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Abstract

An inductive limit of locally convex vector spaces is usually difficult to describe
in a way that allows calculations in practice. In the present thesis the concept of
projective description is introduced as a remedy. Furthermore, such descriptions
are shown to exist for certain classes of weighted sequence spaces and weighted
spaces of continuous functions. Among other things, using these descriptions
one can find simple characterizations of the family of seminorms—and thus of

the topology corresponding to such inductive limit spaces.

Zusammenfassung

Induktive Limiten von lokalkonvexen Vektorraumen sind fiir gew6hnlich schwie-
rig auf eine Weise zu beschreiben, die es erlaubt konkrete Rechnungen durchzu-
fuhren. Als Hilfsmittel wird in vorliegender Arbeit das Konzept der projektiven
Darstellung eingefiihrt. Auflerdem wird gezeigt, dass solche Beschreibungen
fur gewisse Klassen gewichteter Folgenraume und gewichteter Rdume stetiger
Funktionen tatsdchlich existieren. Unter anderem ermoéglicht dies eine einfa-
che Charakterisierung der Halbnormenfamilie — und damit der Topologie eines

solchen induktiven Limiten.
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Introduction

1.1 Locally Convex Vector Spaces

We will give a short overview on the basic theory of locally convex vector spaces and state
the most important facts. Proofs and more detailed information can be found in [Sch71, FW68,
Jar81, Ko6t6g, Bou81, MVg7, Ste, Wero7]. The approach we are using here is mostly inspired
by [Sch71], [Ste] and [FW68], while the details have been taken from [Jar81].

Every locally convex vector space is, as we will see shortly, a topological vector space:

1.1 Definition (Topological Vector Spaces). Let E denote a vector space over K = R or
K = C. Then the pair (E, 1), where T denotes a topology on E such that

(TVS1) ExXE—E, (x,y)— x+1y iscontinuous and
(TVS2) K xE—E, (A,x) = Ax is continuous,

is called a topological vector space.

Two topological vector spaces (E1,7T7) and (E2, T2) are called isomorphic, in symbols
(E1,T1) = (E2,T2) or simply Eq = E,, if there exists an algebraic (linear) isomorphism ¢ :
E1 — E; which is also a homeomorphism. We will simply call ¢ a (topological) isomorphism
of E; and E,.

To characterize the so-called linear topologies of topological vector spaces (and later those of

locally convex vector spaces) we need some notions for special subsets of vector spaces:

1.2 Definition. Let V be a vector space over K. A subset A of Vis called symmetric (circled)
if AA C A for each |A] < 1. It is called absorbing if for every x € V there exists a Ag € K
such that x € AA holds whenever |A| > [Ag].

The set A is called convex whenever x,y € A implies Ax+(1—A)y € Aforany 0 <A < 1.
Finally, we call A absolutely convex if for any x,y € A we have that Ax + py € A whenever
Al + [u| < 1 (this is equivalent to A being symmetric and convex [Jar81, sec. 6.1, Prop. 1]).

1.1 LOCALLY CONVEX VECTOR SPACES 11



1.3 Proposition. (See [Sch71, ch., § 1.2, p. 14f])
Let E denote a vector space over K.

(i) A topology T on E satisfies (TVS1) and (TVS2) (i.e., T is a linear topology and the
pair (E,T) is a topological vector space) if and only if T is translation invariant and
possesses a 0-neighborhood base U with the following properties:

(a) for each U € U there existsa V € U such that V+V C U,
(b) every U € U is symmetric and absorbing.

(if) IfUis afilter base in E having the properties (a) and (b), there exists a unique topology T
on E turning (E, T) into a topological vector space such that U is a neighborhood base
of 0 for t.

1.4 Definition (Duals). Let (E,T) be a topological vector space. The (topological) dual E' is
the vector space of all continuous linear functionals on E (with respect to T and the usual
topology on K). It is a subspace of the algebraic dual E* of E which is the vector space of all
linear functionals on E.

We can turn E into a topological vector space by equipping it with the weak topology o(E', E)
of pointwise convergence on E, we then write E_ for (E', o(E’, E)) (but see also section 1.3.).

1.5 Definition (Locally Convex Vector Spaces). Let (E,T) be a topological vector space
over K. We call its (not necessarily separated) topology T locally convex if every neighbor-
hood of any x € E contains a convex neighborhood of x.

On the other hand, the pair (E, t) will only be called a locally convex (topological) vector
space if the topology T, in addition to being locally convex, is also Hausdorff. This is
equivalent to asking for the convex neighborhoods of 0 to form a base of neighborhoods
with intersection {0}.

Similarly to Proposition 1.3 we obtain the following characterisation for locally convex topolo-
gies:

1.6 Proposition. (See [Sch71, p. 48], Proposition 1.3.)
Let E denote a vector space over K.

(i) Atopology ton E islocally convex if and only if T is translation invariant and possesses
a 0-neighborhood base U with the following properties:

(a) foreach U € U we also have %U ey,
(b) every U € U is absolutely convex and absorbing.

(if) If U is a filter base in E having the properties (a) and (b), there exists a unique locally
convex topology T on E such that U is a neighborhood base of 0 for .

12 INTRODUCTION



1.7 Example. Every normed vector space over K, in particular any Banach or Hilbert space,
is a locally convex vector space (the multiples of the closed unit balls form a base of neigh-

borhoods of 0 which has all the needed properties).

The obvious question which now arises is, how far can the famous theorems of Banach and
Hilbert spaces be generalized to the setting of locally convex vector spaces? A first step in this
direction is to understand how locally convex vector spaces can be described analytically (i. e.,
by (semi)norms) as opposed to the “topological” description of Proposition 1.6.. The answer
will also motivate why we looked at locally convex vector spaces in the first place instead of

working with the more general topological vector spaces:

1.8 Definition (Vector Spaces with Seminorms). The pair (E,P), where E is a vector
space over K and P is a family of seminorms on E (non-negative, positive-homogeneous

functionals on E that satisfy the triangle inequality), is called a vector space with seminorms.

There are many ways we could obtain a topology on a vector space with seminorms, luckily

they all coincide, so that we can talk about the topology T of a vector space with seminorms:
1.9 Lemma. [Schyi, p. 48]
Let (E,P) be a vector space with seminorms, then the following topologies coincide:

(i) the linear topology generated by the base of 0-neighborhoods

U:={Uep|e>0, PC?Pfi,

where U, p:={x € E|p(x) < e Vp € P},

(ii) the weakest topology on E such that all seminorms p € P are continuous.

In this topology, we have the following convergence for a net (x))aca in E:
X)\LX — Vp e P plxa—x)—0.

So, every vector space with seminorms is a topological vector space, and because of the triangle
inequality, the topology has to be locally convex (the sets in the base of neighborhoods U
above are obviously convex). What makes locally convex vector spaces interesting is, that the

converse holds as well:

1.10 Proposition. (See [Ste, Thm. 2.26].)
Let (E, T) be a locally convex vector space. Then there exists a family of seminorms P on E
such that the topology T4 of the vector space with seminorms (E, P) equals T. In fact, we

may choose

P :=cs(E) :={all seminorms on E that are continuous with respect to T}.

1.1 LOCALLY CONVEX VECTOR SPACES 13



Of course it would be nice to have a more explicit description of the family of seminorms, in
order to be able to use the tools of analysis to derive facts about locally convex vector spaces.
For example, using seminorms, one can easily define a notion of Cauchy-nets without having
to resort to uniform structures. It is the goal of this thesis to find “analytic” descriptions of the
families of seminorms for specific classes of locally convex vector spaces.

1.11 Remark. With the description of locally convex vector spaces using seminorms we can
identify the objects of classical analysis. A locally convex vector space (E, T) is metrizable if
its topology can be described by a countable family of seminorms, it is normable if a single
norm suffices. We will call a metrizable and complete locally convex vector space a Fréchet

space (or (F)-space), if it is even normable we will call it a Banach space (or (B)-space).

Another motivation for working with locally convex vector spaces is the following result
(which doesn’t hold for general topological vector spaces, consider for example (LP)" = {0}
where 0 < p < 1):

1.12 Theorem (Hahn-Banach). (See [Sch71, ch. I, § 4.2, Thm.].)
Let (E,T) be a topological vector space with locally convex topology. Then, for every
continuous and linear functional f : M — K defined on a subspace M of E, there exists
a linear and continuous extension f : E — K to the whole space E. In particular, for any
0 # x € E there exists an f € E’ such that f(x) # 0.

But we don’t get everything for free, for example in classical functional analysis one often uses
the fact that continuity and boundedness of operators is equivalent. Unfortunately this is not

the case with general locally convex vector spaces.

1.13 Definition (Boundedness). Let (E,T) denote a topological vector space. Aset B C E
is called (t-)bounded if it is absorbed by any 0-neighborhood of E, i. e., if for any 0-neigh-
borhood U C E there exists a scalar Ag € K such that B C AU for any |[A| > [Ao].

Let (F, ') be another topological vector space. A linear map f : E — F is called (t-t -)

bounded if it maps T-bounded sets to T -bounded sets.

For locally convex vector spaces boundedness can be equivalently but more intuitively defined
by calling a set bounded if all seminorms are bounded on it. When its bounded maps behave
as in classical functional analysis, we call a locally convex vector space bornological:

1.14 Definition (Bornological Spaces). A locally convex vector space (E, 1) is called bor-
nological if for any other locally convex vector space (F,T), a linear map f : E — Fis

continuous if and only if it is bounded.

14 INTRODUCTION



In topological terms this can be formulated as follows.

1.15 Lemma. (See [Sch71, p. 61].)
A locally convex vector space is bornological if and only if every absolutely convex bor-
nivorous set is a 0-neighborhood. (A set is called bornivorous if it absorbs every bounded
set.)

1.16 Proposition. (See [MVg7, Prop. 24.13].)
Every metrizable locally convex vector space is bornological.

1.2 Projective and Inductive Limits

Now that we combined the theory of vector spaces with general topology we have several
possibilities of generating either new vector spaces or new topological spaces out of given
topological vector spaces. In this section we will discuss the question whether this can be done
in a way such that the resulting parts can be rejoined to again form a topological vector space.

In both cases, the operations at our disposal include products, subspaces, sums and quotients.
But in general topology one can also transport the topological structure along maps between
the spaces, generating the so-called final and initial topologies. This concept can be generalized
such as to include the other operations mentioned above as special cases, therefore we will

look into this version in more detail. First, we’ll recall the definition of these topologies:

1.17 Definition. Let X be a set, given a family (Yi, Ti)ic1 of topological spaces and cor-
responding maps fi : X — Y; we can define the initial topology on X to be the weakest
(coarsest) topology such that all the mappings f; are continuous.

For the dual concept let Y be a set and (Xi, Ti)ic1 be a family of topological spaces with
maps fi : Xi — Y. Then the strongest (finest) topology on Y turning all f; continuous is
called the final topology.

It turns out, that in the setting of locally convex vector spaces, these two concepts are not
really dual, in the sense that it is much easier to work with the one than the other. Let’s do the
easy one first:

1.2.1 Projective Limits

To generalize the concept of initial topologies to locally convex vector spaces we have to

consider at least three possibly different topologies, luckily it is easy to choose the right one:

1.2 PROJECTIVE AND INDUCTIVE LIMITS 15



1.18 Lemma & Definition. (See [Ste, § 3.1] and [Jar81, sec. 2.4 and sec. 6.6, Prop. 2].)
Let E denote a vector space, (Ei, Ti)icr a family of topological vector spaces E; with locally
convex topologies T; and (fi)ic; a family of linear maps f; : E — E;. Then the following
topologies on E (exist and) coincide:
(i) the weakest locally convex topology such that all f; are continuous,
(if) the weakest linear topology such that all f; are continuous,
(iii) the initial topology with respect to (Ei, Ti)ie1 and (fi)icr.
This topology is called the (locally convex) projective topology on E with respect to (Ei, Ti)ier
and (fi)ier. It is generated by the following base of neighborhoods of 0,

n
W {Q (W) | W € sy e in € 1},
I

where U; is a base of neighborhoods of 0 for T, or alternatively by the family of seminorms

fPI:{pOfi |p S {.Pi, ie I},
where P; is a family of seminorms generating ;.

Proof. Since the topology T; on E; that is generated by the base of 0-neighborhoods U; equals
the one generated by the family of seminorms P;, also U and P give rise to the same locally
convex topology T on E. We have to show that this topology equals those of (i), (ii) and (iii)
which we will denote by T, T and T, respectively.

First we may observe that all f; are continuous with respect to T

(ii) 1.9
Xp — x &= (pofi)xn—x) 20 VpeP,icl

— fi(X)\—X)LO Viel
Ti .
= filkxa) — filx) Vie]

which implies that the topology T must be stronger than 1 (and consequently also stronger
than () or Ti))-

On the other hand, if T’ is any topology on E such that all f; are continuous, the sets x + U
(where U € U and x € E) have to be neighborhoods of x of the topology T as well:

n
x+U=x+ ) (W) = [)f, (i, () + Uy,).
j=1 j=1
So we can conclude that T is also weaker than the weakest of those topologies which is 7).

Since we obviously have T C T4 € T(), we are done. O
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1.19 Examples.
(i) Theinduced topology ona subspace F of a topological vector space E with locally convex
topology T is the projective topology with respect to the embedding t: F — (E, 7).
(ii) The product topology of a product of topological vector spaces with locally convex

topologies is the projective topology with respect to the projections.

(iii) Given a family of linear (or locally convex) topologies (Ti)ic1 on a topological vector
space E, the supremum of the topologies is defined to be the projective topology with
respect to the identity mappingsid : E — (E,7i) forie L.

In particular, considering the family of all linear (or locally convex) topologies on a
topological vector space, we obtain that there always is a strongest linear (respectively
locally convex) topology (which in both cases cannot be the discrete topology, see also
Example 1.25(i)-; below).

1.20 Definition (Projective Limits). (See also figure 1.1.) Let (Ei,Ti)ic1 be a family of
topological vector spaces indexed by a directed set (I, <). For any pair of indices i <j € I
let fj; : E; — E; be a linear and continuous map such that fy; o fye = fyfori <k <le L
Then (Ei, T3, fji)igjer is called a projective system, the fj; are called linking maps.

A topological vector space E = mj Ej, together with (linear and continuous) projec-
tions 7y : E — E that satisfy fj; omm; =ty foralli < j € I, is called a projective limit (inverse
limit) of the projective system (Ej, Ty, fji)igj (its topology T is called the projective limit
topology), if the following universal property holds:

For any other topological vector space (F, T ) and linear and continuous maps p; :
F — E; satisfying fj;0op; = pi (i < j € I), there exists a unique linear and continuous
map f: F — E such that 7t o f = p; forallie L

Figure 1.1 The projective limit Mj E; of the projective sys-
tem (Ej, Ty, fji)igje1 which is represented by the grey disk.

1.21 Proposition. (See [Ste, Prop. 3.8] and [Jar81, sec. 2.6 and sec. 6.6, Cor. 3].)
The projective limit of a projective system (E;, Ty, fji)i<jer always exists and is, uniquely
up to (topological) isomorphisms, given by

limE = {xe[]E
j

icl

fji(x;) :Xi})

1.2 PROJECTIVE AND INDUCTIVE LIMITS 17



equipped with the natural projections and the trace topology of the product topology.

In particular, if the topologies T; of the projective system are locally convex, then also
the projective limit topology T of mj E; is locally convex.

Proof. LetE :={x € []i,
the universal property holds for E, let (F,T') be another topological vector space equipped

Ei | fji(xj) = xi}. Obviously we have fj; o 7t; = ;. To show that

with a family of projections p; : F — E;. The relation 7; o f = p; already defines a unique and
continuous linear map f : F — E by the universal property of the product.

To obtain the uniqueness of }i_m]. E;, let (Eq1,T1, (] )i) and (E2, T2, (n2);) be two projective
limits of (Ej, Ty, fji). By the universal property, there exist unique continuous and linear maps
f:E; — Eqyandalso g: By — E; such that 7t o f = 7 and 7 0 g = 7], respectively. Together
we obtain 7! o f o g = 7t!. Now the uniqueness statement of the universal property implies
that f o g = idg,. Similarly we obtain g o f = idg,.

By Example 1.19. and the above, if all the topologies T; of the projective system are locally
convex, the projective limit topology is locally convex as well. U

1.22 Remark.

(i) If all the spaces of a projective system are equipped with locally convex topologies, we
can also look at the locally convex projective limit, where we only require the universal
property of Definition 1.20. to hold for other topological vector spaces (F, ') if they
have locally convex topologies as well. But because of Lemma 1.18- we arrive at the
same space as in Proposition 1.21+, so it doesn’t matter which version of the universal

property we choose when working with projective limits.

(i) Without loss of generality we can consider more simple projective systems. Two
projective systems are called equivalent if they have isomorphic projective limits. A
projective system is called reduced if the projections of its projective limit have dense
range. Since every projective system is equivalent to a reduced one [Jar81, sec. 2.6,
Prop. 2] we will from now on only consider such systems.

1.2.2 Inductive Limits

In this section we want to introduce the dual concept to projective limits, namely inductive
limits, which are a generalization of the concept of final topologies to the setting of locally

convex vector spaces.

Again there are several possible ways to obtain a topology T on a vector space E, such that
all members of a given family of maps f; : E; — E, mapping topological vector spaces E; with
locally convex topology T; to E (i € I), are continuous. But unfortunately this time we don’t
have an analogue of Lemma 1.18, i. e., we have to be more careful in which category we are

working.

18 INTRODUCTION



First, there is of course the final topology (or inductive topology) on E with respect
to (Ei,Ti, fi) which we will denote by t¢. But this need not be a linear topology (see Ex-
ample 1.25(i)-; below), so we also have to look at the strongest linear topology on E such that
all f; are continuous (see the Lemma below).

But again, there is a problem: even if all the topologies T; are locally convex, the linear
inductive topology T1 need not be locally convex (again, see Example 1.25(ii).; below). Therefore
we will also need the concept of the strongest locally convex topology on E such that all f; are

continuous:

1.23 Lemma (Linear and Locally Convex Inductive Topologies). (See [Ste, § 3.2] and
[Jar81, sec. 4.1 and p. 110].)
Given a vector space E and a family of linear maps f; : E; — E from topological vector
spaces (Ei, Ti) with linear (respectively locally convex) topologies T; to E, the strongest
linear (locally convex) topology on E such that all f; are continuous exists, and is uniquely
defined by the following universal property (we will call this topology the linear inductive
topology or locally convex inductive topology and denote it by T or T, respectively):

Amap f: E — (F,7), where (F, 1) is another topological vector space with
linear (respectively locally convex) topology T, is continuous, if and only if all the

compositions f o f; : (Ei,Ti) — (F, 7') are continuous.

Proof. By Example 1.19(iii)- the linear (respectively locally convex) inductive topology T
on E exists, and for this topology the universal property obviously holds.

Now let T’ be another linear (locally convex) topology on E satisfying the universal property.
Considering f := id(g 1) or f := dE o) respectively, we obtain that all f; : (Ei, ;) — E
have to be continuous, no matter which of the two topologies T and T we equip E with.
On the other hand, the universal property now also implies that both idg : (E,7) — (E,T)
and idg : (E,T) — (E, ) have to be continuous, i.e., that T = 7. ]

1.24 Remark. By the universal property, a seminorm p : E — K on a topological vector
space E equipped with the locally convex inductive topology T, with respect to the maps f; :
(Ei,Ti) — E, 1 € 1, is continuous (and thus, by Proposition 1.10+, one of those describing the
topology T,), if and only if each restriction p o f; : E; — K is continuous. Unfortunately this
characterization is too abstract for most applications—it is impossible to find a description
as nice as the one for the projective topology we had in Lemma 1.18. Therefore, for now,
we will have to content ourselves with an analogous description of the 0-neighborhoods
of (E,to):

An absorbing and absolutely convex set U in (E, T,) is a 0O-neighborhood if and only if
f{1(U) is a 0-neighborhood in (E;, ;) for each i € I. Thus we obtain a base of 0-neighbor-

hoods for T, by collecting all such sets U.

A more useful description can be obtained when E = span(uiel fi(Ei)). Then the
collection of all sets of the form

1.2 PROJECTIVE AND INDUCTIVE LIMITS 19



U= r(U fi(ui)), (1.1)

icl

where U; is a 0-neighborhood in (Ej, i), is a base of 0-neighborhoods for the locally convex

inductive topology T, on E (clearly all maps f; are continuous with respect to the locally

convex topology generated by this base of 0-neighborhoods, so it must be weaker than 7.,

but on the other hand every 0-neighborhood of 1, has to contain a set of the given form,

which means that the topologies coincide, see [Jar81, § 6.6, Prop. 5(a)]).

1.25 Examples.

20

(i)

(i)

(iii)

The final topology on a vector space E # {0} with respect to an empty family of
mappings and topological vector spaces (or only 0-maps) is the discrete topology, but
this is not a linear topology since for any 0 # x € E we would have %x — 0, although
1

n
linear inductive topology T must be strictly weaker than the final topology .

x can never reach the discrete 0-neighborhood {0}. This implies that, in general, the

(See [Bou81, ch. II, p. 8o, exerc. 15].)

Let I be an uncountable set and F(I) the family of all its finite subsets. Then define
vector spaces E := RV .= @, Rand Fj := R = @, Rfor] € F(I). Letgy : F; - E
be the canonical embeddings. Equipping each Fy with the product topology, we will see
that the linear inductive topology T, on E is strictly stronger than the locally convex
inductive topology T,. To show this, let

1
U:= {X = (&i)ier €E ‘ p(x) = Z €112 < 1}-
i€l
This is obviously a 0-neighborhood for T; (it is symmetric, absorbing and the traces
of U under the embeddings gy are 0-neighborhoods of F}, for all J). We will show that
there is no absolutely convex and absorbing subset of U, which means that U cannot
be a 0-neighborhood for 7., i. e, that T, C 1.

Suppose V C U were such a set. Since it is absorbing, there exists an ¢; > 0 for
every e := (0ij)jer € U such that e;e; € V C U for i € 1. Now using the convexity
of V we obtain x;j := ﬂﬂ 2 icj € € Viorany ] € F(I). On the other hand, since
the uncountable set I equals the countable union Upen{i € 1] e > %}, there must be
ann € N such that we have ¢; > 1 for infinitely many indices i € L. Let us denote
this set of indices by I', so that we have

P(XJ)ZZ

2 1]
>|J7— > 1,
jeT n

vn

1

— s
-~
for every finite ] C I' that is large enough, a contradiction to x; € V C U.

Let (E, T) be a topological vector space with linear (respectively locally convex) topol-
ogy T and let M C E be a subspace. The quotient topology on E/M is also the linear
inductive topology with respect to the canonical projection ® : E/M — E. If the

INTRODUCTION



topology T is locally convex, the quotient topology is locally convex as well (i. e., the
linear and locally convex inductive topologies coincide). The space E/M is separated
if and only if M is closed in E. (See [Sch71, ch. 1, §2.2-2.3].)

(iv) Let (Ei, i) be a family of topological vector space with linear (respectively locally

convex) topologies T; indexed by i € 1. The direct sum @, E; can be equipped with

iel
the linear (respectively locally convex) inductive topology with respect to the canonical
embeddings. If all the summands are Hausdorff or complete, the direct sum has the

same property. (See [Sch71, ch. 2, §6.1-6.2].)

1.26 Definition (Inductive Limits). (See also figure 1.2, Definition 1.20:.) Let (Ei, Ti)icr
be a family of topological vector spaces indexed by a directed set (I, <). For any pair of
indices i < j € Ilet fj; : Ey — E; be a linear and continuous map such that fi; o fi = fyy
fori < k < 1 € L. Then (Ei, i, fij)icjer is called an inductive system, the f;; are called
linking maps.

A topological vector space E = H_rr)Lj Ej, together with linear and continuous embed-
dings 1 : By — E that satisfy ; o f; =  for alli < j € 1, is called a (linear) inductive
limit (direct limit) of the inductive system (Ej, Ty, fij)igj (its topology T is called the linear
inductive limit topology), if the following universal property holds:

For any other topological vector space (F, T ) and linear and continuous maps «; :
E; — Fsatisfying kjofy; = ki (i < j € I), there exists a unique linear and continuous
map f: E — Fsuchthatk;of = forallie L

If (Ei,Ti)ier is an inductive system of topological vector spaces with locally convex
topologies Ti, we call a topological vector space E = mj E; together with linear and
continuous embeddings t; : E; — E a (locally convex) inductive limit of the inductive system
(its topology T is called the locally convex inductive limit topology), if the universal property
holds for any other topological vector space (F,T') with locally convex topology .

Figure 1.2 The inductive limit u_TY)Lj E; of the inductive sys-
tem (Ej, Ty, fij)igje1 which is represented by the grey disk.
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1.27 Proposition. (See [Ste, Prop. 3.20] and [Jar81, sec. 4.5 and p. 110].)
The (linear) inductive limit of an inductive system (E;, Ty, fij)i<jer always exists and is,

uniquely up to (topological) isomorphisms, given by

UimkE = @Ei/{xi—ﬁj(xi) Ixi € By, i<jel]
J i€l

equipped with the natural embeddings and the quotient topology with respect to the linear

inductive direct sum topology.

If the topologies T; of the inductive system are all locally convex, the locally convex
inductive limit exists as well and is given by the same space equipped with the quotient

topology with respect to the locally convex inductive direct sum topology.

Proof. LetE = @, Ei/M where M = {x; — fi;(xi) [ xi € Ei, i <j € I}. By definition,
we have (j o fi; = 1y foralli < j € 1. To prove that E/M satisfies the universal property
of the inductive limit, let (F,T’) be another topological vector space together with linear and
continuous maps k; : E;y — F such that k; o fi; = k;. By the universal property of the direct

sum, the relation k; o f = ; already defines a unique and continuous linear map f: E — F.

The uniqueness of lim, E; can be obtained similarly to Proposition 1.21+. 0

1.28 Remark.

(i) By looking at the proofs of Proposition 1.21- and Proposition 1.27, one can see that the
concept of projective and inductive limits can be generalized to many other categories
(then often called inverse resp. direct limits).

(ii) In particular, the “linear algebra” projective (or inductive) limit of a projective (induc-
tive) system of topological vector spaces (ignoring the topologies) is the same as our
projective (inductive) limit, just without the topology. (Compare with “linear inductive
limits” and “locally convex inductive limits” of an inductive system of locally convex

vector spaces—the spaces coincide as well, although in general the topologies will
differ.)

1.2.3 Dualities

The following two results tell us more about the “duality” of projective and inductive limits.

1.29 Proposition. (See [FW68, § 26, Satz 1.2].)
Let (Ei)ie1 denote an inductive system of topological vector spaces. Then the corresponding
family ((E;)')ier of duals is an algebraic projective system (see Remark 1.28), and we have
the (algebraic) identity

)

(mEj)' = lim(E;) . (1.2)
)
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Proof. Let fi; : E; — E; denote the linking maps of the given inductive system (E;)ic1. We

want to turn the family ((E;)')ic; of duals into a projective system. The (algebraic) adjoint

maps fj; : Ef — Ef give us cand:idates/for th/e nev:z linking mallps gji/ : E; — E; by setting

gji = f% o To check that gji(Ej) C E;, let e; €, then gji(ej) = ¢ ofy: (Ei, i) — Kis
j

. e . . ! ’
continuous as a composition of continuous maps, and we obtain gji(Ej) CE;.

Similarly, starting from the linear and continuous injections t; : E; — E := H_n}l]. Ej of the
(topological) inductive limit, we obtain linear projections p; : E* — (E;)". By the universal
property of the (algebraic) projective limit Mi (E;)’ there exists a unique linear map f: E' —
mj(E)’), with 7ty o f = pj.

To show that f is injective, let u € E such that f(u) = 0. It follows that 0 = (7t; o f)(u) =
pi(u) =uoy foralli€ I, i e, u=0. To prove surjectivity, let y € M)‘ (Ej )" and consider the
linear maps 7;(y) : E; — Kfori € I. Since fi; o i (y) = 71j(y), the universal property of the
inductive limit tells us that there exists a (unique) linear and continuous map v : E = H_T}nj E —
K,ie,v € E withvoy = m(y). But since vo i; = pi(v) = 7;(f(v)), we can conclude that

f(v) =y. O

1.30 Proposition. (See [FW68, § 26, Satz 1.6].)
Let (Ei)ic1 denote a reduced projective system of topological vector spaces. Then the
corresponding family ((E1)")ie1 of dualsis an (algebraic, see Remark 1.28.) inductive system
with injective linking maps, and we have the algebraic identity
(WmE;) = lim(E;)" (1.3)
j j
Proof. We can proceed as in the proof of Proposition 1.29: - to obtain linking maps gi; =
f;-*i e (Ey) — (Ej]/ and embeddings k; = 7} : (1) = E = (mj E]-)’. By the reducedness
of the projective system, the maps fj; : Ej — E{ and 71y : E — E; have dense images—the

projections 7t; by definition and the linking maps fj; since 7t;(E) = fji(mi(E)) C f5:(Eq) C Ej.
Translating this to our new inductive system, we obtain that all gi; and k; have to be injective.

The universal property of the inductive limit li_n}j (E;)" gives us a unique linear map f :
H_TT}lj (E;)" — E such that f oy = k; for all i € I This last property already implies the
injectivity of f since all the maps (; and «; are injective (for the maps t; consider kert; =
Uigj ker gij = {0})

To see the surjectivity of f consider u € E'; as a continuous map from E to K and by Propo-
sition 1.21 there exists an index i € I and a continuous seminorm p : E; — K such that
u(x) < p(mi(x)) for all x € E. This means that u can be written as u = u; o 71; where
u; € (m(E)). By Hahn-Banach we may assume u; to be the restriction of a functional
on E; D mi(E), i.e., ui € (E;). Now we have

u(x) = ui(m(x)) = ki(ug)(x) = fu(w))(x)  Vx €,

such that (1 (u;)) = u, showing the surjectivity of f. ]
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The natural question that poses itself now is the one about the role of the topologies in the
dualities above. We want the equations (1.2)- and (1.3) to hold for locally convex limits as
well. But as they would compare a limit topology with a topology on a dual it will prove itself
worthwhile to first gain an understanding about all “possible” locally convex topologies on a
dual space. These will be studied in the next section.

1.3 Dual Systems

1.31 Definition (Dual System). A dual system is a triple (F, G, (., .)), written (F, G) for
short, where F and G are vector spaces, and (., .) : F x G — K is a bilinear map such that
(i) foranyx € F, x # 0, there exists ay € G such that (x,y) # 0.
(if) foranyy € G,y # 0, there exists an x € F such that (x,y) # 0.

Given a dual system (F, G) we want to construct locally convex topologies on its spaces, such
that F' = G. One such topology that can be constructed “out of nothing” is the weak topology
of pointwise convergence, via the bilinear map (., .), on the respective dual space.

By remarking that this is also the topology of uniform convergence on finite sets of “func-

tionals”, we can motivate the general construction of topologies for dual systems.

1.32 Definition (Generating System). Let (F, G) denote a dual system. A family 8 of sub-
sets of F is called a generating system, if it is directed and all its sets are o(F, G)-bounded.

Such a system 8 is called saturated

(i) ifany set TC AS, where A > 0and S € §, is also part of the system §,
(if) if the system is closed under finite unions,

(iii) and if for any set S € 8 the o(F, G)-closure TS of its absolutely convex hull is again
part of 8.

The smallest saturated generating system containing a given system 8 is called its saturated
hull and denoted by 8.

1.33 Lemma. (See [Ste, Thm. 4.14].)

Let (F, G) denote a dual system and 8 a generating system in F. Then the sets U, s :=
{yea ‘ (S,y)| < e}, where ¢ > 0 and S € 8, form a base of 0-neighborhoods for a locally
convex topology Ts on G (called the topology of uniform convergence on all sets S of 8).
Alternatively one can consider the family {ps | S € 8} of seminorms ps(y) = |(S,y)| :=
SUPsesl(sulby € G.

This topology is separated (i. e., (G, Ts) is a locally convex vector space) if and only if the
linear span span(Us8) of 8 is o(F, G)-dense in F.
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If the generating system 8 is saturated, it suffices to consider the polars of its sets to obtain
a base of 0-neighborhoods for the corresponding topology s of uniform convergence (by
property (i) of Definition 1.32:).

1.34 Definition (Polars). Let (F, G) denote a dual system. Given subsets M C Fand N C G
we define their (absolute) polars M° C G and N° C F as follows

M°:={y € G|IIMy)l<1}:={yeG|lxy)l<1vxeM}
N° = {x € F[I(,N)| < 1} := {x € F||(x,y)| < T vy € N},
1.35 Remark. (See [Ste, Prop. 4.30] and [Jar81, § 8.2, Prop. 1].)

Let (F, G) be a dual system, M, N, (M;)ie1 C Fand 0 # A € K, then we have the following
properties for polars taken in F:

(i) {0 =G, ={0}, (vi) if 0 € M NN then M° N N° C 2(M +
(i) M C M°°:= (M°)°, N)° C 2(M° N'N°),

(iii) (AM)° = %M", (vii) every polar M° is absolutely convex
(iv) if M C N then M° D N°, and o(G, F)-closed.

(v)  (Uiet Mi)° = Nie1 MY,

1.36 Bipolar Theorem. (See [Sch71, ch. IV, Thm. 1.5].)
Let (F, G) denote a dual system. The bipolar M°° of any subset M C F is the o(F, G)-closed,
absolutely convex hull of M:

Mee =TM(F6), (1.4)

1.37 Corollary.
(i) Let (F,G) be a dual system. If §; and 8, are two saturated generating systems in F that
give rise to the same topology, i.e., Ts, = Ts,, then they have to coincide.
(See [Ste, Cor. 4.33].)
(if) Let (E,T) be a topological vector space with a Hausdorff topology. Its topology T
is locally convex if (and only if) it is the topology of uniform convergence on the

equicontinuous subsets of E'.
(See [Sch71, ch. 1V, § 1.5, Cor. 4].)

This means that every separated locally convex topology can be obtained using a generating
system. So what we have gained from this theory is another approach to cataloguing sepa-
rated locally convex topologies. The weak topology, where the generating system consists of
all finite subsets, is the weakest possible under the condition that it remains separated (see

Lemma 1.33<)—it might be interesting to also look at the strongest such topology:
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1.38 Definition. Let (E,T) be a topological vector space. The strong topology B(E',E) on E’
is the separated topology obtained using the generating system of all T-bounded sets in E.
We will write E{j for (E', B(E',E)).

Can we also obtain the strong topology on a dual without using a given topology, i. e., can
we define a strong topology for general dual systems (as we did with the weak topology)?
To answer this question we will obviously have to return to our original motivation for dual

systems—finding topologies on F such that F' = G, where (F, G) is a dual system.

1.39 Theorem (Mackey-Arens). (See [Sch71, ch. IV, Thm. 3.2 and Cor. 1].)
Let (F, G) be a dual system, and let T be a locally convex topology on F. The topology T
is compatible with the duality (i.e., (F,T)’ = G), if it can be obtained from a saturated
generating system of o(G, F)-relatively compact subsets of G whose union covers G.
In particular, there exists a unique strongest compatible topology on F, the Mackey
topology 1(F, G), generated by the system of absolutely convex o(G, F)-relatively compact
subsets of G. A topological vector space (E,t) where T = u(E, E') is called a Mackey space.

1.40 Corollary. (See [Sch71,ch.1V, § 3.2, Cor. 2].)
All topologies that are compatible with a dual system (F, G) have the same bounded sets

and the same closures of convex sets.

In particular, we can also use the weakly bounded sets to obtain a generating system for the
strong topology, which allows us to define strong topologies 3(F, G) “out of nothing” for
general dual systems (F, G).

Considering the duality (E, E'), where (E, T) is a topological vector space with locally convex
topology T, we obtain that T has to be weaker than the Mackey topology w(E,E’) (since T
is obviously compatible)—if (E, t) is Mackey, the topologies coincide, which means that the
corresponding saturated generating systems have to be equal as well.

This opens up the possibility to define many types of locally convex vector spaces (and at
the same time keep an overview about the relations between them) by simply asking for the
topologies corresponding to certain saturated generating families to coincide. For example this

is one way to define barrelled spaces:

1.41 Definition. A locally convex vector space (E, 1) is called barrelled, if its topology is
generated by the system of o(E’, E)-bounded sets, i. e., if T is the strong topology B(E, E').

By taking the polars of the sets of the generating system—and thus obtaining a base of 0-neigh-
borhoods—we can arrive at the usual definition of barrelled spaces via barrels (closed, absolutely
convex and absorbing sets): (E, ) is barrelled if and only if every barrel is a 0-neighborhood.
Our definition has the advantage that we immediately know that every barrelled space has to

be a Mackey space.

Barrelled spaces are also of interest to us because of the following property.
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1.42 Lemma. (See [Sch71,ch.1l, § 7.2].)
Let (E, T) carry the locally convex inductive topology with respect to a family (Ei, Ti)ier
of barrelled locally convex vector space and linear maps t; : E; — E, then (E, 1) is also
barrelled. In particular, separated quotients, direct sums and separated inductive limits of
barrelled spaces are barrelled.

Proof. Let A be a barrel of (E,t). Then the preimages 1 '(A) are still barrels in the

spaces (Ei, i), hence 0-neighborhoods, such that the original barrel A also has to be a 0-neigh-
borhood of (E, T) by Remark 1.24: . O

Now that we’ve obtained a useful topology on E’, we want to be able to return to the underlying
locally convex vector space (E, T), without knowing 7. This is of course possible if and only if
B(E’, E) is compatible with (E, E'). Unfortunately, in general the dual of E, cannot be identified
with E. We call the subspace E” := (E} )" of E* := (E, )* the bidual of the locally convex vector
space (E,1).

1.43 Definition. A locally convex vector space (E, 1) is called semi-reflexive if E'=FEie.,
if the canonical embedding E — E" is surjective.

It is called reflexive if the strong bidual Eg = (E/b)/b is isomorphic to (E, T).

Thus a semi-reflexive space E is reflexive, if and only if its topology is B (E, E'), i. e., if and only

if it is barrelled. There are also many other useful characterisations of (semi-)reflexivity.

1.44 Proposition. (See [Schy1, ch. 1V, 5.5].)
Let (E, T) denote a locally convex vector space, then the following are equivalent:
(i) E is semi-reflexive,
(if) every bounded subset of E is relatively weakly compact,
(iii) (E,o(E,E")) is quasi-complete (every bounded, closed subset is complete).

Furthermore, every semi-reflexive space (E,T) is also quasi-complete under its original
topology T.

Returning to the question at the end of section 1.2.3., we can now at least answer when the
dual system of an inductive (projective) system of topological vector spaces is again inductive

(projective).

1.45 Lemma. Let (Ey,Ti, fij)icjer denote an inductive system of topological vector spaces
with locally convex topologies. For each i € I let 8; denote a generating system in E; for
a locally convex topology Ts, on E;, such that for every S; € 8; there exists a set S; € §;
where i < j € I with fi;(S;) € S;. Then the corresponding dual family (E;,Tgi)iel isa
projective system of topological vector spaces with locally convex topologies.
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The analogous result for projective systems (E;)ie1 of topological vector spaces with
locally convex topologies holds as well.

Proof. The algebraic adjoints give us candidates for the dual linking maps by setting g;; :=
f*.

Yle

- Since for every e; € E; the functionals gji(e;) = e; o fi; : (E4, T1) — K are continuous

as compositions of continuous maps, we obtain gji(E;) C E;. It is left to check that these maps
are indeed continuous gj; : (E;,Tgi) — (E;,Tgi). Let S; € 84, then there is an S; € §; with
fi;(Si) € S;j and we have

gjﬂ (S9) = {e; € E; gji(e;) €S9}
= {€} € | Hgji(e}), Sl < 1

|<€;,fij(51)>| <1

}
}

:{e; EE;

= (fij(si))o BN

which means that g;; has to be continuous since the polars S of the sets S; € 8; form a base
of 0-neighborhoods for the topology ts, of E;, i € L. U

1.4 (DF)-Spaces

Our goal is to find alternative “descriptions” of an inductive limit space. Therefore, in view of
Proposition 1.29. (which we will also show to hold with the respective strong topologies for
certain inductive systems in Proposition 2.9, below), we should consider strong (pre)duals of

metrizable (Fréchet) spaces.

1.46 Proposition. (See [MVg7, Lem. 25.5 & 25.6] and [Jar81, § 12.4].)
Let E denote a metrizable locally convex vector space, then its strong dual has the following
properties.
(i) E, has a fundamental sequence of bounded sets.

(i) Ey is o-quasi-barrelled, i.e., if (U )nen denotes a sequence of closed absolutely convex
0-neighborhoods in Ey, such that U := N, cn Uy, is bornivorous (absorbs any bounded
set), then U is also a 0-neighborhood in E;).

1.47 Definition. A locally convex vector space E is called a (DF)-space if it has the properties
(i) and (ii) of Proposition 1.46 (applied to E itself instead of E,).

Indeed, these conditions suffice to obtain further nice properties.
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1.48 Proposition. (See [MVg7, Prop. 25.7 & 25.9] and [Jar81, § 12.4, Thm. 8].)
The dual of a Fréchet space is a complete (DF)-space, and the dual of a (DF)-space is again a

Fréchet space.

Furthermore, the class of (DF)-spaces is stable with respect to formation of Hausdorff
quotients, countable direct sums (hence Hausdorff countable inductive limits), and comple-

tions.
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Problems of General Inductive Limits

The main source of difficulties one is faced with when working with inductive limits is that
the locally convex inductive topology is in general strictly weaker than the linear inductive

topology which in turn is in general strictly weaker than the final topology.

By restricting ourselves to the study of countable locally convex inductive limits we can
circumvent the first problem (see the lemma below). Since this is not a big restriction for most
applications, we will from now on often only consider countable inductive systems (inductive

sequences) of locally convex vector spaces.

2.1 Lemma. (See [Jar81, § 6.6, Prop. 9].)
Let (En, Tn)ne(1,2,..) denote a countable (possibly finite) inductive system of topological
vector spaces with locally convex topologies T,,. Then the linear and the locally convex
inductive limits of (E,,, Tn)n coincide, i.e., the linear inductive limit topology is already
locally convex.

If the final topology of an inductive sequence (En,Tn )y of locally convex vector spaces is
already locally convex, i.e., if it coincides with the locally convex inductive topology, the
corresponding inductive limit E = lim Eq has to be separated as well (which is not clear in
general, see also below), since in this case a set C in E is closed if and only if ;' (C) is closed
in E,, for eachn € N.

2.1 Regularity

Which conditions can we impose on an inductive sequence of locally convex vector spaces,
such that its limit is necessarily separated? We need that the bounded subspace {0} equals {0}.
Every set which is bounded in one of the spaces of the defining inductive sequence is of course
also bounded in the limit space (by Remark 1.24 any 0-neighborhood in the limit has to absorb
it)—if these were all bounded sets of the limit we would be done (since {0} = {0} does hold in all
of the “steps”). This leads us to the following condition of regularity which is also interesting

in itself.
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2.2 Definition (Regularity). An inductive system (Ei,T;)ic1 of locally convex vector
spaces or its limit E := lim. Ej is called regular if for any set B that is bounded in E

there exists an index i € I such that B is already contained and bounded in (E;, ;).
By the discussion preceding the definition we immediately obtain:

2.3 Lemma. (See [FW68, § 23, Satz 5.2].)
The inductive limit of a regular inductive sequence of (separated) locally convex vector

spaces is again separated.

Historically, the study of inductive limits of locally convex vector spaces began with the analysis
of countable strict inductive limits.

2.4 Definition (strict limits). An inductive system (E;, Ti)ic1 of locally convex vector
spaces or its limit (E, ) := li_rr§j E; is called

(i)  strict if fi; : By — fi5(E5) C Ej is a topological isomorphism for each i < j € I (i.e., the
topologies of the steps “fit together”, 1; = T; ‘E ),

(i) hyperstrict if 1; : E; — 1(E4) C E is a topological isomorphism for each i € I (i. e., the
inductive limit topology induces the topologies of its steps, Ti = Tl.).

Hyperstrict limits are obviously strict (since 1; = ; o fi;) and have to be separated, but the
converses don’t hold in general. On the other hand, if we again restrict ourselves to countable

limits, everything is nice.

2.5 Proposition. (See [Bie86, Thm 0.3] and [Sch71, ch. II, 6.4-6.6].)
The inductive limit of a strict inductive sequence (En,Tn)nen of locally convex vector
spaces is even hyperstrict. If, additionally, each E,, is closed in (E;111,Tn+1), the limit is
also regular. Finally, a countable strict inductive limit of complete locally convex vector
spaces is always hyperstrict, regular and complete. (See also Theorem 2.11- below for a
proof of the completeness part.)

One advantage of strictness over hyperstrictness and regularity is that it is easy to check whether
a given inductive system satisfies this property—one doesn’t have to know anything about the
limit topology.

Unfortunately, the class of spaces obtained as strict inductive limits is too small to contain
all (or enough of) the inductive limit spaces occurring in practice. Therefore we will now
introduce other restrictions, which can be formulated only in terms of the inductive system

and still guarantee—as we will see—that the corresponding limit spaces have nice properties.

32 PROBLEMS OF GENERAL INDUCTIVE LIMITS



2.6 Definition (weakly compact, compact, nuclear). A (locally convex) inductive sys-
tem (Ei)ier or (slightly inprecise) its limit E = lim, B is called weakly compact, compact or
nuclear, respectively, if, for each i € I there exists j > i such that the canonical injection

uj : Ey — Ej is a weakly compact, compact or nuclear operator, respectively.

Although these conditions are only restrictions for the linking maps of an inductive system, if

they are fulfilled, we may also assume the corresponding spaces to be of a special type:

2.7 Lemma. (See [Flo71, Satz 6.6 and § 16] and [FW68, § 19, Satz 1.9].)
If (Ei)ie1 is a weakly compact (compact, nuclear) inductive system of locally convex vector
spaces, there exists an equivalent (i. e., it has the same limit) weakly compact (compact,

nuclear) inductive system consisting of Banach spaces.

Proof. Choosingasubset I’ of the index set I, we may assume—without changing the limit—that
all linking maps are weakly compact. For every weakly compact fi; : E; — Ej, 1 <j € I, there
exists an absolutely convex 0-neighborhood Uj; in E; such that fi;(Uy;) is relatively weakly
compact in Ej. Therefore we only have to consider the factorisations

~

ij €ij
fij . Ei — Fij—> Ej,

where Fy; = (E;j )Wo is the Banach space generated by fij(Uij)d C Ej, to obtain
ij

ij)
an equivalent weakly compact system (F,),cp of Banach spaces indexed by p € P =
{(4,j) € I' x I' |1 < j} where (i,j) < (k,1) :& i < k <1 >j > i Its linking maps are
given by maps of the form g j) %) = ?jk oey : Fyy — Fj, wherei < j < k € I', and

compositions thereof. U

This allows us to prove that all countable inductive systems of Definition 2.6 are actually
regular.

2.8 Proposition. (See [Komé67, Lemma 3] and [FW68, § 25, Satz 2.2], or [Flo71, § 7.6].)
A weakly compact (compact, nuclear) inductive sequence (En, Tn)nen With injective linking
maps is regular.

Proof. By Lemma 2.7 there exists an equivalent inductive sequence (F;, )¢y of Banach spaces,
such that all linking maps are weakly compact. Let B denote a bounded subset of the inductive
limit E := M;n E, = mn F,. (if it is contained and bounded in F,, it is also bounded in
some E,, so that it suffices to prove the regularity of (F,, ), cn). Now assume indirectly that

—1

for each n either B isn’t contained in t,, (Fy,) or t;;' (B) is unbounded in F,.

We will construct a sequence of absolutely convex 0-neighborhoods U, in Fy (where
ki < k2 < ...) and points x,, € B, such that

(i) fr.x, (Uy) C Uy forall m > n,
(ii) fi,1(Uy) is weakly compact in Fy for all 1 > k,,,

(iii) xq, %xz, ey %xn Z u, (Uy).
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Once these are constructed we obtain a contradiction in the following way: Since B is bounded,
we have that the sequence %xn converges to 0 in E as n goes to infinity. On the other hand,
U =N, k, (Uy) is a 0-neighborhood in E that, because of condition (iii), doesn’t contain

any of the points %xn.

Construction of x,, and U,: Formn =1 = k; let 0 # x; be a point of B. By our assumption
we may choose U, to be a multiple of the closed unit ball Ky, in Fy, such that y, (U;) doesn’t
contain x1. Of course fy,1(Ll1) is weakly compact in each F; for 1 > k;.

Now let x1, ..., X, and Uy, ..., U;,, be already constructed. Choose k,,+1 > ky, such that
X1y ey Xn € U, (Fx,. ). Then we have

1

N

inf {H%L[JH (Xm) quk m<n, ue fix,,, (Un)} =d>0,

n+1

since -x, ¢ b, (Up) forall T < m < n and fy U, ) is weakly compact and hence

™ wa

closed in the Banach space Fi ., ,. Now we can set
Wnyq = r(%Kkn+1 U fknkn+l (un))

Obviously U, 11 is a 0-neighborhood in Fy and satisfies condition (i) above. It is also

n+1

weakly compact in Fy for 1 > k11 because both %ka, and fy, U,,) are bounded, such

(
n—+1
that we have condition (ii). By assumption we can again find an x,, 1 € B with %Hxnﬂ ¢
Uy (Ungr).

Finally, to obtain condition (iii), it remains to be shown that also %xm ¢t (Ungr)
U,,, then we have

form < n. Lety € K and u € fi x

n—+1 n—+1

1,1 d 1,1 d d
b, Oem) —w =2yl =lque Gem) —ull, =5yl =d—=3>0,
such that we indeed obtain

ol (Xm) ¢ %Kkn+1 +fk“kn+1 (un) 2 Ungr.

1,
m Kn1

2.2 Dualities Revisited

Incidentally regularity of the inductive limit is also sufficient to finally obtain a topological

version of Proposition 1.29:.

2.9 Proposition. (See [FW63, § 26, Satz 2.1].)

Let (Ei)ie1 denote a regular inductive system, then we have the (topological) identity

(L Ey), = Hm(E;). (2.1
)

)
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Proof. By Proposition 1.29.- we already have algebraic equality. The limit on the right
hand side also makes sense topologically since the family ((E; )’b)]. ¢1 1s a projective system by

Lemma 1.45:. The 0-neighborhoods of (lﬂ; Ej);9 are generated by the polars B° of bounded
sets B of E := mj Ej. By the regularity of the inductive system, there exists a set B; C Ej,
bounded in Ei, such that B C 1;(B;). It follows that

B° D (u(B1))” = {ue Ey | {u(B),u) <1}
={uck, \ |(Bs, i (w)] < 1}
= {ueE, | m) € B} =m'(BY),

which means that B is also a 0-neighborhood of the projective topology of |i L ), = E.
Therefore the projective topology on E' must be stronger than the strong topology of E,. On
the other hand, all the maps 7t; : E, — (E;),, are continuous, and the projective topology is the

weakest topology on E’ with this property. Consequently the two topologies have to coincide.
0

To understand the topological analogue of the dual version, Proposition 1.30:, we have to
introduce the concept of inductive duals (see [Bie86, pp. 84f]). Given an arbitrary locally convex

vector space (E, T), we want to construct an inductive limit topology t(E', E) on its dual E'.

The polar U° of a 0-neighborhood U of (E,T) is an absolutely convex o(E’, E)-compact set
in E', since it is equicontinuous, it is also B(E', E)-bounded. Therefore we may consider the
associated Banach space Ey,.. Taking all such spaces we obtain an inductive system whose limit
algebraically coincides with E', although its topology ((E', E) will in general be strictly stronger
than the strong topology. We will write E. for this inductive dual (E',(E', E)) of (E,T).

2.10 Proposition. (See [Kri, Lem. 3.27]).
Let (Ei)ic1 denote a reduced projective system of locally convex vector spaces, then we
have the (topological) identity

(mE, i), = lim(E) ). (2.2)
BN

Proof. In Proposition 1.30.- we already proved the algebraic equality. Furthermore, by
Lemma 1.45:, we obtain that the right hand side makes sense as a topological inductive limit
with injective linking maps. Now recall that a base of 0-neighborhoods of E := mlj E; is given
by the the sets

N

ie]
where | € JF(I) is a finite index set and each U; is a O-neighborhood in (E;, ;) for i € J. Since
it suffices to consider a base of 0-neighborhoods in the construction of the inductive dual we
now only need to consider the polars of these sets, i. e., sets of the form Uj¢j (71(1 (Ui)) °, By
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Remark 1.24. we now obtain a base of 0-neighborhoods for the inductive dual topology of E
by taking the absolutely convex hulls of arbitrary unions of such sets,

(U w))
i€l
where each Uj is a 0-neighborhood in (Ei, ;i) fori € 1.

On the other hand, Remark 1.24: also tells us that every 0-neighborhood of H_T)TL].(EJ‘);)
contains a set of the form

r(LGJI (B )).
for bounded sets B; in (Ei, 7).
To see that the inductive topology on E’ as induced by lmj (E;),, must be weaker than the
inductive dual topology of E,, it therefore suffices to prove that

1.30

(1 (Us))° € et (US) = ke (UD) 27 1 (U2) € i(BY)

1

for a 0-neighborhood U; C E; with B; C U;.

Soletu € (m;'(UWy))°, then ‘(7{{1 (Uq),u)
ticular <ker ﬂi\E,u> = 0. Thus there exists u; : 71;(E) — K with u; o 71; = u and therefore
’<Ui N7 (E),ui )| < 1 with respect to (7 (E), 7 (E)"), that is, u; € (Ui N m(E))o. Since m; (E)
is dense in E; we may extend u; to u; € U such that we indeed have u € 7t} (UY).

< 1 with respect to (E,E') such that in par-

On the other hand, all the maps «; : (Ei)i) — E, are continuous and the induced inductive
topology on E’ is the strongest topology with this property. Therefore the two inductive
topologies have to coincide and the assertion follows. ]

2.3 Completeness

In Proposition 2.5.- we already saw that (separated) countable strict inductive limits of com-
plete locally convex vector spaces are complete. In this section we will try to find further
conditions for the completeness of an inductive limit, such as the following theorem by Raikov
which is basically a slightly generalized version of the usual proof of the completeness part

of Proposition 2.5

2.11 Theorem (Raikov). (See [Flo71, § 4, Satz 1] and [Rais9, Thm. 1].)
Let (E, T) denote a (not necessarily separated) topological vector space with locally convex
topology T. If there exists a sequence of absolutely convex sets (Ky, )neny such that
(@ K,C %KnH foreachn € N,
(b) E=U Ky,
(c) an absolutely convex set V C E is a 0-neighborhood of (E, 7) if, for each n € N, the
set VN Ky, is a 0-neighborhood of (K, Tl ),
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then (E,T) is complete if every Cauchy filter contained in a K,, converges in (E,T) (in
particular if all (K, T/ ) are complete).

Proof. Let F denote a Cauchy filter in (E, t) and U the neighborhood filter of 0. Then F — U is
again a Cauchy filter base in (E, T) which converges if and only if F converges (if U is a given
0-neighborhood of (E, ) and F € F such that F — F C U, then (F4+ U) — (F+ U) C 3U). We
show that there exists ann € N such that K,, N (F—U) #@ forallF—U € F—U.

Suppose that this were not the case. Then, for each n € N, we would obtain a set F,, € F
and a 0O-neighborhood U,, € U of (E, ) such that (F,, — U,) N Ky = @ or, equivalently,
(U, + Kn) NF,, = @. Consider the set

V= ﬂ (U1 + Ky
k=1

Since 0 € Ky, property (a) implies K;, C Ky, + K, € K41, so that we obtain

n—1
VOKn = () (Ut +Kic) 0Ky,
k=1
which means that VN K,, is a 0-neighborhood of K,,, equipped with the topology induced
by (E,T). Now, since this holds for each n € N, we can use assumption (c) to see that V has to
be a 0-neighborhood of (E, T) as well.

Using the Cauchy-property of F, we obtain the existence of a set F € ¥ and a point x € E
with F C x + V. By property (b) we can find an n € N such that x € K,,_1, thus

F c V+ an1 c (un +an1) +an1 c un +Kn-

Comparing this to our indirect assumption we arrive at a contradiction, since @ # FNF,, C
(Un, +Knp) NFny = @.

Thus there really exists an n € N such that K, touches each set of the filter base ¥ — U. But
then also (¥ — U) N K,, is a Cauchy filter base, since for Fy,...,Fx € Fand Uy,...,U, € U we
have

k
(((Fi=U) NKy) 2 (F=U) NKy
i=1

where F:= N¥_; Fyand U := Nk _; U; form an element F—U of F—U such that (F—U)NKy, # @.
But this means that the Cauchy filter (¥ — U) N K,, converges in (E, T), and therefore F has a

limit in (E, T) as well. ]

In Lemma 2.7 we saw that weakly compact inductive limits are in fact inductive sequences of
Banach spaces. Therefore we will from now on often consider general (LB)- and (LF)-spaces,
i.e., separated inductive limits of sequences of Banach or Fréchet spaces with injective linking
maps, respectively. In that setting, the following theorem of Grothendieck will be of great
assistance.
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2.12 Theorem (Grothendieck). (See [Kot69, § 19, 5.4] and [MVg7, Satz 24.33].)
Let F denote a Fréchet space and E = lim Ena (LF)-space. Then every continuous and
linear map f : F — E factors through a step of E, that is, there exists ann € N and a
continuous and linear map g: F — E,, such that f = go .

Proof. For each k € N set

Hy :={(x,y) € Fx Ex | f(x) =y € Ex}.

Then Hy is a closed subspace of the Fréchet space F x Ey, therefore also a Fréchet space.
Consider the continuous projections 7y : Hy, — F, 7 (x,y) = %, such that 7 (Hy) = ' (Ey).
By assumption we have F = Ug° ; i (Hy ), therefore Baire’s category theorem implies the
existence of an n € N such that 7, (Hy,) is not meagre in F. Now we can apply the theorem
of Banach-Schauder (see [K6t69, § 15, 12.1] or [MV97, Satz 8.4]) to obtain 71, (Hn) = F, i.e,,
f(F) C E,. Furthermore, f : F — E,, is continuous since its graph H,, is closed. [l

As a first application, this allows us to prove that—at least in the case of (LF)-spaces—regularity

is necessary after all.

2.13 Proposition. (See [Flo71, § 5, Satz 4].)
If an injective inductive sequence of Fréchet spaces generates a sequentially complete

(LF)-space, it has to be regular.

Proof. Let B C E denote a bounded set of E which we may assume to be closed and hence
sequentially complete. It generates a Banach space, which by Theorem 2.12 is continuously
embedded in a step E,, of E = li_n)ln En. Thus B is also contained and bounded in E,,. O

Of course, we would like to have the converse as well. For (LB)-spaces we can use Raikov’s
Theorem 2.11 to obtain the following first step in this direction.

2.14 Proposition. (See [Flo71, § 4, Satz 3] and [Raisg, Thm. 3].)
An (LB)-space is complete if and only if it is quasi-complete (if every bounded, closed subset
is complete).

Proof. (&) Let (E,1) = H_n>1n(En, T ) denote an (LB)-space, and let B, be the closed unit

ball of the Banach space (E, 7). We will try to apply Theorem 2.11+ for K;, := 2™B,,.

Since, for each n € N, we may assume B,, to be continuously injected into B, 1, we have
the first two conditions (a) and (b) necessary for Theorem 2.11+.

To prove (c), let V C E be an absolutely convex set such that VN K;, is a 0-neighborhood
of (Kn, Tk, ) for each n € N. By the injectivity of the inductive limit, VN K;, already has to
be a 0-neighborhood of (K, Tnl, ). Since Ky, is a closed 0-neighborhood of (Ey, Tn), we see
that VN K,, and hence VN E,, are also 0-neighborhoods of (E,,, T,,). This holds for all n € N,
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which means that V has to be a 0-neighborhood of the inductive limit (E, t), exactly what
condition (c) demanded.

Therefore, to apply Theorem 2.11- to see that (E,T) has to be complete, we only have
to show that t-Cauchy nets contained in a K,, converge in (E, ). But this is clear by the

quasi-completeness of (E,T) since the sets K;, and hence their Cauchy nets are bounded. [

Unfortunately, Grothendieck’s question whether there are (regular) (LB)-spaces which are not
quasi-complete is still open (although there have been some not well-accepted claims, see for
example [KMg3]). Therefore we have to use additional assumptions to obtain completeness of

(LB)-spaces. One way is to use the following notion of boundedly retractive inductive limits.

2.15 Definition (boundedly retractive). An inductive sequence (E,, Ty )nen of locally
convex vector spaces with injective linking maps or its limit (E, 1) := lim En is called
boundedly retractive if, for each bounded subset B of E (with respect to the inductive limit
topology T), there exists an m € N such that B is not only bounded in (E,, T ), but also
both (E, ) and (E,, Trm ) induce the same topology on B.

This condition obviously implies quasi-completeness of the limit if each space of the inductive
sequence is complete. Hence, by Proposition 2.14, boundedly retractive (LB)-spaces are

complete.

Using the following similar condition for general locally convex vector spaces, we obtain
that an inductive limit of normed spaces is boundedly retractive if and only if it is regular and
satisfies the strict Mackey convergence condition.

2.16 Definition. A locally convex vector space (E, T) satisfies the strict Mackey convergence
condition if, for each bounded set A in (E, T) there exists a closed and absolutely convex
bounded subset B of (E, T) which contains A such that both (E, T) and the Banach space Eg
associated to B induce the same topology on A.

Returning to the special case of weakly inductive limits (which had the advantage of not having
to know about the inductive limit topology beforehand), we can now show that they are always

complete.

2.17 Proposition. (See [Flo71, 7.6].)
A weakly compact (compact, nuclear) inductive limit of a sequence (Ey,, Tn Jnen of locally

convex vector spaces with injective linking maps is complete.

Proof. In Lemma 2.7 we already saw that this is actually an (LB)-space, therefore, by Propo-
sition 2.14, it suffices to prove quasi-completeness of (E, ) := lim En.
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Let B denote a bounded subset of E, then the regularity of the inductive sequence (which
we obtained in Proposition 2.8 ) implies the existence of an n € N such that B is contained
and bounded in (E., Tn).

Using the weak compactness of the inductive sequence we obtain another index m € N such
that the embedding of E,, into E,, is weakly compact, which means that B is actually relatively
weakly compact in (Ey,, Ty, ), and therefore also in (E,T). Thus (E,T) is semi-reflexive and

consequently quasi-complete (see Proposition 1.44:). U

We actually proved that weakly compact inductive limits are semi-reflexive. Since these spaces
are also barrelled (because Banach spaces are obviously barrelled this follows from Lemma 1.42
and Lemma 2.7.), we even have reflexivity, which means that these spaces are the strong duals
of Fréchet spaces (by Proposition 2.9« the strong duals of regular (LB)-spaces are Fréchet). Thus,
summarizing the results on weakly compact inductive limits so far, we obtain the following.

2.18 Theorem. (See [Bie86, Thm. 2.4, p. 61f].)
A weakly compact injective inductive sequence (E,,)n¢en of locally convex vector spaces is
regular, and its limit E := lim Enisa complete reflexive (LB)-space. The dual projective
sequence ((En)}, )nen is again weakly compact, its limit is even a reflexive Fréchet space,
and we have the duality

E, = (UmEn), = Him(Eny, (23)

such that E is the strong dual of this reflexive Fréchet space.

What can be said about the completeness of an inductive limit if we know that every step is
actually the strong dual of another locally convex vector space? In other words we now change
from the setting of Proposition 2.9: to its dual version, Proposition 2.10: . As it will turn out,
all inductive duals of metrizable locally convex vector spaces are complete, but before showing

this, we need to understand the concept of bornologification.

2.19 Lemma & Definition (bornologification). (See [KMg7, Lem. 4.2] and [Jar81, § 13.3,
Prop. 1].)
Let (E, T) denote a locally convex vector space, then the following topologies on E coincide,
(i) the strongest locally convex topology having the same bounded sets as T,
(if) the inductive topology with respect to the inclusions Eg — E, where B € B runs

through all bounded (closed) absolutely convex subsets of E.

This topology is called the bornologification T of T, we also write EP°" for (E,t>°"). It
is always bornological and its continuous seminorms are exactly the bounded seminorms
of (E,T). An absolutely convex set is a 0-neighborhood in EP°" if and only if it is bornivorous
(i. e., if it absorbs bounded sets).
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Proof. Denote by (5 and 1 the topologies of (i) and (ii), respectively. Then, by the universal
property of the inductive topology, T must be stronger than 7, since the inclusions of the

normed spaces Eg — (E, 7(;)) are all bounded and hence continuous.

On the other hand, since every bounded subset of (E,T) is contained in some absolutely
convex bounded set B € B, it also has to be bounded in the inductive topology 1) such that
both topologies have the same bounded sets as (E, ) and hence have to coincide.

A seminorm p on (E, 1) is bounded, if and only if p(B) is bounded for all bounded subsets B
of (E,T), which is exactly the case if p|¢  is a bounded (or, equivalently, continous) seminorm
on Ep for all B. Therefore, using (ii), the bounded seminorms of (E, T) are exactly the continuous
seminorms of the bornologification EPor. Furthermore, this also means that every bounded
seminorm on EP°" is actually continuous, such that the bornologification is indeed bornological.
An absolutely convex subset U of E is a 0-neighborhood for ™ = 1 if and only if U N Eg
is a O-neighborhood of Ep or, equivalently, U absorbs B for all B € B, i.e., if and only if U is

bornivorous. O

2.20 Proposition. (See [Jar81, § 8.5, proof of Prop. 6].)
Let (E, 1) denote a metrizable locally convex vector space, then the inductive dual topol-
ogy (E',E) on E’ equals the bornologification (E’, E)*°" of the strong topology.

Proof. We first remark that ((E', E) is always stronger than B(E’, E)**" by definition of the
inductive dual topology and 2.19- (ii), since t(E', E) is the inductive topology with respect to
only some of the mappings of 2.19(ii): . In particular, every bounded set of E is also bounded
in (Ey, )" or Ey,.

Now, if we assume that (E, T) is metrizable, then each bounded set B of Ei, has to be contained
in the polar U° of a 0-neighborhood of (E,T) and hence is also bounded in E;. (Since (E,T) is
metrizable we can choose a countable, decreasing basis of 0-neighborhoods (U )nen. If we
can not find a 0-neighborhood U with the desired property, then we also have B € nUs, for
all n € N. Therefore there exist u,, € B and x,, € Uy, such that [{(u,,x,)| > n foralln € N.
On the one hand, (xn )nen is a 0-sequence and hence bounded in (E, T), but on the other hand
the B(E’, E)-bounded sequence (U )nen is not absorbed by the 0-neighborhood {x,, | n € N}°

of E,, a contradiction.)

This means that if (E, T) is metrizable, the spaces E}, and E, have the same bounded sets,
such that we indeed obtain ((E', E) = B(E’, E)*" by 2.19(i): . ]

To see that these spaces are actually complete, we will make use of the following simple fact.

2.21 Proposition. (See [Jar81, § 3.2, Thm. 4].)
Let 77 and T2 be two linear topologies on a vector space E such that 7 is stronger than T,
and such that (E, T;) has a base of 0-neighborhoods consisting of T,-closed sets only.
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Then every T1-Cauchy net or filter which converges to a € E with respect to T, also
converges to a with respect to ;. In particular, every (sequentially) complete subset of
(E,T2) is also (sequentially) complete in (E,17).

2.22 Theorem. (See [Kot69, § 29.4] and [Jar81, § 13.4].)
Let (E,T) denote a metrizable locally convex vector space. Then its inductive dual E, =
(E;j)b"r has a base of B(E’, E)-closed neighborhoods of 0 such that it is always complete.

In particular, the inductive limit of an injective inductive sequence of strong duals, as in

Proposition 2.10<, is also always complete.

Proof. Since Ey, is complete (as the strong dual of a metrizable, hence bornological space: a
given Cauchy net converges when restricted to an absolutely convex bounded set which means
that its limit candidate is a locally bounded and therefore continuous linear form on E) we
only have to find a base of 0-neighborhoods of (E;, )Pr which consists of B(E', E)-closed sets

in order to obtain the assertion using Proposition 2.21«.

Since (E, T) is metrizable we obtain a countable base of 0-neighborhoods (U;, ) en which
provides us with a fundamental sequence of absolutely convex bounded sets (B, := Uj )nen
in E, (see for example [MV97, Lem. 25.5], also a consquence of Proposition 2.20- : the bounded

sets occurring in the construction of the inductive dual suffice to obtain all bounded sets).

So, if U is a O-neighborhood in (E; )", it is actually an absolutely convex bornivorous set
in EL, such that we can always find A,, > 0 with A,B;, C %U.. Now define Vi to be the
absolutely convex hull of U]ﬁ:o AnBn such that we have 2V C U for V := Uyen V. We are
done if we can show that the algebraic hull Nx~1 AV of V contains the 3(E’, E)-closure V since
then V C 2V C U such that all sets of the form of V (for arbitrary A,, > 0) provide us with a
base of 0-neighborhoods of (E )P consisting of strongly closed sets.

For this purpose, assume u ¢ Nj~1 AV. Then there exists a A > 1 such that u ¢ AV and
therefore u ¢ AVj for all k € N. Hence there exist yx € V2 C E” with (u,yx) > A. Since
(Vid)ken is still a fundamental sequence of bounded sets of EL, this means that the sequence
(Yx)xen is bounded in Ey, such that it is an equicontinuous and hence (by Alaoglu-Bourbaki)
relatively o(E”, E;,)-compact subset of E”. Thus there exists ay € E with (1,y) > A > 1 and
y € N2, Vi = V°. This, on the other hand, means that u cannot belong to V°° which is (by
the Bipolar Theorem 1.36-) the weak closure of V, in particular u also can’t be an element of

the strong closure V, which was to be shown. ]

2.4 The Subspace Problem

Given an inductive limit E = lim. B of locally convex vector space and subspaces F; C E;
of each step, i € 1, the inductive limit F = H—Trhel Fi is a linear subspace of E. Does it also have
to be a topological subspace?
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One might be led to believe that this follows directly from the definition of the inductive
limit topology. But this only gives us a continuous injection F — E, it could very well be the
case that F carries a strictly stronger topology than the one induced by E, i.e., that F is a strict
topological subspace of E. The explanation is simple: E carries the strongest locally convex
topology which makes the injections E; — E continuous while for the topology of F we just
require the injections F; — F C E (of much smaller spaces) to be continuous such that it can
be strictly stronger. Actually the problem is even worse—the duals of F with respect to the
considered topologies need not even coincide. Therefore the following properties are desirable.

2.23 Definition. (See [Bie86, § 3, Def. 16].)

Let (E,T) = li_nhel (Ei, Ti) denote an injective inductive limit of locally convex spaces and

let F be a linear subspace of E. We put F; := F N E; and equip each of these spaces with the

topology Ti := Tilr, induced by T, i € I. Then the space F is called

(i) stepwise closed if each (Fi, T;) is closed in (Ei, 7;) for alli € I,

(ii) a limit subspace of E if the inductive limit topology T of mieI(Ei,Ti) induces the
inductive limit topology T of mieI(Fi, Ti) on F,

(iii) well-located in E if the dual of F is the same with respect to the restriction of the
inductive limit topology T of E and the topology of lim, _, (F;, %), i.e., if (F, ) =
(F,©)".

2.24 Remark. Any closed linear subspace F of E = lim,  Eiis obviously stepwise closed,
and each limit subspace is well-located. Under additional assumptions one can also obtain
some results in the other direction (see [Bie86, § 3, Prop. 16] and [Flo8o, § 5]):

LetE =lim En denote a countable inductive limit of locally convex vector spaces.

(i) If the inductive limit E is weakly compact, then each stepwise closed linear subspace
is closed and well-located.

(if) If the inductive limit E is compact, then a stepwise closed subspace even has to be a

(closed) limit subspace.

(iii) If all the steps E,, of E are metrizable Schwartz spaces, then every well-located subspace
is also a limit subspace.

For our applications we will need a stronger version of 2.24(ii) which we will now prove using
the following open-mapping lemma of Baernstein (which can be proven by applying Ptak’s

open mapping theorem to the transposed mapping with respect to the strong duals).

2.25 Theorem (Baernstein). (See [Bae71, § 2, Lemma] and [Jar81, § 12.5, Thm. 10].)
Let E denote a separated locally convex vector space which is semi-Montel (i. e., every
bounded set is relatively compact) and let F denote a (DF)-space. If f : E — F is a continuous
linear map such that f~'(B) is bounded in E for each bounded set B of F, then f is open and
hence an isomorphism E — f(E) C F.
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2.26 Corollary. (See [Bie86, § 3, Cor. 19].)
Let (E,T) = mn(En, T, ) denote a countable regular inductive limit of (DF)-spaces with
injective linking maps. Let further F be a linear subspace of E and equip the spaces F,, :=
F N E, with the topology T, := Tnlf, induced by T,, such that we may take the inductive
limit topology T of li_n}ln(Fm Tn) for F.
Now, if (F, ©) is a semi-Montel space, then F is a limit subspace of E, i.e., T = 7|¢. This
condition is satisfied, in particular, if (Fy,, Th )nen is @ compact inductive sequence or if all

the spaces (Fn, Tn) are semi-Montel.

Proof. By definition of the inductive limit we obtain a continuous linear inclusion mapping f :
F — E. Also note that (F,,,T,) is again a regular inductive sequence. Moreover, regular
inductive limits of semi-Montel spaces are clearly again semi-Montel just as separated countable
inductive limits of (DF)-spaces are again (DF).

Hence, in order to apply Theorem 2.25., we just have to consider a bounded subset B
of E=lim E,. Since E is regular there exists an index n € N such that B is even contained
and bounded in (En, Tn ). Therefore also B N F is bounded in (Fn, %), i.e., f~'(B) is bounded
inF= Mn F,.. The assertion now follows from the theorem. O
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Projective Descriptions of Weighted
Sequence Spaces

Our goal is to find systems of seminorms describing the inductive limit topology of some
general types of countable inductive limits of locally convex vector spaces. In other words, we
want to describe the limit space by trying to recognize it as a projective limit of other locally
convex vector spaces, i. e., by giving a projective description.

We start our quest—guided by [Bie86]—by looking at the most simple general spaces, Kéthe’s
sequence spaces, and then try to describe some inductive limits of such spaces projectively.

3.1 Definitions and Preliminaries

3.1 Definition (Kothe Sets). Let I be a (general index) set. A set A of real-valued functions
on I (I-sequences) is called a Kothe set, if
(K1) VielVa=(ai)ic1 € A: a; =0
(K2) Va,be Adce A: max(ai,by) <ci,Vie T
(K3) Viel3daecA: a;>0.

3.2 Proposition (Kothe Sequence Spaces). Let A be a Kothe set of sequences over the

general index set I. Then the space

A(A) == (Nier € C' | Va € A: (aid)ier € 1D}
is a Hausdorff locally convex vector space, called the Kéthe sequence space associated with A.

Proof. The family (qo)qca obtained by setting qq(x) := supicrailxil, qq : C! — C U {00},
is a system of seminorms (by (K1) and (K2)) generating a locally convex topology on A(A)
which is Hausdorff by (K3). U

We will look at spaces similar to A(A) for countable Kéthe sets A, i. e., using families A of the

form ((a%“))iel)neN that satisfy (K1)-(K3). By going over from a!™ to a'V) + ... + a(™), we
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can assume this sequence of sequences to be (pointwise) increasing. If we additionally require

(n

the sequences a(™ to be strictly positive (so we obtain norms instead of seminorms), the Kéthe

set A is called a Kothe matrix:

3.3 Definition (Kothe Matrix). Let I be a general index set. A (pointwise) increasing se-
quence A = (a™), ¢y of strictly positive functions a(™) : T — R (I-sequences) is called a
Kothe matrix.

3.4 Proposition (Kothe Echelon Spaces). Let A = (a(™), ¢y denote a Kothe matrix over
the index set [, and let T < p < co. Then we can define the Kothe echelon spaces

AP(A) = {x = (xi)ic1 € C' | ¥n e N: gh(x) := (Z(a?‘)lxil)p)% < oo},

icl

A®(A) = {x = (xi)ie1 € C! ‘Vn € N: g% (x) :=sup a£“)|xi\ < oo} and
i€l
AN(A) = {x = (xi)ie1 € C! ‘Vn eN: (agn)xi)iel tends to 0 on I}.

(An I-indexed sequence (i)ic1, &i € C is said to tend to O if nearly all its elements are
arbitrarily small, i. e., if for each ¢ > 0 there exists a finite subset ] = J(¢) of I such that
|oi| < e foralli e I\].)

When considered together with the corresponding sequence (qh)ncn of norms (and

setting q% := q%°), each AP is a Fréchet space, 1 <p < coorp = 0.

Proof. Obviously all occurring qh are norms. The completeness of the spaces follows from

the completeness of the £P-spaces by the following remark. U

3.5 Remark. Simple examples of such Kothe echelon spaces are the “diagonal transforms”
of the classical {P spaces. Let a : I — R be a strictly positive function, then the constant
sequence (a),¢n is a Kothe matrix. The associated spaces {P(a) := AP (a) are a-diagonal
transforms of the spaces £P (I) (i. e., £P(I) = £P(a) via (xi)ie1 — (ai-xi)ier), for 1 < p < o0
or p = 0 (where we set {°(I) := co(I)).

By looking at the definition of the Kothe echelon spaces AP(A) associated to a general
Kothe matrix A, we obtain that they can always be identified both algebraically and topo-
logically with projective limits of the Banach spaces (P (a(™):

AP(A) = lim (P (a(™).
e
So the Kéthe matrix can be interpreted as a sequence of “weights” that are used in the

construction of the Kothe echelon spaces out of ordinary £P-spaces.

This also motivates the following definition of co-echelon spaces.
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3.6 Definition (Kothe co-echelon spaces). Let V = (v(™)) denote a (pointwise) decreas-
ing sequence of strictly positive functions vim T 5 R andlet 1 < p < oocorp =0. Then

we can define the Kothe co-echelon spaces

kP (V) := mﬂp (vin)

(again setting €° = cy).

Obviously these spaces will be our spaces of interest—we’ll try to find simple projective de-
scriptions. But before, we still need to justify the name co-echelon space. For that purpose, fix a
Kothe matrix A = (a(™),,cp on some index set I. The simplest way to obtain a corresponding

decreasing sequence of “weights® V = (v(™), <y is to set v(™) = a(‘m (this being another

reason we wanted the sequences to be strictly positive).

Now let 1 < p < oo or p = 0. Since AP(A) is dense in each {P(a™), n € N (the
space coo of all sequences that are eventually null is obviously contained in AP (A) and dense in
every (P (a(™))), the projective limit AP (A) = Mn ¢?(a™)) is reduced (cf. Remark 1.22(ii) ).
Therefore we can apply the duality of projective and inductive limits (Proposition 1.30<) to
obtain the algebraic identity

WIA) = (Him e (a™)) = Lim P (a™) = Lim 9(v(M) =k9(V), (31)

where % + % =1,q=ocoforp=1and q =1 for p =0. Analogously, using the duality of
inductive and projective limits (Proposition 1.29: ), we obtain

KP(V)' = (lim 0P (v(M)) = lim (P (v(V)' = Jim €9 (a(™)) = AI(A), (3.2)

again for 1 < p < co or p = 0 where % + % =1, q = oo or q = 1, respectively.
Are these algebraic isomorphisms also topological isomorphisms? The next Proposition is a

first step towards an answer to this question:

3.7 Proposition. (See [Bie86, § 2, Prop. 9].)
Let A = (a(™)) denote a Kéthe matrix and V = (v(™)) any decreasing sequence of strictly

positive functions on an index set I, also let 1 < p < 0.

(i) The echelon space AP(A) is a reflexive Fréchet space and the co-echelon space kP (V)
is a (regular) complete reflexive (LB)-space.

(i) With g such that % + 15 =1, the following topological vector space dualities hold:

’

(?\p(A))b =k9(V), where V= (v"V), n withv(®) := ﬁ, and

’

. N 1
(kp(\/))b =\4(A), where A = (a™),cn with al™) := WEYE
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Proof. Since the building blocks €7 (a(™)) and ¢P (v(™)) are all reflexive if 1 < p < oo, the pro-
jective sequence ({P(a(™)), ey and the inductive sequence (¢P (v(™))), ¢ used in defining the
echelon and co-echelon spaces, respectively, have to be weakly compact (see Proposition 1.44:-).
Therefore the assertions follow easily from Theorem 2.18. and the discussion preceding this
proposition. Il

Unfortunately our general theory of chapter 2. does not suffice to obtain similar results for
the limiting cases p = 0, p = 1 and p = oo, some of them actually don’t hold at all (all the
other statements which are not covered by the following counterexamples do hold and will be

proven in the next sections).

3.8 Counterexample (Grothendieck-Kothe). (See [Bie86, § 2, Prop. 10(b)] and [K6t69,

§31.6-7].)
Let A = (a!™),.cn denote a Kéthe matrix on I:= N x N defined by

IR 1 i>n+1,

and set v(™) = ﬁ to obtain the corresponding dual decreasing sequence V = (v(™)), ¢y
of weights. Then we have the following.

(i) Although AT(A)" = k*°(V) holds algebraically, the strong topology of (A’ (A));j is
strictly weaker than the inductive topology of k> (V).

(ii) The inductive sequence (co(v(™))en is not regular and its limit k° (V) = li_n}ln co(vi™)
is (quasi-)incomplete.

Proof. (i) Let T denote the usual inductive limit topology of k*(V) and let T denote the
strong topology induced on k**(V) by (A’ (A));. Now set (n € N)

Bu = {x e k®(V) | sup W{Vixisl <1},

(i,j)el

then, by Remark 1.24, the sets of the form U = F(UneN Can), where ¢, > 0, form a base of
0-neighborhoods in (k*°(V), T) which we will denote by U. To show that T is strictly stronger
than 7', we have to find a T-0-neighborhood which contains no T -0-neighborhood. To this
end, let

U = r(nLGJN %Bn),

and note that Uy contains no element of the set
A= {xe€k=(V) ]\ﬁ eNFHeN: il >2}).

(If uw € Up N'A, then there exists an N € N such that u € r(UT]\L]:] 1;Bn) C Uy. Therefore, for
i> N, we have Juy ;| < ZN

n=1

foralli > N andj € N, a contradiction tou € A.)

% where Z:Zl lotn| < 1, which means that actually Ju; ;| < 1
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A base of 0-neighborhoods for (k> (V), ) is given by the polars of A (A)-bounded sets. But
every bounded set of A'(A) is contained in a bounded set of the form

) {x N A | Ziger ai gl < 2o} = () (enBn)® = (r( U C“B“)>

nenN neN neN

for suitably chosen ¢y, > 0, such that we only have to take the bipolars U°° of the sets U € U

to obtain a base of 0-neighborhoods for (k*(V),T').

Let V be a given 0-neighborhood of (k*®(V),T'), such there are ¢, > 0 with U°® =
(F(UnGN Can))oo C V. We want to show that Uy cannot contain U°°. Denote by e(") ¢ C!
the (i,j)-th unit vector ie, elg = 0ik * 05,1. We can always choose k. € N large enough

such that 2n*+1e(™kn) ¢ ¢, B,,. Consequently we also have

3 2 e (e cu

Thus the weak limit 2}, _,, e(™*») of this sequence (as N tends to infinity) belongs to U°® C
V, but not to Uy (since it is an element of A). Hence 7 is indeed strictly stronger than T’

(ii) We first show that the (LB)-space k°(V) = li_n}n co(v!™) is not regular. Let B denote
the set of all vectors b(™) € k°(V), defined as follows (n € N)

BOTlo iznl.

We obviously have b(™) € co(v(™) although b(™ ¢ co(v(™~1)), such that B is not contained in
any step co(v(™) of k°(V) even though B C k°(V). To see that B is bounded consider the base
of 0-neighborhoods U of k°(V) consisting of the sets U = F(UneN ann), defined as above.
They all absorb the set B such that it is bounded in k°(V), hence the inductive limit cannot be
regular.

Also, if k°(V) were (quasi-)complete, the closed absolutely convex hull I'(B) of the set B (and
thus B itself) would have to be a subset of one of the steps co(v(™))—which we already deemed
impossible—since as it would be complete, we could apply Grothendieck’s Theorem 2.12< to

its associated Banach space (k°(V))rs). O

By viewing the situation from the perspective of Proposition 2.10.- we obtain that

’

(AP(A)), =k9(V)

L

for 1 < p < co or p =0 and corresponding 1 < q < co. By Proposition 3.7- this means that

for 1 < p < oo the inductive dual of AP is the same as its strong dual,

’

(W (A), = (\P(A)),,
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i.e., the strong dual (7\13 (A));; = k9(V) is bornological. Furthermore, Counterexample 3.8(i) is
now also an example for a space where the inductive dual topology is indeed strictly stronger
than the strong dual topology.

On the other hand, this perspective allows us to see that k> (V) = ()\P (A)),L is at least always

complete (by a simple application of Theorem 2.22:).

3.9 Corollary. LetV = (v(™), < denote a decreasing sequence of strictly positive functions
on an index set I, then kP (V) is complete forall 1 < p < 0.

3.2 Projective Descriptions

We arrived at our actual goal—finding projective descriptions of the Kothe co-echelon
spaces kP (V), i.e., simple descriptions of their families of continuous seminorms. As a first
step, we will try to find a bigger space containing kP (V) that can be described as a projective
limit of £P-spaces.

Let 1 < p < ooorp = 0 (and £° := ¢). For each building block ¢P (v(™)) of kP (V) to be
continuously embedded in a space of the form £P (V) it suffices to choose V; := inf ¢p CnvE“)
where C,, > 0 is any sequence of positive numbers. Therefore, if v = (V;)ic1 : I — [0,00) isa
non-negative function on I such that for eachn € N

Vi

sup
ier v\

< o0,

then we obviously have that kP (V) is continuously embedded into £P (V), thus motivating the

following definition.

3.10 Definition (Associated Kothe Sets). (See [Bie86, § 2, Def. 11] and [BMS82b, Def. 1.4].)

Let V= (v(™)), e denote a decreasing sequence of strictly positive functions on an index

1

set I, and let A = (a™), <y denote the corresponding Kéthe matrix where a(™) := SO -

Then, by V = V(V), we denote the system of non-negative functions given by

V(V) := AP (A) :=A°(A) N [0,00)"

\_).
= {\7 = (V1)ie1 € [0,00)" | ¥n e N: sup (7:1) = sup agn
iel v; iel

)\_)i < OO}
The system V (which clearly satisfies (K1)-(K3) of Definition 3.1-) is called the associated
Kothe set of V (respectively of A), the corresponding Kéthe sequence spaces are called the

projective hulls of the co-echelon spaces and will be denoted as follows

Ky (V) = AP(V) = fim 7(9),
vev
where 1 < p < coorp = 0 (and {° := co). Evidently they are always complete and
separated locally convex vector spaces.
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Unfortunately—although similar—these aren’t always the Kothe echelon spaces we already
discussed before, since V need not be countable nor does it have to contain any strictly positive
functions (even though all v(™) € V are strictly positive), as demonstrated in the following

example.

3.11 Example. (See [BMS382b, Ex. 1.6].)
Let I denote the set of strictly decreasing sequences i = (in)nen Where i, € (0,1]. Fur-
thermore, consider the sequence V = (v(™)), oy of functions v(™ : T — (0, 0c0) defined
by vgn) := in. Then V is apparently decreasing and strictly positive, such that we may
consider the corresponding Kothe co-echelon spaces kP (V).

On the other hand, we claim that each element ¥ € V must have a zero on 1. By definition,
there exists a sequence of positive numbers C,, > 0 such that ¥ < inf,cn Crv(™. We may
choose (Cn)nen greater than one and increasing such that limy,_,o, Cr, = co. Then we
obviously have that j = (jn )nen = (Ci%)neN belongs to I, hence

1

v < inf Cuvi™ = inf C =y = 0.
DS en M neN T C2

On the other hand, if V contains just one strictly positive function, we may restrict ourselves

to strictly positive members of V when defining K, (V) as a projective limit, which explains the

usefulness of the following.

3.12 Proposition. (See [BMS82b, Prop. 1.7].)
The associated Kothe set V of a decreasing sequence of strictly positive functions V =
(V)nen contains a strictly positive element, if and only if, there is an increasing se-
quence (In)nen of subsets of I, such that I = U enIn and inficr, vgn) > 0 foreachn € N.

In particular, V(V) always contains strictly positive elements if the index set I is countable.

Proof. (=) LetV € V denote a strictly positive function and set I, := {i € ’ vy > %} for
n € N. Then (I,,)nen is an increasing sequence of subsets of I and I = U, ¢wIn. And as there
are C, > 0 such that v < C,v(™) for each n € N, we also have

PN I I 1
infv, ' > —infv; > —— > 0.
icln, 7 Cpicln "~ 7 nCn

(n)

(&) For the other direction set % == infier, v;~ > 0 and define a function v =

infpen Cov™ which is obviously an element of V. Since we have Cnvgnj > 1forallie Iy
where k < n, we obtain

Vi = inf Cnvgn) > min(1, min Cnvgn)) >0,
neN n<k
i.e., that v € Vis strictly positive on I = Uy cpIx. U

Actually, with these projective hulls K, (V), we already obtained more than we had hoped
for—an algebraic projective description of the co-echelon spaces kP (V).
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3.13 Proposition. (See [BMS82b, Lemma 2.1].)
Let V= (v(™), cn denote a decreasing sequence of strictly positive I-functions and V its
associated Kothe set.
Then kP (V) equals Kp(V) algebraically for 1 < p < oco. Furthermore we have that the
topologies of k> (V) and K., (V) lead to the same families of bounded sets.

Proof. We already know that kP (V) C Kp(\_/) hence only the other direction is left to be
shown.

(a) First we will consider the case where 1 < p < oco. Let x € K, (V), we have to find
ann € N with

o=

ahx) = (Y Mixi)")" < oo (33)

iel

Assume this were impossible. Then, for each n € N, the family ()~ ) where

(n)
ie](vi ‘Xinp)]e?(l
F(I) denotes all finite subsets of I, would be an unbounded subset of R. Therefore we can find a

strictly increasing sequence (], )nen of finite subsets ] € F(I) such that Zie]n (vgn)|xi\jp >n.

Now setI; := J; and Iy := Jx\Jx—1 fork = 2, 3, ... to obtain a sequence (Iy )k of non-empty,
finite and disjoint sets with ], = U};_;Ix. Define a function v = (¥1)ie1 : I — [0, 00) by setting

51 e vl forie Iy
U0 ifi ¢ Ukendk

To prove v € V we remark that, given an arbitrary n € N, for all i € Iy where k > n, we
obtain the inequality

since V = (v(™))), ¢y is decreasing. Therefore also

Vi Vi Vi
Supﬁ :SupmaXW :T_TL(IXW < 0
iel v; keN €D vy €n vy
holds, which means that indeed ¥ € V. On the other hand, we clearly have ¥ > v(™) on J,, for
each n € N such that we obtain
S Gk = Y G = Y (W)’ >,

iel i€]n i€]n

a contradiction to our assumption x € K (V) such that also kP (V) D Ky (V) must hold.

(b) Using a similar strategy we will prove that in the case of p = oo, the spaces k*°(V) and

Keo (V) even have the same bounded sets (which obviously implies that they are algebraically
equal). Again it suffices to prove that every bounded set of K, (V) is also contained and bounded
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in k*° (V). Let B denote such a set and define a non-negative function b = (b;)ier: I — [0, 00)
by setting

bi == sup[xil.
xEB

We have that b is an element of K, (V) since, for every v € V,

g% (b) := sup vilbi| = sup sup vilxi| = sup q°(x) < oo.
i€l x€B i€l x€B

We claim that b is also an element of k*°(V), i. e., that there exists an index n € N such that

452 (b) = supv{"b; < 0o (3-4)
iel
Again, let’s assume this does not hold. This means that, for each n € N, the function vin) . p
is unbounded on I. Thus we can choose indices i, € I with vé:)bin > n and such that
in # 11, ..,in—1 where n € N. Because of the last property we may define a non-negative
function v on I by setting

1 :{VEE) for i =iy,
"Tlo ififigforallk e N.

To prove that ¥ is actually an element of V, consider as before (for k > n)

Vi Vi Vi
m S T == o
n n
Vi Vi, v
which implies
sup Vi = sup v m Vi < 0o
t e < el .
iel W™ ken vV T Tsksny(M

On the other hand, we have

_ - k
q°(b) = supvib; = supv;, by, = sup ng)bik > supn = oo,
i€l keN ke neN

a contradiction to b € K., (V), thus establishing our claim (3.4).

As a consequence of (3.4) we now obtain

sup 422 (x) = sup supvi™ x| < supvi™bi = g (b) < oo,
x€EB x€B i€l iel

which means that B is a bounded subset of {*°(v,, ), and therefore also of k> (V), which was to

be shown. O

To also obtain a topological projective description we proceed as indicated by the following
Lemma.
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3.14 Lemma. (See [BMS82a, Lemma 1.2].)
Let (Eq,T1) denote a locally convex vector space, and let E; C E; be a linear subspace. If T,
is a locally convex topology on E, which is finer than the topology induced by t; but such
that both 11 and T, induce the same topology on some dense linear subspace D of (E2,T2),
then we actually have T2 = T1l,.

Proof. Let U be a closed 0-neighborhood in (E;,T2). We have to find a 0-neighborhood
in (Ey,7T7) whose trace under E, is contained in U. Since 1|5 = T2|p there exists an open
0-neighborhood Vin (Ey,T¢) suchthat VA D C UnND.

Now let x € VN E;. For any neighborhood W of x in (E2, T2) we have

(VAD)NW=(VNEz)NWND # @,

since D is dense in (E,,T2) and (VN E2) N W is a T2-neighborhood of x € E,. Thus we have
obtained

xevVNnDCcUNDCU=U,
where all closures are taken in (E,, 72 ), such that VN E; C U holds indeed. ]

3.15 Lemma. (See [BMS82b, Lemma 2.2].)
If1 < p < ooorp =0, then both kP (V) and Kp(\_/) induce the same topology on their
common dense subspace coo of finite I-sequences.

Proof. Since, by construction, kP (V) is continuously embedded into K, (V), it suffices to show
that, given an arbitrary 0-neighborhood U in kP (V), there exists a function ¥ € V such that

By :={x €coo I g5 (x) <1} C U, (3-5)

where

1

a8 (x) = (Z (wxi\)p) " for1<p<oo, and qd(x):=supvixil.
iel el
Let B, denote the closed unit ball of ¢P(v(™) or co(v(™), respectively. Then, by Re-
mark 1.24, there exists a sequence of positive numbers C,, > 0 such that F(UneN Can) c u.
Now we claim that the function v € V,
21’1
Vo= inf = (n)
VT NG
satisfies (3.5). To prove this claim, we will have to differentiate between the cases 1 < p < o0
and p =0.
(a) First, let p = 0 and let x be an arbitrary element of B;. Since

zn
sup inf =—v{™ x| = qd(x) < 1,
ie] neN Ly
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we obtain that for every i € I there has to be ann € N with i € I, where
21’1
In = {'L el ‘ CinVEn”Xi‘ < ]}.

In particular there exists an m € W such that UT*_, I,, contains the finite set suppx :=
{ieI|xi #0} Let (0™)1<n<m € coo denote a finite partition of unity on supp x which is
subordinate to the covering U* ; I,. By setting

am .— (p(n) LNy

we obtain a family (a “))1<n<m of elements of coo C co(v(™) with supp a(™ C I,,. We even
obtain a(™) € C,,By, since for i € I,, we have

vgn)

n)’ = @™2mMx| < Cp.

Consequently we also have (3.5)<, since

m m

1

X = Z o'm Z 2— ) e F( U C.B )

n=1 n=1 neN

(b) Nowlet1 < p < oo and x € By. Similarly to the previous case, given an i € Iy :=
supp x C I we can find an m; € N such that

Vi = inf 2v( )y 2 —_—

FT nen Co Cm, il - 2M 7

WV

where ¢ :== 1—q! (x) > 0 and M := |Iy| is the number of elements of Iy = supp x. The numbers
are chosen such that we obtain

(S Ewrn) < (5 0omie 5))
< (X

p
i)+ (5 om0
0

_ 4P & _4_ €
_qv(x)—i—z 1 £+2<1.

<=

iely

To apply this inequality we need to define a disjoint covering (I )1<n<n of Ip = supp x by
setting

I,={iel ‘ mi=n} and N:=maxm.
iely

The corresponding family (a™)j<nen € coo € €P (Vi)

1

(n) { 2"x; foriel,
a; = [P
0 ifig¢ uN ;I

obviously has the property that x = ZN 27™a(™ and its elements satisfy

n=1
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o=

ielo mi

Thus we even have a(™ ¢ C,B,, which means—as in the conclusion of part (a) of this
proof—that x € UL ]

Combining the results so far, we obtain:

3.16 Theorem. (See [BMS82b, Thm. 2.3].)
Let V= (v(™)), e denote a decreasing sequence of strictly positive functions on an index
set I and V its associated Kothe set. Then we have the following projective description

results.

(i) For1 < p < oo the spaces kP(V) and K, (V) are topologically equal. In particular,
the inductive limit topology of kP (V) is induced by the family of seminorms (g% );cv
of K, (V) and kP (V) is always complete.

(ii) The projective hull Ko(V) is the completion of the co-echelon space k°(V). Although
k°(V) can be a proper subspace of Ky (V), its topology is still induced by the projective
hull.

(iii) If p = oo we only know that the complete space k™ (V) is the bornologification

of K (V), since, in general, the inductive limit topology of k*°(V) is strictly stronger

than the topology induced by its projective hull K, (V).

Proof. By the previous Lemmas 3.14: and 3.15.- we see that K, (V) always has to be the
completion of kP (V) whenever 1 < p < oo or p = 0.

If 1 < p < oo, then we really have kP (V) = K,, (V) since the spaces in question also coincide
algebraically (Proposition 3.13-). The counterexamples for the cases p = co and p = 0 were

already presented in Counterexample 3.8 (we will soon find out that K, (V) = (A’ (V));,). O
3.17 Corollary. The co-echelon space k°(V) is always a topological linear subspace

of k= (V).

Proof. Since we have continuous injections k°(V) — k®(V) — K (V), and Ko(V) is a
topological linear subspace of K, (V), the assertion follows immediately from statement (ii) of
the theorem. U
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Returning to the topological duality of (co-)echelon spaces at the end of the previous section,
using V(V) we can now improve upon the results we obtained there. The tool we’ll be using is
the following useful description of the bounded sets of the echelon spaces AP (A).

3.18 Proposition. (See [BMS82b, Thm. 2.5].)
Let A = (A )nen denote a Kéthe matrix on the index set I and let V be its associated Kothe
set.

A subset B of an echelon space AP (A), where 1 < p < oo, is bounded if and only if there
exists a v € V such that

B CBY = {v-x e K'|x et with x|, <1}.

In particular, if V contains a strictly positive function, B C AP(A) is bounded if and only if

there exists a strictly positive ¥ € V such that B is contained and bounded in €7 ().

Proof. First we consider the (easier) case of p = co. The sets B (and therefore also their
subsets) are bounded in A% (A) for each ¥ € V, since for all v - x € B and n € N we have

q(v-x) = sup agn)\')ilxil < sup agn)\')i = C{™ < o0,

iel iel

by definition of V. For the other direction let B denote any bounded subset of A (A). Define a
function v = (;)ic1 € [0, oo)I by setting v := sup, g [xi|. Because of

sup al™w; = sup sup al™xi| = sup q2(x) < oo,
iel icl xeB x€B

which holds for all n € N, we really have ¥ € V. Furthermore, for each x € B we obviously
have [x| <V, such that indeed B C B&°.
For the rest of the proof we will now assume that 1 < p < co.

(&) Again it is easy to see that B is bounded in AP (A) for each ¥ € V. Let v - x € BY and
n € N, then we have

1
qR@-x) = (3 (al™ibal)”) " < Y, < €Y < o
i€l

for C{™ := sup;; a{™¥; < oo defined as above.

(=) For the other direction it suffices to consider bounded sets B C AP (A) of the form

1
B={xer(a) ‘ ah00) = (3 (a{hal)") " < C foralin e N},
i€l

where C;, > 0 are arbitrary, n = 1, 2, ...; let B denote such a set. Now we claim that, by setting
Vi = infen(2- Z“Cnvgn] ), which obviously defines an element v € V, we obtain B C BY.

First we remark that we have |x| < V, since for all x € B and iy € I we can estimate
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1
xi,| = a ™xi, \v ) < (Z (aE“)Ixil)p) pvgl) < Cnvgﬂ < Z-Z“Cnvgl).
el

Thus we have also obtained that v; = 0 implies x; = 0 for all i € I which will be useful later on.
Next we want to show that at least B N cgp is a subset of BY. For this purpose fix an

element x € B N cop with only finitely many non-zero components and let Iy := supp(x)
denote its support. For each i € Iy we have (recall that by the above then also v; # 0)

1 a.
— = SWw = Suw
Vi neg 2 2“Cnv£n] neg 2-2nCyp

(n)

which means that we can find an m; € N with
(my) 1 1
e I

where M := |Iy] is the number of elements of Iy. Defining a disjoint covering (I, )1<n<n of Io
where I,, :={i € I | my =n} and N := max;ec1, mi, as in the proof of Lemma 3.15., allows
us to estimate ¥ as follows

(EZ‘(M ) <GZ 7 ‘SJ +21\]/1é)p);
(i_ 2 znm >p>p+ (Z (2]\1[;)?)1’
- (i(ch ) Zn<a£“)|xi|)v)f’+;

(L))

Since x; = 0 if ¥; = 0, this means that we have obtained x € BY and therefore B N cop C BY as

N

claimed. Now it is only left to be shown that an arbitrary x € B is contained in BY as well.

Let x € B and let F(I) denote the family of finite subsets of I. Define a family (x!) )reF(1) €
K! by setting xgl V= x; forie ] and XEI )':= 0 otherwise. We clearly have that each x!) is an
element of B N coo and that the net (x!) )jes(1) converges pointwise to x € B. Therefore, by
the above, x also has to be contained in BY since this set is closed under pointwise convergence

on L. [l

Using this description of bounded sets we can now prove the following stronger version of
Proposition 3.7.. At the time we had only used our general theory of chapter 2., but this time
we will present an elementary proof using the techniques introduced in this section. Since it
doesn’t complicate the proof much we will derive the corresponding results of Proposition 3.7
again, now without using the theory of weakly compact inductive limits.
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3.19 Theorem. (See [BMS82b, Thm. 2.7].)
Let A = (a™)) denote a Kéthe matrix and V = (v(™)) any decreasing sequence of strictly
positive functions on an index set I, also let 1 < p < oo or p = 0 and g such that % + % =1
(where we take q¢ = co for p = 1 and q = 1 for p = 0). Then we have the following
topological dualities

’

_ 1
b = Kq(V), where V= (Vi) en with v(M) .= —— 'and

a(ﬂ) i

(AP(A))

’

. 1
(kP(V)), =A9(A), where A = (a™)yen with al™ = WENE

(For comparison with Proposition 3.7 note that we have K (V) =k9(V) for 1 < q < oo by

Theorem 3.16<.)

Proof. (a) We will start by proving the first duality. We already know that (A9(A))" =
kP (V) = Kq (V) algebraically by the discussion in the previous section and by Proposition 3.13-,
thus we only have to show that the topologies of (AP (V));D and K4 (V) coincide.

For now, let’s also assume 1 < p < oo, since in this case the previous Proposition 3.18: tells
us that (BY); .y is a fundamental system of bounded sets in AP (A). Hence, by taking polars,
we obtain a base of O-neighborhoods in the strong dual (AP(V)),,. Actually we will see that

D vy <1 }

(BY)" = {y € (?\p(A))/ ‘VX e, xll, <1
iel
{y € Kao(V) ‘ 45°(y) = supie Vilyil < 1} forp =1,

lye k™ |ty = (S Giy)?) <1} foro<p<oo

for each v € V, such that (?\P(A)); = Kq (V). One of the inclusions follows using Hoélder’s
inequality—formally we have [[V-x-yll; < ”‘_"qu xll, < ||\7~y|\q =qg(y). Ifp = 1 and
q = oo, the other direction is obtained by considering for x € (P the unit vectors (e(V));c1,
(

eji) = 8y,5. If 1 <p < co we have to choose

iyl 1—q .o
Xi = { %y_(qg(y)) T if vy #£0
otherwise.

In the case of p = 0 and q = 1, the above proof works equally well if we take the polars of
the sets B2 NA°(A) for ¥ € Vto obtain a base of 0-neighborhoods in the strong dual (A° (A))ij
since A°(A) is a topological subspace of A*(A). Indeed, we have

(B nA(A))° = {y € (\(A) =K (V)| adly) = 3wyl <1},

icl

which implies (A°(A)), = K;(V) as above.
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(b) The second claimed identity follows by Proposition 2.9 (which doesn’t make use of
weakly compactness) if we can show that the inductive limit kP (V) = H_ﬂ}ln {P(v™) is regular.
In fact, this follows easily for 1 < p < oo, since we already know (Theorem 3.16(i). ) that in
this case kP (V) has to be complete (which implies regularity by Proposition 2.13-).

In the case of p = 0 and q = 0 we again have to deliver a special argument as the inductive
limit kK°(V) = lmn co(v™) need not necessarily be regular (Counterexample 3.8(ii) ). But,
proceeding as in the first part of this proof, we obtain

{recov™) |z =supvMi <1} = {ye @) aliy = 3 iy <1}
t iel
with respect to the dual system <kO(V), (kO(V))/> = <k°(\/), Al (A)) This means that each set
of the corresponding base of 0-neighborhoods in A (A) is given by the polar of a bounded set
of k°(V), such that the strong topology B (A'(A),k°(V)) on A'(A) is stronger than its usual
projective limit topology.

On the other hand, by the first part of this proof, we know that (A'(A))}, = Ko (V) which
has the same bounded sets as k> (V) by Proposition 3.13.. Furthermore, the space k°(V) is
continuously embedded in k*°(V), such that the topology 3 (?\1 (A), kO(V)) has to be weaker
than B(AT(A),k*®(V)) = B(AT(A), (A'(A))"), which is of course the canonical projective limit
topology of the Fréchet space A'(A).

Therefore we have obtained B(A'(A),k°(V)) = B(AT(A), (A'(A))") and hence (k°(V)),,
A'(A), as claimed.

O w

In view of Conterexample 3.8, we are now only left with the following two questions (see

[Bie86, p. 71]).

(i) What is a necessary and sufficient condition (in terms of the Kéthe matrix A = (an)nen)
for the topological equality (A (A))/b = k> (V) where V = (v )nen With vy, = a]—n?

(i) What is a necessary and sufficient condition (in terms of the decreasing sequence of
weights V = (v, )nen) for k°(V) to be (regular or) complete?

In other words—via Theorem 3.16. —, what is the exact relationship between the spaces k°(V)

and Ko (V) as well as between k* (V) and K, (V)?

The answers to these questions will again be a byproduct of our actual goal—also obtaining

projective descriptions of the inductive limit spaces k°(V) and k> (V).

3.3 The Regularly Decreasing Condition

In this section we want to find conditions in terms of the Kéthe matrix such that we can also
describe the spaces k> (V) and k°(V) projectively.

Actually, we already have a projective description of the topology of k°(V), namely Ko(V),
the only problem is that the space k°(V) itself could be smaller. For k> (V) it’s the other way
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round—although we can describe the linear vector space projectively via K, (V), its topology
might be strictly stronger than the one obtained from the projective description. In other words,
by combining the properties of these spaces, there would be no more problems. Therefore the
first obvious idea towards a solution is to find a condition which implies (topological) equality
of the spaces k* (V) and k°(V). This will of course be quite a strong requirement—but maybe

we can weaken it without destroying the positive effects.

Of course, if we even have {*(v(™)) = ¢o(v™) for each n € N, then this equality follows
immediately by definition of the inductive limits. A similar but less trivial condition would be
one that only implies the equivalence of the inductive sequences (> (v(™))),, and (co(V™))n

since this would lead us to the same conclusion.

For this to happen, for each n € N we would need a continuous injection from ¢ (v(™))
into co(v(™)) for some m > n. Surely we have such an injection if v(™) /v(™) tends to zero
on I (that is, if for every ¢ > O there is a finite set ] C I such that ng) <e- vén) whenever
i e 1\]), since then

v il < e v kil <e-C (ieI\])

where the constant C > 0 only depends on v(™ and x € €°(v(™)), such that v(™) - |x] also
tends to zero, which means that x € co(v(™)). Because co(v(™)) is continuously embedded
into {>°(v(™)), we have obtained that the inductive sequences (¢(>(v(™)),, and (co(v(™))), are
equivalent if

p(m)

vneNIme N;m>n: L converges to 0. (S)

As we already suspected, this condition (S) (which is called (V) in [BMS82a]) really solves
our problems:

3.20 Proposition. Let V = (v(™)), cy denote a decreasing sequence of strictly positive
functions on I. If V satisfies condition (S), then

ko(\/) = koo(v) = KO(\_/) = Koo(\_/))

such that k°(V) is complete and the topology of k> (V) is given by the projective limit

topology of Ko (V).

Proof. First, by the preceding discussion, we obviously have k°(V) = k* (V). Furthermore
condition (S) means that the inductive system ({P (v(™))), ¢ is compact forall 1 < p < oo
and in particular also for p = 0 such that Theorem 2.18. - and Theorem 3.19. imply

’ ’

K (V) =10V = (V) ) = (AT(V), = Kee(V),

We also have k°(V) = K (V) by Theorem 3.16(ii)- since k°(V) has to be complete by Proposi-
tion 2.17+. ]

3.3 THE REGULARLY DECREASING CONDITION 61



Put differently, condition (S) is sufficient to make the proof of Proposition 3.7. also work for
the border cases of p =0, q =1 and p = 1, g = oo. But we had proved this result also without
using the properties of weakly compact inductive/projective systems in Theorem 3.19, so we
can remain hopeful to find weaker conditions which still imply projective description of k°(V)
or k> (V).

For example, if V = (v),en is the constant sequence consisting of a strictly positive
function v : I — (0,00) then V does not satisfy condition (S), although we clearly have
KO (V) = co(v) = Ko(V) and k@ (V) = {2 (v) = Ko (V).

On the other hand, if k°(V) ought to be complete (such that k°(V) = K,(V)), then by Propo-
sition 2.13< the corresponding inductive sequence has to be (at least) regular. In particular,
we also have k°(V) = Ko (V) if the inductive sequence is boundedly retractive (see Defini-
tion 2.15.). Since it will turn out that in this case regularity (and therefore completeness)
of k°(V) is equivalent to being boundedly retractive, we will try to find a characterisation of

boundedly retractiveness via the decreasing sequence V.

Condition (S) meant that V has to be “rapidly decreasing”, so what about a less drastic

“regularly decreasing” instead?

3.21 Definition (regularly decreasing). (See [BMS82b, Def. 3.1].)

A decreasing sequence V = (v(™), ¢ of strictly positive I-functions is called regularly

decreasing if for each n € N there exists an m > n such that for all ¢ > 0 and k > m we

can find 8y > 0 with (i € I)

v < vim = M) ey, (3.6)

(The quotient v(™) /v(™) can be made arbitrarily small, as long as one of the following
quotients v(¥) /v(™) is small enough.)

In other words, V is regularly decreasing if for each n € N there exists an m > n such
that for all subsets ] C Tand k > m

k) (m)

inf =0 inf +—— =0. .

(
1

(This condition is clearly necessary, it is also sufficient: assuming indirectly that for each

§ > 0 we could choose an index i € I such that v{™ > ¢ - v{™) although v{*) < & -v{") we

would obtain a set of indices ] C I for which (3.7) does not hold either.)

To prove that k°(V) = K, (V) is equivalent to V being regularly decreasing we will also need,
among other things, the following characterisation of the regularly decreasing condition via

the associated Kothe set.
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3.22 Proposition. (See [BMS82b, Prop. 3.2].)
A decreasing sequence V = (v(™)), ¢ is regularly decreasing if and only if for each n € N
there exists an m > n such that for every e > 0 there is av € Vwith (i € 1)

v < vgm) = vim) < £'v£n), (wS)
or, equivalently, if and only if, given n € N, there exists an m > n such that for each subset
J C I and every v € V we have

(m)

v<viMon] = inf—+— =0. (3.8)
ig] V(n)

Proof. (&) Let V satisfy condition (wS), and given n € N, take m > n as in (wS). T
show that V is regularly decreasing as in (3. 6) fixane >0 and k m. By (wWS) we can ﬁnd
av € Vsuch that vim) <5 -vﬁ") < e -v( whenever v; < v ) (or, vy > v( whenever

(m) >¢ v(“)). On the other hand, by construction of V, there always exists C, > 0 so that

Vi
Vi < Ckvgk) which means that by setting 8y := Cik we obtain
1 1
ng) >¢ .Vgn) — V > 9> 7V£m) > 5 e .vgn)
~ Ck Cx ’

which is just (3.6)- reversed.

(=) For the other direction, given n € N take m > n as in (3.6)- and, for a ﬁxed £ >0

and each k > m, choose 8y ¢ > 0 such that v%k) > B¢ -v?” whenever v% m) > e v . We

claim that

13 fort<l<<m,

1
V; = inf C—v(U where 0<C = { Si. ifl>m,

leN
which obviously deﬁnes an element v € \7 satisﬁes (wS). To prove this claim, assume indirectly
thatv( ™ e v ) then by (3.6) also v ™ di,e vfn for all k > m such that by construction

)
of ¥ and since V is decreasing v; = infi>n, o o E > VE“ i ) holds as well. O

This characterisation allows to prove that a regularly decreasing sequence V leads to a bound-

edly retractive inductive limit k°(V), as promised above.

3.23 Proposition. (See [BMS82b, Lemma 3.6, first part of the proof of Prop. 3.3].)
Let V= (v(™), cn denote a regularly decreasing sequence of strictly positive I-functions.
Then k°(V) = li_n)ln co(v(™) is a boundedly retractive inductive limit, such that k°(V) is
complete and k°(V) = Ko (V).

Proof. We will prove that if the sequence V = (v(™)), ¢y satisfies condition (wS), then
co(v(™)), k°(V) and Ko (V) all induce the same topology on each bounded subset of co(v(™))
where m > n is chosen according to (wS). This then clearly implies that ko (V) is boundedly
retractive and therefore also complete such that by Theorem 3.16(ii)- we obtain k°(V) = Ky(V).
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Letn € N and let B denote any bounded subset of co(v(™)), without loss of generality we
may assume that

B = {x€cov™)| q(x) = supv{™Ixi| < k}
iel

for some k € N. Chose n < m € N according to (wS). Since we have continuous embeddings
co(v™) = co(v™) — kO(V) = Ko(V) it suffices to prove that for eachb € Band all ¢ > 0

there exists a 0-neighborhood W in Ky (V) such that

WNB C U (b) = {x€cov™) | gilx—b) = supv{™Ixi — bl < e},
iel

because the family (U, (x))¢~o is a basis of neighborhoods of x in co(v(™)).
So,let b € B and & > 0 be arbitrarily chosen. By (wS) there exists a function v € V such that

<™ = V™ < v,

Now set

W= {x € k°(V) ‘ q°(x — a) = sup vilx; — byl < e}.
icl

Then we have WN B C U, (b) since for x € WN B and if v; > ng) we clearly obtain
ng)‘xi —bil <Vilxi —bil < g

on the other hand, if ; < v{™ then v{™ < £ -v{™ such that

£
2k

€
vgm) [xi — bi| < ﬁvgn)b‘i —byf < (Vgn)bﬁ' + V‘En)|bi|) S

B

since x, b € B. ]

The regularly decreasing condition is not only sufficient to obtain projective description
for k°(V), it is even equivalent. But before showing this we have to prove the following

technical lemma.

3.24 Lemma. If a decreasing sequence V = (v{™)), cn of strictly positive I-functions is not
regularly decreasing, then there exists a sequence (&, )men Of positive numbers and a pair
of sequences (8;1, ij1)1en for each j € N such that (for all j,1,1,s € N)

(i) 0<&1 <1,
(ii) vi) > ¢ although v ™" < 55,

(iii) 1ij1 # irs whenever (j,1) # (1, s).
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Proof. Since V is not regularly decreasing we can fix an n € N such that for every m > n
there exist k,,, > m and &,, > 0 for which, given § > 0, we can always find an index i5 € I
such that

vg”] >em ~v£?) although vg‘m) <8 'VE?).

To simplify this situation we may assume, without loss of generality, that the se-
quence (&€m)m>n is decreasing and (ki )m>n is increasing (the condition above is clearly
also satisfied for smaller ¢ or larger k). Furthermore, by passing to an equivalent subsequence
of V, we may assume n = 1 and k., = m + 1. Also, the resulting co-echelon space k°(V) does
not change (and V is still not regularly decreasing) when dividing every v(™ by v(!) such that

we may even assume v(!) = 1.

Thus, the simplified situation now tells us that for every m € N there exists ¢y, > 0 for
which, given & > 0, we can always find i5 € I such that

(m+1)

(m)
™o i < 8. (3.9)

Vi, = é&m although v
For each j € N, we will now inductively construct a sequence of pairs (81, ij1)1eny Which

satisfy the conditions (i)-(iii). If j = 1 we can simply use (3.9) with 87 := 1, and inductively

(2) 1
11101

(Because ofvfl) <dn < vf)M for all 1 > 1 the sequence (v
that also (iii) holds.)

Assuming that (8;1,1j1)1ew has already been constructed for j = 1, ..., p — 1 such that (i)-(iii)

} for 1 > 1 to obtain the first desired sequence (811,111)1en-
(2)

in

choose 0 < 871 < min{v

J1en is strictly decreasing such

hold, we will try to find the p-th sequence (8p1,1p1)1en. By property (i) of the induction
hypothesis we can find an index 1, € N such that 8;; < ¢, foralll > 1, and 1 <j<p—1.
We will now construct 8,1 and i, by induction on 1 € N. For 1 = 1 choose
1
dp1 < min{[ﬁm,f} where f,1:= min yPH

1<j<p—1 U
1<e<1,

(which clearly satisfies (i), such that by (3.9) we can find i,; € I with

(p+1)
ip

(p)
Vi,

> e, although v < 8p1,

i.e., we have (ii). By the selection of 6,7 < 1 it follows as before that i,7 # ij; for all
1<j<p—Tland1 <1<, Ifontheotherhandl>1,and 1 <j < p —1, we have

vIP) (i) < VO (i) < 851 < €y,

such that i,7 #ij, forall 1 <j < p—1and 1€ N as demanded by (iii). To obtain 5,1 and i,
for 1 > 1 we only have to take

- 1 - +1 +1
o1 < mln{ Bpts I} where fp1:= mln{ Bp ,vf&:,] ) ,..,VEE,P)] },
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then (ii) and (iii) follow as for 1 = 1. Thus we have completed both inductions and obtained
the desired sequence of sequences. ]

3.25 Theorem. (See [BMS82b, Thm. 3.7].)
Let V= (v™)), cn denote a decreasing sequence of strictly positive I-functions. Then the

following assertions are equivalent:

(@) Vis regularly decreasing,

(b) =lim co(v'™) is boundedly retractive,

(¢) k°(V) is complete,

d k°(V)is algebralcally (or topologically) equal to Ko(V),
(e) kK°(V)= m co(v'™) is a regular inductive limit.

Proof. We just proved in Proposition 3.23 that (a) = (b), the implications (b) = (c) = (e)
are clear and (c) & (d) follows from Theorem 3.16-. Therefore it is only left to be shown that
(e) = (a) holds as well.

Assume indirectly that V = (v(™), <y is not regularly decreasing. Using the properties
(1)-(iii) of the sequences (& m)men and (i1, ij1)j,1en obtained in Lemma 3.24. we will now try
to construct a bounded subset of k°(V) which is not contained in any co(v(™), thus demon-

strating that in our situation k°(V) cannot be a regular inductive limit.

To obtain this bounded set we will first construct a sequence (xU));cn € C! such that
xU) € co(vIF1) but x) ¢ ¢o(v0)). Let (mj)jen € R denote a decreasing sequence with
n; > 0and limj_,m;j = 0. For eachj € N and i € Iset

Xq

G) ._ {T]j ifi=1ijforanle N,
. 0 otherwise.

To prove that x) € ¢o(vI+1))\co(v1)) forafixedj € Nlete > 0. Since (i) implies o1 < % =0
as L — oo, we can find L € N such that ;1 - nj < ¢ for all 1 > L. Therefore, for all such 1 > L

we have
G+1),06) _ ()+1)
Vi X4, T Ny <&u-mj <e.

Thus the set {i el ‘ Wik )x?) > £} has to be finite since it is contained in {ijl ’ 1< L} which
means that xU) € co(vO+1).

On the other hand, we have
(G),06) _,,0G)
vijlxijl _vi,-lnj > SR

for all 1 € N, such that xU) ¢ co(v1)) since infinitely many components of x'’) are bounded
away from 0.
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Obviously, B := {xU) | j € N} will be our candidate for the bounded subset of k°(V) which
is not contained in any of its steps co(v))). To prove the boundedness of B we will show
that x := ZJOL xU) is an element of Ko (V). Since the spaces Ko(V) and k°(V) have the same
bounded sets (Proposition 3.13) and xU) < x for all j € N, we would then be done.

Firstly, we remark that x := Z;’; xU) makes sense because of (iii). To see that x € Ko(V),
fix v € Vand let ¢ > 0. We have to show that

FI:{iEI‘\_JiXiZE}

is a finite set. By definition, x; can only be non-zero if i = i;; for some j,1 € N, therefore
F can only consist of such indices. Also, by definition of V, there exist a3 > 0 such that
v < infjen o - v0). Now, if j < %, then

(M, 3G)

Vi Xy, S XYy X = 0T < €.

Furthermore, for all j € N, if we have 5, < ﬁ then also
) )

S G+1),0)
Vi Xie S 6+1Vig Xq,

< ¥j+1 '6j1 My < E.

But both of these conditions are satisfied for infinitely many j € N since n; — 0 for j — oo

and 851 — O for 1 — oo, such that F is indeed a finite set, which means that x € Ky(V) so that
B is the desired counterexample to the regularity of k°(V). U

Using similar ideas as in the proof of Proposition 3.23 one can also obtain projective description
of k®(V) = K (V) as long as V is regularly decreasing. But in this case we do not have
equivalence—a weaker condition than regularly decreasing which is equivalent to projective
description of k* (V) will be presented in the next section, for now we only state that regularly
decreasing would be sufficient (we give no proof since this will also follow from the results of

the next section).

3.26 Corollary. (See [BMS82b, Cor. 3.5(b)].)
If V= (v(™), cp is regularly decreasing, then (A’ (A))/b = Koo (V) is bornological such that
(AT(A)), =K=(V) = Ko (V).

3.4 Heinrich’s Density Condition

Before introducing the promised condition (D) which will characterize the projective descrip-
tion k= (V) = K, (V) in terms of the decreasing sequence V = (v,,)ncn of weights, we will
study several other related conditions (summarized in Figure 3.1..) in order to be able to better
understand (D) and its history.

We have already encountered the strong (i. e., sufficient for our goals) condition (S).
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y(m)

vneNImeNm>n: ey converges to 0. (S)

Its name is derived from the fact that it also characterizes the echelon spaces of Schwartz type
(see [BMS82b, Thm. 4.9]).

Next, we studied the weaker but still sufficient regularly decreasing condition. We found out
that it characterizes k°(V) = Ko (V) in terms of V and showed its equivalence to (wS) which
was formulated in terms of the associated system of weights V. It can be shown (see [BMS82b,
Prop. 3.3]) that the regularly decreasing condition also characterizes quasi-normable echelon

spaces which is why it is sometimes called (QN).

A condition (M), weaker than (S), suffices to return to (S) if the sequence V is regularly
decreasing (in fact, (S) is equivalent to regularly decreasing together with (M) as we will see
below).

(m)

VieFDHvneNImeN,m>n: inf +— =0 (M)
ieny y{m)
(The name of condition (M) was chosen because it characterizes the echelon spaces of Mon-
tel type, see [BMS82b, Thm. 4.7].)

3.27 Proposition. (See [BMS82b, Prop. 4.8].)
A decreasing sequence V = (v, )nen On an index set [ satisfies condition (S) if and only if
it is regularly decreasing and satisfies (M).

Proof. (&) To show that condition (S) has to hold, let n € N. Choose a natural number

m > n according to version (3.7)- of the regularly decreasing condition.

Assume indirectly that there exists a finite set ] C I such that inficp vim)/vgn) > 0.

Then, by the regularly decreasing condition (3.7). , we also have inficyj ng) M > 0 for

every k > m, and since V is decreasing, even for arbitrary k > n. But this ;s a contra-
diction to condition (M) which says that we should be able to find an my > n such that
“LTLfie \J \)EmO)/VgnJ = O

Therefore, there can be no such set J, which means that % indeed has to converge to 0.

0

On the other hand, condition (M) is also sufficient to obtain the projective description k*° (V) =
Koo (V) (see Corollary 3.29 below).

3.28 Proposition. (See [BMS82b, Prop. 4.3 and Lemma 4.6].)
Let V = (vn)newn denote a decreasing sequence of strictly positive functions on the index
set I. Then V satisfies condition (M) if and only if Ko (V) equals K., (V) algebraically (and
hence topologically).
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Proof. (&) Assume condition (M) does not hold. Then there exists a finite subset ] C I and
an index ngy € N such that

v
inf =en >0
ienJ y{mo)

1

for each n > ny. Now define a function x = (xi)ie1 : [ — [0,00) by setting x; := —75y
Vi

whenever i € I\ ] and x; := 0 otherwise. We obviously have

viv

n
811 g (lno) :vi |Xi‘ g ]
H

foralli € I\ J and every n > ng such that clearly x € Ko (V) \ Ko(V).
(=) Assume there exists an x € K, (V)\Ko(V). Then we can find a weight v € Vand a finite

subset ] C I such that ¥;|x;| > ¢ foralli € I\ J. On the other hand, since x € K, (V) = k>®(V),
there has to be an ny € N such that supielvgn‘)]lxil =: C < oo. Furthermore, by definition
of V, for each n > no we can find a constant o, > 0 with v; < oy -vgn) foralli e I\ ] such

that
vgnj
v(“o] :

i

1

vi(no)

€ < Vilxi| < an

sup v£n°)|xi| =C-oan
iel

Thus we have inficy vgn)/vgn") > £ > 0 which means that condition (M) cannot hold.

i = Cran
U

3.29 Corollary. If V satisfies condition (M), then we have k> (V) = K, (V).

Proof. By Theorem 3.16- and Corollary 3.17- we know that Ky (V) is a topological linear
subspace of the complete space k> (V) = (A'(A))

g
_ A, —k>®(V)
Ko (V) =k0(V) =k0(V) Ck=(V)
Since we also have a continuous injection k> (V) — K, (V) (we even know that these two
spaces have the same bounded sets) the result follows from the proposition above. U

~

Unfortunately (M) also cannot be the desired characterization of k™ (V) = K, (V) since there
are sequences V which, although regularly decreasing (such that we have projective description),
do not satisfy (M), see Counterexample 3.31; below.

Thus our desired characterizing condition (D) will have to be weaker than both regularly
decreasing and condition (M). Therefore, in order to find a weaker form, we will now consider

a reformulation of the regularly decreasing condition.
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3.30 Proposition. (See [BMS82b, Prop. 3.9].)
A decreasing sequence V = (v, )nen 0On an index set I is regularly decreasing if and only if
it satisfies condition (G), that is if for each n € N there exists a natural number m > n and
an increasing sequence (I*)cn of subsets of I such that

(%)
VieNVkeN, k>n: inf 2 >0
ielp y(n)
(m)
while lm sup 4+~ =0.

1200 eI} vi“)

(Condition (G) is named such since Grothendieck studied a weaker form of it which we
will call (WwG).)

Proof. (=) If Visregularly decreasing, given an n € N, we can choose m > n as in (3.7)
such that for each subset ] C I

W) o)
inf4+—>0 = inf—+— >0
ie] y(m ie] yim

for all k > m and since V is decreasing also for arbitrary k > n. For every 1 € N define

%m)>‘}
VE“] l

po={iel

The sequence of sets (I]')icn is obviously increasing, and, by our choice of m > n we also
have inficp v,gk)/vgn) >0forallk >nandl e N as claimed.

The second part of (G) follows again by definition of (I]*)ien,
vgm) 1

1

sup
e\t v

(&) Conversely, let V satisfy condition (G). For a given n € N choose m > n and an
increasing sequence (I*)ien of subsets of I as in (G). Thus, for arbitrary & > 0 we can find
(m)
1 € N with SUPienp vgm)/\)gn) < ¢. Therefore, if i € I satisfies ‘;}—n) > ¢ we must have i € I}
such that
(k) (k)
L > inf Vi

vgn) ielp v%n)

>0

for every k > n, which means that V is regularly decreasing. U

3.31 Counterexample (Grothendieck). (See [BMS82b, Ex. 4.11(1)].)

As in our previous Counterexample 3.8 we take I := N x N. Define a K6the matrix
A = (a™) . en on this index set by setting
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(n) . {Jl i N
ai»j ) in
j i>n+1,

then we obtain for the corresponding decreasing sequence V = (v(™), o = (ﬁ)n N
and all k > n that

WO g (1 tsh
Wo_ Y jnfi n+] <i<k
MY () SR
i,j A R iz k41,

This enables us to see that V cannot satisfy (M) since the expression above cannot become
smaller than j™—.

On the other hand, V is still regularly decreasing: One simply has to take I}' :=
{(i,j) €1 \ i<norj<1},then

(k) (m)
V. Vi o ]
Ainf l—;l]) =1""*>0  and sup 1(’31) =—
e vih wienrp vy L+1

for all k > n and 1 € N such that condition (G) of Proposition 3.30-is satisfied.
We can weaken condition (G) by changing the order of quantifiers.

3.32 Corollary. (See [BMS82b, Cor. 3.10].)
If V is regularly decreasing, then also condition (WG) is satisfied, i.e., there exists an

increasing sequence J = (I;)1¢n of subsets of I such that

(k)

Ve NI e NVkeN, k>ng inf 2 >0, (N, )
iell\)gnl)

(m)

vne NIme N,m>n: Um sup o

l—o0 iEI\Il \)i

= 0. (S,9)

Proof. It suffices to prove that (wG) is implied by (G). By the latter condition, for eachn € N,

we may choose m > n and an increasing sequence (J7)¢en such that
W (m)
Vee NVk € N,k >n: inf 1—n >0 while Um sup l(n)

ie]y V«E ) {—o0 ienJp \;i

=0.

Now set I} := Un4¢<1 J§ to obtain an obviously increasing sequence J = (I1)i¢p of subsets
of I. Note that we have

(k) (k) (n) (k)
V. V. v V.
inf — > (inf T ) <.inf t ) > inf — >0

ey yir) iefp i

forall ¢ € Nandn < r < ksince V= (v(8)) ¢y is decreasing.
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To see that (N,J) holds, fix 1 € N. Then, by the above, we can find an n; € N such that
infier, vgk)/vgm) > 0 for each k > n, as claimed (take for example n; := ).

Given ¢ > 0 (and m > n chosen as in the beginning of this proof) our assumption implies
that there exists an £y € N such that we have SUPienyp vgm)/vgn) <egforall{ > €. IfLe N

is chosen large enough (specifically L > n + {o) then every I contains J7, ..., J{| if only 1 > L.
(n)

i < e aswell, hence also (S, J) is satisfied.

0

Therefore, for such 1 > L, we have SUPicng, vgm]/v

3.33 Remark. (See [BM86, Rem. 2.1].)
If a sequence V = (v(™), ¢ satisfies condition (M), then every set I; with property (N,J)
of (wG) has to be finite. If this is the case, on the other hand, (S, J) simply reduces to (S),
such that we have

(S) & (M)A (wG)).

Unfortunately, together with Corollary 3.32<, this means that condition (wG) still cannot
be weak enough for a characterization of k> (V) = K. (V) (although (WG) is indeed strictly
weaker than (G), see [BMS82b, Ex. 3.11]). On the positive side, it also means that we
weakened (G) in the right way, we just didn’t go far enough.

The obvious way to further weaken (WG) is to replace the Schwartz type condition (S,J) by a

Montel type one, (M, J). As it turns out this is exactly what we were searching for.

3.34 Definition. Let V = (v, )¢ denote a decreasing sequence of strictly positive func-
tions on the index set I. We say that V satisfies condition (D) if there exists an increasing
sequence J = (I;)¢n of subsets of I such that

(k)
VieN3In e NVkeN, k>ng inf 2 >0, (N,9)
iely v%nl)
vim)
meNVCLJU|[JLi#I3meN, m>n: sup — =0. (M, 7)
1eN iel\J vi

We can now directly prove, as it was done in [BM86], that condition (D) still implies k> (V) =
Koo (V) (see Proposition 3.36. below for a sketch of the proof). But as it turned out in [BB88],
condition (D) actually characterizes those echelon spaces AP (A) (of arbitrary order 1 < p < oo
or p = 0 and not just p = 1) which satisfy Heinrich’s density condition. The equivalence of (D)

with k*° (V) = K (V) should rather be regarded as a “coincidence” [Bie86, p. 127].

3.35 Definition (S. Heinrich). (See [BB88, Def. 1.1].)
Let (E,T) denote a general (Hausdorff) locally convex vector space, U(E) the system of all
closed absolutely convex 0-neighborhoods in E, and B(E) the system of all closed absolutely

convex and bounded subsets of E. Then E satisfies Heinrich’s density condition if given any
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function A : U(E) — (0, 00) and an arbitrary element V € U(E) there always exist finitely
many Uy, ...,U, € U(E) and an element B € B(E) such that

O ‘Ug CB+V. (DC)
/ \ Heinrich’s
«—> A «—> Ya\ <+—> (density
\ / condition )
(QN) (WG) k*(V) = Koo (V)

regularly decreasing
KO(V) =Ko(V)
Figure 3.1 The relations between all mentioned conditions on the decreasing sequence of

weights V (the arrows signify strict implications, i. e., there are counterexamples if an arrow points

in only one direction).

3.36 Proposition. (See [BM86, in particular Thm. 2.3 and § 3].)
Let V = (v )nen denote a decreasing sequence of strictly positive functions on the index

set I which satisfies condition (D). Then k*(V) can be described projectively, i. e., we have

k® (V) = Koo (V).

Proof. (Sketch) We will essentially proceed as in Corollary 3.29.. There we used that
(M) implies Ko(V) = Ky (V) which we now don’t have at our disposal. To work around
this problem we will introduce more general spaces A°(A, §) and k°(V, 8) which “interpolate”
between A°(A) and A®(A) or k°(V) and k* (V), respectively, such that we may apply the idea
of proof of Corollary 3.29-. Let 8 denote a non-empty family of subsets of the index set I, then

we set

co(a,8) := {x € t=(a) ‘ (sup 01|Xi\)s , converges to 0}
€

ien\S
AO(A,8) := MlCo(a(n],S)
neN
k*®(V,8) .= Hﬂ;co(v(“),S)
neN

((supiel\S ailxi\)SES converges to 0 if for each ¢ > 0, there is a set S € 8 such that a;|xi| < ¢
foralli € I\ S). We obviously have A°(A, F) = A°(A) and k°(V, F) = k>°(V) for the system F
of finite subsets of I. On the other hand, if § = {I}, we obtain A°(A, 8) = A% (A) and k°(V, 8) =
k= (V).
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Now, proceeding similarily as in the proof of Proposition 3.28-, we can show that condi-
tion (M, 8) is equivalent to Ko(V,8) = K (V), where Ko(V, 8) := A°(V,8) and V := AP(A)
are defined in the usual way.

As a next step we want to obtain that Ko(V, 8) is the completion of ko(V,8). For this to
hold we will have to assume that 8 = J is actually an increasing sequence of subsets of I, as
in condition (D). In this case we can show, similarily to the proof of Lemma 3.15: and using
(N, J) of condition (D), that both k°(V,J) and Ko(V,J) induce the same topology on their
common dense subspace coo(V,J) of J-finite sequences,

coo(V,9) = {x € k®(V) | 3o € T x|y, = 0}.

By an application of Lemma 3.14. we therefore indeed obtain that Ky(V,8) is the comple-

tion of ko(V,8). We also see that k°(V,J) is a topological linear subspace of k(V) (as in
Corollary 3.17-).

Therefore we may know state
Ko(V,9) 2 R(V,9) = 10V,3)" ' C k=(V)

such that we finally obtain k> (V) = K, (V) as in Corollary 3.29- . ]
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Projective Descriptions of Weighted
Spaces of Continuous Functions

One of the obvious generalisations of the situation in the previous chapter 3. would be to
consider spaces of continuous functions instead of sequence spaces. This is what will be
attempted in this chapter. By advancing similarly as previously we will try to find reasonably
general spaces of continuous functions, so that we can still find simple projective descriptions

for their inductive limits.

In this chapter, let X always denote a completely regular Hausdorff space (replacing the index
set I), and E a complex (Hausdorff) locally convex vector space (replacing the range-space C).

4.1 Definitions and Preliminaries

First we will need to find a concept that can replace the Kéthe matrices of chapter 3. —it will
be that of Nachbin families.

4.1 Definition (Weights). (See [BMS82a, § 0.1].)
Let X be a completely regular Hausdorff space. A weight on X is a nonnegative, upper
semi-continuous (i.e., v ([, 00)) is closed for all & € R) functionv: X — [0,00) C R. Let
U, Vbe two sets of weights, we write

UVie=SvuelUIve VA >0 ulx) < Av(x) YxeX

i.e., if any weight of U can be dominated by some multiple of a weight of V. We also use

the notation

V>0é=vxeXIveV:vx) >0,

in this case we call the set of weights V strictly positive (this is not equivalent to V£ 0 =
{x — 0} in the above notation!). Finally we call a set of weights V directed upward if

Vi, v2 €EV,A>03Ive Vi Avy <vandAv, <v

(pointwise on X). If a set of weights on X is directed upward and strictly positive we refer
to it as a system of weights or a Nachbin family on X.
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4.2 Remark. If X carries the discrete topology, a (pointwise) increasing sequence of weights
on X is simply a Kéthe matrix indexed by the set X.

4.3 Definition (Weighted Spaces of Continuous Functions). (See [BMS82a, § 0.1].)
Let V be a system of weights on X. Define a family of seminorms on C(X, E) by
Gup (F) 1= supv(0p(f(x)) € RU L oo)
xXe
where v € Vis a weight, p € cs(E) is a continuous seminorm on E and f € C(X, E). Then
we can put

CV(X,E) := {f € C(X,E) \ Gu,p(f) <coWv eV, p € cs(E)},

CVo(X, E) := {f € C(X,E) |v- (p o f) vanishes at infinity ¥ € V, p € cs(E)}.

(A function g : X — C is said to vanish at infinity if for each ¢ > 0 there exists a compact
subset K C X such that [g(x)| < € for all x € X\K.)

We equip both of these vector spaces with the Hausdorff (since V > 0) locally convex
topology induced by the family of seminorms {q, , | v € V, p € cs(E)}. More generally, for
a linear subspace A(X, E) of C(X, E), we put

AV(X,E):=A(X,E)NCV(X,E) and  AVo(X,E):=A(X,E) N CVs(X,E).

If E = C we omit E from the notation, i. e., we write CV(X), CV,(X), AV(X) and AV, (X)
for the above defined spaces. Also, if V consists only of the multiples of one single weight v
on X (that is, if V = {Av | A > 0}), we write v instead of V so that we will use the notation
Cv(X,E), Cvo(X,E), Av(X,E) and Avy(X, E).

4.4 Example. The set of weights X = X(X) := {Ax |A >0, K C X, K compact} is the
Nachbin family generated by the characteristic functions 1x of the compact sets K of X.
Using this system of weights we obtain that the locally convex vector space CX (X, E)
is equipped with the topology T, of uniform convergence on the compact sets of X. Thus
CX (X, E) is complete whenever E is complete and X is a kg-space (i. e., X is such that a map
f : X — R already has to be continuous if all its restrictions to compact subsets of X are
continuous, see [Jar81, § 3.6, Example E and § 16.6, Proposition 2]).

4.5 Remark.
(i) The spaces CV(X, E) defined in Definition 4.3 are projective limits of the locally convex
vector spaces C(X, E) equipped with the topology induced by the seminorms g, ;, for
v € Vand p € cs(X), respectively:

CV(X> E) = mCV(X, E) = m(C(X, E)» qv‘p))

v,p
CVo(X, E) = lim Cvo(X, E).
v
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The spaces Cv(X, E) and Cvo (X, E) correspond to the diagonal-transformed sequence
spaces of Remark 3.5 —then the building blocks of (co-)echelon spaces. (To generalize
further, instead of single weights, we will this time consider whole systems of weights
and use the spaces CV(X, E) and CV, (X, E) as our building blocks.)

(if) If we consider another Nachbin family W on X such that W < V, we obtain that
CV(X, E) is continuously embedded into CW/(X, E), as is CV (X, E) into CW, (X, E).

A useful consequence of Remark 4.5(ii)- is the following.

4.6 Lemma. (See [Bie73a, Satz 1.5].)
Let V be a system of weights on X and E be a complete locally convex vector space, then
the space CV(X, E) is complete if there exists a Nachbin family W on X with W < V such
that CW(X, E) is complete. An analogous statement holds for CV, (X, E).

Proof. Let (fi)ic1 denote a Cauchy net in CV(X, E). Since CW(X, E) is complete, the net—em-
bedded into this space—converges to an f € CW(X,E). On the other hand it also has to
converge pointwise, since for a given x € X there exists a weight w € W with w(x) > 0 such
that

for all p € cs(E) as i,j — oo, implying that (fi(x))icr is a Cauchy net of the complete space E.
Now let ¢ > Oandv € V, p € cs(E). We can choose i,j € I big enough such that

qv,p(fi — fj) < &, then we also have

j—oo

vixp(filx) = fj(x)) <e == v(x)p(filx) —f(x)) < ¢

for all x € X such that f € CV(X,E), and f; — fin CV(X,E) as i — oo. O

Combining this result with Example 4.4 above, we obtain a simple condition for the complete-
ness of the weighted spaces CV(X, E) and CV, (X, E).

4.7 Proposition. (See [Bie73a, Korollar 1.6(2)].)
The spaces CV(X, E) and CV, (X, E) are complete whenever E is a complete locally convex
vector space, X is a completely regular kg-space and KX < V.

(If V={Av | A > 0} consists of only one weight the condition X < V simply means that
infyek v(x) > 0 for each compact set K of X.)

We won’t look into the analogue of echelon spaces but instead jump directly to the counterpart
of co-echelon spaces of order p = 0 and p = oo, our current spaces of interest.
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4.8 Definition. LetV = (V,),ciy denote a decreasing sequence (i.e., Viy 41 X Vi forn =1,
2, ...) of systems of weights on X and A(X, E) a linear subspace of C(X, E). Then we may

define the following weighted locally convex inductive limits:

VA(X,E) i= UmAVA(X,E)  VoA(X,E) i= UmA(Va)o(X, E)

(The spaces VC(X, E) and Vo C(X, E) generalize k> (V) and k°(V), respectively, while V takes
the role of the V of chapter 3...)

4.2 Projective Descriptions

4.9 Remark. (See [Bie86, page 109f].)

To find projective descriptions for weighted inductive limit spaces we should first consider
the behaviour of seminorms on these spaces (cf. Proposition 1.10:). For now we simplify
things by only considering single weights instead of whole systems of weights and letting
E=C

Let V = (vn)nen denote a decreasing sequence of weights on X. A seminorm p on
VC(X) = mﬂ Cvn (X) respectively Vo C(X) = lmn C(vn)o(X) is continuous if and only if
its restriction to each of the normed spaces Cv,, (X) respectively C(vy)o(X) is continuous.
That is, if and only if for each n € N, there is a constant C,, > 0 such that

p(f) < Callfll, = Co supvn (x)If(x)]
xeX

for each f € Cv,,(X) or f € C(vn)o(X), respectively. Thus we obtain the condition

p(f) < inf sup Crvn (x)[f(x)]
neN yex

for the continuity of p. Now it would be very nice if we could simply exchange the order of

the infimum and the supremum to obtain

p(f) < sup(inf Cpvn(x))If(x)],

xeX neN
since then inf, ¢p C,vy, could be considered as a new nonnegative upper semi-continuous

weight v on X, somehow associated with V.

This motivates the following definition of associated systems of weights (also compare to

Definition 3.10<):

4.10 Definition. (See [BMSS82a, § 0.2].)
Let V = (Vn)nen denote a decreasing sequence of systems of weights on X. We define two

associated systems of weights on X:

(i) The system of weights Vi consisting of every weight ¥ on X which is of the form
V(x) =infren Cavn(x) for Cp > 0and v, € Vi, n € N,
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(ii) The maximal system of weights Vy associated with V,
Vy i= {¥: X = R weight | 3% € Vy: 9(x) < ¥(x) Vx € X},
consisting of all weights on X which are pointwise majorized by some member of V.

4.11 Remark. By definition we have Vy < Vy as well as Vyy < Vy (since even Vy C Vy).
Furthermore Vy contains all the systems of weights V < V,, on X that are already majorized
by all the “steps” V;, for n € N (i.e., Vy contains all “lower bounds” of the decreasing
sequence V = (Vi )nen of Nachbin families).

In the special case that V is a decreasing sequence of weights vy, i.e., Vi, ={Avy | A > 0},
n € N, we have that Vy consists exactly of those weights ¥ on X with the property that ﬁ
is bounded for all n € N.

We now want to study the relationships between the weighted inductive limits VA (X, E) and
VAo (X, E) and their so-called associated weighted hulls AV(X, E) and AV, (X, E).

4.12 Lemma. LetV = (Vj)nen be a decreasing sequence of Nachbin families on X and
A(X, E) asubspace of C(X, E). Then the spaces VA (X, E) and VA, (X, E) can be continuously
injected into AV(X, E) and AV, (X, E), respectively.

Proof. By construction of the associated system Vy every AV (X, E) is continuously embedded
into AV(X, E) (see Remark 4.9 ). Since VA(X, E) is the inductive limit of the spaces AVy, (X, E),
we can use the universal property of the inductive limit (see Definition 1.26-) to also obtain a
continuous injection VA (X, E) — AV(X, E). O

The problem of finding projective descriptions for the weighted inductive limits now boils down
to the following questions (see [BMS82a, § 0.5]):

(i) When does VA(X, E) equal AV(X, E) and VA, (X, E) equal AVy(X, E) algebraically? (By
the results on sequence spaces of chapter 3. we know that we can’t, in general, hope for
VAo (X, E) = AVo(X,E).)

(i) When do AV(X,E) or AV,(X,E) induce the inductive limit topology on VA(X, E) or
VAo (X, E), respectively? (Again, we already know that there is no hope for the former
case in full generality.)

In both cases, an algebraic equality means that via V we have obtained a complete weighted
description of the functions in the inductive limit or, viewed from another perspective, that the
associated weighted space is exhausted by an increasing sequence of weighted subspaces. If,
on the other hand, the weighted inductive limit topology is induced by its associated weighted
topology, we obtain an “analytic” description (i. e., via continuous seminorms) of the “abstract”
inductive limit topology, something which is normally rather hard to obtain but still essential

for direct estimates and computations in applications.
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We will again try to find answers using an approach dictated by the Lemma 3.14-. As it
turns out—at least for a simplified case of Vo C(X, E) and CV, (X, E)—we can find a dense linear
subspace as needed in this Lemma. Thus we may characterize the inductive limit topology of
such a space Vo C(X, E) via the weighted topology of the corresponding associated weighted
hull CV, (X, E)—a projective description.

4.13 Lemma. (See [BMS82a, Lemma 1.1] and [Bie86, Lemma 4.4].)
Let (E,|/.]|) be a normed space and X be locally compact. Then the spaces VoC(X,E)
and CV,(X, E) induce the same topology on the dense linear subspace C. (X, E) of all E-val-
ued continuous functions on X which have compact support.

Proof. Since V,C(X, E) is continuously injected into CV, (X, E), given a 0-neighborhood U
in Vo C(X, E) we have to show that we can find a 0-neighborhood in CVy (X, E) whose intersec-
tion with C. (X, E) is contained in U. Therefore, we are done if we can prove that there exists
a v € Vsuch that

By := {f € Ce(X,E) | qs(f) = sup(x) IIf(x)| < 1} € UL,
xeX

Since U is a 0-neighborhood in the locally convex inductive limit topology and each V,, is
directed upward, for each n € N there exists a v,, € V;, such that (cf. Remark 1.24+)

r( U Bn) CU, where By:={feC(Va)o(XE)|aqy, (f)<1}.
neN

Now we claim that ¥ := inf,,cp 2™y, is the weight function we are searching for. First
observe that indeed v € V C V (cf. Definition 4.10-); fixing an f € By, i.e.,, f € C.(X,E)
with gy (f) < 1, consider the (“problematic”) sets

Foi={x e X[ 2" (x) [fx) =1} (neN).

Obviously every F,, is a closed subset of supp f. If x € N;;en Fn, then by definition we have
2™v, (x) [If(x)]] = 1 such that we also obtain v(x) ||f(x)|| > 1. But since this contradicts the
assumption g (f) < 1, we must conclude that the set Ny, ¢ Fn is void.

Thus, setting U,, = X\ F,, for each n € N, we obtain an open covering of X. Since supp f is
compact, we can find an m € N such that supp f is already contained in U ; U,,. Therefore
we may choose a finite partition of unity (@n)1<n<m C Cc(X) on supp f which is subordinate
to the covering (Un)1<n<m.

Setting g, := 2" @, f (1 < n < m), we obtain g € C.(X,E) C C(Vy)o(X, E). Actually we
even have g, € By, since either g, (x) =0 (for x € X\ U,, = F;;) or (whenever x € U,)

Vi (X) lgn (x| = @n(x)2Mvn (x) [f(x)] < 1.

Consequently,
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m m
f=Y ouf=) 2gnc r(U Bn) cu.
n=1 n=1

neN

Thus, by an application of Lemma 3.14, we obtain the following theorem.

4.14 Theorem. (See [BMS82a, Thm. 1.3].)
If X is a locally compact (Hausdorff) space, E is a normed space, and V = (Vj,)nen is a
decreasing sequence of systems of weights on X, then VoC(X, E) is a topological linear
subspace of CVy (X, E), i.e., CVy(X, E) induces the inductive limit topology on Vo C(X, E)
via the canonical injection.
If, additionally, E is a Banach space and X < V;, for each n € N, then CVo(X, E) is the
completion of Vo C(X, E).

Proof. The last statement follows, since by Remark 4.11. we then also have X C V, such that
CVo(X, E) is complete for any complete locally convex vector space E (see Proposition 4.7:).

0

4.15 Corollary. Under the (original) conditions of Theorem 4.14, Vo C(X, E) is a topological
linear subspace of VC(X, E).

Proof. Since we have continuous injections VoC(X,E) — VC(X,E) — CV(X,E) and
CVo (X, E) is a topological linear subspace of CV(X, E) the assertion follows immediately from
the theorem. O

In an even more restricted setting we can also obtain a generalized version of Proposition 3.13«,
i.e., algebraic projective description of VA(X, E). But first we need a special subsystem of
the associated system of weights (which can be shown, under additional assumptions, to be
equivalent to the maximal associated system V).

4.16 Definition. (See [BMS8:2a, Def. 1.7].)
Let V = (vn)newn denote a decreasing sequence of weights on a locally compact o-compact
space X such that infyck v (x) > 0 for each compact set K of X and all n € N. Fix a
sequence of compact sets (K )nen of X such that K;, C finﬂ and X = Unen Kn.
Since X is paracompact, given a strictly increasing sequence a = (an)neny € N, we
may choose a continuous partition of unity ((p%a) Jnen € C(X) subordinate to the covering
(fiam \ Kan,1) of X (where we set ap := 0 and Ko := @). Now we can define a function

X — [0,00)

Vaelx) =Y v 1)l (x), (4.1)
k=1
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where we set vy = c for a constant ¢ > 0. We will denote by Vy the family of all such
functions where a = (an)nen runs through all strictly increasing sequences of natural

numbers and ¢ > 0 is an arbitrary positive constant.

4.17 Lemma. (See [BMS82a, Lemma 1.8].)
The family Vv of Definition 4.16 is a system of (strictly positive) weights and Vy C Vy.
Furthermore, if all elements of V are continuous, then the weights v . € V4 are continuous

as well.

Proof. The definition (4.1); of ¥4 . makes sense since at most three terms of the sum do not

vanish on K \ Kq, , for each n € N. By the same argument v . is a weight on X which

An 41

is continuous whenever all v,, € V are continuous.
To see that Vo . € V4 we have to show that ‘_’\‘)"C

Remark 4.11-). Therefore, fixann € N. If x ¢ K

such that

is bounded on X for each n € N (see

then we have (pl(f)(x) =0fork<n

An 1

Va c(X) o0 (a) Vi1 (X) 00 o
rae M _ _
Vn(X) k;] (0 (X) Vn(X) X k;ﬂ (O0hs (X) <1

since V = (v )nen is decreasing. On the other hand, if x € K then (pl(f) vanishes for

k > n 4+ 2 such that

An12

Vac(x) (a) ;o Vk—1(X)
vt~ 2= O O S e e <

1
k=1 ( +1
for a constant C > 0 since the finitely many vy, ..., v, are all upper semi-continuous and vy,

can be bounded away from 0 on each compact set of X by assumption. ]

4.18 Theorem. (See [BM76, Satz 2.8] and [BMS82a, part (i) of direct proof of Thm. 1.3(d)],
originally a theorem of B. A. Taylor.)
Let (E,||.|l) denote a normed space and let V = (vy,),,cn denote a decreasing sequence of
strictly positive weights on the locally compact o-compact space X such that infyex vn (x) >
0 for each compact set K of Xand alln € N. Then VC(X, E) is algebraically equal to CV(X, E),
both spaces even have the same families of bounded sets.

Proof. Since VC(X, E) is continuously injected in CV(X, E) it suffices to prove that every
bounded set B of CV(X, E) is also contained and bounded in VC(X, E). Let B denote such a set,
as in part (b) of the proof of Proposition 3.13:, define a map b(x) := sup;g [f(x)||. Then we
have

sup v(x)|b(x)| = sup sup v(x)[[f(x)]| = sup qs(f) < oo (4.2)
xeX x€X feB feB

for all ¥ € V which means that b satisfies the weight conditions of CV(X, E) (although it need
not be an element of this space). We are done if we can prove that it also satisfies the weight
conditions of VC(X, E), i.e., if there is an n € N such that
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qv, (b) = sup vy (x)b(x) < oo, (4.3)
x€eX

since then we could estimate

sup gy, (f) = sup sup v (x)If(x)| < supvn(x)b(x) < 00

feB feEB xeX xeX
so that B C Cv, (X, E) C VC(X,E) would indeed be bounded with respect to the inductive
limit topology.

Assume indirectly that (4.3) does not hold. Then, for eachn € N and C > 0 there existsy € X
such vy, (y)b(y) > C. Furthermore, B is uniformly bounded on compact sets such that also
Vn - b is bounded on compact sets (by definition of b and since v,, is upper semi-continuous).
Therefore, in the language of Definition 4.16., we can find a sequence (an)nen € N and
Xn € féam \ Kq, , such that vy (xn)b(xy) > n for each n € N (where we again set ap :=0
and Ky := Q).

For this sequence a and a constant ¢ > max(vy(x1),v2(x2)) construct a weight v . as

in (4.1)<, then we have

Vaex1) = > v (o (x1) = volx1) @ (x1) +vi (x1) 0y (x1)
k=1

=C

> vi(x1) (@ (x1) + 05 (x1)) =vi(x1) and

00 n+1
Vaeln) = Y vic1l)o xn) = Y vic1(xn) 0l (xn)
k=1 k=n—1
n+1
= Z Vn(Xn)(Plia)(xn):Vn(xn)»
k=n—1

forn =2, 3, ... (since V is decreasing), hence

Qv c (b) = SuP\_’a,c(X)b(X) P ‘_)a,c(xn)b(xn) Z vn(xn)b(xn) >n
xeX

for each n € N, a contradiction to (4.2). . Therefore we really must have (4.3) as claimed. [

4.3 Completeness

In the case of weighted sequence spaces we know that the co-echelon space k*°(V) is always
complete since it is the inductive dual of the corresponding metrizable echelon space A' (A).
This time Theorem 4.18- only tells us that VC(X, E) is the bornologification of CV(X, E).

To obtain completeness of VC(X, E) we will restrict ourselves to a decreasing sequence of
continuous weights V = (v, Jnen and E = K so that VC(X) is an (LB)-space. This allows us to

use the completeness of the co-echelon space
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k>®(V) = li_n}ﬂ“’ (vn) where

e=(vn) = {1 = (u(x) oy € KX | qn(uw) == supvn (x) u(x)] < oo}
xeX
by showing that VC(X) is a closed topological subspace of the former (since we obviously have
a continuous injection VC(X) — k*®(V)).

4.19 Proposition. (See [BBg1, Prop. 1].)
Let V = (vn)nen denote a decreasing sequence of strictly positive continuous weights on X.
Then VC(X) is a topological subspace of k> (V).

Proof. Since the topology of VC(X) is stronger than the one induced by k*°(V), it suffices to
show that each absolutely convex 0-neighborhood of the former space also contains the trace of
a 0-neighborhood of the latter space. Thus, let U denote an absolutely convex 0-neighborhood
of VC(X). Then, for each step n € N of the inductive limit, we can find p,, > 0 such that U

contains the closed p,,-ball B,, around 0 in Cv,, (X),

By := {f € Cvn(X) ‘ qn(f) = supvn (x) [f(x)| < pn} € UL

xeX
Now, for &y, := 27" py, put
(o) m
W= U An where An = {u e ®(v,) ‘ gn(u) < otn }.
m=1n=1

The set W is clearly an absolutely convex 0-neighborhood in k*(V), and we claim that we also
have WNVC(X) C U.

To see this, fix an f € WN VC(X). By definition we can find m € N with f € > " ; Ay,
such that, for each x € X,

LIS
< Y o
n=1

vn(x)’
Now define functions f,, recursively for n = 1, ..., m by the following relation,
Rt (%) if lh1 ()] < 5227,
fnlx) = % M (x) otherwise
vn(x) hn_1(x]] '
where hg:=fandh, :=h,,_1 —fn =f— ZE:] fi. Then all these functions are continuous,
furthermore since | (x)] < %(“X) we obtain f,, € Cv,(x) C VC(X) and therefore also h,, €

VC(X)forn=1,.. m If [ha_1(x)] > %{‘X], then

n = Ry (x)] — —n
v () e (x)]| — T TS )
<1

Ihn (X)] = [hn—1(x) = fn(X)| = [hn—1 (x)| [T —
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otherwise, if [hn_1(x)| < %{‘X), we have h, (x) = hn_1(x) — hn_1(x) = 0 by definition.
Therefore we obtain inductively for 0 < k < m and all x € X that

m

hbls D T

i.e., h;,, = 0 and hence f = Z:::] fn. Finally, setting gy, := 2™ f,,, we obtain

qn(gn) = 2™ supvn(x) fnl < 2™ & = pn
xeX

by construction of f,,, and therefore g, € B, C U which means that f = ) " ;27" g, is
contained in the absolutely convex 0-neighborhood U as claimed. U

4.20 Theorem. (See [BBg1, Thm. & Prop. 2].)
Let V = (v )nen denote a decreasing sequence of strictly positive continuous weights on X.

Then VC(X) is closed in k> (V) and hence always complete.

Proof. We will show that an arbitrary function f in the closure of VC(X) taken in k*° (V) must
be continuous at each point xo € X, by Proposition 4.19;  this suffices to establish our claim.
For a given ¢ > 0 define a set

G{uekw ‘VXEXU. i
n= k=1
I3RY

where oy = = Vi (%o)

=3 ki >0 (ke N).

Then U is an absolutely convex 0-neighborhood in k*° (V) since it is an increasing union of
absolutely convex sets and it contains the closed «;,-ball around 0 of each step {*°(vy,). Since
f belongs to the closure of VC(X) in k> (V) we can therefore find an element g € VC(X)
with f — g € U. Hence there is an index n € N such that for all x € X

n n
XK £
_ < e
g —gtl< Y T55=33 s

Now, since the weights vy are continuous and strictly positive, we can find a neighborhood W)
of xg € X for each k = 1, ..., n such that vy (x) > w > 0 for all x € W,. By taking the
intersection Wy := N};_; Wi we can thus further estimate |f(x) — g(x)| if x € W,

£ — gl < 3 g i g

Finally we use the continuity of g at xo to obtain a neighborhood W C W, of xo € X

w\m
w\m

with |g(x) — g(xo0)ly§ for each x € W. Combining these estimates we arrive at

[f(x) — f(xo)| < If(x) — g(x)[+ Ig(x) — g(x0)l +[g(x0) — f(x0)]

<S4i4z-=¢
373737
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for each x € W whereby f must indeed be continuous at xo € X. U

4.4 The Regularly Decreasing Condition

We first present a version of Counterexample 3.8(ii)- adapted to our present setting to illustrate

the difficulties of finding general conditions such that VoC(X,E) =

4.21 Example.

CVo (X, E) holds.

(See [BMS82a, Rem. 1.5] and [BM76, Beispiel 2.3].)

LetX:={zeC ‘ |zl < 1} be the open unit disk of E := C and define a decreasing sequence

of weights V =

1y

1—r,
vn (T, @) =

1—m-

1+rn-(l+(p)
*_(\0

(Vi )nen on X as follows (see also Figure 4.1)

ifr=0o0r0<r<1,¢p¢€ [—7 1]
1f0<r<1andcp¢(_, ;)

n’n
if0<r<Tland ¢ € (—;,_1{)
2

n’n

if0<r<land g€ (

P

Figure 4.1 The weights vy forn =1, ...,

First, we remark that in this situation VyC(X) is a proper subspace of VC(X), since although

the function f = 1 is an element of the latter space, it is not contained in the former.

Now we want to show that VyC(X

0(X) is not a regular inductive limit,

l_llen

i. e., that there exist bounded sets in VOC (X) which are not contained and bounded in any of

the steps. For this purpose, consider the sequence of functions (f, )nen defined as follows

(see also Figure 4.2)

0,

x
no

T'(%Z—@)»

fn(T) (P) =

ifr=0o0r0<r<l,pe€ [—;»%]
if0<r<Tland o ¢ (—;)ﬁ)
if0<r<Tlande € (—;)—%)

3
n’n

1f0<r<1and(p€

Figure 4.2

The functions f,, forn = 1,
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We obtain that f,, € C(vy)o(X) and f, € C(vin)o(X) whenever n > 3m. Thus there is no
step of the inductive limit V,C(X) which contains the whole sequence (f )nen. It is only
left to be shown that it is bounded.

Let By be the closed unit ball of the Banach space C(v1)o(X); choose continuous functions
Pk : X — [0, 1] such that they satisfy px = 1 on X\ Ay where Ay := {z e X ‘ |zl > 1— %
and still vanish at infinity (k € N). Then, given an ¢ > 0, we have

lox fn = frllc(v)ox) = supvn(X) [fn(x)] - lpx(x) — 1]
xeX

= sup vn(x) fn(x) - lpx(x) =11 < sup va(x) fn(x) <,
XEAL XEAK
for k € N big enough, since v;, - f,, vanishes at infinity on X. On the other hand we have
Pk - fn € By for all k,n € N such that f,, belongs to the closure of By in C(vy,)o(X). This
means that we have obtained that the set {f,, | n € N} is contained in the closure of B;
taken in Vo C(X) and therefore has to be bounded in V,C(X).

To conclude, we remark that in this example we cannot have VoC(X) = CV,(X) since
the space Vo C(X) cannot be complete (by Proposition 2.13-) although CV,(X) is (by The-
orem 4.14:). Thus VoC(X, E) can be a proper subspace of CV, (X, E), even in the scalar
case E = C and with continuous weights V = (v )nen.

A first (rather trivial) step to obtaining a projective description for the space VC(X, E) us-
ing Theorem 4.14. is to find conditions (in terms of X and V) under which we already
have VC(X,E) = VoC(X, E) or, more generally,

VA(X,E) = VoA(X, E),

which might also remedy the problems of Example 4.21 (since there Vo C(X) was a proper
subspace of VC(X)).

Therefore, as a first step, we will try to generalize condition (S) of section 3.3 to imply the
equivalence of the inductive sequences (AV,, (X, E)) and (A(Vy)o(X, E))n which would lead
us to the desired conclusion.

In the special case where V is a sequence of weights (which is similar to the setting of
section 3.3-), i.e., Vi, = {Av,, | A > 0}, we obtain a continuous injection from Av, (X, E) to
A(vm)o(X,E) for an m > n if v,, /v, vanishes at infinity (that is, if for every ¢ > 0 there is a
compact set K C X such that v, < ¢+ v,, whenever x € X\ K), since we then have

v (x) p(f(x)) < e-vu(x) p(f(x)) < - C  (x € X\ K]

where the constant C > 0 only depends on v,,, p € cs(E) and f € Av,(X,E), such that
v - (pof) also vanishes at infinity, which means that f € A(v;,)o(X, E). Because A (v )o(X, E)
is continuously embedded into Av,, (X, E), we have obtained that the inductive sequences
(Avi (X, E))yy and (A(vn)o(X, E))n, are equivalent if, given an n € N, we can always find
an m > n such that v,,, /v, vanishes at infinity.
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We can easily generalize this to also obtain a sufficient condition for VA(X, E) = VoA(X, E)
where V = (Vy, )y cw is a decreasing sequence of general Nachbin families on X: Givenann € N
we have to be able to find an m > n such that

Yim € Vin 3vn € Vit Ym vanishes at infinity (S)

n

(this is condition (V) of [BMS82a]).

Similarly to Proposition 3.23- of the sequence space case, we will now prove that this

condition implies projective description, at least on bounded sets of the steps.

4.22 Lemma. (See [BM76, § 1, Satz 6].)
Let V = (Vn)nen denote a decreasing sequence of systems of weights on X such that
K <V and condition (S) is satisfied. Then, if n < m is chosen according to (S), the spaces
AV (X, E), VA(X,E), VoA(X,E) all induce the same topology on each bounded subset
of AV, (X, E).

Proof. We have continuous embeddings AV, (X,E) — AV, (X,E) — VA(X,E) and by
construction of (S) we also know that VA (X, E) = VoA (X, E). Furthermore the inductive limit
topology of VA (X, E) is stronger than the compact-open topology T, such that it suffices to
show that T, induces the natural topology on each bounded subset of AV;, (X, E).

A subset B of AV, (X, E) is bounded if and only if for each continuous seminorm p € cs(E)
and each weight v,, € Vy,, there exists a constant C, , > 0 such that

Sup qy.,,p(f) = sup supvn (x) p(f(x)) < Cy,, p.
feB feB xeX

Hence, by condition (S), given a seminorm p € cs(E) and a weight v, € V;, there is a
corresponding weight v;, € V;, such that for any given ¢ > 0 we can find a compact set K C X
with

€

<

(%)

N ™

sup v (x)p(f(x)) < sup vn(XJP(f(X)J'ZC
xeX\K xeX\K Vn,p

(where f € B is arbitrary). Of course we can also find a constant D > 0 with v, (x) < D
for x € K.
Every neighborhood of fy € B with respect to the topology of AV;,, (X, E) contains a set of

the form

Uype(fo) = {f € AV (X, E) | gu, p (f = fo) = sugvm(X)p(f(X) —fo(x)) < e}
xXe

for a seminorm p € cs(E) and ¢ > 0. We are done if we can find a neighborhood of fy
with respect to the compact-open topology on C(X, E) whose trace under B is contained
in Uy, p, N B. For this it suffices to consider

Uk (fo) i= {f € COXE) [If —foll = supp(f(x) — folx)) < 5},
xXe€
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since then clearly Uk , .NB C U, , . NB such that all considered topologies have to coincide
on B (given f € Uk p, ¢, if the supremum of q,, ,(f — fo) is attained for an x € K we obtain
f e U,, p, by our choice of D > 0, otherwise we only need to apply the inequality () proven
above). ]

In the simplified setting of Theorem 4.18. this can be used to show that condition (S) is indeed
sufficient to obtain algebraic and topological projective descriptions of the whole spaces.

4.23 Proposition. (See [BMS82a, part (ii) of direct proof of Thm. 1.3(d)].)
Let (E,||.|]) denote a normed space and let V = (v;,)ncpy denote a decreasing sequence of
strictly positive weights on the locally compact o-compact space X such that infycx v (x) >

0 for each compact set K of X and all n € N. If V satisfies condition (S), then we have

VoC(X, E) = CVo(X,E) = VC(X, E) = CV(X, E).

Proof. Because of condition (S) we may assume without loss of generality that V;‘)—:‘ vanishes
at infinity for each n € N (by considering an equivalent subsequence of V).

As a first step we want to show that, subject to condition (S), the inductive limit topology
of VC(X, E) is not only stronger but also weaker than the weighted topology of CV(X, E). To
this end, consider a 0-neighborhood of VC(X, E). By Remark 1.24« it has to contain a set U of
the form

u=r U,
(Uu)
where the closure is taken in VC(X, E) and with

Un = {f € Cvn (X B) | av, () = supva ()] < pn}
Xe

for a decreasing sequence (pn)nen of positive numbers. Our claim is proven if we can find a
0-neighborhood U of CV(X, E) such that U C U.
For a fixed sequence (K )nen of compact sets of X with K, € Ky 7 and X = U ; K, we

can find a strictly increasing sequence a = (an)nen € N such that

Vny1(x) Pn+1
Vi (X) n+1

forall x ¢ Kq,..
For this sequence a and vp = c := 1 define the weight v € V,

oo
Vi=Tg,c = ka,1 o™ eVcV,
k=1

as in (4.1)« using a continuous partition of unity ((pff))neN subordinate to the cover-

ing (fiam \ Ka,._; )nEN of X (where, as usual, ap := 0 and K¢ := @). Now we can define
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. B e B . P1
U= {f € CV(X,E) ‘ as() = sup oGl < min(1, o- SUpyex,, Vi (x))}‘

To see that we indeed have U C U, consider that every f € C(X, E) can be represented in
the following way,

oo oo ‘I
f= Z (pna)f = Z Fufn with fn = Zn(p‘(rta)f)

where the series converges uniformly on compact subsets of X. Furthermore in Theorem 4.18

we proved that for each f € CV(X,E) anny € N can be found with f € Cv,,, (X, E) such that, in
this case, the partial sums ZE:] 27"'fy, are all bounded by gy,  (f). Therefore, by Lemma 4.22,
the series also converges with respect to the inductive limit topology of VC(X, E). Summarizing
these observations we now know that to obtain U C U it suffices to see that f € U implies

fn € U for each n € N. In other words we have to show

P1
2 SupxeKaz Vi (X)

qs(f) < min(], ) — qv..(fn) < Pn

for each n € N, which will be verified by the following calculation:

v, (F1) = supvi(X)[If1(X)] = sup vi(x)20\* (X)IIF(x)]]

xeX x€Ka,

<2 (a)
<2( sup wix) (i‘;E"&%‘) o1 I 1)

XGKaZ

<2( sup wix)) (sup 3 vicr(x)of® )01

x€Ka,

= 2( sup vl(X))qo(f) < p1,
XeKaZ

Qv (Frs1) = sup v ()l (Xl
xeX

V. X
— sup 2t amt1 0@ e
xZKan Vn (%)

Pn+1
< a2 supva ()@ ()
xeX

< pnrsup ) vic 1 () el (X IF(x)]
x€X k=1

= Pn+1 q\')(ﬂ < Pn+1-

Thus, we have shown VC(X, E) = CV(X, E). Since VoC(X, E) = VC(X, E) follows by construc-
tion of condition (S), we are only left with CV, (X, E) DO CV(X, E). But this we obtain easily as
follows: if f € CV(X, E), then by Theorem 4.18 - there exists an n € N such that f € Cv, (X, E).

v
Vi1

Given a weight v € V we know that is bounded, and since by assumption *%** vanishes
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at infinity also vf = —~—- ‘ﬁ‘)—:‘vnf has to vanish at infinity such that f € CV, (X, E) as claimed.

Vi1
4

On the other hand, condition (S) also implies projective description for the spaces VoA (X), i.e.,
that the topology of that space is induced by the weighted topology of CV,(X).

4.24 Theorem. (See [BMS82a, Thm. 1.6].)
Let V = (vn)nen denote a decreasing sequence of strictly positive weights on the locally
compact o-compact space X such that infycx vn(x) > 0 for each compact set K of X and
alln € N. If V satisfies condition (S) and A(X) C C(X) is a semi-Montel space with respect
to the compact-open topology, then

VA(X) = VoA(X) = AVy(X) C CVo(X).

Proof. First, recall that condition (S) implies both VA (X) = VoA (X) and VC(X) = Vo C(X).
Since VA(X) = VoA (X) is a compact inductive limit (see Lemma 4.22:) and VC(X) = V,C(X)
is always regular, the former space VA(X) is a topological subspace of the latter, VC(X), by
Corollary 2.26: to Baernsteins open mapping lemma. Hence the assertion follows from Propo-
sition 4.23. which stated that Vo C(X) = CV,(X). U

Next we want to look at the regularly decreasing condition which, in the setting of sequence
spaces, characterized projective description for p = 0. By staying in the setting of Theo-
rem 4.18 and the previous Proposition where we only considered sequences V = (vn)nen
of weights we can copy the condition nearly literally from its sequence space version, Defini-
tion 3.21- The only difference is that instead of “strictly positive functions on the index set I”
we now only consider “strictly positive weights (i. e., upper semi-continuous functions) on X”.
So, a decreasing sequence of strictly positive weights V = (v )new is regularly decreasing if

for each n € N there exists an m > n such that
Ve>0, k=>2m 3k >0 vi(x) < dx,evn(x) = vm(x) < €-vn(x). (4.4)

Also, since in this setting the maximal system of weights Vy consists of all weights contained
in the associated Kothe set as defined in Definition 3.10-, we obtain that Proposition 3.22
also holds analogously for sequences V = (v )neny of strictly positive weights, i. e., we have
that (4.4) is equivalent to condition (wS): the sequence V is regularly decreasing if and only if

for each n € N there exists an m > n such that

Ve>0 e Vy: 9(x) <vim(x) = vin(x) < € vn(x) (wS)

(the function v constructed in the proof of Proposition 3.22 is actually upper semi-continuous
and therefore an element of Vy C Vy).
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We could now prove projective description in a similar way to Proposition 3.23- using
condition (wS), but in order not to repeat ourselves we will give a different proof using

Raikov’s completeness criterion of Theorem 2.11+.

4.25 Theorem. (See [BMS82a, Thm. 2.3].)
Let V = (vn)nen denote a decreasing sequence of strictly positive weights on a locally
compact space X such that infycx v (x) < oo for each compact set K C Xandn € N. If V
is regularly decreasing and (E, || . ||) denotes a Banach space, then Vo C(X, E) is also complete
and we have the algebraic and topological identity

VoC(X,E) = CVo(X, E).
Proof. We want to apply Theorem 2.11< to the sets K, := 2™"B,,, n € N, where

By i={f € Cvn)o(X, E) | qu,, (f) = supvn (x) If ()| < 1}
xeX
As in Proposition 2.14- we obtain the conditions (a), (b) and (c) necessary for Theorem 2.11«.
Therefore, to obtain completeness of VoC(X,E) = ﬁ_‘rr)ln C(vn)o(X, E), it suffices to show that
for each n € N there exists an m > n such that the closure of B,, with respect to the (weaker)
weighted topology of CVy (X, E) is already contained in Byy,.

To prove this claim, let n € N be fixed and choose m > n according to the regularly
decreasing condition. Let f be an arbitrary element of the CV, (X, E)-closure of B,,. Since the
weighted topology of CV, (X, E) is stronger than pointwise convergence on X we still have
qv, (f) < 1 and therefore also g, (f) < 1. To see that f € C(viy)o(X,E) let € > 0 and put
F:= {x e X ‘ Vi () [[F(x)]| = e}. We are done if we can show that F is (relatively) compact
in X.

If f were an element of B, then F would be compact, therefore we will try to find a sufficiently
close g € B,,. So, define a weight v € Vy C Vy on X by setting

1

V(x) = 12211\} C—kvk(x) for 0< Cy:= {

§ k<m,
drers k=zm,

where &y .3 > 0 is chosen according to the regularly decreasing condition (4.4);. Now we
can choose g € By, such that q5(f —g) < 7 and G := {x e X ‘ v (X) lg(x)]| = s} is compact.
Obviously our goal is to prove F C G. But first assume indirectly that vi, (y) > ¥(y) + gva(y)
for some y € X (i. e., we can’t estimate v,,, using v and v,,). Then, for k > m, we obtain

1 1
avk(y) > a5k,e/8vn(y) =vn(y)

(by (4.4): since vin (y) > §vn(y)). On the other hand, for k < m this would imply

1 1 1 ¢

C—kvk(y) > C—kvm(y) > agvn(y) =vn(y),

92 PROJECTIVE DESCRIPTIONS OF WEIGHTED SPACES OF CONTINUOUS FUNCTIONS



(since V = (vn)nen is decreasing) such that in total v vn(y). On the other hand, this

y) =
) vn(y) > vn(y), a contradiction to V

i
now turns the indirect assumption into vi, (y) > (1+ §

being decreasing. Therefore we must have

V(%) < 9(x) + gVa(X)

for all x € X. Finally, for x € F, this implies
m (X 19O = v (%) ([ ()] — v () [[f(x) — g(x)l
> e — (V) + gvn () l00) = g(x)]

8
z e = V() [f(x) = g(x)[ = gvn(x) (IFCI+ llg(x)1T)

such that F is a subset of G and hence relatively compact as claimed. U

To obtain the necessity of the regularly decreasing condition for projective description we will
proceed as in Theorem 3.25.. Unfortunately we cannot reuse Lemma 3.24- of the sequence
space setting—we will need property (iii) and the second part of (ii) for compact neighborhoods
in X instead of only pointwise. Furthermore, this is also the reason why this time we need to
assume continuous weights and take E = K.

4.26 Lemma. LetV = (vy)ncn denote a decreasing sequence of strictly positive continuous
weights on a locally compact (Hausdorff) space X. If V is not regularly decreasing, then
we may choose n € N and a subsequence (Vg (m))men of V for which there exists a
sequence (em)men of positive numbers, a sequence (K )men of indices and a sequence of
triples (8ij, Xij, Uyij)jen for each i € N such that (for all i,j,7,s € N)

(1) 0< 511' <

5

-

WV

(11) ch(i) (Xij) €1 Vn(Xij) although Vki (X) < 5]'1Vn(X) for each x € ui)',

(iii) Ui € Xis a compact neighborhood of xi; € X such that Ui; N'U,s = @ whenever
(1,j) # (r,s). Moreover the sets

G Uij and U {U,;j

j=

j€N>j7éj0}

—_

are closed in X for arbitrary jo € N.

Proof. Since V is not regularly decreasing we can fix an n € N such that for every m > n
there exist k,, > m and ¢,,, > 0 for which, given 5 > 0, we can always find x5 € X such that

Vim(Xs) = €m - vn(xs) although vy (xs5) < 8- vn(xs). (4.5)

4.4 THE REGULARLY DECREASING CONDITION 93



As in Lemma 3.24 we may assume, without loss of generality, that the sequence (em)m>n
is decreasing and (k) m>n is increasing. Thus we can choose a subsequence of V by setting
@(1) ==n+1and @(m) := kjn_1 + 1. We again denote K (m) by ki and ey (m) by em to
obtain the required sequences.

We will now construct the sequences (8y;, xij, Ujj)jen by inductiononi € N and j € N. If
i=j=1wecansimply set 517 :=1 < % and choose x17 € X according to (4.5)- for m = (1)
and & = 811 Since X is locally compact and % : X — R is continuous we can also choose a
compact neighborhood U of x17 € X such that vy, (x) < 811 vn(x) even holds for all x € ;.
Now assume that we have already found (81j,%1j, Uyj) for T <j < s so that conditions (i)-(iii)

are satisfied. Then choose

Vi, (x

)
)

01 <min([31s,%> for Bis:= inf{

X € O UU}.
j=1

By (4.5):- we again obtain an appropriate x15; € X. We cannot have x;5 € U;; for some j <'s

v (x

since then, by choice of 515, we would have 815 vn(x15) < Vi, (x15), a contradiction to (ii).
Therefore we can again find a compact neighborhood U s of x15 such that vy, (x) < 815 vn (x15)
for x € Uy, and, in particular, U;s N Uy = @ for all j < s. Inductively we obtain the first
sequence of triples (81, x1j, U1j)jen.

To see that the union of all compact neighborhoods defined so far is closed as was claimed,
assume indirectly that there exists ay € m \ U2 Usj. Then every neighborhood
of y € X has to contain points of U;; for some j € N larger than an arbitrary jo € N. Together
‘;‘: ((yy)) = 0, which is impossible

for strictly positive weights. In the same way we can see that the other union of compact sets

with 815 — 0 (j — 00), a consequence of (i), we therefore obtain

must be closed as well.

Now that we have constructed the first sequence, assume that (8, x5, Uij)jen has already
been constructed for T < i < r such that (i), (ii) and (iii) hold, we will try to find the r-th
sequence (8rj, Xrj, Urj)jery by induction on j € N. First we remark that by property (i) we can
find an index j, € N such that 8;; < ¢, forallj > j, and 1 <1i < . Now, for j = 1, choose

1
01 < min([:’m , T) for Br1:= inf{

(which clearly satisfies (i)), such that by (4.5)- we can find an appropriate x,7 € 1. Similarly to
above we obtain x,1 € U{_1 U;:; Uyj, but since for y € U;; where j > j, and i < r we have

Vo) (Y) < vk, (Y) <84 va(y) < &rvn(y)

(by choice of j, € N), we even know x;1 ¢ UI_] 521 Uij. We already proved that this set
is closed such that we can again find a compact neighborhood U, of x,1 € X with v (x) <
drj vn(x) forx € Uy and Uy Ny = @ ifi <randj € N.
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Assuming we have also constructed (85, X+j, Urj)1<j<s, to obtain 8,5, X,s and U,s we only

have to take
r—1 Jjr s—1
XG( Uuij)U(UUT]'>},
i=1j=1 j=1

then (i), (ii) and (iii) follow as in the case of i = 1 and j = s. Thus we have completed both

Ors < min([STs, %) for rs = inf{\:)k"((:))

inductions and obtained the desired sequences. ]

4.27 Theorem. (See [BMS82a, Thm. 2.5].)
Let V = (vn)nen denote a decreasing sequence of strictly positive continuous weights on a
locally compact (Hausdorff) space X. If V is not regularly decreasing, then Vo C(X) # CV,(X)
as vector spaces.

Proof. Since V is not regularly decreasing we may use Lemma 4.26- to try to construct an
element of CV,(X) which is not contained in VyC(X).

For each pair (i,j) € N x N choose a continuous function ¢@i; : X — [0, 1] such that
@ij(xij) = 1 and supp(@i;) € Uyy. Then fori € N set g; := Z;’i] @ij. By Lemma 4.26  these
are still continuous functions X — [0, 1] with supp(gi) C U]?’; Uy;. To be able to also sum over
i € N, choose a decreasing sequence (111)icw of positive numbers such that lim;_,,oni =0
and set h; := 3t g;. Indeed, given & > 0, we can choose r € N so that 1, < ¢ which implies

o 1

Zhlzz%glganf SN <e
i=r i=r i=r

(uniformly on X), i. e., we may define h := Zf’; ; hi. Moreover, we obtain that h is a bounded
continuous function on X which vanishes on the complement of U2 ; U52, Us;.

Now we claim that, for n € N as in Lemma 4.26-, the continuous function f := % belongs
to CV,(X) but not to VoC(X). To prove the latter, fix i € N and consider (j € N)

(xes (i) .
vi(p(l)(xu)h(xij) 2 g1 h(xi5) = e hilxy) = Sl
Vn(xij)

Vo) (xij) flxi5) =

This means that at least on these constructed points (xi;)jeny We can bound v, (1) f away from 0
by a constant which does not depend on j € N, i.e,,

{xi

jEN}gFiZ—{XGX i

Vo () f(x) > L1 }

On the other hand, F; cannot be compact, otherwise any cluster point x of (xij)jen would
belong to F; such that f(x) # 0 which means that x € U, for some indices r,s € N, a
contradiction to x being a cluster point (since the sets (U;;); jen are all disjoint neighborhoods
of the points xi; € X). Therefore we obtain f ¢ C(v(i))o(X), and since i € N was arbitrary
and @(i) — oo for i — oo we also have f ¢ Vo C(X).
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Finally, to see f € CV,(X), fix a weight v € V and let ¢ > 0. We are done if we can show
that the following set is compact,

Fi={xeX ‘ V(x) f(x) = e}

Since f vanishes on the complement of U2, US2, Ui; we again obtain that every x € F has
to be contained in some Uy;. Furthermore, by definition of V we can find positive constants
(a¢)geny such that v < infypen o vg.

Now, if x € Uj; where 3+ < +» then x cannot be an element of F since

21
_ i i
V(X) f(X) < an\)n(X) f(X) = &n h(X) = On hi(x) = o‘nigi(x) < “n? <E&.
The same is true for x € Uj; where 645 < mzlofk because
\_J(X) f(X) < Xk Vi, (X) f(X) = Ok, L(X)h(x) < Ok 511‘ h(X) < Ok, 5“1.'1 < €.
i i i vn(x) i i 21

But both 3+ — 0 for i — oo and &;; — 0 for j — oo, such that F is actually already contained

in a finite union of the sets (U;j)i jenv and hence must be compact as claimed. O
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Conclusion

The topology of an inductive limit of locally convex vector spaces is generally difficult to
describe in a way that is useful for calculations in practice. The goal of this thesis was to
find simpler descriptions of such topologies. More precisely, we wanted to find a useful
characterization of the associated family of seminorms. But knowing about the topology isn’t
always enough, in order to also characterize the elements of the underlying vector space, we
were looking for projective descriptions—which is identifying an inductive limit of a given family
of spaces as a projective limit of “similar” spaces. A common class of inductive limit spaces
arrising in practice is the class of weighted spaces—and for such spaces one can indeed find
projective descriptions.

First we considered weighted sequence spaces (Kéthe co-echelon spaces, see Definition 3.6-),

— i (n)
kP (V) ._th)I(’,p(v ).

By a rather straightforward definition of an associated system of weights V (associated Kothe
set, see Definition 3.10.) one can quickly see that the corresponding projective hulls K, (V) are
already algebraic projective descriptions in case 1 < p < oo (see Proposition 3.13-). Soon after
we saw that also the topologies coincide if only 1 < p < o0,

kP (V) = Ky (V),

which was the first full projective description result (see Theorem 3.16(i)-).

The border cases for p = 0 and p = oo turned out to be more difficult/interesting. In general,
the topology of k°(V) can be described by the seminorms of K (V) although the underlying
vector spaces need not coincide. On the other hand, the inductive topology of k> (V) can
be strictly stronger than the topology induced by K, (V) even though the two spaces always
coincide algebraically. Therefore we searched for conditions in terms of the family of weights
V for obtaining projective description even if p = 0 or p = co. A summary of these conditions
can be found in figure 3.1.. In particular it can be shown that the easily checked Schwartz-type
condition (S) suffices to obtain projective description, although with the side-effect that all

relevant spaces then have to coincide (see Proposition 3.20-),

KO(V) =k®(V) = Ko (V) = Koo (V).
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On the other hand, we discussed a weaker and slightly more involved regularly decreasing
condition which completely characterises projective description in the case of p = 0, i.e,,
kO (V) = Ko (V) (see Theorem 3.25. ) but still implies k> (V) = K, (V). Finally, the even more
complicated density condition (D) can be shown to characterize projective description for
P = 0.

In chapter 4. we presented similar results for weighted spaces of continuous functions (see
Definition 4.3 ), the spaces VC(X, E) and Vo C(X, E) generalize k> (V) and k°(V), respectively.
Again we were quickly led to a definition of an associated system of weights Vy (see Defi-
nition 4.10-) enabling us to build projective hulls. As in the case of sequence spaces the
topological projective description of VoC(X, E) can be obtained by identifying it as a subspace
of its projective hull CVy (X, E) (see Theorem 4.14 ). With a bit more work and some restrictions
one can also obtain an algebraic projective description of VC(X, E)—see Theorem 4.18:.

One difference to the sequence space case is, that this time the building blocks of the induc-
tive limits aren’t necesserily complete, and therefore also the completeness of VC(X) had to
be specifically dealt with in Theorem 4.20 (the corresponding co-echelon spaces k> (V) of
chapter 3 had turned out to be always complete, a fact which was actually used in the proof

of the present theorem).

On the other hand, condition (S) again implied projective description as before (see Proposi-
tion 4.23<),

VoC(X,E) = CVo(X,E) = VC(X,E) = CV(X, E).

Additionally, by applying Bernsteins open mapping lemma to this result, the important Theo-
rem 4.24:- can be obtained, which makes it possible to also derive projective description results
for weighted spaces consisting only of functions of a semi-Montel subspace of the space of

continuous functions.

Finally, we saw that also the regularly decreasing condition can be generalized to the setting
of continuous function spaces to obtain a characterization of the projective description of
VoC(X, E), see Theorem 4.25. and Theorem 4.27«.
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(B)-space

see Banach space
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bornivorous 15
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convex 11
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D
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density condition
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direct limit 21, 22
direct sum 20, 21
directed upward 75
dual

algebraic 12
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E Kothe echelon space 46

echelon space Ko6the matrix 46
see Kithe echelon space Kothe sequence space 45
embedding 21 Kothe set 45
equivalent projective systems 18 kr-space 76
F L
Fréchet space 14 (LB)-space 37
(F)-space (LF)-space 37
see Fréchet space limit subspace 43
final topology 15 linear topology 11
linking maps 17, 21
G locally convex
generating system 24 topology 12

vector space 12

H
Hahn-Banach 14 M
Heinrich’s density condition 72 Mackey space 26
hyperstrict inductive limit 32 Mackey topology 26
maximal system of weights 79
I metrizable 14
inductive dual 35
inductive limit N
linear 21 Nachbin family 75
locally convex 21 normable 14
inductive limit topology nuclear inductive system 33
linear 21
locally convex 21 P
inductive sequences 31 polar 25
inductive system 21 projection 17
inductive topology 19 projective description 45, 56, 63, 66, 69,
linear 19 73,79, 81, 89, 91, 92
locally convex 19 algebraic 52z, 82
initial topology 15 projective hull 50, 56
inverse limit 17, 22 projective limit 17
isomorphism locally convex 18
of topological vector spaces 11 projective limit topology 17

projective system 17
K projective topology 16
Kothe co-echelon space 47
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Q
quasi-complete 27, 38

quotient topology 20

R

reduced projective system 18

reflexive 27

regular inductive system 32, 66

regularly decreasing 62, 63, 64, 66, 68, 70,
91, 92, 95

S

saturated 24

saturated hull 24

seminorm 13

semi-Montel 43
semi-reflexive 27
o-quasi-barrelled 28
stepwise closed 43

strict inductive limit 32
strict Mackey convergence condition 39
strictly positive 75

strong bidual 27

strong topology 26
strongest linear topology 17

strongest locally convex topology 17
supremum of linear topologies 17
supremum of locally convex topologies
symmetric 11

system of weights 75

T
tend to zero 46
topological isomorphism
see isomorphism
topological vector space 11

U

uniform convergence 24

A%
vanish at infinity 76

vector space with seminorms 13

w

weak topology 12

weakly compact inductive system 33
weight 75

weighted locally convex inductive limit
well-located 43

17

78
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