: REJECTED (2.0)

| | | Via_rport > 0: ACCEPTED (8.0/1.0)

| Error-Info > 0

| | Allow-Events_presence <= 0: REJECTED (2.0)

| | Allow-Events_presence > 0: ACCEPTED (2.0)

Event_message-summary > 0: REJECTED (4.0/1.0)

Figure 3.27: Example C4.5 tree after training with 70 REGISTER messages.

Also it can be noted that the learned rule hierarchy shows the importance of

the parameter for its final acceptance. For example, the most important rule

given by the starting tree, would be at the top of the tree (Event message-

summary <= 0). The leaves of the decision tree show the final classification in

probably accepted or probably rejected. The numbers calculated for the tree

leaves correspond to the number of messages that have been classified in this

branch. The second number, in case it exists, shows the number of wrong

classifications.

After a C4.5 starting tree exists, the test data set can be sent. To get a

greater test set, the 294 messages were replicated 15 times. This led to a test

set of 4410 SIP REGISTER messages. Then a set of experiments, consisting

of 15 experimental runs, were started (each time 4410 messages were sent).

Therefore the first step was to create a starting decision tree. The next step

was to choose a random message out of the 4410 test messages and send it

to the VoIP proxy. The incoming message was then intercepted by Babel-SIP

and ran through the C4.5 decision tree. With the help of each of the single

rules, the decision tree classified the incoming message in probably accepted or

probably rejected.

If the incoming message was classified as probably accepted it was simply for-

80

3.6. AUTONOMIC SIP ADAPTION

warded to the VoIP proxy. If the message was classified as probably rejected,

the message was altered with the help of the local database of Babel-SIP (see

Section 3.6.3).

Seeing our approach as self learning, the C4.5 decision tree of course has to be

trained continuously. Training a C4.5 decision tree however is a very time and

resource consuming task, so Babel-SIP creates a new C4.5 decision tree after

each 20 new incoming messages. Therefore the first 20 messages will be clas-

sified with the C4.5 decision tree created with the training set consisting of 50

REGISTER messages. After these 20 messages were sent, a new decision tree

is generated with the 70 available REGISTER messages. The next decision

tree will then be created with 90 SIP REGISTER messages and so forth. Of

course that means that the decision tree constantly learns and most certainly

gets bigger with every new run.

For example the decision tree created after 70 SIP REGISTER messages only

contains 5 rules that decide whether the incoming message is classified as prob-

ably accepted or probably rejected. Nevertheless the C4.5 decision tree (cre-

ated with 70 REGISTER messages, see Figure 3.27) already correctly classifies

91.43% of the messages.

Figure 3.28 shows part of a C4.5 decision tree at the end of the REGISTER

experiments. Of course it is obvious that the size of the tree has enormously

increased. The entire C4.5 tree at the end of the REGISTER experiments

can be found in Appendix A. Figure 3.28 shows that there are more rules and

therefore it gets harder for a programmer to analyze the tree. On the other

hand a decision tree derived at the end of the experiments can sufficiently ex-

plain why REGISTER messages may not work with the current version of the

VoIP proxy.

For VoIP phone manufacturers such a decision tree can explain why a hard

or soft phone fails to register itself at a proxy. For example, the decision

tree shows which headers may have to be inserted into REGISTER messages

or which parameter combinations might have to be avoided. The tree thus

explains registration failure without knowing anything about the implemen-

81

3.6. AUTONOMIC SIP ADAPTION

tation. For VoIP proxy developers on the other hand, a decision tree might

show failures within the code that can then be repaired for the next software

update.

CSeq <= 0: REJECTED (104.0)

CSeq > 0

| Call-ID <= 0: REJECTED (101.0)

| Call-ID > 0

| | Replaces <= 0

| | | [...]

| | | To_IP <= 0

| | | | [...]

| | | To_IP > 0

| | | | [...]

| | | | | Via_IP <= 0

| | | | | | [...]

| | | | | Via_IP > 0

| | | | | | [...]

| | | | | | From_IP <= 0: REJECTED (2.0)

| | | | | | From_IP > 0: ACCEPTED (38.0)

| | | | | | [...]

| | | | | | Via_rport <= 0: REJECTED (11.0)

| | | | | | Via_rport > 0: ACCEPTED (30.0)

| | | | | | [...]

| | Replaces > 0: REJECTED (38.0)

Figure 3.28: Part of a C4.5 tree at the end of the REGISTER experiments.

Of course within the experiments the decision tree is used to classify incoming

message in probably accepted or probably rejected. The classification accuracy

of the decision tree throughout the experiments increased from 91.43% (Figure

3.27) to 99.32% (Figure 3.28, Appendix A). Thus, it can be assumed that this

tree indeed classifies almost every incoming message correctly. Section 3.6.5

gives a more detailled analysis on the C4.5 decision trees derived at the end of

the experiments.

The important question with Babel-SIP was if there would be an improvement

of the acceptance rate of SIP messages. The experiments resulted in 15 time

series of 4410 binary observation (yes or no). For each experiment l, 1 ≤ l ≤ 15

we then calculated rejection rates over overlapping bins of size 100 messages.

The first bin Bl
1 = {ml

i | 1 ≤ i ≤ 100} includes messages 1 to 100, the rejected

messages of this bin are given by B̂l
1 = {ml

i ∈ Bl
1 |m

l
i was rejected}. Bl

2 and

82

3.6. AUTONOMIC SIP ADAPTION

B̂l
2 are then computed over messages 21 to 120 from experiment l. In general,

for 1 ≤ k ≤ 216 we define

Bl
k = {ml

i | 20 × (k − 1) + 1 ≤ i ≤ 20 × (k − 1) + 100}

and

B̂l
k = {ml

i ∈ Bl
k |m

l
i was rejected}.

Thus, an estimator R̂l(i) for the rejection rate (in %) around message ml
i, 1 ≤

i ≤ 4400 is given by

R̂l(i) = 100 × |B̂l
di/20e|/|B

l
di/20e| = |B̂l

di/20e|

[HNHH08].

Figure 3.29 shows a smoothened curve of the estimated rejection rate. By

using

B̄k =

(

15
∑

l=1

|B̂l
k|

)

/15, 1 ≤ k ≤ 216, (3.1)

we define a mean estimator by

R̄(i) = B̄di/20e,

i.e., the mean is calculated for each bin over all 15 experimental runs. In Figure

3.29 it can be seen that the time series shows a transient phase at the start, in

which the rejection rate decreases [HNHH08]. Therefore especially in the be-

ginning Babel-SIP gradually learns and increases its effectiveness. After some

time, the decision tree enters a stationary phase, were no more new things can

be learned and therefore no more gain is achieved.

Taking messages ml
600 to ml

4400 into account, we have computed the mean re-

jection rate Rs ≈ 13.12% for messages in the stationary phase. This represents

the main results of the Babel-SIP REGISTER experiments. Thus, Babel-SIP

is able to drop the rejection rate from 22.79% (see Table 3.22) to 13.12%.

Table 3.23 shows aggregated results over the REGISTER experiments in more

detail. Therefore 18.37% of the messages have been modified by Babel-SIP.

From all sent messages 9.33% have been successfully modified. From those

83

3.6. AUTONOMIC SIP ADAPTION

Stationary mean
CI90
R̄(i)

Message

M
ea

n
an

d
C

I9
0

[%
]

40003000200010000

22

20

18

16

14

12

10

8

Figure 3.29: Result REGISTER messages.

messages classified as rejected 48.02% were successfully modified.

False positives are messages that were classified as rejected, although they

would have been accepted by the proxy. False negatives are messages that

were classified as accepted, although they would have been rejected by the

proxy.

Mean [%] Std.dev. [%]
Modified 18.37 5.8310−4

Successfully modified
(from all) 9.33 0.003
Successfully modified (of
those classified as rejected) 48.02 0.108
False positive 6.13 2.04110−4

False negative 10.53 4.23310−4

Table 3.23: Aggregated results of the Babel-SIP REGISTER experiments.

Of course false positives are very critical, because this means that an incoming

message that would have been accepted by the server is wrongly classified as

rejected and then modified. An unacceptable behavior for Babel-SIP would

be if accepted messages were modified in a way that the new version m̂ of m

would be actually rejected. Table 3.23 shows that 6.13% of the REGISTER

84

3.6. AUTONOMIC SIP ADAPTION

messages that would have been accepted by the proxy were classified as rejected

and therefore modified. However all altered messages have still been accepted

by the proxy. Additionally we tested the 9 hard and 5 soft phones (see Table

3.5) with Babel-SIP installed, and all messages were classified as accepted.

Table 3.23 shows the mean over all 15 runs, as well as the standard devia-

tion between the individual runs. Seeing that the standard deviations are very

small, all the 15 experiments show almost equal results.

INVITE messages

In the second step we used INVITE messages to test Babel-SIP. Basically the

same setup was used. For creating an initial C4.5 decision tree we used 20

randomly selected INVITE messages (see Table 3.24). Figure 3.30 shows the

INVITE messages

Training data set
Accepted 9 45%
Rejected 11 55%
Total 20 100%

Test data set
Accepted 44 43.14%
Rejected 58 56.86%
Total 102 100%

Table 3.24: Initial training and test data sets (INVITE messages).

initial C4.5 decision tree after the initial training phase and one testing phase.

A new decision tree is again created after 20 new incoming messages. Again

the decision tree at the beginning of the experiments is pretty small and again

contains only five rules. Figure 3.31 shows part of the C4.5 decision tree at the

end of the INVITE experiments, while Appendix B shows the entire tree. Also,

as mentioned before, Section 3.6.5 presents a more intensive tree analysis.

For the INVITE experiments the remaining 102 messages were replicated 10

times leading to a test set of 1020 messages. Again 15 experimental runs were

started and we again computed a mean estimator R̄(i) and the 90% confidence

interval, as well as an estimator for the stationary rejection rate (see Figure

3.32). For the stationary mean we used the messages ml
560 to ml

1000 resulting

in a stationary mean of 30.79%. Therefore Babel-SIP was able to improve the

rejection rate from 56.86% to 30.79%, resulting in an improvement of 45.85%

(see Figure 3.32). Details on the results of the INVITE experiments are shown

85

3.6. AUTONOMIC SIP ADAPTION

| | Replaces > 0: REJECTED (38.0)

Accept_application/x-private <= 0

| Allow-Events_refer <= 0

| | Call-Info <= 0

| | | Content-Type_text/html <= 0

| | | | Timestamp <= 0: ACCEPTED (22.0/1.0)

| | | | Timestamp > 0: REJECTED (2.0)

| | | Content-Type_text/html > 0: REJECTED (2.0)

| | Call-Info > 0: REJECTED (3.0)

| Allow-Events_refer > 0: REJECTED (5.0)

Accept_application/x-private > 0: REJECTED (5.0)

Figure 3.30: Example C4.5 tree after training with 40 INVITE messages.

in Table 3.25. The same statistics are used for both the REGISTER and the

INVITE results.

Mean [%] Std.dev. [%]
Modified 38.37 0
Successfully modified
(from all) 22.39 1.210
Successfully modified (of
those classified as rejected) 58.55 3.165
False positive 6.86 0
False negative 23.53 0

Table 3.25: Aggregated results of the Babel-SIP INVITE experiments..

Table 3.25 shows that the INVITE experiments result in a higher number of

false negatives. Thus, it can be noted that the decision trees are not as accurate

in distinguishing the critical headers as the trees derived within the REGIS-

TER experiments. The zero standard deviation indicates that the decision

trees of the 15 experimental runs each classify the messages equally. Seeing as

the messages are selected and sent randomly, the decision tree should assum-

ably learn some faulty parameters sooner or later than in other runs. That

fact can probably be linked to the fact that the INVITE experiments only

included 122 different messages, while the REGISTER experiments included

344 messages.

Retries

The REGISTER and INVITE experiments showed that Babel-SIP was able to

drastically reduce the rejection rate of problematic SIP messages. Nevertheless

86

3.6. AUTONOMIC SIP ADAPTION

To_IP <= 0: REJECTED (72.0)

To_IP > 0

| Replaces <= 0

| | []

| | From_IP <= 0

| | | Allow-Events_conference <= 0: REJECTED (31.0/1.0)

| | | Allow-Events_conference > 0: ACCEPTED (10.0)

| | From_IP > 0

| | | []

| | | Content-Type_text/html <= 0: ACCEPTED(18.0)

| | | Content-Type_text/html > 0: REJECTED (2.0)

| | | []

| | | Privacy_header <= 0: ACCEPTED (58.0/2.0)

| | | Privacy_header > 0

| | | []

| | | Request-Line_transport <= 0: REJECTED (25.0)

| | | Request-Line_transport > 0: ACCEPTED (9.0)

| | | []

| Replaces > 0: REJECTED (48.0)

Figure 3.31: Part of a C4.5 tree at the end of the INVITE experiments.

there were still messages that had been rejected by the VoIP server, even after

modifying them with Babel-SIP.

Therefore it became interesting to examine how many retries it would take

to alter the same message before it may have been accepted by the server. For

this, we ran separated REGISTER and INVITE experiments.

Before starting these experiments a decision tree was again generated with

the training set used in the earlier experiments. This time we used the 67

REGISTER and 58 INVITE messages that were rejected by the server. Each

experiment was driven by a parameter r, stating the maximum number of

times a phone would try to register itself or try to initiate a call.

Table 3.26 shows the number of necessary tries up to that value of r from which

onwards no improvement of the number of accepted messages was achieved.

The results reveal that for those phones that would need more than one try,

most of them would succeed after at most four tries. Mapping this onto a

realistic scenario, this means that a phone owner would have to attempt to

87

3.6. AUTONOMIC SIP ADAPTION

Figure 3.32: Result INVITE messages.

register his phone or to initiate a call only a few times [HNHH08].

REGISTERs 1 2 3 4 ≥ 5 never
r=1 10 57
r=2 14 8 45
r=3 14 12 3 38
r=4 21 5 3 1 37
r=5 17 7 5 2 0 36
r=6 16 13 2 0 0 36
r=7 19 9 1 2 0 36
r=8 16 5 7 2 1 36
r=9 18 7 5 2 0 35

INVITEs 1 2 3 ≥ 4 never
r=1 22 36
r=2 25 3 30
r=3 21 5 2 30
r=4 25 1 5 1 26

Table 3.26: Number of necessary attempts for experiment r.

3.6.5 Qualitative Analysis of Decision Trees

One of the outcomes of the Babel-SIP experiments, besides the fact that it

was able to drastically improve the acceptance rate of SIP messages, were the

88

3.6. AUTONOMIC SIP ADAPTION

C4.5 decision trees. These trees show why messages were rejected by the VoIP

proxy. Messages could either be rejected because they were created in a non-

RFC-conform way, or because of bugs in the VoIP server software.

The C4.5 decision trees do not state if the error occurred on the client or server

side, but it points to the problematic headers, header parameters or header

parameter combinations.

This section discusses the outcome of the previously presented Babel-SIP ex-

periments, the C4.5 decision trees derived at the end of the experiments. Of

course these two decision trees are very complex and large, but the following

section will discuss the most important rules and parts of these trees.

C4.5 decision tree, REGISTER experiments

Appendix A shows the entire C4.5 decision tree derived at the end of the

REGISTER experiments. The procedure in reading such a decision tree is to

process the rules from the outside step-by-step to the inside or from the top

to the bottom. The rules stated at the top are the most important ones and

often state facts or problems right away.

Figure 3.33 shows the first few rules of the decision tree. The very first rule

states that if an incoming SIP REGISTER message does not include a se-

quence number (a CSeq header) the message will be rejected by the server. If

a CSeq header is included the decision tree checks the next rule. The second

rule states that if a SIP REGISTER message does not include a Call-ID, the

message will be rejected by the VoIP server. Of course both the CSeq and the

Call-ID header are mandatory SIP headers, according to RFC3261.

CSeq <= 0: REJ.

CSeq > 0

| Call-ID <= 0: REJ.

| Call-ID > 0

| | Replaces <= 0

| | | Accept_level <= 0

| | | | [..]

| | | Accept_level > 0: REJ.

| | Replaces > 0: REJ.

Figure 3.33: C4.5 tree, REGISTER messages, extract 1.

Section 3.5.5 described that the Java tool SIPParameterShuffler, used to gen-

89

3.6. AUTONOMIC SIP ADAPTION

erate random SIP messages, uses a probability of 97% for all mandatory SIP

headers. Therefore some created messages did not include mandatory headers.

The idea behind that approach was to check if Babel-SIP finds these faulty

messages. Figure 3.33 shows that Babel-SIP was not only able to find these

faults, but given the fact that these rules are the first two rules of the decision

tree, Babel-SIP treats such non-RFC-conform faults as highly important.

If an incoming SIP REGISTER message does include a CSeq and a Call-

ID header, the next rule of the decision tree states that incoming messages

will be rejected if a Replaces header is included in the message. The Replaces

header is usually used in e.g.: Attended Call Transfer scenarios, replacing one

participant with another. Therefore the Replaces header should look like a To

or From header. In the created SIP REGISTER messages, instead of including

a SIP address, a Call-ID-like entry is used to simulate a wrongly developed soft

phone. Therefore the used Replaces header leads to a rejection of the message,

because of wrong parameters and values.

The fourth rule states that an incoming message will be rejected if the level

parameter is used within an Accept header.

Figure 3.34 shows that there can also be header parameter combinations that

obviously lead to problems. E.g.: An incoming message does not include prob-

lems that could have already triggered a rule to reject the message, but the

application/x-private parameter is used within the Accept header and the mo-

bility parameter is used in the Contact header, then a message will be rejected

as well. But Figure 3.34 also shows that if the application/x-private parameter

is used within the Accept header and the mobility parameter is not used in the

Contact header, the message will still be rejected if the ttl (time to live) pa-

rameter is used in the Via header. In case the ttl paramter is not used within

the Via header and the Subscription-State header is not used the message will

be accepted, otherwise it will be rejected.

Figure 3.35 shows the third interesting part of the decision tree. If all pre-

viously discussed problems do not occur in an incoming message, and a Min-

Expires header is used in combination with a line paramter within a Contact

90

3.6. AUTONOMIC SIP ADAPTION

header, the message will be rejected.

[..]

| | | | | Accept_application/x-private <= 0

| | | | | | [..]

| | | | | Accept_application/x-private > 0

| | | | | | Contact_mobility <= 0

| | | | | | | Via_ttl <= 1

| | | | | | | | Subscription-State <= 0: ACC.

| | | | | | | | Subscription-State > 0: REJ.

| | | | | | | Via_ttl > 1: REJ.

| | | | | | Contact_mobility > 0: REJ.

Figure 3.34: C4.5 tree, REGISTER messages, extract 2.

Figure 3.36 shows the fourth extract of the REGISTER decision tree. If a

message includes the received paramter of the Via header and the q parameter

of the Contact header, it will be marked as rejected.

[..]

| | | | | | | Min-Expires <= 20

| | | | | | | | [..]

| | | | | | | Min-Expires > 20

| | | | | | | | Contact_line <= 0

| | | | | | | | | Allow_ACK <= 0: ACC.

| | | | | | | | | Allow_ACK > 0: REJ.

| | | | | | | | Contact_line > 0: REJ.

Figure 3.35: C4.5 tree, REGISTER messages, extract 3.

Figure 3.37 shows that if a Reply-To header is used in an incoming SIP mes-

sage and the sip.instance parameter is used within the Contact header, the

message will be rejected.

[..]

| | | | | | | | Via_received <= 0

| | | | | | | | | [..]

| | | | | | | | Via_received > 0

| | | | | | | | | Contact_q <= 0: ACC.

| | | | | | | | | Contact_q > 0: REJ.

Figure 3.36: C4.5 tree, REGISTER messages, extract 4.

Figure 3.38 shows that messages that do not include a Via header will be

rejected. As mentioned in Section 3.5.5, the Via header is not a mandatory

header according to RFC 3261, but the tested VoIP proxy rejects all messages

91

3.6. AUTONOMIC SIP ADAPTION

[..]

| | | | | | | | | Reply-To <= 0

| | | | | | | | | | [..]

| | | | | | | | | Reply-To > 0

| | | | | | | | | | Contact_sip.instance <= 0

| | | | | | | | | | | Allow-Events_hold <= 0: ACC.

| | | | | | | | | | | Allow-Events_hold > 0

| | | | | | | | | | | | Request-Line_user <= 0: ACC.

| | | | | | | | | | | | Request-Line_user > 0: REJ.

| | | | | | | | | | Contact_sip.instance > 0: REJ.

Figure 3.37: C4.5 tree, REGISTER messages, extract 5.

that do not include a Via header.

| | | | | | | | | | | Via <= 0: REJ.

| | | | | | | | | | | Via > 0: ACC.

Figure 3.38: C4.5 tree, REGISTER messages, extract 6.

Figure 3.39 shows that a message where the Privacy header is set to none and

the Error-Info header is included, the message will be rejected.

[..]

| | | | | | | | | | | Privacy_none <= 0

| | | | | | | | | | | | [..]

| | | | | | | | | | | Privacy_none > 0

| | | | | | | | | | | | Error-Info <= 0: ACC.

| | | | | | | | | | | | Error-Info > 0: REJ.

Figure 3.39: C4.5 tree, REGISTER messages, extract 7.

Appendix A shows the entire REGISTER decision tree. Some rules state right

away which headers have to be included in a REGISTER message. The tree

also shows some unexpected parameter combinations that lead to rejected mes-

sages.

Besides the rules, Appendix A also shows how many messages were accepted

or rejected by which rule. The suggested procedure for either VoIP proxy

developers or VoIP phone developers should be to look through the decision

tree and focus on the rules which mark the most messages as rejected. Of

course the rules on top of the tree are the most important ones, but parameter

combinations that lead to an enormous amount of rejected messages, should

also be taken very seriously.

92

3.6. AUTONOMIC SIP ADAPTION

C4.5 decision tree, INVITE experiments

The decision tree derived at the end of the INVITE experiments is even a little

bit larger than the tree derived at the end of the REGISTER experiments.

Figure 3.40 shows the first few rules of the tree. The first rule states that

incoming INVITE messages that do not include a Domain within the To header

will be rejected by the server. Of course the To header is a mandatory header

according to RFC 3261, and the Domain is an important parameter of that

header, so it is no surprise that the mentioned rule is very important. The

second and third rule have already been discussed in the previous section,

stating that messages that include the Replaces header or the application/x-

private value within the Accept header, will be rejected as well.

To_IP <= 0: REJ.

To_IP > 0

| Replaces <= 0

| | Accept_application/x-private <= 0

| | | [..]

| | Accept_application/x-private > 0: REJ.

| Replaces > 0: REJ.

Figure 3.40: C4.5 tree, INVITE messages, extract 1.

Figure 3.41 shows that messages that include a Domain within the To header

and do not include the Replaces header and the application/x-private value

within the Accept header, and also include the non-urgent value within the

Priority header will be rejected if the INVITE message does also include the

rport parameter within the Via header. If the rport parameter is not present

in an INVITE message, the message will still be rejected if the Content-Expires

header is included.

[..]

| | | Priority_non-urgent <= 0

| | | | [..]

| | | Priority_non-urgent > 0

| | | | Via_rport <= 0

| | | | | Contact_expires <= 1: ACC.

| | | | | Contact_expires > 1: REJ.

| | | | Via_rport > 0: REJ.

Figure 3.41: C4.5 tree, INVITE messages, extract 2.

Figure 3.42 shows a very strange behavior. The two rules state that if a

93

3.6. AUTONOMIC SIP ADAPTION

message does not include a Domain within the From header, a message will

still be accepted if the conference value is included within the Allow-Events

header. Usually the Domain of the From header should be mandatory, but

the INVITE message will only be rejected, if the Domain of the From header

and the conference value of the Allow-Events header are missing. There was

no opportunity for me to talk to the developers of the tested VoIP server to

explain that phenomenon.

[..]

| | | | From_IP <= 0

| | | | | Allow-Events_conference <= 0: REJ.

| | | | | Allow-Events_conference > 0: ACC.

| | | | From_IP > 0

| | | | | [..]

Figure 3.42: C4.5 tree, INVITE messages, extract 3.

Figure 3.41 showed a rule regarding the value non-urgent within the Priority

header. Figure 3.43 shows one of the next rules, which deals with the value

urgent within the Priority header. The rule states that messages which include

the urgent value within the Priority header will be rejected if the message also

contains the transport parameter within the request line.

[..]

| | | | | Priority_urgent <= 0

| | | | | | [..]

| | | | | Priority_urgent > 0

| | | | | | Request-Line_transport <= 0: REJ.

| | | | | | Request-Line_transport > 0: ACC.

Figure 3.43: C4.5 tree, INVITE messages, extract 4.

Finally Figure 3.44 shows that INVITE messages that include the Timestamp

header will be rejected if the hold value is used within the Allow-Events header.

As mentioned before Appendix B shows the entire decision tree with all the

rules used to decide whether an incoming message will be accepted or rejected

by the server.

94

3.7. CONCLUSION

[..]

| | | | | | | Timestamp <= 0

| | | | | | | | [..]

| | | | | | | Timestamp > 0

| | | | | | | | Allow-Events_hold <= 0: ACC.

| | | | | | | | Allow-Events_hold > 0: REJ.

Figure 3.44: C4.5 tree, INVITE messages, extract 5.

3.7 Conclusion

Working with a commercial VoIP server was really interesting. Creating test

cases that help to automate a testing process of a commercial SIP proxy helped

to understand the SIP protocol in every detail and was a great experience. Of

course the SIP dialect problematic evolved to the focus of my work. Especially

creating Java test tools that simulated VoIP devices with different SIP dialects

was very important to automatically generate a great set of SIP messages for

the Babel-SIP experiments.

With Babel-SIP we were able to show that with our approach using C4.5

decision trees we can reduce the rejection rate of faulty SIP messages. Its

main use can therefore be in the transient phase between creating a new SIP

stack implementation or a whole new proxy, and the final release of a 100%

reliable proxy version. Of course the idea can be re-used during the implemen-

tation of systems using other new protocols as well.

By carrying out numerous experiments, we have demonstrated that with our

automatic, self-learning SIP message translator great improvements can be

achieved. Additionally we have shown that the resulting decision trees indeed

provide good insight into the faulty behavior of either the SIP parser or the

SIP clients and phones themselves. As a consequence, the decision trees can

be used by SIP programmers to remove implementation bugs [HNHH08].

95

Chapter 4

Automatically adapting

software to specific hardware

This chapter presents an optimization tool that finds the optimal number of

threads for multi-thread software. Threads, are assumed to encapsulate con-

current executable key functionalities, are connected through finite capacity

queues, and require certain hardware resources.

This chapter also shows how a combination of measurement and calculation,

based on Queueing Theory, leads to an algorithm that recursively determines

the best combination of threads, i.e. the best configuration of the multi-thread

software on a specific host.

Section 4.1 deals with the basic idea and the motivation behind my work. Sec-

tion 4.2 presents related work using autonomic approaches to find an optimum

solution for a given host. The described algorithm proceeds on the directed

graph of a queueing network that models the used software, therefore Section

4.3 describes queueing networks and especially M/M/k/B graphs. Section 4.4

introduces software that is based on queueing networks and describes com-

mercial software developed by our industrial partner. Optimization towards

hardware consolidation, where CPU cores, memory, disk space and speed, and

network bandwidth are constraints, but also towards throughput is described.

Two experiments on different SUN machines verify the optimization approach.

Section 4.5 describes the developed autonomic test tool to improve the perfor-

mance of software using queueing networks.

96

4.1. BASIC IDEA AND MOTIVATION

4.1 Basic Idea and Motivation

The trend to many cores inside CPUs enables software engineering towards

concurrency. Software is split up in atomic actions that can run in parallel.

This may considerably speed up computation, but also causes extra overhead

through thread coordination for both, the operation system and also the soft-

ware engineer.

Developing software made of several threads is much more complicated than

creating an old-fashioned single thread software. One fundamental problem of

the developer might be to find the right strategy for determining the appro-

priate number of threads.

My approach aims to solve the problem of finding the best number of threads

under two aspects: with optimization towards consolidation, the goal is to find

the optimal number of threads for a given external arrival rate. With opti-

mization towards throughput, the idea is to increase the arrival rate and find

the maximal external arrival rate the system can cope with.

This work discusses the approach to use a combination of analytical modeling

techniques, measurements and simulations to find an optimal configuration of

threads on a given host by iteratively increasing the number of threads.

4.2 Self-Adaptive Systems and Related Work

The goal of the second part of my work is to improve the performance of soft-

ware system, by finding the optimal configuration of the system for a given

host. The software should therefore optimize itself on a specific hardware plat-

form. This section presents work related to that goal, where systems are trying

to achieve the best possible performance on a given hardware system.

FFTW (fast Fourier transform) [FSJ05] is a free-software library that com-

putes the discrete Fourier transform (DFT) and its various special cases. It

uses a planner to adapt its algorithms to the hardware in order to maximize

performance. The FFTW planner works by measuring the actual run time of

many different plans and by selecting the fastest one. The input to the planner

is a problem, a multidimensional loop of multi-dimensional DFTs. The plan-

97

4.2. SELF-ADAPTIVE SYSTEMS AND RELATED WORK

ner then applies a set of rules to recursively decompose a problem into simpler

sub-problems of the same type. Sufficiently simple problems are solved di-

rectly by optimized, straight-line code that is automatically generated by a

special-purpose compiler.

In FFTW, most of the performance-critical code was generated automatically

by a special-purpose compiler, called genfft that outputs C code. [Fri04] de-

scribes that compiler in detail.

The project SPIRAL [PMJ+05] aims at automatically generating high perfor-

mance code for linear digital signal processing (DSP) transforms, that is tuned

to a given platform. SPIRAL implements a feedback-driven optimizer that in-

telligently generates and explores algorithmic and implementation choices to

find the best match to the computer’s micro-architecture.

SPIRAL uses a formal framework to efficiently define alternative algorithms

and implementations of the same transform and translate them into code. The

different algorithms and implementations are therefore formulated as an opti-

mization problem. Search and learning techniques are then used to find the

one alternative implementation that is best tuned to the desired platform while

visiting only a small number of alternatives.

The SPIRAL code generation system therefore replaces a human expert in

both DSP mathematics and code tuning. It autonomously explores algorithm

and implementation choices, optimizes at the algorithmic and at the code level,

and exploits platform-specific features to create the best implementation for a

given computer.

By identifying rewriting rules [BFL+06] extends SPIRAL by the automatic

parallelization of FFTs given as mathematical formulas. Expensive compiler

analysis is thereby replaced by simple pattern matching. As part of the pro-

gram generation and optimization system SPIRAL, [BFL+06] introduces a

formal framework for automatically generating performance optimized imple-

mentations of the discrete Fourier transform (DFT) for distributed memory

computers. By integrating rules to rescale the computation to a different

number of CPUs during the computation in SPIRAL’s rewriting system, auto-

matic search mechanism can find the fastest among alternatives and generate

DFT MPI code that is adapted to a given computing platform.

98

4.2. SELF-ADAPTIVE SYSTEMS AND RELATED WORK

ATLAS (Automatically Tuned Linear Algebra Software) [WD98] aims at au-

tomatically generating code that provides the best performance for matrix

multiply on a given platform. In general, matrices will be too big to fit into

cache. Depending on the platform ATLAS divides matrices into blocks and

uses a block-partitioned algorithm for the matrix multiply. That way it is still

possible to arrange for the operations to be performed with data for the most

part in cache. A code generator automatically creates code that uses timings

to determine the correct blocking and loop unrolling factors to perform an

optimized on-chip multiply.

Self-optimizing computing systems that can optimize their own behavior on

different platforms without manual intervention, like FFTW and ATLAS need

values for hardware parameters, e.g. the capacity of the L1 cache (ATLAS).

[YPS05] introduces X-Ray, a system for implementing micro-benchmarks to

measure such hardware parameters automatically.

In [OK07] an algorithm is developed for finding the nearly best configura-

tion for a Web system consisting of one HTTP server, one application server,

and a database server. Up to 500 emulated clients generate traffic for various

trading operations like buy or sell. The Web system’s configuration parame-

ters are MaxClients, ThreadPoolMax, HeapMax, and PSCacheSize for testing

the response time. Instead of trying all combinations, they start with a typical

setting and let their algorithm find the next better setting. If such setting is

found, the measurement is repeated until there are enough samples, upon the

algorithm decides that setting is the new optimum. Only better settings are

measured up to full accuracy, thus the algorithm avoids measuring initially

worse settings. The algorithm works with a confidence interval and a regres-

sion function to decide if a setting is better or worse than the current and

to predict the performance of settings based on previously measured settings.

Since our approach also uses a metric to rank our system’s configurations, the

work [OK07] goes in the same direction, whereas our problem is twofold. First,

we have a strong iterative process where increased load affects the front end

of our system. Second, a modification at this point affects the performance of

succeeding elements and causes new configurations. Our idea is to find a path

through configurations of the system by modifying over-utilized parts of the

99

4.2. SELF-ADAPTIVE SYSTEMS AND RELATED WORK

system.

The technology Grand Central Dispatch (GCD) by Apple enables to use multi-

core processors more easily. Firstly released in the Mac OS X 10.6, GCD is

implemented by the library libdispatch. GCD is a scheduler for tasks orga-

nized in a queuing system and acts like a thread manager that queues and

schedules tasks for parallel execution on processor cores. The functionality is

a layer between operation system threads and the application. The developer

must not take care about traditional thread handling; taking complexity off.

Source code is grouped by GCD-specific commands called closures. GCD then

creates threads for every closure. Created threads are put into queues. Per

core there are up to 3 global queues with different priorities. Serial queues

are conceptually situated before a global queue. With a serial queue tasks can

be executed consecutively. In this work I also intend to use threads in a way

that available cores of a processor are optimally used. The analogy to GCD

is that I also want to find a currently best thread configuration based on the

load, therefore a method for determining the best combination of threads is

described and implemented.

In [BPI03] a queueing network model with finite/single capacity queues and

blocking after service discipline is used to model software architectures; more

exactly the synchronization constraints and synchronous communication be-

tween components of them. The information flow (trace) between components

is analyzed to identify the kind of communication (fork, join) and reveal the

interaction pairs among components that enables to model a queueing net-

work. This way a performance model for specific software architecture can be

derived. But this work considers consider asynchronous communication be-

tween component-threads with (in)finite capacity queues.

[Xu08] introduces a diagnostic assistant (Performance Booster) for ”rule-based

automatic software performance diagnosis and improvement”. The perfor-

mance booster will either modify the planned runtime configuration or the

software design itself. With the help of performance measurement, the Perfor-

mance Booster uses diagnostic rules to find saturated resources and resources

with critical response times. The algorithm of the performance booster works

100

4.2. SELF-ADAPTIVE SYSTEMS AND RELATED WORK

in cycles and it begins with one possible design and ends up with a set of

new candidate designs and their evaluation. To find the best configuration

for a model, the Performance Booster increases the multiplicity of bottleneck

resources step by step until the bottleneck has been removed or the hardware

limits have been reached.

[TDB08] tries to develop dense linear algebra algorithms for hybrid multicore

and GPU architectures. [TDB08] states that

”a fundamental concept in programming current parallel archi-

tectures is the flexible control over the data and execution flow. Al-

gorithms and their execution flows can be represented as Directed

Acyclic Graphs (DAGs), where nodes represent the tasks and the

edges the dependencies among them.”

Task splitting and scheduling results in an algorithm that reduces the com-

munication between a multicore and a graphics processor, making them more

balanced and efficient.

[MM10] presents PARSY (”Performance Aware Reconfiguration of software

SYstems”), which is used to re-configure degradable software systems in a

performance-aware way, by tuning individual software components. The ap-

proach uses the system’s response time as decisive performance metric. The

system uses a ”Queueing Network (QN) performance model” to find new con-

figurations and estimate the response time of these configurations. [MM10]

states that a

”controller can estimate the system response time for different

configurations by using a single-class, closed QN model.”

[KP11] presents Perpetuum, ”a novel operating-system-based auto-tuner that is

capable of tuning applications cooperatively at run-time.” The approach shows

that Perpetuum ”is integrated into the Linux OS kernel”, ”monitors work-

loads and adapts tuning parameter values of all running programs to improve

performance.”

101

4.3. BACKGROUND: QUEUEING NETWORKS

4.3 Background: Queueing Networks

Software using a flow chart-like structure sending units of work from one pro-

cessing node to another is commonly modeled as a queueing network. Markov

chains are used as state equations to model queueing networks. According to

[BGdMT06] a Markov chain consists of a set of states and a set of labeled

transitions between the states.

Usually states can model or describe certain conditions. In this work the entire

software is built as a queueing network and is used to handle incoming mes-

sages. States therefore stand for certain types of tasks. Incoming messages are

passed through the queueing network, visiting different states where various

tasks are executed.

Incoming jobs or tickets are passed from one state or node to an other. Each

node has a queueing buffer of finite or infinite size to hold or store tickets.

The node then takes the first ticket out of the queue, executes its task and

sends the ticket through transitions along the queueing network. Each node

or state can furthermore have one or more identical servers. Each server can

handle one ticket at a time and therefore multiple servers are used in parallel

to process multiple tickets.

One server is busy as long as the task has been executed and the ticket left

through an outgoing transition. If all servers of one node are busy, the new

incoming ticket is stored in the queue. If an incoming ticket cannot be stored

because of a full queue, the ticket is lost.

Figure 4.1 shows one node of a queueing network having m identical servers.

Arriving jobs go into the queue and are then taken out by a server. After

they are processed they leave the node. Figure 4.2 shows that incoming tick-

Figure 4.1: Single Station Queueing (see [BGdMT06]).

102

4.3. BACKGROUND: QUEUEING NETWORKS

ets arrive with rate λ. Furthermore every node and server finishes its work

in µ time. The arrival rate λ and the service rate µ are two very important

parameters for calculating performance measures.

Figure 4.2: Arrival and service rate.

Queueing networks usually consist of a number of nodes that are connected to

each other. Therefore jobs can visit any node at some point. Also, a job can

be transferred back to the node it just left.

Queueing networks can be classified as open or closed. Figure 4.3 shows a

closed queueing network in which jobs can neither enter, nor leave the net-

work. A closed queueing network always deals with a constant number of jobs

within the network. A queueing network can also be called closed if, whenever

a new jobs enters the system, another job leaves the system at the same time.

Figure 4.3: A closed queueing network (see [BGdMT06]).

This work concentrates on open queueing networks. Figure 4.4 shows an open

queueing network in which jobs enter the network from a certain source from

the outside. Also, jobs can leave the system at every node leading into a sink.

Section 4.3.1 describes the queueing network used in this work in more de-

tail. Section 4.4 presents performance metrics and also describes the software

implemented by our industrial partner that is based on a data flow queueing

103

4.3. BACKGROUND: QUEUEING NETWORKS

Figure 4.4: An open queueing network (see [BGdMT06]).

network.

4.3.1 Background: Kendall’s Notation

To properly describe queueing networks, the following notation, known as

Kendall’s Notation, is usually used:

A/B/C/K/N/D

A ... the first indicator A describes the distribution of the inter-arrival times.

B ... the second indicator B describes the distribution of the service times.

C ... the third indicator C describes the number of servers.

K ... the fourth indicator K describes the capacity of both queue and server.

If the number of jobs in the system reaches K, new arriving jobs are lost.

N ... the fifth indicator N describes the size of the calling source.

D ... the sixth indicator D describes the priority order in which jobs in the

queue are handled.

In my dissertation a large number of independent external sources are send-

ing tickets to the queueing network. Therefore, a Poisson process results in a

Markovian inter-arrival distribution (M/././././.).

The service time of each node and server is independent from the arrival pro-

104

4.4. SOFTWARE USING QUEUEING NETWORKS

cess, resulting in an exponential service time distribution. Therefore the service

time distribution in this work is also Markovian (./M/./././.), or a general dis-

tribution (./G/./././.), respectively.

Since the overall goal is to automatically change the number of threads for

each node, the number of servers of the system, equals the number of cores for

a given platform (././k/././.). Section 4.4 discusses this issue in more detail.

The size of the buffers in the system is adjustable (./././B/./.).

The size of the calling source for our particular system is assumed to be infi-

nite, therefore the fifth indicator can be omitted.

The priority in which jobs are taken out of the queue is FIFO (first in, first

out). Therefore, jobs are taken out of the queue in exactly the same order as

they have arrived.

In summary, the system used in this worked can be described as a M/M/k/B

queueing network according to Kendall’s Notation (see [BGdMT06] and [Wik10b]).

4.4 Software using queueing networks

During the work on my dissertation I worked with commercial software that

is based on a queueing network. This chapter describes the model and the

functions of this software and also the optimization goals.

4.4.1 The model

The system under suggestion is software called Data Flow Engine (DFE) for

processing event-based data in form of packets according to the Diameter pro-

tocol defined in RFC 3588 (see [CLG+03]) maintained by the The Internet

Engineering Task Force (IETF).

The queueing network software receives, extracts, converts, and stores in-

coming Diameter-packets. The functionality of each operation is internally

represented by interconnected nodes. Queues buffer the output for succeeding

105

4.4. SOFTWARE USING QUEUEING NETWORKS

nodes. Since these nodes technically are lightweight processes (threads), they

can be replicated for splitting the load.

The final aim of the queueing network software is to provide software that

covers some self-? properties [BCDW04, KASH05, VR07] like self-monitoring

and self-configuring, thus self-adaption.

The proposed tool could measure the performance of a host at runtime and

then decide how many nodes/threads are necessary to fulfill a given optimiza-

tion goal. Also, detection of decreasing load could lead to fewer threads and

therefore less active CPU cores.

The queueing network software is modeled as an open queueing network con-

sisting of four nodes. A node models an atomic action, but several instances

of a node can exist as threads. Defined nodes are:

• The Decoder node takes packets from its queue, extracts the data, and

forwards it to the next node’s queue. Hence, the extraction can be done

concurrently by several nodes. A Decoder can be replicated and each

Decoder forwards the extracted data to the same queue.

• The Converter node takes extracted data from its queue and converts it

into a format appropriate for storing. The Converter forwards the ticket

to the Serializer and Feeder node, thus the extracted and formated data

is persisted always twice. Also conversion can be done concurrently by

several threads of the Converter.

• The Serializer node takes data from its queue and stores it to disk. Several

Serializers may write to disk concurrently.

• The Feeder node takes data from its queue and sends it to a database.

Since the database is assumed to be capable to provide a connection pool,

many Feeders may send in parallel.

All nodes require certain CPU time, memory, disk space and speed, and net-

work bandwidth, thus, the replication of nodes is bounded. Starting with an

initial configuration with one thread per node, the goal is to find the optimal

106

4.4. SOFTWARE USING QUEUEING NETWORKS

Figure 4.5: The Data Flow Engine (DFE) modeled as queueing network.

configuration of threads for a certain host. The structure of the software is

shown in Figure 4.5.

4.4.2 Usage

As mentioned before the Data Flow Engine receives incoming Diameter-packets.

It is used for an automated transfer of files or real-time data streams. The op-

erational area of the queueing network software could be to store VoIP call

data for billing purposes. Basically, the queueing network software receives

Diameter-packets from devices through an RMI interface, and then the packet

107

4.4. SOFTWARE USING QUEUEING NETWORKS

is sent through the queueing network for further processing.

Incoming Diameter-packets usually contain information about VoIP calls. Start,

Interim and End messages are used to create individual calls. The Start

Diameter-packet usually contains a SIP INVITE message, while the End Diameter-

packet contains a SIP BYE message. The Interim Diameter packets are used

in case of missing Start or End Diameter-packets. They are periodically sent

from the devices to provide an opportunity for the exact billing of a certain call.

One goal of this dissertation was to create a Diameter Ticket-Generator for

the purpose of creating a test tool for the queueing network software. As

mentioned in the first part of my dissertation, there are a lot of different call

scenarios when dealing with SIP VoIP calls. Figure 4.6 shows a basic call

scenario where one call is represented by a Start Diameter-packet, a number

of Interim Diameter-packets and one End Diameter-packet. The created Di-

Figure 4.6: Diameter-packets: Call scenario

ameter Ticket Generator (see Section 4.5.4) tries to extend this scenario by

randomly leaving out Start, Interim or End packets.

4.4.3 M/M/k/B Queues

The main idea of my work is to sequentially add new threads for over-utilized

queueing network software nodes until an optimization goal is reached. For

that reason, the queueing network, as base for an analytical model [Jai91,

108

4.4. SOFTWARE USING QUEUEING NETWORKS

Zuk09, BGdMT06, KM08] for describing the queueing network software, is

shown in Figure 4.5 as an open queueing network consisting of 4 queues. The

queueing network is defined as open in the sense that jobs come from an exter-

nal source, are serviced by an arbitrary number of queues inside the network

and eventually leave the network.

Further, the suggested queueing network is aperiodic, because no job visits

a queue twice, the flow goes to one direction. Because no jobs are lost inside

the queueing network, the overall service rate is equal to the overall arrival

rate (µ = λ). This kind of queueing network is called Jackson network. The

queueing discipline is always First-Come, First-Served (FCFS).

An external source sends events with rate λS to the M/M/k/B Decoder queue

whereas the arrival process (M/././.) is Markovian and follows a Poisson pro-

cess [Agr02] with independent identically distributed (iid) and exponentially

inter-arrival times 1

λ
, which postulates that the next arrival at t + 1 is com-

pletely independent from the arrival at t.

The service time 1/µ of each server k is independent from the arrival pro-

cess and iid and exponentially distributed (memoryless) with parameter µ and

therefore the departure process (./M/./.) is also Markovian.

Note: The Markovian departure process is an assumption for convenience,

but in reality might follow any general distribution.

The queue capacity (buffers) is defined by parameter B. An arrival reach-

ing a full queue is blocked. This can be avoided by increasing the queue size

B, decreasing the arrival rate λ, or increasing the number of servers k and

thereby increasing the joint service rate µ. This holds also for the Converter,

Feeder, and Serializer queues.

After the data is extracted by the Decoder, it is forwarded with rate λD to the

Converter queue. The Converter then converts the data in file and database

format and forwards it to the corresponding queues with rate λC . Thus, the

data is duplicated among this path. The Feeder sends the data to the database

109

4.4. SOFTWARE USING QUEUEING NETWORKS

with rate µF whereas the Serializer writes data to disk with rate µS.

There is a race between λ and µ in the sense that under the assumption λ ≤ µ

for the utilization ρ and given number of servers k, the following must hold:

ρ =
λ

kµ
≤ 1 , (4.1)

which leads to a stable system; all jobs can eventually be worked out. Unfor-

tunately, due to different nodes, the bottleneck is the node where λ > µ. For

finding the best configuration of the queueing network, as shown in Figure 4.5,

following performance measures [Jai91, Zuk09, BGdMT06, KM08] are consid-

ered for the queueing systems Decoder, Converter, Serializer and Feeder.

The utilization ρ (4.1) is the base for most other measures. The probability

Pn of n jobs in the queueing system is given by

Pn =



















(kρ)n

n!
P0 for 0 ≤ n < k

kkρn

k!

P 0

for k ≤ n ≤ B and B ≥ k

(4.2)

where k is the number of servers, B the number of buffers (slots in the queue),

and P0 the probability of no jobs in the system which for k = 1 is

P0 =















1 − ρ

1 − ρB+1
for ρ 6= 1

1

B + 1
for ρ = 1

(4.3)

and for k > 1

P0 =

(

1 +
(1 − ρ)B−k+1(kρ)k

k!(1 − ρ)
+

k−1
∑

n=1

(kρ)n

n!

)−1

. (4.4)

The expected number of jobs in the system Es for k = 1 is

Es =
ρ

1 − ρ
−

(B + 1)ρB+1

1 − ρB+1
(4.5)

and for k > 1

110

4.4. SOFTWARE USING QUEUEING NETWORKS

Es =
B
∑

n=1

npn (4.6)

where the expected number of jobs in the queue Eq for k = 1 is

Eq =
ρ

1 − ρ
− ρ

1 + BρB

1 − ρB+1
(4.7)

and for k > 1

Eq =
B
∑

n=k+1

(n − k)pn (4.8)

Since we have queues with finite buffers B, some traffic is blocked. The initial

traffic that reaches the queueing network is not equal to the traffic that passes

through the queueing network. Reduced to the single queueing system this

means, that λ depends on a certain blocking probability Pb. This leads to the

effective arrival rate λ′

λ′ = λ(1 − Pb)

where the blocking probability Pb = PB, i.e. the probability of B jobs in the

queueing system. The loss rate ε is

ε = λPB (4.9)

and the effective utilization ρ′ is

ρ′ =
λ′

kµ

again with k servers. Next, the mean response time R of the queueing system is

R =
Es

λ′ (4.10)

111

4.4. SOFTWARE USING QUEUEING NETWORKS

and the mean waiting time W of a job in the queue is

W =
Eq

λ′ (4.11)

Finally, the probability that the system is full is denoted by

Pk =

(kρ)k

k!
k
∑

j=0

(kρ)j

j!

(4.12)

Configurations of the queueing system can be evaluated according to these

measures. An optimization algorithm, presented in Section 4.5, determines

the best configuration.

4.4.4 M/G/k/B Queues

As mentioned before, in my dissertation I assumed that the service times are

exponentially distributed. In this section an M/G/k/B system will be briefly

discussed and some important performance measures will be presented.

Note: [BGMT05] differentiates between the usage of G (general distribu-

tion) and GI (general distribution with independent interarrival times) within

Kendall’s notation.

As mentioned before, Kendall’s notation states that M/G/k/B queueing sys-

tems have an Markovian arrival process (M/././.), the service times follow a

general distribution (./G/./.), there are k servers (/././k/.) and the capacity

of the entire system is limited to B (./././B).

[CCK+11] states that

”the service times form an independent and identically distributed

(i.i.d.) sequence of nonnegative random variables with finite mean

τ .”

112

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

This leads to a utilization of

ρ =
a

k
, (4.13)

where

a = λτ. (4.14)

The blocking probability Pb = PB, i.e. the probability of B jobs in the queue-

ing system.

And the probability that the system is full is denoted by

Pk =

ak

k!
k
∑

j=0

aj

j!

(4.15)

4.5 Improving performance by using self-adaptive soft-

ware

The following section tries to implement the aforementioned optimization goals

for the queueing network software by using a combination of an analytical

model, a measurement and a simulation approach.

The focus is to find the optimal configuration of multi-thread data-flow soft-

ware for a specific host. A configuration is specified as a vector of n tuples

with

(k1 − . . . − ki − . . . − kn) (4.16)

where ki denotes the number of threads of node i. With the constraint of

n
∑

i=1

ki ≤ c (4.17)

where c is the number of available cores on a specific host.

E.g.: The initial configuration of Decoder, Converter, Serializer and Feeder

nodes (1-1-1-1) contains one thread per node.

113

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

4.5.1 Analytical Model

This section presents an offline-optimization tool, implemented in Java, for

calculating the best configuration of nodes, based on a host’s resources (e.g.:

by Table 4.1).

Resource Type Quantitiy

CPU cores (#) 32

Memory (MB) 32000

Disk space (MB) 100000

Disk speed (MB/s) 30

Network (Mbit/s) 100

Table 4.1: Resource offer of a hypothetical host.

The number of CPU cores is the upper bound for the number of nodes that can

run concurrently. It is assumed that each node is executed as single thread on

a dedicated core and since core sharing is ignored for now, so many nodes as

free cores available are possible. Memory, disk space and speed, and network

bandwidth are shared by all nodes and are the constraints for optimization.

When a configuration exceeds given resources, the algorithm terminates.

Example requirements of Decoder, Converter, Serializer, and Feeder nodes

are shown in Table 4.2. Resource requirements underly the following assump-

tions: The Decoder is listening on the network for new messages and decodes

the data. Most decoding work is done in memory and only state information

is stored on disk. The Converter transforms the data into another format and

relies more on memory. Since the Converter only communicates with other

nodes, no network traffic is produced. The Serializer writes data to disk and

also requires no network. The Feeder holds connection to the database where

aggregated data is stored.

Host and node resources must be known in advance based on experience or de-

termined by hardware monitoring of a real system. What is up to the adaption

tool is the detection of the service rate µ of each node on a specific host and

configuration. Dependent on host performance and load, service rates vary.

One additional thread can change service rates of other nodes.

114

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Resource Type Decoder Converter Serializer Feeder

Memory (MB) 50 100 10 30

Disk space (MB) 5 5 5000 5

Disk speed (MB/s) 0.05 0.1 5 0.05

Network (Mbit/s) 2 0 0 1

Table 4.2: Hypothetical resource requirements of nodes.

An algorithm for finding the optimal configuration of nodes, depending on

their utilizations, is outlined in Listing 4.1. The optimal configuration fea-

tures only nodes with a utilization below the defined threshold. The recursive

method optimize() is called as long as the queueing network can be extended.

Before calculating a new configuration, service rates of each node are needed.

In the first step of this solely analytical approach, hypothetical service rates

are used.

1 opt imize () {

Measure s e r v i c e r a t e s ;

3 Calcu la te c on f i g ;

/∗ i f o p t im i za t i on towards throughput ∗/

5 i f (extARInc > 0) {

while (each node u t i l . < l im i t) {

7 I n c r e a s e ex t e rna l a r r i v a l r a t e ;

Ca l cu la te c on f i g ;

9 }

}

11 /∗ op t im i za t i on towards c on so l i d a t i on ∗/

i f (network i s extented) opt imize () ;

13 else {

Get l a s t va l i d ex t e rna l a r r i v a l r a t e ;

15 Calcu la te OptConfig ;

return OptConfig ;

17 }

Listing 4.1: Algorithm for finding the best configuration of nodes modeled as queueing

network.

In the following sections measured service rates of artificial nodes (see Section

4.5.2) or exact service rates from a real software (see Section 4.5.4) are used.

After service rates are determined, the performance measures (already intro-

115

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

duced above) (4.12), (4.11), (4.10), (4.9), (4.7) or (4.8), and (4.5) or (4.6) and

over all the utilizations of nodes (4.1) are calculated. Depending on these uti-

lizations the algorithm decides about the increase of the external arrival rate

or the number of threads for a specific node.

Dependent on extARInc for increasing the external arrival rate, two opti-

mization goals exist:

• Consolidation. With optimization towards consolidation a desired ar-

rival rate is given and the tool determines the minimum number of threads

required to ensure that all nodes are below a predefined utilization thresh-

old. With a constant external arrival rate only the number of threads of

an over-utilized node with utilization ≥ limU (0 < limU < 1) will be in-

cremented for splitting load among available cores as evenly as possible.

• Throughput. With optimization towards throughput the system starts

with the lowest arrival rate of one job per second and the tool increases

the arrival rate stepwise until one node exceeds the predefined utilization

threshold. Then the number of the corresponding threads is increased

as long as the utilization is below the threshold. Again, the arrival rate

will be increased and optimization goes on as long as no hardware limit

is reached. With 0 < extARInc < 1 the external arrival rate is increased

for each new configuration by extARInc as long as the maximum utilized

node does not reach limU . For the maximum possible number of threads

the highest possible throughput is determined.

The maximum number of iterations I, required to calculate the best configu-

ration, is

I = N + 1 − C (4.18)

where N is the number of cores, and C denotes the number of required cores

in the initial configuration, i.e. one thread per core. This algorithm features

O(N), and the actual number of iterations is somewhat smaller than I, because

the best configuration can be found earlier due to these termination conditions:

• None of the nodes is over-utilized according to limU .

• The number of threads of an over-utilized node cannot be increased due

116

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

to resource shortage.

Analytical Evaluation

Figure 4.7 shows, based on Tables 4.1 and 4.2, the outcome of optimization

towards consolidation with extARInc = 0, limU = 0.8, external arrival rate

λ = 3, B = 100, and hypothetical service rates µi (0 ≤ i ≤ 3) for Decoder,

Converter, Serializer and Feeder nodes of µ0 = 4, µ1 = 1, µ2 = 2, and µ3 = 3.

The initial configuration has one thread of each node. The loss rate ε decreases

0
0.5

1
1.5

2
2.5

3

4 5 6 7 8 9

J
ob

s/
S
ec

on
d

Threads

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 5 6 7 8 9

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

0
10
20
30
40
50
60
70
80

4 5 6 7 8 9

S
ec

on
d
s

Threads

10
20
30
40
50
60
70
80

4 5 6 7 8 9

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.7: Optimization towards consolidation; plots represent queueing network-wide
mean values over all threads.

as the number of nodes increases and reaches zero lost jobs per second after op-

timization is terminated. The system’s utilization ρ is about 90% with 4 nodes

and decreases clearly below the desired limit to approximately 70%, whereas

the system’s probablity to be full Pk decreases to approximately 30%. The sys-

tem’s response time R reaches a value below 3 seconds and the waiting time

W a value around 0.5 seconds. Finally, the exptected number of jobs in the

system Es is reduced by approximately 95%, and the expected number of jobs

in queues Eq by approximately 98%. The optimum configuration with 9 nodes

117

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

fulfills the optimization goal having utilization below limU = 0.8 for each node.

In the second step λ is increased by extARInc = 0.1 as long as the utilization

of nodes is below limU . Figure 4.8 shows, based on Tables 4.1 and 4.2, the

outcome of optimization towards throughput with limU = 0.8, initial external

arrival rate λ = 3, B = 100, and hypothetical service rates µi (0 ≤ i ≤ 3) for

Decoder, Converter, Serializer and Feeder nodes of µ0 = 4, µ1 = 1, µ2 = 2,

and µ3 = 3. As long as λ is constant, this works like optimization towards

-1
0
1
2
3
4
5
6
7
8
9

4 6 8 10 12 14 16 18 20 22

J
ob

s/
S
ec

on
d

Threads

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8 10 12 14 16 18 20 22

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

0
10
20
30
40
50
60
70
80

4 6 8 10 12 14 16 18 20 22

S
ec

on
d
s

Threads

0
10
20
30
40
50
60
70
80

4 6 8 10 12 14 16 18 20 22

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.8: Optimization towards throughput; plots represent queueing network-wide mean
values over all threads.

consolidation, i.e. only the number of nodes is increased until each node’s uti-

lization is below limU . For the next configuration, λ is increased by extARfac

and more arrivals cause again more utilization.

The initial configuration consists of 4 nodes; one thread per node. The best,

bounded by host resources, possible configuration consists of 22 nodes. The

loss rate ε decreases with rising number of nodes and reaches almost zero lost

jobs per second. The utilization ρ of the system is about 90% with 4 nodes and

118

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

decreases clearly below the desired limit to approximately 70%, whereas the

system’s probablity to be full Pk goes down to approximately 16%. Further,

the system’s response time R reaches approximately 1.8 seconds, and the wait-

ing time W approximately 0.2 seconds. Finally, the expected number of jobs

in the system Es is reduced by approximately 92%, and the expected number

of jobs in queues by approximately 98%.

The optimal configuration with 22 nodes fulfills the optimization goal of each

node’s utilization below limU = 0.8, as proven by Table 4.3, not fully, because

optimization must be stopped due to host resource shortage (disk speed). The

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 0.75 1 0.675 3

Converter 1 1 0.81 10

Serializer 1 1 0.81 5

Feeder 0.9901 1 0.675 4

Table 4.3: Utilization and number of threads in initial and optimal configuration for opti-
mization towards throughput.

mean utilization of the optimal configuration is approximately 0.74%. For a

hypothetical host, nodes, and service rates we need exactly 3 Decoders, 10

Converters, 5 Serializers, and 4 Feeders to fulfill the optimization goal of a

mean utilization below 80 % and reached a throughput of approximately 8.1

jobs per second.

Hitherto theoretical experiments are based on assumed service rates. In Sec-

tion 4.5.2 a methodology for determining service rates for each node on a

specific host under arbitrary configurations is explained. This allows to mea-

sure a host’s performance for each calculated configuration and includes the

effect of multi-threading and corresponding overhead.

4.5.2 Measurement

In the previous Section 4.5.1 a hypothetical host was the testbed for optimiza-

tion towards consolidation and throughput in terms of threads. This section

presents two experiments on real multi-core machines. The number of cores

119

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

as well as the available amount of memory is detected before measuring the

actual service rates of nodes under arbitrary configurations. The optimization

tool is now twofold: after a preparation phase, the measurement module gets

the service rates and then the calculation module performs as already shown in

Section 4.5.1, only this time real service rates are used instead of assumed ones.

For that purpose different node types were created, simulating work to con-

sume different resource requirements. The following list describes work that

may be done within a node:

• Sorting an Integer array (memory, CPU)

• Searching through an Integer array (memory, CPU)

• Writing data to a file (memory, CPU, disk)

• Searching through a file (memory, CPU, disk)

• String manipulation (memory, CPU)

• Writing data into a database (memory, CPU, disk, network)

• Searching through a database (memory, CPU, disk, network)

• Calculating mean values of an Integer array (memory, CPU)

• Creating random numbers (memory, CPU)

• ...

For example: to simulate the nodes of the queueing network software (see

Figure 4.5), four different node types were used:

• The work of the simulated Decoder node is to create random numbers.

For each ticket 1.000 random numbers are created to use memory and

CPU resources.

• The work of the simulated Converter node is to sort an Integer array. For

each ticket an Integer array of 50.000 random numbers is sorted to use

greater memory and CPU resources.

120

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

• The work of the simulated Serializer node is to write data to a file. For

each ticket the content of the ticket is written to a file to use memory,

CPU and especially disk resources.

• The work of the simulated Feeder node is to write data into a database.

For each ticket the content of the ticket is written into a table within

an Oracle database to use memory, CPU, disk and possibly network re-

sources.

The idea behind the proposed approach is to have a number of different tasks

that can be applied to different nodes if, for example, the flow chart of the

queueing network software changes, or a different queueing network based-

software will be tested. In this work, the four mentioned nodes, Decoder,

Converter, Serializer and Feeder were defined. To get the service rates for

each of these nodes on the tested hosts, the tasks for each node were started

repeatedly. For each individual execution, the service time was measured and a

mean service rate was calculated. Listing 4.2 shows the Java code for the Feeder

node, which is invoked repeatedly and writes one ticket into the database.

1 public stat ic void sendTicketToDB (Connection conn) throws SQLException

{

Statement statement = conn . createStatement () ;

3 DateFormat sd f = new SimpleDateFormat (”yyyy−MM−dd HH:mm: s s ”) ;

S t r ing s =

5 ”INSERT INTO CDR ”

+ ”VALUES (’ t e s t s e s s i o n 1 ’ , 32 , TIMESTAMP sdf , ’ a l i c e@kcc . net

’ , ’ bob@kcc . net ’ , 1) ” ;

7 statement . executeUpdate (s) ;

statement . c l o s e () ;

9 }

Listing 4.2: Feeder node: task execution.

To calculate the service rate for the mentioned Feeder node, two approaches

can be used. On the one hand, each method invocation is measured separately,

resulting in i service times for every single task. Listing 4.3 shows the second

approach, were just the start and end time is measured, the method is invoked

i times and the entire simulation time is divided by i invocations, again re-

sulting in a mean service rate for the given node.

121

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

1 double startTime = System . nanoTime () ;

for (int i = 0 ; i < 10000 ; i++) {

3 sendTicketToDB (conn) ;

}

5 double endTime = System . nanoTime () ;

double simTime = endTime − startTime ;

7 double s e r v i c e t ime = simTime / i ;

// s e r v i c e ra t e in ms

9 double s e r v i c e r a t e = 1000000 / simTime ;

Listing 4.3: Feeder node: task invocation and service rate calculation.

The first host Goedel is a SUN Fire v40z with four dual-core AMD Opteron

processors Model 875, each core at 2.2 GHz, has 24 GB of main memory, five

300 GB Ultra320 SCSI HDs, 10/100/1000 Mb/s Ethernet, and runs Linux

2.6.16.60-0.42.7.

Figure 4.9 shows optimization towards consolidation on host Goedel. The

0

100

200

300

400

500

4 6 8

J
ob

s/
S
ec

on
d

Threads

0.2
0.25
0.3

0.35
0.4

0.45
0.5

0.55

4 6 8

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

20

40

60

80

100

120

140

4 6 8

S
ec

on
d
s

Threads

12000
14000
16000
18000
20000
22000
24000
26000

4 6 8

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.9: Optimization towards consolidation on host Goedel.

arrival rate is fixed to λ = 500 jobs per second. At 4 nodes there is almost

122

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

no loss rate ε and a mean utilization of approximately ρ = 0.54, whereas two

nodes exhibit a utilization of ρ = 1 as shown in Table 4.4. At 8 nodes the mean

utilization is approximately ρ = 0.53 where one node still exhibits ρ = 1. Ta-

ble 4.4 shows the improvement from 4 to 8 nodes. Due to resource shortage on

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 1 1 0.9641 2

Converter 0.1481 1 0.1606 1

Serializer 0.008 1 0.0092 1

Feeder 1 1 1 4

Table 4.4: Utilization and number of threads in initial and optimal configuration for opti-
mization towards consolidation on host Goedel.

host Goedel, the number of nodes cannot be increased boundlessly. Because of

database I/O, the Feeder is the natural bottleneck of the system. The rate at

which data can be sent to the database cannot be increased by more threads.

The possible rate is shared by all Feeder -threads.

Nevertheless, the probability of a full system goes down from initially ap-

proximately Pk = 0.28 to approximately Pk = 0.21. Both, times and jobs drop

down at 5 nodes due to the second Decoder. Response and waiting time go

down to R ≈ W ≈ 25 seconds. Expected jobs in the system and queues drop

down to ES ≈ Eq ≈ 12506 jobs. This shows how queueing helps alleviating a

bottleneck.

Figure 4.10 shows optimization towards throughput on host Goedel. The ar-

rival rate starts at λ = 0 and reaches λ = 246 jobs per second at 8 nodes. The

mean utilization of the system is ρ = 0.37, whereas Table 4.5 shows the uti-

lizations of all nodes of the initial (λ = 1) and optimal (λ = 246) configuration.

With optimization towards throughput each node is less than 80% utilized

under a maximum arrival rate of λ = 246. Since the Feeder is again the bot-

tleneck, the optimization only tried to increase the number of Feeders. This

leads to both, a short response time of R ≈ 0.01273 seconds and also to a short

waiting time of W ≈ 0.00318 seconds, and similar to an expected number of

jobs in the system of ES ≈ 1.9517 or in queues of Eq ≈ 0.7816. The system

123

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

0

50

100

150

200

250

4 6 8

J
ob

s/
S
ec

on
d

Threads

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

4 6 8

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

4 6 8

S
ec

on
d
s

Threads

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4 6 8

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.10: Optimization towards throughput on host Goedel.

is under λ = 246 still very responsive due to database connection pooling but

under a relatively low throughput as shown in the next experiment.

For this experiment the number of Feeders is fixed to one and Figure 4.11

shows the outcome. The optimal configuration allows a maximum arrival rate

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 0.0024 1 0.6028 1

Converter 3.0E-4 1 0.0764 1

Serializer 0 1 0.0037 1

Feeder 0.0065 1 0.7995 5

Table 4.5: Utilization and number of threads in initial and optimal configuration for opti-
mization towards throughput on host Goedel.

of λ = 494 jobs per second. The loss rate ε is almost zero, whereas the mean

utilization of the system reaches ρ ≈ 0.49. The probability of the system

being full stabilizes at Pk ≈ 0.21. Table 4.6 confronts again initial (λ = 1)

and optimal (λ = 494) configuration. Since the number of Feeders is fixed to

one, the system increased the number of Decoders until 8 nodes are reached.

124

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

0

100

200

300

400

500

4 6 8

J
ob

s/
S
ec

on
d

Threads

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

4 6 8

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

0
5

10
15
20
25
30
35
40

4 6 8

S
ec

on
d
s

Threads

0
2000
4000
6000
8000

10000
12000
14000

4 6 8

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.11: Optimization towards throughput on host Goedel with true bottleneck.

The nearly double arrival rate of 494 jobs per second, compared to 246 jobs

per second of the previous experiment, comes from the fact that the system

buffers the overload due to the high combined throughput of the 5 Decoders on

cost of response and waiting time as well as on queue sizes. As seen in Figure

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 0.0024 1 0.7996 5

Converter 3.0E-4 1 0.1583 1

Serializer 0 1 0.0167 1

Feeder (fixed) 0.0063 1 1 1

Table 4.6: Utilization and number of threads in initial and optimal configuration for opti-
mization towards throughput on host Goedel with true bottleneck.

4.11, response and waiting times are very close together with R ≈ W ≈ 25.3

seconds which is much higher as the times of the previous experiment. Also

the expected number of jobs in the system and queues (Es ≈ Eq ≈ 12510 jobs)

are far above the experienced value of the previous experiment. Sufficiently

125

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

large queues definitely enable a higher performance level without the influence

of a bottleneck like database I/O.

The second host Zerberus is a Sun SPARC Enterprise T5220, model SED-

PCFF1Z with a SPARC V9 architecture (Niagara 2) and a Sun UltraSPARC

T2 eight-core processor, each core at 1.2 Ghz and with Chip Multithreading

Technology (CMT) for up to 64 simultaneous threads, has 32 GB of main

memory, two 146 GB Serial Attached SCSI disks, 10/100/1000 Mb/s Ether-

net, and runs SunOS 5.10 Generic 127111-11.

Again the number of Feeders is fixed to one and Figure 4.12 shows optimization

towards consolidation. The arrival rate is fixed to λ = 3000 jobs per second.

0
500

1000
1500
2000
2500
3000

4 6 8 10 12

J
ob

s/
S
ec

on
d

Threads

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 6 8 10 12

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

0
5

10
15
20
25
30
35

4 6 8 10 12

S
ec

on
d
s

Threads

10000

15000

20000

25000

30000

35000

40000

4 6 8 10 12

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.12: Optimization towards consolidation on host Zerberus.

At 4 nodes there is almost no loss rate ε and a mean utilization of ρ ≈ 0.79,

whereas three nodes exhibit a utilization of ρ = 1 as shown in Table 4.7. At

12 nodes the mean utilization is ρ ≈ 0.67.

Table 4.7 shows the improvement from 4 to 12 cores. Optimization terminated

126

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

at 12 nodes, because Decoders, Converters and the Serializer exhibit a utiliza-

tion less than 80%. The probability of a full system goes down to Pk ≈ 0.25.

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 1 1 0.7705 3

Converter 1 1 0.7887 7

Serializer 0.1676 1 0.112 1

Feeder (fixed) 1 1 1 1

Table 4.7: Utilization and number of threads in initial and optimal configuration for opti-
mization towards consolidation on host Zerberus with one Feeder.

Response and waiting times merge at 11 nodes to R ≈ W ≈ 4.17 seconds,

and the expected jobs in the system and queues decrease to Es ≈ Eq ≈ 12511

jobs. Thus, the single Feeder functions as bottleneck, but can effectively be

compensated by sufficiently large queues.

Figure 4.13 shows optimization towards throughput with the restriction of

one single Feeder. At 12 nodes an arrival rate of λ = 3061 jobs per second

0
500

1000
1500
2000
2500
3000
3500

4 6 8 10 12

J
ob

s/
S
ec

on
d

Threads

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

4 6 8 10 12

U
ti

l.
an

d
P

(S
y
s.

fu
ll
)

Threads

0

5

10

15

20

25

30

4 6 8 10 12

S
ec

on
d
s

Threads

0
2000
4000
6000
8000

10000
12000
14000

4 6 8 10 12

J
ob

s

Threads

λ
ε

ρ
Pk

R
W

Es

Eq

Figure 4.13: Optimization towards throughput on host Zerberus.

127

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

can be reached. The loss rate is ε ≈ 0.0077 and the utilization increases to

ρ ≈ 0.68, while the probability of a full system is Pk ≈ 0.26.

The optimization terminates because of memory shortage at 12 nodes and Ta-

ble 4.8 shows initial (λ = 1) and optimal configuration (λ = 3061). Response

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 8.0E-4 1 0.7998 3

Converter 0.0019 1 0.797 7

Serializer 1.0E-4 1 0.1169 1

Feeder (fixed) 0.0073 1 1 1

Table 4.8: Utilization and number of threads in initial and optimal configuration for opti-
mization towards throughput on host Zerberus with one Feeder.

and waiting times merge at 11 nodes to R ≈ W ≈ 4.09 seconds, and the ex-

pected jobs in the system and queues decrease to Es ≈ Eq ≈ 12511 jobs.

Compared with the experiment of optimization towards consolidation, where

λ = 3000 was assumed, we now see the true maximum arrival rate of λ = 3061.

4.5.3 Simulation

This section presents the basic idea of a simulation as additional way of validat-

ing the analytical approach. The main goal is to simulate a DFE-like system

that is based on a queueing network. Therefore, a tool implemented in Java

was developed to imitate the DFE software.

The basic idea is to imitate work that can be done within a node in an

application like the Data Flow Engine, pass the tickets through the queueing

network and measure the important performance metrics in real time.

The simulation module starts by creating and starting one Decoder thread,

one Converter thread, one Serializer thread and one Feeder thread. These

threads are then listening for incoming tickets in their queues, where threads

of the same node share one queue.

Listing 4.4 shows the Java code to create and start the simulated node threads.

The variable servers defines how many threads are created for each node. The

128

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

class variable node within the class Node defines the node type (e.g.: Decoder

= 0).

1 public void createThreads () {

threads = new TreeMap<Integer , L i s t<Node>>() ;

3 for (Node node : nodes) {

List<Node> th r eadL i s t = new ArrayList<Node>() ;

5 for (int i = 0 ; i < nodes . get (node . node) . s e r v e r s ; i++) {

switch (node . node) {

7 case 0 :

th r eadL i s t . add (new Decoder (node . node , this)) ;

9 break ;

case 1 :

11 th r eadL i s t . add (new Converter (node . node , this)) ;

break ;

13 case 2 :

th r eadL i s t . add (new S e r i a l i z e r (node . node , this , i)) ;

15 break ;

case 3 :

17 th r eadL i s t . add (new Feeder (node . node , this)) ;

break ;

19 }

}

21 threads . put (node . node , th r eadL i s t) ;

runningThreads += threadL i s t . s i z e () ;

23 }

numThreads = runningThreads ;

25 }

27 public void s tar tThreads () {

for (int i = 0 ; i < nodes . s i z e () ; i++) {

29 List<Node> th r eadL i s t = threads . get (i) ;

for (Node thread : th r eadL i s t)

31 new Thread ((Runnable) thread) . s t a r t () ;

}

33 }

Listing 4.4: Creating and starting node threads.

The next step is to put tickets into the Decoder queue, simulating a ticket

generator, that uses a given external arrival rate. For every ticket that arrives

in the Decoder queue, the Decoder thread takes the ticket out of the queue and

starts its given task. After the task has been executed, the Decoder forwards

129

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

the ticket to the Converter queue.

The Converter then takes the ticket out of its queue and executes the given

task. After that, the ticket leaves the Converter and is forwarded to the Seri-

alizer and Feeder queue. After the Serializer writes the content of the ticket

to a file and the Feeder sends the content of the ticket to a database, the ticket

leaves the queueing network.

For each task within each node and within each thread the duration is mea-

sured. After a given number of tickets have been sent to the queueing network

by the simulated ticket generator, the mean service rate for each node type is

calculated.

As mentioned before, all servers/threads of a given node share one queue.

Listing 4.5 shows that if there is a ticket in a queue, a node thread will remove

the ticket from the queue and execute its tasks.

1 queues = new TreeMap<Integer , L i s t<Ticket >>() ;

[. . .]

3 Ticket t i c k e t = null ;

i f (sim . queues . get (node) . s i z e () > 0) t i c k e t = sim . queues . get (node) .

remove (0) ;

5 i f (t i c k e t != null) {

//Execute Tasks

7 [. . .]

}

Listing 4.5: Creating and starting node threads.

To simulate a ticket generator, two approaches have been developed:

• The basic version of the ticket generator puts a given number of tickets

into the Decoder queue using a specified arrival rate (see Listing 4.6).

• The enhanced version of the ticket generator puts always an appropriate

amount of tickets into the Decoder queue using a specified arrival rate,

based on service times of all threads used to calculate their standard de-

viation

130

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

s =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)2 , (4.19)

where x̄ is the mean service time for a single thread and N is the amount

of tickets already sent. By calculating

Ex̄ =
zβ

s√
N

x̄
(4.20)

Zβ is used as β-Quantile of the standard-normal distribution N0,1.

Ex̄ therefore defines the standard error for the measured service times

(see Listing 4.7). The ticket generator stops sending tickets if all threads

show, with a probability of β, an error smaller than 5%. (see Listing 4.8).

public void c r e a t eT i c k e t s S t a t i c (int t i c k e t s) {

2 for (int i = 0 ; i < t i c k e t s ; i++) {

s en tT i cke t s++;

4 Thread . s l e e p ((long) ((1 / nodes . get (0) . extAR) ∗ 1000)) ;

i f (queues . get (0) . s i z e () < queueLengthsMax . get (0)) {

6 queues . get (0) . add (new Ticket (i)) ;

}

8 else synchronized (l o s s e s) {

l o s s e s . put (0 , l o s s e s . get (0) + 1) ;

10 }

}

12 }

Listing 4.6: Creating Tickets: static.

During the simulation, the module records the time needed for each task within

each thread, as well as the number of lost tickets for each thread and the queue

sizes.

After all tickets are sent to the system and all tickets have left the system,

the mean loss rate as well as the mean number of jobs in queue are calculated.

The time needed for each task within each thread in relation to the entire

simulation time is used to calculate the utilization for each thread and node.

131

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

public void c r e a t eT i ck e t s () {

2 boolean ErrorExceeded = true ;

f loat maxErr = 0 ;

4 while (ErrorExceeded) {

ErrorExceeded = fa l se ;

6 s en tT i cke t s++;

Thread . s l e e p ((long) ((1 / nodes . get (0) . extAR) ∗ 1000)) ;

8 i f (queues . get (0) . s i z e () < queueLengthsMax . get (0)) {

queues . get (0) . add (new Ticket (i)) ;

10 }

else synchronized (l o s s e s) {

12 l o s s e s . put (0 , l o s s e s . get (0) + 1) ;

}

14 for (int i = 0 ; i < nodes . s i z e () ; i++) {

List<Node> th r eadL i s t = threads . get (i) ;

16 for (Node thread : th r eadL i s t) {

f loat e r r = Tools . c a l c u l a t eE r r o r (thread . va lue s) ;

18 i f (e r r > Star t . l im i tS t a tE r r) {

ErrorExceeded = true ;

20 break ;

}

22 else i f (e r r > maxErr) maxErr = e r r ;

}

24 i f (ErrorExceeded) break ;

}

26 i f (! ErrorExceeded) break ;

}

Listing 4.7: Creating Tickets: optimum.

In the next step, the mean utilization for each node type is calculated. The

module then extends the configuration as mentioned in Subsection 4.4.3. Within

the simulation module, the node utilization is therefore not calculated, but in-

stead measured in real time. For example, if the mean utilization of the Con-

verter node is higher than a specified utilization threshold (e.g. limU > 0.8),

the new configuration adds one additional Converter thread.

The simulation module then sets up this new configuration by creating and

starting the new optimum number of threads. Like the measurement module

(described in Section 4.5.2), the simulation module recursively adds threads of

over-utilized nodes until none of the nodes is over-utilized according to limU ,

or resource restrictions are reached. Therefore, in every new cycle, a new

132

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

simulation is started.

1 public stat ic f loat c a l c u l a t eE r r o r (L i s t<Double> va lue s) {

f loat currErr = 1 ;

3 i f (va lue s . s i z e () > 10) {

double sum = 0 ;

5 synchronized (va lue s) {

for (double v : va lue s)

7 sum += v ;

f loat mean = (f loat) sum / va lue s . s i z e () ;

9 f loat sumDif fs = 0 ;

for (double v : va lue s)

11 sumDif fs += (v − mean) ∗ (v − mean) ;

f loat varSample = sumDif fs / (va lue s . s i z e () − 1) ;

13 f loat stdDev = (f loat) Math . s q r t (varSample) ;

f loat de l t a = 1.64485 f ∗ (stdDev / (f loat) Math . s q r t (va lue s . s i z e

())) ; /∗ 0.95 ∗/

15 currErr = de l t a / mean ;

}

17 }

return currErr ;

19 }

Listing 4.8: Calculating the standard error.

E.g.: After the initial configuration was simulated and the service rates and

utilizations were recorded, the simulation module suggests to add a second

Converter node. The simulation module then creates and starts one Decoder

thread, two Converter threads, one Serializer thread and one Feeder thread.

The Converter threads both share the Converter queue. Both Converter

threads can therefore take tickets out of the Converter queue and execute

their tasks in parallel. Again, after a given amount of tickets have been sent to

the system, service rates for each node type are measured. These new service

rates may differ from previous recorded service rates due to the parallelizing

of the nodes. Figure 4.5.3 shows the recursive use of the simulation and the

calculation module. As soon as a configuration exceeds given resources, the

measurement and the simulation module have found the optimal configuration.

The procedure of the calculation/measurement approach can be summarized

as follows:

• detecting the hardware specifications on the given host

• simulating node tasks and measuring the service rates

133

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

• calculating the optimum configuration based on the analytical model

On the other hand, the simulation approach can be summarized as follows:

• creating a thread-based simulation of the queueing network

• creating tickets to put into the queueing network

• using the artificial nodes to simulate the tasks within the node threads

• measuring performance metrics

• increase the most over-utilized (bottleneck) node by one and restart the

simulation

134

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Section 4.5.5 describes the combination of all approaches in more detail.

Table 4.9 shows the optimum configuration and the node utilizations in initial

and optimal configuration on host Goedel with a fixed arrival of λ = 1200 jobs

per second, presented by the simulation module. The optimum queueing net-

work software configuration on host Goedel therefore should use two Decoders,

one Converter, one Serializer and four Feeders. Table 4.10 shows initial and

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 0.9936 1 0.9771 2

Converter 0.1778 1 0.2854 1

Serializer 0.0337 1 0.0196 1

Feeder 0.9864 1 0.9962 4

Table 4.9: Utilization and number of threads in initial and optimal configuration for opti-
mization by simulation on host Goedel.

optimal node utilizations and the optimum configuration with a true bottle-

neck. In this simulation the ticket generator automatically chose the right

amount of tickets and sent (on average) 2856 tickets per simulation cycle. In

this experiment over-utilized nodes are nodes with a utilization higher than

just 4%. Due to the thread-optimization, the utilization of the entire system

is reduced from 23.09% in the initial configuration to 15.24% in the optimum

configuration. Table 4.11 shows the optimum configuration as well as the uti-

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 0.1047 1 0.0315 3

Converter 0.1960 1 0.0357 6

Serializer 0.0386 1 0.0107 1

Feeder (fixed) 0.5841 1 0.5314 1

Table 4.10: Utilization and number of threads in initial and optimal configuration for opti-
mization by simulation with true bottleneck on host Zerberus.

lization of nodes in initial and optimal configuration on host Zerberus with no

true bottleneck and a utilization bound of 12%. The utilization of the entire

system was reduced from 23.49% in the initial configuration to 6.09% in the

optimal configuration. This time 15904 tickets were sent on average in each

135

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

simulation cycle. To fully utilize host Zerberus, a real-time-like simulation, or

Initial Config. Optimal Config.

Node Util. Threads Util. Threads

Decoder 0.0901 1 0.0521 2

Converter 0.1933 1 0.0739 3

Serializer 0.0388 1 0.0069 1

Feeder 0.6174 1 0.1107 7

Table 4.11: Utilization and number of threads in initial and optimal configuration for opti-
mization by simulation on host Zerberus.

a real system, like the queueing network software is needed (see Section 4.5.4).

4.5.4 Experiments

In the previous sections, calculation, measuring the service rates of artificial

nodes and the simulation of an entire queueing-network software have been

used. This section describes experiments using the actual queueing network

software software. Also, a ticket generator will be described, sending diameter

tickets to the queueing network software.

Figure 4.14: Test Environment: Testing the queueing network software.

136

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Figure 4.14 shows the test environment used in the following experiments. The

ticket generator was installed on a number of test clients. These test clients

were then started and were sending Diameter tickets to the queueing network

software, installed either on host Goedel or host Zerberus. The Oracle database

was only installed on host Zerberus, so database entries from the queueing

network software installed on host Zerberus were just local invocations, while

each ticket passing through the Feeder node on host Goedel included some

network involvement as well.

Ticket Generator

To test the queueing network software, a ticket generator was developed in

Java. The goal of this ticket generator was to imitate mobile devices and

placed VoIP calls. Therefore, for every call, a new thread was created and

started, which is alive for the duration of the call. Therefore, each simulated

call is represented by an individual thread, which is sending the Diameter

tickets, like a real VoIP device.

Before starting the ticket generator, the tester can specify a number of

parameters:

• The mean external arrival rate and the distribution of the arrival rate,

which states the time that passes between two calls are started.

• The mean call length and the distribution of the call length, which states

how long a call should last.

• The mean loss rate and the distribution of the loss rate, which states the

possibility that a ticket is lost.

The following distributions can be used for the previous described rates: Pois-

son (see Listing 4.9), Weibull, Pareto (see Listing 4.10), Geometric, Exponen-

tial and Uniform.

1 public double getPo i s sonVar ia te (double mean) {

double lambda = 1 .0 / mean ;

3 double v = −Math . l og (next ()) / lambda ;

return v ;

5 }

Listing 4.9: Method for calculating a Poisson variate.

137

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

1 public double getParetoVar ia te (double mode , double shape) {

double v = mode / Math . pow((1 − next ()) , 1 / shape) ;

3 return v ;

}

Listing 4.10: Method for calculating a Pareto variate.

Therefore, the tester can specify the mean arrival rate, the mean call length

and the mean loss rate. Also, the tester can specify the mentioned distribu-

tions for each parameter, which uses the mean values as an input to generate

(e.g.: Poisson arrival, see Figure 4.15).

After the ticket generator is started, it sets up an RMI connection to the queue-

ing network software. Once the connection is established, the ticket generator

starts to create threads imitating calls. Therefore the Java class TestTool is

actually a call generator. The actual tickets are sent within the Java thread

class TicketGenerator. Figure 4.15 shows the structure of the Java test tool.

Listing 4.11 shows the basic routine of the ticket generator. The ticket gen-

erator creates new calls as long as the simulation time has not expired. With

the help of a mean call time and the previously mentioned (e.g.) Exponential

arrival, the length of the next call [tC] (see Figure 4.15) is generated (variable

mct). Given the fact that calls have to take at least 1000ms, the ticket gen-

erator prevents that from happening. After that, a new call thread is created

with an ID and the calculated call time. Once a call has been started, the

waiting time between two calls has to be calculated, again using the chosen

distribution. A mean external arrival rate is used to generate a Exponential

distributed waiting time [tW] (see Figure 4.15) until a new call can be created.

double t ime s t a r t = System . cur rentT imeMi l l i s () ;

2 double timeend = System . cur rentT imeMi l l i s () ;

for (long i = 1 ; timeend <(t ime s t a r t+t imes imulat ion) ; i++) {

4 long mct = (long) v . ge tExponent ia lVar ia te (meancal l t ime) ;

i f (mct<1000) mct=1000;

6 TicketGenerator tGen = new TicketGenerator (i , mct) ;

new Thread ((Runnable) tGen) . s t a r t () ;

8 Thread . s l e e p ((long) v . ge tExponent ia lVar ia te (a r r i v a l r a t e)) ;

timeend = System . cur rentT imeMi l l i s () ;

10 }

Listing 4.11: Ticket Generator: Starting Calls.

138

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Figure 4.15: Test Scenarios: Java classes and distributions.

139

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Within the class TicketGenerator, the tool first calculates how many Interim

tickets have to be sent, using the entire call time and the time between two In-

terim tickets. Listing 4.12 furthermore shows that after an initial Start ticket

has been sent, the thread knows how many Interim tickets have to be sent.

The time between two Interim tickets is given by the variable ticketinterim

[seconds].

The TicketGenerator also uses a Weibull distribution to decide whether to

send each individual message, or to drop it and continue with the next ticket.

The Weibull distribution therefore provides a factor p for every ticket (Start,

every single Interim and Stop) stating if the ticket will be sent or dropped (see

Figure 4.15).

After all Interim tickets have been sent, the ticket generator calculates the

time that is remaining until the end of the call. Then a Stop ticket is sent and

the call is successfully terminated.

t i c k e t i n t e r im = AvpCodes .ACCT INTERIM INTERVAL ∗ 1000 ;

2 long i n t e r ims = durat ion / t i c k e t i n t e r im ;

// sending s t a r t t i c k e t

4 IMessage startMessage = DFEstarter . tpd . c reateStar tMessage (s e s s i on , id) ;

TestProcessDiameter . streamingFeader . p roc e s s (” diameter ” , pa r s e r .

encodeMessage (startMessage) . array ()) ;

6 // sending in ter im t i c k e t s

for (int i = 0 ; i < (int) i n t e r ims ; i++) {

8 Thread . s l e e p (t i c k e t i n t e r im) ;

IMessage inter imMessage = DFEstarter . tpd . create Inter imMessage (s e s s i on

, i + 1 , id) ;

10 TestProcessDiameter . streamingFeader . p roc e s s (” diameter ” , pa r s e r .

encodeMessage (inter imMessage) . array ()) ;

}

12 long remaining = durat ion − (t i c k e t i n t e r im ∗(int) i n t e r ims) ;

Thread . s l e e p (remaining) ;

14 // sending s top t i c k e t

IMessage stopMessage = DFEstarter . tpd . createStopMessage (s e s s i on , i +1,

id) ;

16 TestProcessDiameter . streamingFeader . p roc e s s (” diameter ” , pa r s e r .

encodeMessage (stopMessage) . array ()) ;

Listing 4.12: Ticket Generator: Call Thread and Sending Tickets.

As mentioned before, the distributions used in Figure 4.15 are just examples.

The tester can individually decide which distribution to use for the arrival rate,

140

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

call time and loss rate.

Results

The first experiments were conducted with the previously described ticket

generator and the actual queueing network software software installed on host

Zerberus. As mentioned before, host Zerberus has an Oracle database installed

locally and has the possibility to start up to 64 parallel threads.

As mentioned before, the ticket generator is installed on a number of clients

and sends tickets to the queueing network software. An additional client uses a

Java thread to monitor the queueing network software remotely. The queueing

network software offers a number of performance metrics that can be accessed

via RMI (e.g.: the number of invocations and the overall active time for every

individual node thread). The monitoring thread then uses the external arrival

rate and the service rate (number of invocations per busy time) to calculate a

utilization for every individual node thread and suggests to extend the most

over-utilized node.

Again, an over-utilization occurs if the node is utilized more than 80%. There-

fore, nodes that show a utilization of over 80% will be increased by one thread.

Table 4.12 shows the service rate and the utilization of all four nodes with an

external arrival rate of 1000 tickets per second. This first experiment makes

it obvious that the Feeder node is the bottleneck of the system, only manag-

ing an average number of 66 tickets per second. Therefore the adaption tool

suggests that the Feeder node has to be increased by one, creating two Feeder

threads at the next experiment.

Service Rate [tickets/s] Utilization [%]

Decoder 10658 9.38[%]

Converter 12147 8.23[%]

Serializer 2061 48.52[%]

Feeder 66 100.00[%]

Table 4.12: Initial configuration (1-1-1-1) on host Zerberus, tested with an external arrival
rate of 1000[tickets/s].

141

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

In the next few steps it became obvious that even though the Feeder node

was recursively extended, the service rate did not increase in the same way.

Table 4.13 shows that the mean service rate of one Feeder thread decreases

with every newly added Feeder thread.

Of course, the total service rate of all Feeder nodes does not decrease, but

adding new Feeder threads does not improve the total service rate of all Feeder

nodes enough. Even with the maximum number of 61 threads, the Feeder node

stays the systems bottleneck.

Mean Service Rate

Configuration Individual Total

1-1-1-1 66 66

1-1-1-2 44 88

1-1-1-3 41 123

1-1-1-4 34 136

1-1-1-10 7 70

1-1-1-20 5 100

1-1-1-61 2 122

Table 4.13: Service rates of the Feeder node with different configurations on host Zerberus.

Table 4.14 shows that with the final configuration (one Decoder, one Converter,

one Serializer and 61 Feeder nodes) all other nodes are of course still under-

utilized. This leads to the conclusion that the Feeder node should indeed be

fixed to one thread per node. The solution to this problem, as mentioned

before, could be to allocate a large queue to the Feeder node. By doing that,

the node can eventually handle queued tickets when the external arrival rate

decreases.

Utilization [%]

Decoder 9.25[%]

Converter 9.67[%]

Serializer 48.95[%]

Feeder 100.00[%]

Table 4.14: Final configuration (1-1-1-61) on host Zerberus, tested with an external arrival
rate of 1000[tickets/s].

142

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

The final experiment therefore used a Feeder node fixed to one thread per node.

Table 4.15 shows that an initial configuration of one thread per node cannot

handle an external arrival rate of 2000 tickets per second without overstepping

an utilization of 80%, because the Serializer node is already at a utilization

level of 97.04%. Increasing the number of threads per node (without taken the

Feeder node into account) the final and optimal configuration can handle an

external arrival rate of 66900 tickets per second.

Initial Config. Optimal Config.

2000tickets/s 66900tickets/s

Node Util. Threads Util. Threads

Decoder 0.1877 1 0.7911 9

Converter 0.1646 1 0.7044 9

Serializer 0.9704 1 0.7993 45

Feeder (fixed) 1.000 1 1.000 1

Table 4.15: Initial and final configuration on host Zerberus, with a fixed Feeder node.

Table 4.15 shows that at an external arrival rate of 66900 tickets per second,

all nodes are under a utilization level of 80%. Of course it should be noted,

that the Feeder node is still highly over-utilized and can only handle about

70 tickets per second. Given the fact that the Feeder node and therefore the

database is the natural bottleneck, it is necessary to assign a very large queue

to the Feeder node, to minimize the loss rate. Over time and during parts of

the day where not many VoIP calls are started, the Feeder node will then be

able to eventually handle all tickets in its queue.

To compare the results and maybe find a different optimal configuration the

same experiments were conducted with the queueing network software installed

on host Goedel. With four dual-core processors, a maximum amount of 8

threads can be started. As mentioned before, host Goedel has no local database

installed and uses the Oracle database installed on host Zerberus.

Table 4.16 shows the results of the first experiment. At an external arrival rate

of 1000 tickets per second, the Feeder node is again the systems bottleneck.

Table 4.16 also shows that compared to host Zerberus, the Decoder, Converter

and Serializer node show a higher service rate during the initial experiment.

To start the optimization process, the Feeder node again has to be increased.

143

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Service Rate [tickets/s] Utilization [%]

Decoder 32617 3.07[%]

Converter 26058 3.84[%]

Serializer 5202 19.22[%]

Feeder 105 100.00[%]

Table 4.16: Initial configuration (1-1-1-1) on host Goedel, tested with an external arrival
rate of 1000[tickets/s].

Table 4.17 shows that on host Goedel the individual service rate of one Feeder

thread does, to some extent, stay the same, which leads to the fact that the

total service rate of all Feeder threads is indeed slowly increasing. Table 4.17

shows that one Feeder thread can handle 105 tickets per second, while the final

configuration of 5 Feeder threads can handle 350 tickets per second.

Mean Service Rate

Configuration Individual Total

1-1-1-1 105 105

1-1-1-2 79 158

1-1-1-3 81 243

1-1-1-4 70 280

1-1-1-5 70 350

Table 4.17: Service rates of the Feeder node with different configurations on host Goedel.

Given the fact that the total service rate of all Feeder threads is increasing, it

would make sense to stick to this optimization approach. Table 4.18 therefore

shows an initial and optimal configuration on host Goedel. With an external

arrival rate of 280 tickets per second the Feeder node of the initial configu-

ration is over-utilized, but with the optimal configuration of 5 threads, the

Feeder node is able to stay under the utilization threshold of 80%.

Table 4.19 shows the results of the experiments, if the software developer de-

cides to fix the Feeder node to one thread per node. At an initial configuration

of one thread per node and an external arrival rate of 5200 tickets per second,

the Serializer node would exceed the utilization threshold of 80%. After the

optimization process, the system is able to handle up to 15600 tickets per sec-

ond with the optimal queueing network software configuration (one Decoder

node, two Converter nodes, four Serializer nodes and one Feeder node), with-

144

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Initial Config. Optimal Config.

280tickets/s 280tickets/s

Node Util. Threads Util. Threads

Decoder 0.0086 1 0.0097 1

Converter 0.0107 1 0.0141 1

Serializer 0.0538 1 0.0404 1

Feeder 1.000 1 0.8000 5

Table 4.18: Initial and final configuration on host Goedel.

out exceeding the utilization threshold.

Initial Config. Optimal Config.

5200tickets/s 15600tickets/s

Node Util. Threads Util. Threads

Decoder 0.1594 1 0.5210 1

Converter 0.1996 1 0.7502 2

Serializer 0.9996 1 0.7989 4

Feeder (fixed) 1.000 1 1.000 1

Table 4.19: Initial and final configuration on host Goedel, with a fixed Feeder node.

Verification of the Analytical Approach

To verify the analytical approach I used the average service rates for each node

derived from the experiments done on host Zerberus and host Goedel (see Ta-

ble 4.20) and started the calculation module one more time.

Mean Service Rates

Node Zerberus Goedel

Decoder 9766 30055

Converter 10430 18672

Serializer 1987 6146

Feeder 28 94

Table 4.20: Mean service rates of both tested hosts for each node type.

Table 4.21 shows that starting the calculation module with optimization to-

wards throughput, and using the average service rates derived out of the exper-

145

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

iments, both, experiments and the calculation module deliver the same optimal

configuration. On host Zerberus and host Goedel a normal optimization would

only increase the number of Feeder nodes. Due to different hosts and therefore

different node service rates, an optimal configuration with a fixed Feeder node

would lead to an optimal configuration of 9 Decoder nodes, 9 Converter nodes,

45 Serializer nodes and 1 Feeder node on host Zerberus, and 1 Decoder node,

2 Converter nodes, 4 Serializer nodes and 1 Feeder node on host Goedel.

Zerberus Goedel

Optimal Configuration Normal Fixed Feeder Normal Fixed Feeder

Experiments 1-1-1-61 9-9-45-1 1-1-1-5 1-2-4-1

Calculation 1-1-1-61 9-9-45-1 1-1-1-5 1-2-4-1

Table 4.21: Optimal configuration of threads for both hosts.

These four verifications show the importance of the service rates and if there

is no possibility to derive real service rates from actual software, it is necessary

to analyze the used nodes in every detail. As mentioned before, the simulation

and the measurement module are using simulated nodes to derive artificial

service rates. Therefore, the simulated tasks have to be as close as they can

get to the actual performed tasks of the tested queueing network software.

4.5.5 Autonomic Adaption Tool

The idea behind optimizing the DFE on a specific system was, that the software

will be installed on a great number of different hardware systems. Companies

which install the DFE may want to decide which servers and hardware com-

ponents to use, but also over the course of time, hardware components may

be replaced and servers will be upgraded. Therefore, the idea was to find a

quick way to determine the optimum DFE-configuration for a certain system,

before the DFE was even installed on that system. The DFE would then use

this determined configuration until hardware specification change and a new

optimization process is started manually.

The idea behind the recursive approach, where a new thread will be added

in each step or cycle, was to monitor if a newly added thread has consequences

on the service rates (the service rates of the other nodes and the service rates

146

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

of the other threads from the same node type). By measuring the service rates,

running simulations and especially during the extensive experiments it became

obvious that the service rate for individual threads and nodes does not stay the

same, but varies to a certain degree. Therefore, the step-wise approach was

ideal, because service rates will be measured more often, but it also showed,

that the approach of running the optimization once and leaving the DFE like

that may result in the fact that the DFE would not always use the optimal

configuration, due to slight service rate changes.

The idea of this section is to present a solution to the mentioned problem.

Unfortunately, the current version of the queueing network software does not

include the possibility to automatically change the configuration of the system

during runtime. At the current software version, the tester has to manually

stop the queueing network software, change the configuration (threads per

node) and restart the queueing network software again.

The driving factors of DFE-like software are the external arrival rate and the

service rates of the nodes. Therefore to create a system that automatically

adapts to a current workload and finds the best configuration for a specific

host, the following strategy may be used:

• First, the tasks of each node of the used software have to be understood.

Then, the appropriate tasks have to be picked and assigned to the nodes

within the simulation module.

• Second, after installing the software on a new host, the simulation module

should be started.

• The simulation module does include the measurement module, measuring

the service rates of the simulated tasks for each node.

• By doing that, a starting configuration for the system can be found in a

relatively short period of time.

• After a initial configuration is found, the system is ready to go online.

• One important factor of the systems performance is the external arrival

rate. The system must be able to handle the incoming load. Therefore

147

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

the automated tool should be able to detect significant changes of the

arrival rate.

• Once a significant change of the external arrival rate has been detected,

a new configuration should be calculated.

• To calculate a new configuration, the current service rate for every node

is needed.

• If the used software offers some self-monitoring methods, the current ser-

vice rates should be calculated from real data.

• If no performance metrics monitoring is offered, the simulation module

has to once again simulate the tasks of the nodes. The measurement mod-

ule should measure the service rates for each node. And the calculation

module should calculate a new configuration.

• Note: Furthermore the system could be extended to storing information

about what configuration to use at a specific arrival rate, to minimize the

effort of continuously simulating and calculating new configurations.

As mentioned before, the DFE was in principle developed to be set up once

with an initial configuration and always run with the given configuration. This

scenario just offers the possibility for an offline optimization. In the previous

sections simulations, measurements and calculations are used to find optimal

configurations for a given host. The idea behind these individual approaches

was to increase the external arrival rate as much as possible and to find the

optimal configuration of nodes.

This approach would in every case use all the available hardware resources to

find an optimum configuration, leading to the fact that as many threads as

cores available on the system would be started.

The idea behind an online optimization is that the system not only adapts

to factors on the inside of the system (e.g.: available cores or other hardware

restrictions), but also on outside factors, like the external arrival rate. The

advantage of such an online optimization tool is that threads or cores could be

turned off when the system is under-utilized.

148

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

A possible advantage of an online optimization could be energy efficiency. The

hypothesis being that a few fully utilized cores will consume less energy that

a great amount of under-utilized cores.

4.5.6 Excursus: Speeding up database operations

Previous sections showed that the Feeder node is by far the bottleneck of the

described queueing network. The Feeder node takes tickets out of its queue

and writes the converted data into an Oracle database. Hitherto the proposed

approach was to assign a large queue to the Feeder node and hope, that over

time, the Feeder will be able to process all incoming tickets.

The theoretical approach proposed in this section is twofold:

• Software optimizing techniques (e.g.: installing new database drivers),

along with increasing the network bandwidth between the queueing net-

work software and the database servers, are used to speed up the Feeder

node. This will lead to an improvement of the individual Feeder node

service rate.

• Setting up not only one database server, but using one database server

for every individual Feeder thread guarantees that every individual thread

delivers the same service rate. This will lead to an improvement of the

overall Feeder node service rate.

In the following experiments, the analytical model presented in Sections 4.4.3

and 4.5.1 is used with the service rates derived out of the experiments pre-

sented in Section 4.5.4 to find an optimal configuration. The two mentioned

techniques are used to hypothetically speed up the Feeder node five, ten and

fifteen times (see Table 4.22).

These service rates are now used by the calculation module to find an optimum

solution for this hypothetical scenario. Tables 4.13 and 4.14 showed that even

with an external arrival rate of only 1000 tickets per second and 61 Feeder

threads, with a total service rate of just 122 tickets per second, the Feeder

node shows at the optimal configuration utilization of 100%.

Table 4.22 shows that with the help of the two mentioned techniques, the

149

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Feeder speed-up factor

Node Normal x5 x10 x15

Decoder 10658 10658 10658 10658

Converter 12147 12147 12147 12147

Serializer 2061 2061 2061 2061

Feeder 66 330 660 990

Table 4.22: Service rates for all four nodes. Service rate of the Feeder improved by factor
five, ten and fifteen.

service rate of an individual Feeder thread can be improved to 330, 660 and

990 tickets per second. The multiplied database servers are then guaranteeing

that with every new Feeder thread, the total service rate multiplies.

Table 4.23 now shows the optimal configurations of the system with an hy-

pothetical speed-up of the Feeder node of 5, 10 and 15 times. It can be

seen that with a speed-up of only 5 times, and the fact that with every new

Feeder thread, the service rate enhances, the optimal configuration of 2 De-

coder threads, 2 Converter threads, 9 Serializer threads and 51 Feeder threads,

the system is now able to handle an external arrival rate of 13400 tickets per

second with every node under a utilization barrier of 80%.

With a Feeder speed-up of 10 times, the optimal configuration of the system is

built with 3 Decoder threads, 3 Converter threads, 14 Serializer threads and

44 Feeder threads and is now able to handle an external arrival rate of 23000

tickets per second. The external arrival rate can even be increased to 29500

tickets per second, with a Feeder speed-up of 15 times.

Feeder 5x Feeder 10x Feeder 15x

ext.arr.rate: 13400 23000 29500

Node Threads Util.[%] Threads Util.[%] Threads Util.[%]

Decoder 2 62.86 3 71.93 4 69.20

Converter 2 55.16 3 63.12 4 60.71

Serializer 9 72.24 14 79.71 18 79.52

Feeder 51 79.62 44 79.20 38 78.42

Table 4.23: Service rates for all four nodes. Service rate of the Feeder improved by factor
five, ten and fifteen.

150

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

In the original setup (1-1-1-61) with a total Feeder service rate of 122 tick-

ets per second, the system can only handle 97 tickets per second, so that the

Feeder node stays under a utilization barrier of 80%. By increasing the net-

work bandwidth, installing new drivers, or installing replicated databases the

system can now handle 29500 tickets per second. This represents an overall

approvement of more than 300 times.

4.5.7 Excursus: Using an enhanced queueing network for further

analytical analysis

The following section proposes an approach to artificially enhance the queueing

network, by not only increasing the number of threads per node, but actually

using more node types to get a bigger queueing network flow graph.

The basic idea is to use the original queueing network and add the exact

same queueing network to the two queueing network sink nodes Serializer and

Feeder. The Serializer and Feeder nodes are still writing the data they receive

to a file and the Oracle database, but this time the tickets are then forwarded

to another Decoder node.

When the tickets arrive at the new Decoder node, it wanders through the

same queueing network again. This means that now the queueing network

consists of 12 node types instead of just 4. Every node exists exactly three

times, but each one has no bond to the other nodes of the same type. Also,

each of the three nodes has its own queue.

The content of a ticket wandering through the new queueing network will

therefore be written three times to file and into the database. The Decoder

and Feeder node are theoretically decoding and converting the ticket again.

Therefore, in this scenario, the service rates derived from the experiments and

presented in Table 4.22 are also used for the newly multiplied nodes. The

optimization techniques presented in the previous section will further be used

for the optimization process as well. For the analytical optimization a Feeder

speed-up of 10 times is assumed. Therefore, the service rate for all three Feeder

nodes is 660 tickets per second.

151

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Figure 4.16 shows the structure of the new queueing network, which will be

used for analytical optimization. It can be seen that the system now has four

sink nodes, instead of two.

Figure 4.16: New, enlarged queueing network sctructure.

Table 4.24 shows that the optimal configuration of the enlarged queueing net-

work system is 1-1-5-15-1-1-5-14-1-1-5-14. By taken advantage of the 64 cores

of host Zerberus, the system can handle an external arrival rate of 7393 tickets

per second with all 12 nodes under a utilization barrier of 80%.

152

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Node Threads Util.[%]

Decoder 1 69.36

Converter 1 60.85

Serializer 5 72.24

Feeder 15 71.73

Decoder 1 74.67

Converter 1 60.85

Serializer 5 71.73

Feeder 14 80.00

Decoder 1 62.86

Converter 1 60.85

Serializer 5 71.73

Feeder 14 80.00

Table 4.24: Optimal configuration of the new enlarged queueing network and utilization of
each node type with an external arrival rate of 7393 tickets per second.

The developed calculation module (see Section 4.5.1), implementing the ana-

lytical approach (see Section 4.4.3) can easily be changed. A property file, in

which node specifications (node type, service rate, queue size and so forth) are

defined, is used by the calculation module to find the optimal configuration

for the specified queueing network system. Table 4.25 shows the node specifi-

cations within the property file for the Decoder node. It can be seen that the

external arrival rate can be set to a specific value. The external arrival rate

for all other nodes has to be set to 0.

node0arrivalRateExt = 1

node0serviceRate = 10658

node0maxServers = 99

node0servers = 1

node0buffers = 1000

node0memory = 0

node0diskSpace = 0

node0diskSpeed = 0

node0network = 0

Table 4.25: Property file: node specifications (Decoder).

After node specifications are defined, the queueing network flow-chart can eas-

153

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

ily be defined, by specifying the connection between the defined nodes. Table

4.26 shows the setup of the original queueing network.

Initial links: source,destination,probability

links = 4

link0 = -1,0,1

link1 = 0,1,1

link2 = 1,2,1

link3 = 1,3,1

Table 4.26: Property file: transitions specifications (Decoder).

Table 4.27 shows the transitions of the extended queueing network, used in

this section. By adding new nodes and the belonging transitions, new queue-

ing network scenarios can be optimized by the developed tool in a very easy

way.

Initial links: source,destination,probability

links = 12

link0 = -1,0,1

link1 = 0,1,1

link2 = 1,2,1

link3 = 1,3,1

link4 = 2,4,1

link5 = 4,5,1

link6 = 5,6,1

link7 = 5,7,1

link8 = 3,8,1

link9 = 8,9,1

link10 = 9,10,1

link11 = 9,11,1

Table 4.27: Property file: transitions specifications (Decoder).

4.5.8 Excursus: Using artificial nodes and a fictional host for fur-

ther analytical analysis

The two previously described case studies were using the nodes of actual queue-

ing network software. This section presents an approach were fictional nodes

are forming a fictional queueing network. This queueing network is then opti-

mized on a fictional host by the analytical approach.

As mentioned in Section 4.5.2, a number of artificial tasks for artificial nodes

154

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

were described and implemented within the simulation module. The following

approach uses these tasks to build a fictional queueing network. The idea is

to show how a completely different queueing network can be optimized by the

developed analytical model.

The tasks of the artificial nodes used in this section can be described as follows:

• The node Random generates 1000 random numbers for every incoming

ticket.

• The node String A does 250 string manipulations for every passing ticket,

where a string is trimmed into a shorter string.

• The node String B does 250 string manipulations for every passing ticket,

where two strings are combined into one string.

• The node Sort sorts an integer array, consisting of 50000 integer values

for every passing ticket.

• The node Search searches for an integer value within an integer array,

consisting of 50000 integer values for every passing ticket.

• The node Copy copies an integer array, consisting of 50000 integer values

for every passing ticket.

• The node Mean calculates the mean value of an integer array, consisting

of 50000 integer values for every passing ticket.

• The node DB Entry writes data into an Oracle database for every passing

ticket.

• The node DB Search searches for a specific entry in an Oracle database

for every passing ticket.

• The node File Entry writes data to a file for every passing ticket.

Figure 4.17 shows the structure of the fictional queueing network along with

the used nodes. An external source sends tickets to the Random node. The

Random node executes its tasks and for every ticket, forwards one ticket to the

String A node, the Sort node, the DB Entry node and the File Entry node.

After tickets pass through the Random node, the queueing network therefore

155

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Figure 4.17: New, fictional queueing network sctructure.

156

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

consists of four branches.

The first branch deals with tasks regarding string manipulation, therefore

the String A node forwards every ticket to the String B node, where the ticket

essentially leaves the network.

The second branch deals with arrays, where the Sort node sorts an array

and forwards tickets to the Search node, which searches within an array. The

Search node then forwards every ticket to the Copy node, where an array is

duplicated. Finally, the Copy node forwards tickets to the Mean node, where

a mean value of an array is calculated.

The third branch deals with database operations. The DB Entry node

writes data into a database table and forwards the ticket to the DB Search

node, where an SQL search query is executed.

The fourth branch only consists of one node, the File Entry node, where

data is written into a file.

In the next step, these 10 nodes were simulated on host Zerberus, to mea-

sure the service rates for each individual node. Table 4.28 shows the service

rates of the artificial nodes, used in the following optimization process.

Node Service Rate Threads Util.[%]

Random 388 1 25.77

String A 886 1 11.29

String B 765 1 13.07

Sort 82 1 100.00

Search 3369 1 2.97

Copy 3264 1 3.06

Mean 2807 1 3.56

DB Entry 146 1 68.49

DB Search 764 1 13.09

File Entry 27855 1 0.36

Table 4.28: Service rates and utilizations of the nodes of the fictional queueing network in
the initial configuration with an external arrival rate of 100 tickets per second.

Table 4.28 shows that with an external arrival rate of only 100 tickets per

second, the Sort node is already fully utilized and is therefore the bottleneck

of the system. By using the developed analytical approach and recursively

157

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

increasing the threads of over-utilized nodes, the system should be able to

handle more than 100 tickets per second.

In this hypothetical scenario a fictional host server will be used for optimiza-

tion. It is assumed that host Zerberus now has 256 available cores and can

therefore start up to 256 simultaneous threads.

Table 4.29 shows the threads per node and the node utilizations of the fi-

nal and optimal configuration.

Figure 4.18 shows the service rates of the nodes of the queueing network

Node Service Rate Threads Util.[%]

Random 388 25 79.13

String A 886 11 78.76

String B 765 13 77.18

Sort 82 117 80.00

Search 3369 3 75.95

Copy 3264 3 78.39

Mean 2807 4 68.36

DB Entry 146 66 79.66

DB Search 764 13 77.29

File Entry 27855 1 27.56

Table 4.29: Service rates and utilizations of the nodes of the fictional queueing network in
the optimal configuration with an external arrival rate of 7676 tickets per second.

at the initial configuration of one thread per node. It can be seen that even

though, for example, the node File Entry has a service rate of 27855 and can

therefore handle up to 27855 tickets per second, the actual service rate is just

388 tickets per second. Tickets enter the queueing network with, for example,

an external arrival rate of 10000 tickets per second. The first node Random

however, can only handle 388 tickets per second. Therefore, the node Random

forwards just 388 tickets per second to the File Entry, as well as the String A,

the Sort and the DB Entry node.

The File Entry node has a service rate of 27855 and can therefore handle

all 388 tickets per second coming in from the Random node, but has no chance

to handle the 10000 tickets coming in from the external source.

158

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

Figure 4.18: New, fictional queueing network sctructure.

159

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

From the 388 tickets per second coming into the Sort node, only 82 can be han-

dled per second by the Sort node. Therefore, all following nodes (the Search

node, the Copy node and the Mean node) within the dedicated branch, which

all show service rates over 2800 tickets per second, can only handle 82 tickets

per second.

Therefore, all four nodes (the Sort node, the Search node, the Copy node

and the Mean node) within the branch benefit from increasing the Sort node

and can all of a sudden process more tickets than before.

After the optimization, it can be seen that the system can now handle 7676

tickets per second with all 10 nodes under the utilization barrier of 80%. Ta-

ble 4.29, along with the mentioned service rate situation (see Figure 4.18 and

Appendix E), show, that the longer the optimization goes on and the more

cores are available, the different threads per node are leading to the fact that

the utilizations of the nodes are becoming more and more even and level them-

selves under the utilization barrier of 80%.

The problem with the actual service rates of the nodes are not a problem

of the actual DFE software, because the Feeder node, which was the bottle-

neck of the entire system, was located at the end of a branch of the queueing

network. The fictional setup used in this section, shows that with slow nodes

at the top of the queueing network tree, the entire underlying network suffers.

Faster nodes can then process only a lower percentage of the actual incoming

tickets. This section therefore shows the advantage of increasing always the

most over-utilized node, especially with slow nodes at the top of a queueing

network. The stepwise approach balances the actual service rates of all nodes

within the network, so the software can handle the most incoming tickets as

possible.

With 256 available cores, the optimal configuration of the fictional queueing

network, using the artificial nodes and tasks, is 25-11-13-117-3-3-4-66-13-1.

160

4.5. IMPROVING PERFORMANCE BY USING SELF-ADAPTIVE SOFTWARE

4.5.9 Conclusion

This chapter proposed an offline optimization approach, to find the best con-

figuration for a queueing-network software on a given host. Also, an approach

for an online optimization tool was presented. The optimization approach can

be summarized as follows:

• Calculation - The calculation module represents the fundamental basis

for the optimization approach. The module implements all the necessary

performance metrics for a M/M/k/B queueing network, calculates over-

utilized nodes and adds new threads as often as possible to reach an

optimization goal.

• Measurement - The measurement module implements certain tasks that

can be assigned to nodes of a queueing network software and measures

their service rates on a given host. Given the fact that the external arrival

rate, along with the service rates of the nodes, are the driving factors for

the utilization of nodes, this is an important step to make the optimization

more precise and suitable for a given software on a given host.

• Simulation - The simulation module should be used, when the software is

about to be installed on a new system or if the used software does not offer

possibilities to retrieve performance metrics of the real system. E.g: when

the DFE is installed on a new system, and there are no incoming tickets

yet, the simulation module can be started to get an initial configuration.

• Online Optimization - If there is a possibility to start and restart or alter

the queueing network software at runtime, the online optimization should

be used to guarantee an optimal software configuration at all times. Per-

formance metrics like the service rates of all nodes should be extracted

from the real system. If there is no possibility for that, the measure-

ment module should simulate node tasks and thereby measuring artificial

service rates. The calculation module should then calculate the optimal

configuration of the system and restart the software. These steps should

be repeated constantly, e.g.: when an increase/decrease of the external

arrival rate is detected.

161

Chapter 5

Conclusion

The goal of this dissertation was to improve the reliability and the performance

of telecommunications systems. The first part of my work focused on improv-

ing the reliability of a Voice over IP server. By working with and testing VoIP

servers, I soon recognized that different SIP dialects were causing problems for

VoIP devices. Different SIP dialects evolve through the openness of the SIP

protocol. On the one hand, software developers use different interpretations of

the protocol in their products, on the other hand, VoIP servers may not im-

plement the full standard flawlessly right from the start. Therefore, it might

be possible that two SIP devices may not be able to communicate with each

other, even though they use the same protocol.

To improve this situation an autonomic and self-learning tool called Babel-

SIP was developed in Java, which uses C4.5 decision trees to classify incoming

SIP messages and detect headers or header parameters that may be problem-

atic.

Experiments showed that Babel-SIP was able to improve the acceptance rate

of incoming SIP messages drastically and therefore improve the problematic

situation of different SIP dialects.

Furthermore, decision trees derived after the conducted experiments (or during

online use in real systems) show which headers, header parameters, values or

parameter-combinations are problematic. The gained knowledge can therefore

improve software systems, either on the server side by finding bugs in VoIP

162

server software, or on the client side by finding errors within VoIP end devices.

The focus in this dissertation was improving the reliability of VoIP servers,

but the presented ideas can be used within other information technology areas

as well. Network protocols that are using similar text-message-based com-

munication can also benefit from the presented self-learning approach using

decision trees. Also, the ideas presented in my dissertation can lead to the

development of adaptive network protocols. By taking the idea of Babel-SIP

and refining the used self-learning techniques, a universal solution for commu-

nication problems between two devices using the same protocol in early stages

of development may be found, which could possibly have an effect on the entire

field of information technology.

The second part of my work dealt with server software used to handle in-

coming Diameter tickets of mobile telephone devices. The software handles

these incoming tickets and stores the included data. The software itself is

based on a queueing network, where each incoming ticket wanders through the

queueing network and is handled by interconnected nodes. Each node has a

unique task, which is executed once for each passing ticket.

Given the fact that these tasks are lightweight processes, each node can be

parallelized, so that every node thread can be executed on a single core. The

goal of the second part of my work was therefore to improve the performance

of such a telecommunications system, by finding the optimal configuration of

threads per node on a given computing platform. By parallelizing the work to

a number of threads on a number of cores, the nodes total service rate can be

increased and therefore the throughput of the system can be increased.

A combination of an analytical model, a measurement and a simulation ap-

proach was used to achieve this goal. Experiments along with test runs of every

individual approach showed that an autonomic and self-adaptive test tool can

find the optimal configuration for software based on a queueing network. By

recursively adding threads to over-utilized nodes, the current bottleneck of the

system can be found and potentially eliminated, leading to a new bottleneck.

By doing that, the bottleneck is relocated within the software as long as hard-

163

ware resources can be used or an optimization goal is reached. In that way, the

number of incoming requests which can be handled by the system is increased,

which improves the performance of the system.

The work on this dissertation furthermore showed me that the use of auto-

nomic, self-adaptive and self-learning systems can improve the availability and

the performance of not only VoIP systems, but these techniques are nowadays

used in more and more information technology areas.

The easy-to-adapt structure of the developed optimization tool, allows it to

be used for a wide range of software that is based on a multi-thread data-flow

queueing network system. By simply using different node types, adding new

node types and rearranging the structure of the flow graph, the optimization

tool can be used for other software to find the optimal configuration on a given

hardware platform.

164

fghfd

165

Appendix A

SIPGenerator GUI

166

fghfd

167

Appendix B

SIPParameterShuffler GUI

168

fghfd

169

Appendix C

C4.5 tree, REGISTER messages

CSeq <= 0: REJ. (104)

CSeq > 0

| Call-ID <= 0: REJ. (101)

| Call-ID > 0

| | Replaces <= 0

| | | Accept_level <= 0

| | | | To_IP <= 0

| | | | | Contact_Port <= 1111: ACC. (18/2)

| | | | | Contact_Port > 1111: REJ. (74/1)

| | | | To_IP > 0

| | | | | Accept_application/x-private <= 0

| | | | | | Contact_IP <= 0: ACC. (47/15)

| | | | | | Contact_IP > 0

| | | | | | | Min-Expires <= 20

| | | | | | | | Via_received <= 0

| | | | | | | | | Reply-To <= 0

| | | | | | | | | | Via_IP <= 0

| | | | | | | | | | | Via <= 0: REJ. (15)

| | | | | | | | | | | Via > 0: ACC. (88/1)

| | | | | | | | | | Via_IP > 0

| | | | | | | | | | | Privacy_none <= 0

| | | | | | | | | | | | Record-Route <= 0

| | | | | | | | | | | | | Allow_BENOTIFY <= 0

| | | | | | | | | | | | | | Referred-By <= 0

| | | | | | | | | | | | | | | Accept <= 0

| | | | | | | | | | | | | | | | Event_dialog <= 0

| | | | | | | | | | | | | | | | | Warning <= 0: ACC. (2054/3)

| | | | | | | | | | | | | | | | | Warning > 0

| | | | | | | | | | | | | | | | | | Accept-Language <= 0: ACC. (30)

| | | | | | | | | | | | | | | | | | Accept-Language > 0: REJ. (2)

| | | | | | | | | | | | | | | | Event_dialog > 0

| | | | | | | | | | | | | | | | | Content-Type <= 0: ACC. (28)

| | | | | | | | | | | | | | | | | Content-Type > 0: REJ. (2)

| | | | | | | | | | | | | | | Accept > 0

| | | | | | | | | | | | | | | | Allow-Events <= 0

170

| | | | | | | | | | | | | | | | | Request-Line_transport <= 0: ACC. (51)

| | | | | | | | | | | | | | | | | Request-Line_transport > 0

| | | | | | | | | | | | | | | | | | Accept_app/sdp <= 0: REJ. (14)

| | | | | | | | | | | | | | | | | | Accept_app/sdp > 0: ACC. (15)

| | | | | | | | | | | | | | | | Allow-Events > 0

| | | | | | | | | | | | | | | | | Contact_Port <= 1111

| | | | | | | | | | | | | | | | | | From_IP <= 0: REJ. (2)

| | | | | | | | | | | | | | | | | | From_IP > 0: ACC. (38)

| | | | | | | | | | | | | | | | | Contact_Port > 1111: ACC. (338)

| | | | | | | | | | | | | | Referred-By > 0

| | | | | | | | | | | | | | | Content-Type_charset <= 0: ACC. (55)

| | | | | | | | | | | | | | | Content-Type_charset > 0: REJ. (4)

| | | | | | | | | | | | | Allow_BENOTIFY > 0

| | | | | | | | | | | | | | Allow_INVITE <= 0

| | | | | | | | | | | | | | | Via_rport <= 0: REJ. (11)

| | | | | | | | | | | | | | | Via_rport > 0: ACC. (30)

| | | | | | | | | | | | | | Allow_INVITE > 0

| | | | | | | | | | | | | | | Alert-Info <= 0

| | | | | | | | | | | | | | | | Content-Type <= 0: ACC. (163/1)

| | | | | | | | | | | | | | | | Content-Type > 0

| | | | | | | | | | | | | | | | | Content-Type_charset <= 0: ACC. (20)

| | | | | | | | | | | | | | | | | Content-Type_charset > 0: REJ. (2)

| | | | | | | | | | | | | | | Alert-Info > 0

| | | | | | | | | | | | | | | | From_Name <= 0: ACC. (23)

| | | | | | | | | | | | | | | | From_Name > 0: REJ. (3)

| | | | | | | | | | | | Record-Route > 0

| | | | | | | | | | | | | Proxy-Authorization <= 0

| | | | | | | | | | | | | | Priority_non-urgent <= 0: ACC. (213/1)

| | | | | | | | | | | | | | Priority_non-urgent > 0

| | | | | | | | | | | | | | | Contact_q <= 0: REJ. (3)

| | | | | | | | | | | | | | | Contact_q > 0: ACC. (15)

| | | | | | | | | | | | | Proxy-Authorization > 0: REJ. (14)

| | | | | | | | | | | Privacy_none > 0

| | | | | | | | | | | | Error-Info <= 0: ACC. (91/1)

| | | | | | | | | | | | Error-Info > 0: REJ. (10)

| | | | | | | | | Reply-To > 0

| | | | | | | | | | Contact_sip.instance <= 0

| | | | | | | | | | | Allow-Events_hold <= 0: ACC. (163)

| | | | | | | | | | | Allow-Events_hold > 0

| | | | | | | | | | | | Request-Line_user <= 0: ACC. (9)

| | | | | | | | | | | | Request-Line_user > 0: REJ. (2)

| | | | | | | | | | Contact_sip.instance > 0: REJ. (30/1)

| | | | | | | | Via_received > 0

| | | | | | | | | Contact_q <= 0: ACC. (76)

| | | | | | | | | Contact_q > 0: REJ. (17)

| | | | | | | Min-Expires > 20

| | | | | | | | Contact_line <= 0

| | | | | | | | | Allow_ACK <= 0: ACC. (63)

| | | | | | | | | Allow_ACK > 0: REJ. (4/1)

| | | | | | | | Contact_line > 0: REJ. (24)

| | | | | Accept_application/x-private > 0

171

| | | | | | Contact_mobility <= 0

| | | | | | | Via_ttl <= 1

| | | | | | | | Subscription-State <= 0: ACC. (198/2)

| | | | | | | | Subscription-State > 0: REJ. (14)

| | | | | | | Via_ttl > 1: REJ. (15)

| | | | | | Contact_mobility > 0: REJ. (41/1)

| | | Accept_level > 0: REJ. (30)

| | Replaces > 0: REJ. (38)

172

fghfd

173

Appendix D

C4.5 tree, INVITE messages

To_IP <= 0: REJ. (720)

To_IP > 0

| Replaces <= 0

| | Accept_application/x-private <= 0

| | | Priority_non-urgent <= 0

| | | | From_IP <= 0

| | | | | Allow-Events_conference <= 0: REJ. (310/10)

| | | | | Allow-Events_conference > 0: ACC. (100)

| | | | From_IP > 0

| | | | | Priority_urgent <= 0

| | | | | | Allow-Events_refer <= 0

| | | | | | | Timestamp <= 0

| | | | | | | | Event_purpose <= 0

| | | | | | | | | Supported <= 0

| | | | | | | | | | To_Name <= 0

| | | | | | | | | | | P-Key-Flags <= 0

| | | | | | | | | | | | Route <= 0

| | | | | | | | | | | | | Accept-Encoding <= 0

| | | | | | | | | | | | | | Require_100rel <= 0

| | | | | | | | | | | | | | | Via_branch <= 0

| | | | | | | | | | | | | | | | Expires <= 0

| | | | | | | | | | | | | | | | | Server <= 0: ACC. (290)

| | | | | | | | | | | | | | | | | Server > 0: REJ. (30/10)

| | | | | | | | | | | | | | | | Expires > 0: REJ. (30)

| | | | | | | | | | | | | | | Via_branch > 0

| | | | | | | | | | | | | | | | Allow_REGISTER <= 0

| | | | | | | | | | | | | | | | | Organization <= 0

| | | | | | | | | | | | | | | | | | Accept <= 0: ACC. (1960/30)

| | | | | | | | | | | | | | | | | | Accept > 0

| | | | | | | | | | | | | | | | | | | Content-T_text/html <= 0: ACC.(180)

| | | | | | | | | | | | | | | | | | | Content-T_text/html > 0: REJ. (20)

| | | | | | | | | | | | | | | | | Organization > 0: ACC. (200/20)

| | | | | | | | | | | | | | | | Allow_REGISTER > 0: ACC. (170/20)

| | | | | | | | | | | | | | Require_100rel > 0

| | | | | | | | | | | | | | | Contact_Port <= 0: REJ. (30)

| | | | | | | | | | | | | | | Contact_Port > 0

174

| | | | | | | | | | | | | | | | Via_maddr <= 0: ACC. (240)

| | | | | | | | | | | | | | | | Via_maddr > 0: REJ. (20)

| | | | | | | | | | | | | Accept-Encoding > 0

| | | | | | | | | | | | | | Min-SE <= 0: REJ. (50/10)

| | | | | | | | | | | | | | Min-SE > 0: ACC. (130)

| | | | | | | | | | | | Route > 0

| | | | | | | | | | | | | CSeq <= 0: REJ. (40)

| | | | | | | | | | | | | CSeq > 0

| | | | | | | | | | | | | | Content-Type_text/html <= 0

| | | | | | | | | | | | | | | Require_timer <= 0

| | | | | | | | | | | | | | | | Allow_UPDATE <= 0

| | | | | | | | | | | | | | | | | Allow-Events_hold <= 0

| | | | | | | | | | | | | | | | | | Accept_text/html <= 0

| | | | | | | | | | | | | | | | | | | Allow-Events_dialog <= 0

| Content-Enc_tar <= 0: REJ. (20)

| Content-Enc_tar > 0: ACC. (30)

| | | | | | | | | | | | | | | | | | | Allow-Ev_dialog > 0: ACC. (40/10)

| | | | | | | | | | | | | | | | | | Accept_text/html > 0: ACC. (20)

| | | | | | | | | | | | | | | | | Allow-Events_hold > 0: ACC. (40)

| | | | | | | | | | | | | | | | Allow_UPDATE > 0: ACC. (150)

| | | | | | | | | | | | | | | Require_timer > 0: REJ. (20)

| | | | | | | | | | | | | | Content-Type_text/html > 0: REJ. (20)

| | | | | | | | | | | P-Key-Flags > 0

| | | | | | | | | | | | Privacy_user <= 0

| | | | | | | | | | | | | In-Reply-To <= 0

| | | | | | | | | | | | | | Via_maddr <= 0: REJ. (90/10)

| | | | | | | | | | | | | | Via_maddr > 0: ACC. (20)

| | | | | | | | | | | | | In-Reply-To > 0: ACC. (30)

| | | | | | | | | | | | Privacy_user > 0: ACC. (60)

| | | | | | | | | | To_Name > 0: ACC. (1550/10)

| | | | | | | | | Supported > 0

| | | | | | | | | | Content-Type_text/html <= 0

| | | | | | | | | | | WWW-Contact_https <= 0

| | | | | | | | | | | | Content-Type_charset <= 0

| | | | | | | | | | | | | Subject <= 0

| | | | | | | | | | | | | | CSeq <= 0: REJ. (30)

| | | | | | | | | | | | | | CSeq > 0

| | | | | | | | | | | | | | | Contact_rinstance <= 0

| | | | | | | | | | | | | | | | Allow_OPTIONS <= 0

| | | | | | | | | | | | | | | | | Allow-Events_presence <= 0

| | | | | | | | | | | | | | | | | | Via_rport <= 0: ACC. (30/10)

| | | | | | | | | | | | | | | | | | Via_rport > 0

| | | | | | | | | | | | | | | | | | | Contact_audio <= 0: REJ. (30/10)

| | | | | | | | | | | | | | | | | | | Contact_audio > 0: ACC. (50/20)

| | | | | | | | | | | | | | | | | Allow-Events_presence > 0: ACC. (50)

| | | | | | | | | | | | | | | | Allow_OPTIONS > 0: ACC. (90)

| | | | | | | | | | | | | | | Contact_rinstance > 0: REJ. (30/10)

| | | | | | | | | | | | | Subject > 0: REJ. (40)

| | | | | | | | | | | | Content-Type_charset > 0: REJ. (50)

| | | | | | | | | | | WWW-Contact_https > 0

| | | | | | | | | | | | Privacy_header <= 0: ACC. (580/20)

175

| | | | | | | | | | | | Privacy_header > 0

| | | | | | | | | | | | | Contact_sip.instance <= 0: REJ. (40/10)

| | | | | | | | | | | | | Contact_sip.instance > 0: ACC. (20)

| | | | | | | | | | Content-Type_text/html > 0: REJ. (60)

| | | | | | | | Event_purpose > 0

| | | | | | | | | To_Name <= 0

| | | | | | | | | | Contact_q <= 0

| | | | | | | | | | | Priority <= 0

| | | | | | | | | | | | Unsupported <= 0

| | | | | | | | | | | | | WWW-Contact_http <= 0: REJ. (20)

| | | | | | | | | | | | | WWW-Contact_http > 0: ACC. (40/10)

| | | | | | | | | | | | Unsupported > 0: ACC. (50)

| | | | | | | | | | | Priority > 0: REJ. (50)

| | | | | | | | | | Contact_q > 0: ACC. (140)

| | | | | | | | | To_Name > 0: REJ. (30)

| | | | | | | Timestamp > 0

| | | | | | | | Allow-Events_hold <= 0: ACC. (220/10)

| | | | | | | | Allow-Events_hold > 0: REJ. (100)

| | | | | | Allow-Events_refer > 0

| | | | | | | CSeq <= 0: REJ. (50)

| | | | | | | CSeq > 0

| | | | | | | | Retry-After <= 0

| | | | | | | | | Contact_flow-id <= 0

| | | | | | | | | | Referred-By <= 0

| | | | | | | | | | | Alert-Info <= 0

| | | | | | | | | | | | Via_rport <= 0

| | | | | | | | | | | | | In-Reply-To <= 0

| | | | | | | | | | | | | | Contact_Port <= 0: ACC. (20)

| | | | | | | | | | | | | | Contact_Port > 0: REJ. (50/20)

| | | | | | | | | | | | | In-Reply-To > 0: REJ. (20)

| | | | | | | | | | | | Via_rport > 0: ACC. (80/10)

| | | | | | | | | | | Alert-Info > 0: REJ. (20)

| | | | | | | | | | Referred-By > 0: ACC. (30)

| | | | | | | | | Contact_flow-id > 0: ACC. (80)

| | | | | | | | Retry-After > 0: REJ. (30)

| | | | | Priority_urgent > 0

| | | | | | Request-Line_transport <= 0: REJ. (250)

| | | | | | Request-Line_transport > 0: ACC. (90)

| | | Priority_non-urgent > 0

| | | | Via_rport <= 0

| | | | | Contact_expires <= 1: ACC. (20)

| | | | | Contact_expires > 1: REJ. (20)

| | | | Via_rport > 0: REJ. (240)

| | Accept_application/x-private > 0: REJ. (430)

| Replaces > 0: REJ. (480)

176

fghfd

177

Appendix E

Configurations of a fictional
system (see Section 4.5.8):
Cumulated service rates for all
nodes and the maximum
external arrival rate where all
nodes are utilized under 80%.

The following table shows the recursive working method of the developed optimization tool.
The tool finds the most over-utilized node and adds one thread to the node. The table there-
fore shows each of the 256 configurations with the according service rates and the current
throughput possible.

Configuration: Number of threads per node (Random-String A-String B-Sort-Search-
Copy-Mean-DB Entry-DB Search-File Entry).

Threads: Number of all threads of the current configuration.

Individual Service Rates: Service rates of all ten nodes for one individual thread.

Cumulated Service Rates: Service rates of all ten nodes for all threads (cumulated
service rate = individual service rate * number of threads).

Max.Ext.Arr.Rate: The maximum external arrival rate the system can cope with,
so that all nodes show a utilization of under 80%.

178

Max.Ext.Arr.Rate 65 11
6

13
1

19
6

23
3

26
2

31
0

32
8

35
0

39
3

45
9

46
7

52
4

58
4

59
0

61
1

61
2

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

15
28

DB Entry 14
6

14
6

29
2

29
2

29
2

43
8

43
8

43
8

43
8

58
4

58
4

58
4

73
0

73
0

87
6

87
6

87
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 16
4

16
4

24
6

32
8

32
8

41
0

41
0

49
2

49
2

57
4

65
6

65
6

73
8

73
8

82
0

82
0

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

77
6

77
6

77
6

77
6

77
6

77
6

77
6

77
6

77
6

77
6

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Configuration 1-
1-

1-
1-

1-
1-

1-
1-

1-
1

1-
1-

1-
2-

1-
1-

1-
1-

1-
1

1-
1-

1-
2-

1-
1-

1-
2-

1-
1

1-
1-

1-
3-

1-
1-

1-
2-

1-
1

1-
1-

1-
4-

1-
1-

1-
2-

1-
1

1-
1-

1-
4-

1-
1-

1-
3-

1-
1

1-
1-

1-
5-

1-
1-

1-
3-

1-
1

2-
1-

1-
5-

1-
1-

1-
3-

1-
1

2-
1-

1-
6-

1-
1-

1-
3-

1-
1

2-
1-

1-
6-

1-
1-

1-
4-

1-
1

2-
1-

1-
7-

1-
1-

1-
4-

1-
1

2-
1-

1-
8-

1-
1-

1-
4-

1-
1

2-
1-

1-
8-

1-
1-

1-
5-

1-
1

2-
1-

1-
9-

1-
1-

1-
5-

1-
1

2-
1-

1-
9-

1-
1-

1-
6-

1-
1

2-
1-

1-
10

-1
-1

-1
-6

-1
-1

2-
1-

1-
10

-1
-1

-1
-6

-2
-1

179

Max.Ext.Arr.Rate 62
0

65
6

70
0

70
8

72
1

78
7

81
7

85
2

91
8

93
1

93
4

98
4

10
50

10
51

11
15

11
68

11
81

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

15
28

DB Entry 87
6

87
6

87
6

10
22

10
22

10
22

10
22

11
68

11
68

11
68

11
68

13
14

13
14

13
14

14
60

14
60

16
06

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82
0

82
0

90
2

90
2

90
2

98
4

10
66

10
66

11
48

12
30

12
30

12
30

13
12

13
94

13
94

14
76

14
76

String B 15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

15
30

String A 88
6

88
6

88
6

88
6

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

Random 77
6

11
64

11
64

11
64

11
64

11
64

11
64

11
64

11
64

11
64

15
52

15
52

15
52

15
52

15
52

15
52

15
52

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Configuration 2-
1-

2-
10

-1
-1

-1
-6

-2
-1

3-
1-

2-
10

-1
-1

-1
-6

-2
-1

3-
1-

2-
11

-1
-1

-1
-6

-2
-1

3-
1-

2-
11

-1
-1

-1
-7

-2
-1

3-
2-

2-
11

-1
-1

-1
-7

-2
-1

3-
2-

2-
12

-1
-1

-1
-7

-2
-1

3-
2-

2-
13

-1
-1

-1
-7

-2
-1

3-
2-

2-
13

-1
-1

-1
-8

-2
-1

3-
2-

2-
14

-1
-1

-1
-8

-2
-1

3-
2-

2-
15

-1
-1

-1
-8

-2
-1

4-
2-

2-
15

-1
-1

-1
-8

-2
-1

4-
2-

2-
15

-1
-1

-1
-9

-2
-1

4-
2-

2-
16

-1
-1

-1
-9

-2
-1

4-
2-

2-
17

-1
-1

-1
-9

-2
-1

4-
2-

2-
17

-1
-1

-1
-1

0-
2-

1

4-
2-

2-
18

-1
-1

-1
-1

0-
2-

1

4-
2-

2-
18

-1
-1

-1
-1

1-
2-

1

180

Max.Ext.Arr.Rate 12
22

12
24

12
42

12
46

12
85

13
12

13
78

14
02

14
18

14
43

15
09

15
18

15
52

15
74

16
35

16
40

17
06

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 15
28

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

22
92

DB Entry 16
06

16
06

16
06

16
06

16
06

17
52

17
52

17
52

18
98

18
98

18
98

18
98

20
44

20
44

20
44

21
90

21
90

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 15
58

15
58

15
58

15
58

16
40

16
40

17
22

18
04

18
04

18
04

18
86

19
68

19
68

19
68

20
50

20
50

21
32

String B 15
30

15
30

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

22
95

String A 17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

17
72

26
58

26
58

26
58

26
58

26
58

26
58

26
58

26
58

Random 15
52

15
52

15
52

19
40

19
40

19
40

19
40

19
40

19
40

19
40

19
40

19
40

19
40

23
28

23
28

23
28

23
28

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Configuration 4-
2-

2-
19

-1
-1

-1
-1

1-
2-

1

4-
2-

2-
19

-1
-1

-1
-1

1-
3-

1

4-
2-

3-
19

-1
-1

-1
-1

1-
3-

1

5-
2-

3-
19

-1
-1

-1
-1

1-
3-

1

5-
2-

3-
20

-1
-1

-1
-1

1-
3-

1

5-
2-

3-
20

-1
-1

-1
-1

2-
3-

1

5-
2-

3-
21

-1
-1

-1
-1

2-
3-

1

5-
2-

3-
22

-1
-1

-1
-1

2-
3-

1

5-
2-

3-
22

-1
-1

-1
-1

3-
3-

1

5-
3-

3-
22

-1
-1

-1
-1

3-
3-

1

5-
3-

3-
23

-1
-1

-1
-1

3-
3-

1

5-
3-

3-
24

-1
-1

-1
-1

3-
3-

1

5-
3-

3-
24

-1
-1

-1
-1

4-
3-

1

6-
3-

3-
24

-1
-1

-1
-1

4-
3-

1

6-
3-

3-
25

-1
-1

-1
-1

4-
3-

1

6-
3-

3-
25

-1
-1

-1
-1

5-
3-

1

6-
3-

3-
26

-1
-1

-1
-1

5-
3-

1

181

Max.Ext.Arr.Rate 22
30

22
46

22
96

23
36

23
62

24
27

24
45

24
48

24
53

24
83

24
93

25
58

25
70

26
11

26
24

26
86

26
90

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 30
56

30
56

30
56

30
56

30
56

30
56

30
56

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

DB Entry 29
20

29
20

29
20

29
20

30
66

30
66

30
66

30
66

30
66

32
12

32
12

32
12

32
12

33
58

33
58

33
58

35
04

Mean 28
07

28
07

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

65
28

65
28

65
28

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 27
88

28
70

28
70

29
52

29
52

30
34

31
16

31
16

31
16

31
16

31
16

31
98

32
80

32
80

32
80

33
62

33
62

String B 30
60

30
60

30
60

30
60

30
60

30
60

30
60

30
60

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

String A 35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

35
44

Random 31
04

31
04

31
04

31
04

31
04

31
04

31
04

31
04

31
04

31
04

34
92

34
92

34
92

34
92

34
92

34
92

34
92

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Configuration 8-
4-

4-
34

-1
-1

-1
-2

0-
4-

1

8-
4-

4-
35

-1
-1

-1
-2

0-
4-

1

8-
4-

4-
35

-1
-1

-2
-2

0-
4-

1

8-
4-

4-
36

-1
-1

-2
-2

0-
4-

1

8-
4-

4-
36

-1
-1

-2
-2

1-
4-

1

8-
4-

4-
37

-1
-1

-2
-2

1-
4-

1

8-
4-

4-
38

-1
-1

-2
-2

1-
4-

1

8-
4-

4-
38

-1
-1

-2
-2

1-
5-

1

8-
4-

5-
38

-1
-1

-2
-2

1-
5-

1

8-
4-

5-
38

-1
-1

-2
-2

2-
5-

1

9-
4-

5-
38

-1
-1

-2
-2

2-
5-

1

9-
4-

5-
39

-1
-1

-2
-2

2-
5-

1

9-
4-

5-
40

-1
-1

-2
-2

2-
5-

1

9-
4-

5-
40

-1
-1

-2
-2

3-
5-

1

9-
4-

5-
40

-1
-2

-2
-2

3-
5-

1

9-
4-

5-
41

-1
-2

-2
-2

3-
5-

1

9-
4-

5-
41

-1
-2

-2
-2

4-
5-

1

182

Max.Ext.Arr.Rate 26
95

27
55

27
94

28
03

28
21

28
35

28
86

29
20

29
52

30
18

30
37

30
56

30
60

30
83

31
04

31
49

31
54

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

38
20

45
84

45
84

45
84

45
84

45
84

DB Entry 35
04

35
04

35
04

35
04

36
50

36
50

36
50

36
50

37
96

37
96

37
96

39
42

39
42

39
42

39
42

39
42

39
42

Mean 56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

Copy 65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

Search 33
69

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

Sort 34
44

34
44

35
26

35
26

35
26

36
08

36
08

36
90

36
90

37
72

38
54

38
54

38
54

38
54

39
36

39
36

40
18

String B 38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

38
25

45
90

45
90

45
90

45
90

String A 35
44

35
44

35
44

35
44

35
44

35
44

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

Random 34
92

34
92

34
92

38
80

38
80

38
80

38
80

38
80

38
80

38
80

38
80

38
80

38
80

38
80

38
80

42
68

42
68

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

Configuration 9-
4-

5-
42

-1
-2

-2
-2

4-
5-

1

9-
4-

5-
42

-2
-2

-2
-2

4-
5-

1

9-
4-

5-
43

-2
-2

-2
-2

4-
5-

1

10
-4

-5
-4

3-
2-

2-
2-

24
-5

-1

10
-4

-5
-4

3-
2-

2-
2-

25
-5

-1

10
-4

-5
-4

4-
2-

2-
2-

25
-5

-1

10
-5

-5
-4

4-
2-

2-
2-

25
-5

-1

10
-5

-5
-4

5-
2-

2-
2-

25
-5

-1

10
-5

-5
-4

5-
2-

2-
2-

26
-5

-1

10
-5

-5
-4

6-
2-

2-
2-

26
-5

-1

10
-5

-5
-4

7-
2-

2-
2-

26
-5

-1

10
-5

-5
-4

7-
2-

2-
2-

27
-5

-1

10
-5

-5
-4

7-
2-

2-
2-

27
-6

-1

10
-5

-6
-4

7-
2-

2-
2-

27
-6

-1

10
-5

-6
-4

8-
2-

2-
2-

27
-6

-1

11
-5

-6
-4

8-
2-

2-
2-

27
-6

-1

11
-5

-6
-4

9-
2-

2-
2-

27
-6

-1

183

Max.Ext.Arr.Rate 32
14

32
70

32
80

33
46

33
87

34
11

34
14

34
77

35
04

35
42

35
44

36
08

36
21

36
67

36
72

36
74

37
25

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

45
84

53
48

53
48

53
48

DB Entry 40
88

40
88

42
34

42
34

42
34

43
80

43
80

43
80

43
80

45
26

45
26

45
26

45
26

46
72

46
72

46
72

46
72

Mean 56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

Copy 65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

Search 67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

Sort 40
18

41
00

41
00

41
82

42
64

42
64

43
46

43
46

44
28

44
28

45
10

45
10

45
92

45
92

45
92

45
92

46
74

String B 45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

45
90

53
55

53
55

String A 44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

44
30

53
16

53
16

53
16

53
16

53
16

53
16

Random 42
68

42
68

42
68

42
68

42
68

42
68

42
68

46
56

46
56

46
56

46
56

46
56

46
56

46
56

46
56

46
56

46
56

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

Configuration 11
-5

-6
-4

9-
2-

2-
2-

28
-6

-1

11
-5

-6
-5

0-
2-

2-
2-

28
-6

-1

11
-5

-6
-5

0-
2-

2-
2-

29
-6

-1

11
-5

-6
-5

1-
2-

2-
2-

29
-6

-1

11
-5

-6
-5

2-
2-

2-
2-

29
-6

-1

11
-5

-6
-5

2-
2-

2-
2-

30
-6

-1

11
-5

-6
-5

3-
2-

2-
2-

30
-6

-1

12
-5

-6
-5

3-
2-

2-
2-

30
-6

-1

12
-5

-6
-5

4-
2-

2-
2-

30
-6

-1

12
-5

-6
-5

4-
2-

2-
2-

31
-6

-1

12
-5

-6
-5

5-
2-

2-
2-

31
-6

-1

12
-6

-6
-5

5-
2-

2-
2-

31
-6

-1

12
-6

-6
-5

6-
2-

2-
2-

31
-6

-1

12
-6

-6
-5

6-
2-

2-
2-

32
-6

-1

12
-6

-6
-5

6-
2-

2-
2-

32
-7

-1

12
-6

-7
-5

6-
2-

2-
2-

32
-7

-1

12
-6

-7
-5

7-
2-

2-
2-

32
-7

-1

184

Max.Ext.Arr.Rate 37
38

37
39

38
05

38
54

38
70

39
36

39
71

40
02

40
35

40
67

40
88

41
33

41
98

42
05

42
53

42
64

42
78

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

53
48

DB Entry 46
72

48
18

48
18

48
18

49
64

49
64

49
64

51
10

51
10

51
10

51
10

52
56

52
56

52
56

54
02

54
02

54
02

Mean 56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

Copy 65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

Search 67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

Sort 46
74

46
74

47
56

48
38

48
38

49
20

50
02

50
02

50
84

50
84

51
66

51
66

52
48

53
30

53
30

53
30

54
12

String B 53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

53
55

String A 53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

53
16

62
02

62
02

Random 50
44

50
44

50
44

50
44

50
44

50
44

50
44

50
44

50
44

54
32

54
32

54
32

54
32

54
32

54
32

54
32

54
32

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

Configuration 13
-6

-7
-5

7-
2-

2-
2-

32
-7

-1

13
-6

-7
-5

7-
2-

2-
2-

33
-7

-1

13
-6

-7
-5

8-
2-

2-
2-

33
-7

-1

13
-6

-7
-5

9-
2-

2-
2-

33
-7

-1

13
-6

-7
-5

9-
2-

2-
2-

34
-7

-1

13
-6

-7
-6

0-
2-

2-
2-

34
-7

-1

13
-6

-7
-6

1-
2-

2-
2-

34
-7

-1

13
-6

-7
-6

1-
2-

2-
2-

35
-7

-1

13
-6

-7
-6

2-
2-

2-
2-

35
-7

-1

14
-6

-7
-6

2-
2-

2-
2-

35
-7

-1

14
-6

-7
-6

3-
2-

2-
2-

35
-7

-1

14
-6

-7
-6

3-
2-

2-
2-

36
-7

-1

14
-6

-7
-6

4-
2-

2-
2-

36
-7

-1

14
-6

-7
-6

5-
2-

2-
2-

36
-7

-1

14
-6

-7
-6

5-
2-

2-
2-

37
-7

-1

14
-7

-7
-6

5-
2-

2-
2-

37
-7

-1

14
-7

-7
-6

6-
2-

2-
2-

37
-7

-1

185

Max.Ext.Arr.Rate 42
84

43
22

43
30

43
46

43
95

44
38

44
61

44
91

45
26

45
55

45
92

46
56

46
58

46
72

47
23

47
89

47
89

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

61
12

DB Entry 54
02

54
02

55
48

55
48

55
48

55
48

56
94

56
94

56
94

56
94

58
40

58
40

58
40

58
40

59
86

59
86

59
86

Mean 56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

56
14

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

Copy 65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

Search 67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

Sort 54
12

54
12

54
12

54
94

54
94

55
76

55
76

56
58

56
58

57
40

57
40

58
22

58
22

59
04

59
04

59
86

60
68

String B 53
55

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

61
20

String A 62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

62
02

Random 54
32

54
32

54
32

54
32

58
20

58
20

58
20

58
20

58
20

58
20

58
20

58
20

62
08

62
08

62
08

62
08

62
08

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

Configuration 14
-7

-7
-6

6-
2-

2-
2-

37
-8

-1

14
-7

-8
-6

6-
2-

2-
2-

37
-8

-1

14
-7

-8
-6

6-
2-

2-
2-

38
-8

-1

14
-7

-8
-6

7-
2-

2-
2-

38
-8

-1

15
-7

-8
-6

7-
2-

2-
2-

38
-8

-1

15
-7

-8
-6

8-
2-

2-
2-

38
-8

-1

15
-7

-8
-6

8-
2-

2-
2-

39
-8

-1

15
-7

-8
-6

9-
2-

2-
2-

39
-8

-1

15
-7

-8
-6

9-
2-

2-
3-

39
-8

-1

15
-7

-8
-7

0-
2-

2-
3-

39
-8

-1

15
-7

-8
-7

0-
2-

2-
3-

40
-8

-1

15
-7

-8
-7

1-
2-

2-
3-

40
-8

-1

16
-7

-8
-7

1-
2-

2-
3-

40
-8

-1

16
-7

-8
-7

2-
2-

2-
3-

40
-8

-1

16
-7

-8
-7

2-
2-

2-
3-

41
-8

-1

16
-7

-8
-7

3-
2-

2-
3-

41
-8

-1

16
-7

-8
-7

4-
2-

2-
3-

41
-8

-1

186

Max.Ext.Arr.Rate 48
54

48
90

48
96

49
06

49
20

49
62

49
66

49
86

50
22

50
51

51
17

51
39

51
82

52
22

52
48

52
56

52
77

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 61
12

61
12

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

68
76

DB Entry 61
32

61
32

61
32

61
32

62
78

62
78

62
78

62
78

62
78

64
24

64
24

64
24

65
70

65
70

65
70

65
70

67
16

Mean 84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

Copy 65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

65
28

97
92

97
92

97
92

Search 67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

67
38

Sort 60
68

61
50

61
50

61
50

61
50

62
32

62
32

62
32

63
14

63
14

63
96

64
78

64
78

65
60

65
60

66
42

66
42

String B 61
20

61
20

61
20

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

String A 62
02

62
02

62
02

62
02

62
02

62
02

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

Random 62
08

62
08

62
08

62
08

62
08

62
08

62
08

65
96

65
96

65
96

65
96

65
96

65
96

65
96

65
96

65
96

65
96

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

Configuration 16
-7

-8
-7

4-
2-

2-
3-

42
-8

-1

16
-7

-8
-7

5-
2-

2-
3-

42
-8

-1

16
-7

-8
-7

5-
2-

2-
3-

42
-9

-1

16
-7

-9
-7

5-
2-

2-
3-

42
-9

-1

16
-7

-9
-7

5-
2-

2-
3-

43
-9

-1

16
-7

-9
-7

6-
2-

2-
3-

43
-9

-1

16
-8

-9
-7

6-
2-

2-
3-

43
-9

-1

17
-8

-9
-7

6-
2-

2-
3-

43
-9

-1

17
-8

-9
-7

7-
2-

2-
3-

43
-9

-1

17
-8

-9
-7

7-
2-

2-
3-

44
-9

-1

17
-8

-9
-7

8-
2-

2-
3-

44
-9

-1

17
-8

-9
-7

9-
2-

2-
3-

44
-9

-1

17
-8

-9
-7

9-
2-

2-
3-

45
-9

-1

17
-8

-9
-8

0-
2-

2-
3-

45
-9

-1

17
-8

-9
-8

0-
2-

3-
3-

45
-9

-1

17
-8

-9
-8

1-
2-

3-
3-

45
-9

-1

17
-8

-9
-8

1-
2-

3-
3-

46
-9

-1

187

Max.Ext.Arr.Rate 53
14

53
73

53
79

53
90

54
45

54
90

55
01

55
08

55
10

55
76

55
87

56
06

56
42

56
70

57
07

57
23

57
73

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 68
76

68
76

68
76

68
76

68
76

68
76

68
76

76
40

76
40

76
40

76
40

76
40

76
40

76
40

76
40

76
40

76
40

DB Entry 67
16

67
16

68
62

68
62

68
62

68
62

70
08

70
08

70
08

70
08

70
08

70
08

71
54

71
54

71
54

71
54

73
00

Mean 84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

Copy 97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

Search 67
38

67
38

67
38

67
38

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

Sort 66
42

67
24

67
24

68
06

68
06

68
88

68
88

68
88

68
88

69
70

70
52

70
52

70
52

71
34

71
34

72
16

72
16

String B 68
85

68
85

68
85

68
85

68
85

68
85

68
85

68
85

76
50

76
50

76
50

76
50

76
50

76
50

76
50

76
50

76
50

String A 70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

70
88

79
74

79
74

79
74

Random 69
84

69
84

69
84

69
84

69
84

69
84

69
84

69
84

69
84

69
84

69
84

73
72

73
72

73
72

73
72

73
72

73
72

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

Configuration 18
-8

-9
-8

1-
2-

3-
3-

46
-9

-1

18
-8

-9
-8

2-
2-

3-
3-

46
-9

-1

18
-8

-9
-8

2-
2-

3-
3-

47
-9

-1

18
-8

-9
-8

3-
2-

3-
3-

47
-9

-1

18
-8

-9
-8

3-
3-

3-
3-

47
-9

-1

18
-8

-9
-8

4-
3-

3-
3-

47
-9

-1

18
-8

-9
-8

4-
3-

3-
3-

48
-9

-1

18
-8

-9
-8

4-
3-

3-
3-

48
-1

0-
1

18
-8

-1
0-

84
-3

-3
-3

-4
8-

10
-1

18
-8

-1
0-

85
-3

-3
-3

-4
8-

10
-1

18
-8

-1
0-

86
-3

-3
-3

-4
8-

10
-1

19
-8

-1
0-

86
-3

-3
-3

-4
8-

10
-1

19
-8

-1
0-

86
-3

-3
-3

-4
9-

10
-1

19
-8

-1
0-

87
-3

-3
-3

-4
9-

10
-1

19
-9

-1
0-

87
-3

-3
-3

-4
9-

10
-1

19
-9

-1
0-

88
-3

-3
-3

-4
9-

10
-1

19
-9

-1
0-

88
-3

-3
-3

-5
0-

10
-1

188

Max.Ext.Arr.Rate 58
38

58
40

58
98

59
04

59
57

59
70

60
35

60
74

61
01

61
12

61
20

61
66

61
90

62
08

62
32

62
98

63
07

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
40

76
40

76
40

76
40

76
40

76
40

76
40

76
40

76
40

76
40

84
04

84
04

84
04

84
04

84
04

84
04

84
04

DB Entry 73
00

73
00

74
46

74
46

74
46

75
92

75
92

75
92

77
38

77
38

77
38

77
38

77
38

78
84

78
84

78
84

78
84

Mean 84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

Copy 97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

Search 10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

Sort 72
98

73
80

73
80

73
80

74
62

74
62

75
44

76
26

76
26

77
08

77
08

77
08

77
90

77
90

77
90

78
72

79
54

String B 76
50

76
50

76
50

76
50

76
50

76
50

76
50

76
50

76
50

76
50

76
50

84
15

84
15

84
15

84
15

84
15

84
15

String A 79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

79
74

Random 73
72

73
72

73
72

77
60

77
60

77
60

77
60

77
60

77
60

77
60

77
60

77
60

77
60

77
60

81
48

81
48

81
48

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

20
9

21
0

21
1

21
2

21
3

Configuration 19
-9

-1
0-

89
-3

-3
-3

-5
0-

10
-1

19
-9

-1
0-

90
-3

-3
-3

-5
0-

10
-1

19
-9

-1
0-

90
-3

-3
-3

-5
1-

10
-1

20
-9

-1
0-

90
-3

-3
-3

-5
1-

10
-1

20
-9

-1
0-

91
-3

-3
-3

-5
1-

10
-1

20
-9

-1
0-

91
-3

-3
-3

-5
2-

10
-1

20
-9

-1
0-

92
-3

-3
-3

-5
2-

10
-1

20
-9

-1
0-

93
-3

-3
-3

-5
2-

10
-1

20
-9

-1
0-

93
-3

-3
-3

-5
3-

10
-1

20
-9

-1
0-

94
-3

-3
-3

-5
3-

10
-1

20
-9

-1
0-

94
-3

-3
-3

-5
3-

11
-1

20
-9

-1
1-

94
-3

-3
-3

-5
3-

11
-1

20
-9

-1
1-

95
-3

-3
-3

-5
3-

11
-1

20
-9

-1
1-

95
-3

-3
-3

-5
4-

11
-1

21
-9

-1
1-

95
-3

-3
-3

-5
4-

11
-1

21
-9

-1
1-

96
-3

-3
-3

-5
4-

11
-1

21
-9

-1
1-

97
-3

-3
-3

-5
4-

11
-1

189

Max.Ext.Arr.Rate 63
63

63
79

64
24

64
29

64
94

65
18

65
41

65
60

66
26

66
58

66
91

67
23

67
32

67
37

67
57

67
74

68
22

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 84
04

84
04

84
04

84
04

84
04

84
04

84
04

84
04

84
04

84
04

84
04

84
04

91
68

91
68

91
68

91
68

91
68

DB Entry 80
30

80
30

80
30

81
76

81
76

81
76

81
76

83
22

83
22

83
22

84
68

84
68

84
68

84
68

84
68

84
68

86
14

Mean 84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

84
21

11
22

8

11
22

8

11
22

8

Copy 97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

Search 10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

Sort 79
54

80
36

80
36

80
36

81
18

82
00

82
00

82
00

82
82

83
64

83
64

84
46

84
46

84
46

84
46

85
28

85
28

String B 84
15

84
15

84
15

84
15

84
15

84
15

84
15

84
15

84
15

84
15

84
15

84
15

84
15

91
80

91
80

91
80

91
80

String A 79
74

79
74

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

Random 81
48

81
48

81
48

81
48

81
48

81
48

85
36

85
36

85
36

85
36

85
36

85
36

85
36

85
36

85
36

85
36

85
36

File Entry -”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

22
5

22
6

22
7

22
8

22
9

23
0

Configuration 21
-9

-1
1-

97
-3

-3
-3

-5
5-

11
-1

21
-9

-1
1-

98
-3

-3
-3

-5
5-

11
-1

21
-1

0-
11

-9
8-

3-
3-

3-
55

-1
1-

1

21
-1

0-
11

-9
8-

3-
3-

3-
56

-1
1-

1

21
-1

0-
11

-9
9-

3-
3-

3-
56

-1
1-

1

21
-1

0-
11

-1
00

-3
-3

-3
-5

6-
11

-1

22
-1

0-
11

-1
00

-3
-3

-3
-5

6-
11

-1

22
-1

0-
11

-1
00

-3
-3

-3
-5

7-
11

-1

22
-1

0-
11

-1
01

-3
-3

-3
-5

7-
11

-1

22
-1

0-
11

-1
02

-3
-3

-3
-5

7-
11

-1

22
-1

0-
11

-1
02

-3
-3

-3
-5

8-
11

-1

22
-1

0-
11

-1
03

-3
-3

-3
-5

8-
11

-1

22
-1

0-
11

-1
03

-3
-3

-3
-5

8-
12

-1

22
-1

0-
12

-1
03

-3
-3

-3
-5

8-
12

-1

22
-1

0-
12

-1
03

-3
-3

-4
-5

8-
12

-1

22
-1

0-
12

-1
04

-3
-3

-4
-5

8-
12

-1

22
-1

0-
12

-1
04

-3
-3

-4
-5

9-
12

-1

190

Max.Ext.Arr.Rate 68
29

68
88

68
91

69
54

70
08

70
19

70
85

70
88

71
25

71
39

71
50

72
16

72
42

72
82

73
34

73
44

73
47

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

91
68

99
32

99
32

DB Entry 86
14

86
14

86
14

87
60

87
60

89
06

89
06

89
06

89
06

90
52

90
52

90
52

90
52

91
98

91
98

91
98

91
98

Mean 11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

Copy 97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

Search 10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

Sort 86
10

86
10

86
92

86
92

87
74

87
74

88
56

89
38

89
38

89
38

89
38

90
20

91
02

91
02

91
84

91
84

91
84

String B 91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

91
80

99
45

String A 88
60

88
60

88
60

88
60

88
60

88
60

88
60

88
60

97
46

97
46

97
46

97
46

97
46

97
46

97
46

97
46

97
46

Random 85
36

89
24

89
24

89
24

89
24

89
24

89
24

89
24

89
24

89
24

93
12

93
12

93
12

93
12

93
12

93
12

93
12

File Entry -”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

24
4

24
5

24
6

24
7

Configuration 22
-1

0-
12

-1
05

-3
-3

-4
-5

9-
12

-1

23
-1

0-
12

-1
05

-3
-3

-4
-5

9-
12

-1

23
-1

0-
12

-1
06

-3
-3

-4
-5

9-
12

-1

23
-1

0-
12

-1
06

-3
-3

-4
-6

0-
12

-1

23
-1

0-
12

-1
07

-3
-3

-4
-6

0-
12

-1

23
-1

0-
12

-1
07

-3
-3

-4
-6

1-
12

-1

23
-1

0-
12

-1
08

-3
-3

-4
-6

1-
12

-1

23
-1

0-
12

-1
09

-3
-3

-4
-6

1-
12

-1

23
-1

1-
12

-1
09

-3
-3

-4
-6

1-
12

-1

23
-1

1-
12

-1
09

-3
-3

-4
-6

2-
12

-1

24
-1

1-
12

-1
09

-3
-3

-4
-6

2-
12

-1

24
-1

1-
12

-1
10

-3
-3

-4
-6

2-
12

-1

24
-1

1-
12

-1
11

-3
-3

-4
-6

2-
12

-1

24
-1

1-
12

-1
11

-3
-3

-4
-6

3-
12

-1

24
-1

1-
12

-1
12

-3
-3

-4
-6

3-
12

-1

24
-1

1-
12

-1
12

-3
-3

-4
-6

3-
13

-1

24
-1

1-
13

-1
12

-3
-3

-4
-6

3-
13

-1

191

Max.Ext.Arr.Rate 73
58

74
13

74
50

74
75

74
78

75
44

75
92

76
10

76
76

File Entry 27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

27
85

5

DB Search 99
32

99
32

99
32

99
32

99
32

99
32

99
32

99
32

99
32

DB Entry 91
98

93
44

93
44

93
44

94
90

94
90

94
90

96
36

96
36

Mean 11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

11
22

8

Copy 97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

97
92

Search 10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

10
10

7

Sort 92
66

92
66

93
48

93
48

93
48

94
30

95
12

95
12

95
94

String B 99
45

99
45

99
45

99
45

99
45

99
45

99
45

99
45

99
45

String A 97
46

97
46

97
46

97
46

97
46

97
46

97
46

97
46

97
46

Random 93
12

93
12

93
12

97
00

97
00

97
00

97
00

97
00

97
00

File Entry -”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

-”
-

DB Search 76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

76
4

DB Entry 14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

14
6

Mean 28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

28
07

Copy 32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

32
64

Search 33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

33
69

Sort 82 82 82 82 82 82 82 82 82

String B 76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

76
5

String A 88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

88
6

Random 38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

38
8

Threads 24
8

24
9

25
0

25
1

25
2

25
3

25
4

25
5

25
6

Configuration 24
-1

1-
13

-1
13

-3
-3

-4
-6

3-
13

-1

24
-1

1-
13

-1
13

-3
-3

-4
-6

4-
13

-1

24
-1

1-
13

-1
14

-3
-3

-4
-6

4-
13

-1

25
-1

1-
13

-1
14

-3
-3

-4
-6

4-
13

-1

25
-1

1-
13

-1
14

-3
-3

-4
-6

5-
13

-1

25
-1

1-
13

-1
15

-3
-3

-4
-6

5-
13

-1

25
-1

1-
13

-1
16

-3
-3

-4
-6

5-
13

-1

25
-1

1-
13

-1
16

-3
-3

-4
-6

6-
13

-1

25
-1

1-
13

-1
17

-3
-3

-4
-6

6-
13

-1

192

List of Figures

3.1 VoIP system, provider solution. 24
3.2 VoIP system, company solution. 25
3.3 SIP registration of a user agent. 28
3.4 SIP call setup. 28
3.5 SIP trapezoid. 29
3.6 VoIP test environment, monitoring the SIP traffic. 32
3.7 VoIP test environment. 43
3.8 Call Flow, Register. 44
3.9 Call Flow, Basic Call. 45
3.10 Call Flow (extract), Basic Call (no answer, cancel). 46
3.11 Call Flow (extract), Basic Call (busy, deny). 46
3.12 Call Flow (extract), Parallel Ringing. 47
3.13 Call Flow (extract), Call Pickup. 48
3.14 Call Flow (extract), Call Forwarding (busy here). 49
3.15 Call Flow (extract), Call Forwarding (no response). 49
3.16 Call Flow (extract), Unattended Call Transfer. 50
3.17 Call Flow (extract), Attended Call Transfer. 51
3.18 Call Flow (extract), ChefSec. 52
3.19 Call Flow (extract), Early Media. 53
3.20 Call Flow, Basic Call, Side A. 56
3.21 SPT State Machine, Basic Call, Side A. 58
3.22 Call Flow, Basic Call, Side B. 60
3.23 SPT State Machine, Basic Call, Side B. 61
3.24 SIP registration of a user agent with Babel-SIP. 75
3.25 SIP call setup with Babel-SIP. 76
3.26 VoIP test environment, with Babel-SIP. 79
3.27 Example C4.5 tree after training with 70 REGISTER messages. 80
3.28 Part of a C4.5 tree at the end of the REGISTER experiments. 82
3.29 Result REGISTER messages. 84
3.30 Example C4.5 tree after training with 40 INVITE messages. 86
3.31 Part of a C4.5 tree at the end of the INVITE experiments. 87
3.32 Result INVITE messages. 88
3.33 C4.5 tree, REGISTER messages, extract 1. 89
3.34 C4.5 tree, REGISTER messages, extract 2. 91
3.35 C4.5 tree, REGISTER messages, extract 3. 91
3.36 C4.5 tree, REGISTER messages, extract 4. 91
3.37 C4.5 tree, REGISTER messages, extract 5. 92
3.38 C4.5 tree, REGISTER messages, extract 6. 92
3.39 C4.5 tree, REGISTER messages, extract 7. 92

193

LIST OF FIGURES

3.40 C4.5 tree, INVITE messages, extract 1. 93
3.41 C4.5 tree, INVITE messages, extract 2. 93
3.42 C4.5 tree, INVITE messages, extract 3. 94
3.43 C4.5 tree, INVITE messages, extract 4. 94
3.44 C4.5 tree, INVITE messages, extract 5. 95

4.1 Single Station Queueing (see [BGdMT06]). 102
4.2 Arrival and service rate. 103
4.3 A closed queueing network (see [BGdMT06]). 103
4.4 An open queueing network (see [BGdMT06]). 104
4.5 The Data Flow Engine (DFE) modeled as queueing network. 107
4.6 Diameter-packets: Call scenario . 108
4.7 Optimization towards consolidation; plots represent queueing network-wide

mean values over all threads. 117
4.8 Optimization towards throughput; plots represent queueing network-wide

mean values over all threads. 118
4.9 Optimization towards consolidation on host Goedel. 122
4.10 Optimization towards throughput on host Goedel. 124
4.11 Optimization towards throughput on host Goedel with true bottleneck. 125
4.12 Optimization towards consolidation on host Zerberus. 126
4.13 Optimization towards throughput on host Zerberus. 127
4.14 Test Environment: Testing the queueing network software. 136
4.15 Test Scenarios: Java classes and distributions. 139
4.16 New, enlarged queueing network sctructure. 152
4.17 New, fictional queueing network sctructure. 156
4.18 New, fictional queueing network sctructure. 159

194

List of Tables

3.1 VoIP codecs. 22
3.2 SIP basic INVITE message. 30
3.3 SIP REGISTER message, RFC minimum. 31
3.4 SIP INVITE message, RFC minimum. 31
3.5 Tested VoIP hard and soft phones. 32
3.6 DLink VoIP IP-Phone DPH-120S REGISTER message. 33
3.7 Elmeg IP 290 REGISTER message. 34
3.8 XLite INVITE message. 35
3.9 Thomson ST2030 INVITE message. 36
3.10 Snom 300 INVITE message. 37
3.11 SIP messages: differences between the tested phones. REGISTER messages. . 40
3.12 SIP messages: differences between the tested phones. INVITE messages. . . . 41
3.13 SIP messages: high probability header parameters. 68
3.14 SIP messages: medium probability header parameters. 69
3.15 SIP messages: low probability header parameters. 70
3.16 Test set, REGISTER and INVITE messages. 71
3.17 SIP REGISTER message created with the SIPParameterShuffler: Accepted. . 72
3.18 SIP REGISTER message created with the SIPParameterShuffler: Rejected. . 73
3.19 SIP INVITE (SDP part not shown) message created with the SIPParameter-

Shuffler: Accepted. 74
3.20 SIP INVITE (SDP part not shown) message created with the SIPParameter-

Shuffler: Rejected. 75
3.21 C4.5 example if-then rule. 77
3.22 Initial training and test data sets (REGISTER messages). 79
3.23 Aggregated results of the Babel-SIP REGISTER experiments. 84
3.24 Initial training and test data sets (INVITE messages). 85
3.25 Aggregated results of the Babel-SIP INVITE experiments.. 86
3.26 Number of necessary attempts for experiment r. 88

4.1 Resource offer of a hypothetical host. 114
4.2 Hypothetical resource requirements of nodes. 115
4.3 Utilization and number of threads in initial and optimal configuration for

optimization towards throughput. 119
4.4 Utilization and number of threads in initial and optimal configuration for

optimization towards consolidation on host Goedel. 123
4.5 Utilization and number of threads in initial and optimal configuration for

optimization towards throughput on host Goedel. 124
4.6 Utilization and number of threads in initial and optimal configuration for

optimization towards throughput on host Goedel with true bottleneck. 125

195

LIST OF TABLES

4.7 Utilization and number of threads in initial and optimal configuration for
optimization towards consolidation on host Zerberus with one Feeder. 127

4.8 Utilization and number of threads in initial and optimal configuration for
optimization towards throughput on host Zerberus with one Feeder. 128

4.9 Utilization and number of threads in initial and optimal configuration for
optimization by simulation on host Goedel. 135

4.10 Utilization and number of threads in initial and optimal configuration for
optimization by simulation with true bottleneck on host Zerberus. 135

4.11 Utilization and number of threads in initial and optimal configuration for
optimization by simulation on host Zerberus. 136

4.12 Initial configuration (1-1-1-1) on host Zerberus, tested with an external arrival
rate of 1000[tickets/s]. 141

4.13 Service rates of the Feeder node with different configurations on host Zerberus.142
4.14 Final configuration (1-1-1-61) on host Zerberus, tested with an external arrival

rate of 1000[tickets/s]. 142
4.15 Initial and final configuration on host Zerberus, with a fixed Feeder node. . . 143
4.16 Initial configuration (1-1-1-1) on host Goedel, tested with an external arrival

rate of 1000[tickets/s]. 144
4.17 Service rates of the Feeder node with different configurations on host Goedel. 144
4.18 Initial and final configuration on host Goedel. 145
4.19 Initial and final configuration on host Goedel, with a fixed Feeder node. . . . 145
4.20 Mean service rates of both tested hosts for each node type. 145
4.21 Optimal configuration of threads for both hosts. 146
4.22 Service rates for all four nodes. Service rate of the Feeder improved by factor

five, ten and fifteen. 150
4.23 Service rates for all four nodes. Service rate of the Feeder improved by factor

five, ten and fifteen. 150
4.24 Optimal configuration of the new enlarged queueing network and utilization

of each node type with an external arrival rate of 7393 tickets per second. . . 153
4.25 Property file: node specifications (Decoder). 153
4.26 Property file: transitions specifications (Decoder). 154
4.27 Property file: transitions specifications (Decoder). 154
4.28 Service rates and utilizations of the nodes of the fictional queueing network in

the initial configuration with an external arrival rate of 100 tickets per second.157
4.29 Service rates and utilizations of the nodes of the fictional queueing network

in the optimal configuration with an external arrival rate of 7676 tickets per
second. 158

196

Listings

3.1 SIPGenerator Java code: sending and receiving SIP UDP messages. 64
3.2 SIPGenerator Java code: Authorization header. 64
3.3 SIPGenerator Java code: MD5 algorithm for authorization. 65
3.4 SIPParameterShuffler Java code: Random selection. 70
3.5 Translation of SIP header into C4.5 attribute values. 76
4.1 Algorithm for finding the best configuration of nodes modeled as queueing

network. 115
4.2 Feeder node: task execution. 121
4.3 Feeder node: task invocation and service rate calculation. 122
4.4 Creating and starting node threads. 129
4.5 Creating and starting node threads. 130
4.6 Creating Tickets: static. 131
4.7 Creating Tickets: optimum. 132
4.8 Calculating the standard error. 133
4.9 Method for calculating a Poisson variate. 137
4.10 Method for calculating a Pareto variate. 138
4.11 Ticket Generator: Starting Calls. 138
4.12 Ticket Generator: Call Thread and Sending Tickets. 140

197

Bibliography

[ABR04] T. Abbes, A. Bouhoula, and M. Rusinowitch. Protocol Analysis in Intrusion
Detection Using Decision Trees. In International Conference on Information
Technology: Coding and Computing (ITCC’04), pages 404–408, 2004.

[Agr02] Alan Agresti. Categorical Data Analysis. Wiley-Interscience, 2nd edition, July
202.

[APWW07] B.K. Aichernig, B. Peischl, M. Weiglhofer, and F. Wotawa. Protocol Confor-
mance Testing a SIP Registrar: an Industrial Application of Formal Methods.
In 5th IEEE Int. Conference on Software Engineering and Formal Methods,
pages 215–224, 2007.

[ASF07] H.J. Abdelnur, R. State, and O. Festor. KiF: A Stateful SIP Fuzzer. In 1st
Int. Conference on Principles, Systems and Applications of IP Telecommuni-
cations. iptcomm.org, 2007.

[Aut09] Internet Assigned Numbers Authority. Session initiation protocol (sip) param-
eters. http://www.iana.org/assignments/sip-parameters, 2009.

[AWW+07a] A. Acharya, X. Wand, C. Wrigth, N. Banerjee, and B. Sengupta. Real-time
Monitoring of SIP Infrastructure Using Message Classification. In MineNet’07,
pages 45–50, 2007.

[AWW07b] Arup Acharya, Xiping Wang, and Charles Wright. A programmable message
classification engine for session initiation protocol (sip). In Proceedings of the
3rd ACM/IEEE Symposium on Architecture for networking and communica-
tions systems, ANCS ’07, pages 185–194, New York, NY, USA, 2007. ACM.

[BCDW04] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wer-
melinger. A survey of self-management in dynamic software architecture spec-
ifications. In WOSS’04: Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, pages 28–33, New York, NY, USA, 2004. ACM.

[BFL+06] Andreas Bonelli, Franz Franchetti, Juergen Lorenz, Markus Püschel, and
Christoph W. Ueberhuber. Automatic performance optimization of the dis-
crete Fourier transform on distributed memory computers. In International
Symposium on Parallel and Distributed Processing and Application (ISPA),
volume 4330 of Lecture Notes In Computer Science, pages 818–832. Springer,
2006.

[BGdMT06] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
Queueing Networks and Markov Chains: Modeling and Performance Evalu-
ation with Computer Science Applications. WileyBlackwell, 2nd edition, May
2006. http://www4.informatik.uni-erlangen.de/QNMC.

198

BIBLIOGRAPHY

[BGMT05] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor Shridharbhai
Trivedi. Queueing Networks and Markov Chains. Wiley-Interscience, 2005.

[BPA+08] Josep L. Berral, Nicolas Poggi, Javier Alonso, Ricard Gavaldà, Jordi Torres,
and Manish Parashar. Adaptive distributed mechanism against flooding net-
work attacks based on machine learning. In AISec ’08: Proceedings of the 1st
ACM workshop on Workshop on AISec, pages 43–50, New York, NY, USA,
2008. ACM.

[BPI03] Simonetta Balsamo, Vittoria De Nitto Person, and Paola Inverardi. A review
on queueing network models with finite capacity queues for software archi-
tectures performance prediction. Performance Evaluation, 51(2-4):269 – 288,
2003.

[CCK+11] J.J. Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh, and J.C. Smith. Wiley
Encyclopedia of Operations Research and Management Science, 8 Volume Set.
Wiley Encyclopedia of Operations Research and Management Science. John
Wiley & Sons, 2011.

[CLG+03] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter base
protocol, 2003.

[Cod06] Codenomicon. Codenomicon sip test tool. http://www.codenomicon.com/,
2006.

[DDKM08] Dylan Dawson, Ron Desmarais, Holger M. Kienle, and Hausi A. Müller. Mon-
itoring in adaptive systems using reflection. In Proceedings of the 2008 in-
ternational workshop on Software engineering for adaptive and self-managing
systems, SEAMS ’08, pages 81–88, New York, NY, USA, 2008. ACM.

[DMSFR10] Giovanna Di Marzo Serugendo, John Fitzgerald, and Alexander Romanovsky.
Metaself: an architecture and a development method for dependable self-*
systems. In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, pages 457–461, New York, NY, USA, 2010. ACM.

[FNKC07] Ali Fessi, Heiko Niedermayer, Holger Kinkelin, and Georg Carle. A cooperative
sip infrastructure for highly reliable telecommunication services. In Proceedings
of the 1st international conference on Principles, systems and applications of
IP telecommunications, IPTComm ’07, pages 29–38, New York, NY, USA,
2007. ACM.

[Fri04] Matteo Frigo. A fast fourier transform compiler. SIGPLAN Not., 39(4):642–
655, 2004.

[FSJ05] Matteo Frigo, Steven, and G. Johnson. The design and implementation of
fftw3. In Proceedings of the IEEE, volume 93, pages 216–231, 2005.

[GVAGM08] Charles Gouin-Vallerand, Bessam Abdulrazak, Sylvain Giroux, and Mounir
Mokhtari. Toward autonomic pervasive computing. In iiWAS ’08: Proceedings
of the 10th International Conference on Information Integration and Web-
based Applications & Services, pages 673–676, New York, NY, USA, 2008.
ACM.

[HAAM08] Hlavacs Helmut, Hummel Karin Anna, Hess Andrea, and Nussbaumer
Michael. Babel-sip: Self-learning sip message adaptation for increasing sip-
compatibility. In 1st IEEE Workshop on Automated Network Management

199

BIBLIOGRAPHY

(ANM’08), in conjunction with the IEEE INFOCOM 2008, Phoenix, Arizona,
4 2008.

[HCL06] HCLT. Hclt. http://www.hcltech.com/, 2006.

[HdM08] Richard Holzer and Hermann de Meer. On modeling of self-organizing sys-
tems. In Autonomics ’08: Proceedings of the 2nd International Conference on
Autonomic Computing and Communication Systems, pages 1–6, ICST, Brus-
sels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[HGB10] Regina Hebig, Holger Giese, and Basil Becker. Making control loops explicit
when architecting self-adaptive systems. In Proceeding of the second interna-
tional workshop on Self-organizing architectures, SOAR ’10, pages 21–28, New
York, NY, USA, 2010. ACM.

[HJP06] M. Handley, V. Jacobson, and C. Perkins. Sdp: Session description protocol.
RFC 4566, July 2006.

[HL08] Ruan He and Marc Lacoste. Applying component-based design to self-
protection of ubiquitous systems. In SEPS ’08: Proceedings of the 3rd ACM
workshop on Software engineering for pervasive services, pages 9–14, New
York, NY, USA, 2008. ACM.

[HM04] S. Heisig and S. Moyle. Using Model Trees to Characterize Computer Resource
Usage. In 1st ACM SIGSOFT Workshop on Self-Managed Systems, pages 80–
84, 2004.

[HM08] Markus C. Huebscher and Julie A. McCann. A survey of autonomic
computing—degrees, models, and applications. ACM Comput. Surv., 40(3):1–
28, 2008.

[HNHH08] Andrea Hess, Michael Nussbaumer, Helmut Hlavacs, and Karin Anna Hummel.
Automatic adaptation and analysis of sip headers using decision trees. pages
69–89, 2008.

[HT03] Zsuzsanna Harangozó and Katalin Tarnay. Fdts in self-adaptive protocol spec-
ification. In Proceedings of the 2nd international conference on Self-adaptive
software: applications, IWSAS’01, pages 113–128, Berlin, Heidelberg, 2003.
Springer-Verlag.

[Jai91] R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. Wiley,
April 1991. http://www.cse.wustl.edu/~jain/books/perfbook.htm.

[KASH05] Nagarajan Kandasamy, Sherif Abdelwahed, Gregory C. Sharp, and John P.
Hayes. An Online Control Framework for Designing Self-Optimizing Comput-
ing Systems: Application to Power Management. In Self-star Properties in
Complex Information Systems, pages 174–188. Springer Berlin, 2005.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[KKSJ10] Narges Khakpour, Ramtin Khosravi, Marjan Sirjani, and Saeed Jalili. Formal
analysis of policy-based self-adaptive systems. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages 2536–2543, New York, NY,
USA, 2010. ACM.

200

BIBLIOGRAPHY

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural chal-
lenge. In FOSE ’07: 2007 Future of Software Engineering, pages 259–268,
Washington, DC, USA, 2007. IEEE Computer Society.

[KM08] Kobayashi and Mark. System Modeling And Analysis - Foundations of System
Performance Evaluation, volume 1. Prentice Hall, 1st edition, 2008. http:

//www.princeton.edu/kobayashi/Book/book.html.

[KP11] Thomas Karcher and Victor Pankratius. Auto-tuning multicore applications
at run-time with a cooperative tuner. publikation, Feb 2011.

[KRG+10] Elsy Kaddoum, Claudia Raibulet, Jean-Pierre Georgé, Gauthier Picard, and
Marie-Pierre Gleizes. Criteria for the evaluation of self-* systems. In Proceed-
ings of the 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS ’10, pages 29–38, New York, NY, USA, 2010.
ACM.

[KZRN07] H.J. Kang, Z.L. Zhang, S. Ranjan, and A. Nucci. SIP-based VoIP Traffic
Behavior Profiling and Its Applications. In MineNet’07, pages 39–44, 2007.

[Lim09] Skype Limited. Skype. http://www.skype.com/intl/en/s, 2009.

[MM10] Moreno Marzolla and Raffaela Mirandola. Performance aware reconfiguration
of software systems. In Proceedings of the 7th European performance engineer-
ing conference on Computer performance engineering, EPEW’10, pages 51–66,
Berlin, Heidelberg, 2010. Springer-Verlag.

[NH11] Michael Nussbaumer and Helmut Hlavacs. Optimization for multi-thread data-
flow software. In Proceedings of the 2011 8th European Performance Engineer-
ing Workshop, EPEW ’11, 2011.

[NRS10] Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. Modelling feedback
control loops for self-adaptive systems. ECEASST, 28, 2010.

[OK07] Takayuki Osogami and Sei Kato. Optimizing system configurations quickly by
guessing at the performance. SIGMETRICS Perform. Eval. Rev., 35(1):145–
156, 2007.

[Pin08] Martin Pinzger. Automated web performance analysis, with a special focus on
prediction. In iiWAS ’08: Proceedings of the 10th International Conference on
Information Integration and Web-based Applications & Services, pages 539–
542, New York, NY, USA, 2008. ACM.

[PMJ+05] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE, special issue on
“Program Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.

[Rad06] Radvision. Prolab sip test solution. http://www.radvision.com/Products/

Developer/Testing-and-Analysis-Tools/ProLab-SIP/sip.htm, 2006.

[RN09] Z. Rusinovic and Bogunovic N. Self-healing model for sip-based services. ieee,
2009.

201

BIBLIOGRAPHY

[RS03] J. Rosenberg and H. Schulzrinne. An extension to the session initiation pro-
tocol (sip) for symmetric response routing, 2003.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261, June 2002.

[SCFJ03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport
protocol for real-time applications. RFC 3550, July 2003.

[SILM07] Bogdan Solomon, Dan Ionescu, Marin Litoiu, and Mircea Mihaescu. A real-
time adaptive control of autonomic computing environments. In Proceedings
of the 2007 conference of the center for advanced studies on Collaborative re-
search, CASCON ’07, pages 124–136, New York, NY, USA, 2007. ACM.

[SIP02] SIPsak. Sip swiss army knife. http://sipsak.org/, 2002.

[Sip06a] Sipient. Sipflow standard. http://www.sipient.com/standard.html, 2006.

[SIP06b] SIPp. Sipp. http://sipp.sourceforge.net/, 2006.

[Spi06] Spirent. Spirent protocol tester. http://www.aspid.pt/files/PDF/spt.pdf, 2006.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–14:42, May 2009.

[Sub09] Venkita Subramonian. Towards automated functional testing of converged
applications. In Proceedings of the 3rd International Conference on Principles,
Systems and Applications of IP Telecommunications, IPTComm ’09, pages
9:1–9:12, New York, NY, USA, 2009. ACM.

[TDB08] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear
algebra for hybrid gpu accelerated manycore systems, 2008.

[TI09] Tech-Invite. Sip service examples. http://www.tech-invite.com/Ti-sip-service-
1.html, 2009.

[VI09a] VoIP-Info.org. A reference guide to all things voip. http://www.voip-info.org/,
2009.

[VI09b] VoIP-Info.org. Voip phones. http://www.voip-
info.org/wiki/view/VOIP+Phones, 2009.

[VR07] Peter Van Roy. Self Management and the Future of Software Design. In Pro-
ceedings of the Third International Workshop on Formal Aspects of Component
Software (FACS 2006), volume 182, pages 201–217, 06 2007.

[WD98] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra
software. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE confer-
ence on Supercomputing (CDROM), pages 1–27, Washington, DC, USA, 1998.
IEEE Computer Society.

[WF05] Ian H. Witten and Eibe Frank. Data mining : practical machine learning tools
and techniques. Elsevier, Morgan Kaufman, Amsterdam [u.a.], 2. ed. edition,
2005.

[Wik09a] Wikipedia. List of sip response codes.
http://en.wikipedia.org/wiki/SIP Responses, 2009.

202

BIBLIOGRAPHY

[Wik09b] Wikipedia. Mobile phone. http://en.wikipedia.org/wiki/Mobile phone, 2009.

[Wik10a] Wikipedia. Fuzz testing. http://en.wikipedia.org/wiki/Fuzz testing, 2010.

[Wik10b] Wikipedia. Kendall’s notation. http://en.wikipedia.org/wiki/Kendall’s notation,
2010.

[WNH10] Roman Weidlich, Michael Nussbaumer, and Helmut Hlavacs. Optimization
towards consolidation or throughput for multi-thread software. In Proceedings
of the 2010 3rd International Symposium on Parallel Architectures, Algorithms
and Programming, PAAP ’10, pages 161–168, Washington, DC, USA, 2010.
IEEE Computer Society.

[WR05] D. Wilking and T. Röfer. Realtime Object Recognition Using Decision Tree
Learning. In RoboCup 2004: Robot World Cup VII, pages 556–563. Springer,
2005.

[WSF10] Jon Whittle, Will Simm, and Maria-Angela Ferrario. On the role of the user
in monitoring the environment in self-adaptive systems: a position paper. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’10, pages 69–74, New York, NY, USA,
2010. ACM.

[Xu08] Jing Xu. Rule-based automatic software performance diagnosis and improve-
ment. In WOSP ’08: Proceedings of the 7th international workshop on Software
and performance, pages 1–12, New York, NY, USA, 2008. ACM.

[YPS05] Kamen Yotov, Keshav Pingali, and Paul Stodghill. X-ray: A tool for automatic
measurement of hardware parameters. Quantitative Evaluation of Systems,
International Conference on, 0:168–178, 2005.

[Zuk09] Moshe Zukerman. Introduction to Queueing Theory and Stochastic Teletraf-
fic Models. Zukerman, 2009. http://www.ee.cityu.edu.hk/~zukerman/

classnotes.pdf.

203

Abstrakt

Meine Dissertation beschaeftigt sich mit autonomen, selbst-lernenden und selbst-adaptiven
Systemen. Prinzipiell muss ein autonomes und selbst-lernendes System seinen eigenen Sta-
tus, sowie die externen Operationen kennen, muss Systemveraenderungen erkennen koennen
und muss in der Lage sein sich selbst zu adaptieren.

Verbesserung der Zuverlaessigkeit von Multimedia Kommunikation:
Im Zuge des Testens eines kommerziellen VoIP Servers wurde deutlich, dass das SIP Pro-
tokoll, welches fuer die Initiierung von VoIP Telefonaten verwendet wird, in einem sehr
offenen Standard definiert ist.
Fuer eine korrekte SIP Nachricht sind nur einige wenige Informationen notwendig. Es gibt
allerdings eine enorme Anzahl an optionalen Informationen, die ebenfalls innerhalb einer
SIP Nachricht verwendet werden koennen. Diese Tatsache fuehrt dazu, dass VoIP Geraete
eine enorme Anzahl an unterschiedlichen SIP-Dialekten verwenden, die aus der riesigen An-
zahl an unterschiedlichen Parameterkombinationen entstehen. Dies kann zu dem Problem
fuehren, dass Telefone die dasselbe Protokoll verwenden, trotzdem nicht in der Lage sind
miteinander zu kommunizieren.
Deshalb wird ein autonomes, selbst-lernendes SIP-Uebersetzungstool praesentiert, welches
die Rate der faelschlich vom Server abgewiesenen SIP Nachrichten drastisch reduziert, in-
dem ankommende Nachrichten analysiert und eventuell veraendert werden.

Autonome Adaption von Systemparametern, um die Systemperformance zu verbessern:
Die Performance eines kommerziellen Systems, welches Daten von unterschiedlichen mobilen
Geraeten sammelt und verarbeitet, ist aufgrund des hohen ankommenden Datenaufkommens
extrem wichtig.
Ankommende Datentickets wandern durch ein Warteschlangensystem, wo in jedem durch-
laufenen Knoten unterschiedliche atomare Aktionen durchgefuehrt werden. Dieser Aufbau
ermoeglicht es, die einzelnen Knoten zu parallelisieren, in dem mehrere Auspraegungen der
Knoten auf unterschiedlichen CPU-Kernen gestartet werden.
Mit Hilfe eines Systems, welches analytische Ansaetze, Messungen und Simulationen verwen-
det, wird die optimale Softwarekonfiguration fuer eine bestimmte Hardware automatisiert
gefunden. Dadurch passt sich die Software immer exakt an die aktuelle Hardware und an
das aktuelle Datenaufkommen an. Die Performance des Gesamtsystems kann so drastisch
verbessert werden.

Lebenslauf

Mag. Michael Nussbaumer, Bakk.
Obkirchergasse 16/8/12, 1190 Wien
Tel.: +43 676 911 80 80
E-Mail: michael.nussbaumer@chello.at

Ausbildung:

September 1996 - Juni 2001
Hoehere Technische Lehranstalt - Schulzentrum Ungargasse, Wien
Spezialisierung: Wirtschaftsingenieurwesen mit Schwerpunkt: Betriebsinformatik

Oktober 2001 - Maerz 2006
Universitaet Wien
Studienrichtungen: Wirtschaftsinformatik
Magisterarbeit: Performance ausgesuchter Methoden zur Spamerkennung

Juni 2006 - Dezember 2010
Universitaet Wien - Institut fuer verteilte und multimediale Systeme
Wissenschaftlicher Mitarbeiter im Projekt SoftNet Austria in Kooperation mit Kapsch Car-
rierCom
Themen: Formal Methods in Software Engineering of Mobile Applications - Zuverlaessigkeit
und Performance von Telekommunikationssystemen

Jaenner 2011 - August 2011
Universitaet Wien - Institut fuer verteilte und multimediale Systeme
Werkvertrag Angestellter im Projekt EuroNF
Themen: Energy monitoring and its impact on individual user privacy - Messung des En-
ergieverbrauchs von unterschiedlichen virtuellen Maschinen, Literaturrecherche

Publikationen:

ANM’08: Babel-SIP: Self-learning SIP Message Adaptation for Increasing SIP-Compatibility
[HNHH08]

IPTComm’08: Automatic Adaptation and Analysis of SIP Headers Using Decision Trees
[HAAM08]

PAAP’10: Optimization towards Consolidation or Throughput for Multi-thread Software
[WNH10]

EPEW’11: Optimization for Multi-Thread Data-Flow Software [NH11]

