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1. Introduction 

The vehicle routing problem (VRP) is a combinatorial optimization problem dealing 

with the distribution of goods between a depot and a set of customers. Various 

applications of this problem can be found in the real world, e.g. mail delivery, solid 

waste collection, street cleaning, etc. (Toth and Vigo (2002)). 

Most vehicle routing models assume constant travel times throughout the day. In reality, 

however, travel times fluctuate because of two reasons: the variation in travel time may 

result from predictable events such as congestion during rush hours or from 

unpredictable events such as accidents (Ichoua et al. (2003)). The time-dependent 

vehicle routing problem (TDVRP) takes the first aspect into account by assuming that 

travel times depend on the time of the day.  

This diploma thesis gives an overview of the TDVRP and presents the results of an 

experimental study. 

The first part of this thesis introduces the VRP and different solution methods. This is 

followed by a detailed description of the TDVRP.  

The second part presents an algorithm based on tabu search to solve the capacitated 

VRP (CVRP). In the next step, the best solutions of the CVRP are evaluated with five 

time-dependent scenarios, each representing a different degree of time-dependency. 

Afterwards, the original algorithm is adapted to solve the TD-CVRP. Finally, the results 

of the whole implementation are presented and analyzed. The last chapter provides a 

conclusion of the thesis.  
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2. The Vehicle Routing Problem 

Since its introduction in 1959, the VRP has been studied extensively and many variants 

have been discussed. The following chapter gives an overview of the problem. It starts 

with a brief definition of the basic VRP. This is followed by a description of the most 

important variants.  

2.1 Definition 

This section is based on the work of Toth and Vigo (2002) who provide an extensive 

survey of the VRP.  

The VRP deals with the distribution of goods between a depot and a set of customers 

who have known demands. The distribution is performed by a fleet of vehicles which 

are based at the depot. The aim of this problem is to minimize the total cost of a set of 

routes such that all constraints are satisfied. The VRP is known to be NP-hard, meaning 

that it is unlikely to be solved within polynomial time (Lenstra and Rinnooy Kan 

(1981)).   

The VRP is described on a graph which represents the road network. It consists of road 

sections, customer locations, depots and road junctions. Road sections are represented 

by arcs which are either directed or undirected, depending on whether they can be 

traversed in only one direction (e.g. one-way streets) or in both directions. Each arc is 

associated with a certain cost which corresponds to its length. Customer locations, 

depots and road junctions are represented by nodes.  

The basic version of the VRP is the CVRP. In this problem each vehicle has a limited 

capacity and each customer is associated with a fixed demand which is not allowed to 

be divided. The objective is to determine a set of routes with minimum cost such that i) 

each vehicle route originates and terminates at the depot, ii) each customer is visited 

exactly once by one vehicle route and iii) the sum of all customer demands 

corresponding to one vehicle route does not exceed the capacity limit.  
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A typical CVRP is presented in Figure 1. It shows a single depot and eight customers 

who are visited by three vehicles.  

 

 

 

 

 

2.2. Variants of the VRP  

The following section describes five VRP variants which have been widely studied in 

the past. The section is based on Toth and Vigo (2002). 

 

2.2.1 The Distance-Constrained VRP 

The distance-constrained VRP imposes a limit on the total distance of a route. The 

objective consists in minimizing the total length of the routes such that i) each route 

originates and terminates at the depot, ii) each customer is visited exactly once by one 

vehicle route and iii) the limit on the total distance is not exceeded.  

 

2.2.2 The VRP with Time Windows  

The VRP with Time Windows (VRPTW) restricts the service at customer i by the time 

window [𝑒𝑖 , 𝑙𝑖], where 𝑒𝑖 represents the earliest start of service and 𝑙𝑖 represents the 

latest start of service at customer i. The duration of the service at customer i is denoted 

by 𝑠𝑖.  

Figure 1: CVRP solution 
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Time windows can be either soft or hard. Soft time windows allow time window 

violations at a certain penalty cost. Hard time windows, on the other hand, do not accept 

any violation. The objective of the VRPTW is to minimize the total cost over all routes 

such that i) each route starts and ends at the depot, ii) each customer is visited exactly 

once by one route, iii) the vehicle capacity is satisfied iv) the service of customer i 

begins within time window [𝑒𝑖 , 𝑙𝑖] and v) lasts for 𝑠𝑖 time instants. 

 

2.2.3 The VRP with Backhauls (VRPB)  

The VRP with Backhauls (VRPB) is concerned with the delivery and the collection of 

goods. There are two groups of customers involved in this problem: linehaul customers 

demand the delivery of goods whereas backhaul customers require the collection of 

goods. The objective of the VRPB is to determine a least-cost set of routes such that i) 

each route begins and ends at the depot, ii) each customer is visited exactly once by one 

route, iii) the sum of the demands of linehaul and backhaul customers belonging to one 

route does not exceed separately the vehicle capacity and iv) the set of linehaul 

customers is always visited first.  

 

2.2.4 The VRP with Pickup and Delivery 

The VRP with Pickup and Delivery (VRPPD) is based on the assumption that each 

customer 𝑖 is associated with a quantity 𝑑𝑖 which has to be delivered and a quantity 𝑝𝑖 

which has to be picked up. For each customer 𝑖, 𝑂𝑖 indicates the origin of the delivery 

demand and 𝐷𝑖 signifies the destination of the pickup demand. A precedence constraint 

clarifies that the delivery is always performed prior to the pickup. The objective is to 

design a set of least-cost routes such that i) each route originates and terminates at the 

depot, ii) each customer is visited exactly once by one route, iii) the current load of the 

vehicle is nonnegative and does not exceed capacity limit 𝐶, iv) customer 𝑂𝑖, if different 

from the depot, must be visited before customer 𝑖 and v) customer 𝐷𝑖, if different from 

the depot, must be visited after customer 𝑖. 
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3. Solution methods  

Since the introduction of the VRP, numerous exact and heuristic solution methods have 

been developed. A typical exact method is the branch and bound algorithm which 

determines the optimal solution of a VRP.  A major drawback of this method is its 

immense computational effort, i.e. it can only tackle small problems. Larger problems 

are solved with heuristic methods which provide good quality solutions within 

reasonable computation times (Laporte and Semet (2002)). However, there is no 

guarantee that the obtained solutions are optimal. 

Heuristics can be classified into classical heuristics and metaheuristics. The first type 

performs a limited search of the solution space; the final solution is in most cases a local 

minimum. Metaheuristics, on the other hand, enable a deeper search in more promising 

regions and lead to better solutions than classical heuristics (Laporte and Semet (2002)).  

The current chapter gives an overview of different solution methods discussed in the 

VRP literature. The first part provides a description of several classical heuristics; the 

second part presents the most important metaheuristics. 

3.1 Classical Heuristics  

According to Laporte and Semet (2002), classical heuristics can be further divided into 

three categories: constructive heuristics, two-phase heuristics and improvement 

heuristics. Constructive and two-phase heuristics create the initial solution of a VRP 

whereas improvement heuristics focus on further improvement of the initial solution. 

 

3.1.1 Constructive Heuristics 

Constructive heuristics are based on the principle of inserting customers into routes. 

This is either done in a sequential or in a parallel manner. Sequential approaches build 

routes one after another whereas parallel approaches construct several routes 

simultaneously. Typical constructive heuristics are the savings heuristic of Clarke and 

Wright (1964) and the sequential insertion heuristic of Mole and Jameson (1976). 
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3.1.1.1 The Savings Heuristic 

The savings heuristic is based on the principle of merging two routes if it leads to a cost 

saving (see Figure 2). 

 

 

 

 

 

 

 

 

Based on the formulations of Laporte et al. (2000), the savings heuristic is described as 

follows: 

Let us consider Figure 2. At the beginning, the customers 𝑖 and 𝑗 belong to two separate 

routes. The total cost 𝑇𝐶𝑜𝑟𝑖𝑔 of this solution is defined as follows: 

                                                𝑇𝐶𝑜𝑟𝑖𝑔 = 𝑐0𝑖 + 𝑐𝑖0 + 𝑐0𝑗 + 𝑐𝑗0                                        (1) 

In expression (1), 𝑐0𝑖 and 𝑐𝑖0 represent the costs of the two links between customer 𝑖 

and the depot whereas 𝑐0𝑗 and 𝑐𝑗0 represent the costs of the two links between customer 

𝑗 and the depot. Merging both routes would result in a total cost 𝑇𝐶𝑛𝑒𝑤where 𝑐𝑖𝑗 

represents the cost of link (𝑖, 𝑗): 

                                                     𝑇𝐶𝑛𝑒𝑤 = 𝑐0𝑖 + 𝑐𝑖𝑗 + 𝑐𝑗0                                             (2) 

A merge results in a saving if 𝑇𝐶𝑛𝑒𝑤 is less than 𝑇𝐶𝑜𝑟𝑖𝑔. Consequently, saving 𝑠𝑖𝑗 is 

defined in the following way: 

                                𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗  for   𝑖, 𝑗 = 1, … ,𝑛  𝑎𝑛𝑑 𝑖 ≠ 𝑗                        (3) 

 

 

i j j i 

Depot Depot 

Figure 2: Savings Heuristic  
(based on Bräysy and Gendreau (2005a)) 
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The next paragraph gives an outline of the different steps performed during the savings 

heuristic (parallel approach): 

The first step consists in computing the savings between all customer pairs and sorting 

them in decreasing order. Afterwards, each customer i is assigned to a separate vehicle 

route (0, 𝑖, 0).   

In the second step, the customer pair with the highest saving 𝑠𝑖𝑗 is selected and checked 

for a possible merge. A merge is only performed if i) the customers i and j belong to 

two different routes, ii) the customers i and j are located in the front or end position of 

their routes and iii) the merge does not violate any constraints. Provided that these 

conditions are satisfied, the routes of customers i and j are combined so that customer j 

is immediately visited after customer i. Then the next savings pair is selected and the 

same procedure is applied. This is done until no more feasible savings are left. 

 

3.1.1.2 Sequential insertion heuristic 

As the name already implies, this heuristic inserts unrouted customers in a sequential 

manner. According to Cordeau et al. (2007), the selection and insertion of an unrouted 

customer k is based on the following measure: 

                                                   𝛼(𝑖,𝑘, 𝑗) = 𝑐𝑖𝑘 + 𝑐𝑘𝑗 − 𝜆𝑐𝑖𝑗                                         (4) 

In expression (4), 𝑐𝑖𝑘, 𝑐𝑘𝑗 and 𝑐𝑖𝑗 represent the costs between the corresponding 

customers whereas 𝜆  is a user-controlled parameter. The cost 𝛼(𝑖,𝑘, 𝑗) describes the 

extra distance which arises from the insertion of customer 𝑘 between the two adjacent 

customers i and j. 

 

3.1.2 Two-phase heuristics  

Two-phase heuristics consist of two components: clustering and routing. During the 

clustering phase customers are divided into routes; the customer sequence within each 

route is determined during the routing phase (Cordeau et al. (2007)). Depending on 

which phase is performed first, we can distinguish between cluster-first, route-second 

methods and route-first, cluster-second methods.  
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3.1.3 Improvement Heuristics  

Improvement heuristics perform several route changes to create a neighborhood of 

solutions. The incumbent solution is replaced by a neighborhood solution if it leads to 

an improvement in the total cost. The route changes can be done within one route 

(‘intra-route’) or between two different routes (‘inter-route’).  

Bräysy and Gendreau (2005a) describe several neighborhood operators:  

The 2-opt exchange operator replaces two edges by two other edges in the same route: 

the edges (𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) are replaced by the edges (𝑖, 𝑗) and (𝑖 + 1, 𝑗 + 1). In 

this way the direction of the nodes between 𝑖 + 1 and 𝑗 is reversed. 

The relocate operator chooses a node from one route and inserts it into another: the 

edges (𝑖 − 1, 𝑖) (𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) are replaced by (𝑖 − 1, 𝑖 + 1), (𝑗, 𝑖) and 

(𝑖, 𝑗 + 1). 

The exchange operator swaps two nodes between two routes. The edges (𝑖 − 1, 𝑖), 

(𝑖, 𝑖 + 1), (𝑗 − 1, 𝑗) and (𝑗, 𝑗 + 1) are replaced by (𝑖 − 1, 𝑗), (𝑗, 𝑖 + 1), (𝑗 − 1, 𝑖) and 

(𝑖, 𝑗 + 1). 

The cross exchange operator first removes the two edges (𝑖 − 1, 𝑖) and (𝑘,𝑘 + 1) from 

route 1 and then (𝑗 − 1, 𝑗) and (𝑙, 𝑙 + 1) from route 2. The segments 𝑖 − 𝑘  and 𝑗 − 𝑙 

may consist of an arbitrary number of nodes. These nodes are swapped by creating the 

new edges (𝑗, 𝑗 + 1), (𝑖 − 1, 𝑗), (𝑙,𝑘 + 1), (𝑗 − 1, 𝑖) and (𝑘, 𝑙 + 1). In this case, the 

route directions are not affected. 

3.2 Metaheuristics  

Metaheuristics combine different mechanisms to find solutions of good quality. In 

contrast to classical heuristics, they accept non-improving solutions during the search to 

overcome local optima. Usually, metaheuristics produce better results than classical 

heuristics at the expense of increased computation times (Gendreau et al. (2002)). The 

following sections present different metaheuristics for solving the VRP. 

 

 



 

9 
 

3.2.1 Simulated Annealing  

Following Bräysy and Gendreau (2005b), simulated annealing (SA) is a stochastic 

relaxation technique based on the idea of heating a solid to a high temperature and then 

cooling it down so that it ends up in a low energy condition. In this case, a neighboring 

solution 𝑆 ′ is accepted as new solution if Δ ≤ 0. The variable Δ measures the difference 

between the cost of the potential new solution 𝑆 ′ and the cost of the current 

solution 𝑆: Δ = 𝐶(𝑆 ′) − 𝐶(𝑆). If Δ > 0, the acceptance depends on the probability 𝑒−
∆
𝑇 

where 𝑇 describes the current temperature. During the process, the temperature is 

gradually cooled down. 

 

3.2.2 Tabu Search 

Bräysy and Gendreau (2005b) describe tabu search (TS) as a metaheuristic which 

moves at each iteration from the current solution to best neighborhood solution. It was 

introduced by Glover in 1986. It allows non-improving solutions to overcome local 

minima. In order to avoid recently visited solutions, certain solution attributes are 

declared forbidden or ‘tabu’ for a number of iterations. The tabu status of a move is 

ignored if satisfying an aspiration criterion, e.g. if a tabu solution is better than any 

solution achieved so far. More details about the TS algorithm will be provided in 

Chapter 5. 

 

3.2.3 Genetic Algorithm 

Gendreau et al. (2002) describe genetic algorithms (GA) as randomized global search 

techniques which mimic natural evolution. A population of chromosomes is created 

where each chromosome encodes a solution to a particular instance. In order to create 

new chromosome generations, different operators, such as reproduction and mutation, 

are applied.  
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3.2.4 Ant Algorithm 

According to Donati et al. (2008), ant algorithms are based on the following idea: When 

ants are on their way to a food source, they deposit pheromones along their path. The 

more pheromones are laid on a path, the more attractive it becomes to other ants. In this 

way shorter paths are strengthened. Further details about the ant algorithm of Donati et 

al. (2008) will be provided in Chapter 4. 

 

3.2.5 Variable Neighborhood Search 

Hansen and Mladenović (2001) describe variable neighborhood search (VNS) as a 

metaheuristic which changes the neighborhood systematically. The authors describe the 

individual steps of the VNS in the following way: 

VNS starts with the selection of a set of neighborhood structures and the creation of an 

initial solution. While a stopping condition is not met, the following steps are repeated:  

In the first step, the shaking procedure selects a random solution from the first 

neighborhood. After that, a local search procedure tries to improve the random solution. 

Finally, the move or not step compares the improved and the incumbent solution. In 

case the new solution is better, it replaces the incumbent solution and the search returns 

to the first neighborhood, otherwise it goes to the next neighborhood.  
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4. The Time-Dependent Vehicle Routing Problem 

The following chapter presents a detailed overview of the TDVRP. First of all, the 

problem is introduced. In the next section, a short summary of related time-dependent 

problems is provided. This is followed by a description of different time-dependent 

travel time models. The following section is devoted to the problem formulation of the 

TDVRP. After that, the First-in First-out (FIFO) property is presented. The chapter 

concludes with a review covering literature from 1991 until 2012.  

4.1 Introduction 

The basic VRP relies on the assumption that travel times remain constant throughout the 

whole planning horizon. In reality, however, travel times may vary during the day. The 

variation in travel times may result from predictable events such as congestion during 

rush hours or from unpredictable events such as accidents (Ichoua et al. (2003)). The 

TDVRP takes these predictable events into account by assuming time-dependent travel 

times, i.e. the travel time between two locations depends on the distance between these 

two points and on the time of the day (Malandraki and Daskin (1992)). Figure 3 

underpins this statement by showing two typical traffic situations in the city of Vienna.  

The left map depicts the average travel speeds at 8:30 am whereas the right map 

illustrates the average travel speeds at 11:30 pm.  

 

 

 

 

 

 

 

 

 

 

              Travel speeds at 8:30 am                                      Travel speeds at 11:30 pm 
 
 

 

Figure 3: Traffic situation in Vienna 
 (Schmid and Dörner (2010)) 
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At 11:30 pm, the light grey area corresponding to the lowest travel speed is 

concentrated in the center of the city. However, this changes if we consider the traffic 

situation at 8:30 am.  In this case, the light grey area expands such that the surrounding 

districts are also affected by lower travel speeds. This induces longer travel times for the 

same distance in the affected areas. 

The two speed maps show that the assumption of constant travel times throughout the 

day is far from reality. According to Ichoua et al. (2003), the optimal solution of a VRP 

which assumes constant travel times may be suboptimal or infeasible for the time-

dependent problem. For example, time windows might be missed because of late 

arrivals, transportation costs might increase because of overtime hours, etc. The 

TDVRP captures this aspect by taking predictable travel time variations into account. 

The aim of the problem is to construct feasible routes which minimize the total travel 

time and offer a higher reliability.  

Furthermore, travel times are influenced by many other factors such as the direction of 

the trip. Also the day of the week or the season of the year might play a major role 

(Eglese et al. (2006)).  

 

Time-dependent travel times (or travel speeds) are either simulated or derived from 

traffic monitoring systems. When analyzing the data from traffic monitoring systems, 

one can observe that most travel times follow a certain pattern during the day. This 

helps to predict future traffic situations. Especially travel time variations during rush 

hour congestion show a high predictability. This is proven by Eglese et al. (2006) who 

mention a study from the United Kingdom which examines tachograph analysis and 

data from a vehicle tracking and tracing system. It shows that on one road segment of a 

motorway the same commercial vehicle speeds vary in one week from 5 mph (at 8:45 

am on a Monday) to 55 mph (at 8:15 pm on a Wednesday). When comparing the 

observed speeds over a period of ten weeks, the variation in speed for the same time of 

day and day of the week is less than 5%. According to Eglese et al. (2006), this small 

variation shows that travel speeds are highly predictable and can be forecasted for any 

road length and any time of the day.  
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4.2 Time-Dependency in related problems 

The literature relating to the TDVRP is rather scarce when compared to other VRP 

variants. However, Ichoua et al. (2003) mention three related time-dependent problems 

which have been extensively studied:  

The first problem mentioned is the time-dependent shortest path problem which was 

introduced in the late 1950s, e.g. Ford and Fulkerson (1958). It belongs to the earliest 

models dealing with time-dependency.  

Marguier and Ceder (1984) consider a time-dependent path choice problem. In this case, 

a set of passengers is distributed in a transportation network consisting of overlapping 

bus routes with common stops. The passenger waiting times are represented by time-

dependent distributions.  

The last problem mentioned is the time-dependent traveling salesman problem (TSP) 

(e.g. Miller et al. (1964)). The problem concerns the determination of a least-cost route 

which visits each city exactly once. The travel cost between each city is time-dependent.  

 

4.3 Classification of time-dependent models  

According to Ichoua et al. (2003), TDVRP models can be classified into four main 

categories based on the type of travel time function:  

The first category refers to models based on simple travel time functions. In this case, 

multiplier factors are used to integrate time-dependency. 

Other TDVRP models assume discrete travel times (e.g. Malandraki and Daskin 

(1992)). For this purpose, the time horizon is partitioned into discrete time intervals and 

the travel time is defined as a step function of the starting time at the origin node.  As 

the travel time changes appear in the form of jumps, it might happen that the FIFO 

property is not satisfied if the travel time in a consecutive time interval decreases. The 

FIFO property guarantees that if two vehicles depart from the same origin node for the 

same destination node, the one which started earlier will also arrive earlier. Further 

details about the FIFO property will be provided in Section 4.5. 

Ichoua et al. (2003) also mention TDVRP models which are based on continuous travel 

time functions. According to the authors, it is very complicated to model this kind of 
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function because of its complexity. In order to make these models more tractable, many 

simplifications are required.  

Finally, Ichoua et al. (2003) mention travel time functions based on Markovian 

formulations, e.g. Psaraftis and Tsitsiklis (1993) who solve a shortest path problem in a 

stochastic and dynamic setting. 

4.4 Problem Formulation 

In the TDVRP a fleet of 𝑚 identical vehicles transports goods to a set of n customers. 

Each route originates and terminates at a single depot. Each customer is associated with 

a fixed demand and requires one visit by one vehicle. Several additional constraints can 

be imposed such as a capacity limit, time windows, etc. The objective is to minimize the 

total travel time. The time horizon is divided into 𝑝 time intervals 𝑇1,𝑇2, … ,𝑇𝑝, each 

corresponding to a different time-dependent travel time or a time-dependent travel 

speed. Each interval 𝑇𝑘 is restricted by a lower and an upper bound 𝑇𝑘 = ]𝑡𝑘, 𝑡𝑘]. A 

simple way to divide the time horizon is to assume three time intervals 𝑇1,𝑇2 and 𝑇3 

(e.g. Ichoua et al. (2003)) where the first and the third refer to morning and evening rush 

hours with lower travel speeds and the second one corresponds to higher travel speeds 

(see Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

After the definition of the time horizon, a travel time function needs to be specified. For 

this purpose we consider Figure 4. Let us suppose that a vehicle has to travel a distance 

Figure 4: Model with three time intervals 

7:00 

Speed 

10:00 16:00 19:00 

30 km/h 

60 km/h 

Time 

𝑻𝟐 𝑻𝟑 𝑻𝟏 
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𝑑𝑖𝑗 = 10 km, starting at 9:45. The associated travel speed 𝑣𝑖𝑗 would be 30 km/h. From 

this we can calculate its travel time 𝑐𝑖𝑗: 

 

                                                  𝑐𝑖𝑗 = 𝑑𝑖𝑗
𝑣𝑖𝑗

                                                     (5) 

 

The resulting travel time would be 20 minutes, i.e. the arrival time would be 10:05. 

However, the travel time function ignores the speed change at time instant 10:00. The 

increase of travel speed in the next interval might lead to a violation of the FIFO 

property. This issue will be discussed in the following section. 

 

4.5 The FIFO property  

The FIFO property was formulated by Ichoua et al. (2003), other authors referred to it 

as “non-passing condition” (e.g. Ahn and Shin (1991)). The property guarantees that a 

vehicle traveling from node i to node j at time T,  arrives earlier than any other identical 

vehicle traveling the same distance at a later time. Ichoua et al. (2003) criticize that 

several TDVRP models do not satisfy the FIFO property; Example 1 describes how this 

can happen: 

Example 1: The time horizon of the following problem is divided into two time 

intervals 𝑇𝑘 = ]𝑡𝑘 , 𝑡𝑘], where 𝑡𝑘 and 𝑡𝑘 represent the lower and upper bound of time 

interval 𝑇𝑘. The first time interval 𝑇1 lasts from 8:00 to 10:00 o’clock and the second 

interval 𝑇2 ranges between 10:00 and 12:00 o’clock. The average speeds are 𝑣𝑇1= 20 

km/h and 𝑣𝑇2 = 40 km/h. Two identical vehicles, 𝑉1 and 𝑉2, are supposed to travel a 

distance of 𝑑𝑖𝑗 = 40 km from origin 𝑖 to destination j (see Figure 5). In this example the 

travel speed is assumed to remain constant over the entire length of link (𝑖, 𝑗).  
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V1 

V2 

Speed 

Time 

 20 km/h 

40 km/h 

Departure:   9:30 
Arrival:      11:30 

Departure: 10:10 
Arrival:      11:10 

8:00 9:00 11:00 10:00 12:00 

𝑇1 𝑇2 

𝑑 = 40 km 
𝑣𝑇1= 20 km/h 
𝑣𝑇2= 40 km/h 

𝑑 = 40 km 
𝑣𝑇1= 20 km/h 
𝑣𝑇2= 40 km/h 

 

 

 

 

 

 

 

 

 

As shown in Figure 5, 𝑉1 departs at 9:30 and arrives at 11:30. As the departure time 

belongs to 𝑇1, the related speed is 𝑣𝑇1= 20 km/h. 𝑉2 starts at 10:10 and therefore the 

associated speed is 𝑣𝑇2 = 40 km/h. The corresponding arrival time is 11:10. As we can 

see, 𝑉2 arrives twenty minutes earlier than 𝑉1 (11:10 < 11:30) because of the speed 

increase in the second time interval. Thus, the FIFO property is not satisfied because the 

two vehicles pass each other (see Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1 V2 

10 km 

30 km 

Distance 

Time 

20 km 

40 km 

8:00 9:00 11:00 10:00 12:00 

𝑇1 𝑇2 

Arrival V1: 11:30 
Arrival V2: 11:10 

Figure 5: Passing situation 

Figure 6: Travel speeds remain constant over the entire length of the link 
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According to Ichoua et al. (2003), passing situations occur when travel times are 

represented by step functions of the starting time at the origin node. Therefore travel 

times or travel speeds ‘jump’ at time interval boundaries, resulting in a possible passing 

situation if the travel time in the next interval decreases (or the travel speed increases).  

For example, the model of Malandraki and Daskin (1992) does not satisfy the FIFO 

property because it uses step functions for the travel time distribution. The authors 

smooth the travel time function by allowing vehicles to wait at customer locations. This 

suggestion is criticized by Ichoua et al. (2003) who state that this results in useless 

waiting times which are not affordable under real conditions. To avoid this problem, 

Ichoua et al. (2003) model travel speed as a step function of the time of the day. They 

develop a simple travel time calculation procedure which adjusts the travel speed 

whenever a time interval boundary is crossed. They state that the resulting travel time 

function satisfies the FIFO property.  Table 1 presents the travel time calculation 

procedure of Ichoua et al. (2003). 

 

 

  

 

 

 

 

 

 

 

 

 

 

1.   set  𝑡  to 𝑡0      𝑡0 ∈  𝑇𝑘 = ]𝑡𝑘, 𝑡𝑘] 

   set 𝑑  to 𝑑𝑖𝑗 

      set 𝑡′ to 𝑡 + (𝑑/𝑣𝑇𝑘) 

2.   while (𝑡′ > 𝑡𝑘) do 

 2.1. 𝑑 ←  𝑑 −  𝑣𝑇𝑘( 𝑡𝑘 − 𝑡) 

 2.2. 𝑡 ←   𝑡𝑘 

 2.3. 𝑡′ ←  𝑡 + �𝑑 / 𝑣𝑇𝑘+1� 

 2.4. 𝑘 ←  𝑘 + 1 

3.   return (𝑡′ −  𝑡0) 

Table 1: Travel time calculation procedure of Ichoua et al. (2003) 



 

18 
 

In order to explain the calculation procedure, we continue Example 1. Now the new 

arrival time of 𝑉1 will be calculated: 

Example 2: We recall that 𝑉1 departs from origin 𝑖 at 𝑡0= 9:30; the projected arrival 

time at this moment is 𝑡′ = 11:30 (see Step 1 in Table 2). 𝑉1 travels at a speed of 𝑣𝑇1 = 

20 km/h until it reaches the time interval boundary at 10:00. At this point we have to 

adjust the travel speed. Now the remaining distance is 30 km and the new travel speed is 

𝑣𝑇2= 40 km/h (see Step 2 in Table 2). Therefore the new arrival time is 𝑡′ = 10:45. In 

short, 𝑉1 departs from 𝑖 at 𝑡0= 9:30 and arrives at 𝑗 at 𝑡′ = 10:45; the total travel time 

amounts to 75 minutes (see Step 3 in Table 2).  

 

Step Formula Initialization  

0 𝑘 = 1   

1 𝑡 = 𝑡0 𝑡 = 9:30  

 𝑑 = 𝑑𝑖𝑗 𝑑 = 40 km  

 
𝑡′ = 𝑡 + (𝑑/𝑣𝑇𝑘) 

𝑡 ′ = 9:30 + (40 km / 20 km/h) 

𝑡′ = 11:30 

 

  Iteration 1  

2 while 𝑡′ > 𝑡𝑘�   do (11:30 > 10:00) (10:45 < 12:00)  STOP! 

2.1 𝑑 = 𝑑 − 𝑣𝑇𝑘(𝑡𝑘� − 𝑡) 𝑑 = 40 km - 20 km/h (10:00 – 9:30)  

=  30 km 

 

 

 

2.2 𝑡 ←   𝑡𝑘 𝑡 = 10:00  

2.3 𝑡 ′ ←  𝑡 + �𝑑 / 𝑣𝑇𝑘+1� 
𝑡 ′= 10:00 + (30 km / 40 km/h) 

𝑡 ′ = 10:45 

 

2.4 𝑘 ← 𝑘 + 1 𝑘 = 2  

3 return (𝑡 ′ − 𝑡0)  (10:45 – 9:30) = 75 min 

Table 2: Travel time calculation for Vehicle 1 



 

19 
 

𝑑 = 40 km 
𝑣𝑇1= 20 km/h 
𝑣𝑇2= 40 km/h 

It is shown that 𝑉1  arrives earlier than 𝑉2. Thus the FIFO property is satisfied. Note 

that the arrival time of 𝑉2 requires no adjustment as both its departure time and arrival 

time belong to the same interval. Figure 7 illustrates Example 2.  

 

 

 

 

 

 

 

 

 

 

 

4.6 Literature Review 

VRP variants like the CVRP or the VRPTW have been widely studied during the last 

decades. In contrast to this, papers discussing the TDVRP were published not until the 

early 1990s. The late introduction can be related to three reasons:  

The first reason concerns the fact that the TDVRP is much harder to model and solve 

than other VRPs (Ichoua et al. (2003)). When modeling a TDVRP, we need to 

determine a travel time function which complies with the FIFO property, i.e. the 

function must be capable of handling the transitions between the different time 

intervals. Furthermore, algorithms which are usually used to solve the VRP, require 

essential adaptations to handle time-dependency. For example, it becomes more 

complicated to evaluate local route changes. This is because a potential speed change 

might have an impact on all consecutive links (Fleischmann et al. (2004)).  

8:00 9:00 11:00 10:00 12:00 

𝑇1 𝑇2 

Distance 

Time 

10 km 

30 km 

20 km 

40 km 
V1 V2 

Arrival V1: 10:45 
Arrival V2: 11:10 

Figure 7: Travel speeds are adjusted when crossing the time interval boundary 
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The second reason is due to the fact that computers of the past were not able to store and 

process so much data. This problem is not relevant anymore as computer systems have 

made a lot of progress in the last decade. 

The final reason relates to the lack of time-dependent data in the past. Nowadays, 

however, traffic monitoring systems and tracking devices provide a lot of data which 

can be used for vehicle routing. 

 

The following sections provide a chronological overview of the TDVRP literature from 

1991 until 2012. 

 

 

4.6.1 Ahn and Shin (1991) 

Ahn and Shin (1991) discuss a vehicle routing and scheduling problem with time 

windows and time-varying congestion. The aim of the problem is to minimize the total 

time traveled. The following paragraph briefly describes the model: 

The service at customer j is restricted by the time window �𝑒𝑗 , 𝑙𝑗� and starts at 𝑡𝑗 =

𝑚𝑎𝑥 �𝑒𝑗 ,𝐴𝑖𝑗(𝑡𝑖)�. 𝐴𝑖𝑗(𝑦) stands for the arrival time at customer j and 𝑡𝑖 denotes the 

service start time at customer i. Vehicles leave the depot at 𝑒0 and have to return until 

𝑙0. A route is considered feasible if each customer is visited within his time window. 

Ahn and Shin (1991) define the arrival time at customer j as follows: 

                                          𝐴𝑖𝑗(𝑦) = 𝑦 + 𝑠𝑖 + 𝜏𝑖𝑗(𝑦 + 𝑠𝑖)                                              (6) 

 

𝐴𝑖𝑗(𝑦) indicates the arrival time at node j via arc (𝑖, 𝑗)  if the service at node i starts at 

time instant y. The travel time on the shortest/fastest link at time 𝑥 is represented by 

𝜏𝑖𝑗(𝑥) and the duration of service at customer i is denoted by  𝑠𝑖.  

Next, Ahn and Shin (1991) formulate the non-passing property (= FIFO property): for 

any two nodes i and j and any two service start times x and y, the following condition 

must be satisfied: 

 

                                                𝑥 > 𝑦,𝐴𝑖𝑗(𝑥) > 𝐴𝑖𝑗(𝑦)                                                   (7) 
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The condition in (7) guarantees that departing earlier from node i leads to an earlier 

arrival at node j. Based on this property, 𝐴𝑖𝑗(∙) is a strictly increasing function of the 

start time.  

In the next step, Ahn and Shin (1991) formulate the effective latest service start time. 

This is done with the inverse function 𝐴𝑖𝑗−1(𝑥) which represents the departure time at 

node i such that node j can be reached at time x. The effective latest service start time 

𝑑𝑖 at node i on a feasible route (0, 𝑖, 𝑖 + 1, … ,𝑚, 0)  is defined as follows: 

 

                         𝑑𝑖 = 𝑚𝑖𝑛�𝑙𝑖 ,𝐴𝑖,𝑖+1−1 (𝑑𝑖+1)� ,           0 ≤ 𝑖 ≤ 𝑚 − 1                                 (8) 

                                              𝑑𝑚 = 𝑚𝑖𝑛 {𝑙𝑚,𝐴𝑚,0
−1 (𝑙0)}                                                 (9) 

 

The authors develop three feasibility conditions which are based on the effective latest 

service time. These conditions enable a faster feasibility check if time-varying travel 

times are assumed: The first feasibility condition deals with the insertion of unvisited 

customers into routes; the second feasibility condition refers to the combination of two 

different routes; and the third feasibility condition considers customer exchanges.  

Finally, Ahn and Shin (1991) perform several experiments with problem sets consisting 

of 50 to 200 customers. The time-dependent congestion function 𝜏𝑖𝑗(∙) for each pair of 

nodes (𝑖, 𝑗) is represented by a horizontal line with a single peak (see Figure 8). The 

peak times, congestion durations and the slopes of the congestion functions are based on 

random values. In order to satisfy the non-passing condition, the authors set the slopes 

between zero and one. 

 

 

 

 
 

 

 

 

 

 

 

Travel Time 

Departure Time Peak Time 

Figure 8: Travel time function with a single peak  
 (based on Ahn and Shin (1991)) 
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Ahn and Shin (1991) investigate the effect of the first feasibility condition in an 

insertion heuristic and the effect of the third feasibility condition in the tour 

improvement heuristic of Or. They observe a substantial reduction in computation times 

compared to the case where no feasibility conditions are implemented.  

 

 

4.6.2 Malandraki and Daskin (1992)  

Malandraki and Daskin (1992) discuss a TDVRP with time windows. The objective is 

to minimize the total route time, consisting of the sum of all travel times, service times 

and waiting times. The authors develop a model based on a mixed integer linear 

programming (MILP) formulation. It is summarized in the following paragraph: 

The travel time between two locations is represented by 𝑐𝑖𝑗(𝑡𝑖), which is a deterministic 

function of the distance and the time of the day a vehicle departs from node i. The time 

horizon is partitioned into a number of time intervals each corresponding to a different 

travel time. As soon as the departure time of a vehicle becomes known, the travel time 

is derived from the associated time interval. The model does not guarantee the FIFO 

property as the travel time remains constant until the vehicle reaches its destination. 

Malandraki and Daskin (1992) smooth the travel time function by allowing vehicles to 

wait at customer locations if it leads to a decrease in the objective value.  

The authors illustrate this with the following example (see Figure 9): If a vehicle is 

ready to leave the origin node i at any time 𝑡2 such that 𝑎 < 𝑡2 < 𝑏, it is preferable to 

wait until time instant b. The travel time function is then given by the piecewise 

continuous function P-A-C-Q. 

 

 
 

 

 

 

 

 

 
 

(based on Malandraki and Daskin (1992)) 

P 
A B 

C Q 

a b Time of day 

Travel time of link (i,j) 

Figure 9: Travel time step function  
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Malandraki and Daskin (1992) solve the TDVRP without time windows with a nearest 

neighbor heuristic. They test a sequential and a simultaneous approach.  The sequential 

approach exists in two versions: in the first version vehicles are filled from smallest to 

largest whereas in the second version vehicles are filled from largest to smallest. The 

simultaneous approach fills vehicles from smallest to largest. 

The heuristics are tested on 32 randomly generated problems which consist of 10 to 25 

customers. The travel time functions are represented by step functions with two or three 

time intervals per link. Malandraki and Daskin (1992) report that the sequential 

approach which fills vehicles from largest to smallest yields better results than the 

sequential approach which does the opposite. The authors conclude that the filling order 

considerably influences the solutions.  

 

 

4.6.3 Hill and Benton (1992) 

Hill and Benton (1992) propose a model for vehicle scheduling problems based on 

intra-city time-dependent travel speeds.  The model consists of 𝑛 nodes where the 

distance between two nodes is represented by 𝑑𝑖𝑗. The time-dependent travel speeds are 

associated with the nodes of the network instead of the arcs. To be precise, the average 

speed associated with the area around node 𝑖 in time interval 𝑇 is denoted by 𝑟𝑖𝑇  

whereas the average speed associated with the area around node 𝑗 in time interval 𝑇 is 

represented by 𝑟𝑗𝑇. This implies that the first part of the journey is based on 𝑟𝑖𝑇  and the 

second part is based on 𝑟𝑗𝑇. Consequently, the average travel speed 𝑟𝑖𝑗𝑇 and the travel 

time 𝑐𝑖𝑗𝑇 are defined as follows: 

                                                   𝑟𝑖𝑗𝑇 = (𝑟𝑖𝑇 + 𝑟𝑗𝑇)/2                                                    (10) 

                                                       𝑐𝑖𝑗𝑇 = 𝑑𝑖𝑗/𝑟𝑖𝑗𝑇                                                        (11) 

 

According to Ichoua et al. (2003), this model does not satisfy the FIFO property either.  

Finally, Hill and Benton (1992) present results on an example with a single vehicle and 

five locations. They use a small set of historical travel time data and assume 24 periods 

per day. First of all, a solution based on constant travel speeds is estimated. Afterwards, 

the constructed routes are simulated with time-dependent travel speeds. In this case, the 
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total route distance increases by 9% whereas the total travel time decreases by 22.4% 

when compared to the constant speed case. 

Furthermore, the time-dependent travel speed model is implemented in a commercial 

courier vehicle scheduling package. The authors conclude that the results of the 

implementation prove the validity of their modeling approach.  

 

 

4.6.4 Ichoua et al. (2003) 

One of the most cited papers in the TDVRP literature is the work of Ichoua et al. 

(2003). They present a VRP based on time-dependent travel speeds. In this problem 

each customer 𝑖 is associated with a soft time window [𝑒𝑖 , 𝑙𝑖] and a service time. Earlier 

arrival results in a waiting time whereas late arrival incurs a penalty cost. The aim of the 

problem is to minimize the weighted sum of the total travel time and the total lateness 

over all customers.  

Ichoua et al. (2003) divide the time horizon into three time intervals 𝑇1,𝑇2 and 𝑇3 where 

the first and the third one refer to lower travel speeds and the second one corresponds to 

a higher travel speed. The authors develop a symmetric distance matrix 𝐷 = (𝑑𝑖𝑗) and 

the travel speed matrices 𝑉𝑇 = 𝑣𝑖𝑗𝑇,𝑇 𝜖 {𝑇1,𝑇2,𝑇3} for all 𝑖, 𝑗 𝜖 {1, … ,𝑛}. The travel 

speed matrices are indexed by the corresponding arc and the corresponding time period. 

Furthermore, the set of arcs is divided into three subsets (𝐴𝑐)1≤𝑐≤𝐶. It follows that the 

travel speed on link (𝑖, 𝑗) that belongs to a certain arc subset 𝐴𝑐 during period 𝑇 

becomes 𝑣𝑐𝑇 = 𝑣𝑖𝑗𝑇. This results in a 3x3 time-dependent travel speed matrix  

(𝑣𝑐𝑇)1≤𝑐≤3,1≤𝑇≤3 where the values depend on the arc category and on the time interval.  

The authors develop a parallel tabu search heuristic with an adaptive memory based on 

the work of Taillard et al. (1997). The neighborhood of the incumbent solution is 

generated with the cross exchange operator. Ichoua et al. (2003) explain how they 

evaluate the cross exchanges in the time-dependent context. They propose a procedure 

which evaluates each move approximately; then the 𝑀 best moves are calculated 

exactly.  Finally, the best one is implemented.  
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Ichoua et al. (2003) perform several experiments to evaluate the model in a static 

setting. They use three scenarios which represent different degrees of time-dependency: 

scenario 1 refers to the lowest degree of time-dependency and scenario 3 corresponds to 

the highest degree of time-dependency. They create the time-independent solutions by 

taking the average speed over the three time intervals. It is shown that a significant 

number of these solutions becomes infeasible in the time-dependent context. Moreover, 

this number increases with the degree of time-dependency.   

Ichoua et al. (2003) report that the use of time-dependent travel speeds improves the 

objective values in almost all problems: in scenario 1 the objective value is improved by 

1% to 5% except for one problem, in scenario 2 the improvement ranges between 2% 

and 12.5% and in scenario 3 it ranges between 9.2% and 18%.  

 

Finally, the TDVRP is implemented in a dynamic setting where new customer demands 

occur during the day. To solve the dynamic version, Ichoua et al. (2003) use an 

algorithm based on the work of Gendreau et al. (1999) where vehicles are allowed to 

wait at their current location so that they can react to new requests in their vicinity. In 

this case, a departure time which prevents too early arrival at the next customer location 

needs to be determined. Because of the potential travel speed change when crossing 

time interval boundaries, the calculation of the departure time is quite complicated. To 

overcome this difficulty, Ichoua et al. (2003) propose a backward recursive procedure. 

Finally, the dynamic approach is tested with the same framework as before. Once again, 

the time-dependent results are better than the results of the time-independent case.  

 
 

4.6.5 Fleischmann et al. (2004) 

Fleischmann et al. (2004) discuss the implementation of time-varying travel times in 

various vehicle routing algorithms with time windows. The travel time data is provided 

by the traffic information system LISB (Berlin). The authors propose the following 

model: 

The day is divided into 𝐾 time intervals 𝑍𝑘 = [𝑧𝑘−1, 𝑧𝑘[  for (𝑘 = 1, … . ,𝐾). The 

interval [𝑧0, 𝑧𝐾] represents the whole day. The shortest travel time between node 𝑖 and 

node 𝑗 when the start time lies in time interval 𝑍𝑘 is denoted by 𝜏𝑖𝑗𝑘. Fleischmann et al. 

(2004) state that the raw travel time data from the traffic monitoring system is not 
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suitable for vehicle routing because the travel times jump at the time interval boundaries 

𝑧𝑘. This might result in a passing situation if the travel time decreases in the next 

interval. To overcome this problem, the authors propose a smoothed travel time 

function for every pair (𝑖, 𝑗). In this case, the travel time between node 𝑖 and node 𝑗 

when starting at time t is denoted by 𝜏𝑖𝑗(𝑡). The interval [𝑧𝑘 − 𝛿𝑖𝑗𝑘, 𝑧𝑘 + 𝛿𝑖𝑗𝑘] linearizes 

the jumps at the interval boundaries 𝑧𝑘. It is based on the slope 𝑠𝑖𝑗𝑘 and on parameter 

𝛿𝑖𝑗𝑘. The slope 𝑠𝑖𝑗𝑘 is defined as follows: 

                                                    𝑠𝑖𝑗𝑘 = 𝜏𝑖𝑗,𝑘+1−𝜏𝑖𝑗𝑘
2𝛿𝑖𝑗𝑘

                                                   (12) 

 

In the next step, Fleischmann et al. (2004) formulate the travel time function: 

 

 𝜏𝑖𝑗(𝑡) = �
    𝜏𝑖𝑗𝑘                                         𝑓𝑜𝑟     𝑧𝑘−1 + 𝛿𝑖𝑗𝑘−1 ≤ 𝑡 ≤ 𝑧𝑘 − 𝛿𝑖𝑗𝑘
𝜏𝑖𝑗𝑘 + �𝑡 − 𝑧𝑘 + 𝛿𝑖𝑗𝑘�𝑠𝑖𝑗𝑘    𝑓𝑜𝑟     𝑧𝑘 − 𝛿𝑖𝑗𝑘 ≤ 𝑡 ≤ 𝑧𝑘 + 𝛿𝑖𝑗𝑘  

�           (13) 

 

𝑓𝑜𝑟    𝑘 = 1, … ,𝐾 and 𝛿𝑖𝑗0 = 𝛿𝑖𝑗𝐾 = 0 
 

Figure 10 illustrates the smoothed travel time function: 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

If the departure time falls into the range [𝑧𝑘 − 𝛿𝑖𝑗𝑘, 𝑧𝑘 + 𝛿𝑖𝑗𝑘], we use the second 

formula in (13) to calculate the travel time, otherwise we assume the given travel time 

𝑧2 − 1 

𝑧1 + 𝛿𝑖𝑗1 

𝑧2 + 1 

𝑧1 − 𝛿𝑖𝑗1 

𝑠𝑙𝑜𝑝𝑒:−𝑠0 

𝜏𝑖𝑗3 

𝜏𝑖𝑗(𝑡) 

𝜏𝑖𝑗1 

𝜏𝑖𝑗2 

𝑧0 𝑧1 𝑧2 𝑧3 
𝑡 

Figure 10: Smoothed travel time function 
(based on Fleischmann et al. (2004)) 
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𝜏𝑖𝑗𝑘. According to Fleischmann et al. (2004), this function guarantees the FIFO 

property. The authors define the following properties for the travel time function: 

 

𝛿𝑖𝑗𝑘 > 0    (𝑘 = 1, … ,𝐾 − 1)  and   𝑧𝑘−1 + 𝛿𝑖𝑗,𝑘−1 ≤    𝑧𝑘 − 𝛿𝑖𝑗𝑘  (𝑘 = 1, … ,𝐾)      (14) 

                                  and     𝑠𝑖𝑗𝑘 > −1        (𝑘 = 1, … ,𝐾 − 1)                                   (15) 

 

The authors state that the arrival time function is continuous and strictly monotonic in 

[𝑧0, 𝑧𝐾] if conditions (14) and (15) are satisfied. Moreover, passing is excluded.  

Next, they define the arrival time: 

 

                                                  𝐴𝑖𝑗(𝑡) = 𝑡 + 𝜏𝑖𝑗(𝑡)                                                     (16) 

 

The parameter 𝛿𝑖𝑗𝑘 and slope 𝑠𝑖𝑗𝑘 are selected in such a way that conditions (12), (14) 

and (15) are satisfied:  

 

   𝛿𝑖𝑗𝑘 ≤
1
2

(𝑧𝑘 − 𝑧𝑘−1)   and   𝛿𝑖𝑗𝑘 ≤
1
2

(𝑧𝑘+1 − 𝑧𝑘)     𝑓𝑜𝑟  (𝑘 = 1, … ,𝐾 − 1)           (17) 

 

If 𝜏𝑖𝑗𝑘 > 𝜏𝑖𝑗,𝑘+1,  this should be equivalent to: 

 

                             𝑠𝑖𝑗𝑘 ≤
𝜏𝑖𝑗,𝑘+1−𝜏𝑖𝑗𝑘
𝑧𝑘−𝑧𝑘−1

   and   𝑠𝑖𝑗𝑘 ≤
𝜏𝑖𝑗,𝑘+1−𝜏𝑖𝑗𝑘
𝑧𝑘+1−𝑧𝑘

                                       (18) 

 

According to Fleischmann et al. (2004), the terms in (18) are only compatible with 

condition (15) if the terms on the right hand side are greater than -1. That is, the 

decrease in the original travel times must be smaller than the length of the time intervals 

before and after. According to the authors, the slope can be arbitrarily steep if  𝜏𝑖𝑗𝑘 >

𝜏𝑖𝑗,𝑘+1.  

 

In the following part, the smoothed travel time function will be illustrated with an 

example: 

Example 3: The time horizon is divided into two time intervals, each corresponding to a 

length of 20 minutes. The travel time in the first time interval 𝜏𝑖𝑗1 is 40 minutes whereas 
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the travel time in the second interval 𝜏𝑖𝑗2 is 30 minutes. As we can see the travel time 

decreases in the second time interval (see Figure 11). 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3 presents four different start times 𝑡 and the corresponding arrival times 𝐴𝑖𝑗(𝑡). 

Departing at 𝑡 = 19 results in an arrival time 𝐴𝑖𝑗(𝑡) = 59, whereas departing later at 𝑡 = 

20 leads to an earlier arrival time 𝐴𝑖𝑗(𝑡) = 50. Therefore the FIFO property is not 

satisfied. 

 

 
 
 
 
 
 
 

 

In the next step, we will calculate the smoothed travel time in order to satisfy the FIFO 

property. First of all, the parameters 𝑠𝑖𝑗1 and 𝛿𝑖𝑗1 will be determined: 

As 𝜏𝑖𝑗1 is greater than 𝜏𝑖𝑗,2, slope 𝑠𝑖𝑗1 must satisfy the following conditions: 

 

      𝑠𝑖𝑗1 ≤
𝜏𝑖𝑗,2−𝜏𝑖𝑗1
𝑧1−𝑧0

  and  𝑠𝑖𝑗1 ≤
𝜏𝑖𝑗,2−𝜏𝑖𝑗1
𝑧2−𝑧1

            𝑠𝑖𝑗1 ≤
30−40
20−0

  and  𝑠𝑖𝑗1 ≤
30−40
40−20

          (21) 

 

𝒕 𝝉𝒊𝒋𝒌 𝑨𝒊𝒋(𝒕) 
13 40 53 
19 40 59 
20 30 50 
27 30 57 

Table 3: Arrival Times in Example 3 

The FIFO property 
 is not satisfied  

𝑡 
𝑧0 = 0 𝑧1 = 20 𝑧2 = 40 

𝜏𝑖𝑗1 = 40 

𝜏𝑖𝑗2 = 30 

𝜏𝑖𝑗(𝑡) 

Figure 11: Example 3 
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The conditions in (21) imply that 𝑠𝑖𝑗1 must be smaller or equal to -0.5. For this example 

a value of 𝑠𝑖𝑗1 = -0.8 will be chosen. In the next step, we will determine the parameter 

𝛿𝑖𝑗1. It must satisfy the following conditions: 

 

𝛿𝑖𝑗1 ≤
1
2

(𝑧1 − 𝑧0) and 𝛿𝑖𝑗1 ≤
1
2

(𝑧2 − 𝑧1)        𝛿𝑖𝑗1 ≤
1
2
 (20-0) and 𝛿𝑖𝑗1 ≤

1
2
 (40-20)   (22) 

 

According to the conditions in (22), 𝛿𝑖𝑗1 must be smaller or equal to 10. Next, parameter 

𝛿𝑖𝑗1 is calculated: 

 

                                   𝑠𝑖𝑗1 = 𝜏𝑖𝑗,2−𝜏𝑖𝑗1
2𝛿𝑖𝑗1

           -0.8 = 30𝑚𝑖𝑛−40𝑚𝑖𝑛
2𝛿𝑖𝑗1

                                  (23) 

 

It follows that 𝛿𝑖𝑗1 = 6.25. Figure 12 illustrates the new travel time function: 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

In the last step, the new travel times and corresponding arrival times will be calculated 

with the following function: 

 

     𝜏𝑖𝑗(𝑡) = �
𝜏𝑖𝑗1                                            𝑓𝑜𝑟     𝑧0 + 𝛿𝑖𝑗0 ≤ 𝑡 ≤ 𝑧1 − 𝛿𝑖𝑗1
𝜏𝑖𝑗1 + �𝑡 − 𝑧1 + 𝛿𝑖𝑗1�𝑠𝑖𝑗1     𝑓𝑜𝑟     𝑧1 − 𝛿𝑖𝑗0 ≤ 𝑡 ≤ 𝑧1 + 𝛿𝑖𝑗1  

�              (24) 

 

For 𝑘 = 1, … ,𝐾 and 𝛿𝑖𝑗0 = 𝛿𝑖𝑗𝐾 = 0 

𝜏𝑖𝑗1
 
𝜏𝑖𝑗2 

𝑧0 = 0 𝑧1 = 20 𝑧2 = 40 

𝜏𝑖𝑗(𝑡) 

𝑡 

𝑧1 − 𝛿𝑖𝑗1 = 13.75 

𝑧1 + 𝛿𝑖𝑗1 = 26.25 

𝑠𝑙𝑜𝑝𝑒 = −0.8 

Figure 12: Smoothed travel time function in Example 3 
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The range [𝑧1 − 𝛿𝑖𝑗1, 𝑧1 + 𝛿𝑖𝑗1] covers the period from 𝑡 = 13.75 until 𝑡 = 26.25. If the 

start time falls into this range, the second formula in (24) will be used for calculating the 

travel time. Otherwise, the travel time is defined by  𝜏𝑖𝑗1 if the start time belongs to the 

first interval or it is defined by 𝜏𝑖𝑗2 if the start time belongs to the second interval. 

Table 4 presents the new arrival times calculated with the formulations of Fleischmann 

et al. (2004).  It is shown that an earlier start time results in an earlier arrival time, i.e. 

the FIFO property is satisfied. 

 

  
 
 

 
 
 
 

 
 

 

Now we will return to the paper of Fleischmann et al. (2004) again:  

Besides modeling the travel time function, the authors also discuss the start time 

calculation for a given arrival time. This is done by applying the inverse function 

𝐴𝑖𝑗−1(𝑡). Furthermore, they explain how they model the time feasibility check in the 

time-dependent context.  The authors also discuss possible difficulties when considering 

time-varying travel times in the objective function.  

 

Finally, Fleischmann et al. (2004) test the savings algorithm, the savings algorithm with 

insertion and the sequential insertion algorithm with constant average travel times and 

with time-varying travel times from the vehicle monitoring system. They create seven 

test problems based on real data from logistics service providers in Berlin. They report 

that the computational effort of the time-dependent savings algorithm increases only 

modestly if compared to the case with constant average travel times.  CPU times are 

doubled when performing the savings algorithm with insertion and the sequential 

insertion algorithm with time-varying travel times. According to the authors, the 

increase in CPU times is influenced by additional calculations concerning 𝜏𝑖𝑗(𝑡) and 

𝐴𝑖𝑗−1(𝑡). The authors conclude that using constant average travel times results in an 

𝒕 Travel Time Function 𝝉𝒊𝒋(𝒕) 𝑨𝒊𝒋(𝒕) 
13     𝜏𝑖𝑗1 40 53 
19 𝜏𝑖𝑗1 + �𝑡 − 𝑧1 + 𝛿𝑖𝑗1�𝑠𝑖𝑗1 35.8 54.8 
20 𝜏𝑖𝑗1 + �𝑡 − 𝑧1 + 𝛿𝑖𝑗1�𝑠𝑖𝑗1 35 55 
27     𝜏𝑖𝑗2 30 57 

Table 4: New arrival times in Example 3  
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underestimation of the true total travel times by approximately 10%. Furthermore, 

several time windows are violated if time-dependency is not taken into account.   

 

4.6.6. Haghani and Jung (2005) 

Haghani and Jung (2005) examine the dynamic VRP with time-dependent travel times, 

soft time windows and real-time vehicle control. In the problem routes are adjusted at 

different times of the day. During each adjustment, new information about vehicle 

locations, travel times and demands is integrated into the model. The authors use a 

continuous travel time function where the slope is set to less than one in case of a travel 

time decrease (see Figure 13). 

 

 

 

 

 

 

 
 
 

 

Haghani and Jung (2005) define the VRP as a MILP problem. The objective is to 

minimize the total cost, consisting of the fixed vehicle costs, the routing costs and the 

penalties for time window violations.  

Haghani and Jung (2005) develop a GA solution, a lower bound (LB) solution and an 

exact solution. They are based on a set of randomly generated test problems. The 

authors obtain exact solutions for up to ten customers and LB solutions for 15 to 30 

customers. For problems with up to ten customers, they implement 10 to 15 time 

intervals whereas for problems with 30 customers they use 30 time intervals.  

Haghani and Jung (2005) report that the GA results based on ten customers are similar 

to the exact results. The gaps between the GA results and the lower bounds are below 

5% for all problems where the number of customers ranges between 5 and 25 (10 time 

intervals). Given the problem with 30 customers (30 time intervals), the gap amounts to 

7.9%.  

Time of day 

Link Travel Time 

Figure 13: Continuous travel time function   
(based on Haghani and Jung (2005)) 
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Finally, Haghani and Jung (2005) test the GA in a simulated network where accidents 

cause significant congestion in certain parts of the road network. They compare a static 

and a dynamic approach. The dynamic approach allows the re-planning of routes based 

on real-time travel time information at regular intervals during the day. In this case, the 

travel speed of a link can be calculated at any time during the day. The authors conclude 

that the dynamic routing plan leads to better results than the static one especially if the 

traffic situation is very unstable.   

 

 

4.6.7 Eglese et al. (2006) 

Eglese et al. (2006) use time-dependent travel time information to develop a road 

timetable for a road network. This timetable provides data on the shortest-time paths 

and minimum travel times between the nodes at different times of the day, different 

days of the week and different seasons of the year. The travel time information is based 

on historical data collected by the ITIS Floating Vehicle Data monitoring system which 

updates travel times based on current road conditions. The data for each arc in the 

network is summarized into 15-minutes time intervals throughout each day and is then 

related to the corresponding day of the week. Eglese et al. (2006) use the travel time 

calculation procedure of Ichoua et al. (2003) for adjusting travel times. Eglese et al. 

(2006) report that the adjustments are only performed in rare cases because the arc 

lengths and travel times are short when compared to the width of the time intervals. The 

minimum time and shortest-time paths between the nodes of the time-dependent 

network are established with Dijkstra’s algorithm. This algorithm finds the shortest path 

from a source node to every other node in a graph.  

In the next step, Eglese et al. (2006) perform a test to determine how effective the road 

timetable works with real world data. They design a scenario in which a logistics 

service provider delivers goods to a set of 18 customers. The problem is restricted by 

capacity limits, customer time windows and tour length constraints. The aim is to 

minimize the total driving time. To solve the problem, Eglese et al. (2006) use a tabu 

search algorithm which incorporates the road timetable data.  

First, they create an initial solution based on the data of the least congested period. In 

the next step, the solutions are re-evaluated with time-dependent travel times. In this 
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case, the travel time increases by 7.3% when compared to the initial solution. 

Furthermore, several time windows and tour length constraints are violated. Finally, 

Eglese et al. (2006) develop a distribution plan based on time-dependent travel times. 

This plan leads to a minimization of the total travel time and driver overtimes. 

Moreover, all time windows are satisfied. 

 

 

4.6.8 Donati et al. (2008) 

Donati et al. (2008) develop a Multi Ant Colony System (MACS) for the TDVRP with 

time windows. The problem includes hard customer time windows, a depot time 

window and a limit on vehicle capacity. The authors use a hierarchical objective: the 

primary objective is to minimize the number of routes while the secondary objective is 

to minimize the total travel time. Donati et al. (2008) base their algorithm on the MACS 

of Gambardella et al. (1999).  

Gambardella et al. (1999) describe the MACS as follows:   

The algorithm consists of two colonies of artificial ants. The first colony, ACS-VEI, 

aims at reducing the number of vehicles whereas the second colony, ACS-TIME, aims at 

reducing the total travel time. Each colony has its own pheromone trail. In case of an 

improvement, the best solution and the pheromones are updated globally. Then the 

procedure is restarted with two new colonies and a reduced number of vehicles.  

At the beginning of the algorithm, each ant builds a single route. It tries to find an 

unvisited customer whose insertion ensures route feasibility. Moreover, the customer 

choice is based on a probability distribution which describes the attractiveness of the 

customer. The route construction is continued until there are no more feasible customers 

left. At the end of the algorithm, an insertion heuristic tries to insert unvisited customers 

into the solution. If the resulting solution is feasible, a local search procedure is applied 

for further improvement. 

 

Donati et al. (2008) adapt the MACS algorithm of Gambardella et al. (1999) in order to 

integrate time-dependency. They assume that the speed distributions are known for each 

arc of the network. They divide the time horizon into a number of time intervals in 

which the speed is considered to be constant. The speed distribution is represented by 
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𝑣𝑖𝑗(𝑡) which describes the speed on arc (𝑖, 𝑗) when the trip is initiated at time 𝑡. The 

time-dependent distribution of an arc (𝑖, 𝑗) in time interval 𝑘 is denoted as 𝜏𝑖𝑗𝑘; it 

represents the benefit of traversing the arc (𝑖, 𝑗) when departing from 𝑖 at time 𝑡 during 

time interval 𝑆𝑘. It is derived from the speed distribution. 

 

Donati et al. (2008) apply several neighborhood operators in their local search 

procedure: relocation, exchange, 2-opt, branch relocation and branch exchange. The 

route changes are first evaluated locally, i.e. only directly affected arcs are taken into 

account. If this local evaluation shows an improvement, the entire impact of the change 

is computed.  The feasibility check is done in constant time by back propagating the so-

called slack time which provides information on how much a delivery can be delayed 

without violating the time windows of the current customer and all consecutive 

customers. Donati et al. (2008) formulate the slack time so that the FIFO property is 

ensured.  

 

In the final part of their work, Donati et al. (2008) perform several tests with Solomon’s 

instances. They calculate the constant-speed solutions and evaluate them in a time-

dependent context. It is shown that the feasibility of solutions decreases if there is an 

increase in the variability of traffic conditions. Moreover, in some cases time windows 

are missed.  

In the next step, Donati et al. (2008) test the time-dependent MACS for the VRPTW. 

They state that the algorithm performs efficiently in terms of computation time and 

solution quality, especially if traffic conditions are highly variable.  

 

Finally, Donati et al. (2008) test their algorithm with data from the road network of 

Padua, Italy. The travel time distributions for each arc and for each hour of the day are 

provided by the traffic control system Cartesio. They choose a set of customers from the 

nodes in the network. Then the shortest paths among all customer pairs are computed 

with the robust shortest path algorithm of Montemanni et al.. As soon as the departure 

time is known, a suitable pre-calculated path is chosen and the corresponding travel 

time distribution is determined. Donati et al. (2008) conclude that in the real road 

network the level of sub-optimality for the constant time case amounts to 7.58% if 

compared to the time-dependent case.  
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4.6.9 Woensel et al. (2008) 

Woensel et al. (2008) present a dynamic VRP with time-dependent travel times due to 

traffic congestion. Their model is based on queuing models which capture the stochastic 

and dynamic aspects of travel time.  

Woensel et al. (2008) compare three different speed approaches:  

In the first case, the authors assume constant travel speeds.  In the second case, they 

model the travel time function by dividing the day into three time intervals, each 

corresponding to a different travel speed. In the third case, the day is divided into 10-

minutes intervals where the associated travel speeds are based on queuing models.  

 

Woensel et al. (2008) use TS to solve the problem. For comparison purposes, they 

recalculate the resulting solutions with a different validation dataset for a different day.  

Finally, the authors perform several tests based on the instances of Augerat et al. (1998). 

They report that the time-dependent case with three time zones performs considerably 

better than the time-independent case. When comparing the time-dependent case 

corresponding to three time intervals to the case where speeds are based on queuing 

models, the first one is less effective in terms of total travel time. 

Furthermore, it is shown that the solution quality improves significantly when using 

travel speeds based on queuing theory. However, an increase in computation times can 

be observed. The authors conclude that taking time-dependent travel times into account 

is especially efficient when there is a high variability of travel speeds. Moreover, the 

solution quality increases the more time intervals and road types are considered.  

 

 

4.6.10 Maden et al. (2010) 

Maden et al. (2010) discuss vehicle routing and scheduling with time-varying data. The 

authors develop an algorithm named LANTIME which integrates data from a road 

timetable developed by Eglese et al. (2006) (for further details see Section 4.6.7).  The 

problem under consideration aims at minimizing the total travel time. The authors 

impose capacity constraints, a limit on driver times and time windows.  
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Maden et al. (2010) compute the initial solution with the parallel insertion algorithm of 

Potvin and Rousseau (1993). Afterwards, the LANTIME algorithm is applied for further 

improvement. LANTIME is based on tabu search and applies four different 

neighborhood operations: cross exchange based on Taillard et al. (1997), 

insertion/removal, one exchange and swap. The neighborhood operation is randomly 

selected based on pre-defined probabilities.  

 

Finally, Maden et al. (2010) perform several experiments on the VRPTW test problems 

of Solomon (1987). Furthermore, the algorithm is tested with real data from a vehicle 

fleet in the South West of the UK. The authors compare the total distances travelled, the 

route travel times and the amount of CO2 emissions. 

Maden et al. (2010) perform three runs:  

The first one is based on time-independent travel speeds. During the second run, the 

solutions of the first run are recalculated with time-varying travel speeds. It is shown 

that several routes become infeasible. The third run tests the LANTIME algorithm with 

time-varying travel speeds. It is shown that the algorithm constructs feasible routes. The 

authors conclude that the LANTIME algorithm avoids routes with high congestion, low 

travel speeds and relatively high CO2 emissions.  

 

4.6.11 Balseiro et al. (2011) 

Balseiro et al. (2011) examine the TDVRP with time windows. For this purpose, they 

develop a MACS algorithm hybridized with insertion heuristics (MACS-IH) based on 

the minimum delay technique (MDL). The aim is to create an insertion heuristic which 

leads to a higher number of feasible solutions.  

Balseiro et al. (2011) formulate the problem as a MILP problem based on the 

formulation of Malandraki and Daskin (1992). Vehicles are allowed to wait at customer 

locations if they arrive too early. The time horizon is divided into 𝑀 time intervals 

where the end of an interval is denoted 𝑇𝑚. The travel times are piecewise linear 

functions of the departure time. Given that a vehicle departs at time instant 𝑡 during 

time interval 𝑚, the travel time of an arc (𝑖, 𝑗) is defined as follows:  

 

                                                               𝛼𝑖𝑗𝑚 + 𝛽𝑖𝑗𝑚𝑡                                                      (25) 
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The two coefficients 𝛼𝑖𝑗𝑚 and 𝛽𝑖𝑗𝑚 are selected in such a way that the function remains 

continuous over all time intervals and 𝛽𝑖𝑗𝑚 is greater or equal to -1. According to the 

authors, this travel time function satisfies the FIFO property.  

A hierarchical objective is proposed: the primary objective minimizes the number of 

vehicles whereas the secondary objective minimizes the total time of all routes, 

consisting of all travel times, service times and waiting times. 

 

The MACS-IH is based on the MACS framework of Dorigo and Gambardella (1997):  

During the update phase of the ACS-TIME colony, unrouted customers are tried to be 

inserted. Next, a local search is performed to improve the total time of the solution. 

Balseiro et al. (2011) use the following neighborhood operators: relocate, exchange, 2-

opt, Or-opt, 2-opt* and cross exchange. The evaluation of the moves is facilitated by 

restricting the neighborhood to solutions in which newly linked nodes employ a nearest 

neighbor relationship. 

 

Balseiro et al. (2011) combine three procedures in their insertion heuristic:  

The “local search + insertion” procedure generates all neighboring solutions and 

inserts unrouted customers. The “local search + MDL” procedure applies the MDL 

metric which measures the hardness of inserting a customer. This hardness describes the 

degree to which the imposed constraints are violated if an unrouted customer is inserted. 

The goal of the procedure is to find the neighboring solution with the smallest total 

MDL. If this procedure is not successful in decreasing the MDL, the “local search + 

maximal free time” procedure is applied. It tries to increase the maximal free time 

which describes the maximum contiguous waiting time within a route. 

 

Finally, Balseiro et al. (2011) test the three procedures with the VRPTW instances of 

Solomon. The authors report that the “local search + insertion” and the “local search 

+ MDL” procedures are successful in maximizing the number of visited customers. The 

introduction of the maximal free time does not lead to better results. When 

incorporating the local search and insertion procedure into the MACS algorithm, the 

number of routes is reduced by 2.4% on average compared to the case where this has 

not been done.  
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In addition, the authors perform tests with the time-dependent instances of Ichoua et al. 

(2003). However, Balseiro et al. (2011) can only compare five sets with the same 

number of vehicles. It is shown that the MACS-IH minimizes the average travel times 

in each set when compared to the results of Ichoua et al. (2003).  

 

4.6.12 Ehmke et al. (2012) 

Ehmke et al. (2012) discuss the TDTSP and the TDVRP. They use time-dependent 

travel times which are based on Floating Car Data (FCD) from Stuttgart, Germany. 

These travel times are transformed into planning data sets through Data Mining 

procedures. Ehmke et al. (2012) use two types of travel time planning sets:  

The first planning set is based on FCD averages which represent day-specific travel 

times derived from aggregating historical FCD to one average measure per network 

segment and day of the week. The second planning set relies on FCD hourly averages 

which represent travel times derived from aggregating historical FCD to 24 averages per 

network segment, dependent on the day of the week and the time of the day.  

The authors examine two routing approaches: the static routing approach is based on the 

first travel time planning set whereas the time-dependent routing approach relies on the 

second travel time planning set.  

Ehmke et al. (2012) use time-dependent distance matrices which are determined with 

shortest path algorithms. These algorithms are based on a time-dependent digital road 

map of the city road network which satisfies the FIFO property. The authors use the 

approach of Fleischmann et al. (2004) for smoothing the jumps between the different 

time intervals. 

In the final part of their paper, Ehmke et al. (2012) present a city logistics case study to 

examine the impact of time-dependent travel times. They divide the road network of 

Stuttgart into an inner and an outer city scenario.  

The TDVRP is solved with an adapted version of the LANTIME algorithm of Maden et 

al. (2010) (see Section 4.6.10). The objective is to minimize the number of vehicles as 

well as the total travel time. A temporal constraint is imposed too. 
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Ehmke et al. (2012) compute three different route plans: the first one involves 60 inner 

city customers whereas the second one involves 60 outer city customers; the third plan 

represents a combined scenario (30 inner and 30 outer customers).  

The authors report that the static routing approach leads to driver overtimes, infeasible 

schedules, etc.  When comparing the tour durations of the static and the time-dependent 

routing approach, the differences range between 16% and 20%. According to the 

authors, the time-dependent routing approach determines more reliable and more 

efficient routes than the static one. 

 

 

Concluding Remark 

The comparison of different solution approaches plays an important role in the vehicle 

routing literature.  However, the TDVRP literature lacks this possibility as the models 

differ too much from each other:  

For example, Donati et al. (2008) use a hierarchical objective function where 1. the 

number of vehicles and 2. the total travel time is minimized whereas Ichoua et al. 

(2003) focus on the minimization of  the total travel time and the total lateness. When 

considering constraints, we have seen that Donati et al. (2008) impose hard time 

windows and capacity restrictions whereas Ichoua et al. (2003) assume soft time 

windows and unlimited capacity. The model of Ichoua et al. (2003) satisfies the FIFO 

property whereas the model of Malandraki and Daskin (1992) does not. When 

considering the other authors in the literature review, this list could be continued 

forever. 

In short, the authors i) define different objective functions, ii) impose different 

constraints and iii) use different travel time (or travel speed) functions. In this way it is 

not possible to make a comparison.  

 

After this theoretical overview, we will continue with the practical part of this diploma 

thesis. The next chapter discusses the experimental evaluation of the CVRP and the TD-

CVRP. 
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5. Implementation 

5.1 Introduction 

This chapter deals with the implementation of a CVRP and a TD-CVRP in C++. Both 

problems are tested with eight instances of Christofides et al. (1979). The instances 

consist of 50, 75 or 100 customers. Table 5 gives an overview of the data.  

 

Instance 
number of 
customers 

Max 
Capacity 

Max Total 
Length 

Service 
 Time 

C01 50 160 999999 0 
C02 75 140 999999 0 
C03 100 200 999999 0 
C06 50 160 200 10 
C07 75 140 160 10 
C08 100 200 230 10 
C12 100 200 999999 0 
C14 100 200 1040 90 

 
Table 5: Instances of Christofides et al. (1979) 

  
 

Both in the CVRP and the TD-CVRP a fleet of m identical vehicles delivers goods from 

a single depot to a set of n customers. Each vehicle has a limited capacity C and each 

customer is associated with a demand  𝑑𝑖. The travel times and distances are assumed to 

be the same. The following variables will be used: 

 

routeCost    in the CVRP:  sum of all distances in a route 

   in the TD-CVRP:  sum of all travel times in a route 

routeTotalTime  sum of all travel times plus all service times in a route 

totalCost   sum of all routeCosts  

totalTime   sum of all routeTotalTimes 

 

Instances 6, 7, 8 and 14 include a service time s which defines the duration of service 

and a tour length constraint which limits the routeCost and the routeTotalTime.  

The objective of both problems is to minimize the total cost, which is defined by the 

sum of all routeCosts.  
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The following constraints must be satisfied: 

 

 i) each customer is visited exactly once;  

ii) each vehicle route starts and ends at the depot;  

iii) the demand of each customer is fulfilled; 

iv) the capacity limit is not exceeded and 

v) the tour length is not exceeded. 

 

The time horizon of the TD-CVRP is divided into three time intervals 𝑇1,𝑇2 and 𝑇3. 

Each interval is associated with a fixed speed 𝑣𝑇𝑘 where k denotes the number of time 

interval 𝑇𝑘.  

 

After this general information, Chapter 5 continues with the following points: 

First of all, the algorithm for solving the CVRP will be explained. The next section 

deals with the evaluation of the best CVRP solutions with five time-dependent 

scenarios. In the third section, the original algorithm is adapted so that time-dependency 

is taken into account. The adapted algorithm solves the TD-CVRP for all instances. The 

last section of this chapter presents the computational results of the implementation.  

5.2 The Algorithm 

First of all, the Euclidean distances between each pair of nodes (customers and depot) 

are determined and stored in a distance matrix. The Euclidean distance between node 𝑖 

and node 𝑗 is defined as follows: 

                                       𝑑𝑖𝑗 = �(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2                                            (26) 
 
In the next step, an initial solution based on the savings algorithm will be computed. 
 

5.2.1 Initial Solution 

As we remember from Chapter 3, the savings heuristic merges two routes if it leads to a 

cost saving. In the first step, we will calculate the saving 𝑠𝑖𝑗 between each customer 

pair: 
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                        𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗     for   𝑖, 𝑗 = 1, … ,𝑛  𝑎𝑛𝑑 𝑖 ≠ 𝑗                           (27) 

 

Afterwards, the savings are sorted in a savingsList in decreasing order. Then each 

customer i is assigned to a separate vehicle route (0, 𝑖, 0).  

In the next step, we will check which customer pairs should be merged. We start with 

the first savings pair (i,j) from the savingsList. A merge is only performed if the 

following conditions are satisfied: 

 i)    nodes 𝑖 and 𝑗 belong to two different routes; 

 ii)   nodes 𝑖 and 𝑗 are in the front or end position of their routes and 

 iii)  the potential route ensures the capacity limit and the tour length constraint. 

If all conditions are satisfied, the routes are merged in such a way that node 𝑗 is 

immediately visited after node 𝑖. Afterwards, the next savings pair from the savingsList 

is selected and the same procedure is applied. This is done until no more feasible 

savings are left. The routes are saved as initialSolution. 

 

5.2.2 Tabu Search Algorithm 

The TS algorithm starts with the initialization of several variables. First of all, 

currentSolution and bestSolution are initialized: currentSolution consists of the routes 

which were created by the savings algorithm; its total cost is defined by currentCost. 

BestSolution, on the other hand, stores the solution with the smallest total cost 

(bestCost) achieved during one run.  

In the next step, iteration, runtime and no_improvement are initialized: 

Iteration represents the number of the current iteration and runtime indicates the current 

runtime. No_improvement counts the number of iterations in which bestSolution cannot 

be improved. Every time bestSolution is improved, no_improvement is set to zero again. 

A run can be terminated in two ways: either if no_improvement reaches max or runtime 

reaches maxRuntime - whichever happens earlier. 
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The next paragraph deals with the structure of the tabu search algorithm:  

First of all, we have to define a tabu restriction. The tabu restriction in the current 

algorithm forbids the reversal of a node into its original route. For example, if node i is 

moved from route r to route s then the reversal of node i to its original route r will be 

forbidden for tabuLength iterations. In order to save the tabu information, a tabuList is 

created (see Figure 14) where the rows refer to routes and the columns refer to nodes. 

The number of routes is based on the initial solution. Before the algorithm starts all 

tabuList matrices are set to zero. The tabuLength is randomly chosen from an interval 

and remains constant for the entire run. 

 

  r1 r2 … 

n1 0 0 0 

n2 0 0 0 

… 0 0 0 
 

Figure 14: TabuList for n nodes and r routes 
 

 

While one of the stopping conditions is not met, the following steps will be performed 

in each iteration:   

First of all, the solution neighborhood of currentSolution is created. This is done with 

the Relocate/Exchange algorithm which will be explained in Section 5.2.2.1. The best 

solution of the neighborhood becomes the new currentSolution. In the next step, the 

IntraRoute_Improvement algorithm aims at improving the new solution (see Section 

5.2.2.2). Afterwards, currentCost is compared to bestCost. In the case that currentCost 

is smaller than bestCost, bestSolution is replaced with the new currentSolution. If 

bestCost cannot be improved, no_improvement is incremented, otherwise it is set to zero 

again. In the next step, all values in the tabuList are decremented by one. Finally, the 

current runtime is updated. After that, a new iteration starts. At the end of a run, 

bestSolution is checked for feasibility (Check_Feasibility). If it satisfies all constraints it 

becomes the final solution. Algorithm 1 summarizes the whole procedure:  
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1     runtime = 0 

2 create intialSolution 

3 currentSolution = initialSolution 

4 bestSolution = initialSolution  

5 iteration = 0  

6 no_improvement = 0   

7 choose tabuLength 

8 while  runtime <  maxRuntime 

9  RELOCATE / EXCHANGE 

10  INTRAROUTE_IMPROVEMENT 

11  if    currentCost < bestCost  then bestSolution = currentSolution 

12         no_improvement = 0 

13  end if 
14   else no_improvement ++ 

15  end else     
16  if  no_improvement = max  then  terminate run 

17   end if  
18  iteration++ 

19  update runtime 

20  update tabuList 

21 end while  

22 CHECK_FEASIBILITY 
23 final solution = bestSolution 

 
 

5.2.2.1 The Relocate/Exchange Algorithm 

In this algorithm each customer node is selected once being:  

1.) relocated to all positions of the other routes (except for the front and end   

 positions) and  

2.) exchanged with all customer nodes of the other routes.  

 

 Algorithm 1: Tabu Search 
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Figure 15 illustrates the relocation of a node and the exchange of two nodes: the left 

picture shows the relocation of node A2 from route B to route A; the right one depicts 

the exchange of A2 and B2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Every time a node is moved, we have to calculate the changeCost. This cost takes only 

those links into account which are directly affected by a relocation or an exchange, i.e. 

only the local change is considered. This is explained with the following example:  

Let us consider the relocation of node A2 to the position before node A3 (see Figure 16). 

In this case, the links affected are those between A1 and A3 and between B2 and B3. 

The other links remain the same and therefore they do not have to be considered for 

evaluation. The changeCost is defined as follows: 

 

             changeCost = −𝑑𝐴1,𝐴3+𝑑𝐴1,𝐴2 + 𝑑𝐴2 ,𝐴3−𝑑𝐵2,𝐴2 − 𝑑𝐴2,𝐵3+𝑑𝐵2,𝐵3                (28) 

 

 

 

The same principle applies to the exchange of nodes A2 and B2: 

 

changeCost = −𝑑𝐴1,𝐵2−𝑑𝐵2,𝐴3 + 𝑑𝐴1 ,𝐴2 + 𝑑𝐴2,𝐴3−𝑑𝐵1,𝐴2−𝑑𝐴2,𝐵3+𝑑𝐵1,𝐵2 + 𝑑𝐵2,𝐵3 (29) 

 

 

Change of cost in route A Change of cost in route B 

Change of cost in route B Change of cost in route A 

Figure 15: Relocation and Exchange 
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The red colored links in Figure 16 show which parts of the routes are evaluated when 

relocating node A2 to route A and exchanging nodes A2 and B2: 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

After having calculated the changeCost, we have to check if the constraints and the tabu 

restriction are still satisfied when performing the route change. If this is the case, 

changeCost is compared to minCost. minCost is set to a high value in the beginning of 

the Relocate/Exchange algorithm. As soon as a modification is found which satisfies 

changeCost < minCost, minCost is updated. At the end, the algorithm will perform the 

relocation or exchange which leads to the smallest minCost and satisfies all constraints.  

The tabu status of a relocation or an exchange can be overridden if it leads to a decrease 

in bestCost. Finally, the new solution is saved as currentSolution.  

The Relocate/Exchange algorithm is based on a first improvement approach meaning 

that as soon as an improving modification is found the algorithm is stopped and the next 

step is performed (IntraRoute_Improvement algorithm). A modification is improving if 

it leads to a decrease in currentCost. Algorithm 2 summarizes the Relocate/Exchange 

algorithm. 

 

 

 

 

 

 

Figure 16: Evaluation of local changes 
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1    minCost =1000000 

2    for every node in route i in currentSolution (≠ depots) do      
3        1.) RELOCATE 

4        for every route j in currentSolution (≠ route i) do 
5      relocate node into every position in route j  
6               if relocation satisfies capacity constraint  
7                  calculate changeCost   
8                  if relocation satisfies tour length constraint AND changeCost < minCost   

9                     if (tabuList [node][route j] = 0) OR (currentCost+changeCost < bestCost) 

10           minCost = changeCost   
11           end if 
12                end if 
13             end if 
14      end for 
15      2.)  EXCHANGE 
16      for every route j in currentSolution (≠ route i) do 
17            exchange node with all customer nodes in route j 
18            if exchange satisfies capacity constraint then  
19             calculate changeCost   
20                if exchange satisfies tour length constraint AND changeCost < minCost    

21                    if (tabuList [node] [route j] = 0   AND  tabuList [node2] [route i] = 0)  

22                  OR (currentCost + changeCost < bestCost)  

23                  minCost = changeCost 

24                    end if 
25                end if 
26            end if 
27       end for 

28    end for 

29    perform the modification which leads to the smallest minCost  
30    set tabu reversal of the relocated/exchanged nodes  

31    currentCost = calculate totalCost of currentSolution 

 

 

 Algorithm 2: Relocate/Exchange 
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5.2.2.2 The IntraRoute_Improvement Algorithm 

The IntraRoute_Improvement algorithm is based on the following principle: all 

customer nodes are relocated into all positions of their own routes (except for the depot 

positions). If the cost of currentSolution can be decreased, the relocation is performed. 

Algorithm 3 provides a summary of the whole procedure:  

 

 

1    minCost = currentCost 

2    improvement = false 

3    for every node in route i in currentSolution  do 

4 relocate node into every position of its own route  

5     calculate changeCost 

6          if  relocation satisfies tour length constraint     

7          AND currentCost +  changeCost < minCost   

8     minCost = currentCost + changeCost  

9  improvement = true 

10 end if 
11    end for 
12    if improvement = true   
13        perform the relocation which leads to the best improvement in minCost  

14        currentCost = calculate total cost of currentSolution 

15    end if 
 

5.3 Evaluation of the CVRP solutions with time-dependent scenarios 

Before the evaluation is performed, we need to determine an appropriate time horizon 

and the number of time intervals:  

The time horizon covers a period of twelve hours. It is divided into three time intervals. 

The time intervals 𝑇1 and 𝑇3 have a length of three hours whereas time interval 𝑇2 

corresponds to six hours. The whole time horizon is based on the given tour length 

constraint. If the tour length constraint is 200 (as for example in instance 6), the time 

horizon is divided in the following way: 

 Algorithm 3: IntraRoute_Improvement 
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Instances (1, 2, 3, 12) do not have a given tour length constraint, therefore several tests 

were performed to find an accurate one. Table 6 gives an overview of the chosen tour 

length constraints and service times.  

 

Instance Max Tour Length Service Time 
C01 470 10 
C02 380 10 
C03 500 10 
C12 400 10 

 
Table 6: Tour length constraints 

 

Five time-dependent scenarios will be tested: In each scenario the first and the third 

time interval correspond to lower travel speeds whereas the second interval corresponds 

to higher travel speeds. The average speed for each scenario is one. The travel speeds 

are presented in Table 7. 

 

 

 

 
 
 

Table 7: Travel speed in each time interval 

 

Each scenario represents a different degree of time-dependency. The time-independent 

case is represented by S1 where the speed in each time interval is one. The highest 

degree of time-dependency can be found in S5. Figure 18 illustrates the different 

scenarios. 

 Scenario Time Interval 1 Time Interval 2 Time Interval 3 
S1 1 1 1 
S2 0.8 1.2 0.8 
S3 0.6 1.4 0.6 
S4 0.4 1.6 0.4 
S5 0.2 1.8 0.2 

0 200 * 3/12h 
= 50  

200 * 9/12h 
= 150  

200  

Figure 17: Division of the time horizon 
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Figure 18: Time-dependent scenarios 

 

The bestSolution of each instance is recalculated with the travel time calculation 

procedure of Ichoua et al. (2003) (see Algorithm 4). The current time instant is 

represented by 𝑡, the arrival time is denoted 𝑡′ and the speed in time interval 𝑘 is 

represented by 𝑣𝑇𝑘. Each time interval 𝑘  is restricted by a lower and an upper bound: 

𝑇𝑘 = ]𝑡𝑘, 𝑡𝑘]. The number of time intervals is 𝐾 = 3. 

 

 

 

1    for every route i in bestSolution do 

2 set  routeCost_i and routeTotalTime_i to 0 

3 for every node ii of route i do 

4        find out in which  𝑇𝑘  the current routeTotalTime_i lies  

5        𝑡 = routeTotalTime_i 

6        distance = distance [node ii] [node ii+1] 

7                 𝑡′ = 𝑡 + (distance / 𝑣𝑇𝑘) 

8        while   𝑡′ > 𝑡𝑘�         

9       distance = distance - 𝑣𝑇𝑘 * (𝑡𝑘�  - 𝑡) 

10       𝑡 = 𝑡𝑘�  

11                         𝑡′= 𝑡 + (distance / 𝑣𝑇𝑘+1) 

12                         𝑘 ++ 

13               end while 

14        distance = 𝑡′ + routeTotalTime_i 

15         routeCost_i = routeCost_i  + distance 

0 
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 Algorithm 4: Evaluation of the best CVRP solutions with time-dependent scenarios 

Time 
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16         routeTotalTime_i =  routeTotalTime_i + distance  

17                if node ii+1 != depot  then  routeTotalTime_i + service time 

18 end for 
19    end for 
 

 

5.4 Adaptation of the Algorithm  

In order to take time-dependency into account, we have to adapt the original algorithm. 

From now on, routeCost defines the sum of all travel times of a route. The objective is 

to minimize the total cost where the total cost represents the sum of all routeCosts.   

The algorithm requires several changes in order to solve the TD-CVRP: The first major 

change concerns the evaluation of all cost variables (routeCosts, routeTotalTimes). 

From now on, they will be computed with the travel time calculation procedure of 

Ichoua et al. (2003) (see Algorithm 5).  

 

 
1    set  routeCost_i and routeTotalTime_i to 0 

2    for every node ii of route i do 

3 find out in which  𝑇𝑘  the current routeTotalTime_i lies  

4 𝑡 = routeTotalTime_i 

5 distance = distance [node ii] [node ii+1] 

6          𝑡′ = 𝑡 + (distance / 𝑣𝑇𝑘) 

7 while   𝑡′ > 𝑡𝑘�         

8       distance = distance - 𝑣𝑇𝑘 * (𝑡𝑘�  - 𝑡) 

9       𝑡 = 𝑡𝑘�  

10                         𝑡′= 𝑡 + (distance / 𝑣𝑇𝑘+1) 

11                         𝑘 ++ 

12        end while 

13 distance = 𝑡′ + routeTotalTime_i 

14  routeCost_i = routeCost_i  + distance 

15  routeTotalTime_i =  routeTotalTime_i + distance  

16        if node ii+1 != depot  then  routeTotalTime_i + service time 

17    end for 

 Algorithm 5: Calculation of routeCost and routeTotalTime 
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The next change concerns the savings algorithm. In the TDVRP we need to determine 

the time-dependent savings:  

 

                                           𝑠𝑖𝑗 = 𝑇𝑇0𝑖0 + 𝑇𝑇0𝑗0 − 𝑇𝑇0𝑖𝑗0                                             (30) 

  

In expression (30), 𝑇𝑇0𝑖0 represents the routeTotalTime of route (0, i ,0), 𝑇𝑇0𝑗0 indicates 

the routeTotalTime of route (0, j, 0) and 𝑇𝑇0𝑖𝑗0 represents the routeTotalTime of the 

merged route. All total times are calculated with the calculation procedure of Ichoua et 

al. (2003) (see Algorithm 5). Moreover, we have to compare the time-dependent 

routeTotalTime of (0, i, j, 0) to the tour length constraint. 

 

The next adaptation concerns the calculation of the changeCost (Relocate/Exchange and 

IntraRoute_Improvement algorithm). In the time-dependent case it is no longer 

sufficient to simply subtract the cost of the links removed and add the cost of the new 

links. For example, if node A2 is relocated to the position before A3, all links following 

A3 might be affected because of a potential speed change when crossing the boundaries 

(see Figure 19). It is no longer sufficient to only calculate the local change in the areas 

A1-A3 and B2-B3 – from now on the global change needs to be taken into account. The 

changeCost will be computed in the following way: 

 

             𝑛𝑒𝑤𝑇𝑇𝑅𝑜𝑢𝑡𝑒_𝐴 + 𝑛𝑒𝑤𝑇𝑇𝑅𝑜𝑢𝑡𝑒_𝐵 − 𝑜𝑟𝑖𝑔𝑇𝑇𝑅𝑜𝑢𝑡𝑒_𝐴 − 𝑜𝑟𝑖𝑔𝑇𝑇𝑅𝑜𝑢𝑡𝑒_𝐵              (31) 

 

In expression (31), 𝑜𝑟𝑖𝑔𝑇𝑇𝑅𝑜𝑢𝑡𝑒 defines the original routeTotalTime of a route whereas 

𝑛𝑒𝑤𝑇𝑇𝑅𝑜𝑢𝑡𝑒 describes the new routeTotalTime of a changed route. The calculation of 

the new routeTotalTime from the beginning to the end of a route every time a relocation 

or exchange is checked, is very time-consuming. In order to solve this problem, the 

following procedure is implemented: 

After the initial solution has been calculated, we save the start time at each node. The 

start times of those nodes which are affected by a change are updated in each iteration. 

Knowing the start times alleviates the calculation of the new routeTotalTimes: instead 

of taking into account the whole route, we start the total time calculation at the node 

before the change. In this way the same results are achieved in a faster way.  
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The red colored links in Figure 19 show which parts of A and B are considered when 

calculating the new routeTotalTimes: in route A the calculation starts at A1; in route B at 

node B2. The routeTotalTimes of the original routes are known and therefore do not 

need to be computed. They are only updated if a change is performed. 

 

 

 

 

 

 

 

 
 

 

 

 

5.5 Computational Results  

This section starts with the presentation of the CVRP results. Next, the evaluation of the 

CVRP results with time-dependent scenarios is discussed. Finally, the TD-CVRP results 

are presented and compared to the CVRP results evaluated with time-dependent 

scenarios.  

All experiments were performed on a laptop with 2.1 GHz and 4 GB RAM. Each 

algorithm - the original algorithm and the adapted algorithm - was run five times. In 

each run a tabuLength was randomly chosen from the interval [10,11,…,18]. The limit 

on no_improvement was set to 20.000 iterations and maxRuntime was set to 360 

seconds.  

First of all, the results of the CVRP are presented in Table 8. The Best Known Results 

are based on Cordeau and Laporte (2002). Best Solution shows the best solution over 

five runs and Avg Solution denotes the average over all best solutions. Best Gap 

describes the gap of the best solution compared to the best known solution and Avg Gap 
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Figure 19: Total time calculation when relocating a node 
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shows the deviation of the average solution compared to the best known solution. Avg 

best runtime presents the average runtime to reach the best solution for each instance 

whereas Avg total runtime describes the average total runtime for each instance. The last 

row Avg_Inst presents the averages over all eight instances. The best known results are 

reached for all instances except for instances C03 and C07. 

 

Instance 
Best 

 Solution 
Avg 

 Solution 

Best 
Known  

Solution 
Best 
 Gap 

Avg 
Gap 

Avg  
best 

runtime 

Avg 
total 

runtime 
C01 524.61 524.69 524.61 0.00% 0.02% 2 5 
C02 835.26 838.43 835.26 0.00% 0.38% 8 14 
C03 834.78 834.87 826.14 1.05% 1.06% 2 15 
C06 555.43 555.93 555.43 0.00% 0.09% 2 7 
C07 912.34 913.10 909.68 0.30% 0.38% 10 18 
C08 865.95 880.14 865.94 0.00% 1.64% 14 33 
C12 819.56 819.56 819.56 0.00% 0.00% 0 15 
C14 866.37 866.74 866.37 0.00% 0.04% 1 19 

Avg_Inst 776.79 779.18 775.37 0.17% 0.45% 5 16 
 

Table 8: CVRP results 
 

 

In the next step, the best results of the CVRP are evaluated with time-dependent 

scenarios. Table 9 shows the total costs for each instance and each scenario. The last 

row Avg_Inst  represents the average total cost over all instances. 

 

Instance S1 S2 S3 S4 S5 
C01 524.61 547.01 590.44 656.90 753.77 
C02 835.26 875.63 944.54 1051.11 1228.48 
C03 834.78 859.21 923.66 1026.29 1227.70 
C06 555.43 578.50 645.86 782.47 1244.27 
C07 912.34 946.76 1058.55 1331.95 2074.85 
C08 865.95 890.91 994.55 1224.04 1950.82 
C12 819.56 856.96 944.37 1098.44 1331.07 
C14 866.37 987.99 1222.70 1727.90 3217.10 

Avg_Inst 776.79 817.87 915.58 1112.39 1628.51 
 

Table 9: Evaluation of the CVRP solutions with time-dependent scenarios 
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Figure 20 compares the time-independent scenario S1 to the time-dependent scenarios 

S2, S3, S4 and S5. The comparison is based on the average total costs over all instances 

(see Avg_Inst in Table 9). 

 

 
Figure 20: Comparison of average results  

 

 

Table 10 shows in percentage terms the increase of the total costs in S2, S3, S4 and S5 

compared to S1. In S2 the total costs increase by 2.88% to 14.04%, in S3 the increase 

ranges between 10.65% and 41.13%, in S4 it is between 22.94% and 99.44% and finally 

in S5 the increase goes from 43.68% until 271.33%. The last row Avg_Inst shows the 

average increase over all instances. It starts with 5.18% in S2 and goes until 106.04% in 

S5. It can be seen that the higher the degree of time-dependency, the higher is the 

increase in totalCost.  
 

Instance 
S1 

Result 
S2  

Increase 
S3   

Increase 
S4   

Increase 
S5   

Increase 
C01 524.61 4.27% 12.55% 25.22% 43.68% 
C02 835.26 4.83% 13.08% 25.84% 47.08% 
C03 834.78 2.93% 10.65% 22.94% 47.07% 
C06 555.43 4.15% 16.28% 40.88% 124.02% 
C07 912.34 3.77% 16.03% 45.99% 127.42% 
C08 865.95 2.88% 14.85% 41.35% 125.28% 
C12 819.56 4.56% 15.23% 34.03% 62.41% 
C14 866.37 14.04% 41.13% 99.44% 271.33% 

Avg_Inst 776.79 5.18% 17.47% 41.96% 106.04% 
 

Table 10: Percentage increase in total costs when time-dependency is assumed 
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Several routes become infeasible in the time-dependent context. Table 11 and Table 12 

show the percentage of routes which do not satisfy the tour length constraints anymore. 

Table 11 summarizes the percentage of routes which are infeasible when comparing 

their routeCosts to the corresponding tour length constraint. In this case, tour length 

violations only appear in S5 for instances 6, 7 and 8.  

Table 12 illustrates the percentage of routes which become infeasible when taking their 

routeTotalTimes into account. In this case, the tour length constraints are already broken 

in S2 for instances 6, 7, 8 and 14. In S5 all routes of instances 7 and 8 become 

infeasible. The solutions of instances 1, 2, 3 and 12 remain feasible as the tour length 

constraint is set to a high value. 

 
 

Instance Nr of Routes S2 S3 S4 S5 
C01 5 0% 0% 0% 0% 
C02 10 0% 0% 0% 0% 
C03 8 0% 0% 0% 0% 
C06 6 0% 0% 0% 83% 
C07 11 0% 0% 0% 73% 
C08 9 0% 0% 0% 33% 
C12 10 0% 0% 0% 0% 
C14 11 0% 0% 0% 0% 

Avg_Inst 9 0% 0% 0% 24% 
 

Table 11: Percentage of infeasible routes based on routeCosts 
 
 

 

 

 

 

 

 

 

 
 

 

 

Instance Nr of Routes S2 S3 S4 S5 
C01 5 0% 0% 0% 0% 
C02 10 0% 0% 0% 0% 
C03 8 0% 0% 0% 0% 
C06 6 33% 83% 83% 83% 
C07 11 45% 82% 82% 100% 
C08 9 22% 33% 78% 100% 
C12 10 0% 0% 0% 0% 
C14 11 9% 18% 27% 91% 

Avg_Inst 9 14% 27% 34% 47% 

Table 12: Percentage of infeasible routes based on routeTotaltimes  
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Now we will take a closer look at the violation of the tour length constraints. Table 13 

and 14 compare the routeCosts and the routeTotalTimes to the corresponding tour 

length limitation: Table 13 shows the average percentage increase of the routeCosts 

compared to the corresponding tour length constraints. Table 14 illustrates the average 

percentage increase of the routeTotalTimes compared to the corresponding tour length 

constraints. It is shown that for those solutions which become infeasible, the average 

increase becomes higher, the higher the degree of time-dependency (Table 14).  

 
 

Instance 

S2 
Average 
Increase 

S3 
Average 
Increase 

S4 
Average 
Increase 

S5 
Average 
Increase 

C01 0% 0% 0% 0% 
C02 0% 0% 0% 0% 
C03 0% 0% 0% 0% 
C06 0% 0% 0% 14.69% 
C07 0% 0% 0% 20.81% 
C08 0% 0% 0% 6.53% 
C12 0% 0% 0% 0% 
C14 0% 0% 0% 0% 

Avg_Inst 0% 0% 0% 5.25% 
 

Table 13: Average increase in routeCosts compared to tour length constraint 
 

  

 

Instance 

S2 
 Average 
Increase 

S3  
Average 
Increase 

S4  
Average 
Increase 

S5 
 Average 
Increase 

C01 0% 0% 0% 0% 
C02 0% 0% 0% 0% 
C03 0% 0% 0% 0% 
C06 0.69% 4.53% 15.50% 53.03% 
C07 0.88% 6.02% 19.72% 60.50% 
C08 0.30% 2.08% 8.90% 42.55% 
C12 0% 0% 0% 0% 
C14 0.11% 0.47% 1.78% 10.97% 

Avg_Inst 0.25% 1.64% 5.74% 20.88% 
 

Table 14: Average increase in routeTotaltimes compared to tour length constraint 
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In the next step, the algorithm is adapted to solve the TD-CVRP. Table 15 shows the 

average results (Avg) and the best results (Best) for each instance and each speed 

scenario based on five runs. The last row Avg_Inst represents the average total cost over 

all instances. 

 

 
S1 S2 S3 S4 S5 

Instance Avg Best Avg Best Avg Best Avg Best Avg Best 
C01 524.74 524.61 546.16 544.40 580.65 577.87 637.45 631,88 726.66 723.23 
C02 838.80 835.26 875.31 867.75 935.09 929.80 1031.66 1029.02 1177.76 1172.45 
C03 835.35 834.78 851.80 848.87 896.34 886.27 980.56 978.53 1172.48 1169.97 
C06 555.43 555.43 569.94 568.92 600.36 595.50 645.12 642.92 758.78 757.11 
C07 916.15 912.34 960.04 958.26 1062.09 1057.32 1162.03 1150.84 1297.24 1270.66 
C08 877.68 865.95 894.02 891.41 967.59 963.74 1056.23 1040.85 1297.78 1266.12 
C12 819.56 819.56 847.88 847.35 915.34 913.69 1045.45 1044.74 1235.37 1235.37 
C14 866.82 866.37 988.35 988.25 1201.81 1190.37 1659.10 1599.54 2478.28 2188.00 

Avg_Inst 779.32 776.79 816.69 814.40 894.91 889.32 1027.20 1014.79 1268.04 1222.86 
 

Table 15: TD-CVRP results 
 
 
In Figure 21 the average total costs which were evaluated with time-dependent 

scenarios (see Avg_Inst in Table 9) are compared to the average total costs of the TD-

CVRP (see Avg_Inst in Table 15). The average total costs are based on all eight 

instances.  

 

 
Figure 21: Comparison of CVRP and TD-CVRP results 

 

In Table 16 the best TD-CVRP results (see Table 15) and the best CVRP results which 

were evaluated with time-dependent scenarios (see Table 9) are compared to each other.  
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In S2 improvements can be observed in all instances except for instances 7, 8 and 14; 

they range between 0.48% and 1.66%. In S3 the results of all instances become better: 

the improvements range between 0.12% and 7.8%. In S4 the improvements are between 

2.1% and 17.83%. The highest improvements can be found in S5: they range from 

4.05% to 39.15%. When looking at the average improvements over all instances, it can 

be seen that the improvement starts with 0.51% in S2 and goes until 20.69% in S5. 

As we can see, the improvements are higher, the higher the degree of time-dependency. 

Moreover, the algorithm constructs routes which fulfill the tour length constraints in all 

instances and all scenarios.  

 
 

Instance S1 S2 S3 S4 S5 
C01 524.61 -0.48% -2.13% -3.81% -4.05% 
C02 835.26 -0.90% -1.56% -2.10% -4.56% 
C03 834.78 -1.20% -4.05% -4.65% -4.70% 
C06 555.43 -1.66% -7.80% -17.83% -39.15% 
C07 909.68 1.21% -0.12% -13.60% -38.76% 
C08 865.95 0.06% -3.10% -14.97% -35.10% 
C12 819.56 -1.12% -3.25% -4.89% -7.19% 
C14 866.37 0.03% -2.64% -7.43% -31.99% 

Avg_Inst 776.79 0.51% 3.08% 8.66% 20.69% 
 

Table 16: Comparison of the TD-CVRP and CVRP results 
 
 

When comparing the improvements of the TD-CVRP results (see Table 16) and the 

deteriorations of the CVRP results evaluated with time-dependent scenarios (see Table 

10), it can be observed that the improvements are not as impressive as the 

deteriorations. For example, the deterioration of the CVRP result in instance 6 for S5 is 

124% whereas the improvement when solving the TD-CVRP is only 39.15 %. 

Another observation can be made when comparing the TD-CVRP results of instances 

(1, 2, 3, 12) and the TD-CVRP results of instances (6, 7, 8, 14) (see Table 16). The 

improvements of the first group are not as good as for the second group. For example, 

the improvement in instance 1 for S5 amounts to 4.05% whereas the improvement in 

instance 6 for the same scenario amounts to 39.15 %. This difference arises from the 

tour length constraint. As already mentioned in Section 5.3, instances (1, 2, 3, 12) do 

not have a given tour length constraint. In this case it was required to determine an 

accurate one. However, it is very difficult to find a constraint which allows the TD-
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CVRP results of (1, 2, 3, 12) to show similar characteristics as the TD-CVRP results of 

the other instances. A similarity is only achieved for S2 (see Table 16).  

 

Table 17 summarizes the runtimes of the TD-CVRP for each instance and each 

scenario. Avg Best presents the average runtime to reach the best solution and whereas 

Avg Total describes the average total runtime. The averages are both based on five runs. 

The last row Avg_Inst shows the averages over all eight instances. 

 
 

 
 

The average total runtimes of the TD-CVRP (Avg Total in Table 17) are much higher 

than the average total runtimes of the CVRP. This is due to the fact that more 

calculations are performed in the adapted algorithm.  

 

Even if the improvements of the TD-CVRP results cannot cover the deteriorations of 

the CVRP results, it can be concluded that taking time-dependency into account offers a 

more accurate picture of real-world conditions than assuming constant travel times 

throughout the day. It is shown that the results which were obtained with the adapted 

algorithm are better than those which were obtained with the original algorithm. 

Furthermore, the TD-CVRP solutions satisfy all imposed constraints. 

 
S1 S2 S3 S4 S5 

Instance 
Avg 
Best 

Avg 
Total 

Avg 
Best 

Avg 
Total 

Avg 
Best 

Avg 
Total 

Avg 
Best 

Avg 
Total 

Avg 
Best 

Avg 
Total 

C01 11 41 17 51 35 60 31 64 29 61 
C02 22 60 34 95 26 84 16 73 77 127 
C03 26 209 95 288 187 327 74 295 132 334 
C06 9 61 18 80 24 92 20 81 10 73 
C07 130 201 111 238 56 182 58 204 73 221 
C08 210 325 81 343 113 340 154 353 205 357 
C12 0 174 46 254 57 255 42 266 29 195 
C14 4 222 38 279 70 260 6 247 60 268 

Avg_Inst 52 162 55 204 52 52 50 198 77 205 

Table 17: TD-CVRP runtimes 
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6. Conclusion 

In the first part of this diploma thesis a theoretical overview of the TDVRP is presented. 

The overview starts with the definition of the VRP and the main solution methods. 

Next, the TDVRP is introduced and discussed. Finally, a review covering the TDVRP 

literature from 1991 until 2012 is presented.  

In the second part of this diploma thesis, an algorithm based on Tabu Search is 

developed to solve the CVRP. Eight instances of Christofides et al. (1979) are taken as 

benchmark. The algorithm reaches the best known results for six instances.  

The best solutions of the CVRP are then evaluated with five time-dependent scenarios, 

each representing a different degree of time-dependency. The time horizon is divided 

into three time intervals, where the first and the third interval correspond to lower travel 

speeds. It is shown that the total costs increase if compared to the CVRP results which 

were evaluated with time-dependent scenarios. The higher the degree of time-

dependency, the higher is the increase of the total costs. Furthermore, several routes do 

not satisfy the tour length constraints anymore. These findings seem to be consistent 

with other research, e.g. Ichoua et al. (2003) who report that several solutions based on 

constant speeds are infeasible in the time-dependent context and that this number 

increases with the degree of time-dependency.  

In the next step, the original algorithm is adapted to take time-dependency into account. 

The speed adjustment procedure of Ichoua et al. (2003) is used for calculating the route 

costs and the total times. In this way, the FIFO property is satisfied. Finally the adapted 

algorithm is performed to solve the TD-CVRP. The algorithm improves the CVRP 

results which were evaluated with time-dependent scenarios. The improvement is 

higher, the higher the degree of time-dependency. Furthermore, the solutions of the TD-

CVRP satisfy all tour length constraints.  

In conclusion it can be said that taking time-dependency into account offers a more 

accurate picture of real-world conditions than assuming constant travel times 

throughout the whole planning horizon. It is shown that the results which were obtained 

with the adapted algorithm are better than those which were obtained with the original 

algorithm. Furthermore, the TD-CVRP solutions satisfy all imposed constraints. 
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Abstract 

Most vehicle routing models assume constant travel times throughout the whole 

planning horizon. In reality, however, travel times vary during the day. This is 

especially true for urban areas where daily traffic congestion leads to longer travel 

times. The time-dependent vehicle routing problem (TDVRP) takes this aspect into 

account by assuming that travel times depend on the time of the day.  

This diploma thesis gives an overview of the TDVRP and presents the results of an 

experimental study.  

The first part introduces the VRP and different solution methods. This is followed by a 

detailed description of the TDVRP.  

The second part of the thesis presents an algorithm based on tabu search to solve the 

capacitated VRP (CVRP). Afterwards, the best solutions of the CVRP are evaluated 

with five time-dependent scenarios, each representing a different degree of time-

dependency. Compared to the original CVRP results, the total costs increase 

significantly and several routes become infeasible. In the next step, the original 

algorithm is adapted to solve the TD-CVRP. It is shown that the total costs can be 

improved when assuming time-dependent travel times. The improvement is higher, the 

higher the degree of time-dependency. Furthermore, the new solutions satisfy all tour 

length constraints. 
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Zusammenfassung 

In der Tourenplanung wird meistens angenommen, dass die Reisezeiten während des 

gesamten Planungshorizonts konstant sind. In der Realität ist es jedoch so, dass es 

während des Tages zu variablen Reisezeiten kommt. Vor allem im urbanen Bereich 

führen Staus zu längeren Reisezeiten. Im tageszeitabhängigen Tourenplanungsproblem 

wird dieser Aspekt berücksichtigt indem man annimmt, dass die Reisezeiten von der 

Tageszeit abhängen.  

Die vorliegende Diplomarbeit gibt einen Überblick über die tageszeitabhängige 

Tourenplanung und präsentiert die Ergebnisse einer experimentellen Studie. 

Im ersten Teil dieser Arbeit werden das klassische Tourenplanungsproblem und  

verschiedene  Lösungsverfahren vorgestellt. Danach wird das tageszeitabhängige 

Tourenplanungsproblem beschrieben.  

Im zweiten Teil wird zunächst ein Algorithmus basierend auf der Tabu Suche 

entwickelt um das kapazitierte Tourenplanungsproblem zu lösen. Die Lösungen werden 

dann mit tageszeitabhängigen Szenarien evaluiert, wobei jedes Szenario einen anderen 

Grad an Zeitabhängigkeit repräsentiert. Es wird gezeigt, dass die Gesamtkosten im 

Vergleich zu den ursprünglichen Kosten steigen. Desweiteren werden die 

Tourlängenbeschränkungen von vielen Touren nicht mehr erfüllt. Schließlich wird der 

ursprüngliche Algorithmus adaptiert um das tageszeitabhängige kapazitierte 

Tourenplanungsproblem zu lösen. Es wird gezeigt, dass die Gesamtkosten verbessert 

werden können wenn man tageszeitabhängige Reisezeiten einsetzt. Die Verbesserung ist 

umso stärker, je höher der Grad an Zeitabhängigkeit. Zusätzlich erfüllen die neuen 

Lösungen alle Tourlängenbeschränkungen. 
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