# DIPLOMARBEIT 

Titel der Diplomarbeit
„Principal indecomposable modules for the
Alternating group on five symbols in modular characteristic"

Verfasser
Felix Leditzky
angestrebter akademischer Grad
Magister der Naturwissenschaften (Mag.rer.nat.)

Wien, 2012

Studienkennzahl It. Studienblatt: A 405<br>Studienrichtung It. Studienblatt: Mathematik<br>Betreuer:<br>Ao. Univ.-Prof. Dr. Joachim Mahnkopf

## Contents

Acknowledgments ..... v
Introduction ..... 1

1. Algebraic prerequisites ..... 5
1.1. Modules over Artinian rings ..... 6
1.1.1. Modules of finite length ..... 6
1.1.2. Radical of a module ..... 13
1.2. Algebras ..... 17
1.2.1. Principal indecomposable modules ..... 17
1.2.2. Projective and injective modules over group algebras ..... 19
1.2.3. Multiplicities of PIMs in decompositions of algebras over a field ..... 25
1.3. The Meataxe algorithm ..... 29
1.3.1. Norton's irreducibilty criterion ..... 29
1.3.2. Holt-Rees algorithm ..... 30
2. Modular representation theory ..... 33
2.1. $p$-modular systems ..... 33
2.1.1. Splitting fields ..... 33
2.1.2. Lifting idempotents ..... 36
2.2. Irreducible modular representations ..... 39
2.2.1. Cartan and decomposition numbers ..... 39
2.2.2. Brauer characters ..... 43
2.2.3. Modular orthogonality relations ..... 48
2.3. Introduction to block theory ..... 50
2.3.1. Block decomposition ..... 50
2.3.2. Modules and characters lying in a block ..... 52
2.3.3. Block idempotents ..... 56
3. Principal indecomposable modules for the Alternating group $\boldsymbol{A}_{5}$ ..... 61
3.1. Preliminaries ..... 62
3.1.1. Ordinary character table of $A_{5}$ ..... 62
3.1.2. Choosing a $p$-modular system ..... 62
3.2. Structure of the group algebra in modular characteristic ..... 64
3.2.1. Block decomposition and block idempotents ..... 64
3.2.2. Brauer character table and Decomposition matrix ..... 67
3.2.3. Cartan matrix and the decomposition of $k G$ into PIMs ..... 73
3.2.4. Reducing the irreducible ordinary representations ..... 75
3.3. Determining Idempotents and radical series of the PIMs ..... 77
3.3.1. Computation of the idempotents ..... 77
3.3.2. Radical series of the PIMs ..... 85
A. Results from ordinary representation theory ..... 89
A.1. Linear characters ..... 89
A.2. Conjugate representations ..... 90
B. Collected results ..... 91
List of tables ..... 95
Bibliography ..... 97
Abstract (German) ..... 99
Abstract (English) ..... 101
Curriculum Vitae ..... 103

## Acknowledgments

I first encountered the subject of representation theory in a lecture held by Joachim Mahnkopf, where he briefly touched the field of modular representation theory and pointed out its interesting features. Upon approaching him with the request to write a thesis about representation theory, he assigned me with the task of classifying the principal indecomposable representations of the Alternating group on five symbols, the smallest non-abelian simple group. Working on this subject proved to be a great way to familiarize myself with modular representation theory and lay a solid foundation for further studies. Therefore, I would like to thank Joachim Mahnkopf for acquainting me with the topic as well as supervising me in a most uncomplicated and helpful way.
For thorough proofreading and checking the mathematical consistency of the text, I want to thank my colleague Christoph Harrach. Furthermore, I also thank my good friend András Bárány for making numerous suggestions regarding linguistic issues and layout problems. Special thanks go to my colleague Hongyi Chu for his tireless willingness to discuss mathematical problems I encountered while working on this thesis.
I am grateful to my parents for giving me the financial opportunity to pursue my studies. Last but not least, I feel very much obliged to thank Nadja Buisman, not only for correcting grammatical and linguistic errors in the text but also for her patience without cease and understanding during the time-consuming process of writing. Without her support, I would not have been able to finish this thesis.

## Introduction

The theory of modular representations assumes that the group order is divisible by the characteristic of the field. The subject was first investigated by L.E. Dickson in the early 20th century in a series of papers, where he demonstrated that the theory produced results entirely different from ordinary representation theory. However, modular representation theory was not developed thoroughly until the German-American mathematician Richard Brauer acquired a new position at the University of Toronto in 1935. Together with his PhD student Cecil J. Nesbitt he introduced the concepts of modular characters (later named after him) and blocks, which helped them prove fundamental theorems of modular representation theory about the number of irreducible modular representations and the relationship between Cartan invariants and decomposition numbers. Soon it became clear to Brauer that many results of modular representation theory could be profitably applied to the investigation of the structure of finite groups. Indeed, it turned out later that his work was substantial to the classification of finite simple groups.
The purpose of this thesis is to give a comprehensive analysis of the principal indecomposable representations of the Alternating group $A_{5}$ on five symbols. After providing the necessary algebraic background, we develop the main ideas of modular representation theory such as Brauer characters, decomposition numbers and Cartan numbers. Furthermore, an introduction to block theory is given, containing the few but necessary results used throughout the remaining part. Our main result is a classification of the principal indecomposable modules (hereafter abbreviated 'PIMs') for the group $A_{5}$, in particular providing detailed information about the structure of the group algebra $k A_{5}$. For this purpose we compute the primitive orthogonal idempotents of the group algebra as well as the radical series of the PIMs.
In the first chapter the main algebraic results relevant for modular representation theory are presented. We prove the Krull-Schmidt theorem and the Jordan-Hölder theorem for modules of finite length and investigate the radical of both Artinian rings and modules over Artinian rings. The following sections deal with PIMs of algebras over a field, which are central objects in modular representation theory. Before determining the de-
composition of an algebra into a direct sum of PIMs, we also take a short detour into the realm of projective and injective modules and prove that every principal indecomposable module is projective. The chapter concludes with a discussion of the Meataxe algorithm and its most common variant, the Holt-Rees algorithm, which serves as an irreducibility test for modules. Its implementation in the computer program GAP is used extensively in the third chapter.

The object of the second chapter is to provide an introduction to modular representation theory. To begin with, we discuss $p$-modular systems ( $K, R, k$ ) for a group $G$, where $K$ is a certain field of characteristic $0, R$ its ring of integers and $k$ the residue field of $R$ of modular characteristic $p$. In this context, modular characteristic means that the prime $p$ divides the order of $G$. The $p$-modular systems allow for the techniques of lifting idempotents and choosing integral representations, which make the simultaneous investigation of ordinary representations over $K$, integral representations over $R$ and modular representations over $k$ feasible. The discussion of modular representations starts with the definition of decomposition numbers and Cartan numbers via module-theoretic considerations and the examination of their relationship. We then develop the theory of Brauer characters, a concept in modular representation theory which is analogous to ordinary character theory, and state the meaning of the Decomposition matrix $D$ and the Cartan matrix $C$ in terms of Brauer characters. Finally, a short introduction to block theory provides a few basic results about block decompositions and block idempotents.

The third chapter contains the actual results of this thesis. Since the order of $A_{5}$ is divisible by the primes 2,3 and 5 , the following procedure is carried out for each of these three cases. Having fixed a $p$-modular system for $A_{5}$, we decompose the group algebra $k A_{5}$ into blocks and compute the corresponding block idempotents. This block decomposition facilitates the determination of irreducible Brauer characters and PIMs by establishing a categorization of these objects into blocks. We then start with the classification of the irreducible modular representations by computing the $p$-Brauer characters. To this end we reduce the irreducible ordinary characters of $A_{5}$ and determine the decomposition numbers $d_{i j}$. Gathering these numbers in the decomposition matrix $D$, we immediately get the $p$-Brauer character table as well as the Cartan matrix $C$. Both the decomposition matrix and the Cartan matrix allow us to determine the dimensions of the PIMs and their socles, thus constituting an important part of the structure of the group algebra $k A_{5}$. After having identified the irreducible modular representations and the PIMs of $k A_{5}$, we investigate how to relate them to ordinary representations over $K$ and integral representations over $R$. In the final section we use the previously obtained theoretical results to compute the primitive orthogonal idempotents corresponding to the
decomposition of the group algebra into PIMs. More precisely, a primitive orthogonal idempotent is associated to the direct sum of all submodules of $k G$ which are isomorphic to a given PIM, much like the isotypic component of an irreducible representation in characteristic 0 . The idea is to decompose a block $B$ of $k G$ into a direct sum of such 'isotypic' components of PIMs and compute the projection of the block idempotent $\varepsilon_{B}$ with respect to this decomposition. We use the computer algebra system GAP as a tool to carry out the computations, particularly resorting to GAP's implementation of the Meataxe algorithm. Furthermore, we also determine the radical series of each PIM.
Appendix A provides results from ordinary representation theory which are needed during the calculations in the third chapter. The second appendix provides an uncommented listing of the results of Chapter 3 and serves as a concise reference guide to modular representation theory of the group $A_{5}$.
The reader is assumed to be familiar with ordinary representation theory. Otherwise, [Bur65] and [Wei03] provide a comprehensible introduction into the subject. A more thorough treatise can be found in [CR62] and [LP10], the latter specializing in the computational aspects of representation theory. Of course, the most comprehensive and complete account on the subject is the standard work [CR81]. All books mentioned contain at least an introductory chapter on modular representation theory; for a selfcontained account of the theory, refer to [DP77] and [Alp86]. Finally, [Ser77] provides an elegant approach to both ordinary and modular representation theory, although its composition may seem unconventional.

## 1. Algebraic prerequisites

In this chapter we develop the algebraic prerequisites that are needed to deal with modular representations of finite groups. Clearly, the path we are going to take is tailored to modular representation theory; nevertheless, the presented results have widespread applications throughout the various branches of algebra and deserve to be treated separately. Particularly the theory of projective and injective modules, introduced in Section 1.2.2, is a fundamental concept. Note however, that in some situations we only concentrate on special cases relevant to our applications, e.g., certain results about modules over a group algebra instead of a general ring.

First we discuss modules over Artinian rings and define the radical of a module (respectively a ring), a central object in the non-semisimple case. Then we turn to algebras over a field $K$ and investigate their decompositions by analyzing modules over an algebra. The last section introduces the Meataxe algorithm, which provides an irreducibility test for modules.

The reasoning in Sections 1.1 and 1.2 mainly follows [CR62] and [JS06], with the second section also incorporating material from [Alp86] and [Bur65]. Section 1.3 is based on [HR94] and results from [LP10]. The reader may be reminded that this chapter is not intended as a comprehensive account on the algebraic concepts involved. Rather, it collects the results needed to develop modular representation theory in Chapter 2. Particularly Section 1.2.2 only touches the subject of projective and injective modules.

The following conventions will be adhered to: A ring $R$ always has a unity element $1_{R}$, and the terms ideal and module are short for left ideal and left module, respectively. Unless otherwise specified, throughout the whole chapter, $R$ is a ring, $K$ a field with arbitrary characteristic, $G$ a finite group, and $K G$ the group algebra over $K$. Arbitrary algebras over fields are always assumed to be finite-dimensional.

### 1.1. Modules over Artinian rings

### 1.1.1. Modules of finite length

In the study of the representations of a finite group $G$, one of the main tasks is the decomposition of a $K G$-module $M$ into a direct sum of indecomposable submodules. The existence of such a decomposition is assured if the module is Artinian or Noetherian. However, this result is only useful for the study of representation theory if the decomposition is also unique. It turns out that modules of finite length admit such a unique decomposition into indecomposable submodules, which is subject of the Krull-Schmidt theorem. Representation theory is also interested in finding composition series of these indecomposable modules, and again, modules of finite length are of interest because such modules always have a composition series. In this situation the Jordan-Hölder theorem ensures uniqueness of a composition series in the sense that any two series of a module of finite length are equivalent.

These results show the importance of the property of finite length; therefore, the first part of this treatment is dedicated to examining modules with this property. Let us first establish the existence of a decomposition mentioned above.

Theorem 1.1.1. Let $M$ be an Artinian $R$-module. Then there are indecomposable submodules $M_{1}, \ldots, M_{t}$ of $M$ such that $M=M_{1} \oplus \cdots \oplus M_{t}$.

Proof. Let $X$ be the set of all non-zero submodules of $M$ which cannot be decomposed into a direct sum of a finite number of indecomposable submodules of $M$, and suppose that $X \neq \emptyset$. Since $M$ is Artinian, $X$ contains a minimal element $U \neq 0$ which is decomposable (otherwise, it would be the trivial direct sum of one indecomposable submodule of $M$ ). Thus, there are submodules $S$ and $T$ of $M$ with $U=S \oplus T$. But $S$ and $T$ are submodules of $U$, and $U$ is a minimal element of $X$; therefore, both $S$ and $T$ cannot lie in $X$. This means that there are indecomposable submodules $S_{1}, \ldots, S_{m}$ and $T_{1}, \ldots T_{n}$ of $M$ with

$$
S=S_{1} \oplus \cdots \oplus S_{m} \quad \text { and } \quad T=T_{1} \oplus \cdots \oplus T_{n}
$$

It follows that $U=S_{1} \oplus \cdots \oplus S_{m} \oplus T_{1} \oplus \cdots \oplus T_{n}$ is expressible as a direct sum of indecomposable submodules of $M$, a contradiction to $U \in X$. Therefore, $X=\emptyset$, so clearly $M \notin X$, and the theorem is proved.

For a different proof assuming a Noetherian module see [JS06, p. 200, Thm. 7.4]. A decomposition into a direct sum of indecomposable submodules can also be characterized
by endomorphisms with certain properties or (in the case of an $R$-algebra) by orthogonal idempotents.

## Proposition 1.1.2.

(i) Let $M=M_{1} \oplus \cdots \oplus M_{t}$ be a decomposition of an $R$-module $M$ into a direct sum of submodules. Then there are projections $\pi_{1}, \ldots, \pi_{t} \in \operatorname{End}_{R}(M)$ with

$$
\begin{aligned}
\mathrm{id} & =\pi_{1}+\cdots+\pi_{t} \\
\pi_{i}^{2} & =\pi_{i} \quad \text { for } 1 \leq i \leq t \\
0 & =\pi_{i} \circ \pi_{j} \quad \text { for } i \neq j
\end{aligned}
$$

That is, the projections $\pi_{1}, \ldots, \pi_{t}$ are a set of orthogonal idempotents in $\operatorname{End}_{R}(M)$. Moreover, a summand $M_{i}$ is indecomposable if and only if $\pi_{i}$ is primitive.
(ii) Let $A=A_{1} \oplus \cdots \oplus A_{t}$ be a decomposition of an $R$-algebra $A$ into a direct sum of submodules. Then there are elements $e_{1}, \ldots, e_{t} \in A$ with

$$
\begin{aligned}
1_{A} & =e_{1}+\cdots+e_{t} \\
e_{i}^{2} & =e_{i} \quad \text { for } 1 \leq i \leq t \\
0 & =e_{i} e_{j} \quad \text { for } i \neq j
\end{aligned}
$$

That is, the elements $e_{1}, \ldots, e_{t} \in A$ are a set of orthogonal idempotents, and we have $A_{i}=A e_{i}$. Moreover, a summand $A_{i}$ is indecomposable if and only if the idempotent $e_{i}$ is primitive.

Proof. (i) For $x \in M$ we can write $x=m_{1}+\cdots+m_{t}$ with unique $m_{i} \in M_{i}$. Define $\pi_{i} \in \operatorname{End}_{R}(M)$ as $\pi_{i}(x):=m_{i}$ for $1 \leq i \leq t$. It is easy to see that these endomorphisms fulfill the desired properties.

Clearly, if a summand $M_{i}$ is decomposable, i.e., $M_{i}=M_{i}^{\prime} \oplus M_{i}^{\prime \prime}$, and both $M_{i}^{\prime}$ and $M_{i}^{\prime \prime}$ are non-trivial, then $\pi_{i}=\pi_{i}^{\prime}+\pi_{i}^{\prime \prime}$, where $\pi_{i}^{\prime}$ and $\pi_{i}^{\prime \prime}$ are defined analogously. Furthermore, $\pi_{i}^{\prime}$ and $\pi_{i}^{\prime \prime}$ are unequal to the trivial idempotents, and $\pi_{i}$ is not primitive. Conversely, suppose an idempotent $\pi_{i} \in \operatorname{End}_{R}(M)$ is not primitive, i.e., there are non-trivial idempotents $\pi_{i}^{\prime}$ and $\pi_{i}^{\prime \prime}$ such that $\pi_{i}=\pi_{i}^{\prime}+\pi_{i}^{\prime \prime}$. Define $M_{i}^{\prime}:=\operatorname{im} \pi_{i}^{\prime}$ and $M_{i}^{\prime \prime}:=\operatorname{im} \pi_{i}^{\prime \prime}$. Then clearly, $M_{i}^{\prime}+M_{i}^{\prime \prime}=M_{i}$. For $x \in M_{i}^{\prime} \cap M_{i}^{\prime \prime}$ we have $\pi_{i}(x)=x=\pi_{i}^{\prime}(x)+\pi_{i}^{\prime \prime}(x)=x+x$, which implies $x=0$, and hence $M_{i}=M_{i}^{\prime} \oplus M_{i}^{\prime \prime}$.
(ii) By (i) there are projections $\pi_{1}, \ldots, \pi_{t}$ with id $=\pi_{1}+\cdots+\pi_{t}$. Define $e_{i}:=\pi_{i}\left(1_{A}\right)$,
then

$$
\begin{equation*}
1_{A}=e_{1}+\cdots+e_{t} \tag{*}
\end{equation*}
$$

Now observe that

$$
e_{i}=e_{i} 1_{A}=e_{i} e_{1}+\cdots+e_{i}^{2}+\cdots+e_{i} e_{t}
$$

which means that $e_{i}^{2}=e_{i}$ and $e_{i} e_{j}=0$ for $i \neq j$. A similar argument for $x \in A$ shows that $x=x e_{1}+\cdots+x e_{t}$, and hence $A_{i}=A e_{i}$. Moreover, (i) shows that an idempotent $e_{i}$ is primitive if and only if $A_{i}$ is indecomposable.

As we have mentioned before, the decomposition into a direct sum of indecomposable submodules in Theorem 1.1.1 is not unique, and we need to introduce the concept of modules of finite length to remedy this:

Definition 1.1.3. An $R$-module $M$ has finite length if $M$ is both Artinian and Noetherian.

We will see later that for such modules the Krull-Schmidt theorem guarantees uniqueness of the decomposition in Theorem 1.1.1. The following proposition shows that group algebras always have finite length.

Proposition 1.1.4. The group algebra $K G$ has finite length.
Proof. Let $n=|G|$ and recall that $K G$ is a $K$-algebra with $\operatorname{dim}_{K} K G=n$. Suppose we have a descending chain

$$
K G \supset I_{1} \supset I_{2} \supset \ldots
$$

of ideals of $K G$. Then these ideals can also be viewed as $K$-subspaces of the $K$-vector space $K G$, and $\operatorname{dim}_{K} I_{i+1} \leq \operatorname{dim}_{K} I_{i} \leq n$, which shows that the descending chain ultimately terminates. Thus, $K G$ is Artinian. A similar argument for an ascending chain

$$
0 \subset J_{1} \subset J_{2} \subset \ldots
$$

shows that $K G$ is also Noetherian.
To prove the Krull-Schmidt theorem, we need two lemmata, the first of which is a well-known result of Fitting.

Lemma 1.1.5 (Fitting). Let $M$ be an indecomposable $R$-module of finite length. Then each $\varphi \in \operatorname{End}_{R}(M)$ is either bijective or nilpotent.

Proof. Let $\varphi \in \operatorname{End}_{R}(M)$ be an endomorphism of $M$ and consider the following chains of submodules:

$$
\operatorname{ker} \varphi \subseteq \operatorname{ker} \varphi^{2} \subseteq \operatorname{ker} \varphi^{3} \subseteq \ldots \quad \quad \operatorname{im} \varphi \supseteq \operatorname{im} \varphi^{2} \supseteq \operatorname{im} \varphi^{3} \supseteq \ldots
$$

Since $M$ has finite length, both chains become stationary, i.e., there are integers $i$ and $j$ such that $\operatorname{ker} \varphi^{i}=\operatorname{ker} \varphi^{i+1}=\ldots$ and $\operatorname{im} \varphi^{j}=\operatorname{im} \varphi^{j+1}=\ldots$; we put $k=\max (i, j)$. It follows from $\operatorname{im} \varphi^{k}=\operatorname{im} \varphi^{2 k}$ that for every $x \in M$ there is a $y \in M$ with $\varphi^{k}(x)=\varphi^{2 k}(y)$. This implies $\varphi^{k}\left(x-\varphi^{k}(y)\right)=0$ and $x=\varphi^{k}(y)+\left(x-\varphi^{k}(y)\right) \in \operatorname{im} \varphi^{k}+\operatorname{ker} \varphi^{k}$, i.e., $M=\operatorname{im} \varphi^{k}+\operatorname{ker} \varphi^{k}$. It further holds that $\operatorname{im} \varphi^{k} \cap \operatorname{ker} \varphi^{k}=0$ : Suppose that $x \in$ $\operatorname{im} \varphi^{k} \cap \operatorname{ker} \varphi^{k}$, then there is a $y \in M$ with $\varphi^{k}(y)=x$. But $0=\varphi^{k}(x)=\varphi^{2 k}(y)$, that is, $y \in \operatorname{ker} \varphi^{2 k}=\operatorname{ker} \varphi^{k}$, and hence $x=\varphi^{k}(y)=0$.

Thus, $M=\operatorname{im} \varphi^{k} \oplus \operatorname{ker} \varphi^{k}$. But $M$ is indecomposable, so either $\operatorname{im} \varphi^{k}=0$, which means that $\varphi$ is nilpotent or $\operatorname{ker} \varphi^{k}=0$, which means that $\varphi$ is bijective. This proves Fitting's Lemma.

Lemma 1.1.6. Let $M$ be a non-zero indecomposable $R$-module of finite length. Let further $\varphi_{1}, \ldots, \varphi_{t} \in \operatorname{End}_{R}(M)$ be endomorphisms of $M$ such that $\varphi_{1}+\cdots+\varphi_{t}$ is an automorphism of $M$. Then there is an $i$ such that $\varphi_{i}$ is an automorphism.

Proof. Let us consider the case $t=2$, i.e., $\varphi_{1}+\varphi_{2}=: \psi$ is an automorphism of $M$. Set $\chi_{i}=\varphi_{i} \psi^{-1}$ and observe that $\chi_{i} \in \operatorname{End}_{R}(M)$ and $\chi_{1}+\chi_{2}=i d$. We will show that either $\chi_{1}$ or $\chi_{2}$ is an automorphism of $M$, which proves the claim.

Since $\chi_{2}=\mathrm{id}-\chi_{1}$, we know that $\chi_{1}$ and $\chi_{2}$ commute; therefore, the binomial theorem is applicable:

$$
\mathrm{id}=\left(\chi_{1}+\chi_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \chi_{1}^{k} \chi_{2}^{n-k}
$$

Suppose both $\chi_{1}$ and $\chi_{2}$ are nilpotent, i.e., there are integers $n_{1}$ and $n_{2}$ such that $\chi_{1}^{n_{1}}=\chi_{2}^{n_{2}}=0$. Choosing $k=n_{1}+n_{2}$ now implies $1=\left(\chi_{1}+\chi_{2}\right)^{k}=0$, which is impossible. So either $\chi_{1}$ or $\chi_{2}$ is not nilpotent and hence bijective after Lemma 1.1.5.

Remark. Lemma 1.1 .6 is equivalent to saying that the endomorphism $\operatorname{ring}^{\operatorname{End}}{ }_{R} M$ of an indecomposable $R$-module $M$ is local. A ring $R$ is called local if it fulfills any of the following equivalent conditions:
(i) $R$ has a unique maximal (left or right) ideal.
(ii) The non-units form an ideal (and $1_{R} \neq 0_{R}$ ).
(iii) If a finite sum is a unit, then at least one of the summands is a unit.

We are now ready to prove
Theorem 1.1.7 (Krull-Schmidt). Let $M$ be an $R$-module of finite length, and let

$$
M=S_{1} \oplus \cdots \oplus S_{m}=T_{1} \oplus \cdots \oplus T_{n}
$$

be two decompositions of $M$ into direct sums of indecomposable submodules. Then $m=n$, and we can rearrange the summands such that $S_{i} \cong T_{i}$ for every $i=1, \ldots, m$.

Proof. We assume $m \geq n$ and use induction on $m$, the case $m=1$ being trivial. According to Proposition 1.1.2, there are projections $\sigma_{1}, \ldots, \sigma_{m}$ and $\tau_{1}, \ldots, \tau_{n}$ associated to the decompositinos $M=S_{1} \oplus \cdots \oplus S_{m}$ and $M=T_{1} \oplus \cdots \oplus T_{n}$, respectively. Since $\mathrm{id}=\sigma_{1}+\cdots+\sigma_{m}=\tau_{1}+\cdots+\tau_{n}$ and $\sigma_{i} \circ \sigma_{j}=\tau_{i} \circ \tau_{j}=0$ for $i \neq j$, we have

$$
\sigma_{1}=\sigma_{1} \circ \tau_{1}+\cdots+\sigma_{1} \circ \tau_{n}
$$

We know from Proposition 1.1.2 that the restriction of $\sigma_{1}$ onto $S_{1}$ is the identity, so

$$
\mathrm{id}_{S_{1}}=\sigma_{1} \circ \tau_{1}\left|S_{S_{1}}+\cdots+\sigma_{1} \circ \tau_{n}\right|_{S_{1}}
$$

and each $\left.\sigma_{1} \circ \tau_{i}\right|_{S_{1}} \in \operatorname{End}_{R}\left(S_{1}\right)$. By Lemma 1.1.6 there is a $j$ such that $\sigma_{1} \circ \tau_{j}{\mid S_{1}} \in$ $\operatorname{Aut}_{R}\left(S_{1}\right)$, and we can renumber the modules $T_{i}$ such that this holds for $\left.\sigma_{1} \circ \tau_{1}\right|_{S_{1}}$.

Consider now the diagram

$$
S_{1} \xrightarrow{\tau_{1}} T_{1} \xrightarrow{\sigma_{1}} S_{1}
$$

and define $B:=\operatorname{im} \tau_{1} \mid S_{1}$ and $K:=\operatorname{ker} \sigma_{1} \mid T_{1}$. Since $\sigma_{1} \circ \tau_{1} \mid S_{1}$ is an automorphism of $S_{1}$, we have $\sigma_{1}(B)=S_{1}$. Hence, for $t \in T_{1}$ there is a $b \in B$ such that $\sigma_{1}(t)=\sigma_{1}(b)$, that is, $t-b \in K$. Thus $t=b+(t-b) \in B+K$, so $T_{1}=B+K$. Further, let $x \in B \cap K$ then $\sigma_{1}(x)=0$. Since $\sigma_{1}$ is injective on $B$, it follows that $x=0$ and $T_{1}=B \oplus K$. The indecomposability of $T_{1}$ now implies $K=\operatorname{ker} \sigma_{1}=0$, and hence $T_{1} \cong S_{1}$.
The last step is to show that $M=S_{1} \oplus T_{2} \oplus \cdots \oplus T_{n}$. The preceding paragraph showed that $S_{1} \cong T_{1}$; therefore, $M=S_{1}+T_{2}+\cdots+T_{n}$. So suppose that $x \in S_{1} \cap\left(T_{2}+\cdots+T_{n}\right)$. By Proposition 1.1.2 $\tau_{1}$ vanishes on $T_{j}$ for $2 \leq j \leq n$, thus $\tau_{1}(x)=0$. But $\tau_{1}$ is injective on $S_{1}$, hence $x=0$, and the sum is direct. We now have

$$
\begin{aligned}
M & =S_{1} \oplus S_{2} \oplus \cdots \oplus S_{m} \\
& \cong S_{1} \oplus T_{2} \oplus \cdots \oplus T_{n}
\end{aligned}
$$

and factorizing after $S_{1}$ gives

$$
S_{2} \oplus \cdots \oplus S_{m} \cong T_{2} \oplus \cdots \oplus T_{n}
$$

Applying the induction hypothesis now completes the proof.
So far we have seen that modules of finite length have a unique decomposition into a direct sum of indecomposable submodules. Another important property of modules of finite length is the existence of a unique composition series, which is the subject of the Jordan-Hölder theorem. Let us first recall the definition of a composition series:

Definition 1.1.8 (Composition series). Let $M$ be an $R$-module. A chain

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{t}=0
$$

of submodules of $M$ is called a composition series if the factors $M_{i} / M_{i+1}$ are simple $R$-modules for all $0 \leq i<t$.

If such a series exists, then $t$ is called the length of this chain of submodules. The length of $M$ is defined as the minimum of the length of all chains of submodules.

Proposition 1.1.9. An $R$-module $M$ has finite length if and only if it possesses a composition series.

Proof. Suppose first that $M$ possesses a composition series. We recall a basic result about Artinian and Noetherian modules: If $M$ is a module and $N$ a submodule of $M$, then $M$ is Artinian (Noetherian) if and only if $N$ and $M / N$ are Artinian (Noetherian). Since simple modules have finite length, we can use induction on the length of the chain to show that $M$ also has finite length.

Conversely, suppose that $M$ has finite length. Let $X$ be the set of all submodules $M^{\prime}$ of $M$ which possess a composition series, and observe that $(0) \in X$. Since $M$ is Noetherian, there is a maximal element $M_{0}$ of $X$. If $M_{0}=M$, the claim is proved.

Otherwise, consider the set $Y=\left\{M^{\prime} \leq M \mid M^{\prime} \supsetneq M_{0}\right\}$, which is non-empty since $M \in Y$. Because $M$ is Artinian, there is a minimal element $M_{1} \in Y$, and we investigate the factor module $M_{1} / M_{0}$ (which is non-zero). If $\pi: M_{1} \rightarrow M_{1} / M_{0}$ is the canonical projection onto $M_{1} / M_{0}$, then for every submodule $N$ of $M_{1} / M_{0}$ the preimage $\pi^{-1}(N)$ is a submodule of $M_{1}$ with $\pi^{-1}(N) \supsetneq M_{0}$. Due to the minimality of $M_{1}$ we have $\pi^{-1}(N)=M_{1}$, and $M_{1} / M_{0}$ is simple. We can now construct a composition series of $M_{1}$ by extending the composition series of $M_{0}$ by $M_{1}$ (remember that $M_{0} \in X$ ). But this
means that $M_{1} \in X$, contradicting the maximality of $M_{0}$. Therefore, $M_{0}=M$, and the result follows.

Remark. This is the reason for the name 'finite length', and originally modules of finite length were defined by Proposition 1.1.9.

To establish uniqueness of a composition series and prove the Jordan-Hölder theorem we first need a

Definition 1.1.10. Let $M$ be an $R$-module with composition series

$$
\begin{aligned}
M & =M_{0} \supset M_{1} \supset \cdots \supset M_{s}=0 \\
\text { and } \quad M & =M_{0} \supset M_{1}^{\prime} \supset \cdots \supset M_{t}^{\prime}=0
\end{aligned}
$$

Then the composition series are equivalent if $s=t$ and there is a renumbering of the modules $M_{i}^{\prime}$ such that the factors of both chains are isomorphic, that is, $M_{i} / M_{i+1} \cong$ $M_{i}^{\prime} / M_{i+1}^{\prime}$ for all $0 \leq i<s$.

We can now prove
Theorem 1.1.11 (Jordan-Hölder). If $M$ is an $R$-module of finite length, then any two composition series of $M$ are equivalent.

Proof. Let $M$ have two composition series

$$
\begin{align*}
& M=M_{0} \supset M_{1} \supset \cdots \supset M_{s}=0  \tag{1.1a}\\
& M=N_{0} \supset N_{1} \supset \cdots \supset N_{t}=0 \tag{1.1b}
\end{align*}
$$

We assume $s \geq t$ and use induction on $s$. Suppose that any two composition series of $M$ of length less than $s$ are equivalent. If $M_{1}=N_{1}$, then the claim follows by applying the induction hypothesis. Thus, assume $M_{1} \neq N_{1}$. Since $M / M_{1}$ is simple, $M_{1}$ is maximal in $M$, and therefore $M_{1}+N_{1}=M$. By the fundamental homomorphism theorem for modules we have

$$
\begin{equation*}
M / M_{1} \cong N_{1} /\left(M_{1} \cap N_{1}\right) \quad \text { and } \quad M / N_{1} \cong M_{1} /\left(M_{1} \cap N_{1}\right) \tag{1.2}
\end{equation*}
$$

and the simplicity of $M / M_{1}$ and $M / N_{1}$ again implies that ( $M_{1} \cap N_{1}$ ) is a maximal submodule of both $M_{1}$ and $N_{1}$. Now let

$$
\left(M_{1} \cap N_{1}\right) \supset T_{2} \supset \cdots \supset T_{l}=0
$$

be a composition series for $\left(M_{1} \cap N_{1}\right)$ (note that $\left.l<s\right)$, then

$$
M=M_{0} \supset M_{1} \supset\left(M_{1} \cap N_{1}\right) \supset T_{2} \supset \cdots \supset T_{l}=0
$$

and

$$
M=N_{0} \supset N_{1} \supset\left(M_{1} \cap N_{1}\right) \supset T_{2} \supset \cdots \supset T_{l}=0
$$

are both composition series of $M$, and by (1.2) the first two factors are isomorphic such that the two series are equivalent. By the induction hypothesis, the first series above is equivalent to (1.1a) since they have the same first term, and analogously the second series is equivalent to (1.1b). Therefore, the series in (1.1a) and (1.1b) are equivalent, and the theorem is proved.

Corollary 1.1.12. If $M$ is an $R$-module of finite length, then any two composition series of $M$ have the same length.

### 1.1.2. Radical of a module

We now define the radical and socle of modules and rings and prove the most important results about them. The radical rad $M$ of a module $M$ provides extensive information about its structure in case $M$ is not semisimple. In our situation the group algebra $K G$ is always non-semisimple, according to the famous

Theorem 1.1.13 (Maschke). The group algebra $K G$ is semisimple if and only if char $K$ does not divide $|G|$.

Furthermore, since $K G$ is Artinian as a $K$-algebra, the radical of Artinian rings deserves special attention and will be investigated as well. We start with a

Definition 1.1.14 (Radical and socle). Let $M$ be an $R$-module.
(i) The radical $\operatorname{rad} M$ of $M$ is the intersection of all maximal submodules of $M$. If $M$ does not possess maximal submodules, then $\operatorname{rad} M=M$.
(ii) The socle soc $M$ of $M$ is the sum of all simple submodules of $M$.

Proposition 1.1.15. Let $M$ be an $R$-module.
(i) If $M$ is semisimple, then $\operatorname{rad} M=0$.
(ii) $M$ is semisimple if and only if $\operatorname{soc} M=M$.
(iii) If $N$ is a submodule of $M$ with $N \subset \operatorname{rad} M$, then $\operatorname{rad}(M / N)=\operatorname{rad}(M) / N$. In particular, the radical of $M / \operatorname{rad} M$ is zero.
(iv) Let $\left(M_{i}\right)_{i \in I}$ be a family of $R$-modules, then

$$
\begin{aligned}
\operatorname{rad}\left(\bigoplus_{i \in I} M_{i}\right) & =\bigoplus_{i \in I} \operatorname{rad} M_{i} \\
\operatorname{soc}\left(\bigoplus_{i \in I} M_{i}\right) & =\bigoplus_{i \in I} \operatorname{soc} M_{i}
\end{aligned}
$$

Proof. (i) If $M$ is semisimple, there are simple submodules $M_{1}, \ldots, M_{t}$ of $M$ such that $M=M_{1} \oplus \cdots \oplus M_{t}$, and the maximal submodules of $M$ are the modules $\bigoplus_{i \neq j} M_{i}$ for a fixed $1 \leq j \leq t$. Consequently, their intersection is empty, and thus $\operatorname{rad} M=0$.
(ii) is trivial.
(iii) The maximal submodules of $M / N$ arise from maximal submodules $M^{\prime}$ of $M$ with $M^{\prime} \supset N$, which are all the maximal submodules of $M$ since we assumed $N \subset \operatorname{rad} M$. The radical of $M / N$ is now the intersection of all $M^{\prime} / N$, that is, $\cap\left(M^{\prime} / N\right)=\left(\cap M^{\prime}\right) / N$. For the second claim take $N=\operatorname{rad} M$.
(iv) Every maximal submodule of $\bigoplus_{i \in I} M_{i}$ is of the form $\cdots \oplus M_{i-1} \oplus M_{i}^{\prime} \oplus M_{i+1} \oplus \ldots$, where $M_{i}^{\prime}$ is a maximal submodule of $M_{i}$. Since $M_{i} \cap M_{j}=\emptyset$ for $i \neq j$, the first formula follows.

For the socle, suppose $S$ is a simple submodule of $\bigoplus_{i \in I} M_{i}$. Then clearly $S \leq M_{i}$ for one $i$, and $S \cap M_{j}=\emptyset$ for $j \neq i$. Conversely, any simple submodule of a summand $M_{i}$ is also a simple submodule of $\bigoplus_{i \in I} M_{i}$, proving the second formula.

Definition 1.1.16 (Jacobson radical). The Jacobson radical $J(R)$ of a ring $R$ is the radical $\operatorname{rad}_{R} R$ of the ring viewed as a module over itself.

Proposition 1.1.17. Let $R$ be a ring, then $J(R)$ is a two-sided ideal and the intersection of the annihilators of all simple $R$-modules.

Proof. Let $S$ be a simple $R$-module, and consider for $x \in S, x \neq 0$ the $R$-module homomorphism $\varphi_{x}: R \longrightarrow S, r \longmapsto r x$. Since $S$ is simple and $1_{R} \cdot x=x$, we have that $\varphi_{x}$ is surjective and $\operatorname{ker} \varphi_{x}=\operatorname{ann}_{R}(x)$. Therefore, we have $S \cong R / \operatorname{ann}_{R}(x)$, and $\operatorname{ann}_{R}(x)$ is a maximal left ideal in $R$.

Conversely, let $I$ be a maximal left ideal in $R$, then $R / I$ is a simple $R$-module which is annihilated by $I$. We now have

$$
\operatorname{rad}_{R} R=\bigcap_{S \text { simple }} \bigcap_{x \in S} \operatorname{ann}_{R}(x)=\bigcap_{S \text { simple }} \operatorname{ann}_{R}(S)
$$

Since the annihilator $\operatorname{ann}_{R}(S)$ of a simple $R$-module $S$ is a two-sided ideal, so is the Jacobson radical $J(R)$.

In the case of Artinian rings $R$ and Artinian modules $M$, the radical has additional properties. In order to prove them, we have to introduce the concept of a finitely cogenerated module:

Definition 1.1.18. An $R$-module $M$ is finitely cogenerated if for any family $\left(M_{i}\right)_{i \in I}$ of submodules of $M$ with $\bigcap_{i \in I} M_{i}=0$ there is a finite subset $J \subset I$ such that $\bigcap_{i \in J} M_{i}=0$.

Remark. If $N$ is a submodule of $M$, then $M / N$ is finitely cogenerated if and only if for any family $\left(M_{i}\right)_{i \in I}$ of submodules of $M$ with $\bigcap_{i \in I} M_{i}=N$ there is a finite subset $J \subset I$ such that $\bigcap_{i \in J} M_{i}=N$.

Recall that a module $M$ is Noetherian if and only if every submodule of $M$ is finitely generated. Being finitely cogenerated is dual to this result in the following sense:

Proposition 1.1.19. An $R$-module $M$ is Artinian if and only if every factor module of $M$ is finitely cogenerated.

Proof. Let $N$ and $\left(M_{i}\right)_{i \in I}$ be submodules of $M$ with $\bigcap_{i \in I} M_{i}=N$, and consider the set $X$ of all finite intersections $\bigcap_{i \in J} M_{i}$ for finite $J \subset I$. Since $M$ is Artinian (and $X$ is non-empty), there is a minimal element $P \in X$ with $P \supset N$. Suppose there is no equality, that is, there is a $x \in P$ with $x \notin N$. Because $N=\bigcap_{i \in I} M_{i}$, there is an $i \in I$ with $x \notin M_{i}$; therefore, $x \notin P^{\prime}=\bigcap_{j \in J \cup\{i\}} M_{j}$. But $P^{\prime} \in X$ and $P^{\prime} \subsetneq P$, a contradiction to the minimality of $P$.

Conversely, let $M_{0} \supset M_{1} \supset M_{2} \supset \ldots$ be a descending chain of submodules of $M$, and set $N=\bigcap_{i \in I} M_{i}$. Since $M / N$ is finitely cogenerated, there is a finite subset $J \subset I$ with $N=\bigcap_{i \in J} M_{i}$. But now $N=M_{n}$ with $n=\max J$, and so $M_{i}=M_{n}$ for all $i \geq n$; thus, $M$ is Artinian.

Corollary 1.1.20. If $M$ is an Artinian $R$-module, then $M / \operatorname{rad} M$ is a semisimple $R$ module.

Proof. By Proposition 1.1.19 $M / \mathrm{rad} M$ is finitely cogenerated, so there are finitely many submodules $M_{1}, \ldots, M_{n}$ of $M$ with $\operatorname{rad} M=\bigcap_{i=1}^{n} M_{i}$. Consider the monomorphism

$$
\begin{aligned}
\varphi: M / \operatorname{rad} M & \longrightarrow \bigoplus_{i=1}^{n}\left(M / M_{i}\right) \\
x+\operatorname{rad} M & \longmapsto \sum_{i=1}^{n} x+M_{i}
\end{aligned}
$$

Since the $M / M_{i}$ are simple submodules, $M / \operatorname{rad} M$ is isomorphic to a submodule of a semisimple module and therefore itself semisimple.

We also need the famous Nakayama Lemma, which we state here without proof.
Proposition 1.1.21 (Nakayama Lemma). Let $R$ be a ring and $M$ be a finitely generated $R$-module. Then $\operatorname{rad}(R) \cdot M$ is superfluous in $M$, that is, for every submodule $N$ of $M$ with $\operatorname{rad}(R) \cdot M+N=M$ we have $N=M$.

Proof. See [JS06, p. 267, Cor. 7.10]
Now we are able to prove the main results about radicals of Artinian rings.
Proposition 1.1.22. Let $R$ be an Artinian ring, then the following holds:
(i) The ring $R / \operatorname{rad} R$ is semisimple.
(ii) The ring $R$ is semisimple if and only if $\operatorname{rad} R=0$.
(iii) If $M$ is an $R$-module, then $\operatorname{rad} M=\operatorname{rad}(R) \cdot M$.
(iv) The radical $\operatorname{rad} R$ is nilpotent.

Proof. (i) By Corollary 1.1.20 $R / \operatorname{rad} R$ is semisimple as a module over $R$. From Proposition 1.1.17 follows that $R / \operatorname{rad} R$ is a ring, and obviously, it is also semisimple as a module over itself; hence, $R / \operatorname{rad} R$ is semisimple as a ring.
(ii) The first implication is Proposition 1.1.15(i). For the other implication, use (i) with $\operatorname{rad} R=0$.
(iii) We first show that $\operatorname{rad}(R) \cdot M \subset \operatorname{rad} M$. Let $M^{\prime}$ be a maximal submodule of $M$. Then $M / M^{\prime}$ is a simple $R$-module, and by Proposition 1.1 .17 we have $\operatorname{rad}(R) \cdot M / M^{\prime}=0$, that is, $\operatorname{rad}(R) \cdot M \subset M^{\prime}$. Thus, the left side is also contained in the intersection of all maximal submodules, and hence $\operatorname{rad}(R) \cdot M \subset \operatorname{rad} M$. Now by (i), R/rad $R$ is a semisimple ring, so $M / \operatorname{rad}(R) M$ is semisimple as an $R / \operatorname{rad} R$-module and also as an $R$-module. Therefore, $\operatorname{rad}(M / \operatorname{rad}(R) M)=0$. On the other hand, by Proposition 1.1.15(iii) we have that

$$
0=\operatorname{rad}(M / \operatorname{rad}(R) M)=\operatorname{rad}(M) / \operatorname{rad}(R) M
$$

from which $\operatorname{rad}(R) \cdot M=\operatorname{rad} M$ follows.
(iv) Let $R \supset \operatorname{rad} R \supset(\operatorname{rad} R)^{2} \supset \ldots$ be a descending chain of ideals in $R$. Since $R$ is Artinian, there is a $n \in \mathbb{N}$ such that $(\operatorname{rad} R)^{m}=(\operatorname{rad} R)^{n}$ for all $m \geq n$. Set $I=(\operatorname{rad} R)^{n}$ and suppose $I \neq 0$. We show that this leads to a contradiction.

To this end, consider the set $X$ of all ideals $J$ in $R$ with $I J \neq 0$, and observe that $X \neq \emptyset$ since $I^{2}=(\operatorname{rad} R)^{2 n}=(\operatorname{rad} R)^{n}=I \neq 0$. Thus, $X$ contains a minimal element $J$, and there is an $x \in J$ with $I x \neq 0$, that is, $I R x \neq 0$ (recall that $\operatorname{rad} R$ is a two-sided ideal by Proposition 1.1.17). Now $R x$ is an ideal in $R$, and clearly, $R x \subset J$, so the minimality of $J$ implies that $J=R x$. Since $\operatorname{rad}(R) J=J$ contradicts the Nakayama Lemma 1.1.21, we have $\operatorname{rad}(R) J \subsetneq J$, and consequently $I J \subsetneq J$. But $J$ was a minimal element of $X$, therefore $I(I J)=0$. On the other hand, $I(I J)=I^{2} J=I J \neq 0$, a contradiction.

Let us apply these results to the following situation: Let $R$ be an Artinian ring and $M$ an $R$-module. Then $\operatorname{rad} M$ is also an $R$-module, and by Proposition 1.1.22(iii) its radical is given by $\operatorname{rad}(\operatorname{rad} M)=\operatorname{rad} R \cdot \operatorname{rad} M=\operatorname{rad}^{2}(R) \cdot M$. This motivates the definition $\operatorname{rad}^{n} M:=\operatorname{rad}^{n}(R) \cdot M$ for $n \geq 2$. Note that since $R$ is Artinian, its radical is nilpotent by Proposition 1.1.22(iv); therefore, $\operatorname{rad}^{k} R=0$ for some $k$. This leads to the following

Definition 1.1.23 (Radical series). Let $R$ be an Artinian ring and $M$ an $R$-module. Then

$$
M \geq \operatorname{rad} M \geq \operatorname{rad}^{2} M \geq \cdots \geq \operatorname{rad}^{k} M=(0)
$$

is called the radical series of $M$.

Remark. If the ring $R$ is not Artinian, the radical $\operatorname{rad} R$ is not necessarily nilpotent, and an infinite radical series

$$
M \geq \operatorname{rad} M \geq \operatorname{rad}^{2} M \geq \cdots \geq \operatorname{rad}^{k} M \geq \operatorname{rad}^{k+1} M \geq \ldots
$$

is possible. Note however, that the radical series is a descending chain of submodules and thus terminates if the $R$-module $M$ is Artinian.

In Section 3.3.2 we will compute the radical series of the principal indecomposable submodules (cf. Section 1.2.1) of the group algebra $k G$.

### 1.2. Algebras

### 1.2.1. Principal indecomposable modules

We have gathered enough information to define a central object of interest in modular representation theory: the principal indecomposable modules. They are the unique building blocks of an algebra $A$, and their structure can be described in terms of the radical. This is the main result of the following section.

Definition 1.2.1 (Principal indecomposable modules). Let $A$ be a (finite-dimensional) $K$-algebra. If

$$
A=P_{1} \oplus \cdots \oplus P_{t}
$$

is a decomposition of $A$ into a direct sum of indecomposable submodules $P_{i}$ of $A$, then $P_{i}$ is called a principal indecomposable module of $A$, abbreviated PIM.

Since $A$ is a finite-dimensional $K$-vector space (see the proof of Proposition 1.1.4), the Krull-Schmidt theorem 1.1.7 justifies Definition 1.2.1 as the summands in the decomposition of $A$ into a direct sum of indecomposable submodules are uniquely determined up to isomorphy and order of appearance. Of course we are actually talking about isomorphy classes of PIMs. Proposition 1.1.2(ii) further implies that to every PIM $P$ of $A$ we can associate a primitive idempotent $e$ with $P=A e$. The structure of a PIM of an algebra $A$ is revealed in the following

Theorem 1.2.2. Let $K$ be a field and $A$ a $K$-algebra, then the following holds:
(i) If $P=A e$ is a PIM of $A$, where $e$ is the corresponding primitive idempotent, then $\operatorname{rad}(A) e=\operatorname{rad} P$ is the unique maximal submodule of $P$.
(ii) If $P$ and $Q$ are two PIMs of $A$, then $P \cong Q$ if and only if $P / \operatorname{rad} P \cong Q / \operatorname{rad} Q$.

Proof. (i) Suppose that $M_{1}$ and $M_{2}$ are two different maximal submodules of $P=A e$. Then $P=M_{1}+M_{2}$, and there are $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ with $e=m_{1}+m_{2}$. Now define $\mu_{i} \in \operatorname{End}_{A}(P)$ by $\mu_{i}: a e \longmapsto$ aem $_{i}$ for $i=1,2$. Then $\operatorname{id}_{P}=\mu_{1}+\mu_{2}$ and by Lemma 1.1.6 one of the $\mu_{i}$ is an automorphism. But this is impossible since im $\mu_{i}=M_{i}$, and hence neither of the $\mu_{i}$ is surjective. Therefore, $M_{1}=M_{2}$, and $\operatorname{rad}(A) e=\operatorname{rad} P$ is the unique maximal submodule.
(ii) If $P \cong Q$, then trivially $P / \operatorname{rad} P \cong Q / \operatorname{rad} Q$.

Conversely, suppose $P / \operatorname{rad} P \cong Q / \operatorname{rad} Q$ via the $A$-module isomorphism $\varphi$. Then we have a surjective homomorphism

$$
\begin{aligned}
\psi: P & \longrightarrow Q / \operatorname{rad} Q \\
p & \longmapsto \varphi(p+\operatorname{rad} P)
\end{aligned}
$$

Let $e_{P}$ be the idempotent corresponding to $P$, and choose $q_{0} \in Q$ such that $\psi\left(e_{P}\right)=q_{0}+$ $\operatorname{rad} Q$. Observe that $q_{0} \notin \operatorname{rad} Q$ because otherwise, $\psi\left(e_{P}\right)=0 \in Q / \operatorname{rad} Q$. Consequently, $\psi\left(A e_{P}\right)=A \psi\left(e_{P}\right)=0$, which contradicts the surjectivity of $\psi$. Define now the $A$ -
homomorphism $\tau: P \longrightarrow Q, p \longmapsto p q_{0}$. Because $\varphi$ is an $A$-isomorphism,

$$
e_{P} q_{0}+\operatorname{rad} Q=e_{P} \psi\left(e_{P}\right)=\psi\left(e_{P}^{2}\right)=q_{0}+\operatorname{rad} Q
$$

Therefore, $e_{P} q_{0} \in \operatorname{im} \tau$ as well as $e_{P} q_{0} \notin \operatorname{rad} Q$. Hence, $\operatorname{rad} Q \nsupseteq \operatorname{im} \tau \leq Q$ and (i) implies $\operatorname{im} \tau=Q$. In particular, $\operatorname{dim}_{K} P \geq \operatorname{dim}_{K} Q$, and interchanging the roles of $P$ and $Q$ in the above reasoning shows equality. Thus, $\tau$ is an isomorphism and $P \cong Q$.

This theorem shows that a PIM $P$ of an algebra $A$ is uniquely determined by the simple module $P / \operatorname{rad} P$. In fact we know even more:

Corollary 1.2.3. Every simple $A$-module $S$ is isomorphic to $P / \operatorname{rad} P$ for some PIM $P$ of $A$.

Proof. Let $A=P_{1} \oplus \cdots \oplus P_{t}$ be a decomposition of $A$ into a direct sum of PIMs $P_{i}$, then by Proposition 1.1.2(ii) we have a set $\left\{e_{i}\right\}_{i=1}^{t}$ of primitive orthogonal idempotents with $1_{A}=e_{1}+\cdots+e_{t}$. Since $1_{A} S=S$, the idempotents $e_{i}$ are orthogonal and $S$ is simple, there is exactly one $i$ such that $e_{i} S \neq 0$. Then $A e_{i} s \neq 0$ for some $s \in S$, and since $S$ is simple, $A e_{i} s=S$. By considering the homomorphism $\varphi: P_{i} \longrightarrow S, a \longmapsto a s$ we have $P_{i} / \operatorname{ker} \varphi \cong S$, where $\operatorname{ker} \varphi$ is thus a maximal submodule of $P_{i}$. Theorem 1.2.2(i) implies $\operatorname{ker} \varphi=\operatorname{rad} P_{i}$, and the claim follows.

Corollary 1.2.4. The number of isomorphy classes of simple A-modules is finite.
Corollary 1.2.3 shows that for a $K$-algebra $A$ there is a correspondence between isomorphy classes of PIMs and isomorphy classes of simple $A$-modules. This result is very important in representation theory, where the classification of indecomposable and irreducible $K G$-modules is the main object. The setting of group algebras $K G$ has an additional, important property: The simple module $P / \operatorname{rad} P$ coincides with the socle $\operatorname{soc} P$ of $P$, see Corollary 1.2.16.

### 1.2.2. Projective and injective modules over group algebras

In this section we discuss projective and injective modules and investigate their interplay in the case of $K G$-modules. Let us first recall the following fact: A short exact sequence $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$ of $R$-modules is said to split if there is an $R$-homomorphism $s: M \longrightarrow L$ such that $g \circ s=\operatorname{id}_{M}$.

Proposition 1.2.5. Let $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$ be a short exact sequence of $R$-modules, then the following are equivalent:
(i) The sequence splits.
(ii) There is an $R$-homomorphism $t: L \longrightarrow K$ such that $t \circ f=\operatorname{id}_{K}$.
(iii) $\operatorname{ker} g$ is a direct summand of $L$.

Proof. See [JS06, p. 196, Prop. 5.1].
Definition 1.2.6 (Projective modules). Let $M$ and $N$ be $R$-modules. An $R$-module $P$ is called projective, if for every surjective homomorphism $\pi \in \operatorname{Hom}_{R}(M, N)$ and every homomorphism $\varphi \in \operatorname{Hom}_{R}(P, N)$ there is a homomorphism $\psi \in \operatorname{Hom}_{R}(P, M)$ such that $\pi \circ \psi=\varphi$, i.e., the following diagram commutes:


Projective modules can be characterized by the following
Proposition 1.2.7. Let $P$ be an $R$-module, then the following are equivalent:
(i) $P$ is projective.
(ii) Every short exact sequence $0 \longrightarrow K \longrightarrow L \longrightarrow P \longrightarrow 0$ of $R$-modules splits.
(iii) $P$ is a direct summand of a free module.

Proof. (i) $\Rightarrow$ (ii) Consider the short exact sequence $0 \longrightarrow K \longrightarrow L \longrightarrow P \longrightarrow 0$, and take $N=P$ and $\varphi=\operatorname{id}_{P}$ in Definition 1.2.6. Then there is a homomorphism $\psi: P \longrightarrow L$ with $\pi \circ \psi=\operatorname{id}_{P}$, and by definition the sequence splits.
(ii) $\Rightarrow$ (iii) Since every module is the epimorphic image of a free module, we can assume that there is a free module $F$ and a surjective homomorphism $\varphi: F \longrightarrow P$. Consider now the short exact sequence $0 \longrightarrow \operatorname{ker} \varphi \longrightarrow F \xrightarrow{\varphi} P \longrightarrow 0$, which splits after assumption. Thus, by Proposition 1.2.5(iii) we have $F \cong \operatorname{ker} \varphi \oplus P$, proving (iii).
(iii) $\Rightarrow$ (i) Let $P^{\prime}$ be an $R$-module such that $P \oplus P^{\prime}$ is free, and assume $M, N, \pi$ and $\varphi$ as in Definition 1.2.6. Extend $\varphi: P \longrightarrow N$ to a homomorphism $\Phi: P \oplus P^{\prime} \longrightarrow N$ by setting $\Phi(x, y):=\varphi(x)$ for $x \in P, y \in P^{\prime}$. The claim is proved if we can show that there is a homomorphism $\Psi: P \oplus P^{\prime} \longrightarrow M$ such that $\pi \circ \Psi=\Phi$, since then $\psi:=\Psi(., 0)$ is the desired homomorphism.

To this end, let $F:=P \oplus P^{\prime}$ and $\left(x_{i}\right)_{i \in I}$ be a basis of $F$. Further, let $n_{i}:=\Phi\left(x_{i}\right)$ be the images of the elements of this basis under $\Phi$, then there are $m_{i} \in M$ with $\pi\left(m_{i}\right)=n_{i}$
since $\pi$ is surjective. Now define $\Psi: F \longrightarrow M$ by $\Psi\left(x_{i}\right)=m_{i}$ and observe that $\pi \circ \Psi=\Phi$, which proves the claim.

Remark. If $P$ in Proposition 1.2.7 is assumed to be finitely generated, we can choose the free module $F$ to be finitely generated as well. In this case, there is an $R$-module $P^{\prime}$ with $P \oplus P^{\prime} \cong R^{n}$ for an $n \in \mathbb{N}$.

If $A$ is a $K$-algebra, then finitely generated projective $A$-modules are intimately connected with the PIMs of $A$. More precisely, we have the following

Proposition 1.2.8. Let $A$ be a $K$-algebra. A finitely generated $A$-module $P$ is projective if and only if it is isomorphic to a direct sum of PIMs of $A$.

Proof. If $P$ is a direct sum of PIMs of $A$, then $P$ is clearly a direct summand of the free $A$-module $A$.
Conversely, let $P$ be a finitely generated projective $A$-module. Then by Proposition 1.2 .7 (iii) and the remark following the proof, $P$ is a direct summand of a free $A$-module $F \cong A^{n}$ for an $n \in \mathbb{N}$. But every copy of $A$ is a direct sum of PIMs, and applying the Krull-Schmidt theorem 1.1.7 proves the claim.

Proposition 1.2 .8 shows that every PIM $P$ of a $K$-algebra $A$ is projective, and indeed, the term 'PIM' sometimes denotes a projective indecomposable module. In the case of group algebras $K G$, projective modules have even stronger properties. To show this, we first discuss the dual notion of injective modules.

Definition 1.2.9 (Injective modules). Let $L$ and $M$ be $R$-modules. An $R$-module $Q$ is called injective if for every injective homomorphism $\iota \in \operatorname{Hom}_{R}(L, M)$ and every homomorphism $\varphi \in \operatorname{Hom}_{R}(L, Q)$ there is a homomorphism $\psi \in \operatorname{Hom}_{R}(M, Q)$ such that $\psi \circ \iota=\varphi$, i.e., the following diagram commutes:


Proposition 1.2.10. An $R$-module $Q$ is injective if and only if every short exact sequence $0 \longrightarrow Q \longrightarrow M \longrightarrow N \longrightarrow 0$ of $R$-modules splits.

Proof. To begin with, let $Q$ be injective and take $L=Q$ and $\varphi=\mathrm{id}_{Q}$ in Definition 1.2.9. Then there is a homomorphism $\psi: M \longrightarrow Q$ with $\psi \circ \iota=\operatorname{id}_{Q}$ and by Proposition 1.2 .5 (ii) the sequence splits.

Conversely, suppose that every short exact sequence $0 \longrightarrow Q \longrightarrow M \longrightarrow N \longrightarrow 0$ of $R$-modules splits, and let $L, M, \iota$ and $\varphi$ be as in Definition 1.2.9. Consider the submodule $S:=\{(\varphi(x),-\iota(x)) \mid x \in L\}$ of $Q \oplus M$ (the reason for the minus sign will become apparent at the end of the proof), and let $T:=(Q \oplus M) / S$ be the corresponding factor module, $[x, y] \in T$ denoting the class of $(x, y) \in Q \oplus M$. Further, set $N=M / \iota(L)$ and let $\pi: M \longrightarrow N$ be the canonical map. Then the maps $f: Q \longrightarrow T, f(x)=[x, 0]$ and $g: T \longrightarrow N, g([x, y])=\pi(y)$ constitute a short exact sequence

$$
0 \longrightarrow Q \xrightarrow{f} T \xrightarrow{g} N \longrightarrow 0
$$

which splits after assumption. Thus, there is a map $h: T \longrightarrow Q$ such that $h \circ f=\operatorname{id}_{Q}$. Define now $\psi: M \longrightarrow Q$ as $\psi(x):=h([0, x])$ and observe that for all $x \in L$ we have

$$
\begin{aligned}
(\psi \circ \iota)(x) & =h([0, \iota(x)]) \\
& =h[(\varphi(x), 0)] \\
& =(h \circ f \circ \varphi)(x) \\
& =\varphi(x)
\end{aligned}
$$

That is, $\psi \circ \iota=\varphi$. Note that for the second equality sign we need the minus in the definition of $S$.

After having defined and characterized projective and injective modules, we now want to investigate the relationship between them in the case of $K G$-modules. We will see that these two properties are actually equivalent. To understand this we first need to formalize the above mentioned duality between injective and projective modules.

Definition 1.2.11 (Dual module). Let $M$ be a $K G$-module. Consider the dual (vector) space $M^{*}=\operatorname{Hom}_{K}(M, K)$ of the $K$-vector space $M$ and define for $g \in G$ and $\varphi \in$ $\operatorname{Hom}_{K}(M, K)=M^{*}$ :

$$
\begin{aligned}
g \varphi: M & \longrightarrow K \\
v & \longmapsto \varphi\left(g^{-1} v\right)
\end{aligned}
$$

It is easy to verify that this definition turns $M^{*}$ into a $K G$-module. $M^{*}$ is called the dual $K G$-module of ${ }_{K G} M$. If $\rho: M \longrightarrow N$ is a $K G$-homomorphism from $M$ to $N$, then the homomorphism $\rho^{*}: N^{*} \longrightarrow M^{*}$ is defined by

$$
\rho^{*}(\psi): M \longrightarrow K
$$

$$
v \longmapsto \psi(\rho(v))
$$

and it is again readily verified that $g \rho^{*}(\psi)=\rho^{*}(g \psi)$ such that $\rho^{*}$ is a $K G$-homomorphism from $N^{*}$ to $M^{*}$.

Lemma 1.2.12. Let $M, M_{1}$ and $M_{2}$ be $K G$-modules.
(i) $M \cong{ }_{K G} M^{* *}$
(ii) Let $N$ be a submodule of $M$, then $N$ is isomorphic to the dual of a quotient module of $M$, that is, there is a submodule $N^{\prime}$ of $M^{*}$ such that $N^{\prime} \cong_{K G}(M / N)^{*}$ and $N^{*} \cong{ }_{K G} M^{*} / N^{\prime}$.
(iii) $\left(M_{1} \oplus M_{2}\right)^{*} \cong_{K G} M_{1}^{*} \oplus M_{2}^{*}$
(iv) If $\varphi: P \rightarrow Q$ and $\psi: Q \rightarrow R$ are $K G$-module homomorphisms, then $(\psi \circ \varphi)^{*}=$ $\varphi^{*} \circ \psi^{*}$.
(v) $M$ is simple if and only if $M^{*}$ is simple.

Proof. The properties (i)-(iv) carry over directly from the corresponding results about vector spaces.
(v) If $M$ contains a proper submodule $N$, then by (ii) $M^{*}$ also contains a proper submodule and is therefore not simple. The same argument applied to $M^{*}$ together with (i) proves the converse.

The next lemma is the key stone in our main result and ensures that the dual of a projective module is again projective:

Lemma 1.2.13. The group algebra $K G$ is selfdual, that is, $K G \cong_{K G}(K G)^{*}$.
Proof. For each $g \in G$ define the $K$-linear functional $\varphi_{g}: K G \longrightarrow K$ on $x \in G$ by

$$
\varphi_{g}(x)= \begin{cases}1_{K} & x=g \\ 0 & x \neq g\end{cases}
$$

and extend it by linearity onto $K G$. Consider now the $K$-homomorphism $K G \longrightarrow$ $(K G)^{*}, g \longmapsto \varphi_{g}$, which maps a $K$-basis of $K G$ onto a $K$-basis of $(K G)^{*}$ and is therefore an isomorphism. We see that it is also a $K G$-homomorphism: For $g, h \in G$ we have

$$
\left(g \varphi_{h}\right)(x)=\varphi_{h}\left(g^{-1} x\right)
$$

which is $1_{K}$ if $h=g^{-1} x$, that is, $x=g h$, and 0 if $h \neq g^{-1} x$, that is, $x \neq g h$. Hence, $g \varphi_{h}=\varphi_{g h}$, and therefore $K G \cong_{K G}(K G)^{*}$.

Corollary 1.2.14. If $M$ is a free $K G$-module, then so is $M^{*}$.
Corollary 1.2.15. The dual of a projective $K G$-module is projective.
Lemma 1.2.13 implies another useful result about group algebras which we already pointed out at the end of Section 1.2.1:

## Corollary 1.2.16.

$$
\operatorname{soc} K G \cong K G / \operatorname{rad} K G
$$

In particular, if $P$ is a $P I M$ of $K G$ then $\operatorname{soc} P \cong P / \operatorname{rad} P$.
Proof. We show that for an arbitrary $K G$-module $M$ we have $(M / \operatorname{rad} M)^{*} \cong \operatorname{soc} M^{*}$. Setting $M=K G$ and applying Lemma 1.2.13 then proves the claim.

Consider therefore the $K G$-module $M / \operatorname{rad} M$. Since the group algebra $K G$ is Artinian, $M / \operatorname{rad} M$ is semisimple by Proposition 1.1.22(i). By Lemma 1.2.12(v) this also holds for the dual $(M / \operatorname{rad} M)^{*}$. Hence, $(M / \operatorname{rad} M)^{*}$ is a sum of simple modules and therefore a submodule of $\operatorname{soc} M^{*}$. On the other hand, suppose $S^{*}$ is a simple submodule of $M^{*}$. Then by Lemma 1.2 .12(ii) there is a submodule $M^{\prime}$ of $M$ such that $S^{*} \cong\left(M / M^{\prime}\right)^{*}$. Since $S^{*}$ is simple, by Lemma $1.2 .12(\mathrm{v}) S$ is also simple, so $M^{\prime}$ is maximal in $M$ and $\operatorname{rad} M \leq M^{\prime}$. Hence, $M^{\prime} / \operatorname{rad} M$ is a submodule of $M / \operatorname{rad} M$, and by Lemma 1.2.12(ii) there is a submodule $T$ of $(M \operatorname{rad} M)^{*}$ with $T \cong\left((M / \operatorname{rad} M) /\left(M^{\prime} / \operatorname{rad} M\right)\right)^{*} \cong\left(M / M^{\prime}\right)^{*}$. We see that $S^{*} \cong T$ is a submodule of $(M / \operatorname{rad} M)^{*}$. Since $S^{*}$ was arbitrary, the claim $\operatorname{soc} M^{*} \cong(M / \operatorname{rad} M)^{*}$ follows.

We are now ready to prove
Theorem 1.2.17. A $K G$-module $M$ is projective if and only if it is injective.
Proof. Suppose that $M$ is projective, and consider the diagram

where $\iota$ and $\varphi$ are $K G$-module homomorphisms, $\iota$ being injective. We have to show that there is a $K G$-module homomorphism $\psi: L \longrightarrow M$ such that $\varphi=\psi \circ \iota$.

To this end, take duals in the above situation, resulting in the following diagram:


We first show that $\iota^{*}$ is surjective. Let $\rho \in N^{*}$, then we can define the homomorphism $\chi: L \longrightarrow N$ on the image $\iota(N)$ in $L$ by $\chi(\iota(n)):=\rho(n)$. This is well-defined since $\iota$ is injective. But by Definition 1.2.11, $\iota^{*}(\chi)=\rho$; hence, $\iota^{*}(L)=N$.
Since $M$ is projective, it is a direct summand of a free module $F$ by Proposition 1.2.7. Lemma 1.2.12(iii) together with Corollary 1.2 .14 then imply that $M^{*}$ is a direct summand of the free module $F^{*}$ and hence also projective. Thus, there is a homomorphism $\psi^{*}$ : $M^{*} \longrightarrow L^{*}$ such that $\varphi^{*}=\iota^{*} \circ \psi^{*}$. But by Lemma 1.2.12(iv) we have $\varphi=\left(\iota^{*} \circ \psi^{*}\right)^{*}=\psi \circ \iota$. Hence, $\psi: L \longrightarrow M$ is the desired homomorphism, and $M$ is injective.
An entirely analogous argument proves the opposite direction.
Remark. The proof of Theorem 1.2.17 shows that by taking duals all the arrows in a diagram are reversed. To this extent, projective and injective modules are dual to each other inasmuch as the defining diagram of the former is 'dualized' into the diagram of the latter and vice versa.

### 1.2.3. Multiplicities of PIMs in decompositions of algebras over a field

In Subsection 1.1.1 we showed that since a $K$-algebra $A$ has finite length, any decomposition of it into a direct sum of PIMs is unique up to isomorphism and order of appearance. Theorem 1.2.2 in Subsection 1.2.1 further states that on the one hand every PIM $P$ of $A$ possesses a unique submodule $\operatorname{rad} P$, and on the other hand the number of isomorphy classes of PIMs is the same as the number of distinct non-isomorphic simple $A$-modules. Our next objective is to determine the number of PIMs in each isomorphy class. More precisely, suppose we have a decomposition

$$
A=\bigoplus_{i=1}^{t} \bigoplus_{j=1}^{q_{i}} P_{i j}
$$

of the $K$-algebra $A$ into a direct sum of PIMs, where for fixed $i$ the PIMs $P_{i j}$ are pairwise isomorphic for $1 \leq j \leq q_{i}$ (to be determined by Theorem 1.2.2(ii)). Then our task is to find $q_{i}$ for $1 \leq i \leq t$, which can be achieved by deploying intertwining numbers.

Throughout this subsection, let $A$ be a $K$-algebra. We start with a

Definition 1.2.18. Let $M$ and $N$ be $A$-modules. The intertwining number $i(M, N)$ is defined by

$$
i(M, N):=\operatorname{dim}_{K}\left(\operatorname{Hom}_{A}(M, N)\right)
$$

Lemma 1.2.19. Let $M, N_{1}$ and $N_{2}$ be $A$-modules, then the following holds:
(i) $i\left(M, N_{1} \oplus N_{2}\right)=i\left(M, N_{1}\right)+i\left(M, N_{2}\right)$ $i\left(N_{1} \oplus N_{2}, M\right)=i\left(N_{1}, M\right)+i\left(N_{2}, M\right)$
(ii) $i(A, M)=\operatorname{dim}_{K} M$
(iii) If $e \in A$ is an idempotent, then $i(A e, M)=\operatorname{dim}_{K} e M$.

Proof. (i) The identities follow from the respective identities involving modules of homomorphisms.
(ii) Define the $K$-homomorphism $\Pi: \operatorname{Hom}(A, M) \longrightarrow M, \varphi \longmapsto \varphi\left(1_{A}\right)=m_{0} \in M$. Suppose $\Pi(\varphi)=\varphi(1)=0$. Then $\varphi(a)=\varphi\left(a 1_{A}\right)=a \varphi\left(1_{A}\right)=0$ for all $a \in A$, that is, $\varphi=0$; hence, $\Pi$ is injective. Conversely, for $m \in M$ define $\varphi \in \operatorname{Hom}(A, M)$ by $\varphi(a)=a m$. Thus, $\Pi$ is bijective and $\operatorname{Hom}(A, M) \cong M$, from which $i(A, M)=\operatorname{dim} M$ follows.
(iii) In analogy to (ii), define the $K$-homomorphism $\Psi: \operatorname{Hom}(A e, M) \longrightarrow M, \varphi \longmapsto$ $\varphi(e)$. Then $\Psi$ is injective since $\Psi(\varphi)=0$ implies $\varphi(a e)=a \varphi(e)=0$ for all $a \in A$, giving $\varphi=0$. We claim that $\operatorname{im} \Psi=e M$. Since $\Psi(\varphi)=\varphi(e)=\varphi\left(e^{2}\right)=e \varphi(e)$ for all $\varphi \in \operatorname{Hom}(A e, M)$, we have $\operatorname{im} \varphi \subset e M$. Conversely, for $m \in M$ we define $\varphi \in \operatorname{Hom}(A e, M)$ by $\varphi(a e):=a e m$. Then $\Psi(\varphi)=\varphi(e)=e m$, implying im $\Psi \supset e M$ and $\operatorname{Hom}(A e, M) \cong e M$. Now the claim follows.

In order to prove the main result, we need an important theorem connecting a PIM $P$ of $A$ to $A$-modules $M$ with composition series. This is in some way a refinement of Corollary 1.2.3.

Theorem 1.2.20. Let $P$ be a PIM of $A$ and $M$ an $A$-module with composition series $M=M_{0} \supset M_{1} \supset \cdots \supset M_{r}=0$. Then

$$
i(P, M)=q k
$$

where $q$ is the number of factors of $M$ which are isomorphic to $P / \operatorname{rad} P$ and $k=$ $i(P / \operatorname{rad} P, P / \operatorname{rad} P)$.

Proof. Fix an index $0 \leq j<r$ and define the homomorphism

$$
\begin{aligned}
\Psi: \operatorname{Hom}\left(P, M_{j}\right) & \longrightarrow \operatorname{Hom}\left(P, M_{j} / M_{j+1}\right) \\
\tau & \longmapsto \pi \circ \tau
\end{aligned}
$$

where $\pi: M_{j} \longrightarrow M_{j} / M_{j+1}$ is the natural projection onto the factor module. We first show that $\Psi$ is surjective. To this end, abbreviate $R_{j}:=M_{j} / M_{j+1}$ and let $\sigma \in$ $\operatorname{Hom}\left(P, R_{j}\right)$ and $\pi_{P}: A \longrightarrow P$ be the projection onto $P$ from Proposition 1.1.2(i). Let $m_{0}:=\sigma\left(\pi_{P}\left(1_{A}\right)\right)$, then there is an $m_{1} \in M_{j}$ with $\pi\left(m_{1}\right)=m_{0}$. Define $\tau \in \operatorname{Hom}\left(P, M_{j}\right)$ by $\tau(x)=x m_{1}$, then we have for $x \in P$ :

$$
\begin{aligned}
\sigma(x) & =\sigma\left(\pi_{P}(x)\right)=\sigma\left(\pi_{P}\left(x \cdot 1_{A}\right)\right)=x \sigma\left(\pi_{P}\left(1_{A}\right)\right) \\
& =x m_{0}=x \pi\left(m_{1}\right)=\pi\left(x m_{1}\right)=\pi(\tau(x))
\end{aligned}
$$

Hence, $\sigma=\pi \circ \tau$, and $\Psi$ is surjective. The kernel of $\Psi$ is $\operatorname{Hom}\left(P, M_{j+1}\right)$ and thus,

$$
\operatorname{Hom}\left(P, M_{j}\right) / \operatorname{Hom}\left(P, M_{j+1}\right) \cong \operatorname{Hom}\left(P, R_{j}\right)
$$

and correspondingly,

$$
i\left(P, M_{j}\right)-i\left(P, M_{j+1}\right)=i\left(P, R_{j}\right)
$$

Using Lemma 1.2.19(i) and summing over $j$ in the last equation gives

$$
\begin{equation*}
i(P, M)=\sum_{j=0}^{r-1} i\left(P, R_{j}\right) \tag{}
\end{equation*}
$$

Let us investigate the number $i\left(P, R_{j}\right)$. Either, $i\left(P, R_{j}\right)=0$ or there is a homomorphism $\tau \in \operatorname{Hom}\left(P, R_{j}\right)$ with $\tau \neq 0$. But since $R_{j}$ is simple, $\tau(P)=R_{j}, P / \operatorname{ker} \tau \cong R_{j}$, and by Theorem 1.2.2(i) $\operatorname{ker} \tau=\operatorname{rad} P$, the unique maximal submodule of $P$. Therefore, $\tau$ induces an isomorphism $\bar{\tau}: P / \operatorname{rad} P \longrightarrow M_{j} / M_{j+1}$. Conversely, suppose we have an isomorphism $\bar{\tau}: P / \operatorname{rad} P \longrightarrow R_{j}$, then $\tau=\bar{\tau} \circ \pi^{\prime} \in \operatorname{Hom}\left(P, R_{j}\right)$, where $\pi^{\prime}: P \longrightarrow$ $P / \operatorname{rad} P$ is the natural projection onto the factor module. Therefore,

$$
\operatorname{Hom}\left(P, R_{j}\right) \cong \operatorname{Hom}\left(P / \operatorname{rad} P, R_{j}\right) \cong \operatorname{Hom}(P / \operatorname{rad} P, P / \operatorname{rad} P)
$$

and in particular, $i\left(P, R_{j}\right)=i(P / \operatorname{rad} P, P / \operatorname{rad} P)$. Applying this reasoning to $\left(^{*}\right)$ proves the claim.

In total we have gathered much more information about the decomposition of an algebra $A$ :

Theorem 1.2.21. Let $A$ be a $K$-algebra with a decomposition

$$
A=\bigoplus_{i=1}^{t} \bigoplus_{j=1}^{q_{i}} P_{i j}
$$

into a direct sum of PIMs $P_{i j}$, where for fixed $i$ the PIMs $P_{i j}$ are pairwise isomorphic for $1 \leq j \leq q_{i}$, meaning $P_{i j} \cong P_{k l}$ if and only if $i=k$. Define further the following numbers:

$$
\begin{aligned}
n & =\operatorname{dim} A & n_{i} & =\operatorname{dim}\left(P_{i 1} / \operatorname{rad} P_{i 1}\right) \\
d_{i} & =\operatorname{dim} P_{i 1} & k_{i} & =\operatorname{dim} \operatorname{End}\left(P_{i 1} / \operatorname{rad} P_{i 1}\right)
\end{aligned}
$$

Then the following identity holds:

$$
n=\sum_{i=1}^{t} \frac{n_{i}}{k_{i}} d_{i}
$$

Proof. Lemma 1.2.19(ii) implies $i\left(A, P_{i 1} / \operatorname{rad} P_{i 1}\right)=\operatorname{dim}\left(P_{i 1} / \operatorname{rad} P_{i 1}\right)=n_{i}$. Therefore,

$$
\begin{aligned}
n_{i} & =i\left(A, P_{i 1} / \operatorname{rad} P_{i 1}\right) \\
& =i\left(\bigoplus_{l=1}^{t} \bigoplus_{m=1}^{r_{l}} P_{l m}, P_{i 1} / \operatorname{rad} P_{i 1}\right) \\
& =\sum_{l=1}^{t} \sum_{m=1}^{r_{l}} i\left(P_{l m}, P_{i 1} / \operatorname{rad} P_{i 1}\right) \quad \text { by Lemma 1.2.19(i) }
\end{aligned}
$$

Theorem 1.2.20 implies

$$
i\left(P_{l m}, P_{i 1} / \operatorname{rad} P_{i 1}\right)= \begin{cases}k_{j} & \text { if } P_{l m} \cong P_{i 1} \\ 0 & \text { else }\end{cases}
$$

which means that $n_{i}=q_{i} k_{i}$. Now compare the dimensions on both sides of the decomposition

$$
A=\bigoplus_{i=1}^{t} \bigoplus_{j=1}^{q_{i}} P_{i j}
$$

to obtain

$$
n=\sum_{i=1}^{t} q_{i} d_{i}=\sum_{i=1}^{t} \frac{n_{i}}{k_{i}} d_{i}
$$

In our applications we can disregard the number $k_{i}$ by the following
Proposition 1.2.22. Let $A$ be an algebra over an algebraically closed field $K$ and $S$ be a simple $A$-module. Then $\operatorname{End}_{A} S \cong K$.

Proof. Let $\varphi \in \operatorname{End}_{A} S$, then also $\varphi \in \operatorname{End}_{K}(S)$ when treating $S$ as a $K$-vector space. Since $K$ is algebraically closed, there is an eigenvalue $\lambda \in K$ of $\varphi$, and then $\varphi-\lambda \mathrm{id} \in$ $\operatorname{End}_{A} S$. Since $S$ is simple and $\varphi-\lambda \mathrm{id}$ is singular, $\operatorname{im}(\varphi-\lambda \mathrm{id})=0$. Hence $\varphi-\lambda \mathrm{id} \equiv 0$, giving $\varphi=\lambda$ id.

Remark. Strictly speaking, the assumption that $K$ be algebraically closed is too strong. In fact it suffices to assume that the characteristic polynomial of every $\varphi \in \operatorname{End}_{A} S$ for every simple $A$-module $S$ has a root in $K$. Such fields are called splitting fields for the algebra $A$ and will be dealt with in Section 2.1.1.

### 1.3. The Meataxe algorithm

Since one of the main tasks of representation theory is to find the irreducible representations of a group $G$, we are often interested in answering the question whether or not a given $K G$-module $M$ is simple. Even if the answer is negative, we might find a proper submodule $N$ of $M$ along the way and ask again whether or not $N$ is simple. Moreover, if the field $K$ is a finite field $\mathbb{F}_{q}$, where $q=p^{n}$ for some $n$, and the algebra $K G$ is finitedimensional over $\mathbb{F}_{q}$ (which is always the case for finite groups $G$ ), the problem is finite. Since we can in principle list all the elements of $K G$, computations in the group algebra are feasible, especially with computer algebra systems such as GAP (cf. Section 3.3).
There is a well known algorithm devised by Richard Parker called the Meataxe to investigate $K G$-modules $M$ with respect to simplicity. This section explains its key ingredient, Norton's irreducibilty criterion, and presents a widely used extension of Parker's Meataxe, the Holt-Rees algorithm by Derek F. Holt and Sarah Rees.

### 1.3.1. Norton's irreducibilty criterion

Let us first start with a simple observation from linear algebra:

Lemma 1.3.1. Let $V$ be a finite-dimensional vector space over $K$ and $W$ be a subspace of $V$ with $\varphi(W) \subset W$ for an endomorphism $\varphi \in \operatorname{End}_{K}(V)$. Then $\operatorname{ker}_{V^{*}} \varphi^{*} \leq W^{\circ}$ if $W \cap \operatorname{ker} \varphi=(0)$.

Proof. By definition, $\operatorname{ker} \varphi^{*}=\left\{f \in V^{*} \mid 0=\varphi^{*}(f)=f \circ \varphi\right\}=(\operatorname{im} \varphi)^{\circ}$. The condition $W \cap \operatorname{ker} \varphi=(0)$ means that $\left.\varphi\right|_{W}$ is injective. Thus, $W$ is a subspace of $\operatorname{im} \varphi$, and dually $(\operatorname{im} \varphi)^{\circ}=\operatorname{ker} \varphi^{*}$ is a subspace of $W^{\circ}$, proving the claim.

Proposition 1.3.2 (Norton's irreducibility criterion). Let $A$ be a $K$-algebra and $M$ be an A-module with $\operatorname{dim}_{K} M<\infty$. Choose further an element $a \in A$ such that $\operatorname{ker}_{M} a \neq(0)$. Then $M$ is simple if and only if
(a) $M=A v$ for all $v \in \operatorname{ker}_{M} a$.
(b) $M^{*}=w A$ for some $w \in \operatorname{ker}_{M^{*}} a^{*}$.

Proof. If $M$ is simple, then by Proposition 1.2.12(v) both (a) and (b) hold.
Conversely, suppose that both (a) and (b) are true, and let $N$ be a proper submodule of $M$. Then $\operatorname{ker}_{M} a \cap N=(0)$, since (a) holds. Lemma 1.3.1 implies $\operatorname{ker}_{M^{*}} a^{*} \leq N^{\circ} \leq M^{*}$, and by (b) we have $N^{\circ}=M^{*}$, so $N=(0)$ and $M$ is simple.

Remark. If $M$ is not simple, a proper submodule is found in (a) or (b). This submodule is of the form $A v$ for some $v \in \operatorname{ker}_{M} a$ or of the form $w A$ for all $w \in \operatorname{ker}_{M^{*}} a^{*}$.

### 1.3.2. Holt-Rees algorithm

The Holt-Rees algorithm is an extension of the Meataxe algorithm and deploys the computation and factorization of characteristic polynomials of an element $a \in A$. Let us start with a $K G$-module $M$ which we want to test for simplicity. In our case, $K=\mathbb{F}_{q}$, the finite field with $q$ elements.

If $g_{1}, \ldots, g_{r}$ are generators of the group $G$ and $\rho: G \longrightarrow M_{d}(K)$ is a representation of $G$ on the vector space $M=K^{d}$, the matrices $x_{1}=\rho\left(g_{1}\right), \ldots, x_{r}=\rho\left(g_{r}\right)$ define the action of $G$ on the $K G$-module $M$. The input is the $K$-algebra $A$ generated by these matrices, and the algorithm looks as follows:
(1) Choose a random element $a \in A$.
(2) Compute the characteristic polynomial $p_{a}(x)$ of $a$.
(3) Factorize $p_{a}(x)$ into the irreducible factors $f(x)$ and order them by increasing degree. For each $f(x)$ do the following:
(a) Calculate $v=f(a)$.
(b) Calculate $N=\operatorname{ker}_{M}(v)$. If $\operatorname{dim} N=\operatorname{deg} f$, the factor $f(x)$ of $p_{a}(x)$ is called a good factor.
(c) Choose a non-zero element $w \in N$ and calculate a basis of the submodule of $M$ generated by this vector under the action of $G$ via the matrices $x_{1}, \ldots, x_{r}$. If this is a proper submodule of $M$, return the answer reducible and terminate the algorithm.
(d) Calculate $N^{\prime}=\operatorname{ker}_{M^{*}}\left(v^{*}\right)$.
(e) Choose a non-zero element $u \in N^{\prime}$ and calculate a basis of the submodule of $M^{*}$ generated by this vector under the (right) action of $G$ via the matrices $x_{1}^{T}, \ldots, x_{r}^{T}$. If this is a proper submodule of $M^{*}$, return the answer reducible and terminate the algorithm.
(f) If $f(x)$ is a good factor, return the answer irreducible.
(4) Repeat step (1).

The only major addition to the original Meataxe algorithm is the computation and factorization of the characteristic polynomial $p_{a}(x)$ of an element $a \in A$. Although one might think that this is a disadvantage, in [HR94, Sect. 1] Holt and Rees state that these computations consume the same amount of time as for example computing the nullspace $\operatorname{ker}_{M}(v)$ of an element $v \in A$.

The Holt-Rees algorithm is a so-called Las Vegas algorithm, meaning that it is not sure whether or not it terminates. However, if it does terminate, the returned answer is always correct. This is proved in the following

Proposition 1.3.3. If the Holt-Rees algorithm terminates for the $K G$-module $M$, it always returns a correct answer.

Proof. Since the answer 'reducible' arises from the computation of a proper submodule of $M$, there is nothing to prove. In order to prove the correctness of the answer 'irreducible', we will show that if $M$ is reducible and contains a proper submodule $L$, then choosing an element $a \in A$ such that $p_{a}(x)$ has a good factor $f(x)$ leads to the answer 'reducible'.

So assume $L, a \in A, p_{a}(x)$ and $f(x)$ as above. Let $N$ be as in step (3b) of the algorithm and regard $a$ as an endomorphism of $M$. Then $\left.a\right|_{N}$ has the minimal polynomial $f(x)$ and since $\operatorname{dim} N=\operatorname{deg} f$, the map $a$ is irreducible on $N$. Therefore, the subspace $L \cap N$, which is fixed by $a$, is trivial, i.e., either ( 0 ) or $N$. In the latter case the non-zero vector

## 1. Algebraic prerequisites

chosen in step (3c) of the algorithm generates a non-trivial submodule $S$ of $M$ contained in $L$, and the algorithm terminates with the answer 'reducible'.

On the other hand, suppose $L \cap N=(0)$, then Lemma 1.3.1 implies that $N^{\prime}=$ $\operatorname{ker}_{M^{*}} v^{*} \leq L^{\circ}$. Observe that $N^{\prime}$ is not zero and $L^{\circ} \neq M^{*}$ (since otherwise $L=(0)$, contradicting the assumption). Therefore, step (3e) finds a proper submodule, and the algorithm terminates with the answer 'reducible'.

## 2. Modular representation theory

This chapter provides an introduction to modular representation theory. A representation $\rho: G \longrightarrow \operatorname{End}_{K}(V)$ is called modular if the characteristic of $K$ divides the order of $G$, so that the group algebra $K G$ is not semisimple by Maschke's theorem 1.1.13. It turns out that in this case a very fruitful approach to investigating the group algebra $K G$ is by working with $p$-modular systems. They are the subject of the first section and once properly defined, they are used exclusively in the further study of modular representations. In the second part we turn to irreducible modular representations and investigate Cartan numbers, decomposition numbers and Brauer characters. The former relate representations in characteristic zero to modular representations, whereas Brauer characters are the analogue of ordinary characters in the modular case. The last part contains an introduction to the basic tools of block theory and proves the most important structure theorems as well as a formula for the block idempotents.
In this chapter we mostly follow [Bur65, pp. 120, Ch. VI] and [DP77]. Beyond that, Sections 2.1 and 2.2 include results from [LP10] and [Ser77], respectively. Since the last section on block theory only covers the basic results needed for Chapter 3, the interested reader is referred to the bibliography. In particular, [Alp86] and [DP77] are recommended as starting points for block theory.
Let us fix some notation. The conjugacy classes of a finite group $G$ are denoted by $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$. We also use the standard notation $g^{G}:=\left\{h^{-1} g h \mid h \in G\right\}$, i.e., for $g \in \mathcal{C}_{i}$ we have $g^{G}=\mathcal{C}_{i}$.

## 2.1. $\boldsymbol{p}$-modular systems

### 2.1.1. Splitting fields

Consider a $K$-algebra $A$, a field extension $L \supset K$ and an $A$-module $M$, and construct the tensor products $A_{L}:=L \otimes_{K} A$ and $M_{L}:=L \otimes_{K} M$, viewed as an $A_{L}$-module. Provided that the $A$-module $M$ is simple, one might ask if the $A_{L}$-module $M_{L}$ is still simple, which leads to the following

Definition 2.1.1 (Absolutely simple module).
(i) A simple $A$-module $M$ is called absolutely simple if $M_{L}$ is simple for every field extension $L \supset K$ of $K$.
(ii) An irreducible representation $\rho: G \longrightarrow V$ over a $K$-vector space $V$ is called absolutely irreducible if the corresponding $K G$-module $V$ is absolutely simple.

If we consider algebraic field extensions of $K$ in Definition 2.1.1, which for finitedimensional $K$-algebras such as the group algebra of a finite group is justified by Proposition 2.1.4 below, every simple module over an algebraically closed field $K$ is also absolutely simple. Hence, every irreducible representation $\rho: G \longrightarrow \operatorname{Aut}\left(\mathbb{C}^{n}\right)$ is absolutely irreducible, and this is the reason why ordinary representation theory is usually carried out over $\mathbb{C}$. However, often a smaller (sub-) field already accounts for all the irreducible representations, and one could have restricted the computation of the irreducible representations to this particular field.

Definition 2.1.2 (Splitting field).
(i) A field $L$ is called a splitting field for the $K$-algebra $A$ if every simple $A_{L}$-module $M$ is absolutely simple.
(ii) A field $L$ is called a splitting field for the group $G$ if $K$ is a splitting field for the group algebra $K G$.

In light of Proposition 1.2.22, splitting fields can be characterized by the following
Proposition 2.1.3. If $K$ is a splitting field for $A$, then $\operatorname{End}_{A}(M) \cong K$ for every simple $A$-module $M$.

Proof. Suppose that $K$ is a splitting field for $A$, and let $L$ be the algebraic closure of $K$. Then for every simple $A$-module $M$ the $A_{L}$-module $M_{L}$ is simple, and

$$
L \otimes \operatorname{End}_{A}(M) \cong \operatorname{End}_{A_{L}}\left(M_{L}\right) \cong L
$$

by Proposition 1.2.22. Since $A$ is a finite-dimensional $K$-algebra, an endomorphism $\varphi \in \operatorname{End}_{A}(M)$ can be represented by a matrix with entries in $K$. Hence, the image of $\operatorname{End}_{A}(M)$ under the above isomorphism is the set of $K$-multiples of the identity, that is, $\operatorname{End}_{A}(M) \cong K$.

Remark. The statement of Proposition 2.1.3 is in fact an equivalence, i.e., if $\operatorname{End}_{A}(M) \cong$ $K$ for every simple $A$-module $M$ then $K$ is a splitting field for $A$. A proof can be found in [DP77, p. 25, Thm. 1.7B].

The next proposition shows that in case of finite-dimensional $K$-algebras the splitting field can be chosen as an algebraic extension of $K$.

Proposition 2.1.4. Let $A$ be a $K$-algebra with $\operatorname{dim}_{K} A<\infty$. Then there is a splitting field $L \supset K$ with $[L: K]<\infty$.

Proof. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a $K$-basis of $A$ and let $\bar{K}$ be the algebraic closure of $K$. Further, let $S_{1}, \ldots, S_{m}$ be representatives of the isomorphy classes of simple $\bar{K}$-modules (cf. Corollary 1.2.4) and $\mathfrak{b}_{i}=\left\{b_{1}^{i}, \ldots, b_{r_{i}}^{i}\right\}$ be a $\bar{K}$-basis of $S_{i}$ for $i=1, \ldots, m$. Denote by $\rho_{i}$ the matrix representation afforded by $S_{i}$ with respect to the basis $\mathfrak{b}_{i}$, and let $L$ be the field obtained by adjoining to $K$ all entries of the matrices $\rho_{i}\left(a_{j}\right)$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. We will show that $L$ is a splitting field for $A$.

Due to the definition of $L$, the module $S_{i}^{\prime}:=\left\langle b_{1}^{i}, \ldots, b_{r_{i}}^{i}\right\rangle_{L}$ is a simple $A_{L}$-module, and we observe that $\left(S_{i}^{\prime}\right)_{\bar{K}}=S_{i}$, which means that $S_{i}^{\prime}$ is absolutely simple. Moreover, for an arbitrary simple $L$-module $S$ we have for some $i=1, \ldots, m$ that

$$
(0) \neq \operatorname{Hom}_{A_{\bar{K}}}\left(S_{\bar{K}},\left(S_{i}^{\prime}\right)_{\bar{K}}\right) \cong \bar{K} \otimes_{L} \operatorname{Hom}_{A_{L}}\left(S, S_{i}^{\prime}\right)
$$

implying $S \cong S_{i}^{\prime}$. Thus, $S$ is absolutely simple, and $L$ is a splitting field for $A$.

Corollary 2.1.5. Let $A$ be a finite-dimensional K-algebra. Then the algebraic closure of $K$ is a splitting field for $A$.

Proof. According to Proposition 2.1.4, let $L$ be a splitting field of $A$ with $[L: K]<\infty$. Since the algebraic closure $\bar{K}$ of $K$ contains every algebraic extension of $K$ and hence $L$, every simple $A_{\bar{K}}$-module is absolutely irreducible.

Since the group algebra of a finite group is finite-dimensional, Corollary 2.1.5 is the reason why ordinary representation theory of finite groups is usually carried out over the complex numbers $\mathbb{C}$ or another algebraically closed field. However, note that by Proposition 1.2.22 and the remark following Proposition 2.1.3, the algebraic closure $\bar{K}$ is also a splitting field for an infinite-dimensional $K$-algebra.

The splitting field for a finite group is explicitly known due to a well-known theorem by R. Brauer. Recall that the $\operatorname{exponent} \exp G$ of a group $G$ is the least common multiple of the orders of the elements of $G$.

Theorem 2.1.6 (Brauer). Let $G$ be a finite group with exponent $n$ and $\zeta_{n}$ be a primitive $n$-th root of unity. Then $\mathbb{Q}\left(\zeta_{n}\right)$ is a splitting field for $G$.

Proof. See [CR81, Vol. I, p. 386, Cor. 15.18]
This also holds in the case of a (finite) extension of a finite field:
Theorem 2.1.7. Let $G$ be a finite group with exponent $n$ and $K$ be a splitting field of the polynomial $X^{n}-1 \in \mathbb{F}_{p}[X]$. Then $K$ is also a splitting field for $G$.

Proof. See [DP77, p. 58, Thm. 2.7B(ii)]

### 2.1.2. Lifting idempotents

The idea of modular representation theory is the investigation of the group algebra $k G$, where $k$ is a field of characteristic $p$. Here, we are only considering primes $p$ which divide the order of $G$, such that Maschke's theorem 1.1.13 does not hold. At first any choice of $k$ seems reasonable, but it turns out that the use of (extensions of) $p$-adic fields and their corresponding residue fields connects representation theory in characteristic $p$ and ordinary representation theory in characteristic 0 in a satisfactory way. The nature of this connection will become clear when we prove the main result of this section about lifting idempotents.

Let us first define Cauchy sequences for general valuation rings.
Definition 2.1.8. Let $(R, \nu)$ be a valuation ring. A sequence $\left(v_{n}\right)_{n \in \mathbb{N}} \in R$ is called a Cauchy sequence if

$$
\lim _{n \rightarrow \infty} \nu\left(v_{n}-v_{n-1}\right)=\infty
$$

and convergent with limit $v$ if

$$
\lim _{n \rightarrow \infty} \nu\left(v_{n}-v\right)=\infty
$$

$R$ is called complete if every Cauchy sequence converges.
We also recall a few facts about $p$-adic fields which are needed in the following discussion.

Proposition 2.1.9. Let $K$ be a finite extension of the $p$-adic numbers $\mathbb{Q}_{p}$ and $R$ be its ring of integers. Then the following assertions hold:
(i) $K=$ Quot $R$ and $R \cap \mathbb{Q}_{p}=\mathbb{Z}_{p}$
(ii) $R$ is a free $\mathbb{Z}_{p}$-module.
(iii) The ring $R$ has a unique maximal ideal $\pi R$ for some uniformizing element $\pi \in R$, and the proper non-zero ideals of $R$ are given by $\pi^{n} R, n=1,2, \ldots$.
(iv) $R$ is a complete discrete valuation ring for $K$. The completeness is sometimes restated as

$$
\bigcap_{n=1}^{\infty} \pi^{n} R=0
$$

(v) $k:=R / \pi R$ is a finite field of characteristic $p$.
(vi) Every finitely generated torsion-free $R$-module is free.

Proof. See [DP77, p. 66, Thm. 3.2] or [LP10, pp. 289, Sect. 4.1].
Keeping these results in mind we define the setting of our study of modular representations.

Definition 2.1.10 ( $p$-modular systems). Let $G$ be a finite group with exponent $n, p$ be a prime which divides the order of $G$ and $K \supset \mathbb{Q}_{p}$ with $\left[K: \mathbb{Q}_{p}\right]<\infty$ be a splitting field for the polynomial $X^{n}-1$. Let further $R$ be the ring of integers in $K$ and $\pi \in R$ a uniformizing element, i.e., $\pi R$ is the unique maximal ideal in $R$. If $k:=R / \pi R$ is the residue field of $R$, then by Theorem 2.1.6 and Theorem 2.1.7 both $K$ and $k$ are splitting fields for $G$. The system $(K, R, k)$ is called a $p$-modular system for $G$.

Note that $K, R$ and $k$ are commutative rings, so the group algebras $K G, R G$ and $k G$ are well defined. The following two theorems show the intimate connection of these three structures.

Theorem 2.1.11 (Lifting idempotents). Let $K, R$ and $k$ be as in Proposition 2.1.9 and $A$ an $R$-algebra which is free and finitely generated as an $R$-module (this is also called an $R$-order). Set $\bar{A}:=A / \pi A$, which is a $k$-algebra, and write $\bar{x} \in \bar{A}$ for the class of $x \in A$.
(i) If e is a non-zero idempotent in $A$, then $\bar{e}$ is a non-zero idempotent in $\bar{A}$.
(ii) If $f$ is an idempotent in $\bar{A}$, there is an idempotent $e \in A$ such that $\bar{e}=f$.

Proof. (i) Since ${ }^{-}: A \longrightarrow \bar{A}$ is an algebra homomorphism, we only have to show that $\bar{e} \neq 0$. Therefore, suppose $\bar{e}=0$. Then $e \in \pi A$, and for every $n \in \mathbb{N}$ we have $e=e^{n} \in$
$\pi^{n} A$. Since $A$ is a free and finitely generated $R$-module, it holds that $A \cong R^{m}$, and by Proposition 2.1.9(iv)

$$
\bigcap_{n=1}^{\infty} \pi^{n} A=\bigcap_{n=1}^{\infty}(\pi R)^{n} A=\left(\bigcap_{n=1}^{\infty}(\pi R)^{n}\right) A=0
$$

which implies $e=0$ and proves the claim.
(ii) Given an idempotent $f \in \bar{A}$, we are going to construct an idempotent $e \in A$ with $\bar{e}=f$. To this end, let $e_{0} \in A$ be a preimage of $f$, and define for $n \in \mathbb{N}$ the sequences

$$
e_{n+1}=3 e_{n}^{2}-2 e_{n}^{3} \quad d_{n}=e_{n}^{2}-e_{n}
$$

We show by induction on $n$ that $d_{n} \in \pi^{2^{n}} A$, from which the rest follows. Since $d_{0}=$ $e_{0}^{2}-e_{0}$ and $\overline{d_{0}}={\overline{e_{0}}}^{2}-\overline{e_{0}}=f^{2}-f=0$, we have $d_{0} \in \pi A$. Assume that the claim holds for $n$, and observe

$$
d_{n+1}=e_{n+1}^{2}-e_{n+1}=9 e_{n}^{4}-12 e_{n}^{5}+4 e_{n}^{6}-3 e_{n}^{2}+2 e_{n}^{3}=4 d_{n}^{3}-3 d_{n}^{2}
$$

Applying the induction hypothesis $d_{n} \in \pi^{2^{n}} A$ we get $d_{n+1} \in \pi^{2^{n+1}} A$. Consequently, $e_{n+1}-e_{n}=d_{n}\left(1-2 e_{n}\right) \in \pi^{2^{n}} A$; therefore, $e_{n}$ is a Cauchy sequence in $A$. Since $A$ is a finitely generated $R$-module, by Proposition 2.1.9(iv) $e_{n}$ converges to an element $e \in A$. From $d_{n} \in \pi^{2^{n}} A$ follows $e^{2}-e=\lim _{n \rightarrow \infty} \nu\left(e_{n}^{2}-e_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(d_{n}\right)=0$; thus, $e$ is an idempotent in $A$. Finally, since $e_{n+1}-e_{n} \in \pi A$ we have

$$
e_{n}-e_{0}=e_{n}-e_{n-1}+e_{n-1}-e_{n-2}+\cdots+e_{1}-e_{0} \in \pi A
$$

for all $n$, implying $e-e_{0} \in \pi A$ and $\bar{e}=f$.

Remark. Theorem 2.1 .11 can in fact be proved for an arbitrary complete discrete valuation ring $A$, see [LP10, pp. 289, Sect. 4.1].

Corollary 2.1.12. Let $G$ be a finite group and $(K, R, k)$ be a p-modular system. Then a decomposition of $k G$ into a direct sum of PIMs gives a corresponding decomposition of $R G$.

Proof. By Theorem 1.1.2(ii) a decomposition of $k G$ into PIMs corresponds to a complete set of primitive orthogonal idempotents $\left\{f_{1}, \ldots, f_{m}\right\} \subset k G$. Now apply Theorem 2.1.11.

So far we have shown that $p$-modular systems relate representations over $R$ to representations over $k$. The following theorem illustrates the relationship between representations defined over $K$ and $R$.

Theorem 2.1.13. Let $(K, R, k)$ be a p-modular system for the finite group $G$. If $M$ is a finitely generated $K G$-module, then there exists an $R G$-submodule $N$ of the $R G$ module $M$ and an $R$-basis of $N$ which is at the same time a $K$-basis of $M$. Therefore, $K \otimes N=M$.

Proof. Let $\left\{m_{1}, \ldots, m_{k}\right\}$ be a $K$-basis of $M$ and $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be the canonical $R$-basis of $R G$. Consider the (finitely generated) $R G$-module

$$
N=\sum_{i=1}^{n} \sum_{j=k}^{n} R g_{i} m_{j} \subset M
$$

By Proposition 2.1.9(vi), the $R$-module $N$ is free since any vector space over $K$ is torsionfree and $R \subset K$. Moreover, every $R$-basis of $N$ is also a $K$-basis of $M$ and hence $K \otimes N=M$.

Corollary 2.1.14. If $(K, R, k)$ is a p-modular system for a finite group $G$ and $\rho: G \longrightarrow$ $\mathrm{GL}_{m}(K)$ is a representation defined over $K$, then $\rho$ is equivalent to a representation $\rho^{\prime}: G \longrightarrow \mathrm{GL}_{m}(K)$, where $\rho^{\prime}(g)$ is defined over $R$ for all $g \in G$.

Theorems 2.1.11 and 2.1.13 allow us to relate representations over $K$ and $k$. A detailed explanation of this process is given in Section 2.2.1.

### 2.2. Irreducible modular representations

For the remainder of our discussion we will stick to a $p$-modular system $(K, R, k)$ for $G$ as in Definition 2.1.10. We now turn to modular representations, treating the subject first from a module point of view before developing the theory of Brauer characters, which is in many ways analogous to ordinary character theory.

### 2.2.1. Cartan and decomposition numbers

Given an $R G$-module $M$ we denote by $\bar{M}:=k \otimes_{R} M$ the $k G$-module obtained by reducing $M$ modulo $\pi$ (recall that $k=R / \pi R$ ). The following denotations will be used throughout this section. Consider the $s$ simple $K G$-modules $V_{1}, \ldots, V_{s}$ corresponding to the $s$ irreducible ordinary representations $\sigma_{1}, \ldots, \sigma_{s}$, where $s$ is the number of conjugacy
classes of $G$. By Theorem 2.1.13 there are $R G$-modules $U_{1}, \ldots, U_{s}$ such that $V_{i}=K \otimes U_{i}$ for $1 \leq i \leq s$, and we record the following

Lemma 2.2.1. With the above denotations and assumptions, the $k G$-modules $\bar{U}_{i}$ are indecomposable.

Proof. Suppose that $\overline{U_{i}}$ is decomposable, say $\bar{U}_{i}=\overline{U^{\prime}} \oplus \overline{U^{\prime \prime}}$. This corresponds to a sum $e=e^{\prime}+e^{\prime \prime}$ of idempotents where $e$ is the idempotent corresponding to $U_{i}$. By Theorem 2.1.11 there are idempotents $f, f^{\prime}$ and $f^{\prime \prime}$ such that $f=f^{\prime}+f^{\prime \prime}$ and $e=\bar{f}=\bar{f}^{\prime}+\bar{f}^{\prime \prime}=$ $e^{\prime}+e^{\prime \prime}$. They correspond to a decomposition $U_{i}=U^{\prime} \oplus U^{\prime \prime}$ of $R G$-modules, and taking the tensor product with $K$ gives

$$
V_{i}=K \otimes U_{i}=\left(K \otimes U^{\prime}\right) \oplus\left(K \otimes U^{\prime \prime}\right)
$$

by Proposition $2.1 .9(\mathrm{vi})$. This contradicts the simplicity of $V_{i}$, hence $\bar{U}_{i}$ is indecomposable.

Consider further a decomposition of $k G$ into a direct sum of PIMs, $k G=P_{1} \oplus \cdots \oplus P_{t}$. By Theorem 1.2.2 for $1 \leq i \leq t$ the module $P_{i}$ is a PIM with the unique maximal submodule $\operatorname{rad} P_{i}$ such that $S_{i}:=P_{i} / \operatorname{rad} P_{i}$ is simple, and every simple $k G$-module is isomorphic to one of the $S_{i}$ by Corollary 1.2.3. We make the following

Definition 2.2.2. With the modules $U_{1}, \ldots, U_{s}$ and $P_{1}, \ldots, P_{t}$ introduced above the Cartan number $c_{i j}$ and the decomposition number $d_{i j}$ are defined by

$$
\begin{aligned}
c_{i j} & :=i\left(P_{j}, P_{i}\right) \\
d_{i j} & :=i\left(P_{j}, \overline{U_{i}}\right)
\end{aligned}
$$

We also define the Cartan matrix $C$ and the decomposition matrix $D$ by

$$
\begin{aligned}
& C:=\left(c_{i j}\right)_{1 \leq i, j \leq t} \\
& D:=\left(d_{i j}\right)_{1 \leq i \leq s, 1 \leq j \leq t}
\end{aligned}
$$

We will prove in Section 2.2.2 (Corollary 2.2.14) that the definition of the decomposition number $d_{i j}$ is independent of the chosen $R G$-modules $U_{i}$.

Theorem 1.2.20 says that $c_{i j}=i\left(P_{j}, P_{i}\right)=q k$, where $q$ is the number of factors of $P_{i}$ isomorphic to $S_{j}$ and $k=i\left(S_{j}, S_{j}\right)$. A similar statement also holds for $d_{i j}$. If we consider a $p$-modular system $(K, R, k)$ for $G$, then by Proposition 2.1 .3 we have $k=1$, and the numbers $c_{i j}$ and $d_{i j}$ have an immediate interpretation:

Lemma 2.2.3. Let $(K, R, k)$ be a p-modular system for $G$ and $U_{1}, \ldots, U_{s}, P_{1}, \ldots, P_{t}$ as above. Then the following holds:
(i) The Cartan number $c_{i j}$ is the number of factors of $P_{i}$ isomorphic to the simple module $S_{j}$.
(ii) The decomposition number $d_{i j}$ is the number of factors of $\overline{U_{i}}$ isomorphic to the simple module $S_{j}$.

The definition of the Cartan number $c_{i j}$ suggests that it is a symmetric quantity, and the next theorem indeed affirms this presumption. Let us first introduce the following notation: For a module $M$ of finite length, we write $M \sim \sum_{i=1}^{n} N_{i}$ to say that up to isomorphy the modules $N_{i}, 1 \leq i \leq n$ are exactly the factors of a composition series of $M$. The $N_{i}$ are uniquely determined by the Jordan-Hölder theorem 1.1.11 up to isomorphism and order.

Theorem 2.2.4. It holds that

$$
C=D^{T} D
$$

In particular, $C$ is a symmetric matrix.

Proof. According to the denotations fixed above, let $f_{1}, \ldots, f_{t}$ be the set of primitive orthogonal idempotents corresponding to the PIMs $P_{1}, \ldots, P_{t}$. Then by Theorem 2.1.11(ii) these idempotents can be lifted to a set of primitive orthogonal idempotents $e_{1}, \ldots, e_{t}$ of $R G$ with $\overline{e_{i}}=f_{i}$. We have

$$
R G e_{i} \sim \sum_{j=1}^{s} \lambda_{i j} U_{j}
$$

and taking the tensor product with $K$ gives:

$$
K G e_{i}=\sum_{j=1}^{s} \lambda_{i j} V_{j}
$$

The equal sign is now justified since $K G$ is completely reducible; therefore, $K G e_{i}$ is in fact even a direct sum of the simple modules $V_{j}$. Analogously to the case of positive characteristic, $\lambda_{i j}$ is viewed as the number of factors of $K G e_{i}$ isomorphic to the simple module $V_{j}$, that is, $\lambda_{i j}=i\left(K G e_{i}, V_{j}\right)=\operatorname{dim} e_{i} V_{j}$ by Lemma 1.2.19(iii). Since $e_{i} V_{j}=$ $K \otimes e_{i} U_{j}$ and $e_{i} U_{j} \subset U_{j}$ is a free $R G$-module by Proposition 2.1.9(vi), we have, again
using Lemma 1.2.19(iii),

$$
\begin{aligned}
\lambda_{i j} & =\operatorname{dim}_{K} e_{i} V_{j}=\operatorname{rank}_{R} e_{i} U_{j}=\operatorname{dim}_{k} \bar{e}_{i} \bar{U}_{j} \\
& =\operatorname{dim}_{k} f_{i} \bar{U}_{j}=i\left(k G f_{i}, \bar{U}_{j}\right)=i\left(P_{i}, \bar{U}_{j}\right) \\
& =d_{j i}
\end{aligned}
$$

Reducing ( $\boldsymbol{\oplus}$ ) modulo $\pi$ and inserting $\lambda_{i j}=d_{j i}$ gives

$$
k G f_{i}=P_{i} \sim \sum_{j=1}^{s} d_{j i} \bar{U}_{j}
$$

In the light of Lemma 2.2.3 we can rephrase the meaning of the Cartan number $c_{m n}$ and the decomposition number $d_{k l}$ as

$$
\begin{align*}
P_{m} & \sim \sum_{n=1}^{t} c_{m n} S_{n}  \tag{৫}\\
\bar{U}_{k} & \sim \sum_{l=1}^{t} d_{k l} S_{l}
\end{align*}
$$

These statements follow from Corollary 1.2.3, which states that every simple $k G$-module is isomorphic to $S_{i}$ for one $i$. Inserting $(\diamond)$ into (\&) now gives

$$
P_{i} \sim \sum_{j=1}^{s} \sum_{l=1}^{t} d_{j i} d_{j l} S_{l}
$$

and employing ( () finally leads to

$$
c_{i l}=\sum_{j=1}^{s} d_{j i} d_{j l}
$$

which is the component form of the matrix equation $C=D^{T} D$.
In the course of the proof we also showed that $\lambda_{i j}=d_{j i}$, which we record here.
Corollary 2.2.5. With the above denotations and assumptions, the multiplicity of $V_{j}$ in the $K G$-module $K G e_{i}$ is equal to the number of factors of $\bar{U}_{j}$ isomorphic to $S_{i}$, that $i s, \lambda_{i j}=d_{j i}$.

Finally, we also record the relations between $P_{i}, \bar{U}_{i}$ and $S_{i}$ involving the Cartan numbers $c_{i j}$ and the decomposition numbers $d_{i j}$ :

Corollary 2.2.6. With the above denotations and assumptions, the following relations hold:

$$
\begin{aligned}
P_{j} & \sim \sum_{i=1}^{s} d_{i j} \bar{U}_{i} \\
P_{i} & \sim \sum_{i=1}^{t} c_{i j} S_{j} \\
\bar{U}_{i} & \sim \sum_{i=1}^{t} d_{i j} S_{j}
\end{aligned}
$$

Let us clarify the meaning of Corollary 2.2 .6 . As stated before, the $k G$-module $\bar{U}_{i}$ is the reduction of an $R G$-module $U_{i}$ such that $K \otimes U_{i}=V_{i}$, a simple $K G$-module. By Lemma 2.2.1, the module $\bar{U}_{i}$ is indecomposable. Now, the first relation says that a composition series of the PIM $P_{i}$ consists of the composition series of (some of) the reduced indecomposable $k G$-modules $\bar{U}_{j}$, with the decomposition number $d_{i j}$ counting the respective multiplicities. The composition series of the $\bar{U}_{i}$ in turn comprises the simple $k G$-modules $S_{j}$ by the third relation in Corollary 2.2.6. This is exactly the meaning of Theorem 2.2.4. In Section 2.3 it will become clear that in the relation $P_{j} \sim \sum_{i=1}^{s} d_{i j} \bar{U}_{i}$ the decomposition number $d_{i j}$ is non-zero if and only if $V_{j}$ lies in the same block as $P_{i}$.

Remark. Although we have $K G=\bigoplus_{i=1}^{s} n_{i} V_{i}$, where $n_{i}$ is the multiplicity of the simple module $V_{i}$ in $K G$, it does not hold that $R G=\sum_{i=1}^{s} n_{i} U_{i}$. In fact, this sum is not even direct, as the preceding discussion shows. We therefore stress that the $R G$-modules $U_{i}$ are not isomorphic to the PIMs of the algebra $R G$, since otherwise they would be projective and hence direct summands in $R G$.
The procedure explained in this section starts with the simple $K G$-modules $V_{i}$ in characteristic 0 and ends with the simple $k G$-modules $S_{i}$ in characteristic $p$. This is in contrast to Section 3.2.4 where we start with a decomposition of $k G$ into a direct sum of $k G$-PIMs $P_{i}$ and lift it to a decomposition of $R G$ into a direct sum of $R G$-PIMs $Q_{i}$.

### 2.2.2. Brauer characters

Consider a $k$-representation $\rho: G \longrightarrow \operatorname{End}_{k}(V)$ where char $k=p$ and $p \mid \operatorname{dim}_{k} V$. Then $\chi_{\rho}(1)=0$ for the character $\chi_{\rho}$ of $\rho$. Hence, regardless of whether or not $p$ divides the order of $G$, ordinary characters lose a great deal of information in case $k$ has positive characteristic. A resort out of this misery is due to R . Brauer, who proposed a slightly different concept of characters for modular representations. These Brauer characters are only defined on certain elements of $G$ :

Definition 2.2.7. Let $G$ be a finite group of order $|G|=p^{k} q$ where $(p, q)=1$. An element $g \in G$ is called

- $p$-regular, if its order is relatively prime to $p$, that is, $($ ord $g, p)=1$.
- $p$-singular, if its order is a power of $p$, that is, ord $g=p^{m}$ for some integer $m \in \mathbb{N}$.

A conjugacy class $\mathcal{C}$ of $G$ is called $p$-regular (resp. p-singular), if every element $g \in \mathcal{C}$ is $p$-regular (resp. $p$-singular). The set of all $p$-regular elements is denoted by $G_{p^{\prime}}$.

Lemma 2.2.8. Let $g \in G$ be an element of order ord $g=p^{l} r$ where $(p, r)=1$. Then there are unique elements $a, b \in G$ such that $a$ is $p$-regular, $b$ is p-singular and $g=a b=b a$. The elements $a$ and $b$ are the $p$-regular (resp. p-singular) factor of $g$.

Proof. Since $(p, r)=1$, there are integers $c, d$ such that $1=c p^{l}+d r$. Set $a=g^{c p^{l}}$ and $b=g^{d r}$, then $g=a b=b a$. Moreover, $a^{r}=g^{c p^{l} r}=\left(g^{p^{l} r}\right)^{c}=1$, so ord $a$ divides $r$; therefore, $(\operatorname{ord} a, p)=1$. Also, $b^{p^{l}}=\left(g^{p^{l} r}\right)^{d}=1$, which implies that ord $b$ is a power of $p$.

To show uniqueness, suppose that $g=a_{1} b_{1}=b_{1} a_{1}$ with $a_{1}$ being $p$-regular and $b_{1}$ being $p$-singular. Let $p^{x}=\operatorname{ord} b$ and $p^{y}=\operatorname{ord} b_{1}^{-1}$, and observe that $a, b, a_{1}$ and $b_{1}$ commute pairwise, given that they are powers of $g$. Then $\left(b b_{1}^{-1}\right)^{p^{x+y}}=1=\left(a^{-1} a_{1}\right)^{p^{x+y}}$ since $a b=g=a_{1} b_{1}$. But the orders of $a$ and $a_{1}$ are relatively prime to $p$ and so is the order of $a^{-1} a_{1}$. Thus, $p^{x+y}=1$, and consequently, $b=b_{1}$ and $a=a_{1}$.

Proposition 2.2.9. Let $k$ be a splitting field of $G$ with $\operatorname{char} k=p$ and $\rho: G \longrightarrow \operatorname{End}_{k}(V)$ be a representation of $G$. If $g=x y$ is the decomposition of $g \in G$ into the p-regular factor $x$ and the $p$-singular factor $y$, then $\rho(g)$ and $\rho(x)$ have the same eigenvalues.

Proof. Since $k$ is a splitting field for $G$, we can find bases of $V$ such that $\rho(x)$ and $\rho(y)$ have triangular form with the main diagonal consisting of their eigenvalues. By Lemma 2.2.8 $\rho(x)$ and $\rho(y)$ commute; hence, we can find a basis $\mathfrak{b}$ of $V$ to triangulate both $\rho(x)$ and $\rho(y)$ at the same time. Moreover, $[\rho(g)]_{\mathfrak{b}}=[\rho(x)]_{\mathfrak{b}}[\rho(y)]_{\mathfrak{b}}$, so $[\rho(g)]_{\mathfrak{b}}$ also has triangular form, and its eigenvalues are the products of the respective eigenvalues of $\rho(x)$ and $\rho(y)$. Since $y$ is $p$-regular, there is an $m \in \mathbb{N}$ such that $\rho(y)^{p^{m}}=\mathrm{id}$, and consequently, $\zeta^{p^{m}}=1_{k}$ for each eigenvalue $\zeta$ of $\rho(y)$. Furthermore, since char $k=p$ we have $0=\zeta^{p^{m}}-1=(\zeta-1)^{p^{m}}$; therefore, $\zeta=1$ for every eigenvalue $\zeta$ of $\rho(y)$, and the eigenvalues of $\rho(g)$ and $\rho(x)$ are identical.

We now come to the central definition in this section. Let $G$ be a finite group of order $n=p^{l} q$ and $(K, R, k)$ be a $p$-modular system for $G$ with char $k=p$. Further,
let $\rho: G \longrightarrow \operatorname{End}_{k}(V)$ be a representation of $G$ on the $k$-vector space $V$. If $x$ is the $p$-regular factor of an element $g \in G$, Proposition 2.2.9 implies that the eigenvalues of $\rho(g)$ and $\rho(x)$ are identical. Moreover, $x^{q}=1$ by the proof of Lemma 2.2.8; hence, the eigenvalues of $\rho(g)$ are $q$-th roots of unity in $k$. Let $\mathcal{E}(\rho, g)$ be the set of eigenvalues of $\rho(g)$ and fix an isomorphism $\alpha$ from the cyclic group of $q$-th roots of unity in $k$ to the group of $q$-th roots of unity in $K$. This isomorphism exists since $q$ is prime to $p$ and reduction modulo $\pi$ is an inverse mapping to $\alpha$.

Definition 2.2.10 (Brauer character). Under the above assumptions, the Brauer character $\varphi_{V}$ of the $k$-representation $\rho$ of $G$ on $V$ is defined as

$$
\begin{aligned}
\varphi_{V}: G_{p^{\prime}} & \longrightarrow R \\
g & \longmapsto \sum_{\zeta \in \mathcal{E}(\rho, g)} \alpha(\zeta)
\end{aligned}
$$

If $V$ is a simple $k G$-module, then $\varphi_{V}$ is called an irreducible Brauer character.
This construction is motivated by the following
Proposition 2.2.11. Two modular representations have the same Brauer character if and only if they have isomorphic irreducible constituents.

Proof. Let $\sigma: G \longrightarrow \operatorname{End}_{k}(V)$ and $\tau: G \longrightarrow \operatorname{End}_{k}(W)$ be two representations of $G$ on the $k$-vector spaces $V$ and $W$. If $\sigma$ and $\tau$ have isomorphic irreducible constituents, then clearly their eigenvalues and hence their Brauer characters are identical.

Conversely, suppose that $\varphi_{V}=\varphi_{W}$. For $g \in G$ let $z^{s_{1}}, \ldots, z^{s_{a}}$ be the eigenvalues of $\sigma(g)$ and $z^{t_{1}}, \ldots, z^{t_{b}}$ be the eigenvalues of $\tau(g)$. Setting $\zeta:=\alpha(z)$ and taking the $i$-th power of every characteristic root of $\sigma(g)$ and $\tau(g)$ we get the complex identity

$$
\begin{equation*}
\zeta^{i s_{1}}+\cdots+\zeta^{i s_{a}}=\zeta^{i t_{1}}+\cdots+\zeta^{i t_{b}} \tag{}
\end{equation*}
$$

which follows from $\varphi_{V}\left(g^{i}\right)=\varphi_{W}\left(g^{i}\right)$ and the definition of Brauer characters. Let $H$ be the cyclic group $\langle g\rangle$ and consider its complex representations

$$
\sigma^{\prime}\left(g^{i}\right)=\left(\begin{array}{ccc}
\zeta^{i s_{1}} & & \\
& \ddots & \\
& & \zeta^{i s_{a}}
\end{array}\right) \quad \tau^{\prime}\left(g^{i}\right)=\left(\begin{array}{ccc}
\zeta^{i t_{1}} & & \\
& \ddots & \\
& & \zeta^{i t_{b}}
\end{array}\right)
$$

Then $\left(^{*}\right)$ implies that the ordinary characters of $\sigma^{\prime}$ and $\tau^{\prime}$ coincide; thus, their irreducible
constituents are isomorphic, giving $\left\{s_{1}, \ldots, s_{a}\right\}=\left\{t_{1}, \ldots, t_{a}\right\}$ for $i=1$, and the claim is proved.

We immediately get further properties of Brauer characters:

Proposition 2.2.12. Let $\rho: G \longrightarrow \mathrm{GL}_{k}(V)$ be a representation of $G$ on the $k$-vector space $V$ and $\varphi_{V}$ its Brauer character. Then the following holds:
(i) $\varphi_{V}(1)=\operatorname{dim}_{k} V$
(ii) $\varphi_{V}$ is a class function on the set $G_{p^{\prime}}$ of p-regular conjugacy classes.
(iii) If $W$ is a $k G$-submodule of $V$, then $\varphi_{V}=\varphi_{W}+\varphi_{V / W}$.
(iv) Let $M$ be a $K G$-module with the ordinary character $\chi_{M}$ and $N$ be the corresponding $R G$-module such that $K \otimes N=M$ according to Theorem 2.1.13. Then the Brauer character of $\bar{N}$ is

$$
\varphi_{\bar{N}}=\left.\chi_{M}\right|_{G_{p^{\prime}}}
$$

(v) If $H \leq G$ is a subgroup of $G$ with $p \nmid|H|$ and $\varphi$ is a Brauer character of $G$, then $\left.\varphi\right|_{H}$ is an ordinary character of $H$.

Proof. Properties (i)-(iv) follow directly from Definition 2.2.10. (v) is trivial, since $k H$ is semisimple by Maschke's Theorem 1.1.13.

We can now prove:

Lemma 2.2.13. Let $M$ and $N$ be two $R G$-modules such that $K \otimes M \cong K \otimes N$. Then $\bar{M}$ and $\bar{N}$ have isomorphic composition factors.

Proof. Let $\mu$ and $\nu$ be the representations associated with the $R G$-modules $M$ and $N$. Since $K \otimes M \cong_{K} K \otimes N$, the characteristic polynomials of $\mu(g)$ and $\nu(g)$ coincide over $K$ and consequently over $R$. Hence, $\bar{\mu}(g)$ and $\bar{\nu}(g)$ have the same characteristic roots in $k$. But then $\varphi_{\bar{M}}=\varphi_{\bar{N}}$, and by Proposition 2.2 .11 their composition factors are isomorphic.

Corollary 2.2.14. Let $V$ be an irreducible $K G$-module and $U$ be an $R G$-module of $V$ such that $V=K \otimes U$. Then the isomorphy classes of composition factors of $\bar{U}$ are determined by $V$ and hence independent of the choice of $U$.

As already noted in Section 2.2.1, Corollary 2.2 .14 shows that the decomposition number $d_{i j}$ is independent of the choice of the $R G$-modules $U_{i}$.
In modular representation theory, the irreducible Brauer characters are the equivalent of the irreducible ordinary characters, except that the Brauer characters are only defined on the set $G_{p^{\prime}}$ of $p$-regular conjugacy classes. Recall that the irreducible ordinary characters defined over the field $K$ constitute a basis of the $K$-vector space of class functions on $G$. An analogous result also holds for the irreducible Brauer characters. In order to prove this result, we need the density theorem by Jacobson:

Theorem 2.2.15 (Density theorem). Let $M$ be a semisimple $R$-module and set $A=$ $\operatorname{End}_{R}(M)$. If $M$ is finitely generated as an $A$-module, then the canonical homomorphism

$$
\left.\begin{array}{rl}
\theta: R & \longrightarrow \operatorname{End}_{A}(M) \\
r & \longmapsto\left(\ell_{r}: m\right.
\end{array}>r m\right)
$$

is surjective.
Proof. See [JS06, p. 217, Cor. 3.2].
Theorem 2.2.16. Let $S_{1}, \ldots, S_{t}$ be the isomorphy classes of simple $k G$-modules. Then the irreducible Brauer characters $\varphi_{S_{1}}, \ldots, \varphi_{S_{t}}$ form a K-basis of the space of class functions on $G_{p^{\prime}}$.

Proof. We have to show that the $\varphi_{S_{1}}, \ldots, \varphi_{S_{t}}$ are linearly independent over $K$ and generate the $K$-space of class functions on $G_{p^{\prime}}$. Let us start with the linear independence.

To this end, let us abbreviate $\mathfrak{S}_{k}:=\left\{S_{1}, \ldots, S_{t}\right\}$ and suppose that $\sum_{S \in \mathfrak{S}_{k}} \lambda_{S} \varphi_{S}=0$ where $\lambda_{S} \in K$. Multiplying by a proper element of $K$ we can achieve $\lambda_{S} \in R$ for all $S \in \mathfrak{S}_{k}$, and by canceling common factors in $\pi R$ at least one $\lambda_{S}$ does not belong to $\pi R$. Hence, reduction modulo $\pi$ gives

$$
\sum_{S \in \mathfrak{S}_{k}} \bar{\lambda}_{S} \bar{\varphi}_{S}(x)=0
$$

for all $x \in G_{p^{\prime}}$ and at least one $\bar{\lambda}_{S}$ is not zero. This is equivalent to

$$
\sum_{S \in \mathfrak{S}_{k}} \bar{\lambda}_{S} \operatorname{tr}\left(\rho_{S}(x)\right)=0
$$

for all $x \in G_{p^{\prime}}$, where $\rho_{S}$ is the representation of $G$ on $S$ to which $\varphi_{S}$ is associated. By Proposition 2.2.9 this equation holds for all $g \in G$ and by linearity of the trace also for all
$v \in k G$. Since $k$ is a splitting field for $G$, $\operatorname{Proposition}^{1.2 .22} \operatorname{implies} A=\operatorname{End}_{k G}(M) \cong k$ for all simple $k G$-modules $M$. Hence, from the density theorem 2.2.15 we obtain that the homomorphism $\theta: k G \longrightarrow \oplus_{S \in \mathfrak{S}_{k}} \operatorname{End}_{k}(S)$ is surjective. Thus, for every $S \in \mathfrak{S}_{k}$ with $\bar{\lambda}_{S} \neq 0$ we can choose an element $a \in k G$ such that $\theta(a)=\left(\psi_{T}\right)_{T \in \mathfrak{S}_{k}}$ with $\operatorname{tr} \psi_{S}=1$ and $\psi_{T}=0$ for $T \neq S$. Hence $\lambda_{S} \cdot 1=0$, and the $\varphi_{S_{1}}, \ldots, \varphi_{S_{t}}$ are linearly independent.

To show that $\varphi_{S_{1}}, \ldots, \varphi_{S_{t}}$ generate the space of class functions on $G_{p^{\prime}}$, let $f: G \longrightarrow K$ be such a function. Extend $f$ to a class function on $G$ and write $f=\sum_{i=1}^{s} \lambda_{i} \chi_{i}$ where $\lambda_{i} \in$ $K$ and $\chi_{1}, \ldots, \chi_{s}$ are the irreducible ordinary $K$-characters. Then $f=\left.\sum_{i=1}^{s} \lambda_{i} \chi_{i}\right|_{G_{p^{\prime}}}$ and by Proposition 2.2.12(iii) and (iv) the restrictions of $\chi_{i}$ onto $G_{p^{\prime}}$ are linear combinations of the $\varphi_{S_{1}}, \ldots, \varphi_{S_{t}}$, which proves the claim.

Corollary 2.2.17. The number of irreducible Brauer characters is equal to the number of p-regular conjugacy classes.

### 2.2.3. Modular orthogonality relations

In ordinary representation theory the orthogonality relations for irreducible (ordinary) characters provide a useful way of determining irreducible representations. In this section we will derive analogous statements for the irreducible Brauer characters. For convenience we restate the ordinary orthogonality relations:

Proposition 2.2.18. For a group $G$ with $n=|G|$ let $\chi_{1}, \ldots, \chi_{s}$ be the ordinary irreducible characters of $G,\left\{g_{1}, \ldots, g_{s}\right\}$ be a set of representatives of the conjugacy classes of $G$ and $h_{i}=\left|\mathcal{C}_{i}\right|$ be the order of the $i$-th conjugacy class $\mathcal{C}_{i}$. Then the following relations holds:

$$
\begin{aligned}
\sum_{k=1}^{s} \chi_{k}\left(g_{i}\right) \chi_{k}\left(g_{j}^{-1}\right) & =\frac{n}{h_{i}} \delta_{i j} \\
\frac{1}{n} \sum_{k=1}^{s}\left|\mathcal{C}_{k}\right| \chi_{i}\left(g_{k}\right) \chi_{j}\left(g_{k}^{-1}\right) & =\delta_{i j}
\end{aligned}
$$

Let us fix some notation: $\chi_{1}, \ldots, \chi_{s}$ are the irreducible ordinary characters, $\varphi_{1}, \ldots, \varphi_{t}$ are the irreducible Brauer characters and $\psi_{1}, \ldots, \psi_{t}$ are the characters of the PIMs $P_{1}, \ldots, P_{t}$ of $k G$. We want to formulate the relations involving the Cartan numbers and decomposition numbers in Corollary 2.2 .6 as matrix equations in terms of these characters. Replacing the modules in the formulation of Corollary 2.2 .6 by characters, the relations read:

$$
\begin{equation*}
\psi_{j}=\sum_{i=1}^{s} d_{i j} \chi_{i} \tag{2.1a}
\end{equation*}
$$

$$
\begin{align*}
\psi_{i} & =\sum_{i=1}^{t} c_{i j} \varphi_{j}  \tag{2.1b}\\
\chi_{i} & =\sum_{i=1}^{t} d_{i j} \varphi_{j} \tag{2.1c}
\end{align*}
$$

Strictly speaking it is not correct to mix an ordinary character $\chi_{i}$ and a Brauer character $\varphi_{j}$ without specifying the set of group elements on which the relation is defined, so we have to get rid of this inconsistency. Denote by $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ the conjugacy classes of $G$ and arrange them such that the first $t \leq s$ of them are $p$-regular. Further, choose a representative $g_{i} \in \mathcal{C}_{i}$ and form the matrices

$$
\begin{aligned}
X & :=\left(\chi_{i}\left(g_{j}\right)\right)_{1 \leq i \leq s, 1 \leq j \leq t} \\
\Phi & :=\left(\varphi_{i}\left(g_{j}\right)\right)_{1 \leq i, j \leq t} \\
\Psi & :=\left(\psi_{i}\left(g_{j}\right)\right)_{1 \leq i, j \leq t}
\end{aligned}
$$

Then the relations (2.1) can be expressed in matrix notation as

$$
\begin{align*}
X & =D \Phi  \tag{2.2a}\\
\Psi & =C \Phi  \tag{2.2b}\\
\Psi & =D^{T} X \tag{2.2c}
\end{align*}
$$

To prove the modular orthogonality relations we first have to introduce a suitable inner product on the space of class functions on $G_{p^{\prime}}$, paralleling the inner product of the class functions in the ordinary case.

Definition 2.2.19. For class functions $\xi, \eta$ on $G_{p^{\prime}}$ define the inner product $\langle., .\rangle_{G_{p^{\prime}}}$ by

$$
\langle\xi, \eta\rangle_{G_{p^{\prime}}}=\frac{1}{n} \sum_{g \in G_{p^{\prime}}} \xi(g) \eta\left(g^{-1}\right)
$$

We finally arrive at the following

Proposition 2.2.20 (Modular orthogonal relations).
(i) The Cartan matrix $C$ and the Brauer character table $\Phi$ are invertible.
(ii) With $C^{-1}=\left(c_{i j}^{\prime}\right)$ the following relations hold:

$$
\begin{aligned}
\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{G_{p^{\prime}}} & =c_{i j}^{\prime} \\
\left\langle\psi_{i}, \psi_{j}\right\rangle_{G_{p^{\prime}}} & =c_{i j}
\end{aligned}
$$

$$
\left\langle\varphi_{i}, \psi_{j}\right\rangle_{G_{p^{\prime}}}=\delta_{i j}
$$

Proof. (i) Define the matrix $M:=\left(\frac{n}{h_{i}} \delta_{i j}\right)_{1 \leq i, j \leq t}$ such that the ordinary orthogonal relations from Proposition 2.2 .18 can be written as $X^{T} X=M$. Using the matrix relations (2.2) and $C=D^{T} D$ we have

$$
\begin{equation*}
\Phi^{T} C \Phi=(D \Phi)^{T} D \Phi=X^{T} X=M \tag{}
\end{equation*}
$$

Since $M$ is invertible, $\Phi$ and $C$ are also invertible.
(ii) Using $\left(^{*}\right)$ and (2.2) and observing that $M^{-1}=\left(\frac{h_{i}}{n} \delta_{i j}\right)$ gives (note that $I$ is the identity matrix)

$$
\begin{aligned}
& \Phi M^{-1} \Phi^{T}=\Phi \Phi^{-1} C^{-1}\left(\Phi^{T}\right)^{-1} \Phi^{T}=C^{-1} \\
& \Psi M^{-1} \Psi^{T}=C \Psi M^{-1} \Psi^{T} C^{T}=C \\
& \Phi M^{-1} \Psi^{T}=\Phi M^{-1} \Phi^{T} C^{T}=I
\end{aligned}
$$

which are the matrix forms of the modular orthogonality relations in the claim.

### 2.3. Introduction to block theory

The decomposition of the group algebra $k G$ into a direct sum of PIMs in Section 1.2.1 was derived using the module structure of $k G$. In this section we investigate the ring structure of the algebra $k G$ by looking at two-sided ideals, the blocks of $k G$. We will see that every Artinian ring admits a decomposition into such blocks. When viewing a (non-commutative) ring as a module over itself, the notion of a two-sided ideal is stronger than the notion of a (left or right) submodule. Thus, a decomposition into two-sided ideals is much coarser than a decomposition into PIMs. At first glance this seems like a loss of information. However, all necessary data relevant to modular representation theory such as PIMs, simple modules and irreducible characters can be assigned to a certain block, and the block decomposition facilitates both the determination and the structuring of these objects. Throughout this section let $(K, R, k)$ be a $p$-modular system for $G$.

### 2.3.1. Block decomposition

Definition 2.3.1. A two-sided ideal $B$ of $k G$ is called a block if $k G=B \oplus B^{\prime}$ for some other ideal $B^{\prime}$ of $k G$ and $B$ cannot be written as a direct sum of two non-trivial two-sided
ideals.
Proposition 2.3.2. The group algebra $k G$ admits a unique decomposition

$$
k G=B_{1} \oplus \cdots \oplus B_{r}
$$

into blocks $B_{i}$. This block decomposition corresponds to a decomposition

$$
1_{k G}=\varepsilon_{1}+\cdots+\varepsilon_{r}
$$

of the unity element $1_{k G}$ into centrally primitive idempotents $\varepsilon_{1}, \ldots, \varepsilon_{r}$.
Proof. The existence of the block decomposition $k G=B_{1} \oplus \cdots \oplus B_{r}$ into blocks $B_{i}$ follows from $k G$ being Artinian by Proposition 1.1.4. To establish uniqueness of the block decomposition, suppose that $B$ is a block of $k G$. Then $B B_{i} \subset B \cap B_{i}$ for $1 \leq i \leq r$ and

$$
B=B B_{1}+\cdots+B B_{r} \subset\left(B \cap B_{1}\right) \oplus \cdots \oplus\left(B \cap B_{r}\right) \subset B
$$

which implies $B=\left(B \cap B_{1}\right) \oplus \cdots \oplus\left(B \cap B_{r}\right)$. But $B$ is a block ideal and can therefore not be written as a direct sum of nontrivial ideals. Thus, there is a $j$ such that $B \subset B_{j}$ and $B \cap B_{i}=\emptyset$ for $i \neq j$. Further, there is an ideal $B^{\prime}$ such that $k G=B \oplus B^{\prime}$; hence,

$$
B_{j}=B B_{j}+B^{\prime} B_{j} \subset\left(B \cap B_{j}\right) \oplus\left(B^{\prime} \cap B_{j}\right) \subset B_{j}
$$

resulting in $B_{j}=\left(B \cap B_{j}\right) \oplus\left(B^{\prime} \cap B_{j}\right)$. Again, $B_{j}$ cannot be written as a direct sum of nontrivial ideals. Since $B \subset B_{j}$, this gives $B_{j}=B \cap B_{j}=B$; hence, every block $B$ is one of the $B_{j}$.

By Proposition 1.1.2 the block decomposition $k G=B_{1} \oplus \cdots \oplus B_{r}$ corresponds to a decomposition $1_{k G}=\varepsilon_{1}+\cdots+\varepsilon_{r}$ of the unity element $1_{k G}$ into idempotents. Let $x \in k G$ and observe that

$$
x=x \varepsilon_{1}+\cdots+x \varepsilon_{r}=\varepsilon_{1} x+\cdots+\varepsilon_{r} x
$$

Since $B_{i}$ is a two-sided ideal, it holds for all $i$ that $x \varepsilon_{i} \in B_{i}$ as well as $\varepsilon_{i} x \in B_{i}$. Hence $x \varepsilon_{i}=\varepsilon_{i} x$, and $\varepsilon_{i} \in Z(k G)$ for all $i$.

Definition 2.3.3 (Block decomposition and block idempotents). In Proposition 2.3.2, the unique decomposition $k G=B_{1} \oplus \cdots \oplus B_{r}$ is called the block decomposition of $k G$. $\varepsilon_{1}, \ldots, \varepsilon_{r}$ are called the block idempotents of $k G$.

Remark. Applying Theorem 2.1.11 to the algebras $Z(R G)$ and $Z(k G)=\overline{Z(R G)}$, we can lift the block idempotents $\varepsilon_{1}, \ldots, \varepsilon_{r}$ of $k G$ to $R G$. More precisely, there is a set
of orthogonal idempotents $f_{1}, \ldots, f_{r}$ such that $f_{i}$ is centrally primitive and $\bar{f}_{i}=e_{i}$. In analogy to Definition 2.3.1, the ideals $R G f_{i}$ are called the blocks of $R G$, and

$$
R G=R G f_{1} \oplus \cdots \oplus R G f_{r}
$$

is called the block decomposition of $R G$. Note however, that $R G f_{i}$ is in general not indecomposable in $K G$ and further decomposes into simple components. This is subject of the next section.

### 2.3.2. Modules and characters lying in a block

The decomposition of $k G$ into blocks allows a classification of the indecomposable modules, simple modules and irreducible (Brauer and ordinary) characters of a group $G$. We first consider an indecomposable $k G$-module $M$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be the block idempotents of $k G$, then

$$
M=\varepsilon_{1} M \oplus \cdots \oplus \varepsilon_{r} M
$$

as $k G$-modules, since the $\varepsilon_{i}$ are central. Because $M$ is indecomposable, there exists a $j$ such that $\varepsilon_{j} M=M$ and $\varepsilon_{i} M=0$ for $i \neq j$; thus, $M$ is associated to a single block $B_{j}=k G \varepsilon_{j}$. This classifies the PIMs $P_{1}, \ldots, P_{t}$ of $k G$ and by Corollary 1.2.3 also all simple $k G$-modules into blocks, hence the following

Definition 2.3.4 ( $k G$-modules lying in blocks). Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be the block idempotents of $k G$. An indecomposable $k G$-module $M$ with $\varepsilon_{j} M=M$ for a unique $j$, and $\varepsilon_{i} M=0$ for $i \neq j$ is said to lie in the block $B_{j}$. Further, a simple $k G$-module $S$ is said to lie in the block $B_{j}$ if the PIM $P$ with $S \cong P / \operatorname{rad} P$ lies in the block $B_{j}$. A Brauer character $\varphi$ lies in the block $B_{j}$ if the module affording $\varphi$ lies in the block $B_{j}$.

This shows that a block decomposition provides a classification of $k G$-modules into blocks via the block idempotents. In order to obtain a similar classification of $K G$ modules into blocks, we need to be more careful. Given a simple $K G$-module $M$ we can choose an $R G$-submodule $N$ of $M$ such that $M=K \otimes N$ and apply Definition 2.3.4 to the $k G$-module $\bar{N}$. However, using this procedure as a definition for $K G$-modules lying in blocks only makes sense if attributing $M$ to a block is independent of the particular choice of $N$ :

Lemma 2.3.5. Let $V$ be a simple $K G$-module. According to Theorem 2.1.13, choose an $R G$-submodule $U$ of $V$ such that $V=K \otimes U$ and denote by $\bar{U}$ the corresponding $k G$-module. Then all the composition factors of $\bar{U}$ lie in the same block $B$ of $k G$, which does not depend on the choice of the submodule $U$.

Proof. According to the remark following Definition 2.3.3 let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be the block idempotents of $k G$ and $f_{1}, \ldots, f_{r}$ be the block idempotents of $R G$ with $\bar{f}_{i}=\varepsilon_{i}$ for all $i$. Write $U=f_{1} U \oplus \cdots \oplus f_{r} U$ and note that since $V$ is irreducible, $U$ is indecomposable by Proposition 2.1.9(vi). Hence, there is a $j$ such that $f_{j} U=U$ and $f_{i} U=0$ for $i \neq j$. Consequently, $\bar{U}=\bar{f}_{j} \bar{U}=\varepsilon_{j} \bar{U}$ and $0=\bar{f}_{i} \bar{U}=\varepsilon_{i} \bar{U}$ for $i \neq j$. By Corollary 2.2.14 the composition factors of $\bar{U}$ are completely determined by $V$, and by the paragraph before Definition 2.3.4, they are isomorphic to the simple $k G$-modules lying in the block $B_{j}$.

Definition 2.3.6 ( $K G$-modules lying in blocks). Let $V$ be a simple $K G$-module and $U$ an $R G$-module of $V$ such that $V=K \otimes U$. Then $V$ is said to lie in the block $B$ in which all the composition factors of $\bar{U}$ lie. An irreducible ordinary character $\chi$ lies in the block $B$ if the simple $K G$-module $V$ affording $\chi$ lies in the block $B$. We set $\operatorname{Irr}(B):=\{\chi \in \operatorname{Irr}(G) \mid \chi$ lies in $B\}$.

When classifying irreducible ordinary characters in blocks it is often convenient to consider a special class of characters:

Definition 2.3.7 (Central character). A $k$-algebra homomorphism $\omega: Z(k G) \longrightarrow k$ is called a central character of $k$. The same definition also applies to the field $K$ of characteristic zero.

Note that the class sums $\mathcal{C}_{i}^{+}:=\sum_{g \in \mathcal{C}_{i}} g$ form a basis of both $Z(k G)$ and $Z(K G)$. Therefore, a central character is completely determined by its values on $\mathcal{C}_{i}^{+}$. In order to demonstrate the usefulness of central characters, let us first analyze the center $Z(k G)$ of $k G$.

Lemma 2.3.8. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be the block idempotents of $k G$. Then we have a decomposition

$$
Z(k G)=Z(k G) \varepsilon_{1} \oplus \cdots \oplus Z(k G) \varepsilon_{r}
$$

of the center $Z(k G)$ of $k G$ into indecomposable $Z(k G)$-modules $Z(k G) \varepsilon_{i}$. Further, $Z(k G) \varepsilon_{i} / \operatorname{rad}\left(Z(k G) \varepsilon_{i}\right) \cong k$.

Proof. Set $Z:=Z(k G)$. Since the $\varepsilon_{i}$ are central by Proposition 2.3.2, the block decomposition $k G=k G \varepsilon_{1} \oplus \cdots \oplus k G \varepsilon_{r}$ clearly gives a decomposition $Z=Z \varepsilon_{1} \oplus \cdots \oplus Z \varepsilon_{r}$. Moreover, each $Z \varepsilon_{i}$ is indecomposable as the block idempotent $\varepsilon_{i} \in Z$ is primitive. The $Z$-modules $Z \varepsilon_{i}$ are the PIMs of the $k$-algebra $Z$, and Theorem 1.2.2 implies that $Z \varepsilon_{i} / \operatorname{rad}\left(Z \varepsilon_{i}\right)$ is a simple commutative $k$-algebra. By the structure theorem for Artinian rings (cf. [AM69, p. 90, Thm. 8.7]) every commutative semisimple Artinian algebra is isomorphic to a direct sum of fields; hence, $Z \varepsilon_{i} / \operatorname{rad}\left(Z \varepsilon_{i}\right) \cong k$.

The following result provides a 1:1-correspondence between central characters and blocks of $k G$.

Proposition 2.3.9. If $\varepsilon_{1}, \ldots, \varepsilon_{r}$ are the block idempotents of $k G$, there are exactly $r$ distinct central characters $\omega_{1}, \ldots, \omega_{r}$ of $k G$. They are characterized by

$$
\omega_{i}\left(\varepsilon_{j}\right)=\delta_{i j}
$$

Proof. Once more, abbreviate $Z:=Z(k G)$. By Lemma 2.3.8 the $k$-algebra homomorphism $\omega_{i}: Z \longrightarrow Z \varepsilon_{i} \longrightarrow Z \varepsilon_{i} / \operatorname{rad}\left(Z \varepsilon_{i}\right) \cong k$ defines a central character of $k G$ and $\omega_{i}\left(\varepsilon_{j}\right)=\delta_{i j}$.

To show that all central characters of $k G$ are given by $\omega_{1}, \ldots, \omega_{r}$, suppose that $\omega$ : $Z \longrightarrow k$ is an arbitrary central character of $k G$. Since $\operatorname{rad} Z$ is nilpotent by Proposition 1.1.22(iv), for every $r \in \operatorname{rad} Z$ it holds that $\omega(r)^{m}=\omega\left(r^{m}\right)=0$ for some $m \in \mathbb{N}$, giving $\operatorname{rad} Z \subset \operatorname{ker} \omega$. Lemma 2.3.8 implies $Z \varepsilon_{i} \cong k+\operatorname{rad} Z \varepsilon_{i}$, which results in the decomposition

$$
\begin{equation*}
Z \cong k \varepsilon_{1} \oplus \cdots \oplus k \varepsilon_{r}+\operatorname{rad} Z \tag{*}
\end{equation*}
$$

Now choose $i$ such that $\omega\left(\varepsilon_{i}\right) \neq 0$ and observe that

$$
\omega\left(\varepsilon_{i}\right)=\omega\left(\varepsilon_{i} \varepsilon_{i}\right)=\omega\left(\varepsilon_{i}\right) \omega\left(\varepsilon_{i}\right)
$$

giving $\omega\left(\varepsilon_{i}\right)=1$. Further, for $j \neq i$ we have

$$
0=\omega\left(\varepsilon_{i} \varepsilon_{j}\right)=\omega\left(\varepsilon_{i}\right) \omega\left(\varepsilon_{j}\right)
$$

and hence $\omega\left(\varepsilon_{j}\right)=0$. In summary, $\omega\left(\varepsilon_{j}\right)=\delta_{i j}$ for $i$ with $\omega\left(\varepsilon_{i}\right) \neq 0$. Thus, $\omega=\omega_{i}$ on $\varepsilon_{1}, \ldots, \varepsilon_{r}$ and both have $\operatorname{rad} Z$ in its kernel, so that by $\left(^{*}\right)$ they are identical.

Lemma 2.3.10. Let $V$ be a simple KG-module affording the irreducible ordinary character $\chi$ and $\rho$ be the corresponding representation. Further, define the $K$-linear map

$$
\begin{aligned}
\omega_{\chi}: Z(K G) & \longrightarrow K \\
\mathcal{C}_{i}^{+} & \longmapsto \frac{\left|\mathcal{C}_{i}\right| \chi\left(g_{i}\right)}{\chi(1)}
\end{aligned}
$$

for $g_{i} \in \mathcal{C}_{i}$. Then $z v=\omega_{\chi}(z) v$ for all $z \in Z(K G)$ and $v \in V$, that is, the center $Z(K G)$ acts on $V$ via $\omega_{\chi}$. In particular, $\omega_{\chi}$ is a central character.

Proof. For $z \in Z(K G)$ the endomorphism $\rho(z)$ lies in the center of $\operatorname{End}(V)$. Therefore, we have $\rho\left(\mathcal{C}_{i}^{+}\right)=\lambda_{i}$ id $_{V}$ with $\lambda_{i} \in K$, and taking traces gives $\left|\mathcal{C}_{i}\right| \chi\left(g_{i}\right)=\lambda_{i} \chi(1)$ for a representative $g_{i} \in \mathcal{C}_{i}$. Hence, $\lambda_{i}=\frac{\left|\mathcal{C}_{i}\right| \chi\left(g_{i}\right)}{\chi(1)}$, and $Z(K G)$ acts on $V$ via $\omega_{\chi}$. It follows easily from $z v=\omega_{\chi}(z) v$ for all $z \in Z(K G)$ and $v \in V$ that $\omega_{\chi}$ is a central character.

Definition 2.3.11. Let $\chi$ be an irreducible ordinary character of $G$. Then

$$
\begin{aligned}
\omega_{\chi}: Z(K G) & \longrightarrow K \\
\mathcal{C}_{i}^{+} & \longrightarrow \frac{\left|\mathcal{C}_{i}\right| \chi\left(g_{i}\right)}{\chi(1)} \text { for } g_{i} \in \mathcal{C}_{i}
\end{aligned}
$$

is the canonical central character associated to $\chi$.
To summarize, we have associated a central character of $K G$ to every irreducible ordinary character, and every central character of $k G$ corresponds to a block $B$. Hence, reducing central characters provides a classification of the irreducible ordinary characters into blocks via the following

## Proposition 2.3.12.

(i) Let $S$ be a simple $k G$-module and $B$ be a block of $G$ with the corresponding central character $\omega_{B}$. Then $S$ lies in the block $B$ if and only if $z s=\omega_{B}(z) s$ for all $z \in Z(k G)$ and $s \in S$.
(ii) Two irreducible ordinary characters $\chi$ and $\chi^{\prime}$ lie in the same block if and only if for all $i$

$$
\frac{\left|g^{G}\right| \chi\left(g_{i}\right)}{\chi(1)} \equiv \frac{\left|g^{G}\right| \chi^{\prime}\left(g_{i}\right)}{\chi^{\prime}(1)} \quad \bmod \pi \quad \text { for } g_{i} \in \mathcal{C}_{i}
$$

Proof. (i) Let $\rho$ be the representation associated to the simple $k G$-module $S$. For $z \in$ $Z(k G)$ it holds that $\rho(z) \in \operatorname{End}_{k G}(S)$, and by Proposition 2.1.3 the endomorphism ring $\operatorname{End}_{k G}(S)$ is isomorphic to $k$. Thus, restricting $\rho$ to the center $Z(k G)$ of $k G$ gives a central character $\omega: Z(k G) \longrightarrow k$, and we have $z s=\omega(z) s$ for all $z \in Z(k G)$ and $s \in S$. To prove the claim it therefore suffices to show that $\omega=\omega_{B}$.

To this end, let $\varepsilon$ be the block idempotent corresponding to the block $B$. Then $\varepsilon s=s$ for all $s \in S$, and also $\varepsilon s=\omega(\varepsilon) s$ for all $s \in S$ by the above paragraph. Hence, $\omega(\varepsilon)=1$, and by Proposition 2.3.9 the central character $\omega$ coincides with the central character $\omega_{B}$ associated to the block $B$.
(ii) Let $V$ be the simple $K G$-module affording $\chi$ and choose an $R G$-submodule $U$ of $V$ such that $V=K \otimes U$. Then Lemma 2.3.10 implies

$$
\begin{equation*}
z u=\omega_{\chi}(z) u \quad \text { for all } z \in Z(K G), u \in U \tag{*}
\end{equation*}
$$

Since we know from ordinary representation theory that $\omega_{\chi}(z) \in R$, we can reduce $\left(^{*}\right)$ modulo $\pi$. Using (i), this gives

$$
z u=\omega_{B}(z) u \quad \text { for all } z \in Z(k G), u \in \bar{U}
$$

where $\omega_{B}$ is the central character of $k G$ corresponding to the block $B$ in which the composition factors of $\bar{U}$ lies. The relation

$$
\frac{\left|g^{G}\right| \chi\left(g_{i}\right)}{\chi(1)} \equiv \frac{\left|g^{G}\right| \chi^{\prime}\left(g_{i}\right)}{\chi^{\prime}(1)} \quad \bmod \pi \quad \text { for } g_{i} \in \mathcal{C}_{i}
$$

means that $\omega_{\chi} \equiv \omega_{\chi^{\prime}} \bmod \pi$; therefore, by (i) and Definition 2.3.6 the irreducible ordinary characters $\chi$ and $\chi^{\prime}$ lie in the same block.

Note that given the ordinary character table of a group $G$, Proposition 2.3.12(ii) provides a simple way of determining the number of blocks in characteristic $p$.

### 2.3.3. Block idempotents

The classification of irreducible ordinary characters into blocks gives rise to a famous result by Osima:

Proposition 2.3.13 (Osima). Let $B$ be a block of $k G$ and denote by $\chi_{1}, \ldots, \chi_{r}$ the irreducible ordinary characters lying in B. Then

$$
\sum_{i=1}^{r} \chi_{i}(x) \chi_{i}(y)=0
$$

whenever $x \in G_{p^{\prime}}$ and $y \notin G_{p^{\prime}}$.

Proof. Let $\chi_{1}, \ldots, \chi_{s}$ be the full set of irreducible ordinary characters such that the first $r$ characters lie in the block $B$ and let $\varphi_{1}, \ldots, \varphi_{t}$ be the irreducible Brauer characters such that the first $m$ characters lie in $B$. Then by (2.2) we have $\chi_{i}=\sum_{j=1}^{t} d_{i j} \varphi_{j}$.

Moreover, the decomposition matrix $D$ has the form

$$
D=\left(\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right)
$$

where $D_{1}$ is an $r \times m$-matrix and $D_{2}$ is an $(s-r) \times(t-m)$-matrix. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$ be the $p$-regular conjugacy classes with representatives $g_{i} \in \mathcal{C}_{i}$, then by Proposition 2.2.18 we have

$$
\left(\chi_{1}(y), \ldots, \chi_{s}(y)\right) X=0
$$

for $y \notin G_{p^{\prime}}$. Using $X=D \Phi$ from (2.2) and the fact that $\Phi$ is invertible gives

$$
\left(\chi_{1}(y), \ldots, \chi_{r}(y)\right) D_{1}=0
$$

Finally, let $x \in G_{p^{\prime}}$ and multiply this identity from the right by the column vector $\left(\varphi_{1}(x), \ldots, \varphi_{m}(x)\right)$, giving

$$
0=\sum_{i=1}^{r} \chi_{i}(y) \sum_{j=1}^{m} d_{i j} \varphi_{j}(x)=\sum_{i=1}^{m} \chi_{i}(y) \chi_{i}(x)
$$

which proves the claim.

In the proof of Proposition 2.3.13 we deployed a block form of the decomposition matrix which was achieved by ordering the irreducible ordinary and Brauer characters accordingly. This is a useful procedure, and we record it here in a separate

Proposition 2.3.14. Let $B_{1}, \ldots, B_{r}$ be the blocks of $k G, \chi_{1}, \ldots, \chi_{s}$ be the ordinary irreducible characters and $\varphi_{1}, \ldots, \varphi_{t}$ be the irreducible Brauer characters. Renumber the irreducible characters such that the first $i_{1}$ ordinary characters lie in $B_{1}$, the next $i_{2}$ lie in $B_{2}$, etc. until the last $i_{r}$ characters, which lie in $B_{r}$. Analogously, the first $j_{1}$ Brauer characters lie in $B_{1}$, the next $j_{2}$ lie in $B_{2}$ etc. until the last $i_{r}$ characters, which lie in $B_{r}$. Then the decomposition matrix $D$ and the Cartan matrix $C$ have the form

$$
D=\left(\begin{array}{cccc}
D_{1} & & & 0 \\
& D_{2} & & \\
& & \ddots & \\
0 & & & D_{r}
\end{array}\right) \quad C=\left(\begin{array}{llll}
C_{1} & & & 0 \\
& C_{2} & & \\
& & \ddots & \\
0 & & & C_{r}
\end{array}\right)
$$

where $D_{k}$ is a $i_{k} \times j_{k}$-matrix and $C_{k}$ is a $j_{k} \times j_{k}$-matrix.

The preceding discussion allows us to give explicit formulas of the block idempotents of $k G$ :

Theorem 2.3.15 (Formula for block idempotents). Let $\chi_{1}, \ldots, \chi_{s}$ be the irreducible ordinary characters of $G$. Then the block idempotent $\varepsilon_{B}$ corresponding to $B$ is given by

$$
\varepsilon_{B} \equiv \sum_{\chi \in \operatorname{Irr}(B)} \frac{\chi(1)}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g \quad \bmod \pi
$$

Proof. By Theorem 2.1.11 we can lift the block idempotent $\varepsilon_{B}$ to an idempotent $f_{B} \in$ $Z(R G)$ such that $\bar{f}_{B}=\varepsilon_{B}$. By ordinary representation theory the irreducible ordinary characters $\chi_{1}, \ldots, \chi_{s}$ are associated to block idempotents

$$
e_{i}=\frac{\chi_{i}(1)}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g
$$

and $e_{1}, \ldots, e_{s}$ constitute a basis of $Z(K G)$. Let us renumber the irreducible characters such that the first $r$ lie in the block $B$. Since $Z(R G) \subset Z(K G)$, we can write $f_{B}=$ $\sum_{i=1}^{s} \lambda_{i} e_{i}$. Observe that $\bar{\omega}_{j}\left(\overline{f_{B}}\right)=\overline{\omega_{j}\left(f_{B}\right)}=1$ for the canonical central character $\omega_{j}$ associated to $\chi_{j}$ by Proposition 2.3.9. We claim that $\omega_{j}\left(e_{i}\right)=1$ if $1 \leq j \leq r$ and 0 otherwise. To see this, write

$$
e_{i}=\frac{\chi_{i}(1)}{|G|} \sum_{l=1}^{s} \chi_{i}\left(g_{l}^{-1}\right) \mathcal{C}_{l}^{+}
$$

where $g_{1}, \ldots, g_{l}$ are representatives of the conjugacy classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{l}$ of $G$. We then compute

$$
\begin{aligned}
\omega_{j}\left(e_{i}\right) & =\frac{\chi_{i}(1)}{|G|} \sum_{l=1}^{s} \chi_{i}\left(g_{l}^{-1}\right) \omega_{j}\left(\mathcal{C}_{l}^{+}\right) \\
& =\frac{\chi_{i}(1)}{|G|} \sum_{l=1}^{s} \chi_{i}\left(g_{l}^{-1}\right) \frac{\left|\mathcal{C}_{l}\right|}{\chi_{j}(1)} \chi_{j}\left(g_{l}\right)=\delta_{i j}
\end{aligned}
$$

The last equality sign follows from the orthogonality relations of irreducible ordinary characters in Proposition 2.2.18. Hence, we can write $f_{B}=e_{1}+\cdots+e_{r}$, which reduces modulo $\pi$ to the proposed formula for the block idempotent $\varepsilon_{B}$.

Corollary 2.3.16. In Proposition 2.3.12(ii) it suffices to verify the relation for two irreducible characters $\chi$ and $\chi^{\prime}$ to lie in the same block on $G_{p^{\prime}}$.

Proof. The proof of Theorem 2.3.15 implies that the block idempotent $\varepsilon_{B}$ of the block $B$ can be written as

$$
\begin{aligned}
\varepsilon_{B} & =\sum_{i=1}^{s} \mu_{i} \mathcal{C}_{i}^{+} \\
\text {with } \mu_{i} & =\frac{1}{|G|} \sum_{j=1}^{r} \chi_{j}(1) \chi_{j}\left(g_{i}^{-1}\right)
\end{aligned}
$$

where the irreducible ordinary characters $\chi_{i}$ are again renumbered so that the first $r$ lie in the block $B$. By Proposition 2.3.13, $\mu_{i}=0$ if $\mathcal{C}_{i}^{+}$is a $p$-singular class. Now let $\omega_{\chi}$ be the canonical central character associated to $\chi$, then $\chi$ belongs to $B$ if and only if $\bar{\omega}_{\chi}\left(\varepsilon_{B}\right)=1$, that is,

$$
\sum_{i=1}^{s} \mu_{i} \omega_{\chi}\left(\mathcal{C}_{i}^{+}\right)=\sum_{i=1}^{s} \mu_{i} \frac{\left|\mathcal{C}_{i}\right| \chi\left(g_{i}\right)}{\chi(1)} \equiv 1 \quad \bmod \pi
$$

and analogously for $\chi^{\prime}$. Since the coefficient $\mu_{i}$ is only non-zero on $p$-regular classes, it suffices to verify the relation $\bar{\omega}_{\chi}\left(\varepsilon_{B}\right)=1$ on $G_{p^{\prime}}$.

Finally, block theory can be used to obtain a useful result in the process of finding the irreducible Brauer characters of a group $G$ :

Proposition 2.3.17. Let $\chi$ be an irreducible ordinary character belonging to a block $B$ and $p \nmid \frac{|G|}{\chi(1)}$. Then $\operatorname{Irr}(B)=\{\chi\}$, and $\left.\chi\right|_{G_{p^{\prime}}}$ is an irreducible Brauer character.
Proof. The condition $p \nmid \frac{|G|}{\chi(1)}$ means that $\frac{\chi(1)}{|G|} \in R$. Hence, $e_{\chi}$ is a central idempotent in $R G$ and thus the block idempotent of the block $B$. Consequently, after a suitable renumbering of the irreducible ordinary and Brauer characters, Proposition $2.3 .14 \mathrm{im}-$ plies that the decomposition matrix $D_{B}$ corresponding to the block $B$ is the $1 \times 1$-matrix $D_{B}=(1)$. Therefore, the restriction of $\chi$ to the $p$-regular conjugacy classes of $G$ is an irreducible Brauer character.

## 3. Principal indecomposable modules for the Alternating group $\boldsymbol{A}_{5}$

In this chapter we use the methods developed in the preceding sections to analyze the representations of the group $A_{5}$ in characteristic $p$, where the prime $p$ divides the group order $|G|$. Since $\left|A_{5}\right|=60$, we have to consider the primes 2,3 and 5 . More precisely, we are trying to understand the structure of the $k$-algebra $k G$ as a module over itself, where $k$ is a field with char $k=p$. The $k G$-module $k G$ is also called the regular representation of $G$ in characteristic $p$.

In particular we determine (for each characteristic) a set of primitive orthogonal idempotents $\left\{e_{i}\right\}_{i}$, which corresponds to a decomposition of $k G=\bigoplus_{i} e_{i} k G$ into the direct sum of PIMs. The first step in this task is the calculation of the block idempotents and the irreducible $p$-Brauer characters, the degrees of which are the dimensions of the unique irreducible socles of the PIMs. Knowledge of the $p$-Brauer characters and the behavior of the ordinary characters under restriction to the $p$-regular conjugacy classes directly leads to the $p$-decomposition matrix $D_{p}$ and the Cartan matrix $C_{p}=D_{p}^{T} D_{p}$. Those matrices together with the $p$-Brauer character table provide complete information about the PIMs' dimensions and multiplicities, which in turn facilitates the calculation of the primitive orthogonal idempotents in Section 3.3.1. In addition, we compute the radical series of each PIM in Section 3.3.2.

Let us fix some notations which are going to be used throughout this chapter. We set $G=A_{5}$ and will use both denotations interchangeably. The decomposition matrix $D_{p}$ and the Cartan matrix $C_{p}$ are indexed with the according prime $p$, which is the characteristic of $k$. We write $T \sim \tau$ for the correspondence between a $k G$-module $T$ and the representation $\tau$ of $G$.

### 3.1. Preliminaries

### 3.1.1. Ordinary character table of $\boldsymbol{A}_{5}$

At first we analyze the ordinary character table of $A_{5}$, given in Table 3.1. ${ }^{1}$ The group $A_{5}$ splits up into five conjugacy classes as follows: $\mathcal{C}_{1}=\{e\}, \mathcal{C}_{2}=(12)(34)^{G}, \mathcal{C}_{3}=$ $(123)^{G}, \mathcal{C}_{4}=(12345)^{G}$ and $\mathcal{C}_{5}=(12354)^{G}$, where the group elements are written in cycle notation. The first two lines in the character table display the order of the elements and the cardinality of the corresponding conjugacy class, respectively. The two special values are $a=\frac{1}{2}(1+\sqrt{5})$ and $\bar{a}=\frac{1}{2}(1-\sqrt{5})$.

| ord | 1 | 2 | 3 | 5 | 5 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| $\#$ | 1 | 15 | 20 | 12 | 12 |
|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{3}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 3 | -1 | 0 | $a$ | $\bar{a}$ |
| $\chi_{3}$ | 3 | -1 | 0 | $\bar{a}$ | $a$ |
| $\chi_{4}$ | 4 | 0 | 1 | -1 | -1 |
| $\chi_{5}$ | 5 | 1 | -1 | 0 | 0 |

Table 3.1.: Ordinary character table of $A_{5}$

### 3.1.2. Choosing a $\boldsymbol{p}$-modular system

From Section 2.1 we know that the use of $p$-modular systems $(K, R, k)$ allows for a connection between representations over $K$ in characteristic 0 , integral representations over $R$ and $p$-modular representations over $k$ in characteristic $p$. First we need to find a splitting field of characteristic 0 . Theorem 2.1.6 tells us that a splitting field for $A_{5}$ is $K=\mathbb{Q}(\sqrt[u]{1})$ where $u=\exp G$ is the exponent of the group $G$. From the orders of the elements in $G$ (the first line in the character Table 3.1) we infer that $\exp A_{5}=30$, and consequently, the first candidate for a splitting field is $K^{\prime}=\mathbb{Q}\left(\zeta_{30}\right)$ with $\zeta_{30}$ a primitive 30 -th root of unity. However, the only non-rational values of the ordinary characters are $a=\frac{1}{2}(1+\sqrt{5})$ and $\bar{a}=\frac{1}{2}(1-\sqrt{5})$. Thus, we fix $K=\mathbb{Q}\left(\frac{1}{2}(1+\sqrt{5})\right)=\mathbb{Q}(\sqrt{5}) \subset K^{\prime}$ as a splitting field for $A_{5}$ in characteristic 0 and we will embed $K$ in a $p$-adic field to establish a $p$-modular system according to Definition 2.1.10. For this, we need a few results from algebraic number theory. ${ }^{2}$

[^0]Let $L / \mathbb{Q}$ be an algebraic number field and $\mathcal{O}_{L} \subset L$ its ring of integers. Further, let $\mathfrak{p} \leq \mathcal{O}_{L}$ be a prime ideal lying over the prime ideal $(p) \leq \mathbb{Z}$, that is, $\mathfrak{p} \cap \mathbb{Z}=(p)$, and denote by $\mathbb{F}_{\mathfrak{p}}:=\mathcal{O}_{L} / \mathfrak{p}$ the residue field. ${ }^{3}$ The inertial degree $f_{p}$ is defined as $f_{p}=\left[\mathbb{F}_{\mathfrak{p}}: \mathbb{F}_{p}\right]$.

In our case, $\mathcal{O}_{K}=\mathcal{O}_{5}=\mathbb{Z} \oplus \mathbb{Z} \omega_{5}$ with $\omega_{5}=\frac{1+\sqrt{5}}{2}$. Since $5 \equiv 1 \bmod 4$, the discriminant $\Delta$ of $K$ equals 5. In quadratic number fields, the inertial degree $f_{p}$ for a prime $p$ is determined by the Legendre symbol in the following way:
(a) $\left(\frac{\Delta}{p}\right)=1$ : There are distinct prime ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subseteq \mathcal{O}_{5}$ with $p \mathcal{O}_{5}=\mathfrak{p}_{1} \mathfrak{p}_{2}$. $\mathcal{O}_{5} / \mathfrak{p}_{1} \cong \mathbb{F}_{p} \cong \mathcal{O}_{5} / \mathfrak{p}_{2}$, giving $f_{p}=1$. The prime $p$ is said to split.
(b) $\left(\frac{\Delta}{p}\right)=0$ : There is a prime ideal $\mathfrak{p} \subseteq \mathcal{O}_{5}$ with $p \mathcal{O}_{5}=\mathfrak{p}^{2}$.
$\mathcal{O}_{5} / \mathfrak{p} \cong \mathbb{F}_{p}$, and again $f_{p}=1$. The prime $p$ is said to ramify.
(c) $\left(\frac{\Delta}{p}\right)=-1$ : The ideal $p \mathcal{O}_{5}$ itself is prime in $\mathcal{O}_{5}$. $\mathcal{O}_{5} / p \mathcal{O}_{5} \cong \mathbb{F}_{p^{2}}$, and hence, $f_{p}=2$. The prime $p$ is called inert.

Consider now the $p$-adic field $\mathbb{Q}_{p}$ which is the completion of $\mathbb{Q}$ with respect to the $p$-adic valuation $\nu_{p}$. We can extend the valuation $\nu_{p}$ onto $K=\mathbb{Q}(\sqrt{5})$ and complete $K$ with respect to this extended valuation. The resulting completion $K_{p}$ of $K$ is isomorphic to the extension $\mathbb{Q}_{p}(\sqrt{5}) / \mathbb{Q}_{p}\left(\right.$ in symbols: $\left.(\mathbb{Q}(\sqrt{5}))_{p} \cong \mathbb{Q}_{p}(\sqrt{5})\right)$ and independent of the chosen extension of the valuation $\nu_{p}$, which justifies our notation for the modular splitting field fixed above. Since $K_{p}$ is a local field, there is a unique maximal ideal $\pi \mathcal{O}_{K_{p}}$ where $\pi$ is a uniformizing element. Let $k_{p}=\mathcal{O}_{K_{p}} / \pi \mathcal{O}_{K_{p}}$ denote the residue field of $K_{p}$. The key observation (cf. [Ser79, §3, Thm. 1(ii)]) is that

$$
\begin{equation*}
\left[k_{p}: \mathbb{F}_{p}\right]=\left[\mathbb{F}_{\mathfrak{p}}: \mathbb{F}_{p}\right]=f_{p} \tag{3.1}
\end{equation*}
$$

or in other words, $k_{p} \cong \mathbb{F}_{\mathfrak{p}}$, i.e., the inertial degrees in the global and local field extension are the same. In the light of these considerations we choose the following $p$-modular system:

- $K_{p}:=\mathbb{Q}_{p}(\sqrt{5})$, a quadratic extension of the $p$-adic field $\mathbb{Q}_{p}$.
- $R:=\mathbb{Z}_{p}\left[\omega_{5}\right]$, the ring of integers of $K_{p}$, where $\mathbb{Z}_{p}$ are the $p$-adic integers. The unique maximal ideal in $R$ is given by $\pi R$ with $\pi$ a uniformizing element of $R$.
- $k_{p}:=R / \pi R$, the residue field of $R$. In most cases we will write $k$ for $k_{p}$ whenever it is clear in which characteristic we are working.

[^1]Computing the Legendre symbol for the prime numbers dividing $\left|A_{5}\right|=60$ and applying the above ideas give the corresponding residue fields $k_{p}$, which are displayed in Table 3.2.

| p | 2 | 3 | 5 |
| :---: | :---: | :---: | :---: |
| $\left(\frac{5}{p}\right)$ | -1 | -1 | 0 |
| $\mathbb{F}_{\mathfrak{p}}=k_{p}$ | $\mathbb{F}_{4}$ | $\mathbb{F}_{9}$ | $\mathbb{F}_{5}$ |

Table 3.2.: Residue fields for $p=2,3,5$

### 3.2. Structure of the group algebra in modular characteristic

### 3.2.1. Block decomposition and block idempotents

To determine the block structure of $k G$ we first use the character relation formula of Proposition 2.3.12(ii) to find the number of blocks, which we restate here: Two irreducible ordinary characters $\chi$ and $\chi^{\prime}$ lie in the same block if and only if

$$
\begin{equation*}
\frac{\left|g^{G}\right| \chi(g)}{\chi(1)} \equiv \frac{\left|g^{G}\right| \chi^{\prime}(g)}{\chi^{\prime}(1)} \quad \bmod \pi \quad \forall g \in G_{p^{\prime}} \tag{3.2}
\end{equation*}
$$

Here, $G_{p^{\prime}}$ is the set of all $p$-regular elements of $G$ as defined in Definition 2.2.7. Once it is clear which characters lie in which block, the corresponding block idempotents can be calculated using

$$
\begin{equation*}
\varepsilon_{B} \equiv \sum_{\chi \in \operatorname{Irr}(B)} \frac{\chi(1)}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g \quad \bmod \pi \tag{3.3}
\end{equation*}
$$

where $\operatorname{Irr}(B):=\{\chi \in \operatorname{Irr}(G) \mid \chi$ lies in $B\}$. Note that the sum is taken over ordinary characters and then reduced modulo $\pi$.

Starting with $p=2$ we apply (3.2) to the irreducible characters from Table 3.1. Since $\operatorname{ord}(g)=2$ for all $g \in \mathcal{C}_{2}$, the conjugacy class $\mathcal{C}_{2}$ of all double transpositions is the only 2 -singular conjugacy class and must therefore be discarded in the computation. The result can be seen in Table 3.3, which displays the value of $\frac{\left|g^{G}\right| \chi(g)}{\chi(1)}$ for all characters $\chi$ on the 2-regular conjugacy classes.

We infer that there are two blocks $B_{1}$ and $B_{2}$ with $\operatorname{Irr}\left(B_{1}\right)=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{5}\right\}$ and $\operatorname{Irr}\left(B_{2}\right)=\left\{\chi_{4}\right\}$, respectively. We will later see that $B_{2}$ is a block of defect zero. The block $B_{1}$ containing the trivial character is also called the principal block. With this

| ${ }_{\left\|g^{G}\right\| \chi(g) / \chi(1)}$ | $\mathcal{C}_{1}$ | $\mathcal{C}_{3}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| :---: | ---: | ---: | ---: | ---: |
| $\chi_{1}$ | 1 | 0 | 0 | 0 |
| $\chi_{2}$ | 1 | 0 | 0 | 0 |
| $\chi_{3}$ | 1 | 0 | 0 | 0 |
| $\chi_{4}$ | 1 | 1 | 1 | 1 |
| $\chi_{5}$ | 1 | 0 | 0 | 0 |

Table 3.3.: Characters in blocks for $p=2$
knowledge, we are ready to compute the idempotents using (3.3). We set $\mathcal{C}_{i}^{+}:=\sum_{g \in \mathcal{C}_{i}} g$.

$$
\begin{align*}
\varepsilon_{B_{1}}= & \frac{1}{60}\left(\mathcal{C}_{1}^{+}(1+9+9+25)+\mathcal{C}_{3}^{+}(1-5)+\right. \\
& \left.+\mathcal{C}_{4}^{+}(1+3(a+\bar{a}))+\mathcal{C}_{5}^{+}(1+3(a+\bar{a}))\right) \\
= & \frac{1}{60}\left(44 \mathcal{C}_{1}^{+}-4 \mathcal{C}_{3}^{+}+4 \mathcal{C}_{4}^{+}+4 \mathcal{C}_{5}^{+}\right) \\
= & \frac{11}{15} \mathcal{C}_{1}^{+}-\frac{1}{15} \mathcal{C}_{3}^{+}+\frac{1}{15} \mathcal{C}_{4}^{+}+\frac{1}{15} \mathcal{C}_{5}^{+} \\
\equiv & \mathcal{C}_{1}^{+}+\mathcal{C}_{3}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+} \bmod 2  \tag{3.4a}\\
\varepsilon_{B_{2}}= & \frac{1}{60}\left(16 \mathcal{C}_{1}^{+}+4 \mathcal{C}_{3}^{+}-4 \mathcal{C}_{4}^{+}-4 \mathcal{C}_{5}^{+}\right) \\
= & \frac{4}{15} \mathcal{C}_{1}^{+}+\frac{1}{15} \mathcal{C}_{3}^{+}-\frac{1}{15} \mathcal{C}_{4}^{+}-\frac{1}{15} \mathcal{C}_{5}^{+} \\
\equiv & \mathcal{C}_{3}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+} \bmod 2 \tag{3.4b}
\end{align*}
$$

As follows from Theorem 2.3.2, it holds that $\varepsilon_{B_{1}}+\varepsilon_{B_{2}}=1$, the identity of the $k$-algebra $k G$.

For $p=3$ we have four 3 -regular conjugacy classes, namely $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{4}$ and $\mathcal{C}_{5}$. The distribution of the irreducible characters into blocks can be seen in Table 3.4, where ${ }^{\left|g^{G}\right| \chi(g) / \chi(1) \text { is evaluated for all 3-regular conjugacy classes. }}$

| ${ }_{\left\|g^{G}\right\| \chi(g) / \chi(1)}$ | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| :---: | ---: | ---: | ---: | ---: |
| $\chi_{1}$ | 1 | 0 | 0 | 0 |
| $\chi_{2}$ | 1 | 1 | $2+2 \sqrt{5}$ | $2+\sqrt{5}$ |
| $\chi_{3}$ | 1 | 1 | $2+\sqrt{5}$ | $2+2 \sqrt{5}$ |
| $\chi_{4}$ | 1 | 0 | 0 | 0 |
| $\chi_{5}$ | 1 | 0 | 0 | 0 |

Table 3.4.: Characters in blocks for $p=3$

In characteristic 3 , there are three blocks $B_{1}, B_{2}$ and $B_{3}$ with $\operatorname{Irr}\left(B_{1}\right)=\left\{\chi_{1}, \chi_{4}, \chi_{5}\right\}$ and $\operatorname{Irr}\left(B_{j}\right)=\left\{\chi_{j}\right\}$ for $j=2,3$. Similar to the case $p=2$, the blocks $B_{2}$ and $B_{3}$ have defect zero, and $B_{1}$ is the principal block. The block idempotents are given as

$$
\begin{align*}
\varepsilon_{B_{1}} & \equiv \mathcal{C}_{1}^{+}+\mathcal{C}_{2}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+} \quad \bmod 3  \tag{3.5a}\\
\varepsilon_{B_{2}} & \equiv \mathcal{C}_{2}^{+}+2 a \mathcal{C}_{4}^{+}+2 \bar{a} \mathcal{C}_{5}^{+} \quad \bmod 3  \tag{3.5b}\\
\varepsilon_{B_{3}} & \equiv \mathcal{C}_{2}^{+}+2 \bar{a} \mathcal{C}_{4}^{+}+2 a \mathcal{C}_{5}^{+} \quad \bmod 3 \tag{3.5c}
\end{align*}
$$

As expected, $\varepsilon_{B_{1}}+\varepsilon_{B_{2}}+\varepsilon_{B_{3}}=1$ (note that $a+\bar{a}=1$ ).
Finally, for $p=5$ there are only three 5 -regular conjugacy classes $\mathcal{C}_{1}, \mathcal{C}_{2}$ and $\mathcal{C}_{3}$. The irreducible characters are distributed among the blocks according to Table 3.5.

| ${ }^{\left\|g^{G}\right\| \chi(g) / \chi(1)}$ | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{3}$ |
| :---: | ---: | ---: | ---: |
| $\chi_{1}$ | 1 | 0 | 0 |
| $\chi_{2}$ | 1 | 0 | 0 |
| $\chi_{3}$ | 1 | 0 | 0 |
| $\chi_{4}$ | 1 | 0 | 0 |
| $\chi_{5}$ | 1 | 3 | 1 |

Table 3.5.: Characters in blocks for $p=5$
There are two blocks, the principal block $B_{1}$ with $\operatorname{Irr}\left(B_{1}\right)=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\}$ and the block $B_{2}=\left\{\chi_{5}\right\}$ of defect zero. The corresponding block idempotents are

$$
\begin{align*}
& \varepsilon_{B_{1}} \equiv \mathcal{C}_{1}^{+}+2 \mathcal{C}_{2}^{+}+3 \mathcal{C}_{3}^{+} \quad \bmod 5  \tag{3.6a}\\
& \varepsilon_{B_{2}} \equiv 3 \mathcal{C}_{2}^{+}+2 \mathcal{C}_{3}^{+} \quad \bmod 5 \tag{3.6b}
\end{align*}
$$

As before, $\varepsilon_{B_{1}}+\varepsilon_{B_{2}}=1$, the identity of $k G$.
In the further analysis we will always arrange the irreducible ordinary characters according to Proposition 2.3 .14 as follows: Suppose we have a block $B_{1}$ with the characters $\chi_{1}$ and $\chi_{3}$, and a block $B_{2}$ with the character $\chi_{2}$. Then the ordering of the characters in the decomposition matrix (whose rows are indexed by the ordinary irreducible characters) would be

$$
\underbrace{1-3}_{B_{1}}-\underbrace{2}_{B_{2}}
$$

The same holds for the irreducible $p$-Brauer characters: Each corresponds to the unique irreducible socle of a PIM, and according to Definition 2.3.4 each socle lies in one block. Since the columns of the decomposition matrix and the Cartan matrix are labeled by the
irreducible Brauer characters, both reorderings ensure the block form of these matrices.

### 3.2.2. Brauer character table and Decomposition matrix

In this section we want to compute the decomposition matrix $D_{p}$ and the Brauer character table. Let us fix the notation $\chi^{\prime}:=\left.\chi\right|_{G_{p^{\prime}}}$ for the restriction of an ordinary character to the $p$-regular conjugacy classes. Since the derivation of the 3-Brauer character table is more involved, it is dealt with at the end of this section.

## Characteristic 2 and 5

We start by investigating the case $p=2$. There are four $p$-regular conjugacy classes, so by Corollary 2.2.17 we are looking for four irreducible Brauer characters. Of course the restriction of the trivial character $\varphi_{1}=\chi_{1}^{\prime}$ is one of them. Since $2 \nmid \frac{|G|}{\chi_{4}(1)}$, it follows from Proposition 2.3.17 that $\varphi_{4}=\chi_{4}^{\prime}$ is another one. Now observe that

$$
\begin{equation*}
\chi_{2}^{\prime}+\chi_{3}^{\prime}=\chi_{1}^{\prime}+\chi_{5}^{\prime} \tag{3.7}
\end{equation*}
$$

This means that at least one of the characters $\chi_{2}^{\prime}, \chi_{3}^{\prime}$ contains $\varphi_{1}$ as an irreducible constituent. Since $\chi_{2}$ and $\chi_{3}$ are conjugate, this holds for both of them by Proposition A.2.2(ii). It follows that $\chi_{5}^{\prime}$, which is a character of degree 5 , also contains $\varphi_{1}$ as an irreducible constituent. Now 'subtract' $\varphi_{1}$ twice from (3.7). The degree on the right side is now 4 , so we see that the remaining irreducible constituents of $\chi_{2}^{\prime}$ resp. $\chi_{3}^{\prime}$ have degree 2, i.e. either two constituents of degree 1 or one irreducible constituent of degree 2. From theorem A.1.2 we know that the linear characters of a group $G$ and its abelianization $G^{\text {ab }}=G /[G, G]$ are in 1:1-correspondence. But $\left[A_{5}, A_{5}\right]=A_{5}$, which implies that the trivial character $\chi_{1}$ is the only character of degree 1 . In the case of two constituents of degree 1 , this leaves $\chi_{2}^{\prime}=\chi_{3}^{\prime}=3 \chi_{1}^{\prime}$ as the only possibility. But comparing the character values on both sides in the ordinary character table 3.1 shows that this cannot be the case. Therefore, $\chi_{2}^{\prime}$ and $\chi_{3}^{\prime}$ both contain an irreducible constituent of degree 2, namely $\varphi_{2}$ and $\varphi_{3}$, and they are conjugate and different since $\chi_{2}$ and $\chi_{3}$ are conjugate characters. Thus, we have found the two remaining irreducible 2-Brauer characters, and their values on the 2 -regular conjugacy classes are determined by (3.7). The 2 -Brauer character table is displayed in Table 3.6.

The above discussion also determines the decomposition matrix $D_{2}$, which is given by how the ordinary irreducible characters split up into the irreducible Brauer characters. Note the different ordering $1-2-3-5-4$ of the irreducible characters according to

|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{3}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| ---: | ---: | ---: | ---: | ---: |
| $\varphi_{1}$ | 1 | 1 | 1 | 1 |
| $\varphi_{2}$ | 2 | -1 | $a-1$ | $\bar{a}-1$ |
| $\varphi_{3}$ | 2 | -1 | $\bar{a}-1$ | $a-1$ |
| $\varphi_{4}$ | 4 | 1 | -1 | -1 |

Table 3.6.: Brauer character table for $p=2$
their distribution into blocks. Zeros in the decomposition matrix have been replaced by $\because$ for better readability.

$$
\left.\begin{array}{l}
\chi_{1} \mapsto \varphi_{1}  \tag{3.8}\\
\chi_{2} \mapsto \varphi_{1}+\varphi_{2} \\
\chi_{3} \mapsto \varphi_{1}+\varphi_{3} \\
\chi_{5} \mapsto \varphi_{1}+\varphi_{2}+\varphi_{3} \\
\chi_{4} \mapsto \varphi_{4}
\end{array}\right\} \quad D_{2}=\left(\begin{array}{cccc}
1 & . & . & . \\
1 & 1 & . & . \\
1 & . & 1 & . \\
1 & 1 & 1 & . \\
. & . & . & 1
\end{array}\right)
$$

Observe that $X_{2}=D_{2} \Phi_{2}$ as in (2.2), where $X_{2}$ is the ordinary character table with the column belonging to the 2 -singular class $\mathcal{C}_{2}$ removed and $\Phi_{2}$ is the 2 -Brauer character table.

For $p=5$ there are three 5 -regular conjugacy classes and hence three modular irreducible representations by Corollary 2.2.17. As before, $\chi_{1}^{\prime}=\varphi_{1}$, the trivial representation, and according to Proposition 2.3.17 $\chi_{5}^{\prime}=\varphi_{3}$ is another one since $5 \nmid \frac{|G|}{\chi_{5}(1)}$.

For the remaining Brauer character, suppose first that $\chi_{2}^{\prime}=\chi_{3}^{\prime}$ is reducible. Since these characters have degree 3 and the trivial ordinary character $\chi_{1}$ is the only 1 dimensional character of $A_{5}$, a possible option is $\chi_{2}^{\prime}=\chi_{3}^{\prime}=3 \varphi_{1}$. However, comparing character values in the ordinary character table 3.1 shows that this is impossible. Hence, in case $\chi_{2}^{\prime}=\chi_{3}^{\prime}$ is reducible, there must be a 2 -dimensional irreducible Brauer character ${ }^{4}$ $\varphi_{2}^{\prime}$ with $\varphi_{2}^{\prime}(1)=2$ and

$$
\begin{equation*}
\chi_{2}^{\prime}=\varphi_{1}+\varphi_{2}^{\prime}=\chi_{3}^{\prime} \tag{3.9}
\end{equation*}
$$

Equation 3.9 determines the character values $\varphi_{2}^{\prime}\left(\mathcal{C}_{2}\right)=-2$ and $\varphi_{2}^{\prime}\left(\mathcal{C}_{3}\right)=-1$ of the 2-dimensional irreducible Brauer character $\varphi_{2}^{\prime}$. Now let $\rho: A_{5} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ be the irreducible representation corresponding to $\varphi_{2}^{\prime}$. Since $A_{5}$ is simple and the kernel of a

[^2]representation is a normal subgroup, we can assume that $\rho$ is injective. For $g \in \mathcal{C}_{2}$ we have $\operatorname{ord}(g)=\operatorname{ord}(\rho(g))=2$; hence, $\rho(g)^{2}=\operatorname{id} \neq \rho(g)$ since $\rho$ is injective. Therefore, the minimal polynomial $\mu_{\rho(g)}(T)$ of $\rho(g)$ is either
\[

$$
\begin{aligned}
\quad \mu_{\rho(g)}(T) & =T^{2}-1=(T+1)(T-1) \\
\text { or } \quad \mu_{\rho(g)}(T) & =T+1
\end{aligned}
$$
\]

Suppose that the first case is true and $\lambda= \pm 1$ are the possible eigenvalues of $\rho(g)$ : Since $\varphi_{2}^{\prime}\left(\mathcal{C}_{2}\right)=-2$, the only eigenvalue of $\rho(g)$ is $\lambda=-1$. Due to the choice of the $p$-modular system in Section 3.1.2, we know that $k=\mathbb{F}_{5}$ is a splitting field for $\rho$. Therefore, we can write down the Jordan normal form of $\rho(g)$ :

$$
\rho(g)=\left(\begin{array}{cc}
-1 & c  \tag{3.10}\\
0 & -1
\end{array}\right)
$$

where $c \in\{0,1\}$. Since $\rho(g)^{2}=$ id, we can exclude $c=1$; thus, $\rho(g)=-\mathrm{id}$ and $\mu_{\rho(g)}(T)=T+1$. Now $\rho(g)=-$ id belongs to the center of $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ for every $g \in \mathcal{C}_{2}$. But $\rho$ is injective, and from $\rho(g h)=\rho(g) \rho(h)=\rho(h) \rho(g)=\rho(h g)$ for all $g \in \mathcal{C}_{2}$ and $h \in A_{5}$ we infer that $g h=h g$ for all $g \in \mathcal{C}_{2}$ and $h \in A_{5}$. In other words, $g \in Z\left(A_{5}\right)=\{e\}$, which is a contradiction to $g \in \mathcal{C}_{2}$. Therefore, the assumption of the existence of an irreducible Brauer character $\varphi_{2}^{\prime}$ of degree 2 (and hence the reducibility of $\chi_{2}^{\prime}=\chi_{3}^{\prime}$ ) was wrong, and $\varphi_{2}=\chi_{2}^{\prime}=\chi_{3}^{\prime}$ is the remaining irreducible Brauer character. This gives the 5 -Brauer character table 3.7.

|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{3}$ |
| ---: | ---: | ---: | ---: |
| $\varphi_{1}$ | 1 | 1 | 1 |
| $\varphi_{2}$ | 3 | -1 | 0 |
| $\varphi_{3}$ | 5 | 1 | -1 |

Table 3.7.: Brauer character table for $p=5$

It follows immediately that $\chi_{4}^{\prime}=\varphi_{1}+\varphi_{2}$. Note that this time there is no reordering
of the irreducible characters. The decomposition matrix $D_{5}$ is given as

$$
\left.\begin{array}{l}
\chi_{1} \mapsto \varphi_{1}  \tag{3.11}\\
\chi_{2} \mapsto \varphi_{2} \\
\chi_{3} \mapsto \varphi_{2} \\
\chi_{4} \mapsto \varphi_{1}+\varphi_{2} \\
\chi_{5} \mapsto \varphi_{3}
\end{array}\right\} \quad D_{5}=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & 1 & \cdot \\
1 & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right)
$$

## Characteristic 3

In characteristic 3 there are four 3-regular conjugacy classes ( $\mathcal{C}_{3}$ being 3 -singular), hence four modular irreducible representations by Corollary 2.2.17. Again, $\varphi_{1}=\chi_{1}^{\prime}$, the trivial representation. Since $3 \nmid \frac{G}{\chi_{i}(1)}$ for $i=2,3$, the characters $\chi_{2}$ and $\chi_{3}$ are also irreducible in characteristic 3 by Proposition 2.3.17, and we have found two more irreducible Brauer characters $\varphi_{2}=\chi_{2}^{\prime}$ and $\varphi_{3}=\chi_{3}^{\prime}$.

For the remaining irreducible Brauer character let us remember the distribution into blocks of the ordinary characters from Table 3.4. Since $\chi_{2}$ and $\chi_{3}$ remain irreducible and in each case form its own block, the remaining irreducible Brauer character has to be a constituent of $\chi_{4}$ or $\chi_{5}$. Therefore, consider the ordinary irreducible representation $\chi_{4}$ which is just the representation of $A_{5}$ permuting coordinates in

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T} \mid x_{1}+\cdots+x_{5}=0\right\} \leq K^{5}
$$

(cf. [Wei03, Ch. 3, pp. 75]). Reducing this representation modulo 3 gives the $k$-vector space $V_{k} \leq k^{5}$ (remember that $k=\mathbb{F}_{9}$ ), and we claim that $\varphi_{4}=\chi_{4}^{\prime}$ is irreducible and hence the last irreducible Brauer character. This is shown in the following

Lemma 3.2.1. The restriction $\chi_{4}^{\prime}=\left.\chi_{4}\right|_{G_{3^{\prime}}}$ of the ordinary irreducible character $\chi_{4}$ of $A_{5}$ to the 3-regular conjugacy classes remains irreducible and is therefore an irreducible Brauer character.

Proof. We show that $\chi_{4}$ cannot be reducible. To begin with, note that the only onedimensional representation of $A_{5}$ is the trivial representation with $g \mapsto$ id for all $g \in$ $A_{5}$. Since the coordinates are permuted by elements of the group, the existence of a one-dimensional subspace $U$ on which $A_{5}$ acts trivially is only possible if we have $U=\left\langle(x, x, x, x, x)^{T}\right\rangle_{k}$ for some $0 \neq x \in k .{ }^{5}$ But the condition $\sum_{i} x_{i}=0$ rules out this

[^3]possibility. So in case $\chi_{4}^{\prime}$ is reducible modulo 3, we have the following options:

1. $\chi_{4}^{\prime}=2 \varphi_{4}^{\prime}$, where $\varphi_{4}^{\prime}$ is an irreducible Brauer character of degree 2
2. $\chi_{4}^{\prime}=\varphi_{4}^{\prime \prime}+\varphi_{1}$, where $\varphi_{4}^{\prime \prime}$ is an irreducible Brauer character of degree 3 , and the representation corresponding to $\varphi_{1}$ is a one-dimensional quotient representation in $V_{k}$
3. $\chi_{4}^{\prime}=\varphi_{4}^{\prime \prime \prime}+2 \varphi_{1}$, where $\varphi_{4}^{\prime \prime \prime}$ is an irreducible Brauer character of degree 2 , and both representations corresponding to $\varphi_{1}$ are one-dimensional quotient representations in $V_{k}$

|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| ---: | ---: | ---: | ---: | ---: |
| $\chi_{4}$ | 4 | 0 | -1 | -1 |
| $\varphi_{4}^{\prime}$ | 2 | 0 | $-\frac{1}{2}$ | $-\frac{1}{2}$ |
| $\varphi_{4}^{\prime \prime}$ | 3 | -1 | -2 | -2 |
| $\varphi_{4}^{\prime \prime}$ | 2 | -2 | -3 | -3 |

Table 3.8.: Possible choices for $\varphi_{4}$ in characteristic 3

Looking at the ordinary character table 3.1, we can infer the character values of these hypothetical characters, which are listed in Table 3.8. Since $-\frac{1}{2}$ is not an algebraic integer in $R=\mathbb{Z}_{p}\left[\omega_{5}\right]$, we can directly dismiss $\varphi_{4}^{\prime}$. ${ }^{6}$ We know from Proposition 2.2.12(v) that for a subgroup $H \leq A_{5}$ with $p \nmid|H|$, the restriction $\left.\varphi\right|_{H}$ of a Brauer character $\varphi$ to $H$ is an ordinary character and therefore in the $\mathbb{Z}$-span of the irreducible ordinary characters of $H$. We choose for $H$ the dihedral subgroup $D_{10} \leq A_{5}$ consisting of the conjugacy classes ${ }^{7}$

$$
\begin{aligned}
& \mathcal{C}_{1}^{H}=\{e\} \\
& \mathcal{C}_{2}^{H}=\{(25)(34),(12)(35),(13)(45),(14)(23),(15)(24)\} \\
& \mathcal{C}_{4}^{H}=\{(12345),(15432)\} \\
& \mathcal{C}_{5}^{H}=\{(13524),(14253)\}
\end{aligned}
$$

Table 3.9 is the ordinary character table of $D_{10}$, where again $a=\frac{1+\sqrt{5}}{2}$.

[^4]|  | $\mathcal{C}_{1}^{H}$ | $\mathcal{C}_{2}^{H}$ | $\mathcal{C}_{4}^{H}$ | $\mathcal{C}_{5}^{H}$ |
| ---: | ---: | ---: | ---: | ---: |
| $\chi_{1}^{H}$ | 1 | 1 | 1 | 1 |
| $\chi_{2}^{H}$ | 1 | 1 | 1 | -1 |
| $\chi_{3}^{H}$ | 2 | $-a$ | $-\bar{a}$ | 0 |
| $\chi_{4}^{H}$ | 2 | $-\bar{a}$ | $-a$ | 0 |

Table 3.9.: Ordinary character table of $D_{10} \leq A_{5}$

We have $\mathcal{C}_{i}^{H} \subset \mathcal{C}_{i}$ for $i=1,2,4,5$, and the hypothetical restricted Brauer characters $\left.\varphi_{4}^{\prime \prime}\right|_{D_{10}}$ and $\left.\varphi_{4}^{\prime \prime \prime}\right|_{D_{10}}$ can be written as

$$
\left.\varphi_{4}^{\prime \prime}\right|_{D_{10}}=\left.\sum_{i=1}^{4} c_{i} \chi_{i}^{H} \quad \varphi_{4}^{\prime \prime \prime}\right|_{D_{10}}=\sum_{i=1}^{4} d_{i} \chi_{i}^{H}
$$

Hence, Tables 3.8 and 3.9 give the following systems of linear equations corresponding to $\varphi_{4}^{\prime \prime}$ and $\varphi_{4}^{\prime \prime \prime}$ :

$$
\begin{aligned}
c_{1}+c_{2}+c_{3}+c_{4} & =3 & d_{1}+d_{2}+d_{3}+d_{4} & =2 \\
c_{1}+c_{2}-a c_{3}-\bar{a} c_{4} & =-1 & d_{1}+d_{2}-a d_{3}-\bar{a} d_{4} & =-2 \\
c_{1}+c_{2}-\bar{a} c_{3}-a c_{4} & =-2 & d_{1}+d_{2}-\bar{a} d_{3}-a d_{4} & =-3 \\
c_{1}-c_{2} & =-2 & d_{1}-d_{2} & =-3
\end{aligned}
$$

The unique solutions of these systems do not lie in $\mathbb{Z}^{4}$; therefore, neither $\varphi_{4}^{\prime \prime}$ nor $\varphi_{4}^{\prime \prime \prime}$ can be irreducible Brauer characters of $A_{5}$, and the assumption that $\chi_{4}^{\prime}$ is reducible is wrong. Hence, $\varphi_{4}=\chi_{4}^{\prime}$ constitutes the remaining irreducible Brauer character.

The complete 3-Brauer character table is displayed in Table 3.10.

|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| ---: | ---: | ---: | ---: | ---: |
| $\varphi_{1}$ | 1 | 1 | 1 | 1 |
| $\varphi_{4}$ | 4 | 0 | -1 | -1 |
| $\varphi_{2}$ | 3 | -1 | $a$ | $\bar{a}$ |
| $\varphi_{3}$ | 3 | -1 | $\bar{a}$ | $a$ |

Table 3.10.: Brauer character table for $p=3$

To determine the decomposition matrix $D_{3}$, we observe that $\chi_{5}^{\prime}=\varphi_{1}+\varphi_{4}$. Therefore,
we have:

$$
\left.\begin{array}{l}
\chi_{1} \mapsto \varphi_{1}  \tag{3.12}\\
\chi_{4} \mapsto \varphi_{4} \\
\chi_{5} \mapsto \varphi_{1}+\varphi_{4} \\
\chi_{2} \mapsto \varphi_{2} \\
\chi_{3} \mapsto \varphi_{3}
\end{array}\right\} \quad D_{3}=\left(\begin{array}{cccc}
1 & . & . & . \\
. & 1 & . & . \\
1 & 1 & \cdot & \cdot \\
. & . & 1 & \cdot \\
. & . & . & 1
\end{array}\right)
$$

The ordering of the ordinary irreducible characters (and hence the modular irreducible characters) has been changed to $1-4-5-2-3$ in order to guarantee the block form of $D_{3}$.

### 3.2.3. Cartan matrix and the decomposition of $k G$ into PIMs

The modular irreducible characters are collected in the respective Brauer character tables 3.6, 3.10 and 3.7. Using this information we are now able to examine the structure of the regular representation $k G$.

The most important tool in this process is the Cartan matrix $C_{p}$, which according to proposition 2.2.4 is already determined by the decomposition matrix $D_{p}$ via the formula $C_{p}=D_{p}^{T} D_{p}$. They are listed in (3.13) for the three cases $p=2,3,5$.

$$
C_{2}=\left(\begin{array}{cccc}
4 & 2 & 2 & 0  \tag{3.13}\\
2 & 2 & 1 & 0 \\
2 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad C_{3}=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad C_{5}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let us recapitulate their implications. At first we restate Lemma 2.2.3(i): The nonnegative entry $c_{i j}$ of $C$ is the multiplicity with which the modular irreducible representation $\bar{\tau}_{j}$ occurs in the principal indecomposable modular representation $\bar{\partial}_{i}$. In other words, the rows of $C_{p}$ are indexed by the PIMs $P_{i}$ corresponding to the principal indecomposable representations $\bar{\partial}_{i}$, and the columns are indexed by the (modular) irreducible modules $T_{j}$ corresponding to the irreducible modular representations $\bar{\tau}_{j}$. This means that a composition series for $P_{i}$ contains $c_{i j}$ factors isomorphic to the irreducible module $T_{j}$. Furthermore, $\operatorname{soc}\left(\bar{\partial}_{i}\right) \cong T_{i} \sim \bar{\tau}_{i}$, and we stress that a PIM is uniquely determined by its socle. If the PIMs indexing the rows of the Cartan matrix $C_{p}$ and the irreducible Brauer characters indexing the columns are sorted according to their distribution into blocks, then a $1 \times 1$-block represents a block of defect zero. In this case, $P_{i}$ is simple and isomorphic to its socle, $P_{i} \cong \operatorname{soc}\left(P_{i}\right)$. However, in general the Cartan matrix $C_{p}$ as
well as the decomposition matrix $D_{p}$ do not have block form, and blocks of defect zero cannot be identified as easily.

The dimensions of the PIMs $P_{i}$ can be read off from the character table $\Psi$ comprising the characters $\psi_{i}$ of $\bar{\partial}_{i}$. According to (2.2) this character table is given by the formula $\Psi_{p}=C_{p} \Phi_{p}$, where $\Phi$ is the $p$-Brauer character table. Moreover, since $\operatorname{dim}(k G)=60$, simple arithmetic would already determine the multiplicities of $P_{i}$ in $k G$. However, Theorem 1.2.21 enables us to derive them theoretically. In our situation it acquires the form of (3.14) with $n_{\varphi}=\operatorname{dimsoc}\left(P_{\varphi}\right)$ and $k_{\varphi}=\operatorname{dim} \operatorname{End}\left(\operatorname{soc}\left(P_{\varphi}\right)\right)$.

$$
\begin{equation*}
k G=\bigoplus_{\varphi \in \operatorname{IBr}_{p}(G)} \frac{n_{\varphi}}{k_{\varphi}} P_{\varphi} \tag{3.14}
\end{equation*}
$$

Note that now the PIMs are indexed by the $p$-Brauer character associated to the unique socle. Since $(K, R, k)$ is a $p$-modular system for $G$, it follows by Proposition 2.1.3 that $\operatorname{End}(S) \cong k$ for every simple $k G$-module $S$, so $k_{\varphi}=1$. Thus, the multiplicity of $P_{\varphi}$ is equal to the dimension of its unique socle $\operatorname{soc}\left(P_{\varphi}\right)$.

These considerations lead to the structure of $k G$. The results as well as the necessary data for the PIMs are listed in Table 3.11 for all three cases. Compare this also with the Brauer character tables 3.6, 3.10 and 3.7 for the dimensions of $\operatorname{soc}\left(P_{i}\right)$.

| char $=2$ | $P_{1}$ | $P_{2}$ | $P_{3}$ | $P_{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\operatorname{dim}$ | 12 | 8 | 8 | 4 |
| $\operatorname{dim}(\mathrm{soc})$ | 1 | 2 | 2 | 4 |$\quad k G=\underbrace{P_{1} \oplus 2 P_{2} \oplus 2 P_{3}}_{B_{1}} \oplus \underbrace{4 P_{4}}_{B_{2}}$

Table 3.11.: Structure of $k G$

Remark. According to Proposition 1.1.2, the decomposition of $k G=\bigoplus P_{i}$ into a direct sum of PIMs corresponds to a set $\left\{e_{i}\right\}$ of primitive orthogonal idempotents. Every PIM $P_{i}$ is then given as the principal (left or right) ideal $P_{i} \cong e_{i} k G$ generated by the respective idempotent $e_{i}$. This is the subject of Section 3.3.1.

### 3.2.4. Reducing the irreducible ordinary representations

So far we have completely determined the irreducible modular representations of $G$ via their corresponding Brauer characters (cf. Section 3.2.2) and decomposed the group algebra $k G$ into the indecomposable components, i.e., the PIMs (cf. Section 3.2.3). However, we already know the irreducible ordinary representations in characteristic 0 (see Table 3.1) from ordinary representation theory. This is the semisimple case where the group algebra $K G$ is completely reducible and has the following decomposition:

$$
\begin{equation*}
K G=R_{1} \oplus 3 R_{2} \oplus 3 R_{3} \oplus 4 R_{4} \oplus 5 R_{5} \tag{3.15}
\end{equation*}
$$

where $R_{i}$ is the irreducible and indecomposable $K G$-module affording the irreducible character $\chi_{i}$ from Table 3.1. ${ }^{8}$ Theorem 2.1.13 shows that the corresponding representations $\sigma_{i}$ are equivalent to representations defined over $R$. However, the situation is a little bit more involved since we want to turn decomposition (3.15) into a decomposition over $R$, in order to reduce it modulo $\pi$ and work in the modular case.

To this end we start with a decomposition

$$
k G=P_{1} \oplus \cdots \oplus P_{t}
$$

of $k G$ into PIMs according to Table 3.11. Theorem 2.1.11 implies that this decomposition corresponds to a decomposition

$$
\begin{equation*}
R G=Q_{1} \oplus \cdots \oplus Q_{t} \tag{3.16}
\end{equation*}
$$

of $R G$ into indecomposable $R G$-modules. To see that the sum of the lifted PIMs $Q_{i}$ is in fact all of $R G$, assume the contrary, i.e., $R G=Q_{1} \oplus \cdots \oplus Q_{t} \oplus Q$ with $Q \neq 0$. Since the idempotents $f_{i}$ corresponding to the PIMs $Q_{i}$ for $1 \leq i \leq t$ are primitive orthogonal, their sum $f_{1}+\cdots+f_{t}$ is again an idempotent, and $f_{Q}:=1-\left(f_{1}+\cdots+f_{t}\right) \neq 0$ is the idempotent of $Q$. But by Theorem 2.1.11(i), the reduction of $f_{Q}$ is not zero, and since $f_{Q}$ is orthogonal to every $f_{i}$, the same holds for the respective reductions, contradicting the decomposition $k G=P_{1} \oplus \cdots \oplus P_{t}$.

Now take the tensor product with $K$ in (3.16). Since the summands $Q_{i}$ are finitely generated, torsion-free $R$-modules (and hence free), by Proposition 2.1.9(vi) the $K \otimes Q_{i}$ are also free having the same rank as the $Q_{i}$, and comparing dimensions shows that in

[^5]fact
\[

$$
\begin{equation*}
K G=\left(K \otimes Q_{1}\right) \oplus \cdots \oplus\left(K \otimes Q_{t}\right) \tag{3.17}
\end{equation*}
$$

\]

But the group algebra $K G$ is semisimple because of char $K=0$; therefore, (3.17) decomposes into simple summands, and the resulting decomposition is isomorphic to (3.15).

Identifying the decompositions of the group algebra over $K$ and over $R$ by the above reasoning, we can now ask how the $\mathrm{PIMs} P_{i}$ arise when reducing the integral regular representation $R G$ modulo a uniformizing element $\pi$ of $R$. We can reformulate this question in terms of representations as follows: Given a PIM $P_{i} \sim \bar{\partial}_{i}$ in characteristic $p$, we choose a representation $\partial_{i}$ of $R G$ such that $\bar{\partial}_{i} \sim P_{i}$. Then we take the tensor product ${ }^{9} K \otimes \partial_{i}$ to obtain a $K$-representation such that $K \otimes \partial_{i}$ decomposes into the irreducible $K$-representations, and we can write

$$
K \otimes \partial_{i}=\sum_{j} \lambda_{i j} \sigma_{j}
$$

Our goal is to compute the coefficients $\lambda_{i j}$. Corollary 2.2 .5 states that $\lambda_{i j}=d_{j i}$, i.e., the coefficients $\lambda_{i j}$ of $\sigma_{j}$ for the $i$-th representation $\partial_{i}$ can be read off the $i$-th column of the decomposition matrix $D_{p}$. In characteristic 2, the representations $\partial_{i}$ of $K G$ whose reductions correspond to the PIMs $P_{i}$ are listed in (3.18a).

$$
K G \sim \partial_{1}+2 \partial_{2}+2 \partial_{3}+4 \partial_{4} \quad \text { with } \quad \partial_{1}=\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{5}, ~ \begin{array}{ll} 
& \partial_{2}=\sigma_{2}+\sigma_{5}  \tag{3.18a}\\
& \partial_{3}=\sigma_{3}+\sigma_{5} \\
& \partial_{4}=\sigma_{4}
\end{array}
$$

For $p=3$, the result is displayed in (3.18b).

$$
K G \sim \partial_{1}+4 \partial_{2}+3 \partial_{3}+3 \partial_{4} \quad \text { with } \quad \begin{align*}
& \partial_{1}=\sigma_{1}+\sigma_{5}  \tag{3.18b}\\
& \\
& \partial_{2}=\sigma_{4}+\sigma_{5} \\
& \\
& \partial_{3}=\sigma_{2} \\
& \\
& \partial_{4}=\sigma_{3}
\end{align*}
$$

[^6]Finally, in characteristic 5 we have the decomposition (3.18c).

$$
K G \sim \partial_{1}+3 \partial_{2}+5 \partial_{3} \quad \text { with } \begin{array}{ll} 
& \partial_{1}=\sigma_{1}+\sigma_{4}  \tag{3.18c}\\
& \partial_{2}=\sigma_{2}+\sigma_{3}+\sigma_{4} \\
& \partial_{3}=\sigma_{5}
\end{array}
$$

Observe that the decompositions (3.18a), (3.18b) and (3.18c) are just shuffled versions of the decomposition (3.15), where the irreducible modules $R_{i}$ have been regrouped to form the modules corresponding to the representations $\partial_{j}$.

### 3.3. Determining Idempotents and radical series of the PIMs

In the following section we are going to use the theoretical results from the previous sections to calculate the primitive orthogonal idempotents corresponding to the PIMs and their radical series. The computations are carried out by the program GAP (Groups, Algorithms and Programming), which can be obtained freely from the website http://www. gap-system.org. We will also use the GAP-package reps, authored by Peter Webb, ${ }^{10}$ which is a set of routines designed to handle group representations in positive characteristic and can be downloaded from http://www.math.umn.edu/~webb/GAPfiles/reps.

### 3.3.1. Computation of the idempotents

As stated in Proposition 1.1.2(ii) and at the end of Section 3.2.3, the decomposition of $k G=\oplus P_{i}$ into a direct sum of PIMs corresponds to a set $\left\{e_{i}\right\}$ of primitive orthogonal idempotents with $P_{i} \cong e_{i} k G$ as $k G$-right ideals. The objective of this subsection is to compute these idempotents using GAP and the Meataxe algorithm. In order to avoid extensive repetition of GAP-code, the only case we will examine thoroughly is char $k=5$. For characteristic 2 and 3 we will merely state the results. This way the reader will become familiar with the relevant GAP-techniques without getting bored.

We are going to pursue the following strategy: From Table 3.11 we know that a block $B$ is the direct sum of the PIMs corresponding to the irreducible $p$-Brauer characters belonging to this block:

$$
\begin{equation*}
B=\bigoplus_{\varphi \in \operatorname{IBr}_{p}(B)} n_{\varphi} P_{\varphi} \tag{3.19}
\end{equation*}
$$

[^7]Here $\operatorname{IBr}_{p}(B):=\left\{\varphi \in \operatorname{IBr}_{p}(G) \mid \varphi\right.$ belongs to $\left.B\right\}$, and $n_{\varphi}$ is the multiplicity of $P_{\varphi}$ in the decomposition of $B$ as a direct sum. In the language of idempotents (3.19) reads

$$
\begin{equation*}
\varepsilon_{B}=\sum_{\varphi \in \operatorname{IBr}_{p}(B)} e_{\varphi} \tag{3.20}
\end{equation*}
$$

where $\varepsilon_{B}$ is the block idempotent corresponding to the block $B$, and $e_{\varphi}$ are the primitive orthogonal idempotents corresponding to the PIMs $P_{\varphi}$. To compute the $e_{\varphi}$ we find a basis $\mathfrak{b}_{\varphi}$ of $n_{\varphi} P_{\varphi}$ for each $\varphi \in \operatorname{IBr}_{p}(B)$. Equation (3.19) then says that $\left\{\mathfrak{b}_{\varphi}\right\}_{\varphi \in \operatorname{IBr}_{p}(B)}$ is a basis for $B$ and $e_{\varphi}=\mathcal{P}_{\varphi} \varepsilon_{B}$, where $\mathcal{P}_{\varphi}$ is the projection onto $n_{\varphi} P_{\varphi}$ with respect to decomposition (3.19). Therefore, we repeat the following algorithm in GAP for each block $B$ :
(1) Initialize the necessary objects (group, group algebra, regular representation) in GAP.
(2) Decompose the regular representation with the routine Decompose from the GAPpackage reps, which uses the Meataxe algorithm.
(3) In the output of Decompose, identify the correct PIMs of decomposition (3.19) by comparing their dimensions to Table 3.11. This may be ambiguous, so it might become necessary to compute the socle of a summand in doubt, in order to uniquely determine the PIM. If the socle soc $P$ of a summand $P$ turns out to be reducible, then by Corollary 1.2.16 and Proposition 1.1.15(iv) $P$ is decomposable, and the GAP routine could not separate the PIMs. ${ }^{11}$
(4) Collect the bases of each copy of $P_{\varphi}$ to construct a basis $\left\{\mathfrak{b}_{\varphi}\right\}_{\varphi \in \operatorname{IBr}_{p}(B)}$ of the block $B$ adapted to its decomposition.
(5) Create the block $B$ and the submodules $n_{\varphi} P_{\varphi}$ for each $\varphi \in \operatorname{IBr}_{p}(B)$ as the linear spaces spanned by the bases found in (4).
(6) Create the block idempotent $\varepsilon_{B}$ via the formulae (3.6) computed in Section 3.2.1.
(7) Compute the coefficients of $\varepsilon_{B}$ with respect to the basis $\left\{\mathfrak{b}_{\varphi}\right\}_{\varphi \in \operatorname{IBr}_{p}(B)}$ constructed in step (4).
(8) Compute the idempotents $e_{\varphi}$ for each $\varphi \in \operatorname{IBr}_{p}(B)$.
(9) Verify the results.

[^8]Remark. We stress once again that in order to compute the idempotents we heavily depend on theoretical results derived in previous sections. Above all we require knowledge about the structure of $k G$ (found in Table 3.11) and the formulae (3.6) of the block idempotents in characteristic 5 . Moreover, identifying PIMs via their dimension is only possible since in our situation, where $G=A_{5}$, the PIMs $P_{i}$ belonging to a block $B$ (of defect unequal to zero) either have distinct dimensions ( $p=3,5$ ) or are conjugate and hence have isomorphic factors $(p=2)$. For arbitrary (and especially more complicated) groups we would need to deploy other techniques to identify the correct PIMs.

Before we start with the computation, let us first recall the structure of $k G$ in characteristic 5 from Table 3.11:

$$
\begin{equation*}
k G=\underbrace{P_{1} \oplus 3 P_{2}}_{B_{1}} \oplus \underbrace{5 P_{3}}_{B_{2}} \tag{3.21}
\end{equation*}
$$

Since $B_{2}$ is a block of defect zero (and therefore indecomposable), we concentrate on $B_{1}$ and try to find bases for $P_{1}$ and $3 P_{2}$. Let us start with the computation in GAP (note that a double semicolon ; ; suppresses the output of a command):
(1) gap> G:=AlternatingGroup (5) ; ;
gap> A:=GroupRing(GF(5),G); ;
gap> o:=Embedding(G,A); ;
gap> b:=Basis(A);
CanonicalBasis( <algebra-with-one over GF(5), with 2 generators>)
gap> Read("reps");
gap> R:=RegularRep(G,GF(5));;
The definitions are rather self-explanatory. In GAP the group algebra $k G$ is referred to as group ring and $\mathrm{GF}(5)=\mathbb{F}_{5}$. The last lines load the package reps and create the regular representation ${ }_{k G} k G$.
(2) gap> dec:=Decompose(R); ;
gap> List(dec, x->Size(x));
[ 5, 5, 5, 10, 5, 10, 10, 10 ]
This is the crucial part of our computation. The command Decompose invokes the Meataxe algorithm (cf. 1.3) and tries to decompose the regular representation $R$ into summands of a direct sum. Since the full output of Decompose is rather long, we omit it at this point and merely note that it finds 8 summands with the dimensions
printed via the List command. However, Table 3.11 tells us that there should be 9 PIMs. We investigate the last summand:
(3) gap> P:=SubmoduleRep(R,dec[8]); ;
gap> S:=SubmoduleRep(P,SocleRep(P)); ;
gap> IsAbsolutelyIrreducibleRep(S);
false
gap> S.dimension;
10
As suspected, the eighth summand is really the direct sum $P_{3} \oplus P_{3}$. We will skip the verification that the other summands of dimension 10 are indeed indecomposable and identify the list entries with the corresponding PIMs:
$[5,5,5,10,5,10,10,10]=$
[ P3, P3, P3, P2, P1, P2, P2, P3 + P3 ]

Note that in order to distinguish $P_{1}$ and $P_{3}$ it is necessary to compute the socle of the entries $1,2,3$ and 5 in dec and compare their dimensions to Table 3.11. For $P_{1}$ this computation is done in the next step, the rest is omitted for the sake of clarity. We gather the basis vectors of $3 P_{2}$ (entries 4,6 and 7 in dec) in a list p2 (Decompose outputs the basis vectors as coefficients with respect to the basis b defined above, hence the command LinearCombination):
(4) gap> p2:=[];;
gap> for $i$ in dec[4] do
> Add(p2,LinearCombination(b,i));
> od;
gap> for i in dec[6] do
> Add(p2,LinearCombination(b,i));
> od;
gap> for i in dec[7] do
> Add(p2,LinearCombination(b,i));
> od;
The list p2 now contains a basis of $3 P_{2}$. For $P_{1}$ we identify the fifth entry in dec as the right summand by computing the socle:
gap> Q1:=SubmoduleRep(R,dec[5]); ;

```
gap> S1:=SubmoduleRep(Q1,SocleRep(Q1));;
gap> IsAbsolutelyIrreducibleRep(S1);
true
gap> S1.dimension;
1
```

We write the basis of $P_{1}$ into the list p 2 .

```
gap> p1:=[];;
gap> for i in dec[5] do
> Add(p1,LinearCombination(b,i));
> od;
```

Let us create the submodules $\mathrm{P} 1=P_{1}$ and $\mathrm{P} 2=3 P_{2}$ via the bases p 1 and p 2 :
(5) gap> P1:=Subspace (A, p1);
<vector space over GF(5), with 5 generators>
gap> P2:=Subspace (A, p2) ;
<vector space over GF(5), with 30 generators>
Now we deal with the block $B_{1}$. We construct it by merging the bases p1 and p2:

```
gap> b1:=[];;
gap> Append(b1,p1);Append(b1,p2);
gap> B1:=Subspace(A,b1);
<vector space over GF(5), with 35 generators>
gap> B:=Basis(B1,b1);;
```

The last command is a technical necessity and ensures that GAP is able to compute coefficients with respect to the basis of B1. Next we define the block idempotent $\varepsilon_{B_{1}}$ according to (3.6a). GAP represents the elements of a finite field $\mathbb{F}_{q}$ by choosing a generator for the cyclic group of unit elements. In our case $q=5,0 * \mathrm{Z}(5)=0$ and $<\mathrm{Z}(5)>=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$. We use addition instead of multiplication in the finite field to facilitate recognizing the formula (3.6a) for the block idempotent.
(6) gap> e:=()^o;;
gap> for i in ConjugacyClass $(G,(1,2)(3,4))$ do
> e:=e+i^o+i^o;
$>$ od;

```
gap> for i in ConjugacyClass(G,(1,2,3)) do
> e:=e+i^o+i^o+i^o;
> od;
gap> e in B1;
true
```

The last line verifies that $\mathrm{e}=\varepsilon_{B_{1}}$ indeed lies in the block $\mathrm{B} 1=B_{1}$. We are now ready to compute the coefficients of the block idempotent with respect to the basis B:
(7) gap> coef:=Coefficients(B,e);
$\left[\mathrm{Z}(5)^{\wedge} 3,0 * Z(5), 0 * Z(5), 0 * Z(5), 0 * Z(5), Z(5)^{\wedge} 2, Z(5)^{\wedge} 2,0 * Z(5)\right.$, $0 * Z(5), Z(5) \wedge 0,0 * Z(5), Z(5) \wedge 2, Z(5), 0 * Z(5), Z(5) \wedge 0, Z(5) \wedge 2$, $Z(5) \wedge 2,0 * Z(5), 0 * Z(5), 0 * Z(5), Z(5) \wedge 2, Z(5) \wedge 3, Z(5) \wedge 3, Z(5) \wedge 0$, $0 * Z(5), 0 * Z(5), Z(5) \wedge 2, Z(5) \wedge 2,0 * Z(5), 0 * Z(5), Z(5) \wedge 2,0 * Z(5)$, Z(5) ^0, Z(5), Z(5)^0 ]

In the list coef the first 5 elements correspond to the basis of the subspace P1, the other to the basis of the subspace P2. Let us now compute the idempotents:
(8) gap> $\mathrm{x}:=()^{\wedge} \mathrm{o}-()^{\wedge} \mathrm{o}$; ;
gap> y:=x;
gap> for i in [1..5] do
> x:=x+coef[i]*B[i];
> od;
gap> for i in [6..35] do
> y:=y+coef[i]*B[i];
> od;
We want to check that we have indeed found a set of primitive orthogonal idempotents for the block $B_{1}$, i.e., the following must hold: $e_{\varphi}^{2}=e_{\varphi}$ for $\varphi \in \operatorname{IBr}_{p}\left(B_{1}\right)$, $e_{\varphi} e_{\psi}=e_{\psi} e_{\varphi}=0$ for $\varphi, \psi \in \operatorname{IBr}_{p}\left(B_{1}\right), \varphi \neq \psi$ and $\sum_{\varphi \in \operatorname{IBr}_{p}\left(B_{1}\right)}=\varepsilon_{B_{1}}$ :
(9) gap> $x * x=x$;
true
gap> y*y=y;
true
gap> $x * y ; y^{* x}$;
<zero> of ...
<zero> of ...

```
gap> x+y=e;
true
gap> P1=RightIdeal(A,[x]);
true
gap> P2=RightIdeal(A,[y]);
true
```

The last two commands check that the idempotents x and y indeed generate the subspaces P1 and P2 as right ideals.

Thus, we have found the primitive orthogonal idempotents in characteristic 5 . The computations in characteristic 2 and 3 are analogous, and we state all results in the following

Theorem 3.3.1 (Primitive orthogonal idempotents). Let $G=A_{5}$ be the Alternating group on five symbols and $(K, R, k)$ be the p-modular system for $G$ defined in section 3.1.2. Then the primitive orthogonal idempotents corresponding to the PIMs $P_{\varphi}$ for $\varphi \in \operatorname{IBr}_{p}(G)$ in decomposition (3.14) are
(i) $p=2$ :

$$
\begin{aligned}
e_{\varphi_{1}} & =\mathrm{id}+(345)+(354)+(123)+(12345)+(12354)+(12453)+(124) \\
& +(12435)+(12543)+(125)+(12534)+(132)+(13452)+(13542) \\
& +(14532)+(142)+(14352)+(15432)+(152)+(15342) \\
e_{\varphi_{2}} & =(245)+(24)(35)+(254)+(25)(34)+(124)+(12435)+(125) \\
& +(12534)+(132)+(13542)+(134)+(135)+(13)(25)+(13254) \\
& +(14523)+(14)(23)+(14253)+(14)(25)+(15432)+(15342) \\
& +(154)+(15)(34)+(15423)+(15234) \\
e_{\varphi_{3}} & =(234)+(235)+(243)+(24)(35)+(253)+(25)(34)+(124) \\
& +(12435)+(125)+(12534)+(132)+(13542)+(13245)+(13524) \\
& +(13)(25)+(13425)+(143)+(145)+(14)(23)+(14235)+(14325) \\
& +(14)(25)+(15432)+(15342)+(153)+(15)(34)+(15243)+(15324) \\
e_{\varphi_{4}} & =\mathcal{C}_{3}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+}
\end{aligned}
$$

Note that $e_{\varphi_{4}}=\varepsilon_{B_{2}}$, the block idempotent of the defect-zero block $B_{2}$.
(ii) $p=3$ :

$$
\begin{aligned}
e_{\varphi_{1}} & =\mathrm{id}+\overline{2}(345)+\overline{2}(354)+(23)(45)+\overline{2}(234)+\overline{2}(235)+\overline{2}(243)+\overline{2}(245) \\
& +(24)(35)+\overline{2}(253)+\overline{2}(254)+(25)(34)+\overline{2}(12)(35)+\overline{2}(12345)+\overline{2}(124) \\
& +\overline{2}(12543)+\overline{2}(13452)+\overline{2}(135)+\overline{2}(13)(24)+\overline{2}(13254)+\overline{2}(142)+\overline{2}(14)(35) \\
& +\overline{2}(14523)+\overline{2}(14325)+\overline{2}(15432)+\overline{2}(153)+\overline{2}(15234)+\overline{2}(15)(24) \\
e_{\varphi_{2}} & =(345)+(354)+(234)+(235)+(243)+(245)+(253)+(254)+(12)(45) \\
& +(12)(34)+\overline{2}(12)(35)+\overline{2}(12345)+(12354)+(12453)+(124)+(12435) \\
& +\overline{2}(12543)+(12534)+\overline{2}(13452)+(13542)+(13)(45)+(135)+\overline{2}(13)(24) \\
& +(13245)+(13524)+(13)(25)+\overline{2}(13254)+(13425)+(14532)+(142) \\
& +(14352)+\overline{2}(14)(35)+\overline{2}(14523)+(14)(23)+(14235)+(14253)+\overline{2}(14325 \\
& +(14)(25)+\overline{2}(15432)+(15342)+(153)+(15)(34)+(15423)+(15)(23) \\
& +\overline{2}(15234)+(15243)+(15324)+\overline{2}(15)(24) \\
e_{\varphi_{3}} & =\mathcal{C}_{2}^{+}+2 a \mathcal{C}_{4}^{+}+2 \bar{a} \mathcal{C}_{5}^{+} \\
e_{\varphi_{4}} & =\mathcal{C}_{2}^{+}+2 \bar{a} \mathcal{C}_{4}^{+}+2 a \mathcal{C}_{5}^{+}
\end{aligned}
$$

Again, $e_{\varphi_{3}}=\varepsilon_{B_{2}}$ and $e_{\varphi_{4}}=\varepsilon_{B_{3}}$, and both blocks $B_{2}$ and $B_{3}$ are blocks of defect zero.
(iii) $p=5$ :

$$
\begin{aligned}
e_{\varphi_{1}} & =\overline{3} \mathrm{id}+\overline{3}(345)+\overline{3}(354)+\overline{3}(23)(45)+\overline{3}(234)+\overline{3}(235)+\overline{3}(243)+\overline{3}(245) \\
& +\overline{3}(24)(35)+\overline{3}(253)+\overline{3}(254)+\overline{3}(25)(34) \\
e_{\varphi_{2}} & =\overline{3} \mathrm{id}+\overline{4}(23)(45)+\overline{4}(24)(35)+\overline{4}(25)(34)+\overline{2}(12)(45)+\overline{2}(12)(34)+\overline{2}(12)(35) \\
& +\overline{3}(123)+\overline{3}(124)+\overline{3}(125)+\overline{3}(132)+\overline{2}(13)(45)+\overline{3}(134)+\overline{3}(135)+\overline{2}(13)(24) \\
& +\overline{2}(13)(25)+\overline{3}(142)+\overline{3}(143)+\overline{3}(145)+\overline{2}(14)(35)+\overline{2}(14)(23)+\overline{2}(14)(25) \\
& +\overline{3}(152)+\overline{3}(153)+\overline{3}(154)+\overline{2}(15)(34)+\overline{2}(15)(23)+\overline{2}(15)(24) \\
e_{\varphi_{3}} & =\overline{3} \mathcal{C}_{2}^{+}+\overline{2} \mathcal{C}_{3}^{+}
\end{aligned}
$$

As before, $e_{\varphi_{3}}=\varepsilon_{B_{2}}$ is the block idempotent of the defect-zero block $B_{2}$.
Remark. Let us stress that a primitive orthogonal idempotent in $k G$ corresponding to a PIM $P$ generates the subspace which consists of the direct sum of all submodules isomorphic to $P$. For example, in characteristic 3 we have $k G e_{\varphi_{2}}=4 P_{2}$ for the primitive orthogonal idempotent $e_{\varphi_{2}}$ corresponding to the PIM $P_{2}$.

### 3.3.2. Radical series of the PIMs

Since the regular representation module ${ }_{k G} k G$ has finite length by Proposition 1.1.4, the radical series $P \geq \operatorname{rad} P \geq \operatorname{rad}^{2} P \geq \ldots \geq \operatorname{rad}^{k} P=0$ of the PIM $P$ defined in Definition 1.1.23 in Section 1.1.2 is finite. In this subsection we are going to compute the radical series by using the program GAP. Again, we will use the package reps by Peter Webb. The computation consists of the following steps:
(1) Initialize the necessary objects.
(2) Decompose the regular representation using Decompose from the GAP-package reps and identify the correct PIM $P_{i}$ of decomposition (3.19).
(3) Compute the radical rad $P_{i}$ using the package reps.
(4) Repeat step (3) until $\operatorname{rad}^{k} P_{i}=0$.

Analogously to the computation of the idempotents in 3.3.1, we are going to investigate the case char $k=5$ and only state the results for char $k=2,3$. As we saw in Section 3.2.3 and in (3.21), we have to investigate the PIMs $P_{1}$ and $P_{2}$ in characteristic 5. Let us first prepare the necessary objects:
(1) gap> G:=AlternatingGroup (5); ;
gap> Read("/home/felix/reps");
gap> R:=RegularRep(G,GF(5)); ;
(2) Once again we use the command Decompose from the package reps to decompose the regular representation into direct summands. We already know from Subsection 3.3.1 that the fifth entry corresponds to $P_{1}$ with $\operatorname{dim} \operatorname{soc}\left(P_{1}\right)=1$.
gap> dec:=Decompose(R); ;
gap> List(dec, $x->\operatorname{Size}(x))$;
[ 5, 5, 5, 10, 5, 10, 10, 10 ]
gap> P1:=SubmoduleRep (R, dec [5]); ;
gap> S1:=SubmoduleRep(P1,SocleRep(P1)); ;
gap> S1.dimension;
1
(3) Now we compute the radical of $P_{1}$, which is provided by the command RadicalRep from reps and essentially uses the Meataxe algorithm. ${ }^{12}$
${ }^{12}$ Computing the radical can also be achieved by using an equivalent command already implemented in GAP.

```
gap> radP1:=SubmoduleRep(P1,RadicalRep(P1));;
gap> radP1.dimension;
4
```

(4) To produce the radical series we iterate this process and compute $\operatorname{rad}^{2} P_{1}$ :

```
gap> rad2P1:=SubmoduleRep(radP1,RadicalRep(radP1));;
gap> rad2P1.dimension;
1
gap> rad2P1=S1;
true
```

We see that $\operatorname{rad}^{2} P_{1}=\operatorname{soc} P_{1}$. Since rad soc $P_{1}=0$, the radical series ends with the second term.

For the other PIM $P_{2}$ of the block $B_{1}$ we repeat step 3 and 4 . We may choose any of the three copies of $P_{2}$ with dimension 10 (recall that $P_{2}$ has multiplicity 3 ) which we already identified in Subsection 3.3.1.

```
gap> P2:=SubmoduleRep(R,dec[4]);;
gap> S2:=SubmoduleRep(P2,SocleRep(P2));;
gap> S2.dimension;
3
gap> radP2:=SubmoduleRep(P2,RadicalRep(P2));;
gap> radP2.dimension;
7
gap> rad2P2:=SubmoduleRep(radP2,RadicalRep(radP2));;
gap> rad2P2.dimension;
3
gap> rad2P2=S2;
true
```

The radical series terminates at the fourth term since $\operatorname{rad}^{2} P_{2}=\operatorname{soc} P_{2}$; therefore, $\operatorname{rad}^{3} P_{2}=0$. We have thus found the radical series for the PIMs $P_{1}$ and $P_{2}$ in characteristic 5, which are shown in Table 3.12.

By comparing the dimensions of the factors in the radical series for $P_{2}$ (which are 3,4 and 3) with the entries in the Cartan matrix $C_{5}$ in (3.13) we see that the radical series is not a composition series for $P_{2}$.

| dim | $P_{1} \geq \operatorname{rad} P_{1} \geq \operatorname{rad}^{2} P_{1} \geq(0)$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 5 | 4 | 1 |
|  |  |  | $\mathrm{d}^{2}$ |
| dim | 10 | 7 | 3 |

Table 3.12.: Radical series of the PIMs in characteristic 5

We list the radical series for the PIMs in characteristic 2 and 3 in Table 3.13 and 3.14 respectively. Note that for $p=2$, the PIMs $P_{2}$ and $P_{3}$ are conjugate; therefore, their radical series are isomorphic by Proposition A.2.2(ii).

|  | $P_{1} \geq \operatorname{rad} P_{1} \geq \operatorname{rad}^{2} P_{1} \geq \operatorname{rad}^{3} P_{1} \geq \operatorname{rad}^{4} P_{1} \geq(0)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dim | 12 | 11 | 7 | 5 | 1 |
|  | $P_{2} \geq \operatorname{rad} P_{2} \geq \operatorname{rad}^{2} P_{2} \geq \operatorname{rad}^{3} P_{2} \geq \operatorname{rad}^{4} P_{2} \geq$ (0) |  |  |  |  |
| dim | 8 | 6 | 5 | 3 | 2 |

Table 3.13.: Radical series of the PIMs in characteristic 2

|  | $P_{1} \geq \operatorname{rad} P_{1} \geq \operatorname{rad}^{2} P_{1} \geq(0)$ |  |
| :---: | :---: | :---: |
| $\operatorname{dim}$ | 6 | 5 |$\quad 1$

Table 3.14.: Radical series of the PIMs in characteristic 3

## A. Results from ordinary representation theory

## A.1. Linear characters

Definition A.1.1. Let $G$ be a finite group. A linear character is a representation $\chi: G \longrightarrow K$ of degree 1 .

Proposition A.1.2. Let $G$ be a finite group, $K$ a splitting field for $G$ and $[G, G]$ be the commutator subgroup generated by the commutators $a b a^{-1} b^{-1}$ with $a, b \in G$. Then the linear characters of $G$ and its abelianization $G^{\mathrm{ab}}=G /[G, G]$ are in 1:1-correspondence. The number of linear characters of $G$ equals the index $[G:[G, G]]$ of the commutator subgroup $[G, G]$ in $G$.

Proof. Suppose that $\chi^{\mathrm{ab}}$ is a linear character of $G^{\mathrm{ab}}$. Define $\chi(g):=\chi^{\mathrm{ab}}(g[G, G])$ for $g \in G$ and observe that

$$
\chi(g h)=\chi^{\mathrm{ab}}(g h[G, G])=\chi^{\mathrm{ab}}(g[G, G]) \chi^{\mathrm{ab}}(h[G, G])=\chi(g) \chi(h)
$$

for all $g, h \in G$; hence, $\chi$ is a linear character of $G$. Conversely, suppose that $\chi$ is a linear character of $G$ and define $\chi^{\mathrm{ab}}(g[G, G])=\chi(g)$ for $g \in G$. We have to check that $\chi^{\text {ab }}$ is well defined, that is, $\chi(x)=1$ for $x \in[G, G]$ :

$$
\chi\left(g h g^{-1} h^{-1}\right)=\chi(g) \chi(h) \chi(g)^{-1} \chi(h)^{-1}=1 \quad \text { for } g, h \in G
$$

The last equality sign holds since $\chi$ is a linear character, which implies that its values in $K$ commute.

We have thus established a 1:1-correspondence between linear characters of $G$ and $G^{\text {ab }}$. Since $G^{\mathrm{ab}}$ is abelian and $K$ is a splitting field for $G$, the number of linear characters equals its order, which is the index of $[G, G]$ in $G$.

## A.2. Conjugate representations

Let $A$ be a $K$-algebra and $L / K$ be a Galois extension with Galois $\operatorname{group} \operatorname{Gal}(L / K)$. For a $K$-basis $\left\{a_{1}, \ldots, a_{m}\right\}$ of $A$ and $\sigma \in \operatorname{Gal}(L / K)$ define the ring automorphism

$$
\begin{aligned}
\sigma \otimes \mathrm{id}: A_{L} & \longrightarrow A_{L} \\
l \otimes a_{i} & \longmapsto \sigma(l) \otimes a_{i}
\end{aligned}
$$

Note that $(\sigma \otimes \mathrm{id})(\lambda x)=\sigma(\lambda)(\sigma \otimes \mathrm{id})(x)$ for $\lambda \in L$ and $x \in A_{L}$; hence, $\sigma \otimes \mathrm{id}$ is not an algebra automorphism of $A_{L}$. We can now define the action of a Galois automorphism $\sigma \in \operatorname{Gal}(L / K)$ on representations and their corresponding modules:

Definition A.2.1 (Conjugate representations and conjugate modules).
(i) For a matrix representation $\rho: A_{L} \rightarrow M_{n}(L)$ the conjugate representation ${ }^{\sigma} \rho$ is defined by

$$
{ }^{\sigma} \rho=\sigma_{M_{n}(L)} \circ \rho \circ\left(\sigma^{-1} \otimes \mathrm{id}\right)
$$

where the matrix $\sigma_{M_{n}(L)}(A)$ is obtained by applying $\sigma$ to the entries of $A \in M_{n}(L)$.
(ii) If the $A_{L}$-module $M$ affords the representation $\rho$, the conjugate module ${ }^{\sigma} M$ is defined as the $A_{L}$-module affording the conjugate representation ${ }^{\sigma} \rho$.

Remark. Note that in the case of a group algebra $K G$ and a Galois extension $L / K$, the ring automorphism $\sigma^{-1} \otimes \mathrm{id}$ acts trivially on $g \in L G$. Therefore, ${ }^{\sigma} \rho=\sigma_{M_{n}(L)} \circ \rho$ on $L G$.

We immediately get the following properties of conjugate representations and modules:
Proposition A.2.2. Let $M$ be a $A_{L}$-module and $\sigma, \tau \in \operatorname{Gal}(L / K)$ :
(i) ${ }^{\tau}\left({ }^{\sigma} M\right)={ }^{\tau \sigma} M$
(ii) $M$ is simple if and only if ${ }^{\sigma} M$ is simple. Thus, the conjugacy operation ${ }^{\sigma}$ permutes the simple $A_{L}$-modules.
(iii) Let $A=K G$ be the group algebra, $L / K$ a Galois extension, $\sigma \in \operatorname{Gal}(L / K)$ a Galois automorphism and $\rho: G \longrightarrow \mathrm{GL}_{n}(L)$ a representation of $G$. Then for all $g \in G$ we have $\sigma_{\rho}(g)=\sigma_{M_{n}(L)}(\rho(g))$. That is, the conjugate representation is obtained by applying the Galois automorphism to the entries of the representation matrices.

Proof. Properties (i)-(iii) follow immediately from Definition A.2.1.

## B. Collected results

The following pages provide an uncommented summary of the results from Chapter 3 . For an explanation of the denotations used, see the respective sections in that chapter. We set $a=\frac{1}{2}(1+\sqrt{5})$ and $\bar{a}=\frac{1}{2}(1-\sqrt{5})$.

## Blocks

$$
\begin{array}{lll}
p=2: & \operatorname{Irr}\left(B_{1}\right)=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{5}\right\} & \varepsilon_{B_{1}}=\mathcal{C}_{1}^{+}+\mathcal{C}_{3}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+} \\
p=3: & \operatorname{Irr}\left(B_{2}\right)=\left\{\chi_{4}\right\} & \varepsilon_{B_{2}}=\mathcal{C}_{3}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+} \\
& \operatorname{Irr}\left(B_{1}\right)=\left\{\chi_{1}, \chi_{4}, \chi_{5}\right\} & \varepsilon_{B_{1}}=\mathcal{C}_{1}^{+}+\mathcal{C}_{2}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+} \\
& \operatorname{Irr}\left(B_{2}\right)=\left\{\chi_{2}\right\} & \varepsilon_{B_{2}}=\mathcal{C}_{2}^{+}+2 a \mathcal{C}_{4}^{+}+2 \bar{a} \mathcal{C}_{5}^{+} \\
p=5: & \operatorname{Irr}\left(B_{3}\right)=\left\{\chi_{3}\right\} & \varepsilon_{B_{3}}=\mathcal{C}_{2}^{+}+2 \bar{a} \mathcal{C}_{4}^{+}+2 a \mathcal{C}_{5}^{+} \\
& \operatorname{Irr}\left(B_{1}\right)=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\} & \varepsilon_{B_{1}}=\mathcal{C}_{1}^{+}+2 \mathcal{C}_{2}^{+}+3 \mathcal{C}_{3}^{+} \\
& \operatorname{Irr}\left(B_{2}\right)=\left\{\chi_{5}\right\} & \varepsilon_{B_{2}}=3 \mathcal{C}_{2}^{+}+2 \mathcal{C}_{3}^{+}
\end{array}
$$

## Brauer character tables

| $p=2:$ |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{3}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| $\varphi_{1}$ | 1 | 1 | 1 | 1 |
| $\varphi_{2}$ | 2 | -1 | $a-1$ | $\bar{a}-1$ |
| $\varphi_{3}$ | 2 | -1 | $\bar{a}-1$ | $a-1$ |
| $\varphi_{4}$ | 4 | 1 | -1 | -1 |


| $p=3:$ |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{4}$ | $\mathcal{C}_{5}$ |
| $\varphi_{1}$ | 1 | 1 | 1 | 1 |
| $\varphi_{4}$ | 4 | 0 | -1 | -1 |
| $\varphi_{2}$ | 3 | -1 | $a$ | $\bar{a}$ |
| $\varphi_{3}$ | 3 | -1 | $\bar{a}$ | $a$ |


| $p=5:$ |  |  |  |
| ---: | ---: | ---: | ---: |
|  | $\mathcal{C}_{1}$ | $\mathcal{C}_{2}$ | $\mathcal{C}_{3}$ |
| $\varphi_{1}$ | 1 | 1 | 1 |
| $\varphi_{2}$ | 3 | -1 | 0 |
| $\varphi_{3}$ | 5 | 1 | -1 |
|  |  |  |  |

## Decomposition matrices and Cartan matrices

$$
\left.\begin{array}{rlrl}
D_{2} & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & D_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
C_{2} & =\left(\begin{array}{lll}
4 & 2 & 2
\end{array} 0\right. \\
2 & 2 & 1 & 0 \\
2 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad D_{5}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

## Structure of $\boldsymbol{k} \boldsymbol{G}$

| $p=2$ : |  |  |  |  | $p=3$ : |  |  |  | $p=5:$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIMs | $P_{1}$ | $P_{2}$ | $P_{3}$ | $P_{4}$ | $P_{1}$ | $P_{2}$ | $P_{3}$ | $P_{4}$ | P | $P_{2}$ | $P_{3}$ |
| dim | 12 | 8 | 8 | 4 | 6 | 9 | 3 | 3 | 5 | 10 | 5 |
| $\operatorname{dim}$ (soc) | 1 | 2 | 2 | 4 | 1 | 4 | 3 | 3 | 1 | 3 | 5 |

## Lifting of PIMs from characteristic $\boldsymbol{p}$ to characteristic 0

$$
\begin{array}{lll}
p=2: & K G \sim \partial_{1}+2 \partial_{2}+2 \partial_{3}+4 \partial_{4} \quad \text { with } & \partial_{1}=\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{5} \\
& & \partial_{2}=\sigma_{2}+\sigma_{5} \\
& & \partial_{3}=\sigma_{3}+\sigma_{5} \\
p=3: & & \partial_{4}=\sigma_{4} \\
& K G \sim \partial_{1}+4 \partial_{2}+3 \partial_{3}+3 \partial_{4} \quad \text { with } \quad & \partial_{1}=\sigma_{1}+\sigma_{5} \\
& & \partial_{2}=\sigma_{4}+\sigma_{5} \\
& & \partial_{3}=\sigma_{2} \\
& & \partial_{4}=\sigma_{3} \\
& & \text { with } \quad \partial_{1}=\sigma_{1}+\sigma_{4} \\
& & \partial_{2}=\sigma_{2}+\sigma_{3}+\sigma_{4} \\
& & \partial_{3}=\sigma_{5}
\end{array}
$$

## Primitive orthogonal idempotents

Characteristic 2:

$$
\begin{aligned}
e_{\varphi_{1}} & =\mathrm{id}+(345)+(354)+(123)+(12345)+(12354)+(12453)+(124) \\
& +(12435)+(12543)+(125)+(12534)+(132)+(13452)+(13542) \\
& +(14532)+(142)+(14352)+(15432)+(152)+(15342) \\
e_{\varphi_{2}} & =(245)+(24)(35)+(254)+(25)(34)+(124)+(12435)+(125) \\
& +(12534)+(132)+(13542)+(134)+(135)+(13)(25)+(13254) \\
& +(14523)+(14)(23)+(14253)+(14)(25)+(15432)+(15342) \\
& +(154)+(15)(34)+(15423)+(15234) \\
e_{\varphi_{3}} & =(234)+(235)+(243)+(24)(35)+(253)+(25)(34)+(124) \\
& +(12435)+(125)+(12534)+(132)+(13542)+(13245)+(13524) \\
& +(13)(25)+(13425)+(143)+(145)+(14)(23)+(14235)+(14325) \\
& +(14)(25)+(15432)+(15342)+(153)+(15)(34)+(15243)+(15324) \\
e_{\varphi_{4}} & =\mathcal{C}_{3}^{+}+\mathcal{C}_{4}^{+}+\mathcal{C}_{5}^{+}
\end{aligned}
$$

Characteristic 3:

$$
\begin{aligned}
e_{\varphi_{1}} & =\mathrm{id}+\overline{2}(345)+\overline{2}(354)+(23)(45)+\overline{2}(234)+\overline{2}(235)+\overline{2}(243)+\overline{2}(245) \\
& +(24)(35)+\overline{2}(253)+\overline{2}(254)+(25)(34)+\overline{2}(12)(35)+\overline{2}(12345)+\overline{2}(124) \\
& +\overline{2}(12543)+\overline{2}(13452)+\overline{2}(135)+\overline{2}(13)(24)+\overline{2}(13254)+\overline{2}(142)+\overline{2}(14)(35) \\
& +\overline{2}(14523)+\overline{2}(14325)+\overline{2}(15432)+\overline{2}(153)+\overline{2}(15234)+\overline{2}(15)(24) \\
e_{\varphi_{2}} & =(345)+(354)+(234)+(235)+(243)+(245)+(253)+(254)+(12)(45) \\
& +(12)(34)+\overline{2}(12)(35)+\overline{2}(12345)+(12354)+(12453)+(124)+(12435) \\
& +\overline{2}(12543)+(12534)+\overline{2}(13452)+(13542)+(13)(45)+(135)+\overline{2}(13)(24) \\
& +(13245)+(13524)+(13)(25)+\overline{2}(13254)+(13425)+(14532)+(142) \\
& +(14352)+\overline{2}(14)(35)+\overline{2}(14523)+(14)(23)+(14235)+(14253)+\overline{2}(14325 \\
& +(14)(25)+\overline{2}(15432)+(15342)+(153)+(15)(34)+(15423)+(15)(23) \\
& +\overline{2}(15234)+(15243)+(15324)+\overline{2}(15)(24) \\
e_{\varphi_{3}} & =\mathcal{C}_{2}^{+}+2 a \mathcal{C}_{4}^{+}+2 \bar{a} \mathcal{C}_{5}^{+} \\
e_{\varphi_{4}} & =\mathcal{C}_{2}^{+}+2 \bar{a} \mathcal{C}_{4}^{+}+2 a \mathcal{C}_{5}^{+}
\end{aligned}
$$

Characteristic 5:

$$
\begin{aligned}
e_{\varphi_{1}} & =\overline{3} \mathrm{id}+\overline{3}(345)+\overline{3}(354)+\overline{3}(23)(45)+\overline{3}(234)+\overline{3}(235)+\overline{3}(243)+\overline{3}(245) \\
& +\overline{3}(24)(35)+\overline{3}(253)+\overline{3}(254)+\overline{3}(25)(34) \\
e_{\varphi_{2}} & =\overline{3} \mathrm{id}+\overline{4}(23)(45)+\overline{4}(24)(35)+\overline{4}(25)(34)+\overline{2}(12)(45)+\overline{2}(12)(34)+\overline{2}(12)(35) \\
& +\overline{3}(123)+\overline{3}(124)+\overline{3}(125)+\overline{3}(132)+\overline{2}(13)(45)+\overline{3}(134)+\overline{3}(135)+\overline{2}(13)(24) \\
& +\overline{2}(13)(25)+\overline{3}(142)+\overline{3}(143)+\overline{3}(145)+\overline{2}(14)(35)+\overline{2}(14)(23)+\overline{2}(14)(25) \\
& +\overline{3}(152)+\overline{3}(153)+\overline{3}(154)+\overline{2}(15)(34)+\overline{2}(15)(23)+\overline{2}(15)(24) \\
e_{\varphi_{3}} & =\overline{3} \mathcal{C}_{2}^{+}+\overline{2} \mathcal{C}_{3}^{+}
\end{aligned}
$$

## Radical series of the PIMs

| $p=2:$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dim | $P_{1} \geq \operatorname{rad} P_{1} \geq \operatorname{rad}^{2} P_{1} \geq \operatorname{rad}^{3} P_{1} \geq \operatorname{rad}^{4} P_{1} \geq(0)$ |  |  |  |  |
|  | 12 | 11 | 7 | 5 | 1 |
|  | $P_{2} \geq \operatorname{rad} P_{2} \geq \operatorname{rad}^{2} P_{2} \geq \operatorname{rad}^{3} P_{2} \geq \operatorname{rad}^{4} P_{2} \geq$ (0) |  |  |  |  |
| dim | 8 | 6 | 5 | ${ }^{3}$ | 2 |


| $p=3$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $P_{1} \geq \operatorname{rad} P_{1} \geq \operatorname{rad}^{2} P_{1} \geq$ (0) |  |  |  |
| dim | 6 | 5 | 1 |
| $P_{2} \geq \mathrm{rad} P_{2} \geq \operatorname{rad}^{2} P_{2} \geq$ (0) |  |  |  |
| dim | 9 | 5 | 4 |


| $p=5:$ |
| :--- |
| $P_{1} \geq \operatorname{rad} P_{1} \geq \operatorname{rad}^{2} P_{1} \geq(0)$ |
| $5 \quad 4 \quad 1$ |
| $P_{2} \geq \operatorname{rad} P_{2} \geq \operatorname{rad}^{2} P_{2} \geq(0)$ |
| $10 \quad 7 \quad 3$ |

## List of Tables

3.1. Ordinary character table of $A_{5}$ ..... 62
3.2. Residue fields for $p=2,3,5$ ..... 64
3.3. Characters in blocks for $p=2$ ..... 65
3.4. Characters in blocks for $p=3$ ..... 65
3.5. Characters in blocks for $p=5$ ..... 66
3.6. Brauer character table for $p=2$ ..... 68
3.7. Brauer character table for $p=5$ ..... 69
3.8. Possible choices for $\varphi_{4}$ in characteristic 3 ..... 71
3.9. Ordinary character table of $D_{10} \leq A_{5}$ ..... 72
3.10. Brauer character table for $p=3$ ..... 72
3.11. Structure of $k G$ ..... 74
3.12. Radical series of the PIMs in characteristic 5 ..... 87
3.13. Radical series of the PIMs in characteristic 2 ..... 87
3.14. Radical series of the PIMs in characteristic 3 ..... 87

## Bibliography

[Alp86] Jonathan L. Alperin. Local Representation Theory. Cambridge University Press, Cambridge, New York, Melbourne, 1986.
[AM69] Michael F. Atiyah and Ian G. MacDonald. Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Reading, Menlo Park, London, Don Mills, 1969.
[Bur65] Martin Burrow. Representation Theory of Finite Groups. Academic Press Inc., New York, 1965.
[CR62] Charles W. Curtis and Irving Reiner. Representation Theory of Finite Groups and Associative Algebras. John Wiley \& Sons, New York, London, Sydney, 1962.
[CR81] Charles W. Curtis and Irving Reiner. Methods of Representation Theory - with Applications to Finite Groups and Orders. John Wiley \& Sons, New York, Chichester, Brisbane, Toronto, 1981.
[Cur99] Charles W. Curtis. Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer. American Mathematical Society, Providence, 1999.
[DP77] John D. Dixon and B.M. Puttaswamaiah. Modular Representations of Finite Groups. Academic Press Inc., New York, San Francisco, London, 1977.
[HR94] Derek F. Holt and Sarah Rees. Testing modules for irreducibility. Journal of the Australian Mathematical Society (Series A), 57(1):1-16, 1994.
[JS06] Jens Carsten Jantzen and Joachim Schwermer. Algebra. Springer, Berlin, Heidelberg, 2006.
[LP10] Klaus Lux and Herbert Pahlings. Representations of Groups - a Computational Approach. Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, 2010.
[Ser77] Jean-Pierre Serre. Linear Representations of Finite Groups. Springer, New York, Berlin, Heidelberg, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo, 1977.
[Ser79] Jean-Pierre Serre. Local Fields. Springer, New York, Heidelberg, Berlin, 1979.
[Wei03] Steven H. Weintraub. Representation Theory of Finite Groups: Algebra and Arithmetic. American Mathematical Society, Providence, Rhode Island, 2003.

## Abstract (German)

In dieser Arbeit werden die prinzipal unzerlegbaren Darstellungen der alternierenden Gruppe in fünf Symbolen in modular Charakteristik bestimmt. Wir ermitteln die irreduziblen modularen Darstellungen und die mod $p$-Reduktionen der irreduziblen Darstellungen in Charakteristik 0 und berechnen mit Hilfe dieser Resultate ein System von primitiven orthogonalen Idempotenten.
Das erste Kapitel stellt die algebraischen Resultate bereit, die für die Entwicklung der modularen Darstellungstheorie notwendig sind, darunter Moduln endlicher Länge, das Radikal eines Moduls und die prinzipal unzerlegbaren Moduln von Algebren über einem Körper. Das Kapitel schließt mit einer kurzen Behandlung projektiver und injektiver Moduln über Gruppenalgebren und erläutert den Meataxe-Algorithmus, der Moduln bezüglich Einfachheit testet.
Kapitel 2 führt die wichtigsten Konzepte der modularen Darstellungstheorie ein: pmodulare Systeme, Brauercharaktere, Zerlegungszahlen und Cartanzahlen. Weiters werden die modularen Orthogonalitätsrelationen für Brauercharaktere bewiesen. Der letzte Abschnitt ist einer kurzen Einführung in Blocktheorie gewidmet.
Das dritte Kapitel benutzt die Resultate der vorherigen Kapitel zur Bestimmung der prinzipal unzerlegbaren Darstellungen der alternierenden Gruppe in fünf Symbolen in Charakteristik 2, 3 und 5. Dazu berechnen wir die Blockzerlegung und die Blockidempotenten der Gruppenalgebra $k G$, die Brauercharaktertafeln, die Zerlegungszahlen und die Cartanzahlen. Diese Resultate beinhalten schon wesentliche Informationen über die Struktur der Gruppenalgebra und ihre prinzipal unzerlegbaren Moduln. Der letzte Schritt ist die Berechnung eines Systems von primitiven orthogonalen Idempotenten unter Verwendung der bisher gewonnen Ergebnisse aus der Darstellungstheorie der $A_{5}$, wobei das Computeralgebrasystem GAP als Hilfsmittel dient. In diesem Zusammenhang ermitteln wir auch die mod $p$-Reduktionen der irreduziblen Darstellungen in Charakteristik 0 und die Radikalreihen der PIMs.

## Abstract (English)

This thesis determines the principal indecomposable representations of the Alternating group on five symbols in modular characteristic. We calculate the irreducible modular representations and the mod $p$-reductions of the irreducible representations in characteristic 0 and use these results to compute a system of primitive orthogonal idempotents.
The first chapter provides the algebraic results needed to develop modular representation theory. After covering modules of finite lengths and the radical of a module, it examines the principal indecomposable modules of algebras over a field. We also give an account of projective and injective modules over group algebras. The chapter concludes with a discussion of the Meataxe algorithm, which tests modules for simplicity.
Chapter 2 treats the most important concepts of modular representation theory: $p$-modular systems, Brauer characters, Cartan numbers and decomposition numbers. Furthermore, we prove the modular orthogonality relations for Brauer characters. The last section is dedicated to a short introduction to block theory.
The third chapter uses the results developed in the previous chapters to determine the principal indecomposable representations of the Alternating group on five symbols in characteristic 2,3 and 5 . To this end, we calculate the block decomposition and block idempotents of the group algebra $k G$, the Brauer character tables, the decomposition numbers and the Cartan numbers. These results already encode a great deal of information about the group algebra and its principal indecomposable modules. As a last step we compute a system of primitive orthogonal idempotents on the basis of the results from representation theory of the group $A_{5}$, using the computer algebra system GAP to carry out the actual computations. In this context we also determine the mod $p$-reductions of the irreducible representations in characteristic 0 and the radical series of the PIMs.

## Curriculum Vitae

## Personal information

| Name | Felix Leditzky |
| :--- | :--- |
| Date of birth | 29.08 .1986 |
| Nationality | Austria |

## Education

| Since 10/2006 | Diploma studies in Mathematics at the University <br> of Vienna, Austria |
| :--- | :--- |
| Since 10/2006 | Diploma studies in Physics at the University of <br> Vienna, Austria |
| $06 / 2005$ | Matura (with distinction) |
| $09 / 1997-06 / 2005$ | GRg 19, Billrothstraße 26-30, 1190 Vienna, Austria |
| $09 / 1993-06 / 1997$ | VS 9, Galileigasse 5, 1090 Vienna, Austria |


[^0]:    ${ }^{1}$ cf. [Wei03] or [Bur65] for a complete deduction.
    ${ }^{2}$ For a rigorous treatment of the following paragraphs, see [JS06, Ch. 10, pp. 362].

[^1]:    ${ }^{3}$ The ring of integers $\mathcal{O}_{L}$ of an algebraic number field $L$ is a Dedekind ring; therefore, every non-zero prime ideal is maximal. Moreover, $\mathbb{F}_{\mathfrak{p}}$ is always finite.

[^2]:    ${ }^{4}$ Note that in this case, the prime does not indicate restriction to $p$-regular conjguacy classes.

[^3]:    ${ }^{5}$ To show this, simply subsequently apply $g=(123),(234),(345)$ to a vector $v=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ with $v_{i} \in k$. From $g v=v$ follows the stated form of $v$.

[^4]:    ${ }^{6}$ Remember that Brauer character values are sums of roots of unity and hence integral over $\mathbb{Z}$.
    ${ }^{7}$ The numbering is adjusted to the 3 -regular classes of $A_{5}$ to ensure $\mathcal{C}_{i}^{H} \subset \mathcal{C}_{i}$, hence the missing $\mathcal{C}_{3}$.

[^5]:    ${ }^{8}$ Recall that in the semisimple case the properties 'irreducible' and 'indecomposable' coincide.

[^6]:    ${ }^{9}$ This is a symbolic notation for the representation afforded by the module $K \otimes Q_{i}$, where $Q_{i}$ is the $R G$-module affording $\partial_{i}$.

[^7]:    ${ }^{10}$ School of Mathematics, University of Minnesota, webb@math.umn.edu

[^8]:    ${ }^{11}$ This happens quite frequently with Meataxe routines and always has to be accounted for.

