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Previous results by Mund, Schroer, and Yngvason [5] regarding string-localized quan-

tum �elds are extended to include fermions by considering spinor representations of SU(2).

Die Ergebnisse einer jüngeren Arbeit von Mund, Schroer und Yngvason [5] betreffend

string-lokalisierter Quantenfelder werden um Fermionen ergänzt, indem Spinor-Darstel-

lungen der SU(2) betrachtet werden.
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1 Introduction

In their paper [5], Mund, Schroer, and Yngvason (MSY) use �ndings from research con-

cerning what has become known as modular localization [3] to construct quantum �elds

Φ(x, e) which are distinguished from �conventional�, i. e. point-like quantum �elds (as rig-

orously de�ned by the Wightman axioms [9]), in that they not only have a point-like

coordinate x (in Minkowski space) as a parameter, but also a space-like direction e. Due

to their localization which can mathematically be described by a ray, these �elds are

consequently named string �elds.

After reviewing some general properties and aspects of these string �elds, MSY then

proceed to classify free string �elds transforming covariantly with respect to irreducible

representations of the Poincaré group [11]. The representations treated in [5] include,

among others, the massive bosonic, the massless vectorial (photonic), and the massless

in�nite spin cases, the latter of which is inaccessible from the usual point-�eld account.

Moreover, string �elds have some other useful properties: for example, their short distance

dimension (sdd) can be independent of their spin [5].

The present paper aims to complement the work of MSY [5] by treating the massive

fermionic, i. e. half-integer spin case. This will require the use of spinorial string �elds,

whereas in the case of bosons, scalar string �elds are su�cient. These scalar string �elds

are constructed by considering functions on a de Sitter space that carry representations

belonging to all possible integer angular momenta [5, (50)], and then projecting onto a

given (integer) spin representation. In the present paper, the corresponding L2 represen-

tation function space of the little group SO(3) of the massive bosonic case is �doubled�,

i. e. is tensor multiplied by C2, in order to allow for representations of the little group

SU(2) of the massive fermionic case.

This paper is structured as follows: Chapter 2 outlines the required terminology and

introduces elements needed for subsequent chapters. In Chapter 3, we �rst de�ne and

then construct spinorial string �elds out of their underlying intertwiners between repre-

sentations of SU(2) and SL(2,C), analyzing some of their properties along the way, such

as anti-locality, uniqueness, and relation to point-localized �elds. Chapter 4 shows an

alternative way to construct intertwiners for spinorial string �elds via representations on

function spaces which have to be projected onto the required space. Chapter 5 sums up

relevant results.
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2 Single and many particle states

We give a brief preparatory overview of some required terminology. Most of the material

presented in this section can be found in QFT textbooks such as [10] (including detailed

derivations of results) or [1], mathematical physics primers such as [9], as well as in the

comprehensive paper [5]. For a particularly easily accessible treatment, see [6, 7]. For a

more in-depth account of representations of SL(2,C), see [8, ch. 8].

2.1 The Lorentz group and its universal cover SL(2,C)

The Lorentz group L is the group of real 4 × 4 matrices Λ that leave the Minkowski dot

product invariant, i. e. for which for arbitrary values of x, y ∈ R4,

x · y = (Λx) · (Λy),

where x · y :=
∑

µ,ν ηµνx
µyν , or equivalently,

ΛTηΛ = η,

with η = diag(1,−1,−1,−1) the Minkowski metric. It is composed of four disconnected

components,

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
−,

where the plus (minus) sign stands for the (im)proper components with det Λ = ±1 which

preserve (reverse) orientation, and the up (down) arrow stands for the positive (negative)

sign of Λ0
0 and denotes that time direction is preserved (reversed).

In the following, we will mainly be dealing with the proper orthochronous (or restricted)

component L↑+ which contains the identity (and is sometimes denoted as SO(1, 3)). Let

Λ(A) ∈ L↑+ be the proper orthochronous Lorentz transformation corresponding to A ∈
SL(2,C) [9], given by

Λ(A)p
˜

= Ap˜A∗, (2.1.1)

where A∗ means the (Hermitian) adjoint of A, and the �undertilde� denotes the bijection

x 7→ x˜ :=
∑

µ x
µσµ (with σ0 the identity, and σi the Pauli matrices) from R4 to the space

of Hermitian 2× 2 matrices, and its inverse is given by xµ = 1
2Tr(x˜σµ); all this amounts
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to the 2 : 1, SL(2,C)→ L↑+, ±A 7→ Λ(A) homomorphism [8]

Λλµ(A) =
1

2
Tr(AσµA

∗σλ),

by which one writes SL(2,C) = L̃↑+, meaning that it is the double (and, actually, the

universal) cover of L↑+.
Note that the above formalism can be restricted to a homomorphism from SU(2) (the

group of unitary 2× 2 matrices with determinant 1) to the rotation group SO(3), ±A 7→
R(A), with

R(A)p
˜

= Ap˜A−1, (2.1.2)

and a bijection R3 → isu(2), x 7→ x˜ :=
∑

i x
iσi, by only considering the spatial compo-

nents xi and �dropping� the temporal component x0.

Note the following useful property of SL(2,C) elements: let

ζ := iσ2 =

(
0 1

−1 0

)
= −ζ−1.

Then for all A ∈ SL(2,C), AζAT = ζ, or equivalently, ζ(A∗)−1ζ−1 = Ā (where Ā denotes

the complex conjugate of A). If R ∈ SU(2) ⊂ SL(2,C), then ζRζ−1 = R̄, because

RR∗ = 1.

2.2 Irreducible, unitary Poincaré group representations

We follow Wigner's approach [10, 11] of classifying single particle states by considering

positive energy representations of the proper orthochronous Poincaré group P↑+ = R4oL↑+
(or again, its universal cover P̃↑+ = R4 o L̃↑+), parametrized by their mass and spin (or

helicity, respectively).

For a given mass m > 0, de�ne the mass shell

H+
m := {p ∈ R4 : p · p = m2, p0 > 0},

where the dot (·) again denotes the Minkowski scalar product. Now �x a standard mo-

mentum p̂ ∈ H+
m such that its stabilizer subgroup (or little group) Gp̂ is

Gp̂ := {A ∈ SL(2,C) : Λ(A)p̂ = p̂}. (2.2.1)

For Ap ∈ SU(2) ⊂ SL(2,C), the customary choice is to set p̂ = (m, 0, 0, 0), which is the

momentum of the particle in its rest frame. [10].
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A unitary irreducible representation D and corresponding little Hilbert space h of a

given little group Gp̂ induce the full representation U and corresponding Hilbert space

H 3 ψ,

H := L2(H+
m,dµm)⊗ h, (2.2.2)

(U(a,A)ψ)k(p) := eipa
∑
k′

Dkk′(R(A, p))ψk′(Λ(A)−1p), (2.2.3)

where dµm(p) = δ(p2 −m2)Θ(p0) d4p, and k and k′ are spin indices (or helicity indices

for mass m = 0). The Wigner rotation is de�ned as

R(A, p) := A−1
p AAΛ(A)−1p, (2.2.4)

where Ap ∈ SL(2,C) is the boost that takes the resting particle to momentum p, i. e.

Λ(Ap)p̂ = p (2.2.5)

for p ∈ H+
m. The representation U can be extended to a representation of the proper

Lorentz group L+ (and thus to the proper Poincaré group P+) by writing the re�ection

j0 := diag(−1, 1, 1,−1) ∈ L↓+

along the edge {x ∈ R4|x3 = x0 = 0} of the standard wedge

W0 := {x ∈ R4|x3 > |x0|}

as a product of PT with an element of L↑+,

j0 = (−1) · (−j0) = PT · (−j0),

yielding

(U(j0)ψ)k(p) = (U(PT )U(−j0)ψ)k(p).

In the massive case (m > 0), the representation of PT is given by [10, (2.6.16) and

(2.6.18)]1

U(PT )ψk(p) = ξχ(−1)j−σψ−k(p),

where χ is the intrinsic parity and ξ is an arbitrary phase factor (|χ| = |ξ| = 1); we will

1Note that [10, (2.6.16) and (2.6.18)] are for basis vectors. For linear combinations, antilinearity has to
be observed, which results in complex conjugation of ψ−k(p).
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assume both to be equal to 1. Thus

(U(j0)ψ)k(p) =
(
D(j0)ψ(−j0p)

)
−k
.

2.3 Representations of SU(2)

So far, we have treated the representation D of the little group Gp̂ rather abstractly. For

the case we are interested in, that is, positive mass m and half integer spin j, we have

to consider SU(2) as little group Gp̂, and its (2j + 1) dimensional unitary irreducible

representations D = D(j), which are given by

D(j)(A) = A⊗2j . (2.3.1)

These representations act on elements ξρ1...ρj (ρi = 1, 2) of C2j+1, which are understood

as the components of the totally symmetrized tensor powers of ξρ ∈ C2 on which A acts

naturally.

Note that apart from the representation (2.3.1), there is also an equivalent complex

conjugate representation

D̄(j)(A) = Ā⊗2j ,

with Ā the complex conjugate of A.

2.4 Representations of SL(2,C)

In the following chapters, we will also need representations of the double cover of the

Lorentz group, i. e., of SL(2,C). For non-negative integers 2j and 2j′, the irreducible

representation D(j,j′)(A) is de�ned [7] as A⊗s2j ⊗ Ā⊗s2j′ on (C2)⊗s2j ⊗ (C2)⊗s2j′ , and a

spinor ξα1,...,α2j ,β̇1,...,β̇2j′
transforms according to

ξα1,...,α2j ,β̇1,...,β̇2j′
7→

∑
(ρ)(σ̇)

Aα1ρ1 . . . Aα2jρ2j Āβ̇1σ̇1 . . . Āβ̇2j′ σ̇2j′
ξρ1,...,ρ2j ,σ̇1,...,σ̇2j′ . (2.4.1)

Note that the present paper only deals with string �elds that correspond to the spin-1/2

representation of SL(2,C), D( 1
2
,0)(A) = A, and only in Section 3.6 relates them to point

�elds that correspond to a di�erent SL(2,C) representation D′.

2.5 Second quantization

Given the single particle Hilbert space H (2.2.2) and corresponding representation U

(2.2.3), we can use the symmetrized (or antisymmetrized) tensor product ⊗s and cor-
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responding (anti-) symmetrized tensor power to de�ne the bosonic (or fermionic) Fock

space

F(H) :=
∞⊕
n=0

H⊗sn,

where H⊗s0 := C, and the corresponding creation and annihilation operators acting on

φ1 ⊗s . . .⊗s φn ∈ H⊗sn,

a∗(ψ)(φ1 ⊗s . . .⊗s φn) :=
√
n+ 1(ψ ⊗s φ1 ⊗s . . .⊗s φn),

a(ψ)(φ1 ⊗s . . .⊗s φn) :=
1√
n

n∑
k=1

(±1)k+1 〈ψ, φk〉 (φ1 ⊗s . . .⊗s φ̂k ⊗s . . .⊗s φn),
(2.5.1)

(where the hat over φ̂k means that φk is omitted in the tensor product on the right hand

side of the second equation,) with ψ ∈ H and a(ψ)Ω = 0, where Ω is the Fock vacuum.

Note that the factor (−1)k+1 is required in the fermionic case in order to ensure the

correct transformation behavior under particle exchange. For simplicity's sake, we limit

ourselves to the Majorana case a
(∗)
c = a(∗) (with particles identical to their anti-particles)

instead of doubling the Fock space.

Direct computation shows that the creation and annihilation operators ful�ll the canon-

ical (anti)commutation relations

[a(ψ), a(φ)]∓ = [a∗(ψ), a∗(φ)]∓ = 0,

[a(ψ), a∗(φ)]∓ = 〈ψ, φ〉 idF(H).

For the de�nition of the �elds, we need operator valued distributions a∗k(p) and ak(p),

which are symbolically de�ned via

a∗(ψ) =:
∑
k

ˆ
a∗k(p)ψk(p) dµm(p),

a(ψ) =:
∑
k

ˆ
ak(p)ψ̄k(p) dµm(p),

(2.5.2)

yielding

[ak(p), ak′(p
′)]∓ = [a∗k(p), a

∗
k′(p

′)]∓ = 0,

[ak(p), a
∗
k′(p

′)]∓ = δ(p− p′)δkk′ .

Furthermore, we extend the single particle space representation U (2.2.3) naturally to the
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Fock space by

U(a,A)(φ1 ⊗s . . .⊗s φn) := (U(a,A)φ1 ⊗s . . .⊗s U(a,A)φn) (2.5.3)

and combine it with (2.5.1) to obtain the transformation behavior of the creation and

annihilation operators,

U(a,A)a(∗)(ψ)U(a,A)−1 = a(∗)(U(a,A)ψ),

into which we insert (2.5.2) and (2.2.3), and arrive at the following transformation behav-

ior of the creation and annihilation distributions:

U(a,A)a∗k(p)U(a,A)−1 = ei(Λ(A)p)a
∑
k′

a∗k′(Λ(A)p)D
(j)
k′k(R(A,Λ(A)p)),

U(a,A)ak(p)U(a,A)−1 = e−i(Λ(A)p)a
∑
k′

ak′(Λ(A)p)D
(j)
k′k(R(A,Λ(A)p)).

(2.5.4)

13



3 String Fields

Now, instead of introducing a conventional point-localized quantum �eld Φρ(x), we pro-

ceed by de�ning a string-localized quantum �eld Φρ(x, e).

3.1 De�nition

In order to generalize work from [5] to account for half-integer spin, we apply the notion

of string localization to a spinor �eld (instead of a scalar one as found in [5]). The �string�

property of the �eld denotes what is geometrically a ray Sx,e = x+R+e, which is de�ned

by a point in Minkowski space, x ∈ R4, and a direction e ∈ H3, with

H3 := {e ∈ R4 : e · e = −1}

a submanifold of space-like directions in Minkowski space, and H3
c its complexi�ed coun-

terpart. These strings are originally motivated as the cores of space-like cone-shaped

localization regions in the context of modular localization [3].

De�nition 1. A free fermionic string-localized quantum �eld in four-dimensional Minkowski

space is an operator-valued distribution Φρ(x, e) over R4×H3 acting on F(H), satisfying

the following properties:

1. String-antilocality : If the strings x1 +R+e′1 and x2 +R+e2 are space-like separated

for all e′1 in an open neighborhood of e1, then the �eld Φρ(x1, e1) anti-commutes

with both Φσ(x2, e2) and Φ∗σ(x2, e2), i. e.

[Φρ(x1, e1),Φσ(x2, e2)]+ = [Φρ(x1, e1),Φ∗σ(x2, e2)]+ = 0. (3.1.1)

2. Covariance: The �eld transforms covariantly under a unitary representation U of

the double cover of the Poincaré group P̃↑+ 3 (a,A) according to

U(a,A)Φρ(x, e)U(a,A)−1 =
∑
σ

D(j,k)
ρσ (A−1)Φσ(Λ(A)x+ a,Λ(A)e), (3.1.2)

while the conjugate �eld Φ∗ρ transforms with D(k,j). Note that compared to [5], the

scalar �eld is replaced by a spinorial one, and the transformation behavior has to
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be amended by the representation matrix D
(j,k)
ρσ of SL(2,C) (which in the case of a

scalar �eld is trivially represented, i. e., by 1).

3. Positivity of energy : When restricting the representation U to the translation sub-

group, the spectrum of its generators lies in the forward light cone V +.

4. Free �elds: The �eld creates only single particle states when acting on the Fock

vacuum Ω ∈ F(H), i. e.

Φρ(f, g)Ω ∈ H, (3.1.3)

where the �eld parameters x and e have been smeared with test functions f : R4 → R
and g : H3 → R, respectively.

We will also require that the distributions e 7→ Φρ(f, e)Ω and e 7→ Φ∗ρ(f, e)Ω (where x

has been smeared with a test function f) have an analytic continuation for e ∈ T+ ∩H3
c ,

where T+ := R4 + iV+.

3.2 Construction

Note that the transformation behavior of the creation and annihilation distributions

(2.5.4) is non-local because of the p-dependency of the Wigner rotation (2.2.4). There-

fore, we need to construct �elds which under Lorentz transformations are multiplied with

position-independent matrices instead, see (3.1.2). To this end, we construct Φρ(x, e)

(essentially) as the Fourier transformed creation and annihilation distributions (2.5.2),

multiplied with coe�cients u(p, e) and uc(p, e) that ensure the desired transformation

behavior (3.1.2),

Φρ(x, e) =

ˆ
H+

m

µ(p)

+j∑
m=−j

{
eipxuρm(p, e)a∗m(p) + e−ipxucρm(p, e)am(p)

}
.

The criterion for the coe�cients u and uc is to intertwine this covariant with the Wigner

basis. Their relation is expressed by the intertwiner equations∑
m′

Dmm′(R(A, p))uρm′(Λ(A)−1p, e) =
∑
σ

D(j,k)
ρσ (A−1)uσm(p,Λ(A)e),∑

m′

D̄mm′(R(A, p))ucρm′(Λ(A)−1p, e) =
∑
σ

D(j,k)
ρσ (A−1)ucσm(p,Λ(A)e).

(3.2.1)
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Note that as D is a unitary representation, Dmm′(R) = D∗mm′(R
−1) = D̄m′m(R−1), which

allows us to rewrite (3.2.1) in the somewhat more appealing form

u(Λ(A)−1p, e)D̄(R(A, p)−1) = D(j,k)(A−1)u(p,Λ(A)e),

uc(Λ(A)−1p, e)D(R(A, p)−1) = D(j,k)(A−1)uc(p,Λ(A)e).

3.3 Anti-locality

We employ the results from the previous section to show that for an appropriate de�nition

of the conjugate intertwiners uc, the two-point (or two-string) functions Wρρ′ and V
(c)
ρρ′

really ful�ll the desired relation, namely anti-locality (or anti-commutativity). We largely

follow the approach layed out in [4, 7]. We start by de�ning the two-string functionsWρρ′

and V(c)
ρρ′ :

Wρρ′(x− x′, e, e′) =
〈
Ω,Φρ(x, e)Φρ′(x

′, e′)Ω
〉

=

ˆ
dµ(p) e−ip(x−x′)Mρρ′(p, e, e

′),

Mρρ′(p, e, e
′) = ucρ(p, e) ◦ uρ′(p, e′) =

∑
m

ucρm(p, e)uρ′m(p, e′),
(3.3.1)

Vcρρ′(x− x′, e, e′) =
〈
Ω,Φρ(x, e)Φ

∗
ρ′(x

′, e′)Ω
〉
, Vρρ′(x− x′, e, e′) =

〈
Ω,Φ∗ρ(x, e)Φρ′(x

′, e′)Ω
〉
,

V(c)
ρρ′(x− x

′, e, e′) =

ˆ
dµ(p) e−ip(x−x′)N

(c)
ρρ′(p, e, e

′), (3.3.2)

N
(c)
ρρ′(p, e, e

′) = u
(c)
ρ (p, e) ◦ u(c)

ρ (p, e′) =
∑
m

u
(c)
ρm(p, e)u

(c)
ρ′m(p, e′).

The circle ◦ denotes the inner product in the space of intertwiners. We can now follow

the (slightly modi�ed) argumentation from [4, after (13)] as follows: by the analyticity

requirement stated at the bottom of Section 3.1, Wρρ′(x− x′, e, e′) and Vcρρ′(x− x′, e, e′)
have an analytic continuation into the domain

x− x′ ∈ T− := R4 − iV+, e ∈ T− ∩H3, e′ ∈ T+ ∩H3,

while Wρ′ρ(x
′ − x, e′, e) and Vρ′ρ(x′ − x, e′, e) have an analytic continuation into that

domain with T+ and T− interchanged. The covariance properties then result from (3.2.1),
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Mρρ′(p,Λ(A)e,Λ(A)e′) =
∑
σ,σ′

D(j,k)
ρσ (A)D

(j,k)
ρ′σ′ (A)Mσσ′(Λ(A)−1p, e, e′),

N c
ρρ′(p,Λ(A)e,Λ(A)e′) =

∑
σ,σ′

D(j,k)
ρσ (A)D

(k,j)
ρ′σ′ (A)N c

ρρ′(Λ(A)−1p, e, e′),

Nρρ′(p,Λ(A)e,Λ(A)e′) =
∑
σ,σ′

D(k,j)
ρσ (A)D

(j,k)
ρ′σ′ (A)Nσσ′(Λ(A)−1p, e, e′).

(3.3.3)

In order for space-like separated strings to anti-commute (3.1.1), we will show that the

following TCP relations are su�cient,

Mρρ′(p,−e,−e′) = −Mρ′ρ(p, e
′, e),

N c
ρρ′(p,−e,−e′) = Nρ′ρ(p, e

′, e),
(3.3.4)

by which criteria we de�ne

ucρm(p, e) :=
∑
m′

Dmm′(ζ)uρm′(p,−e). (3.3.5)

This is compatible with the second line of (3.2.1) because of the properties of ζ noted at

the bottom of Section 2.1.

The covariance properties (3.3.3), together with the TCP relations (3.3.4), then yield

Wρρ′(x− j0Λ(t)x′, e, j0Λ(t)e′)

= −
∑
σ,σ′

D(j,k)
ρσ (iσ3A(t))D

(j,k)
ρ′σ′ (iσ3A(t))Wσ′σ(x′ − j0Λ(−t)x, e′, j0Λ(−t)e), (3.3.6)

Vcρρ′(x− j0Λ(t)x′, e, j0Λ(t)e′)

=
∑
σ,σ′

D(j,k)
ρσ (iσ3A(t))D

(k,j)
ρ′σ′ (iσ3A(t))Vσ′σ(x′ − j0Λ(−t)x, e′, j0Λ(−t)e). (3.3.7)

Note that we have used −j0 = −j−1
0 = Λ(iσ3) and Λ(t) = Λ(−t)−1, and the fact that j0

and Λ(t) commute. The matrix-valued function Λ(t) := Λ(A(t)), A(t) = diag(et/2, e−t/2)

is the one-parameter group of Lorentz boosts that leave the wedgeW invariant; it is entire

analytic in the boost parameter t.

If two strings, x + R+e and x′ + R+e′, are space-like separated, then there is a wedge

W with causal complement W ′ = j0W such that x + R+e ∈ W and x′ + R+e′ ∈ W ′

[5, Appendix A]. Due to the translational invariance of the two-string functions (3.3.1)

and (3.3.2), the origin can be assumed to be contained in W , such that x, e ∈ W and
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x′, e′ ∈W ′. For any τ ∈ R+i(0, π), the imaginary parts of j0Λ(−τ)x, j0Λ(−τ)e, j0Λ(τ)x′,

and j0Λ(τ)e′ all lie in V+. Due to the analyticity properties of the two-string functions

mentioned above, we can analytically continue (3.3.6) and (3.3.7) to t 7→ t+ iπ. We now

employ the facts that j0Λ(±iπ) = 1 and A(iπ) = iσ3, and that in the spin-1/2 case (j = 1
2 ,

k = 0), D(j,k)(−1) = −1, and D(k,j)(−1) = 1, and thus

Wρρ′(x− x′, e, e′) = −Wρ′ρ(x
′ − x, e′, e),

Vcρρ′(x− x′, e, e′) = −Vρ′ρ(x′ − x, e′, e).

Note that because of the fermionic nature of the �elds and corresponding anti-locality,

Wρρ′(x − x′, e, e′) vanishes. Also note that the converse of the above reasoning holds as

well: anti-commuting �elds imply the TCP relations (3.3.4).

3.4 The intertwiner equation

In order to solve the intertwiner equation, we �rst consider (3.2.1) for standard momentum

p̂. To this end, we insert A = Ap into (2.2.4) which yields R(Ap, p) = 1. Observing (2.2.5),

we can then easily evaluate (3.2.1) for A = Ap,

uρm(p, e) =
∑
σ

D(j,k)
ρσ (Ap)uσm(p̂,Λ(Ap)

−1e),

ucρm(p, e) =
∑
σ

D(j,k)
ρσ (Ap)ucσm(p̂,Λ(Ap)−1e).

(3.4.1)

This means that u(c)(p, e) is �xed by u(c)(p̂, e) =: u(c)(e˜). Now, setting p = p̂ in equations

(3.2.1), and restricting them to A ∈ Gp̂ (2.2.1) yields Λ(A)−1p̂ = p̂ and R(A, p̂) = A, by

which we obtain the intertwining equations for u(e˜) and uc(e˜):∑
m′

Dmm′(A)uρm′(e˜) =
∑
σ

D(j,k)
ρσ (A−1)uσm(Ae˜A∗),∑

m′

D̄mm′(A)ucρm′(e˜) =
∑
σ

D(j,k)
ρσ (A−1)ucσm(Ae˜A∗).

(3.4.2)

So once we have found solutions to these (simpler) intertwiner equations for standard

momentum (3.4.2), we can construct solutions for general momentum (3.2.1) by using

relations (3.4.1).
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3.5 Uniqueness

We now want to show that the intertwiners u(e˜) (and thus, also uc(e˜)) determined by the

above relations (3.4.1) and (3.4.2) are unique, up to multiplication by functions f(p̂ · e).
First note that any element e ∈ H3 with e 6= (i, 0, 0, 0) can be written as

e =


sinh t

cosϕ sin θ cosh t

sinϕ sin θ cosh t

cos θ cosh t

 ,

and thus as

e = Λ(Aθ,ϕ)−1et, (3.5.1)

where

et = (sinh t, 0, 0, cosh t)T, et˜ =

(
et 0

0 −e−t

)
, (3.5.2)

and

Aθ,ϕ =

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)(
exp(iϕ/2) 0

0 exp(−iϕ/2)

)
.

From (3.4.2) and (3.5.1), we obtain∑
m′

Dmm′(Aθ,ϕ)uρm′(e˜) =
∑
σ

D(l,l′)
ρσ (A−1

θ,ϕ)uσm(et˜ ),∑
m′

D̄mm′(Aθ,ϕ)ucρm′(e˜) =
∑
σ

D(l,l′)
ρσ (A−1

θ,ϕ)ucσm(et˜ ),
(3.5.3)

which means that the intertwiners for e are determined by the ones for the string di-

rection et. We will prove their uniqueness by constructing an eigenbasis for those latter

intertwiners u
(c)
ρm(et˜ ).

To this end, note that et is invariant under rotations around the x3-axis, so by (3.4.2),

u
(c)
ρm(et˜ ) must ful�ll

∑
m′

Dmm′(A0,ϕ)uρm′(et˜ ) =
∑
σ

D(l,l′)
ρσ (A−1

0,ϕ)uσm(et˜ ),∑
m′

D̄mm′(A0,ϕ)ucρm′(et˜ ) =
∑
σ

D(l,l′)
ρσ (A−1

0,ϕ)ucσm(et˜ ).
(3.5.4)

Note that in contrast to (3.4.2), we denote the SL(2,C) representation on the right-

hand side by D(l,l′) instead of D(j,k), as we need the parameter j to label the SU(2)

representation D = D(j) that acts on C2j+1 ' C⊗s2j . The representation D(A0,ϕ) can be
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realized as A⊗2j
0,ϕ , thus acting on tensor products of C2. From here on, we will consider

only the spin-1/2 representation of SL(2,C), i. e., we will set D(l,l′)(A) = D( 1
2
,0)(A) = A.

An eigenbasis of (3.5.4) is then given by

u± ⊗ u⊗k+ ⊗s u
⊗(2j−k)
− ,

where u+ =
(

1
0

)
and u− =

(
0
1

)
, and 0 ≤ k ≤ 2j. Inserting into (3.5.4), this yields the

following criterion for k:

u(et˜ ) : k = j ∓ 1

2
,

uc(et˜ ) : k = j ± 1

2
.

Thus, the space of the intertwiners is two-dimensional, and its basis is given by û+(et˜ ) and

û−(et˜ ), which are linearly independent because u+ and u− are (and an analog statement

holds for the conjugated intertwiners),

û±(et˜ ) = u± ⊗ u
⊗(j∓ 1

2
)

+ ⊗s u
⊗(j± 1

2
)

− ,

ûc±(et˜ ) = u± ⊗ u
⊗(j± 1

2
)

+ ⊗s u
⊗(j∓ 1

2
)

− .
(3.5.5)

Now the intertwiner u(c)(et˜ ) can be written as a linear combination of those basis ele-

ments û
(c)
± (et˜ ), with coe�cients f

(c)
± (p̂ · e), where p̂ · et = p̂ · e = sinh t. In order for the

intertwiners to expose the required analyticity and distributional properties, the f
(c)
± have

to be analytic in the upper half plane and their growth has to be at most polynomial at

in�nity, and an inverse power of the imaginary part when approaching the real axis. More

generally,

u(c)(p, e) =
∑
±
f

(c)
± (p · e)û(c)

± (p, e),

where the û±(p, e) are determined by rewriting (3.5.3) as

uρm(e˜) =
∑
σ,m′

D(l,l′)
ρσ (A−1

θ,ϕ)uσm′(et˜ )D̄m′m(Aθ,ϕ),

ucρm(e˜) =
∑
σ,m′

D(l,l′)
ρσ (A−1

θ,ϕ)ucσm′(et˜ )Dm′m(Aθ,ϕ),

and applying them to û±(et˜ ) and ûc±(et˜ ) as given by (3.5.5), and then using (3.4.1) on

the results.

In the next section, we shall discuss another way to construct intertwiners and relate

the corresponding �elds to integrals over point �elds. We will construct string �elds in
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yet another way in in Chapter 4, namely by projecting out a de�nite spin from C2-valued

functions on the 2-sphere by means of spinor spherical harmonics.

3.6 Construction of intertwiners and their relation to point

�elds

We will now use the results from Section 3.5 to show that the string �elds constructed so

far can be written as a line integral over a point �eld [5, sec. 4.2]

Ψσ(x) = (2π)−
3
2

ˆ
dµ(p)

∑
k

{
eipxvσk(p)a

∗
k(p) + e−ipxvcσk(p)ak(p)

}
(3.6.1)

that transforms covariantly as

U(a,A)Ψσ(x)U(a,A)∗ =
∑
σ′

D′σσ′(A
−1)Ψσ′(Λ(A)x) + a),

with a certain SL(2,C) representation D′ which will be de�ned below.

Together with (2.5.4), this yields the following criteria for the point-like intertwiners

vσm(p) and vcσm(p) :=
∑

m′ Dmm′(ζ)vσm′(p):∑
m′

Dmm′(R(A, p))vσm′(Λ(A)−1p) =
∑
σ′

D′σσ′(A
−1)vσ′m(p),∑

m′

D̄mm′(R(A, p))vcσm′(Λ(A)−1p) =
∑
σ′

D′σσ′(A
−1)vcσ′m(p),

(3.6.2)

by which, in analogy to (3.4.1), we can express v(p) = D′(Ap)v
(j), where v(j) := v(p̂). We

now rewrite the �rst equation of (3.6.2), and then insert that expression for v(p),

v(Λ(A)−1p)D̄(j)(R(A, p)−1) = D′(A−1)v(p)

D′(AΛ(A)−1p)v
(j)D̄(j)(R(A, p)−1) = D′(A−1)D′(Ap)v

(j)

Proceeding in further analogy to Section 3.4, we set p = p̂. Using AΛ(A)−1p̂ = Ap̂ = 1 and

R(A, p̂) = A, and substituting A−1 by R, we �nally obtain

v(j)D̄(j)(R) = D′(R)v(j). (3.6.3)

Comparing this to the criterion for a spin-1/2 string �eld intertwiner (3.4.2) gives rise to

expressing

u(e˜) = w(e˜)v(j),
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where the following relation must hold for w(e˜) (which is yet to be de�ned) in order to

comply with (3.4.2):

w(e˜)D′(R−1) = R−1w(Re˜R−1), (3.6.4)

where we have inserted the spin-1/2 case D( 1
2
,0)(R−1) = R−1 on the right hand side.

This is ful�lled by the following de�nitions of w(e˜) ∈ C2 ⊗ (C4)⊗s(j− 1
2

), and D′(A):

wT(e˜) = 1C2 ⊗ e˜⊗s(j− 1
2

),

D′T(A) = AT ⊗
[
D( 1

2
, 1
2

)(A∗)
]⊗s(j− 1

2
)
.

Note that D′|SU(2) is reducible; it contains D(j) as a subrepresentation, which can be

calculated by the usual repeated application of the ladder operator on a highest weight

vector, reducing the 3-component of angular momentum by one each time applied.

We can now use w(e) to construct a string �eld

Φρ(x, e) =

ˆ ∞
0

dt f(t)
∑
σ

wρσ(e˜)Ψσ(x+ te) (3.6.5)

from the point �eld (3.6.1) with corresponding string-like intertwiner

f̃(p · e)w(e˜)v(p), (3.6.6)

where f̃(τ) is the Fourier transform of f(t), which in turn is supported in the interval

[0,∞).

Note that while there seems to be a discrepancy between the conjugate intertwiner

f̃(−p · e)w(e˜)vc(p) (3.6.7)

resulting directly from (3.6.5), and the one constructed from (3.6.6) according to (3.3.5),

f̃(−p · e)w(−e˜)vc(p) = (−1)(j− 1
2

)f̃(−p · e)w(e˜)vc(p), (3.6.8)

actually the sign vanishes in the quadratic expressions of (3.3.4), and thus, (3.6.7) and

(3.6.8) are equivalent.
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3.7 Solving the intertwiner equation for D( 1
2 )

Inserting D( 1
2

)(A) = A and D̄( 1
2

)(A) = Ā (2.3.1) in (3.4.2), we arrive at

u( 1
2

)(e˜)Ā−1 = A−1u( 1
2

)(Ae˜A−1),

uc(
1
2

)(e˜)A−1 = A−1uc(
1
2

)(Ae˜A−1).

These equations are solved by bases consisting of elements labelled with n,

u
( 1
2

)

(n) (e˜) = e˜nζ,
u
c( 1

2
)

(n) (e˜) = u
( 1
2

)

(n) (−e˜)ζ−1 = (−1)ne˜n.
(3.7.1)

Note that because of (3.5.1) and (3.5.2),

e˜2n+1 = A−1
θ,ϕe

2n+1
t

˜
Aθ,ϕ = A−1

θ,ϕe(2n+1)t

˜
Aθ,ϕ,

e˜2n = A−1
θ,ϕe

2n
t˜Aθ,ϕ = A−1

θ,ϕent˜ 2Aθ,ϕ.

Thus, if we set t = 0, it turns out that there are only two distinct basis elements for each

u( 1
2

)(e˜) and uc( 1
2

)(e˜), i. e. the space of intertwiners is two-dimensional,

u( 1
2

)(e˜) =
1

2
A−1
θ,ϕ

{
(f+ + f−)(p̂ · e)e0˜ + (f+ − f−)(p̂ · e)e0˜ 2

}
Aθ,ϕζ,

uc(
1
2

)(e˜) =
1

2
A−1
θ,ϕ

{
−(f c+ − f c−)(p̂ · e)e0˜ + (f c+ + f c−)(p · ê)e0˜ 2

}
Aθ,ϕ,

(3.7.2)

where we have chosen coe�cients (f+ ± f−)(p̂ · e) and ±(f c+ ± f c−)(p̂ · e) as to agree with

�ndings from Section 3.5. We can then easily insert (3.7.2) into (3.4.1) and check that

the result really solves (3.2.1).

Alternatively, direct insertion of (3.7.1) into (3.4.1) yields

u
( 1
2

)

(n) (p, e˜) = e˜nApζ,
u
c( 1

2
)

(n) (p, e˜) = (−1)ne˜nAp.
(3.7.3)
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4 Intertwiners from representations on

function spaces

4.1 Spinor-valued representations on function spaces

We now consider representations of SU(2) 3 A that act on the Hilbert space L2(Γ,dν)⊗
C2 3 ϕ =

(ϕ+

ϕ−

)
, with Γ = {q ∈ H+

0 : q · p̂ = 1} isometric to the 2-sphere S2 and dν the

G-invariant measure on Γ [5]; we write them down as(
D̃ ⊗D( 1

2
)
)

(A),

where D( 1
2

) acts on C2 via

D( 1
2

)(A) = A,

and D̃ is the unitary representation of G de�ned in [5] acting on L2(Γ,dν) via

(D̃(A)ϕ±)(q) := ϕ±(Λ(A)−1q).

For the tensor product of both representations, we get((
D̃ ⊗D( 1

2
)
)

(A)ϕ
)

(q) = Aϕ(Λ(A)−1q). (4.1.1)

The basis of D( 1
2

) is obviously given by u+ =
(

1
0

)
=:
∣∣1

2 ,
1
2

〉
and u− =

(
0
1

)
=:
∣∣1

2 ,−
1
2

〉
,

whereas the basis of D̃ is given by the spherical harmonics Yl,k. Now, according to the

Peter�Weyl theorem,

D̃(A) =
⊕
l∈N0

D̃(l)(A),

with the (integer) spin-l irreducible representation of SO(3) (and thus, of its double cover

SU(2)) given by [5, (56)]

(D̃(l)(A)Yl,k)(n) := Yl,k(R(A)−1n) =

+l∑
k′=−l

D̃
(l)
kk′(A)Yl,k′(n), k = −l, . . . ,+l,
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where n ∈ R3, |n| = 1, and R(A) is given by (2.1.2). Thus

D̃(A)⊗D( 1
2

)(A) =
⊕
l∈N0

D̃(l)(A)⊗D( 1
2

)(A)

∼= D( 1
2

)(A) +
⊕
l∈N

(
D̃(l− 1

2
)(A)⊕ D̃(l+ 1

2
)(A)

)
,

(4.1.2)

where we have extended the notion of D̃(j) to half-integer values j = l± 1
2 , and which we

will de�ne in Section 4.3.

4.2 Solving the intertwiner equation

We now formulate an analog of (3.2.1) for D( 1
2
,0)(A) = A, with u(p, e) replaced by a

L2(Γ,dν)⊗ C2-valued intertwiner ũ(p, e), and with D replaced by D̃ ⊗D( 1
2

) (4.1.1).(
ũ(Λ(A)−1p,Λ(A)−1e)

(
D̃ ⊗D( 1

2
)
)

(R−1(A, p))
)

(q) = D( 1
2
,0)(A−1)ũ(p, e)(q)(

ũ(Λ(A)−1p,Λ(A)−1e)R−1(A, p)
)

(Λ−1(R(A, p))q) = A−1ũ(p, e)(q).

This equation is solved by

ũ(p, e)(q) = e˜Apq˜ζ, (4.2.1)

and more generally by

ũ(p, e)(q) = c(p · e)F (e · Λ(Ap)q)Apζ. (4.2.2)

We will later project this intertwiner ũ(p, e) onto C2j+1 in order to obtain the desired

C2lj+1-valued intertwiner u(p, e) via the isometric projection V : L2(Γ, dν)⊗C2 → C2l+1,

uρm(p, e) = (Vj ũρ•(p, e))m , (4.2.3)

where ũρ• is the ρth row vector of ũ.

4.3 Spinor spherical harmonics

The bases of the 2(2l+ 1)-dimensional representations D̃(l)⊗D( 1
2

) (4.1.1) and D̃(l± 1
2

) are

related via Clebsch-Gordan coe�cients〈
l ± 1

2
,m|l,m− 1

2
;
1

2
,
1

2

〉
=: C

l, 1
2
,l± 1

2

m− 1
2
,+ 1

2
,m
,〈

l ± 1

2
,m|l,m+

1

2
;
1

2
,−1

2

〉
=: C

l, 1
2
,l± 1

2

m+ 1
2
,− 1

2
,m
,
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and are given by the equations∣∣∣∣l +
1

2
,m

〉
=

√
l + 1/2 +m

2l + 1

∣∣∣∣l,m− 1

2

〉
⊗
∣∣∣∣12 , 1

2

〉
+

√
l + 1/2−m

2l + 1

∣∣∣∣l,m+
1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉
,∣∣∣∣l − 1

2
,m

〉
=

√
l + 1/2−m

2l + 1

∣∣∣∣l,m− 1

2

〉
⊗
∣∣∣∣12 , 1

2

〉
−
√
l + 1/2 +m

2l + 1

∣∣∣∣l,m+
1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉
,

(4.3.1)

where for integer values of l and m± 1
2 ,
∣∣l,m± 1

2

〉
= Yl,m± 1

2
are the spherical harmonics,

which vanish for |m ± 1
2 | > l. Note that the �rst line of (4.3.1) holds for l ≥ 0, while

the second line only holds for l > 0. The total angular momentum is obviously either

j = l − 1
2 or j = l + 1

2 (cf. the indvidual representation terms on the right hand side

of (4.1.2)), and therefore half-integer valued. As this is the quantity that is conserved

in physical problems, we will consider expressions in j = l ∓ 1
2 and in m = −j, . . . ,+j.

These two possible choices of sign correspond to the two-dimensional basis given by (3.5.5).

Note that from here on, it would be su�cient to proceed with either choice out of the two

possible signs. Wherever feasible, we are still going to state results for both choices.

Equations (4.3.1) amount to the construction of spinor spherical harmonics1 [2, sec. 6.10]

∣∣∣∣j = l +
1

2
,m

〉
=: Y (j− 1

2
, 1
2

),j,m =

 √
j+m

2j Yj− 1
2
,m− 1

2√
j−m

2j Yj− 1
2
,m+ 1

2

 ,

∣∣∣∣j = l − 1

2
,m

〉
=: Y (j+ 1

2
, 1
2

),j,m =

 √
j−m+1

2j+2 Yj+ 1
2
,m− 1

2

−
√

j+m+1
2j+2 Yj+ 1

2
,m+ 1

2

 ,

with their inner product given by〈
Y (l′, 1

2
),j′,m′ , Y (l, 1

2
),j,m

〉
=

∑
ν′,ν=± 1

2

C
l′, 1

2
,j′

m′−ν′,ν′,m′C
l, 1

2
,j

m−ν,ν,m(Yl′,m′−ν′ , Yl,m−ν)

=
∑
±
C
l′, 1

2
,j′

m′∓ 1
2
,± 1

2
,m′
C
l, 1

2
,j

m∓ 1
2
,± 1

2
,m

(Yl′,m′∓ 1
2
, Yl,m∓ 1

2
)

= δj′jδl′lδm′m,

where l ∈ {j − 1
2 , j + 1

2} and l
′ ∈ {j′ − 1

2 , j
′ + 1

2}. Now the representation D̃(j) can be

1sometimes also called spin spherical harmonics or spherical spinors; but not to be mistaken with
spin-weighted spherical harmonics as e. g. described in [8, sec. 7.8]
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written as (cf. [2, (6.56)])(
D̃(j)(A)Y (j± 1

2
, 1
2

),j,m
)

(n) = AY (j± 1
2
, 1
2

),j,m(R(A)−1n)

=

+j∑
m′=−j

D̃
(j)
mm′(A)Y (j± 1

2
, 1
2

),j,m′(n).
(4.3.2)

Given a function ϕ : R3 → C, x 7→ ϕ(x), we de�ne

ϕ(a,A)(x) := ϕ(R(A)−1(x− a)),

by which the second equation in (4.3.2) implies

D̃
(j)
mm′(A) =

(
Y (j± 1

2
, 1
2

),j,m′ , AY
(j± 1

2
, 1
2

),j,m

(0,A)

)
. (4.3.3)

4.4 Projecting function space intertwiners onto the little

Hilbert space

Like in [5], there is a partial isometry V , which in the fermionic case intertwines the

representations D̃(l) ⊗D( 1
2

) and D̃(l± 1
2

),

D̃(l± 1
2

)(A)V = V
(
D̃(l) ⊗D( 1

2
)
)

(A), A ∈ SU(2).

The isometric projectors Vj thus read

(Vjϕ)m =
〈
Y (l, 1

2
),j,m, ϕ

〉
=
∑
±
C
l, 1

2
,j

m∓ 1
2
,± 1

2
,m

(Yl,m∓ 1
2
, ϕ±)

=
∑
±
C
l, 1

2
,j

m∓ 1
2
,± 1

2
,m

ˆ
S2

dσ(n)Yl,m∓ 1
2
(n)ϕ±(q(n)),

(4.4.1)

where l ∈ {j − 1
2 , j + 1

2}, and q(n) = (1, n1, n2, n3)/m. By (4.2.3), this yields2 [5]

uα(l)(p, e)ρm = e−iπα/2
∑
±
C
l, 1

2
,j

m∓ 1
2
,± 1

2
,m

ˆ
S2

dσ(n)Yl,m∓ 1
2
(n)ũρ±(q(n)). (4.4.2)

2Note that for the sake of legibility, we did not attach the label α to the intertwiners anywhere else in
this paper but only in this section.
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Inserting ũρ± from (4.2.2) in (4.4.2), and using F (w) = wα, we arrive at

uα(l)(p, e)ρm = e−iπα/2
∑
±
C
l, 1

2
,j

m∓ 1
2
,± 1

2
,m

ˆ
S2

dσ(n)Yl,m∓ 1
2
(n)(e · Λ(Ap)q(n))α(Apζ)ρ±

=
∑
±
C
l, 1

2
,j

m∓ 1
2
,± 1

2
,m
uα(p, e)m∓ 1

2
(Apζ)ρ±, (4.4.3)

where uα(p, e)m∓ 1
2
(with only one index) is the intertwiner from the scalar (i. e., the

massive bosonic) case as found in [5, (63)],

uα(p, e)k = e−iπα/2

ˆ
S2

dσ(n)Yl,k(n)(e · Λ(Ap)q(n))α.

4.5 Intertwiners for D( 1
2 )

We check that our result for D(j= 1
2

) (and thus, l = 0 = j − 1
2) agrees with what we found

in (3.7.3). To that end, we use (4.2.3) and (4.4.1) to express u
( 1
2

)

ρ,± 1
2

(p, e) as

u
( 1
2

)

ρ,± 1
2

(p, e) =
(
V 1

2
ũρ•(p, e)

)
± 1

2

=
〈
Y (0, 1

2
), 1

2
,± 1

2 , ũρ•(p, e)
〉
.

Only components u
( 1
2

)

±,± 1
2

(p, e) are non-vanishing; they are given by

u
( 1
2

)

±,± 1
2

(p, e) = (Y0,0, ũ±,± 1
2
(p, e)) =

1

2

1√
π

ˆ
dσ(n) ũ±,± 1

2
(p, e)(q(n)).

We now insert (4.2.1), which is linear in q, and thus in n,

u
( 1
2

)

±,± 1
2

(p, e) =
1

2

1√
π

ˆ
dσ(n)

(
e˜Apq(n)˜ ζ

)
±,± 1

2

=
1

2

1√
π

(
e˜Ap

(ˆ
dσ(n) q(n)˜

)
ζ

)
±,± 1

2

(4.5.1)

Furthermore, we express the unit vector n as n = (sin θ cosϕ, sin θ sinϕ, cosϕ)T, and

dσ(n) = sin θ dθ dϕ. This yields

q(θ, ϕ)
˜

=
1

m

(
1 + cos θ e−iϕ sin θ

eiϕ sin θ 1− cos θ

)
,

by which we can compute the integral

ˆ
q(θ, ϕ)
˜

sin θ dθ dϕ =
4π

m
12.
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Inserting into (4.5.1), we obtain

u
( 1
2

)

±,± 1
2

(p, e) =
2

m

√
π
(
e˜Apζ)±,± 1

2

,

which is in accordance with (3.7.3).
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5 Conclusion

We have extended the notion of string-localized �elds to the massive fermionic case,

and have shown three di�erent ways of constructing such �elds, all of which involved a

solution to the intertwiner equation that connects the Wigner basis of �elds with the

desired covariant ones. One of these ways was used to display the uniqueness properties

of these �elds, another one related them to corresponding point-localized �elds, while the

third one generated them by a projection of function space representations of SU(2). In

contrast to the bosonic case, these �elds, like their point-like counterparts, need to be

spinor �elds, and expose anti-locality when space-like separated.

This work can be seen in a broader context of e�orts complementing [5] by other cases

not treated therein, such as [6, 7].
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