

DISSERTATION

Titel der Dissertation

„A Framework for Transferring Software Project
Management Approaches into the
Thai Telecommunications Industry“

Verfasserin

Nalinpat Porrawatpreyakorn

angestrebter akademischer Grad

Doktorin der technischen Wissenschaften (Dr. techn.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 786 175

Dissertationsgebiet lt. Studienblatt: Informatik

Betreuer: Univ.-Prof. Dipl.-Ing. DDr. Gerald Quirchmayr

ii

iii

Abstract

This dissertation focuses on the Thai telecommunications industry, which still is one
of the fastest-evolving and most competitive markets and also one of the fastest-growing
technology areas, as a case study. Looking at the current situation of software development in
this industry, we use the findings of interviews with in-house and outsourcing software
development teams working for two of the largest broadband Internet Service Providers
(ISPs) in Bangkok, Thailand (named ISP1 and ISP2) during March and April 2009. The
findings reveal that many of the typical problems (e.g., a lack of good user participation, a
lack of teamwork, a lack of training support, a lack of management commitment, a lack of
project management competence, a lack of knowledge transfer, and so forth) are still arising
throughout the software development lifecycle. These problems result in a significant level of
unsatisfactory quality results. This software development situation emphasizes that there is a
need for more efficient and effective software development processes and a supporting
knowledge transfer process. This dissertation consequently aims at providing a
methodologically sound approach that leads to a practically feasible solution resulting in
improved software development performance.

Focusing on project management and software development processes, agile methods
(e.g., Adaptive Software Development, eXtreme Programming, and Scrum) are widely used
in many business environments, as they provide an effective software development process to
tackle many of the typical problems. Nevertheless, they offer limited support for project
management (e.g., for outsourcing and high quality assurance) which is the backbone for
cost-efficient software development. Furthermore, they generally deal with “how”, but not
much with “what” software development processes should be implemented. Concentrating on
only “how” cannot guarantee that software quality will be delivered. Therefore, this
dissertation proposes a software process maintenance framework which in this context means
a framework for software process development and improvement to overcome these
shortcomings. The framework consists of two core components: a software development
maturity model providing the “what” to improve with a software process assessment
mechanism and an integrated PMBOK-Scrum model providing the “how” to implement with
a comprehensive set of project management and software development processes. To support
the application of the framework, a prototype tool is then introduced. It was created as a
Web-based application, using the Java programming language and a MySQL database. It is
important to perform a feasibility check on whether the framework and the tool are practical
in real-life software projects. Hence, this dissertation demonstrates their implementation and
results through two case studies in the Thai telecommunications industry (i.e., CAT Telecom
Public Company Limited and TOT Public Company Limited) from November 2010 to
February 2011. The data collection was carried out through on-site observations, individual
interviews, and questionnaires. The findings indicate the generation of positive effects by (i)
increasing software development performance in terms of efficiency (e.g., increasing work
completeness and work productivity) and effectiveness (e.g., reducing defects and increasing
customer and team satisfaction); and (ii) cultivating teamwork, collaboration, informal and
frequent communications, and a knowledge sharing culture.

Focusing on a knowledge transfer process, a software project consists of knowledge-
intensive activities and its implementation requires stakeholders’ expertise and experience,
transferability, and the absorptive capacity to learn and apply knowledge to solve problems
occurring during software development. The knowledge transfer itself has its components and

iv

can be viewed in different ways (e.g., process base, antecedent base, and component base).
Although many knowledge transfer models and studies in software development have been
proposed, and are available to learn from; they neither put an emphasis on a knowledge
transfer’s common components, nor do they clearly provide comprehensive descriptions or
relationships between those components in a knowledge transfer process. The ones offering
guidance on how to drive knowledge transfer into action are also scarce. Consequently, this
dissertation proposes a knowledge transfer framework. It aims at covering common
components (i.e., problems, antecedents, knowledge, mechanisms, knowledge application,
and outcomes); providing guidance for planning knowledge transfer activities; and
contributing to an effective knowledge transfer amongst software development team
members. Unfortunately, owing to time limitations of this study, the usability and practicality
of the knowledge transfer framework could not be tested in real-life practice. However, this
dissertation demonstrates the application of the framework, using our two prior case studies
as a base. The demonstration descriptions are categorized into two parts. The first part
describes how the author transferred knowledge to the case study teams; therefore, its focus is
on the actual transfer results. The second part describes how the case study team members
can transfer knowledge within their teams; hence, its focus is on how the framework can be
applied in real-life software development practice. Although the framework cannot yet
promise to contribute to knowledge transfer effectiveness in software development, the
results of the demonstration show a high degree of compatibility with Scrum-oriented
software development. Moreover, the framework was designed and constructed based on the
positive results of the case studies in Chapter 5. This implies that there is a great likelihood
that the framework is practical in real-life software projects.

As efficient and effective software development processes and a knowledge transfer
process are required for quality software development, this dissertation incorporates the
software process maintenance framework and the knowledge transfer framework into an
umbrella framework. This is a framework for transferring novel software project management
concepts into the Thai telecommunications industry. Owing to our time limitations as
aforementioned, this dissertation demonstrates how to apply the umbrella framework in
software projects; using our prior two case studies as a base again. The results of the
demonstration show a great probability that the framework is practical in real-life software
projects. At this stage, the umbrella framework partly promises an improvement of software
development performance, as a result of the software process maintenance framework. In the
future, we hope to carry out more case studies in order to raise more confidence in the
usability and practicality of the umbrella framework. At the end of this dissertation,
theoretical contributions, implications for future research design, implications for practice,
limitations of this study, and recommendations for future work are described. Additional
practical tests of the developed frameworks will be carried out by the author after returning to
Thailand, before finally handing them over to industry partners.

v

Zusammenfassung

Heute gehört die Telekommunikation noch immer zu den sich am schnellsten
entwickelnden und am härtesten umkämpften Märkten sowie zu einer der weltweit am
schnellsten wachsenden Technologiegebiete. Diese Dissertation konzentriert sich auf die
thailändische Telekommuniktionsindustrie als Studienobjekt. Bei der Betrachtung der
gegenwärtigen Situation der Software Entwicklung in diesem Industriezweig, stützen wir uns
auf Interviews mit Hauseigenen und externen Software Entwicklungsteams von zwei der
größten Breitband Internet Service Anbietern (Internet Service Providers (ISPs)) in Bangkok,
Thailand (ISP1 and ISP2), aus den Monaten März und April 2009. Die Ergebnisse zeigen,
daß viele typische Probleme (z.b. das Fehlen einer guten Nutzereinbindung, das Fehlen von
Teamarbeit, fehlende Ausbildung, fehlendes Engagement des Managements, fehlende
Kompetenz des Projektmanagements, fehlender Wissensaustausch usw.) während des
Lebenszyklus des Software Entwicklungsprozesses noch ansteigen. Diese Probleme führen
zu deutlich unbefriedigenden Ergebnissen in der Qualität. Diese Situation der Software
Entwicklung zeigt, daß es einen Bedarf an effizienten und effektiven Entwicklungsprozessen
gibt, sowie Bedarf an unterstützenden Wissenstransfer. Das Ziel dieser Dissertation war es
daher, nach praktikablen Lösungen zu suchen, um die Leistung der Software Entwicklung zu
verbessern.

Mit Schwerpunkt auf Projektmanagement und Software Entwicklungsprozesse sind
geschickte Methoden (z.b. adaptive Software Entwicklung, extreme programming und
Scrum) in vielen Geschäftsfeldern weit verbreitet, da sie einen effektiven Software
Entwicklungsprozess bieten um diese typischen Probleme zu überwinden. Dennoch bieten sie
nur begrenzte Unterstützung für das Projektmanagement (z.b. für Outsourcing und
Sicherstellung hoher Qualität) welches das Rückgrat effizienter Software Entwicklung
darstellt. Darüber hinaus beschäftigen sie sich damit „wie“ aber nicht „welche“ Software
Entwicklungsprozesse implementiert werden sollten. Nur das „wie“ kann nicht garantieren,
dass Software-Qualität geliefert wird. Zur Überwindung dieser Probleme schlägt diese
Dissertation ein System zur Entwicklung und ständigen Verbesserung des Softwareprozesses
vor. Dieses System besteht aus zwei Kernkomponenten. Einem Modell zur Ausreifung der
Software Entwicklung um das „was“ zu klären, zur Verbesserung mit einem Software
Process Assessment-Mechanismus und einem integrierten PMBOK-Scrum Model zur
Klärung des „wie“, eine umfassenden Reihe von Projekt-Management und Software-
Entwicklungsprozessen zu implementieren. Um die Anwendung dieses Systems zu
unterstützen, wird ein Prototyp-Tool eingeführt. Es wurde als web-basierte Anwendung
entwickelt unter Ausnutzung von Java und einer MySQL Datenbank. Es ist wichtig, zu
überprüfen, ob das Systems und das Tool in realen Software Projekten praktikabel sind.
Daher zeigt diese Dissertation die Implementierung und Ergebnisse im Verlauf von zwei
Studien der thailändischen Telekommunikations Industrie (der CAT Telecom Public
Company Limited und der TOT Public Company Limited) von November 2010 bis Februar
2011. Die Datenerhebung erfolgte durch Vor-Ort-Beobachtungen, Einzelinterviews und
Fragebögen. Die Ergebnisse zeigen das generieren positiver Effekte durch (i) Steigerung der
Software-Entwicklung in Bezug auf Effizienz (z. B. Erhöhung der Arbeitsproduktivität) und
Effektivität (z. B. getane Arbeit, deren Überprüfung und Bewertung, Verringerung der
Fehlerquote und Steigerung der Kundenzufriedenheit und Team-Zufriedenheit) und (ii)
Förderung einer Kultur von Teamwork, Zusammenarbeit, regelmäßiger informeller
Kommunikation und Wissensaustausch.

vi

Wenn man sich auf den Prozess des Wissensaustausch konzentriert, besteht ein
Software Projekt aus wissensintensiven Aktivitäten deren Implementierung Stakeholder
Kenntnisse und Erfahrung erfordert, sowie die Lernfähigkeit und die Fähigkeit Wissen
anzuwenden um die Probleme zu lösen, die während der Software Entwicklung entstehen.
Wissenstransfer selbst hat seine Komponenten und kann auf verschiedene Weisen betrachtet
werden (z. B. Prozess basiert, auf die Vorgeschichte basierend und auf die Komponenten
basierend). Zwar wurden viele Wissenstransfer Modelle und Studien im Bereich der
Softwareentwicklung vorgeschlagen und stehen zur Verfügung um zu lernen; aber sie haben
weder einen Schwerpunkt auf die gemeinsamen Komponenten des Wissenstransfer noch
liefern sie eine eindeutige und umfassende Beschreibungen oder Darstellung der
Beziehungen zwischen diesen Komponenten in einem Wissenstransfer Prozess. Diejenigen,
die dazu Anleiten, wie ein Wissenstransfer zu realisieren ist, sind ebenfalls rar. Daher schlägt
diese Dissertation ein System zum Wissenstransfer vor (Probleme, Faktoren, Wissen,
Mechanismen, Anwendung von Wissen und Ergebnisse). Sie bietet Orientierungshilfen für
die Planung von Wissenstransfer Aktivitäten, und den effektiven Wissenstransfer zwischen
den Mitgliedern des Software Entwicklungsteams. Aus Zeitgründen konnte die
Benutzerfreundlichkeit und Funktionalität des Wissenstransfer Systems leider nicht in der
realen Praxis getestet werden. Allerdings zeigt diese Dissertation die Anwendung des
Systems mit unserern vorherigen zwei Fallstudien als Basis. Die
Demonstrationsbeschreibung ist in zwei Teile unterteilt. Der erste Teil beschreibt, wie der
Autor Wissen auf das Teams der Fallstudie übertragt, daher ist der Fokus auf die eigentliche
übertragenen Ergebnisse gerichtet. Der zweite Teil beschreibt, wie die Team-Mitglieder der
Fallstudie Wissen innerhalb des Teams übertragen. Daher ist der Fokus darauf gerichtet, wie
das System an die reale Software-Entwicklung der Praxis angepasst werden kann. Wenn
gleich dieses System noch nicht versprechen kann zur Effektivität des Wissenstransfers in der
Software Entwicklung beizutragen, so zeigen die Ergebnisse der Demonstration ein hohes
Maß an Kompatibilität mit Scrum-oriented software development. Dies impliziert, dass es
eine hohe Wahrscheinlichkeit gibt, dass das System in realen Software Projekten also
praktikabel erweist.

Da ein effizienter und effektiver Software-Entwicklungsprozesse und ein
Wissenstransfer-Prozess für qualitative Software Entwicklung nötigt sind, enthält diese
Dissertation das software process maintenance framework und knowledge transfer framwork
in einem übergeordneten System, ein System zur Übertragung von Software
Projektmanagement in die thailändische Telekommunikationsindustrie. Aufgrund unserer
zeitlichen Beschränkungen wie oben erwähnt, zeigt diese Dissertation, wie man das
übergeordnete System in Software Projekten anwendet, wieder mit unseren vorherigen zwei
Fallstudien als Basis. Die Ergebnisse der Demonstration zeigen eine große
Wahrscheinlichkeit, dass das System in realen Software Projekten anwendbar ist. In diesem
Stadium verspricht das übergeordnete System eine teilweise Verbesserung der Software-
Entwicklungsleistung, als Ergebnis des software process maintenance framework. Wir hoffen
in Zukunft mehr Fallstudien durchführen zu können, um mehr Sicherheit beim Nutzen und
der Funktionalität des übergeordneten Systems und seiner Komponenten zu gewinnen. Am
Ende dieser Dissertation sind theoretische Beiträge, Implikationen für die zukünftige
Forschung, Implikationen für die Praxis, die Begrenzungen dieser Studie und Empfehlungen
für die künftige Arbeit beschrieben. Weitere Praxistests des hier entwickelten Systems
werden von der Autorin nach der Rückkehr nach Thailand durchgeführt, bevor die Arbeit
schließlich an Partnern aus der Industrie übergeben wird.

vii

Acknowledgements

My dissertation would not have been possible without the help of several individuals
who in one way or another contributed their valuable support in the preparation and
completion of this work. First and foremost, I would like to express my deepest gratitude to
my supervisor, Prof. DDr. Gerald Quirchmayr, for his excellent guidance, patience,
understanding, caring, and providing me with a very encouraging atmosphere for doing
research in Vienna, Austria. My utmost gratitude also goes to my Thai expert advisor, Assoc.
Prof. Dr. Wichian Chutimaskul, for the time and effort he has invested in supporting my
research throughout the past several years, especially with respect to local and industry-
specific information and access in Bangkok. My thanks also go to Prof. Dr. Uwe Zdun for his
role as second examiner of this dissertation, in which he gave me very valuable
methodological and structural feedback. Moreover, I would like to especially thank ÖAD,
the Austrian Agency for International Cooperation in Education and Research, and the
Higher Education Commission of Thailand for supporting this work in the form of a
scholarship for me. Without this support, doing my education abroad would not have been
possible.

I would like to thank my colleagues at King Mongkut’s University of Technology
Thonburi and King Mongkut’s University of Technology North Bangkok for their support
and comments on my work. Without the substantial support from CAT Telecom Public
Company Limited and TOT Public Company Limited it would have been difficult to carry
out case studies for evaluating my work. Special thanks go to Bhuchai Mungsommai, Aree
Teeraworakul, Jaroon Pakpong, and Chalermphan Lohjarassuriya who gave considerable
cooperation and support, which I never had from anywhere before. I would like to thank all
individuals who gave me good cooperation to collect data from the field, feedback, and help
on my work. I would especially like to thank Amorn Suwantraiamorn who was always
willing to help me on programming. Without his support, a prototype tool would have not
been done easily.

I would like to thank my good friends, Pornthip Akaranijjirachat, Maiyasit
Karyanyam, Kraiwan Punyain, Tharaporn Premjairuthaitawee, Worarat Kruthu, Rangsan
Sarikabhuti, and Wuttichai Kwangnakorn. They were always willing to help and give best
suggestions, cheer me up, and stand by me through good and bad time.

Last but not least, I would like to thank my family to bring up my inspiration and
encouragement with their best wishes at all time. All of my heart, I would also like to express
my profound gratitude to the August Virtue of the Buddhist Triple Gems and Universal
Sacredness for always giving me the strength and guiding me proper ways to move forward
through the sometimes very challenging and tough time with consciousness, wisdom, and
good deeds. For this work, I must clarify that the blame for possible errors in this work lies
with me alone.

viii

ix

Table of Contents

Abstract ... iii
Zusammenfassung.. v

Acknowledgements .. vii
Table of Contents .. ix

List of Figures .. xiii
List of Tables .. xv

List of Abbreviations ... xvii
Chapter 1 Introduction .. 19

1.1 Introduction .. 19

1.2 Organization of the Dissertation .. 27

Chapter 2 Requirements for a Framework for Transferring Software Project
Management Approaches into the Thai Telecommunications Industry 29

2.1 Introduction .. 30

2.2 Look at the Current Situation in Executive Information Systems Development
in the Thai Telecommunications Industry ... 32

2.3 Two Primary Focuses of this Study ... 34

2.4 Foundations of this Study - Where We Can Start From .. 38

2.4.1 Capability Maturity Model Integration (CMMI) .. 39

2.4.2 Project Management Body of Knowledge Guide (PMBOK) 40

2.4.3 Scrum .. 42

2.4.4 Szulanski’s Knowledge Transfer Model .. 43

2.5 Influential Factors in the Areas of Software Development and Knowledge
Transfer as Requirements for a Framework for Transferring Software Project
Management Approaches into the Thai Telecommunications Industry 44

2.6 Towards a Conceptual Framework for Transferring Software Project
Management Approaches into the Thai Telecommunications Industry 47

2.7 Summary .. 50

Chapter 3 Gap Analysis in the Field of Agile Software Development Integration
with Software Process Improvement and with Traditional Project
Management .. 53

3.1 Introduction .. 53

3.2 Review Approach .. 55

3.2.1 Data Sources and Search Strategy .. 56

3.2.2 Inclusion and Exclusion Decisions ... 57

x

3.2.3 Final Selection .. 57

3.2.4 Data Extraction and Synthesis .. 58

3.2.5 Threats to Validity .. 58

3.3 Results .. 59

3.3.1 Overview of the Reviewed Papers .. 59

3.3.2 Findings about Research Questions .. 60

3.4 Summary .. 72

Chapter 4 The Software Process Maintenance Framework ... 75

4.1 Introduction .. 75

4.2 The Software Process Maintenance Framework ... 77

4.2.1 The Software Development Maturity Model .. 77

4.2.2 The Integrated PMBOK-Scrum Model .. 89

4.3 A Prototype Tool Supporting the Software Process Maintenance Framework 96

4.4 Summary .. 105

Chapter 5 Two Case Studies of the Software Process Maintenance Framework 109

5.1 Introduction .. 109

5.2 Research Approach .. 111

5.2.1 Data Collection ... 111

5.2.2 Threats to Validity .. 112

5.3 Analysis and Results .. 113

Part I: Software Process Assessment ... 114

Part II: Software Planning, Development, and Outcomes 115

Part III: Acceptance of the Framework ... 125

5.4 Summary of the Findings ... 127

5.5 Summary .. 137

Chapter 6 Gap Analysis in the Field of Knowledge Transfer
in Software Development ... 141

6.1 Introduction .. 141

6.2 Literature Review .. 143

6.2.1 Epistemologies of Knowledge Transfer ... 143

6.2.2 Definitions of Knowledge Transfer .. 144

6.2.3 Models of Knowledge Transfer .. 145

6.2.4 Lessons Learned ... 147

6.3 Interactions of Knowledge Transfer Components ... 148

6.4 Knowledge Transfer in Software Development .. 151

xi

6.5 Limitations ... 156

6.6 Summary .. 156

Chapter 7 The Knowledge Transfer Framework .. 159

7.1 Introduction .. 159

7.2 The Knowledge Transfer Framework .. 162

7.2.1 Components of Knowledge Transfer .. 163

7.2.2 Stages of Knowledge Transfer .. 180

7.3 Application of the Knowledge Transfer Framework ... 190

7.3.1 Data Collection ... 191

7.3.2 Analysis and Results ... 191

7.4 Summary .. 201

Chapter 8 The Framework for Transferring Software Project Management
Approaches into the Thai Telecommunications Industry 205

8.1 Introduction .. 205

8.2 The Framework for Transferring Software Project Management Approaches
into the Thai Telecommunications Industry .. 207

8.3 Application of the Framework for Transferring Software Project Management
Approaches into the Thai Telecommunications Industry 209

8.4 Summary .. 220

Chapter 9 Conclusions ... 223

9.1 Summary of Findings .. 223

9.2 Research Contributions and Implications .. 229

9.2.1 Theoretical Contributions ... 229

9.2.2 Implications for Future Research Design ... 232

9.2.3 Implications for Practice ... 233

9.3 Focus and Limitations of this Study .. 234

9.4 Possibilities for Further Research and Practical Work Building on and
Extending the Results of this Thesis .. 236

References .. 239

Appendix A: Semi-Structured Interview Guide for Chapter 2 259

Appendix B: Questionnaire for Chapter 4 .. 260

Appendix C: Semi-Structured Interview Guide for Chapter 5 265

Appendix D: TAM-Based Questionnaire for Chapter 5 .. 268

xii

xiii

List of Figures

Figures are numbered by repeating the chapter number followed by a dash and the
sequential number of the figures in that chapter. Hence, a figure numbered 2-1 is the first
figure in Chapter 2.

Figure 1-1. Main contributions of this study ... 26

Figure 2-1. A graphical representation of all 42 processes ... 41

Figure 2-2. The Scrum process .. 43

Figure 2-3. Knowledge transfer stages and milestones ... 44

Figure 2-4. The primary focus of this study .. 48

Figure 2-5. The proposed conceptual software process maintenance framework 49

Figure 2-6. The proposed conceptual knowledge transfer framework 49

Figure 3-1. Stages of the primary paper selection process .. 57

Figure 3-2. The proposed software development maturity model ... 69

Figure 3-3. The proposed integrated PMBOK-Scrum model .. 70

Figure 4-1. The proposed software process maintenance framework 77

Figure 4-2. Comparison between the results of a literature survey and a questionnaire-
style information collection .. 84

Figure 4-3. An SDM model structure .. 85

Figure 4-4. A PMBOK meta-model .. 91

Figure 4-5. A Scrum meta-model .. 93

Figure 4-6. An integrated PMBOK-Scrum model ... 94

Figure 4-7. A high-level Use-case diagram showing the main SPAD functionality 97

Figure 4-8. A sample screenshot of maturity level details .. 98

Figure 4-9. A sample screenshot of critical success factor details .. 98

Figure 4-10. A sample screenshot of a list of practices ... 99

Figure 4-11. A sample screenshot of assessment instrument details 99

Figure 4-12. A sample screenshot of setting a threshold to support an assessment
calculation ... 100

Figure 4-13. A sample screenshot of measuring implemented software processes 100

Figure 4-14. A sample screenshot of displaying the assessment results in a scoring
worksheet ... 101

Figure 4-16. A sample screenshot of displaying the assessment results in a bar chart 102

Figure 4-17. A sample screenshot of defining project information and planning 103

Figure 4-18. A sample screenshot of previewing a project plan .. 103

xiv

Figure 4-19. A sample screenshot of the “Constraint Checker” and the “XML-Export” 104

Figure 4-20. A sample screenshot of the before- and after- implemented CSFs
comparison .. 105

Figure 5-1. Three parts of our software process maintenance framework 114

Figure 5-2. The participants’ knowledge transfer process ... 135

Figure 7-1. The proposed knowledge transfer framework .. 163

Figure 7-2. A flow of main knowledge transfer activities of the Initiation stage 182

Figure 7-3. A flow of main knowledge transfer activities of the Implementation stage 184

Figure 7-4. A flow of main knowledge transfer activities of the Ramp-up stage 186

Figure 7-5. A flow of main knowledge transfer activities of the Integration stage 189

Figure 7-6. A mapping between Scrum stages and knowledge transfer stages 192

Figure 8-1. The proposed framework for transferring software project management
approaches into the telecommunications industry .. 207

Figure 8-2. A four-step flow of the framework for transferring software project
management approaches into the telecommunications industry 210

xv

List of Tables

Tables are numbered by repeating the chapter number followed by a dash and the
sequential number of the tables in that chapter. Hence, a table numbered 4-2 is the second
table in Chapter 4.

Table 1-1. A summary of research questions and research approaches 21

Table 1-2. A relation between chapters, research questions, contributions, and
publications .. 25

Table 2-1. The failure factors in EIS development .. 33

Table 2-2. A summary of the identified influential factors of agile software projects 35

Table 2-3. A summary of the identified influential factors of knowledge transfer 36

Table 2-4. Requirements for the proposed software process maintenance framework 45

Table 2-5. Requirements for the proposed knowledge transfer framework 46

Table 3-1. Keywords used in the review process .. 56

Table 3-2. Reviewed papers by year interval .. 59

Table 3-3. Types of the reviewed papers ... 59

Table 3-4. Standard methods used in the reviewed papers .. 60

Table 3-5. Descriptions of the reviewed papers .. 60

Table 3-6. Proposed directions to improve software processes in agile software
development ... 64

Table 4-1. Profiles of three respondent companies .. 79

Table 4-2. CSFs identified through the SPI literature ... 80

Table 4-3. Agile practices identified through the literature and questionnaire 80

Table 4-4. Four CMMI-based maturity levels ... 86

Table 4-5. Three CSF categories ... 86

Table 4-6. An assessment instrument .. 87

Table 4-7. A CSF evaluation ... 88

Table 5-1. A summary of the assessment results ... 115

Table 5-2. Analysis of the reliability of the framework and the tool 126

Table 5-3. A summary of the practices efficiently and effectively executed in
the case studies ... 129

Table 5-4. A summary of the challenges found in the case studies 132

Table 5-5. A summary of the changes necessary to adapt the developed software
process maintenance framework .. 133

Table 5-6. Requirements concerning the knowledge transfer context 137

xvi

Table 6-1. Previous studies on knowledge transfer in software development 151

Table 7-1. Activities within the problem component .. 164

Table 7-2. Influential antecedents surrounding the knowledge transfer process 165

Table 7-3. Activities within the antecedent component .. 167

Table 7-4. Knowledge dimensions and categories .. 169

Table 7-5. Knowledge in the telecommunications industry .. 172

Table 7-6. Activities within the knowledge component .. 173

Table 7-7. ICTs used for knowledge transfer .. 175

Table 7-8. Activities within the mechanism components .. 176

Table 7-9. Activities within the knowledge application component 177

Table 7-10. Activities within the outcome component .. 180

Table 7-11. Core components in each stage of the transfer process 189

Table 7-12. The difficulties and influential antecedents in each stage of the transfer
process .. 190

Table 7-13. The difficulties of knowledge transfer found in two case studies 200

xvii

List of Abbreviations

AIS Advanced Info Service Public Company Limited

AM Agile Modeling

APMM Agile Process Maturity Model

ASD Adaptive Software Development

CAT CAT Telecom Public Company Limited

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMMI-DEV Capability Maturity Model Integration for Development

COBIT Control Objectives for Information and Related Technology

CPM Critical Path Method

CSF Critical Success Factor

DSDM Dynamic Systems Development Method

DSS Decision Support Systems

DTAC Total Access Communication Public Company Limited

EIS Executive Information System

ERP Enterprise Resource Planning

eTOM enhanced Telecom Operations Map

FAB Fulfillment, Assurance and Billing

FDD Feature Driven Development

ICT Information and Communication Technology

IDEAL Initiating, Diagnosing, Establishing, Acting, and Leveraging

IS Information System

ISO/IEC 15504 International Organization for Standardization and the

International Electrotechnical Commission 15504 Standard

ISP Internet Service Provider

IT Information Technology

IU Intention to Use

KPA Key Process Area

MIS Management Information System

MPCU Model of Personal Computer Utilization

MSF Microsoft Solutions Framework

OPEN Object-oriented Process, Environment and Notation

xviii

OSR Operations Support & Readiness

PEOU Perceived Ease of Use

PERT Program Evaluation and Review Technique

PMBOK Project Management Body of Knowledge

PMI Project Management Institute

PRINCE2 Projects in Controlled Environments

PSP Personal Software Process

PU Perceived Usefulness

QIP Quality Improvement Paradigm

RUP Rational Unified Process

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SDM Software Development Maturity

SEI Software Engineering Institute

SIP Strategy, Infrastructure & Product

SME Small-to-Medium-sized Enterprise

SPAD Software Process Assessment and Development

SPI Software Process Improvement

SPICE Software Process Improvement and Capability Determination

TAM Technology Acceptance Model

TDD Test Driven Development

TFS Team Foundation Server

TOT TOT Public Company Limited

TPB Theory of Planned Behavior

TPS Transaction Processing Systems

TRA Theory of Reasoned Action

TRUE True Corporation Public Company Limited

UML Unified Modeling Language

UTAUT Unified Theory of Acceptance and Use of Technology

WBS Work Breakdown Structure

XML eXtensible Markup Language

XP eXtreme Programming

19

Chapter 1

Introduction

The focus of this dissertation is to develop an overarching framework for transferring
software project management approaches into the Thai telecommunications industry, with the
aim of contributing to the improvement of software development performance. The
framework does itself consist of two components which are frameworks themselves. They are
a software process maintenance framework providing guidance for assessing, planning, and
improving project management and software development processes, and a knowledge
transfer framework providing guidance for planning knowledge transfer activities. The
introductory chapter gives the background to the research, explaining why the study is
important. This chapter then provides an organization of the dissertation, explaining the
logical structure and layout used to develop the research from the literature review towards
the conclusions of this study.

1.1 Introduction

Telecommunications is still one of the most rapidly evolving competitive markets and
one of the fastest-growing areas of technology in the world. This study focuses on the Thai
telecommunications industry as a case study. Thailand’s telecommunications industry is
worth mentioning, as it has continued to experience stable growth. As recently reported,
Thailand became the second fastest growing broadband market in the world and led all Asian
countries surveyed with a 67% annual growth rate from the first quarter of 2010 to the first
quarter of 2011 [1]. Considering software development situations in this industry, software
development teams are facing very typical problems, e.g. a lack of agile logistical
arrangement, a lack of good user participation, a lack of management commitment, a lack of
project management competence, a lack of teamwork, a lack of training support, a lack of
knowledge transfer, and etc [2]. These problems significantly result in unsatisfactory quality
results. This emphasizes that there is a lack of efficiency and effectiveness of software
development processes (hereafter referred to as “software process”) and knowledge transfer.

The best known traditional software development method is still the waterfall method,
which in fact is the oldest original method. It is a systematic and sequential pattern reaching
from an initial feasibility study to the maintenance of the developed information systems.
However, there are several limitations, e.g. the necessity of having well-defined
requirements, being time-consuming, needing too much documentation and resulting in a
high cost [3]. Agile software development methods, such as Adaptive Software Development
(ASD), Agile Modeling (AM), Crystal family, Dynamic Systems Development Method
(DSDM), eXtreme programming (XP), Feature Driven Development (FDD), and Scrum were
thus developed to overcome those limitations. They have gained recognition in the software
development community due to their response to market expectation, i.e., innovative and high
quality software [4]. In an increasingly competitive world, software development methods
should be efficient [5]. Efficiency requires project management activities to enable the proper
execution of software development tasks [6]. Project management thus provides the backbone

20

for efficient software development [7]. From this view, some agile methods (e.g., ADS,
Crystal, DSDM, FDD, and Scrum) are supplemented with guidelines on project management
that allow for the rapid delivery of quality software products. Nevertheless, in the general
sense, there is no comprehensive project management support [8]. In other words, they offer
limited project management support, e.g., for outsourcing, developing with large teams,
developing software that demands high quality control, and distributed development
environments [4, 9-11]. Regarding the benefits of standards, using existing standards to
develop the new framework instead of creating a new one can save a lot of time and effort
[12]. Although researchers such as Turk et al. [11] suggest that traditional project
management practices are an applicable way. So far, little attention has been paid to such
integrated traditional project management into agile software development methods to
overcome inadequate project management support.

Besides, a software development method generally deals with how it can be
implemented, but not so much with which software processes should be implemented. Thus,
only the “how” cannot guarantee that software quality will be delivered. The quality of
software depends on the quality of a software process [13, 14] that result from Software
Process Improvement (SPI) [15]. Albeit approaches to SPI such as the Capability Maturity
Model Integration (CMMI) and ISO/IEC 15504 (the International Organization for
Standardization and the International Electrotechnical Commission 15504 standard, which is
also known as SPICE: Software Process Improvement and Capability Determination) are a
challenge to organizations trying to improve the quality of software processes and software
products, there has been only limited success in many SPI programs with a 70% failure rate
[16, 17]. This is because these approaches just explain critical attributes that would be
expected to characterize an organization at a particular maturity level [18]. They have not
suggested how to improve a given status to get to a particular maturity level [18-20]. Nor
have they tackled the issues on how to elicit and model processes in order for software
projects to follow specific development processes, or how to gather project practices and
knowledge for SPI, and how to deal with existing problems [18].

Focusing on SPI in agile software development, much attention has been paid to how
SPI and agile methods can be applied together by mapping SPI methods’ Key Process Areas
(e.g. CMMI KPAs) and agile practices [21-25], and how to assess agile software
development by mapping CMMI goals and agile practices [26, 27]. Even though there is an
agile process maturity model by IBM [28], it is different from traditional SPI approaches as
its objective is mainly to improve process visibility and adaptability and fit them to the
surrounding organizational objectives. Traditional SPI approaches mostly aim at improving
process repeatability and predictability. Moreover, although a vast body of literature cites
factors that have an impact on successful agile software development, little attention has been
paid to how to deal with those influential factors. This suggests that the current problems with
SPI in agile software development still result from a lack of mechanisms to overcome the
above limitations.

Furthermore, knowledge transfer and its application can significantly contribute to
software project success. A software project is characterized by frequent changes and its
implementation requires effective activities, stakeholders’ expertise and experience, and the
ability to transfer, acquire, and apply knowledge to problems occurring during software
development [29]. Without using the existing knowledge, team members have to create new
solutions to every occurring problem. The existing knowledge includes implemented
software processes, experience, and knowledge gained during prior software development. It
becomes apparent that transferring and applying new knowledge is crucial for creating

21

innovative software development and competitive software products. This supports the fact
that software development is a knowledge-intensive activity [30]. Moreover, success in
producing quality software demands the presence of sufficient knowledge on software
development teams [31]. Therefore, a software project requires knowledge transfer to ensure
that the software project will not get a hard landing.

These points of views have led us to a set of research questions together with research
approaches organized by Chapters and summarized in Table 1-1. In this table, research
questions are numbered by repeating the chapter number followed by a dash and the
sequential number of the research questions in that chapter. Hence, a Research Question (RQ)
numbered 2-1 is the first research question in Chapter 2.

Table 1-1. A summary of research questions and research approaches

Chapter Research Question Research Approach
Chapter 2 RQ2-1: Do the problems identified in prior

research on executive information system
development in Thailand currently still exist?

1. A literature review on the Thai executive
information systems development in Thailand
was performed to consider its problems.
2. Semi-structured interviews were carried
out with two Thai software development
teams: in-house and outsourcing teams
working for two of the largest broadband
Internet Service Providers (ISPs) in Bangkok,
Thailand (named ISP1 and ISP2) during
March and April 2009.

RQ2-2: Do the problems in the current EIS
development in Thailand involve project
management, software development, and
knowledge transfer aspects?

RQ2-3: What are the factors affecting the
successful agile software development?

A literature review on influential factors
affecting the successful agile software
development was performed.

RQ2-4: What are the factors affecting the
successful knowledge transfer in software
development?

A literature review on influential factors
affecting the successful knowledge transfer
was performed.

RQ2-5: What could our conceptual software
process maintenance framework based on its
requirements look like?

The principles of the Project Management
Body of Knowledge (PMBOK) and two
models of Scrum and CMMI are used as a
basis.

RQ2-6: What could our conceptual
knowledge transfer framework based on its
requirements look like?

Szulanski’s knowledge transfer model is used
as a basis.

Chapter 3 RQ3-1: Which existing research results on
agile software development integration with
software process improvement and with
traditional project management are available
that we can build on?

A systematic literature review on agile
software development integration with
software process improvement and with
traditional project management was
performed.

RQ3-2: What are some interesting aspects
that existing research results on agile
software development integration with
software process improvement and with
traditional project management do not yet
cover?

22

Chapter Research Question Research Approach
RQ3-3: How should a software process
maintenance framework be constructed? Is a
software process maintenance framework
workable? What does the test of a software
process maintenance framework in a real-life
situation contribute?

Chapter 4 RQ4-1: Are CSFs in software development,
as identified in Table 2-4 in Chapter 2,
similar to CSFs in SPI identified in the
literature?

1. A literature review on 24 sources including
reports, case studies, and software process
articles was performed to investigate
influential factors in software process
improvement practices that are recognized
internationally.
2. A frequency analysis was used to extract
quantitative data from the collected
qualitative data

RQ4-2: What agile practices, as identified in
the literature on agile software development
and data quality, should be implemented for
successful software development?

1. A literature review on 31 sources including
reports, case studies, and software process
articles was performed to investigate
influential factors in agile practices that are
recognized internationally.
2. A frequency analysis was used to extract
quantitative data from the collected
qualitative data

RQ4-3: What agile practices, as identified in
our questionnaire-style information
collection, should be implemented for
successful software development?

1. A questionnaire-style information
collection was carried out in three companies
in Thailand, including telecommunications
player and co-players in order to investigate
their agile practices.
2. The median values were used to analyze
data.

RQ4-4: How should a software development
maturity model (as one of two core
components of a software process
maintenance framework) be constructed?

CMMI and CSFs are used as a basis.

RQ4-5: How should an integrated PMBOK-
Scrum model (as one of two core components
of a software process maintenance
framework) be constructed?

PMBOK and Scrum are used as a basis.

Chapter 5 RQ5-1: How can the developed software
process maintenance framework be executed
efficiently and effectively in the given
context?

Basic ideas of field case study (e.g., direct
observations, interviews, and questionnaires
to discuss the challenges within the context,
the results achieved, and the lessons learned)
were used to test a software process
maintenance framework in CAT Telecom
Public Company Limited during November -
December 2010 and TOT Public Company
Limited during December 2010 - February
2011.

RQ5-2: What are the challenges that impact
software development, using the developed
software process maintenance framework?
RQ5-3: What changes are necessary to adapt
the developed software process maintenance
framework?

RQ5-4: How do practitioners transfer new
knowledge into their existing software
processes?

23

Chapter Research Question Research Approach
RQ5-5: What is the developed software
process maintenance frameworks perceived
usefulness and ease of use?

RQ5-6: What are the requirements for
successful adaptation of the developed
software process maintenance framework?

Chapter 6 RQ6-1: What are the differences in how
knowledge transfer is defined in the prior
literature and what can we learn from these
differences?

A literature review on knowledge transfer in
software development and other contexts
(e.g., intra-firm knowledge transfer) was
performed.

RQ6-2: How does each individual knowledge
transfer component interact with others?

RQ6-3: What are the missing points in the
prior literature on knowledge transfer in
software development?

A literature review on the 27 highly visible
knowledge transfer studies in software
development was performed.

Chapter 7 RQ7-1: How should a knowledge transfer
framework be constructed?

Szulanski’s knowledge transfer model and
TAM are used as a basis.

RQ7-2: What knowledge transfer activities
under each of the six knowledge transfer
components (i.e., problems, antecedents,
knowledge, mechanisms, knowledge
application, and outcomes) should be
implemented?

Literature review on knowledge transfer and
relevant studies (e.g., knowledge
management and knowledge acquisition)
were performed.

RQ7-3: How do knowledge transfer activities
play an important role in each of the four
knowledge transfer stages (i.e., Initiation,
Implementation, Ramp-up, and Integration)?

RQ7-4: How can the developed knowledge
transfer framework be performed?

The findings of two case studies in Chapter 5
were used to demonstrate the application of a
knowledge transfer framework.

Chapter 8 RQ8-1: How should a framework for
transferring software project management
approaches into the Thai telecommunications
industry be constructed?

A software process maintenance framework
presented in Chapter 4 and a knowledge
transfer framework presented in Chapter 7,
are used as a basis.

RQ8-2: How can the developed framework
for transferring software project management
approaches into the Thai telecommunications
industry be performed?

The findings of two case studies in Chapter 5
were used to demonstrate the application of
the framework for transferring software
project management approaches into the Thai
telecommunications industry.

24

In relation to the above set of research questions, research approaches, and their
research results, a set of main theoretical and empirical Contributions (C) to the research field
of software development can be summarized as follows.

C1: The identified Critical Success Factors (CSFs) affecting the successful software
development and knowledge transfer were used as requirements for constructing a software
process maintenance framework (presented as C3) and a knowledge transfer framework
(presented as C6).

C2: Overviews of the literature on agile software development integration with
software process improvement and with traditional project management, and knowledge
transfer were created. This enables us to identify what had been investigated and to extract
some interesting aspects by which these research results should be extended or conducted for
a software process maintenance framework (presented as C3) and a knowledge transfer
framework (presented as C6).

C3: The software process maintenance framework was developed by paying attention
to the “what” to improve through a software development maturity model and the and “how”
to implement software processes through an integrated PMBOK-Scrum model. The software
development maturity model was created based on CMMI and the CSFs affecting the
successful agile software development identified in C2. It has a threefold objective: to
appraise an organization’s current software process through the identified CSFs, to get the
current maturity level rating from the model, and to identify which software processes
demand immediate and sustainable improvement. The integrated PMBOK-Scrum model was
created based on PMBOK and Scrum approaches. It assists practitioners in implementing
integrated project management and software development processes.

C4: The prototype tool was developed as a Web-based application, using the Java
language and a MySQL database, to support the use of the software process maintenance
framework. It helps an end user (e.g., a project manager and a team leader) to get insight into
the organization’s current maturity by assessing the identified CSFs through the list of
practices required by the software development maturity model. Weak practices as a part of
assessment results will be used to plan the project together with the defined information (e.g.,
project, phase, and activity) required by the integrated PMBOK-Scrum model. The defined
software process is then validated to ensure its appropriateness and prepared in an eXtensible
Markup Language (XML) file format for export to the organization’s project planning tools.

C5: The software development performance in terms of efficiency and effectiveness,
using the software process maintenance framework, was improved in two major
telecommunications players in Thailand. This is based on the overall evaluation results of the
software process maintenance framework through two case studies at CAT Telecom Public
Company Limited and TOT Public Company Limited in Thailand from November 2010 to
February 2011. The data collection was carried out through on-site observations, individual
interviews, and questionnaires.

C6: The knowledge transfer framework was designed and developed based on the
knowledge transfer CSFs identified in C2, the findings of C5, and Szulanski’s model. It is
drawn on the connectionistic perspective and communication-based research on knowledge
transfer. It aims at providing guidance for planning knowledge transfer activities. In the
framework, the six components of knowledge transfer (i.e., problems, antecedents,
knowledge, mechanisms, knowledge application, and outcomes), the four stages of
knowledge transfer (i.e., Initiation, Implementation, Ramp-up, and Integration), and the
relationships between the components and the stages are elaborately described. Owing to

25

time limitations of this study, we could not carry out additional empirical case studies in the
Thai telecommunications industry to evaluate the framework. Consequently, the findings of
C5 were used to demonstrate the application of the framework.

C7: The framework for transferring software project management approaches into the
Thai telecommunications industry was developed, called the umbrella framework. It aims at
contributing to the improvement of software development performance in terms of efficiency
and effectiveness. It consists of two core components which are frameworks themselves: the
developed software process maintenance framework (presented as C3) and the developed
knowledge transfer framework (presented as C6). Owing to time limitations of this study as
mentioned, the findings of C5 were used to demonstrate the application of the umbrella
framework.

Furthermore, some of our main contributions were published as follows.

P1: Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2009,
'Requirements for a Knowledge Transfer Framework in the Field of Software Development
Process Management for Executive Information Systems in the Telecommunications
Industry', in Papasratorn, B., Chutimaskul, W., Porkaew, K., and Vanijja, V. (eds),
Proceedings of the 3rd International Conference on Advances in Information Technology,
Springer Berlin Heidelberg, Bangkok, Thailand, vol. 55, pp. 110-122.

P2: Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2010,
'Requirements for a Software Process Maintenance Framework for Executive Information
Systems in the Telecommunications Industry', Journal of Global Management Research, vol.
6. No. 1, pp. 7-18.

P3: Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2010, 'A Prototype
for the Support of Integrated Software Process Development and Improvement', in
Papasratorn, B., Chutimaskul, W., Porkaew, K., and Vanijja, V. (eds), Proceedings of the 4th
International Conference on Advances in Information Technology, Springer Berlin
Heidelberg, Bangkok, Thailand, vol. 114, pp. 94-105.

Providing a clearer view, the connection between chapters, research questions,
contributions, and publications is presented in Table 1-2 and Figure 1-1.

Table 1-2. A relation between chapters, research questions, contributions, and publications

Chapter Research Question Contribution Publication
Chapter 2 RQ2-1 to RQ2-4 C1 P1, P2

RQ2-5 C3 P1, P2
RQ2-6 C6 P1

Chapter 3 RQ3-1 to RQ3-3 C2 -
Chapter 4 RQ4-1 to RQ4-5 C3, C4 P3
Chapter 5 RQ5-1 to RQ5-6 C5 -
Chapter 6 RQ6-1 to RQ6-3 C2 -
Chapter 7 RQ7-1 to RQ7-4 C6 -
Chapter 8 RQ8-1 and RQ8-2 C7 -

26

The field of agile
software development

integration with
software process

improvement and with
traditional project

management

The field
knowledge

transfer

C2: Overviews of the literature

C1: CSFs affecting
the successful software

development and
knowledge transfer

C3: The Software Process
Maintenance Framework

(SPMF) and
C4: the prototype tool

C6: The Knowledge
Transfer Framework

(KTF)

C5: Improvement of
software development
performance in terms

of efficiency and
effectiveness

C7: The framework for
transferring advanced
software development
project management

approaches into the Thai
telecom industry

The identified CSFs
affecting the successful
knowledge transfer

The id
entifi

ed CSFs

affe
cti

ng th
e

su
cce

ssf
ul so

ftw
are

development

The findings of a

literature review

The results of a
literature review

KTF as a core
component

SPMF as a core

component

The fin
dings o

f

case st
udies

The findings of
case studies

 Legend:

C1 C2

RQ3-1 and RQ3-2
RQ6-1 to RQ6-3 P1 and P2

RQ2-1 to RQ2-4

RQ2-6 and
RQ7-1 to RQ7-4

SPMF for an
empirical

evaluation

P3

RQ2-5,
RQ3-3, and

RQ4-1 to RQ4-5

RQ8-1 and RQ8-2

The Thai
telecommunications

industry

RQ5-1 to RQ5-6

Transferring advanced
software development
project management
approaches into the Thai
telecom industryThe findings of Contribution 1 are

directly used to develop Contribution 2.

C means Contribution
P means Publication
RQ means Research Question

The findings of Contribution 1 are used only to
describe the application of Contribution 2.

The findings of Contribution 1 are used to
develop Contribution 2 and to describe its
application.

C1 C2

C1 C2

Figure 1-1. Main contributions of this study

27

1.2 Organization of the Dissertation

This dissertation is structured into nine chapters and two additional sections as
follows.

Chapter 1 presents the background to the research, covering our motivation and the
research questions. This chapter also establishes why this research is important, states the
goals and objectives of the research, and closes with the organization of the dissertation.

Chapter 2 presents an idea of the current situation in the software development
process management for Executive information Systems (EISs) in the Thai
telecommunications industry by using findings of interviews with in-house and outsourcing
software development teams working for two Internet Service Providers in Thailand. This
chapter also describes influential factors affecting successful software development addressed
in the literature by focusing on two main parts, i.e., software management and development
and knowledge transfer. This is because both parts significant contribute to the improvement
of software development performance. Based on the findings, this chapter identifies two sets
of requirements, i.e., one for the proposed software process maintenance framework and one
for the proposed knowledge transfer framework. Both frameworks are core components of
the proposed framework for transferring software project management approaches into the
Thai telecommunications industry.

Chapter 3 delves into the prior literature that forms the foundation of the proposed
software process maintenance framework. The literature review in the fields of agile software
development integration with software process improvement and with traditional project
management presents what research results are available to build on, some interesting aspects
that those research results do not yet cover, and how to construct the workable software
process maintenance framework.

Chapter 4 presents a software process maintenance framework, advocating software
process improvement through a software development maturity model and providing a
comprehensive set of project management and software development processes through an
integrated PMBOK-Scrum model. The framework consists of two main components. The
first component is the proposed software development maturity model which is based on
CMMI, the CSFs affecting the successful agile software development identified in Chapter 2,
the findings of the literature review in Chapter 3, and the findings of (i) a literature survey on
worldwide agile software projects (ii) a questionnaire-style information collection on agile
practices in three companies in Thailand including a telecommunications player and two co-
players. The questionnaire-style information collection was conducted in June 2010. The data
was collected from respondents who had been doing agile software development on a daily
basis. The second component is the proposed integrated PMBOK-Scrum model. It is derived
from the PMBOK principles which are then merged with ideas borrowed from the Scrum
model. Supporting the application of the framework, a prototype tool has been introduced.

Chapter 5 presents the usability and practicality of the developed software process
maintenance framework through case studies in the Thai telecommunications industry. To get
accurate results, our case studies are focused on direct players in the industry. One of the
original target companies was the direct player where we were focused on in Chapter 4.
Unfortunately, obtaining its permission to test the developed software process maintenance
framework was not achieved. Instead, two case studies in CAT Telecom Public Company
Limited (CAT) and TOT Public Company Limited in Thailand (TOT) were carried out from
November 2010 to February 2011. The findings present how to execute software

28

development efficiently and effectively, challenges impacting the project results, changes
necessary to adapt the framework, how to integrate new knowledge into the existing software
processes, and requirements for successful adaptation of the framework.

Chapter 6 delves into the prior literature that forms the foundation of a knowledge
transfer framework. The literature review is presented in three sections. The first section
examines what the differences are in how knowledge transfer is defined in the knowledge
transfer literature and what we can learn from those differences. As knowledge transfer has
its components, the second section thus scrutinizes how its individual components interact
amongst them. The third section highlights what the differences are in the 27-highly-visible
literature on knowledge transfer in software development.

Chapter 7 presents a knowledge transfer framework, based on the knowledge
transfer CSFs identified in Chapter 2, the findings of the case studies in Chapter 5, the
findings of the literature review in Chapter 6, and Szulanski’s model. It aims at providing
guidance on planning knowledge transfer activities. This chapter describes knowledge
transfer into three main sections. The first section elaborates six components of a knowledge
transfer process which are problems, antecedents, knowledge, mechanisms, knowledge
application, and outcomes. A set of activities under each component and a set of questions
under each of those activities have been designed for suggestions in planning. The second
section elaborates four stages of the knowledge transfer process which are Initiation,
Implementation, Ramp-up, and Integration stages. An activity flow has been designed under
each stage, based on its functionality. For a better understanding, this chapter demonstrates
the application of the framework, based on the findings of the case studies in Chapter 5.

Chapter 8 presents the developed framework for transferring software project
management approaches into the Thai telecommunications industry, by pulling the developed
software process maintenance framework presented in Chapter 4 and the developed
knowledge transfer framework presented in Chapter 7 together. For a better understanding,
this chapter demonstrates the application of the framework, based on the findings of the case
studies in Chapters 5.

Chapter 9 summarizes the findings of this study. Drawing on the whole research
project, this chapter summarizes theoretical contributions, theoretical implications, and
empirical implications in relation to the problem areas. The concluding chapter also provides
suggestions for further research.

The last chapter is followed by two sections which contain supporting information for
this dissertation. This supporting information includes a complete reference list of all sources
cited in the dissertation and a set of appendices facilitating the more detailed understanding of
this dissertation.

29

Chapter 2

Requirements for a Framework for Transferring
Software Project Management Approaches into the
Thai Telecommunications Industry

Related Publications:
P1: Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2009, 'Requirements for a
Knowledge Transfer Framework in the Field of Software Development Process Management
for Executive Information Systems in the Telecommunications Industry', in Papasratorn, B.,
Chutimaskul, W., Porkaew, K., and Vanijja, V. (eds), Proceedings of the 3rd International
Conference on Advances in Information Technology, Springer Berlin/Heidelberg, Bangkok,
Thailand, vol. 55, pp. 110-122.

P2: Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2010, 'Requirements for a
Software Process Maintenance Framework for Executive Information Systems in the
Telecommunications Industry', Journal of Global Management Research, vol. 6, no. 1, pp. 7-
18.

This chapter presents the interview findings of the current situation in software
development for Executive Information Systems (EISs) in two of the largest broadband
Internet Service Providers (ISPs) in Bangkok, Thailand, named ISP1 and ISP2. This chapter
then identifies requisite requirements for a framework for transferring software project
management into the Thai telecommunications industry which consists of two core
components that are frameworks themselves. They are the proposed software process
maintenance framework and the proposed knowledge transfer framework. The findings
reveal that software development teams do not perceive formal routines as an efficient and
effective way to manage software development processes, to deliver quality results, and to
transfer knowledge. However, the quality of software depends not only on an efficient and
effective project management and software development process, but also on an effective
knowledge transfer amongst software development team members. Efficiency requires
project management activities to enable the proper task execution. Existing agile methods
(e.g., Scrum and eXtreme Programming) offer effective software development processes, but
inadequate support for project management (e.g., limited support for subcontracting and
developing software that demands high level of quality control). Hence, this study proposes a
software process maintenance framework, covering adequate project management and
software development perspectives. As the development of a software project requires the
presence of sufficient expertise and experience of stakeholders, this study also proposes a
knowledge transfer framework providing guidance for driving knowledge transfer into action.
Therefore, the overall goal of the resulting frameworks is to contribute to the improvement of
software development performance in terms of efficiency and effectiveness.

30

2.1 Introduction

The best known traditional software development method still is the waterfall method,
which in fact is the oldest original method. It is a systematic and sequential pattern reaching
from an initial feasibility study to the maintenance of the developed Information Systems
(ISs). Nevertheless, there are several limitations (e.g., the necessity of having well-defined
requirements, being time-consuming, needing too much documentation and resulting in a
high cost [3]). Agile software development methods (e.g., eXtreme programming (XP),
Dynamic Systems Development Method (DSDM), Feature Driven Development (FDD), and
Scrum) were thus developed to overcome these limitations. They are gaining recognition in
the software development community due to their response to market expectation, i.e.,
innovative and high quality software [4]. Moreover, Critical Success Factors (CSFs) for
successful agile software development are identified by a multitude of studies [32-35].
However, software development methods should be efficient [5]. Efficiency requires project
management activities to enable the proper execution of software development tasks. Project
management thus provides the backbone for efficient software development [7]. From this
view, some agile methods (e.g., DSDM, FDD, and Scrum) are supplemented with guidelines
on project management that allow for the rapid delivery of quality products. Nevertheless, in
the general sense, there is no comprehensive project management support [6]. Scrum, which
is definitely the most popular [36], offers limited project management support (e.g., for
subcontracting, developing with large teams, developing software that demands high quality
control, and distributed development environments [4, 9-11]). Although researchers such as
Turk et al. [11] suggest that traditional project management practices are an applicable way,
so far no integrated method offering adequate project management support to overcome these
Scrum’s limitations has been identified. Project Management Body of Knowledge (PMBOK)
is the broadest and most widely used standard reference of industry best project management
practices [37], and definitely compatible with agile ways [38]. Hence, there is a need to build
an integrated PMBOK-Scrum approach.

Besides, the quality of the software development process (hereafter referred to as
“software process”) results in the quality of software [13]. A software process generally deals
with how it can be implemented, but not so much with what software processes should be
implemented. Thus, only the “how” cannot guarantee that software quality will be delivered.
Software Process Improvement (SPI) can produce the quality of the software process [15]
that results in software quality [14]. Capability Maturity Model Integration (CMMI) is a well-
accepted model for improving the performance of software development processes and
software quality, and referring to what software processes should be implemented to achieve
successful software development [39]. Consequently, CMMI is considered an efficient way
to maintain the quality of software processes. Furthermore, knowledge transfer is crucial
since a software project typically consists of multiple stakeholders with diverse backgrounds
and skill sets. Talents in software development teams (hereafter referred to as “teams”)
should continuously complement each other for better work efficiency and effectiveness [40].
Besides, a knowledge transfer amongst team members means that software can be optimized
for improved efficiency and effectiveness above or beyond what any individual can achieve
[41]. Consequently, it can be concluded that quality software depends upon quality software
processes and knowledge transfer.

Arnott et al. [42] said that many developing countries are investing in Information
Technology (IT), especially the newly industrialized countries (e.g., Thailand, India, China,
Turkey, and South Africa, according to the International Monetary Fund’s World Economic

31

Outlook Report, April 2011 [43]) to support their businesses in highly competitive markets. It
follows that many large organizations (e.g., Transport Company, Banks, and Energy
Company in Thailand [42], Major Railway Corporation, International Airline and Large
University in China [44], and Food Company, Soft Drinks Company, and Consumer
Packaged Goods Company in Turkey [45]) have developed or tend to consider developing
Executive Information Systems (EISs) to support their senior management. This chapter
therefore focuses on EIS development. Recently, the use of EISs has significantly increased
since the success of EIS in developed countries stimulates a number of executives to adapt
this IS into their organizations in order to compete in an increasingly competitive
environment. EISs are different from Transaction Processing Systems (TPSs), Management
Information Systems (MISs), and Decision Support Systems (DSSs) in terms of problems
addressed, users, and data used. TPSs serve operational management by performing and
recording the daily routine transactions necessary to conduct the business and solve
structured problems which have standard solutions. MISs and DSSs serve middle
management. However, there are different characteristics for the way in which MISs deal
with summarized and compressed data from TPSs and sometimes perform an analysis of that
summarized data to solve structured problems. On the other hand, DSSs use data from TPSs,
MISs, and external sources to solve semi-structured problems whereby only part of the
problem has a structured quality. EISs provide information for top management to solve
unstructured problems which have no standard solutions for resolving the situation, so that
they can identify problems and opportunities by combining internal and external information
that is relevant to decision making [3, 46]. EISs can directly aid and support communications,
coordination, planning and control functions of managers and executives in an organization.
Supporting this, Nord and Nord [47] argue that utilizing EIS software can provide valuable
benefits (i.e., better communication, increased confidence in decision making, and eventually
increased profits). In addition, Telecommunications is still one of the most rapidly evolving
competitive markets and one of the fastest-growing areas of technology in the world.
Thailand’s telecommunications industry is worth mentioning that it has continued to
experience stable growth. As reported, Thailand became the second fastest growing
broadband market in the world and led all Asian countries surveyed with a 67% annual
growth rate from the first quarter of 2010 to the first quarter of 2011 [1].

EISs require fundamental revision and software development methods that must be
able to deal with rapid evolution. Unfortunately, EIS development in Thailand is likely to be
more difficult due to difficult software development environments, e.g., economic and
volatile political environments, organizational cultures, a lack of user participation, and
inappropriate software development methods [42, 48]. For understanding and dealing with
the problems, six fundamental research questions of this chapter are listed as follows.

RQ2-1: Do the problems identified in prior research on executive information system
development in Thailand currently still exist?

RQ2-2: Do the problems in the current EIS development in Thailand involve project
management, software development, and knowledge transfer aspects?

RQ2-3: What are the factors affecting the successful agile software development?

RQ2-4: What are the factors affecting the successful knowledge transfer in software
development?

RQ2-5: What could our conceptual software process maintenance framework based
on its requirements look like?

32

RQ2-6: What could our conceptual knowledge transfer framework based on its
requirements look like?

This chapter is organized by starting with the descriptions of the current situation in
EIS development of two broadband Internet Service Providers (ISPs) in Thailand, using a
qualitative analysis via interviews. The following sections describe two primary focuses of
this study, theoretical foundations of this study, and the identified influential factors as
requirements for a framework for transferring software project management approaches into
the Thai telecommunications industry. A proposed conceptual framework based on the
identified requirements is then introduced.

2.2 Look at the Current Situation in Executive Information
Systems Development in the Thai Telecommunications Industry

For getting an idea of the current situation in the EIS development in the Thai
telecommunications (by focusing on Internet services), we use findings of interviews with in-
house and outsourcing teams working for two of the largest broadband ISPs in Bangkok,
Thailand. To preserve their anonymity, we refer to them here as ISP1 and ISP2. However, the
size of companies does not affect the model of EIS development. The data was collected
during March and April 2009. There are two main reasons to choose these two companies.
First, they have experience in EIS development. Second, they are the two largest broadband
ISPs in the Bangkok region and have their own optical fiber cable networks in Bangkok and
in the vicinity. Even though there are many ISPs in Thailand, most of them still lease
bandwidth from one of these two companies. Owing to a very small sample size, we do not
claim that it is a representative sample. In other words, this threatens the generalizability of
the results. To reduce this treat to some extent, we interviewed (1) practitioners who had
experience in EIS development and dealt with software development on a daily basis; (2)
practitioners who had different roles (e.g., including project manager, developer, and
coordinators); (3) practitioners who used different software development methods (i.e.,
waterfall and outsourcing methods); and (4) practitioners who worked with different team
sizes (i.e., small and large teams). In order to reduce treats to reliability and validity, main
questions about the implemented software process, the environments of EIS development, the
problems occurring during EIS development, and the solutions to deal with those problems
(presented in Appendix A) were answered in semi-structured interviews. This is also in order
to increase comparability of responses and facilitate an analysis of the data. Additionally, the
practitioners’ experiences and perceptions were explored independently and without any
suggestion from the authors. The interviews ranged in length from one to two hours.

In the organizational context of EIS development, the findings reveal that the
executives could sometimes not provide adequate participation in the projects. Subordinates
did not have full authorities when it came to making decisions. Communication processes
during EIS in organizations were also quite complicated (e.g., executives or users do neither
have good cooperation nor do they participate well). These limitations resulted in
development teams sometimes not being able to identify the information requirements from
executives effectively, often having to wait for Steering Committee decisions, and resulted in
an extensive organizational process. As was to be expected, the projects were delayed.

Given the underlying EIS development strategies of prototyping and outsourcing, the
EIS development project with a small team in ISP1 had a short duration. ISP1 used a
prototyping model. The software processes involved requirements analysis, preliminary

33

design, prototype design, construction and testing, implementation and maintenance. In the
other case, the EIS development project with a large team in ISP2 had an initial period of two
years. Outsourcing usually covers a wide range of contractual arrangements ranging from
contract programmers to third party facilities management [49]. The EIS development in
ISP2 was to some extent outsourced. One of the reasons for employing the consultant was
that the internal staff lacked knowledge and experience in EIS development. Although the
development methodology used terms like prototyping and module delivery, it can best be
characterized as a variant of the waterfall approach. The development process involved a
large execution of requirements analysis, system development, user acceptance, system
installation, and maintenance. During EIS development, the teams face similar problems. For
example, users between business units neither have good cooperation nor do they participate
well; users provide inadequate requirement specifications and quite frequently change their
requirements; users have only limited IT/IS skills; and so on. This situation is quite typical,
and not limited to the Thai telecommunications industry. Knowledge transfer practices were
performed in a very similar way, e.g., by discussing and sharing ideas in regular meetings;
transferring theoretical knowledge by self-learning that is based on the existing internal
documents; providing practical training case by case during EIS development; and finally
supporting theoretical training prior to project for specialists.

Additionally, data quality has a great impact on the overall quality of software. Data
quality is defined as “data that are fit for use by data consumers” [50]. A basic set of data
quality dimensions includes accuracy, completeness, timeliness, and consistency [51].
According to Wang and Strong [50], accuracy is defined as the degree to which data is
correct, reliable, and certified free of error. Completeness is defined as the degree to which
data is of sufficient breadth, depth, and scope for the task at hand. Timeliness can be defined
as the degree to which the age of data is appropriate for the task at hand. Consistency is
defined as the degree to which the representation of the data value is the same in all cases
[52]. Therefore, data quality can determine success or failure of software development.
Moreover, successful software development or software projects should consider internal
features (i.e., stakeholders and policy, and development methodology) and external features
(i.e., Information and Communication Technology (ICT), and the environment) [53]. The
stakeholders and policy feature is referred to the quality of organization and people. The
development methodology feature is referred to the quality of software processes. The quality
of ICT feature must consider ICT competency, vendor support, and ICT personal, whilst the
quality of environment feature must consider external factors (i.e., requirement volatility).
Concentrating on investigating current problems in EIS development, the problems found and
the data quality aspect can be summarized in Table 2-1 as failure factors.

Table 2-1. The failure factors in EIS development

Dimension Failure Factor
Organization Lack of management commitment, organizational culture too traditional, lack of agile

logistical arrangement
People Lack of necessary skill-set, lack of project management competence, lack of good user

participation and cooperation, lack of teamwork
Process Ill-defined project scope, requirements, and planning, user team having no full authority
Technology Lack of provision and support of training to teams, inappropriateness of methods and tools
Project Unsuitable team size
Data Lack of data quality (e.g., inconsistent data, contradictory data, redundant data, missing data,

34

Dimension Failure Factor
and out of date data)

Prior research (i.e., [42, 48]) identified the following problems in EIS development in
Thailand: the low level of user participation in design and development, a lack of EIS
development knowledge and experience, a lack of knowledge transfer, inappropriate software
development methods, political and economic pressures, and organizational cultures. This
supports the findings to answer the RQ2-1 that almost all of those problems currently still
exist in EIS development in the Thai telecommunications context. The findings also help
answer the RQ2-2 that the problems identified in Table 2-1 involve project management,
software development, and knowledge transfer perspectives.

2.3 Two Primary Focuses of this Study

As the current problems in EIS development involve project management, software
development, and knowledge transfer aspects, the primary focuses of this study are agile
software development and knowledge transfer. The main reason we concentrate on agile
software development is that agile methods (e.g., XP, DSDM, FDD, and Scrum) are
drastically gaining recognition in the software development community due to their quick
response to rapid changes in user requirements, often volatile business environments, and
market expectation (i.e., innovative and high quality software [4]). As defined CFSs should
be oriented towards completing software development efficiently and effectively, we
therefore perform literature review to investigate the identified influential factors affecting
the successful agile software development and the successful knowledge transfer.

For the first focus, 20 highly visible studies on successful agile software development
published between 2001 and 2011 have been chosen. The reviewed literature is mostly based
on survey studies, experiences, case studies of agile software projects. In particular, Calo et
al. [54] present an approach assisting in the way agile methods satisfy Agile Manifesto
postulates. Ceschi et al. [33] have investigated whether agile methods improve project
management practices. Chow and Cao [34], França et al. [55], Livermore [56], Misra et al.
[57], Othman et al. [58], and Tong et al. [59] have explored influential factors of agile
software projects. Cockburn and Highsmith [60] and Turner and Boehm [61] present the
people factor in agile software development; whilst Iivari and Iivari [62] and Strode et al.
[63] present the impact of organizational culture on agile software development. Others who
have discovered several approaches or suggestions for successfully introducing or migrating
agile software processes to organizations, include Cohn and Ford [64] and Nerur et al. [65];
whilst McMahon [66] suggests the means to bridge agile and traditional development
methods. The others present results from empirical studies (e.g., Dybå and Dingsøyr [67],
Hoda et al. [68], Korkala et al. [69], Lindvall et al. [70] and Schatz and Abdelshafi [71]). We
assume that the above-mentioned studies are a representative, not an exhaustive list. Based on
these studies, the data were collected in multiple settings (e.g., developed nations and
developing nations). The results shows that the identified factors impacting on software
projects in those areas are similar, as summarized in Table 2-2.

35

Table 2-2. A summary of the identified influential factors of agile software projects

Source Research Setting Factor
Calo et al. [54] Not specified Correct delivery strategy, proper practice of agile software

engineering techniques, team capacity, style of team work, good
management of the agile development process, and active
participation of the users in the project

Ceschi et al. [33] Developed
nation(s)

Individual competence, teamwork, motivation

Chow and Cao
[34]

Developed and
developing
nation(s)

Team environment (including team size), team capability, user
involvement, project management process, agile software
development techniques, delivery strategy

Cockburn and
Highsmith [60]

Developed and
developing
nation(s)

Individual competence, team competence, organizational culture,
management support, communication, project type, team size,
software process, appropriate methodologies

Cohn and Ford
[64]

Not specified Individual competence, leadership, frequent communication,
organizational culture, user commitment

Dybå and
Dingsøyr [67]

Not specified Continuous feedback, organizational culture, collaborative work,
team characteristics, a high degree of knowledge creation, team
member competence, team size, user and team member satisfaction,
and appropriate techniques, tools and methods

França et al. [55] Developing
nation(s)

Project management process, agile software development
techniques, delivery strategy, team capability, team environment,
customer involvement

Hoda et al. [68] Developed and
developing
nation(s)

Customer involvement

Iivari and Iivari
[62]

Not specified Organizational culture, cultural compatibility

Korkala et al.
[69]

Developed and
developing
nation(s)

Frequency of communication, the content of that communication
and engagement with the customer along with a support for rapid
decision making amongst the development teams and the customer
groups, and customer involvement

Lindvall et al.
[70]

Not specified Project size and characteristics (e.g., criticality, reliability, and
safety), corporate culture, team member competency, project
management, agile software development techniques, team size,
training and learning, user involvement, communication, physically
co-located teams

Livermore [56] Not specified Training, management involvement and support, access
to external resources (e.g., books, journals, consultants, and
attendance at methodology user groups), and company size

McMahon [66] Not specified frequent feedback, communication and collaboration, user
involvement, and project management (i.e., planning and control)

Misra et al. [57] Many continents
around the world

Customer satisfaction, customer collaboration, customer
commitment, decision time, corporate culture, planning and control,
personal characteristics, societal culture, and training and learning

Nerur et al. [65] Not specified Individual competence, teamwork, organizational culture,
management style, management of software development
knowledge, reward systems, user relationships, management and
software development processes, appropriate methods

Othman et al.
[58]

Developed and
developing

Management commitment, organizational environment, team
environment, team capability, user involvement, project

36

Source Research Setting Factor
nation(s) management process, agile software development process,

appropriate techniques, training support, project type, project nature,
team size

Schatz and
Abdelshafi [71]

Developed
nation(s)

Teamwork, organizational culture, management support, negotiation
skills

Strode et al. [63] Developed
nation(s)

Leadership-and-collaborative management style, feedback and
learning environment, teamwork, empowerment of people, results-
oriented organization, leadership, loyalty, mutual trust, and
commitment

Tong et al. [59] Not specified Enterprise stratagem, mature information techniques, the resource of
capital and time, and the ability of study, and communication

Turner and
Boehm [61]

Not specified Organizational culture, people competency, customer involvement,
communication, training, user and team member satisfaction (i.e.,
values), and expectations management

For the second focus, we have chosen 24 papers which are highly visible, relevant to
knowledge transfer in IT/IS related areas, and published between 2002 and 2011. We assume
that they are a representative, not an exhaustive list. The reviewed literature is all based on
empirical studies. In particular, those studies empirically examined the factors influencing
knowledge transfer and/or knowledge acquisition in software process improvement [41],
software development [72-78], IT/IS outsourcing [79-84], the software industry [85], IT
consulting and/or client firms [86, 87], IT/IS usage [88-90], Enterprise Resource Planning
(ERP) implementation [91, 92], IT-related small and medium enterprises [93], project
management [94]. Based on the above literature, data was collected in multiple settings (e.g.,
developed nations and developing nations). The results shows that the identified factors
affecting knowledge transfer in those areas are similar, as summarized in Table 2-3.

Table 2-3. A summary of the identified influential factors of knowledge transfer

Source Research Setting Factor
Al-Salti [79] Not specified Capability, credibility, nature of knowledge (i.e., complexity and

tacitness), transfer mechanism, absorptive capacity, organizational
culture, motivation, cultural distance, communication quality, and
use of collaborative techniques

Arshad et al.
[80]

Developing
nation(s)

Distribution capacity, perceived benefit, quality content and
accuracy of knowledge, and knowledge infrastructures (i.e., sharing
culture, ICT infrastructure, staff posting, trust, and job satisfaction)

Cantú [93] Developed
nation(s)

Source’s reliability, source’s resistance, recipient’s absorptive
capability, recipient’s receptiveness, knowledge causal ambiguity,
knowledge complexity, ease of teaching, organizational culture,
physical distance, and time available

Chen et al. [90] Developed
nation(s)

Organizational capital (i.e., information system and organizational
structure), human capital, and relational capital (i.e., credibility,
interpersonal relationship, and commitment)

Dayasindhu [85] Developing
nation(s)

Recipient’s experience, relationship between knowledge source and
recipient, uncertainty over future knowledge needs, not congruent in
product and knowledge domains, and culture (e.g., power distance,
individualism vs. collectivism, uncertainty avoidance, and

37

Source Research Setting Factor
masculinity vs. femininity)

Gregory et al.
[81]

Developed and
developing nations

Motivation, clear roles and responsibilities, cultural competence
(i.e., cross-cultural learning and adaptation), continuous working
relationships

Hongli and Lei
[87]

Not specified Knowledge sharing culture, source’s knowledge possession,
source’s and recipient’s capacity, and willingness to transfer

Hsu and Lin [89] Developed
nation(s)

Motivation factors (i.e., altruism and reputation)

Joshi et al. [72] Developed
nation(s)

Great motivation, source’s capability, source’s credibility,
knowledge type, good relationship, and extensive communication

Ko et al. [86] Not specified Source’s credibility, absorptive capacity, shared understanding,
motivation, and communication encoding and decoding competence

Kotlarsky and
Oshri [75]

Developed and
developing nations

Relationship and trust

Malhotra and
Galletta [88]

Not specified Motivation, commitment

Mohamed et al.
[83]

Not specified Source’s sharing motivation, recipient’s absorptive capacity,
knowledge’s quality, communication flow, training, and ICT
infrastructure

Park et al. [82] Developed
nation(s)

Capability, trust, source’s and recipient’s character (e.g., skills,
competencies, and integrity including commitment), cooperative
learning, project complexity, and organizational support

Sarker [73] Developed and
developing nations

Source’s capability, source’s credibility, communication, and culture

Sarker et al. [78] Developed
nation(s)

Communication, capability, credibility, and culture

Slaughter and
Kirsch [41]

Not specified Nature of relationship, proximity, and work units between a source
and a recipient

Tiexin et al. [94] Developing
nation(s)

Source’s transferability, source’s transfer willingness,
communication attitude (e.g. good relationships), friendly
exchanges, recipient’s absorptive ability, recipient’s learning
motivation, and knowledge characteristics (i.e., systemic)

Upadhyaya and
Krishna [74]

Developed and
developing nations

Absorptive capacity, good relationship, task inter-dependence, task
complexity, and communication frequency

Wang et al. [91] Developed
nation(s)

Absorptive capacity, and consultant competence (i.e., capability)

Xu and Ma [92] Developing
nation(s)

Transfer willingness, acquirement willingness, absorptive capacity,
project priority, and transfer activity

Yuan et al. [76] Developing
nation(s)

Project commitment and mutual trust

Yun [84] Developing
nation(s)

Project character (e.g., novelty, customization, complex), firm size,
interaction participation, process maturity, communication quality,
knowledge overlap, prior cooperation experiences, culture fit, work
dispersion, and absorptive capability

Zhang et al. [77] Developing
nation(s)

Organizational and technology factors (i.e., trust, leadership, issues
and incentives, number and variety of groups, technology,
implementation strategy, and interactions) and knowledge factors
(i.e., explicitness, context-embeddedness, and practice-
embeddedness)

38

It is important to discuss potential limitations. Exhaustive reviews to investigate the
influential factors affecting the success in agile software development and knowledge transfer
were not performed in this chapter. This limits the generalizability of the results, as we have
not captured all the relevant papers in the boundaries. However, we reduce this threat to some
extent by reviewing papers principally based on empirical studies in multiple settings (e.g.,
developed nations, developing nations, and specific worldwide environments) and gaining the
current influential factors in the boundaries. Our focus primarily is on the papers providing
the stories of either successful agile software development or successful knowledge transfer
in practice, published in the last decade ranging between 2001 and 2011. The field of
Software Engineering has changed dramatically over the decades. Hence, the influential
factors have to be updated to fit the contemporary era as well. This also helps improve the
quality of the results. In consequence, we believe that the review results can be used as the
representative results.

There is an amount of IS research that focuses on the improvement of software
development success in aspects of speed, effectiveness, efficacy, and low cost, to only name
the most important ones. It is commonly accepted that no single method can serve for all
types of software projects and all types of project objectives. To develop a framework for
transferring software project management approaches into the Thai telecommunications
industry, we consequently consider many related theoretical models as foundations of this
study as described in the next section.

2.4 Foundations of this Study - Where We Can Start From

In this study, it is important to clearly define that we have decided to limit the analysis
to the Thai telecommunications industry for the following five main reasons. First, the
telecommunications industry was chosen as the research domain since it is a significant and
highly developed area of the Thai economy. Moreover, implementing and deploying its
elements (e.g., advanced mobile networks) is likely to stimulate innovation in the
development of the mobile content and software industry [95]. Hence, focusing on the
telecommunications industry may also benefit the software industry. Second, as everywhere
else, the telecommunications industry is characterized by free competition. Companies in this
domain do consequently depend upon quickly rolling out higher quality of services and
products and innovation through efficient and effective software development and knowledge
transfer mechanisms. Third, the perspectives and results of this research are presumably
easier to transfer into an already developed industry. Fourth, the setting of this study was
determined by ÖAD (the Austrian Agency for International Cooperation in Education and
Research) and the Higher Education Commission of Thailand who support this study in the
form of a scholarship. Hence, the economically most beneficial contribution of this study is
knowledge that can be transferred into the Thai telecommunications companies. Lastly, as the
sample of the participating companies was limited to the Thai telecommunications industry, it
would be too risky to draw more general conclusions. This is because they cannot be
substantiated by data from our case studies. Therefore, we at this stage limit our proposed
frameworks (i.e., a software process maintenance framework and a knowledge transfer
framework) and conclusions to software development in the Thai telecommunication
industry. Nevertheless, we hope to further investigate, modify, and test our framework in
other industries in order to prove its general applicability.

Concerning efficient and effective software development, currently both traditional
project management and agile software development methods are gaining great popularity in

39

the software development sector [96]. PMBOK and Scrum are definitely the most popular for
project management and agile software projects, respectively [36, 37]. Nonetheless, PMBOK
has been influenced by agile tendency, as we can see that the latest PMBOK edition promotes
its practices in an agile way [38]. Scrum is management-oriented and has more advantages in
facets of responsiveness to environment, team flexibility and creativity, knowledge transfer
during software development, and high probability of success [97]. However, it offers limited
support for project management (i.e., limited support for scope, time, cost, risk, quality,
procurement and documentation management [9, 11]). An efficient software process needs to
be able to cope with project and process management activities. To provide adequate support
for these two aspects, an integrated PMBOK-Scrum approach is thus taken into account.
Supporting this, Fitsilis [98] suggests that connecting Scrum with PMBOK can benefit the
teams since software processes in Scrum and PMBOK, are addressed in a compatible way.
Moreover, this study intends to maintain the software process being continuously efficient by
assessment and improvement. Within this area, CMMI is widely adopted appraisal approach
that helps improve software processes, produce quality and project reliability, and eliminate
problems and defect causes [99]. Currently, many organizations are increasingly interested in
adopting CMMI with agile methods together [24]. There are evidences that CMMI and agile,
especially Scrum, can considerably coexist [22, 24, 25, 100]. CMMI is thus deemed for this
study. During software development, knowledge transfer is crucial. This is because a
software project typically consists of multiple stakeholders with diverse backgrounds and
skill sets. Talents in teams should continuously complement each other for better work
efficiency and effectiveness [40]. Therefore, it can be concluded that the quality of software
depends upon the quality of software processes and knowledge transfer.

In this study, a framework for transferring software development project management
approaches into the Thai telecommunications industry is proposed. It consists of two core
components. First, a software process maintenance framework aims at providing the “what”
and the “how” to improve and implement software processes. The framework consists of two
main parts. For the first part providing the “what” software processes to improve, CMMI is
used as a base. For the second part providing the “how” to plan and implement software
processes, the authors merge the principles derived from the core of the PMBOK into the
Scrum model. Second, a knowledge transfer framework aims at providing guidance for
planning knowledge transfer activities, based on Szulanski’s model. The descriptions of the
above models and principles are presented as follows.

2.4.1 Capability Maturity Model Integration (CMMI)

CMMI is a widely known appraisal approach for continuous SPI [39]. It is a process
improvement capability maturity model for the processes controlling development,
implementation, acquisition and maintenance of software products and services. It strives to
achieve process consistency, predictability and reliability. CMMI consists of best practices
that address development and maintenance activities that cover the software life cycle from
conception through delivery and maintenance. CMMI itself has two representations: staged
and continuous.

The staged representation is most suitable for an organization that does not know
which processes need to be improved first since the staged representation provides a
systematic structured way to improve and offers process areas applicable to each maturity
level [101]. The staged representation focuses on process areas organized by five maturity
levels, numbered 1 through 5 and dubbed initial, managed, defined, quantitatively managed,

40

and optimizing, respectively. Each maturity level comprises a predefined set of process areas,
indicating which areas need to be implemented in order to reach a certain maturity level.

The continuous representation provides flexibility for selecting processes and
maturity levels fit for achieving business goal of the organization [101]. In the continuous
representation, each process area is rated in terms of capability level. There are six capacity
levels, numbered 0 through 5 and dubbed incomplete, performed, managed, defined,
quantitatively managed, and optimizing, respectively. Each capability level corresponds to a
generic goal and a set of generic and specific practices. Moreover, the continuous
representation has more specific practices than the staged representation since the continuous
representation has two types of specific practices (i.e., base and advanced), whilst the staged
representation has only one type of specific practice.

This study aims at providing a systematic structured way to improve rather than a
flexible way for selecting processes and maturity levels to improve. Accordingly, the staged
representation is used as the basis of this study.

2.4.2 Project Management Body of Knowledge Guide (PMBOK)

The PMBOK guide developed by the Project Management Institute (PMI) [38] is the
standard that describes the project management processes, tools, and techniques used to
manage a wide range of projects in many types of industries. Project management is the
application of knowledge, skills, tools, and techniques to project activities in order to meet
the project requirements. It is accomplished through the appropriate application and
integration of the 42 processes which fall into five process groups and nine knowledge areas
that are typical of almost all projects. The five basic process groups consist of (1) Initiating,
which processes performed to define a new project or phase by obtaining authorization to
start the project or phase; (2) Planning, which processes needed to establish the scope of the
project, refine the objectives, and define what actions needed to attain the objectives; (3)
Executing, which processes performed to complete the work defined in the project plan; (4)
Monitoring and Controlling, which processes needed to track, review, control the progress
and performance of the project; and (5) Closing, which processes performed to finalize all
activities across all process groups to formally close the project or phase.

Those processes overlap and interact throughout a project or phase. Each process is
described in terms of its inputs, outputs, and tools and techniques. Inputs and outputs are
documents (e.g., a scope statement and user requirements) or documentable items (e.g.,
activity dependencies). Tools and techniques are mechanisms applied to inputs to create
outputs. Those processes are also organized into the nine knowledge areas which are (1)
Integration Management, which includes the processes and activities needed to identify,
define, combine, unify, and coordinate the various processes and activities within the process
groups; (2) Scope Management, which ensures that all the required work and only the
required work is planned, defined, documented, and delivered to the user’s satisfaction; (3)
Time Management, which includes the processes needed to manage timely completion of the
project; (4) Project Cost Management, which includes the processes involved cost estimation
and expense monitoring, and intended to ensure that the project is delivered within its
approved budget; (5) Quality Management, which encompasses quality definition, assurance,
and control; (6) Human Resource Management, which includes the processes that organize,
manage, and lead the project team; (7) Communication Management, which includes the
processes for information dissemination and collection; (8) Risk Management, which

41

includes the processes for risk identification, quantification, avoidance, and mitigation; and
(9) Procurement Management, which includes the processes necessary to purchase or acquire
products or services needed from outside the project team. Figure 2-1 presents a graphical
representation of all 42 project management processes, falling into process group and
knowledge area dimensions.

Figure 2-1. A graphical representation of all 42 processes [38]

42

PMBOK is a general guide used by professional project managers to achieve long-
term goals and is applied in many software development projects. It is also viewed as quasi
standard by several leading software development companies. Therefore, PMBOK can be
used as input for developing the proposed software process maintenance framework.

2.4.3 Scrum

Scrum was developed by Ken Schwaber and Jeff Sutherland. It is an iterative and
incremental software development process commonly used in the context of agile software
development [102]. Scrum focuses on project management in situations where it is difficult to
plan ahead, with mechanisms for ‘‘empirical process control” and where feedback loops
constitute the core element. Software is developed by a self-managing team in iterations
(called ‘‘sprints”), starting with planning and ending with a review. Scrum has three primary
roles, three primary artefacts, and four primary ceremonies designed to deliver work products
in sprints.

The three primary roles consist of product owner, Scrum master, and team. Product
Owner is a person responsible for creating and prioritizing the features of the product,
deciding on release date and content, adjusting features and priority, and accepting or
rejecting work results. Scrum Master is a facilitative team leader working closely with the
product owner and responsible for ensuring that the team is fully functional and productive,
removing impediments, shielding the team from external interference, and making certain
that the process is followed. Team typically consists of seven plus or minus two members.
The team is committed to achieving a sprint goal and has the right to do whatever it takes to
achieve the goal. The team organizes itself and its work and demos results to the product
owner.

The three primary artefacts consist of product backlog, sprint backlog, and Burndown
chart, which are all openly accessible and visible to the team. Product Backlog is a list of all
prioritized business and technical requirements that need to be developed and defects that
need to be fixed. Each requirement contains a description such as category (e.g., feature,
enhancement, and defect), status, priority, and estimated effort. Sprint Backlog is a list of all
requirements in the current sprint that are broken down into tasks. Each task contains a short
task description (e.g., owner, status, and effort). The sprint backlog is daily updated to obtain
the latest effort of the work remaining to complete the task. Efforts can increase when the
team member realizes that the work was underestimated. Burndown chart shows the hours
remaining to complete sprint tasks. It is primarily displayed for the team.

The four primary ceremonies consist of sprint planning, daily Scrum meeting, sprint
review, and sprint retrospective. Sprint Planning is held in 4-to-8-hour length at the beginning
of each sprint. The product owner prioritizes over the product backlog and the team defines
tasks that they can complete during the coming sprint. Once this set of features has been
identified, no re-prioritization takes place during the ensuing sprint in which features are
designed, implemented and tested. Daily Scrum Meeting is held daily in 15-minute length.
Stakeholders may attend the meeting, but only the team and the Scrum master can speak.
Each team member answers the questions of “What did you do yesterday? What will you do
today? What impediments are in your way?” Sprint Review takes place at the end of the
sprint for the team to review progress, demonstrate what they have built during the sprint to
the stakeholders and the product owner, and get feedback. Sprint Retrospective is a place for

43

the team to discuss what is working and what is not working, and agree on changes to try for
software process improvement.

Moreover, Scrum processes are grouped in three stages (i.e., pre-game, game, and
post-game) [97]. Pre-game includes two processes (i.e., planning and architecture
development). The planning includes the definition of a new release based on currently
known product backlog, along with an estimate of its schedule and cost. If the software
product under development is new, planning includes both conceptualization and analysis,
but only limited analysis for an existing software product. The architecture development
includes system and/or software architecture development and high level design. Game
includes the process of sprint execution. This stage consists of a collection of development
sprints to produce new release functionality, with constant respect to the variables of time,
requirements, quality, cost, and competition. Post-game is the closure of the project, which
includes preparing the releases, producing the final documentation, executing the site
acceptance testing and the final product release. The overall Scrum process is illustrated in
Figure 2-2.

Figure 2-2. The Scrum process [102]

2.4.4 Szulanski’s Knowledge Transfer Model

Szulanski’s (1996) theory of a communication-based knowledge transfer model
describes an intra-firm knowledge transfer process [103]. The process is viewed as a message
transmission from a source to a recipient in a given context. The process evolves in the
following four stages. First, Initiation comprises all events that lead to the decision to
transfer. A transfer begins when both a need and the knowledge to meet that need coexist
within the organization. Once the need and a solution to that need are identified, the
feasibility of the transfer is explored. Second, Implementation begins with the decision to
proceed in which resources flow between the recipient and the source. Transfer-specific
social ties between the source and the recipient are established and the transferred practice is

44

often adapted to suit the anticipated needs of the recipient, to prevent problems experienced
in a previous transfer of the same practice, or to make the introduction of new knowledge less
threatening to the recipient. Implementation related activities diminish after the recipient
begins using the transferred knowledge. Third, Ramp-up begins when the recipient starts to
use the transferred knowledge; that is after the first day of use. During this stage, the recipient
will be primarily concerned with identifying and resolving unexpected problems that impede
its ability to match or exceed post-transfer performance expectations. The recipient is likely
to use the new knowledge ineffectively at first, but gradually improves performance, ramping
up toward a satisfactory level. Last, Integration begins after satisfactory result is achieved by
the recipient from the transferred knowledge and the transferred knowledge is converted into
the organization’s routine. The four stages are presented in Figure 2-3.

Initiation Implementation Ramp-up Integration

Formation of
the transfer
seed

Decision to
transfer

First day of
use

Achievement of
satisfactory
performance

Figure 2-3. Knowledge transfer stages and milestones [104]

This model has also explored the origin of internal stickiness. Stickiness is a difficulty
encountered within the knowledge transfer process. It can be predicted by examining a
number of conditions relating to characteristics of the knowledge transferred (i.e., causal
ambiguity and unprovenness), characteristics of the knowledge source (i.e., a lack of
motivation and not perceived as reliable), characteristics of the knowledge recipient (i.e., a
lack of motivation, a lack of absorptive capacity, and a lack of retentive capacity), and
characteristics of the context in which the transfer takes place (i.e., barren organizational
context and arduous relationship). Appropriate frameworks of software process maintenance
and knowledge transfer are vital to achieving the improvement of software development
performance in terms of efficiency and effectiveness. To build such frameworks, the
requirements which are specific to the EIS development in the Thai telecommunications
industry thus need to be identified.

2.5 Influential Factors in the Areas of Software Development and
Knowledge Transfer as Requirements for a Framework for
Transferring Software Project Management Approaches into the
Thai Telecommunications Industry

Stating requirements is very important for the design of all mechanisms.
Requirements for the proposed software process maintenance framework are summarized
into Table 2-4, which are also compared to the influential factors identified in the reviewed
literature presented in Table 2-2. This is based on the consolidation of a number of
failure/success factors listed in Tables 2-1 and 2-2 which share similar characteristics. The
results in Table 2-4 help answers the RQ2-3 “What are the factors affecting the successful
agile software development?”.

45

Table 2-4. Requirements for the proposed software process maintenance framework

Study

Organization People Process Technology Project Data

O
rg

an
iz

at
io

na
l

en
vi

ro
nm

en
t

M
an

ag
em

en
t

co
m

m
itm

en
t

T
ea

m
 c

ap
ab

ili
ty

U
se

r
in

vo
lv

em
en

t

Pr
oj

ec
t m

an
ag

em
en

t
pr

oc
es

s
A

gi
le

 so
ftw

ar
e

de
ve

lo
pm

en
t p

ro
ce

ss

A
pp

ro
pr

ia
te

 m
et

ho
ds

,
te

ch
ni

qu
es

, a
nd

 to
ol

s

T
ra

in
in

g
su

pp
or

t

Pr
oj

ec
t t

yp
e

T
ea

m
 si

ze

T
ea

m
 e

nv
ir

on
m

en
t

D
at

a
qu

al
ity

 (i
.e

.,
ac

cu
ra

te
, c

om
pl

et
e,

an

d
up

 to
 d

at
e)

Calo et al. [54] X X X X X X
Ceschi et al. [33] X X

Chow and Cao [34] X X X X X X
Cockburn and

Highsmith [60]
X X X X X X X X

Cohn and Ford [64] X X X X
Dybå and Dingsøyr

[67]
X X X X X

França et al. [55] X X X X X
Hoda et al. [68] X

Iivari and Iivari [62] X
Korkala et al. [69] X X
Lindvall et al. [70] X X X X X X X X X

Livermore [56] X X
McMahon [66] X X X
Misra et al. [57] X X X X X X X
Nerur et al. [65] X X X X X X X

Othman et al. [58] X X X X X X X X X X X
Schatz and Abdelshafi

[71]
X X X X

Strode et al. [63] X X X X
Tong et al. [59] X X X

Turner and Boehm [61] X X X X X X
Total 12 8 14 11 9 4 9 5 3 5 16 0

Furthermore, Table 2-5 presents the summary of the influential factors as
requirements for the proposed knowledge transfer framework, which are compared to the
influential factors identified in the reviewed literature presented in Table 2-3. This is based
on the consolidation of the problems of the knowledge transfer process in the current
situation in EIS development and the influential factors identified in the reviewed literature.
This help answers the RQ2-4 “What are the factors affecting the successful knowledge
transfer in software development?”. In this table, we categories the influential factors into
five contexts [105] which are source, recipient, knowledge, relational, and situational
contexts. The source and recipient contexts refer to the attributes of the source and the

46

recipient which can facilitate or impede the knowledge transfer process. The knowledge
context refers to the nature and characterization of the type of knowledge being transferred.
The relational context refers to the attributes that characterize the relationship between the
source and the recipient. The situational context refers to the environmental characteristics
surrounding the knowledge transfer process.

Concerning the meanings of each influential factor, source’s motivation refers to
motivation to transfer knowledge. Source’s capability refers to the source’s greater reservoir
of knowledge that has a potential to transfer knowledge. Source’s credibility refers to the
degree in which the source is perceived as trustworthy and reputable by the recipient.
Recipient’s motivation refers to motivation to absorb knowledge. Recipient’s absorptive
capacity refers to the ability of the recipient to recognize the value of new knowledge,
assimilate it, and apply it. Knowledge’s usefulness refers to the degree to which the source
and the recipient believe that using knowledge would enhance their job performance. The
greater the knowledge is valuable; the greater would be its attractiveness for the recipient and
the knowledge application by the recipient. Knowledge’s ease of use refers to the degree to
which the source and the recipient believe that using knowledge would be free of effort. The
easier the recipient can use the knowledge, the greater the recipient’s effort to obtain the
knowledge. Good relationship refers to the intimacy of a relationship between the source and
the recipient. Commitment refers to the source’s and the recipient’s commitment in terms of
time, effort, and attention. Extensive communication refers to frequent communication
between the source and the recipient; while organizational culture refers to the values,
practices, and assumptions that influence the organization’s members to act and behave in a
particular manner [79].

Table 2-5. Requirements for the proposed knowledge transfer framework

Study

Source Context

Recipient
Context

Knowledge
Context

Relational
Context

Situational
Context

M
ot

iv
at

io
n

C
ap

ab
ili

ty

C
re

di
bi

lit
y

M
ot

iv
at

io
n

A
bs

or
pt

iv
e

ca
pa

ci
ty

U
se

fu
ln

es
s

E
as

e
of

 u
se

G
oo

d
re

la
tio

ns
hi

p

C
om

m
itm

en
t

E
xt

en
siv

e
co

m
m

un
ic

at
io

n

O
rg

an
iz

at
io

na
l

C
ul

tu
re

Al-Salti [79] X X X X X X X X
Arshad et al. [80] X X X

Cantú [93] X X X X

Chen et al. [90] X X X
Dayasindhu [85] X X X

Gregory et al. [81] X X X X
Hongli and Lei

[87]
X X X X

Hsu and Lin [89] X X
Joshi et al. [72] X X X X X X
Ko et al. [86] X X X X
Kotlarsky and

Oshri [75]
 X X

47

Study

Source Context

Recipient
Context

Knowledge
Context

Relational
Context

Situational
Context

M
ot

iv
at

io
n

C
ap

ab
ili

ty

C
re

di
bi

lit
y

M
ot

iv
at

io
n

A
bs

or
pt

iv
e

ca
pa

ci
ty

U
se

fu
ln

es
s

E
as

e
of

 u
se

G
oo

d
re

la
tio

ns
hi

p

C
om

m
itm

en
t

E
xt

en
siv

e
co

m
m

un
ic

at
io

n

O
rg

an
iz

at
io

na
l

C
ul

tu
re

Malhotra and
Galletta [88]

X X X

Mohamed et al.
[83]

X X X X

Park et al. [82] X X X X X
Sarker [73] X X X X

Sarker et al. [78] X X X X
Slaughter and
Kirsch [41]

 X

Tiexin et al. [94] X X X X
Upadhyaya and

Krishna [74]
 X X X

Wang et al. [91] X X
Xu and Ma [92] X X X
Yuan et al. [76] X X

Yun [84] X X X
Zhang et al. [77] X X X

Total 10 7 12 8 12 2 3 8 4 8 10

According to Tables 2-4 and 2-5, there are indications that some of the major findings
of this research might actually be of a more general nature and hence of a wider applicability.
Hence, our frameworks proposed in the next section are not limited to EIS development.

2.6 Towards a Conceptual Framework for Transferring Software
Project Management Approaches into the Thai
Telecommunications Industry

In general, according to Wallin and Crnkovic [106], each software development
project is run through a platform deployment lifecycle of four stages (i.e., ideas, feasibility
study, software development, and rollout). First, the ideas stage starts with a collection of
ideas for end user solutions that can be enable through the new software platform. Second,
the feasibility study stage is to compile the information needed for the responsible
management to make a decision whether to start a pilot development project. Third, the
software development stage is where the approved pilot development project is run based on
the feasibility study results. Last, the rollout stage runs when developed software is ready to
be employed. For this platform deployment lifecycle, most development theories have similar
methods for the stages of ideas, feasibility study, and rollout. Except for the utilization of
software development methodologies, it depends on the type, nature, and characteristics of

48

each project. To be clear, this study mainly focuses on the software development stage as
presented in Figure 2-4.

Figure 2-4. The primary focus of this study

To answer the RQ2-5 “What could our conceptual software process maintenance
framework based on its requirements look like?”, the CMMI, PMBOK, and Scrum all have
strong benefits for the proposed software process maintenance framework. In the framework,
there are two main parts. First, a CMMI-based software process improvement component
aims at providing a systematic structured way to guide practitioners “what” software
processes needs to be improved. Non-identified influential factors or other influential factors
unidentified in the Section 2.5 might be discovered in the future. To be clear, at this stage the
identified influential factors of this work are used as the identified CSFs. Success in a
software process can be viewed in terms of Key Process Areas (KPAs) and CSFs. A number
of studies argue that KPA approaches should improve the organization’s capabilities to
manage, develop, and deliver quality software products [107-111]. On the contrary, a
multitude of studies concur that a successful software process should be viewed in terms of
CSFs rather than KPAs. These studies emphasize the importance of the CSF approach in SPI
and the use of the CSF approach rather than the KPA approach [20, 112-115]. They have also
confirmed the value of the CSF approach in the field of information technology [20, 113-
119]. Thus, the staged representation of CMMI and CSF approaches are employed. Second,
an integrated PMBOK-Scrum process development component aims at providing a
mechanism for establishing efficient and effective software processes. Thus, the PMBOK and
Scrum processes are mapped together. Figure 2-5 shows our conceptual software process
maintenance framework.

49

Figure 2-5. The proposed conceptual software process maintenance framework

To answer the RQ2-6 “What could our conceptual knowledge transfer based on its
requirements look like?”, our solution is based on Szulanski’s model. Knowledge transfer can
be viewed as a communication process between the source and the recipient engaged in
teams. The process flows through four distinct stages which are Initiation, beginning with all
events that lead to the decision to transfer; Implementation, beginning with the decision to
transfer; Ramp-up, beginning when the recipient starts using the transferred knowledge; and
Integration, beginning after the recipient achieves satisfactory outcomes. As the identified
CSFs affect effective knowledge transfer, Figure 2-6 presents our conceptual proposed
knowledge transfer framework.

Ramp-up

Initiation

Integration

CSFs:
Source’s and recipient’s motivation,
capability, credibility, absorptive capacity,
knowledge’s usefulness and ease of use,
good relationship, commitment, extensive
communication, and organizational culture

Implementation

A Knowledge Transfer Process

Affect

Software Development Context

Figure 2-6. The proposed conceptual knowledge transfer framework

The requisite requirements identified for the proposed software process framework
and the proposed knowledge transfer framework serve as basis for designing an abstract level
models of the proposed conceptual frameworks. For the next steps, we separate work into
three sections. The first section involves the sound development of the proposed software

50

process maintenance framework, which is presented in Chapters 3, 4, and 5. The second
section involves the sound development of the proposed knowledge transfer framework,
which is presented in Chapters 6 and 7. The last section involves the sound development of
the proposed framework for transferring software project management approaches into the
Thai telecommunications industry, which is presented in Chapter 8.

2.7 Summary

As this study focuses on the Thai telecommunications industry as a case study, we
performed the interviews with in-house and outsourcing teams in the two ISPs in Thailand.
This was in order to look into the current software development situation by focusing on the
EIS development. The findings reveal that there are many software development problems
(e.g., a lack of agile logistical arrangement, a lack of good user participation, a lack of
management commitment, a lack of project management competence, a lack of teamwork,
inappropriateness of methods and tools, a lack of training support, a lack of knowledge
transfer, and so on). This emphasizes that software development teams do not perceive
formal routines as an efficient and effective way not only to manage software processes but
also to transfer knowledge. This also supports that the problems defined in prior research on
EIS development in Thailand still exist today. These are challenging problems since a
software process and a knowledge transfer process play a central role in successful software
development.

Although agile software development methods (e.g., Scrum, XP, and FDD) offering
effective software processes are available, they provide limited management support (e.g., for
subcontracting, developing with large teams, developing software that demands high quality
control, and distributed development environments). Since efficiency requires project
management activities to enable the proper execution of software development tasks;
therefore, project management provides the backbone for efficient software development.
This shows that an approach offering an adequate set of project management and software
development is required for software development efficiency and effectiveness. To sustain
software development efficiency and effectiveness by maintaining the quality of software
processes, SPI is thus needed. Moreover, knowledge transfer is crucial to a software project
due to multiple stakeholders with diverse backgrounds and skill sets. Talents in teams should
continuously complement each other for better work performance. From this perspective, it
can be concluded that quality software depends upon quality software processes and
knowledge transfer. As a result, a framework for transferring software development project
management approaches into the Thai telecommunications industry has been proposed in this
study. It consists of two core components which are frameworks themselves. First, a software
process maintenance framework which in this context means a framework for software
process development and improvement, provides the “what” to improve through a CMMI-
based SPI component and the “how” to implement software processes through an integrated
PMBOK-Scrum process development component. The framework is based on a principle set
of the PMBOK and two models of CMMI and Scrum. CMMI is an SPI approach that
provides organizations with the essential elements of effective software processes that help
improve their performance. PMBOK provides general guidance covering all facets of project
management in the traditional sense. Scrum is commonly used in the agile software
development context. Second, a knowledge transfer framework provides guidance for
planning knowledge transfer activities. As communication is at heart of knowledge transfer,
Szulanski’s model serves as a basis for the framework. The resulting frameworks at this stage

51

aim at contributing to the improvement of software development performance in terms of
efficiency and effectiveness in the Thai telecommunications industry.

The starting point to construct the frameworks is to identify two sets of the influential
factors as requisite requirements, based on the interview findings and the literature review
findings. The first set for efficient and effective software development consists of 12
influential factors. They are agile software development process, appropriate methods,
techniques, and tools, data quality, management commitment, organizational environment,
project management process, project type, team capability, team environment, team size,
training support, and user involvement. A second set for successful knowledge transfer
consists of 11 influential factors. They are a source’s motivation, a source’s capability, a
source’s credibility, a recipient’s motivation, a recipient’s absorptive capacity, usefulness of
knowledge and its ease of use, good relationship, commitment, extensive communication,
and organizational culture. Nevertheless, there are indications that some of the major findings
of this research might actually be of a more general nature and hence of a wider applicability.
Therefore, our proposed frameworks are not limited to EIS development. Non-identified
influential factors unidentified in this chapter that affect the successful software development
and knowledge transfer might be discovered in the future.

For the next steps, we separate work into three sections. The first section involves the
sound development of the proposed software process maintenance framework, which is
presented in Chapters 3, 4, and 5. The second section involves the sound development of the
proposed knowledge transfer framework, which is presented in Chapters 6 and 7. The last
section involves the sound development of the proposed framework for transferring software
project management approaches into the Thai telecommunications industry, which is
presented in Chapter 8.

52

53

Chapter 3

Gap Analysis in the Field of Agile Software
Development Integration with Software Process
Improvement and with Traditional Project
Management

A large part of the business world applies agile methods for effectively responding to
often unexpected and unpredictable changes in customer requirements and delivering quality
software. The quality of software depends on the quality of software development processes.
Hence, this study argues for a software process maintenance framework aiming at
contributing to the improvement of software development performance in terms of efficiency
and effectiveness. As a starting point for planned further research, this chapter presents a gap
analysis regarding the prerequisites for the sound development of the proposed software
process maintenance framework. This gap analysis is performed through a systematic
literature review in the field of agile software development integration with software process
improvement and with traditional project management. Based on the findings, solutions
bridging gaps in this field are then presented.

3.1 Introduction

An efficient and effective software development process (hereafter referred to as
“software process”) significantly influences successful software development. Efficiency
requires project management activities to enable the proper execution of software
development tasks. Project management thus provides the backbone for efficient software
development [7]. Currently, agile methods offering effective software development (e.g.,
Adaptive Software Development (ASD), Dynamic System Development Method (DSDM),
eXtreme Programming (XP), Test Driven Development (TDD), Feature Driven Development
(FDD), Lean Software Development, Rational Unified Process (RUP), and Scrum) are widely
used. Unfortunately, they provide limited project management support, e.g., for
subcontracting, developing with large teams, developing software that demands high quality
control, and distributed development environments [4, 9-11]. From this view, integration of
agile with project management processes could overcome this limitation and result in
software development performance in terms of efficiency and effectiveness. However,
software process development cannot guarantee sustainable software development. It also
needs continuous Software Process Improvement (SPI). Agile methods typically have
iterative SPI during a software project; whilst traditional SPI approaches, e.g., Capability
Maturity Model (CMM), Capability Maturity Model Integration (CMMI), and International
Organization for Standardization and the International Electrotechnical Commission 15504
Standard (ISO/IEC 15504) (also known as SPICE: Software Process Improvement and
Capability Determination), typically use retrospective reports of the previous software
projects for future software projects. It would be better to integrate these two concepts

54

together for being more efficient. Consequently, there is a need to build a software process
maintenance framework which in this context means a framework for software process
development and improvement.

With respect to the improvement of a software process, different well-known maturity
models, e.g., CMMI, ISO/IEC 15504, Six Sigma, and Control Objectives for Information and
Related Technology (COBIT), are supporting SPI. However, there are different aspects of
these models. CMMI is a well-accepted model to optimize the development activity in every
stage for improving software process performance and software quality [120]. It is proposed
to help organizations to establish a mature software development process with high
predictability and low risk [99]. ISO/IEC 15504 provides a structured approach and
represents a continuous conception [121], similarly to CMMI. Nonetheless, its goal is to
improve the capability in each process in many areas such as a custom service process, not
specific to only software development. Six Sigma is a manufacturing-oriented model for
measuring and improving a company’s operational performance through rigorous use of data
and statistical analysis by identifying and eliminating defects in manufacturing and service-
related processes [122]. It typically addresses quality and customer satisfaction issues by
focusing on process problems and production of a measurable return on investment [123,
124]. COBIT is business-oriented. The keys to successful implementations are concentrating
on business drivers and results the organization is seeking [125]. A COBIT maturity model is
at a strategic level and focuses on high-level Information Technology (IT) management
processes. Its main purpose is to give management a tool to help them better understand the
current capability of IT management processes, and do benchmarking, gap analysis and
improvement planning. This research aims to improve software process performance and
software quality by optimizing the development activities. Compared to the SPI models,
CMMI is the most appropriate for constructing an SDM model as an SPI component of our
software process maintenance framework.

With respect to the development of an efficient and effective software process, agile
methods are most currently adopted and have generated lots of interest in the software
development sector [96] due to their high probability of success and effectiveness. A survey
by Ambysoft in 2008 showed that 70% of agile software projects were successful compared
to 66% of software projects based on the waterfall method. The results of effectiveness of
agile methods compared with traditional methods also showed that 82% of productivity, 77%
of quality, and 78% of business stakeholder satisfaction were higher; and 72% of the system
development costs were lower [126]. However, these methods offer limited project
management support [6, 8]. Albeit integration of agile software development and traditional
project management methods has been suggested to overcome these limitations (e.g., [8, 96,
98]), little attention has been paid to it. Hence, there is a great need to develop an integrated
project management and software development approach. In the domain of agile methods,
Scrum is definitely the most popular [36]. It has emerged as the most successful agile
development process for organizations and developers [127]. An agile development survey in
2008 by VersionOne provides one key trend that almost 50% of the responses indicated they
were using Scrum [128]. In 2008, Digital Onion stated that its engagements succeeded 80%
of the time, an 8.5% margin over average agile software projects, and a 17.2% margin over
waterfall software projects was also identified [129]. Considering traditional project
management, PMBOK is the broadest and most widely used standard reference of industry
best practices for project management [37]. It identifies generally accepted and fundamental
practices and guidelines that are applicable to a wide range of markets. Moreover, the use of
PMBOK is still increasing. Project Management Institute (PMI) membership statistics show
an overall increase of 14.3% for the year 2009 [130]. Supporting this, a process framework

55

survey in 2008 by Ambysoft showed that compared with other project management
frameworks, PMBOK is for example recognized for being used more than Projects in
Controlled Environments (PRINCE2). There was 22% of primary audiences for a framework
who had not heard about PMBOK, but 69.5% for PRINCE2 [126]. Moreover, the results of
Fitsilis’ study [98] reveal the appropriateness of PMBOK and agile integration that amongst
XP, Scrum, and FDD - Scrum is the most compatible with PMBOK. Hence, two outstanding
methods (i.e., PMBOK and Scrum) are used for constructing an integrated PMBOK-Scrum
model as an integrated software process development component of our software process
maintenance framework.

For the sound development of our software process maintenance framework, a gap
analysis in the field of agile software development integration with software process
improvement and with traditional project management has been presented. This is in order to
answer the following research questions.

RQ3-1: Which existing research results on agile software development integration
with software process improvement and with traditional project management are available
that we can build on?

RQ3-2: What are some interesting aspects that existing research results on agile
software development integration with software process improvement and with traditional
project management do not yet cover?

RQ3-3: How should a software process maintenance framework be constructed? Is a
software process maintenance framework workable? What does the test of a software process
maintenance framework in a real-life situation contribute?

This chapter is organized as follows. The following sections describe research results
on agile software development integration with software process improvement and with
traditional project management that we can build on, and some interesting aspects that those
research results do not yet cover. The description of how to construct a workable software
process maintenance framework is then presented.

3.2 Review Approach

In this work, a systematic review has been performed according to the guidance
proposed by Kitchenham and Charters [131]. Our goal is to provide theoretical and empirical
support for a proposal of a software process maintenance framework, regarding agile
software development integration with software process improvement and with traditional
project management. The research questions guiding this review are as follows.

RQ3-1: Which existing research results on agile software development integration
with software process improvement and with traditional project management are available
that we can build on?

RQ3-2: What are some interesting aspects that existing research results on agile
software development integration with software process improvement and with traditional
project management do not yet cover?

RQ3-3: How should a software process maintenance framework be constructed? Is a
software process maintenance framework workable? What does the test of a software process
maintenance framework in a real-life situation contribute?

56

This set of research questions guided the selection of the search keywords for this
review. The search keywords were categorized into three categories (i.e., Agile, SPI, and
Traditional Project Management) covering the areas of agile software development, SPI, and
traditional project management, respectively. The combination of Agile and SPI categories
was used to search related literature on agile software development integration with software
process improvement; whilst the combination of Agile and Traditional Project Management
categories was used to search related literature on agile software development integration
with traditional project management. In each category, both generic and specific terms were
used to help improving the search results. For instance, generic terms in the Agile category
(i.e., agile, agile method, agile development, agile project, agile process, and agile practice)
were used to retrieve literature mentioning agile software development; whereas a specific
term (i.e., Scrum), which is the foundation of this study, was used to retrieve literature
particularly mentioning Scrum software development. The search keywords used in this
review are presented in Table 3-1.

Table 3-1. Keywords used in the review process

Category Keyword
Agile agile, agile method, agile development, agile project, agile process,

agile practice, Scrum
SPI software project improvement, CMMI
Traditional Project Management traditional project management, plan-based, plan-driven, disciplined,

PMBOK

3.2.1 Data Sources and Search Strategy

The search strategy included five electronic databases as follows.

• ACM Digital Library Database
• IEEE Xplore Database
• Elsevier ScienceDirect Database
• Springer Link Database
• Wiley InterScience Database

This review was conducted in four stages. This review focuses on two main parts:
agile software development integration with software process improvement and with
traditional project management. In stage 1, the title, abstracts, and keywords of the papers
published between 2001 and 2011 in the included data sources were searched using two
combinations of categories: Agile and SPI, and Agile and Traditional Project Management.
Therefore, we have two search strings as follows.

• (agile OR “agile method” OR “agile development” OR “agile project” OR
“agile process” OR “agile practice” OR Scrum) AND (“software process
improvement” OR CMMI)

• (agile OR “agile method” OR “agile development” OR “agile project” OR
“agile process” OR “agile practice” OR Scrum) AND (“traditional project
management” OR “plan-based” OR “plan-driven” OR disciplined OR
PMBOK)

57

3.2.2 Inclusion and Exclusion Decisions

We searched for experience reports, theoretical papers, and empirical papers. To
include a paper in this review, the paper must have been peer reviewed, must have been
available online, must have been given permissions to access, must have been written in
English, and must have reported on either the integration of Agile and SPI or the integration
of Agile and Traditional Project Management. Excluded from the search were editorials,
prefaces, news, summaries of tutorials, panels, comments, and poster sessions. Moreover, we
include only one of the papers that have the same or continuous stories but appeared in
different publications. All the papers that clearly did match the inclusion criteria were
excluded. This search strategy resulted in a total of 3,730 papers in the first stage. Figure 3-1
presents the systematic review process and the number of papers identified at each stage.

Identify relevant papers in
the included electronic databases

Exclude papers on
the basis of titles

Exclude papers on
the basis of abstracts

Obtain primary papers

n = 3,730

n = 75

n = 36

n = 19

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3-1. Stages of the primary paper selection process

In the second stage, the authors went through the titles of all obtained papers from the
first stage to determine their relevance to the systematic review. At this stage, papers with
titles that clearly indicated that the papers were outside the scope of this systematic review
were excluded. Nevertheless, titles may not always represent what a paper is about. At this
stage, there are 75 relevant papers. At stage 3, papers were excluded if their focus was clearly
not on either agile software development integration with software process improvement or
with traditional project management. At this stage, 19 papers were left for stage 4, enlisted in
the next section.

3.2.3 Final Selection

There are three main screening criteria used to ensure the papers address our research
topic as follows.

1. Does the paper address software process improvement or project management
in agile software development?

2. Is there a clear statement of the research aims?
3. Is there a clear statement of contributions or findings?

58

These three criteria provided a measure of the extent to which we could be confident
that a selected paper could make a valuable contribution to the review. Each criterion was
graded on a dichotomous (“yes” or “no”) scale. We finally selected 19 papers out of the 36
papers by performing the quality assessment based on the three screening criteria. We
accepted a paper graded “yes” on all the three criteria.

3.2.4 Data Extraction and Synthesis

During this stage, a predefined data extraction form was used to extract data from
each of the papers in this review. The following data was extracted from each paper:
publication identification, electronic database, paper type and name (i.e., journal or
conference), title, authors, year, abstract, type of study (i.e., theoretical papers, empirical
papers, and experience reports), research aims, research methodology, and main research
results (i.e., proposed approaches, methods used, lessons learned, recommendations, and
limitations). This form helped to extract all needed details. Moreover, we synthesized the data
by identifying themes emanating from the contributions or findings of each of the reviewed
papers. There are two main themes: (i) agile software development integration with SPI and
(ii) agile software development integration with traditional project management. The
descriptions of this synthesis are presented in the next section.

3.2.5 Threats to Validity

The main threats to validity of this study are publication bias, selection bias, and
possible inaccuracy in data extraction which are described as follows.

Publication Bias: Only five electronic databases were selected for this review. This
limits the possibility to generalize the results. However, the electronic databases we selected
contain peer reviewed publications in the field of information technology, including
information systems, software engineering, and software process improvement. Some also
include the most highly cited publications in the field. As major publications in the field are
included in the review, this threat should be limited.

Selection Bias: The selection of papers from the five electronic databases is also a
treat to the validity. First, the paper included in this review must have been peer reviewed,
must have been available online, must have been given permissions to access, must have been
written in English, and must have reported on either the combination of Agile and SPI or the
combination of Agile and Traditional Project Management, based on our identified search
keywords. Therefore, some relevant papers within this review boundary, published or stored
outside our selected sources may be missed. As the papers included in this paper must have
been peer reviewed, this makes the selection suitable for answering our research questions
due to the obtained quality papers in the field. Both general search keywords (e.g., agile,
plan-based, and disciplined) and specific search keywords (e.g., Scrum, CMMI, and
PMBOK) were also used to search in both metadata (i.e., titles, abstracts, and indexing terms)
and full text. This helps improving the search results. Second, the inclusion criteria used to
include papers in this review are based on a reading of the titles and abstracts in the first three
steps of our primary paper selection process. This introduces a threat, as the titles and
abstracts may not reflect the actual contents of the papers. This treat was investigated, as
described in the sub-section “Inclusion and Exclusion Decision”, and found to be limited.

59

Possible Inaccuracy in Data Extraction: A potential threat to validity is the
subjective judgment used to include or exclude papers and extract data from the selected
papers. To limit this treat, we used three main criteria providing a measure of the extent to
which we could be confident that a selected paper could make a valuable contribution to the
review. We also used a predefined data extraction form to extract all needed details of each
selected paper, based on the research questions. Besides, the selected papers were classified
giving authors the benefit of the doubt. For instance, the selected papers were classified in
accordance with what is addressed in the selected papers. This is beneficial for the
subsequent analysis. The majority of the selected papers provide either theoretical
contributions with positive results of empirical evaluations or empirical contributions that are
highly relevant to the objectives of this review. Therefore, the accuracy bias should be
limited.

3.3 Results

3.3.1 Overview of the Reviewed Papers

Considering publication years in Table 3-2, the results show that the trend of
integrating agile with disciplined methods is increasing since 2008. It can be argued that the
publication trend may be an indicator of researchers’ and practitioners’ growing interest in
this matter.

Table 3-2. Reviewed papers by year interval

Year 2004 2005 2006 2007 2008 2009 2010 Total
No. of papers 1 1 1 2 5 3 6 19
Percent 5.26 5.26 5.26 10.53 26.32 15.79 31.58 100

Considering publication types in Table 3-3, the results show a similar degree of
theoretical and empirical (including empirical papers and experience reports) evidence. It can
be argued that there is a high likelihood to build a workable theoretical solution of agile-and-
disciplined-method integration for real-life practice.

Table 3-3. Types of the reviewed papers

Type of Papers Theoretical Paper Empirical Paper Experience Report Total
No. of Papers 10 3 6 19
Percent 52.63 15.79 31.58 100

Considering research purposes of the reviewed papers, Table 3-4 summaries standard
methods used in those papers which can be grouped into three categories: software process
improvement methods, agile software development methods, and traditional project
management methods. Almost all of those papers have used more than one standard method.
In each category, the results emphasize that CMMI, Scrum, and PMBOK have gained the

60

most recognition in the area of agility and discipline integration. However, almost all
disciplined methods (i.e., Automotive SPICE, CMM/CMMI, IDEAL (Initiating, Diagnosing,
Establishing, Acting, and Leveraging), ISO/IEC 15504, MSF (Microsoft Solutions
Framework) for CMMI Process Improvement, PSP (Personal Software Process), and QIP
(Quality Improvement Paradigm)) have been used to integrate with agile processes for an SPI
purpose more than to enhance project management in agile software development. This
implies that more theoretical and empirical evidence on the latter purpose is still required.

Table 3-4. Standard methods used in the reviewed papers

Software Process Improvement Agile Software Development Traditional Project Management
Methods No. of Papers Methods No. of Papers Methods No. of Papers

Automotive
SPICE

1 5.56% Lean
Software
Development

1 5.88% PMBOK 1 100%

CMM/CMMI 11 61.11% MSF for
Agile
Software
Development

2 11.76% - - -

IDEAL 1 5.56% RUP 1 5.88% - - -
ISO/IEC
15504

1 5.56% Scrum 7 41.18% -

MSF for
CMMI
Process
Improvement

2 11.11% TDD 1 5.88% - - -

PSP 1 5.56% XP 5 29.41% - - -
QIP 1 5.56% - - - - - -
Total 18 100% Total 17 100% Total 2 100%

3.3.2 Findings about Research Questions

The descriptions of the reviewed papers can be summarized into Table 3-5.

Table 3-5. Descriptions of the reviewed papers

Id Paper Type Description
RP1 Anderson

[132]
Experience As agile developers often sceptically perceive formal process

improvement initiatives as management generated inefficiency, this
paper has thus adopted teachings of W. Edwards Deming and
stretched the Microsoft Solutions Framework (MSF) for agile
methods to fit the requirements for CMMI level 3. The result is a
process template which is larger than a typical agile process with
slightly more formality; however, it is lightweight comparing to
CMMI. This paper also shows that it is possible to develop a truly
agile full life cycle process which meets the requirements for all 5
CMMI maturity levels.

RP2 Baker [133] Experience This paper reports experience on DTE Energy’s agile IT
organization’s journey passing two SCAMPI (Standard CMMI

61

Id Paper Type Description
Appraisal method for Process Improvement) appraisals towards
formal CMMI Level 3 accreditation. This paper also offers three
suggestions on embracing a formal process framework that are
applicable to any organization. First, it is important to clarify why to
seek to improve software processes at all, and why to leverage a
framework like the CMMI. The case for change is vital and a shared
vision of the future will clarify each decision. Second, it is to clarify
who is doing the process improvements. Third, it is to clarify how to
go about developing, deploying, and maintaining process
improvements.

RP3 Callegari and
Bastos [8]

Theoretical This paper presents a model for software project management based
on PMBOK and its integration with RUP. This is in order to provide
an adequate combination of project management and software
development processes for developing a software product with
quality.

RP4 Cohan and
Glazer [134]

Experience This experience report describes steps to improve agile development
disciplines, which are deemed to lead to being appraised at CMMI
maturity level 5, using an SCAMPI method for measurement.

RP5 Diaz et al. [22] Experience

This paper reports empirical results that confirm the theoretical
comparisons between Scrum and CMMI. The results show that
process areas related to CMMI-DEV (CMMI for Development) level
2 were largely covered. In other words, Scrum provides criteria to
identify a minimum set of good practices to achieve CMMI maturity
level 2.

RP6 Jakobsen and
Johnson [23]

Experience This paper reports experience on how the generic practices from
CMMI can be used to institutionalize Scrum. This paper also
recommends twelve activities to extend agile methods inspired from
an understanding of the mandatory goals and expected practices for
CMMI levels 2 and 3.

RP7 Jakobsen and
Sutherland
[100]

Experience This paper evidences that projects integrating Scrum with CMMI
can bring a more powerful combination of adaptability with
predictability than either one alone.

RP8 Kähkönen and
Abrahamsson
[135]

Empirical This paper explores an empirical case where a project using XP was
assessed using CMMI. The analysis covers specific goals and
practices corresponding to CMMI maturity level 2 process areas
(excluding Supplier Agreement Management) and use the Nokia
CMMI-Based Process Assessment method (based on SCAMPI) to
assess software processes. The results reveal that it is possible to use
CMMI for assessing and improving agile processes to achieve
maturity level 2. However, CMMI does not always support
interpretations in an agile context.

RP9 Khan et al.
[136]

Theoretical This paper present mapping between XP practices and CMM key
process practices. Although the results show that XP is partially
compatible with CMM, the paper suggests that small-and-mid-sized
companies should go for adaptation of agile methods for excellent
performance on the footsteps of CMMI. Those companies can move
towards CMM after agile maturity.

RP10 Leithiser and
Hamilton
[137]

Theoretical This paper proposes a tool-based approach, using the Team
Foundation Server (TFS) product to leverage the Microsoft Solutions
Framework (MSF), support both CMMI and agile as process
templates, and providing tools around those templates to automate
the use of either approaches. The paper also presents a flowchart to
assist in formulating the decision to utilize the CMMI template and a
matrix that outlines the key factors involved in the decision (i.e.,
traceability, quick return of investment, auditing, resource shortage,

62

Id Paper Type Description
time shortage, requirements known in advance). Similarly to many
researchers’ viewpoints, CMMI provides “what” while agile
methods provide “how”.

RP11 Marçal et al.
[24]

Theoretical This paper presents mapping between CMMI and Scrum, showing
major gaps between them and identifying how to adopt
complementary practices to make these two approaches more
compliant. The results reveal that few adaptations on Scrum mainly
related to agile risk management, issues management and estimate
methods make it much more compliant with CMMI project
management process areas. The results are useful for organizations
that have CMMI plan-driven processes and are planning to improve
the agility of processes.

RP12 McCaffery et
al. [138]

Theoretical This paper describes a new low-overhead assessment method
designed specifically for Small-to-Medium-sized Enterprises
(SMEs) wishing to be automotive software suppliers. This
assessment method integrates CMMI process areas, Automotive
SPICE processes, and several agile practices. The assessment
method consists of eight stages: developing assessment schedules
and receiving site briefing, conducting overview briefing, analyzing
key documents, interviewing key staff members, generating
assessment results and creating the findings report, delivering the
findings report, developing an SPI path, and re-assessing the SPI
path and produce a final report.

RP13 Omran [139] Theoretical This paper presents mapping between XP practices and CMMI key
process areas. Albeit the results show that XP is partially compatible
with CMMI, this paper suggests that small-and-mid-sized companies
can adopt agile methods whilst following the CMMI standard to gain
new additional competence values in their environments.

RP14 Petersen and
Wohlin [140]

Theoretical This paper proposes a Software Process Improvement through lean
Measurement (SPI-LEAM) method aiming at enabling continuous
software process improvement leading to a lean software process;
and avoiding problems related to resistance of change by improving
in a continuous manner. The method combines the Quality
Improvement Paradigm (QIP) with lean measurements and consists
of six steps: characterizing the current project, setting quantifiable
goals and measurements, choosing process models and
measurements, executing processes and collecting and validating
data, analyzing data and recommending improvements, and
packaging and storing experiences made. However, main
contribution of this paper is to present a solution to the second step
for lean software development.

RP15 Pino et al.
[141]

Theoretical This paper proposes a “Lightweight process to incorporate
improvements”, using Scrum and aiming to give guidelines for
supporting the management and performance of the incorporation of
improvement opportunities within software processes. The proposed
process aims to improve the organization’s processes as appropriate
to its particular business objectives and to assist it in carrying out its
SPI by focusing on small companies. It is constructed to cover four
main principles: early and ongoing achievement of improvements,
continuous and rapid process diagnosis, elemental process
measurement, and effective group collaboration and communication
continuous learning. It provides the relationship between its entities
and Scrum elements and defines a guide in many steps using Scrum,
i.e., planning the iteration, designing the improvement case,
executing the improvement sprint, presenting improved process, and
presenting next improvement iteration.

63

Id Paper Type Description
RP16 Rong et al.

[142]
Theoretical This paper proposes an integrated process model, Scrum-PSP,

combining the strengths of each. The results of its verification in a
real project environment where typical agile processes are favored
(e.g., rapid development and fast delivery) show that manageability
and predictability which traditional plan-driven processes usually
benefit can also be achieved. Scrum-PSP is designed as two layers.
First, the lifecycle layer describes the main process framework
consisting of several iterations that turn customer requirements into
final products. Second, the iteration layer describes five steps within
an iteration. These are launch/re-launch, plan, requirement and
design, construction, and iteration post-mortem.

RP17 Salo and
Abrahamsson
[143]

Empirical This paper proposes an iterative improvement process for conducting
SPI within agile teams for increasing the ability of software
developers to improve the development process bases on their
experiences and context knowledge. The iterative improvement
process consists of six steps: preparation, experience collection,
planning of improvement actions, piloting, follow-up and validation,
and storing.

RP18 Williams et al.
[144]

Empirical This paper proposes a survey-based assessment tool, Comparative
Agility (CA), to assist organizations in determining their relative
agility compared with other teams who respond to CA. The CA
approach assesses agility on seven dimensions: teamwork;
requirements; planning; technical practices; quality; culture; and
knowledge creating. Each dimension is made up of several
characteristics and each characteristic has approximately four
statements that are assessed by the respondents. From the results,
industry trends indicate the highest adoption of agile practices occur
in the areas of embracing emergent requirements and creating
knowledge throughout the iteration and release; whilst the lowest
industry adoption is relative to using technical practices and focusing
on quality throughout all iterations. The results show that work
progress of teams that use only Scrum practices eventually slows
because the team has not paid enough attention to the quality of the
code produced during each iteration.

RP19 Zaki and
Moawad [145]

Theoretical This paper proposes a new hybrid model that merges agile with
traditional methods to overcome their shortcomings and make use of
their strengths. The model consists of six phases: (1) Inception, to set
up a project with five main activities which are start-up activities,
aspects evaluation activities, gathering requirements and building
backlogs, architectural activities, and conducting a prototype; (2)
Planning, to set up the project boundaries; (3) Iterative Assessment,
to customize agile and traditional processes; (4) Iterative Building, to
build the product; (5) Production, to deliver the product; and (6)
Closure, to close the project when there are no longer new
requirements for implementation, when the product is not delivering
the desired outcomes, or when the product is too expensive for
further development.

64

A. Which existing research results on agile software development integration with
software process improvement and with traditional project management are available
that we can build on?

Answering the RQ3-1 “Which existing research results on agile software development
integration with software process improvement and with traditional project management are
available that we can build on?”, we separate the answer into two themes: (i) agile software
development integration with SPI and (ii) agile software development integration with
traditional project management. Focusing on the first theme of agile software development
integration with SPI, based on the review results there are three proposed directions to
improve software processes in agile software development as presented in Table 3-6.

Table 3-6. Proposed directions to improve software processes in agile software development

Research Direction No. of Papers Percent
1. Providing a possible way to combine SPI standard processes with agile
processes

13 72.22

2. Proposing a new software improvement process in agile software development 2 11.11
3. Proposing a software process assessment approach 3 16.67
Total 18 100

Table 3-6 shows that a number of the reviewed papers provide guidelines to combine
SPI standard processes with agile processes, especially CMMI with Scrum. Focusing on
compatibility of CMMI and Scrum, the results on a consolidated view of the coverage of
CMMI project management process areas by Scrum practices reported in Marçal et al. [24]
reveal that 32.8% of specific practices of CMMI project management process areas are
satisfied, 16.4% are partially satisfied, and 50.8% are unsatisfied. This shows that Scrum is
not fully compliant with CMMI project management process areas, mainly related to supplier
agreement management, risk management, and quantitative project management process
areas. Besides, in relation to risk management experience, 23.2% of organizations have little
or no experience. From the ones that have it, there are 34% based their processes on
PMBOK, 21% on CMMI, 24% do not use any model, and 21% do not manage risks. This
emphasizes that most of them follow a plan-based method (i.e. PMBOK or CMMI) for risk
management. More specifically, the results show that CMMI project management process
areas corresponding to maturity level 2 have 43.8% of its specific practices satisfied by
Scrum, 21.9% are partially satisfied, and 34.4% are unsatisfied. Those corresponding to
maturity level 3 have 28.6% of its specific practices satisfied by Scrum, 14.3% are partially
satisfied, and 57.1% are unsatisfied. Finally, those corresponding to maturity level 4 are
100% unsatisfied by Scrum. Supporting these results, Diaz et al. [22] and Jakobsen and
Sutherland [100] show positive results of blending CMMI levels 2 and 5 to Scrum practices,
respectively. This helps us to design our CMMI-based model emphasizing on four maturity
levels (i.e., Level 1 “Initial”, Level 2 “Managed”, Level 3 “Defined”, and Level 5
“Optimizing”).

Moreover, McCaffery et al. [138] state that SPI provides that first step to move
towards software quality and assessments are a critical part of this process, whilst Khan et al.
[136] suggest that an agile method should be adopted as prerequisite to CMM/CMMI. In
other words, an organization wishing to adopt CMM should start agile software development

65

at the beginning. This is because CMM is expensive to implement due to documentation,
training, and so forth; an organization should thus commence with agile software
development for cost reduction and rapid software project completion. From these points of
views, it leads us to conduct an assessment approach to guide practitioners to improve their
software process and prepare for achieving CMMI-based process improvements.

Considering three assessment methods of the reviewed papers, they have different
purposes. One has been proposed by McCaffery et al. [138] to provide what process areas are
most applicable. One has been proposed by Petersen and Wohlin [140] to assess the
performance of the development process and take continuous actions. Their lean
measurement method consists of two parts. The first part is concerned with setting
quantifiable goals and measuring and analyzing individual inventories (i.e., requirements, test
cases, change requests, faults and failures, and fault-slip-through). The second part is
concerned with the analysis of the situation aiming at determining the causes for high
inventory level and quality problems. Another one has been proposed by Williams et al. [144]
as a tool used by individuals and organizations needing to compare their own agility to that of
others. This tool assesses agility on seven dimensions: Teamwork, Requirements, Planning,
Technical Practices, Quality, Culture, and Knowledge Creating. With our aim of improving
agile processes, our assessment approach is thus intended to provide what agile processes
need improvement.

Like software, software processes need to be evolved lest they become inefficient or
obsolete. It is essential to maintain software processes so that their maturity can be improved.
The results in Table 3-6 show that there are two possible ways to maintain and improve
software processes. First, like a traditional software project, project retrospectives have been
one way to yield process knowledge from the finished projects, so that SPI can be performed
on future projects. Second, SPI can be conducted iteratively throughout an agile software
project. From this view, it would be better to raise a better degree of software process and
product quality by combining agile and traditional SPI ways together.

Focusing on the second theme of agile software development integration with
traditional project management, Callegari and Bastos [8] propose an integrated project
management and software development model based on PMBOK and RUP. This integrated
model shows a great level of compatibility and provides us with a direction to combine
PMBOK with Scrum. Zaki and Moawad [145] propose a new hybrid agile-disciplined
software process model aiming to overcome agile and traditional methods’ shortcomings and
make use of their strengths. The model consists of six phases starting from inception,
planning, iterative assessment, iterative building, production, and closure. Based on the above
models, the results reveal that traditional project management processes is highly compatible
with agile processes and important in the planning stage of software development.
Practitioners can select and customize project management processes (especially in the areas
of cost, risk, and procurement management) to fulfill agile weaknesses, when applicable. For
a software process customization, practitioners should iteratively evaluate and establish
feasible solutions to deal with any occurring issues.

66

B. What are some interesting aspects that existing research results on agile software
development integration with software process improvement and with traditional
project management do not yet cover?

Answering the RQ3-2 “What are some interesting aspects that existing research
results on agile software development integration with software process improvement and
with traditional project management do not yet cover?”, the following three interesting
aspects are found. First, most of the reviewed papers propose SPI approaches by mapping
software processes related to CMMI Key Process Areas (KPAs) with agile practices,
especially Scrum. Albeit there is a consensus on a high compatibility to customize plan-
driven processes into agile software development and a number of studies pay attention to
investigating influential factors impacting successful agile software development (as
presented in Chapter 2), the findings of this review show that no study emphasizes on dealing
with those influential factors in order to get agile software processes continuously improved
and become more mature.

Possible Solution: In the CMMI-based SPI area and found that success in a software
process can be viewed in terms of KPAs and CSFs. A number of studies argue that KPA
approaches should improve the organization’s capabilities to manage, develop, and deliver
quality software products [107-111]. On the contrary, a multitude of studies concur that a
successful software process should be viewed in terms of CSFs rather than KPAs. These
studies emphasize the importance of the CSF approach in SPI and the use of the CSF
approach rather than the KPA approach [20, 112-115]. They have also confirmed the value of
the CSF approach in the field of information technology [20, 113-119]. Considering SPI
CSFs identified in existing studies, albeit a deep comparison analysis of existing SPI CSFs
has not been performed in this chapter, the findings reveal that there is a similarity between
SPI CSFs identified in existing studies and our CSFs identified in Table 2-4 in Chapter 2,
e.g., management commitment, training, staff involvement, and experienced staff (team
members’ capability) [114, 146-149]. Moreover, many studies cite the “reviews” factor that
has a major impact on successful SPI [114, 146-148] and some of these studies also cite that
it is only one factors corresponding to the top CMMI-based maturity level [20, 114, 115, 150-
152]. The “reviews” factor is hence considered as an additional CSF of this study. From this
view, it emphasizes that there is a need to develop a mechanism that could assist practitioners
in dealing with agile software development problems and simultaneously get higher maturity
with a set of specific agile practices, by extension the application of the CSF concept for SPI.

Second, in relation to agile software development integration with traditional project
management, the main objective of the relevant, reviewed papers is to overcome weaknesses
of both agile and traditional project management methods. However, the weaknesses stated in
the reviewed papers are addressed as generic weaknesses.

Possible Solution: Particularly to Scrum and PMBOK integration, it is necessary to
understand Scrum weaknesses. We performed an additional review on this matter and found
as follows.

1. Scrum neither specifies configuration management which is crucial for correct
individual work and continuous integration [153-155] nor supports procurement
management [98].

2. Companies with a large customer base, especially in the e-service sector, need
both rapid value and high quality assurance. Using either agile or traditional
methods cannot meet these needs [156]. This implies that Scrum does not highly
support high quality assurance software.

67

3. Customer needs to have a clear sense of the product’s direction; if not, the final
product can significantly differ from what is expected [9].

4. Unless there is a definite end date, Scrum is one of the leading causes of scope
creep [157].

5. Scrum has relatively low visibility over the project outside sprints which means
that it is very difficult to estimate how long a project will take or how much it will
cost [9]. In other words, Scrum mentions cost estimation during an iterative
planning. It might be a problem if cost is a constraint for the whole project [157].

6. The risk involved in the software project is significant if customers cannot
intervene in the software project in a relatively long period [9]. On the other hand,
the software project may be never complete or fail if team members’ commitment
does not exist [157].

7. Scrum requires experienced team members. Hence, the software project may not
be completed in time if team members are novices [157].

8. With agile, there is no project milestone. This may somehow lead to a problem for
large agile projects [154]. McMahon [154] suggests that a milestone event should
be established as a checkpoint to ensure collaboration is really happening.

9. Early and continuous delivery of valuable software can benefit small software
projects [9, 156, 157], but over-focus on early results especially in large projects
can lead to big trouble when the architecture does not scale up [156].

10. Scrum neither clearly details unit and acceptance tests nor explicitly discusses
code styles (e.g., clean and simple), technology environments (e.g., quick
feedback required), physical environments (e.g., co-located and distributed
teams), and business cultures (e.g., collaborative and cooperative) [6, 155].

Coping with Scrum weaknesses in managerial aspects, PMBOK is more likely to be
of assistance. However, technical software processes in Scrum are still missing. We thus need
to search for possible agile practices to fulfill and overcome technical problems. This gap is
also related to the first gap in which a set of specific agile practices is required to define and
design for success in software development.

Third, although the findings reveal that there is a great possibility to apply PMBOK
for risk management in agile software development, and a great compatibility between
PMBOK and Scrum methods; all of the reviewed papers neither specifically offer an
integrated PMBOK-Scrum approach nor apply it in real-life software projects.

Possible Solutions: An integrated PMBOK and Scrum model needs to be developed
and tested to ensure its usability and practicality. In the model, integrated PMBOK-Scrum
processes are performed in the Scrum way.

These three interesting aspects serve as the identified gaps that are worth addressing
from a research point of view for this study. These help provide more details on our
conceptual software process maintenance framework.

68

C. How should a software process maintenance framework be constructed? Is a
software process maintenance framework workable? What does the test of a software
process maintenance framework in a real-life situation contribute?

The above answers to the RQ3-1 and RQ3-2 help answer how to construct software
process maintenance framework which in this context means a framework for software
process development and improvement. In the framework, there are two core components: an
SDM model as a CMMI-based software process improvement component and an integrated
PMBOK-Scrum model as an integrated software process development component.

For the SDM model, in order to provide practitioners a systematic structured
mechanism to assess and improve software processes to get into a particular maturity level,
the staged representation of CMMI and CSF approaches are employed. At this stage of this
study, four CMMI maturity levels of “Initial”, “Managed”, “Defined”, and “Optimizing” are
adopted for a software development maturity model of this study. The main reason not to
replicate the CMMI maturity level-4 “Quantitatively Managed” is that the two key CMMI
practices of (1) establishment and maintenance of quantitative objectives for the process and
(2) stabilization of the performance of one or more sub-processes to determine its ability to
achieve are not compatible with agile best practices [158]. Additionally, there is no success
factor cited in literature and empirical studies that directly relates to this level [20, 114, 115].
Consequently, the maturity levels 1 through 4 of the model are “Initial”, “Managed”,
“Defined”, and “Optimizing”, respectively.

The 13 identified CSFs (including 12 CSF affecting the successful agile software
development identified in Chapter 2 and the additional factor of “reviews” described above)
are categorized into their corresponding maturity levels. There is no category for the level-1
“Initial” since this level does not have to be achieved due to its chaotic characteristic.
Similarly, CMMI does not have process areas for this level. The level-2 “Managed” contains
the identified CSFs supporting project management activities which are the foundation for all
subsequent levels. This level contains management commitment, project management
process, project type, training support, and user involvement. The level-3 “Defined” contains
the identified CSFs that support to design systematic structures for SPI implementation (i.e.,
agile software development process, appropriate methods, techniques, and tools, data quality,
organizational environment, team capability, team environment, and team size). The level-4
“optimizing” contains the “reviews” factor to support continuous SPI activities. We
considered CSFs’ categories regarding SPI implementation process of prior empirical studies
[20, 114, 115] in order to have more confidence in the CSF categorization. In order to guide
practitioners how to implement or improve the identified CSFs, agile-oriented practices need
to be designed and mapped with their related influential CSFs. Figure 3-2 presents the
proposed SDM model by giving details on the CMMI-based software process improvement
component.

69

Figure 3-2. The proposed software development maturity model

For the integrated PMBOK-Scrum model, the Scrum and PMBOK processes are
mapped together for iterative initiating, planning, executing, controlling, and closing. Figure
3-3 presents the proposed integrated PMBOK-Scrum model by giving details on the
integrated PMBOK-Scrum process development component.

70

Figure 3-3. The proposed integrated PMBOK-Scrum model

Is a software process maintenance framework workable? What does the test of a
software process maintenance framework in a real-life situation contribute? There are a
number of models and theories of intentions to use an Information Technology/Information
System (IT/IS) or an innovation that can be structured into three categories: adoption,
acceptance, and innovation [159]. Adoption models and theories have been used to predict
the decision to adopt an IT/IS or an innovation. Those deemed to be relevant to adoption are,
e.g., Technology Organization Environment Framework by Tornatzky and Fleischer [160], IS
Success Model by DeLone and McLean [161], and Fit-Viability Model by Liang et al. [162].
Acceptance models and theories have been used to measure the decision to accept and make
use of an IT/IS or an innovation. Those deemed relevant to acceptance are, e.g., Theory of
Reasoned Action (TRA) by Fishbein and Ajzen [163], Theory of Planned Behavior (TPB) by
Ajzen [164], Technology Acceptance Model (TAM) by Davis [165], Model of Personal
Computer Utilization (MPCU) by Thompson et al. [166], and Unified Theory of Acceptance
and Use of Technology (UTAUT) by Venkatesh et al. [167]. Innovation models and theories
have been used to explain the diffusion of an IT/IS or an innovation. Those deemed relevant
to innovation are, e.g., Diffusion of Innovations by Rogers [168] and Perceived
Characteristics of Innovating by Moore and Benbasat [169].

71

To measure the success and acceptance of the software process maintenance
framework, acceptance models are deemed more appropriate than adoption models. As
claimed by many researchers that the introduction of an IT/IS or an innovation is influenced
by factors both controllable and uncontrollable by the organization, acceptance is thus
deemed to be a prerequisite to diffusion [170]. Therefore, acceptance models are deemed for
this study. Brief descriptions of the above acceptance models are presented as follows.

TRA, introduced by Fishbein and Ajzen [163], is one of the most fundamental and
influential theories and used to predict behavioral intention and also explain technology
acceptance [159].

TPB, introduced by Ajzen [164, 171], extends TRA and posits three conceptually
independent determinants of intention which are (1) attitude, referring to an individual’s
degree of favorableness or unfavorableness towards the behavior in question; (2) subjective
norm, referring to the perceived social pressure to perform or not to perform the behavior;
and (3) perceived behavioral control, referring to the perceived ease or difficulty of
performing the behavior.

TAM, introduced by Davis [165], is an extension of TRA and posits that success,
acceptance, and usage of an IT/IS or an innovation are jointly determined by two factors.
First, Perceived Usefulness (PU) refers to the degree to which a person believes that using a
particular IT/IS would enhance his or her job performance. Second, Perceived Ease of Use
(PEOU) refers the degree to which a person believes that using a particular IT/IS would be
free of effort. However, PU was considered to significantly influence usage and user
acceptance more than ease of use. TAM has been applied in abundant studies testing user
acceptance of IT/IS, e.g., word processors, spreadsheet applications, e-mail, web browser,
telemedicine, and websites [172]. Later, an extended version of TAM, called TAM2 [173],
was introduced by subjective norm as an additional factor exerting a significant direct effect
on usage intentions over and above PU and PEOU in mandatory settings. It refers the degree
to which people think that others who are important to them think they should or should not
perform the behavior in question.

MPCU, introduced by Thompson et al. [166], is based on the theory of interpersonal
behavior and used to predict the way of usage rather than the decision to use [159]. It
comprises social factors, affect towards use, complexity, job-fit, long-term consequences, and
facilitating conditions. However, those factors are deemed suitable to predict individual
acceptance [167].

UTAUT, introduced by Venkatesh et al. [167], integrate elements across the eight
user acceptance models including TRA, TPB, TAM, the motivational model, the model
combining TAM and TPB, MPCU, the diffusion of innovations theory, and the social
cognitive theory. Those elements were formulated with four core determinants of intention
and usage (e.g., performance expectancy, effort expectancy, social influence, and facilitating
conditions), and up to four moderators of key relationships (e.g., gender, age, experience, and
voluntariness of use). It is used to assess the likelihood of success for new IT introductions
and help understand the drivers of acceptance in order to proactively design interventions,
e.g., training and marketing.

Compared to the above models, TAM is a simple and very successful IT/IS
acceptance model in terms of studying IT/IS success, acceptance, and usage intention [174].
We therefore consider original TAM for this study to measure whether or not our software
process maintenance framework is perceived as workable and acceptable. TAM’s PU and
PEOU are used as key measurement variables of this study. To do so, it is therefore important

72

to carry out the empirical test of the proposed software process maintenance framework in
real-life software development. Based on the empirical test, it should contribute to what parts
or elements of the framework are working and are not working, what changes are necessary
for adaptation of the framework, what challenges occurring during the application of the
framework that should be concerned, how practitioners transfer new knowledge into existing
software processes, and what requirements are necessary for successful adaptation of the
framework. For the next steps, the proposed software process maintenance framework is
constructed in Chapter 4. Its empirical test is performed in Chapter 5.

3.4 Summary
In this chapter, a gap analysis for the sound development of the proposed software

process maintenance framework was performed through a systematic literature review in the
field of agile software development integration with SPI and with traditional project
management.

Focusing on the first theme of agile software development integration with SPI, the
findings reveal two main interesting research results that we can build on. First, most of the
reviewed papers propose SPI mechanisms by mapping CMMI key processes with agile
practices, especially Scrum. According to the CMMI and Scrum, the findings show the
positive theoretical and empirical results of blending CMMI levels 2, 3, and 5 to Scrum
practices. This helps us to design the SDM model, emphasizing on these four maturity levels.
Second, some researchers suggest that an agile method should be adopted as prerequisite to
CMM/CMMI. As the first step to move towards SPI is software process assessment, this
leads us to conduct an assessment approach to guide practitioners to improve their agile
software process and prepare for achieving CMMI-based process improvements in future.
From this point of view, we found two interesting aspects that those research results do not
cover yet. First, albeit there is a consensus on a high compatibility to blend plan-driven Key
Process Areas (KPA) into agile software development and a number of studies pay attention
to investigating influential factors impacting the successful agile software development, the
findings show that no study emphasizes on dealing with those influential factors in order to
get agile software processes continuously improved and become more mature. Second, no
study provides guidance to improve Scrum processes by coping with Scrum weaknesses in
both managerial and technical aspects. Bridging these gaps, we thus need to search for agile-
oriented practices to fulfill managerial and technical weaknesses. Those practices should also
be mapped with the related influential factors in order to guide practitioners on the “what” to
improve.

Focusing on the second theme of agile software development integration with
traditional project management, the results reveal that traditional project management
processes is highly compatible with agile processes and important in the planning stage of
software development. Practitioners can select and customize project management processes
(especially in the areas of cost, risk, and procurement management) to fulfill agile
weaknesses, when applicable. For a software process customization, practitioners should
iteratively evaluate and establish feasible solutions to deal with any occurring issues.
Although the findings reveal that there is a great possibility to apply PMBOK in agile
software development (i.e., Scrum software development in particular), all of the reviewed
papers neither specifically offer a theoretical integrated PMBOK-Scrum model nor apply it in
real-life software projects. Bridging this gap, we thus need to develop a theoretical integrated
PMBOK-Scrum model.

73

All of the findings above help suggest on how to construct a software process
maintenance framework, meaning a framework for software process development and
improvement. The framework consists of two core components: the SDM model and the
integrated PMBOK-Scrum model. First, the SDM model provides practitioners a systematic
structured mechanism to assess and improve software processes to get into a particular
maturity level, based on the staged representation of CMMI and CSF approaches. In the
model, four CMMI maturity levels of “Initial”, “Managed”, “Defined”, and “Optimizing” are
this stage adopted. The main reason not to replicate the CMMI maturity level-4
“Quantitatively Managed” is that the two key CMMI practices of (1) establishment and
maintenance of quantitative objectives for the process and (2) stabilization of the
performance of one or more sub-processes to determine its ability to achieve are not
compatible with agile practices. Consequently, the maturity levels 1 though 4 of the model
are “Initial”, “Managed”, “Defined”, and “Optimizing”, respectively. To guide how to
achieve a certain maturity level, we have categorized the 13 identified CSFs (including the 12
CSFs affecting the successful agile software development identified in Chapter 2 and the
additional CSF of “reviews” identified in this chapter) into their corresponding maturity
levels. This CSF categorization is based on CMMI objectives at each maturity level. To guide
how to implement and improve the 13 identified CSFs, we have to design a list of agile
practices under each CSF. Therefore, the results of the SDM model should guide practitioners
on their current software development maturity level and weak practices that demand
immediate improvement. Second, the integrated PMBOK-Scrum model provides guidance on
how to implement with an adequate set of project management and software development
processes. In the model, the PMBOK and Scrum processes are mapped together for iterative
initiating, planning, executing, controlling, and closing. Therefore, the resulting framework is
expected to provide guidance on the “what” and the “how” to improve and implement.

It is important to perform an empirical test to check whether or not the software
process maintenance framework is perceived as workable and acceptable in real-life practice.
As TAM is a very successful IT/IS acceptance model, TAM’s PU and PEOU are used as key
measurement variables to measure the usability and practicality of the framework. The
empirical test is expected to contribute to what parts or elements of the framework are
working and are not working, what changes are necessary for adaptation of the framework,
what challenges occurring during the application of the framework should be addressed, how
practitioners transfer new knowledge into their existing software processes, and what
requirements are necessary for successful adaptation of the framework. For the next steps, the
proposed software process maintenance framework is constructed in Chapter 4. Its empirical
test is performed in Chapter 5.

74

75

Chapter 4

The Software Process Maintenance Framework

Related Publication:
P3: Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2010, 'A Prototype for the
Support of Integrated Software Process Development and Improvement', in Papasratorn, B.,
Chutimaskul, W., Porkaew, K., and Vanijja, V. (eds), Proceedings of the 4th International
Conference on Advances in Information Technology, Springer Berlin Heidelberg, Bangkok,
Thailand, vol. 144, pp. 94-105.

An efficient and effective software development process is one of key success factors
for quality software development processes and products. Not only can the appropriate
development but also the continuous improvement of integrated project management and of
the agile software development process result in software development efficiency and
effectiveness. This chapter proposes a software process maintenance framework which
consists of two core components. They are a software development maturity model
advocating software process improvement and an integrated PMBOK-Scrum model offering
a comprehensive set of project management and software development processes. A
prototype tool supporting the use of the framework is also introduced.

4.1 Introduction

A software development process (hereafter referred to as “software process”) consists
of a set of practices in software development, together with management and organization
needed for building a software product [175]. It is viewed as a vehicle to deliver the quality
of software [14]. The software process should thus be efficient and effective. The software
development efficiency and effectiveness requires both the development and the continuous
improvement of integrated project management and of the software process [6, 176].
Capability Maturity Model Integration (CMMI) as a Software Process Improvement (SPI)
approach has proved that the effort put into this method can assist in producing high quality
software, reducing cost and time, and increasing productivity [114, 177-179]. Many studies
also emphasize the importance and the use of Critical Success Factors (CSFs) in SPI rather
than CMMI key process areas (e.g., CSFs help to extend the boundaries) [112-114, 180] and
have confirmed the values of the CSFs approach in the area of Information Technology (IT)
[113, 114]. Consequently, CMMI and CSFs are used as the basis for our proposed Software
Development Maturity (SDM) model. As little attention has been paid to how to assess and
implement CSFs in order to gain success in agile software projects, a literature survey and a
questionnaire-style information collection on SPI, agile practices, and data quality are
performed to investigate the following research questions.

RQ4-1: Are CSFs in software development, as identified in Table2-4 in Chapter 2,
similar to CSFs in SPI identified in the literature?

76

RQ4-2: What agile practices, as identified in the literature on agile software
development and data quality, should be implemented for successful software development?

RQ4-3: What agile practices, as identified in our questionnaire-style information
collection, should be implemented for successful software development?

RQ4-4: How should a software development maturity model (as one of two core
components of a software process maintenance framework) be constructed?

The answers to the RQ4-1 to the RQ4-4 provide advice in developing the SDM
model. Additionally, agile methods that combine teamwork with an intense focus on
effectiveness and maneuverability are ubiquitously applied for the rapid delivery of quality
software [4]. However, they are not efficient enough in the managerial sense. Issues such as
limited support for outsourcing, distributed development environments, developing with large
teams, and developing software demanding high quality control still remain uncovered [9,
11]. As this study aims at minimizing changes of the software process which software
development teams are already familiar with, the Project Management Body of Knowledge
(PMBOK) and Scrum are accordingly used as the basis for our proposed integrated PMBOK-
Scrum model. PMBOK is the broadest and most widely used standard reference of industry
best practices for project management [38]. Scrum is one of the most popular agile methods
[181]. However, Scrum itself has shortcomings. For example, Scrum neither specifies
configuration management which is crucial for correct individual work and continuous
integration [153-155] nor supports high assurance software and procurement management.
Early and continuous delivery of valuable software can benefit small projects, but over-focus
on early results especially in large projects can lead to big trouble when the architecture does
not scale up [156]. Scrum mentions cost estimation during an iterative planning. It might be a
problem if cost is a constraint for the whole project. Considering the software process
lifecycle perspective, Scrum neither details an acceptance test nor explicitly discusses a code
style (e.g., clean and simple), a physical environment (e.g., co-located and distributed teams),
and a business culture (e.g., collaborative and cooperative) [6, 155]. These shortcomings
could be reduced by plan-based methods (e.g., PMBOK and CMMI). This point of view leads
to the following research question.

RQ4-5: How should an integrated PMBOK-Scrum model (as one of two core
components of a software process maintenance framework) be constructed?

The SDM model and the integrated PMBOK-Scrum model are two core components
of the software process maintenance framework, which in this context means a framework for
software process development and improvement. Many organizations face either unfulfilled
promises about software quality gained from applying software development methods, or the
inability to manage the software process realized as their fundamental problem [182]. The
search for solutions to this barrier has continued for decades. Dealing with this barrier, the
software process maintenance framework could help by acting as guidance for quality
software development. Nonetheless, the framework might be too complex without the right
tools. Hence, we have created a prototype tool to support the use of framework called SPAD
(Software Process Assessment and Development). It helps an end user (e.g., a project
manager and a team leader) to get insight into the organization’s current maturity by
assessing the identified CSFs through the list of agile-oriented practices required by the SDM
model. Weak practices as a part of the obtained assessment results will be used to plan the
project together with the defined information (e.g., project, phase, and activity) required by
the integrated PMBOK-Scrum model. The defined process is then validated and prepared in
an eXtensible Markup Language (XML) file format for export to the organization’s project

77

planning tools. This chapter is organized as follows. The following section describes the
software process maintenance framework comprising the SDM model as an assessment
component and the integrated PMBOK-Scrum model as an integrated software process
planning component. The prototype tool supporting the framework is then presented.

4.2 The Software Process Maintenance Framework

In order to consistently deliver quality results, an efficient and effective software
process requires both the development and the continuous improvement of integrated project
management and of software development processes. This study hence proposes a software
process maintenance framework as depicted in Figure 4-1.

Delivers

A Software
Development

Maturity Model

An Integrated
PMBOK-Scrum

Model

Software
Development

Guides

The
obtained
maturity

level

Weak practices
that need

to be improved

Implemented software
processes (optional cycle)

Used by
CSFs

Software
Product

Perceived
Usefulness

Perceived
Ease of Use

Intention
to Use

Figure 4-1. The proposed software process maintenance framework

The framework has paid attention to the “what”, “how”, and “how good” to improve
and implement the software process through an SDM model and an integrated PMBOK-
Scrum model which are described in the following sub-sections.

4.2.1 The Software Development Maturity Model

At the starting point of this study, the goal was to identify CSFs in software
development [183]. In order to provide guidance in assessing and improving agile practices
through the identified CSFs, we have performed a literature survey and a questionnaire-style
information collection regarding SPI, agile software projects, and data quality. The
descriptions of these surveys are presented as follows.

78

4.2.1.1 Research Design

A literature survey and a questionnaire-style information collection of our pilot study
were performed in order to compare similarities and differences (i) between CSFs in SPI
identified in the literature and CSFs in software development in the Thai Internet Service
Providers identified in Table 2-4, Chapter 2 [2, 183] and (ii) between agile practices in
worldwide software projects identified in the literature and those in software projects in three
companies in Thailand, responding to the questionnaire-style information collection.

In relation to a literature survey, 55 sources including reports, case studies, and
software process articles have been reviewed to investigate with respect to either CSFs in SPI
or agile software projects that are recognized globally. References of the sources are shown
in the next sub-section. As an exhaustive survey was not performed in this study, we do not
claim to have captured all the relevant papers in the boundaries. This introduces the limited
generalizability of the results. To reduce this threat to some extent, the primary focus is on
empirical studies in multiple settings. In the reviewed papers, many companies are renowned
for success in either SPI or agile software development (e.g., Boeing [179], Hughes [184],
Motorola [112], Nokia, DaimlerChrysler, and ABB [185]) and had been surveyed from small
to large organizations (e.g., [19, 186]) and worldwide (e.g., [34, 177, 187]) to investigate
factors that influence the success in either SPI or agile software development. Besides, we
have chosen the papers published from the late 1990’s onwards. This is because we tried to
eliminate the impractical CSFs in the field. Consequently, the accuracy of the resulted should
be somewhat gained. Another limitation is a publication bias. To ameliorate it to some extent,
we include peer reviewed literature and grey literature (e.g., working papers and technical
papers) in this survey. As all of the reviewed papers are highly relevant to our survey
objectives, we believe that they can be used as a representative sample of this study. To
analyze, frequency analysis is used to extract quantitative data from the collected qualitative
data.

As part of our pilot study, a questionnaire-style information collection concerning
agile practices was also conducted in June 2010. The data was collected from seven
respondents in three companies in Thailand including a Telecommunications player and two
co-players. To preserve their anonymity, we refer to them here as Telecom Player1, Co-
Player1, and Co-Player2. There are two main reasons to choose these three companies. First,
the respondents have been doing agile software development on a daily basis. Second, they
were all willing or voluntarily agreed to participate in this survey. Their profiles are described
in Table 4-1. It is difficult to determine the exact number of Thai telecommunications players
and co-players adopting agile methods. However, the current trend towards adopting agile
methods in Thailand is just at the initial stages [188, 189], as supported by some respondent
companies not adopting it as a whole and the majority of respondents indicating only a few
years of agile experiences. As the sample size is very small, we do not claim that it is a
representative sample and the results of this questionnaire-style information collection cannot
prove anything. However, the main aim to carry out this questionnaire-style information
collection is to find some identification by looking into a set of agile practices that are
recognized as important for implementation in these three companies. This questionnaire-
style information collection therefore has a bias towards co-play in the Thai
telecommunications industry. By volunteering to participate, they have become a self-
selecting sample that often leads to bias [114]. Albeit a perfect representative sample is
unattainable, the authors should reduce as much of the sample bias as possible [190]. In order
to limit the sample bias, the variety in company sizes (approximately 100 employees to more
than 8,000 employees), years of agile experience (e.g., 1-3 years), and roles in agile software

79

development (e.g., project manager, Scrum master, hyper-productivity seeker, developer, and
programmer analyst) have therefore been used. Similar approaches have been used by other
researchers (e.g., Baddoo and Hall [191] and Niazi et al. [114]). Another limitation is that the
practitioners’ experiences have not been verified directly. Thus, their perceptions may not be
accurate. However, the results give an interesting picture as described in the next sub-section.

In the questionnaire, 67 items were designed to determine which agile practices found
in the reviewed literature were recognized as important for success in agile software
development in the three companies in Thailand. Those items were assessed on a five-point
Likert scale of importance, ranging from 1 “not at all important or not implemented” to 5
“extremely important and need to be implemented”. To calculate the value of the importance
of each item, the mode and the median can be used. However, the mode may return several
values that have the same frequency. Therefore, the median is more appropriate and used for
this calculation. Moreover, it is important to evaluate the instrument reliability and validity.
Reliability is referred as the degree to which the scale is free from measurement error [192].
Hence, Cronbach’s alpha was used to evaluate the reliabilities of the entire scale and each
item. The evaluation results reveal that the Cronbach’s alpha of the entire scale is 0.878 and
the Cronbach’s alpha of the items range between 0.864 and 0.888. All items having the
coefficient of above 0.7 demonstrate acceptable reliability [192]. Albeit the content validity
of this instrument was not formally evaluated, content relevance and completeness of this
instrument was guided by using the results of the reviewed literature survey on agile practices
and semi-open-ended questions. This instrument and its reliability test results are presented in
Appendix B.

Table 4-1. Profiles of three respondent companies

 Telecom Player1 Co-Player1 Co-Player2
Area Telecommunications Software Company Software Company
Primary Function Services Software/ Services Software/ Services
Application Type Telecommunications Workshops, consulting,

speaking, and software
development

Software development and IT
solutions addressing key
business problems such as
CRM, Customer Services, and
E-Commerce in many
industries such as banking and
telecommunications

Applying Agile Methods Some units Whole company Some units
No. of Respondents 4 2 1

4.2.1.2 Analysis and Results

In this sub-section, the results of all research questions are discussed. In order to
answer the RQ4-1, Table 4-2 shows a list of CSFs that are identified in 24 SPI publications
[19, 119, 121, 153-156, 181, 183, 188, 190, 191, 197-208] and listed in alphabetic order,
using our 13 identified CSFs in agile software development [183] as a base.

80

Table 4-2. CSFs identified through the SPI literature

CSF Occurrence in SPI literature (n=24) Frequency % Rank
(Agile) software development process
Appropriate methods, techniques, and tools
Data quality
Management commitment
Organizational environment
Project management process
Project type
Reviews
Team capability
Team environment
Team size
Training support
User (staff) involvement

14
13
5
21
16
15
2
10
18
14
-
16
16

 58
54
21
88
67
63
8
42
75
58
-
67
67

 5
6
8
1
3
4
9
7
2
5
-
3
3

From the table, nine out of 13 CSFs had occurred more than 50%, three CSFs had not
occurred very often, and only one CSF had not occurred at all. Albeit the majority of the
CSFs did not have a very high number of occurrences in the literature, the results reveal that
there are similarities between the two sets of the identified CSFs. This is the answer to the
RQ4-1. The results also imply that the better the organization can implement these CSFs, the
better the organization can achieve successful software development and higher maturity
levels.

In order to answer the RQ4-2 and the RQ4-3, Table 4-3 summarizes agile practices
under each identified CSF which are scrutinized and/or recommended for successful software
development globally in the literature and locally in the questionnaire. In the literature on
agile software development, most of them rarely address data quality aspects. To get more
precise on the percentage of frequency occurrence, two sets of 23 publications on
organization, people, process, project, and technology aspects in agile software development
[4, 34, 57, 58, 60, 64, 65, 71, 185, 193-206] and 8 publications on the data quality aspect in
software development [52, 207-213] are reviewed separately.

Table 4-3. Agile practices identified through the literature and questionnaire

List of Agile Practices Occurrence in Literature
(n=23)

Frequency %

Questionnaire
(n=7)

Median
Agile Software Development Process (SD)
SD1. A project has been established with well-defined coding
standards up front.
SD2. A project has been established by pursuing simple design.
SD3. A project has been established with rigorous refactoring
activities.
SD4. A project has been established with right amount of
documentation.
SD5. A project has been established with correct integration testing.
SD6. A project has been established with short increments.
SD7. Most important features have been first delivered.

5

7
8

14

18
18
10

22

30
35

61

78
78
43

4

4
4

4

5
4
5

81

List of Agile Practices Occurrence in Literature
(n=23)

Frequency %

Questionnaire
(n=7)

Median
Appropriate Methods, Techniques, and Tools (MT)
MT1. Appropriate methods, techniques and tools have been assessed
and performed.

Management Commitment (MC)
MC1. Management provides strong commitment and presence.
MC2. Management supports the software development.
MC3. Management is willing to participate in assessment and
development activities.
MC4. Management is committed to provide training and resources.

Organizational Environment (OE)
OE1. Cooperative organizational culture has been established instead
of hierarchical culture.
OE2. Oral culture placing high value on face-on-face
communication has been established.
OE3. Agile has been promoted and accepted throughout the
organization.
OE4. All the key stakeholders are involved in development and
improvement activities.
OE5. Management has provided strong leadership-collaboration;
meaning management understands that collaboration on information
to make informed decisions and trusting individuals to apply their
competency in effective ways is important.
OE6. Facility with proper agile-style work environment has been
established.
OE7. Reward system appropriate for agile software development has
been promoted amongst the management and team members.

Project Management Process (PM)
PM1. Agile-oriented project management process has been followed.
PM2. Cost evaluation has been done up front.
PM3. Risk analysis has been done up front.
PM4. A process has been established to monitor and track the
progress of the project.
PM5. Strong face-to-face communication has been established as a
primary communication method.
PM6. Teams have honored their regular working schedule.
PM7. Work has been done to continuously improve a project
management process.

Project Type (PT)
PT1. Project characteristics (e.g., extreme, complex, or high-change)
have been assessed for the suitability of software process
development.
PT2. Project criticality (e.g., life-critical and non-life-critical) has
been assessed for the suitability of software process development.

Reviews (RE)
RE1. Organization has developed a review process for development
and improvement requirements.
RE2. Work has been done to continuously monitor existing software
development processes.
RE3. Organization has developed a process in order to review each
influential factors of software development.
RE4. Responsibilities have been assigned to conduct continuous

9

11
13
6

2

13

11

5

5

13

13

3

9
2
2
9

16

5
9

13

11

7

8

1

1

39

48
57
26

9

57

48

22

22

57

57

13

39
9
9

39

70

22
39

57

48

30

35

4

4

4

4
5
4

4

5

4

4

5

5

4

4

4
4
4
5

4

5
4

4

4

4

4

4

4

82

List of Agile Practices Occurrence in Literature
(n=23)

Frequency %

Questionnaire
(n=7)

Median
software process development and improvement reviews within
organization.
RE5. All the key stakeholders are involved in software process
development and improvement reviews.

Team Capability (TC)
TC1. People have been selected as team members who have high
competence and expertise.
TC2. People have been selected as team members who have great
motivation.
TC3. People have been selected as project managers or team leaders
who have an adaptive management style.
TC4. People have been selected as project managers or team leaders
who are knowledgeable in an agile process.
TC5. People who have track record of different successful projects
have been selected for development activities.
TC6. Role and responsibilities have clearly been assigned to each
team member.
TC7. A process has been established to monitor the progress of each
team member.
TC8. A process has been established to collect and analyze the
feedback data from each team member and to extract the main
lessons learned.

Team Environment (TE)
TE1. Collocation of the whole team has been established.
TE2. Coherent and self-organizing teamwork has been established.
TE3. A project has been established with no multiple independent
teams.
TE4. A process has been established to monitor the progress of each
team.
TE5. A process has been established to collect and analyze the
feedback data from each team and to extract the main lessons
learned.
TE6. A process has been established to distribute the lessons learned
to the relevant stakeholders and team members.
TE7. Team members are aware of their roles and responsibilities
during software development and improvement.

Team Size (TS)
TS1. Project team size has been assessed the suitability of the
project.

Training Support (TR)
TR1. Appropriate training has been provided to team members for
developing the skills and knowledge needed to perform the project.
TR2. Sufficient resources and additional time to participate in
training will be provided to team members.
TR3. Training program activities are reviewed on a periodic basis.
TR4. All future group or individual trainings of software
development are planned.

User (Staff) Involvement (UI)
UI1. The software development effort has been staffed by people
who indicated interest and commitment in the effort.
UI2. A project has been established with a good user relationship.

3

18

21

20

18

-

3

6

13

22
23
8

8

13

12

8

8

10

3

-
-

9

12

13

78

91

87

78

-

13

26

57

96
100
35

35

57

52

35

78

43

13

-
-

39

52

4

5

4

4

4

4

5

5

5

4
5
4

4

5

4

5

4

4

4

4
4

4

5

83

List of Agile Practices Occurrence in Literature
(n=23)

Frequency %

Questionnaire
(n=7)

Median
UI3. A project has been established with user commitments,
collaborations, and participation.
UI4. Users directly involving the project have had full authority.
UI5. Work has been done to facilitate team members during software
development.
UI6. Work has been done to allocate the time necessary to make user
participation successful.

17

4

12

9

74

17
52

39

5

4
4

4

List of Agile Practices Occurrence in Literature
(n=8)

Frequency %

Questionnaire
(n=7)

Median
Data Quality (DQ)
DQ1. Plans or strategies to address data quality problems have been
performed.
DQ 2. Common data standards or guidelines have been conducted.
DQ 3. Software development teams have their own working
environments.
DQ 4. Basic skills have been trained to people relevant to data
quality.
DQ 5. Data governance to ensure the quality, availability, integrity,
security, and usability has been performed.
DQ 6. Database regression testing has been performed.
DQ 7. Many types of database testing (e.g., database input, database
output, stored procedures, column constraints, default column
values) have been performed.
DQ 8. The data aspects of software have been modeled iteratively.

7

8
1

6

6

1
3

4

88

100
13

75

75

13
38

50

4

4
4

5

4

4
4

4

Answering the RQ4-2, the results of the 31-literature survey show that 64 agile
practices (all agile practices presented in Table 4-3 except TC4, TR3, and TR4 due to no data
found in the literature) were globally recognized as influential in achieving successful
software development. Considering the number of occurrences; however, only 13 agile
practices were occurred at a rate of 75% or higher. Fourteen agile practices occurred at rates
between 50% and 74%, whilst 37 agile practices occurred at a rate of less than 50%.
Answering the RQ4-3, the results of the questionnaire show that 18 out of the 67 agile
practices in Table 4-3 were recognized locally as the most important for successful software
development and as little less significant for the rest (49 agile practices). The results
noticeably reveal that all of these agile practices play a vital role in software development.

Figure 4-2 shows two domains of agile practices categorized by the median values on
the questionnaire-style information collection responses. In the domain A, 18 agile practices
occurred at the median value of 5 or recognized as the most important in the local realm.
Compared to the results from the literature survey, it shows that only 4 agile practices (i.e.,
SD5, TC1, TE2, and DQ4 occurred at a rate of 75% or higher) were emphasized as the most
important in both global and local realms. Albeit the other 14 agile practices were recognized
as the most important in the local realm, 7 of them (i.e., MC2, OE1, OE5, TC8, TE5, UI2,
and UI3 occurred at a rate between 50%-74%) were slightly less significantly emphasized,
whilst the other 7 (i.e., SD7, OE4, PM4, PM6, TC6, TC7, and TE7 occurred at a rate of less
than 50%) were insignificantly emphasized in the global realm.

84

A: 18 practices in total
occurred in the questionnaire

at the median value of 5
or as the most important

7 practices
occurred in the

literature at a rate
between 50%-74%

4 practices
occurred in the
literature at a
rate of 75% or

higher

7 practices
occurred in the

literature at a rate
of less than 50%

B: 49 practices in total
occurred in the questionnaire

at the median value of 4
or rated as important

7 practices
occurred in the

literature at a rate
between 50%-74%

9 practices
occurred in the

literature at a rate
of 75% or higher

30 practices
occurred in the
literature at a

rate of less than
50%

3 practices
occurred only

in the
questionnaire

Figure 4-2. Comparison between the results of a literature survey and a questionnaire-style
information collection

In the domain B, 49 agile practices occurred at the median value of 4 or recognized as
important in the local realm. Comparing to the results of the literature survey, it shows that 9
of them (i.e., SD6, TC2, TC3, TC4, TE1, TS1, DQ1, DQ2, and DQ5 occurred at the rate of
75% or higher) are significantly emphasized in the global realm. The 7 of them (i.e., SD4,
OE6, PM5, PT1, TE6, UI5, and DQ8 occurred at the rate between 50%-74%) were slightly
less significantly emphasized. Surprisingly, the majority of this domain (i.e., the 30 of them:
SD1, SD2, SD3, MT1, MC1, MC3, MC4, OE2, OE3, OE7, PM1, PM2, PM3, PM7, PT2,
RE1, RE2, RE3, RE4, RE5, TE3, TE4, TR1, TR2, UI1, UI4, UI6, DQ3, DQ6, and DQ7
occurred at a rate at the rate of less than 50%) were insignificantly emphasized in the global
realm. The other 3 (i.e., TC5, TR3, and TR4) were not emphasized in the global realm at all.

In the open-ended part of the questionnaire, some respondents suggest their additional
agile practices, e.g., employing user stories, daily meetings, sprint review meetings, and
sprint retrospective meetings. Those agile practices can be viewed as common Scrum
practices. Therefore, we do not consider them as critical practices. However, an interesting
point we found is that the respondents were aware of the importance of knowledge transfer
during software development. This raises us more inspiration to develop a knowledge transfer
framework (see Chapters 6 and 7 for comprehensive details). In summary, all of 67 agile
practices in Table 4-3 were recognized as critical for successful software development in the
local realm but only 16 agile practices were significantly emphasized in the global realm.
However, our main focus is on the local realm. Therefore, all of 67 agile practices are directly
used for designing our SDM model which is described in the next sub-section.

4.2.1.3 Structure of the Software Development Maturity Model

This sub-section answers the RQ4-4 “How should a software development maturity
model (as one of two core components of a software process maintenance framework) be
constructed?” A software development maturity model is created with a threefold objective:
to appraise an organization’s current software process through the identified CSFs, to get the
current maturity level rating from the model, and to identify what processes demand
immediate and sustainable improvement in agile software development. The CMMI staged

85

representation is an approach using predefined sets of process areas to define an SPI path and
also providing a proven sequence of SPI [39]. CSF is “the limited number of areas in which
satisfactory results will ensure successful competitive performance for the individual,
department, or organization” as defined by Bullen and Rockhart [214]. It is a highly effective
approach to define significant information needs. Based on the CMMI and CSFs approaches,
Niazi et al. [114, 115] propose an SPI implementation maturity model providing a very
practical structure with which to assess and improve SPI implementation processes. The
model has empirically been proven to have potential to assist practitioners in assessing and
improving SPI implementation processes and maturity in practice. Moreover, there is a high
possibility to adapt the model to fit the SDM model’s objectives. Therefore, the SPI
implementation maturity model, CMMI, and CSFs are adapted for developing the SDM
model. In the model, there are three dimensions (i.e., maturity stage, CSFs, and assessment)
as illustrated in Figure 4-3.

Maturity Stage Dimension

Critical Success Factors Dimension

Assessment Dimension

Weak practices
for immediate and

sustainable
improvement

Software
Development

Maturity

describes

indicates

contains forms

organized by organized into

Figure 4-3. An SDM model structure (adapted from Niazi et al. [114])

In the maturity stage dimension, there at this stage are four maturity levels presented
in Table 4-4. The maturity levels 1 through 4 have been adopted from four CMMI maturity
levels: “Initial”, “Managed”, “Defined”, and “Optimizing”, respectively. The main reason not
to replicate the CMMI maturity level-4 “Quantitatively Managed” is that the two key CMMI
practices of establishment and maintenance of quantitative objectives for the process, and
stabilization of the performance of one or more sub-processes to determine its ability to
achieve are not compatible with agile practices [158]. There is no CSF cited in the literature
that directly relates to this level [114].

At the starting point of this study, the goal was to identify CSFs of software
development [183], which are directly used in the CSFs dimension. Based on the perception
of CMMI process area division amongst different CMMI maturity levels [39] and the
prevailing opinion in the SPI literature, we have categorized the identified CSFs into three
categories (i.e., foundation, standardization, and support).

At the maturity level-1 “Initial”, there is no category since this level does not have to
be achieved due to its chaotic characteristic, similarly to CMMI.

At the maturity level-2 “Managed”, basic project management processes, necessary
process discipline, and commitments amongst key stakeholders are established. Hence, the
foundation category containing CSFs that are the foundation for all subsequent levels can be

86

linked to this level. These CSFs include management commitment, project management
process, project type, training support, and user involvement.

At the maturity level-3 “Defined”, the project management and software development
processes are standardized and integrated into a standard software process. Accordingly, the
standardization category containing CSFs that support the design of systematic structures can
be linked to this level. These CSFs include agile software development process, appropriate
methods, techniques and tools, data quality, organizational environment, team capability,
team environment, and team size.

Table 4-4. Four CMMI-based maturity levels

Maturity Level Description
Level 1-Initial This is the level where processes are usually chaotic and few processes are defined.

The organization usually does not provide a stable environment. Its software
development success thus depends on the competence and heroics of the people and
not on the use of proven processes.

Level 2-Managed At this level, processes are characterized for projects. The projects have ensured that
requirements are managed and that processes are planned, performed and controlled.
The work products satisfy their specified requirements, standards and objectives. The
processes in this level are the foundation for all subsequent levels.

Level 3-Defined At the level, processes are documented, standardized, and integrated into a standard
software development process.

Level 4-Optimizing This is the level for establishing structures for continuous software process
improvement. At this level, processes depend on the participation of an empowered
workforce aligned with the business values and objectives of the organization. The
ability to rapidly respond to changes is enhanced by finding ways to accelerate and
share learning. The software process performance is then continually improved.

Moreover, continuous SPI must be enabled. Therefore, the support category, which
contains the reviews factor to support continuous SPI activities, can be linked to the maturity
level-4 “Optimizing”. Table 4-5 summarizes three categories and their belonging CSFs.

Table 4-5. Three CSF categories

Maturity Level Category CSF
Level 1-Initial - -
Level 2-Managed Foundation Management commitment, project management process,

project type, training support, and user involvement
Level 3-Defined Standardization Agile software development process, appropriate methods,

techniques and tools, data quality, organizational environment,
team capability, team environment, and team size

Level 4-Optimizing Support Reviews

In order to guide how to assess and implement the identified CSFs, a list of agile
practices has been designed under each CSF as presented in Table 4-4. We have high
confidence in the CSF categorization and the design of agile practice lists. This is because
there is a similarity between CSFs identified in the SPI literature and CSFs identified in this

87

study and great compatibility between CMMI SPI objectives and our identified CSFs at each
maturity level.

Last, in the assessment dimension, an assessment instrument successfully developed
and tested at Motorola [215] has been adapted to measure software development maturity. As
illustrated in Table 4-6, this instrument has three evaluation dimensions:

• Approach, key criteria here are the organization commitment to and management
support for the practice, and the organization’s ability to implement the practice;

• Deployment, key criteria here are the breadth and consistency of practice
implementation across project area;

• Results, key criteria here are the breadth and consistency of positive results across
project areas.

In this instrument, “Commitment” means commitment to perform. “Ability” means
ability to perform. “Activities” means activities performed. “Monitoring” means monitoring
implementation. “Verification” means verifying implementation. It is important that
practitioners must ensure that they use these terms in the same direction as described when
determining a practice’s score. This instrument can be adapted at many levels, e.g.,
organization, division, and project levels. When applied at the division level, the guideline
“parts of the organization” should translate to “projects” or “project areas”. When applied at
the project level, the guideline “parts of the organization” should translate to “sub-projects”
or “sub-systems”.

Table 4-6. An assessment instrument [215]

Score Key Activity Evaluation Dimensions
Approach Deployment Results

Poor (0) • No management
recognition of need
• No organizational ability
• No organizational
commitment
• Practice not evident

• No part of the organization
uses the practice
• No part of the organization
shows interest

• Ineffective

Weak (2) • Management begins to
recognize
• Support items for the
practice be created
• A few parts of organization
to implement the practice

• Fragmented use
• Inconsistent use
• Deployed in some parts of
the
 organization
• Limited to monitoring/
verification of use

• Spotty results
• Inconsistent results
• Some evidence of
effectiveness for some parts
of the organization

Fair (4) • Wide but not complete
commitment by management
• Road map for practice
implementation defined
• Several supporting items
for the practice in place

• Less fragmented use
• Some consistency in use
• Deployed in some major
parts of the organization
• Monitoring/verification of
use for several parts of the
organization

• Consistent and positive
results for several parts of the
organization
• Inconsistent results for
other parts of the
organization

Marginally
qualified (6)

• Some management
commitment; some
management becomes

• Deployed in some parts of
the organization
• Mostly consistent use

• Positive measurable results
in most parts of the
organization

88

Score Key Activity Evaluation Dimensions
Approach Deployment Results

proactive
• Practice implementation
well under way across parts
of the organization
• Supporting items in place

across many parts of the
organization
• Monitoring/verification of
use for many parts of the
organization

• Consistently positive results
over time across many parts
of the organization

Qualified (8) • Total management
commitment
• Majority of management is
proactive
• Practice established as an
integral part of the process
• Supporting items encourage
and facilitate the use of
practice

• Deployed in almost all parts
of the organization
• Consistent use across
almost all parts of the
organization
• Monitoring/verification of
use for almost all parts of the
organization

• Positive measurable results
in almost all parts of the
organization
• Consistently positive results
over time across almost all
parts of the organization

Outstanding
(10)

• Management provides
zealous leadership and
commitment
• Organizational excellence
in the practice recognized
even outside the company

• Pervasive and consistent
deployed across all parts of
the organization
• Consistent use over time
across all parts of the
organization
• Monitoring/verification for
all parts of the organization

• Requirements exceeded
• Consistently world-class
results
• Counsel sought by others

To calculate, each practice is weighted by three-dimensional scores in integer between
0 and 10. The three-dimensional scores of each practice are added, divided by 3, and rounded
up. All obtained practice scores are then rolled over into an average score for each CSF. Any
CSF with an average score falling below the threshold is deemed a weakness. The threshold
is initially set to 7 as guided by Motorola [215]. However, it can be reset to better fit an
organization’s current situation. To achieve a certain maturity level, all CSFs belonging to
that maturity level should have an average score of the threshold or higher. Table 4-7 shows
an example of a CSF evaluation.

Table 4-7. A CSF evaluation (average score = 6+8+7+7/no. of practices = 28/4 = 7)

Management Commitment Scores (0-10) Avg.
Score Approach Deployment Results

MC1. Management provides strong commitment and
presence
MC2. Management supports the software development
MC3. Management is willing to participate in assessment
and development activities
MC4. Management is committed to provide training and
resources

6

8
7

8

6

7
7

7

6

8
6

6

6

8
7

7

Average score for management commitment 7

89

The obtained maturity levels and weak practices demanding immediate and
sustainable improvement are an output of the model. It is also be used as an input for an
integrated PMBOK-Scrum model for planning integrated project management and software
development processes. The integrated PMBOK-Scrum model is described in the next
section.

4.2.2 The Integrated PMBOK-Scrum Model

Two of the most adopted methods are PMBOK for project management processes and
Scrum for agile software development processes, serving as the basis of this study. In this
section, the proposed base meta-models of PMBOK and Scrum are introduced. An integrated
PMBOK-Scrum model is then presented.

4.2.2.1 A Project Management Body of Knowledge Meta-model

According to the PMBOK guide [38] and its definition presented in Section 2.4,
Chapter 2, a PMBOK meta-model has been constructed. Figure 4-4 is a graphical
representation of the PMBOK meta-model, using Unified Modeling Language (UML)
notation. In the meta-model, an Organization is an official group of people making any
contribution to achieving its organizational goals. The Organization may or may not have
Programs. Each Program contains its related Project. Those related Projects are managed in
a coordinated way to obtain benefit and control not available from managing them
independently. A Project is a temporary endeavor undertaken to produce a unique (software)
product, service, or result. Each Program is directed by one or more Stakeholders; while each
Project is managed by a Stakeholder. This means that not every Stakeholder has to direct a
program or manage a project. Stakeholders and Physical Resources are Resources. In other
words, both Stakeholders and Physical Resources inherit from a Resource. A Stakeholder is a
human resource or a person (e.g., sponsor, director, manager, developer, and user) who is
directly involved in the project or whose interests may be positively or negatively affected by
execution or completion of the project. A Stakeholder has Team Members and Third Party
Members inheriting from it. A Team Member typically is a Stakeholder from inside the
organization; whilst a Third Party Member is a Stakeholder from outside the organization. On
the other hand, a Physical Resource has Material, Equipment, and Facilities inheriting from
it. They are utilized to support work in the project.

Each Project has one or more Phases. Those Phases are generally sequential and
sometimes overlapping. The number of Phases depends on the size, complexity, and potential
impact of the Project. Each Phase has one or more locally related Activities. The Activities
may or may not have Dependencies between them that can affect the use of Stakeholders or
Physical Resources. There are four possible types of Activity Dependencies or logical
relationships which are Finish-to-Finish where completion of the successor activity cannot
finish until the completion of the predecessor activity; Finish-to-Start where initiation of the
successor activity depends on the completion of the predecessor activity; Start-to-Finish
where completion of the successor schedule activity depends on the initiation of the
predecessor schedule activity; Start-to-Start where initiation of the successor schedule
activity depends on the initiation of the predecessor schedule activity.

Each Activity has at least one Stakeholder performing it, but may or may not have
Physical Resources supporting it. However, not every Stakeholder and Physical Resources

90

has to perform or support an Activity. Consequently, a Stakeholder who performs any Activity
will have his/her workload, represented as a Stakeholder Workload. Likewise, a Physical
Resource used to support any Activity will have its workload, represented as a Physical
Resource Workload. Besides, a Stakeholder typically has one Role describing the
responsibilities, competencies and related information of Stakeholders taking that role.
Nevertheless, each Role may or may not have Stakeholders and may or may not be
responsible for Deliverables. However, each Deliverable must have one Role responsible for
it. A Deliverable is a unique and verifiable work product, e.g., project charter, project plan,
work result, and software product. Moreover, each Role may or may not perform Activities;
however, each Activity must have at least one Role performing it. Each Activity may or may
not have its decomposed Tasks and may or may not have Techniques or Tools supporting it.
Both Techniques and Tools inherit from Guidance. Each Activity may or may not be
performed (i) to deliver a Deliverable as an output or (ii) using Deliverables as its inputs. In
other words, a Deliverable must be produced as an output from at least one Activity, and may
or may not be input to a successor activity.

One or more Activities are composed of a Management Processes. Each Management
Process is organized into one Process Group and one Knowledge Area; while each Process
Group and each Knowledge Area contain one or more Management Processes. According to
PMBOK, there are five basic Process Groups and nine Knowledge Areas. The five Process
Groups consist of (1) Initiating, which processes performed to define a new project or phase
by obtaining authorization to start the project or phase; (2) Planning, which processes needed
to establish the scope of the project, refine the objectives, and define what actions needed to
attain the objectives; (3) Executing, which processes performed to complete the work defined
in the project plan; (4) Monitoring and Controlling, which processes needed to track, review,
control the progress and performance of the project; and (5) Closing, which processes
performed to finalize all activities across all process groups to formally close the project or
phase. The nine Knowledge Areas consist of (1) Integration Management, which includes the
processes and activities needed to identify, define, combine, unify, and coordinate the various
processes and activities within the process groups; (2) Scope Management, which ensures
that all the required work, and only the required work, is planned, defined, documented, and
delivered to the user’s satisfaction; (3) Time Management, which includes the processes
needed to manage timely completion of the project; (4) Project Cost Management, which
includes the processes involved cost estimation and expense monitoring, and intended to
ensure that the project is delivered within its approved budget; (5) Quality Management,
which encompasses quality definition, assurance, and control; (6) Human Resource
Management, which includes the processes that organize, manage, and lead the project team;
(7) Communication Management, which includes the processes for information dissemination
and collection; (8) Risk Management, which includes the processes of risk identification,
quantification, avoidance, and mitigation; and (9) Procurement Management, which includes
the processes necessary to purchase or acquire products or services needed from outside the
project team.

91

Figure 4-4. A PMBOK meta-model

4.2.2.2 A Scrum Meta-model

According to the Scrum definition presented in Section 2.4 in Chapter 2, a Scrum
meta-model has been constructed. Figure 4-5 is a graphical representation of the Scrum meta-
model, using UML notation. In the meta-model, a software Project has one or more Phases
(called iterations or sprints). Each Phase has one or more Activities. Related Activities are
composed of a Process. Likewise, a Stage has one or more related Processes. In Scrum, there
are three Stages, i.e., pre-game, game, or post-game. Pre-game contains two Processes (i.e.,
planning and architecture development). The planning includes the definition of a new
release based on currently known product backlog, along with an estimate of its schedule and
cost. If the software product under development is new, planning includes both
conceptualization and analysis, but only limited analysis for an existing software product.
The architecture development includes system and/or software architecture development and
high level design. Game includes the Process of sprint execution. This stage consists of a
collection of development sprints to produce new release functionalities, with constant
respect to the variables of time, requirements, quality, cost, and competition. Post-game is the
closure of the project, which includes preparing the releases, producing the final
documentation, executing the site acceptance testing and the final product release.

The Activities may or may not have Dependencies between them. Albeit Scrum does
not explicitly address activity dependency, in general there are four possible types of Activity

92

Dependencies or logical relationships which are Finish-to-Finish where completion of the
successor activity cannot finish until the completion of the predecessor activity; Finish-to-
Start where initiation of the successor activity depends on the completion of the predecessor
activity; Start-to-Finish where completion of the successor schedule activity depends on the
initiation of the predecessor schedule activity; Start-to-Start where initiation of the successor
schedule activity depends on the initiation of the predecessor schedule activity.

Each Activity is performed by one or more Roles describing the responsibilities,
competencies, and related information of Stakeholders who perform it. However, not every
Role has to perform Activities. There are three primary Roles consisting of product owner,
Scrum master, and team. Product owner is a person responsible for creating and prioritizing
the features of the software product, deciding on release date and content, adjusting features
and priority, and accepting or rejecting work results. Scrum master is a facilitative team
leader working closely with the product owner and responsible for ensuring that the team is
fully functional and productive, removing impediments, shielding the team from external
interference, and making certain that the process is followed. Team typically consists of
seven plus or minus two members. The team is committed to achieving a sprint goal and has
the right to do whatever it takes to achieve the goal.

 Each Role may or may not associate with Stakeholders and may or may not be
responsible for any Artefact. However, each Stakeholder must have a Role. There are three
primary Artefacts consisting of product backlog, sprint backlog, and Burndown chart which
all are openly accessible and visible to the team. Product backlog is a list of all prioritized
business and technical requirements that need to be developed and defects that need to be
fixed. Sprint backlog is a list of all requirements in the current sprint that are broken down
into tasks. Each task contains a short task description (e.g., owner, status, and effort). The
Sprint Backlog is daily updated to obtain the latest effort of the work remaining to complete
the task. A Burndown chart shows the hours remaining to complete sprint tasks A
Stakeholder is a person (e.g., sponsor, product owner, Scrum master, team member, and user)
who is directly involved in the project or whose interests may be positively or negatively
affected by execution or completion of the project.

Each Activity has at least one Stakeholder performing it, but not every Stakeholder has
to perform an Activity. Hence, a Stakeholder who performs any Activity will have his/her
workload, represented as a Stakeholder Workload. Each Activity may or may not have its
decomposed Tasks, and may or may not use Tools or Techniques to support it. Both Tools
and Techniques inherit from Guidance. Similarly to Stakeholder, not every Tool and
Technique has to support an Activity. Moreover, each Activity may or may not (i) produce or
update Artefacts as outputs, or (ii) use Artefacts as its inputs. However, each Artefact must be
produced from one Activity.

93

Figure 4-5. A Scrum meta-model

4.2.2.3 An Integrated PMBOK-Scrum Model

This sub-section answers the RQ4-5 “How should an integrated PMBOK-Scrum
model (as one of two core components of a software process maintenance framework) be
constructed?”. The integrated PMBOK-Scrum model is composed by three layers: a
managerial layer, a production layer, and an integration layer. The layers of managerial and
production are derived from the distinction of concepts, meaning each distinct class on
PMBOK and Scrum meta-models can be left in managerial and production layers,
respectively. The integration layer is derived from an overlapping of concepts. This means
two classes on each of the meta-models have the same concept that can be transformed into a
single concept inside the integration layer. Moreover, a relationship of concepts is introduced
for creating an association between related classes. Figure 4-6 illustrates an integrated
PMBOK-Scrum model. The model is developed based on the same kind of approach on it is
made for the integration of, e.g., PMBOK and RUP (Rational Unified Process) [8] and RUP-
OPEN (Object-oriented Process, Environment and Notation) [216], and explained similarly to
Callegari and Bastos [8]. We begin with the overlapping concepts and the relations to the two
original models.

94

Figure 4-6. An integrated PMBOK-Scrum model

In the integration layer, both models have a Project concept which has one or more
Phases or iterations. Each Phase has one or more Activities. A given Activity must be defined
as Managerial Activity or Productive Activity. Each Activity may or may not have its
decomposed Tasks and may or may not have Dependencies between Activities, which allow
the definition of the order they can occur inside the Project. For instance, PMBOK’s
activities are broken down into tasks, called Work Breakdown Structure (WBS), and Scrum’s
backlog items are broken down into tasks for developing a sprint backlog. Each Activity may
or may not be supported by Tools or Techniques in order to produce, use or update a Work
Product. Both Managerial Guidance and Productive Guidance inherit from Guidance. With
respect to types of guidance, Managerial Tools and Managerial Techniques are derived from
Managerial Guidance; whilst Productive Tools and Productive Techniques are derived from

95

Productive Guidance. Likewise, a managerial work product (represented as a Deliverable)
and a productive work product (represented as an Artefact) inherit from a Work Product.
Each Work Product may or may not be used, or updated by an Activity; however, it must be
produced by one Activity.

Any given Activity has one or more Roles performing it. Like Activities, a Role must
be defined as a Managerial Role or a Productive Role. Each Role describes the
responsibilities, competencies, and related information of Stakeholders who performs an
Activity. In other words, the association between a Role and its Activities a Stakeholder must
be present, including the stakeholder’s workload which is an attribute in the Stakeholder
Workload class in that relation. Similarly, for a Physical Resource used for any Activity, its
workload which is an attribute in the Physical Resource Workload class must be present.
Since in the Scrum meta-model the Updates association occurs between the Activity and the
Artefact, while in the PMBOK meta-model the Output association meaning producing and
updating an output occurs between the Activity and the Deliverable. Clearly specifying the
associations, in the integrated model there are three associations (i.e., Produces, Uses, and
Updates) connecting between the Work Product and the Activity.

Although Scrum has a project management perspective, in the integrated model its
project management concepts are moved into the managerial layer. In the managerial layer,
an Organization may or may not have Programs. Each Program contains it related Projects
and is directed by one or more Stakeholders; while each Project is managed by a Stakeholder.
Stakeholders and Physical Resources are derived from Resource. A Stakeholder has Team
Members and Third Party Members inheriting from it. A Team Member typically is a
Stakeholder from inside the organization; while a Third Party Member is a Stakeholder from
outside the organization. On the other hand, a Physical Resource has Material, Equipment,
and Facilities inheriting from it. They are utilized to support work in the project.

Related Activities are composed of a Process, depending upon activity type. This
means a Managerial Process contains a set of related Managerial Activities; whilst in the
productive layer, a Productive Process contains a set of related Productive Activities. For
management aspects, each Managerial Process is organized into one Process Group and one
Knowledge Area; while each Process Group and each Knowledge Area contains one or more
Managerial Process. For productive aspects, each Productive Activity is organized into one
Stage.

Increased software complexity, shortened development cycles, and higher quality
expectations have placed a major responsibility to software development teams [217]. A
possible way for overcoming this matter is a good software project model. Thus, the
following set of constraints is provided to support practitioners who are responsible for
planning a software project with a comprehensive set of project management and software
development processes and to ensure the consistency of the integrated PMBOK-Scrum
model.

1. A program must have a director; therefore, a stakeholder who is a program
director must have a managerial role.

2. A project must have only one project manager; therefore, a stakeholder who is a
project manager must have a managerial role.

3. An activity flow must not result in a cycle (for example, activity A is a
prerequisite for activity B and activity B is also a prerequisite for activity A)

4. The same activity can only either produce, update, or use the same work product;
they must be performed in different activities.

96

5. Each activity must be performed by at least one role and have only one
stakeholder responsible for it; the stakeholder must also be compatible with that
role.

6. A managerial activity cannot produce or update a productive work product,
except only a managerial work product; however, this activity can use a
productive work product.

7. A productive activity cannot produce or update a managerial work product,
except only a productive work product; however, this activity can use a
managerial work product.

8. An activity can update or use a work product only when it has already been
created by a predecessor activity; otherwise it first needs to produce that work
product.

The SDM model and the integrated PMBOK-Scrum model have then been
incorporated into the software process maintenance framework. Consequently, the framework
provides the “what” to improve with a software process assessment mechanism and the
“how” to implement with and a comprehensive set of project management and software
development processes that could lead to the improvement of software development
performance in terms of efficiency and effectiveness. Using the framework may be too
complex without the right tools. Therefore, a prototype tool supporting the use of the
framework is produced and described in the next section.

4.3 A Prototype Tool Supporting the Software Process
Maintenance Framework

Under the framework foundation, we designed a prototype tool called SPAD
(Software Process Assessment and Development) to assist in the assessment, improvement
and definition of project management and software development processes. The prototype is
being developed as a Web-based application, using the Java language and a MySQL
database. Figure 4-7 illustrates the SPAD functionality using a Use-case diagram.

Through a Use-case diagram, an end user (i.e., project sponsor, product owner, project
manager, team leader, team member, project end user, and project stakeholder) is a person
primarily or actively involved in the project effort and responsible for assessing and planning
integrated project management and software development processes. A team member is a
person having various possible roles (e.g., business analyst, system analyst, data analyst,
database designer, developer, and tester), depending upon a software project’s strategies.
Except those persons, other project stakeholders (e.g., project consultant) can also be
involved. For each project, there are two possible cases to use our prototype tool. First, a
person as a software project representative (typically a project manager) having authority and
responsibility can individually assess, define, and plan a project. Second, all persons are
responsible for assessing and planning a project, but there is only one data set of the project
logged into the prototype tool.

97

End User
Who is primarily involved in the project effort and

is responsible for assessing and planning
an integrated software process

1-Assessment

2-Project
Planning

3-Constraint
Checker

4-XML-Export

SPAD – Software Process
Assessment and Development

Project Manager Team Member

Team LeaderProduct Owner

Project Stakeholder

Project End-User

Project Sponsor

Figure 4-7. A high-level Use-case diagram showing the main SPAD functionality

Practitioners can gain considerable insight into the organization’s current maturity by
evaluating it in the project management and software development environments as a
prerequisite to defining and planning the software process required. To do so, in the
“Assessment”, the user can first get the assessment details to understand the SDM concepts,
as depicted in the sample screenshots in Figure 4-8 to Figure 4-11. The user then needs to set
a threshold to support an assessment calculation, as depicted in the sample screenshot in
Figure 4-12. After the setting, the user can then assess the identified CSFs through their lists
of practices required by the SDM model, as depicted in the sample screenshot in Figure 4-13.
SPAD then calculates with the calculation logic mentioned in Section 4.2.1.3 and then
summarizes (i) the obtained maturity level and scores in scoring worksheets as depicted in the
sample screenshot in Figure 4-14, (ii) weak practices in tables as depicted in the sample
screenshot in Figure 4-15, and (iii) the overall status of the CSFs in bar charts as depicted in
the sample screenshot in Figure 4-16. The obtained results should assist the user in
understanding the organization’s current situation, e.g., its strong practices and weak
practices. For facilitating the user to plan project management and software development
processes, the user can use the application feature to automatically feed the weak practices
into the project definition and planning module as the required practices for improvement.

98

Figure 4-8. A sample screenshot of maturity level details

Figure 4-9. A sample screenshot of critical success factor details

99

Figure 4-10. A sample screenshot of a list of practices

Figure 4-11. A sample screenshot of assessment instrument details

100

Figure 4-12. A sample screenshot of setting a threshold to support an assessment calculation

Figure 4-13. A sample screenshot of measuring implemented software processes

101

Figure 4-14. A sample screenshot of displaying the assessment results in a scoring worksheet

Figure 4-15. A sample screenshot of displaying the obtained weak processes in a table

102

Figure 4-16. A sample screenshot of displaying the assessment results in a bar chart

Second, in the “Project Planning”, the user can define the information required by the
integrated PMBOK-Scrum model. This information contains the details of organizations,
programs, projects, phases, stages, work products, roles, activities, guidance, stakeholders,
physical resources, managerial knowledge areas, managerial process groups, managerial
processes, working times, and work breakdown structure codes, as depicted in the sample
screenshot in Figure 4-17. This information and the imported weak practices are used to plan
the project. The module has been at this stage designed to assist the user in developing
software project plans, assigning resources to tasks, and analyzing workloads. After planning,
the user can preview the activity usage, the resource usage, and the software project plan, as
depicted in the sample screenshot in Figure 4-18.

103

Figure 4-17. A sample screenshot of defining project information and planning

Figure 4-18. A sample screenshot of previewing a project plan

104

In the “Constraint Checker”, the defined processes are then validated by the
mentioned constraints proposed by the integrated PMBOK-Scrum model. This is to assure
their appropriateness and consistency. The validation results will be shown for tracking an
inappropriate process (if any). However, all of the constraints (except the two constraints of
(i) a program must have a director; therefore, a stakeholder who is a program director must
have a managerial role; and (ii) a project must have only one project manager; therefore, a
stakeholder who is a project manager must have a managerial role) are also checked during
planning the project management and software development processes in the “Project
Planning” module. This is in order to help the user to plan the project properly. After
correcting all inappropriate processes, the validated the “XML-Export” is then executed.

Fourth, in the “XML Export”, the validated project is then prepared in a form of a
standardized MS Project 2003 eXtensible Markup Language (XML) file format for export to
the organization’s project planning tools. The main reason for the need of other project
planning tools is that SPAD at this stage provides the limited functionality. For instance, in
case that there is a need of the application features to track project progress, manage project
budgets, or visualize project schedules in Gantt charts, the user should export the project to
their suitable tools having such required features. Figure 4-19 depicts a sample screenshot of
the “Constraint Checker” and the “XML Export”.

Figure 4-19. A sample screenshot of the “Constraint Checker” and the “XML-Export”

Moreover, the user can again perform the implemented process appraisal in the
“Assessment” to compare the performance of the before- and after- software process
development. As stated by Sommerville [218], the process improvement cycle involves three
stages: process measurement, attributes of the current process are measured; process analysis,
the current process is assessed and weaknesses are identified; and process change, changes to
the process are introduced. After software development, these three stages should be
completed. One of criteria that can be used for evaluating the performance of the process

105

improvement is the obtained higher scores of CSFs or maturity levels. This module should
therefore assist the user in considering the performance of the process improvement. Figure
4-20 depicts a sample screenshot of the before- and after- implemented CSFs comparison.

Figure 4-20. A sample screenshot of the before- and after- implemented CSFs comparison

This is the first prototype and therefore needs further evaluation and improvement.
Consequently, practical tests of the framework and the prototype tool are carried out through
case studies and presented in Chapter 5.

4.4 Summary
One of the factors that play a central role in quality software development is an

efficient and effective software process, which can be derived from software process
development and continuous improvement. In this chapter, we have presented the developed
software process maintenance framework which in this context means a framework for
software process development and improvement. It consists of two core components: an
SDM model and an integrated PMBOK-Scrum model.

First, the SDM model has been developed based on CMMI and CSF approaches. To
design the SDM model, we have performed literature reviews (1) to compare similarities and
differences between CSFs in SPI identified in the literature and the 13 CSFs affecting the
successful agile software development identified in Chapter 2 [2, 183] and (2) to explore
important agile practices (including the data quality aspect) in worldwide software projects.
The results of the latter literature review were then used to compare similarities and
differences with the results of a questionnaire-style information collection. The frequency
analysis was used to extract quantitative data from the collected qualitative data in the

106

literature. The data of the questionnaire-style information collection was collected from seven
respondents in three companies in Thailand in June 2010 and analyzed using the median
values. The main aim to carry out this questionnaire-style information collection was to find
some identification by looking into a set of agile practices that are recognized as important
for implementation in these three companies.

Concerning the first literature review to compare similarities and differences between
CSFs in SPI identified in the literature and our identified 13 CSFs, the findings reveal that the
CSFs in SPI identified in the literature are similar to our identified CSFs in software
development. This implies that the better the organization can implement these CSFs, the
better the organization can also achieve successful software development and higher maturity
levels.

Concerning the second literature review to explore important agile practices in
worldwide software projects, the findings reveal that there were 64 agile practices globally
recognized as important for successful agile software development, as presented in Table 4-3.
However, all of them have different levels of occurrences in the literature. Thirteen agile
practices occurred at a rate of 75% or higher. Fourteen agile practices occurred at rates
between 50% and 74%; whilst 37 agile practices occurred at a rate of less than 50%.

Concerning the questionnaires-style information collection, the findings reveal that
there were 67 agile practices locally recognized for successful agile software development,
including all of the 64 agile practices found in the literature and three additional agile
practices. Within these agile practices, 18 agile practices were recognized as the most
important, whilst the rest of 49 agile practices were recognized as important. As our focus of
this study is on software development in Thailand, we have decided to use all of the 67 agile
practices for designing the SDM model.

The SDM model has been developed to assist practitioners in assessing and improving
their implemented software processes. It consists of three dimensions: maturity stage, CSFs,
and assessment. First, the maturity stage dimension contains four CMMI-based maturity
levels: “Level 1-Initial”, “Level 2-Managed”, “Level 3-Defined”, and “Level 4-Optimizing”.
Second, the CSF dimension contains our 13 identified CSFs. Based on the perception of
CMMI process area division amongst different CMMI maturity levels; the identified CSFs
were categorized into three categories: foundation, standardization, and support. The
foundation category contains the CFSs that support to establish project management
processes, necessary process discipline, and commitments amongst key stakeholders. It can
be linked to the maturity level-2 “Managed”. The standardization category containing the
CSFs that support the design of systematic structures can be linked to the maturity level-3
“Defined”. The support category containing CSFs to support continuous SPI activities can be
linked to the maturity level-4 “Optimizing”. As a guide on how to implement the CSFs, a list
of agile practices has been designed under each CSF. Third, in the assessment dimension, an
assessment instrument successfully developed and tested at Motorola has been adapted to
assess agile practices. This instrument can be applied at many levels, e.g., organization,
department, and project levels. The results of the SDM model can be used to guide
practitioners on their current software development maturity and weak practices that demand
immediate and sustainable improvement.

Second, the integrated PMBOK-Scrum model aims to assist practitioners in
developing and implementing integrated project management and software development
processes. It has been developed by merging the core entities of the PMBOK meta-model
with the core entities of the Scrum meta-model into three layers (i.e., a managerial layer, a

107

production layer, and an integration layer) using Unified Modeling Language (UML). The
layers of managerial and production are derived from the distinction of concepts, meaning
each distinct class on PMBOK and Scrum meta-models can be left in managerial and
production layers, respectively. The integration layer is derived from an overlapping of
concepts. This means two classes on each of the meta-models have the same concept that can
be transformed into a single concept inside the integration layer. Moreover, a set of eight
constraints is provided in order to support practitioners who are responsible for planning a
software project with a comprehensive set of project management and software development
processes and to ensure the consistency of the integrated PMBOK-Scrum model.

The SDM model and the integrated PMBOK-Scrum model have been incorporated
into the software process maintenance framework in order to provide the “what” to improve
with a software process assessment mechanism and the “how” to implement with and a
comprehensive set of project management and software development processes that could
lead to the improvement of software development performance in terms of efficiency and
effectiveness. However, using the framework might be too complex without the right tools.
Therefore, a prototype tool supporting the use of the framework was created as a Web-based
application, using the Java Language and a MySQL database. It helps an end user (e.g., a
project manager and a team leader) to get insight into the current software development
maturity and the health of the software practices by assessing the identified CSFs through a
list of agile practices required by the SDM model. The obtained weak practices will be used
to plan an integrated project management and software development processes together with
the defined information (e.g., project, phase, and activity) as required by the integrated
PMBOK-Scrum model. The defined processes are then validated and prepared in an XML
file format for export to the organization’s project planning tools. Nevertheless, the
framework and the prototype tool need further evaluation and improvement. Consequently,
practical tests of the framework and the prototype tool are carried out through case studies
and presented in Chapter 5.

108

109

Chapter 5

Two Case Studies of the Software Process
Maintenance Framework

To ensure whether software development approaches fit into a particular context, it
generally requires a practical test. We have developed a software process maintenance
framework which in this context means a framework for software process development and
improvement. The framework provides the “what” to improve with a software process
assessment mechanism and the “how” to implement with and a comprehensive set of project
management and software development processes. This chapter aims to perform a feasibility
check on whether the framework is practicable in real-life software projects. This has been
accomplished through two case studies in the state-owned Thai telecommunications industry.
Data was collected via on-site observations, semi-structured interviews, and questionnaires.
The findings indicate the generation of positive effects by (i) increasing software
development performance in terms of efficiency (e.g., increasing work completeness and
team productivity) and effectiveness (e.g., reducing defects and increasing customer and team
satisfaction); and (ii) cultivating collaborative teamwork, informal frequent communications,
and knowledge sharing culture. Based on these advantages, the framework is perceived by its
usability and the acceptance in terms of usefulness and ease of use. This chapter also presents
the challenges that impact on the project results; the changes necessary to adapt the
framework; and the mechanisms that the participants transferred, learned, applied, and
integrated new knowledge into their existing software processes. The requirements for
successful adaptation of the framework are then discussed.

5.1 Introduction
Many organizations face either unfulfilled promises about software quality gained

from applying software development approaches, or the inability to manage the software
process realized as their fundamental problem [194]. The search for solutions to this barrier
has continued for decades. Consequently, we have developed a software process maintenance
framework which in this context means a framework for software process development and
improvement. The framework aims at providing a comprehensive set of project management
and software development processes with a mechanism for assessing and improving software
development performance in terms of efficiency and effectiveness. The framework consists
of two core components. First, a Software Development Maturity (SDM) model is based on
Capacity Maturity Model Integration (CMMI) and Critical Success Factors (CSFs)
approaches. Second, an integrated PMBOK-Scrum model is based on Project Management
Body of Knowledge (PMBOK) and Scrum approaches.

The framework can be used as a general framework for improving software processes
in many management areas required to deal with volatile requirements, e.g., configuration
management for assuring software quality, key stakeholder management for reducing risks of
project failure, quality management in which various kinds of software testing (e.g., unit,

110

integration, system, and user acceptance tests) should be performed, and subcontracting
management. As the framework provides all aspects of traditional project management and
software development processes in software development, it partially conforms to approaches
offering features similar to the framework, e.g., CMM (Capability Maturity Model) and
CMMI. Moreover, the framework suggests some software development techniques, e.g.,
coding standards and continuous integration. Thus, it could somewhat be applied to
approaches offering similar software development techniques, e.g., eXtreme Programming
(XP) [219] as also suggested by [220] that XP can be used to complement a Scrum-based
software development approach.

A prototype tool to support the use of framework called SPAD (Software Process
Assessment and Development) has been developed. It helps an end user (e.g., a project
manager and a team leader) to get insight into the current software development maturity and
the quality of the software practices by assessing the identified CSFs through the list of agile
practices required by the SDM model. The obtained weak practices will be used to plan
integrated project management and software development processes together with the defined
information (e.g., project, phase, and activity) required by the integrated PMBOK-Scrum
model. The defined process is then validated and prepared in an eXtensible Markup
Language (XML) file format for export to the organization’s project planning tools.

Our main objective of this chapter is to perform a feasibility check on whether or not
the developed software process maintenance framework is practical in real-life software
projects through two case studies in the Thai telecommunications industry. To get high
accurate and precise results, our case studies are hence focused on direct players in the
industry. The original target company was Telecom Player1 who has been surveyed about its
agile practices affecting successful software development, presented in Section 4.2.1 in
Chapter 4. It is the only one out of the three companies being a key player in the industry and
responding to our questionnaire-style information collection in Chapter 4. Unfortunately,
obtaining its permission to test the developed software process maintenance was not
achieved. Instead, two case studies in CAT Telecom Public Company Limited (CAT) and
TOT Public Company Limited in Thailand (TOT) were carried out from November 2010 to
February 2011. The data collection was carried out through on-site observations, individual
interviews, and questionnaires in order to provide the descriptions of what has been done,
what is working, what is not working, what still needs improvement, and guidance on how to
make that improvement, through the following set of research questions.

RQ5-1: How can the developed software process maintenance framework be
executed efficiently and effectively in the given context?

RQ5-2: What are the challenges that impact software development, using the
developed software process maintenance framework?

RQ5-3: What changes are necessary to adapt the developed software process
maintenance framework?

RQ5-4: How do practitioners transfer new knowledge into their existing software
processes?

RQ5-5: What is the developed software process maintenance framework perceived
usefulness and ease of use?

RQ5-6: What are the requirements for successful adaptation of the developed
software process maintenance framework?

111

This chapter is organized as follows. The following section describes the research
approach. The descriptions of analysis and results as well as summary of the findings are then
discussed.

5.2 Research Approach

This section describes how the research design for this chapter is arranged.

5.2.1 Data Collection

The case study methodology is well suited for software development research due to
contemporary phenomena in its natural context [221]. We have borrowed basic ideas of field
case study (e.g., direct observations, interviews, and questionnaires to discuss the challenges
within the context, the results achieved, and the lessons learned) for testing the software
process maintenance framework in the Thai telecommunications industry. The test was split
into two phases: the first phase performed at CAT Telecom Public Company Limited (CAT)
from November to December 2010 and the second phase performed at Public Company
Limited (TOT) from December 2010 to February 2011. The main goal of the first phase is to
provide an analysis of the application of the framework and the practitioners’ process to
learn, use, and integrate new knowledge (e.g., the framework and software-development-
related knowledge) into their existing software process; whilst the second phase involves
collecting only interesting data which offers our double check on certain factors and issues in
the case studies. There are three reasons to choose these two companies. First, from their
beginning until today TOT and CAT are still two of the major telecommunications operators
in Thailand [222]. TOT, the monopoly provider of fixed-line services, remains the largest
player. It had market share of national fixed-line services at 58.95% at the end of the second
quarter in 2011 [223], whilst CAT had the largest share of the international call service in
2010 [224]. Second, most of the participants had strong experience in software development.
The CAT team consists of four members: a product manager who was the product expert and
had 14-year experiences in PMBOK, a technical manager who had 15-year experience in
software development, a developer and a tester who had 7- and 2-year experience in software
development, respectively. On the other hand, the TOT team consists of a project manager
and a developer. They had 10-20 years in the telecommunications industry and 3-6 years in
software development. Third, both companies showed great interest and desire to participate
in testing the software process maintenance framework with the prototype tool.

Initially, the authors explained what the case study was about. The participants then
made the authors verbal and email queries to solicit more information about the use of the
framework and the tool. During the case projects, the participants used the framework and the
tool to assess their software development maturity without any suggestion from the authors,
but to define integrated PMBOK-Scrum processes and to implement the software processes
in the Scrum way with some suggestions from the authors. Quantitative and qualitative data
were collected through on-site observations, individual semi-structured interviews, and
questionnaires. We interviewed three team members in CAT face-to-face (e.g., a product
owner, a Scrum master, and a developer); and a Scrum master who also acted as a product
owner and a developer via an international call for the case project in TOT due to the limited
available time of the team. Each interview lasted 30-90 minutes and was recorded to allow
for subsequent accurate analysis of the data. During the observations and interviews, we

112

collected the data pertaining to how the framework was being executed in the teams, what
challenges occurring during software development, how new knowledge was transferred into
their existing software processes, what changes were necessary to adapt the framework, and
how satisfaction of the framework was perceived. A TAM-based (Technology Acceptance
Model-based) questionnaire for investigating the acceptance of the framework and the tool
was also developed based on the related TAM literature and circulated to all interviewees.
The questionnaire had two versions. The original one was in English and then translated into
Thai.

5.2.2 Threats to Validity

There are four types of threats that have an impact on the validity of the outcomes.
These are threats to internal validity concerning the ability to isolate and identify factors
influencing the studied variables, construct validity concerning the ability to measure the
construct under study, threats to conclusion validity concerning the ability to draw the valid
conclusion about relationships based on statistical inference, and threats to external validity
concerning the ability to generalize the findings [225]. A threat to internal validity is the
objectivity of measurements affected by the interpretation of the authors. To reduce this risk,
the quality of the data obtained during the case projects was monitored by the participants
and the results were discussed with the participants. This data quality check also helped
reduce threats to construct validity. The result comparisons between the inference statistics
from the cases and qualitative data from the interviews help to diminish a threat to conclusion
validity. Furthermore, threats to external validity are, firstly, we did not have history
documents of the participating companies’ existing software projects. Secondly, we collected
only interesting data in the second phase performed at the TOT team. The main reason was to
double-check certain factors and issues in the case studies. Thirdly, the project scale of the
cases was relatively small in terms of the team size and the project duration. Fourthly, the
participants were previously inexperienced in agile software development. Lastly, the focus
was on only state-owned enterprises, not private companies who are leaders in the overall
Thai telecommunications market [226]. Different software development environments may
give different results. These limited the generalizability of this study. To reduce this risk, we
used two different cases with different types of information systems, organizational cultures,
etc. The contexts of the cases were described in order to make explicitly clear to what degree
the results are generalizable. The authors also tried to analyze to what extent the findings are
relevant or similar to the findings of other cases. As the result of the continuation of using the
framework on other software projects in the participating organizations, this implies that
generalizability should more or less be increased, albeit a case study naturally limits
generalizability due to its specific context. Moreover, the current trend towards adopting agile
methods in Thailand is just at the initial stages [188, 189]. This implies that a majority of
companies in the Thai telecommunications industry may probably still currently either use
traditional software development methods or have traditional software development
environments. Hence, this study may provide generable results to companies or software
projects having contexts similar to the cases. However, additional case studies are needed to
increase the generalizability of this study. Other two limitations are as follows. First, due to
the narrow focus of our samples of TAM-based questionnaires, it is recommended that the
interpretation of results remains limited to the chosen context. Second, the case projects were
small and non-complex. This limits the ability to evaluate the framework on whether it can
efficiently and effectively overcome major shortcomings of agile methods (particularly the

113

Scrum method) in some management aspects, e.g., limited support for developing with large
teams, high quality assurance, and procurement management.

5.3 Analysis and Results

From the case projects, the overall reaction of all team members was positive. While
they seem to embrace integrated PMBOK-Scrum processes, there was little resistance as to
whether some software processes would not fit for their organizational and software
development environments. However, they expressed the desire to adapt such software
processes when they felt comfortable, to learn and understand things that went well and what
may need improvement, and to incorporate new knowledge into their software processes.
Facilitating discussions in this section, the interview questions matched with the relevant
research questions (i.e., RQ5-1 to RQ5-5) are presented in Appendix C. The findings are
described into three main parts as illustrated in Figure 5-1.

Part I: Software Process Assessment illustrated in the blue area in Figure 5-1 presents
the teams’ current software development maturity and weak practices that demand immediate
and sustainable improvement.

Part II: Software Planning, Development, and Outcomes illustrated in the light green
area in Figure 5-1 presents how practitioners set up, planned, and executed their software
projects under four sub-sections: Scrum Planning Meetings, Sprint Planning Meetings, Sprint
Executions, and Sprint Review and Retrospective Meetings. This part then presents whether
or not the framework was perceived as satisfactory and could contribute to the improvement
of software development performance in terms of efficiency and effectiveness, under two
sub-sections: Customer and Team Satisfaction and Software Process Performance.

Part III: Acceptance of the Framework illustrated in the yellow area in Figure 5-1
presents whether or not the framework was perceived as acceptable in terms of usefulness,
ease of use, and intention to use.

Under each sub-section, we also describe the answers to the RQ5-1 “How can the
developed software process maintenance framework be executed efficiently and effectively in
the given context?” under the item “How to execute the framework”; the RQ5-2 “What are
the challenges that impact software development, using the developed software process
maintenance framework?” under the item “Challenges”; the RQ5-3 “What changes are
necessary to adapt the developed software process maintenance framework?” under the item
“Necessary Changes”; and the RQ5-4 “How do practitioners transfer new knowledge into
their existing software processes?” under the item “Knowledge Transfer”. These answers are
also summarized in the next section.

114

Figure 5-1. Three parts of our software process maintenance framework

Part I: Software Process Assessment

How to execute the framework: At the starting point, all team members carried out an
assessment of their implemented software process, using our tool. At the threshold of 7 for an
assessment calculation as guided by Motorola [215], the results in Table 5-1 present a clear
explanation that CAT stands at the maturity level 2-“Managed” of the SDM model due to the
weak factor “Team Size” belonging to the maturity level 3. At this stage, they did not focus
on the factor “Reviews” at all. Therefore, the CAT team should improve the “Team Size” in
order to get the higher maturity level and meanwhile maintain all factors belonging to the
maturity levels 2 and 3 in order to sustain their quality software processes. All team members
agreed with the results, except one developer as pointed out “(Our existing software process)
doesn’t really conform to any standards (e.g., PMBOK and CMMI) yet. I think we should get
the lower maturity level instead.” This implies that their assessment may somehow be
overrated. On the other hand, TOT stands at the maturity level 1-“Initial” of the SDM model.
TOT usually uses an outsourcing method for their existing software projects. Owing to less
experience in internal software development, they decided to start from scratch on the case
project. Hence, the TOT team should improve all factors, starting to focus on the factors
belonging to the maturity level 1.

115

Table 5-1. A summary of the assessment results

Maturity
Level Category CSF

Score (0-10)
CAT TOT

2 Foundation Management Commitment 9 (Strong) -
Project Management Process 9 (Strong) -
Project Type 7 (Strong) -
Training Support 9 (Strong) -
User Involvement 9 (Strong) -

3 Standardization Agile Software Development Process 8 (Strong) -
Appropriate Methods, Techniques, and Tools 9 (Strong) -
Data Quality 10 (Strong) -
Organizational Environment 10 (Strong) -
Team Capability 10 (Strong) -
Team Environment 10 (Strong) -
Team Size 4 (Weak) -

4 Support Reviews - -

Similarly to CMMI, Software Process Improvement (SPI) is a long-term approach.
The recent report of Software Engineering Institute (SEI) shows the median time for moving
from one maturity level to the higher one: 4.5 months for moving from maturity levels 1 to 2,
19 months for moving from maturity levels 2 to 3, 24 months for moving from maturity
levels 3 to 4, and 19 months for moving from maturity levels 4 to 5 [227]. It is rarely
plausible to get a higher level within 1-2 months. Owing to this time constraint, both CAT
and TOT teams decided not to perform an assessment after completing the case projects.

Part II: Software Planning, Development, and Outcomes

As illustrated in the light green area in Figure 5-1, this part presents how practitioners
set up, planned, and executed their software projects under four sub-sections: Scrum Planning
Meetings, Sprint Planning Meetings, Sprint Executions, and Sprint Review and Retrospective
Meetings. This part then presents whether or not the developed software process maintenance
framework is perceived as satisfactory and could contribute to the improvement of software
development performance in terms of efficiency and effectiveness, under two sub-sections of
Customer and Team Satisfaction and Software Process Performance.

A. Scrum Planning Meetings

How to execute the framework: After the software development maturity assessment,
the teams set up and planned the software projects. The case project in CAT developed
additional Web-based functionalities bundled into the ongoing software project, whilst the
case project in TOT developed a small decision support application. Both software projects
are non-life critical. They could be categorized as a classic software project which means it
requires the creation of a project plan for a significantly new body of work [228]. It has a
high level of unknowns at the start but these are mostly resolved early, and few new unknown

116

arise during execution. However, requirements in real-life practice were constantly unstable
as stated by team members in CAT. As CAT had being used PMBOK for their existing
software projects, all related project documents (e.g., the project charter, the program/project
roadmap, the project management plans, and the software design) were thus used in the case
project. On the other hand, at the case study time TOT usually used an outsourcing method
for their existing software projects and the case project was a new project. All required
documentation was therefore created. Consequently, the TOT team began the case project
with two PMBOK processes, i.e., conducting a project charter and performing a stakeholder
analysis. Once the case projects were formally authorized the case projects then flowed
through the sprint planning.

B. Sprint Planning Meetings

How to perform the framework: Albeit the CAT team had been developing an
ongoing software project for almost two years, a project roadmap was not enlightened to the
team. At the beginning of both case projects, the product owners explained the project
roadmap in order to draw the teams a big picture. It was recognized as an important practice
that can drive the teams into the right direction. When observed and asked what project
management aspects were considered, the TOT team followed PMBOK guidance by planning
integration and configuration management in a simple way; while the CAT team used their
existing integration management plan.

The CAT team was not concerned about whether the scope would become broader
since they had continued enhancing the application’s functionality. However, in order to
prevent any risk from enlarging the project’s scope, the CAT team considered the capacity of
network and application architecture. On the other hand, the TOT team developed a simple
scope management plan to prevent scope creep, used together with a product backlog.
Concerning the gathered user and technical requirements, they were described and ranked
using a relative weighting approach. Work estimation which is a collaborative effort amongst
team members was also used. This data (i.e., prioritized requirements and estimated effort)
was then logged into product backlogs. After getting the first set of requirements to develop,
the teams then broke down the work into tasks, estimated task efforts, assigned responsible
persons, and logged these data into sprint backlogs. As observed, this practice seemed to
provide smaller and manageable tasks to the teams.

After the verification of the scope, the identified requirements were then scheduled
into iterations. Time was also not a major constraint in both teams. Rather than attempt to
build the entire application from ground zero or through long-term iterations, both teams used
small iterations lengthening between 1-4 weeks. The CAT team initially started using 2-week
iterations due to time given for learning agile during the development, but later preferred one-
week iterations to deliver features. On the other hand, the TOT team initially used 2-week
iterations. However, it was not enough to produce a meaningful functionality due to two main
reasons as claimed by the Scrum master. First, they did not well assess the appropriate
techniques and tools before using them, nor did they analyze the data quality from the source
systems before development. Second, the Scrum master needed to transfer programming
techniques to the developer in the team. Hence, they needed more time to create meaningful
and valid features. As knowledge training and coaching requires time, adequate independence
from the software development tasks needed to be provided to team members involved in the
knowledge transfer. This shows that the amount of user and technical requirements that
needed to be implemented in each iteration was sometimes reduced.

117

Owing to internal development, both teams did not emphasize cost management. To
guarantee software quality, the CAT team followed the Scrum validation and verification
ways; whilst the TOT team used a simple PMBOK quality management plan and managed
through sprint reviews. Concerning human resource aspects, the CAT team was formed with
the same team responsible for the existing ongoing software project, composing of a product
owner, a Scrum master (also acted as a developer), a developer and a tester. This helped to
reduce time to learn business logic, programming languages, and development tools. On the
other hand, the TOT team was formed with only two members, i.e., a Scrum master who had
multi-projects and multi-roles (i.e., product owner, developer, and tester) and a developer,
due to the small size of the software project and their available resources at that time. To
accelerate software development, the product owner in CAT had full authority to make
decisions but not in TOT. Team members in TOT had much experience in
telecommunications but not software development; whilst team members in CAT had 7-15
years of experience in software development.

Both teams followed the Scrum communication mechanism through sprint planning
meetings, daily meetings, and sprint review meetings; except through sprint retrospective
meetings only in the CAT team. Considering development environments, the CAT team
worked approximately 60% in co-location and approximately 40% in distributed sites; whilst
the CAT team worked fully in co-location. Both teams cultivated informal communication
for collaborating on work and transferring knowledge. Creating more chances of
communication, the CAT team established several communication channels, e.g., face-to-face
communications, mobiles, emails, instant messaging, and e-conferencing. Since management
in TOT had a heavy workload due to multi-projects, the team was not fully approachable.
Dealing with this situation, they used approximately 70% for mobiles and only 30% for face-
to-face communications. Both teams used non face-to-face media for necessary explanation
and feedback when the product owners were remote and for technical knowledge exchange
when team members worked in different sites. This enabled them to obtain quick feedback.

Moreover, the CAT team planned risk management with short-term and long-term
solutions using risk and impediment backlogs; whilst the TOT team created a simple
PMBOK risk management plan for the overall project and used risk and impediment
backlogs for iterations. The main reason for this, as observed in the TOT team, was that they
preferred to get familiar with PMBOK risk management for further complex software
projects. Those plans were continuously reviewed and adjusted during the case projects.
Concerning procurement management, it was not performed in both case projects. However,
both teams were planning to acquire outsourcing teams for future software projects.

When asked about documentation of their previous software projects, the product
owner in CAT said “We don’t place an emphasis on heavy documentation, (just only
necessary documentation).” This is in line with agile philosophy, although they applied
PMBOK for their previous software projects. On the other hand, although TOT usually uses
an outsourcing method; surprisingly, the product owner said “We didn’t get any
documentation including source codes from the outsourcing teams. It’s now causing huge
trouble for maintaining the applications… and for recovering the knowledge lost… Now, we
must do documentation.” Consequently, they started to change, starting from the case project.
As stated by the product owner (also acted as a Scrum master) during developing software,
they preferred to conduct all related documents in order to get familiar with the tools (e.g.,
project management templates, product backlogs, and sprint backlogs) and to use the
developed documents as templates for further software projects.

118

Challenges: Several challenges related backlog administration, human resource
management, communication, and documentation are described as follows.

Concerning backlog administration, there were four challenges. First, goals and
requirements described to team members sometimes remained unclear. This in turn resulted
in misunderstandings and some rejected work. Second, although work could proceed in
priority order, there was a conflict between business value criteria and technical criteria in
requirement prioritization. However, in dealing with this matter, they sought to set ground
rules for score rating and used CPM (Critical Path Method) or PERT (Program Evaluation
and Review Technique) together with business value conditions. Third, there was a conflict
in dividing the work into manageable tasks, due to different opinions between software
developers in CAT. Owing to the authority of the team leader, developers sometimes felt the
need to follow his solution without collaborative decision-making. This indicates that they
were still familiar with the strong traditional manner. Last, both teams felt they spent more
time on backlogs. A developer in CAT said “Our weak skills in the work breakdown
structure slowed us down.” Due to the beginning of their journey, this led to more non-task
effort on each sprint. This effort can be minimized when they gain more experience on these
practices. Otherwise, it might cause a problem if this feeling was not reduced. Although the
team faced many challenges, they were strongly satisfied with sprint planning meetings. This
was because this kind of meetings gave the team a better understanding of requirements and
better scope management.

Concerning human resource management, there were three challenges. First, due to
the multi-roles of the Scrum master in CAT and the multi-projects of the Scrum master in
TOT, the Scrum masters did not fully act like a Scrum facilitator. Thus, software developers
in both teams sometimes needed to solve an impediment by themselves that could lead to an
obstacle to rapid development. The possible means to deal with this challenge is to clearly
clarify roles and responsibilities to all team members and users and make them aware of their
roles and responsibilities. Second, some of management people in CAT and TOT teams were
strongly familiar with the traditional software development manner. To execute software
projects in a hybrid agile-traditional way, management is required to transition and balance
their managerial styles between command-and-control and leadership-and-collaboration
management [65, 229-231]; whilst team members need to learn how to be collaborative
leadership (or self-managing). Third, albeit a self-managing team is one of the unique aspects
of Scrum, there is a need of team leaders who can make a decision and guide them in the
right direction. This is supported by the expressions of the Scrum master in TOT that “Owing
to the nature of our culture, we need to have a team leader.” and a team member in CAT that
“I still prefer to have (the Scrum master) as a team leader.” This may result from having a
long journey of traditional software development and traditional organizational cultures.

Concerning communication, there were two challenges. First, management in TOT
had a heavy workload due to multi-projects; hence, its team was not fully approachable. This
caused software development to be slow. Second, although face-to-face communication is
strongly promoted throughout agile projects [232] and practitioners expressed that “It is an
efficient method.”, they used it only on demand. Instead, they mostly used other established
communication media (e.g., instant messaging and phones). However, non- or virtual face-to-
face communication must be used carefully as the product owner in CAT stated that “Using
Skype or phones, the team sometimes got information lose and mutated… We solved this
problem by using the writing or whiteboard features in Skype…and it worked.”

Concerning documentation, most documents were informal and less-detailed. This
shows that the teams primarily relied on the knowledge residing in the individual team

119

members more than the explicit knowledge in documentation. Even though a lack of detailed
software design (e.g., flowcharts) did not cause a problem in the case projects, it may take
time for newcomers to recover the knowledge lost when they leave the projects.

Necessary Changes: There were four main changes. First, the project goals,
objectives, and roadmaps must be clearly explained to all team members to ensure that all
team members are going in the same direction.

Second, the teams had to change from using only the ongoing project management
plans throughout the software projects to using both iterative and ongoing project
management plans.

Third, unlike their traditional software development practices where communications
between users and software developers were heavy at the beginning and the end of software
projects and where lots of volatile requirements were difficult to deal with, users needed to be
involved in almost all stages of software development (e.g., from iterative planning through
iterative reviews, retrospectives, and closures). Not only did management have to plan a
project, but users and all team members were required to take part in the planning. Moreover,
they needed to rely on continuous communications and lots of meetings.

Last, as mentioned, the TOT team had to perform necessary documentation in order to
retain knowledge within the organization.

Knowledge Transfer: In the planning stage team members who acted as knowledge
sources mostly prepared materials for describing program and project roadmaps, goals and
objectives, and user and technical requirements mainly through face-to-face communications.
Documentation was also performed to ensure that knowledge of the software projects exists
in the organizations. Concerning how to use and integrate new knowledge into their existing
software processes, both teams considered new knowledge whether or not it is useful,
suitable for their organizational and team cultures, and compatible with their existing
software processes. For instance, although the Scrum master in the TOT team agreed that key
team members (e.g., a product owner and a Scrum master) directly involved in the software
project should have full authority for rapidly making decisions as suggested by the SDM
model, this process was not approved by top management (or a project sponsor), due to the
unsuitability with the TOT organizational culture. In contrast, there was no significant
incompatibility amongst the CAT organizational culture, their existing software processes,
and all software processes suggested by the SDM model.

However, there was a conflict between business value criteria and technical criteria in
requirement prioritization. To deal with this problem, the CAT team set ground rules for
rating scores and planned to use CPM (Critical Path Method) together. Once satisfied with
the outcomes, new knowledge was then integrated into their existing software processes.
Moreover, we found that perceived ease of use of the transferred knowledge affected
knowledge transfer effectiveness. For instance, weak experience in the work breakdown
structure led the CAT team to more non-task efforts and slight deceleration in the planning
stage. Owing to the short period of the case project, the improvement of this practice could
not be evidently observed. However, this effort may be minimized when they gain more
experience on this practice. Otherwise, this practice is unlikely to be integrated into their
existing software processes.

120

C. Sprint Executions

How to execute the framework: During sprints, daily meetings were established to
coordinate work, synchronize efforts, and tackle anticipated problems. The meetings took
place around 5-15 minutes with non-fixed place and time in both teams. When asked how to
perform the three Scrum daily-meeting questions, the daily-meeting questions of “What did
you do yesterday?” and “What will you do today?” were not asked every day. One issue we
found is that the Scrum master in CAT felt “Asking these two questions every day seemed
like micromanaging or not having confidence in the team.” Hence, he asked these two
questions approximately few times a week. This implies that management did not perform
strong micromanagement in their existing software projects. In contrast, the developer in
CAT said “It’s a normal thing to do.” However, both CAT and TOT teams emphasized the
occurring impediments which were related to the third daily-meeting question of “What
impediments are in your way?”. In the view of product owners, these question discussions
were recognized as important. Noticeably, the product owner in CAT encouraged and
facilitated support to the team and its performance. These meetings provide management
early visibility to tackle risks and impediments.

During the coding stage, the CAT team followed their coding standard for having
easily maintainable and expandable code, pursued simple design, and used code refactoring
to allow for improving existing code to support new functionalities of the software
application, as suggested by the SDM model. These practices were not only used for this case
study, but also implemented into their existing software projects. They employed a
configuration management system for controlling individual check-in, check-out, and
continuous integration of their source code and applications. It was also used for supporting
quality assurance. Their development environment closely mirrors the production
environment to guarantee quality and minimize unexpected risks. Additionally, unit and
integration tests were performed against test cases to ensure work completeness. On the other
hand, the TOT team had less experience in internal software development. They thus faced
many technical difficulties as the Scrum master said “During the development, most
occurring problems were about technical problems such as no available feature of the
programming language supporting the available data types, insufficient data available in the
source systems, the differences of data types in the source systems, and the appropriate tools
and databases using in the case project.” This shows that they did not well assess the
appropriate techniques and tools before using them, nor did they analyze data quality from
the source systems before the development. There was no configuration management system
used in the case project. However, they had their own development environment and
performed unit tests to ensure software quality.

Challenges: We found two challenges in the TOT team. The first challenge was about
multi-projects of key team members (especially a Scrum master). As the Scrum master
having experience in the programming language had to transfer the programming techniques
to another developer, his multi-projects led to insufficient time for the case project and
resulted in a late project completion. Second, a lack of well preparation of appropriate
technical environments (e.g., assessing appropriate techniques and tools and analyzing data
quality from the source systems before the development) at the early stage of software
development significantly impedes rapid software development.

Necessary Changes: The teams had to change from responding changes immediately
to freezing requirements during sprints (or iterations). It is a common unpleasant situation in
the traditional software projects, as a developer in CAT said “Changes that occurred during

121

the existing development always have top priority. When those changes interrupted my
current work, it resulted in an immediate feeling of discouragement within me.” When asked
about their feelings on the freezing requirements during sprints, the developer replied “I
really liked it.” As observed, following this rule resulted not only in the team satisfaction and
stronger work commitment without interruption, but also better relationship between the
product owner and the team members.

Knowledge Transfer: Developers especially in the CAT team heavily exchanged
technical knowledge during sprints. This paved the way for improving their development
techniques and preparing system infrastructure for better software maintenance in the future
through face-to-face communications and mobiles. On the other hand, the Scrum master in
the TOT team transferred programming techniques to the team and supported the use of those
programming techniques mostly though phones, not face-to-face communications. However,
these activities were not ineffective due to the Scrum master’s heavy workload in multi-
projects and a lack of commitment in terms of time. In contrast, the team lacked absorptive
capacity due to no prior experience in those programming techniques. This situation was thus
likely to decrease motivation to use the knowledge.

Once new knowledge or the transferred knowledge (e.g., freezing requirements during
the sprint and the daily question of “What impediments are in your way?”) was perceived as
useful or being able to solve their existing problems, the transferred knowledge was
continually used and then integrated into their existing software process. Nevertheless, some
knowledge (i.e., two Scrum daily questions of “What did you do yesterday?” and “What will
you do today?”) had to be adapted to fit their team cultures. For instance, developers in the
CAT team usually reported their work progress at the scheduled time and spoke of any
problems, as they occurred. This existing routine was somehow fossilized into their work
behaviors. Therefore, those two daily questions needed adaptation before being integrated
into their existing software processes.

D. Sprint Review and Retrospective Meetings

How to execute the framework: In sprint review meetings which are places for
showing the team’s accomplishment during sprint executions, both teams held approximately
30-90 minutes. The software products were verified and validated against the sprint backlogs.
The product owners then determined which requirements had been completed against
acceptance criteria, clarified to the teams the reasons for work acceptance and rejection, and
discussed until all team members accepted the results and/or product modification solutions.
When asked for opinions on the review meetings, the positive findings we found were
cultivating teamwork and better software quality, especially in the CAT team. The product
owner in the CAT team said “It’s like we commit to work together… take responsibility for
failure together.” The team said “It’s like we reiterate requirements together again, to check
on whether we are going in the same direction.” When asked about shortcomings of their
existing software processes, the developer mentioned that “There is code redundancy. We
don’t have time to review codes. By using sprints, we must review codes and test it in order to
get the work completed.” Owing to the visibility of the actual project status and the validated
product, management in CAT said they could gain better project control and product
commercialization planning. On the other hand, the TOT team was satisfied with this kind of
meetings but still needed time to gain more experience in software development for a better
understanding and improvement of the software processes.

122

Sprint retrospective meetings are places for lessons learned by discussing on what
went well, what did not, what could be improved in the next iterations. The TOT team did not
yet concentrate on this kind of meetings due to insufficient time available on the part of the
Scrum master. Only the CAT team performed these meetings holding approximately 20-30
minutes. Concerning software process improvement, the CAT team was just beginning their
journey in gaining a deeper understanding of the software process and taking ownership of
the software process. However, their solutions and software processes focused retrospectives
were likely aimed to bring more effective control and diminish returns. Furthermore, as the
CAT team was also planning to go for CMMI, they intended to use the SDM model as
guidance for their preparation. During these two kinds of meetings, all related plans (e.g.,
project management plans, sprint backlogs, risk backlogs, impediment backlogs, lessons
learned, and Burndown charts) were reviewed and adjusted. This iteration was formally
closed. The software development then flowed into the next iterations. Before releasing
products or closing the projects, the teams performed many levels of software testing (i.e.,
integration, system, and acceptance tests) against test cases and acceptance criteria to
guarantee software quality.

Challenges: One challenge we found in the CAT team, the product owner was the
only person who had extensive business knowledge in the organization. If the product owner
leaves the project or the organization during the software project for any reason, it would be a
catastrophe. The software project might be either too late in delivering the right product or
rejected outright. Indeed, it is not easy to keep all team members equal, by sharing knowledge
and skills on the software project. It emphasizes that sufficient knowledge transfer within
teams is necessary.

Necessary Changes: From the disciplined to hybrid agile-disciplined manners, both
teams had to change from validating and verifying work at the end of either long release
cycles or the software projects to iteratively test, review work, and/or collect lessons learned
in short-time iterations.

Knowledge Transfer: The observations show that the product owners in both teams
were expert in their product areas and had business, managerial, and/or technical skills and
expertise. As observed they were willing to share such knowledge with their teams. Team
members were thus able to increase their software development performance. Software
developers in both teams largely shared technical knowledge to each other. As observed,
software developers in the CAT team enjoyed sharing technical knowledge more than other
knowledge types. This shows that knowledge transfer effectiveness relies considerably on
knowledge interest and communication density as the software developer in CAT explained
“When we work co-located, we usually enjoy exchanging technical knowledge.” On the other
hand, the software developer in the TOT team had a lack of absorptive capacity to learn and
apply the programming techniques due to no prior experience of such knowledge, as the
Scrum master said “(The software developer) often faces the technical problems and keeps
fixing bugs she found.” This significantly affected rapid software development.

Concerning how to use and integrate into their existing software processes, we found
that when the transferred knowledge (e.g., sprint reviews in the CAT team) was perceived as
useful and satisfactory, team members were motivated to continue to use the transferred
knowledge. Meanwhile, the transferred knowledge was integrated into their existing software
processes. We also found that commitment in terms of time and effort and knowledge
awareness greatly affected learning and transferring knowledge. For instance, insufficient
time on the part of the Scrum master on the case project had led to non-focus on or non-
application of a sprint retrospective in the TOT team. As this software process is considered

123

as new knowledge for them, a lack of commitment and practicing can result in knowledge
transfer failure. On the other hand, even though the CAT team performed a sprint
retrospective, they just began to learn and apply it. As observed, when they faced difficulties
to perform this process (e.g., inexperience on recognizing which software process is working
or is not working), their motivation to perform this practice was likely to decrease.

E. Customer and Team Satisfaction

The overall customer and team satisfaction was positive. When asked how satisfied
they were with the implemented software process and the developed product before the
framework was introduced, the product owner in CAT expressed her worry about a lack of
team commitment “The team always postpones product delivery, until it became very late…
They don’t often communicate with me for work discussion.” On the other hand, the team
said “The main problem was regarding unstable requirements (from the product owner) ...
Today she wants these things, but tomorrow it changes to another thing.” The Scrum master
also stated “Work that cannot be completed gives me lower motivation to continue working.”
Obviously, this led to frustrating situations, unhealthy relationships, very late delivery, and
eventually less software quality. On the other hands, the product owner (also acted as the
Scrum master) in TOT said “We have no internal standard software development framework,
principally using an outsourcing method” and for the existing software projects “We didn’t
get any documentation, including source codes from the outsourcing teams. It’s now causing
a huge problem for maintaining the applications… and for recovering the knowledge lost…”
This observably shows the weaknesses of their software development.

When asked how satisfied they were with the software process and the software
product developed after the framework had been introduced, due to being able to deal with
existing problems, the Scrum masters in both teams were strongly satisfied, whilst the others
were satisfied. Interestingly, the CAT team expressed “We now feel we have a standard for
improving ourselves to do the work.”, whilst the Scrum master in the TOT team said “We are
using the framework on another software project. At this stage, we are educating the
framework to the team and in the meantime analyzing the problems that affected the project
(feasibility study). Therefore, we cannot yet say about the project performance. However, (the
case project) went well with good team collaboration.” However, the Scrum master in the
TOT team pointed out two weak points of the framework that “The framework requires lots
of meetings. Since we primarily use our e-meeting planning system, it’s not too comfortable
to schedule lots of meetings via the system. Therefore, we need to have a person who is
mainly responsible for the meeting arrangements. Another weak point is that we have to do
documentation since we never do it before.” From this point of view, we however consider
the second weak point as a necessary change to use the framework instead. When asked how
work is improved, the participants were in consensus that work performance increased. The
details of software development performance are described in the next sub-section.

124

F. Software Development Performance

According to Scrum’s weaknesses as presented in Chapter 3, the findings reveal that
the framework can to some extent overcome some of Scrum’s weaknesses in the following
knowledge areas: (1) integration management (i.e., providing configuration management and
details of many types of testing), scope management (i.e., a clearer sense of product’s
direction), time management (i.e., improving the predictability of time estimate for the whole
project according to the scope management plan), and technical aspects (i.e., suggesting
generic agile practices such as data quality technique, simple design, and code standard as
suggested by the SDM model). Some of Scrum’s weaknesses require more cultivation to
overcome, e.g., commitment, collaboration, intensive communications, and knowledge
sharing to build up team members’ experience in real-life software projects. This emphasizes
that there is a need for an effective knowledge transfer mechanism. Owing to small software
projects of our case studies, this limits our ability to argue whether or not some Scrum’s
weaknesses (i.e., limited support for high quality assurance, large teams, outsourcing, and
accurate cost estimate for the whole project) can effectively be overcome by the software
process maintenance framework.

As the software process maintenance framework aims at contributing to the
improvement of software development performance, there are two dimensions of
performance appearing essential for software development: efficiency and effectiveness.
Efficiency can be measured by software quality. Two key variables used to represent work
efficiency in this study are team productivity [233, 234] and achieved doneness. Productivity
can be considered by using velocity metrics. Velocity is the amount of requirements (or
backlog items) successfully delivered in an iteration. Achieved doneness is a ratio of the
amount of the tasks that the product owner accepts over the amount of the tasks that the team
said was done at the sprint review. Effectiveness is often associated with doing the right
things; therefore, two key variables used to represent software development effectiveness in
this study are defect reduction and customer/team satisfaction [233, 234].

In the CAT team, the velocity was increased from 14 in the first iteration to 30 in the
last iteration. The achieved doneness increased from 64.29% in the first iteration to 100% in
the last iteration. Defects were reduced from 5 in the first iteration to zero in the last iteration.
Based on the questionnaire findings, the average rated scores of (1) the increased work
productivity, (2) the increased work effectiveness, (3) the increase work performance, and (4)
the improved quality of software process and product were 4.33, 4.67, 4.67, and 4.33 out of 5
points. In the TOT team, we used only the questionnaire findings to analyze their work
performance using the same set of variables tested in the CAT team. Their rated scores were
4, 5, 5, and 5 out of 5 points, respectively. According to work satisfaction in terms of
perceived usefulness and perceived ease of use, the interview findings reveal that both CAT
and TOT teams were strongly satisfied with their work and the software process maintenance
framework. Consequently, they continued using the software process maintenance framework
on their further software projects. Based on the questionnaire findings, the mean values of
perceived usefulness and perceived ease of use rated by all participants were 4.357and 4.2 out
of 5 points, respectively (see more details in Part III: Acceptance of the Framework). Based
on the findings, we consequently conclude that our software process maintenance framework
promises to provide the improvement of software development performance in terms of
efficiency and effectiveness.

125

Part III: Acceptance of the Framework

As illustrated in the yellow area in Figure 5-1, this part presents whether or not the
developed software process maintenance framework is perceived as useful, easy to use, and
acceptable. The part also answers the RQ5-4 “How do practitioners transfer new knowledge
into their existing software processes?” In this part, we also evaluate the perception of the
respondents of the tool. Two important factors (i.e., perceive usefulness and perceived ease of
use) of Davis’s TAM [165] were used to evaluate the acceptance and the usability of the
framework and also the tool. Usability is “capability in human functional terms to be used
easily and effectively by the specified range of users, given specified training and support, to
fulfill a specified range of tasks, within the specified range of environmental scenarios”
[235]. This describes two key usability characteristics: effectiveness and ease of use [236].
Effectiveness can be referred as usefulness [237]. Hence, the usability of the framework and
the tool can be associated with usefulness and ease of use. In the interviews, all respondents
expressed that the framework and the tool was useful and easy to use. They would also
continue using the framework and the tool to the gained positive results. This shows that the
framework and the tool were perceived as usable and acceptable. However, usefulness leads
to greater acceptance than ease of use. To get more supportive results, a TAM-based
questionnaire was used at the conclusion of the case projects. As mentioned, due to the
narrow focus of our samples, it is recommended that the interpretation of results remains
limited to the chosen context.

A. Research Instrument

A TAM-based questionnaire was created to obtain the respondents’ opinions on the
framework and the tool. The three constructs (i.e., Perceived Usefulness (PU), Perceived
Ease of Use (PEOU), and Intention to Use (IU)) were used to assess, using multi-item scales.
PU is defined as the degree to which users believe that using the framework and the tool
would enhance their job performance. PEOU is defined as the degree to which users believe
that using the framework and the tool would be free of effort. IU is defined as the degree to
which users intend to continue using the framework and the tool. The items were generated
based on the existing studies [165, 238] and assessed on a five-point Likert scale, ranging
from 1 “strongly disagree” to 5 “strongly agree”. The items are presented in Appendix D.

B. Instrument Reliability and Validity

Reliability refers to the degree to which the scale is free from measurement error
[192]. To evaluate the instrument reliability, Cronbach’s alpha was used to measure the
reliabilities of the entire scale and each of the constructs. Regarding the framework, the
Cronbach’s alpha values of the entire scale, the PU, the PEOU, and the IU are 0.840, 0.817,
0.847, and 0.819, respectively as presented in Table 5-2. Regarding the tool, the Cronbach’s
alpha values of the entire scale, the PU, the PEOU, and the IU are 0.934, 0.926, 0.931, and
0.923, respectively as presented in Table 5-2. All constructs having the coefficient of above
0.7 demonstrate acceptable reliability [192]. Besides, factorial validity refers to whether an
instrument item really belongs to a particular concept or must be assigned to another [238].
Owing to a very small sample size, factorial validity of our instrument cannot be statistically
verified using factor analysis and correlation analysis. In other words, a very small sample

126

size limits the ability to perform statistic analysis. However, our instrument was guided by
the accepted or proven instruments [165, 238].

Table 5-2. Analysis of the reliability of the framework and the tool

Items
Framework (Cronbach’s Alpha = 0.840) Tool (Cronbach’s Alpha = 0.934)

Mean Standard
Deviation

Cronbach’s
Alpha Mean Standard

Deviation
Cronbach’s

Alpha
PU 4.357 .378 .817 4.191 .436 .926
PU1 3.500 .578 .806 3.33 .577 .934
PU2 4.750 .500 .819 4.667 .577 .923
PU3 4.500 .578 .806 4.667 .577 .923
PU4 4.250 .500 .819 3.667 .577 .923
PU5 4.750 .500 .842 4.333 .577 .934
PU6 4.000 .817 .857 4.333 .577 .934
PU7 4.750 .500 .842 4.333 .577 .934
PEOU 4.200 .163 .847 3.867 .306 .931
PEOU1 3.750 .500 .866 4.000 .000 .937
PEOU2 4.500 .578 .806 4.333 .577 .934
PEOU3 4.000 .817 .889 3.667 .577 .923
PEOU4 4.000 .000 .842 3.667 1.155 .946
PEOU5 4.250 .500 .819 3.667 .577 .951
IU 4.750 .500 .819 4.667 .577 .923
IU1 4.750 .500 .819 4.667 .577 .923
IU2 4.750 .500 .819 4.667 .577 .923
IU3 4.750 .500 .819 4.667 .577 .923
IU4 4.750 .500 .819 4.667 .577 .923

C. Perceived Usefulness

The mean values were used to analyze the perceived usefulness of the framework and
the tool. The statistical results in Table 5-2 reveal that the mean values of the framework’s
PU and the tool’s PU are 4.357 and 4.191, respectively. Considering the maximum scale of 5,
we conclude that the respondents consider the framework and the tool useful. Considering on
the framework’s PU details, the respondents significantly gained the increased work
performance, work effectiveness, and work benefits from using the framework (i.e., the PU2,
PU5, and PU7 means of 4.750). The increased software process quality, software product
quality, team productivity, and easiness to work were also perceived. However, the
framework’s ability to accomplish work more quickly was slightly affirmed. Considering the
tool’s PU details, the respondents significantly gained the increased work performance,
software process quality, and software product quality (i.e., the PU2 and PU3 means of
4.667); whilst the increased work effectiveness, easiness to work, and work benefits were
slightly less significantly perceived. The tool’s ability to accomplish the job more quickly and
increase work productivity was rarely affirmed.

127

D. Perceived Ease of Use

 The mean values were also used to analyze perceived ease of use of the framework
and the tool. The statistical results in Table 5-2 reveal that the mean values of the
framework’s PEOU and the tool’s PEOU are 4.200 and 3.867, respectively. Considering the
maximum scale of 5, we conclude that only the framework was perceived as easy to use.
Considering on the framework’s PU details, the respondents significantly perceived that the
framework was clear and understandable (i.e., the PEOU2 mean of 4.500). They recognized
that it was easy to become skilful, to be easy to use, and to remember how to perform tasks.
However, easy learning to use the framework was slightly affirmed. Considering the tool’s
PEOU details, the respondents significantly perceived that the tool was clear, understandable,
and easy to learn (i.e., the PEOU1 and PEOU2 means of 4.000 and 4.333); whereas
recognizing that it was easy to become skilful, to be easy to use, and to remember how to
perform tasks was slightly affirmed.

E. Intention to Use

According to statistical results in Table 5-2, the mean ratings of the framework’s and
the tool’s IU are 4.750 and 4.667, respectively. Considering the maximum scale of 5, we
conclude that the respondents appreciably portend to continue to use the framework and the
tool. This supports that the framework and the tool were perceived as usable and acceptable.
Owing to a very small sample size, the statistical results confirming that the PU and the
PEOU have a significant positive effect on intention to use remain very limited. Instead,
considering the “mean” which is the average of a set of values, the results reveal that the
respondents put an emphasis on the PU greater than the PEOU of both the framework and the
tool. This implies that the PU leads to acceptance more than PEOU.

5.4 Summary of the Findings

A. The answer to RQ5-1 “How can the developed software process development
framework be executed efficiently and effectively in the given context?”

We summarize the following lessons learned that can be used as guidance on which
opportunities need to be addressed for further increased software development performance.
In order to maximize generalizability, we also provide what extent our findings are relevant
or similar to the findings of other cases. The above descriptions and the following lessons
learned help answer the RQ5-1 “How can the developed software process development
framework be executed efficiently and effectively in the given context?”.

Lesson 1: The teams executed the case projects in a way which is in line with
Griffiths’ recommendations on integrating agile and traditional project management [96].
Griffiths’ recommendations and our findings suggest as follows.

• The PMBOK processes were used for project initiation (e.g., conducting a project
charter and stakeholder analysis) and project closure (e.g., obtaining user
acceptance and formally closing the software project).

• The modifications of the PMBOK and Scrum processes were used for project
planning (e.g., using iterative and ongoing project management plans in various

128

management aspects throughout the software project guided by feedback from
actual project performance as well as business and technical changes). This is also
similar to the key findings of Karlström and Runeson’s case studies [239] on
integrating XP into traditional Coopers’ Stage-gate models. They suggest adapting
the project planning to accommodate for agile micro planning in combination with
macro project planning.

• Scrum techniques were primarily used for project execution and controlling (e.g.,
daily meetings, iterative sprints, sprint reviews, sprint retrospectives, empowering
the teams, and using Burndown charts).

Lesson 2: Several communication channels should be established when physical face-
to-face communications cannot be fully implemented in order to increase the chance of
responses. For instance, mobiles can be of good use for quick feedback, while mailing lists as
a synchronous communication can increase the active and constant participation in software
development [240]. Besides, e-conferencing with a whiteboard function helps reduce
information mutation. Nevertheless, face-to-face communication that is recognized as the
most effective method should be developed as a primary method.

Lesson 3: During software development, team building is important. The observations
suggest that an effective transfer of knowledge and skills significantly impact on ongoing
development activities and software project success. Management should thus provide
adequate time and be able to train team members on relevant knowledge (e.g., business and
managerial knowledge), whilst team members themselves should have motivation and
willingness to share technical skills to others. This helps to cultivate an interactive work
environment with shared values.

Lesson 4: A tester and a configuration management system should be integrated into a
software development team, similarly to McMahon’s lessons learned [154]. In a term of
shippable work, it is used to describe the quality that incremental work must have [181]. This
means that work must be fully tested and ready to ship before demonstrated to a product
owner. Therefore, a tester should work closely with software developers to ensure complete
test coverage. Moreover, a configuration management system can support the proper control
of work integration to ensure quality shippable work.

Lesson 5: Teams should strictly focus on (1) monitoring and minimizing impediments
and risks through daily meetings, (2) iterative validation and verification through sprint
reviews, and (3) iterative inspection and adaptation of the software process through sprint
retrospectives when applicable. These meetings are beneficial, e.g., to increase (1) internal
communications (similarly to the Karlström and Runeson’s findings [239]), (2) the quality of
software processes and products and (3) early visibility of project progress and incremental
products that in turn significantly values management on better project control and
commercial planning. This also raises more opportunities for product management to bring
potential incremental products to the market.

Lesson 6: Management providing strong commitment and facilitating the team with
supportive environments is a strong enabler to enhance work motivation of team members.
This in turn cultivates commitment between management (or users) and team members and a
collaborative environment.

Based on the above lessons learned, the practices that were efficiently and effectively
executed in the CAT and TOT teams are mapped with their related CSFs in the SDM model
and summarized into Table 5-4. According to the assessment results, CAT stood at the
maturity level 2-“Managed” of the SDM model. On the other hand, the findings reveal that

129

the TOT team might stand at maturity level 1-“Initial” of the SDM model, as they rated
themselves to start from the beginning. This was due to many weak software practices under
CSFs corresponding to the maturity level 1, found in the TOT team during the case. For
instance, under the “Management Commitment” factor, there was a lack of management
commitment in terms of time and effort to effectively train the programming language and
support its use. Under the “Project Management Process” factor, there was a lack of agile-
oriented project management process, a lack of intensive face-to-face communications, and a
lack of continuous software process improvement. Therefore, Table 5-3 clearly shows that
the better the CSFs are implemented, the better the increased software development
performance can be achieved. However, there are at least five certain CSFs required to be
implemented, including project management process; user involvement; appropriate methods,
techniques, and tools; team capability; and team environment.

Table 5-3. A summary of the practices efficiently and effectively executed in the case studies

Level CSF Lessons Learned CAT TOT
2

Management
Commitment

Provide commitment and support software
development by management

X

Project Management
Process

Establish several communication channels X X
Primarily focus on the occurring impediments during
daily meetings

X X

Strictly perform iterative validation and verification
through sprint reviews; this helps increase early
visibility of project progress and incremental products
to value management on better project control and
commercial planning

X X

User Involvement Collaboration between users and team members X X

3 Agile Software
Engineering Process

Integrate a tester and a configuration management
system into teams

X

Appropriate
Methods,
Techniques, and
Tools

Use PMBOK for project initiation and project closure;
use the modification of PMBOK and Scrum for
project planning; and primarily use Scrum for project
execution and controlling

X X

Organizational
Environment

Facilitate the team with supportive environments X

Team Capability
and Team
Environment

Build teams through knowledge transfer and shared-
value environments

X X

4 Reviews Iteratively inspect and adapt the software processes X

130

C. The answer to the RQ5-2 “What are the challenges that impact software
development, using the developed software process maintenance framework?”

Answering the RQ5-2 “What are the challenges that impact software development,
using the developed software process maintenance framework?”, we summarize the
following lessons learned that can be used as guidance on which challenges need to be
addressed for further improvement. In order to maximize generalizability, we also provide
what extent our findings are relevant or similar to the findings of other cases.

Lesson 7: The observation results of the CAT team and the assessment results of
software development maturity they gained remain in conflict. For instance, they rated the
factor of team environment at the greatest score of 10, but the actual software process
implementation show a weakness of their implemented software processes (e.g., lacking self-
managing teamwork). This may result from either the assessment being somehow overrated
or a lack of the maintenance of their strong software practices. The assessment results are an
indicator to guide where they are, but the software development results and the implemented
software processes are even more important to express the actual software development
maturity and the quality of the implemented software processes. In order to get the right
suggestion from the SDM model, the teams should perform the assessment with honesty or
the minimum bias.

Lesson 8: Clear statements of goals, objectives, and requirements need to be ensured
at any time to avoid work rejected.

Lesson 9: During planning, requirement prioritization plays a key role in agile-
oriented software development. This is because agile excels at the delivery of the most
important and valuable feature to users. Work (or feature) breakdown structure is also
important for estimating efforts and staffing. When conflicts related to these occurred, as we
found in the CAT team, it is more likely to diminish motivation to work collaboratively and
in turn work satisfaction. Therefore, conflict solutions should be established at the early
stages, based on the negotiation between the users and the team. Those conflict solutions
should be inspected and adapted to fit the team’s circumstances.

Lesson 10: Backlog administration requires self-discipline. Although backlogs are
useful planning, controlling, and tracking artefacts, the motivation to keep them up-to-date is
still lacking in both CAT and TOT teams. This seems a common lesson as it can be found in
other agile software projects [241]. Management should hence get the teams to have work
motivation and self-discipline.

Lesson 11: Management should deem an appropriate workload allocation for each
team member who is assigned to have multi-roles and/or multi-projects. Meanwhile, the team
member who has multi-roles and/or multi-projects should carefully prioritize his/her own
responsible work to execute since it significantly affects rapid software development. It is
also important that roles and responsibilities should be clearly clarified to all team members
and users, similarly to Karlström and Runeson’s findings [239].

Lesson 12: Teams are required to have the ability to self-manage. The need of a team
leader can be found in many agile software projects (e.g., [154, 202]) and also in both CAT
and TOT teams. Since the teams are strongly familiar with traditional software development
culture that easily impedes the ability of the team to self-manage; therefore, team leaders
should coach and allow their teams to collaboratively self-manage and meantime balance the
collaborative self-managing and leader-guided atmospheres.

131

Lesson 13: Teams must get out of the strong traditional sequential mentality. It does
not work with the agile-oriented mentality [154]. When some traditional project management
processes are required, management should balance discipline and agility to fit their
organizational and team cultures and any particular circumstances by continuous inspection
and adaption of the software processes.

Lesson 14: Even though face-to-face conversations are recognized as the most
efficient and effective method by Agile Manifesto and especially the CAT team, they were
not used intensively in both teams. Face-to-face communications significantly affect not only
software development but also knowledge transfer. To reach a higher opportunity to achieve
successful software projects, face-to-face communications should be established as
intensively as possible.

Lesson 15: Teams should decide what and when documentation is needed. Although
agile values working software over comprehensive documentation, technical documents
(especially software design such as flowcharts) should not be neglected. It is not necessary to
elaborate all details, just make documents simple enough to understand [242]. Agile
recommends using communication and collaboration amongst team members as a means of
maintaining knowledge rather than using documentation [243]. However, at the beginning of
the agile-oriented or hybrid agile-disciplined journey it is not easy to get the right people
having the ability to effectively communicate and collaborate into the software projects.
Hence, performing necessary documentation together with enhancing the teams’
communication and collaboration skills should help to augment the higher levels of
knowledge maintenance.

Lesson 16: Well preparation of appropriate technical environments (e.g., evaluating
appropriate techniques and tools and conducting an up-front assessment of data quality in the
source systems) at the early stage of software development can minimize the chances of
software project failures. This is more or less similar to Karlström and Runeson’s key
findings [239]. They suggest involving developers early in the software development to
quickly identify and eliminate technical issues and clearly outline possible solutions.

Lesson 17: Software development is knowledge-intensive activity [30]. Hence, the
teams should assess, implement, and improve the factors that affect knowledge transfer
effectiveness (e.g., motivation, sufficient communications, commitment, the ability to share,
learn, and apply knowledge, and the usefulness of knowledge). The observations suggest that
the more the transferred knowledge is perceived as useful, the more likely the transferred
knowledge is continued to be performed and integrated into the existing software processes.
Nevertheless, the transferred knowledge must be compatible with the organizational culture,
e.g., standards, policies, and practices. Otherwise, it is greatly likely to be rejected.

Based on the above lessons learned, the challenges can be summarized into Table 5-4.
In this table, there are eight certain challenges that need to be addressed for further
improvement of software development performance. These include a lack of consistent self-
discipline on backlog administration, a lack of appropriate workload allocation and awareness
of their roles and responsibilities, a lack of team self-management, the need of team leaders
who can make a decision and guide teams in the right direction, a lack of balanced agile and
disciplined environments, a lack of intensive face-to-face communications, less-detailed
documentation, and a lack of sufficient knowledge transfer.

132

Table 5-4. A summary of the challenges found in the case studies

Dimension Challenge CAT TOT
Assessment Software practices should be assessed with the minimum bias. X

Backlog
administration

There were unclear statements of goals and requirements in some sprints
(or iterations).

X

There was a conflict between business value criteria and technical
criteria in requirement prioritization.

X

There was a conflict for breaking down work into tasks due to the
different opinions between software developers.

X

The participants felt they had to spend more time on backlogs due to less
experience.

X X

Human resource
management

Multi-roles and/or multi-projects of key team members affect effective
software development. In other words, a heavy workload, a lack of
commitment in terms of time and effort, or unawareness of their roles
and responsibilities affect effective software development.

X X

There was a lack of team self-management due to long journey of
traditional software development and organizational environments.

X X

There was the need of team leaders who can make a decision and guide
them in the right direction.

X X

Management should transition and balance command-and-control to
leadership-and-collaboration management [229-231]. In other words,
management should balance agility and discipline; whilst team members
should learn how to be collaborative leadership (or self-managing).

X X

Communication
management

There was a lack of intensive face-to-face communications. X X

Documentation Less-detailed software design may cause problems in the future. X X
Development
technique

Ill-preparation of appropriate technical environments (e.g., assessing
appropriate techniques and tools and analyzing data quality from the
source systems before the development) significantly impedes rapid
software development.

 X

Knowledge
transfer

Sufficient knowledge transfer within teams is required for software
development performance and knowledge retention.

X X

133

B. The answer to the RQ5-3 “What changes are necessary to adapt the developed
software process maintenance framework?”

The answer to the RQ5-3 “What changes are necessary to adapt the developed
software process maintenance framework?” is summarized in Table 5-5. Owing to agile-
inexperienced software development teams, the findings provide a clear picture that both
teams need to make the following changes to adapt hybrid agile-disciplined processes.

Table 5-5. A summary of the changes necessary to adapt the developed software process
maintenance framework

Dimension Necessary Changes CAT TOT
Software
process

The project goals, objectives, and roadmap must be clearly explained to all
team members to ensure that all team members are going in the same
direction.

X X

The teams had to change from using only the ongoing project management
plans throughout the software projects to using both iterative and ongoing
project management plans.

X X

Users and all team members had to work together from the planning to
iteration/project closure through continuous communications and lots of
meetings.

X X

The teams had to change from responding changes immediately to freezing
requirements during iterations.

X X

The teams had to change from validating and verifying work at the end of
either long release cycles or the software projects to iteratively test, review
work, and/or collect lessons learned in short-time iterations.

X X

Knowledge
transfer

Not only relying on explicit knowledge in the project documents, but also
shared-values environments need to be cultivated.

X

X

D. The answer to the RQ5-4 “How do practitioners transfer new knowledge into their
existing software processes?”

The answer to the RQ5-4 “How do practitioners transfer new knowledge into their
existing software processes?” is summarized as follows. A knowledge transfer process began
with either (1) the authors’ decision to transfer new knowledge (i.e., the framework) to the
teams and the transfer plans or (2) any events leading to the decision to transfer amongst team
members (e.g., the need to describe user requirements). During transferring new knowledge
(e.g., the framework and software-development-related knowledge), the teams considered the
following four factors to make a decision to use new knowledge. They were the knowledge’s
usefulness and ease of use, suitability with the organizational or team cultures, and
compatibility with the existing software processes. Once all of these factors were satisfied by
all team members, the transferred knowledge was used. Otherwise, the transferred knowledge
was more likely to be rejected. Some transferred knowledge was directly used; whilst some
was tailored to fit into their software development environments. For instance, the process of
discussing three questions (i.e., “What did you do yesterday?”, “What will you do today?”,
and “What impediments are in your way?”) in daily meetings was tailored in both CAT and
TOT teams. Both teams performed the three questions uncomfortably at first and also felt
incompatible with their team cultures. Hence, they decided to apply the first two questions
sometimes but only the last question for every daily meeting. In contrast, although the Scrum

134

master in the TOT team agreed that key team members (e.g., a product owner and a Scrum
master) directly involved in the software project should have full authority for rapidly making
decisions as suggested by the SDM model, this process was not approved by top management
(or a project sponsor) due to the unsuitability with the organizational culture. This process
was thus rejected. Once the expected outcomes (e.g., work performance and work
satisfaction) from using the transferred knowledge were satisfied, the transferred knowledge
was integrated into their standard practices. Otherwise, it was either re-tailored until being to
solve their occurring problems or meeting their objectives, or continuously used until
achieving the expected outcomes. For instance, the process of freezing requirements during
the sprint was perceived as satisfactory and being able to solve the existing problems in the
CAT team, this process was integrated into their existing practices.

During the transfer process, the findings reveal that team members’ motivation,
absorptive capacity, credibility (i.e. trust and reputation), capability (i.e., the knowledge
source’s reservoir of knowledge), communication frequency, good relationships between
team members, and key stakeholder commitment affects the knowledge transfer success. For
instance, the CAT team faced difficulties to perform retrospective meetings, e.g., a difficulty
to recognize which software process is working or is not working due to less experience or a
lack of absorptive capacity. Their motivation to perform this software process was likely to
be decreased. The product owners in both teams were expert in their product areas and had
business, managerial, and/or technical skills and expertise. As observed they took the
knowledge the teams should have into account and were willing to share such knowledge
with their teams. Team members were thus able to increase their software development
performance. Besides, software developers in both teams largely shared technical knowledge
to each other, especially via face-to-face conversations. They also established other
communication channels (e.g., mobiles, emails, instant messaging, and e-conferencing) to
exchange knowledge or get feedback when the team members were remote or worked in
different sites. This shows that source’s credibility and capacity, good relationships, and
extensive communications impact the successful knowledge transfer. Furthermore, a lack of
commitment in terms of time of the Scrum master led to non-application of sprint
retrospectives in the TOT team. The more these factors exist in the teams; it is more likely to
gain knowledge transfer effectiveness. This suggests that the participants should continuously
assess, implement, and improve these factors in order to achieve successful knowledge
transfer.

Considering the knowledge transfer process of the teams, it is very similar to
Szulanski’s knowledge transfer mechanism [103]. In Szulanski’s model, a knowledge transfer
process flows through four stages. First, Initiation begins with all events leading to the
decision to transfer. Second, Implementation begins with the decision to transfer. Third,
Ramp-up begins when the recipient starts using the transferred knowledge. Fourth,
Integration begins after the recipient achieves satisfactory outcomes. Giving a clearer picture,
the knowledge transfer process of the teams can be mapped with the four stages in
Szulanski’s model and summarized in Figure 5-2.

135

Implementation Stage:
1. The source transfers knowledge to the recipient.
2. The recipient makes a decision to use the knowledge.

Use? no

yes

Ramp-up Stage:
1. The transferred knowledge is used

with/without tailoring.
2. The outcomes from using the

transferred knowledge are assessed.

yes

no

Start

End in
rejection

Satisfied?

End in success

Integration Stage:
The transferred knowledge is integrated into existing
software processes and continuously used.

CSFs:
1. Source’s motivation
2. Source’s capability
3. Source’s credibility
4. Recipient’s motivation
5. Recipient’s absorptive capacity
6. Knowledge’s usefulness
7. Knowledge’s ease of use
8. Good relationship
9. Commitment
10. Extensive communication
11. Organizational culture

affect

Knowledge Transfer Process

Initiation Stage:
The source decides to transfer knowledge to the recipient.

Figure 5-2. The participants’ knowledge transfer process

Nevertheless, how to successfully organize knowledge transfer still remains a
challenge for the organizations. Hence, these findings (i.e., the participants’ knowledge
transfer process and the identified factors) are used to design and develop the proposed
knowledge transfer framework.

E. The answer to the RQ5-5 “What is the developed software process maintenance
framework perceived usefulness and ease of use?”

The answer to the RQ5-5 “What is the developed software process maintenance
framework perceived usefulness and ease of use?” is summarized as follows. Based on the
questionnaire findings, the framework is perceived as useful and easy to use. Regarding the
perceived usefulness, the respondents significantly perceived the improvement of work
performance, work effectiveness, team productivity, software process quality, software
product quality, and easiness to work. Regarding the perceived ease of use, the framework
considerably perceived as clear and understandable, easy to become skilful, easy to use, and
easy to remember how to perform tasks. Moreover, the respondents substantially portend to
continue to use the framework. This supports that the framework were perceived as usable
and acceptable.

136

F. The answer to the RQ5-6 “What are the requirements for successful adaptation of
the software process maintenance framework?”

This section presents the requirements for successful adaptation of the developed
software process maintenance framework that answer the RQ5-6 “What are the requirements
for successful adaptation of the software process maintenance framework?”. The
requirements are summarized into three categories as follows.

The first category contains the requirements concerning the organizational context.
First of all, management should define and communicate the needs for the change and how to
accomplish the change successfully with people who are involved [244]. Those people should
be dedicated to training of the framework and related knowledge and should have motivation
to make positive changes in their behaviors and incorporate new skills and knowledge into
their own knowledge packages [245]. Second, management should balance discipline and
agility to fit their organizational and team cultures by continuous inspection and adaption of
the software processes. Third, management should get team members to self-manage and
self-discipline with collaboration [232]. Self-management is key agile characteristic that
helps self-managed teams make important decisions, deal with various situations, and
overcome challenges that arose [246, 247]. Collaboration is the working together to make a
decision or deliver a work product. Imposing software development on non-collaboration is
likely to fail [246]. Management should hence cultivate all key stakeholders (e.g., users and
team members) into the intense collaborative culture for rapid decision making and improved
ability to cope with ambiguity.

The second category contains the requirements concerning the software process
context. Although the framework can act as guidance on the “what” and “how” to improve
and implement software processes; it is crucial that teams must also iteratively inspect and
adapt the integrated project management and software development processes to fit into any
circumstances. For instance, to comfort their team cultures, the teams tailored daily meetings
by adapting two daily questions of “What did you do yesterday?” and “What will you do
today?” approximately few days a week. This requirement is similar to Schatz and
Abdelshafi’s suggestion [71] as they said “building software is a continuous learning
process”. However, in order to appropriately adapt the integrated project management and
software development processes, it requires adaptive people who understand both traditional
and agile software development approaches to be taken place in teams.

The third category contains the requirements concerning the knowledge transfer
context. As mentioned, an effective transfer of knowledge and skills significantly impact
ongoing development activities. Management should provide adequate time and effort and be
able to train team members on relevant knowledge (e.g., business, managerial, and technical),
while software developers should have motivation and willingness to especially share
technical skills to others. Knowledge sources need credibility in terms of trust and reputation;
whereas knowledge recipients need the ability to learn and apply the transferred knowledge.
Besides, knowledge can be transferred effectively when it is perceived as useful and not too
complicated by the recipients and when a good relationship between team members has taken
place [72]. An interactive work environment with frequent informal communications should
also be established to facilitate an effective knowledge transfer. The organizational culture
should also be taken into account when exchanging or tailoring knowledge. Based on Joshi et
al. [72], Table 5-6 summarizes the identified requirements into five categories (i.e., the
contexts of source, recipient, knowledge, relational, and situational). The source and recipient
context refer to the attributes of the knowledge source and recipients which can facilitate or

137

impede the process of knowledge transfer. The relational context refers to the attributes that
characterize the relationship between a knowledge source and a recipient. The knowledge
context refers to the nature and characterization of the type of knowledge that is being
transferred. The situational context refers to the environmental characteristics surrounding the
knowledge transfer process. All of the identified requirements should regularly be assessed,
implemented, and improved for successful knowledge transfer.

Table 5-6. Requirements concerning the knowledge transfer context

Context Requirement
Source Great motivation, capability, credibility
Recipient Great motivation, absorptive capacity
Knowledge Usefulness, ease of use
Relational Good relationship, commitment
Situational Extensive communication, organizational culture

Two sets of the knowledge transfer requirements identified in Table 2-5 in Chapter 2
and those identified in Table 5-3 in this chapter are the same. This emphasizes that these
identified requirements strongly need to be implemented for successful knowledge transfer.
For the sound development of the proposed knowledge transfer framework, a gap analysis in
the field of knowledge transfer is performed in Chapter 6. The findings of the gap analysis
and the findings (i.e., the participants’ knowledge transfer process and the knowledge transfer
factors (or requirements) from this chapter are used to design and construct the knowledge
transfer framework. The descriptions of the framework are presented in Chapter 7.

5.5 Summary

Two case studies in state-owned telecommunications companies in Thailand were
carried out to check on whether the developed software process maintenance framework is
practical and usable. It must be emphasized that the framework was tested without any
controlled settings. Its application to real-life software development case studies indicates
that the framework promises to provide the improvement of software development
performance in terms of efficiency and effectiveness. Hence, it can be used as a feasible
alternative to manage and develop software projects. The test was split into two phases: the
first phase performed at CAT Telecom Public Company Limited (CAT) and the second phase
performed at Public Company Limited (TOT). The main goal of the first phase is to provide
an analysis of the application of the framework and the practitioners’ process to learn, use,
and integrate new knowledge (e.g., the framework and software-development-related
knowledge) into their existing software process; whilst the second phase involves collecting
only interesting data which offers our double check on certain factors and issues in the case
studies. The findings are summarized into six perspectives as follows.

The first perspective describes how the developed software process maintenance
framework can be executed efficiently and effectively in the given context. Beginning the
cases with the assessment of software development maturity using the SDM model, the
maturity level of the CAT team was higher than that of the TOT team. Based on the findings,
we identify certain software practices under five CSFs that were efficiently and effectively

138

implemented in both cases (i.e., project management process; user involvement; appropriate
methods, techniques, and tools; team capability; and team environment). There also were four
additional CSFs that were efficiently and effectively implemented in the CAT team (i.e.,
management commitment, agile software engineering process, organizational environment,
and reviews). Based on those practices, the findings also indicate that the framework partially
conforms to approaches offering similar features (e.g., project management and software
development processes, continuous software process improvement, coding standards, simple
design, refactoring, and continuous integration), e.g., CMMI and XP.

The second perspective describes the challenges that impact software development,
using the framework. Based on the findings, we identify eight certain challenges that need to
be addressed for further improvement. These include a lack of consistent self-discipline on
backlog administration, a lack of appropriate workload allocation and awareness of their roles
and responsibilities, a lack of team self-management, the need of team leaders who can make
a decision and guide teams in the right direction, a lack of balanced agile and disciplined
environments, a lack of intensive face-to-face communications, less-detailed documentation,
and a lack of sufficient knowledge transfer.

The third perspective describes the changes necessary to adapt the framework. Both
teams were at the beginning of hybrid agile-disciplined journey. It particularly requires six
certain practices that both teams needed to make changes for adapting the framework. These
include clearly explaining project goals, objectives, and roadmaps to all team members; using
both iterative and ongoing project management plans throughout the software projects;
working together between users and team members from iterative planning to closure through
continuous communications; freezing requirements during iterations; testing, reviewing work,
and collecting lessons learned in short-time iterations; and cultivating shared-value
environments through sufficient knowledge transfer.

The fourth perspective describes how practitioners transferred new knowledge into
their existing processes. A knowledge transfer process began with either (1) the authors’
decision to transfer new knowledge (i.e., the framework) to the teams and the transfer plans
or (2) any events leading to the decision to transfer amongst team members (e.g., the need to
describe user requirements). During transferring new knowledge (e.g., the framework and
software-development-related knowledge) from the authors to the teams or amongst team
members, the participants considered four factors (i.e., the knowledge’s usefulness and ease
of use, suitability with the organizational or team cultures, and compatibility with the existing
software processes) to decide whether or not to use new knowledge. Once all of these factors
were satisfied by all team members, the transferred knowledge was used. Otherwise, the
transferred knowledge was more likely to be rejected. Some transferred knowledge was
directly used; whilst some was tailored to fit into their software development environments.
Once the expected outcomes (e.g., work performance and work satisfaction) from using the
transferred knowledge were satisfied, the transferred knowledge was integrated into their
standard practices. Otherwise, it was either re-tailored until being to solve their occurring
problems or meeting their objectives, or continuously used until achieving the expected
outcomes. During the transfer process, the findings reveal that team members’ motivation,
absorptive capacity, credibility, capability or the knowledge source’s reservoir of knowledge,
communication frequency, good relationships between team members, and key stakeholder
commitment significantly affects the knowledge transfer success. The more the quality of
these factors exists in the teams; it is more likely to gain knowledge transfer effectiveness.
This suggests that the participants should continuously assess, implement, and improve these
factors in order to achieve successful knowledge transfer. Nevertheless, how to successfully

139

organize knowledge transfer still remains a challenge for the organizations. Based on these
findings, the participants’ knowledge transfer mechanism is very similar to that of
Szulanski’s model. Hence, we used these findings (i.e., the practitioners’ knowledge transfer
mechanism and the identified factors) to design and develop the proposed knowledge transfer
framework which is described in Chapter 7.

The fifth perspective describes what the framework was perceived usefulness and
ease of use. The teams were satisfied with the framework. It enables them to deliver frequent,
tangible, and right results that significantly lead to the increased team and customer
satisfaction. Regarding the framework’s perceived usefulness, the teams significantly
perceived the improvement of work performance, work effectiveness, team productivity,
software process quality, software product quality, and easiness to work. Regarding the
framework’s perceived ease of use, the framework considerably perceived as clear and
understandable, easy to become skilful, easy to become easy to use, and easy to remember
how to perform tasks. Moreover, the respondents substantially portend to continue to use the
framework. This supports that the framework were perceived as usable and acceptable.

The sixth perspective describes the requirements for successful adaptation of the
framework. We have identified requirements for successful adaptation of the framework. In
the organization context, the framework requires management to motivate changes, support
hybrid agile and disciplined environments, and cultivate collaborative self-management. In
the software process context, teams must iteratively inspect and adapt the integrated project
management and software development processes to fit into any circumstances. To do so, it is
important to have adaptive people who understand both traditional and agile software
development approaches on teams. In the knowledge transfer context, the following factors
are required to be existed in teams. Those factors includes knowledge’s source motivation,
capability and credibility; knowledge recipient’s motivation and absorptive capacity;
knowledge usefulness and ease of use; good relationships between team members,
commitment; frequent communications; and (supportive) organization culture. Practitioners
should continuously assess and improve these factors for successful knowledge transfer.

In summary, the findings reveal that the framework can to some extent overcome
some of Scrum’s weaknesses in the following knowledge areas: (1) integration management
(i.e., providing configuration management and details of many types of testing), scope
management (i.e., a clearer sense of product’s direction), time management (i.e., improving
the predictability of time estimate for the whole project, using the scope management plan
and backlogs together), and technical aspects (i.e., using generic agile practices such as data
quality technique, simple design, and code standard as suggested by the SDM model). Some
of Scrum’s weaknesses require more cultivation to overcome, e.g., commitment,
collaboration, intensive communications, and knowledge sharing to build up team members’
experience in real-life software projects. This emphasizes that there is a need for an effective
knowledge transfer mechanism. Owing to small software projects of our case studies, this
limits our ability to argue whether or not some Scrum’s weaknesses (i.e., limited support for
high quality assurance, large teams, outsourcing, and accurate cost estimate for the whole
project) can efficiently and effectively be overcome by the framework. However, the findings
reveal that the framework presents the promise to provide the improvement of software
development performance in teams of efficiency (i.e., reducing rework and increasing team
productivity) and effectiveness (i.e., reducing defects and increasing customer/team
satisfaction).

It is necessary to state the limitations of this study. First, we did not have history
documents of the participating companies’ existing software projects. Secondly, we collected

140

only interesting data in the second phase performed at the TOT team. The main reason was to
double-check certain factors and issues in the case studies. Third, the project scale of the
cases was relatively small in terms of the team size and the project duration. Fourth, the
participants were previously inexperienced in agile software development. Last, the focus
was on only state-owned enterprises, not private companies who are leaders in the overall
Thai telecommunications market. Different software development environments may give
different results. These limited the generalizability of this study. However, we described the
contexts of the cases and analyzed to what extent the findings are relevant or similar to the
findings of other cases. This is in order to make clear to what degree the results are
generalizable. As the result of the continuation of using the framework on other software
projects in the participating organizations, this implies that generalizability should more or
less be increased, albeit a case study naturally limits generalizability due to its specific
context. Moreover, the current trend towards adopting agile methods in Thailand is just at the
initial stages. This implies that a majority of companies in the Thai telecommunications
industry may probably still currently either use traditional software development methods or
have traditional software development environments and cultures. Hence, this study may
provide generable results to companies or software projects having contexts similar to the
cases. Nevertheless, additional case studies are needed to increase the generalizability of this
study.

For the next steps, a gap analysis in the field of knowledge transfer is performed in
Chapter 6. For the sound development of the proposed knowledge transfer framework, the
findings of the gap analysis and the findings (i.e., the participants’ knowledge transfer
process and the identified knowledge transfer factors from this chapter are used to design and
construct the framework. The descriptions of the framework are presented in Chapter 7.

141

Chapter 6

Gap Analysis in the Field of Knowledge Transfer in
Software Development

Knowledge transfer is critical for software development success and performance. It
can be conceptualized in many different ways, e.g., as a communication process and a
diffusion process. This chapter reviews literature on knowledge transfer in order to compare
the similarities and differences. The findings reveal three interesting aspects. First, a
connectionistic perspective of knowledge transfer would be the most suitable for software
development. Based on communication-based knowledge transfer models, this study has
adapted Szulanski’s model due to four reasons: (i) it puts forward more complicated approach
specific to knowledge transfer and describes the notion of internal stickiness to explore the
difficulties of knowledge transfer that leads to the discovery for potential means to overcome
those difficulties; (ii) it can be employed at many levels, e.g., organizational, team, and
individual levels; (iii) there are a myriad of studies using Szulanski’s model in terms of the
transfer process or transfer stickiness as a base, which can imply that knowledge transfer
effectiveness can gain from this model; and (iv) the knowledge transfer mechanism of our
case study participants presented in Chapter 5 is very similar to that of Szulanski’s model.
Knowledge transfer can thus be viewed as a dyadic communication process between the
source and the recipient engaged in software development teams through communication
channels for their learning and transferring knowledge. The transfer process flows through
four distinct stages which are Initiation, Implementation, Ramp-up, and Integration. Second,
knowledge transfer consists of six components which are problems, antecedents (i.e.,
determining factors of the ease or difficulty of knowledge transfer), knowledge, mechanisms,
knowledge application, and outcomes. During transferring knowledge, individual
components can occur at the same or different times and more than once. In other words, they
interact with others as multi-directional. Third, all reviewed studies neither put an emphasis
on all of the six components nor do they clearly offer comprehensive descriptions of and
relationships between those components. The ones providing guidance on how to drive
knowledge transfer into action are sparse. These findings provide advice on how to design
and construct the proposed knowledge transfer framework aiming at covering the six
components, providing guidance for planning knowledge transfer activities, and contributing
to an effective knowledge transfer amongst software development team members.

6.1 Introduction

Knowledge is information possessed by individuals through a process of reflection,
enlightenment, or learning until it becomes a basis for action [41, 248]. A knowledge transfer
amongst software development team members (hereafter referred to as “team members”) is
crucial since a software project typically consists of multiple stakeholders with diverse
backgrounds and skill sets. Talents in software development teams (hereafter referred to as
“teams”) should continuously complement each other for better work efficiency [40].
Besides, a knowledge transfer amongst team members means that software processes (e.g.,

142

project management and software development processes) can be optimized for improved
efficiency and effectiveness above or beyond what any individual can achieve [41]. Research
on knowledge transfer in software development has been conducted within (at least) two
main settings: collocated and distributed teams [40, 73, 75, 249]. However, the findings of
Sapsed et al. [250] reveal that there is a very high similarity in how teams transfer
knowledge, just difference in communication channels used. Consequently, this study puts an
emphasis on an efficient and effective knowledge transfer amongst team members.

Knowledge transfer can be defined in many different ways. For instance, Szulanski
[103] views knowledge transfer as a dyadic process in which a complex, causally ambiguous
set of routines is recreated and maintained in a new setting. Argote and Ingram [251] consider
knowledge transfer as “the process through which one unit (e.g., group, department, or
division) is affected by the experience of another”; whereas Darr and Kurtzber [252] argue
that knowledge transfer occurs “when a contributor shares knowledge that is used by an
adopter”. Ko et al. [86] define knowledge transfer as “the communication of knowledge from
a source so that it is learned and applied by a recipient”. While different definitions of
knowledge transfer are being used, different solutions for effective knowledge transfer have
been proposed. Consequently, it is important to understand terms of knowledge transfer,
which leads to the following research question.

RQ6-1: What are the differences in how knowledge transfer is defined in the literature
and what can we learn from these differences?

Moreover, knowledge transfer itself has several components. Becker and Knudsen
[253] view knowledge transfer comprising three components (i.e., antecedents, mechanisms,
and outcomes), whereas Ward et al. [254] view it as consisting of five components (i.e.,
problem identification and communication, knowledge development and selection, analysis
of context barriers and supports, knowledge transfer activities, and knowledge utilization).
Martinkenaite [255] views knowledge transfer composing of three main components which
are antecedents, knowledge acquisition, and outcomes. Besides, researchers argue that
knowledge transfer takes place where the transfer effectiveness depends upon antecedents in
the surrounding contexts of knowledge transfer. An antecedent in this study is meant to be a
determining factor of the ease or difficulty of knowledge transfer [255]. For instance,
antecedents in the knowledge context include causal ambiguity and unprovenness [256].
Antecedents in the source context include shortage of motivation and reliability [78].
Antecedents in the recipient context include a lack of absorptive and retentive abilities [86],
and antecedents in the relational context include arduous relationship between the source and
the recipient and barren organizational context [81, 84]. Knowledge transfer should be based
on existing needs and problems of the recipient. Identifying a problem can lead to knowledge
transfer with possible mechanisms [257]. Mechanisms can focus on knowledge transfer
activities and communication channels. There are main types of knowledge transfer activities,
e.g., ones focused on assessing the knowledge embeddedness, ones focused on managing the
transfer process, and ones focused on transferring knowledge [258]. Besides, communication
channels play as a key enable in facilitating transfer effectiveness and achieving satisfactory
outcomes. Satisfactory outcomes are the result of using useful knowledge, until one is able to
make decisions and solve problems effectively [259]. As how each individual component
interacts with others significantly affects successful knowledge transfer as well as knowledge
transfer components must be provided to ensure a clear understanding of the transfer process
[253], this leads to the following research question.

RQ6-2: How does each individual knowledge transfer component interact with
others?

143

Based on the findings on the above research questions and our review of 27 highly
visible knowledge transfer studies in the field of software development (2000-2011), the
answer to the following research question is then highlighted and used for designing our
knowledge transfer framework which aims at providing guidance for planning knowledge
transfer activities.

RQ6-3: What are the missing points in the literature on knowledge transfer in
software development?

This chapter is organized as follows. The following section presents literature review
on knowledge transfer epistemologies, knowledge transfer definitions, knowledge transfer
models, and knowledge transfer components. This is followed by the descriptions of common
knowledge transfer components and the missing points in the reviewed literature.

6.2 Literature Review
During software development, team members can learn from their experiences in

order to find an effective way to create, share, apply, and retain their relevant knowledge.
Knowledge transfer is an important step towards higher competencies of team members,
successful software development, and eventually sustainable competitive advantages. To
understand the definitions of knowledge transfer, a literature review is performed and
described as follows.

6.2.1 Epistemologies of Knowledge Transfer

Epistemology is a branch of philosophy concerned with the study of knowledge [260].
Venzin et al. [261] claim that before researching any knowledge concepts, it is important to
explore its epistemological roots. This is because “concepts take different forms depending
on the epistemology they are based on”. They distinguish three epistemologies (i.e.,
cognitivistic, connectionistic, and autopoietic) that lead to an amount of research on
knowledge transfer. Those epistemologies have their meanings as follows:

A cognitivistic epistemology is based in the western management tradition where an
organization is viewed as an information processing machine and knowledge is referred to as
explicit [260, 262]. This knowledge is a fixed and representable entity (or data) that can be
universally stored in databases, computers, Information Technology/Information System
(IT/IS), Information and Communications Technologies (ICTs) and physical documentation
[260, 261]. This in turn allows it to be easily shared within and across an organization. The
cognitivistic perspective considers knowledge like data that can be “unproblematically shared
from one entity to another” [40, 261]. Moreover, this knowledge is developed and managed
in accordance with universal and standardized rules [260], which are not viewed as a critical
factor affecting knowledge transfer under this perspective. As this knowledge has a universal
characteristic of the source, the recipient, or the knowledge itself, it thus plays no role in the
transfer [40].

A connectionistic epistemology considers the rules governing knowledge transfer and
acquisition not being universal, but varying locally [261]. Organizations are viewed as self
organized networks driven by communication. However, Senge [263] defines a team as a
fundamental learning group within an organization. Hence, the rules governing the transfer
are team-based and dependent on the conditions of social interactions, ties, or networks [260].

144

In the connectionistic perspective, knowledge is problem-solution orientated and contextual
[40, 261], which leads knowledge transfer being inherently difficult due to different factors,
e.g., the contextualized nature of knowledge, the need for shared understanding, and the
nature of communication [40].

An autopoietic epistemology refers to tacit knowledge residing in mind, body, and
social systems [261]. This knowledge is viewed as observer- and history- dependent and
context sensitive. It is not directly shared, but only indirectly through individual discussions
and socialization. In other words, it is developed in an autonomous manner [40, 261]. This
provides belief that the central concepts of this autopoietic perspective are “the concepts of
autonomy, unity, and co-evolution” [40]. Moreover, as an organization is open to the data
influx and closed to the knowledge exodus, this knowledge is thus not seen as abstract and
sharable [40, 260, 264]. The autopoietic perspective is hence referred to knowledge
conversion or knowledge creation rather than knowledge transfer [40]. This knowledge can
be converted through many strategies, e.g., socialization, externalization, combination, and
internalization [262].

From these epistemological perspectives, the connectionistic perspective would be the
most suitable for the area of software development. This is because software development is
a sense-making process that fundamentally involves human connections (e.g., social
interaction, collaboration, negotiation, and learning) [40, 265]. We consequently believe that
the connectionistic epistemology serves as a basis for designing a framework for transferring
knowledge in a software development setting.

6.2.2 Definitions of Knowledge Transfer

In literature, the phrases of, e.g., knowledge sharing, knowledge exchange, knowledge
flow, knowledge dissemination, knowledge distribution, and organizational learning are often
used as synonyms of knowledge transfer. From those phrases, many definitions of knowledge
transfer are given. For instance, Szulanski [103] views knowledge transfer as a dyadic
process in which a complex, causally ambiguous set of routines is recreated and maintained
in a new setting. Argote and Ingram [251] consider knowledge transfer as “the process
through which one unit (e.g., group, department, or division) is affected by the experience of
another”; whereas Darr and Kurtzber [252] argue that knowledge transfer occurs “when a
contributor shares knowledge that is used by an adopter”. Ko et al. [86] define knowledge
transfer as “the communication of knowledge from a source so that it is learned and applied
by a recipient”. While different definitions of knowledge transfer are being used, different
ways for successful knowledge transfer have been proposed. As the connectionistic
perspective is used for knowledge transfer in a software development setting, this study
consequently defines knowledge transfer as a dyadic process sharing software-development-
related knowledge from a source to a designated recipient within teams engaged in software
development through various communication channels for their learning and applying
knowledge.

145

6.2.3 Models of Knowledge Transfer

Many knowledge transfer models and frameworks have been conducted to show
transfer processes, influential antecedents, roles of knowledge sources and recipients, and
knowledge transfer channels. Those models and frameworks can be classified into many
types, e.g., process base, antecedent base, and component base [266], which are described as
follows.

6.2.3.1 Process-based Knowledge Transfer

The foundation of the transfer process can be traced back to the first communication
model of Shannon and Weaver [267] in 1949 [268]. As the signaling metaphor, a message is
sent from a source through a signal towards a recipient. The message is relayed through an
encoder and then through noise before reaching a decoder; after that the decoder must convey
the message to the recipient. This model is recognized as the mother of all communication
models [269]. Later on, most communication-based models begin with a source, who then
passes a message to a recipient through a linear communication channel [268, 270].
Nevertheless, knowledge transfer is complex and requires a great deal of communication and
collaboration [74]. The higher the complexity of knowledge takes place, the higher the
transfer is inert. Knowledge transfer should thus be deemed as a process of reconstruction
rather than an action of transmission and reception [271]. Based on this view, many
knowledge transfer models have been proposed. In 1995, Nevis et al. [272] proposed an
organizational learning model consisting of three stages which are knowledge acquisition,
knowledge sharing, and knowledge utilization. In 1996, Szulanski [103] proposed a
knowledge transfer model. In the model, a transfer process follows four distinct stages, i.e.,
(i) Initiation, where the source distinguishes the knowledge which can meet the recipient’s
need; (ii) Implementation, where the source and the recipient establish their transfer-specific
channel and meanwhile the source adapts the knowledge to suit the recipient’s need; (iii)
Ramp-up, where the recipient continually adjusts the transferred knowledge towards a
satisfactory level; and (iv) Integration, where the recipient achieves satisfactory results with
the transferred knowledge and gradually routinizes the knowledge as part of his/her own
knowledge packages. Later, Inkpen and Dinur [273] performed a more extensive analysis
based on Szulanski’s model and found that a knowledge transfer process follows four stages,
i.e., (i) Initiation, where knowledge to be transferred is recognized; (ii) Adaptation, where
knowledge is changed at the source location to the recipient’s perceived needs; (iii)
Translation, where knowledge alterations occur at the recipient unit as part of the general
problem-solving process of adaptation to new context; and (iv) Implementation, where
knowledge is institutionalized into the recipient’s knowledge package. However, this study
considers Szulanski’s model due to four reasons. First, it puts forward more complicated
approach specific to knowledge transfer. It also describes the notion of internal stickiness to
explore the difficulties of knowledge transfer that leads to the discovery for potential means
to overcome those difficulties. Second, even though it is originally employed at an
organizational level, it can be adapted at team or individual levels [274]. Third, there are a
myriad of studies using Szulanski’s model in terms of the transfer process or transfer
stickiness (i.e., impediments to the transfer of best practices), e.g., [86, 92, 256, 273, 275-
279] (1998-2010). This implies that knowledge transfer efficiency and effectiveness can gain
from this model. Forth, it is even more important that the knowledge transfer mechanism of
our case study participants presented in Chapter 5 is very similar to that of Szulanski’s model.

146

6.2.3.2 Antecedent-based Knowledge Transfer

Antecedents surrounding the knowledge transfer process notably impact the degree of
knowledge transfer efficiency and effectiveness. A significant number of studies have been
conducted for a deeper understanding of the antecedents that enable or impede the ability of
either the source or the recipient to share and learn from knowledge transfer interactions
within their software development surroundings [73, 78, 81, 84, 86, 92, 256]. According to
Joshi et al. [72], antecedents can be classified into many contexts, e.g., source, recipient,
knowledge, relational, and situational contexts. The source and recipient contexts refer to the
attributes of the source and the recipient which can facilitate or hinder the transfer process,
e.g., motivation, capability, credibility, retentive ability, and absorptive capacity. The
knowledge context refers to the nature and characterization of the knowledge being
transferred, e.g., causal ambiguity and knowledge unprovenness. The relational context refers
to the attributes that characterize the relationship between the source and the recipient, e.g.,
arduous relationship, team culture, and commitment. The situational context refers to the
environmental characteristics surrounding the knowledge transfer process, e.g., extent of
communication and organizational culture. This shows that measuring antecedents
surrounding the transfer contexts is important to point out strengths and weaknesses in the
transfer process that needs reinforcements or improvements for successful knowledge
transfer.

6.2.3.3 Component-based Knowledge Transfer

Knowledge transfer itself has several components that lead to various aspects in
designing component-based knowledge transfer models and frameworks. Albino et al. [280]
describe four components influencing knowledge transfer, which is similar to Duan et al.’s
framework [266]. These components are actors involved in the knowledge transfer process,
context where the interaction takes place, knowledge content transferred between actors, and
media by which the transfer is carried out. Becker and Knudsen [253] argue that a definition
must include antecedents, mechanisms, and outcomes of a particular thing. Hence, they view
a knowledge transfer process composing of those three components that should be provided
to ensure a comprehensive understanding of the transfer process. Especially, the outcomes
should be explicitly stated. Martinkenaite [255] proposes an integrative framework by giving
a mediating role of knowledge acquisition in the relationship between antecedents and
outcomes of knowledge transfer. Antecedents including knowledge attributes, organizational
attributes, and inter-organizational dynamics are considered as transfer inputs. Knowledge
acquisition including type, extent, and nature of new knowledge learned is considered as
transfer outputs. Last, performance results in terms of financial, product, market, and
strategic performance are considered as transfer outcomes. Ward et al. [254] propose a
knowledge transfer framework consisting of five components (i.e., problem identification and
communication, knowledge development and selection, analysis of context barriers and
supports, knowledge transfer activities, and knowledge utilization). Identifying a problem
leads to knowledge transfer with possible transfer solutions and activities. An evaluation of
context barriers and enablers might lead to the selection of appropriate knowledge. The
utilization of knowledge transfer activities might lead to a new consideration of the
underlying problem or the identification of new problems. These components are connected
through a multi-directional set of interactions. Similar to these multi-directional relationships,
many studies describe how problems are associated with the transfer process [31, 84, 91, 103,
265, 274, 281, 282], how different kinds of knowledge play a role in a project life cycle [29,

147

84, 274], how knowledge-related activities or mechanisms influence knowledge outcomes
[41, 81, 92, 249, 265, 274], and how important to use the transferred knowledge [29, 103,
249, 274, 275, 282, 283]. This supports the statement of D.L. Chu, 1995 “Knowledge without
action is useless; action without knowledge is dangerous.” Consequently, we consider that the
transfer process should consist of six components which are problems, antecedents,
knowledge, mechanisms, knowledge application, and outcome.

6.2.4 Lessons Learned

Answering the RQ6-1 “What are the differences in how knowledge transfer is defined
in the literature and what can we learn from these differences?”, knowledge transfer
definitions and concepts depend upon the epistemologies they are based on. There are three
epistemologies. A cognitivistic epistemology refers to explicit knowledge stored in IT/IS
systems; whilst an autopoietic epistemology refers to knowledge conversion rather than
knowledge transfer. It refers to tacit knowledge residing in the mind and social systems. A
connectionistic epistemology refers to knowledge residing in human connections, which
would be the most suitable for knowledge transfer in software development. Based on the
connectionistic perspective, different models have been proposed which can be categorized
into many types, e.g., process base, antecedent base, and component base. However, most of
those models describe relationships amongst the knowledge transfer process, antecedents, and
components. Therefore, this study takes the three aspects of the process, antecedents, and
components into account. There are two main lessons considered as suitable for successful
knowledge transfer amongst team members. First, knowledge transfer should be viewed as a
communication process between the source and the recipient engaged in teams through
communication channels for their learning and applying software-development-related
knowledge. This knowledge transfer process flows through four distinct stages, i.e.,
Initiation, beginning with all events leading to the decision to transfer; Implementation,
beginning with the decision to transfer; Ramp-up, beginning when the recipient starts using
the transferred knowledge; and Integration, beginning after the recipient achieves satisfactory
results. Second, knowledge transfer has six common components which are problems,
antecedents, knowledge, mechanisms, knowledge application, and outcomes. Identifying a
problem can suggest teams to identify knowledge needed and define knowledge transfer
activities with an appropriate mechanism. Analyzing antecedents surrounding the transfer
contexts indicates teams’ health in terms of knowledge transfer efficiency and effectiveness.
According to Pérez-Nordtvedt et al. [284], knowledge transfer efficiency can be viewed as
the amount of resources used to produce a unit of output within reasonable time and cost. To
achieve efficiency, the transferred knowledge transfer should be used speedily and
economically. Knowledge transfer effectiveness can be viewed as the degree to which goals
of the knowledge transfer are attained. To achieve effectiveness, the transferred knowledge
transfer should be perceived as useful and comprehensible. Iteratively applying knowledge
may lead to knowledge embeddedness in their workspace and the identification of new
problems. Besides, frequently evaluating transfer outcomes may bring about continuous
improvement of knowledge transfer, team members’ competencies, successful software
development, and eventually sustainable competitive advantages. For more understanding,
the next section presents how each of the six components of the transfer process interact with
others.

148

6.3 Interactions of Knowledge Transfer Components

Before designing a knowledge transfer concept, it is important to understand the
interactions amongst the six common components within the transfer process. The
descriptions of each individual component and its interactions are presented as follows.

6.3.1 Problems

Knowledge transfer facilitates innovation which is a function of knowledge
acquisition and application [285] through problem identification, generation, evaluation, and
ultimate choice of the knowledge transferred [277, 286]. This shows that knowledge transfer
should be based on problems or existing needs of the recipient. Identifying and formulating a
problem into a clear question can form initial part of the knowledge transfer process [257].
However, potential problems can be identified properly when business goals are clearly
defined [287]. Moreover, Duan et al. [266] found that knowledge transfer is only possible to
occur when all partners aim at the same objectives. Hence, the identified problem should be
based on business/software project goals and objectives and clarified to ensure team
understandings. Identifying a problem can lead to knowledge transfer with possible solutions
and transfer activities [257]. During transferring knowledge, many activities associated with
the identified problem are involved over time. However, unexpected problems may also
occur due to antecedents negatively influencing knowledge transfer, e.g., difficulty or
complexity of knowledge being transferred, less motivation, and ineffective communications.
From this point of view, we conclude that problems associates with the components of
knowledge, antecedents, mechanisms, and knowledge application.

6.3.2 Antecedents

Many studies have proved that there are crucial antecedents in the contexts of source,
recipient, knowledge, relational, and situational that affect knowledge transfer effectiveness
[40, 72, 288]. For instance, source’s and recipient’s great motivation is recognized as an
significant trigger for knowledge transfer and acquisition [79]. Lacking motivation, the
source may be disinclined to share knowledge due to additional effort and time associated
with knowledge transfer, whilst the recipient may be reluctant to acquire knowledge or may
reject new knowledge due to various reasons (e.g., perceived less value of knowledge being
transferred and knowledge complexity) [72, 103]. The degree of source’s capability affects
the degree of knowledge transfer [289]. This is because developing software requires a large
amount of transferring several types of relevant knowledge [40]. Recipient’s absorptive
capacity is the ability to recognize the value of new knowledge, assimilate it and apply it
[290]. It also is a function of the recipient’s prior related knowledge, experience, and abilities.
Learning new knowledge can be achieved when the knowledge is associated with what the
recipient already knows. Usefulness of knowledge has been proved to be most important
during the first stages (i.e., Initiation and Implementation) of the transfer process [291].
Knowledge with perceived usefulness from prior experience is less difficult to transfer and
more likely to be selected to transfer [103]. Good relationship can facilitate knowledge
transfer by decreasing the competitive and motivational impediments [292]. The level of
emotional commitment to the personal tie affects the motivation to provide support. In other
words, the stronger the personal ties, the more likely the source is willing to devote effort and
time for knowledge transfer and the more easily the transfer is taken place [105, 292].

149

Extensive communication is critical for effective knowledge transfer [103] and knowledge
creativity amongst team members [293]. Team members who communicate with each other
frequently are more likely to share knowledge [292]. Moreover, frequent communication can
in turn facilitate more effective communication through the development of relationship-
specific heuristics. Organizational culture refers to the values, practices, and assumptions that
influence the organization’s members to act and behave in a particular manner. Therefore, it
significantly facilitates or impedes knowledge transfer and learning [79]. This shows that
unexpected problems may occur if there is a lack of supportive antecedents. Therefore, we
conclude that antecedents are associated with all other components (i.e., problems,
knowledge, mechanisms, knowledge application, and outcomes).

6.3.3 Knowledge

Success in producing quality software needs the presence of sufficient specialized
skills and knowledge (called expertise) on teams [31]. Teams are thus demanded to know
what knowledge is necessitated, how much knowledge is required, where knowledge is
located, where knowledge is needed, and how much knowledge is useful or complex[257].
Recognizing when and where knowledge is required is at the heart of knowledge
communication [31]. If team members cannot recognize the need and the value of the
knowledge for a given software process; it may not be successfully transferred, although it
may be available in teams. However, the need for certain knowledge varies as a software
project progresses through its life cycle. Knowledge transfer thus demands team members to
localize the knowledge around different problems [294] and customize it to fit into a given
software practice [257, 294]. When knowledge proves successful, team members are likely to
apply that knowledge to solve problems in the future. From this point of view, we conclude
that knowledge is associated with the components of problems, antecedents, mechanisms, and
knowledge application.

6.3.4 Mechanisms

Mechanisms can focus on knowledge transfer activities and communication channels
(or technologies). Concerning transfer activities, there are three main types: ones focused on
assessing the knowledge embeddedness, ones focused on establishing and managing the
transfer process (e.g., managing influential antecedents, reducing conflict, and supporting
knowledge transfer environments), and ones focused on transferring knowledge [258]. Those
activities notably affect successful knowledge transfer outcomes. Concerning communication
channels, the appropriateness of transfer media or communication channels depends upon
many antecedents, e.g., personal relationships, knowledge types, and distance between the
source and the recipient [295]. For instance, when the source and the recipient have a strong
relationship and work collocated, they may mainly employ face-to-face interactions. On the
other hand, when they are geographically dispersed, they may use computer mediated
channels instead, e.g., videoconferencing, instant messaging, email, and knowledge
management systems which themselves are based on the integration of technology and a
transfer mechanism [282, 295]. Technology, particularly ICT, is also considered as a key
enabler in facilitating and achieving successful knowledge transfer. However, the degree of
knowledge transfer performance depends upon both adequate know-how on and extensive
use of ICTs [296]. Different mechanisms fit into different situations [253], depending upon
either the defined or unexpected problems as well as communication and collaboration plays

150

a crucial role in both knowledge transfer and software development. Consequently, suitable
collaborative communication channels (or technologies) should be employed to facilitate
team members to transfer, acquire, and use knowledge [297]. From this point of view, we
conclude that mechanisms are associated with all other components (i.e., problems,
antecedents, knowledge, knowledge application, and outcomes).

6.3.5 Knowledge Application

Useful knowledge significantly leads to its application [298]. Many researchers state
that during a knowledge transfer process knowledge application is the most important activity
in which the transferred knowledge is brought to bear on any problem at hand [248, 290, 298,
299]. Therefore, knowledge application can be referred to as the degree to which team
members can apply knowledge to make decisions and solve problems effectively [259]. Other
knowledge activities (e.g., acquisition and transformation) do not significantly lead to better
work performance or any value. This is because value is created only when transferred
knowledge is successfully applied when it is needed [248]. Moreover, knowledge application
can be achieved through appropriate mechanisms and supportive antecedents (e.g., extensive
communication, collaboration, great motivation, and absorptive capacity) [283, 298]. Many
studies also suggest that while team members access and read about new knowledge (e.g.,
new technology, specific market conditions, or competitive developments) in order to
localize and apply the knowledge, they need the context of the information or knowledge
which can be learned through communications with others [40, 300, 301]. When team
members access the knowledge for use on a software project, they may be able to save effort
and time by continued use of the knowledge [302]. Knowledge application that enables team
members to learn can result in the knowledge retention [254] and may lead to a new
consideration of the underlying problem or the identification of new problems, which in turn
leads to the creation of new knowledge transfer [303]. From this point of view, we conclude
that knowledge application is associated with all other components (i.e., problems,
antecedents, knowledge, mechanisms, and outcomes).

6.3.6 Outcomes

There are various aspects considered as outcomes of sharing, transferring, and
learning knowledge. For instance, knowledge transfer performance in terms of satisfaction
[103, 277] and frequency [304] is considered as outcomes of transferring knowledge. Hult et
al. [305] consider cycle time as an outcome of learning in global purchasing. Slater and
Narver [306] consider customer satisfaction, new product success, sales growth, and
profitability as outcomes of learning in the context of marketing. The greater the benefit
received from sharing knowledge, the greater the knowledge exchange [302]. However, in
the area of software development, work satisfaction and work performance would be more
appropriate for considering as knowledge transfer outcomes [40, 307]. The outcomes may be
iteratively measured for further improvement. This improvement can be performed in many
ways, e.g., establishing a reasonable incentive mechanism to enhance the source’s
willingness to transfer and the recipient’s consciousness to acquire and use knowledge, and
providing essential trainings to increase absorptive capacity [304]. From this point of view,
we conclude that outcomes are associated with the components of antecedents, mechanisms,
and knowledge application.

151

Answering the RQ6-2 “How does each individual knowledge transfer component
interact with others?”, the descriptions above reveal that each individual component interacts
with others as multi-directional. Based on the defined problems, teams can define what
knowledge is required and what mechanisms fit their software development contexts. Weak
antecedents may lead to new occurring problems, whilst supportive antecedents affect
transferability, the ability to use knowledge, and satisfactory outcomes. Moreover, designing
and selecting transfer mechanisms depends upon required knowledge and software
development environments. Suitable mechanisms lead to transfer effectiveness. Otherwise,
unexpected problems may occur and expected outcomes are unlikely to be achieved. Using
the knowledge can bring about knowledge retention. It may also lead to a new consideration
of the underlying problem or the identification of new problems. When satisfactory outcomes
are achieved, sustaining knowledge use is more likely to occur. This shows that during the
process, individual components can occur at the same or different times and more than once.
The component interactions are similar to those reported in Ward et al. [254].

6.4 Knowledge Transfer in Software Development
Table 6-1 presents the review of 27 highly visible studies on knowledge transfer in the

software-development-related area (2000-2011) by focusing on the six components (i.e.,
problems, antecedents, knowledge, mechanisms, knowledge application, and outcomes) and
the purpose of each study.

Table 6-1. Previous studies on knowledge transfer in software development

Study

Pr
ob

le
m

A
nt

ec
ed

en
t

K
no

w
le

dg
e

M
ec

ha
ni

sm

K
no

w
le

dg
e

A
pp

lic
at

io
n

O
ut

co
m

e

Description

Al-Salti [79] X This study examines the factors cited as significant
influences on the ability to transfer knowledge from
the vendor to the client organizations in the
information system outsourcing context. This study
also discusses how those factors can encourage and
improve knowledge transfer and acquisition.

Betz et al. [281] X X X This study recommends best practices of knowledge
transfer in information technology offshore
outsourcing projects by linking proven solutions to
identified problem areas, based on a literature review
and expert interviews.

Chen [308] X X X X X This paper examines how a task partitioning in the
software project influences learning and knowledge
development within the firm. This paper also
suggests that internal development projects
encourage synthetic learning and development of
architectural and tacit knowledge. In contrast,
outsourcing and joint ventures encourage analytic
learning and development of component and explicit
knowledge.

Chua and Pan X X X X X This study examines how knowledge is transferred

152

Study

Pr
ob

le
m

A
nt

ec
ed

en
t

K
no

w
le

dg
e

M
ec

ha
ni

sm

K
no

w
le

dg
e

A
pp

lic
at

io
n

O
ut

co
m

e

Description

[274] for the five Information System Body of Knowledge
(ISBOK) areas (i.e., technology, application domain,
IS application, organizational, and IS development
process knowledge). The findings show that while
some areas of the ISBOK are easily grafted, some
require intense vicarious and experiential learning
using rich media, while others are more difficult to
transfer.

Dayasindhu [85] X X X The framework is used to assess global
competitiveness of organizations in the Indian
software industry. In the framework, knowledge
embeddedness and knowledge transfer are as key
determinants of industry clusters leading to
competitiveness. Industry clusters are characterized
by external economies, generalized reciprocity, and
flexible specialization.

Faraj and
Sproull [31]

X X X This study investigates the importance of expertise
coordination through a cross-sectional investigation
of 69 software development teams. The findings
reveal that expertise coordination shows a strong
relationship with team performance that remains
significant over and above team input characteristics,
presence of expertise, and administrative
coordination.

García et al.
[309]

 X X X This study provides a set of guidelines to develop
knowledge-based Process Asset Libraries (PAL) to
store software development best practices,
implemented as a wiki. It shows that the learning
process can be facilitated using PAL to transfer
software process knowledge, while products were
developed by junior software engineers with a greater
degree of independence.

Gregory et al.
[81]

 X X X X This study analyzes managerial mechanisms and
techniques to make knowledge transfer from client to
vendor in IT offshore outsourcing relationships more
effective. The findings reveal that facilitating
motivation for knowledge transfer at the individual
level is an important prerequisite for effective
knowledge transfer. Once a positive attitude is
present, formal management mechanisms (e.g.,
project reviews and communication counterparts) and
informal management mechanisms (e.g., cultural
competence and face-to-face meetings) can further
facilitate the transfer processes. These mechanisms
reinforce each other and the adequate use of both
types of mechanisms in combination leads to the
greatest outcomes.

Jackson and
Klobas [310]

 X X X This study describes the development of a knowledge
creation and sharing process model based upon the
social constructivist theory and the integration into
the model of heuristics for effective knowledge

153

Study

Pr
ob

le
m

A
nt

ec
ed

en
t

K
no

w
le

dg
e

M
ec

ha
ni

sm

K
no

w
le

dg
e

A
pp

lic
at

io
n

O
ut

co
m

e

Description

construction. This intent is to help project managers
create an optimal environment for the creation and
maintenance of shared knowledge.

Janz and
Prasarnphanich

[249]

X X X X X The study empirically examines the pattern of
relationships amongst software development team
contexts, knowledge-related activities, and outcomes
in terms of work performance and satisfaction. The
findings reveal that team contexts positively
influenced knowledge-related activities which in turn
positively influenced their outcomes.

Joshi et al.[40] X Drawing on the connectionistic epistemology and the
communications-based resource on knowledge
transfer, the model suggests that source’s capability,
credibility, and communication plays a vital role in
determining the extent of knowledge transferred to
recipients.

Ko et al. [86] X The model posits that knowledge transfer is
influenced by knowledge-related factors (i.e.,
absorptive capacity, shared understanding, and
arduous relationship), motivational factors (i.e.,
source’s and recipient’s intrinsic and extrinsic
motivation), and communication-related factors (i.e.,
communication encoding and decoding competence
and source credibility).

Kotlarsky and
Oshri [75]

 X X X This study shows that human-related issues in the
form of social ties (e.g., rapport and trust) and
knowledge sharing significantly contribute to
successful collaboration in globally distributed
information system development teams. Transactive
memory is defined as the set of knowledge possessed
by group members coupled with an awareness of who
knows what.

Oshri et al.
[311]

X X X X This paper explores the role of transactive memory in
enabling knowledge transfer between globally
distributed teams. This paper also describes the
knowledge transfer between on-site and offshore
teams through encoding, storing, and retrieving
processes.

Roberts et al.
[312]

 X This paper examines the prescribed versus actual use
of external consultants, universities, and vendors as
knowledge links during the implementation of
systems development methodologies. Knowledge
links are valued for their expertise and experience in
systems development methodologies. However,
while knowledge-related activities can provide an
organization with faster diffusion of the new
methodology through organizational learning, using
knowledge links does not guarantee successful
systems development methodology implementation.
Barriers to knowledge transfer must be recognized

154

Study

Pr
ob

le
m

A
nt

ec
ed

en
t

K
no

w
le

dg
e

M
ec

ha
ni

sm

K
no

w
le

dg
e

A
pp

lic
at

io
n

O
ut

co
m

e

Description

and overcome for enhancing cooperation.
Sandhawalia
and Dalcher

[29]

X X X X The framework mobilizes and integrates both tacit
and explicit knowledge, and facilitates the flow of
common knowledge to address unstructured
situations in software projects and ensure that that the
right knowledge is available to the right person at the
right time during the software development effort.
The framework also provides a better understanding
of the interactions and relationship between software
development, project management, and knowledge
management processes.

Sarker [73] X The framework consists of source’s capability,
credibility, communication, and culture that
significantly affect knowledge transfer. The findings
of its examination in the context of both cross-
cultural distributed and local teams support the role
of credibility and communication on knowledge
transfer. Besides, culture of the source did affect
knowledge transfer in the distributed teams.

Scott and Sarker
[283]

 X X X This study shows that a channel characteristic (i.e.,
symbol sets) and motivation to learn have a positive
effect on knowledge possessed and knowledge
applied, whilst absorptive capacity influences only
knowledge possessed. The findings also reveal that
knowledge application is much different from
knowledge possession. It is important for an
individual to possess relevant knowledge and to
apply it seamlessly in other contexts for complete
knowledge internalization.

Slaughter and
Kirsch [41]

 X X X The study posits how the composition and intensity
of knowledge transfer mechanism portfolios affect
performance improvement. The findings reveal that a
more intense portfolio of knowledge transfer
mechanisms is utilized when the source and the
recipient are proximate, are in a hierarchical
relationship, or work in different units.

Soini [282] X X X A case study in this paper deals with software
development measurement and related knowledge
collection, distribution and utilization in practice,
using the developed information system which
enables organizations to control and improve their
software development process and product quality.

Steen [313] X X X X Software product quality is related to interpretations
and understanding in practice and on practical
knowledge. Based on a qualitative study of practicing
software developers’ understanding of the concept of
quality and quality assessment, the results show why
quality resists definition and why experience-based
practical knowledge is important.

Timbrell et al. X This study discusses impediments to knowledge

155

Study

Pr
ob

le
m

A
nt

ec
ed

en
t

K
no

w
le

dg
e

M
ec

ha
ni

sm

K
no

w
le

dg
e

A
pp

lic
at

io
n

O
ut

co
m

e

Description

[256] transfer within enterprise system contexts, compared
to Szulanski’s ranked determinants in each stage of a
transfer process.

Upadhyaya and
Krishna [74]

 X X The proposed model is used to identify team level
antecedents of knowledge sharing and how effective
of transfer mechanisms in a distributed work context.
The key contribution of this study is to view the
knowledge sharing process in teams with respect to
different dimensions of distribution index (i.e., time
zone, site, isolation, and imbalance) and relational
attributes of the team.

Volkoff et al.
[314]

 X X This study identifies critical knowledge transfer
barriers and empirically uncovers two
complementary knowledge transfer mechanisms (i.e.,
an intermediate community of practice and a bridge
structure) that are effective for addressing the
knowledge transfer barriers related to a lack of
common practices and purposes in the enterprise
systems context.

Wang et al. [91] X X X The model explains the roles played by the client
through absorptive capacity and the consultant
through competence. The findings confirm that
transfer is improved with higher levels of capacity
and competence, while the transfer process leads to a
better fit between enterprise resource planning
systems and organizational processes.

Xu and Ma [92] X X X This model posits that knowledge transfer is
significantly influenced by the knowledge-, source-,
recipient-, and transfer context- related aspects. The
influence on knowledge transfer from the source’s
willingness to transfer and the recipient’s willingness
to accept knowledge was fully mediated by transfer
activities, while the influence on knowledge transfer
from the recipient’s ability to absorb knowledge was
only partially mediated by transfer activities. The
influence on knowledge transfer from the
communication capability was fully mediated by
arduous relationship.

Yun [84] X X X X This study presents the body of knowledge (i.e.,
domain, technical, process, and culture knowledge)
transferred between clients and vendors in
information system development projects. The results
reveal that in different stage of project life cycle, the
transfer intensity of every kind of knowledge is
different. This study also proposes key factors (e.g.,
firm size, process maturity, knowledge overlap,
absorptive capacity, and culture fit) that impact the
efficiency and effectiveness of knowledge transfer in
software projects.

156

Answering the RQ6-3 “What are the missing points in the literature on knowledge
transfer in software development?”, the results in Table 6-1 reveals that all of the reviewed
studies explaining all or part of the transfer process neither put an emphasis on all of the six
components nor do they offer comprehensive descriptions of and relationships between those
components. The ones providing guidance on how to put knowledge transfer into action are
also sparse. Consequently, there is a need to build a knowledge transfer framework aiming at
(1) covering the six components, (2) providing guidance for planning knowledge transfer
activities, and (3) contributing to effective knowledge transfer amongst team members. For
the next steps, the knowledge transfer framework is constructed based on the findings of the
case studies in Chapter 5 and the findings of the literature review in this chapter. The
descriptions of the framework are presented in Chapter 7.

6.5 Limitations
It is important to highlight potential limitations of this review. First, not all

antecedents and components of knowledge transfer are discussed. Instead, the focus is
primarily on the antecedents identified in Chapter 5 and the components which are commonly
addressed in the majority of the reviewed literature and also compatible with our findings in
Chapter 5, regarding the knowledge transfer mechanism of our case study participants.
Second, we have conducted a review of the literature eliciting work from 69 different authors
(including grey literature, e.g., working papers and technical papers, and some secondary
studies where we used the reference in the primary study to lead to another study) in total and
27 different authors in the particular boundary of knowledge transfer in the software-
development-related field, published in the last decade ranging between 2002 to 2012). The
overall objective of this review is to capture the similarities in the field and the current gaps
in the particular boundary, and to identify needs and opportunities for design and develop our
knowledge transfer framework. As this review includes grey literature, the publication bias
can be ameliorated to some extent. Whilst all of the selected papers are relevant to the
objective of this review, the accuracy bias should somewhat be reduced. However, we note
that with the increasing number of works in this field we cannot guarantee to have captured
all the material in this field. This limits generalizability of the results, as some relevant papers
within this review boundary may be missed.

6.6 Summary

Sustainable team competencies, successful software development, and competitive
advantages require a high degree of knowledge transfer. However, how to achieve effective
knowledge transfer still remains a challenge. The starting point of this study to design a
knowledge transfer framework which aims at providing guidance for knowledge transfer
activities is to understand terms of knowledge transfer, capture its components and its
component interactions, and fulfill gaps in the literature on knowledge transfer in software
development. The findings reveal that the connectionistic epistemology which refers to
knowledge residing in human connections is in this study considered the most suitable for
software development. Based on the connectionistic perspective, knowledge transfer should
be viewed as a communication process between the source and the recipient engaged in teams
through communication channels for their learning and applying software-development-
related knowledge. Concerning the transfer process, we deem Szulanski’s model due to four

157

reasons. First, it puts forward more complicated approach to knowledge transfer and
describes the concept of stickiness to explore the difficulty of knowledge transfer. Second, it
can be employed at many levels, e.g., organizational level, team, and individual levels. Third,
there are many studies using Szulanski’s model as a base. This implies that knowledge
transfer effectiveness can gain from this model. Forth, it is even more important that the
knowledge transfer mechanism of our case study participants presented in Chapter 5 is very
similar to that of Szulanski’s model. In this model, the transfer process flows through four
distinct stages. They are Initiation, beginning with all events leading to the decision to
transfer; Implementation, beginning with the decision to transfer; Ramp-up, beginning when
the recipient starts using the transferred knowledge; and Integration, beginning after the
recipient achieves satisfactory results. The transfer process should consist of six common
components which are problems, antecedents, knowledge, mechanisms, knowledge
application, and outcomes. Problem identification should be based on business/software
project goals and objectives and recipient’s needs. After defining potential problems, teams
can define what knowledge is required and what mechanisms fit their software development
contexts. Weak antecedents lead to new occurring problems, whereas supportive antecedents
affect transferability, the ability to use knowledge, and satisfactory outcomes. Moreover,
designing and selecting transfer mechanisms depends upon required knowledge and software
development environments. Suitable mechanisms lead to transfer effectiveness; otherwise,
unexpected problems may occur and expected outcomes are unlikely to be achieved. In
addition, using knowledge can bring about knowledge retention. It may also lead to a new
consideration of the underlying problem or the identification of new problems. When
satisfactory outcomes are achieved, sustaining knowledge use is more likely to occur. This
shows that these components are connected with others through a multi-directional set of
interactions. During the transfer process, individual components can occur at the same or
different times and more than once. Furthermore, the review of 27 highly visible studies on
knowledge transfer in software development by focusing on the six common components and
the studies’ objectives reveals that all of these studies neither put an emphasis on all of the six
components nor do they clearly proffer comprehensive descriptions and relationships
between those components. The ones providing guidance on how to drive knowledge transfer
into action are also sparse. Consequently, there is a need to build a knowledge transfer
framework aiming at covering the six components, providing guidance for planning
knowledge transfer activities, and contributing to knowledge transfer effectiveness. For the
next steps, the knowledge transfer framework is constructed based on the findings of our case
studies presented in Chapter 5 and the findings of the literature review in this chapter. The
descriptions of the framework are presented in Chapter 7.

158

159

Chapter 7

The Knowledge Transfer Framework

Software project success particularly requires efficient and effective software
development and knowledge transfer processes, stakeholders’ expertise and experience, and
the ability to transfer, acquire, and apply knowledge to solve any development problems.
Although many approaches to knowledge transfer in software development have been
proposed, how to achieve software process and product quality enhancement through
knowledge transfer still remains a challenge. Besides, guidance on how to drive knowledge
transfer into action is also scarce. Hence, this chapter proposes a knowledge transfer
framework providing guidance for planning knowledge transfer activities. The framework is
based on Szulanski’s model. In the framework, a knowledge transfer process has six
components (i.e., problems, antecedents, knowledge, mechanisms, knowledge application,
and outcomes) and flows through four distinct stages (i.e., Initiation, Implementation, Ramp-
up, and Integration). In each stage, a set of components interact with others as multi-
directional and play an important role depending on each stage’s functionality. For a deeper
understanding of the transfer process, the comprehensive descriptions of the six components
are presented. Under each component, a list of activities is designed. Under each activity, a
list of key questions that should be considered is suggested. Under each stage, a flow of
relevant activities is also illustrated. For a better understanding of the proposed knowledge
transfer framework, a demonstration on how to apply it in real-life software projects is
presented.

7.1 Introduction

Knowledge transfer and its application can significantly contribute to software project
success. A software project is characterized by frequent changes and its implementation
requires effective activities, stakeholders’ expertise and experience, and the ability to transfer,
acquire, and apply knowledge to problems occurring during software development [29].
Without using the existing knowledge (i.e., implemented software processes, experience, and
knowledge gained during prior software development), software development team members
(hereafter referred to as “team members”) have to create new solutions to every occurring
problem. Transferring and applying new knowledge is crucial for creating innovative
software development and competitive software products. This supports the fact that software
development is a knowledge-intensive activity [30]. Moreover, success in producing quality
software demands the presence of sufficient knowledge on teams [31]. A software project
therefore requires effective knowledge transfer to ensure that the software project will not get
a hard landing.

Knowledge transfer concepts take different forms depending on the epistemology they
are based on. The epistemological roots hence need to be explored. There are three distinct
epistemologies: cognitivistic, connectionistic, and autopoietic [261]. A cognitivistic
perspective views knowledge as explicit universally stored in databases, computers, and
physical documentations [260, 261]. It deems knowledge like data that is unproblematically

160

shared between entities [40, 261] with universal rules [260]. This knowledge thus plays no
role in the transfer [40]. A connectionistic perspective views knowledge as governed by local
roles [261]. The roles are team-based and reliant on the conditions of social interactions, ties,
and networks [260]. This knowledge is problem-solution oriented, which leads knowledge
transfer being complex due to different antecedents, e.g., the nature of knowledge and
communication [40, 261]. An autopoietic perspective views knowledge as tacit which is only
indirectly shared through individual discussions and socialization [261]. As this knowledge is
not seen as abstract and sharable, the autopoietic perspective is thus referred to knowledge
conversion rather than knowledge transfer [40, 260, 264]. Software development is a sense-
making process that basically involves human communications [40, 265]. Consequently, the
connectionistic perspective would be the most suitable for knowledge transfer in software
development.

Based on the connectionistic perspective, knowledge transfer in software development
can be viewed as a communication process between the source and the recipient engaged in
software development teams (hereafter referred to as “teams”) through communication
channels for their learning and applying software-development-related knowledge. There are
several models of knowledge transfer in the area of software development. However, most
reviewed studies place an emphasis on investigating influential antecedents that affect
knowledge transfer efficiency and effectiveness [40, 73, 79, 84, 86, 92] and software quality
and productivity [265]. Some explore knowledge transfer mechanisms that either facilitate
the flow of common knowledge to illustrate unstructured situations, address the knowledge
transfer barriers, or affect performance improvement in software projects [29, 41, 314].
Although the reviewed studies explain all or part of the transfer process, ones focusing on
how to transfer knowledge into action are scarce. Transferring knowledge into action appears
to be a complex process which involves intricate interactions between the source and the
recipient [257]. To overcome this complexity, this study needs to comprehensively
understand the transfer process and then produce a knowledge transfer framework providing
guidance for planning knowledge transfer activities and transferring knowledge.

Knowledge transfer itself has several components that must be provided to ensure an
understanding of the transfer process [253]. The findings from the reviewed models reveal
that there are six components crucial to the transfer process. They are problems, antecedents,
knowledge, mechanisms (i.e., Information and Communication Technologies (ICTs) and
transfer activities), knowledge application, and outcomes. Identifying a problem leads to
knowledge transfer with appropriate knowledge, possible solutions, and transfer activities.
The results from analyzing antecedents surrounding the transfer process contexts indicate
teams’ health in terms of knowledge transfer effectiveness. Iterative application of knowledge
may lead to a new consideration of the underlying problems, the identification of new
problems, increased absorptive capacity, and eventually knowledge embeddedness in their
workspace. Frequent evaluation of the transfer outcomes may bring about transfer
improvement and effectiveness. This shows that each individual component interacts with
others through a multi-directional set of interactions. Moreover, knowledge transfer is
complex and requires a great deal of communication and collaboration [74]. The higher the
complexity of knowledge takes place, the higher the transfer is inert. This study deems
Szulanski’s model [103]. In this model, a transfer process flows through four distinct stages
which are Initiation, Implementation, Ramp-up, and Integration.

The Initiation stage is the starting point of the transfer process. It is triggered by all
events leading to the decision to transfer, e.g., the discovery of problems, valuable
knowledge, and possible solutions. However, there is stickiness that makes difficulties to

161

initiate this stage, e.g., difficulties to recognize the opportunity for transferring knowledge, no
data measurement to support planning, no adequate resources, and no inclusion of targets in
the plan. To pre-empt those shortcomings, knowledge transfer activities should be
strategically planned. When the planning is done, the actual activities can be then executed
directly through to the second stage of the Implementation [315].

The Implementation is the subsequent stage commencing with the decision to transfer.
When the Implementation takes place, the plan should be followed [315]. During this stage,
resources flow between the source and the recipient. The knowledge being transferred is
often tailored to suit the expected needs and to pre-empt problems experienced in the past
[103]. During the transfer, there are many antecedents affecting the Implementation success,
e.g., capability, absorptive capacity, and motivation. The degree of knowledge transfer
significantly depends upon the source’s wealth of experience, knowledge, and transferability
[289]. The source’ capability should therefore be enhanced for higher inclination to share
knowledge. The recipient’s deficiencies in absorptive capacity can lead the recipient to
experience many difficulties in the transfer process, e.g., large knowledge gaps,
communication difficulties, and weak relationships [316]. A lack of the recipient’s
motivation to adopt new knowledge and no tangible reward systems and emotional support to
encourage team members can hamper the transfer process. Hence, supportive antecedents
should be developed to facilitate the transfer process. Transfer activities of this stage cease
after the recipient begins using the transferred knowledge.

The Ramp-up begins when the recipient starts using the transferred knowledge. The
overall objective of this stage is to ramp up to work performance and satisfaction by using the
transferred knowledge to solve the problem and meet the defined objectives [276, 315].
During the use, the recipient may abandon the transfer process if there are too many
difficulties to use the transferred knowledge or it is unlikely to solve the problem or achieve a
satisfactory outcome [276]. Those difficulties can be resulted from many circumstances, e.g.,
weak personal ties, insufficient support from the source during the Ramp-up stage, strong
embeddedness of the old routine that leads the recipient to take time to familiarly use the
transferred knowledge and later abandon its use. To minimize failure, the source should
monitor the use of the transferred knowledge, e.g., by obtaining feedback and using such
feedback for further improvement. After achieving satisfactory outcomes, the transfer process
then flows through the Integration stage.

Last, the Integration stage begins after the recipient achieves satisfactory outcomes.
Knowledge application and its integration with existing routines gradually becomes
routinized [317]. This stage primarily looks at the efforts required to minimize obstacles and
deal with challenges to the routinization of the transferred knowledge [316]. At this stage, the
Integration activities are carried out to ensure that the recipient can use the transferred
knowledge without any support from the source and can take any remedial action to improve
the understanding of the transferred knowledge and integrate it into his/her practices [274];
knowledge transfer is then recognized as successful.

As the proposed knowledge transfer framework aims at providing guidance for
planning knowledge transfer activities, these points of view lead us to the following research
questions.

RQ7-1: How should a knowledge transfer framework be constructed?

RQ7-2: What knowledge transfer activities under each of the six knowledge transfer
components (i.e., problems, antecedents, knowledge, mechanisms, knowledge application,
and outcomes) should be implemented?

162

RQ7-3: How do knowledge transfer activities and components play an important role
in each of the four knowledge transfer stages (i.e., Initiation, Implementation, Ramp-up, and
Integration)?

In the framework, the comprehensive descriptions of the six core components are
presented. Under each component, a list of activities has been designed. Under each activity,
a list of key questions that should be considered has also been suggested. It is also important
to demonstrate the application of the framework, which leads to the following research
question.

RQ7-4: How can the developed knowledge transfer framework be performed?

Owing to time limitations of this study, we could not carry out an empirical case study
in real-life software projects. However, we use our previous case studies in the Thai
telecommunications companies (i.e., CAT Telecom Public Company Limited and TOT
Public Company Limited presented in Chapter 5) as a base for describing the application of
the knowledge transfer framework. This chapter is organized as follows. The following
section presents the knowledge transfer framework in two core sub-sections: six components
and four stages of knowledge transfer. This is then followed by the descriptions of the
application of the knowledge transfer framework.

7.2 The Knowledge Transfer Framework
Knowledge transfer in this study is viewed as a communication process between the

source and the recipient engaged in teams through their communication channels for their
learning and applying software-development-related knowledge. Ward et al. [257] propose a
knowledge transfer model. They consider knowledge transfer as a process consisting of five
crucial elements: the problem which the knowledge needs to address, the context which
surrounds the knowledge sources and recipients, the knowledge to be transferred,
interventions (or knowledge transfer activities), and use of the knowledge in practice. These
elements have dynamic multi-directional interactions with others. This means they can occur
in simultaneous or different sequences. In line with this research direction, we have extended
their knowledge transfer model by adding one more component (i.e., outcomes) and modified
it to fit our research purposes, based on Szulanski’s model. Our knowledge transfer
framework hence consists of six components which are problems, antecedents, knowledge,
mechanisms, knowledge application, and outcomes. Like Ward et al. [257], individual
components have multi-directional interactions between them. Thus, we propose a knowledge
transfer framework depicted in Figure 7-1. As aiming at providing guidance for planning
knowledge transfer activities; in the framework, activities under each knowledge transfer
components must therefore be defined. Relationships between components and flows of those
activities under each knowledge transfer stages must also be introduced. The details in this
section help answer the RQ7-1 “How should a knowledge transfer be constructed?”.

163

Outcomes

Satisfaction
& Performance

Problems

Goals, Objectives,
& Problems

Antecedents

Source, Recipient,
Knowledge, Relational,

& Situational

Knowledge
Transfer

Knowledge
Human, Organizational,

Relational, Project
Management, &
Technological

Knowledge
Application

Mechanisms

Activities & ICTs

Figure 7-1. The proposed knowledge transfer framework (extended from Ward et al. [257])

7.2.1 Components of Knowledge Transfer

The details of the six knowledge transfer components (i.e., problems, antecedents,
knowledge, mechanisms, knowledge application, and outcomes) are described as follows.
This helps answer the RQ7-2 “What knowledge transfer activities under each of six
knowledge transfer components (i.e., problems, antecedents, knowledge, mechanisms,
knowledge application, and outcomes) should be implemented?”.

7.2.1.1 Problems

Team members generally use knowledge gained from experience in previous software
development domains to solve problems in the current domain. Potential problems can be
identified properly when business/software project goals are clearly defined [287]. Moreover,
Duan et al. [266] found that knowledge transfer is only possible when all partners aim at the
same objectives. This supports that a knowledge transfer process should begin with a clear
statement of business goals and objectives and a set of defined problems. However, teams
should take valuable problems which could be successfully solved and yield desirable
knowledge as the first priority to solve [318]. The value of a given problem depends upon
potential solutions. Supporting this, Ward et al. [257] claim that identifying a problem can
lead to knowledge transfer with possible means. During transferring knowledge, many
activities associated with the problem are involved over time. Therefore, the problem should
be clearly clarified to all team members to ensure team understandings. Focusing and
reflecting on the problem can be taken place by scoping information searches and presenting
relevant information to team members. The problem is then evolved. However, there is a
limit for the problem to evolve when team members face a practical difficulty. The problem,
especially in a complex software project, may tend to be cumulative and become serious if

164

not regularly reviewed [319]. From this view, Table 7-1 summarizes a set of activities and
suggested questions that should be taken into consideration within the knowledge component.

Table 7-1. Activities within the problem component

Activity Description
Defining a clear
statement of goals
and objectives

- What are the business or project goals and objectives? Teams should define
business/project goals and objectives of either the overall software project or each
iteration, and then clearly clarify those expectations to ensure that all team
members thoroughly understand them.

Identifying a clear
statement of
prioritized problems

- What are the problems that need to be solved? Based on the defined goals and
objectives, the team identifies a set of potential problems. Those problems are then
clarified into clear questions to ensure that all team members thoroughly understand
them. Teams may prioritize those problems by focusing on valuable ones which
could be successfully solved and yield desirable knowledge.

Focusing on
problems

- How should the problems be discussed with relevant team members? The
problems must be focused and discussed with relevant team members through
proper mechanisms. During knowledge transfer, more relevant knowledge may be
requested to fulfill. However, focusing on the problems can scope information
needed.
- What are suitable mechanisms to deal with the problems? Teams must assess and
employ potential solutions to cope with the problems. This activity should be
considered with activities within the mechanism component.

Reviewing problems - When should the problem be reviewed? Teams should continuously obtain
feedback from team members and review the problems.
- Are there any new occurring problems? During focusing on the existing
problems, new related problems may occur. Teams thus need to iteratively inspect
them in order to minimize chances of knowledge transfer failure.
- Are there any other plans to deal with the problem? The problem can be
recognized as successfully solved when team members are satisfied with the
knowledge transferred. If not, they need to evaluate the problems and find new
proper solutions to solve.

7.2.1.2 Antecedents

Many studies have proved that there are crucial antecedents in the contexts of source,
recipient, knowledge, relational, and situational that affect knowledge transfer effectiveness
[40, 72, 288]. It is important to investigate influential antecedents in our focused industry, the
Thai telecommunications. According to the first investigation performed in Chapter 2, 11
influential factors affecting the successful knowledge transfer (or influential antecedents)
were found. In order to find the certain antecedents, the second investigation was performed
through two case studies in Chapter 5. The findings reveal the same set of those influential
antecedents. Therefore, all of the 11 influential antecedents are used for this study, which are
summarized in Table 7-2.

165

Table 7-2. Influential antecedents surrounding the knowledge transfer process

Context Antecedents
Source great motivation, capability, creditability
Recipient great motivation, absorptive capacity
Knowledge ease of knowledge access and use, usefulness of knowledge
Relational good relationship, commitment
Situational extensive communication, organizational culture

Source’s and recipient’s great motivation: Motivation is recognized as an significant
trigger for knowledge transfer and acquisition [79]. Lacking motivation, the source may be
disinclined to share knowledge due to additional effort and time associated with knowledge
transfer, while the recipient may be reluctant to acquire knowledge or may reject new
knowledge due to various reasons (e.g., perceived less value of knowledge being transferred
and knowledge complexity) [72, 103]. Gold et al. [320] claim that motivation, reward, or
incentive systems should be established to encourage individuals to take time to transfer,
acquire, and use knowledge. With high motivation, the source will attempt to share
knowledge, whereas the recipient will attempt to master and use new knowledge [92]. The
greater the source and the recipient have motivation the more beneficial it will be for
knowledge transfer.

Source’s capability: A software development team generally consists of multiple
members having different levels of skills, knowledge, and backgrounds. Developing software
requires a large amount of transferring several types of relevant knowledge [40]. The degree
of knowledge transfer significantly depends on the source’s wealth of experience, knowledge,
and transferability [289]. Accumulating experience facilitates understandings of relevant
knowledge and extent communications which in turn leads to more effective knowledge
transfer [40]. The source with more relevant experience will easily initiate a transfer of
knowledge from itself to the recipient [103]. Besides, the degree of the source’ capability
affects the degree of good relationship between the source and the recipient [40, 104]. This
shows that the source that has greater relevant knowledge and is perceived as capable has
higher inclination to share knowledge and build positive relationships.

Source’s credibility: Credibility refers to the degree in which the source is perceived
as trustworthy and reputable by the recipient [40]. Many knowledge transfer studies indicate
that the presence of source credibility (i.e., trust and reputation) critically influences the
recipient’s behavior in the knowledge transfer process [40, 103]. This is because source
credibility is often used by the recipient to screen and appraise the value of the source’s
knowledge [40, 104]. In other words, the greater the source credibility is perceived the more
likely the knowledge is perceived as valuable. Besides, the source who has high credibility
will be able to transfer more knowledge and the recipient is more likely to expend efforts at
assimilating and integrating knowledge transferred into his/her own knowledge package [72,
103].

Recipient’s absorptive capacity: Absorptive capacity is the ability of the recipient to
recognize the value of new knowledge, assimilate it and apply it [290]. It also is a function of
the recipient’s prior related knowledge, experience, and abilities. Learning new knowledge
can be achieved when the knowledge is associated with what the recipient already knows.
Consequently, the more experience, skills, and knowledge the recipient has in a given

166

expertise, more effectively and easily the recipient can acquire, assimilate, and apply new
knowledge in that field [105].

Ease of access and use of knowledge: When the source and the recipient find the
knowledge too difficult to transfer, acquire, or use, this will lead to lower knowledge transfer
and decreased performance [277]. Based on Davis’s study [165], the positive link between
ease of use and intention to use the knowledge may lead to continuous knowledge life cycle
through knowledge creation, knowledge transfer, and knowledge application. The recipient’s
effort expended in attempting to access and apply useful knowledge will result in obtaining
relevant knowledge, when the recipient receives ease of knowledge access and use [302]. The
easier it is to access or use the knowledge, the greater the recipient’s effort to obtain the
knowledge. To allow for ease in the way the knowledge is used, knowledge transfer should
be performed via appropriate mechanisms and tools.

Usefulness of knowledge: Knowledge is transferred effectively when the source and
the recipient perceive value of the knowledge. Szulanski [291] found that proof of the
usefulness of knowledge is most important during the first stages (i.e., Initiation and
Implementation) of the knowledge transfer process. Knowledge with perceived usefulness
from prior experience is less difficult to transfer and more likely to be selected to transfer
[103]. The greater the knowledge is valuable, the greater its attractiveness to the recipient and
the knowledge application by the recipient [289]. However, the value of the knowledge to the
recipient may depend upon the degree of the need and interest of the recipient.

Good relationship: Success in knowledge exchanges depends somewhat on the ease
of communication and the intimacy of a relationship between the source and the recipient
[103]. Cohesion around a relationship can facilitate knowledge transfer by decreasing the
competitive and motivational impediments [292]. The level of emotional commitment to the
personal tie affects the motivation to provide support. In other words, the stronger the
personal ties, the more likely the source is willing to devote effort and time for knowledge
transfer and the more easily the transfer is taken place [105, 292]. In contrast, arduous
relationships (e.g., laborious, weak, and distant) between the source and the recipient may
create additional difficulty in the transfer [103].

Commitment: Knowledge transfer is a process that requires all relevant members’
commitment in terms of time, effort, and attention [90]. Commitment plays a crucial role in
enabling knowledge sharing, especially in the Implementation stage of the transfer process
[88, 315, 321-325]. It is also an important indicator to guarantee that the acceptance of the
transferred knowledge and involvement which are key issues at the subsequent Ramp-up
stage of the transfer process will be taken place [315]. Commitment should be obtained at
many levels, e.g., top-management commitment to support important issues (e.g., time, effort,
and resources) and team member commitment to transfer, acquire, and use knowledge as key
players in the transfer process. Moreover, higher commitment indicating the feelings of
attachment to relationships can establish positive ties amongst team members and greater
motivation [90, 325]. This emphasizes that the higher level of commitment can exhibit better
knowledge transfer performance.

Extensive communication: Knowledge transfer success increases as the number of
transfer activities increases [258]. Success in performing those activities requires team
collaboration and communication. Besides, software development success obliges team
members to continuously communicate and learn from each other [40]. This shows the
importance of communication. Supporting this, many knowledge transfer studies found that
frequent communication between the source and the recipient is critical for effective

167

knowledge transfer [103] and knowledge creativity amongst team members [293]. Brown and
Eisenhardt [326] said that learning in the contexts of complex products or tasks is increased
by extensive communications amongst team members. In other words, team members who
communicate with each other frequently are more likely to share knowledge [292]. Frequent
communication in turn facilitates more effective communication through the development of
relationship-specific heuristics. Supporting this, Joshi et al. [40] said that frequent
communication leads to ardent relationships between the source and the recipient. This shows
that extensive communication plays a crucial role in an effective knowledge transfer process.

Organizational culture: Organizational culture refers to the values, practices, and
assumptions that significantly influence team members to perform the organization’s standard
practices and to act and behave in a particular manners [79]. Knowledge in the organization is
created from sharing and learning in embedded routines, e.g., business process and domain-
specific problem-solving activities [87]. Hence, organizational culture can facilitate and
impede transferring and learning knowledge. For instance, sharing culture and management
support that encourage interaction for creating, sharing, and learning knowledge can ensure
successful knowledge transfer in the organization [80]. On the other hands, existing old
routines of an old organization may become part of the organizational members’ work
behaviors that are difficult to get rid of. Although new knowledge is operational for a
considerable time, the organizational members may somehow revert to the old routines [279].
Even though new knowledge is perceived as useful by team members, it is likely to be
rejected if the knowledge is incompatible with the organization’s standard practices as found
in our case studies. This shows that the success of knowledge transfer highly depends upon
the organization culture.

When problems occur and questions arise, knowledge transfer is then initiated. Based
on the importance of antecedents presented above, achieving successful knowledge transfer
requires teams to (1) assess influential antecedents in order to understand the strengths and
weaknesses affecting knowledge transfer effectiveness and outcomes, (2) develop supportive
antecedents, and (3) manage and improve the antecedents to fit into the current
circumstances. These activities and their suggested questions are described in Table 7-3.
However, activities for dealing with antecedents that strongly relate to other knowledge
transfer components are demonstrated in the related component sections. For instance,
source’s credibility, usefulness of the knowledge, and ease of access and use of the
knowledge strongly associates with the knowledge component, so that activities for coping
with those antecedents will be illustrated in the knowledge component section.

Table 7-3. Activities within the antecedent component

Activity Description
Assessing
antecedents

- What are antecedents that enable and impede the transfer process? At the onset of
the software project, teams may assess what antecedents facilitate and hamper the
transfer process. The results will guide teams to develop a plan with proper
mechanisms. During the project, teams may frequently inspect and improve those
antecedents for knowledge transfer effectiveness.

Developing
supportive
antecedents

- Do team members have great motivation to transfer, acquire, and use the
knowledge? Management may establish reward or incentive systems to encourage
team members to take time to transfer, acquire, and use knowledge. However, Goh
[327] suggests that those reward or incentive systems should be based on, e.g.,
successful knowledge transfer, collaboration, and teamwork, but not financial results
or outcomes that are based on team competition.

168

Activity Description
- Are team members aware of knowledge needed? At the start of a software project,
all team members should be aware what knowledge is required to get transferred in
the software project. Management needs to understand what fears exist amongst team
members, so that solutions to get rid of those fears could be defined properly [281].
- Does the ability to transfer, acquire, integrate, or use the knowledge need to be
increased? Management should observe and develop the necessary abilities of both
the source and the recipient that needs to be improved.
- Is there any conflict between the source and the recipient or amongst team
members? Albeit the source and the recipient are available, they have not established
a positive relationship to communicate knowledge between them or vice versa. This
makes the transfer effort more difficult and takes time. The transfer may have
become a burden that to impede the work performance and the progress of the project
[328]. In order to build good relationships, management must minimize conflict
between the source and the recipient. In order to increase stronger relationships, face-
to-face interaction can somewhat help [295].
- Are all relevant members committed enough to enable knowledge transfer?
Commitment of all relevant members (including management, team members, and
key stakeholders) in terms of time, effort, and attention must be obtained to enable
knowledge transfer and guarantee that the acceptance of the transferred knowledge
and involvement will be taken place.
- Do team members interact to each other enough to support the transfer process?
Management must cultivate communicative and collaborative environments,
especially face-to-face interactions, to support the transfer process. In fact, agile
software development values face-to-face conversation as the most efficient and
effective method of conveying information to and within teams [232].

Managing
antecedents

- Do any antecedents need to be managed in a particular way? Activities to develop
and improve the antecedents surrounding the transfer process may be included in the
project plan. Management needs to manage and adapt those activities to fit into the
current situation.

7.2.1.3 Knowledge

For understanding knowledge transfer in the telecommunications industry where this
study focuses on, the details of knowledge, business environments in the telecommunications
industry, and knowledge in the areas of (1) Strategy, Infrastructure & Product (SIP), (2)
Operations, and (3) Enterprise Management are described as follows.

Knowledge as Intangible Resources

Knowledge is basically recognized as intangible resources which can be broken into
two dimensions: people dependent and people independent [329]. The people dependent
resource is human knowledge as it is inseparable from its possessor. It typically refers to the
knowledge required by a person that can increase productivity and the value of contribution
to the organization and the software project. It also includes personal contacts, relations, and
individual qualities (e.g., characteristics, experiences, and reputation). This human
knowledge can be derived from team members concerning software development aspects and
other stakeholders concerning business aspects. The people independent resource related to
software development can be distinguished into main four categories: organizational,
relational, project management, and technological [329, 330]. Organizational knowledge
provides a context for team members to work in and communicate to each other. It includes
its norms, guidelines, business processes, databases, organizational routines, corporate

169

culture, and co-operation agreements [329, 331]. Relational knowledge consists of the
potential derived from the intangible resources associated with the market place. This
includes reputation, brands, loyalty, long-term relationships, and distribute channels. Project
management knowledge can be traditionally divided into nine knowledge bodies which
include integration, scope, time, cost, quality, human resource, communication, risk, and
procurement. However, implementation styles of the project management depend on software
development methods used (e.g., tradition, agile, and hybrid tradition and agile). For instance,
if a software project uses an agile software development method, those knowledge bodies in
the agile style are required for successful adaptation. Technological knowledge is involved in
two perspectives: business and software development. In the business view, this knowledge is
related to the access, use, and innovation of production techniques and product technology,
e.g., industrial models and drawings, trade secrets, copyrights, and patents. In the software
development view, successful software development requires knowledge about software
process development, programming, system and database administration, and
hardware/network. All of these knowledge dimensions and categories can be summarized in
the Table 7-4.

Table 7-4. Knowledge dimensions and categories

Intangible Resource Category Knowledge
People dependent Human knowledge Knowledge resided in a person, personal contacts, relation,

and individual qualities (e.g., characteristics, experiences in
both the business and software development views, and
reputation)

People independent Organizational
knowledge

Norms, guidelines, databases, organizational routines,
corporate culture, co-operation agreements

Relational knowledge Reputation, brands, commercial name, loyalty, long-term
relationships, and distribution channels

Project management
knowledge

Integration, scope, time, cost, quality, human resource,
communication, risk, and procurement

Technological
knowledge

Business view: Industrial models and drawings, copyrights,
and patents
Software development view: software process development,
programming, system and database administration, and
hardware/network

Business Environments in Telecommunications Industry

Patel [332] states that “the telecommunications surroundings can be characterized by
its inherent distributive, continuous expansion in the size of network, and the particular
importance of fault-tolerance requirement”. These characteristics are reflected in the design
of software systems and architectures [333]. Therefore, both organizations and teams have to
deal with the universe of telecommunications protocols, numerous hardware platforms, and
network architectures. As today’s telecommunication market reaches high levels of
competitive rivalry, they thus also need to keep up with the velocity at which new services,
software applications are introduced while maintaining the quality and reliability levels in
order to be a competitive player in the market [332]. This shows that the success of a
telecommunication operator depends upon its ability to develop and deliver quality services
and software applications. Increasing this ability can be achieved by effective knowledge

170

transfer, which in turn can help the organization to keep sustainable competitiveness and
competency [333].

Understanding knowledge in telecommunications business processes is also vital to
effective knowledge transfer. The enhanced Telecom Operations Map (eTOM) is a
framework that focuses on the business process, the linkages between those processes, the
identification of interfaces, and the use of customer, service, resource, supplier, partner and
other information by multiple processes [334]. It uses hierarchical decomposition to structure
the business processes and represent the whole of the enterprise environment. At the overall
conceptual level, eTOM can be viewed as having three major process areas: (1) Strategy,
Infrastructure & Product (SIP) covering planning and life cycle management which is
associated with development and delivery, (2) Operations covering the core of operational
management, and (3) Enterprise Management covering corporate or business support
management. In the areas of SIP and Operations, there are seven vertical process groupings
that are the end-to-end processes required to support customers and manage the business.
Those groupings are Strategy & Commit, Infrastructure Lifecycle Management, and Product
Lifecycle Management in the SIP area and Operations Support & Readiness, Fulfillment,
Assurance, and Billing in the Operations area. There are horizontal functional process
groupings that differentiate functional operations process and other types of business
functional processes, e.g., service development vs. service configuration. The horizontal
functional process groupings in the SIP area facilitate support and direct the work in the
Operations area.

Knowledge in the Strategy, Infrastructure & Product Process Area

The Strategy, Infrastructure, & Product (SIP) process area includes processes that (1)
develop strategies and commitment to them within the enterprise, (2) plan, develop, and
manage the delivery and enhancement of infrastructures, products, and services, and (3)
develop and manage the supply chain. Infrastructures in the eTOM framework refer to IT,
application, computing, and network infrastructures required to support products and
services. It also includes the operational and organizational infrastructure required to support
marketing, sales, services, and supply chain processes [334]. These processes direct and
enable processes within the Operations process area. From this definition, it shows that the
SIP process area greatly involves in software development. Hence, human, organizational,
relational, project management, and technological knowledge are all involved in the SIP
process area. Human knowledge entails experiences in developing telecommunications
software, services, and products. This human knowledge can be derived from team members
regarding software development aspects and other stakeholders regarding various aspects of
business. How to comply with organizational standards, laws, regulations, and partnership
agreements is associated with organizational knowledge. Relational knowledge involves, e.g.,
reputations, customer loyalty, and relationships between partners that are used for planning
strategies. Specialized expertise in managing a particular project in the areas of, e.g., scope,
time, cost, quality, and communication is considered as project management knowledge.
Many techniques and skills used to develop software, services, and products are considered
as technological knowledge concerning both aspects of product and software development
technologies. In the SIP process area, all intangible resources will unavoidably be used for
success in designing and developing marketing strategies, software, services, and products. A
successful strategy and development will lead to increasing new knowledge [333].

171

Knowledge in the Operations Process Area

The Operation process area is the heart of eTOM. It includes all operation processes
that (1) support the customer operations and management and (2) enable direct customer
operations with the customer [334]. The vertical processes of Fulfillment, Assurance, and
Billing (FAB) which are recognized as front-office real-time operations provide the core of
this area; whereas Operations Support & Readiness (OSR) relates to the border of back-office
near real-time or offline support processes. Besides, the horizontal processes (e.g., customer
relationship management, service operations, resource operations, and supplier or partner
relationship management) represent functionally-related activities. As these processes are
principally involved front-office operations; hence, human, organizational, relational, and
technological knowledge are main knowledge in the Operation process area [333]. There is
an abundance of human knowledge embedded in various aspects of the business, e.g., sales
staff’s experience and customer service staff’s experience. How to organize operational
processes, cultures, and partnerships are considered as organizational knowledge. Relational
knowledge involves, e.g., relationships between customers and partners. Many innovative
techniques and skills for performing and learning routinized day-to-day tasks are associated
with technological knowledge in business aspects.

Knowledge in the Enterprise Management Process Area

The Enterprise Management process area includes processes required to manage
enterprise-wide activities and needs [334]. These processes interface with all business
management processes that (1) are necessary to support the whole of the enterprise, including
those for financial management, process management, quality management, and regulatory
management; (2) are responsible for setting corporate policies and strategies and providing
guideline and targets, including those for strategy development; and (3) occur throughout the
enterprise, including those for project management and performance assessment. Hence,
human, organizational, relational, project management, and technological knowledge are all
involved in the Enterprise Management process area. How to run businesses effectively is
significantly associated with human knowledge in business aspects, e.g., management
experience, negotiation and communication skills, and staff’s credibility. A variety of
organizational knowledge is inevitably used in all business process branches of this area, e.g.,
policies and practices, organization development, corporate management, and group
enterprise management. Relational knowledge is especially required for stakeholder,
employee, and external relations management. A high degree of project management
knowledge is needed in almost all of business process branches of this area, e.g., financial
and asset management, risk management, enterprise effectiveness management, and human
resource management. Technological knowledge is essentially involved in business aspects,
i.e., evaluation of potential technology or technique acquisitions.

The details of knowledge in the three business process areas emphasize that eTOM
can be viewed to have two dimensions: one oriented towards the business, customers,
services, and products (called the business dimension in this context) and one towards
solutions, systems, software, and implementations supporting the business (called the
software development dimension in this context) [334]. As this study primarily focuses on
knowledge transfer in software development, the SIP process area is the most related.
However, software development can be associated with other areas, e.g., in business aspects.
Therefore, understandings of knowledge in all business process areas should benefit both

172

knowledge transfer and software development. Table 7-5 summarizes main knowledge in
three business process areas. In this table, “S/W Dev.” stands for software development.

Table 7-5. Knowledge in the telecommunications industry

Knowledge
Type

Process
Area

Human

Organizational Relational Project
Management

Technological

Business S/W
Dev. Business S/W

Dev.

Strategy,
Infrastructure
and Product

X X X X X X X

Operations X X X X
Enterprise
Management X X X X X

Activities Associated with the Knowledge Component

Success in producing quality software needs the presence of sufficient specialized
skills and knowledge (called expertise) [31]. Teams must be able to transfer, manage, and
coordinate inter-dependencies of team members’ expertise effectively. From this point of
view, teams are demanded (i) to know what knowledge is necessitated, how much knowledge
is required, where knowledge is located, where knowledge is needed, how much knowledge
is useful and complex, (ii) to tailor the required valuable knowledge to fit into a particular
software practice, and to reside the transferred knowledge in team members. Based on
defined problems, relevant knowledge required to manage and develop a software project can
be properly defined. This knowledge can be classified into five categories (i.e., human,
organizational, relational, project management, and technological). Moreover, knowing the
business area of the software being developed may guide teams towards what knowledge
types are needed. Teams as a knowledge-based community use the variety of expertise and
competencies of team members to create a match between the defined problem and the
required knowledge [319]. Knowing the location of team members’ knowledge serves an
important integrative and coordinative activity [31]. This activity requires knowing a variety
of useful sources which include specialized documents and people who have what skills and
knowledge. It is even more important that management should match required knowledge
with potential sources and then locate such knowledge in teams. Targeted recipients of each
of required knowledge must also be defined. For effective transfer, teams need to develop a
common language for describing related work, knowledge contents, and knowledge
locations. Recognizing when and where knowledge is required is at the heart of knowledge
communication. If team members cannot recognize the need and the value of the knowledge
for a given software process, it may not be successfully transferred although it may be
available in teams. However, the need for certain knowledge varies as a software project
progresses through its life cycle. The effective development of knowledge also demands team
members to localize the knowledge around different problems [294]. Consequently,
knowledge to be transferred must be useful and tailored to fit into a given software practice
[257, 294]. Knowledge complexity is one of the significant determinants that affect the
volume of knowledge dissemination and acquisition [335]. In other words, the more
knowledge is perceived as easy to use, access, and learn; the more likely that knowledge

173

transfer will be achieved. When knowledge proves successful, team members are likely to
apply that knowledge to solve problems in the future. This could in turn lead to increasing
work performance, work satisfaction, and knowledge resided in team members. However, the
amount of required knowledge depends upon required outcomes, based on defined goals and
objectives [29]. Hence, teams should frequently measure knowledge sufficiency to ensure the
presence of adequate knowledge in teams. From this view, Table 7-6 summarizes a set of
activities and suggested questions that should be taken into consideration within the
knowledge component.

Table 7-6. Activities within the knowledge component

Activity Description
Defining knowledge - What knowledge is needed? Based on the chosen problems to solve, teams need to

define a list of knowledge required to manage and develop a software project.
Classifying
knowledge

- What type of knowledge is needed? The required knowledge should be classified
into main categories (e.g., human, organizational, relational, project management,
and technological). This is in order to help find proper sources and mechanisms.

Assessing knowledge - Is the knowledge valuable and easy to be used (or accessed)? Teams should
assess the value and complexity of the knowledge. It is more likely to be acquired
when the knowledge are perceived as useful and easy to use (or access).
- What is the most suitable knowledge? Based on a knowledge assessment, teams
select appropriate knowledge which is likely to be transferred successfully.
- Is the amount of knowledge being transferred enough for solving the focused
problem? Teams should frequently measure the enough amount of required
knowledge to ensure being able to solve the focused problem and achieve the
required outcomes.

Locating knowledge - Where and how can knowledge be found and located? Management needs to
assess skills and knowledge residing in each team member and then match the
selected knowledge with potential internal sources. If there is a need for external
human sources, management and teams need to find creditable sources that meet
required competence and time for transfer and then locate such sources in teams.
- What knowledge sources are the most creditable? Based on the required
knowledge, management should seek either human sources having specialized
skills and knowledge, trust, or reputation, or non-human sources being reliable and
up-to-date.
- Who are the target recipients? For given knowledge and practices, target
recipients, required competence and time must be assessed and defined
- What are roles and responsibilities needed for knowledge transfer? A clear
division of roles and responsibilities to implement practices that is well defined and
clarified to all team members is more likely to lead to higher degree of knowledge
transfer richness and effectiveness [103, 104]. Hence, management needs to define
and clarify necessary roles and responsibilities to all relevant team members, and
also make awareness of their roles and responsibilities during a knowledge transfer
process. This is because teams who are made aware how roles of the source are
circulated amongst team members tend to include more unshared information in the
discussion and in turn increase their team performance [31].
- Where is an appropriate chain linking the source to the recipient? Management
must link the trusted source to the target recipient together with the required
specific knowledge and its goals and objectives. During creating this chain,
management should consider their personal relationships for analyzing how
effective transfer would be and finding appropriate mechanisms. The stronger the
personal relationship, the more likely the source is willing to transfer [336].
- Is the linkage of the source and the recipient appropriate? During the transfer

174

Activity Description
process, management should continuously observe the chain linking the source to
the recipient and solve any occurring impediments. Those impediments can be
caused by inappropriate ICTs employed or unsupported contexts surrounding the
transfer process.

Tailoring knowledge - Does the knowledge need to be adapted? Knowledge can be used directly or with
modification. If there is a need for adaptation, knowledge must be tailored to fit
into a particular practice.

Integrating
knowledge

- Can new knowledge be integrated into existing practices? New knowledge may
not be compatible with other existing practices. Although new knowledge is
considered as valuable, it may not be integrated.
- How can new knowledge be integrated into existing practices? If new knowledge
can be integrated, management then considers how to effectively integrate it into
their existing or standard practices.

7.2.1.4 Mechanisms

Knowledge is transferred through a variety of mechanisms [41, 337]. Mechanisms in
this study focus on communication channels (or ICTs) and knowledge transfer activities.
Concerning ICTs, appropriateness of ICTs is considered as a key enabler in facilitating and
achieving knowledge transfer effectiveness. ICTs help increase the velocity of knowledge
transfer, while reduce costs [41, 338]. The selection and use of ICTs is affected by a range of
factors, e.g., personal ties, location, the volume of information richness, and knowledge types
[295, 339, 340]. The stronger the relationship between the source and the recipient, the more
likely the source is willing to transfer [336]. While having a strong personal tie, there is
indifference in employing a mechanism [295]. On the other hand, ICTs are robustly focused
to be employed when having a weak personal tie. Distance between source and recipient
locations also impacts transfer success. While team members are collocated in the same
location, they may primarily employ informal face-to-face interaction [282, 295]. When they
are geographically dispersed, they may largely use computer mediated channels, e.g.,
videoconferencing, instant messaging, email, and knowledge management systems which
itself is based on the integration of a technology and a transfer mechanism. This is because
those media make a knowledge transfer process easier and less expensive than using face-to-
face interaction. However, dispersed teams are more demanded on communication and
collaboration systems to support knowledge transfer environments [338].

Effective knowledge transfer requires suitability between the ICTs and the formation
processing requirements of a given task which vary with ambiguity of the task [339, 341].
Gorovaia and Windsperger [339] said that richness consists of four attributes of the ICTs:
feedback capability, availability of multi-cues (e.g., voice, body, and word), a range of
language, and personal focus (e.g., emotions). The higher ICTs have these attributes, the
greater the volume of information richness, its capacity to handle ambiguity, and its
knowledge transfer capacity. Moreover, ICTs with a relatively high volume of information
richness refer to face-to-face interactions and team-based mechanisms which are recognized
as the highest information richness (e.g., trainings, meetings, and workshops), whilst those
with a relatively low volume of information richness include, e.g., telephone, email, written
personal media (e.g., letters and fax), written formal media (e.g., documents and manuals),
and numeric formal media (e.g., accounting data). Moreover, different software processes
involve different knowledge types (e.g., management, development, and business) [340].
Besides, different knowledge types require different ICTs. As suitable ICTs play a key role in

175

how knowledge is managed; hence, teams employing suitable ICTs should encourage and
facilitate team members to acquire and transfer knowledge [297]. However, the degree of
knowledge transfer performance depends upon both adequate know-how on ICTs and
extensive use of ICTs [296]. During transferring knowledge, management should thus take
this aspect into consideration. Consequently, we summarize ICTs for knowledge transfer in a
software project and examples of their purpose of use in Table 7-7.

Table 7-7. ICTs used for knowledge transfer

Media
Type [339]

Media Purpose of Use The degree of
Information

Richness
[339]

Face-to-
face
interactions

Informal
conversation

Searching and scanning for new ideas and design
concepts, consulting team members on solutions to
technical problems, resolving managerial problems on
the project, verifying and validating information,
concepts, and ideas, and routinizing knowledge
exchange [250]

Richest

Lowest

Meeting Consulting team members on solutions to technical
problems, resolving managerial problems on the
project, verifying and validating information,
concepts, and ideas, and routinizing knowledge
exchange [250]

Training Typically transferring technical knowledge [342]
Sense-making and
sense-giving

Transferring management and business knowledge
[342]

Telephone Telephone and
mobile

For synchronous group conference [343], consulting
team members on solutions to technical problems, and
verifying and validating information, concepts, and
ideas [250]

Computer
mediated
channels

Videoconferencing For synchronous video conference [343], consulting
team members on solutions to technical problems, and
verifying and validating information, concepts, and
ideas [250]

Instant messaging Demonstration, speech, whiteboard, synchronous text
chat [343]

Email For asynchronous message [343], consulting team
members on solutions to technical problems, verifying
and validating information, concepts, and ideas,
routinizing knowledge exchange [250]

Teleconferencing Routinizing knowledge exchange [250]
Use of groupware Consulting team members on solutions to technical

problems, verifying and validating information,
concepts, and ideas, and routinizing knowledge
exchange [250]

Staff Intranet Sharing database of project management, software
development, standard procedures, and so on [343]

Project Website Routinizing knowledge exchange [250]
Knowledge
management

Creating, managing, and transferring knowledge

176

Media
Type [339]

Media Purpose of Use The degree of
Information

Richness
[339]

systems

Lowest

Written
formal
media

Standard
document template

Using standardized templates (e.g., for software
deliverables and process phases) to capture customer
knowledge and reside the knowledge in the software
project [311].

Standard process
procedure

Making things in a software project become easy to
understand by following standard process procedures,
(e.g., for defining user requirements) [311]

Formal
documentation

Performing main documentation (e.g., programming
codes, technical issues and business procedures) for
residing project’s information and maintaining the
project in the future [344]

Informal
documentation

Performing informal documentation to create learning
and sharing processes, which in turn lead to new ideas
and discovered weaknesses of the areas that need to be
improved or changed [344]

Regarding knowledge transfer activities, the literature identifies three types of
activities: ones focused on assessing the knowledge embeddedness, ones focused on
establishing and managing the knowledge transfer process, and ones focused on transferring
knowledge [258]. Those activities drastically affect desired outcomes. For instance, while
teams carry out managerial initiatives designed to solve any problem, a lack of assessments
of embeddedness of the knowledge required to be transferred can easily result in less desired
outcomes [104, 258]. Therefore, to achieve satisfactory outcomes team members have to
perform a variety of activities, e.g., managing the influent antecedents, establishing the
knowledge transfer process, reducing conflict, transferring knowledge, and supporting
knowledge transfer environments. The greater the volume of various effective activities
especially in the managerial sense the greater the recipient is more likely to assimilate and
integrate the knowledge into his/her own knowledge package. From this view, Table 7-8
summarizes a set of activities and suggested questions that should be taken into consideration
within the mechanism component.

Table 7-8. Activities within the mechanism components

Activity Description
Developing a plan - What activities are needed to enable knowledge transfer? Teams develop a plan for

what specific activities are engaged to enable knowledge transfer, how time will be
spent, what ICTs are needed, and the knowledge area.
- What suitable ICTs are needed to facilitate knowledge transfer? Teams should
assess and identify suitable ICTs specific for particular practices or activities. The
selected ICTs must be clearly described to all related team member on how to use.

Managing the plan - How the transferred knowledge or the selected ICTs should to be managed?
Management should manage related activities as planned. However, the plan should
be iteratively reviewed and re-planned to fit into the current circumstance.

Reviewing the plan - Are there any activities or ICTs needed to be changed? Management should
regularly inspect and adapt the activities and the ICTs to fit into the current situation.

177

7.2.1.5 Knowledge Application

Useful knowledge extensively leads to its application [298]. Many researchers state
that during a knowledge transfer process, knowledge application is the most important
activity in which the transferred knowledge is brought to bear on any problem at hand [248,
290, 298, 299]. Therefore, knowledge application can be referred to the degree to which team
members can apply knowledge to make decisions and solve problems effectively [259]. Some
argue that other knowledge activities, e.g., knowledge acquisition and knowledge
transformation, do not significantly lead to better work performance or any value [248].
Value is created only when transferred knowledge is successfully applied when it is needed.
Consequently, managing and implementing an activity of knowledge application must be
carefully concentrated. Knowledge application can be achieved through extensive
communication and collaboration [298]. However, teams must also explore and establish
influential antecedents, especially absorptive capacity, that facilitate the recipients’
knowledge possession and application [283]. This is because absorptive capacity is the ability
to recognize the knowledge value, assimilate it, and apply it [290]. Many studies also suggest
that while team members access and read about new knowledge (e.g., new technology,
specific market conditions, or competitive developments) in order to localize and apply the
knowledge, they need the context of the information or knowledge which can be learned
through communications with others [40, 300, 301]. From this perspective, it shows that the
greater team members receive valuable knowledge and understand its context, the more likely
they will apply that knowledge for solving problems and achieving desired outcomes. When
team members access the knowledge for use on a software project, they may be able to save
effort and time by continued use of the knowledge [302]. Without knowledge application,
they have to create solutions to and spend effort and time on every problem encounter [29].
Knowledge application that enables team members to learn can result in the knowledge
retention [254] and may lead to a new consideration of the underlying problem or the
identification of new problems, which in turn leads to the creation of new knowledge transfer
[303]. Knowledge transfer should thus lead to changes in behaviors, practices, and policies
which help secure the efficient application and retention of the knowledge transferred [345].
From this view, Table 7-9 summarizes a set of activities and suggested questions that should
be taken into consideration within the knowledge application component.

Table 7-9. Activities within the knowledge application component

Activity Description
Making use of the
knowledge

- Can the transferred knowledge be used directly in practices? Some knowledge
(e.g., standard process procedure) can be used directly, whilst some knowledge
needs modification to fit into a given problem or practice.
- Will the transferred knowledge likely change team members’ opinions or
behaviors? Management should observe whether the transferred knowledge is
likely to change team members’ opinions or behaviors that positively lead to the
efficient use of the knowledge. If yes, the knowledge may improve team
members’ managerial sense, e.g., decision making.
- Will the transferred knowledge likely support or challenge practices or
policies? Management should observe whether the transferred knowledge is
likely to support or challenge practices or policies. If challenge, solutions to
deal with those challenges should be established.

Supporting use of the
knowledge

- Is there any need of support for making decisions about using the knowledge?
The source should facilitate the recipient the decision support about using the

178

Activity Description
knowledge (e.g., offering advice and opinions) when needed.

Monitoring use of the
knowledge

-Who is responsible for monitoring activities? Persons responsible for
monitoring activities can be the source or other team members. However, when
responsible persons are defined, role and responsibilities must be clearly
clarified to those persons.
-When and how long should monitoring activities be taken place? The source or
persons who are responsible for monitoring should allow the recipient to make a
mistake and correct the mistake by himself/herself, supervises the recipient, and
provides support when the recipient encounters a tough problem. This activity
requires time. Consequently, teams should carefully plan activities and time to
ensure that the knowledge is indeed internalized and integrated as part of the
recipient’s knowledge package.
-What mechanisms should be used for monitoring? There are many mechanisms
for monitoring knowledge application. However, mechanisms intended to
employ should fit software development environments. For instance,
observations are suitable when team members are collocated.

Auditing use of the
knowledge

- Who is responsible for auditing activities? Persons responsible for quality
auditing can be the source or the quality assurance persons. However, when
responsible persons are defined, role and responsibilities must be clearly
clarified to those persons.
- What practical limitations or impediments may affect knowledge application?
Once the transferred knowledge is put into use, teams should review by getting
feedbacks on using the transferred knowledge (e.g., any practical limitations
and impediments affecting knowledge application). If any, teams must
minimize those obstacles for better and further use.
- What assessment mechanisms are suitable to gauge whether the recipient
indeed absorbed the knowledge? There are many assessment mechanisms, e.g.,
an oral test and a written test [274]. The assessment may focus on the
recipient’s deeper understanding, the absorption of the transferred knowledge,
and the ability to analyze and solve problems. Meanwhile, the assessment may
rate on the recipient’s soft skills (e.g., eagerness to learn, willingness to share,
and teamwork), so that the source can be then discussed to make the recipient
aware of his/her strengths and weaknesses for further improvement.

Sustaining use of the
knowledge

- Can the transferred knowledge be used incrementally? Teams should consider
whether the transferred knowledge is for specific or general purposes and how it
can be used incrementally. If the knowledge is very specific, there may be a
limit for further use.
- Are the team members’ capacities needed to build up more for making the
continuous knowledge application? Management should assess and strengthen
team members’ skills, competencies, or abilities that enable the continuous
knowledge application, e.g., supporting team members to engage in the process
of learning and adapting to knowledge application.
- How can the knowledge application be sustained? Teams need to ensure that
the transferred knowledge is resided in team members and can be efficiently
used in the future. Sustaining the transferred knowledge can be performed in
many ways, e.g., increasing access to the transferred knowledge, providing
collaborative and communicative environments to facilitate knowledge
application, and supporting teams on how to use the transferred knowledge by,
e.g., training.

179

7.2.1.6 Outcomes

There are various aspects deemed as an outcome of sharing, transferring, and learning
knowledge. For instance, knowledge transfer performance in terms of satisfaction [103, 277]
and frequency [304] is deemed as an outcome of transferring knowledge. Hult et al. [305]
deem cycle time as an outcome of learning in global purchasing, whereas Slater and Narver
[306] deem customer satisfaction, new product success, sales growth, and profitability as an
outcome of learning in the context of marketing. The greater the benefit received from the
transferred knowledge, the greater the knowledge exchange [302]. In the area of software
development, work satisfaction and work performance would be more appropriate for
considering as a knowledge transfer outcome [40, 307]. Many studies show that perceived
usefulness and perceived ease of use are important factors when measuring work satisfaction
[346-348]. Based on Technology Acceptance Model (TAM), perceived usefulness refers to
the degree to which users/team members believe that using the knowledge and the software
products/services would enhance their performance. Perceived ease of use refers to the
degree to which users/team members believe that using the knowledge and the software
products/services would be free of effort. These two factors are also appreciably associated
with work performance [165]. Work performance can be measured in terms of efficiency and
effectiveness as evidence that knowledge is gained [307, 349]. Efficiency is the provision of
software products/services via the most suitable use of resources. It can be measured by
software quality. Effectiveness is the extent to which the software products/services are
delivered in a timely, correct, and consistent manner. It is often associated with doing the
right things. When work performance and satisfaction is perceived, continuous applying the
transferred knowledge is more likely to occur. Otherwise, it may lead to new problems for
knowledge transfer.

Improving the outcomes in terms of work performance can be managed in many
ways. For instance, Wan et al. [304] suggest that concerning a knowledge transfer process,
management may establish a reasonable incentive mechanism to enhance the source’s
willingness to transfer and the recipient’s consciousness to acquire and use knowledge.
Empirical studies show that the higher team members have absorptive capacity, the greater
the effectiveness and performance of new product development [350-352]. Essential training
may therefore be carried out for team members to increase absorptive capacity and the ability
to convey knowledge, which in turn can gain work improvement. Regarding a software
process, an assessment of software process improvement (e.g., Capability Maturity Model
Integration (CMMI)) may be used to find out strengths and weaknesses of the implemented
software process [304], so that management can identify required knowledge with suitable
transfer mechanisms to remedy those weaknesses. Success in knowledge transfer should
consider value gained at both sides of the source and the recipient. This is because knowledge
transfer can occur in the cycle loop. This means new knowledge can be created by both sides:
the source to the recipient and vice versa. The more value both sides gain, the more likely
collaboration and good relationship is enhanced [298], which in turn the desired outcome
could be effectively achieved. From this view, Table 7-10 summarizes a set of activities and
suggested questions that should be taken into consideration within the outcome component.

180

Table 7-10. Activities within the outcome component

Activity Description
Measuring outcomes - Is the outcome satisfied? In order to get evidence on how effective knowledge is

gained, teams need to measure an outcome on work products in terms of work
satisfaction (i.e., perceived usefulness and perceived ease of use) and work
performance (i.e., efficiency and effectiveness). Teams may iteratively perform an
assessment and then use the results as inputs for improvement in the next iterations.

Improving outcomes - How can the outcome be improved? To achieve satisfactory outcomes, work can be
improved by many ways, e.g., establishing incentives to promote knowledge transfer,
supporting cooperative environments, and encouraging teams to consider what they
doing right and wrong [249].

7.2.2 Stages of Knowledge Transfer

As the knowledge transfer mechanism of our case study participants (presented in
Chapter 5) is very similar to that of Szulanski’s model, our knowledge transfer framework is
thus principally based on Szulanski’s model [103]. It is also based on our understandings of
literature and prior empirical studies on knowledge transfer and related aspects (e.g.,
knowledge management and knowledge acquisition), which can serve as a guideline for
planning knowledge transfer activities. Knowledge transfer is considered as a communication
process that is divided into four stages (i.e., Initiation, Implementation, Ramp-up, and
Integration). In the process, its components (i.e., problems, antecedents, knowledge,
mechanisms, knowledge application, and outcomes) play an important role in different
stages. This section describes relationships between those components and an activity flow in
each stage. This details of this section help answer the RQ7-3 “How do knowledge transfer
activities play an important role in each of the four knowledge transfer stages (i.e., Initiation,
Implementation, Ramp-up, and Integration)?”.

7.2.2.1 Initiation

Initiation is the starting point of a knowledge transfer process. Szulanski [103] states
that the Initiation is triggered by all events leading to the decision to transfer knowledge. A
transfer begins when the required knowledge meets a need. The discovery of the need leads
to the search for valuable knowledge, which in turn may trigger the desire to seek a potential
solution. However, there is stickiness that makes difficulties to initiate this stage. This
stickiness is related to the difficulties to recognize the opportunity for transferring knowledge
and act on them. Recognizing this opportunity requires lots of time and effort in defining and
selecting knowledge to be transferred, and then taking the initiative to decide when and how
to begin the transfer process with the selected knowledge area [103, 278]. Moreover, Leseure
et al. [315] found that the adoption of knowledge is not managed strategically due to various
typical weaknesses, e.g., no clear goals and objectives, no data collection or measurement to
support planning, no analysis of knowledge integration constraints, no adequate resources,
and no inclusion of targets in the strategic plan. This shows that most activities are about
management. To pre-empt those shortcomings, this study thus mainly focuses on managerial
activities.

Knowledge to be transferred should be based on recipients’ needs and problems
[266]. Potential problems can be identified suitably when goals and objectives are clearly

181

defined and clarified to all team members [287]. Based on those problems, the required
knowledge can be then defined and selected properly. Considering selecting knowledge to be
transferred, Davies and Kochar [353] propose a framework for the selection of best practices
for the improvement of manufacturing planning and control systems. It is a linear sequence of
five activities commencing with (1) the objective or identification of the need to improve
performance, (2) identification of best practices, (3) prioritization of identified best practices,
(4) assessment of required predecessor practices, and (5) implementation of those practices.
These activities are somewhat similar to those within the problem and the knowledge
components. Therefore, this study suggests that this stage should be started with identifying a
clear statement of goals and objectives, defining a clear set of potential problems, prioritizing
those problems by focusing on their values. The prioritized problems help teams to
understand what knowledge is needed to transfer in order. Moreover, the required knowledge
should be classified in order to help properly define suitable sources and mechanisms.
Knowing the location of team members’ knowledge serves an important integrative and
coordinative activity [31]. This activity requires knowing a variety of useful sources
including specialized non-human sources (e.g., documents, policies, standard, source codes,
and information systems) and people who have what skills and knowledge. It is important
that the suitable knowledge needs to be assessed, matched it with potential sources and target
recipients, and located in teams. Moreover, roles and responsibilities of the source and the
recipient should be clearly defined and clarified to all related team members. In case the
source is human, the source that is assigned to transfer the knowledge may put together a
relevant knowledge package for his/her area of specialization, e.g., bringing all related
documents up-to-date, and preparing training materials and quiz questions to be distributed at
the end of the training in order to assess whether the recipient can grasp the important points
of the learning session [274, 316]. However, if the selected knowledge cannot be located, the
transfer may be either re-initiated or abandoned.

At this stage, many studies mainly focus on identifying negative antecedents or
difficulties affecting the decision to transfer. Most of those influential difficulties are about a
lack of source’s credibility, a lack of recipient’s absorptive capacity, perceived less-valuable
knowledge, arduous relationships, a lack of ability to recognize needs and opportunities to
transfer, and a lack of ability to identify potential mechanisms for transfer [103, 256, 278,
317]. Thus, an antecedent assessment needs to be performed to understand what antecedents
enable and impede the transfer process and then plan strategies for developing supportive
contexts, minimizing obstacles to knowledge transfer, and defining all activities required for
knowledge transfer to take place. Once the strategic planning and resource preparation is
done, the actual activities can then be executed directly through to the second stage of
Implementation [315]. From this view, it shows that the Initiation stage mainly associates
with the components of problems, antecedents, knowledge, and mechanisms. Consequently, a
flow of main knowledge transfer activities of this stage can be illustrated in Figure 7-2.

182

Initiation
Stage

Define goals &
objectives

Identify, clarify, &
prioritize problems

Define knowledge

Classify
knowledge

Assess
antecedents

Develop (or revise)
a plan including

appropriate ICTs,
activities, time, & the

knowledge areas

Assess knowledge

Locate knowledge

A clear statement of goals and objectives

A chosen problem

Potential knowledge

Knowledge type

A chosen problem
& existing contexts

Enabling & impeding
antecedents

Selected knowledge Required knowledge,
Creditable source,
Target recipient,

Roles and
Responsibilities, &

Required time
Located?

No

Re-initiate
Transfer?

Yes

FinishTransfer discarded

Implementation
Stage

Figure 7-2. A flow of main knowledge transfer activities of the Initiation stage

7.2.2.2 Implementation

The Implementation is the subsequent stage commencing with the decision to transfer
the knowledge [103]. When the Implementation takes place, the plan should be followed
[315]. During this stage, resources flow between the source and the recipient. If the source
stores in non-human (e.g., information systems and previous software project documents),
knowledge may flow directly from the source to the recipient [276]. If the source is human,
the updated or prepared materials may be distributed to the recipient. The knowledge is often
tailored to meet the expected needs and pre-empt problems experienced in the past [103].
This is much more about communication between the source and the recipient [275]. Hence,
positive personal ties between them need to be established for effective transfer [103].

183

Moreover, it is beneficial to engage in parallel activities that aim to prepare the subsequent
Ramp-up stage, e.g., developing supportive contexts [103, 315]. This activity indeed benefits
all stages of the transfer process and should be carried out at the early stages. There are many
antecedents that affect the Implementation success and need to be prepared for the Ramp-up
stage as following described.

First, teams should secure commitment for the Implementation success [315, 321-
325]. While acceptance of the transferred knowledge and involvement are key issues at the
Ramp-up stage, it is thus vital to get commitment from all key stakeholders (e.g.,
management and team members) in order to guarantee that the Ramp-up stage can be taken
place. This includes early building on a general sense of commitment to the knowledge
application, getting top-management commitment to support important issues (e.g., time,
effort, resources, and management) that lead to successful Ramp-up and Integration, and
securing commitment of team members since they are key players in the transfer process.
However, it is important to provide training about the required knowledge to team members
prior to securing their commitment.

Second, the recipient’s deficiencies in absorptive capacity can lead the recipient to
experience many hindrances in the transfer process, e.g., communication difficulties, large
knowledge gaps, weak relationships, and perceived difficulties in learning the knowledge
being transferred [316]. Therefore, efforts to improve the recipient’s absorptive capacity
should be undertaken [315]. Moreover, many studies state that the provision of training is an
effective means to enhance absorptive capacity and knowledge application success [322, 354-
356].

Third, the degree of knowledge transfer significantly depends on the source’s wealth
of experience, knowledge, and transferability [289]. The source with more relevant
experience will easily initiate a transfer of knowledge from itself to the recipient [103].
Hence, the source’ capability should be enhanced for higher inclination to share knowledge.

Fourth, technical and communication gaps between the source and the recipient can
occur at this stage [278]. Bridging this gap successfully is related to careful planning.
However, the depth of the planning itself depends on the understanding of the software
project objectives and the knowledge being transferred. The degree of these effects
significantly depends on the ability of the source and the recipient to work together to resolve
conflicts between them as well as between the knowledge being transferred and their
operating culture [278, 315]. This emphasizes that role and responsibilities of the source and
the recipient need to be clearly clarified [317] and possible conflicts should be detected and
pre-empted for effective implementation [315].

Fifth, Hendricson et al. [317] found that a lack of the recipient’s motivation to adopt
new knowledge, no tangible reward systems, and emotional support to encourage team
members hamper the transfer process. In Chua and Pan’s study [274], written tests were used
to check whether the recipient absorbs the important things and to motivate the recipient to
enable greatest absorption. Sundaresan and Zhang [357] designed the incentives that induce
team members to share and learn knowledge and exert best efforts that are aligned with
objectives. Besides, Duan et al. [266] said that organizations need to offer motivational
incentives to team members. This shows that motivation of both the source and the recipient
need to be maximized. However, in order to prevent a negative role of rewarding behaviors,
those systems should be based on, e.g., successful knowledge transfer, collaboration, and
teamwork, but not financial results or outcomes that are based on team competition [327].

184

Last, when the source is not perceived as credible or the knowledge being transferred
is perceived as useful, the transfer process tends to be discarded [103, 256]. Since problems
associated with antecedents can occur at any time, teams need to monitor and manage those
antecedents and the plan to minimize failure probabilities of the transfer process. At this
stage, the source customizes the knowledge being transferred until suitable for an absorbed
unit. However, if the knowledge being transferred is unsuitable, teams may either (1) re-
initiate the transfer process, (2) abandon the transfer process, or (3) re-assess the knowledge
and antecedents again, review related occurring problems, use the assessment results to adjust
the plan for improvement and then re-circle the Implementation stage until the knowledge
being transferred is compatible for solving a particular problem and fitting into their software
development contexts. Activities of this stage cease after the recipient begins using the
transferred knowledge [103]. From this view, it shows that the Implementation stage mainly
associates with the components of problems, antecedents, knowledge, and mechanisms.
Consequently, a flow of main knowledge transfer activities of this stage can be illustrated in
Figure 7-3.

Develop supportive
antecedents

- Tailor knowledge
- Manage antecedents

- Manage the plan

- Assess knowledge
- Assess antecedents
- Review problems
- Review the plan

Enabling antecedents

Suitable?

Knowledge

No

No

Re-tailor?Yes
Yes

Finish

Transfer
discarded

Re-initiate
transfer?

Yes

Enabling & impeding
antecedents

and knowledge

Ramp-up
Stage

Implementation
Stage

Initiation
Stage

Figure 7-3. A flow of main knowledge transfer activities of the Implementation stage

185

7.2.2.3 Ramp-up

The Ramp-up starts when the recipient begins using the transferred knowledge [103].
The overall objective of this stage is to ramp up to work performance and satisfaction by
using the transferred knowledge to solve the problem and meet the defined objectives [276,
315]. Typically, the recipient uses the knowledge ineffectively at first, but gradually
identifies and rectifies unexpected problems until being able to achieve satisfactory outcomes
[274, 276, 358]. During the use of the transferred knowledge, the recipient may request
additional support from the source in solving both expected and unexpected problems.
However, the recipient may abandon or re-initiate the transfer process if there are too many
difficulties to use the transferred knowledge or it is unlikely to solve the problem or achieve a
satisfactory outcome [276]. For instance, Tsang [279] found an important unexpected
problem which is that the recipient sometimes continues to enact the old routine, albeit it has
been replaced by the new knowledge. This has resulted from three main circumstances:
insufficient support from the source during the Ramp-up stage that may lead to perceived
difficulties in using the transferred knowledge, weak personal ties, and strong embeddedness
of the old routine that leads the recipient to take time to use the transferred knowledge and
later abandon its use. This implies that during practical use of the transferred knowledge, its
incompatibility with either teams’ cultures or existing practices may occur. Consequently, the
transfer process may flow back to the Implementation stage again in order to alter the
transferred knowledge being well-suited. The earlier the compatibility between the
transferred knowledge and the transfer context is taken place; the likelihood of further
abandonment of the transfer process is diminished. As routinization often requires
cooperation and communication, weak relationships between the source and the recipient can
thus be a barrier to knowledge application. To minimize failure, the source should
continuously monitor and audit the use of the transferred knowledge, e.g., by obtaining
feedback from the recipient and subsequently consolidating and using such feedback for
further improvement.

Moreover, knowledge transfer leads to changes in behaviors, practices, and policies
[345], successful Ramp-up thus requires acceptance of the transferred knowledge [103, 315].
For instance, the recipient may resist using the transferred knowledge that increases his/her
workload or reduces his/her authority [359]. Hence, building acceptance of the transferred
knowledge needs to secure motivation and involvement [315]. Since involvement is
associated with commitment, personal ties, coordination and communication [360], securing
involvement thus needs to augment these antecedents. From this view, Leseure et al. [315]
also suggest many key activities that management should perform at this stage. First,
management should pay attention to individual-level issues (e.g., credibility, transferability,
absorptive capacity, awareness, motivation, behaviors, mindsets, and personal accountability)
since those significantly affect transfer success or failure. In case of having no incentives or
rewards yet, management may establish them to encourage team members to take time to use
the transferred knowledge. Second, extensive communication is critically demanded to
maintain for using the transferred knowledge and solving the problem. Third, maintaining
focus while being flexibility is important for transfer success. When focus is absent, the
adoption efforts are likely to decline. When the plan is idealistic, the transfer success is
unlikely to be achieved. However, teams may suffer from either too much focus or too much
flexibility. During this stage, management should therefore regularly maintain and review,
and revise the plan to suit any particular situation. Meanwhile, antecedents affecting
successful Ramp-up (e.g., extensive communication, great motivation of the source and the
recipient, positive personal ties, and the organizational culture) also need to be maintained,

186

re-assessed and, improved. The problem must be focused to ensure successful solving and
reviewed to early tackle any unexpectedness. Activities related to the use of the transferred
knowledge (i.e., making, monitoring, supporting, and auditing the used of the transferred
knowledge) should be carried out until being able to solve the focused problem and achieving
satisfactory outcomes. After achieving satisfactory outcomes, the transfer process then flows
through the Integration stage. From this view, it shows that the Ramp-up stage associates
with the components of problems, antecedents, mechanisms, knowledge application, and
outcomes. Consequently, a flow of main knowledge transfer activities of this stage can be
illustrated in Figure 7-4.

- Make use of the knowledge
- Focus on problems

- Monitor use of the knowledge
- Maintain the plan and antecedents

Need
support?

Finish

Transfer
discarded

Support use of
the knowledge

Yes

Continue to
solve?

No

Re-initiate
transfer?

No

Review
problems

Successfully
solve?

Assess
outcomes

Satisfied?

No

Yes

No Yes

Yes

Improve
outcomes

Yes

- Assess antecedents
- Review the plan

Audit use of the knowledge

Have more
problems?

NoYes

Integration
Stage

Initiation
Stage

Ramp-up
Stage

Re-implement by
altering the transferred

knowledge to fit the
context?

Implementation
Stage

Yes

No

Figure 7-4. A flow of main knowledge transfer activities of the Ramp-up stage

187

7.2.2.4 Integration

The Integration stage begins after the recipient gained desired outcomes with the
transferred knowledge [103]. Knowledge application and its integration with existing routines
(or existing practices) gradually become routinized (called institutionalization) [317]. A
routine may blend into standard practices, so that the transferred knowledge can be then
embedded within day-to-day tasks. A routine is often not a stand-alone item [279]. Routines
are interconnected in the sense that the performance of one may involve that of another. This
shows that it is unlikely to change all the routines at the same time. Teams may hence bring
in new routines in a sequential manner. At this stage, the Integration activities are carried out
to ensure that the recipient can use the transferred knowledge without any support from the
source and can take any remedial action to improve the understanding of the transferred
knowledge and integrate it into his/her practices [274]. Three main activities of this stage
consist of sustaining, monitoring and quality auditing the use of the transferred knowledge
[316]. There are many ways to sustain the knowledge, e.g., providing environments to
facilitate and increase knowledge use. during monitoring, the source should allow the
recipient to make a mistake and correct the mistake by himself/herself, provide support when
the recipient encounters a tough problem, and supervise the recipient until the knowledge is
internalized and then integrated as part of his/her own knowledge package. Quality auditing
is an ongoing assessment activity. The source may give feedback to the recipient and vice
versa, provide coaching, conduct an remedial action plan to help the recipient to overcome
his/her weaknesses, and eventually check with all team members whether the outcomes are
satisfied. In order to gauge whether the recipient indeed absorbs the knowledge, there are
many assessment mechanisms, e.g., an oral test and a written test [274]. The assessment may
focus on the recipient’s deeper understanding and the absorption of the transferred knowledge
and the ability to analyze and solve problems. Meanwhile, the assessment may also rate on
the recipient’s soft skills (e.g., eagerness to learn, willingness to share, and teamwork) and
the source is then discussed to make the recipient aware of his/her strengths and weaknesses
for further improvement. This can serve as an indication of the desired characteristics of team
members.

This stage primarily looks at the efforts required to minimize obstacles and deal with
challenges to the routinization of the transferred knowledge [316]. When the transferred
knowledge presents too many difficulties, it is unlikely to become part of routines and
therefore sustained in a practice [278]. In other words, the transfer process may be abandoned
or re-initiated if there is no suitable remedial plan to deal with encountered difficulties. This
emphasizes that successful knowledge transfer depends upon the ability to remove barriers
and cope with how to make the transferred knowledge or the new practice more routine.
Apart from recipient’s absorptive capacity and motivation described above, there are various
antecedents affecting the institutionalization of new routines or leading the transfer process
back to the former stages.

For instance, first, as routines can be stored in both the non-human memory (e.g.,
project documents, standard practices, organizational policies, and information systems) and
the collective human memory (e.g., team members); however, the latter usually forms the
greatest barrier to change [279]. The older the organization, the more fossilized the collective
human memory becomes. Existing old routines of an old organization may become part of
the members’ work behaviors that are difficult to get rid of. Albeit the transferred knowledge
is operational for a considerable time, team members may somehow revert to the old routines
[279].

188

Second, time facilitates unlearning since human memory fades with time [279]. When
the transferred knowledge is not enacted regularly, tendency to revert to the old routine
makes institutionalization of the transferred knowledge difficult. Two of possible means for
dealing with this matter are either motivating team members the current stage or turning back
to the Ramp-up stage by continuously using the transferred knowledge until getting
satisfactory familiarity with it.

Third, the transferred knowledge may neither be compatible with other existing old
routines nor easily accessible. Although the transferred knowledge or the new practice is
considered as valuable, it may not take root in teams. For instance, if the existing storing
information system is awkward and the transferred knowledge cannot be accessed efficiently,
team members is not motivated to collect it [279]. In this case, teams may either fix the
incompatibility at the current stage or back to the Implementation to alter the transferred
knowledge being able to mingle with the old routines.

Fourth, the complexity of the knowledge and its limitations to use the knowledge may
take the recipient more time and effort to fully complete this stage [317]. Another factor is
that communication difficulties may bring on misunderstanding and distrust between the
source and the recipient, which in turn results in a weak relationship and eventually hampers
the successful knowledge transfer [316]. However, those communication difficulties can be
overcome by team building and personal ties between the source and the recipient can be
strengthened by social entertainment activities. Hence, teams should maintain, re-assess, and
improve those antecedents to ensure successful knowledge transfer. When the recipient can
integrate the transferred knowledge into his/her knowledge package and use it without any
support, the knowledge transfer is then recognized as successful. From this view, it shows
that the Integration stage primarily associates with the components of problems, antecedents,
knowledge, mechanisms, and knowledge application. Consequently, a flow of main
knowledge transfer activities of this stage can be illustrated in Figure 7-5.

189

Knowledge

Can be
integrated?

No

Review the plan

Solve problems at
this stage

- Integrate knowledge
- Sustain use of the knowledge

- Monitor use of knowledge
- Audit use of the knowledge

- Assess and maintain antecedents
- Review problems

Yes

Yes

Support use of the
knowledge

Transfer Process
complete

Need support?

No

Successfully
integrate?Review the plan No

Yes

Have problems?

No

Integration Stage

Finish

Transfer
discarded

Re-use the
transferred
knowledge?

Yes Ramp-up
Stage

No

Re-implement by
altering the
transferred

knowledge to fit the
context?

Yes Implementation
Stage

No

Re-initiate transfer? Yes Initiation
Stage

No

1

1

Figure 7-5. A flow of main knowledge transfer activities of the Integration stage

According to Figure 7-1, it shows multi-directional interactions between components
in the transfer process. Giving a clearer picture, Table 7-11 summarizes sets of components
playing a vital role in each stage of the transfer process.

Table 7-11. Core components in each stage of the transfer process

 Stage
Component

Initiation Implementation Ramp-up Integration

Problems X X X X
Antecedents X X X X
Knowledge X X X
Mechanisms X X X X
Knowledge Application X X
Outcomes X

There are many difficulties leading to ineffective knowledge transfer or backward
stages as described above. Providing a clearer view, Table 7-12 summarizes those difficulties

190

and influential antecedents in each stage of the transfer process that should be taken into
consideration in practice.

Table 7-12. The difficulties and influential antecedents in each stage of the transfer process

Context

Stage

Difficulty

In
iti

at
io

n

Im
pl

em
en

ta
tio

n

R
am

p-
up

In
te

gr
at

io
n

Source (Lack of) motivation X X
(Lack of) capability X
(Lack of) credibility X X X
(Lack of) sufficient support from the source X
(Lack of) ability to recognize needs and opportunities to transfer X
(Lack of) ability to identify potential transfer mechanisms X

Recipient (Lack of) motivation X X X
(Lack of) absorptive capacity X X X X
(Lack of) regularly practicing the transferred knowledge X

Knowledge (Lack of) knowledge perceived as easy to use/access X X X
(Lack of) knowledge perceived as useful X X
Large knowledge gaps between the source and the recipient X

Relational (Lack of) good relationship X X X X
(Lack of) commitment X X

Situational (Lack of) communications X X X
Strong embeddedness of old routines (or old practices) X X
(Lack of) compatibility between the transferred knowledge and
old routines (or old practices)

 X X

For more understandings, the descriptions of our knowledge transfer framework’s
application in practice are presented in the next section.

7.3 Application of the Knowledge Transfer Framework

Owing to time limitations of this study, we could not evaluate our knowledge transfer
framework in terms of usability and practicality in real-life software projects. Nevertheless,
we hope to further improve the framework by carrying out empirical case studies in the Thai
telecommunications industry in the near future. Since the framework provides a general
conceptual lens of knowledge transfer in software development; in case positive results are
arisen, empirical case studies with an improvement of the framework may be performed in
other industries. However, our previous software development case studies in two Thai
telecommunications companies (CAT Telecom Public Company Limited and TOT Public
Company Limited) (presented in Chapter 5) are used to demonstrate the application of the

191

framework in practice in this section. This helps answer the RQ7-4 “How can the developed
knowledge transfer framework be performed?”.

7.3.1 Data Collection

We use the collected data and findings of our previous case studies as a base. The
case studies were performed to test our software process maintenance framework at CAT
Telecom Public Company Limited (CAT) during November - December 2010 and TOT
Public Company Limited (TOT) during December 2010 - February 2011. Quantitative and
qualitative data were collected through on-site observations, individual semi-structured
interviews, and questionnaires. We interviewed three team members in CAT face-to-face
(e.g., a product owner, a Scrum master, and a developer); and a Scrum master who also acted
as a product owner and a developer via an international call for the case project in TOT due
to limited available time of the team. A Technology Acceptance Model (TAM)-based
questionnaire for investigating the acceptance of our software process maintenance
framework was also developed based on the related literature and circulated to all
interviewees (see Chapter 5 for more details).

7.3.2 Analysis and Results

In this section, the Scrum principles are borrowed for describing the way to perform
software development with our knowledge transfer framework. The mapping between the
three stages of Scrum (i.e., pre-game, game, and post-game) and the four stages of a
knowledge transfer process (i.e., Initiation, Implementation, Ramp-up, and Integration) is
depicted in Figure 7-6. The pre-game stage of Scrum and the Initiation of the transfer process
mainly involve planning, whilst the game stage of Scrum and the Implementation stage of the
transfer process are the places to execute actual planned activities. Therefore, two pairs of
these stages can be mapped together. Typically, knowledge is used to solve business
problems during the game stage of Scrum. The software product, work performance, and user
satisfaction is evaluated through validation and verification at the post-game stage of Scrum.
As the Ramp-up stage of the transfer process begins when the recipient starts using the
knowledge and then ramp up it to work performance and satisfaction, activities of the Ramp-
up stage can thus be performed through both the game and post-game stages of Scrum. As the
transferred knowledge needs to be routinized, the Integration stage of the transfer process can
thus be executed in the next iterations together with the creation of new knowledge transfer.
It is important to note that the proposed mapping is based on theoretical aspects. In practice,
all stages of the transfer process can be executed at any stages of Scrum (or software
development). For more understandings, the descriptions of each stage of the transfer process
are presented in the following sub-sections. The descriptions are categorized into two parts,
i.e., the descriptions on the author side transferring knowledge to the CAT and TOT teams
and the descriptions on the case study side transferring knowledge within their teams.
Consequently, the focus of the first part is on the results of transferring our software process
maintenance framework; whilst the focus of the second part is on how our knowledge transfer
framework can be applied in real-life software development practice.

192

Figure 7-6. A mapping between Scrum stages and knowledge transfer stages
(Scrum’s source: [102])

7.3.2.1 Initiation

On the author side transferring knowledge to the teams: Initiation is triggered by all
events leading to the decisions to transfer, e.g., the search for problems, necessary
knowledge, and potential solutions. As presented in Chapter 2, the potential problems we
found in software development in the Thai telecommunications industry is that software
developers (hereafter referred to as “developers”) did not perceive formal routines as an
efficient and effective way to develop and manage software development and deliver quality
results. Hence, the question of “how to improve software development performance” has
been brought up. A software process maintenance framework has been proposed and
constructed, based on suitable necessary knowledge. For evaluating the usability and
practicality of the framework, the framework’s knowledge was required to transfer to our

193

case studies. For targeting recipients, CAT and TOT were chosen due to their great interest in
the framework and their experience in the telecommunications and software development.
However, one of challenges was that a developer in the TOT team found the framework
difficult since TOT usually used an outsourcing method for their existing software projects.
On the other hand, the CAT team had experience with PMBOK. Therefore, an amount of
knowledge required to transfer to the TOT team was heavier than that required to transfer to
the CAT team. Without related experience, it was difficult and required more time to transfer
the knowledge to the recipient. For planning transfer mechanisms, the authors used face-to-
face communications as a primary method, emails when either the authors or the teams were
remote, and interviews and questionnaires at the end of their software development to
measure their learning, understandings, satisfaction, and acceptance of the framework. Once
the transfer schedules were done, the authors needed to prepare documentations and
presentation slides, pull together all related documents and tools that the recipients should
have, set up our software application supporting the use of the framework, and conduct
interview and questionnaire questions.

On the case study side transferring knowledge within teams: In software
development, transfer activities of the Initiation stage can be performed at an early stage of
software development (i.e., initiating and planning a software project). During software
project initiation, management conducted a project charter and a stakeholder analysis. Apart
from software development aspects, the teams should have additionally analyzed what skills,
experience, and knowledge each stakeholder had; the degree to which each stakeholder had
that knowledge; and each stakeholder’s characteristics (antecedents) that affected knowledge
transfer (especially in terms of motivation, credibility, capability, absorptive capacity,
commitment, and relationship amongst team members).

During sprint planning meetings, management developed project management plans
and formed teams. The case project in CAT was to develop additional Web-based
functionalities bundled into their ongoing software project. The CAT team was formed with
the same team responsible for the ongoing software project in order to reduce time to learn
business logic, programming languages, and development tools. The TOT team developed a
small decision support application and was formed with people having business experience in
the telecommunications industry but not much in software development. This supports that
the degree of required knowledge transfer in the TOT team was higher than that in the CAT
team. Product owners clarified to the teams the software project roadmaps, goals, and
objectives by using up-to-date related presentation slides and documents. As both teams
carried out the software process assessment before software development in order to
understand the strengths and weaknesses of their existing software processes, the assessment
results and the defined objectives may have helped teams being able to identify potential
problems (as knowledge transfer requirements) that needed knowledge transfer for software
process and product improvement. After gathering requirements (i.e., user, technical, and
knowledge transfer), they would be then prioritized by considering their values and logged
into a product backlog together with estimated effort in terms of time.

As knowledge training and coaching requires time, adequate independence from the
software development tasks should be provided to team members involved in the transfer. It
means that an amount of user and technical requirements needed to be implemented in each
iteration may be reduced. Moreover, iterative transfer is recognized as more effective since it
is easier to transfer clearly defined chunks with predictable schedules [361]. Therefore, all
prioritized requirements should be scheduled into iterations. Once getting the first chunk of
the prioritized requirements to implement, the teams broke down those requirements into

194

tasks and logged them into a sprint backlog. Similar to the process of breaking down user and
technical requirements, for a given knowledge transfer requirement, the teams should have
defined and classified what knowledge and what types of the knowledge were needed for
transfer.

The CAT team developed a Web-based application as a commercial product, whilst
the TOT team developed a decision support application for planning business strategies.
According to eTOM business process areas, both applications can be classified into the
Strategy, Infrastructure and Product (SIP) business process area. It means that all of the five
knowledge types (i.e., human, organizational, relational, project management, and
technological knowledge) may be required for transfer. The teams should then have assessed
the required knowledge by considering its values, complexity, and accessibility and select the
most suitable one. For instance, the CAT team planned to apply a standard software process
improvement method (e.g., Capability Maturity Model-CMM, CMMI, Software Process
Improvement and Capability Determination-SPICE, and Six Sigma). The CAT team decided
to be certified in CMMI due to being very suitable for their business purposes and having its
knowledge source in their team. After getting suitable knowledge, the teams should have
found a credible source having such knowledge and located it in the teams. Sources can be
both human (e.g., team members and consultants) and non-human (e.g. project documents,
organizational policies, and information systems). However, the transfer process may be
abandoned or re-initiated if the knowledge cannot be located. It will not be plausible to teach
everybody for every task [361]. Therefore, target recipients need to be defined.

Agile software development methods typically advocate face-to-face communications
as the most efficient and effective method of conveying information [232]. The CAT team
approximately 60% in co-location and approximately 40% in distributed sites. They planned
to employ face-to-face interactions and mobiles as main communication media and used
instant messaging, e-conferencing, and emails when team members were remote. This
enabled them to obtain quick feedback and required information. On the other hand, The
TOT team worked in 100% co-location, but planned to employ phones as a primary
communication method for both developing software and transferring knowledge. This was
due to multi-roles and multi-projects of the Scrum master. The details of the source, the
recipient, their roles and responsibilities, the knowledge area, and communication channels
for a particular knowledge transfer requirement should have been logged into the sprint
backlog and clearly clarified to all related team members.

Besides, during identifying and planning risk or impediment management, influential
antecedents should have been assessed to understand what facilitated and hindered the
transfer process. The teams may have used the results of the stakeholder analysis as an input
for measuring influential antecedents in the source (i.e., motivation, capability, and
credibility), recipient (i.e., motivation and absorptive capacity), and relational (i.e.,
relationship between the source and the recipient and commitment) contexts. For the
hindering antecedents, they may have been logged into an impediment backlog with strategic
solutions.

It is essential to prepare materials for transfer. Sources may have put together a
package for their areas of expertise into various forms of documentation and presentation
slides. Once the planning and resources were done, the actual activities could be directly
executed in the Implementation stage of the transfer process. However, it is important to note
that some of actual knowledge transfer was performed during planning the software project,
e.g., describing user requirements to team members.

195

7.3.2.2 Implementation

On the author side transferring knowledge to the teams: The Implementation
commences with the decision to transfer. Before the scheduled transfer time, preliminary
explicit knowledge in the form of documentation were handed over to the recipient teams.
This allowed them to go through the documentation to understand the overall concepts of the
framework. At the scheduled transfer time, the actual transfer activities were executed. Face-
to-face communications (including presentations and conversations) were used as a key
transferring and learning mechanism at the beginning of the transfer. The training period for
the Implementation stage was 1-2 weeks. Not all recipients who attended the training were
able to absorb the knowledge due to less experience in either PMBOK or agile-oriented
software development. However, the recipients were not expected to understand all the
knowledge immediately. The intention was first to provide them the concepts of the
framework (including related tools), and then to allow them to get better understandings by
doing.

During the Implementation stage, the authors faced three main circumstances leading
the transfer process re-transferred or discarded. First, although training by face-to-face
conversations was in Thai, all of the original prepared materials (i.e., related documents,
presentation slides, and tools) were in English. As recognized during the transfer, when the
authors transferred knowledge without translation from English into Thai, some recipients
required much time and effort to learn. The authors sometimes had to re-transfer with the
translated version to ensure that the recipient clearly understood that knowledge. Moreover,
albeit the TOT team was interested in using those materials (e.g., project management and
backlog templates) in real-life practice, they needed to convert almost all of them into Thai
according to their organizational policies.

Second, after the authors consulted a set of software development practices that
should be performed for quality software development and products, there was one practice
unsuitable for the TOT culture. The practice was that key team members (e.g., a product
owner and a Scrum master) directly involving the software project should have full authority
for rapid making decisions. Top management in TOT refused this practice with the reason of
no such practice performed in TOT before. Nevertheless, the main reason behind it may be
the threat to lose their authority as is what usually happens in traditional organizations.

Last, the TOT team did not apply a retrospective meeting (which is one of main
meetings suggested by the framework) for the case project due to no sufficient time of the
Scrum master. The transfer process of this knowledge could be considered as failure. These
circumstances support that antecedents should be regularly reviewed and managed in order to
reduce transfer ineffectiveness and failure. Once the recipients were ready to use the
transferred knowledge, the transfer process then flowed through the Ramp-up stage.

On the case study side transferring knowledge within teams: Transfer activities of
the Implementation stage can be performed during sprint executions. During this
Implementation stage, resources flow between the source and the recipient. Therefore, the
first step should be the development of supportive antecedents in accordance with the
impediment backlog and the strategic plans. As observed, a developer in the TOT team
lacked absorptive capacity due to less prior software-development-related knowledge, whilst
developers in the CAT team somewhat lacked motivation or interest in project management
knowledge that may in turn have led to a lack of absorptive capacity to learn and use that
knowledge. Moreover, management (especially in the TOT team) as a main source had multi-
roles and multi-projects. This led to inadequate communications with the recipient and a lack

196

of commitment in terms of time. This supports that the teams needed to build up absorptive
capacity, motivation, the extent of communication, and commitment.

Consequently, the absorptive ability may have been enhanced by allowing team
members to learn by doing and making mistakes. Learning by doing can strengthen the
understanding of tasks through gaining accumulative practical experience [361]. Besides, the
source who is threatened to lose his/her importance or authority is likely to demonstrate non-
cooperative behaviors with the recipient. A clear vision of his/her future may be
communicated early for motivation. Nevertheless, the sources in both teams as observed were
willing to transfer their knowledge to their team members. To motivate the recipient,
management in CAT motivated team members through conversations and planned to
establish a reward system on future software projects; whilst management in TOT considered
the case project results as one of key performance indicators for the annual staff performance
appraisal. For communication aspects, both teams realized that only face-to-face
conversations could not be held for all software processes. They thus increased the volume of
communications by using other media, e.g., phones and instant messaging. However, using
phones in TOT in the Implementation stage was not highly efficient. In addition, it is
important to make awareness and get commitment for knowledge transfer from all key
stakeholders and team members. Management in both teams should have secured both key
stakeholders’ and team members’ commitment especially through the Implementation and
Ramp-up stages of the transfer process.

Meantime, the source should have tailored and transferred the required knowledge
until suitable for the current software development context. As observed during the coding
stage of software development, the CAT team largely exchanged technological knowledge
and discussed on how to adapt it for improving their development techniques and software
maintainability. During conducting project documents, organizational knowledge (e.g.,
organizational templates, standards, and policies) was engaged. Most of those documents
were informal and less-detailed. This implies that most transferred knowledge was more
likely to become human knowledge residing in individual team members. On the other hand,
the source in the TOT team used on-the-job training to transfer programming techniques to
the recipient. Since the recipient had no experience with the programming language before,
time and effort for learning and coding was highly required. However, if the required
knowledge was not suitable or effectively tailored, the transfer process was likely discarded
or re-initiated.

During sprint executions, daily meetings took place to coordinate work, synchronize
efforts, and tackle anticipated problems. Similar to software processes, the knowledge
transfer requirements, impediments, and all related plans (e.g., sprint backlogs, impediment
backlogs, and risk management plans) should have been managed, reviewed, and adjusted to
fit into the current circumstances. During these meetings, influential antecedents should also
have been reviewed in order to minimize failure chances. For instance, although good
motivation and relationship was taken place in both teams, a conflict between the source and
the recipient sometimes occurred. When this occurred, it was likely to decrease the extent of
communication and in turn motivation to transfer and acquire the knowledge. This
emphasized that a lack of supportive antecedents was more likely to result in transfer
ineffectiveness or abandonment. It is also important that the teams should have measured
whether or not an amount of knowledge being transferred was sufficient for achieving
satisfactory outcomes through these meetings. The transfer activities of the Implementation
ceased when the recipient started using the transferred knowledge. The transfer process then
flowed through the Ramp-up stage.

197

7.3.2.3 Ramp-up

On the author side transferring knowledge to the teams: During this stage, the
recipient gradually ramps up to work performance and satisfaction by using the transferred
knowledge to solve anticipated problems. On-site face-to-face communications were mainly
used for observing, supporting, monitoring, and auditing the use of the transferred
knowledge; whilst emails were used to provide support requested when either the authors or
the recipients were remote. Transfer activities of this stage ceased after the recipients
achieved satisfactory outcomes. Otherwise, the transfer process needed either continuing until
getting satisfaction, reverting back to earlier stages, or unfortunately discarding.

In case of needing to re-tailor the transferred knowledge, both CAT and TOT teams
adapted the Scrum practice to fit their software development environments. This practice was
that in daily meetings developers should provide answer to three daily questions (i.e., “What
did you do yesterday?”, “What will you do today?”, and “What impediments are in your
way?”). Both teams performed the three questions uncomfortably at first and also felt
incompatible with their team cultures. Hence, they decided to apply the first two questions
sometimes but only the last question for every daily meeting. This is because on the prior
software projects, the developers usually reported their work progress at the scheduled time
and spoke of any problems, as they occurred. This existing routine was somehow fossilized
into their work behaviors. In this situation, if they could not overcome this fossilized practice,
the first two questions were unlikely to be routinized into their standard practices. However,
they recognized that the last question was crucial for early visibility to tackle risks and
problems. Hence, this knowledge was more likely to be integrated and gradually become
their standard practices.

In case of requiring more knowledge to transfer, although work could proceed in
priority order, there was a conflict between business value criteria and technical criteria in
requirement prioritization. In dealing with this matter, they sought to set ground rules for
score rating and used CPM (Critical Path Method) together. As observed, the CAT team had
less experience in using it; so that, such knowledge was required. On the other hand, the TOT
team may have been used PERT (Program Evaluation and Review Technique).

In case of requiring more time until achieving work satisfaction, especially the CAT
team felt that they spent much time on backlogs. The developer pointed out “Our weak skills
in the work breakdown structure slowed us down.” Owing to the beginning of their agile-
oriented journey, this led to more non-task effort on each sprint. This effort can be minimized
when they gain more experience on these practices. Otherwise, it might cause a problem if
this feeling was not reduced. Another situation was pertinent to sprint retrospective meetings.
Only the CAT team performed the meetings. However, the team was just beginning their
journey in gaining a deeper understanding of the software process and taking ownership of
the software process. This knowledge required time to ramp up the effective use of
transferred knowledge. Albeit this knowledge is very useful, it is not easy. It is likely to be
discarded in the future if they encounter too many difficulties to use it. During, both teams
requested the authors’ support or suggestions to solve their problems some times.

In case of satisfaction with the outcomes, the recipients especially in the CAT team
were satisfied with sprint review meetings. The product owner in CAT pointed out “It’s like
we commit to work together… take responsibility for failure together.” The team said “It’s
like we reiterate requirements together again and again, to check on whether we are going in
the same direction.” This supports that better software quality was gained as direct results of
software development; whilst cultivating teamwork was gained as indirect results. Another

198

situation was pertinent to the overall satisfaction and usability of the framework. The
recipients perceived the framework as useful and easy to deal with their existing problems
and increase team performance and productivity. When the transferred knowledge was
satisfied, they considered to integrate it into their existing practices. The transfer process was
recognized to flow through the Integration stage.

On the case study side transferring knowledge within teams: Transfer activities of
the Ramp-up stage can be executed through sprint executions and sprint reviews. In order to
accomplish tasks as committed, the use of the transferred knowledge is likely to occur during
sprint executions. As observed, at the first use of the transferred knowledge, a developer in
the TOT team who had been transferred the programming techniques requested lots of
decision support from the source to solve any occurring problem. Owing to no experience
with this knowledge before, the developer took more time to use the transferred knowledge
properly. However, the volume of support was decreased when getting deeper understandings
of the transferred knowledge through gaining practical experience. Moreover, the developer
encountered many difficulties during the use of the transferred knowledge. Even though the
developer was allowed to phone the source for any support at any time, the source might have
not supported or helped to solve the problem immediately every time due to his multi-
projects. Typically, when the problems cannot be resolved within a reasonable time,
recipient’s motivation to use the transferred knowledge may easily decline. This supports that
ineffective communication channels and a lack of source’s monitoring significantly lead to
transfer ineffectiveness or unfortunately the transfer process discarded. To reduce
unsatisfactory results, the source should have regularly supported and monitored the
recipient’s use of the transferred knowledge. As daily meetings are the place to monitor work
progress and tackle problems; all requirements, problems, antecedents, and related plans
should have been maintained, reviewed and adjusted.

In sprint review meetings which are places for demonstrating the team’s
accomplishment during sprint executions, the use of the transferred knowledge can be
audited. The software products and knowledge transfer outcomes (i.e., work performance in
terms of efficiency and effectiveness as well as work satisfaction in terms of perceived
usefulness and perceived ease of use) can also be verified and validated against the sprint
backlog. In case of team members unsatisfied with the outcomes, the transfer process may be
either continued at the Ramp-up stage or reverted back to the earlier stages (i.e.,
Implementation and Initiation stages). For instance, developers in the CAT team
misunderstood user requirements and in turn delivered the wrong work. In this case, the
transfer process needed to be reverted back to the Implementation stage. The project owner as
the source had to re-transfer the required knowledge and ensure the developers’
understandings by informal oral questions and answers. As observed, if the rejected work
could be fixed within approximately 15 minutes, both the Implementation and Ramp-up
stages of the transfer process were re-circled during sprint review meetings. Otherwise, the
rejected work and the Implementation and Ramp-up stages of the transfer process need to be
re-executed in the next iteration. In case of team members satisfied with the outcomes, the
transfer activities of the Ramp-up stage will stop. The transfer process then flows through the
Integration stage. The transfer activities of the Integration stage may be discussed in either
sprint review meetings or sprint retrospective meetings and executed in the next iterations. In
this study, these activities are discussed in sprint retrospective meetings.

199

7.3.2.4 Integration

On the author side transferring knowledge to the teams: the first activity of this
stage should begin with the consideration to integrate the transferred knowledge into the
existing practices. As observed, there was no the satisfied, transferred knowledge that could
not be integrated into both teams’ existing practices. In other words, the knowledge was not
contrary to their organizational standards and policies. After the first iteration, both teams
found the transferred knowledge could be integrated into their existing practices. Since they
were just beginning their journey in agile-oriented software development, they needed time to
continuously learn, adapt, and use the transferred knowledge in next iterations until
assimilating the transferred knowledge into their knowledge packages and completing their
case projects. From the second iteration onwards, on-site observations were used to monitor,
audit, and support the use of the transferred knowledge when needed. Interviews and
questionnaires were also used at the end of the case projects to measure whether the learning
was really taken place and whether the transferred knowledge was likely to be sustained in
their further software projects.

Considering the outcomes in terms of work performance and work satisfaction at the
end of the cases, based on the questionnaire findings, the average scores of (1) the increased
work productivity, (2) the increased work effectiveness, (3) the increase work performance,
and (4) the improved quality of software process and product, rated by the CAT team were
4.33, 4.67, 4.67, and 4.33 out of 5 points. In the TOT team, the average rated scores of those
variables were 4, 5, 5, and 5 out of 5 points, respectively. Work satisfaction in terms of
perceived usefulness and perceived ease of use was perceived in both teams. The interview
findings reveal that both CAT and TOT teams were strongly satisfied with their work and the
software process maintenance framework. Based on the questionnaire findings, the mean
values of perceived usefulness and perceived ease of use rated by the CAT team were 4.33
and 4.2 out of 5 points; whilst those rated by the TOT team were 4.43 and 4.2 out of 5 points,
respectively. As observed, management in both teams sustained the transferred knowledge by
defining some of the transferred knowledge (e.g., software processes in the areas of sprint
planning, sprint executions, and sprint reviews) as their standard practices and provided
environments to support its use. This strategy somewhat forced their team members to
regularly use that knowledge.

Based on these findings, we consider that our defined problems in the part of an
efficient and effective software process were solved and the transfer process was recognized
as successful. Owing to time limitations of this study, we could not continuously monitor and
audit the use of the transferred knowledge in both teams after the case projects’ completion.
Nevertheless, we hope to follow up their software practices in the future.

On the case study side transferring knowledge within teams: Sprint retrospective
meetings are places for lessons learned. Hence, they are good place to discuss and get
feedback on integration of the transferred knowledge and existing practices and its use. When
integration solutions exist, using and sustaining the transferred knowledge can then be
continued in next iterations. However, if the transferred knowledge cannot be integrated into
their exiting practices, the transferred knowledge is more likely to be abandoned. As
observed, there were no noticeable situations being able to be indicated that the transferred
knowledge needs to be discarded or reverted back into the earlier stages of the transfer
process.

During the Integration stage, it is important to ensure that the recipient can use the
transferred knowledge without any the source’s support, take any remedial action to better the

200

understandings of that knowledge, and assimilate that knowledge into his/her knowledge
packages. Thus, three main activities in this stage are sustaining, monitoring, and auditing the
use of that knowledge. For sustaining, as aforementioned, management in both teams defined
some of the transferred knowledge as their standard practices and provided environments to
support its use. For monitoring, the sources in both teams allowed the recipients to make a
mistake and correct it by themselves. However, when the recipients encountered a tough
problem, the source helped solving that problem with the recipients. For auditing, the use of
the transferred knowledge was mostly audited at sprint review meetings through oral
questions and answers that served as a quality check on whether the learning had taken place.
The feedback from both sides of the source and the recipient was shared. The feedback may
have been logged in lessons learned documents or impediment backlogs, and then used to
plan remedial activities for further and better use. Once the transferred knowledge is
routinized effectively, the transfer process can be recognized as successful.

Based on the descriptions above, there were many difficulties leading to knowledge
transfer ineffectiveness, backward stages, and unfortunately knowledge transfer abandonment
in the two case studies. Providing a clearer view, Table 7-13 summarizes the difficulties that
were observed in the two case studies and should be taken into account for future practice. In
this table, “C” represents “CAT” and “T” represents “TOT”. For instance, the “T” falling into
the “Implementation” and the “Lack of commitment in terms of time” means that we found a
lack of commitment in terms of time at the Implementation stage of the transfer process in the
TOT team. Hence, TOT should pay more attention to this difficulty for future practice.

Table 7-13. The difficulties of knowledge transfer found in two case studies

Context

Stage

Difficulty

In
iti

at
io

n

Im
pl

em
en

ta
tio

n

R
am

p-
up

In
te

gr
at

io
n

Source Insufficient support from the source T T
Recipient Lack of motivation C

Lack of absorptive capacity C, T C, T C, T
Knowledge Knowledge not perceived as easy to use or access T T C, T
Relational Lack of commitment in terms of time T T T
Situational Lack of intensive communication or inappropriate

communication channels
 T T T

Strong embeddedness of the old routine C, T
Incompatibility between the transferred knowledge and
existing old routines

 T

Owing to time limitations of this study, we could not carry out an empirical case study
to test the knowledge transfer framework in real-life software project. However, the
demonstration above shows that the framework has a high degree of compatibility with
Scrum-oriented software development. In the future, we hope to empirically evaluate and
improve the framework in the Thai telecommunications industry in order to raise more
confidence on its usability and practicality.

201

7.4 Summary

Only a software development approach may not guarantee that a software project will
get a smooth landing. This is because success in software project requires efficient and
effective processes of software development and knowledge transfer, stakeholders’ expertise
and experience, and the ability to transfer, acquire, and apply knowledge to solve any
development problems. This emphasizes that the presence of sufficient knowledge on teams
is crucial, depending upon the uniqueness of the required outcomes. Even though many
approaches to knowledge transfer in software development have been proposed, how to
achieve software process and product quality enhancement through knowledge transfer still
remains a challenge. To overcome this challenge, this study was carried out in three steps.
First, 27 highly visible knowledge transfer studies which explain all or part of a knowledge
transfer process have been reviewed. Most reviewed studies place an emphasis on
investigating influential antecedents that affect knowledge transfer effectiveness, software
quality, and software productivity. Some explore knowledge transfer mechanisms that
facilitate the flow of common knowledge to address unstructured situations, investigate
knowledge transfer barriers, or affect performance improvement in software projects.
Nonetheless, how to drive knowledge transfer into action is scarce. The findings also reveal
that knowledge transfer in software development can be viewed as a communication process
between the source and the recipient engaged in teams through communication channels for
their learning and applying knowledge.

Drawing on a connectionistic perspective and communication-based knowledge
transfer research, this study is based on Szulanski’s model. In this model, a transfer process
flows through four distinct stages: Initiation commencing with all events leading to the
decision to transfer, Implementation commencing with the decision to transfer, Ramp-up
commencing when the recipient starts using the transferred knowledge, and Integration
commencing after the recipient achieves satisfactory outcomes. The findings reveal that the
transfer process should consist of six components: problems, antecedents, knowledge,
mechanisms, knowledge application, and outcomes. In each stage of the transfer process, a
set of these components interact with others as multi-directional and play an important role
depending upon the stage’s functionality.

Based on the significance of the findings, the second step was to develop a knowledge
transfer framework. The framework represents a clearer understanding of knowledge transfer
primarily involved in transferring knowledge into action which could serve as guidance for
planning knowledge transfer activities. In the framework, the comprehensive descriptions of
the six components have been presented. Under each component, a list of activities has been
designed. Under each activity, a list of key questions that should be considered has also been
suggested. Owing to relationships between knowledge transfer components and stages, an
activity flow has been illustrated under each stage.

Starting with the Initiation stage, it is triggered by all events leading to the decision to
transfer knowledge. A transfer begins when the required knowledge meets a need. The
discovery of the need leads to the search for valuable knowledge, which in turn triggers to
seek potential solutions. However, there are antecedents that make difficulties to initiate this
stage (e.g., difficulties of knowledge contents). Hence, antecedents must be assessed in order
to reduce failure chances. From this view, there are eight activities that are involved in this
stage and pertinent to the components of problems, antecedents, knowledge, and
mechanisms. An activity flow of this stage begins with defining goals and objectives,
identifying and prioritizing problems, defining knowledge, classifying knowledge, assessing

202

knowledge, locating knowledge, assessing antecedents, and developing a plan. Once the
potential solution planning is done, the actual activities can then be executed directly through
the Implementation stage.

The Implementation stage begins with the decision to transfer the knowledge. When it
takes place, the plan should be followed. Moreover, resources flow between the source and
the recipient. Hence, antecedents supporting communications between them should be
established (e.g. establishing several communication channels, strong commitment, and
reward systems). During this stage, the required knowledge is often tailored to suit the
expected needs and to pre-empt problems experienced in the past. However, the transfer
process may be abandoned or re-initiated if the knowledge is deemed unsuitable. From this
view, there are eight activities that are involved in this stage and pertinent to the components
of antecedents, knowledge, and mechanisms. An activity flow of this stage begins with
developing supportive antecedents, tailoring knowledge, managing antecedents, and
managing the plan. If the knowledge is not perceived as suitable, this stage then continues
with assessing knowledge and antecedents as well as reviewing problems and the plan.

The Ramp-up starts when the recipient starts using the transferred knowledge. The
recipient typically uses the knowledge ineffectively at first, but gradually identifies and
rectifies unexpected problems until being able to achieve satisfactory outcomes. During the
use, the recipient may request additional support from the source in solving problems.
However, the recipient may abandon or re-initiate the transfer process if there are too many
difficulties to use it. Thus, impeding antecedents must be removed. From this view, there are
12 activities that are involved in this stage and pertinent to the components of problems,
antecedents, mechanisms, knowledge application, and outcomes. An activity flow of this
stage begins with making use of the knowledge, focusing on the problems, monitoring and
supporting the use of the knowledge, and maintaining antecedents and the plan. After the use
of the knowledge with more experience, this stage then continues with auditing the use of the
knowledge, reviewing the problems, and assessing the outcomes. If the outcomes are not
satisfied, this stage continues with improving the outcomes, assessing antecedents, and
reviewing the plan. Once satisfactory outcomes are achieved, the transfer process then flows
through the Integration stage.

The Integration stage begins after the recipient gained desired outcomes with the
transferred knowledge. Knowledge application and its integration with existing practices
gradually become routinized into standard practices. At this stage, the Integration activities
are carried out to ensure that the recipient can use the transferred knowledge without any
support from the source and can take any remedial action to improve the understanding of the
transferred knowledge and integrate it into his/her practices. Moreover, this stage primarily
looks at the efforts required to minimize problems and deal with challenges to the
routinization of the transferred knowledge. When the knowledge transferred presents too
many difficulties, it is unlikely to become part of routines and therefore sustained in a
practice. Hence, antecedents must be reviewed and managed. From this view, there are nine
activities that are involved in this stage and pertinent to the components of problems,
antecedents, knowledge, mechanisms, and knowledge application. An activity flow of this
stage begins with integrating knowledge; sustaining, monitoring, supporting and auditing the
use of the knowledge; assessing and maintaining antecedents; as well as reviewing the
problems and the plan. Once the recipient can integrate the transferred knowledge into his/her
knowledge packages and use it without any support, the transfer process is then recognized as
successful.

203

It is also important to demonstrate how to apply the framework in real-life software
projects, which was the third step. Owing to time limitations of this study, we have to use the
findings of our case studies in Chapter 5 for demonstrations. The demonstration shows that
most of the transfer processes were recognized as successful as the participants were satisfied
with the transferred knowledge (i.e., the software process maintenance framework),
integrated it into their existing practices, and sustained it in their teams. However, they
required time to apply the transferred knowledge effectively. However, there were some
transfer processes recognized as ineffective due to insufficient support from the source, a lack
of motivation, a lack of absorptive capacity, knowledge perceived difficult, a lack of
commitment in terms of time, a lack of intensive communications, and strong embeddedness
of their existing practices. Some were recognized as failure due to incapability between the
transferred knowledge and their organizational practice and no readiness to apply the
transferred knowledge. Therefore, the participants should pay more attention to these
difficulties for improving their knowledge transfer on further software projects. The
demonstration also shows the great compatibility between the framework and Scrum-oriented
software development. In the future, we hope to further improve our knowledge transfer
framework by carrying out empirical case studies in the Thai telecommunications industry
which is the first focus of this study. Since the framework provides a general conceptual lens
of knowledge transfer in software development; in case positive results are gained, empirical
case studies with an improvement of the framework may be performed in other industries.
This is in order to increase the generalizability of the framework.

204

205

Chapter 8

The Framework for Transferring Software Project
Management Approaches into the Thai
Telecommunications Industry

This chapter proposes a framework for transferring software project management
approaches into the Thai telecommunications industry which itself consists of two
components: the developed software process maintenance framework presented in Chapter 4
and the developed knowledge transfer framework presented in Chapter 7. The framework
aims at contributing to the improvement of software development performance by providing
a comprehensive set of project management, software development, and knowledge transfer
processes. Giving a better understanding, this chapter then demonstrates the application of the
framework, based on the findings of case studies in Chapter 5.

8.1 Introduction

The development of a software project requires efficient and effective software
development processes (hereafter referred to as “software processes”), stakeholders’ expertise
and experience, knowledge transfer activities, and the ability to transfer, acquire, and apply
knowledge to solve problems occurring during software development [29]. These elements
significantly lead to quality of software development and software products. Achieving this
quality, a framework for transferring software project management approaches into the Thai
telecommunications industry is required, which aims at contributing to the improvement of
software development performance. This leads to the following research question.

RQ8-1: How should a framework for transferring software project management
approaches into the Thai telecommunications industry be constructed?

In the framework, there are two components which are frameworks themselves: the
developed software process maintenance framework presented in Chapter 4 and the
developed knowledge transfer framework presented in Chapter 7. First, the proposed
software process maintenance framework in this context means a framework for software
process development and improvement. It aims at providing the “what” to improve with a
software process assessment mechanism and the “how” to implement with and a
comprehensive set of project management and software development processes. The
framework consists of two components which are a Software Development Maturity (SDM)
model and an integrated PMBOK-Scrum model. This study intends to minimize changes of
the software processes which software development teams (hereafter referred to as “teams”)
are already familiar with. Therefore, the SDM model has been constructed to provide what
software processes need immediate and sustainable improvement, based on Capability
Maturity Model Integration (CMMI) and Critical Success Factors (CSFs) approaches. The
integrated PMBOK-Scrum model has been constructed to provide how to implement

206

software processes, based on Project Management Body of Knowledge (PMBOK) and Scrum
approaches.

Second, the proposed knowledge transfer framework aims at providing guidance for
planning knowledge transfer activities. The framework describes six components and four
stages of knowledge transfer. The six components consist of problems, antecedents,
knowledge, mechanisms, knowledge application, and outcomes. “Problems” lead to
knowledge transfer and in turn help teams to define what “Knowledge” is required and what
“Mechanisms” fit their software development contexts. “Antecedents” in this study mean
determining factors of the ease or difficulty of knowledge transfer. Weak antecedents lead to
new problems, whilst supportive antecedents enable satisfactory outcomes. In addition,
designing and selecting “Mechanisms” depends upon required knowledge and software
development environments. Suitable mechanisms lead to transfer effectiveness; otherwise,
unexpected problems may occur and expected outcomes are unlikely to be achieved. In
addition, “Knowledge Application” can bring about knowledge retention and may lead to a
new consideration of the underlying problem or the identification of new problems. When
satisfactory “Outcomes” are achieved, sustaining knowledge use is more likely to take place.
This shows that these components are connected with others through a multi-directional set
of interactions and occur at the same or different times and more than once. Based on
Szulanski’s model, the knowledge transfer process flows through four distinct stages starting
with Initiation beginning with all events leading to the decision to transfer, Implementation
beginning with the decision to transfer, Ramp-up beginning when the recipient starts using
the transferred knowledge, and Integration beginning after the recipient achieves satisfactory
results. Owing to the relationships between knowledge transfer components and stages, a list
of activities has been designed under each component. A list of key questions that should be
considered has been suggested under each activity. A flow of relevant activities has also been
illustrated under each stage. Moreover, guidance on how to apply the software process
maintenance framework and the knowledge transfer framework together in real-life software
projects is also important. This leads to the following research question.

RQ8-2: How can the developed framework for transferring software project
management approaches into the Thai telecommunications industry be performed?

In consequence of time limitations of this study, we could not carry out empirical case
studies in the Thai telecommunications industry. However, we use our prior case studies in
two Thai telecommunications companies (i.e., CAT Telecom Public Company Limited and
TOT Public Company Limited) (presented in Chapter 5) as a base for a demonstration. This
chapter is organized as follows. The following section presents the developed framework for
transferring software project management approaches into the Thai telecommunications
industry. This is then followed by the descriptions of the application of the framework.

207

8.2 The Framework for Transferring Software Project
Management Approaches into the Thai Telecommunications
Industry

Quality software processes and products require an efficient and effective software
process and a knowledge transfer process. Thus, a framework for transferring software
project management approaches into the Thai telecommunications industry can be depicted in
Figure 8-1.

A Framework for Transferring Software
Project Management Approaches into

the Thai Telecommunications Industry

Delivers

A Software Process Maintenance Framework

Software
Development

Guides

Software
Products

A Software
Development

Maturity Model

An Integrated
PMBOK-Scrum

Model

CSFs

Guides

The obtained
maturity level

Weak software
processes that need

to be improved

Used by

Implemented software
processes (optional cycle)

A Knowledge Transfer Framework

Knowledge
Transfer

Problems

Knowledge

Mechanisms

Antecedents

Knowledge
Application

Outcomes

Guides to plan knowledge
transfer activities

Figure 8-1. The proposed framework for transferring software project management
approaches into the telecommunications industry

Answering the RQ8-1 “How should a framework for transferring software project
management approaches into the Thai telecommunications industry be constructed?”, we

208

connect together a software process maintenance framework presented in Chapter 4 and a
knowledge transfer framework presented in Chapter 7 into an umbrella framework. The
software process maintenance framework advocates software process improvement though
the SDM model and providing a comprehensive set of project management and software
development processes through the integrated PMBOK-Scrum model; while the knowledge
transfer framework provides guidance for planning knowledge transfer activities and
transferring knowledge in action. To apply the two frameworks together, there are four main
steps which are outlined as follows.

Step 1: Assessing the existing software process. Starting with the software process
maintenance framework, practitioners can first evaluate their existing software processes
using the SDM model. The obtained results can then be used for setting software project’s
goals and objectives and planning for improving the software processes and products.

Step 2: Planning a software process and a knowledge transfer process. In this step,
the integrated PMBOK-Scrum model and the knowledge transfer framework can be used
together to create a software project plan by defining a necessary set of project management,
software development, and knowledge transfer processes. As software development in this
study is executed in the Scrum way, this step is divided into two sub-steps: (i) Scrum
planning meetings and (ii) sprint planning meetings.

Step 3: Executing the plan. In this step, the software project plan is executed,
inspected, and adjusted through iterations until the completion of the software project, using
the integrated PMBOK-Scrum model and the knowledge transfer framework as guidance.
This step is divided into two sub-steps: (i) Scrum executions consisting of daily meetings and
executions and (ii) sprint review and sprint retrospective meetings.

Step 4: Evaluating the implemented software process and closing the software
project. It is the final step that is reached when the final software product is rendered ready
for release and distribution. In this step, many project closure activities may be executed, e.g.,
ensuring the work of the software project being acknowledged, obtaining user acceptance,
conducting post-project review, recording impacts of tailoring to any software processes,
documenting lessons learned for use on further software projects, and closing out
procurements [38]. It is an optional cycle that the implemented software processes may be
again evaluated through the SDM model in order to compare the overall performance
between before- and after- software development.

For a better understanding, the next section demonstrates the application of the
framework for transferring software project management approaches into the Thai
telecommunications industry (hereafter referred to as “the umbrella framework”).

209

8.3 Application of the Framework for Transferring Software
Project Management Approaches into the Thai
Telecommunications Industry

Owing to time limitations of this study, we could not evaluate the usability and
practicality of the umbrella framework in real-life practice. Answering the RQ8-2 “How can
the developed framework for transferring software project management approaches into the
Thai telecommunications industry be performed?”, our prior case studies in two Thai
telecommunications companies (i.e., CAT Telecom Public Company Limited (CAT) and
TOT Public Company Limited (TOT)) (presented in Chapter 5) are used to demonstrate the
application of the umbrella framework. The data collection was carried out through on-site
observations, individual interviews, and questionnaires during November 2010 - February
2011 (see Section 5.2 in Chapter 5 for more details).

Based on the findings in accordance with the application of the software process
maintenance framework presented in Chapter 5 and the application of the knowledge transfer
framework presented in Chapter 7, the application of the umbrella framework can be
described in the following four steps.

Step 1: Assessing the existing software process (as illustrated in the blue area in
Figure 8-2) describes the maturity of the software processes implemented in the CAT and
TOT teams and the software processes required immediate improvement.

Step 2: Planning a software process and a knowledge transfer process (as illustrated
in the light green area in Figure 8-2) describes how practitioners set up and planned a
software project under two sub-steps: Scrum Planning Meetings and Sprint Planning
Meetings.

Step 3: Executing the plan (as illustrated in the yellow area in Figure 8-2) describes
how practitioners managed and developed the software project as well as validated and
verified the software products under two sub- steps: Sprint Executions and Sprint Review and
Retrospective Meetings.

Step 4: Evaluating the implemented software process and closing the software project
(as illustrated in the red lines in Figure 8-2) is the final step that is reached when the final
software product is made ready for delivery. Project closure activities (e.g., obtaining user
acceptance, completing project records, and documenting issues and lessons learned) are
performed. In order to compare and record the overall performance of software development,
the implemented software processes through the SDM model may be evaluated again.

Figure 8-2 illustrates a four-step flow of our umbrella framework.

210

A Software Process Maintenance Framework

Guides

Software
Products

The Software
Development

Maturity Model

The Integrated
PMBOK-Scrum

Model

CSFs

Guides

The obtained maturity level

Weak software processes
that need to be improved

Used by

Step 4: Evaluating the Implemented Software Processes (Optional)
and Closing the Software Project

A Knowledge Transfer Framework

Knowledge
Transfer

Problems

Knowledge

Mechanisms

Antecedents

Knowledge
Application

Outcomes

Guides to plan
knowledge transfer

activities

Step 1: Assessing the Existing
Software Process

Step 2: Planning a Software
Process and a Knowledge

Transfer Process

Delivers

3.1: Sprint Executions

3.2: Sprint Review &
Retrospective Meetings

2.1: Scrum Planning Meetings
2.2 Sprint Planning Meetings

Step 3: Executing the Plan

Figure 8-2. A four-step flow of the framework for transferring software project management
approaches into the telecommunications industry (Scrum’s source: [102])

Step 1: Assessing the Existing Software Process

Team members carried out together an assessment of their existing software process
before developing software, using the SDM model. At the threshold of 7 for an assessment
calculation as guided by Motorola [215], the assessment results reveal that the CAT team
stood at the maturity level 2-“Managed” of the SDM model. This is because only one factor
“Team Size” belonging to the maturity level 3-“Defined” was not fully implemented and the
factor belonging to the maturity level 4-“Optimizing” was not focused at all. On the other
hand, the TOT team stood at the maturity level 1-“Initial” of the SDM model. At the case
study time, TOT usually used an outsourcing method for their existing software projects.
Hence they decided to start from scratch for the case project. Based on the assessment results,
the CAT team had to sustain strong CSFs and improve software practices corresponding to
the CSFs “Team Size” and “Reviews”; while the TOT team had to improve all CSFs.

211

Step 2: Planning a Software Process and a Knowledge Transfer Process

Step 2: Planning a software process and a knowledge transfer process describes how
practitioners set up and planned a software project into two sub-steps which are Step2.1:
Scrum Planning meetings and Step 2.2: Sprint Planning Meetings.

Step 2.1: Scrum Planning Meetings

After assessment, the teams set up and planned the software projects. The case project
in CAT developed additional Web-based functionalities bundled into their ongoing software
project, while the case project in TOT developed a small decision support application. Both
software projects were non-life critical. As CAT used PMBOK for their existing software
projects, all related project documents (e.g., project charter, program roadmap, project
management plans, and software design) were thus used in the case project. On the other
hand, TOT usually used an outsourcing method for their existing software projects and the
case project was a new project, all documents required by the case project thus needed to be
created. Consequently, the TOT team began the case project with developing a project
charter. The project charter includes, e.g., project goals, objectives, characteristics, and
stakeholders. Apart from business aspects, the assessment results can be used to define
technical goals and objectives with respect to software process improvement and knowledge
transfer in software development. Project types and characteristics needed to be assessed in
order to understand its criticality and the degree of required project management, as
suggested by the SDM model. A stakeholder analysis was also performed. Supporting
knowledge transfer, teams should have additionally analyzed what skills, experience, and
knowledge each stakeholder had; the degree to which each stakeholder had that knowledge;
and each stakeholder’s characteristics in terms of motivation, credibility, capability,
absorptive capacity, relationships amongst team members, and commitment. These
characteristics can be used as knowledge transfer antecedents. Antecedents in this context
mean determining factors of the ease of difficulty of knowledge transfer. Once the project
charters were approved, the case projects were then formally authorized.

Step 2.2: Sprint Planning Meetings

The Initiation stage of a knowledge transfer process is triggered by all events leading
to the decision to transfer, e.g., the search for problems, necessary knowledge, and potential
solutions. Hence, knowledge transfer activities of the Initiation stage can be performed at
sprint planning meeting parts I and II.

A. Sprint Planning Meeting Part I

Albeit the CAT team had been developing an ongoing software project for almost two
years, a project roadmap was not enlightened to the team. At the beginning of both cases, the
product owners explained the project roadmap in order to draw the team a big picture. It was
recognized as an important practice that can drive the team into the right direction. When
observed and asked what project management aspects were considered, the TOT team
followed PMBOK guidance by planning integration and configuration management in a
simple way; while the CAT team used their existing integration management plan.

212

The CAT team was not concerned about whether the scope would become broader
since they had continued enhancing the application’s functionality. However, in order to
prevent any risk from enlarging the project’s scope, the CAT team considered the capacity of
network and application architecture. On the other hand, the TOT team developed a simple
scope management plan to prevent scope creep, used together with product backlogs. During
gathering user and technical requirements, both teams may have used those requirements, the
obtained assessment results, and the defined goals and objectives to identify potential
problems (as knowledge transfer requirements) for software process and product
improvement. Typically, business, organizational, and technological knowledge is transferred
during this step. All requirements were then logged into a product backlog with estimated
effort in terms of time, and prioritized using a relative weighting approach.

After the verification of the scope, the identified requirements were then scheduled
into iterations. Time was also not a major constraint in both teams. Rather than attempt to
build the entire application from ground zero or through long-term iterations, both teams used
small iterations lengthening between 1-4 weeks. The CAT team initially started using 2-week
iterations due to time given for learning agile during the development, but later preferred one-
week iterations to deliver features. The main reason was to keep work motivation. On the
other hand, the TOT team initially used 2-week iterations. However, it was not enough to
produce a meaningful functionality due to two main reasons as claimed by the Scrum master.
First, they did not well assess the appropriate techniques and tools before using them, nor did
they analyze the data quality from the source systems before development. Second, the
Scrum master needed to transfer programming techniques to the developer in the team.
Hence, they needed more time to create meaningful and valid features. As knowledge
training and coaching requires time, adequate independence from the software development
tasks needed to be provided to team members involved in the knowledge transfer. This shows
that the amount of user and technical requirements needed to be implemented in each
iteration was sometimes reduced.

Owing to internal development, both teams did not emphasize cost management. To
guarantee software quality, the CAT team followed the Scrum validation and verification
ways; whilst the TOT team used a simple PMBOK quality management plan and managed
through sprint reviews. Concerning human resource aspects, the CAT team was formed with
the same team responsible for the existing ongoing software project, composing of a product
owner, a Scrum master (also acted as a developer), a developer and a tester. This helped to
reduce time to learn business logic, programming languages, and development tools. On the
other hand, the TOT team was formed with only two members, i.e., a Scrum master who had
multi-projects and multi-roles (i.e., product owner, developer, and tester) and a developer,
due to the small size of the software project and their available resources at that time. To
accelerate software development, the product owner in CAT had full authority to make
decisions but not in TOT. Team members in TOT had much experience in
telecommunications but not software development; whilst team members in CAT had 7-15
years of experience in software development. This supports that the degree of transfer of
software development knowledge required for the TOT team was higher than that required
for the CAT team.

Both teams followed the Scrum communication mechanism through sprint planning
meetings, daily meetings, and sprint review meetings; except through sprint retrospective
meetings only in the CAT team. Considering development environments, the CAT team
worked approximately 60% in co-location and approximately 40% in distributed sites; while
the CAT team worked fully in co-location. Both teams cultivate informal communication for

213

collaborating on work and transferring knowledge. Creating more chances of communication,
the CAT team established several communication channels, e.g., mobiles, phones, face-to-
face communications, emails, instant messaging, and e-conferencing. Since management in
TOT had a heavy workload due to multi-projects, the team was not fully approachable.
Dealing with this situation, they used approximately 70% for mobiles and only 30% for face-
to-face communications. Both teams used non face-to-face media for necessary explanation
and feedback when the product owners were remote and for technical knowledge exchange
when team members worked in different sites. This enabled them to obtain quick feedback.

Moreover, the CAT team planned risk management with short-term and long-term
solutions using risk and impediment backlogs; whilst the TOT team created a simple
PMBOK risk management plan for the overall project and used risk and impediment
backlogs for iterations. The main reason for this, as observed in the TOT team, was that they
preferred to get familiar with PMBOK risk management for further complex software
projects. Those plans were continuously reviewed and adjusted during the case projects.
Concerning procurement management, it was not performed in both case projects; however,
both teams were planning to acquire outsourcing teams for future software projects.

Once all related project management plans were finished and the first set of
prioritized requirements was obtained to be implemented, the software development flowed
into part II of the sprint planning session.

B. Sprint Planning Meeting Part II

Iteration’s goals and objectives were described to team members. All requirements
were then considered. For user and technical requirements, they were broken down into tasks
and logged into a sprint backlog with estimated task efforts and assigned responsible persons.
As observed, this practice seemed to provide smaller and manageable tasks to the teams. For
each knowledge transfer requirement, the teams should have defined and classified what
knowledge and what type of the knowledge was needed for transfer. In this case, a
knowledge transfer requirement may be either a user requirement or a technical requirement.
According to eTOM business process areas, software applications developed in both CAT
and TOT teams can be classified into the Strategy, Infrastructure & Product (SIP) process
area. It means that five knowledge types (i.e., human, organizational, relational, project
management and technological knowledge) may have all been required for transfer. The
teams should have assessed the required knowledge by considering its values, complexity,
and accessibility and then selected the most suitable knowledge. For instance, the CAT team
intended to apply a standard software process improvement method (e.g., Capability Maturity
Model-CMM, Capability Maturity Model Integration-CMMI, Software Process Improvement
and Capability Determination-SPICE, and Six Sigma). Owing to high suitability for their
business purposes and having its knowledge source in their team, the CAT team planned to
be certified in CMMI.

After getting suitable knowledge, teams should have found a credible source having
such knowledge and located it in teams. Knowledge sources can be both inside and outside
team members (e.g., developers and consultants) and non-human (e.g., project documents,
organizational policies, and information systems). For instance, the Scrum master in CAT
having CMMI knowledge may have been assigned to be a knowledge source. However, the
knowledge transfer requirement being considered may be discarded or re-assessed if such
knowledge cannot be located. It may not be plausible to teach everybody for every task.

214

Therefore, target recipients need to be defined. Suitable communication channels or
Information and Communication Technologies (ICTs) for transfer should have also been
planned. This may have been based on the communication management plan. The details of
the source, the recipients, their roles and responsibilities, the knowledge areas, and the ICTs
should have been logged into sprint backlogs and clearly clarified to all related team
members. After breaking down all requirements into tasks and scheduling them, a sprint
Burndown chart was developed.

Both teams identified and prioritized risks and impediments, and then logged them
into backlogs with short-term and long-term solutions. Apart from software development
aspects, management should have been assessed influential antecedents to understand what
facilitated and hindered a knowledge transfer process. They may have used the results of the
stakeholder analysis together with the current observation results for measuring influential
antecedents in the source (i.e., motivation, capability, and credibility), recipient (i.e.,
motivation and absorptive capacity), and relational (i.e., commitment and relationship
between the source and the recipient) contexts. Hindering antecedents may be logged into an
impediment backlog with strategic solutions. As observed, management (especially in the
TOT team) as a main source having multi-roles and multi-projects led to inadequate
communications with the recipient and a lack of commitment in terms of time. Moreover, a
developer in the TOT team as a recipient lacked absorptive capacity due to less prior
software-development-related knowledge, while developers in the CAT team as recipients
somewhat lacked motivation or interest in project management knowledge that could in turn
led to a lack of absorptive capacity to learn and use that knowledge. This shows that teams
had to build up the extent of communication, commitment, absorptive capacity, and
motivation.

It is essential to prepare materials for software development and knowledge transfer.
For knowledge transfer, the source may have (1) put together a package for their areas of
expertise into forms of, e.g., documentation and presentation slides, and (2) prepared transfer
environments, e.g., programming environment in the TOT case project. Once the planning
and resources were done, the actual software development and knowledge transfer was
directly executed in the sprint execution. For the knowledge transfer process, it flows from
the Initiation stage through the Implementation stage. It is important to note that some of
actual knowledge transfer activities may be performed during the sprint planning without
actual planning, e.g., on-the-fly transfers of how to break down the work into tasks.

Step 3: Executing the Plan

Step 3: Executing the plan describes how practitioners managed and developed the
software project as well as validated and verified software products. The descriptions are
divided into two sub-steps which are Step 3.1: Sprint Executions consisting of Daily
Meetings and Executions and Step 3.2: Sprint Review and Retrospective Meetings.

Step 3.1: Sprint Executions

For the knowledge transfer process, resources flow between the source and the
recipients during the Implementation stage. Once the recipients start using the transferred
knowledge, the transfer process then flows through the Ramp-up stage. Hence, transfer

215

activities of the Implementation and Ramp-up stages can be executed through sprint
executions.

A. Daily Meetings

Daily meetings are places to coordinate work, synchronize efforts, and tackle
anticipated problems. The meetings took place around 5-15 minutes with non-fixed place and
time in both teams. When asked how to perform the three Scrum daily-meeting questions, the
daily-meeting questions of “What did you do yesterday?” and “What will you do today?”
were not asked every day. One issue we found is that the Scrum master in CAT felt “Asking
these two questions every day seems like micromanaging or not having confidence in the
team.” Hence, he asked these two questions approximately few times a week. This implies
that management did not perform strong micromanagement in their existing software
projects. In contrast, a developer in CAT said “It’s a normal thing to do.” However, both
CAT and TOT teams emphasized on the occurring impediments, which are related to the
third daily-meeting question of “What impediments are in your way?”. In the view of product
owners, these questions’ discussion was recognized as important. Noticeably, the product
owner in CAT encouraged and facilitated support to the team to perform it. During the
meetings, management should have also observe hindering antecedents (e.g., personal
problems, conflicts within teams, inability to learn and apply the transferred knowledge) in
order to minimize chances of knowledge transfer failure. After discussing on the three
questions and observing the current situation in the teams, all related plans (e.g., project
management plans, sprint backlogs, risk backlogs, impediment backlogs, and Burndown
charts) were adjusted.

B. Executions

Management in both teams managed each iteration based on their management plans.
For knowledge transfer aspects, impediment backlogs and related management plans (e.g.,
human resource and risk management plans) may have been used to develop supportive
antecedents. For instance, communication, absorptive capacity, motivation, and commitment
needs enhancement. Both teams realized that only face-to-face conversations could not be
held for all software processes. They thus increased the volume of communications by using
other media, e.g., phones and instant messaging. Absorptive ability may have been enhanced
by allowing them to learn by doing and making a mistake. Learning by doing can strengthen
the understanding of tasks through gaining accumulative practical experience. The source
who feels threatened to lose his/her importance or authority is likely to demonstrate non-
cooperative behavior with the recipient. A clear vision of his/her future may be
communicated early for motivation. Nevertheless, sources in both teams as observed were
greatly willing to transfer their knowledge to their team members. To increase motivation,
management in CAT motivated team members through conversations and intended to
establish a reward system on future software projects; whilst management in TOT considered
the case project results as one of key performance indicators for the annual staff performance
appraisal. In addition, it is important to make awareness and get commitment for knowledge
transfer from all key stakeholders and team members. Management in both teams should
have secured both key stakeholders’ and team members’ commitment especially through the
Implementation and Ramp-up stages of the transfer process.

216

For a given user and technical requirement, during the coding stage, the CAT team
followed their coding standard for having easily maintainable and expandable code, pursued
simple design, and used code refactoring to allow for improving existing code to support new
functionalities of the software application, as suggested by the SDM model. These practices
were not only used for this case study, but also implemented into their existing software
projects. They employed a configuration management system for controlling individual
check-in, check-out, and continuous integration of their source code and applications. It was
also used for supporting quality assurance. Their development environment closely mirrors
the production environment to guarantee quality and minimize unexpected risks.
Additionally, unit and integration tests were performed against test cases to ensure work
completeness.

For a given knowledge transfer requirement, the required knowledge is transferred to
the recipients and tailored until suitable for the current software development context. During
transferring, the source should assess whether an amount of the required knowledge is
sufficient for accomplishing the focused requirement. However, if the knowledge being
transferred is neither suitable nor effectively tailored, the transfer process is likely discarded
or re-initiated. As observed, the CAT team largely exchanged technological knowledge and
discussed on how to adapt it for improving their development techniques and software
maintainability. During conducting project documents, organizational knowledge (e.g.,
organizational templates, standards, and policies) was engaged. Most of those documents
were informal and less detailed. This implies that most transferred knowledge was more
likely to become human knowledge residing in individual team members. On the other hand,
the source in the TOT team used on-the-job training to transfer programming techniques to
the recipient. Since the recipient had no experience with the programming language, more
time and effort for sharing and learning that knowledge was highly required.

Once the recipients start using the knowledge, the transfer process then flows from the
Implementation stage through the Ramp-up stage. During this Ramp-up stage, the recipients
gradually ramps up to work performance and satisfaction by using the transferred knowledge
to accomplish the requirement. Typically, recipients use the transferred knowledge
ineffectively at first. This situation was noticeable in the TOT team. The developer who was
received the programming techniques at first use had requested support from the source and
taken time to use that knowledge and solve any occurring problems. However, the volume of
support is typically decreased when the recipient receives deeper understandings of the
transferred knowledge through gaining practical experience. During the recipient’s use of the
transferred knowledge, the source should also monitor and then audit in order to ensure that
the recipient can use it appropriately and effectively. If there are any occurring problems or it
is unlikely to accomplish the focused requirement, the transfer may be either discarded or
reverted back to the earlier stages (i.e., the Implementation or Initiation stages). In case of
reverting back to the Implementation stage, the source should re-tailor the required
knowledge to fit into the current software development situations and make use the
transferred knowledge again. In case of reverting back to the Initiation stage, the source
should re-assess the required knowledge. Once getting the most suitable one, the actual
knowledge transfer with the revised related plans is executed again. Nevertheless, some of
those problems may be considered as new knowledge transfer requirements. Solutions for
those problems may be discussed either through daily meetings or once those problems occur.

217

Step 3.2: Sprint Review and Retrospective Meetings

In sprint review meetings which are places for showing the team’s accomplishment
during sprint executions, both teams held approximately 30-90 minutes. The software
products and the knowledge transfer outcomes (i.e., work performance in terms of efficiency
and effectiveness as well as work satisfaction in terms of perceived usefulness and perceived
ease of use) were verified and validated against the sprint backlog.

The product owners then determined which requirements have been completed
against acceptance criteria, clarified the team the reasons for work acceptance and rejection,
and discussed until all team members accepted with the results and/or solutions for product
modification.

In case of team members unsatisfied with the results, the transfer process may be
either continued at the Ramp-up stage or reverted back to the earlier stages (i.e.,
Implementation and Initiation stages). For instance, developers in the CAT team
misunderstood user requirements and in turn delivered the wrong work. In this case, the
transfer process needed to be reverted back to the Implementation stage. The project owner as
the source had to re-transfer the knowledge and ensure developers’ understandings by
informal oral questions and answers. As observed, if the rejected work could be fixed within
approximately 15 minutes, both the Implementation and Ramp-up stages of the transfer
process were re-circled during the sprint review meetings. Otherwise, the rejected work and
the Implementation and Ramp-up stages of the transfer process needed to be re-executed in
the next iterations.

In case of team members satisfied with the results, the transfer activities of the Ramp-
up stage will cease and the transfer process then flows from the Ramp-up stage through the
Integration stage. The transfer activities of the Integration stage may be discussed in either
sprint review meetings or sprint retrospective meetings, and executed in the next iterations. In
this study, those activities are discussed in sprint retrospective meetings.

Sprint retrospective meetings are places for lessons learned by discussing on what
went well, what did not, what could be improved in the next iterations. The TOT team did not
yet concentrate on this kind of meetings due to no sufficient time of the Scrum master. Only
the CAT team performed these meetings holding approximately 20-30 minutes.

In case things went well, they should discuss how to integrate the transferred
knowledge or what went well into their standard practices, based on the compatibility with,
e.g., their organizational standards, regulations, and cultures. That knowledge (or what went
well) is then executed in the next iterations. However, if incompatibility is found, that
knowledge may be discarded. During the Integration stage, the transferred knowledge is
gradually routinized. Hence, it is important to ensure that the recipients can use that
knowledge effectively without any the source’s support, take any remedial action to better
understandings of that knowledge for improving their work performance and products, and
assimilate that knowledge into their knowledge packages. Three main activities that the
source needs to plan and perform in the next iterations are sustaining, monitoring, and
auditing the use of that knowledge. For instance, management in CAT and TOT facilitated
supportive environments and defined some of the transferred knowledge as their standard
practices to sustain the use of the transferred knowledge. For monitoring, the sources in both
teams allowed the recipients to make a mistake and correct it by themselves. However, when
the recipients encountered tough problems, the source helped solving that problem with the
recipients. For auditing, the use of the transferred knowledge was mostly audited at sprint

218

reviews and retrospectives through oral questions and answers. This served as a quality check
on whether the learning had indeed been taken place. Feedback on these activities should be
used to plan remedial activities for further and better use of the transferred knowledge.

In case things did not go well, the related transferred knowledge can be recognized as
a failure. In case improvement is needed, the related transferred knowledge is reverted back
to earlier stages of the transfer process, depending on the team’s purposes and encountered
problems. For instance, if that knowledge requires an additional amount to be transferred, that
knowledge should be reverted back to the Initiation stage. If that knowledge requires re-
tailoring to fit into the current software development circumstances, that knowledge should
be reverted back to the Implementation stage. If that knowledge requires continuous use until
the recipients achieving satisfactory results, that knowledge should be reverted back to the
Ramp-up stage. If that knowledge has already been integrated into their standard practices but
still requires continuous use until the recipients can use it effectively, that knowledge can be
recognized as being at the Integration stage. However, once the transferred knowledge is
routinized effectively, the transfer process can be recognized as successful.

During these two kinds of meetings, all related plans (e.g., project management plans,
sprint backlogs, risk backlogs, impediment backlogs, lessons learned, and Burndown charts)
were reviewed and adjusted. This iteration was then formally closed and the software
development flows into the next iterations.

Step 4: Evaluating the Implemented Software Processes and Closing the
Software Project

Before releasing the final products, the teams performed various types of software
testing (e.g., integration, system, and user acceptance tests) against test cases and acceptance
criteria to ensure software product quality. Many closure project activities (e.g., completing
all required deliverables, getting final acceptance of the project results, and documenting
project performance, issues, and lessons learned) were also executed. Concerning project
performance in both aspects of software development and knowledge transfer, work
performance in terms of efficiency and effectiveness as well as work satisfaction in terms of
perceived usefulness and perceived ease of use was evaluated as follows.

Efficiency can be measured by software quality. Two key variables used to represent
work efficiency in this study are team productivity [233, 234] and achieved doneness.
Productivity can be considered by using velocity metrics. Velocity is the amount of
requirements (or backlog items) successfully delivered in an iteration. Achieved doneness is a
ratio of the amount of the tasks that the product owner accepts over the amount of the tasks
that the team said was done at the sprint review. Effectiveness is often associated with doing
the right things; therefore, two key variables used to represent software development
effectiveness in this study are defect reduction and customer/team satisfaction [233, 234].

In the CAT team, the velocity was increased from 14 in the first iteration to 30 in the
last iteration. The achieved doneness increased from 64.29% in the first iteration to 100% in
the last iteration. Defects were reduced from 5 in the first iteration to zero in the last iteration.
Based on the questionnaire findings, the average rated scores of (1) the increased work
productivity, (2) the increased work effectiveness, (3) the increase work performance, and (4)
the improved quality of software process and product were 4.33, 4.67, 4.67, and 4.33 out of 5
points. In the TOT team, we used only the questionnaire findings to analyze their work

219

performance using the same set of variables tested in the CAT team. Their rated scores were
4, 5, 5, and 5 out of 5 points, respectively.

Perceived usefulness refers to the degree to which users/team members believe that
using the knowledge and the software products/services would enhance their performance.
Perceived ease of use refers to the degree to which users/team members believe that using the
knowledge and the software products/services would be free of effort. Based on the interview
findings, both CAT and TOT teams were strongly satisfied with their work and the proposed
software process maintenance framework; whilst the questionnaire findings reveal that the
mean value of perceived usefulness and perceived ease of use rated by both teams were
4.357and 4.2 out of 5 points, respectively.

Concerning project issues and lessons learned, the above results show that better work
performance and work satisfaction was gained as direct results; whereas cultivating
teamwork as observed was also gained as indirect results of software development. However,
both teams were required building up management and team commitment, collaboration,
intensive communications, and knowledge sharing environments. Moreover, the findings
reveal that some of Scrum’s weaknesses can be overcome to some extent in the following
knowledge areas: (1) integration management (i.e., providing configuration management and
details of many types of testing), scope management (i.e., a clearer sense of product’s
direction), time management (i.e., improving the predictability of time estimate for the whole
project according to the scope management plan), and technical aspects (e.g., data quality
techniques, simple design, and code standard as suggested by the SDM model). Owing to
small software projects of our case studies, this limits our ability to argue whether or not
some Scrum’s weaknesses (i.e., limited support for high quality assurance, large teams,
outsourcing, and accurate cost estimate for the whole project) can effectively be overcome by
the software process maintenance framework. Besides, the software processes implemented
in both teams indicate that the software process maintenance framework partially conforms to
approaches offering similar features (e.g., project management and software development
processes, continuous software process improvement, coding standards, simple design,
refactoring, and continuous integration), e.g., CMMI and eXtreme Programming (XP);
whereas the knowledge transfer framework is greatly compatible with scrum-oriented
software development. At this stage, the umbrella framework partly promises an
improvement of software development performance, as a result of the software process
maintenance framework. In other words, we cannot yet give assurances about the knowledge
transfer framework component due to time limitations of this study for evaluating the
knowledge transfer framework in real-life practice.

Furthermore, practitioners may evaluate the implemented software processes through
the SDM model in order to compare the overall performance between before- and after-
software development. However, software process improvement is a long-team approach,
similarly to CMMI. It requires approximately 4.5-24 months for moving from one maturity
level to an higher one [227]. Owing to the short project duration of software development in
both teams, they decided not to perform an assessment of their implemented software
processes after software development.

220

8.4 Summary

Quality software development requires an efficient and effective software process and
a knowledge transfer process. Albeit agile software development methods offering effective
software development processes are available, they provide limited project management
processes (e.g., procurement management and high software quality assurance). To enable
agile software development processes to be more efficient, an adequate set of project
management processes is thus required. Moreover, software development is a knowledge-
intensive activity and its project consists of people with varying backgrounds and knowledge.
Hence, guidance on getting knowledge transfer into actions in software development is also
necessary. Since many problems pertinent to software development, project management, and
knowledge transfer (e.g., ill-defined requirements, a lack of project management competence,
a lack of teamwork, and a lack of provision and support of training to teams) have been found
in the Thai telecommunications industry which is the first focus of this study and available
solutions dealing with these problems are still required, this chapter has therefore proposed a
framework for transferring software project management approaches into the Thai
telecommunications industry to fulfill this gap.

The framework aims at contributing to the improvement of software development
performance in terms of efficiency and effectiveness. The framework consists of two
components which are frameworks themselves: the software process maintenance framework
presented in Chapter 4 and the knowledge transfer framework presented in Chapter 7. First,
the software process maintenance framework aims at providing the “what” to improve
through the SDM model and the “how” to implement integrated project management and
software development processes through the integrated PMBOK-Scrum model. Second, the
knowledge transfer framework aims at providing guidance for planning knowledge transfer
activities. It has been developed, based on Szulanski’s model. In this study, knowledge
transfer can be defined as a dyadic process between the source and the recipient engaged in
teams through communication channels for their learning and applying software-
development-related knowledge. In the framework, a knowledge transfer process consists of
six components (i.e., problems, antecedents, knowledge, mechanisms, knowledge application,
and outcomes) and flows through four distinct stages (i.e., Initiation, Implementation, Ramp-
up, and Integration). In the transfer process, the six components are connected with each
other through a multi-directional set of interactions and play an important role in different
stages. To provide guidance on planning the transfer process into action, a set of activities
under each component are guided as an activity flow in each stage.

This chapter has then described how to apply the frameworks through four main steps.
The first step starts with the software process maintenance framework. Practitioners can first
assess their existing software processes, using the SDM model. The obtained assessment
results can be used for setting technical goals and objectives and planning for improving
quality software processes and products. Second, the integrated PMBOK-Scrum model and
the knowledge transfer framework can then be used together to create a software project plan
by defining a necessary set of project management, software development, and knowledge
transfer processes. Third, the software project plan can be then executed, inspected, and
adjusted through iterations until the completion of the software project, using the integrated
PMBOK-Scrum model and the knowledge transfer framework as guidance. Fourth, it is the
final step reached when the final software product is rendered ready for release and
distribution. The software project is then closed with many project closure activities, e.g.,
obtaining user acceptance, conducting post-project review, and closing out procurement.

221

Besides, it is optional that the implemented software processes can be evaluated again
through the SDM model after the software development. This is in order to compare the
overall performance of before- and after- software development.

Giving a better understanding, this chapter has demonstrated the application of the
frameworks in real-life software projects, based on the findings of case studies in Chapter 5.
The overall results reveal that work performance in terms of efficiency and effectiveness was
increased. Work satisfaction in terms of perceived usefulness and perceived ease of use was
perceived. Not only was the increased work performance and work satisfaction gained as a
direct result, but also cultivating collaborative teamwork, informal frequent communications,
and knowledge sharing culture were also gained as in directed results. However, both teams
were required building up management and team commitment, collaboration, intensive
communications, and knowledge sharing environments. Moreover, the findings reveal that
some of Scrum’s weaknesses can be overcome to some extent in the following knowledge
areas: (1) integration management (i.e., providing configuration management and details of
many types of testing), scope management (i.e., a clearer sense of product’s direction), time
management (i.e., improving the predictability of time estimate for the whole project
according to the scope management plan), and technical aspects (e.g., data quality techniques,
simple design, and code standard as suggested by the SDM model). Owing to small software
projects of the case studies, this limits our ability to argue whether or not some Scrum’s
weaknesses (i.e., limited support for high quality assurance, large teams, outsourcing, and
accurate cost estimate for the whole project) can efficiently and effectively be overcome by
the software process maintenance framework. Based on these findings, we conclude that the
problems in the industry as identified in Chapter 2 were to some extent solved successfully;
whilst the process transferring new knowledge (i.e., the software process maintenance
framework) to the case study teams was perceived as successful.

Because of time limitations of this study, the umbrella framework has not yet been
fully evaluated in real-life software projects. Based on only the full evaluation results of the
software process maintenance framework, we cannot yet give assurances about the
knowledge transfer framework component. However, the software process maintenance
framework promises an improvement of software development performance in terms of
efficiency and effectiveness; whilst the knowledge transfer framework was designed and
constructed based on the positive evaluation results of the first framework. Therefore, there is
a great likelihood that the usability and practicality of the knowledge transfer framework can
be perceived. In the future, we hope to carry out additional practical tests of the frameworks
before finally handing them over to industry partners. Since the frameworks provide a general
conceptual lens of software development and knowledge transfer; in case positive results are
gained, case studies with an improvement of the frameworks may be performed in other
industries. This should help increase the generalizability of the results of this study.

222

223

Chapter 9

Conclusions

9.1 Summary of Findings
Chapter 2: In this study, we first investigated software development situation in the

Thai telecommunications industry, which is the main focus of this study. We used interviews
with two in-house and outsourcing software development teams (hereafter refer to as
“teams”) working in two of the largest Internet services companies in Thailand. The findings
reveal that typical problems (e.g., a lack of project management competence, a lack of
management commitment, a lack of training support, and a lack of knowledge transfer) still
exist. These problems can be classified into two categories that are software development
processes (hereafter refer to as “software processes”) and knowledge transfer processes.
Dealing with these problems, we have proposed a framework for transferring software project
management into the Thai telecommunications industry. It consists of two components which
are frameworks themselves: a software process maintenance framework and a knowledge
transfer framework. Based on the findings, we have identified two sets of Critical Success
Factors (CSFs) as requirements for the sound development of the frameworks. The first set
consists of 12 CSFs for the software process maintenance framework, aiming at improving
software development performance in terms of efficiency and effectiveness. They are agile
software development process, appropriate methods, techniques, and tools, data quality,
management commitment, organizational environment, project management process, project
type, team capability, team environment, team size, training support, and user involvement.
The second set consists of 11 CSFs for the knowledge transfer framework, assisting in
organizing knowledge transfer during software development. They are a source’s motivation,
a source’s capability, a source’s credibility, a recipient’s motivation, a recipient’s absorptive
capacity, usefulness of knowledge and its ease of use, good relationship, commitment,
extensive communication, and organizational culture.

Chapter 3: For improving software development performance in terms of efficiency
and effectiveness, we have delved into the prior literature that forms the foundation of the
proposed software process maintenance framework. This performed through a systematic
literature review. As the framework in this study means a framework for continuous Software
Process Improvement (SPI) and development, the systematic literature review thus focused
on two parts: agile software development integration with SPI and with traditional project
management.

In the first part of agile software development integration with SPI, there are many
well-known SPI methods, e.g., Capability Maturity Model Integration (CMMI), Six Sigma,
and Control Objectives for Information and Related Technology (COBIT). CMMI is the most
suitable for this study. This is because CMMI aims to optimize the development activity in
every stage for improving software process and product quality. Looking into what existing
research results we can build on, the findings show that most of the reviewed papers propose
SPI mechanisms by mapping CMMI key processes with agile practices, especially Scrum.
According to the CMMI and Scrum, the findings show the positive theoretical and empirical
results of blending CMMI levels 2, 3, and 5 to Scrum practices. We also found that there is

224

only one CSF “reviews” that is vital to achieving CMMI level 5. This helps us to design the
SDM model, emphasizing on these four maturity levels. Second, some researchers suggest
that an agile method should be adopted as prerequisite to CMM/CMMI. As the first step to
move towards SPI is software process assessment, this leads us to conduct an assessment
approach to guide practitioners to improve their agile software process and prepare for
achieving CMMI-based process improvements in future. From this point of view, there were
two interesting aspects that those research results do not cover yet. First, there is no study
emphasizes on dealing with CSFs in order to get agile software processes continuously
improved and become more mature. Second, there is no study provides guidance to cope with
Scrum weaknesses in both managerial and technical aspects. Bridging these gaps, a search for
agile practices to fulfill Scrum’s managerial and technical weaknesses is required. Those
agile practices need to be mapped with the related CSFs in order to guide practitioners on
how to implement the CSFs though agile practices. These results were used to design and
develop Software Development Maturity (SDM) model.

In the part of agile software development integration with traditional project
management, the findings reveal that integration of agile and traditional processes can
overcome agile shortcomings and achieve software development efficiency and effectiveness.
With agile, Scrum is the most widely used. With tradition project management, Project
Management Body of Knowledge (PMBOK) is recognized for being used more than Projects
in Controlled Environments (PRINCE2). As this study aims at minimizing changes that
teams are already familiar with, Scrum and PMBOK are thus considered for this study.
Although the findings reveal that there is a great possibility to apply PMBOK in agile
software development (i.e., Scrum software development in particular), all of the reviewed
papers neither specifically offer a theoretical integrated PMBOK-Scrum model nor apply it in
real-life software projects. Bridging this gap, a theoretical integrated PMBOK-Scrum model
was required. Two proposed models were used to construct the software process maintenance
framework as two core components.

Chapter 4: To bridge the gaps identified in Chapter 3, the software process
maintenance framework was constructed to assist in providing the “what” to improve through
an SDM model and the “how” to implement software processes through an integrated
PMBOK-Scrum model. The SDM model was created with a threefold objective: to appraise
an organization’s current software process through the identified CSFs, to get the current
maturity level rating from the model, and to identify which software processes demand
immediate and sustainable improvement. The SDM model consists of three dimensions:
maturity stage, CSFs, and assessment. First, the maturity stage dimension contains four
CMMI-based maturity levels: “Level 1-Initial”, “Level 2-Managed”, “Level 3-Defined”, and
“Level 4-Optimizing”. Second, the CSF dimension contains 13 CSFs affecting the successful
agile software development (i.e., 12 CSFs identified in Chapter 4 and the additional CSF of
“reviews” identified in Chapter 3). Based on the perception of CMMI process area division
amongst different CMMI maturity levels; the identified CSFs were categorized into three
categories: foundation, standardization, and support. The foundation category contains the
CFSs that support to establish project management processes, necessary process discipline,
and commitments amongst key stakeholders. It can be linked to the maturity level-2
“Managed”. The standardization category containing the CSFs that support the design of
systematic structures can be linked to the maturity level-3 “Defined”. The support category
containing CSFs to support continuous SPI activities can be linked to the maturity level-4
“Optimizing”. As a guide on how to implement the CSFs, a list of agile practices has been
designed under each CSF. These agile practices consist of 67 agile practices in total. They
were derived from the findings of a literature survey on worldwide agile software projects

225

and a questionnaire-style information collection on local agile software projects in three Thai
companies. Third, in the assessment dimension, an assessment instrument successfully
developed and tested at Motorola has been adapted to assess agile practices. This instrument
can be applied at many levels, e.g., organization, department, and project levels. The results
of the SDM model can be used to guide practitioners on their current software development
maturity and weak practices that demand immediate and sustainable improvement.

The integrated PMBOK-Scrum model aims to assist in establishing, designing, and
planning a comprehensive set of project management and software development processes. It
was developed by merging the core entities of the PMBOK meta-model with the core entities
of the Scrum meta-model. To support practitioners who are responsible for planning a
software project with a comprehensive set of project management and software development
processes and to ensure the consistency of the integrated PMBOK-Scrum model, a set of
eight constraints is provided.

 In order to support the application of the framework, a prototype tool has been
created as a Web-based application, using the Java language and a MySQL database. It helps
an end user (e.g., a project manager and a team leader) to get insight into the organization’s
current maturity by assessing the identified CSFs through the list of practices required by the
SDM model. Weak practices as a part of assessment results will be used to plan the project
together with the defined information (e.g., project, phase, and activity) required by the
integrated PMBOK-Scrum model. At this stage, the prototype tool provides limited support,
i.e., developing plans, assigning resources to tasks, and analyzing workloads. After planning,
the defined process is then validated and prepared in an eXtensible Markup Language (XML)
file format for export to the organization’s project planning tools.

Chapter 5: It is important to perform a reality check on whether the software process
maintenance framework is applicable in real-life software projects. The evaluation of the
framework was performed through two case studies in the Thai telecommunications industry
from November 2010 to February 2011. The evaluation was split into two phases: the first
phase performed at CAT Telecom Public Company Limited (CAT) and the second phase
performed at Public Company Limited (TOT). The main goal of the first phase is to provide
an analysis of the application of the framework and the participants’ knowledge transfer
mechanism; whilst the second phase involves collecting only interesting data which offers
our double check on certain factors and issues in the case studies. The data collection of both
phases was carried out through on-site observations, individual interviews, and
questionnaires. The findings reveal that the framework is perceived as acceptable in terms of
usefulness and ease of use. It promises to provide the improvement of software development
performance in terms of efficiency and effectiveness. However, the significant degree of
improvement depends up the maturity of software development.

Based on the findings, we identified certain software practices under five CSFs that
were efficiently and effectively implemented in both cases (i.e., project management process;
user involvement; appropriate methods, techniques, and tools; team capability; and team
environment) and four additional CSFs that were efficiently and effectively implemented in
the CAT team (i.e., management commitment, agile software engineering process,
organizational environment, and reviews). The better the CSFs are well implemented, the
better the increased software development performance can be gained.

Furthermore, we identified eight certain challenges that need to be addressed for
further improvement. These include a lack of consistent self-discipline on backlog
administration, a lack of appropriate workload allocation and awareness of their roles and

226

responsibilities, a lack of team self-management, the need of team leaders who can make a
decision and guide teams in the right direction, a lack of balanced agile and disciplined
environments, a lack of intensive face-to-face communications, less-detailed documentation,
and a lack of sufficient knowledge transfer.

Besides, we found six certain practices that both cases needed to make changes for
adapting the framework. There were clearly explaining project goals, objectives, and
roadmaps to all team members; using both iterative and ongoing project management plans
throughout the software projects; working together between users and team members from
iterative planning to closure through continuous communications; freezing requirements
during iterations; testing, reviewing work, and collecting lessons learned in short-time
iterations; and cultivating shared-value environments through sufficient knowledge transfer.

Knowledge transfer is crucial to success in software development. During transferring
new knowledge (e.g., the framework and software-development-related knowledge) from the
authors to the teams or amongst team members, the participants considered four factors (i.e.,
the knowledge’s usefulness and ease of use, suitability with the organizational or team
cultures, and compatibility with the existing software processes) to decide whether or not to
use new knowledge. Once all of these factors were satisfied by all team members, the
transferred knowledge was used. Otherwise, the transferred knowledge was more likely to be
rejected. Some transferred knowledge was directly used; whilst some was tailored to fit into
their software development environments. Once the expected outcomes (e.g., work
performance and work satisfaction) from using the transferred knowledge were satisfied, the
transferred knowledge was integrated into their standard practices. Otherwise, it was either
re-tailored until being to solve their occurring problems or meeting their objectives, or
continuously used until achieving the expected outcomes. During the transfer process, the
findings reveal that team members’ motivation, absorptive capacity, credibility, capability or
the knowledge source’s reservoir of knowledge, communication frequency, good
relationships between team members, and key stakeholder commitment significantly affects
the knowledge transfer success. The more the quality of these factors exists in the teams; it is
more likely to gain knowledge transfer effectiveness. This suggests that the participants
should continuously assess, implement, and improve these factors in order to achieve
successful knowledge transfer.

Based on these findings, we identified requirements for successful adaptation of the
framework. In the organization context, the framework requires management to motivate
changes, support hybrid agile and disciplined environments, and cultivate collaborative self-
management. In the software process context, teams must iteratively inspect and adapt the
integrated project management and software development processes to fit into any
circumstances. To do so, it is important to have adaptive people who understand both
traditional and agile software development approaches on teams. In the knowledge transfer
context, the following factors are required to be existed in teams. Those factors includes
knowledge’s source motivation, capability and credibility; knowledge recipient’s motivation
and absorptive capacity; knowledge usefulness and ease of use; good relationships between
team members, commitment; frequent communications; and (supportive) organization
culture. Practitioners should continuously assess and improve these factors for successful
knowledge transfer. As how to successfully organize transfer knowledge still remains a
challenge for the organizations. The findings regarding the participants’ knowledge transfer
mechanism and the identified knowledge transfer factors were used to design and develop a
knowledge transfer framework.

227

Chapter 6: For organizing knowledge transfer during software development, we have
delved into the prior literature that forms the foundation of the proposed knowledge transfer
framework. The literature review has been presented in three sections. The first section
examined what are the differences in how knowledge transfer is defined in the literature and
what we can learn from those differences. The findings reveal that the connectionistic
epistemology which refers to knowledge residing in human connections is in this study
considered the most suitable for software development. Based on the connectionistic
perspective, knowledge transfer should be viewed as a communication process between the
source and the recipient engaged in teams through communication channels for their learning
and applying knowledge. Based on communication-based models, we have considered
Szulanski’s model. Typically, knowledge transfer has its components. The second section
thus scrutinized its common components and how individual components interact amongst
them. The findings reveal that knowledge transfer consists of six common components:
problems, antecedents, knowledge, mechanisms, knowledge application, and outcomes.
These components are connected with others through a multi-directional set of interactions.
They can occur at the same or different times and more than once. The third section had
highlighted what are differences in the 27-highly-visible literature in knowledge transfer in
software development. The findings reveal that all of these studies neither put an emphasis on
all of the six components nor do they clearly offer comprehensive descriptions and
relationships between those components. The ones providing guidance on how to put
knowledge transfer into action are scarce. Consequently, a knowledge transfer framework has
been proposed, aiming at covering the six components, providing guidance for planning
knowledge transfer activities, and contributing to an effective knowledge transfer amongst
software development team members.

Chapter 7: In the knowledge transfer framework, we have elaborated the six
components. “Problems” lead to knowledge transfer and in turn help teams define what
“Knowledge” is required and what “Mechanisms” fit their software development contexts.
“Antecedents” in this study mean determining factors of the ease or difficulty of knowledge
transfer. Weak antecedents lead to new problems, whilst supportive antecedents affect
transferability, the ability to use the knowledge, and satisfactory outcomes. Besides,
designing and selecting “Mechanisms” depends upon required knowledge and software
development environments. Suitable mechanisms lead to transfer effectiveness. Otherwise,
unexpected problems may occur and expected outcomes are unlikely to be achieved. In
addition, “Knowledge Application” can bring about knowledge retention. It may lead to a
new consideration of the underlying problem or the identification of new problems. When
satisfactory “Outcomes” are achieved, sustaining knowledge application is more likely to
occur. This shows that these components are connected with others through a multi-
directional set of interactions.

Based on Szulanski’s model, a knowledge transfer flows through four distinct stages
(i.e., Initiation, Implementation, Ramp-up, and Integration). Owing to relationships between
knowledge transfer components and stages, a list of activities has been designed under each
component. A list of key questions that should be considered has been suggested under each
activity. A flow of relevant activities has also been illustrated under each stage.

Starting with the Initiation stage, it is triggered by all events leading to the decision to
transfer knowledge. A transfer begins when the required knowledge meets a need. The
discovery of the need leads to the search for valuable knowledge, which in turn triggers to
seek potential solutions. However, there are antecedents that make difficulties to initiate this
stage (e.g., difficulties of knowledge contents). Hence, antecedents must be assessed in order

228

to reduce failure chances. From this view, activities pertinent to the components of problems,
antecedents, knowledge, and mechanisms are involved in this stage. Once the potential
solution planning is done, the actual activities can then be executed directly through the
Implementation stage.

The Implementation stage begins with the decision to transfer the knowledge. When it
takes place, the plan should be followed. Moreover, resources flow between the source and
the recipient. Hence, antecedents supporting communications between them should be
established (e.g. establishing several communication channels, strong commitment, and
reward systems). During this stage, the required knowledge is often tailored to suit the
expected needs and to pre-empt problems experienced in the past. However, the transfer
process may be abandoned or re-initiated if the knowledge is deemed unsuitable. From this
view, activities pertinent to the components of antecedents, knowledge, and mechanisms are
involved in this stage.

The Ramp-up starts when the recipient starts using the transferred knowledge. The
recipient typically uses the knowledge ineffectively at first, but gradually identifies and
rectifies unexpected problems until being able to achieve satisfactory outcomes. During the
use, the recipient may request additional support from the source in solving problems.
However, the recipient may abandon or re-initiate the transfer process if there are too many
difficulties to use it. Thus, impeding antecedents must be removed. From this view, activities
pertinent to the components of problems, antecedents, mechanisms, knowledge application,
and outcomes are involved in this stage. Once satisfactory outcomes are achieved, the
transfer process then flows through the Integration stage.

The Integration stage begins after the recipient gained desired outcomes with the
transferred knowledge. Knowledge application and its integration with existing practices
gradually become routinized into standard practices. At this stage, the Integration activities
are carried out to ensure that the recipient can use the transferred knowledge without any
support from the source and can take any remedial action to improve the understanding of the
transferred knowledge and integrate it into his/her practices. Moreover, this stage primarily
looks at the efforts required to minimize problems and deal with challenges to the
routinization of the transferred knowledge. When the knowledge transferred presents too
many difficulties, it is unlikely to become part of routines and therefore sustained in a
practice. Hence, antecedents must be reviewed and managed. From this view, activities
pertinent to the components of problems, antecedents, knowledge, mechanisms, and
knowledge application are involved in this stage. Once the recipient can integrate the
transferred knowledge into his/her knowledge packages and use it without any support, the
transfer process is then recognized as successful.

For a better understanding, the knowledge transfer framework has been demonstrated,
based on the findings of the case studies in Chapter 5. The demonstration shows that most of
the transfer processes were recognized as successful as the participants were satisfied with
the transferred knowledge (i.e., the software process maintenance framework), integrated it
into their existing practices, and sustained it in their teams. However, they required time to
apply the transferred knowledge effectively. However, there were some transfer processes
recognized as ineffective due to insufficient support from the source, a lack of motivation, a
lack of absorptive capacity, knowledge perceived difficult, a lack of commitment in terms of
time, a lack of intensive communications, and strong embeddedness of their existing
practices. Some were recognized as failure due to incapability between the transferred
knowledge and their organizational practice and no readiness to apply the transferred
knowledge. Therefore, the participants should pay more attention to these difficulties for

229

improving their knowledge transfer on further software projects. The demonstration also
shows that the knowledge transfer framework has a high degree of compatibility with Scrum-
oriented software development. Even though the framework has not been empirically tested
yet, it was designed and constructed based on the positive results of the case studies,
regarding transferring new knowledge (i.e., the software process maintenance framework)
into the cases. This implies that there is a great likelihood that the framework is practical in
real-life software projects.

Chapter 8: As the developed software process maintenance framework and the
developed knowledge transfer framework are required to solve the software development
problems found in the Thai telecommunications industry; both frameworks have been
integrated into an umbrella framework, called a framework for transferring software project
management approaches into the Thai telecommunications industry. There are four steps for
applying the umbrella framework. First, starting with the software process maintenance
framework, practitioners can first evaluate their existing software processes, using an SDM
model. The obtained results can be used for setting technical goals and objectives and
planning for improving quality software processes and products. Second, the integrated
PMBOK-Scrum model and the knowledge transfer framework can then be used together to
create a software project plan by defining a necessary set of project management, software
development, and knowledge transfer processes. Third, the plan is then executed, inspected,
and adjusted through iterations until the software project completion, using the integrated
PMBOK-Scrum model and the knowledge transfer framework as guidance. Last, it is
optional that the implemented software processes can be evaluated through the SDM model
after the software development. This is in order to compare the overall performance of
before- and after- software development.

For a better understanding, the umbrella framework has been demonstrated, based on
the findings of the case studies in Chapter 5. Albeit the umbrella framework has not fully
been tested in real-life practice, the findings of the evaluation of the software process
maintenance framework indicate the generation of positive effects by (1) improving software
development efficiency and effectiveness (e.g., increasing productivity, reducing rework,
enhancing customer/team satisfaction) and (ii) cultivating collaborative teamwork, informal
frequent communications, and knowledge sharing culture. Nevertheless, we hope to carry out
case studies to evaluate the usability and practicality of the umbrella framework in the future.
To guide future work directions, next sections present a summary of our theoretical
contributions, implications for future research design, implications for practice, limitations of
this study, and recommendations for future work.

9.2 Research Contributions and Implications

This section discusses theoretical contributions and potential implications that can be
classified into two categories: implications for future research design and implications for
practice.

9.2.1 Theoretical Contributions

The major theoretical contribution of this study is a framework for transferring
software project management approaches into the Thai telecommunications industry aiming
at contributing to the improvement of software development performance. As mentioned, it

230

consists of two core components. First, a software process maintenance framework assists in
measuring, planning, and improving project management and software development
processes. Second, a knowledge transfer framework offers guidance for planning knowledge
transfer activities. Giving a comparative picture, we perform two comparisons between our
theoretical contributions and the existing theoretical literature on (i) agile software
development integration with software process improvement and with traditional project
management and (ii) knowledge transfer.

The first comparison is between our software process maintenance framework and the
relevant existing theoretical literature on agile software development integration with
software process improvement and with traditional project management. As our software
process maintenance framework consists of a software development maturity model and an
integrated PMBOK-Scrum model, we therefore separate details into two domains: software
process assessment approaches and hybrid agile-disciplined approaches.

Considering software process assessment approaches, McCaffery et al. [138] propose
an assessment method providing what process areas are most applicable for firms wishing to
be automotive software suppliers, by integrating CMMI process areas, Automotive SPICE
processes, and several agile practices. Petersen and Wohlin [140] propose a lean
measurement method used to assess the performance of a software process through a set of
individual inventories (i.e., requirements, test cases, change requests, faults and failures, and
fault-slip-through) and an analysis of the situation aiming at determining the causes for high
inventory level and quality problems. In other words, this method can be used to continuously
identify wastes in software development. Traditional process maturity models (e.g., CMMI
and ISO/IEC 15504) aim to provide process repeatability and predictability; whilst an Agile
Process Maturity Model is designed to enhance agile capability (not to rate an organization’s
adoption level), to provide process visibility and adaptivity, and to offer guidance for putting
agile processes and practices into context and adopting the right strategies and techniques for
an organization [28]. McCaffery et al. [138] said that SPI provides the first step to move
towards software quality and assessments are a critical part of this process, whilst Khan et al.
[136] suggest that an agile method should be adopted as prerequisite to CMM/CMMI. Having
a different purpose, we have developed a software development maturity model guiding
practitioners on what CSFs affecting software development need implementation and
improvement through agile processes, covering both management and development
processes. The software development maturity model enhances software development
capabilities, provides where an organization is in its adoption level, and help practitioners to
prepare themselves for going for CMMI-based process improvements.

Considering hybrid agile-disciplined approaches, we consider models that aim at
enhancing project management in agile software development, not software process
improvement. Callegari and Bastos [8] propose a model for software project management
based on PMBOK and its integration with Rational Unified Process (RUP). Zaki and
Moawad [145] propose a new hybrid agile-disciplined model consisting of six phases which
are (1) Inception, to set up a project with five main activities which are start-up activities,
aspects evaluation activities, gathering requirements and building backlogs, architectural
activities, and building a prototype; (2) Planning, to set up the project boundaries; (3)
Iterative Assessment, to customize agile and traditional processes; (4) Iterative Building, to
build the product; (5) Production, to deliver the product; and (6) Closure, to close the project
when there are no longer new requirements for implementation, when the product is not
delivering the desired outcomes, or when the product is too expensive for further
development. Having a similar purpose, we have developed an integrated PMBOK-Scrum

231

model providing the “how” to implement CSFs and develop software with a comprehensive
set of project management and software development processes. The integrated PMBOK-
Scrum model starts with initiation, planning and customizing integrated software process,
executions, reviews and retrospectives, and closure. Overall, the major difference comparing
to other relevant literature is that our software process maintenance framework provides both
the “what” and the “how” to develop and improve software process and product quality.

Regarding the second comparison between our theoretical knowledge transfer
framework and the existing theoretical literature on knowledge transfer and, the existing
knowledge transfer models and frameworks can be classified into the following categories.

• Antecedent-based models; placing an emphasis on investigating influential
antecedents that enable or impede the ability to share and learn from knowledge
transfer interactions, e.g., motivation, capability, absorptive capacity, relationship
between a source and a recipient, and communication frequency [40, 73, 74, 79, 84,
86, 91, 92, 273].

• Component-based models; articulating components of knowledge transfer. For
instance, Albino et al. [280] propose a knowledge transfer framework having four
components which are actors involved in knowledge transfer, the context where
interactions take place; the knowledge content transferred between actors, and the
media by which the transfer is carried out.

• Antecedent- and component- based models; considering antecedents as one of
knowledge transfer components. For instance, Becker and Knudsen [253] argue that
knowledge transfer must include antecedents, mechanisms, and outcomes. Ward et al.
[257] propose a knowledge transfer framework consisting of problems, knowledge,
antecedents, knowledge transfer activities, and knowledge utilization, while
Martinkenaite [255] proposes an integrative framework illustrating the relationship
between antecedents and outcome of knowledge transfer.

• Process-based models; describing knowledge transfer that flows though many stages
or processes. For instance, Nevis et al. [272] propose an organizational learning
model describing three stages of a transfer process which are knowledge acquisition,
sharing, and utilization. Jackson and Klobas [310] propose a knowledge creation and
sharing process model describing six major processes: internalization, which
describes recipient’s knowledge absorption; personal knowledge creation, which can
be done through routinization or transformation; externalization, which is the
knowledge expression in a symbolic form; objectivation, which is the creation of
shared, social constructs that represents a group’s understanding; legitimation, which
is a process whereby knowledge is authorized and standardized; and reification, which
is a process in which concepts harden in the minds of group and attain an existence.

• Process- and antecedent- based models, paying attention on both descriptions on a
knowledge transfer flow and antecedents affecting knowledge transfer performance.
For instance, Szulanski [103] proposes a knowledge transfer model describing four
distinct stages of knowledge transfer: Initiation, beginning with all events leading to
the decision to transfer; Implementation, beginning with the decision to transfer;
Ramp-up, beginning when the recipient starts using the transferred knowledge; and
Integration, beginning after the recipient achieves satisfactory outcomes. This study
also describes barriers to the transfer process, e.g., unproven knowledge, causally
ambiguous and arduous relationship.

Considering more details of the above models and frameworks, albeit most of them
view knowledge transfer as a process, a small number of studies provide insight into the

232

transfer process. Moreover, only understandings of interactions between antecedents,
components, and processes of knowledge transfer may remain doubt to practitioners on how
to drive them into action. From this view; however, only few studies (e.g., Jackson and
Klobas [310] and Ward et al. [257]) provide such guidance. For a comprehensive
understanding and providing guidance on how to put knowledge transfer into action in order
to ensure the maximization of knowledge transfer performance, we consequently propose an
antecedent-, component-, and process- based framework. The framework consists of six
components which are problems, antecedents, knowledge, mechanisms, knowledge
application, and outcomes. To provide guidance, a transfer activity flow of each of four
knowledge transfer stages is provided. Within each activity, a set of questions are guided
towards action planning.

9.2.2 Implications for Future Research Design

The implications for future research design have been drawn from the practical
experiences of the authors. For each implication, the experience is described and the actions
for future researchers to improve their research design are presented.

Questionnaires: For designing an SDM model, several agile practices in real-life
software projects need to be explored for a various set of CSFs. It was inevitable to collect
data through questionnaire information collections/surveys with many questions. Although
the respondents returned their completed questionnaires as expected, some of their reaction
indicated that they struggled to complete the questionnaires. The authors often needed to put
much effort into encouraging the respondents to complete the questionnaires. Hence, future
researchers are argued to take appropriate data collection methods and designs into account in
order to maximize chances of receiving completed data with sufficient validity and reliability.

Case Studies: Case studies were expected to finish as originally planned; however,
this was achieved only in CAT. The main reason that it was not achieved in TOT as they
committed is that the case project was interrupted by key participants’ multi-projects and/or
unavailable-for-full-time participation in the case project. Owing to time limitations of the
authors to stay in Thailand, this situation has led to many anticipated problems, e.g.,
ineffective communications between the authors and the team and the limited ability to
perform on-site observations. Therefore, future researchers should secure commitment of all
participants in order to prevent anticipated problems leading to ineffective knowledge
transfer from the authors to the participants and ineffective data collections. Another related
implication is that in order to investigate the more precise potential of software methods
developed, it is important to investigate it on intermediate or mature software development
teams. Thereby, the case selection needs to address “What are the outstanding characteristics
of the case that makes it worth researching?”. Moreover, both flexible and fixed research
designs need to be performed in order to gain a deeper understanding.

Interviews: Individual interviews were expected to be carried out at the end of the
case studies and to flow naturally. These were achieved in almost all cases. The prepared
questions were sometimes answered during developing the case projects, e.g., the case study
teams’ existing software processes and their problems always encountered during software
development. However, they reaction as observed sometimes indicated that they did not feel
comfortable to openly express their opinions in public. From this experience, future
researchers should be able to notice respondents’ feelings, based on a particular culture. We
strongly suggest that researchers should clearly understand at least the culture of the country

233

that case studies are taking place. Moreover, the individual interviews provide two main
situations that need to be deemed, due to their available time and interesting issues
discovered during the interviews. First, as we experienced in CAT, future researchers should
be prepared to deviate from the prepared script in order to gain a deeper understanding of the
explanations of interesting issues being given by the respondents, albeit this may run out of
time or be unable to ask all prepared questions. Second, in case of the respondents having
very limited available time as we experienced in TOT, future researchers should be able to
recognize what the prepared questions are highly required answers and meanwhile manage
such limited time to gain a clear understanding of the explanations of interesting issues being
given by the respondents.

9.2.3 Implications for Practice

Through the application of a software process maintenance framework, the overall
empirical results reveal that practitioners were able to deal with their typical software
development problems (e.g., inability to cope with changing requirements, schedule
problems, and insufficient time to review and remove redundant codes) and in turn led to
increased software development performance. However, there was a conflict between the
obtained results of a software practice assessment that should reflect their current software
practices and the actual problems encountered during the case projects. Albeit a knowledge
transfer framework has not yet been evaluated in real-life software practice, its application
demonstration based on our two case studies reveals that the framework has potential to
improve their knowledge transfer activities, and consequently the improvement of software
development performance. Thereby, the potential implications of our findings as guidelines
for practice are highlighted as follows.

1. The better the organization can implement CSFs suggested by the SDM model,
the better the organization can achieve efficiency and effectiveness of software
development and higher maturity levels. All key stakeholders (e.g., management,
key users, and team members) should be aware of this.

2. Assessing existing software practices with the minimum bias shall provide the
most precise results. Otherwise, some important software areas that need
improvement may be overlooked.

3. Before adaptation of the software process maintenance framework, practitioners
should consider and establish strategies to deal with the certain CSFs, challenges,
necessary changes, and requirements identified in Chapter 5 in order to gain a
higher degree of successful adaptation of the framework.

4. When applying the software process maintenance framework more generally in
an organization, it is expected to generate positive effects by (i) increasing
software development performance in terms of efficiency (e.g., reducing rework
and increasing productivity) and effectiveness (e.g., reducing defects and
increasing customer/team satisfaction); and (ii) cultivating collaborative
teamwork, informal frequent communications, and knowledge sharing culture.
These effects are in turn expected to benefit the implementation of a knowledge
transfer framework by maximizing the possibility of the source and the recipient
engaged in a software project to transfer, learn, and apply knowledge to solve any
problems and accomplish work effectively.

5. Knowledge transfer shall be actively encouraged as normal practices and
recognized as an integral aspect of software development activities. This is

234

expected to build an acceptance of informal activities in the software
development team or the organization. This is one of practical ways to build up
new internal knowledge sources critical to knowledge-intensive software
development success.

6. Developing software processes to assist in the implementation of a knowledge
transfer process, e.g., review and retrospective meetings to collect lessons
learned, is expected to ensure that explicit knowledge resides within the
organization and tacit knowledge resides within team members.

9.3 Focus and Limitations of this Study
This section discusses the potential limitations that exist with this study as it was

designed and implemented.

1. As mentioned, although there are indications that some of the major findings of
this research might actually be of a more general nature and hence of a wider
applicability, we have decided to limit the analysis to the Thai telecommunication
industry for five reasons. First, the telecommunications industry was chosen as
the research domain since it is a significant and highly developed area of the Thai
economy. Moreover, implementing and deploying its elements (e.g., advanced
mobile networks) is likely to stimulate innovation in the development of the
software industry [95]. Hence, focusing on the telecommunications industry may
also benefit the software industry. Second, telecommunications is a high
competitive industry. Companies in this domain do consequently depend upon
quickly rolling out higher quality of services and products and innovation through
efficient and effective software development and knowledge transfer
mechanisms. Third, the perspectives and results of this research are presumably
easier to transfer into an already developed industry. Fourth, the setting of this
study was determined by ÖAD (the Austrian Agency for International
Cooperation in Education and Research) and the Higher Education Commission
of Thailand who support this study in the form of a scholarship. Hence, the
economically most beneficial contribution of this study is knowledge that can be
transferred into the Thai telecommunications companies. Last, as the sample of
the participating companies was limited to the Thai telecommunications industry,
it would be too risky to draw more general conclusions. This is because they
cannot be substantiated by data from our case studies. Consequently, we at this
stage limit our proposed frameworks (i.e., a software process maintenance
framework and a knowledge transfer framework) and conclusions to software
development in the Thai telecommunication industry. Nevertheless, we hope to
further investigate, modify, and test our framework in other industries in order to
proof its general applicability.

2. The current trend towards adopting agile methods in Thailand is just at the initial
stage [188, 189], as supported by only few years of agile experiences of the
majority of respondents on our questionnaire-style information collection
presented in Chapter 4. This results in the limited ability to collect and generalize
data for designing our SDM model. However, the results from our questionnaire-
style information collection on the utilization of agile practices in three
companies in Thailand are consistent with the recent empirical results from the
software industry in Thailand, presented in Chookittikul et al. [188]. In other

235

words, almost all common agile practices identified in Chookittikul et al. [188]
(i.e., refactoring, whole team, unit testing, coding standards, and small release)
were also found in our results of the questionnaire-style information collection.
This raises more confidence in our data generalization.

3. According to our case studies of a software process maintenance framework, the
participants were previously inexperienced in agile software development. Even
though the overall findings reveal that non-agile teams can gain increased
software development performance with integrated agile-disciplined processes,
this limits our assurance that the framework can indeed be used as a possible
alternative to agile teams to manage and develop software. However, as
mentioned, the current trend towards adopting agile methods in Thailand is just at
the initial stages. This implies that a majority of companies in the Thai
telecommunications industry may still currently either use traditional software
development methods or have traditional software development environments. As
the result of the continuation of using the framework on other software projects in
the participating organizations, this implies that generalizability should more or
less be increased. Hence, this study may provide generable results to companies
or software projects having contexts similar to the cases.

4. In our case studies, we did not have history documents of the participating
companies’ existing software projects. This leads to a limited ability to compare
software development results between before- and after- use of the software
process maintenance framework. However, the overall findings prove that their
software development performance in terms of efficiency and effectiveness was
improved.

5. Our case projects were relatively small in terms of the team size and the project
duration. Hence, a software process maintenance framework has a limited ability
to promise that it can overcome major shortcomings of agile methods in some
management aspects, e.g., high quality assurance and procurement management.

6. Our case studies were focused on state-owned enterprises, not private companies
who are leaders in the overall Thai telecommunications market, e.g., Advanced
Info Service Public Company Limited (AIS), Total Access Communication
Public Company Limited (DTAC), and True Corporation Public Company
Limited (TRUE) [226]. This limits generalizability of the results for the Thai
telecommunications industry. However, the relevance or similarities between our
findings and the findings of other cases were described and the contexts of the
case projects were pointed out in order to make explicit to what degree the results
are generalizable.

7. Because of time limitations of this study, a knowledge transfer framework and a
framework for transferring software project management approaches into the
Thai telecommunications industry (so called “the umbrella framework”) have not
yet been fully evaluated in real-life software projects. Based on only the full
evaluation results of the software process maintenance framework, we cannot yet
give assurances about the knowledge transfer framework component. However,
the knowledge transfer framework was designed and constructed based on the
positive results of our prior case studies, concerning the successful transfer of
new knowledge (i.e., the software process maintenance framework) into the
cases. Therefore, there is a great likelihood that the knowledge transfer
framework is practical in real-life software projects.

236

9.4 Possibilities for Further Research and Practical Work
Building on and Extending the Results of this Thesis

Throughout this research project, especially the results of the case studies we have
presented in Chapter 5 and the application demonstrations of a knowledge transfer framework
described in Chapter 7 and a framework for transferring software project management
approaches into the Thai telecommunications industry described in Chapter 8 have opened
several areas to be explored in the future as follows.

1. A software process maintenance framework may need to carry out more case
studies, especially in major Thai telecommunications players in terms of total
market share, e.g., AIS, DTAC, and TRUE. This is in order to confirm and
compare results with the existing results from our case studies in CAT and TOT.
There are two questions in case that there is any negative indication or it is
possible to follow up the application of the software process maintenance
framework in CAT and TOT. In case practitioners prefer to use their existing
traditional software development methods, the questions are “What are the root
causes of why agile-oriented and/or hybrid agile-disciplined methods do not work
for Thai organizations doing more traditional software development?” and “How
can those root causes be overcome?”

2. The design and results of a software process maintenance framework reveal that it
can be used as a general framework. Hence, it would be good to evaluate the
framework in other industries such as government, banking, and manufacturing.
This is in order to compare similarities and differences between results in various
industries. As influential factors affecting the successful software development
can be changed over times and may be different in different industries, we hence
suggest that influential factors should also be re-investigated.

3. One issue that arose during construction of the knowledge transfer framework
was that of how to maximize the capacity of an organization’s existing
communication channels or Information and Communications Technologies
(ICTs) that can be employed for effective software development and knowledge
transfer. Albeit this issue is out of the dissertation’s scope, it is interesting to
explore a mechanism dealing with such issues. This should benefit an
organization by reducing software development and/or knowledge transfer costs
and increasing existing communication channels’ and ICTs’ capacity.

4. As a knowledge transfer framework and a framework for transferring software
project management approaches into the Thai telecommunications industry could
not be fully evaluated in real-life software projects due to time limitation of this
study; consequently, both frameworks shall be evaluated and improved for better
usability and practicality. In case the knowledge transfer framework is perceived
as usable and practical, it may be evaluated in other industries and/or with other
possible frameworks. For instance, it may be used as an add-on component of a
promising evaluation framework for e-Government services [348] to test in the
Thai e-Government area.

5. It is important to improve the shortcomings of our prototype tool and add more
features to enhance the prototype tool’s usability in supporting the use of the
software process maintenance framework. Moreover, features to support the use
of the knowledge transfer framework shall be created and incorporated into the
prototype tool. This is in order to facilitate practitioners when using both the

237

software process maintenance framework and the knowledge transfer framework
together.

Whilst further case studies are needed to evaluate and refine the frameworks, increase
the generalizability of the results, and extend the results of this study; the evidence we have
collected from the use of the software process maintenance framework and the
demonstrations of the use of the knowledge transfer framework and the framework for
transferring software project management approaches into the Thai telecommunications
industry, is encouraging and reveals that the frameworks can be used as an alternative means
to software development. In other words, we are encouraged that the agile and disciplined
methods can be integrated and sufficient knowledge transfer amongst team members should
be implemented to increase software development performance and satisfy users with quality
software. However, practitioners are novices when a technology changes the ways to develop
software or the nature of the tasks the practitioners perform. Thereby, the use of the
technology (e.g., the frameworks) requires time and experience to gain more efficiency and
effectiveness. Finally, I shall leave this dissertation towards generalizability and extensibility
for future researchers.

238

239

References

1. WebsiteOptimization, US Broadband Penetration Drops to 27th Place Worldwide - July 2011 Bandwidth
Report, 2011.

2. N. Porrawatpreyakorn, et al., “Requirements for a Knowledge Transfer Framework in the Field of
Software Development Process Management for Executive Information Systems in the
Telecommunications Industry,” The 3rd International Conference on Advances in Information
Technology, Communications in Computer and Information Science 55, B. Papasratorn, et al., eds.,
Springer Berlin/Heidelberg, 2009, pp. 110-122.

3. W. Jirachiefpattana, “The Impact of Thai Culture on Executive Information Systems Development,” Proc.
The 6th International Conference Theme 1, Globalization: Impact on and Coping Strategies in Thai
Society, 1996, pp. 97-110.

4. J. Highsmith and A. Cockburn, “Agile Software Development: The Business of Innovation,” IEEE
Computer, vol. 34, no. 9, 2001, pp. 120-127.

5. K. Kumar and R.J. Welke, Methodology Engineering: A Proposal for Situation Specific Methodology
Construction, John Wiley & Sons, 1992, p. 257-269.

6. P. Abrahamsson, et al., “New Directions on Agile Methods: A Comparative Analysis,” Proc. The 25th
International Conference on Software Engineering, IEEE, 2003, pp. 244-254.

7. T. Gilb, Principles of Software Engineering Management, Addison-Wesley, 1998.

8. D.A. Callegari and R.M. Bastos, “Project Management and Software Development Processes: Integrating
RUP and PMBOK,” Proc. International Conference on Systems Engineering and Modeling, IEEE, 2007.

9. N. Ionel, “Critical Analysis of the Scrum Project Management Methodology,” Proc. The 4th International
Economic Conference on European Integration - New Challenges for the Romanian Economy Oradea
Romania, 2008, pp. 435-441.

10. A. Shalloway, et al., Lean-Agile Software Development: Achieving Enterprise Agility, Addison-Wesley
Professional, 2009.

11. D. Turk, et al., “Limitations of Agile Software Processes,” Proc. The 3rd International Conference on
eXtreme Programming and Agile Processes in Software Engineering, Springer-Verlag, 2002, pp. 43-46.

12. G. Spafford, “The Benefits of Standard IT Governance Frameworks,” 2003;
www.itsmwatch.com/itil/article.php/2195051.

13. W.S. Humphrey, Managing the Software Process, Addison-Wesley, 1989.

14. M. Lehman, “Why Is Process Important?,” Proc. The 1st International Conference on the Software
Process, IEEE, 1991, pp. 4 (panel discussion).

15. S. Huang, et al., “Adoption-Centric Software Maintenance Process Improvement via Information
Integration,” Proc. The 13th IEEE International Workshop on Software Technology and Engineering
Practice, IEEE, 2005, pp. 25-34.

16. O. Ngwenyama and P.A. Nielsen, “Competing Values in Software Process Improvement: An Assumption
Analysis of CMM from an Organizational Culture Perspective,” IEEE Transactions on Software
Engineering, vol. 50, no. 1, 2003, pp. 100-112.

17. SEI, CMMI for Software Engineering, Version 1.1, Staged Representation (CMMI-SM, V1.1, Staged),
CMU/SEI-2002-TR-029, Software Engineering Institute, 2002.

18. P.V. Martins and A.R. Silva, “A Comparative Study of SPI Approaches with ProPAM,” Proc. The 6th
International Conference on the Quality of Information and Communications Technology, 2007, pp. 100-
109.

19. D.R. Goldenson and J.D. Herbsleb, After the Appraisal: A Systematic Survey of Process Improvement, its
Benefits, and Factors that Influence Success, Software Engineering Institute, 1995.

http://www.itsmwatch.com/itil/article.php/2195051�

240

20. M. Niazi, et al., “A Model for the Implementation of Software Process Improvement: An Empirical
Study,” The 5th International Conference on Product Focused Software Process Improvement, Lecture
Notes in Computer Science 3009/2004, F. Bomarius and H. Iida, eds., Springer Berlin/Heidelberg, 2004,
pp. 1-16.

21. E. Bos and C. Vriens, “An Agile CMM,” The 4th Conference on Extreme Programming and Agile
Methods - XP/Agile Universe 2004, Lecture Notes in Computer Science 3134, C. Zannier, et al., eds.,
Springer, 2004, pp. 129-138.

22. J. Diaz, et al., “Mapping CMMI Level 2 to Scrum Practices: An Experience Report,” The 16th European
Conference on Software Process Improvement 42, R. V. O’Connor, et al., eds., Springer
Berlin/Heidelberg, 2009, pp. 93-104.

23. C.R. Jakobsen and K.A. Johnson, “Mature Agile with a Twist of CMMI,” Proc. Agile Conference, IEEE,
2008, pp. 212-217.

24. A.S.C. Marçal, et al., “Blending Scrum Practices and CMMI Project Management Process Areas,”
Innovations in Systems and Software Engineering, vol. 4, no. 1, 2008, pp. 17-29.

25. J. Sutherland, et al., “Scrum and CMMI Level 5: The Magic Potion for Code Warriors,” Proc. The 41st
Annual Hawaii International Conference on System Sciences, IEEE, 2007, pp. 466.

26. M. Pikkarainen and T. Huomo, “Agile Software Development of Embedded Systems: Agile Assessment
Framework,” 2005; http://www.agile-itea.org/public/deliverables/ITEA-AGILE-D4.1_v1.0.pdf.

27. M. Pikkarainen and A. Mäntyniemi, “An Approach for Using CMMI in Agile Software Development
Assessments: Experience from Three Case Studies,” Proc. The 6th International SPICE Conference, 2006,
pp. 121-129.

28. IBM, “The IBM Agile Process Maturity Model,” 2009;
ftp://ftp.software.ibm.com/software/emea/de/rational/neu/The_IBM_Agile_Process_Maturity_Model_EN_
2009.pdf.

29. B.S. Sandhawalia and D. Dalcher, “Knowledge Flows in Software Projects: An Empirical Investigation,”
Knowledge and Process Management, vol. 17, no. 4, 2010, pp. 205-220.

30. S. Henninger, “Case-Based Knowledge Management Tools for Software Development,” Automated
Software Engineering, vol. 4, no. 3, 1997, pp. 319-340.

31. S. Faraj and L. Sproull, “Coordinating Expertise in Software Development Teams,” Management Science,
vol. 46, no. 12, 2000, pp. 1544-1568.

32. I. Attarzadeh and S.H. Ow, “Project Management Practices: Success versus Failure,” Proc. International
Symposium on Information Technology, IEEE, 2008, pp. 1-8.

33. M. Ceschi, et al., “Project Management in Plan-Based and Agile Companies,” IEEE Software, vol. 22, no.
3, 2005, pp. 21-27.

34. T. Chow and D.-B. Cao, “A Survey Study of Critical Success Factors in Agile Software Projects,” Journal
of Systems and Software, vol. 81, no. 6, 2008, pp. 961-971.

35. H.G. Gemuenden and T. Lechler, “Success Factors of Project Management: The Critical Few-An
Empirical Investigation,” Proc. Portland International Conference on Management and Technology IEEE,
1997, pp. 375-377.

36. A. Shalloway and J.R. Trott, Lean-Agile Pocket Guide for Scrum Teams, Lean-Agile Press, 2009.

37. H. Thomas and J. Tilke, “Best Practice Methodologies for the Project Management Office: PMBOK and
PRINCE2,” 2009; http://www.ca.com/us/default.aspx.

38. PMI, A Guide to the Project Management Body of Knowledge (PMBOK Guide), Fourth Edition, Project
Management Institute, Inc., 2008.

39. SEI, CMMI for Systems Engineering/Software Engineering/Integrated Product and Process
Development/Supplier Sourcing, Version 1.1, Staged Representation (CMMI-SE/SW/IPPD/SS, V1.1,
Staged), Software Engineering Institute, 2002.

40. K.D. Joshi, et al., “Knowledge Transfer within Information Systems Development Teams: Examining the
Role of Knowledge Source Attributes,” Decision Support Systems, vol. 43, no. 2, 2007, pp. 322-335.

http://www.agile-itea.org/public/deliverables/ITEA-AGILE-D4.1_v1.0.pdf�
ftp://ftp.software.ibm.com/software/emea/de/rational/neu/The_IBM_Agile_Process_Maturity_Model_EN_2009.pdf�
ftp://ftp.software.ibm.com/software/emea/de/rational/neu/The_IBM_Agile_Process_Maturity_Model_EN_2009.pdf�
http://www.ca.com/us/default.aspx�

241

41. S.A. Slaughter and L.J. Kirsch, “The Effectiveness of Knowledge Transfer Portfolios in Software Process
Improvement: A Field Study,” Information Systems Research, vol. 17, no. 3, 2006, pp. 301-320.

42. D. Arnott, et al., “Executive Information Systems Development in an Emerging Economy,” Decision
Support Systems, vol. 42, no. 4, 2007, pp. 2078-2084.

43. IMF, World Economic Outlook, April 2011, International Monetary Fund, 2011.

44. P. Poon and C. Wagner, “Critical Success Factors Revisited: Success and Failure Cases of Information
Systems for Senior Executives,” Decision Support Systems, vol. 30, no. 4, 2001, pp. 393-418.

45. M. Kirlidog, “Information Technology Transfer to a Developing Country: Executive Information Systems
in Turkey,” Information Technology & People, vol. 9, no. 3, 1996, pp. 55-84.

46. K.C. Laudon and J.P. Laudon, Management Information Systems, Prentice Hall, 2009.

47. J.H. Nord and G.D. Nord, “Executive Information Systems: A Study and Comparative Analysis,”
Information and Management, vol. 29, no. 2, 1995, pp. 95-106.

48. W. Jirachiefpattana, et al., “Executive Information Systems Development in Thailand,” Implementing
Systems for Supporting Management Decisions: Concepts, Methods, and Experiences, Implementing
Systems for Supporting Management Decisions: Concepts, Methods, and Experiences, P. Humphreys, et
al., eds., Chapman & Hall, 1996, pp. 203-224.

49. M.C. Lacity and L.P. Willcocks, Global Information Technology Outsourcing: In Search of Business
Advantage, Wiley, 2001.

50. R.Y. Wang and D.M. Strong, “Beyond Accuracy: What Data Quality Means to Data Consumers,” Journal
of Management Information Systems, vol. 12, no. 4, 1996, pp. 5-34.

51. C. Batini, et al., “Methodologies for Data Quality Assessment and Improvement,” ACM Computing
Surveys, vol. 41, no. 3, 2009.

52. R.Y. Wang, et al., “A Framework for Analysis of Data Quality Research,” IEEE Transactions on
Knowledge and Data Engineering, vol. 7, no. 4, 1995, pp. 623-640.

53. W. Chutimaskul, et al., “The Quality Framework of e-Government Development,” Proc. The 2nd
International Conference on Theory and Practice of Electronic Governance ACM, 2008, pp. 105-109.

54. K.M. Calo, et al., “A Quantitative Framework for the Evaluation of Agile Methodologies,” Journal of
Computer Science and Technology, vol. 10, no. 2, 2010, pp. 68-73.

55. A.C.C. França, et al., “An Empirical Study on the Relationship between the Use of Agile Practices and the
Success of Scrum Projects,” Proc. The 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010.

56. J.A. Livermore, “Factors that Impact Implementing an Agile Software Development Methodology,” Proc.
SoutheastCon, IEEE, 2007, pp. 82-86.

57. S.C. Misra, et al., “Identifying Some Important Success Factors in Adopting Agile Software Development
Practices,” Journal of Systems and Software, vol. 82, no. 11, 2009, pp. 1869-1890.

58. M. Othman, et al., “A Review on Project Management and Issues Surrounding Dynamic Development
Environment of ICT Project: Formation of Research Area,” International Journal of Digital Content
Technology and its Applications, vol. 4, no. 1, 2010, pp. 96-105.

59. S. Tong, et al., “Analyse Changing Risk of Organizational Factors in Agile Project Management,” Proc.
The 1st International Conference on Information Science and Engineering, IEEE, 2009, pp. 4188-4193.

60. A. Cockburn and J. Highsmith, “Agile Software Development: The People Factor,” IEEE Computer, vol.
34, no. 11, 2001, pp. 131-133.

61. R. Turner and B. Boehm, “People Factors in Software Management: Lessons from Comparing Agile and
Plan-Driven Methods,” The Journal of Defense Software Engineering, 2003, pp. 4-8.

62. J. Iivari and N. Iivari, “The Relationship Between Organizational Culture and the Deployment of Agile
Methods,” Information and Software Technology, vol. 53, no. 5, 2011, pp. 509-520.

63. D.E. Strode, et al., “The Impact of Organizational Culture on Agile Method Use,” Proc. The 42nd Hawaii
International Conference on System Sciences, IEEE, 2009, pp. 1-9.

242

64. M. Cohn and D. Ford, “Introducing an Agile Process to an Organization,” IEEE Computer, vol. 36, no. 6,
2003, pp. 74-78.

65. S. Nerur, et al., “Challenges of Migrating to Agile Methodologies,” Communications of the ACM, vol. 48,
no. 5, 2005, pp. 73-78.

66. P.E. McMahon, “Bridging Agile and Traditional Development Methods: A Project Management
Perspective,” The Journal of Defense Software Engineering, 2004.

67. T. Dybå and T. Dingsøyr, “Empirical Studies of Agile Software Development: A Systematic Review,” Inf.
Softw. Technol., vol. 50, no. 9-10, 2008, pp. 833-859; DOI 10.1016/j.infsof.2008.01.006.

68. R. Hoda, et al., “The Impact of Inadequate Customer Collaboration on Self-Organizing Agile Teams,”
Information and Software Technology, vol. 53, no. 5, 2010, pp. 521-534.

69. M. Korkala, et al., “A Case Study of Customer Communication in Globally Distributed Software Product
Development,” Proc. The 11th International Conference on Product Focused Software, ACM, 2010, pp.
43-46.

70. M. Lindvall, et al., “Empirical Findings in Agile Methods,” Proc. Extreme Programming and Agile
Methods – XP/Agile Universe 2002, 2002, pp. 197-207.

71. B. Schatz and I. Abdelshafi, “Primavera Gets Agile: A Successful Transition to Agile Development,”
IEEE Software, vol. 22, no. 3, 2005, pp. 36-42.

72. K.D. Joshi, et al., “Knowledge Transfer Among Face-to-Face Information Systems Development Team
Members: Examining the Role of Knowledge, Source, and Relational Context,” Proc. The 37th Hawaii
International Conference on System Sciences, IEEE, 2004, pp. 1-11.

73. S. Sarker, “Knowledge Transfer and Collaboration in Distributed U.S.-Thai Teams,” Journal of Computer-
Mediated Communication, vol. 10, no. 4, 2005.

74. A. Upadhyaya and S. Krishna, “Antecedents of Knowledge Sharing in Globally Distributed Software
Development Teams,” Proc. The 15th European Conference on Information Systems, 2007, pp. 727-738.

75. J. Kotlarsky and I. Oshri, “Social Ties, Knowledge Sharing and Successful Collaboration in Globally
Distributed System Development Projects,” European Journal of Information Systems, vol. 4, no. 1, 2005,
pp. 37-48.

76. M. Yuan, et al., “Antecedents of Coordination Effectiveness of Software Developer Dyads From
Interacting Teams: An Empirical Investigation,” IEEE Transactions on Engineering Management, vol. 56,
no. 3, 2009, pp. 494-507.

77. J. Zhang, et al., “The Effect of Organizational/Technological Factors and the Nature of Knowledge on
Knowledge Sharing,” Proc. The 39th Hawaii International Conference on System Sciences, 2006, pp. 74a.

78. S. Sarker, et al., “Knowledge Transfer in Virtual Information Systems Development Teams: An Empirical
Examination of Key Enablers,” Proc. The 36th Annual Hawaii International Conference on System
Sciences - Track 4 IEEE, 2003, pp. 119a.

79. Z. Al-Salti, “Knowledge Transfer and Acquisition In IS Outsourcing: Towards a Conceptual Framework,”
Proc. UK Academy for Information Systems Conference, 2009.

80. N.H. Arshad, et al., “IT Outsourcing and Knowledge Transfer in Malaysia,” Proc. The 2nd International
Congress on Engineering Education, IEEE, 2010, pp. 16-21.

81. R. Gregory, et al., “Breaching the Knowledge Transfer Blockade in IT Offshore Outsourcing Projects: A
Case from the Financial Services Industry,” Proc. The 42nd Hawaii International Conference on System
Sciences, IEEE, 2009.

82. J.Y. Park, et al., “The Role of IT Human Capability in the Knowledge Transfer Process in IT Outsourcing
Context,” Information and Management, vol. 48, no. 1, 2011, pp. 53-61.

83. A. Mohamed, et al., “Influencing Factors of Knowledge Transfer in IT Outsourcing,” Proc. The 10th
WSEAS International Conference on Mathematics and Computers in Business and Economics 2009, pp.
165-170.

84. H.L. Yun, “Knowledge Transfer in ISD Offshore Outsourcing Project,” Proc. International Conference on
Computer Engineering and Technology, IEEE, 2009, pp. 487-491.

243

85. N. Dayasindhu, “Embeddedness, Knowledge Transfer, Industry Clusters and Global Competitiveness: A
Case Study of the Indian Software Industry,” Technovation, vol. 22, no. 9, 2002, pp. 551-560.

86. D.-G. Ko, et al., “Antecedents of Knowledge Transfer from Consultants to Clients in Enterprise System
Implementations,” MIS Quarterly vol. 29, no. 1, 2005, pp. 59-85.

87. L. Hongli and Z. Lei, “Knowledge Transfer in Knowledge Network of IT Consulting Company,” Proc.
International Conference on Information Management, Innovation Management and Industrial
Engineering, IEEE, 2009, pp. 490-495

88. Y. Malhotra and D.F. Galletta, “Role of Commitment and Motivation in Knowledge Management Systems
Implementation: Theory, Conceptualization, and Measurement of Antecedents of Success,” Proc. The 36th
Hawaii International Conference on System Sciences, IEEE, 2003.

89. C.-L. Hsu and J.C.-C. Lin, “Acceptance of Blog Usage: The Roles of Technology Acceptance, Social
Influence and Knowledge Sharing Motivation,” Information & Management, vol. 45, no. 1, 2008, pp. 65-
74.

90. C.-J. Chen, et al., “The Role of Intellectual Capital in Knowledge Transfer,” IEEE Transactions on
Engineering Management vol. 56, no. 3, 2009, pp. 402-411.

91. E.T.G. Wang, et al., “Improving Enterprise Resource Planning (ERP) Fit to Organizational Process
Through Knowledge Transfer,” International Journal of Information Management, vol. 27, no. 3, 2007,
pp. 200-212.

92. Q. Xu and Q. Ma, “Determinants of ERP Implementation Knowledge Transfer,” Information and
Management, vol. 45, no. 8, 2008, pp. 528-538.

93. L.Z. Cantú, et al., “Generation and Transfer of Knowledge in IT-Related SMEs,” Journal of Knowledge
Management, vol. 13, no. 5, 2009, pp. 243-256.

94. C. Tiexin, et al., “The Influence Factors of Knowledge Transfer in Project Management: An Empirical
Survey,” Proc. The 4th International Conference on Wireless Communications, Networking and Mobile
Computing, IEE, 2008, pp. 1-7.

95. K. Dasgupta, The Economic Benefits from Investment in Advanced Mobile Infrastructure and Sevices: The
Case of Thailand, LECG Ltd, 2009.

96. M. Griffiths, “Using Agile Alongside the PMBOK,” Proc. PMI Research Conference, 2004.

97. K. Schwaber, “SCRUM Development Process,” Proc. The 10th Annual ACM Conference on Object
Oriented Programming Systems, Languages, and Applications ACM, 1995, pp. 117-134.

98. P. Fitsilis, “Comparing PMBOK and Agile Project Management Software Development Processes,”
Advances in Computer and Information Sciences and Engineering, T. Sobh, ed., Springer Netherlands,
2008, pp. 378-383.

99. J.R. Persse, Implementing the Capability Maturity Model, Wiley, 2001.

100. C.R. Jakobsen and J. Sutherland, “Scrum and CMMI - Going from Good to Great, Are you ready-ready to
be done-done?,” Proc. Agile Conference, IEEE, 2009, pp. 333-337.

101. B. Mutafelija and H. Stromberg, Systematic process improvement using ISO 9001:2000 and CMMI,
Artech House, 2003.

102. J. Sutherland and K. Schwaber, The Scrum Papers:Nuts, Bolts, and Origins of an Agile Process, 2007.

103. G. Szulanski, “Exploring Internal Stickiness: Impediments to the Transfer of Best Practice within the
Firm,” Strategic Management Journal, vol. 17, no. Winter Special, 1996, pp. 27–43.

104. T.H. Davenport and L. Prusak, Working Knowledge: How Organizations Manage What They Know,
Harvard Business School Press, 1998.

105. K.D. Joshi and S. Sarker, “Examining the Role of Knowledge, Source, Recipient, Relational, and
Situational Context on Knowledge Transfer Among Face-to-Face ISD Teams,” Proc. The 39th Annual
Hawaii International Conference on System Sciences-Track 7, IEEE, 2006, pp. 148c.

106. C. Wallin and I. Crnkovic, “Three Aspects of Successful Software Development Projects "when are
projects canceled, and why?"” Proc. The 29th Euromicro Conference, IEEE, 2003, pp. 368-374.

244

107. E. Ellmer, “Improving Software Processes,” Proc. The 1995 Software Engineering Environments, IEEE,
1995, pp. 75-83.

108. G. Seshagiri, “Continuous Process Improvement-Why Wait till Level 5,” Proc. The 29th Hawaii
International Conference on System Sciences, IEEE, 1996, pp. 681-692.

109. P. Allen, et al., “PRISMS: An Approach to Software Process Improvement for Small to Medium
Enterprise,” Proc. The 3rd International Conference on Quality Software, IEEE, 2003.

110. K.C. Dangle, et al., “Software Process Improvement in Small Organizations: A Case Study,” IEEE
Software, vol. 22, no. 6, 2005, pp. 68-75.

111. N. Ramasubbu, et al., “Leveraging Global Resources: A Process Maturity Framework for Managing
Distributed Development,” IEEE Software, vol. 22, no. 3, 2005, pp. 80-86.

112. B. Fitzgerald and T. O'Kane, “A Longitudinal Study of Software Process Improvement,” IEEE Software,
no. May/June, 1999, pp. 37-45.

113. T.M. Somers and K. Nelson, “The Impact of Critical Success Factors Across the Stages of Enterprise
Resource Planning Implementations,” Proc. The 34th Hawaii International Conference on System
Sciences, IEEE, 2001, pp. 8016.

114. M. Niazi, et al., “A Maturity Model for the Implementation of Software Process Improvement: An
Empirical Study,” Journal of Systems and Software, vol. 74, no. 2, 2005, pp. 155-172.

115. M. Niazi, et al., “A Framework for Assisting the Design of Effective Software Process Improvement
Implementation Strategies,” Journal of Systems and Software, vol. 78, no. 2, 2005, pp. 204-222.

116. M.-L. Huotari and T.D. Wilson, “Determining Organizational Information Needs: The Critical Success
Factors Approach,” Information Research, vol. 6, no. 3, 2001.

117. V.K. Khandelwal and J.R. Ferguson, “Critical Success Factors (CSFs) and the Growth of IT in Selected
Geographic Regions,” Proc. The 32nd Hawaii International Conference on System Sciences, IEEE, 1999,
pp. 13 pp.

118. A. Pellow and T.D. Wilson, “The Management Information Requirements of Heads of University
Departments: A Critical Success Factors Approach,” Journal of Information Science, vol. 19, no. 6, 1993,
pp. 425–437.

119. C.K. Tyran and J.F. George, “The Implementation of Expert Systems: A Survey of Successful
Implementations,” ACM SIGMIS Database, vol. 24, no. 1, 1993, pp. 5-15; DOI 10.1145/154421.154422.

120. SEI, Process Maturity Profile of the Software Community, 2002 Mid-Year Update, Software Engineering
Institute, 2002.

121. ISO, “ISO/IEC 15504,” 19 December 2009 2004; http://www.iso.org/.

122. R.W. Hoerl, “Six Sigma and the Future of the Quality Profession,” Quality Progress, vol. 31, no. 6, 1998,
pp. 35-42.

123. Gartner, “Balancing Six Sigma and the Capability Maturity Model (CMM/CMMI),” 6 December 2009;
http://www.gartner.com/4_decision_tools/measurement/measure_it_articles/2003_0424/bal_cmm.jsp.

124. K.D. Shere, “Comparing Lean Six Sigma to the Capability Maturity Model,” The journal of Defense
Software Engineering, 2003.

125. IT-Governance-Institute, COBIT Framework, 3rd Edition, Information Systems Audit and Control
Foundation, 2000.

126. S.W. Ambler, “Agile Survey Results Summary,” 16 July 2009 2008;
http://www.ambysoft.com/downloads/surveys/AgileAdoptionRates.ppt.

127. Danube-Technologies, “Danube Technologies Sees Strong Growth/Scrum Emerges as Leading Method for
Agile Software Development,” 14 July 2009 2008; http://www.agilejournal.com/agile-news/807-danube-
technologies-sees-strong-growthscrum-emerges-as-leading-method-for-agile-software-developmnt.

128. VersionOne, 3rd Annual Survey: 2008 “The State of Agile Development”, VersionOne, 2008.

129. Digital-Onion, “Success with Scrum: It’s all About Leadership,” 16 July 2009 2009;
http://www.digitalonioninc.com/.

http://www.iso.org/�
http://www.gartner.com/4_decision_tools/measurement/measure_it_articles/2003_0424/bal_cmm.jsp�
http://www.ambysoft.com/downloads/surveys/AgileAdoptionRates.ppt�
http://www.agilejournal.com/agile-news/807-danube-technologies-sees-strong-growthscrum-emerges-as-leading-method-for-agile-software-developmnt�
http://www.agilejournal.com/agile-news/807-danube-technologies-sees-strong-growthscrum-emerges-as-leading-method-for-agile-software-developmnt�
http://www.digitalonioninc.com/�

245

130. PMI, “Statistics of Interest as of 31 March 2009,” 2009; http://search.pmi.org/.

131. B. Kitchenham and S. Charters, Guidelines for performing Systematic Literature Reviews in Software
Engineering, EBSE 2007-001, Evidence-Based Software Engineering, 2007.

132. D.J. Anderson, “Stretching Agile to fit CMMI Level 3-The Story of Creating MSF for CMMI® Process
Improvement at Microsoft Corporation,” Proc. Agile Conference, IEEE, 2005, pp. 193-201.

133. S.W. Baker, “Formalizing Agility, Part 2: How an Agile Organization Embraced the CMMI,” Proc. Agile
Conference, 2006, pp. 154.

134. S. Cohan and H. Glazer, “An Agile Development Team’s Quest for CMMI® Maturity Level 5,” Proc.
Agile Conference, IEEE, 2009, pp. 201-206.

135. T. Kähkönen and P. Abrahamsson, “Achieving CMMI Level 2 with Enhanced Extreme Programming
Approach ” Proc. The 5th International Conference on Product Focused Software Process Improvement,
Springer Berlin/Heidelberg, 2004, pp. 378-392.

136. M.I. Khan, et al., “Agile Methodology in Software Development (SMEs) of Pakistan Software Industry for
Successful Software Projects (CMM Framework),” Proc. International Conference on Educational and
Network Technology, 2010, pp. 576-580.

137. R. Leithiser and D. Hamilton, “Agile Versus CMMI - Process Template Selection and Integration with
Microsoft Team Foundation Server,” Proc. The 46th Annual Southeast Regional Conference on XX, 2008,
pp. 186-191.

138. F. McCaffery, et al., “AHAA - Agile, Hybrid Assessment Method for Automotive, Safety Critical SMEs ”
Proc. The 30th International Conference on Software Engineering, 2008, pp. 551-560.

139. A. Omran, “Agile CMMI from SMEs Perspective,” Proc. The 3rd International Conference on
Information and Communication Technologies: From Theory to Applications, 2008, pp. 1-8.

140. K. Petersen and C. Wohlin, “Software Process Improvement through the Lean Measurement (SPI-LEAM)
Method,” Journal of Systems and Software, vol. 83, no. 7, 2010, pp. 1275–1287.

141. F.J. Pino, et al., “Using Scrum to Guide the Execution of Software Process Improvement in Small
Organizations,” Journal of Systems and Software, vol. 83, no. 10, 2010, pp. 1662-1677.

142. G. Rong, et al., “SCRUM-PSP: Embracing Process Agility and Discipline,” Proc. The 17th Asia Pacific
Software Engineering Conference, 2010 pp. 316-325.

143. O. Salo and P. Abrahamsson, “An Iterative Improvement Process for Agile Software Development,”
Software Process: Improvement and Practice, vol. 12, no. 1, 2007, pp. 81-100.

144. L. Williams, et al., “Driving Process Improvement via Comparative Agility Assessment,” Proc. Agile
Conference, IEEE, 2010, pp. 3-10.

145. K.M. Zaki and R. Moawad, “A Hybrid Disciplined Agile Software Process Model,” Proc. The 7th
International Conference on Informatics and Systems, 2010, pp. 1-8.

146. M. Lepasaar, et al., “Models and Success Factors of Process Change,” The 3rd International Conference
on Product Focused Software Process Improvement2188/2001, F. Bomarius and S. Komi-Sirviö, eds.,
Springer Berlin/Heidelberg, 2001, pp. 68-77.

147. A. Rainer and T. Hall, “A Quantitative and Qualitative Analysis of Factors Affecting Software Processes,”
Journal of Systems and Software, vol. 66, no. 1, 2003, pp. 7-21.

148. D. Stelzer and W. Mellis, “Success Factors of Organizational Change in Software Process Improvement,”
Software Process: Improvement and Practice, vol. 4, no. 4, 1998, pp. 227-250.

149. F. Guerrero and Y. Eterovic, “Adopting the SW-CMM in a Small IT Organization,” IEEE Software, vol.
21, no. 4, 2004, pp. 29-35.

150. M. Niazi, et al., “Critical Success Factors and Critical Barriers for Software Process Improvement: An
Analysis of Literature,” Proc. Australasian Conference on Information Systems, ACIS, 2003.

151. M. Niazi, et al., “Implementing Software Process Improvement Initiatives: An Empirical Study,” The 7th
International Conference on Product Focused Software Process Improvement, Lecture Notes in Computer
Science 4034/2006, J. Münch and M. Vierimaa, eds., Springer Berlin/Heidelberg, 2006, pp. 222-233.

http://search.pmi.org/�

246

152. M. Niazi, et al., “Organisational Readiness and Software Process Improvement ” The 8th International
Conference on Product-Focused Software Process Improvement, Lecture Notes in Computer Science
4589/2007, J. Münch and P. Abrahamsson, eds., Springer Berlin/Heidelberg, 2007, pp. 96-107.

153. A. Cockburn, Agile Software Development, Addison-Wesley, 2002, p. 215-218.

154. P.E. McMahon, “Lessons Learned Using Agile Methods on Large Defense Contracts,” The Journal of
Defense Software Engineering, 2006, pp. 25-30.

155. A. Qumer and B. Henderson-Sellers, “An Evaluation of the Degree of Agility in Six Agile Methods and Its
Applicability for Method Engineering,” Information and Software Technology, vol. 50, no. 4, 2008, pp.
280-295.

156. B. Boehm, “Get Ready for Agile Methods, with Care,” IEEE Computer, vol. 35, no. 1, 2002, pp. 64-69.

157. S.d. Sousa, “The Advantages and Disadvantages of Agile Scrum Software Development,” 2009;
http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-agile-scrum-
software-development.html.

158. A. Jain, “Post Workshop Progress Report,” Proc. CSE Annual Research Review & Executive Workshop,
2002.

159. M. Hecht, et al., “Fostering Adoption, Acceptance, and Assimilation in Knowledge Management System
Design,” Proc. The 11th International Conference on Knowledge Management and Knowledge
Technologies ACM, 2011, pp. 1-8.

160. L.G. Tornatzky and M. Fleischer, The Processes of Technological Innovation, D.C. Heath & Company,
1990.

161. W.H. DeLone and E.R. McLean, “The DeLone and McLean Model of Information Systems Success: A
Ten-Year Update,” Management Information Systems, vol. 19, no. 4, 2003, pp. 9-30.

162. T.-P. Liang, et al., “Adoption of Mobile Technology in Business: A Fit-Viability Model,” Industrial
Management & Data Systems, vol. 107, no. 8, 2007, pp. 1154-1169.

163. M. Fishbein and I. Ajzen, Belief, Attitude, Intention, and Behavior: An Introduction to Theory and
Research, Addison-Wesley, 1975.

164. I. Ajzen, “From Intentions to Actions: A Theory of Planned Behaviour,” Action Control: From Cognition
to Behavior, J. Kuhl and J. Beckmann, eds., Springer, Heidelberg, 1985.

165. F.D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information
Technology,” MIS Quarterly, vol. 13, no. 3, 1989, pp. 319-340.

166. R.L. Thompson, et al., “Personal Computing: Toward a Conceptual Model of Utilization,” MIS Quarterly,
vol. 15, no. 1, 1991, pp. 125-143.

167. V. Venkatesh, et al., “User Acceptance of Information Technology: Towards a Unified View,” MIS
Quarterly, vol. 27, no. 3, 2003, pp. 425-478.

168. E.M. Rogers, Diffusion of Innovations (Fifth Edition), The Free Press, 2003.

169. G.C. Moore and I. Benbasat, “Development of an Instrument to Measure the Perceptions of Adopting an
Information Technology Innovation,” Information Systems Research, vol. 2, no. 3, 1991, pp. 192-222.

170. A.H. Tolba and M. Mourad, “Individual and Cultural Factors Affecting Diffusion of Innovation,” Journal
of International Business and Cultural Studies, vol. 5, 2011, pp. 1-16.

171. I. Ajzen, “The Theory of Planned Behavior,” Organizational Behavior and Human Decision Processes,
vol. 50, 1991, pp. 179-211.

172. Y. Gao, “Applying the Technology Acceptance Model (TAM) to Educational Hypermedia: A Field
Study,” Education Multimedia and Hypermedia, vol. 14, no. 3, 2005, pp. 237-247.

173. V. Venkatesh and F.D. Davis, “A Theoretical Extension of the Technology Acceptance Model: Four
Longitudinal Field,” Management Science, vol. 46, no. 2, 2000, pp. 186-204.

174. J. Choudrie and Y.K. Dwivedi, “Towards a Conceptual Model of Broadband Diffusion,” Journal of
Computing and Information Technology, vol. 12, no. 4, 2004, pp. 323-338.

http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-agile-scrum-software-development.html�
http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-agile-scrum-software-development.html�

247

175. M. Pikkarainen, Towards a Framework for Improving Software Development Process Mediated with
CMMI Goals and Agile Practices, VTT Publications 695, VTT Publications, 2008.

176. M.C. Paulk, et al., Capability Maturity ModelSM for Software, Version 1.1, Software Engineering Institute,
1993.

177. J.J. Jiang, et al., “An Exploration of the Relationship between Software Development Process Maturity
and Project Performance,” Information and Management, vol. 41, no. 3, 2004, pp. 279-288.

178. B. Pitterman, “Telcordia Technologies: The Journey to High Maturity,” IEEE Software, vol. 17, no. 4,
2000, pp. 89-96.

179. G. Yamamura, “Software Improvement Satisfied Employees,” IEEE Software, vol. 16, no. 5, 1999, pp.
83–85.

180. V. Khandelwal and R. Natarajan, Quality IT Management in Australia: Critical Success Factors for 2002,
Technical Report No. CIT/1/2002, University of Western Sydney, 2002.

181. K. Schwaber, Agile Project Management with Scrum, Microsoft Press, 2004.

182. CORPORATE-Office-of-the-Under-Secretary-of-Defense-for-Acquisition, “Excerpts from Fall 1987
Report of the Defense Science Board Task Force on Military Software,” ACM SIGAda Ada Letters, vol. 8,
no. 4, 1988, pp. 35-46.

183. N. Porrawatpreyakorn, et al., “Requirements for a Software Process Maintenance Framework for
Executive Information Systems in the Telecommunications Industry,” Journal of Global Management
Research, vol. 6, no. 1, 2010, pp. 7-18.

184. R.R. Willis, et al., Hughes Aircrafts Widespread Deployment of a Continuously Improving Software
Process, Software Engineering Institute, 1998.

185. M. Lindvall, et al., “Agile Software Development in Large Organizations,” IEEE Computer, vol. 37, no.
12, 2004, pp. 26-34.

186. K. El-Emam, et al., “Modelling the Likelihood of Software Process Improvement: An Exploratory Study,”
Journal of Empirical Software Engineering, vol. 6, no. 3, 2001, pp. 207-229.

187. D. Dorenbos and A. Combelles, “Lessons Learned around the World: Key Success Factors to Enable
Process Change,” IEEE Software, vol. 21, no. 4, 2004, pp. 20-21.

188. W. Chookittikul, et al., “Reducing the Gap between Academia and Industry: The Case for Agile Methods
in Thailand,” Proc. The 8th International Conference on Information Technology: New Generations,
IEEE, 2011, pp. 239-244.

189. R. Morien and O. Tetiwat, “Agile Software Development Methods Adoption in Thailand - A Survey of
Thai Universities,” Proc. Information Systems Education Conference, 2007.

190. H. Coolican, Research Methods and Statistics in Psychology, Hodder and Stoughton, 1999.

191. N. Baddoo and T. Hall, “De-Motivators for Software Process Improvement: An Analysis of Practitioners'
Views,” The Journal of Systems and Software, vol. 66, no. 1, 2003, pp. 23-33.

192. J.C. Nunnally, Psychometric Theory, McGraw-Hill, 1978.

193. A. Acharya, “Agile-From Chaos to Success,” Advances in Computational Sciences and Technology, vol.
3, no. 1, 2010, pp. 17-22.

194. S. Augustine, et al., “Agile Project Management: Steering from the Edges,” Communications of the ACM,
vol. 48, no. 12, 2005, pp. 85-89.

195. S. Berczuk, “Back to Basics: The Role of Agile Principles in Success with and Distributed Scrum Team,”
Proc. The Agile 2007, IEEE, 2007, pp. 382-388.

196. D. Cohen, et al., “An Introduction to Agile Methods,” Advances in Computers, vol. 62, 2004, pp. 1-66.

197. M. Coram and S.A. Bohner, “The Impact of Agile Methods on Software Project Management,” Proc. The
12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems
IEEE, 2005, pp. 363-370.

248

198. M. Cristal, et al., “Usage of SCRUM Practices within a Global Company,” Proc. International Conference
on Global Software Engineering, IEEE, 2008, pp. 222-226.

199. G. DeHondt-II and A. Brandyberry, “Programming in the eXtreme: Critical Characteristics of Agile
Implementations,” e-Informatica Software Engineering Journal, vol. 1, no. 1, 2007, pp. 43-58.

200. J. Highsmith, “Innovation & Quality in Healthcare IT: The Agile Revolution,” 16 June 2010 2004;
http://www.agileprojectmgt.com/docs/healthcareit.pdf.

201. K.H. Judy and I. Krumins-Beens, “Using Agile Practices to Spark Innovation in a Small to Medium Sized
Business,” Proc. The 40th Annual Hawaii International Conference on System Sciences, IEEE, 2007, pp.
275.

202. N.B. Moe, et al., “Understanding Shared Leadership in Agile Development: A Case Study,” Proc. The
42nd Hawaii International Conference on System Sciences, IEEE, 2009, pp. 1-10.

203. M. Qasaimeh, et al., “Comparing Agile Software Processes Based on the Software Development Project
Requirements,” Proc. The 2008 International Conference on Computational Intelligence for Modelling
Control & Automation, IEEE, 2008, pp. 49-54.

204. A.S. Sidky and J.D. Arthur, “Agile Adoption Process Framework,” CoRR abs/cs/0612092, 2006.

205. A.S. Sidky and J.D. Arthur, “Determining the Applicability of Agile Practices to Mission and Life-critical
Systems,” Proc. The 31st Annual IEEE Software Engineering Workshop, IEEE, 2007, pp. 3-12.

206. J. Vanhanen, et al., “Practical Experience of Agility in the Telecom Industry,” Proc. The 4th International
Conference on Extreme Programming and Agile Processes in Software Engineering, Springer-Verlag,
2003, pp. 279-287.

207. V. Agashe, “Agile: Key to Addressing Data Quality ”, June 16, 2010 2009;
http://vishagashe.wordpress.com/2009/07/25/agile-key-to-addressing-data-quality/.

208. S.W. Ambler, “Agile Master Data Management (MDM),” 16 June 2010 2008;
http://www.agiledata.org/essays/masterDataManagement.html.

209. S.W. Ambler, “Evolutionary/Agile Database Best Practices,” 16 June 2010 2010;
http://www.agiledata.org/essays/bestPractices.html.

210. R.G. Mathieu and O. Khalil, “Data Quality in the Database Systems Course,” Data Quality vol. 4, no. 1,
1998.

211. M. Moseley, “Agile Data Governance: The Key to Solving Enterprise Data Quality Problems. Information
Management Special Reports,” 16 June 2010 2008; http://www.information-
management.com/specialreports/2008_105/10001919-1.html?pg=2.

212. N. William, et al., “Data Quality and Agile Methods: A BT Perspective,” Proc. The 11th International
Conference on Information Quality, 2006.

213. H. Xu, “Data Quality Issues for Accounting Information Systems’ Implementation: Systems, Stakeholders,
and Organizational Factors,” Journal of Technology Research, vol. 1, 2000, pp. 1-11.

214. C.V. Bullen and J.F. Rockhart, A Primer on Critical Success Factors, Working Paper No. 69,
Massachusetts Institute of Technology, 1981.

215. M.K. Daskalantonakis, “Achieving Higher SEI Levels,” IEEE Software, vol. 11, no. 4, 1994, pp. 17–24.

216. B. Henderson-Sellers, et al., “Third Generation OO Processes: A Critique of RUP and OPEN from a
Project Management Perspective,” Proc. The 7th Asia-Pacific Software Engineering Conference, IEEE,
2000, pp. 428-435.

217. B. Hailpern and P. Santhanam, “Software Debugging, Testing, and Verification,” IBM Systems Journal,
vol. 41, no. 1, 2002, pp. 4-12.

218. I. Sommerville, Software Engineering (7th Edition), Pearson Addison Wesley, 2004.

219. K. Beck, “Embracing Change With Extreme Programming,” IEEE Computer, vol. 32, no. 10, 1999, pp.
70-77.

220. K. Schwaber and M. Beedle, Agile Software Development with Scrum, Prentice-Hall, 2002.

http://www.agileprojectmgt.com/docs/healthcareit.pdf�
http://vishagashe.wordpress.com/2009/07/25/agile-key-to-addressing-data-quality/�
http://www.agiledata.org/essays/masterDataManagement.html�
http://www.agiledata.org/essays/bestPractices.html�
http://www.information-management.com/specialreports/2008_105/10001919-1.html?pg=2�
http://www.information-management.com/specialreports/2008_105/10001919-1.html?pg=2�

249

221. P. Runeson and M. Höst, “Guidelines for Conducting and Reporting Case Study Research in Software
Engineering,” Empirical Software Engineering, vol. 14, no. 2, 2009, pp. 131-164.

222. ICT-(Ministry-of-Information-and-Communication-Technology), Thailand Progress Report in 2010
AFACT Year Book, The 28th AFACT Meeting in Japan, 2010.

223. NTC, “รายงานสภาพตลาดโทรคมนาคม ณ สิ้นไตรมาสที ่ 2 ป 2554,” 2011;
http://www.nbtc.go.th/index.php?option=com_content&view=article&id=235&Itemid=1.

224. Jasmine, “ขาวในแวดวงโทรคมนาคม: ฮัลโหลตางประเทศแขงเดือด “ทร”ู ดัมพแหลกปลุกโทร.บาน,” 2010;
http://www.jasmine.com/jasmineweb/press/template_industry-th.asp?ID=1071.

225. C. Wohlin, et al., Experimentation in Software Engineering - An Introduction, Kluwer Academic
Publishers, 2000.

226. NTC, “รายงานสภาพตลาดโทรคมนาคม ณ สิ้นไตรมาสที ่ 2 ป 2553,” 2010;
http://www.ntc.or.th/uploadfiles/MK2011_1.pdf.

227. SEI, Process Maturity Profile: CMMI for Development SCAMPI Class A Appraisal Results 2009 End-
Year Update, Software Engineering Institute, 2010.

228. S. Collyer, “Project Management Approaches for Dynamic Environments,” International Journal of
Project Management, vol. 27, no. 4, 2009, pp. 355-364.

229. K. Beck, Planning Extreme Programming, Addison-Wesley, 2000.

230. M. Cohn, Agile Estimating and Planning, Prentice-Hall, 2005.

231. S.C. Misra, et al., “Identifying Some Critical Changes Required in Adopting Agile Practices in Traditional
Software Development Projects,” International Journal of Quality & Relability Management, vol. 27, no.
4, 2010, pp. 451-474.

232. Agile-Manifesto, “Manifesto for Agile Software Development,” June 16, 2010 2001;
http://agilemanifesto.org/.

233. A. Tiwana, “Impact of Classes of Development Coordination Tools on Software Development
Performance: A Multinational Empirical Study,” ACM Transactions on Software Engineering and
Methodology, vol. 17, no. 2, 2008, pp. 11:11-11:47.

234. T. Rojas and M. Pérez, “A Comparison of Three Information System Development Methodologies Related
to Effectiveness/Efficiency Criteria,” Proc. International Symposium on Applied Corporate Computing,
1995.

235. B. Shackel, “The Concept of Usability,” Proc. IBM Software and Information Usability Symposium, IBM
Corporation, 1981, pp. 1-30.

236. V. Bruno and G. Al-Qaimari, “Usability Attributes: An Initial Step toward Effective User-Centered
Development,” Proc. OZHI2004, 2004.

237. O. Frandsen-Thorlacius, et al., “Non-universal Usability?: A Survey of How Usability is understood by
Chinese and Danish Users,” Proc. The 27th International Conference on Human Factors in Computing
Systems, ACM, 2009, pp. 41-50.

238. O. Laitenberger and H.M. Dreyer, “Evaluating the Usefulness and the Ease of Use of a Web-based
Inspection Data Collection Tool ” Proc. The 5th Software Metrics Symposium, IEEE, 1998, pp. 122-132.

239. D. Karlström and P. Runeson, “Integrating Agile Software Development into Stage-gate Managed Product
Development,” Empirical Software Engineering, vol. 11, no. 2, 2006, pp. 203-225.

240. L. Layman, et al., “Essential Communication Practices for Extreme Programming in a Global Software
Development Team,” Information and Software Technology, vol. 48, no. 9, 2006, pp. 781-794.

241. K. Vlaanderen, et al., Case Study Report: Agile Product Management at Planon, Technical Report UU-
CS-2009-005, Department of Information and Computing Science, Utrecht University, 2009.

242. S.W. Ambler, “Best Practices for Agile/Lean Documentation,” 16 June 2010 2001;
http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm.

http://www.nbtc.go.th/index.php?option=com_content&view=article&id=235&Itemid=1�
http://www.jasmine.com/jasmineweb/press/template_industry-th.asp?ID=1071�
http://www.ntc.or.th/uploadfiles/MK2011_1.pdf�
http://agilemanifesto.org/�
http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm�

250

243. S. Ratanotayanon, et al., “After the Scrum: Twenty Years of Working without Documentation,” Proc. The
8th International Conference on Software Engineering and Knowledge Engineering, 2006, pp. 194-199.

244. D. Spann, “Agile: Changing the Organization,” The Executive Update, 7 October 2011 2005;
http://aamngt.com/files/changingtheorg.pdf.

245. J.P. Kotter, “Leading Changes: Why Transformation Efforts Fail,” Harvard Business Review, vol. 73, no.
2, 1995, pp. 59-67.

246. A. Cockburn and J. Highsmith, “Agile Software Development: The People Factor,” Computer, vol. 34, no.
11, 2001, pp. 131-133.

247. S.T. Solansky, “Leadership Style and Team Processes in Self-Managed Teams,” Journal of Leadership &
Organizational Studies, vol. 14, no. 4, 2008, pp. 332-341.

248. M. Alavi and D.E. Leidner, “Review: Knowledge Management and Knowledge Management Systems:
Conceptual Foundations and Research Issues,” MIS Quarterly, vol. 25, no. 1, 2001, pp. 107-136.

249. B.D. Janz and P. Prasarnphanich, “Understanding Knowledge Creation, Transfer, and Application:
Investigating Cooperative, Autonomous Systems Development Teams,” Proc. The 38th Annual Hawaii
International Conference on System Sciences - Track 8, IEEE, 2005, pp. 248a.

250. J. Sapsed, et al., “From Here to Eternity?: The Practice of Knowledge Transfer in Dispersed and Co-
located Project Organizations,” European Planning Studies, vol. 13, no. 6, 2005, pp. 831-851.

251. L. Argote and P. Ingram, “Knowledge Transfer: A Basis for Competitive Advantage in Firms,”
Organizational Behavior and Human Decision Processes vol. 82, no. 1, 2000, pp. 150-169.

252. E. Darr and T. Kurtzberg, “An Investigation of Partner Similarity Dimensions on Knowledge Transfer,”
Organizational Behavior and Human Decision Processes, vol. 82, no. 1, 2000, pp. 28-44.

253. M.C. Becker and M.P. Knudsen, “Intra and Inter-Organizational Knowledge Transfer Processes:
Identifying the Missing Links,” 20 April 2011 2006; http://www3.druid.dk/wp/20060032.pdf.

254. V. Ward, et al., “Developing a Framework for Transferring Knowledge into Action: A Thematic Analysis
of the Literature,” Journal of Health Services Research & Policy, vol. 14, no. 3, 2009, pp. 156-164.

255. I. Martinkenaite, “Antecedents and Consequences of Inter-Organizational Knowledge Transfer-Emerging
Themes and Openings for Further Research,” Baltic Journal of Management, vol. 6, no. 1, 2011, pp. 53-
70.

256. G.T. Timbrell, et al., “Impediments to Inter-Firm Transfer of Best Practice in an Enterprise Systems
Context,” Proc. The 7th Americas Conference on Information Systems, 2001, pp. 1084-1090.

257. V. Ward, et al., Knowledge Brokering: Exploring the Process of Transferring Knowledge into Action,
University of Leeds, 2010.

258. J.L. Cummings and B.-S. Teng, “Transferring R&D Knowledge: The Key Factors Affecting Knowledge
Transfer Success,” Journal of Engineering and Technology Management, vol. 20, no. 1-2, 2003, pp. 39-
68.

259. S.I. Tannenbaum and G.M. Alliger, Knowledge Management: Clarifying the Key Issues, IHRIM, 2000.

260. M. Jelavic, “Socio-Technical Knowledge Management and Epistemological Paradigms: Theoretical
Connections at the Individual and Organisational Level,” Interdisciplinary Journal of Information,
Knowledge, and Management, vol. 6, 2011, pp. 1-16.

261. M. Venzin, et al., “Future Research into Knowledge Management,” Knowing in Firms: Understanding,
Managing and Measuring Knowledge, G. von-Krogh, et al., eds., Sage Publications, 2000, pp. 26-66.

262. I. Nonaka, et al., “SECI, Ba and Leadership: A Unified Model of Dynamic Knowledge Creation ” Long
Range Planning, vol. 33, no. 1, 2000, pp. 5-34.

263. P.M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization, Doubleday
Business, 1990.

264. G.V. Krogh and J. Roos, “Conversation Management,” European Management Journal, vol. 13, no. 4,
1995, pp. 390-394.

http://aamngt.com/files/changingtheorg.pdf�
http://www3.druid.dk/wp/20060032.pdf�

251

265. B. Curtis, et al., “A Field Study of the Software Design Process for Large Systems,” Communications of
the ACM, vol. 31, no. 11, 1988, pp. 1268-1287.

266. Y. Duan, et al., “Identifying Key Factors Affecting Transnational Knowledge Transfer,” Information and
Management, vol. 47, no. 7-8, 2010, pp. 356-363.

267. C.E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press,
1949.

268. K.M. McKenzie, “Exchanging 'PayLoad' Knowledge: Interpersonal Knowledge Exchange within
Consulting Communities of Practice,” Swinburne University of Technology, 2002.

269. E. Hollnagel and D.D. Woods, Joint Cognitive Systems: Foundations of Cognitive Systems Engineering,
CRC Press, 2005.

270. E.M. Rogers, A History of Communications Study: A Biographical Approach, The Free Press, 1994.

271. L.H. Ling, “From Shannon-Weaver to Boisot: A Review on the Research of Knowledge Transfer Model,”
Proc. International Conference on Wireless Communications, Networking and Mobile Computing, IEEE,
2007, pp. 5439-5442.

272. E.C. Nevis, et al., “Understanding Organizations as Learning Systems,” Sloan Management Review, vol.
36, no. 2, 1995, pp. 73-85.

273. A.C. Inkpen and A. Dinur, The Transfer and Management of Knowledge in the Multinational
Corporation: Considering Context, Working Paper 98-16, Carnegie Bosch Institute, 1998.

274. A.L. Chua and S.L. Pan, “Knowledge Transfer and Organizational Learning in IS Offshore Sourcing,”
Omega, vol. 36, no. 2, 2008, pp. 267-281.

275. K. Yokozawa, et al., “A Conceptual Model for the International Transfer of Japanese Management
Systems,” Proc. The 14th International Annual EurOMA Conference, 2007.

276. V.A. Cooper and S. Lichtenstein, “Supporting Knowledge Transfer in Web-Based Managed IT Support,”
Journal of Systems and Information Technology, vol. 12, no. 2, 2010, pp. 140-160.

277. C.Y. Li and C.T. Hsieh, “The Impact of Knowledge Stickiness on Knowledge Transfer Implementation,
Internalization, and Satisfaction for Multinational Corporations,” International Journal of Information
Management, vol. 29, no. 6, 2009, pp. 425-435.

278. G. Elwyn, et al., “Sticky Knowledge: A Possible Model for Investigating Implementation in Healthcare
Contexts,” Implementation Science, vol. 2, no. 44, 2007.

279. E.W.K. Tsang, “Transferring Knowledge to Acquisition Joint Ventures: An Organizational Unlearning
Perspective,” Management Learning, vol. 39, no. 1, 2008, pp. 5-20.

280. V. Albino, et al., “Knowledge Transfer and Inter-Firm Relationships in Industrial Districts: The Role of
the Leader Firm,” Technovation, vol. 19, no. 1, 1999, pp. 53-63.

281. S. Betz, et al., “Knowledge Transfer in IT Offshore Outsourcing Projects: An Analysis of the Current State
and Best Practices,” Proc. The 5th IEEE International Conference on Global Software Engineering, IEEE,
2010, pp. 330-335.

282. J. Soini, “An Approach to Knowledge Transfer in Software Measurement,” Informatica, vol. 31, 2007, pp.
437-446.

283. C. Scott and S. Sarker, “Examining the Role of the Communication Channel Interface and Recipient
Characteristics on Knowledge Internalization: A Pragmatist View,” IEEE Transactions on Professional
Communication, vol. 53, no. 2, 2010, pp. 116-131.

284. L. Pérez-Nordtvedt, et al., “Effectiveness and Efficiency of Cross-Border Knowledge Transfer: An
Empirical Examination,” Journal of Management Studies, vol. 45, no. 4, 2008, pp. 714-744.

285. K.U. Koskinen, “Metaphoric Boundary Objects as Co-ordinating Mechanisms in the Knowledge Sharing
of Innovation Processes,” European Journal of Innovation Management, vol. 8, no. 3, 2005, pp. 323-335.

286. B.K. Brockman and R.M. Morgan, “The Role of Existing Knowledge in New Product Innovativeness and
Performance,” Decision Sciences, vol. 34, no. 2, 2003, pp. 385-419.

252

287. M. Strohmaier, et al., “Knowledge Problems in Process-Oriented Organizations: A Pattern Approach,” The
3rd Conference Professional Knowledge Management - Experiences and Visions, K.-D. Althoff, et al.,
eds., 2005, pp. 241-244.

288. S. Sarker, et al., “Knowledge Transfer in Virtual Systems Development Teams: An Exploratory Study of
Four Key Enablers,” IEEE Transactions on Professional Communication, vol. 48, no. 2, 2005, pp. 201-
218.

289. A.K. Gupta and V. Govindarajan, “Knowledge Flows Within Multinational Corporations,” Strategic
Management Journal, vol. 21, 2000, pp. 473-496.

290. W.M. Cohen and D.A. Levinthal, “Absorptive Capacity: A New Perspective on Learning and Innovation,”
Administrative Science Quarterly, vol. 35, no. 1, 1990, pp. 128-152.

291. G. Szulanski, “Appropriating Rents from Existing Knowledge: Intra-firm Transfer of Best Practice,”
INSEAD, Fontainbleau, 1995.

292. R. Reagans and B. McEvily, “Network Structure and Knowledge Transfer: The Effects of Cohesion and
Range,” Administrative Science Quarterly, vol. 48, no. 2, 2003, pp. 240-267.

293. R.T.A.J. Leenders, et al., “Virtuality, Communication, and New Product Team Creativity: A Social
Network Perspective,” Journal of Engineering and Technology Management, vol. 20, no. 1-2, 2003, pp.
69-92.

294. P.R. Carlile, “A Pragmatic View of Knowledge and Boundaries: Boundary Objects in New Product
Development,” Organization Science, vol. 13, no. 4, 2002, pp. 442-455.

295. S.M. Jasimuddin, “Exploring Knowledge Transfer Mechanisms: The Case of a UK-Based Group within a
High-Tech Global Corporation,” International Journal of Information Management, vol. 27, no. 4, 2007,
pp. 294–300.

296. S.O.S. Syed-Ikhsan and F. Rowland, “Knowledge Management in a Public Organization: A Study on the
Relationship between Organizational Elements and the Performance of Knowledge Transfer,” Journal of
Knowledge Management, vol. 8, no. 2, 2004, pp. 95-111.

297. M. Alavi, et al., “An Empirical Examination of the Influence of Organizational Culture on Knowledge
Management Practices,” Journal of Management Information Systems, vol. 22, no. 3, 2005, pp. 191-224.

298. C. Liyanage, et al., “Knowledge Communication and Translation-A Knowledge Transfer Model,” Journal
of Knowledge Management, vol. 13, no. 3, 2009, pp. 118-131.

299. A.M. Ortiz-Laverde, et al., “Knowledge Processes: On Overview of the Principal Models,” Proc. The 3rd
European Knowledge Management Summer School, 2003, pp. 1-6.

300. A.C.L. DeMeyer, “Tech Talk: How Managers are Stimulating Global R and D Communication,” Sloan
Management Review, vol. 32, no. 3, 1991, pp. 49–58.

301. T.J. Allen, Managing the Flow of Technology: Technology Transfer and the Dissemination of
Technological Information within the R and D Organization, MIT Press, 1977.

302. S. Watson and K. Kewett, “A Multi-Theoretical Model of Knowledge Transfer in Organizations:
Determinants of Knowledge Contribution and Knowledge Reuse,” Journal of Management Studies, vol.
43, no. 2, 2006, pp. 141-173.

303. M. Gilbert and M. Cordey-Hayes, “Understanding the Process of Knowledge Transfer to Achieve
Successful Technological Innovation,” Technovation, vol. 16, no. 6, 1996, pp. 301-312.

304. J. Wan, et al., “Research on Knowledge Transfer Influencing Factors in Software Process Improvement,”
Journal of Software Engineering and Applications, vol. 3, no. 2, 2010, pp. 134-140.

305. G.T.M. Hult, et al., “Organizational Learning in Global Purchasing: A Model and Test of Internal Users
and Corporate Buyers,” Decision Sciences, vol. 31, no. 2, 2002, pp. 293–325.

306. S.F. Slater and J.C. Narver, “Market Orientation and the Learning Organization,” Journal of Marketing,
vol. 59, no. 3, 1995, pp. 63–74.

307. B.D. Janz and P. Prasarnphanich, “Understanding the Antecedents of Effective Knowledge Management:
The Importance of a Knowledge-Centered Culture,” Decision Sciences, vol. 34, no. 2, 2003, pp. 351–384.

253

308. S. Chen, “Task Partitioning in New Product Development Teams: A Knowledge and Learning
Perspective,” Journal of Engineering and Technology Management, vol. 22, no. 4, 2005, pp. 291-314.

309. J. García, et al., “Design Guidelines for Software Processes Knowledge Repository Development,”
Information and Software Technology, vol. 53, no. 8, 2011, pp. 834-850.

310. P. Jackson and J. Klobas, “Building Knowledge in Projects: A Practical Application of Social
Constructivism to Information Systems Development,” International Journal of Project Management, vol.
26, no. 4, 2008, pp. 329-337.

311. I. Oshri, et al., “Knowledge Transfer in Globally Distributed Teams: The Role of Transactive Memory,”
Information Systems Journal, vol. 18, no. 6, 2008, pp. 593-616.

312. T.L. Roberts, et al., “Utilizing Knowledge Links in the Implementation of System Development
Methodologies,” Information and Software Technology, vol. 43, no. 11, 2001, pp. 635-640.

313. O. Steen, “Practical Knowledge and Its Importance for Software Product Quality,” Information and
Software Technology, vol. 49, no. 6, 2007, pp. 625-636.

314. O. Volkoff, et al., “Enterprise Systems, Knowledge Transfer and Power Users,” The Journal of Strategic
Information Systems, vol. 13, no. 4, 2004, pp. 279-304.

315. M.J. Leseure, et al., “Adoption of Promising Practices: A Systematic Review of the Evidence,”
International Journal of Management Reviews, vol. 5, no. 3-4, 2004, pp. 169-190.

316. J. Chen and R.J. McQueen, “Knowledge Transfer Processes for Different Experience Levels of
Knowledge Recipients at an Offshore Technical Support Center,” Information Technology & People, vol.
23, no. 1, 2010, pp. 54-79.

317. W.D. Hendricson, et al., “Electronic Curriculum Implementation at North American Dental Schools,”
Journal of Dental Education, vol. 68, no. 10, 2004, pp. 1041-1057.

318. J.A. Nickerson and T.R. Zenger, “A Knowledge-Based Theory of the Firm-The Problem-Solving
Perspective,” Organization Science, vol. 15, no. 6, 2004, pp. 617-632.

319. L.D. Kiel, Knowledge Management, Organizational Intelligence and Learning, and Complexity: v. 3,
EOLSS Publishers Co., Ltd, 2009.

320. A.H. Gold, et al., “Knowledge Management: An Organizational Capabilities Perspective,” Journal of
Management Information Systems, vol. 18, no. 1, 2001, pp. 185-214.

321. P. Neergaard, “Configurations in Quality Management,” Scandinavian Journal of Management, vol. 18,
no. 2, 2002, pp. 173-195.

322. S.L. Ahire and T. Ravichandran, “An Innovation Diffusion Model of TQM Implementation,” IEEE
Transactions on Engineering Management, vol. 48, no. 4, 2001, pp. 445-464.

323. W.A. Taylor and G.H. Wright, “A Longitudinal Study of TQM Implementation: Factors Influencing
Success and Failure,” Omega, vol. 31, no. 2, 2003, pp. 97-111.

324. J. Bessant, et al., “Putting Supply Chain Learning into Practice,” International Journal of Operations &
Production Management, vol. 23, no. 2, 2003, pp. 167-184.

325. J.A.-M. Coyle-Shapiro and P.C. Morrow, “The Role of Individual Differences in Employee Adoption of
TQM Orientation,” Journal of Vocational Behavior, vol. 62, no. 2, 2003, pp. 320-340.

326. S.L. Brown and K.M. Eisenhardt, “Product Development: Past Research, Present Findings, and Future
Directions,” The Academy of Management Review, vol. 20, no. 2, 1995, pp. 343-378.

327. S.C. Goh, “Managing Effective Knowledge Transfer: An Integrative Framework and Some Practice
Implications,” Journal of Knowledge Management, vol. 6, no. 1, 2002, pp. 23-30.

328. M.T. Hansen, “The Search-Transfer Problem: The Role of Weak Ties in Sharing Knowledge across
Organization Subunits,” Administrative Science Quarterly, vol. 44, no. 1, 1999, pp. 82-111.

329. E. Fernández, et al., “Typology and Strategic Analysis of Intangible Resources: A Resource-Based
Approach,” Technovation, vol. 20, no. 2, 2000, pp. 81-92.

330. R. Chan, “Knowledge Management for Implementation in SMEs,” 3rd Annual SAP Asia Pacific, Institute
of Higher Learning Forum, 1999.

254

331. A. Antonova, et al., “Knowledge Management and Learning in the Organizational Context,” Proc. 3rd E-
Learning Conference, 2006, pp. 63-67.

332. A. Patel, “Current Status and Future Directions of Software Architectures for Telecommunications,”
Computer Communications, vol. 25, no. 2, 2002, pp. 121-132.

333. J. Qi, et al., “Knowledge Management in OSS-An Enterprise Information System for the
Telecommunications Industry,” Systems Research and Behavioral Science, vol. 23, no. 2, 2006, pp. 177-
190.

334. TeleManagementForum, Enhanced Telecom Operations Map (eTOM) - The Business Process Framework
for the Information and Communications Services Industry - Release 5.0, GB921, TeleManagement
Forum, 2005.

335. H.H. Chang, et al., “Knowledge Characteristics, Implementation Measures, and Performance in Taiwan
Hospital Organization,” International Journal of Business and Information, vol. 4, no. 1, 2009, pp. 23-44.

336. I. Bouty, “Interpersonal and Interaction Influences on Informal Resources Exchanges between R&D
Researchers Across Organizational Boundaries,” Academy of Management Journal, vol. 43, no. 1, 2000,
pp. 50-65.

337. L. Argote, et al., “Knowledge Transfer in Organizations: Learning from the Experience of Others,”
Organizational Behavior and Human Decision Processes, vol. 82, no. 1, 2000, pp. 1-8.

338. J. Fulk and G. DeSanctis, “Electronic Communication and Changing Organizational Forms,” Organization
Science, vol. 6, no. 4, 1995, pp. 337-349.

339. N. Gorovaia and J. Windsperger, “The Use of Knowledge Transfer Mechanisms in Franchising,”
Knowledge and Process Management, vol. 17, no. 1, 2010, pp. 12-21.

340. A.C. Inkpen and A. Dinur, “Knowledge Management Processes and International Joint Ventures,”
Organization Science, vol. 9, no. 4, 1998, pp. 454-468.

341. V.C. Sheer and L. Chen, “Improving Media Richness Theory: A Study of Interaction Goals, Message
Valence, and Task Complexity in Manager-Subordinate Communication,” Management Communication
Quarterly, vol. 18, no. 1, 2004, pp. 76-93.

342. J.F.L. Hong and T.V. Nguyen, “Knowledge Embeddedness and the Transfer Mechanisms in Multinational
Corporations,” Journal of World Business, vol. 44, no. 4, 2009, pp. 347-356.

343. B. Nicholson and S. Sahay, “Embedded Knowledge and Offshore Software Development,” Information
and Organization, vol. 14, no. 4, 2004, pp. 329-365.

344. S.B. Basri and R.V. O'Connor, “Knowledge Management in Software Process Improvement: A Case
Study of Very Small Entities,” Knowledge Engineering for Software Development Life Cycles: Support
Technologies and Applications, M. Ramachandran, ed., 2011, pp. 273-288.

345. M.M. Crossan, et al., “An Organizational Learning Framework: From Intuition to Institution,” The
Academy of Management Review, vol. 24, no. 3, 1999, pp. 522-537.

346. D. Lee, et al., “The Role of Organizational and Individual Characteristics in Technology Acceptance,”
International Journal of Human-Computer Interaction, vol. 25, no. 7, 2009, pp. 623-646.

347. H.A. Shibly, “Human Resources Information Systems Success Assessment: An Integrative Model,”
Australian Journal of Basic and Applied Sciences, vol. 5, no. 5, 2011, pp. 157-169.

348. S. Funilkul, et al., “An Evaluation Framework for e-Government Services Based on Principles Laid Out in
COBIT, the ISO 9000 Standard, and TAM,” Proc. The 17th Australasian Conference on Information
Systems, AIS Electronic Library, 2006, pp. Paper 3.

349. J.C. Henderson and S. Lee, “Managing I/S Design Teams: A Control Theories Perspective,” Management
Science, vol. 38, no. 6, 1992, pp. 757-777.

350. U. Lichtenthaler, “Absorptive Capacity, Environmental Turbulence, and the Complementarity of
Organizational Learning Processes,” The Academy of Management Journal, vol. 52, no. 4, 2009, pp. 822-
846.

255

351. G.S. McMillan, et al., “The Impact of Publishing and Patenting Activities on New Product Development
and Firm Performance: The Case of the US Pharmaceutical Industry,” International Journal of Innovation
Management, vol. 7, no. 2, 2003, pp. 213-221.

352. L.R. Newey and A.D. Shulman, “Systemic Absorptive Capacity: Creating Early-to-Market Returns
through R&D Alliances,” R&D Management, vol. 34, no. 5, 2004, pp. 495-504.

353. A.J. Davies and A.K. Kochhar, “A Framework for the Selection of Best Practices,” International Journal
of Operations & Production Management, vol. 20, no. 10, 2002, pp. 1203-1217.

354. A. Petroni, “Critical Factors of MRP Implementation in Small and Medium-Sized Firms,” International
Journal of Operations & Production Management, vol. 22, no. 3, 2002, pp. 329-348.

355. T. Guimaraes, “Field Testing of the Proposed Predictors of BPR Success in Manufacturing Firms,”
Journal of Manufacturing Systems, vol. 18, no. 1, 1999, pp. 53-65.

356. J.M. Beyer, et al., “Contrasts in Enacting TQM: Mechanistic vs. Organic Ideology and Implementation,”
Journal of Quality Management, vol. 2, no. 1, 1997, pp. 3-39.

357. S. Sundaresan and Z. Zhang, “Facilitating Knowledge Transfer in Organizations through Incentive
Alignment and IT Investment,” Proc. The 37th Annual Hawaii International Conference on System
Sciences, IEEE, 2004.

358. G. Szulanski, “Appropriability on the Challenge of Scope: Bank One Routinizes Replication,” The Nature
and Dynamics of Organizational Capabilities, G. Dosi, et al., eds., Oxford University Press, 2000.

359. S. Drew, “BPR in Financial Services: Factors for Success ” Long Range Planning, vol. 27, no. 5, 1994, pp.
25-41.

360. K.-C. Kim and I. Im, “The Effects of Electronic Supply Chain Design (e-SCD) on Coordination and
Knowledge Sharing: An Empirical Investigation,” Proc. The 35th Annual Hawaii International
Conference on System Sciences, IEEE, 2002, pp. 2149 - 2158

361. D. Šmite and C. Wohlin, “Software Product Transfers: Lessons Learned from a Case Study,” Proc. The
5th IEEE International Conference on Global Software Engineering, IEEE, 2010, pp. 97-105.

256

257

Appendices

258

259

Appendix A: Semi-Structured Interview Guide for
Chapter 2

Questions for warm-up:

1. What is your professional background?
2. What is your role and responsibility in software development lifecycles?

Main body of the interview:

1. What software development methods are used for software projects?
2. What are your project characteristics?
3. What are your team characteristics?
4. How is your working environment, e.g., relationships between team members,

communications, and sufficient commitment and support from management?
5. How do you perform software development (e.g., what software process and how to

perform)?
6. What are challenges and issues that you encountered in software projects? Can those

challenges and issues be solved? Why and why not?
7. What are the critical problems?
8. How is the degree of requirements volatility? How do you deal with it?
9. Is the work done and delivered as committed? Why and why not?
10. Are you satisfied with the software products? Why and why not?
11. How do you share knowledge to your team members?

260

Appendix B: Questionnaire for Chapter 4

Company: __

Name: ___

Education (Bachelor’s, Master’s, or Doctoral degrees): _______________________________

Current position: ___

Years in that position: ___

Years in agile software development: ___

Agile methods currently used (if any, e.g., Scrum, eXtreme Programming (XP), and Feature
Driven Development (FDD): ___

Please rank the following agile practices from 1 to 5 (1=Not at all important or not
implemented; 2=Not very important; 3=Quite Important; 4=Very Important; and
5=Extremely important and need to be implemented) as well as suggest your agile practices
that your organization is implementing for success in agile software development.

(Note: Cronbach’s alpha (α) was used to evaluate the reliabilities of this questionnaire
instrument. The results reveal that the Cronbach’s alpha scale of the entire scale is 0.878 and
the Cronbach’s alpha scales of the items range between 0.864 and 0.888 as presented in the
Table. All items having the coefficient of above 0.7 demonstrate acceptable reliability [192].)

Influential
Factors

Lists of Practices Rating α

Agile
Software
Development
Process (SD)

SD1. A project has been established with well-defined coding standards
up front.

SD2. A project has been established by pursuing simple design.
SD3. A project has been established with rigorous refactoring activities.
SD4. A project has been established with right amount of documentation.
SD5. A project has been established with correct integration testing.
SD6. A project has been established with short increments.
SD7. Most important features have been first delivered.

Your agile practices:
1.
2.
3.

0.873

0.874
0.879
0.871
0.878
0.878
0.875

Appropriate
Methods,
Techniques,
and Tools
(MT)

MT1. Appropriate methods, techniques and tools have been assessed and
performed.

Your agile practices:
1.
2.
3.

0.887

261

Influential
Factors

Lists of Practices Rating α

Data Quality
(DQ)

DQ1. Plans or strategies to address data quality problems have been
performed.

DQ2. Common data standards or guidelines have been conducted.
DQ3. Software development teams have their own working

environments.
DQ4. Basic skills have been trained to people who relevant to data

quality.
DQ5. Data governance to ensure the quality, availability, integrity,

security, and usability has been performed.
DQ6. Database regression testing has been performed.
DQ7. Many types of database testing (e.g., database input, database

output, stored procedures, column constraints, default column
values) have been performed.

DQ8. The data aspects of software have been modeled iteratively and
incrementally.

Your agile practices:
1.
2.
3.

0.872

0.874
0.871

0.872

0.878

0.882
0.888

0.885

Management
Commitment
(MC)

MC1. Management provides strong commitment and presence.
MC2. Management supports the software development.
MC3. Management is willing to participate in assessment and

development activities.
MC4. Management is committed to provide training and resources.

Your agile practices:
1.
2.
3.

0.884
0.880
0.876

0.876

Organizational
Environment
(OE)

OE1. Cooperative organizational culture has been established instead of
hierarchical culture.

OE2. Oral culture placing high value on face-on-face communication has
been established.

OE3. Agile has been promoted and accepted throughout the organization.
OE4. All the key stakeholders are involved in development and

improvement activities.
OE5. Management has provided strong leadership-collaboration; meaning

management understands that collaboration on information to make
informed decisions and trusting individuals to apply their
competency in effective ways is important.

OE6. Facility with proper agile-style work environment has been
established.

OE7. Reward system appropriate for agile software development has
been promoted amongst the management and team members.

Your agile practices:
1.
2.
3.

0.875

0.865

0.877
0.873

0.875

0.878

0.878

262

Influential
Factors

Lists of Practices Rating α

Project
Management
Process (PM)

PM1. Agile-oriented project management process has been followed.
PM2. Cost evaluation has been done up front.
PM3. Risk analysis has been done up front.
PM4. A process has been established to monitor and track the progress of

the project.
PM5. Strong face-to-face communication has been established as a

primary communication method.
PM6. Teams have honored their regular working schedule.
PM7. Work has been done to continuously improve a project

management process.

Your agile practices:
1.
2.
3.

0.878
0.878
0.882
0.887

0.879

0.881
0.868

Project Type
(PT)

PT1. Project characteristics (i.e., extreme, complex, or high-change) have
been assessed the suitability of software process development

PT2. Project criticality (i.e., life-critical and non-life-critical) has been
assessed the suitability of software process development.

Your agile practices:
1.
2.
3.

0.872

0.876

Reviews (RE)

RE1. Organization has developed a review process for development and
improvement requirements.

RE2. Work has been done to continuously monitor existing software
development processes.

RE3. Organization has developed a process in order to review influential
factors of software development.

RE4. Responsibilities have been assigned to conduct continuous software
process development and improvement reviews within organization.

RE5. All the key stakeholders are involved in software process
development and improvement reviews.

Your agile practices:
1.
2.
3.

0.871

0.876

0.864

0.873

0.876

Team
Capability
(TC)

TC1. People have been selected as team members who have high
competence and expertise.

TC2. People have been elected as team members who have great
motivation.

TC3. People have been selected as project managers or team leaders who
have an adaptive management style.

TC4. People have been selected as project managers or team members
who are knowledgeable in an agile process.

TC5. People who have track record of different successful software
projects have been selected for development activities.

TC6. Role and responsibilities have clearly been assigned to each team

0.874

0.877

0.868

0.871

0.873

0.868

263

Influential
Factors

Lists of Practices Rating α

member.
TC7. A process has been established to monitor the progress of each team

member.
TC8. A process has been established to collect and analyze the feedback

data from each team member and to extract the main lessons
learned.

Your agile practices:
1.
2.
3.

0.878

0.873

Team
Environment
(TE)

TE1. Collocation of the whole team has been established.
TE2. Coherent and self-organizing teamwork has been established.
TE3. A project has been established with no multiple independent teams.
TE4. A process has been established to monitor the progress of each

team.
TE5. A process has been established to collect and analyze the feedback

data from each team and to extract the main lessons learned.
TE6. A process has been established to distribute the lessons learned to

the relevant stakeholders and team members.
TE7. Team members are aware of their roles and responsibilities during

software development and improvement.

Your agile practices:
1.
2.
3.

0.883
0.879
0.875
0.882

0.879

0.873

0.880

Team Size
(TS)

TS1. Project team size has been assessed for the suitability of the project.

Your agile practices:
1.
2.
3.

0.874

Training
Support (TR)

TR1. Appropriate training has been provided to team members for
developing the skills and knowledge needed to perform the software
project.

TR2. Sufficient resources and additional time to participate in training
will be provided to team members.

TR3. Training program activities are reviewed on a periodic basis.
TR4. All future group or individual trainings of software development are

planned.

Your agile practices:
1.
2.
3.

0.869

0.869

0.866
0.864

User (Staff)
Involvement

UI1. The software development effort has been staffed by people who
indicated interest and commitment in the effort.

UI2. A project has been established with good user relationship.
UI3. A project has been established with user commitment, collaboration,

0.875

0.875
0.880

264

Influential
Factors

Lists of Practices Rating α

and participation.
UI4. Users directly involving the project have had full authority.
UI5. Work has been done to facilitate team members during software

development.
UI6. Work has been done to allocate the time necessary to make user

participation successful.

Your agile practices:
1.
2.
3.

0.883
0.879

0.876

265

Appendix C: Semi-Structured Interview Guide for
Chapter 5

The respondent was informed about the overall interview topics, the important to
record the interview, and that only the researcher would have access to the transcript. The
respondent is asked if he/she would agree to the interview being recorded. Facilitating
discussions, the interview questions are matched with their relevant research questions in
Chapter 5 presented as follows. A list of those research questions (RQs) is also presented.

RQ5-1: How can the developed software process maintenance framework be
executed efficiently and effectively in the given context?

RQ5-2: What changes are necessary to adapt the developed software process
maintenance framework?

RQ5-3: What are the challenges that impact software development, using the
developed software process maintenance framework?

RQ5-4: How do practitioners transfer new knowledge into their existing software
processes?

RQ5-5: What is the developed software process maintenance framework perceived
usefulness and ease of use?

RQ5-6: What are the requirements for successful adaptation of the developed
software process maintenance framework?

Questions for warm-up:

Research
Question

Interview Question

RQ5-1

1. What is your professional background? (e.g., how long in the company, how long in the
telecommunications area, and how long in the software development area)

2. What is your role and responsibility in the case project and earlier software projects?

Main body of the interview with respect to the Software Development Maturity (SDM)
model:

Research
Question

Interview Question

RQ5-1,
RQ5-2

1. What is your existing software process improvement approach? How has it been done in
earlier software projects?

RQ5-1 2. Do you agree with the obtained SDM assessment results? Why and why not?
RQ5-3 3. What are the challenges or issues that you encountered in the case project, using the SDM

model?
4. What are pros and cons of the SDM model?

266

RQ5-5 5. Is the SDM model useful? Is the SDM model easy to understand and follow?
6. How do you satisfy with the SDM model?
7. Please rank from 1 to 5 your satisfaction with the SDM model. (1= Strongly Dissatisfy and

5= Strongly Satisfy)
8. Will you continue to use the SDM model?

Main body of the interview with respect to the integrated PMBOK-Scrum model:

Research
Question

Interview Question

RQ5-1,
RQ5-2

1. How do you perform software development? How was it done in earlier software projects?
2. How is your working environment, e.g., relationships between team members,

communications, and sufficient commitment and support from management? What are pros
and cons of your working environments? How was it done in earlier software projects?

3. What project management aspects are planned?
4. How do you deal with changes in the case project? How was it done in earlier software

projects?
5. Is the work done and delivered as committed? Why and why not? How was it done in

earlier software projects?
6. How much do you perform documentation? How was it done in earlier software projects?
7. How is your improvement of team performance and productivity? How was it in earlier

software projects?
8. How do you perform the verification and validation? How was it done in earlier software

projects?
RQ5-1,
RQ5-2,
RQ5-4

9. How does the team communicate? What communication channels are established? How was
it done in earlier software projects?

10. How do you share relevant project information with team members? How was it done in
earlier software projects?

11. Do key stakeholders and team members attend all main meetings? How was it done in
earlier software projects?

RQ5-1,
RQ5-3

12. How do you build the team? What are the challenges or issues that you encountered
regarding this matter?

RQ5-2,
RQ5-3

13. What are the challenges or issues that you encountered in the case project vs. in earlier
software project? Can those challenges or issues be solved in the case project?

RQ5-3 14. What are pros and cons of the software processes (e.g., sprint planning, sprint executions,
sprint reviews, and sprint retrospectives)?

RQ5-4 15. How do you share knowledge to your team members?
16. How to integrate the implemented integrated PMBOK-Scrum processes into your existing

practices?
RQ5-5 17. Is the integrated PMBOK-Scrum model suitable to your software development?

18. Is the integrated PMBOK-Scrum model useful? Is the integrated PMBOK-Scrum model
easy to understand and follow?

19. Are you satisfied with the model?
20. Please rank from 1 to 5 your satisfaction with the integrated PMBOK-Scrum model. (1=

Strongly Dissatisfy and 5= Strongly Satisfy)
21. Will you continue to use the integrated PMBOK-Scrum model?
22. Do you have any other opinion about the framework experience?

267

Main body of the interview with respect to the prototype tool:

Research
Question

Interview Question

RQ5-3 1. What are the challenges or issues that you encountered, using the tool?
2. What are pros and cons of the tool?

RQ5-5 3. Is the tool useful? Is the tool easy to use?
4. Are you satisfied with the tool? Why and why not?
5. Please rank from 1 to 5 your satisfaction with the tool. (1= Strongly Dissatisfy and 5=

Strongly Satisfy)
6. Will you continue to use tool?

268

Appendix D: TAM-Based Questionnaire for
Chapter 5

Please mark with X in the box that indicates your desire.

1. Software Process Maintenance Framework
Perceived Usefulness:

Item Strongly
Agree

Agree Neither
Agree nor
Disagree

Disagree Strongly
Disagree

PU1. Using the framework would enable me to
accomplish my job more quickly.

PU2. Using the framework would enhance my
job performance.

PU3. Using the framework would improve the
quality of software process and product.

PU4. Using the framework would increase my
productivity.

PU5. Using the framework would enhance my
effectiveness on the job.

PU6. Using the framework would make it easier
to do my job.

PU7. I would find the framework advantageous
in my job.

Perceived Ease of Use:

Item Strongly
Agree

Agree Neither
Agree nor
Disagree

Disagree Strongly
Disagree

PEOU1. Learning to use the framework would be
easy for me.

PEOU2. My interaction with the framework
would be clear and understandable.

PEOU3. It was easy to become skilful using the
framework.

PEOU4. It was easy to remember how to perform
tasks using the framework.

PEOU5. I would find the framework easy to use.

269

Intention to Use:

Item Strongly
Agree

Agree Neither
Agree nor
Disagree

Disagree Strongly
Disagree

IU1. Assuming the framework would be
available on my job, I would use the framework
to assess the implemented process and software
development maturity on a regular basis in the
future.

IU2. Assuming the framework would be
available on my job, I would use the framework
to develop an integrated PMBOK-Scrum process
on a regular basis in the future.

IU3. I would continue using the framework to
assess the implemented process and software
development maturity.

IU4. I would continue using the framework to
develop an integrated PMBOK-Scrum process.

2. Software Process Assessment and Development Tool
Perceived Usefulness:

Item Strongly
Agree

Agree Neither
Agree nor
Disagree

Disagree Strongly
Disagree

PU1. Using the tool would enable me to
accomplish my job more quickly.

PU2. Using the tool would improve job
performance.

PU3. Using the tool would improve the quality of
the software process and product.

PU4. Using the tool would increase my
productivity.

PU5. Using the tool would enhance my
effectiveness on the job.

PU6. Using the tool would make it easier to do
my job.

PU7. I would find the tool advantageous in my
job.

270

Perceived Ease of Use:

Item Strongly
Agree

Agree Neither
Agree nor
Disagree

Disagree Strongly
Disagree

PEOU1. Learning to use the tool would be easy
for me.

PEOU2. My interaction with the tool would be
clear and understandable.

PEOU3. It was easy to become skilful using the
tool.

PEOU4. It is easy to remember how to perform
tasks using the tool.

PEOU5. I would find the tool easy to use.

Intention to Use:

Item Strongly
Agree

Agree Neither
Agree nor
Disagree

Disagree Strongly
Disagree

IU1. Assuming the tool would be available on my
job, I would use the tool to assess the
implemented process and software development
maturity on a regular basis in the future.

IU2. Assuming the tool would be available on my
job, I would use the tool to define an integrated
PMBOK-Scrum process and plan a project on a
regular basis in the future.

IU3. I would continue using the tool to assess the
implemented process and software development
maturity.

IU4. I would continue using the tool to define an
integrated PMBOK-Scrum process and plan a
project.

271

CURRICULUM VITAE

Nalinpat Porrawatpreyakorn

Faculty of Information Technology

King Mongkut’s University of Technology North Bangkok, Thailand

Postal Address: Nawamintararachinee Tower, Floors 4-7
King Mongkut’s University of Technology North Bangkok (KMUTNB)
518 Pibulsongkram Road, Bangsue, Bangkok, Thailand, 10800

Phone: (66) 2912-2019, (66) 2913-2500-24 ext. 2701, 2704, 2714

Email: nalinpat.por@gmail.com

Website: http://www.it.kmutnb.ac.th/

Education
2009-2012: Ph.D. in Computer Science, University of Vienna, Austria

2003-2006: Master of Science in Electronic Business, King Mongkut’s University of
Technology Thonburi, Thailand

1998-2002: Bachelor of Science in Applied Computer Science, King Mongkut’s
University of Technology North Bangkok, Thailand

Professional Experience
2006-2007: Senior Officer

Basel II Program Office, Risk Management Department

TMB Bank Public Company Limited, Thailand

2004-2005: Programmer

OLAP Unit, Management Information System Department

Thai Wacoal Public Company Limited, Thailand

2002-2004: Programmer

System Support Unit, Treasury Division

Bangkok Bank Public Company Limited, Thailand

Publications
1. Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2009, 'Requirements for a

Knowledge Transfer Framework in the Field of Software Development Process
Management for Executive Information Systems in the Telecommunications Industry', in
Papasratorn, B., Chutimaskul, W., Porkaew, K., and Vanijja, V. (eds), Proceedings of the

272

3rd International Conference on Advances in Information Technology, Springer Berlin
Heidelberg, Bangkok, Thailand, vol. 55, pp. 110-122.

2. Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2010, 'Requirements for a
Software Process Maintenance Framework for Executive Information Systems in the
Telecommunications Industry', Journal of Global Management Research, vol. 6. No. 1,
pp. 7-18.

3. Porrawatpreyakorn, N., Quirchmayr, G., and Chutimaskul, W. 2010, 'A Prototype for the
Support of Integrated Software Process Development and Improvement', in Papasratorn,
B., Chutimaskul, W., Porkaew, K., and Vanijja, V. (eds), Proceedings of the 4th
International Conference on Advances in Information Technology, Springer Berlin
Heidelberg, Bangkok, Thailand, vol. 114, pp. 94-105.

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1
	Introduction
	1.1 Introduction
	1.2 Organization of the Dissertation

	Chapter 2
	Requirements for a Framework for Transferring Software Project Management Approaches into the Thai Telecommunications Industry
	2.1 Introduction
	2.2 Look at the Current Situation in Executive Information Systems Development in the Thai Telecommunications Industry
	2.3 Two Primary Focuses of this Study
	2.4 Foundations of this Study - Where We Can Start From
	2.4.1 Capability Maturity Model Integration (CMMI)
	2.4.2 Project Management Body of Knowledge Guide (PMBOK)
	2.4.3 Scrum
	2.4.4 Szulanski’s Knowledge Transfer Model

	2.5 Influential Factors in the Areas of Software Development and Knowledge Transfer as Requirements for a Framework for Transferring Software Project Management Approaches into the Thai Telecommunications Industry
	2.6 Towards a Conceptual Framework for Transferring Software Project Management Approaches into the Thai Telecommunications Industry
	2.7 Summary

	Chapter 3
	Gap Analysis in the Field of Agile Software Development Integration with Software Process Improvement and with Traditional Project Management
	3.1 Introduction
	3.2 Review Approach
	3.2.1 Data Sources and Search Strategy
	3.2.2 Inclusion and Exclusion Decisions
	3.2.3 Final Selection
	3.2.4 Data Extraction and Synthesis
	3.2.5 Threats to Validity

	3.3 Results
	3.3.1 Overview of the Reviewed Papers
	3.3.2 Findings about Research Questions
	A. Which existing research results on agile software development integration with software process improvement and with traditional project management are available that we can build on?
	B. What are some interesting aspects that existing research results on agile software development integration with software process improvement and with traditional project management do not yet cover?
	C. How should a software process maintenance framework be constructed? Is a software process maintenance framework workable? What does the test of a software process maintenance framework in a real-life situation contribute?

	3.4 Summary

	Chapter 4
	The Software Process Maintenance Framework
	4.1 Introduction
	4.2 The Software Process Maintenance Framework
	4.2.1 The Software Development Maturity Model
	4.2.1.1 Research Design
	4.2.1.2 Analysis and Results
	4.2.1.3 Structure of the Software Development Maturity Model

	4.2.2 The Integrated PMBOK-Scrum Model
	4.2.2.1 A Project Management Body of Knowledge Meta-model
	4.2.2.2 A Scrum Meta-model
	4.2.2.3 An Integrated PMBOK-Scrum Model

	4.3 A Prototype Tool Supporting the Software Process Maintenance Framework
	4.4 Summary

	Chapter 5
	Two Case Studies of the Software Process Maintenance Framework
	5.1 Introduction
	5.2 Research Approach
	5.2.1 Data Collection
	5.2.2 Threats to Validity

	5.3 Analysis and Results
	Part I: Software Process Assessment
	Part II: Software Planning, Development, and Outcomes
	A. Scrum Planning Meetings
	B. Sprint Planning Meetings
	C. Sprint Executions
	D. Sprint Review and Retrospective Meetings
	E. Customer and Team Satisfaction
	F. Software Development Performance
	Part III: Acceptance of the Framework
	A. Research Instrument
	B. Instrument Reliability and Validity
	C. Perceived Usefulness
	D. Perceived Ease of Use
	E. Intention to Use

	5.4 Summary of the Findings
	A. The answer to RQ5-1 “How can the developed software process development framework be executed efficiently and effectively in the given context?”
	C. The answer to the RQ5-2 “What are the challenges that impact software development, using the developed software process maintenance framework?”
	B. The answer to the RQ5-3 “What changes are necessary to adapt the developed software process maintenance framework?”
	D. The answer to the RQ5-4 “How do practitioners transfer new knowledge into their existing software processes?”
	E. The answer to the RQ5-5 “What is the developed software process maintenance framework perceived usefulness and ease of use?”
	F. The answer to the RQ5-6 “What are the requirements for successful adaptation of the software process maintenance framework?”

	5.5 Summary

	Chapter 6
	Gap Analysis in the Field of Knowledge Transfer in Software Development
	6.1 Introduction
	6.2 Literature Review
	6.2.1 Epistemologies of Knowledge Transfer
	6.2.2 Definitions of Knowledge Transfer
	6.2.3 Models of Knowledge Transfer
	6.2.3.1 Process-based Knowledge Transfer
	6.2.3.2 Antecedent-based Knowledge Transfer
	6.2.3.3 Component-based Knowledge Transfer

	6.2.4 Lessons Learned

	6.3 Interactions of Knowledge Transfer Components
	6.3.1 Problems
	6.3.2 Antecedents
	6.3.3 Knowledge
	6.3.4 Mechanisms
	6.3.5 Knowledge Application
	6.3.6 Outcomes

	6.4 Knowledge Transfer in Software Development
	6.5 Limitations
	6.6 Summary

	Chapter 7
	The Knowledge Transfer Framework
	7.1 Introduction
	7.2 The Knowledge Transfer Framework
	7.2.1 Components of Knowledge Transfer
	7.2.1.1 Problems
	7.2.1.2 Antecedents
	7.2.1.3 Knowledge
	Knowledge as Intangible Resources
	Business Environments in Telecommunications Industry
	Knowledge in the Strategy, Infrastructure & Product Process Area
	Knowledge in the Operations Process Area
	Knowledge in the Enterprise Management Process Area
	Activities Associated with the Knowledge Component
	7.2.1.4 Mechanisms
	7.2.1.5 Knowledge Application
	7.2.1.6 Outcomes

	7.2.2 Stages of Knowledge Transfer
	7.2.2.1 Initiation
	7.2.2.2 Implementation
	7.2.2.3 Ramp-up
	7.2.2.4 Integration

	7.3 Application of the Knowledge Transfer Framework
	7.3.1 Data Collection
	7.3.2 Analysis and Results
	7.3.2.1 Initiation
	7.3.2.2 Implementation
	7.3.2.3 Ramp-up
	7.3.2.4 Integration

	7.4 Summary

	Chapter 8
	The Framework for Transferring Software Project Management Approaches into the Thai Telecommunications Industry
	8.1 Introduction
	8.2 The Framework for Transferring Software Project Management Approaches into the Thai Telecommunications Industry
	8.3 Application of the Framework for Transferring Software Project Management Approaches into the Thai Telecommunications Industry
	Step 1: Assessing the Existing Software Process
	Step 2: Planning a Software Process and a Knowledge Transfer Process
	Step 2.1: Scrum Planning Meetings
	Step 2.2: Sprint Planning Meetings
	A. Sprint Planning Meeting Part I
	B. Sprint Planning Meeting Part II

	Step 3: Executing the Plan
	Step 3.1: Sprint Executions
	A. Daily Meetings
	B. Executions
	Step 3.2: Sprint Review and Retrospective Meetings

	Step 4: Evaluating the Implemented Software Processes and Closing the Software Project

	8.4 Summary

	Chapter 9
	Conclusions
	9.1 Summary of Findings
	9.2 Research Contributions and Implications
	9.2.1 Theoretical Contributions
	9.2.2 Implications for Future Research Design
	9.2.3 Implications for Practice

	9.3 Focus and Limitations of this Study
	9.4 Possibilities for Further Research and Practical Work Building on and Extending the Results of this Thesis

	References
	Appendix A: Semi-Structured Interview Guide for Chapter 2
	Questions for warm-up:
	Main body of the interview:

	Appendix B: Questionnaire for Chapter 4
	Appendix C: Semi-Structured Interview Guide for Chapter 5
	Questions for warm-up:
	Main body of the interview with respect to the Software Development Maturity (SDM) model:
	Main body of the interview with respect to the integrated PMBOK-Scrum model:
	Main body of the interview with respect to the prototype tool:

	Appendix D: TAM-Based Questionnaire for Chapter 5
	CURRICULUM VITAE
	Nalinpat Porrawatpreyakorn

