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Abstract

In the past decade, remarkable advances have been made in the field of biology.

Nowadays, biologists who study natural populations of plants and animals, have

access to numerous new tools such as whole genome sequencing, DNA hybridization

microarrays, and next-generation sequencing. Computationally intensive statistical

methods have to be developed often for the analysis of complicated biological data.

Of course, the advancement in the field of computing has been equally significant,

and today’s computers are fast enough to allow numerically intensive analysis to

be run on desktop machines. This has led to a substantial progress in developing

statistical methods for genetics; in particular, Markov chain Monte Carlo (MCMC)

and Approximate Bayesian Computation (ABC) methods for computing likelihoods

and posterior probabilities. The main objective of this study is to deal with statistical

challenges in modern genetics. Both likelihood and likelihood-free methods are needed

for the analysis of genetic data in the context of questions of interest to biologists.

In this thesis, we contribute to both approaches. We propose a novel method for

the estimation of time dependent scaled mutation rates under the infinite sites model

when recombination is not present. The proposed method can also estimate time-

independent mutation rates, and it performs well compared to other methods in the

literature. Second, we investigate a method for choosing summary statistics to be used

with the ABC algorithm. Our approach performs better in terms of computational

time and accuracy than other methods given in the literature. Moreover, four new

algorithms have been proposed for choosing the acceptance cutoff in ABC framework.
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Preface

Statistical developments have in many cases been driven by applications in science.

While genetics was always an important area that encouraged statistical research, re-

cent technological advances in this discipline pose ever new and challenging problems

to statisticians. This thesis covers some of the challenges arising from statistical infer-

ence in modern genetics. The key results from my thesis are covered in two submitted

papers:

• Faisal M., Futschik A.,and Vogl C. Exact Likelihood Computation of Infinite
Sites Model. Submitted to Theoretical Population Biology

• Faisal M. and Futschik A. Choosing Summary Statistics for Approximate Bayesian
Computation. Submitted to Statistical Applications in Genetics and Molecular
Biology
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Chapter 1

Introduction

1.1 Motivation

The last decade has witnessed a revolution in the field of Biology; nowadays, biol-

ogists have databases containing genomes of many organisms. The advent of high-

throughput data collection methods in biotechnology, such as whole genome sequenc-

ing, DNA hybridization micro-arrays, and protein structure determination has created

a large amount of data with incompletely understood information. There are a lot of

data out there at a click of the button, and researchers have access to this tremendous

amount of data. These data are likely to reveal new fundamental facts about life.

However, a lot of interesting challenges are left for next-generation biologists, such

as to explore the connection between genetic variation and phenotypic variation in

humans. In population genetics, questions about populations (of genes) are being

addressed by making use of the huge amount of available data.

New computational techniques for collecting and testing hypotheses have been

derived for these data, and further methodological development is still needed. The

availability of fast computers led to the development of computationally intensive

methods, such as the Markov chain Monte Carlo (MCMC). If biologically more re-

alistic assumptions are made, then making inference about unknown parameters in

2
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population genetics often becomes more challenging and time-consuming. The ob-

jective of this thesis is to contribute to advanced data analysis problems in modern

population genetics. A main problem when analyzing population genetic data is the

large number of possible genealogies (see Table 1.1) of the DNA sequence data, This

makes inference by full-likelihood methods (see Section 2.2.2) often infeasible.

Table 1.1: Number of possible genealogies depending on the sample sizes (in terms

of the number n of sequences)

n Genealogies
2 1
3 3
4 18
5 180
6 2700
7 56,700
8 1,587,600
9 57,153,600
10 2,571,912,000
100 1.37× 10284

1000 3.02× 104831

Therefore Monte Carlo and MCMC methods have been proposed to approximate

the full-likelihood for estimating a parameter of interest. In this thesis, we address

the problem of estimating the scaled mutation rate has by maximum likelihood and

a method is developed that is based on the ’dynamic programming’ approach. This

approach computes the exact likelihood to be used for estimating the scaled mutation

rate θ = 4Nµ. We consider both the situation where the mutation rate changes over

time, i.e., θ(t) and the case where θ is independent of time.

Approximate Bayesian Computation (ABC ) has been introduced to avoid explicit

calculation of the likelihood [Beaumont et al., 2002]. Here we propose methods to

improve the reliability of ABC. The two main problems we address here, are the

choice of the summary statistics, and the choice of the acceptance cutoff. For choosing
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summary statistics, a computationally fast and reliable method is investigated that

is based on least angle regression. Furthermore, we develop and investigate several

algorithms for choosing the acceptance cutoff in the framework of ABC.

1.2 Genetics: Basic Terminology

Although most of the methods presented in this thesis can be applied to non-human

genetic data, we will, for simplicity, focus on human genetics. Each human has

46 chromosomes consisting of 23 pairs of chromosomes. Chromosomes are made

up of sequences of nucleotides, the deoxyribonucleic acid (DNA) bases. DNA or

ribonucleic acid (RNA) molecules carry the whole hereditary information of any living

organism. The information is encoded by the four bases adenine, guanine, cytosine,

thymine/uracil. These are abbreviated by the letters A, G, C, T/U respectively.

Figure 1.1: Central dogma of genetics

Figure 1.1 is taken from a following URL1. Within each cell, the genetic informa-

1http://www.betz.lu/index.php/2006/10/27/hitchhikers_guide_to_rna_interference



1.2. Genetics: Basic Terminology 5

tion flows from DNA to RNA (transcription) and RNA to Protein (translation). The

flow of information is unidirectional and irreversible (see Figure 1.1). It means that

the process of producing proteins is irreversible: a protein cannot be used to create

DNA.

A gene is a linear region of DNA that controls a hereditary characteristic, and it

usually corresponds to a single protein or RNA molecule. Only part of this DNA is

functional: the genes. Every gene can be represented by a sequence of A, G, C, T/U,

and its size varies between 20 and several 1000 nucleotides. For example, the smallest

known gene ’mccA’ is only 21 nucleotides base pair (bp) long, and is part of plasmid

pMccC7 of Escherichia coli. It encodes unmodified heptapeptide [see Gonzalez-Pastor

et al., 1995].

A-T-G-C-G-T-A-C-T-G-G-T-A-A-T-G-C-A-A-A-C

Chromosomes range in size, for instance from 250 million bases (250 Mb) for

chromosome 1, to 50 Mb for chromosome 21 in human. The total length of the human

genome is approximately 3000 Mb. For each pair of chromosomes, one was inherited

from the mother, and the other one from the father. The total hereditary information,

also called genome, is transferred from the parental to the filial generation. This

involves the process of DNA replication, which leads to predominantly identical copies

of the genome. Mutations are changes to the base sequence of genetic material.

They are caused, among other reasons, by copying errors induced, for instance, by

radioactivity, or ultraviolet radiation. In multicellular organisms, mutations that

are transferred to descendants are called germ-line mutations. Germ-line mutations

lead to different versions of genes, named alleles. A species consists of all living

organisms that are able to interbreed and share some main characteristics. Individuals

of a species living in a common geographic area at the same time form a so-called
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population. One of the fundamental questions of biology is how populations evolved

throughout time. In order to give a description of what evolution is, one has to

distinguish between the genotype and the phenotype of an individual. The genotype

of an individual is its genome, whereas the phenotype comprises of its biological

characteristics. Note that the phenotype is determined by both the genotype and the

surrounding environment, as well as by interaction of these two factors. Thus only the

genotype is directly inherited. Several biological events (see Section 1.4) change the

chromosomes over time when they are transmitted from one generation to another.

The events that we consider here, which will have considerable importance in the rest

of this thesis, are mutation and recombination.

1.3 Genetic Data and Computer Programs

Consider two types of genetic data: individuals in pedigrees, and in population sam-

ples. In both of this cases there is some form of dependency in the data: in a pedigree,

all individuals are directly linked; in a population, the sampled individuals are also

related, although more distantly, but the nature of their relatedness is unknown. In

both cases it is possible to collect phenotypic and genetic information for each individ-

ual under study. The phenotypic information usually consists of a trait under study,

i.e., the disease status, or another measure of health; genetic information is extracted

from biological material, i.e., blood sample. The available genetic information has

changed over time, particularly with respect to the amount of data that is available.

Today, the information may consist of a short DNA segment, data from thousands of

sites across a larger region of a chromosome, or even genome-wide data.

Here we focus on population data that consist of data from a sample of unrelated

individuals. The size of such a sample ranges usually from only a few to a few hun-

dred individuals. Whilst unrelated, the genetic data from these individuals will still
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be dependent. If we consider a single locus and trace the ancestry of the chromosomes

as we go back in time, pairs of individual segments will share a common ancestor at

different time-points. The information about these common ancestors can be com-

pactly described through a genealogy. This genealogy determines the dependence in

the data at that locus. This dependence, both across loci and across individuals,

makes inference from population data challenging. The most common approach to

inference is to introduce an appropriate stochastic model for the genealogy (or ge-

nealogies) of the sample. When calculating the likelihood, we face a missing-data

framework, where the genealogical information is the missing data, and calculation of

the likelihood function requires averaging over all possible genealogies for the data.

A genetic marker is a DNA sequence with a known location on the genome; the

genetic marker is segregating if there exist variations in the sample at that site. One

can imagine a set of genetic markers for one individual to be a sample of the genetic

code along a chromosome. The markers that are currently most commonly used

exhibit binary variation at a population scale in most cases, and are called single-

nucleotide polymorphisms (SNPs). Our focus is on SNP data. For an example of a

genealogy of a single locus (chromosome segment) see Figure 1.2.

Figure 1.2: Genealogical history (left) and perfect rooted phylogeny (right)

Figure 1.2 taken from Hobolth et al. [2008], and genealogical history (left side) of

six randomly-sampled haplotypes, with numbered dots representing mutations and

letters alleles (distinct nucleotide sequences) and perfect rooted phylogeny (right side)



1.4. Evolutionary Mechanisms 8

constructed from the sequence information.

For larger samples the number of possible genealogies is huge, and efficient com-

puter software is therefore needed for the estimation of unknown parameters in pop-

ulation genetics. In our simulations we used programs such as ms [Hudson, 2002],

and msABC [Pavlidis et al., 2010]. Excoffier and Heckel [2006] provide a list of the

computer programs for the analysis of specific problems, and they also discuss the

limitation of these computer programs.

1.4 Evolutionary Mechanisms

The complete set of unique alleles in a population is called the “gene pool”. Large

gene pools hint towards an extensive genetic diversity which can sustain a wide range

of environmental selection. Similarly, low biological diversity might result in reduced

biological fitness and increased chance of extinction. A change in the gene pool of a

population over time is called evolution which eventually leads to the formation of new

species. Theodosius Dobzhansky in 1973 said, “Nothing in Biology makes sense except

in the light of Evolution”. Evolution originates from interactions between different

processes, which introduce variation into a population and/or remove variation from

a population. As a result, variants with a particular trait will become more or less

common in a population. The source of variation that leads to evolution, could be

genetic as well as environmental.

Mutation (genetic). The main source of variation in population is genetic mutation,

which can be passed on to next generation through reproduction. Radiation, viruses,

transposons, mutagenic chemicals as well as errors during meiotic processes and DNA

replication can cause genetic mutations. However, only those changes are passed on

to the next generation that occur in egg or sperm cells, or those that occur during or
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after fertilization. Mutation might result in a new genotype of descendants.

Recombination (genetic). In eukaryotes, each cell carries two copies of a particular

chromosome that are called homologous chromosomes. Each parent passes on one

copy to the offspring. During prophase of meiosis I, there is an exchange of genetic

material taking place between homologous chromosomes, and the process is called

Crossover. Crossover occurs when matching regions on matching chromosomes break

and are exchanged. This process of recombination is another source of variation in a

population that ultimately leads to evolution.

Horizontal gene transfer (genetic). There are also several mechanisms by which

genetic material of an organism is passed into another organism without being the

offspring of that organism. Such a process is called Horizontal gene transfer (HGT ). A

HGT can occur through genetic transformations, bacterial transduction, conjugation

and other genetic transfer agents.

Natural selection (environmental). The presence of limited resources lead to

competition between organisms for survival and reproduction. The phenomenon of

natural selection assumes that individuals with different phenotypes vary in their

ability to survive and reproduce in the environment. Consequently, an organism with

traits that are advantageous over other organisms tends to pass these traits on more

frequently to the next generation. As a result, organisms with such traits become

more frequent over time. Natural selection can be classified into abiotic selection and

biotic selection. Abiotic selection includes drought, temperature and nutrient content

of the soil, etc. On the other hand, biotic selection involves factors that are induced

by other individuals, for instance, by competing for food or sexual partners (sexual

selection). It is also important to note that initially disadvantageous characteristics

may become advantageous once the environmental conditions change (preadaptation).

Genetic drift (environmental). Allele frequencies change from one generation to

the next because the alleles in the offspring are passed on randomly from their parents.
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There is also randomness involved in determining whether an individual will survive

and reproduce. Random changes in allelic frequency from generation to generation

are called genetic drift. More precisely, genetic drift involves all non-directed random

effects on the gene pool such as through random mating. Genetic drift through

random mating will be one of the main stochastic ingredients in the derivation of the

so called coalescent process.

External factors (environmental) are for instance climate or natural disasters.

Under all these genetic and environmental factors, the gene pool of a population

undergoes a change over time that is called evolution. The interplay of mutation and

natural selection is very important, particularly when a gene is polyphenic, i.e. when

different alleles lead to different phenotypes that may have both positive and negative

influence.

1.5 Structure of the Thesis

In this thesis, we focus on some problems of statistical inference in modern genetics,

propose new statistical methods, and analyze their performance when analyzing ge-

netic data. In Chapter 2, we first review relevant literature related to mathematical

models and statistical inference problems in population genetics. Next, we discuss

literature on approximate methods of inference and focus, in particular, on approx-

imate Bayesian computation (ABC). In Chapter 3, we propose a new algorithm to

compute the exact likelihood under the infinite sites model and provide simulation

results illustrating the performance of this algorithm. Chapter 4 is about choosing

summary statistics and the acceptance cutoff for approximate Bayesian computation

(ABC). These ingredients are very important for the performance of the method.

Finally, we end by summarizing our work and discuss possible future developments

in Chapter 5.
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Chapter 2

Literature Review

2.1 Population Genetic Models

In population genetics, we investigate and do analysis about genetic variation in pop-

ulations. This genetic variation may be in among populations (phylogenetic analysis)

or within population; it is affected by several processes such as segregation, mutation,

recombination, mating structure, migration, selection and other genetic, ecological,

and evolutionary mechanisms (as discussed in Section 1.4). The population (of genes)

might be from human, animals, or plants. The genetic variability is preserved un-

der a particulate mode of inheritance as proposed by Mendel [1866] and later shown

by [Yule, 1902; Hardy, 1908; Weinberg, 1908]. The connection between genetics and

natural selection were originated in 1918 through the work of Fisher.

Nowadays, knowledge about molecular biology is quickly increasing by advance-

ment in biotechnology, computing power, and mathematical models. The mathe-

matical models are being increasingly employed to deal with complex mechanisms

in biology. Interactions between the mathematical and biological sciences have been

increasing rapidly in recent years. There are two types of mathematical models: deter-

ministic and stochastic models. Stochastic models play important role in population

genetics to intuitively understand the change in allele frequencies with time.

12
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Subsequently, so many processes are interrelate and govern the evolutionary fate

of the population; a proper understanding of the significant processes are necessary in

developing good mathematical models and also good experiments. Only important

factors are included in mathematical model and exclude the irrelevant one. The

main objective of model building is to reveal the answers of those questions that

are not anticipated before. Mathematical models have a long history; it was started

with elementary mathematics by Gregor Mendel. Afterwards, Francis Galton, Karl

Pearson, Ronald A. Fisher, J.B.S. Haldane, Sewall Wright set the criteria for good

mathematical modeling and statistical methods [Bürger , 2000]

Foundation of theoretical population genetics was built by Fisher [1930], Wright

[1931], and Haldane [1932]. Furthermore, many more detailed and sophisticated

mathematical models were developed by these and other authors [Malécot, 1948;

Kimura, 1955, 1969; Kimura and Ohta, 1973; Ewens, 1972] during the period from

about 1940 to 1980. These mathematical models were about the evolutionary process

and about the maintenance of genetic variation within populations. For detailed

literature on mathematical models in population genetics [see Provine, 1971; Bürger ,

2000; Wakeley, 2004; Ewens, 2004].

2.1.1 Some Basic Models

Fisher and Wright were involved in the elaboration of above population genetics

theories. Wright further established that in small populations, evolutionary theory

should take account of the sampling effects involved in producing one generation from

the previous. He called this effect ’random drift’.

The Wright-Fisher model [Fisher , 1930; Wright, 1931] assumed that each individ-

uals in the population produce an infinite and equal number of offspring. Thus the

population size is finite and constant. Because the population is finite in size and
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reproduction is a random process, some individuals may not contribute any offspring

while other contribute more to the next generation, which would result in changes

in frequency of a particular allele in the population. This random change of genetic

lineages forward in time is called genetic drift. Backward in time it is the source of

the coalescent process (see Section 2.1.2).

The Moran model [Moran, 1958, 1962] is also well studied and widely used in

population genetics. It has been important for two reasons. First, in contrast to

the Wright-Fisher model, it does not involve a fixed previous generation but has

overlapping generations. This means that each individual dies one at a time and is

replaced by a new one with probabilities calculated from the system prior to death

of individual. Second, it has been important from a mathematical point of view, as

many results can be derived exactly under the Moran model, and are available only

approximately under the Wright-Fisher model.

The Wright-Fisher and the Moran models have been well explored in population

genetics. While the Wright-Fisher model represents perfectly non-overlapping gener-

ations, the Moran model represents idealized overlapping generations. Real popula-

tions might exist somewhere between these two extremes. When the sample size is

large, these models can be well approximated by the coalescent process, see Section

2.1.2 [Wakeley, 2009; Hein et al., 2005].

Mutations are the ultimate source of genetic variation; without them there would

be no evolution. There are several important models of mutations, we discuss some

of them here. In the k-allele model, a gene is assumed to occur in one of a finite

number of types, mutations are assumed to occur at a constant rate per individual,

and are independent of the current type of the individual. The type created by a

mutationic chosen according to a probability distribution. Kimura and Crow [1964]

introduced the infinite-allele (IA) model, which assumes that every time a mutation

occurs, it is to a new allele, never seen before in the population. When the number
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of alleles tends to infinity, the IA model can be seen as the limit of the k-allele

model. This model is mainly for protein polymorphism. The above models are

independent of the type of parents, and they are also known as a parent independent

mutation (PIM) models. Kimura [1969] also proposed the infinite sites (IS) model

that assumes the total number of sites to be large and the mutation rate per site to

be very small so that (with good accuracy) whenever a mutant appears it occurs at a

previously homo-allelic site. This model is mainly for DNA polymorphisms. Tajima

[1996] shown that the IA model can be obtained from the IS model and vice versa.

Furthermore, many mutation models are convergent to the IA model, when mutation

rates are low. These results hold when recombination rates are high in the IS model.

The IS model saves computational time because it permits to restrict the number of

genealogies compatible with the investigated sequence data. In this thesis, we will

assume infinite sites models with or without recombination.

Population growth can be modeled in several ways, such as sudden expansion,

exponential growth and logistic growth. The case of population growth or shrinkage

will be explained in more detail in this thesis. Take for example exponential growth.

Here we and a growth rate g and the population size today N0, to obtain time

dependent population sizes

N(t) = N(0)e−tg.

Here N(t) is the population size t generation in the past, g is the exponential

growth rate, and t measures the time in generations. Hudson, Kingman and others

recognized that the standard coalescent can be extended to cover the above growth

model by manipulating the time scale. In the standard coalescent the time scale is

constant, but in a growing population the time scale is proportional to N(t).

To understand these phenomena it is helpful to know that when the population is

small then the rate of coalescence is large, and therefore the time intervals between

coalescence events are short. In the case when the population is large, the rate of
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coalescence is small, and the time intervals to coalescence are long (see Figure 2.1).

Figure 2.1: Growing and shrinking populations

These phenomena produce on average genealogies for the growing population (left

side) with longer branches at the tips and shorter branches at the root than the

standard coalescent. For a shrinking population (right side), we observe the opposite

picture with shorter branches at the tips and longer branches at the root.

Instead of simply having samples from a single population, one also considers

samples from multiple populations. Such a scenario can be modeled by coalescent

processes for subdivided populations. Here, we consider coalescence events as well as

migration events (events where one lineage moves to the other population). Migration

models can have many parameters, for example a simple two population model has

at least 4 parameters (see Figure 2.2). Figure 2.1 and 2.2 are taken from a following

URL1.

1http://people.sc.fsu.edu/~pbeerli/BSC-5936/11-02-05/lecture_17.pdf
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Figure 2.2: Migration model

For two populations we need to consider coalescence in population 1 and 2 and

migration events that move lineages from 1 to 2 or 2 to 1.

Gene flow among these discrete populations can be modeled using island models

[Wright, 1943] and stepping-stone models [Kimura, 1953]. There are many further

more complicated models in population genetics such as models that involve natural

selection (For more information about population genetic models see for instance

Ewens, 2004.)

2.1.2 The Coalescent Process

As we discussed in previous sections, population genetics relies heavily on mathe-

matical modeling to make quantitative predictions about the behavior of genes in

populations. These models are often based on the principles of classic Mendelian

gene inheritance, the Hardy-Weinberg equilibrium, and Darwin’s theory of natural

selection.

We can see in our daily life that the individuals of a population vary in many

ways. Ewens [1972] proposed a new statistical distribution that predicted patterns of

selectively neutral allozyme variation in a sample from a large population. The intro-

duction of the “Ewens sampling formula” marks the beginning of a shift in perspective

from a prospective view of classical population genetics to a new, retrospective view
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which was soon embodied by the Kingman [1982a, b, c] coalescent; [see Ewens, 1990;

Wakeley, 2004] for a discussion of these developments.

If we have the genetic history at our disposal, we could, in principle, understand

the variation we observe, but naturally this information is lost, making it impossible

to directly predict the present from what we know about the past. Whereas the

classical approach uses a forward in time analysis to make predictions about genetic

variation in a population and requires a separate theory of sampling, coalescent theory

provides a backwards in time approach to generate predictions about genetic variation

in a sample. Thus the retrospective approach has always been closely tied to samples

and to inference [see Wakeley, 2004].

When two copies of a gene descend from the same sequence in a common ancestor,

looking back, we say that the copies coalesce (i.e. grow together or join) in that

generation. From a retrospective viewpoint, we may then ask which among all possible

histories explain our data from a present-day population best. In order to find an

answer to this question, one has to model the common history of a population by

making assumptions on how evolution works. This is not as restrictive as it might

sound at first, because we can include many evolutionary degrees of freedom into the

model, which we do not have to specify in advance. These parameters encompass

a wide variety of evolutionary aspects such as mutation, selection, recombination,

mating structures, or changing population size, and can be estimated from the given

data. In this way, statistical methods do shed light on how evolution could have acted

on the investigated population.
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Figure 2.3: One possible genealogy of a sample size five.

Figure 2.3 taken from Wakeley [2009]. It shows one possible genealogy of a sample

of five gene copies. We assume that the sample is taken at present time, and the

genealogical history of the sample is traced back into the past till the most recent

common ancestor (MRCA). Kingman [1982a, b, c] showed that in the limit as the

population size N →∞, the coalescence times Ti are independent and exponentially

distributed as

fTi
(ti) =

(
i

2

)
e(−(i

2)ti) ti ≥ 0, i = 2, 3, ..., n

when time is measured appropriately. The mean and the variance are,

E [Ti] = 2
i(i− 1)

V ar [Ti] =
(

2
i(i− 1)

)2

The length of a lineage is just its vertical height. Typically, Ti is used to designate
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the time during which there were i ancestral lineages. On their way up the lineages

coalesce, as expected from the facts of DNA replication. The coalescent events create

junctures, called nodes, which occur at intervals shown to the right. For example,

the time back to the first coalescent event in Figure 2.3 is labeled T5 because during

this time there were exactly five ancestral lineages. If n sequences are sampled, then

i in Ti ranges from 2 to n. The expected time to MRCA (height of the tree) is given

below:

E [TMRCA] = E

[
n∑
i=2

Ti

]
=

n∑
i=2

E [Ti] =
n∑
i=2

2
i(i− 1) = 2

(
1− 1

n

)

The expected total branch length of the tree is

E [Ttotal] = E

[
n∑
k=2

iTi

]
=

n−1∑
i=1

2
i
→ 2 (γ + log(n))

where γ = 0.57721... is Euler’s constant. However, in Figure 2.3, the genealogies

are drawn without recombination rate, and they are rooted bifurcating trees. Rooted

refers to the fact that the deepest branch (uppermost in Figure 2.3) is anchored by

the common ancestor of the entire sample. Bifurcating refers to the fact that each

node has just three lineages attached to it, one ancestral and two descendant. The

root of the genealogy is the MRCA of the entire sample. In the discrete case, the

distribution of Ti would be the geometric distribution [Wakeley, 2009].

The coalescent process provides good approximations for a wide range of popula-

tions with different breeding structures [see Kingman, 1982a], and it also provides a

model for studying statistical inference in population genetics. Among others, Hudson

[1983] and Tajima [1983] explored many biologically relevant aspects of the coalescent

process and presented more intuitive derivations starting with the most basic pop-

ulation model, the Wright-Fisher model. The seeds of the coalescent were planted

several decades before this, in the 1940’s, by Gustave Malécot, who introduced the

idea of following a pair of gene copies back to their common ancestor [Malècot, 1946;
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Malécot, 1948; Nagylaki, 1989; Slatkin and Veuille, 2002] and the notion of identity by

descent, a concept which is readily interpreted in terms of coalescence events [Hudson,

1990]. Genealogical approaches to samples larger than two appeared later, in response

to the first direct measurements of molecular variation [Harris, 1966; Lewontin and

Hubby, 1966]. These include Ewens [1972] who described the distribution of allele

counts in a sample under the infinite-alleles model of selectively neutral mutation,

and Watterson [1975] who gave an explicitly genealogical derivation of the number of

segregating sites, or polymorphic sites, in a sample of sequences under the infinite-

sites model of mutation without recombination. In addition, Griffiths [1980] theory

of lines of descent under the infinite alleles model is based on the coalescent. Lines

of descent are sets of descendants of mutations, and Tavaré [1984] shows how the

structure of the coalescent is recovered from these models by setting the mutation

rate to zero. Finally, Kingman [2000] draws some connections between the coalescent

and earlier work on models of stepwise mutation [Kimura and Ohta, 1973; Moran,

1975].

The power and popularity of the coalescent derives first from a robustness result,

showing that it provides an approximately correct stochastic process for the genealogy

of a sample for a wide-range of models of the evolution of a population. Second,

the coalescent can be easily extended to various demographic models: for example

allowing varying population sizes, and certain forms of non-random mating. It can

also be extended to model the joint distribution of genealogies at different loci in

the presence of recombination. Lastly, in most cases it is easy and computationally

efficient to simulate the coalescent, and hence simulate population genetic data under

a range of different modeling assumptions [Fabrice and Paul, 2011]. Interested readers

should also consult the reviews of coalescent theory by Hudson [1990], Donnelly and

Tavaré [1995], Möhle [2000], Nordborg [2001], Hein et al. [2005], and [Wakeley, 2009].
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2.2 Statistical Inference in Genetics

In this thesis, we focus on statistical inference based on summary statistics, likelihood-

based, and likelihood-free methods.

2.2.1 Summary Statistics

Early approaches used summary statistics to estimate unknown parameters in pop-

ulation genetics. For the mutation rate for example, three well known estimators

are available in the literature; the first is based on the number of segregating sites

[Watterson, 1975], the second on the mean number of pairwise nucleotide differences

[Tajima, 1989], and the third is based on the number of singletons (Fu and Li, 1993a).

All of these estimators are unbiased or asymptotically unbiased for θ under the as-

sumption of the IS model, but they may have a big variance. The maximum likelihood

estimator (MLE) of θ has been used in the literature to study the efficiency of these es-

timators [Fu and Li, 1993b; Futschik and Gach, 2008]. More recently, Pinheiro et al.

[2010] have studied various estimators of this parameter θ, and investigated their

asymptotic behavior as well as comparisons of the distribution’s behavior of these

estimators through simulations. They have analytically proved that Watterson’s es-

timator [Watterson, 1975] and the MLE [Fu and Li, 1993b; Futschik and Gach, 2008]

are asymptotically equivalent with the same rate of convergence to normality.

There are also several methods to estimate the recombination rate that are based

on summary statistics and often a method-of-moments approach is used. Furthermore

summaries of the site frequency spectrum such as D [Tajima, 1989] and H [Fay and

Wu, 2000], and summaries for linkage disequilibrium (LD), for instance the average

pairwise correlation coefficient ZnS [Kelly, 1997], are often used. Population differ-

entiation summary statistics such as FST [Hudson et al., 1992b, a; Slatkin, 1993] are

also popular.
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2.2.2 Likelihood Inference

The likelihood function is often used as basis for statistical inference. Quantities

derived from the likelihood function provide estimates of unknown parameters, and

methods for testing hypotheses and selecting models.

Assume we are considering a parametric model f (y; θ) , which is the probability

density function with respect to a suitable measure for a random variable Y . The pa-

rameter is assumed to be k-dimensional and the data is assumed to be n-dimensional,

often representing a sequence of independent and identically distributed random vari-

ables: Y = (Y1, ..., Yn) . The likelihood function is defined to be a function of θ,

proportional to the model density:

L(θ) = L (θ; y) = cf (y; θ) , (2.1)

where c can depend on y but not on θ. Within the context of the given parametric

model, the likelihood function measures the relative plausibility of various values of

θ, for a given observed data point y.

Coalescent theory (see Section 2.1.2) is strong tool for modeling the distribution

of the genealogical tree and do data analysis in population genetics [see Donnelly

and Tavaré , 1997]. In this thesis, one of the interest is to investigate the mutation

mechanism, and the population demography that relate to the genealogy. We address

here the problem of performing inference about the scaled mutation rate θ. Kuhner

et al. [1995] proposed method that is based Markov chain Monte Carlo (MCMC) to

estimate the θ. Furthermore, Importance sampling [see for introduction Ripley, 1987]

method is applied to reduce a large variance of above method [for inference problems

in population genetics see Stephens, 1999].

We now explain the computation of the coalescent likelihood under the infinite

sites model for the classic problem to estimate θ. Under the coalescent model, the
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likelihood Pr (y/θ) can be viewed as a summation of probabilities over all possible

genealogies, where the data y = (D, z) are conditional on θ. Data D is generated

from numerous gene genealogies, where some genealogies are more probable and oth-

ers are less probable. Likelihood Pr (y/θ) calculation is quite easy, when genealogy

parameters (coalescent time and topology) are given in advance [see Hobolth et al.,

2008]. Ethier, Griffiths and Tavaré (EGT) recursion is well known for calculating

exact likelihood by solving a set of recursions [Griffiths and Tavaré , 1994a; Griffiths

and Marjoram, 1996; Griffiths and Tavaré , 1997; Wu, 2009]. The EGT equation is

given below:

p (D, z) = (n− 1)
(θ + n− 1)

∑
(k:zk≥2)

zk (zk − 1)
n(n− 1) p (D, z− ek)

+ θ

(θ + n− 1)
∑

(kεA)

1
n
p (SkD, z) (2.2)

+ θ

(θ + n− 1)
∑

(kεB)

∑
(jεCk)

1
n
p (RkD, Rk (z + ej))

Here θ is the scaled mutation rate, and n is the sample size. Moreover, the kth

element is deleted from D and generate D′ haplotype vector by applying SkD. The

kth item is deleted from D and generate D′ haplotype vector by applying RkD. Three

main parts of the EGT recursion and its first part resembles the coalescent event, and

other two parts are belonged to mutation events. There ek to be the vector whose

kth bit is 1 and the rest is all 0, and the multiplicity of the nth haplotype in D is zk.

Indices of mutable haplotypes are stored in set A, which stay different after delet-

ing their first site and indices of all mutable haplotyes are stored in set B. If, then

store these Indices of haplotypes are stored in set Ck where D′k is matched with (after

mutated at first site) Dk [Wu, 2009].

Wu [2009] have tried to efficiently solved Ethier-Griffiths-Tavaré (EGT) recursion,
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which looks genealogical history forward in time. Unfortunately, it is not feasible

to solve the EGT recursion for the datasets of useful sample size, and sampling-

based techniques are required to calculate the likelihood. The number of genealogies

(see Figure 1.1) is the major problem while calculating likelihood Pr (y/θ). Thus,

computing Pr (y/θ) can often be challenging under genetic models.

Griffiths and Tavaré [1994b] described a method for approximating the likelihood

under the infinite sites model, and they developed a program called ptree that can

solve the EGT recursion exactly when data is small (n < 20) [Wu, 2009; Griffiths

and Tavaré , 1994a]. Afterwards, Griffiths and Tavaré [1994b] developed a program

called “Genetree”. Felsenstein et al. [1999] point out that the Griffiths-Tavaré (GT)

approach is a version of the importance sampling method. The importance sampling

method can handle much larger data in Genetree software. The EGT recursion

computation is difficult when the sum of the number of haplotypes and the number

of sites exceeds 30 [Hein et al., 2005].

Several computationally intensive methods for the estimation of θ under the in-

finite sites model rely on Markov Chain Monte Carlo [see Kuhner et al., 1995] or

Importance Sampling methods [Nielsen, 1998]. In practice, it is important to choose

a proposal distribution that promotes an efficient search of the state space [Hobolth

et al., 2008]. Stephens and Donnelly [2000] provide approximation to the optimal

proposal distribution (SD) under the infinite sites model by choosing an allele uni-

formly at random and perform the unique update implied by the choice of allele.

Hobolth et al. [2008] also gave proposal distribution, and shown that their proposal

distribution is more efficient than GT and SD proposal distributions, in terms of the

smaller variance.

Importance sampling method can handle much larger data, and is available as the

Genetree software. Based on the Ethier and Griffiths algorithm, a recursion can be

constructed to calculate the likelihood of a data set. Unfortunately, it is not feasible
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to solve the recursion for data sets of useful size, and sampling-based techniques

are required to calculate the likelihood. Griffiths and Tavaré [1994b, a] described a

method for approximating the likelihood under the IS, and Felsenstein et al. [1999]

point out that the Griffiths-Tavaré procedure is a version of importance sampling.

Proceeding backward in time, a proposal distribution suggests histories of the sample

by stepwise reduction of the data set, either by coalescence of two identical genes

or by removal of a mutation unique to a single gene. Stephens and Donnelly [2000,

Theorem 1] characterized the optimal proposal distribution for a large class of models,

including the IS, and constructed reasonable approximations to the optimal proposal.

Recently, Hobolth et al. [2008] have claimed that neither the GT nor the SD

proposal takes into account the number of mutations carried by genetic lineages, one

expects that those lineages that have experienced more evolutionary events within a

given time period (the time since the most recent common ancestor of the sample)

have a higher likelihood of having experienced the most recent evolutionary event.

Their proposal distribution is more efficient than an earlier methods [Stephens and

Donnelly, 2000; Griffiths and Tavaré , 1994a] in terms of variance.

2.2.2.1 Extension of Likelihood Inference

There are several alternative approaches that have been developed to deal with more

complex problems in population genetics, where full likelihood inference is no longer

computationally feasible. These approaches include pseudo and composite likelihoods,

conditional likelihood, marginal likelihood, profile likelihood, quasi-likelihood, semi-

parametric and non-parametric likelihoods, and empirical likelihood.

It is often possible to write some parameters as functions of other parameters,

thereby reducing the number of independent parameters. The function is the param-

eter value which maximizes the likelihood given the value of the other parameters.
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This procedure is called concentration of the parameters and results in the concen-

trated likelihood function, also occasionally known as the maximized likelihood func-

tion, but most often called the profile likelihood function. Unlike conditional and

marginal likelihoods, profile likelihood methods can always be used, even when the

profile likelihood cannot be written down explicitly. However, the profile likelihood

is not a true likelihood, as it is not based directly on a probability distribution, and

this leads to some less satisfactory properties. Attempts have been made to improve

this, resulting in the modified profile likelihood [Reid, 2010]. One interpretation of

partial likelihood is that the probability distribution of only part of the observed data

is modeled, as this makes the problem tractable and with luck provides an adequate

first order approximation. A similar construction was suggested for complex spatial

models by Besag [1974], using the conditional distribution of the nearest neighbors of

any given point, and using the product of these conditional distributions as a pseudo-

likelihood function. This was one of a class of such likelihoods now often referred as

composite likelihoods, after Lindsay [1988].

Composite likelihoods are based upon calculating likelihoods for a subset of the

data, and then combining these likelihoods as if each subset of the data were inde-

pendent. Parameter estimates are constructed by maximizing the resulting composite

likelihoods. The first composite likelihood method for estimating recombination rates

was introduced by Hudson [2001], see also McVean et al. [2002]. This is based on

combining the likelihood for all pairs of SNPs in the data. In general there are two

main motivations for using composite likelihood approaches. The first is computa-

tional, as calculating likelihoods for subsets of data is often substantially easier than

calculating the full-likelihood for the complete data set. The second is that it avoids

the need to model higher order dependencies in the data, and thus gives inferences

that are based only on modeling of appropriate marginal or low-dimensional aspects

of the data. As data sets get bigger we would expect the importance and use of
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composite likelihood methods to also increase [Varin et al., 2011].

Composite likelihoods are extensively used within genetics such as, estimation of

recombination rates, association and fine mapping methods, detecting genes under

selection, and for inference of demography. Currently, different composite likelihood

methods are justified by empirical results (mainly through simulation studies) rather

than theoretically. Furthermore, some. questions are still unanswered. For instance,

asymptotic distributions of composite likelihood estimators are often unknown. Other

unresolved issues are under which conditions the asymptotic distribution will be Gaus-

sian, and how can we consistently estimate the variance of this distribution [Fabrice

and Paul, 2011]. A quasilikelihood is a function that is compatible with the specified

mean and variance relationship. Although it may not exist, when it does it has in

fairly wide generality the same asymptotic distribution theory as likelihood functions

[McCullagh and Nelder , 1989; Li and McCullagh, 1994].

2.2.3 Likelihood-free Inference

In recent years, however, a number of different strategies have been developed to

address the problem of making complex mathematical models usable for likelihood-

based inference. Those include methods that explicitly approximate p (D|θ) such as

Approximate Bayesian Computing (ABC) [Beaumont, 2010; Csilléry et al., 2010],

simulated (synthetic) pseudo-likelihoods [Hyrien et al., 2005; Wood, 2010] or indirect

inference [Gourieroux et al., 1993], and also other methods that allow parametrization

without explicitly approximating p (D|θ), for example, informal likelihoods [Beven,

2006] and Pattern-Oriented Modeling [POM;Wiegand et al., 2003, 2004;Grimm et al.,

2005]. Despite different origins and little apparent overlap, most of these methods

use the same three essential steps:



2.2. Statistical Inference in Genetics 29

1. The dimensionality of the data is reduced by calculating summary statistics of

observed and simulated data.

2. Based on these summary statistics, p (D|θ), the likelihood of obtaining the ob-

served data D from the modelM with parameters θ, is approximated.

3. For the computationally intensive task of estimating the shape of the approx-

imated likelihood as a function of the model parameters, state-of-the-art sam-

pling and optimization techniques are applied.

In this thesis we focus on approximate Bayesian computation (ABC).

2.2.3.1 Approximate Bayesian Computation

Unlike classical statistics, Bayesian statistics combines the information from the data

with prior information to compute the posterior distribution, the target of Bayesian

inference.

p (θ/D) = p (θ) p (D/θ)
p (D) (2.3)

From (2.3), where p (θ) is a prior distribution and p (D/θ) is the likelihood with

dataD. The computation of p (D) involves integration over the parameters and can be

difficult to compute. So there are several simulation based methods to compute the

posterior. The posterior probability, p (θ/D) can be written as being proportional

to p (θ/D) ∝ p (θ) p (D/θ). Bayesian statistics has a large number of applications

from daily life problems to complex problems in population genetics. Methods such

as MCMC are are available available for obtaining the posterior in more complex

problems. In population genetics the situation is particularly difficult, since also the

computation of the likelihood is prohibitively expensive or even impossible for many
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realistic models. Approximate Bayesian Computation (ABC ) has been introduced to

avoid explicit calculation of the likelihood. Marjoram and Tavaré [2006] and Csilléry

et al. [2010] review ABC methods nicely. The basic concept behind ABC has first

been introduced by Tavaré et al. [1997] for a population genetic problem. A detailed

discussion of the ABC method will be given in the next section.

So far, there are many schemes of the ABC method available in the literature.

The most basic one is as follows:

Algorithm 2.1: ABC-REJ

1. Generate θ from π (.)

2. Simulate D′ from modelM with parameter θ.

3. Accept θ if D′ = D, and return 1.

Here D′ denotes the simulated data, and D the observed data. The success of

this approach will depend on whether the underlying stochastic modelM is easy to

simulate. Furthermore, the practicality of algorithm ABC-REJ depends crucially on

the order of magnitude of P (D), because the probability of accepting an observation

is proportional to P (D). In cases where the acceptance rate is too small, one might

resort to approximate methods such as:

Algorithm 2.2: ABC-REJ

1. Generate θ from π (.)

2. Simulate D′ from modelM with parameter θ.

3. Calculate the distances ρ (D′, D) between D′ and D.

4. Accept θ if ρ (D′, D) ≤ ε, and return 1.

This approach requires selection of a suitable distance metric ρ as well as a choice

of ε. As ε→∞, it generates observations from the prior, and as ε→ 0, it generates

from observations from the density f (θ/D). The choice of ε reflects the interplay
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between computability and accuracy. For given ρ and ε, accepted observations are

independent and identically distributed from f (θ/ρ (D′, D) ≤ ε) [see Beaumont et al.,

2002; Marjoram et al., 2003].

When D is high-dimensional, this approach can be impractical as well, and then

the comparison of D′ with D can be replaced by using lower-dimensional summaries

of the data. Weiss and von Haeseler [1998] extend the method for multiple summary

statistics and multiple parameters. Instead of exact match, Weiss and von Haeseler

[1998] introduce |S− S′| ≤ ε step for accepting θ, where |S− S′| is a distance and ε

the tolerance parameter.

Algorithm 2.3: ABC-REJ

1. Generate θ from π (.)

2. Simulate D′ from modelM with parameter θ,

and calculate the summary statistics S′.

3. Calculate the distances ρ (S′, S) between S′ and S.

4. Accept θ if ρ (S′, S) ≤ ε, and return 1.

Here S and S′ are observed and simulated summary statistics respectively. The use

of summary statistics adds one more layer of error towards approximation. The choice

of summary statistics is an important research issue with the ABC method [Marjoram

et al., 2003]. Ideally, the summary statistics should be sufficient statistics. Since

sufficient summary statistics are usually not available in population genetics, Joyce

and Marjoram [2008] developed a practical method that selects informative summary

statistics in ABC. Fu and Li [1997] were interested in estimating the time to the most

recent common ancestor (MRCA), one of the key parameters in population genetics.

Furthermore, these methods have been adopted by Wall et al. [2000], Tishkoff et al.

[2001] and Estoup et al. [2002].

Improvements are proposed by fitting a local-linear regression of simulated pa-
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rameter values on summary statistics. Using such a regression relationship, the ABC

algorithms results can generally be enhanced by adjusting the ith accepted parameter

value θi by reducing a discrepancy between its relevant summary statistic S′i and the

observed value S. Beaumont et al. [2002] proposed a method to fit the homoscedastic

regression model

θi = α + (S′i − S) Tβ + φi

replaced θi with

θ′i = α̂ + φ̂i = θi + (S′i − S) T β̂,

where (α, β) are vector of coefficient, and weighted least squares estimator of it is(
α̂, β̂

)
=
(
XTWX

)
−1XTWθ, where X is the design matrix with (1, S′i − S) at ith

row. The weight matrix was taken to be

Wij =


K (||S′i − S||) , i = j

0 otherwise.

with K the Epanechnikov kernel

Kδ(t) =


3 (1− (t/δ) 2) / (4δ) , t ≤ δ

0 t > δ

Beaumont et al. [2002] gave posterior approximations by applying the weights Wii

to the θ′i.

Similarly, the variance can be adjusted using a local log-linear regression for the

squared residuals from the mean adjustment:

log
(
φ̂2
i

)
= α′ + (S′i − S) Tβ′ + φi

Beaumont et al. [2002] also proposed the constant weighted least squares approach
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to estimate (α′, β′).

θ′′i = α̂ + φ̂i
σ̂ (S)
σ̂ (S′i)

= α̂ + φ̂iexp
{

(S− S′i) β̂′/2
}
.

[Blum and François, 2009] suggested another method for mean and variance ad-

justments, using Feed-forward neural networks.

There are many schemes of the ABC algorithms available. Acceptance rates for

the Algorithm 4 can be very low as candidate parameter vectors θ are generated from

the prior π(.), which may be diffuse with respect to the posterior [see Marjoram

et al., 2003]. Accordingly, Marjoram et al. [2003] proposed to embed the likelihood-

free simulation method within the well known MCMC framework. This algorithm

proceeds as follows:

Algorithm 2.4: ABC-MCMC

1. If at θ propose a move to θ′ according to a transition kernel q (θ → θ′)

2. Simulate D′ from modelM with parameter θ′,

and calculate the summary statistics S′.

3. If the distances ρ (S′, S) ≤ ε between S′ and S is less than tolerance ε

then go to step 4,

and otherwise stay at θ and return to step 1.

4. Calculate h = h (θ, θ′) = min
(
1, π(θ′)q(θ′→θ)

π(θ)q(θ→θ′)

)
5. Accept θ′ with probability h and otherwise stay at θ, then return to step 1.

Algorithm ABC-MCMC generates a sequence of serially and highly correlated

samples from f (θ|ρ (S′, S) ≤ ε). The acceptance rates of the ABC-MCMC delivers

substantial increases over the ABC-REJ provided that the prior and posterior are

dissimilar, although at the price of generating dependent samples. However, a prob-

lem with ABC-MCMC sampler is when it enters an area of relatively low probability

with a poor proposal mechanism, the efficiency of the algorithm is strongly reduced.
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It is because of difficulty to move anywhere with a reasonable chance of acceptance

causing the sampler to stick in that part of the state space for long periods of time

Marjoram et al. [2003].

However, there is another sampler, which is known as a sequential Monte Carlo

(SMC ) sampler [see Del Moral et al., 2006]. The SMC sampler is used to draw a sam-

ple from the easy-to-sample distribution and then moving towards difficult-to-sample

distribution by weighting and adjusting in T steps. ABC-SMC sampler is given below:

Algorithm 2.5: ABC-SMC

1. Initialize ε1, ε2, ..., εT , and specify initial sampling distribution µ1.

Set population indicator t = 1

2.0. Set particle indicator i = 1.

2.1. If t = 1, sample θ∗∗ ∼ µ1 (θ) independently from µ1.

If t > 1, sample θ∗from the previous population {θ(i)
t−1}

with weights {W (i)
t−1}, and perturb the particle to θ∗∗ ∼ Kt (θ|θ∗)

according to a Markov transition kernel Kt.

Simulate D′ from modelM with parameter θ∗∗,

and calculate the summary statistics S ′.

If ρ (S′, S) > εt, then go to step 2.1

2.2. Set θ(i)
t = θ∗∗ and calculate the weight for particle θ(i)

t ,

w
(i)
t =


1, if t = 1

π(θ(i)
t )∑N

j=1 w
(i)
t−1Kt(θ(j)

t−1,θ
(i)
t )

if t > 1

If i < N set i = i+ 1, go to step 2.1.

3. Normalize the weights. If t < T , set t = t+ 1, go to step 2.0.

Particles sampled from the previous distribution are denoted by a single asterisk,

which changed into a double asterisk after perturbation. The drawback of the SMC

algorithm is selection of parameters. In order to address this problem, Del Moral
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et al. [2010] provided a adaptive SMC algorithm for ABC with a computational cost

that is linear in the number of samples and calculates the tolerance levels adaptively.

However, a crucial difference between ABC-MCMC and ABC-SMC algorithm is that

in the ABC-MCMC the current value is the old value if the update is not accepted,

otherwise it is the new value, whereas in this ABC-SMC algorithm we keep going until

we get an acceptance [Del Moral et al., 2010]. So in the ABC-MCMC algorithm, one

is guaranteed that if the point is already update from the posterior distribution, the

next point will also be from the posterior, whereas in the ABC-SMC this is not the

case [Beaumont et al., 2009].

Sisson et al. [2007] proposed ABC-PRC algorithm that was based on sequential

Monte Carlo (SMC) samplers, and it is useful when likelihood computation is pro-

hibitive. They claimed that their proposed method can overcome these inefficiencies.

However, Beaumont et al. [2009] point out biased weights in Sisson et al. [2007] al-

gorithm, which has a visible impact on the quality of the approximation.
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Algorithm 2.6: ABC-PRC

1. Initialize ε1, ε2, ..., εT , and specify initial sampling distribution µ1.

Set population indicator t = 1

2.0. Set particle indicator i = 1.

2.1. If t = 1, sample θ∗∗ ∼ µ1(θ) independently from µ1.

If t > 1, sample θ∗ from the previous population
{
θ

(i)
t−1

}
with weights

{
W

(i)
t−1

}
, and perturb the particle to θ∗∗ ∼ Kt (θ|θ∗)

according to a Markov transition kernel Kt.

Simulate D′ from modelM with parameter θ∗∗,

and calculate the summary statistics S′.

If ρ (S′, S) > εt, then go to step 2.1

2.2. Set θ(i)
t = θ∗∗ and calculate the weight for particle θ(i)

t ,

w
(i)
t =



π

(
θ

(i)
t

)
µ1

(
θ

(i)
t

) , if t = 1

π

(
θ

(i)
t

)
Lt−1

(
θ∗|θ(i)

t

)
π(θ∗)K

(
θ

(j)
t−1,θ

(i)
t

) if t > 1

where π (θ) denotes the prior distribution for θ,

and Lt−1 is a backward transition kernel.

If i < N set i = i+ 1, go to step 2.1.

3. Normalize the weights so that ∑N
i=1 W

(i)
t = 1.

If ESS =
[∑N

i=1

(
W

(i)
t

)
2
]−1

< E then resample with replacement,

the particles
{
θ

(i)
t

}
with weights

{
W

(i)
t

}
to obtain a new population{

θ
(i)
t

}
, and set weights

{
W

(i)
t = 1/N

}
.

4. If t < T , set t = t+ 1, go to step 2.0.

ABC-SMC algorithm, and the ABC-PRC algorithm of Sisson et al. [2007] are very

similar, in principle, and the main difference is that while ABC-SMC is based on a

SIS framework, whereas Sisson et al. used a SMC sampler as a basis for ABC-PRC,

where the weight calculation is done through the use of a backward kernel. Both
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algorithms are explained in detail by Del Moral et al. [2006, 2010]. The drawback

of the SMC sampler is that it does not provide the possibility to use an optimal

backward kernel, and it is hard to choose a good one. Sisson et al. [2007] choose

a backward kernel that is equal to a forward kernel, and it could be a poor choice

suggested by Toni et al. [2009].

An alternative version ABC-PMC is based on genuine importance sampling argu-

ments bypasses this difficulty, in connection with the population Monte Carlo (PMC )

method of Cappé et al. [2004], and it includes an automatic scaling of the forward

kernel [see Beaumont et al., 2009]. Moreover, Del Moral et al. [2006] gave the theo-

retical foundation of sequential Monte Carlo method.
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Algorithm 2.7: ABC-PMC

1. Given a decreasing sequence of approximation levels ε1, . . . , εT .

2. At iteration t = 1,

For i = 1, . . . , N, repeat

Simulate θ(1)
i ∼ π (θ), and

Simulate D′ from modelM with parameter θ(1)
i ,

and calculate the summary statistics S′ until ρ (S′, S) < ε1

Set weight w(1)
i = 1/N

Take σ2
2 as twice the empirical variance of the θ(1)

i ’s

3. At iteration 2 ≤ t ≤ T,

For i = 1, . . . , N, repeat

Pick θ∗i from the θt−1
j ’s with probabilities w(t−1)

j

generate θ(t)
i |θ∗i ∼ N (θ∗i , σ2

t ) and

Simulate D′ from modelM with parameter θ∗i ,

and calculate the summary statistics S′ until ρ (S′, S) < εt

Set w(t)
i ∝ π

(
θ

(t)
i

)
/
∑N
j=1 w

(t−1)
j φ

(
σ−1
t

{
θ

(t)
i − θ

(t−1)
j

})
Take σ2

t+1 as twice the weighted empirical variance of the θ(t)
i ’s

Beaumont et al. [2009] showed the applicability of ABC-PMC and compared its

performance with ABC-PRC. Furthermore, the ABC-PMC algorithm is simpler than

the ABC-PRC algorithm in the sense that it does not require any backward transition

kernel and proposes an automatic scaling of the forward kernel. Wilkinson [2008]

introduces a model error term and emphasis an importance while making statement

about reality from model. Moreover, he suggested that it can be possible to generalize

approximate sequential Monte Carlo methods in a similar way to that done for the

approximate rejection and approximate Markov chain Monte Carlo algorithms.

Blum [2010] presents non-parametric approach to reduce the bias by introducing

an estimator of p (θ|ρ (S′, S) ≤ ε) based on quadratic adjustment unlike linear adjust-
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ment proposed by Beaumont et al. [2002]. He also highlights the problem of choosing

sufficient summary statistics.

Blum and François [2009] proposed a machine learning approach to the estimation

of the posterior density, when the number of summary statistics is large. The new

approach fits a non linear conditional heteroscedastic regression of the parameter on

the summary statistics, and then adaptively improves estimation using importance

sampling.

Cornuet et al. [2009] investigated the Adaptive Multiple Importance Sampling

(AMIS) algorithm and claimed that the improvement brought by this technique is

substantial. Leuenberger and Wegmann [2010] propose a reformulation of the regres-

sion adjustment in terms of a General Linear Model (GLM ) to estimate the likelihood

function and ABC-GLM always consistent with the prior distribution. This allows

the integration into the sound theoretical framework of Bayesian statistics and the

use of its methods, including model selection via Bayes factors.

Lane et al. [2009] also introduced the ABC-SMC algorithm that does not need

to know advance the number of model parameters. Sousa et al. [2009] showed that

ABC methods can provide reasonably good estimates in a reasonable computational

time for the problems in which the choice of summary statistics is not obvious.

More recently, Fearnhead and Prangle [2010] showed how to construct appropriate

summary statistics for ABC in a semi-automatic manner. They proposed that using

an extra stage of simulation to estimate the posterior means vary as a function of the

data; and then use these estimates of summary statistics within ABC. They showed

that simulation-based approach to choosing summary statistics could be orders of

magnitude more accurate than this alternative, based on empirical results of two

examples from the literature.

All above algorithms depend on a good choice of summary statistics about θ

[Nunes and Balding, 2010] from the dataset. Marjoram et al. [2003] also highlighted
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the problem of choosing sufficient summary statistics for ABC. [Le Cam, 1964] gave

a definition of approximate sufficient; Joyce and Marjoram [2008] developed a practi-

cal method that selects informative summary statistics in the context of ABC. Their

method known as approximate sufficiency (AS), and it is based on odds ratio. Nev-

ertheless, it has some limitations: choice of threshold and inclusion order of summary

is important [Nunes and Balding, 2010].

Partial least squares (PLS) regression can be used to choose summary statistics

for ABC Wegmann et al. [2009]. Leave-one-out cross-validation criterion is also pro-

posed to choose an optimal number of components Wegmann et al. [2009]. The R

implemented is available in “pls” package [Mevik and Wehrens, 2007]. Furthermore,

Blum and Tran [2010] gave an alternative approach for dimension reduction that is

based on neural networks.

Nunes and Balding [2010] proposed two methods based on entropy: one is Maxi-

mum Entropy (ME), and the other is two-stage (2S) algorithm. We will use the same

performance measure in our simulation study as used by Nunes and Balding [2010].

The root sum of square error (RSSE) is given below:

RSSE =
(

1
r

N∑
i=1

Ii||θi − θ||2
)1/2

(2.4)

Where N is number of simulation and r is number of accepted observations. If the

pair (θi, Si) is accepted, then Ii = 1, otherwise, Ii = 0. The mean of RSSE (MRSSE)

is given below:

MRSSE = 1
d

d∑
j=1

RSSE(j). (2.5)

Where d is number data sets.

Likelihood-free methods have been used in several applications. These include

population genetics [Beaumont et al., 2002], wireless communications engineering
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[Nevat et al., 2010], quantile distributions [Drovandi and Pettitt, 2010], infectious

disease epidemiology [Lopes and Beaumont, 2010], HIV contact tracing [Blum and

François, 2009], the evolution of drug resistance in tuberculosis [Luciani et al., 2009],

protein networks [Ratmann et al., 2007, 2009], archeology [Wilkinson and Tavaré ,

2009]; ecology [Jabot and Chave, 2009], operational risk [Peters and Sisson, 2006],

species migration [Hamilton et al., 2005], chain-ladder claims reserving [Peters et al.,

2008], coalescent models [Tavaré et al., 1997], sigma-stable models [Peters et al.,

2009], models for extremes [Bortot et al., 2007], susceptible-infected-removed (SIR)

models [Toni et al., 2009], pathogen transmission [Tanaka et al., 2006] and human

evolution [Fagundes et al., 2007].
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Chapter 3

Exact Likelihood Computation

3.1 Introduction

We discussed the problem of estimating the time independent and time-dependent

scaled mutation rate in chapter 2. In the former case, the problem has been addressed

by applying the Importance Sampling method with three different proposal distribu-

tions. Here, we propose an alternative algorithm that also works for models where

the mutation parameter θ changes over time. Compared to other methods in the

literature, it sometimes also works better when θ is constant. Our algorithm could

be seen as a dynamic programming approach.

We first discuss how data are generated under the coalescent. We use this to

derive a transition matrix that moves step by step from the configuration of the data

to the common ancestor and allows the calculation of the likelihood. Observing the

block-structure of this transition matrix, which is caused by the Markov property of

the states, we formulate a dynamic programming algorithm for an efficient calculation

of the likelihood, first for time-independent θ and then time-dependent θ(t).

43
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3.2 Dynamic Programming Algorithms for Esti-

mating θ

3.2.1 Data Generation

Let us assume an infinite site model and no recombination. For the generation of

data for a sample of size n, under an individual mutation rate µ and ν := 1/2N

per unit time, we first sample a timed coalescence history H using the coalescence

process. Afterwards, mutations M are placed on H using the Poisson distribution

to obtain HM . Obviously, the number of coalescences is limited to n− 1, while the

number of mutations is, in principle, unbounded [Stephens and Donnelly, 2000]. This

process allows an efficient generation of the data. However, simulating this process

for obtaining the likelihood is inefficient. Indeed, many coalescence histories would be

discarded, since they are not compatible with particular data. Therefore, we will de-

scribe a process equivalent to the Markov process, whose transitions to the next step

only depend on the previous one.Since the minimum of a sample (X1, X2, ... , Xn)

from the exponential distribution with rates (λ1, λ2, ... , λn) are again exponentially

distributed with rate λ = ∑
i λi, we can first sample from the exponential distribution

with rate λ, and then choose among the X using a multinomial generalization of the

Bernoulli distribution with the vector of “probabilities” p = (λ1/λ, λ2/λ, ... , λn/λ).

3.2.2 Estimation of Time-Independent θ

We have a dataset D of n haplotypes and M segregating sites with unknown µ and

ν or simpler with unknown θ (or θ = 2µ/ν). Going backwards in time, from t = i to

t = i+ 1 there are in principle two types of events possible in the genealogy:
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1. Coalescence. Two identical sequences coalesce into a single sequence with prob-

ability proportional to n(n− 1)/2.

2. Mutation. Change from the derived state to the ancestral state at a site with

probability proportional to nθ/2.

We will reach the most recent common ancestor (MRCA) after S = M + n such

backward steps. The Markov structure of these transitions can be used for an effi-

cient dynamic programming algorithm that computes the likelihood both for time-

independent and time-dependent θ.

Algorithm 3.1: Estimating Time-Independent θ

• Initialization (s = 0) : Set the configuration at s = 0 to the data set and its

probability to unity, i.e., f s=0
1 = 1

• Recursion (s = 1, ..., S − 1) : Generate all configurations compatible with the

data that are one step below the current configurations (i.e., have one fewer

haplotype or one fewer mutation, but not both), index them by l, with 1 ≤ l ≤

L(s), if the current step is s. For the step s+1, index the configurations by g,

with 1 ≤ g ≤ L(s+ 1). Compute: f (s+1)
l = ∑

g f
(s)
g p

(s,s+1)
gl , where p(s,s+1)

gl are the

appropriate transition probabilities in the matrix T from state s to (s+ 1).

• Termination: The likelihood is Pr (y/θ) = f
(S)
1 .

Thus, for the initial step s = 1 and starting out with n haplotypes, we first sample

from the exponential distribution with rate n(n − 1)/2 + nθ/2, and then choose a

coalescence with probability proportional to n(n−1)/2 or a mutation within one of the

n haplotypes with probability proportional to θ each. For the sth step and conditional

on the sample size being n − 1 , we first sample from the exponential distribution
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with rate (n − i)(n − i − 1)/2 + nθ/2, and then choose coalescence with probability

proportional to (n− i)(n− i− 1)/2 or a mutation within one of the haplotypes with

probability proportional to θ each. This process is repeated until only one haplotype

is left. The probabilities at the next step only depend on previous one. Furthermore,

as long as we are not assuming θ to vary with time, we can concentrate exclusively

on the sequence of steps, ignoring the times (sample from exponential distribution).

If flat priors are chosen for θ, Pr(θ) ∝ 1, the posterior distribution would be

proportional to the likelihood of the data given θ, i.e., Pr (y/θ). Therefore the ap-

proach can also be used to obtain the posterior of θ given the data in such a case,

i.e., Pr (θ/y).

3.2.2.1 Toy Example

Consider the following data set with n = 5 and only one segregating site, i.e., M = 1:

two identical haplotypes show the ancestral state and three identical haplotypes show

one mutation. Let s index the steps, where s = 0 refers to the original configuration

of the data and s = M+n−1 to one haplotype in the ancestral configuration or root.

Then we have the following sequence of possible configurations csl of the coalescence

history of two haplotypes (frequencies of the haplotypes in parentheses) to the root.
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Step ID haplotype frequencies

0 c0
1 (2,3)

1 c1
1 (1,3)

1 c1
2 (2,2)

2 c2
1 (1,2)

2 c2
2 (2,1)

3 c3
1 (1,1)

3 c3
2 (3,0)

4 c4
1 (2,0)

5 c5
1 (1,0)

Assume discrete times t. At time t = 0, we are in the original configuration, i.e.,

in state c0
1. From t = 0 to t = 1, we can move to c1

1 or c1
2 or or stay in the same state.

The first move occurs with probability (2 · 1/2) · ν = ν, the second with probability

(3 · 2/2) · ν = 3ν. The probability of staying in the same state is 1− (5 · 4/2 · ν + 5µ).

The rest of the probability mass, i.e., 6ν+5µ belongs to moves to a state incompatible

with the data. Generalizing to any transition t = i to t = i+1, we obtain the following

adapted transition matrix:

There are total nine possible configurations that are compatible with toy example

data (see above table) . So we have 9 × 9 transition matrix. First row corresponds

to movement from configuration c0
1 to c1

1, c1
2, or itself and similarly for second row c1

1

to c2
1, c2

2 or itself.

Note that the rows of this transition matrix do not sum to one; the difference
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corresponds to transitions incompatible with the data to which we assign probability

zero.

Iterating this matrix for t → ∞, will lead to absorption in the state c5
1. The

likelihood corresponds to the sum from t = 0 to t = ∞ of the probabilities for c5
1.

For these simple data, iteration of the matrix is possible. For more complicated data,

the special structure of the matrix can be used for a simplified algorithm. Before we

present such an algorithm, we will treat the case when neither ν nor µ depend on

time. We can then set θ = 2µ/ν and simplify the transitions probabilities compatible

with the data to:

We note the block structure of this matrix, where the blocks correspond to the

transitions from one step to the next. This leads to the following algorithm for time-

independent θ.

3.2.3 Estimation of Time-dependent θ(t)

Next we consider the case of time-dependent µ or ν (or equivalently θ). This may

happen if the population is growing or shrinking (see Figure 2.1). We have two events

with the probability of mutation nµ and coalescence n(n−1)ν/2. For a growing pop-

ulation, when the effective population size is small the probability of coalescence is

large, and therefore the time intervals to coalescences are short. In the other case,

when the population is large the probability of coalescence is small, and the time
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intervals to coalescences are long.

Algorithm 3.2: Estimating Time-Dependent θ(t)

• Initialization (s = 0 and t = 0): Set the configuration at s = 0 and t = 0 to the

data set and its probability to unity, i.e., f s=0
1 (t = 0) = 1 and all other variables

f (s+1)
g (t) and auxiliary variables hs=0

1 (t) to 0.

• Recursion over time t = (1, ..., T ) for s = 0: Generate all configurations compat-

ible with the data that are one step below the current configurations (as above),

index them by l, with 1 ≤ l ≤ L(s = 1). Set f (s=0)
1 (t) = f

(s=0)
1 (t− 1)p(s=1)

11 (t−

1, t), and h(s=1)
g (t) = f1(t − 1)p(s=0, s=1)

1g (t − 1, t), ps=0
ll = Pr(cs=0

l /cs=0
l , ν, µ(t))

and p
(s=0, s=1)
lg = Pr(c(s=1)

g /c
(s=0)
l , ν, µ(t)) are the appropriate time-dependent

transition probabilities within state s = 0 and between states s = 0 and s = 1.

• Recursion s = 1, ..., S − 1 and t = 1, ..., T : Generate all configurations com-

patible with the data that are one step below the current configurations (as

above), index them by l, with 1 ≤ l ≤ L(s), for the state s, and g, with

1 ≤ g ≤ L(s+1), for the state (s+1). Calculate the functions f sl (t) and hs+1
l (t)

using: f sl (t) = hsl + f sl (t− 1)ps, sll (t− 1, t), hs+1
g (t) = ∑

l f
s
l (t− 1)ps,s+1

lg (t− 1, t),

where ps,sll = Pr(csl /csl , ν, µ(t)) and p(s, s+1)
lg = Pr(cs+1

g /csl , ν, µ(t)) are the appro-

priate time-dependent transition probabilities within states and between neigh-

boring states.

• Termination: The likelihood is Pr (y/θ) = ∑T
t=0 f

(S)
1 (t).

We note that generally only the quotient θ(t) = 2µ(t)/ν(t), but not µ(t) or ν(t) alone

matter. To keep the maximum time T to a constant value, we therefore assumed only

µ(t) to be time dependent, while ν is assumed constant at all times.
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3.3 Simulation Results

We have simulated scenarios for both time independent and time-dependent θ under

an infinite sites model without recombination. For time independent θ, we considered

samples of size n=10 and 20; furthermore we considered θ ∈ 2, 4, 6; and nL ∈ 2, 5,

10 independent loci.

For time-dependent θ, we assumed a growing population with one change in the

effective population size by a factor of ten at time 0.1 × 4N , and where we choose

N = 106. This leads to a current mutation rate θC = 2.0, and an ancestral one of

θA = 0.2 . We used the “ms” software [Hudson, 2002] to simulate data and wrote a

Perl program to convert the “ms” output into Fasta format.

For time independent θ, we compared our proposed method with the importance

sampling method proposed by Griffiths and Tavaré [1994a]. For a single locus an

implementation of this method is available in the Genetree software package. The

adaptation of the method to multiple independent loci is straightforward, and we

wrote a Perl program for this purpose. A C++ implementation of our proposed

dynamic programming (DP) approach is available in Appendix II.
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Table 3.1: Comparison of Griffiths and Tavaré (GT) and our proposed DP method

nL n

Mutation (θ)
θ = 2 θ = 4 θ = 6

GT DP GT DP GT DP
θ̂ T(m) θ̂ T(m) θ̂ T(m) θ̂ T(m) θ̂ T(m) θ̂ T(m)

2

10
Mean 1.63 0.16 1.65 0.01 3.33 0.32 3.99 0.14 4.66 0.40 5.24 0.46

SD 0.53 0.02 0.49 0.00 0.73 0.01 0.94 0.16 1.22 0.06 1.52 0.36

20
Mean 1.49 0.28 1.78 0.46 2.86 0.52 3.82 16.04 4.33 0.63 5.28 95.27

SD 0.67 0.03 0.37 0.42 1.06 0.09 0.91 17.63 1.22 0.06 1.07 114.9

5

10
Mean 1.85 0.37 1.99 0.03 2.62 0.70 3.73 0.35 4.35 0.95 6.15 1.77

SD 0.38 0.02 0.29 0.01 0.85 0.09 0.87 0.22 0.97 0.09 0.71 1.23

20
Mean 1.49 0.77 2.04 2.06 2.20 1.24 3.70 31.54 4.38 1.70 6.03 355.4

SD 0.46 0.12 0.39 1.71 1.14 0.06 0.37 20.10 0.83 0.16 0.68 189.5

10

10
Mean 1.91 0.73 1.98 0.05 2.99 1.48 3.90 1.39 3.68 1.89 6.06 5.05

SD 0.34 0.04 0.38 0.02 0.90 0.12 0.58 1.51 0.67 0.16 0.85 4.04

20
Mean 1.59 1.46 2.07 5.29 2.54 2.66 4.17 74.78 3.90 3.52 6.03 718.8

SD 0.34 0.10 0.15 3.64 0.48 0.10 0.28 27.81 1.04 0.35 0.66 384.3

For time-independent θ, Table 3.1 show that our proposed “dynamic program-

ming” approach gives reliable estimates of time independent θ. Although with some

limitations that n × θ < 100, where n is sample size. Our performance is better in

terms of accuracy and time. Notice that our dynamic programming approach gives

the exact likelihood. We fix the number of simulation to 105 in Genetree. Table

3.1 indicates that and Genetree needs billions of simulation runs to achieve the ac-

curacy of our proposed method because Genetree is based on importance sampling

[see Felsenstein et al., 1999; Stephens and Donnelly, 2000]. The likelihood becomes

flatter and Genetree becomes less accurate n or θ increases.

For time-dependent θ(t), simulation results are given below:
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Figure 3.1: Estimates of three parameters for different number of loci (nL= 5, 10, 25,
50, and 100).

Figures 3.1 provide an example of the behavior of the estimates of our three

parameters in the model with time-dependent θ. We fixed one parameter and provide

contour plots of the marginal likelihood of the remaining parameters. The dotted lines

indicate the true parameter values. The contours of the likelihood are skewed due to

outliers. Moreover, the mean square error (MSE) for each parameter is given below:

Table 3.2: Mean Square Error (MSE) of growing population

No. of loci MSE(θ̂C) MSE(θ̂A) MSE(τ̂)
5 6.337 0.0392 375.41
10 3.149 0.0254 270.87
25 1.241 0.0133 168.75
50 0.387 0.0080 106.74
100 0.126 0.0040 56.85

In Table 3.2, we show the estimated mean squared error (MSE) for each parameter

( i.e., current theta (θ̂C), ancestral theta (θ̂A), time (τ̂)) based on 1000 simulation
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runs. As expected, the MSE decreases with the number of independent loci.

Figure 3.2: Contour plots of three parameters

In the contour plots (see Figure 3.2), the vertical and horizontal dotted lines shows

the value of true parameter. We have again three parameters, namely: current theta,

ancestral theta and time. We fix one parameter and provide contours plots of the

marginal likelihood of the remaining two parameters. We considered five loci in a

growing population. In Figure 3.2(A), we fixed the estimated current theta (θ̂C)

to 2.613, the estimated ancestral theta (θ̂A) is fixed to 0.246 in Figure 3.2(B) and

estimated time (τ̂) is fixed to 20.262/200 in Figure 3.2(C). We can conclude from

Figure 3.2(A), 3.2(B), and 3.2(C) that our proposed algorithm gives estimates that

are close to their true parameter values.

As our proposed dynamic programming algorithm gives the exact likelihood at

any parameter value, the application of the algorithm together with an optimization

routine will usually provide a local optimum of the likelihood. Here, we used the

function Amoeba described in Press et al. [2007] to optimize the likelihood.
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Chapter 4

Contributions to Approximate

Bayesian Computation

4.1 Introduction

We discussed the literature on approximate Bayesian computation (ABC ) in chapter

2. In this chapter, the problems of choosing summary statistics and the acceptance

cutoff (see step 3 in Figure 4.1) will be addressed. These problems are important

in practice, as the efficiency of the algorithms ABC-REJ, ABC-MCMC, ABC-SMC,

and ABC-PMC all depends on a good solution. In principle, we want to retain

as much information as possible from the data. On the other hand, we want to

keep the number of summary statistics, and hence the number of dimensions, as

low as possible. However, summary statistics in population genetics are usually not

sufficient. A statistic is sufficient if it is just as informative as the full data. The

concept was introduced by R. A. Fisher in the 1920s, and refined by Jerzy Neyman

in the 1930s.

55
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Figure 4.1: Flowchart of ABC in nine steps

Figure 4.1 is taken from Bertorelle et al. [2010]. Until now, several methods

such as PLS, AS, ME, and two-stage (2S) have been proposed that deal with the

problem of choosing summary statistics. The limitations of these methods have been

discussed in chapter 2. We investigate the use of least angle regression (LARS) to
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choose the summary statistics for a parameter of interest, and will show that the

method performs well in population genetic examples.

Choosing the acceptance cutoff for ABC is also crucial, and there are several meth-

ods to deal with this problem. Moreover, we propose and investigate four algorithms

for choosing the acceptance cutoff (see Section 4.4).

4.2 Choosing Summary Statistics using LARS

Here we investigated a method for choosing summary statistics that is based on least

angle regression (LARS) and cross-validation (CV). First we introduce the meth-

ods and afterwards, we investigate the performance of the method when choosing

summary statistics. We will investigate the method using the approximate Bayesian

computation algorithm given below. We define S and S′ to be the observed and sim-

ulated summary statistics respectively:

Algorithm 4.1: Approximate Bayesian Computation Method

1. For i = 1, ..., N, repeat

1.1 Simulate parameters θi ∼ π(.) from the prior distribution;

1.2 Simulate data D′ from modelM with parameter θi;

1.3 Calculate the summary statistics S′ = [S ′1, ..., S ′l] from D′;

1.4 Calculate distances ρ(S′, S), where S = [S1, ..., Sl];

2. Let
[
θ[1], ..., θ[N ]

]
be the sorted values of θ = [θ1, ..., θN ];

with respect to their distances ρ(S′, S).

The above algorithm is analogous to Algorithm 2.3, but does not use an acceptance

thresholdε. Instead we introduce a cutoff r, such that the r closest observations for

θi with respect to the distances ρ(S′, S). We used the Euclidean distance in all

simulation studies that are presented in this chapter.
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The least angle regression [Efron et al., 2004] approach is used to choose a list

of summary statistics for the parameter of interest. The connection between LASSO

and Stagewise become more clear after LARS. With LARS one can not only do vari-

able selection but also can get LASSO solutions easily. Efron et al. [2004] proposed

the LARS algorithm that is given below:

Algorithm 4.2: Least Angle Regression (LARS)

1. Standardize the predictors to have mean zero and unit norm.

Start with the residual vector φ = θ, β̂p = 0∀ p.

2. Find the predictor Sj most correlated with φ.

3. Increaseβ̂j in the direction of the sign of corr(φ, Sj)

until some other competitor Sk has as much correlation

with the current residual as does Sj.

4. Update φ, and move
(
β̂j, β̂k

)
in the joint least squares direction for

the regression of φ on (Sj, Sk), until some other competitor Sl

has as much correlation with the current residual.

5. Continue in this way until all p predictors have been entered.

Stop when correlation(φ, Sj) = 0 ∀ j, that is, the OLS solution.

At each step, most correlated predictor is included in model. This process contin-

ues until all predictors are in the model [see Cohen, 2006]. LARS uses sophisticated

angle theory and it is fast. More detail about the least angle regression can be found

in [see Efron et al., 2004].

The cross-validation (CV) method is probably the simplest and most widely used

method for estimating prediction error. This method directly estimates the average

generalization error Err = E[L(θ, f̂(S))], when the method f̂(S) is applied to an

independent test sample from the joint distribution of S and θ. Ideally, if enough

data is available, a validation set would be set a side and can be used to assess
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Figure 4.2: Five-fold cross-validation

the performance of prediction model. Since data are often rare, this is usually not

possible. To finesse the problem, k-fold cross-validation uses part of the available

data to fit the model, and a different part to test it. For this purpose, data is split

into K roughly equal-sized parts; for example, when K = 5, the scenario looks like

this:

For the kth part, the model is fitted to the other K− 1 parts of the data, and pre-

diction error of the fitted model is calculated while predicting the kth part of the data.

This is done for k = 1, 2, 3, ..., K and combines the K estimates of prediction error.

Let κ = 1, . . . , N → 1, . . . , K be an indexing function that indicates the partition to

which observation i is allocated by the randomization. Denote by f̂−κ(i)(S) the fitted

function, computed with the kth part of the data removed. Then the cross-validation

estimate of prediction error is

Err ∼=
1
N

N∑
i=1

(
θi − f̂−κ(i) (Si)

)2

Typical choices of K are 5 or 10 [see Breiman and Spector , 1992; Kohavi, 1995].

The case K = N is known as leave-one-out cross-validation. In this case κ(i) = i,

and for the ith observation the fit is computed using all the data except the ith. For

more detailed information about cross validation procedures see Hastie et al. [2009].

The proposed algorithm for choosing summary statistics is given below:
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Algorithm 4.3 : Choosing summary statistics for ABC

1. Given a sorted parameter values
[
θ[1], ..., θ[N ]

]
, and simulated

summary statistics S′ =
[
S ′1, ..., S

′
p

]
from Algorithm 4.1.

2. Let θ∗ :=
[
θ[1], ..., θ[r]

]
, where r is user define cutoff.

3. Apply LARS (Algorithm 2) with the a model f (θ∗|S′) = α + βS′ + φ,

where θ∗ is the response, and S′ are the predictors in the model, and

α is intercept and β = [β1, β2, ..., βp] are slopes, and the residuals φ

4. Define xj := j
m
, 1 ≤ j ≤ m, and m is user define proportion of the model

5. The CV prediction error is R̂(xj) ∼= 1
r

∑r
i=1

(
θ[i] − f̂xj

(−i) (
θ∗|S′[i]

))2

Where f̂xj

(−i) (
θ∗|S′[i]

)
is the predicted values where ith observation is

excluded at each part xj of the model.

6. Define R̂(xmin) := arg minj
[
R̂(xj)

]
;

Calculate x∗j = arg maxxj
R̂(xj) ≤ R̂(xmin) + Ŝ.E.

[
R̂(xmin)

]
,

7. At cutoff x∗j ,
∣∣∣β̂p(x∗j)∣∣∣ =


> 0 select S ′p

else reject S ′p

In principle m = p because at each step LARS add one predictor, but we used

interpolation method to convert the coefficients β’s of p steps into m equal parts.

The leave-one-out cross-validation (LOOCV) is used to estimate the prediction error

in above algorithm. However, we would recommend the k-fold cross-validation (CV)

to estimate the predication error. While the k-fold CV computes the mean squared

prediction error for LARS at each of m parts of the model. We denote them by xj,

and its limit is between 0 and 1.

When number of summary statistics is less than 10 then it is straight forward to

use the Algorithm 4.3. If number of summary statistics is greater than 10 then we

iterate the Algorithm 4.3. The summary statistics is selected, where the mean square

prediction error will be steep. Furthermore, we could also apply Cp criteria to find

the important summary statistics for each parameter, but it is not working well with
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our objective of choosing summary statistics for ABC algorithm. For the problem of

choosing summary statistics, the k-fold cross-validation is performing better than Cp.

We implemented the LARS in R, and used the 10-fold cross-validation for estimating

the predication errors. Furthermore, stopping criterion at step 6 of the Algorithm 4.3

is ’1 SE Rule’ [see Breiman et al., 1984; Hastie et al., 2009].

We evaluate the performance of our least angle regression (LARS) based approach,

relative to AS, PLS, ME, two-stage (2S) methods, in estimating the unknown pop-

ulation genetics parameters. We will illustrate the approach with two examples in

next sections.

4.3 Simulation Results

4.3.1 Example 1

The setup of our simulation study is similar to studies done previously [see Joyce and

Marjoram, 2008; Nunes and Balding, 2010]. The parameters are the scaled mutation

and recombination rates, θ and ρ respectively, and the data sets consist of 50 haplo-

types being generated by using the ms software [Hudson, 2002] under the standard

coalescent model, following the infinite-sites (IS) model [Nordborg, 2007]. The prior

distribution is the following for the scaled mutation rate θ ∼ U(2, 10) and for recom-

bination ρ ∼ U(0, 10). The simulated and prior distribution are chosen same. The

seven summary statistics have been calculated, and data were analyzed using the R

package named “ABCME” [see Nunes and Balding, 2010]. Algorithms such as PLS,

AS, ME, two-stage (2S) and LARS have been implemented. Our parameters have

been: number of ABC simulation runs N = 106, number of accepted observations

r = 104, and number of observed datasets d = 102 for inference of θ and ρ using ABC

(see Algorithm 4.1). The results are given below without regression adjustment, and
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we use an 1% acceptance cutoff for comparison of MRSSE with other methods. In

this thesis, all simulation studies are used the Euclidean distances as distance metric

ρ for ABC.

We used the R package “LARS” to implement our proposed method. The results

are given below for a smaller example, where the number of iteration is N = 104,

c = 2000 and m = 100.

Figure 4.3: Choosing summary statistics for Mutation and Recombination Rate by
using LARS (one ABC RUN)

Figure 4.3 shows the output from R package “lars”. We see that for the mutation

rate C1 and C4 are important (see Figure A1 and A2), and for the recombination

rate C1, C4, and C5 are important (see Figure B1 and B2) by using the 10-fold cross

validation. It was only one run of ABC. In Figure 4.3, until the vertical dark-red line
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the predictors are important for specific parameter,i.e, for mutation important sum-

mary statistics are C1 and C4, and for recombination C1, C4, and C5 are important

summary statistics.

The set of all summary statistics is shown in Table 4.1. The results for AS is taken

from [Joyce and Marjoram, 2008], and results for ME, two-stage (2S) are computed

in R package “ABCME” by [Nunes and Balding, 2010]. The summary statistics C2 is

uniform random variable and it should not be included in an optimum set of summary

statistics. The summary statistics C1 (number of segregating sites) for θ [Hudson,

1990; Nordborg, 2007] and C5 (number of distinct haplotype) for ρ are important

summary statistics; they should be included in an optimal set of summary statistics

[Nunes and Balding, 2010].

Table 4.1: Comparison of difference methods
Statistic Description Selected for θ (%) Selected for ρ (%)

AS ME 2S LARS AS ME 2S LARS

C1 No. of segregating sites 75 67 100 100 73 67 97 100

C2 Uniform [0,25] random variable 4 3 0 0 2 5 0 0

C3 Mean no. of differences over all

pairs of haplotypes 27 54 25 9 52 30 19 27

C4 25*(mean r2 across

pairs separated by <10% of the 56 35 50 43 35 59 78 89

simulated genomic region)

C5 No. of distinct haplotypes 43 19 20 17 78 73 100 100

C6 Frequency of the most 36 20 1 0 11 23 2 2

common haplotype

C7 No. of singleton haplotypes 16 14 5 1 16 31 5 1

In Table 4.1, the set of all considered summary statistics can be found. There are

100 observed data sets and each summary statistic selected (out of 100) in the optimal

set. From Table 4.1, the AS method relatively better than ME, but the two-stage

(2S) and LARS algorithm performance is better than AS method.
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Table 4.2 shows the MRSSE for each method. The results for AS is taken from

[Joyce and Marjoram, 2008], and results for ME, two-stage (2S) are computed in R

package “ABCME” by Nunes and Balding [2010].

Table 4.2: Performance of PLS, AS, ME, 2S, and LARS methods, by MRSSE.
PAR C1 C2 C3 C4 C5 C6 C7 All6 PLS AS ME 2S LARS
θ 1.75 3.27 2.26 3.15 2.33 2.89 2.45 1.89 1.85 1.86 1.80 1.70 1.75
ρ 3.93 3.95 3.93 3.92 3.83 3.84 3.88 3.60 3.56 3.68 3.54 3.44 3.46

In Table 4.2, the performance of different methods is shown in terms of the MRSSE

(see equation 2.5). First seven columns (C1-C7) show the results for single summary

statistics; column eight (All6) show results of six summary statistics altogether, expect

C2. Last five columns show the results of each method. Three PLS components lead

to the smallest MRSSE. From Table 4.2 we can conclude that the set of summary

statistics selected by 2S and LARS produce better results than other methods.
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Table 4.3: Comparison of MRSSE
Cutoff Adjustment Mutation (θ) Recombination (ρ)
(%) PLS ME 2S LARS PLS ME 2S LARS

No Adj 1.786 1.784 1.686 1.743 3.525 3.456 3.324 3.342
0.01 Mean 1.763 1.777 1.683 1.738 3.510 3.446 3.301 3.291

Mean + Var 1.755 1.781 1.682 1.738 3.501 3.419 3.279 3.261
No Adj 1.824 1.789 1.696 1.751 3.545 3.514 3.399 3.425

0.05 Mean 1.771 1.777 1.686 1.743 3.518 3.485 3.331 3.314
Mean + Var 1.750 1.777 1.683 1.740 3.487 3.414 3.275 3.240
No Adj 1.849 1.796 1.704 1.754 3.559 3.544 3.439 3.464

1 Mean 1.776 1.779 1.688 1.743 3.524 3.506 3.344 3.320
Mean + Var 1.747 1.774 1.681 1.738 3.484 3.407 3.266 3.230
No Adj 1.892 1.811 1.720 1.766 3.579 3.582 3.489 3.521

2 Mean 1.786 1.789 1.693 1.747 3.530 3.528 3.354 3.327
Mean + Var 1.745 1.773 1.682 1.737 3.478 3.394 3.251 3.220
No Adj 1.925 1.824 1.734 1.776 3.593 3.609 3.527 3.561

3 Mean 1.793 1.797 1.696 1.750 3.535 3.542 3.363 3.332
Mean + Var 1.741 1.770 1.680 1.737 3.475 3.388 3.246 3.215
No Adj 1.955 1.838 1.748 1.786 3.605 3.630 3.557 3.591

4 Mean 1.799 1.804 1.701 1.753 3.538 3.553 3.371 3.336
Mean + Var 1.739 1.769 1.679 1.737 3.473 3.387 3.244 3.315
No Adj 1.981 1.850 1.761 1.795 3.614 3.648 3.582 3.614

5 Mean 1.805 1.811 1.704 1.756 3.540 3.563 3.377 3.338
Mean + Var 1.737 1.767 1.678 1.736 3.470 3.387 3.243 3.214
No Adj 2.089 1.905 1.820 1.839 3.649 3.707 3.665 3.693

10 Mean 1.827 1.841 1.719 1.769 3.550 3.594 3.393 3.346
Mean + Var 1.737 1.758 1.672 1.733 3.466 3.394 3.248 3.222

In Table 4.3, the MRSSE (see equation 2.5) for four methods of choosing summary

statistics (PLS, AS, ME, and 2S) can be found. We considered different acceptance

cutoff percentages. For both parameters, mutation (θ) and recombination (ρ), we

applied ABC with and without regression adjustment. For Mean Adjustment [see

Beaumont et al., 2002], and for Variance Adjustment [see Blum and François, 2009].
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4.3.2 Example 2

Our simulation study is about the estimation of the four parameters: mutation rate θ,

recombination ρ, migration θm, and time at which sub-population 2 will be change into

sub-population 1 ηc. Thems [Hudson, 2002] software is used to generate data sets that

consist 50 haplotypes. The prior distribution for the parameters are θ ∼ U(0, 10), ρ ∼

U(0, 10), θm ∼ U(0, 0.4), and ηc ∼ U(0.5, 0.9). The simulated and prior distribution

are chosen same. Twenty-nine summary statistics have been calculated using msABC

[see Pavlidis et al., 2010], and the three uniform random variables (see Appendix)

are added to this set of summary statistics. The algorithms ME, two-stage (2S), and

AS are too time consuming in this example. We therefore compared only PLS with

the LARS method. Our number of simulation runs has been chosen N = 106, the

number of accepted observations was r = 500, and the number of different data sets

d = 102 . Thus we tried ABC with N = 106 runs on each of d = 102 data sets. As

before, we use the Euclidean distance as our metric ρ.
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Table 4.4: Optimal set of summary statistics chosen by LARS
Summary statistics % Selection for each parameter (out of 100)

θ ρ θm ηc
Prior U(0, 10) U(0, 10) U(0, 0.4) U(0.5, 0.9)

C1 s_segs_1 0 0 0 0
C2 s_segs_2 0 0 0 0
C3 s_segs 4 0 0 0
C4 s_pi_1 0 0 0 0
C5 s_pi_2 0 0 0 0
C6 s_theta_pi 0 0 0 0
C7 s_theta_w_1 0 0 0 0
C8 s_theta_w_2 0 0 0 9
C9 s_theta_w 100 8 12 38
C10 s_tajimasD_1 8 32 92 10
C11 s_tajimasD_2 4 40 93 11
C12 s_tajimasD 13 77 94 84
C13 s_ZnS_1 1 77 45 1
C14 s_ZnS_2 3 79 51 1
C15 s_ZnS 4 74 56 0
C16 s_fst 2 29 97 0
C17 s_perc_shared_1_2 1 10 6 0
C18 s_perc_private_1_2 5 23 0 0
C19 s_perc_fixed_dif_1_2 0 19 0 0
C20 s_pairwise_fst_1_2 0 10 1 0
C21 s_FayWuH_1 3 41 1 0
C22 s_FayWuH_2 19 37 1 25
C23 s_FayWuH 19 22 1 26
C24 s_dvk_1 1 23 2 0
C25 s_dvh_1 0 1 14 0
C26 s_dvk_2 16 16 8 1
C27 s_dvh_2 0 0 7 0
C28 s_dvk 82 41 4 0
C29 s_dvh 77 0 10 0
C30 Random1 0 0 0 0
C31 Random2 0 0 0 0
C32 Random3 0 0 0 0

In Table 4.4, we show the set of all summary statistics considered in the example

2. There are 100 observed data sets and each summary statistic selected (out of 100)

in the optimal set.

According to Table 4.4, our implementation of the LARS algorithm chose appro-
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priate summary statistics for the mutation parameterθ and the recombination param-

eter ρ. It never included non-informative (i.e., C30, C31, C32) summary statistics.

The summary statistics chosen were those known to be informative for the respective

parameters [see Pavlidis et al., 2010]. For the other two parameters migration θm,

and ηc the performance of LARS has been slightly weaker, probably since these pa-

rameters are more difficult to estimate and good summary statistics are not available.

For example 2, Table 4.5 contains further results for PLS and LARS:
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Table 4.5: Comparison of PLS and LARS methods, by MRSSE.
Summary statistics θ ρ θm ηc

C1 s_segs_1 1.875 3.479 0.148 0.151
C2 s_segs_2 1.893 3.480 0.149 0.152
C3 s_segs 1.528 3.488 0.153 0.152
C4 s_pi_1 2.025 3.484 0.148 0.151
C5 s_pi_2 2.058 3.456 0.149 0.151
C6 s_theta_pi 1.733 3.468 0.153 0.148
C7 s_theta_w_1 1.876 3.479 0.148 0.151
C8 s_theta_w_2 1.894 3.480 0.149 0.152
C9 s_theta_w 1.528 3.488 0.153 0.152
C10 s_tajimasD_1 3.023 3.480 0.152 0.152
C11 s_tajimasD_2 2.961 3.485 0.152 0.153
C12 s_tajimasD 3.113 3.470 0.153 0.149
C13 s_ZnS_1 2.959 3.398 0.151 0.153
C14 s_ZnS_2 2.951 3.418 0.151 0.152
C15 s_ZnS 3.006 3.446 0.152 0.151
C16 s_fst 3.167 3.514 0.148 0.154
C17 s_perc_shared_1_2 2.296 3.443 0.132 0.155
C18 s_perc_private_1_2 2.213 3.563 0.145 0.151
C19 s_perc_fixed_dif_1_2 3.006 3.507 0.145 0.155
C20 s_pairwise_fst_1_2 3.167 3.514 0.148 0.154
C21 s_FayWuH_1 3.077 3.483 0.151 0.153
C22 s_FayWuH_2 3.122 3.525 0.153 0.153
C23 s_FayWuH 3.196 3.515 0.152 0.153
C24 s_dvk_1 2.089 3.229 0.151 0.152
C25 s_dvh_1 2.307 3.296 0.151 0.152
C26 s_dvk_2 2.187 3.301 0.151 0.152
C27 s_dvh_2 2.353 3.354 0.151 0.152
C28 s_dvk 1.899 3.202 0.152 0.152
C29 s_dvh 2.084 3.289 0.152 0.152
C30 Random1 3.168 3.502 0.152 0.152
C31 Random2 3.168 3.502 0.152 0.152
C32 Random3 3.174 3.516 0.152 0.153
All 29 Without C30, C31, C32 1.579 3.060 0.134 0.152
PLS Five PLS components 1.595 3.119 0.132 0.153
LARS see Table 4.4 1.536 3.042 0.129 0.149

In Table 4.5, we present the MRSSE (equation 2.5) for example 2. We consider for

each of the 32 summary statistics separately (C1 to C32), as well as all 29 summary

statistics other than C30, C31, C32. We then compare the results for such a choice
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of summary statistics with the results obtained when choosing summary statistics by

PLS and LARS. Bold indicates the lowest value in each column. Partial least squares

(PLS) worked best when five components are used. From Table 4.5 we can conclude

that the set of summary statistics selected by LARS producing better results than

PLS method. Indeed, LARS gives the lowest MRSSE in each column of Table 4.5.

4.4 Choosing an Acceptance Cutoff for ABC.

For all ABC samplers, the choice of tuning parameters is crucial for the quality of

posterior estimates. If the tuning parameter ε = 0 is chosen, then the algorithm will

usually be computationally too expensive and will sample very few point from a pos-

terior distribution. On other hand, if the tuning parameter ε =∞ is chosen, then the

samples would be from the prior distribution and not from the posterior. Actually,

there is a trade-off between accuracy and computational time. Choosing the tuning

parameter can be parsed in terms of selection of an acceptance cutoff. Here we con-

sider two popular methods, leave-one-out cross validation (LOOCV), and one percent

cutoff (FIX01). The LOOCV approach is implemented in the R package “abc” by

Michael Blum. The LOOCV is quite computationally intensive, so we consider it

with only 50 cross-validation sample. With FIX01, we select the 1% of the simulated

samples for which the distance between observed and simulated summary statistics

is smallest. We investigate also four new algorithms for estimating the acceptance

cutoff. The algorithms are given below:
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Algorithm 4.4 : choosing cutoff for ABC

1. Simulate a vector of parameter N values θ∗ :=
[
θ[1], ..., θ[N ]

]
,

sorted by Algorithm 4.1 according to ρ(S′, S).

2. Specify search space for cutoff r ∈ {g + 1, g + 2, ..., G} ,

where g and G are lower bound and upper bound

respectively. They are user defined numbers.

3. Specify validation sample, θv=
[
θ[1], ..., θ[g]

]
4. For i = 1, ..., g, repeat

RSSE (t, i) =
(

1
t−g

∑t
j=g+1

(
θ[j] − θ[i]

)2
)1/2

where t = g + 1, ...., G

ri = arg ming+1<t<G [RSSE(t, i)]

5. r = Mean(r1, r2, ..., rg), the cutoff.

Algorithm 4.4 chooses the cutoff r by minimizing the RSSE for θv =
[
θ[1], ..., θ[g]

]
. With the proposed choice of r, we propose to use

[
θ[1], ..., θ[r]

]
for ABC. The median

can be used instead of the mean in Algorithm 4.4 at step 5, if the distribution of r is

skewed, leading to the following version of the algorithm:
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Algorithm 4.5 : choosing cutoff for ABC

1. Given a vector of parameter values θ∗ :=
[
θ[1], ..., θ[N ]

]
,

sorted by Algorithm 4.1 according to ρ(S′, S).

2. Specify search space for cutoff r ∈ {g + 1, g + 2, ..., G} ,

where g and G are lower bound and upper bound

respectively. They are user define numbers.

3. Specify validation sample, θv=
[
θ[1], ..., θ[g]

]
4. For i = 1, ..., g, repeat

RSSE (t, i) =
(

1
t−g

∑t
j=g+1

(
θ[j] − θ[i]

)2
)1/2

where t = g + 1, ...., G

ri = arg ming+1<t<G [RSSE(t, i)]

5. r = Median(r1, r2, ..., rg), the cutoff.

The computational time of Algorithm 4.5 can be reduced by computing the RSSE

only once for θ̄ :=
∑g

i=1 θ
v
[i]

g
, where θv =

[
θ[1], ..., θ[g]

]
be the sorted values of the

parameter θ. This leads to our next algorithm given below:

Algorithm 4.6 : choosing cutoff for ABC

1. Given a vector of parameter values θ∗ :=
[
θ[1], ..., θ[N ]

]
,

sorted by Algorithm 4.1 according to ρ(S′, S).

2. Specify search space for cutoff r ∈ {g + 1, g + 2, ..., G} ,

where g and G are lower bound and upper bound

respectively. They are user define numbers.

3. Specify validation sample, θ̄ :=
∑g

i=1 θ[i]
g

,

4. Calculate RSSE (t) =
(

1
t−g

∑t
j=g+1

(
θ[j] − θ̄

)2
)1/2

,

where t = g + 1, ...., G.

5. r = arg ming+1<t<G (RSSE(t)), the cutoff.

In algorithm 4.6, θ̄ is used instead of the true parameter for validation. To explore

search space of parameter efficiently, we introduce another user define number s (see
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Algorithm 4.7).

Algorithm 4.7 : choosing cutoff for ABC

1. Given a vector of simulated parameter values θ∗ :=
[
θ[1], ..., θ[N ]

]
,

sorted by Algorithm 4.1 according to ρ(S′, S).

2. Specify search space for cutoff r = {g + 1, g + 2, ..., G} ,

where g and G are lower bound and upper bound

respectively. They are user defined numbers.

3. Generate f uniformly distributed random numbers $m_h$ between 1 and s

h = 1, ..., f . where f and s are user defined numbers,

and s is the size of the validation sample.

4. Specify validation sample, θ̄mh
:=

∑ml
i=1 θ

v
[i]

mh
, h = 1, ..., f .

5. Calculate RSSE(t, mh) =
(

1
t−g

∑t
j=g+1

(
θ[j] − θ̄mh

)2
)1/2

where t = g + 1, ...., G.

6. Define mint = ming+1<mh<s (RSSE(t, mh)); h = 1, ..., f .

7. r = arg ming+1<t<G (RSSE(t)), the cutoff.

The Algorithm 4.7 is quite similar to previous Algorithm 4.6 until step 3. An idea

behind this algorithm is to minimize the rooted sum of square error (RSSE) of the

mean of posterior distribution at random samples without replacement points between

g and s. Where s is the search space for validation sample that have to specify in

advance (see Table 4.7). We can also say that the Algorithm 4.6 is a special case of

the Algorithm 4.7, because in the Algorithm 4.6 we take the mean of θ[1], ..., θ[g], but

in the Algorithm 4.7 random f means between g and s are taken in account. Choice

of G is depend on the algorithm (e.g., ABC-REJ, ABC-MCMC, ABC-PMC ), and

we could suggest from our simulation G = 0.02 × N that is a good choice for the

ABC-REJ algorithm. An other user define parameter is g, and it is tradeoff between

accuracy and number of accepted samples (see results in Table 4.6 and 4.7).
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4.4.1 Simulation Results

Our simulation study is about the estimation of the scaled mutation and recombina-

tion rates, θ and ρ respectively, and the simulated data sets consist of 50 haplotypes

being generated using the ms software [Hudson, 2002] under the standard neutral

infinite-sites (IS) coalescent model Nordborg [2007]. The prior distribution is the fol-

lowing for the scaled mutation rate θ ∼ U(0, 10) and for recombination ρ ∼ U(0, 10).

The simulated and prior distribution are chosen same. The seven summary statis-

tics have been calculated, and 100 observed data created under the true parameters

θ = 7, and ρ = 7. Here we compared the results of our proposed approach to the

leave-one-out cross (LOOCV) validation procedure from the R “abc” package and

the 1% acceptance cutoff (FIX01) method. We proceed with a simulation study in

which d = 102 data sets were generated, and for each data set N = 106 ABC samples

were simulated. The task is to choose which of the N = 106 simulated samples should

be used for inference of the parameters θ and ρ with ABC (see Algorithm 4.1). The

results are given below without regression adjustment. In this thesis, all simulation

studies are using the Euclidean distances as distance metric ρ for ABC. The results

are given below:
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Table 4.6: Choice of g, in proposed algorithms.
Description Mutation (θ) Recombination (ρ)

Time MRSSE Accept Time MRSSE Accept
g = 20 Algorithm 4.4 3.74 1.791 107 3.19 3.049 1086

Algorithm 4.5 5.47 1.739 32 5.43 2.870 35
Algorithm 4.6 0.14 1.713 32 0.14 2.844 34
Algorithm 4.7 3.05 1.718 33 3.23 2.831 37

g = 50 Algorithm 4.4 7.42 1.817 830 7.43 3.107 2518
Algorithm 4.5 13.33 1.772 85 13.27 2.965 71
Algorithm 4.6 0.15 1.750 77 0.15 2.935 66
Algorithm 4.7 3.05 1.755 84 3.23 2.931 69

g = 100 Algorithm 4.4 15.24 1.829 1558 14.53 3.118 3785
Algorithm 4.5 26.33 1.791 140 26.11 2.997 135
Algorithm 4.6 0.15 1.775 140 0.15 2.982 134
Algorithm 4.7 3.05 1.775 142 3.23 2.982 136

On the basis of the results in Table 4.6, we would suggest that g = 50 is a

reasonable choice for the algorithm with respect to both the number of accepted

samples and computational time. For other problems, we suggest to do a similar

calibration based on simulations to choose g. All the results in Table 4.6 are averages

over 100 data sets, and also the computation time (in Hours) is for 100 data sets.

Algorithm 4.5 performs better than Algorithm 4.4, probably because of skewness.

We can see that Algorithm 4.6 is better and also faster than all the other methods.

Algorithm 4.7 is slower but achieves a similar level of accuracy.
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Table 4.7: MRSSE with respect to different user define values of g, f, s, with fixed
G = 0.02 ∗N .

Description Mutation (θ) Recombination (ρ)
s | f 5 10 20 50 100 5 10 20 50 100

g = 20 200 1.716 1.716 1.718 1.718 1.718 2.833 2.829 2.832 2.832 2.832

500 1.718 1.717 1.718 1.718 1.718 2.837 2.831 2.831 2.831 2.831

1000 1.718 1.717 1.718 1.720 1.718 2.823 2.835 2.831 2.832 2.832

5000 1.718 1.715 1.721 1.714 1.716 2.835 2.836 2.832 2.836 2.831

10000 1.719 1.719 1.716 1.716 1.716 2.827 2.827 2.825 2.834 2.833

20000 1.719 1.706 1.713 1.719 1.714 2.819 2.809 2.829 2.821 2.828

g = 50 200 1.757 1.756 1.754 1.755 1.755 2.931 2.930 2.931 2.931 2.931

500 1.756 1.759 1.754 1.755 1.755 2.929 2.928 2.934 2.931 2.931

1000 1.757 1.757 1.755 1.755 1.754 2.929 2.931 2.928 2.931 2.931

5000 1.758 1.756 1.758 1.756 1.755 2.931 2.926 2.924 2.926 2.926

10000 1.756 1.756 1.756 1.758 1.759 2.928 2.929 2.935 2.921 2.922

20000 1.756 1.756 1.757 1.757 1.758 2.923 2.922 2.920 2.920 2.928

g = 100 200 1.776 1.776 1.776 1.776 1.776 2.984 2.983 2.983 2.983 2.983

500 1.775 1.776 1.776 1.776 1.776 2.980 2.983 2.983 2.983 2.983

1000 1.775 1.776 1.776 1.775 1.776 2.983 2.979 2.981 2.983 2.983

5000 1.777 1.777 1.775 1.775 1.776 2.982 2.980 2.982 2.983 2.982

10000 1.778 1.774 1.774 1.776 1.776 2.988 2.982 2.979 2.980 2.984

20000 1.776 1.776 1.776 1.775 1.774 2.985 2.982 2.980 2.981 2.983

From Table 4.7, we suggest that g = 50, f ≥ 20, and a search space s < 1000 are

reasonable choices. Moreover, the choice of g is more crucial than that of the other

parameters f and s. These results are averages over 100 data sets, and with G fixed

to G = 0.02 ∗N . As suggested by these results, we chose g = 50, G = 0.2 ∗N and for

Algorithm 4.7 f = 50, and s = 500 for each parameter. for the simulations leading

to Table 4.8 and 4.9,

Table 4.8: Quantile of accepted observations by different algorithms.
Description Quantile (Mutation) Quantile (Recombination)

5% 50% 95% 5% 50% 95%
Optimum 52 118 15432 53 86 16876

Algorithm 4.4 70 830 5632 77 2518 7519
Algorithm 4.5 52 85 3913 53 71 1831
Algorithm 4.6 53 77 3717 53 66 11231
Algorithm 4.7 54 84 3672 52 69 11389

LOOCV 100 100 1000 100 100 1000
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Table 4.8 shows the quantiles of the number accepted observations (out of 106) in

100 data sets. We can say that both methods selected approximately 100 observations

on average (i.e., Median). For LOOCV, we used 50 cross-validation samples and three

proposed acceptance cutoffs (i.e., 0.0001, 0.0005, 0.001).

Table 4.9: Performance of different algorithms by MRSSE.
Mutation (θ) Recombination (ρ)

Description Estimate θ̂ MRSSE Estimate ρ̂ MRSSE
Mean S.E. (θ̂ − θ) Mean S.E. (ρ̂− ρ)

θ̂W , ρ̂Hud 7.017 2.084 – 9.631 5.828 –
Optimum 6.967 1.076 1.698 5.851 0.958 2.831
Algorithm 4.4 6.939 1.210 1.817 5.487 0.815 3.107
Algorithm 4.5 6.989 1.254 1.772 5.619 1.268 2.965
Algorithm 4.6 6.976 1.236 1.750 5.618 1.215 2.935
Algorithm 4.7 6.987 1.244 1.755 5.622 1.212 2.931
LOOCV 6.946 1.203 1.827 5.534 1.088 3.088
FIX01 6.899 1.191 1.875 5.425 0.715 3.187

In the above table, θW is the Watterson estimator [Watterson, 1975], and ρHud is

Hudson’s estimator of recombination [Hudson, 2001]. Table 4.9 results show that the

Algorithm 4.6 and 4.7 give smaller MRSSE than all other methods, and these results

are close to those obtained under the idealized situation when using the algorithms

with the true parameter values for computing an optimum MRSSE.
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Chapter 5

Summary and Conclusions

In the past decade, remarkable advances have been made in the field of biology.

Nowadays, biologists who study natural populations of plants and animals, have

access to numerous new tools such as whole genome sequencing, DNA hybridization

microarrays, and next-generation sequencing. Computationally intensive statistical

methods have to be developed often for the analysis of complicated biological data.

Of course, the advancement in the field of computing has been equally significant,

and today’s computers are fast enough to allow numerically intensive analysis to

be run on desktop machines. This has led to a substantial progress in developing

statistical methods for genetics; in particular, Markov chain Monte Carlo (MCMC)

and Approximate Bayesian Computation (ABC) methods for computing likelihoods

and posterior probabilities. The main objective of this study is to deal with statistical

challenges in modern genetics. Both likelihood and likelihood-free methods are needed

for the analysis of genetic data in the context of questions of interest to biologists.

In this thesis, we follow both aggressively. We proposed a novel method for the

estimation of time dependent scaled mutation rates under the infinite sites model

when recombination is not present. The proposed method can also estimate time-

independent mutation rates, and it performs well than the methods in the literature.

Second, on the likelihood-free idea, we investigate a method for choosing summary
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statistics in ABC algorithm, and it performs better in terms of computational time

and accuracy than the methods given in the literature. Moreover, four new algorithms

have been proposed for choosing the acceptance cutoff in ABC framework.

5.1 Exact Likelihood Calculation

A novel method is proposed that is based on dynamic programming for estimating

the scaled mutation rate θ that dependent on time t, under the infinite sites model in

absent of recombination. The proposed method efficiently computes the probabilities

of all possible configurations at each step, i.e., coalescence or mutation at a reasonable

time, although intermediate configuration are large. The results of the proposed

method are reasonable for growing population (see Table 3.2). When number of

independent loci increases the amount of outlier’s decreases (see Figure 3.1) and

estimation of parameters become precise to attain its true parameter. Contour plots

also show that our proposed method successfully estimate three parameters such that

the current theta (θ̂C), the ancestral theta (θ̂A) and the time (τ̂), when population is

growing.

With a little modification, the proposed method also estimate the scaled mutation

rate θ that is independent of time. The performance of the proposed method is

compared to Griffiths and Tavaré (GT) approach that is implemented in the Genetree

program (see Table 3.1). The results show that the proposed method is fast and

reliable when nθ < 100, where θ is the time-independent mutation and n is sample

size.
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5.2 Choosing Summary Statistics for ABC

We have investigated a method to select a set of informative summary statistics for

the parameter θ in an ABC framework. We found that the LARS algorithm is super

fast and producing relatively better results than the other methods such as PLS, AS,

ME. (see Example 1, Section 4.3.1). The results of the two-stage (2S) algorithm are

slightly better. However, the 2S algorithm is computationally very intensive. The two

stage (2S) algorithm took 12 hours in Example 1 with seven summary statistics only.

On the other hand, the computational time for LARS is not more than 5 minutes,

and is therefore much faster than the two-stage (2S) algorithm. In example 1, we are

expecting that C1 (number of segregating sites) for θ [Hudson, 1990; Nordborg, 2007]

and C5 (number of distinct haplotype) for ρ are particularly informative summary

statistics, and they should be included in an optimal set of summary statistics.

In example 2 (see Section 4.3.2), we compared the LARS results with the PLS

method because other methods are computationally too intensive. Selected infor-

mative summary statistics by LARS are quite similar as we are expecting [see for

description of summary statistics Pavlidis et al., 2010].

5.3 Choosing Acceptance Cutoff for ABC

We proposed four new algorithms and compared their results based on our simulation

study (see Section 4.4.1). We could suggest that the algorithm 4.6 is better than the

other considered approaches in terms of computational time and accuracy of the

estimates. We also tried the super learner (SL) approach for choosing the acceptance

cutoff in an ABC framework, but it turned out to be computationally too expensive.
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5.4 Future Recommendations

In this thesis, we tried to develop reliable methods for biological data. A novel

method has been developed based on likelihood inference for the estimation of the

time-dependent mutation rate. This method could be further extended to estimate

migration rates. We also developed an algorithm for choosing summary statistics

and algorithms for the selection of the acceptance cutoff for ABC. We hope to have

contributed to the development of improved methods to understand the variation

pattern in evolution and in genetics.
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Appendix

Appendix I: Summary Statistics

Following is explanation of summary statistics from Example 1, which were presented

in Table 4.1. Number of segregating sites (C1) – It is calculated just by counting the

number of segregating sites in DNA sequence data. Uniform random variable (C2)

-Its range is [0, 25]. Mean of pairwise difference (C3) – It is based on the average

differences between two DNA sequences that were randomly chosen from sample.

This index is commonly used in population genetics since its suggestion in 1979 by

Nei and Li.

π = 2
n(n− 1)

n∑
i=1

n−1∑
j=i+1

fifjπij,

where fi and fj are the frequencies of the ith and jth sequences, respectively, in

the population, and πij is the number of nucleotide differences per nucleotide site

between the ith and jth sequences. Linkage disequilibrium (C4)- r2 = ( D
p1p2q1q2

)2,

where D = x12 − p1p2. The following table illustrates the relationship between the

haplotype frequencies (x11, x12, x21, x22) and allele frequencies (A1, A2, B1, B2)

and D.
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A1 A2 Total

B1 x11 = p1q1 +D x21 = p2q1 −D q1

B2 x12 = p1q2 −D x22 = p2q2 +D q2

Total p1 p2 1

And other three summary statistics (C5, C6, C7) are straight forward.

Example 2

Description List of all Summary Statistics

C1 number of segregating sites for sub-population 1

C2 number of segregating sites for sub-population 2

C3 number of segregating sites for total sample

C4 the pi for sub-population 1

C5 the pi for sub-population 2

C6 the pi for total sample

C7 the Watterson estimator for sub-population 1

C8 the Watterson estimator for sub-population 2

C9 the Watterson estimator for total sample

C10 the Tajima’s D for sub-population 1

C11 the Tajima’s D for sub-population 2

C12 the Tajima’s D for total sample

C13 the Zns for sub-population 1

C14 the Zns for sub-population 2

C15 the Zns for total sample

C16 the Fst (total sample, hbk calculation)

C17 the percentage of shared polymorphisms between

sub-populations 1 and 2
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C18 the percentage of private polymorphisms between

sub-populations 1 and 2

C19 the percentage of fixed differences polymorphisms

between sub-populations 1 and 2

C20 the Fst between sub-populations 1 and 2

C21 the H in sub-population 1

C22 the H in sub-population 2

C23 the H in total sample

C24 the number of haplotypes in sub-population 1

C25 the Heterozygosity of haplotypes in sub-population 1

C26 the number of haplotypes in sub-population 2

C27 the Heterozygosity of haplotypes in sub-population 2

C28 the number of haplotypes in the total sample

C29 the Heterozygosity of haplotypes in the total sample

C30 Uniform [0,1] random variable

C31 Uniform [0,10] random variable

C32 Uniform [0,25] random variable

For more description of the formulas these summary statistics[see Pavlidis et al.,

2010].
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Appendix II: A C++ Program for Forward Algo-

rithm

####################

tree.h

####################

#ifndef TREE

#define TREE

using namespace std;

#include<vector>

#include<iostream>

#include<string>

#include<assert.h>

#include<map>

#include<iterator>

/*

For a project to calculate the probability of a rooted coalescence tree

given theta.

*/

struct tree_error{

const char* pchar;

tree_error(const char* pch){pchar= pch;}

};

void seq2haplotype(const vector<vector<char> >& vvc,

int len,

map<vector<int>,int>& m_ht);

//a data vector of zero’s and one’s; and the length of the sequence in bps

typedef map<vector<int>,int> haplotype_map;

typedef map<haplotype_map,double> m_hm;
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typedef haplotype_map::const_iterator CI;

typedef haplotype_map::iterator I;

typedef map<haplotype_map,double>::const_iterator CI_mm;

typedef map<haplotype_map,double>::iterator I_mm;

typedef map<haplotype_map,vector<double> > m_hmvd;

typedef map<haplotype_map,vector<double> >::const_iterator CI_mmvd;

typedef map<haplotype_map,vector<double> >::iterator I_mmvd;

void all_below(const haplotype_map& m_ht,

double prob, //the probability of the haplotype

double theta,

m_hm & map_of_htm);

void all_below_time(const haplotype_map& m_ht,

vector<double> vdprob, //the probability of the haplotype

double theta_start,

double theta_end,

double time,

double nu, // nu=1/(2Ne)

m_hmvd & map_of_htm);

#endif //TREE
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######################

FORWARD_STEP.CC

######################

#include<iostream>

#include<fstream>

#include<sstream>

#include<vector>

#include<string>

#include"tree.h"

#include<algorithm>

#include<set>

#include<math.h>

struct named_sequence{

string s; //name

vector<char> seq; //sequence

int length; //length of the sequence

int operator < (const named_sequence& ns) const {return s<ns.s;}

//order by name

};

void read_sequences(vector<named_sequence>& vns,

ifstream& ifs)

{//sequences must be in fasta format

vns.resize(0);

for(;;){

char ach[10000];

ifs.getline(ach,10000);

if(!ifs) return;

if(ach[0]!=’>’){

cerr <�< "Not in fasta format!" <�< endl;
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exit(1);

}

named_sequence ns;

string s(&ach[1]);

istringstream istr(s);

char ach2[100];

istr.getline(ach2,100,’ ’);

string s2(ach2);

//cout <�< s2 <�< " ";

ns.s=s2;

int dummy;

istr >�> dummy;

//cout <�< dummy <�< endl;

ns.length=dummy;

vector<int> vi;

ifs.get(ach,10000,’>’);

for(unsigned int i=0;i<10000;++i){

if(!ach[i]) break;

if(ach[i]!=’\n’)

ns.seq.push_back(ach[i]);

}

vns.push_back(ns);

}

for(unsigned int i=1; i<vns.size();++i){

assert(vns[i].seq.size()==vns[0].seq.size());

}

}

int main(int argc, char* argv[]){

switch (argc){

case 5:{
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ifstream ifs(argv[1]);

if(!ifs){

cerr <�< "could not open file: " <�< argv[1] <�< endl;

exit(1);

}

float start_theta;

sscanf(argv[2], "%f",&start_theta);

//cout <�< "Theta: (" <�< start_theta <�< ’,’;

float end_theta;

sscanf(argv[3], "%f",&end_theta);

//cout <�< end_theta <�< ’,’;

float delta;

sscanf(argv[4], "%f",&delta);

//cout <�< delta <�< ’)’ <�< endl;

//exit(0);

vector<named_sequence> v_seq;

read_sequences(v_seq,ifs);

sort(v_seq.begin(),v_seq.end());

vector<vector<vector<char> > > vvvc;

vector<string> vs_locus_names;

vector<int> vi_length;

vector<vector<char> > vvc;

int locus=atoi(v_seq[0].s.c_str());

vs_locus_names.push_back(v_seq[0].s);

vi_length.push_back(v_seq[0].length);

for(unsigned int i=0; i<v_seq.size();++i){

//cout <�< locus <�< " " <�< atoi(v_seq[i].s.c_str()) <�<endl;

if(atoi(v_seq[i].s.c_str())==locus)

vvc.push_back(v_seq[i].seq);

else{
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//cout <�< v_seq[i].s <�< endl;

locus=atoi(v_seq[i].s.c_str());

vs_locus_names.push_back(v_seq[i].s);

vi_length.push_back(v_seq[i].length);

vvvc.push_back(vvc);

vvc.resize(0);

vvc.push_back(v_seq[i].seq);

}

}

vvvc.push_back(vvc);

//cout <�< __LINE__ <�< endl;

//exit(0);

try{

//BUGBUG: Do somethings with 0 variable sites!

cout <�< "Theta\tLog_Like" <�< endl;

for(double theta=start_theta; theta<=end_theta;theta+=delta){

double ll=0.0;

for(unsigned int l=0; l<vvvc.size();++l){

//for(unsigned int i=0; i<vvvc[l].size();++i){

//cout <�< i <�< " ";

//for(unsigned int a=0; a<vvvc[l][i].size();++a){

// cout <�< vvvc[l][i][a];

//}

//cout <�< endl;

//}

//cout <�< vs_locus_names[l] <�< ’ ’;

//cout <�< l <�<endl;

haplotype_map m_ht;

unsigned int n_haplotypes=vvvc[l].size();

unsigned int n_mutations=vvvc[l][0].size();
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seq2haplotype(vvvc[l],vi_length[l],m_ht);

m_hm old_map_of_htm;

old_map_of_htm[m_ht]=1.0;

CI_mm pmm=old_map_of_htm.begin();

/*

cout <�< "possible collections of haplotypes at step"

<�< 0 <�< endl;

for(int i=0 ;pmm!=old_map_of_htm.end();++pmm){

cout <�< "possibility: " <�< i <�< endl;

cout <�< "Prob: " <�< pmm-> second <�< endl;

++i;

CI p= pmm->first.begin();

for(;p!=pmm->first.end();++p){

cout <�< p->second <�<’ ’;

for(unsigned int i=0; i<p->first.size();++i)

cout <�< p->first[i];

cout <�< endl;

}

cout <�< endl;

}

*/

for(unsigned int step=0; step<n_mutations+n_haplotypes-1;++step){

m_hm new_map_of_htm;

CI_mm pmm=old_map_of_htm.begin();

for(;pmm!=old_map_of_htm.end();++pmm){

all_below(pmm->first,pmm->second,vi_length[l]*theta,new_map_of_htm);

//all_below(m_ht,1.0,vi_length[l]*theta,new_map_of_htm);

}

pmm=new_map_of_htm.begin();

/*
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cout <�< "possible collections of haplotypes at step"

<�< (step+1) <�< endl;

for(int i=0 ;pmm!=new_map_of_htm.end();++pmm){

cout <�< "possibility: " <�< i <�< endl;

cout <�< "Prob: " <�< pmm-> second <�< endl;

++i;

CI p= pmm->first.begin();

for(;p!=pmm->first.end();++p){

cout <�< p->second <�<’ ’;

for(unsigned int i=0; i<p->first.size();++i)

cout <�< p->first[i];

cout <�< endl;

}

cout <�< endl;

}

*/

old_map_of_htm=new_map_of_htm;

}

//cout <�< "Locus " <�< vs_locus_names[l] <�< " " <�< vi_length[l]

<�< log(old_map_of_htm.begin()->second) <�< endl;

ll+= log(old_map_of_htm.begin()->second);

}

cout <�< theta <�< ’\t’ <�< ll <�< endl;

}

}

catch(tree_error &te){

cerr <�< "Tree-error: " <�< te.pchar <�< endl;

}

catch(...){

cerr <�< "Something wrong" <�< endl;
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exit(1);

}

return 0;

}

default: {

cerr <�< "Usage: tree_forw_step INFILE start_theta end_theta step" <�< endl;

break;

}

}

}
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######################

FORWARD_TIME.CC

######################

#include<iostream>

#include<fstream>

#include<sstream>

#include<vector>

#include<string>

#include"tree.h"

#include<algorithm>

#include<set>

#include<math.h>

#include <stdio.h>

#define MP 22

#define NP 21 //Maximum value for NDIM=20

typedef double MAT[MP][NP];

MAT P;

double Y[MP],PT[MP];

int ITER,J,NDIM;

double FTOL;

struct named_sequence{

string s; //name

vector<char> seq; //sequence

int length; //length of the sequence

int operator < (const named_sequence& ns) const {return s<ns.s;}

//order by name

};

void read_sequences(vector<named_sequence>& vns,ifstream& ifs)

{//sequences must be in fasta format
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vns.resize(0);

for(;;){

char ach[10000];

ifs.getline(ach,10000);

if(!ifs) return;

if(ach[0]!=’>’){

cerr <�< "Not in fasta format!" <�< endl;

exit(1);

}

named_sequence ns;

string s(&ach[1]);

istringstream istr(s);

char ach2[100];

istr.getline(ach2,100,’ ’);

string s2(ach2);

//cout <�< s2 <�< " ";

ns.s=s2;

int dummy;

istr >�> dummy;

//cout <�< dummy <�< endl;

ns.length=dummy;

vector<int> vi;

ifs.get(ach,10000,’>’);

for(unsigned int i=0;i<10000;++i){

if(!ach[i]) break;

if(ach[i]!=’\n’)

ns.seq.push_back(ach[i]);

}

vns.push_back(ns);

}
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for(unsigned int i=1; i<vns.size();++i){

assert(vns[i].seq.size()==vns[0].seq.size());

}

}

double log_like(const vector<vector<char> > &vvc,

int length,

double start_theta,

double end_theta,

double time_change)

{

double nu=0.01;

haplotype_map m_ht;

unsigned int n_haplotypes=vvc.size();

unsigned int n_mutations=vvc[0].size();

seq2haplotype(vvc,length,m_ht);

I p=m_ht.begin();

vector<double> vd(1000);

//time_change*=2.0; //compatibity with Hudson’s ms

assert(time_change<1000);

vd[0]=1.0;

m_hmvd old_map_of_htm;

old_map_of_htm[m_ht]=vd;

for(unsigned int step=0; step<n_mutations+n_haplotypes-1;++step){

m_hmvd new_map_of_htm;

I_mmvd pmm=old_map_of_htm.begin();

for(;pmm!=old_map_of_htm.end();++pmm){

CI p= pmm->first.begin();

int c_ht=0; //counting haplotypes

for(;p!=pmm->first.end();++p){

c_ht+=p->second;
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}

double factor=1-(c_ht*(c_ht-1)*0.5+length*start_theta*c_ht*0.5)*nu;

unsigned int t=1;

for(; t<time_change;++t){

pmm->second[t]+= pmm->second[t-1]*factor;

}

factor=1-(c_ht*(c_ht-1)*0.5+length*end_theta*c_ht*0.5)*nu;

for(; t<vd.size();++t){

pmm->second[t]+= pmm->second[t-1]*factor;

}

all_below_time(pmm->first,pmm->second,length*start_theta,

length*end_theta,time_change,nu,new_map_of_htm);

}

old_map_of_htm=new_map_of_htm;

}

double sum= 0.0;

for(unsigned int t=0; t<vd.size();++t)

sum+= old_map_of_htm.begin()->second[t];

return log(sum);

}

//user define function

double sum_ll(const vector<vector<vector<char> > > & vvvc,

const vector<int> & vi_length,

double start_theta,

double end_theta,

double time_change)

{

double ll=0.0;

for(unsigned int l=0; l<vvvc.size();++l){

ll+= log_like(vvvc[l], vi_length[l], exp(start_theta), exp(end_theta), exp(time_change));
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}

return ll;

}

void AMOEBA(vector<vector<double> > & P, double *Y, int NDIM, double

FTOL,

int *ITER,const vector<vector<vector<char> > >& vvvc,const vector<int> &vi_length)

{

//const int NMAX=20;

const int ITMAX=10000;

double PR[MP], PRR[MP], PBAR[MP];

double ALPHA=1.0, BETA=0.5, GAMMA=2.0;

int I,IHI,ILO,INHI,J,MPTS;

double RTOL,YPR,YPRR;

MPTS=NDIM+1;

*ITER=0;

e1:ILO=1;

if (Y[1] > Y[2]) {

IHI=1;

INHI=2;

}

else {

IHI=2;

INHI=1;

}

for (I=1; I<=MPTS; I++) {

if (Y[I] < Y[ILO]) ILO=I;

if (Y[I] > Y[IHI]) {

INHI=IHI;

IHI=I;

}
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else if (Y[I] > Y[INHI])

if (I != IHI) INHI=I;

}

//Compute the fractional range from highest to lowest and return if

//satisfactory.

RTOL=2.0*fabs(Y[IHI]-Y[ILO])/(fabs(Y[IHI])+fabs(Y[ILO]));

if (RTOL < FTOL) return; //normal exit

if (*ITER == ITMAX) {

printf(" Amoeba exceeding maximum iterations.\n");

return;

}

*ITER= (*ITER) + 1;

cout<�< (*ITER)<�<endl;

for (J=1; J<=NDIM; J++) PBAR[J]=0.0;

for (I=1; I<=MPTS; I++)

if (I != IHI)

for (J=1; J<=NDIM; J++)

PBAR[J] += P[I][J];

for (J=1; J<=NDIM; J++) {

PBAR[J] /= 1.0*NDIM;

PR[J]=(1.0+ALPHA)*PBAR[J] - ALPHA*P[IHI][J];

}

YPR=-sum_ll(vvvc,vi_length,PR[1],PR[2],PR[3]);

if (YPR <= Y[ILO]) {

for (J=1; J<=NDIM; J++)

PRR[J]=GAMMA*PR[J] + (1.0-GAMMA)*PBAR[J];

YPRR=-sum_ll(vvvc,vi_length,PRR[1],PRR[2],PRR[3]);

if (YPRR < Y[ILO]) {

for (J=1; J<=NDIM; J++) P[IHI][J]=PRR[J];

Y[IHI]=YPRR;
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}

else {

for (J=1; J<=NDIM; J++) P[IHI][J]=PR[J];

Y[IHI]=YPR;

}

}

else if (YPR >= Y[INHI]) {

if (YPR < Y[IHI]) {

for (J=1; J<=NDIM; J++) P[IHI][J]=PR[J];

Y[IHI]=YPR;

}

for (J=1; J<=NDIM; J++) PRR[J]=BETA*P[IHI][J] + (1.0-BETA)*PBAR[J];

YPRR=-sum_ll(vvvc,vi_length,PRR[1],PRR[2],PRR[3]);

if (YPRR < Y[IHI]) {

for (J=1; J<=NDIM; J++) P[IHI][J]=PRR[J];

Y[IHI]=YPRR;

}

else

for (I=1; I<=MPTS; I++)

if (I != ILO) {

for (J=1; J<=NDIM; J++) {

PR[J]=0.5*(P[I][J] + P[ILO][J]);

P[I][J]=PR[J];

}

Y[I]=-sum_ll(vvvc,vi_length,PR[1],PR[2],PR[3]);

}

}

else {

for (J=1; J<=NDIM; J++) P[IHI][J]=PR[J];

Y[IHI]=YPR;
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}

goto e1;

}

int main(int argc, char* argv[]){

NDIM=3; // 3 variables

FTOL=1e-8; // User given tolerance

//define NDIM+1 initial vertices (one by row)

vector<vector<double> > P(NDIM + 2);

P[1].resize(4);

P[1][1]= log(0.0002); P[1][2]=log(0.002); P[1][3]=log(100);

P[2].resize(4);

P[2][1]= log(0.002); P[2][2]=log(0.0002); P[2][3]=log(100);

P[3].resize(4);

P[3][1]= log(0.005); P[3][2]=log(0.0003); P[3][3]=log(100);

P[4].resize(4);

P[4][1]= log(0.0003); P[4][2]=log(0.005); P[4][3]=log(50);

switch (argc){

case 2:{

ifstream ifs(argv[1]);

if(!ifs){

cerr <�< "could not open file: " <�< argv[1] <�< endl;

exit(1);

}

vector<named_sequence> v_seq;

read_sequences(v_seq,ifs);

sort(v_seq.begin(),v_seq.end());

vector<vector<vector<char> > > vvvc;

vector<string> vs_locus_names;

vector<int> vi_length;

vector<vector<char> > vvc;
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int locus=atoi(v_seq[0].s.c_str());

vs_locus_names.push_back(v_seq[0].s);

vi_length.push_back(v_seq[0].length);

for(unsigned int i=0; i<v_seq.size();++i){

if(atoi(v_seq[i].s.c_str())==locus)

vvc.push_back(v_seq[i].seq);

else{

locus=atoi(v_seq[i].s.c_str());

vs_locus_names.push_back(v_seq[i].s);

vi_length.push_back(v_seq[i].length);

vvvc.push_back(vvc);

vvc.resize(0);

vvc.push_back(v_seq[i].seq);

}

}

vvvc.push_back(vvc);

try{

for (int I=1; I<=NDIM+1; I++) {

PT[1]=P[I][1];

PT[2]=P[I][2];

PT[3]=P[I][3];

Y[I]=-sum_ll(vvvc,vi_length,PT[1],PT[2],PT[3]);

cout<�< PT[1] <�< " " <�< PT[2] <�< " " <�< PT[3] <�< " " <�< Y[I] <�< endl;

}

AMOEBA(P,Y,NDIM,FTOL,&ITER,vvvc,vi_length);

printf(" %d", ITER);

// printf(" Best NDIM+1 points:\n");

//for (int I=1 ; I<=NDIM+1; I++) {

// printf("%d", ITER);

for (int J=1; J<=NDIM; J++)
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printf(" %f", exp(P[1][J]));

printf(" %14.10f", Y[1]);

// printf("\n");

//}

//printf("\n Best NDIM+1 Maximum values:\n");

//for (int I=1; I<=NDIM+1; I++)

//printf(" %14.10f", Y[1]);

//printf("\n");

}

catch(tree_error &te){

cerr <�< "Tree-error: " <�< te.pchar <�< endl;

}

catch(...){

cerr <�< "Something wrong" <�< endl;

exit(1);

}

return 0;

}

default: {

cerr <�< "Usage: tree_forw_update infile.fst" <�< endl;

break;

}

}

}
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Appendix III: Abstract

In den letzten zehn Jahren wurden bemerkenswerte Fortschritte in der Biologie gemacht.

Biologen, die natürliche Populationen von Pflanzen oder Tieren studieren, haben Zu-

griff auf neue Technologien wie das Next Generation Sequencing. Häufig müssen

rechenintensive statistische Verfahren für die Analyse von komplexen biologischen

Daten entwickelt werden. Der Fortschritt in der Computertechnik erlaubt es, rechen-

intensive statistische Analysen auf Desktop-Computern auszuführen. Dies führte zu

einem signifikanten Fortschritt bei der Entwicklung statistischer Verfahren in der

Genetik, wie etwa die Verwendung von Monte Carlo und Markov Chain Monte Carlo

(MCMC) Methoden zur Berechnung der Likelihoods und a-posteriori Wahrschein-

lichkeiten. Diese Dissertation konzentriert sich auf die Entwicklung von Likelihood-

Methoden und Likelihood-freier statistischen Verfahren und deren Anwendung auf

die Analyse von genetischen Daten. Zunächst schlagen wir eine effiziente Methode

zur Berechnung der Likelihood vor, die für die Schätzung von zeitabhängigen Muta-

tionsraten im Infinite-Sites Mutationsmodell verwendet werden können. Im Rahmen

der Likelihood-freien Methoden schlagen wir eine Methode zur Auswahl von Statis-

tiken vor, die dann im Rahmen des „Approximate Bayesian Computation“ (ABC)-

Algorithmus verwendet werden. Ziel ist es, die summary Statistiken so zu wählen,

dass die tatsächliche a posteriori Verteilung möglichst gut approximiert wird. Das

vorgeschlagene Verfahren, basierend auf der „least angle regression“ (LAR), ist besser

in Bezug auf Rechenzeit und Genauigkeit als vergleichbare Methoden in der Literatur.

Wir schlagen auch Methoden, um den Akzeptanz-Cutoff für ABC zu bestimmen vor

und vergleichen diese.
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