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ABSTRACT 

 

The insufficient delivery of drugs in the therapy of various urinary bladder diseases, most 

prominently cancer, is considered a primary cause for shortcomings in the contemporary 

treatment schedules. This work offers a novel strategy of drug delivery to bladder cancer, 

based on biorecognition with two lectins (PNA & WGA) in order to gain a stronger cell 

adhesion and more selective targeting of malignant tissue.  

Biocompatible PLGA micro- and nanoparticles were surface-modified with PNA and 

WGA, and characterized with regard to their binding capacity on three human urothelial 

cell lines and donor cells, corresponding to healthy tissue and low grade or high grade 

carcinoma, respectively.  

Flow cytometry was used to determine binding capacity and specificity on single cells 

and fluorescence microscopy was used to investigate particle binding on cell monolayers. 

Basic experiments featured a co-culture of SV-HUC and 5637 cells, a time lapse study of 

binding and an investigation on the influence of Pluronic-F68® on the binding capacity. 

Investigations for WGA binding capacity featured N, N`, N``-triacetylchitotriose, to proof 

the benefit obtained by a surface modification with WGA, whereas neuraminidase was 

used to investigate the causative principle for increased PNA-binding to different tumor 

stages.  

The surface modification with WGA significantly increased particle binding rates 

compared to HSA- and non-surface modified particles to all cell lines and binding 

maxima were reached within 30min. Considering the intended form of application as an 

instillation, the short time required to reach maximum binding could be of great benefit, 

and furthermore the PLGA particles may probably be washed out to a lesser extent after 

the termination of the instillation, which would increase residence time and drug 

exposure.  

This suggests promising potential for a use in intravesical drug delivery systems, and 

provides novel perspectives for the regionalized therapy of diseases of the human urinary 

bladder. 
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EINLEITUNG UND ZIELSETZUNG 

 

Blasenkrebs steht nach Colon-, Lungen und Prostatakrebs an vierter Stelle der häufigsten 

Krebserkrankungen in der westlichen Welt. Meist ist nur das Urothel betroffen und der 

Tumor kann durch einen chirurgischen Eingriff entfernt werden. Eine anschließende 

adjuvante Chemotherapie minimiert das Risiko eines weiteren Tumors. 

Der Arzneistoff wird dazu in flüssiger Form als Instillation verabreicht. Hierbei wird ein 

Katheter in die Blase eingeführt, durch den man eine Lösung, Emulsion oder Suspension 

der Zytostatika direkt an den beabsichtigten Wirkort bringt. Instillationen mit lokal 

wirksamen Substanzen werden ebenso bei anderen Erkrankungen der Harnblase, wie 

beispielsweise interstitieller Zystitis, angewandt. Diese Art der Therapie versucht den 

Vorteil einer hohen lokalen Wirkstoffkonzentration zu nutzen und minimiert gleichzeitig 

die Wahrscheinlichkeit für das Auftreten von systemischen Nebenwirkungen.  

Infolge der natürlichen Barrierefunktion des Urothels stellt die geringe Resorption des 

Arzneistoffes die größte Herausforderung für eine erfolgreiche instillative Behandlung 

dar. Außerdem wird der überwiegende Anteil des eingebrachten Medikamentes bei der 

Entleerung der Harnblase ausgespült, wodurch die effektive Diffusionsdauer nur ein bis 

zwei Stunden beträgt. Aufgrund der schlechten Resorption und der kurzen Verweildauer 

sollte also bald darauf die nächste Dosis verabreicht werden. Eine Instillation wird vom 

Patienten jedoch zumeist als unangenehm bis schmerzhaft empfunden und sollte daher 

möglichst weniger Wiederholungen bedürfen. 

Eine Verarbeitung des Arzneistoffes in Nanopartikeln aus biodegradierbaren Materialien 

könnte hierbei eine Verbesserung bieten, wobei die Arzneistoffe auch vor den widrigen 

Bedingungen im Harn geschützt wären. Durch Modifikation der Partikeloberfläche mit 

einem Lektin erhält man zudem eine Art „Adapter“, welcher es den Partikeln erlaubt, an 

der Glykokalyx der Zielzellen haften zu bleiben. Falls durch bestimmte Krankheiten die 

strukturelle Zusammensetzung der Glykokalyx verändert würde, wäre zusätzlich eine 

selektive Adhäsion an erkrankte Areale (Targeting Effekt) möglich. Darüber hinaus 

könnten derart modifizierte Nanopartikel aufgrund ihrer geringen Größe auch von den 

Urothelzellen aufgenommen werden und somit ein Wirkstoffreservoir bilden. Außerdem 

würde der Arzneistoff bei der Drainage so auch nicht ausgeschwemmt. In weiterer Folge 

sollte sich dadurch der Effekt der Behandlung steigern lassen und die Zahl der pro Patient 
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notwendigen Instillationen ließe sich senken. Dies wiederum erhöht den Komfort der 

Behandlung und führt zu einer gesteigerten Compliance.  

Unter Einsatz gut charakterisierter Zellkulturmodelle sollte deshalb in der vorliegenden 

Diplomarbeit das Konzept für ein Delivery System entwickelt werden, welches 

intravesikal eingesetzten Arzneistoffen zukünftig die Möglichkeit bieten soll, ihre volle 

Wirkung zu entfalten. 
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INTRODUCTION 

 

Bladder cancer is the fourth most common malignancy among men in the Western world, 

following prostate, lung and colon cancer, but the high recurrence rates makes it probably 

the most prevalent malignancy of these four, and certainly the most expensive when 

calculated per patient treated (1). Unfortunately, the National Cancer Institute funding for 

bladder cancer is quite low when compared to other common malignancies (2).  

In most cases only the urothelial tissue is affected and the tumor is non-muscle-invasive, 

so the first line treatment is transurethral resection (TURBT). To minimize tumor 

recurrence rates, adjuvant instillation of a chemotherapeutic or immunomodulatory agent 

is performed immediately after surgery. These instillations include Bacillus Calmette-

Guérin (BCG) as the only agent to also decrease progression rates, but with severe side 

effects in many cases. Chemotherapeutic drugs often have difficulties to withstand the 

rather harsh environment of the urine, and suffer from rapid inactivation. Oral application 

of sodium bicarbonate provides a possibility to alkalize the urine and therefore prevent 

this to a certain extent, though with higher additional effort in treatment preparation.  

The biggest challenge, however, is the natural barrier presented by the urothelial tissue, so 

only a small portion of the instilled drug is actually absorbed. Penetration rates into the 

tissue are thus usually very low and considerable effort was made to increase 

bioavailability. Electromotive drug administration (EMDA) and local microwave induced 

hyperthermia are only two examples to increase bladder wall penetration, though with 

additional devices required for application. Treatment efficacy of intravesical therapy is 

also restricted by a very short residence time, which is typically limited to 120min at best 

due to patient compliance. As a consequence, several repetitions are necessary in order to 

have an impact on recurrence rates. However, instillations are not only uncomfortable but 

sometimes also painful for the patient and should therefore be optimized for an effective 

cancer therapy. 

Nanoparticles may provide a new approach towards protecting the drug from the harsh 

environment and to create a bioadhesive delivery system. Among the potential carriers for 

targeted delivery, micro- and submicrometer particles, based on biocompatible and 

biodegradable polymers such as polylactide, polyglycolide, and poly (D,L-lactide-co-

glycolide) (PLGA), play a major role (3).  



7 
 

PLGA is already successfully used in clinical practice for implants with controlled 

sustained release and targeted delivery systems (4). In addition, the surface of such 

particles could be modified with lectins in order to increase adherence to the glycocalyx 

of the urothelial cells. Lectins are relatively cheap as compared to antibodies and are very 

likely to durably sustain the environment of the urine due to their stable molecular 

structure. Moreover, their binding to the glycocalyx is highly specific. Therefore, they 

might serve as an adapter for the drug particle – cell interaction. Particles bound to 

urothelial cells via lectins would probably be washed away to a lesser extent, when the 

bladder is drained after instillation. Thus, exposure time might be significantly increased 

and due to their small size the particles could also be absorbed via endocytosis. Since 

many diseases such as cancer and inflammations cause characteristic changes in the 

structure of the glycocalyx, even a targeting effect may be achieved by a combination of 

appropriate lectins and surface-modifiable nanoparticles.  

The herein presented investigations were carried out on three different cell lines 

representing a test system with fewer variable factors than studies in vivo. Moreover, cell 

lines can provide models for healthy and cancerous urothelial tissue, which makes them 

ideal ex vivo models for testing new technologies. Primary cells were obtained in 

cooperation with the Wilhelminen Spital, Vienna, to compare the results with a tissue of 

more “in vivo-like” character, featuring a variety of cells from different patients.  
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MATERIALS & METHODS  

Materials: 

Resomer RG503H (PLGA) was obtained from Boehringer Ingelheim (Ingelheim, 

Germany). 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4adiaza-s-indacene (BODIPY 

493/503) was obtained from Molecular Probes (Invitrogen Corp., Carlsbad, CA, USA).  

Wheat germ agglutinin (WGA) from Triticum vulgare and Peanut agglutinin from 

Arachis hypogea were acquired from Vector laboratories (Burlingham, USA). Human 

serum albumin (HSA), 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDAC), N-

hydroxysuccinimide (NHS), Pluronic® F-68 and neuraminidase were bought from Sigma 

Aldrich (Vienna, Austria). N, N`,N``-triacetylchitotriose was obtained from Fluka (Buchs, 

Switzerland).  

All other chemicals used for the experiments were of analytical purity. 

Surface modification of PLGA microparticles with F-PNA and F-WGA: 

The microparticles used for surface modification were produced by U. Länger during her 

work (3). Briefly, 100mg of microparticles were suspended in 10ml double distilled water 

with 0.1% Pluronic. Sufficient dispersion was achieved by stirring for several hours and 

gentle sonification under cooling. Centrifugal force was used with 1300G for 10min to 

gain a pellet, which was resuspended in 700µl 20mM Hepes/NaOH pH 7.0. For 

modification 37.5µl 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDAC) solution 

(80mg EDAC per 250µl 20mM Hepes/NaOH pH7.0) and 25µl N-hydroxysuccinimide 

(NHS) solution (2% solution in 20mM Hepes/NaOH pH 7.0) were added to the particle 

suspension.  

The suspension was incubated end-over-end for 3 hours at room temperature and then 

washed twice with 700µl of 20mM Hepes/NaOH pH 7.4 by centrifugation. The sample 

was divided into two aliquots. Per aliquote 500µl containing 0.5nmol F-PNA and F-

WGA, respectively, were added. End-over-end incubation time was set to 48 hours.  
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To maintain saturation of unreacted binding sites, the particle suspension was finally 

incubated with 200µl of a 5% glycine solution in water for 30min.  

To remove unbound lectines and side products, 4 washing steps via centrifugation were 

carried out. 

Nanoparticle preparation: 

A solvent evaporation technique was used to obtain nanoparticle suspensions in aqueous 

buffer. All steps of the manufacturing process require protection from light to prevent 

photobleaching of the applied fluorophore. 400mg PLGA and 0.25mg BODIPY 493/503 

were dissolved in 2g ethyl acetate by magnetic stirring at 4°C to avoid evaporation. 6g of 

a 10% aqueous Pluronic® F-68 solution were prepared separately and 100g of a 1% 

aqueous solution of Pluronic® F-68 solution were kept on a magnetic stirrer at 600rpm.  

After complete dissolution, the 10% Pluronic® F-68 solution was poured into the 

PLGA/BODIPY/ethyl acetate solution. The two phases were emulsified by sonification 

for 50s under cooling to break down the droplet size to nanometer range and then poured 

into the 1% Pluronic® F-68 solution under constant stirring.  

The emulsion was left under stirring for another hour to evaporate remaining ethyl 

acetate. Last traces of ethyl acetate were then removed under reduced pressure. Potential 

PLGA aggregates were removed by filtering the final suspension through a syringe filter 

of 1µm pore size.  

Nanoparticle characterization:  

The mean zeta potential, apparent size and PDI of the particles was investigated after 

preparation and surface modification to detect any alternation or instabilities. 

To measure the mean particle size and PDI the nanoparticle suspensions were diluted 

1:100 with double-distilled water and characterized via dynamic light scattering on a 

Zetasizer Nano ZS (Malvern Instruments Ltd., UK). The zeta potential was determined 

after 1:20 dilution with the respective buffer using disposable folded capillary cells. Both 

analyses were carried out at 25 °C. 
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Surface modification of the nanoparticles: 

20ml nanoparticle suspension were washed with 40ml 20 mM Hepes buffer pH 7,4 

containing 0,5% Pluronic® F-68 on the Vivaflow filtration system (MWC 100.000; 

Vivasience AG, Sartorius Group, Hannover, Germany). The 20ml aliquots were then 

transferred into 50ml Greiner tubes and each mixed with 240mg EDAC dissolved in 

750µl and 10mg NHS dissolved in 500µl of the same buffer. The tubes were incubated 

end-over-end for 4 hours. Following this activation step of the free carboxyl groups at the 

particle surface the aliquots were washed twice with 40 ml of the same buffer to remove 

excess reagent. 

For coupling 0.5nMol of lectin were used. For better handling the proteins were added as 

stock solutions containing 1mg protein per ml. So either 666µl WGA-, 2037µl PNA- or 

1241µl human serum albumin (HSA)-stock solution were added to each tube of activated 

particles, each equivalent to 0.5nMol. To support the stability of the lectins, 200µl of a 

100mM MnCl2-, CaCl2- and MgCl2-stock solution was included in the reaction mix. The 

particles were incubated end-over-end for 12 hours. Potentially unreacted sites were then 

saturated with 300mg glycine dissolved in 3ml PBS.   

After a further hour of end-over-end incubation, the suspensions were ready for the final 

purification. In dependence of the molecular weight of the protein coupled, two different 

methods were applied, either based on centrifugal force or the Vivaflow system as 

mentioned above.  

Centrifugation was used to wash the particles modified with HSA. In this case the 

nanoparticle suspension was transferred into eppendorf vials containing 400µl of a 

glycerine/ Hepes/NaOH buffer mixture (7+3) at the bottom to support particle retrieval 

and to prevent aggregation. After 15 minutes of centrifugation at 14.000rpm the upper 

1500µl were discarded and the pellet obtained was resuspended with 750µl of Hepes pH 

7,4. An advantage of this technique is the possibility of concentrating the particle 

suspension if needed. The particles modified with lectins were washed twice with the 

Vivaflow system. After the final purification all particles were stored at -80°C in aliquots 

of 500µl. 
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Cell culture: 

The cell lines SV-HUC-1, HT 1376 and 5637 were obtained from the American Type 

Culture Collection (Rockville, MD, USA). Tissue culture reagents were obtained from 

Sigma (St. Louis, USA) and Gibco Life Technologies Ltd. (Invitrogen Corp., Carlsbad, 

CA, USA). All cell lines were cultivated in sterile, humidified 5% CO2/95% air 

atmosphere at 37°C in 75cm² tissue culture flasks from Greiner. 

SV-HUC-1 cells were cultivated in Ham`s F 12 medium with 1% Penicillin/Streptomycin 

which contained 500ml Ham`s F12 from Gibco, 50ml fetal calf serum (FCS) and 0.073 g 

L-Glutamine. This cell line was propagated approximately once a week. For experiments 

cells between passage 34 and 60 were used. 

The cell line 5637 was cultivated in a medium containing 1000ml RPMI, 100ml fetal calf 

serum (FCS),  20ml L-Glutamine (8.5mg/ml) and 2ml Gentamycin (75µMol/ml). Due to 

their vivid growth the cells were passaged every three days. Passages used for 

experiments included cells between passage 31 and 94. 

HT-1376 cell cultivation was performed in a medium containing 500ml DMEM from 

Gibco, 90ml fetal calf serum (FCS), 0.17g L-Glutamine and 1% Penicillin/Streptomycin. 

Experiments were carried out with cells from passage 13 to 25. 

5637 and SV-HUC-1 (1:10) co- culture: 

Single cells of different malignant origin (5637 and SV-HUC-1) were mixed to generate a 

co-culture tissue model, featuring both cancerous and healthy areas. The varying growth 

rate required a tenfold excess of the healthy SV-HUC-1 to obtain an equally balanced 

tissue. 

Cultivation was carried out on glass slides (10mm diameter) in 24 well plates with 50 000 

cells per well for seeding. Preliminary experiments proved RPMI to be a suitable medium 

for both cell lines. After 10 days of cultivation the cells were almost confluent and thus 

stained with F-PNA and propidium iodide at 4°C, where cells are in a metabolically 

quiescent state and internalization is reduced to a minimum. Each well was incubated 

with 66pmol F-PNA for 30min, and then washed twice with PBS Ca2+/Mg2+. Cells were 

fixed with 2% paraformaldehyde solution for 15min and subsequent incubation with 

50mM NH4Cl solution to block unreacted sites.  
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In order to permeabilize the cell membrane Triton X-100 in PBS was applied at a 

concentration of 0.1% for 15min. Cell nuclei were then stained with a 0.01% solution of 

propidium iodide in PBS by incubation for 30min. 

Primary cells: 

Primary cells were obtained from the Department of Urology and the Department of 

Pathology and Microbiology of the Wilhelminenspital Vienna at informed patient 

consent. Immediately after surgical extraction, the tissue samples were transferred in a 

tube with a special sterile transport medium (15ml). This transport medium contained an 

antibiotic, 10mM Hepes, 2.35 mg aprotinin and 500ml HBSS with calcium and 

magnesium. Due to the instability of gentamycin in solution, the antibiotic was added to 

the solution immediately before delivering the tubes to the hospital. The gentamycin 

concentration varied from 0.2 to 0.1%. All solutions were stored for a maximum of 14 

days. The protocol used to cultivate the primary cells was based on the publication 

“Culture of Human Urothelium” by J. Southgate et al. (5). 

Tissue samples were transferred to the Department of Pharmaceutical Technology and 

Biopharmaceutics at 4°C and processed as soon as possible.  

For separating the urothelial cells from the stroma, the samples were treated according to 

their size with 5-10ml stripping solution. This stripping solution contained 10mM Hepes, 

2.35 mg aprotinin, 500ml HBSS with calcium and magnesium and 50ml 1% EDTA 

solution.  

After incubation over night at 4°C, the vials were warmed to 37°C for 20 minutes and 

carefully shaken by hand. The physical force was necessarily required to quantitatively 

separate the urothelium from the underlying tissue, which was then disposed. The hereby 

obtained cells were then isolated from the stripping solution by centrifugation for 5 

minutes at 1000rpm and, depending on the size of the cell pellet, resuspended in 1-2 ml of 

collagenase solution.  

The collagenase solution contained 11.47mg collagenase IV, 10mM Hepes and 60ml 

HBSS with calcium and magnesium. After sterile filtration, the collagenase solution was 

stored at -20°C in aliquots of 2ml. The primary cells were incubated with the collagenase 

for 20 minutes at 37°C in order to digest the urothelial sheet and obtain a single cell 

suspension. Then, 3ml cKSFM (complete keratinocyte serum free medium) were added 
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and eventually remaining tissue sheets were disaggregated with a glass pipette. The cells 

were then collected by centrifugation as before.  

cKSFM was bought from Gibco and also used for cultivation. Apart from the standard 

supplements such as bovine pituitary extract (BPE) and human growth factor (EGF) it 

contained 500µl of cholera toxin solution per 500ml medium in order to support cell 

binding to the growth support.  

Cholera toxin solution was prepared from a stock solution containing 1mg cholera toxin 

per ml sterile water for cell culture purpose. 150µl of this stock solution were mixed with 

5ml cKSFM to prepare the final cholera toxin solution.  

Different concentrations of the antibiotics gentamycin, penicillin and streptomycin were 

used in course of this work to achieve a compromise between optimized growth and as 

little risk of infections as possible.  

To subcultivate the cells, a solution of 0.1% EDTA in PBS was used to support 

detachment before trypsination. In order to prevent excessive loss of cells by this 

treatment, it was always performed under microscopic control. To subcultivate the cells, 

1ml of trypsin was used per 25cm² tissue culture flask. Within approximately two minutes 

the cells could be removed from the surface of the flask, but it was always decided 

individually according to visual observation when to add the trypsin inhibitor with 5ml 

medium to terminate the reaction.  

For the preparation of the trypsin inhibitor 250 mg of soybean trypsin inhibitor were 

dissolved in 5ml PBS + Ca2+/Mg2+. Aliquots of 50µl each were stored at -20°C to give a 

sufficient concentration for the inhibition of 1ml of trypsin.  

The primary cells were cultivated in gelatin coated 25cm² and 75cm² tissue culture flasks 

from Greiner. During this work cells of the samples 57 to 95 were cultivated and four of 

them (sample “81”, “83”, “89” and “92”) were used for experiments.  

Interaction of surface modified nanoparticles with bladder single cells: 

Flow cytometry was used to investigate the interaction between surface modified 

BODIPY nanoparticles and bladder single cells. Briefly, 100µl of cell suspension with a 

concentration of 400 000 cells per ml were mixed with 100µl nanoparticle suspension and 

incubated at 4°C for various periods of time.  
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Standardized dilutions in regard to relative fluorescence intensities of both, modified and 

plain particles were applied to guarantee comparability between the individual batches. 

These dilutions were freshly prepared prior to each experiment using 20mM isotonic 

Hepes/NaOH pH 7,4 with 1% Pluronic and characterized on a fluorescence microplate 

reader (e/e: 480/525 nm; Infinite 200, Tecan Group Ltd., Grödig, Austria).  

After incubation the cells were washed twice with 20mM isotonic Hepes/NaOH pH 7.4 to 

remove unbound or loosely bound particles. Hereby, it was obligatory to keep the 

temperature at 4°C and ensure protection from light in order to prevent photobleaching. 

For flow cytometry every sample was resuspended in 1ml PBS and analyzed on an EPICS 

XL-MCL analytical flow cytometer (Coulter, Miami, USA) using a forward-versus-side 

scatter gate for inclusion of the single-cell population and exclusion of cell aggregates. 

Fluorescence was detected at 525 nm (10-nm bandwidth). 

Binding specificity of WGA-BODIPY-PLGA nanoparticles:  

Binding specificity of the carbohydrate–lectin interaction between surface modified 

WGA-BODIPY-PLGA nanoparticles (WGA-BOD-NP) and the glycocalyx of the cell 

lines SV-HUC-1 and 5637 was verified by a competitive inhibition assay using N,N`,N``-

triacetylchitotriose. For the experiment 50µl cell suspension, 100µl WGA modified 

nanoparticle suspension and 50µl N,N`,N``-triacetylchitotriose solution (0.0625; 0.03125; 

0.01563; 0.00781; 0.00391 and 0.00195 µmol/50µl) in PBS + Ca2+/Mg2+  were mixed and 

incubated for 30min at 4 °C. After washing with cold PBS the mean cell associated 

fluorescence intensity was determined by flow cytometry.  

The blank consisted of 50µl cell suspension and 150µl PBS + Ca2+/Mg2+ to assess cellular 

autofluorescence. The positive control was a mixture of 50µl cell suspension, 100µl 

nanoparticle suspension and 50µl of PBS + Ca2+/Mg2+ instead of the sugar solution 

representing the value for maximum binding without inhibition. Each concentration was 

analyzed in triplicate.  
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Treatment with Neuraminidase to investigate the increase of F-PNA 

binding on malignant bladder cell lines: 

The aim of these experiments was to quantify the F-PNA-cell interaction in order to gain 

more information about the underlying principle of PNA selectivity. The ability of 

neuramininidase to cleave sialic acid groups in the glycocalyx and reveal underlying 

binding sites was assumed as a suitable model for these investigations. Thereby, the 

process of incomplete glycosylation should be mimicked, which is known to increasingly 

occur with malignant transformation in the human urothelium. The surface obtained 

should thus resemble a cancerous cell membrane with a higher quantity of binding sites 

for F-PNA, which might be determined via flow cytometry.  

To yield a suitable working environment and stability for the enzyme according to the 

provider’s instructions (Sigma Aldrich – Vienna) one unit lyophilized neuraminidase was 

dissolved in 1ml 0.2M sodium acetate buffer pH 5.5. 

Briefly, 50µl cell suspension containing 300 000 cells were mixed with 50µl 

neuraminidase solution containing 0.05 or 0.1 units, respectively. The samples were 

incubated at 37°C for one hour to use the full potential of the enzyme.  

After washing the cells three times with PBS to remove the neuraminidase, the cells were 

kept in 100µl PBS and the temperature was lowered to 4°C.  

Subsequent incubation for 30 minutes with 100µl of F-PNA solution (containing 25pmol 

and 50pmol, respectively) was carried out at 4°C under protection from light to prevent 

photobleaching of the fluorophor.  

After washing with PBS the mean cell associated fluorescence intensity was determined 

by flow cytometry.  
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RESULTS 

5637 and SV-HUC (1:10) co- culture: 

According to the results of the current diploma thesis, F-PNA can be used for selective 

tumor staining to mark cancerous cells. In this experiment two different cell lines were 

used: SV-HUC representing healthy cells and 5637 for cancerous cells.  

The nature of these two cell lines is also reflected by the differences in the structure of 

their glycocalices, which can be used for differentiation. To provide a suitable co-culture 

tissue model featuring both, cancerous and healthy areas, SV-HUC and 5637 single cells 

were mixed. Varying rapidity of growth required a tenfold excess of SV-HUC cells at the 

point of seeding to obtain an equally balanced tissue after four to five days of culture. The 

resulting co-culture samples were first stained with F-PNA, which only binds to 

cancerous cells. To stain the cell nuclei, propidium iodide was used after fixation with 2% 

paraformaldehyde solution and permeabilisation using Triton X 100. 

 

  
Figure 1.a:  A co culture of urinary bladder cell lines (5637 and SV-HUC, representing cancerous and 
healthy tissue) showing characteristic staining with F-PNA (green) and probidium iodide (red). Due to 
differences in the structure of the glycocalyx F-PNA is only able to stain 5637 cells, whereas probidium 
iodide affects all cells. These pictures illustrate the potential of PNA as a selective targeter in cancer therapy 
or enhanced diagnostics. 
 

As a consequence of this treatment some cells revealed more F-PNA binding on their 

surface than others, were only the propidium iodide staining was visible.  

In figure 1.b F-PNA binding on a 5637 culture is demonstrated. As this was a 

homogenous culture its staining showed little variation, whereas in figure 1.c F-PNA 

staining of the co-culture was highly variable from region to region.  

 

15µm 30µm 
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Figure 1.b: 5637 cells stained with F-PNA  Figure 1.c: Co-culture stained with F-PNA 
In figure 1b the effect of F-PNA on a 5637 culture is shown. As this was a homogenous culture of one cell 
line its staining showed little variation, whereas in figure 1c the co-culture was stained with F-PNA and 
therefore differently intense staining occurred.  
 

The images demonstrate that F-PNA binding at the surface of 5637 cells was stronger 

than on the healthy cells. The SV-HUC areas present only moderate F-PNA staining. 

Thus mainly the cell nuclei are noticeable. In figure 1c the co-culture was incubated only 

with F-PNA in order to visualize the difference in staining behavior once again. 

The results illustrate the potential of PNA as a selective targeter in cancer therapy or 

enhanced diagnostics. 

F-PNA and F-WGA surface-modified microparticles: 

Since F-PNA can be used for differentiation of healthy and cancerous cells it may also be 

a key element in drug targeting with the aim to bind particles via lectins to specific cells. 

Immobilized F-PNA at the surface of particles may thus create a shuttle system to deliver 

drugs precisely to their destination.  

The surface modification of microparticles was a first approach to investigate the 

modification procedure in principle, prior to experiments with nanoparticles. The 

microparticles, which were used for modification, did not contain any fluorophore or 

color and therefore did not show any fluorescence. After the modification process with F-

PNA and F-WGA, respectively, which included extensive washing as the final step, the 

particles were visibly stained with the respective fluorescence-labeled lectins (Fig. 2).  

The images obtained via fluorescence microscopy thus proved successful modification 

with F-PNA and F-WGA.  

 

15µm 30µm 
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Figure 2.a: Modification with F-PNA   Figure 2.b: Modification with F-WGA 
PLGA microparticles (focus set to the middle of the particles for both figures) showing significant 
fluorescent staining after surface modification with both lectins: F-PNA and F-WGA, respectively. 

Interaction of surface modified nanoparticles with bladder cells: 

Influence of incubation time and Pluronic-F68® concentration: 

To investigate the influence of the incubation time and Pluronic-F68® concentration a 

series of experiments was carried out. The necessity to clarify the consequences of basic 

conditions is crucial and requests to be examined before deeper research. 

For surface modified nanoparticles the use of Pluronic-F68® was obligatory to prevent 

agglomeration during modification. The nanoparticles were also stored in a suspension 

containing Pluronic-F68® to rule out instabilities, so the omnipresence of Pluronic-F68® 

required an investigation of its influence on the particle binding parameters. 

In order to assess time dependency of the binding of WGA-BOD-NP to SV-HUC and 

5637 single cells, incubation with particles was performed for 15, 30, 60 and 120 min at 4 

°C. Particle dilutions were used at a fluorescence intensity of 1000 and samples were 

analyzed in triplicates.  

As illustrated in figure 3a, the rapid binding of surface-modified nanoparticles had 

reached its maximum within 30min for both cell lines. As compared to 15min, the 

fluorescence intensity increased by 54.2% with a standard deviation of ±1.8% after 30min 

in case of 5637 cells. For SV-HUC, an increase of only 22.8% with a standard deviation 

of ±6.3% was observable for the 30min incubation period, as compared to the first 

measurement. The effect reached after a prolonged incubation time is limited for both cell 

lines; the mean cell associated fluorescence intensity is even slightly reduced after a 

5 µm 5 µm 
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maximum at 30min. Due to these findings the incubation time for all further experiments 

was set to 30min, in order to compare always maximal binding capacities under the 

various conditions. 

As the use of Pluronic-F68® was obligatory to assure the stability of the nanoparticle 

suspension, it was crucial to investigate the influence of Pluronic-F68® concentration on 

lectin mediated binding. Different dilutions of Pluronic-F68® were used, while the same 

amount of particles was applied. The highest concentration of Pluronic-F68® tested was 

2% and the lowest concentration contained 0,111% of Pluronic-F68® in Hepes/NaOH pH 

7.4. In order to ensure comparable conditions, particle concentrations were adjusted to a 

fluorescence intensity of 1000. After incubation for 30min at 4°C, all samples were 

investigated in triplicate via flow cytometry in order to quantify the mean cell-associated 

fluorescence intensity.  

As visualized by the graph in figure 3.b, Pluronic-F68® concentration does not seem to 

affect the lectin-mediated binding of BOD-NP to the glycocalyx of 5637 cells. Only 

insignificant variations could be observed. Though even higher concentrations of Pluronic 

did not seem to influence the binding capacity, all experiments were carried out with 

0.25% Pluronic-F68® for better comparability.  

 

 

 

Figure 3.a: Investigation of incubation time         
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Figure 3.b: Influence of Pluronic-F68®  
Figure 3.a illustrates the steep onset of the rapid binding of surface-modified nanoparticles, which had 
reached its maximum within 30min for both cell lines. As visualized by the graph in figure 3.b, Pluronic-
F68® concentration does not seem to affect the lectin-mediated binding of BOD-NP to the glycocalyx of 
5637 cells.  

Interaction of nanoparticles with bladder cells: Impact of the surface 

modification with WGA and HSA as compared to non-surface-modified 

BOD-NP 

The aim of this study was to investigate binding intensities of differently surface-

modified nanoparticles to bladder single cells and to examine the influence of the lectin-

modification on the interaction with the cells.  

In this experiment, the surface of the particles varied from non-modified, HSA-modified 

to WGA-modified. For each kind of particles three dilutions were used at fluorescence 

intensities of 500, 1000 and 2000.  

To guarantee comparability, incubation time was fixed to 30min for every sample while 

internalization was reduced to a minimum by keeping the temperature at 4°C. 
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Figure 4: Survey of all urinary bladder cell lines, incubated with various concentrations of WGA-BOD-NP, 
HSA-BOD-NP and non-modified particles (Plain) for 30min at 4°C, showing the benefit of surface 
modification with WGA concerning particle – cell interactions. 
 

The results indicate, that WGA-BOD-NP generally possess a higher interaction potential 

for all cell lines.  

SV-HUC cells bound WGA-modified particles almost three times more efficient than 

non-surface-modified BOD-NP. This tendency was also evident when compared to HSA-

BOD-NP particles. In this case, the cells still bound twice as much WGA-BOD-NP as 

HSA-modified particles.  

For HT-1376 cells, particle binding was increased about 2.5-fold by the use of WGA-

modification as compared to plain particles. This cell line also exhibited a slightly higher 

affinity to HSA-surface modified particles than to non-modified particles. As compared 

with the other two cell lines, HT-1376 cells generally possessed the highest auto 

fluorescence intensity, but also showed significantly higher interaction potential with all 

particle types. 

The dependence of particle interaction and surface modification was slightly lower for 

5637 cells, but still noticeable. WGA merely doubled the mean cell-associated 

fluorescence intensity when compared to HSA, which induced the lowest binding rate on 

5637 cells. This is accompanied by a rather high affinity to plain particles, whereas both, 

SV-HUC and HT-1376, showed more HSA-dependent binding activity than for plain 

surfaces.  
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Binding Specificity of WGA-BOD-NP: 

In order to estimate the extent to which the binding of WGA-BOD-NP to SV-HUC and 

5637 cells is mediated via the specific interaction of immobilized lectins with 

carbohydrate moieties of the cells’ glycocalyx, a competitive inhibition assay was 

performed.  

Since WGA specifically binds to N-acetyl-neuraminic acid and N-acetyl-D-glucosamine 

structures, N, N`, N``-triacetylchitotriose was used as the complementary carbohydrate of 

choice (6). That way, the lectins’ binding sites should be covered in order to reduce 

specific binding to a minimum and any remaining binding might only take place via 

unspecific interactions. 

With higher concentrations of the carbohydrate the increasing viscosity of the sample 

suspension sets a natural limit for testing. Measurements were thus carried out between 

0.0625 and 0.0019µmol N, N`, N``-triacetylchitotriose per 50µl. 

 

 

Figure 5: Mean cell-associated fluorescence intensity in course of competitive inhibition of WGA-BOD-
NP binding to SV-HUC and 5637 cells by addition of increasing amounts of the complementary 
carbohydrate N, N`, N``-triacetylchitotriose at 4 °C.. 
 

As illustrated by figure 5, increasing amounts of N, N`, N``-triacetylchitotriose led to a 

corresponding decrease of the mean cell-associated fluorescence intensity. At the 

maximum inhibitor concentration, particle binding to SV-HUC was reduced to less than 

one half. Minor concentrations of inhibitor on the contrary revealed incremental higher 

amounts of particles bound to the glycocalyx.  
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For 5637 cells only a minor effect could be observed, but the mean cell-associated 

fluorescence intensity was also significantly reduced by the use of the complementary 

carbohydrate. In this case, the interdependence of inhibitor concentration and interaction 

potential of the immobilized lectin is significantly less pronounced when compared to 

SV-HUC cells, but still noticeable.  

Since higher concentration of triacetylchitotriose also lead to higher viscosity, the 

maximum concentration for testing was set to 0.0625µmol per 50µl to guarantee equal 

conditions.  

Neuraminidase treatment to investigate PNA binding:  

Via the co-culture model of SV-HUC and 5637 cells, a highly selective binding of F-PNA 

to cancerous cells could be demonstrated. However, the selectivity was proved by 

staining, a procedure that delivers only qualitative information. The aim of this 

experiment was to quantify the F-PNA-cell interaction and gain more information about 

the underlying principle for PNA selectivity.  

A suitable model for these investigations was found in the ability of neuramininidase to 

cleave sialic acid groups in the glycocalyx and reveal the underlying binding sites. This 

mimics also the process of incomplete glycosylation, which is known to increasingly 

occur with malignant transformation in the human urothelium. The surface obtained thus 

resembles a cancerous cell membrane with a higher quantity of binding sites for F-PNA, 

which can be determined via flow cytometry.   

All three cell lines were treated with different concentrations of the enzyme, to obtain 

comparable data across the full range of tumor development. Each sample was analyzed 

in duplicate, and two concentrations of F-PNA were applied to cells without prior 

neuraminidase treatment to serve as a blank.  
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Figure 6: Mean cell-associated fluorescence intensity in course of different concentrations of F-PNA bound 
to SV-HUC, 5637 and HT-1376 cells under the influence of neuraminidase (NA). The binding of F-PNA to 
SV-HUC and HT-1376 was increased and both cell lines showed a proportional increase of lectin binding 
by raising the concentration of neuraminidase, whereas 5637 cells only showed a minor increase of the 
mean cell-associated fluorescence intensity. 

 

The cell lines HT-1376 and SV-HUC exhibited a distinct relation between addition of 

increasing amounts of neuraminidase and a corresponding increase of the mean cell-

associated fluorescence intensity. 

The binding of F-PNA to SV-HUC cells was increased tenfold with the use of 0.1 units of 

neuraminidase per 100µl. For HT-1376 cells also increasing binding rates of F-PNA were 

found. Both cell lines showed a proportional increase of lectin binding by raising the 

concentration of neuraminidase. For 5637 cells such an impressive potential could not be 

observed. When compared to the results without neuraminidase 5637 cells revealed only 

a minor increase of the mean cell-associated fluorescence intensity.  

Visualization of the particle binding to bladder cells: 

The experiments above featured quantitative measurement methods to determine BOD-

NP binding to bladder cell lines. In this investigation the goal was to visualize the 

fluorescent particle binding to the cells. SV-HUC single cells were incubated at 4°C for 
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30min. Then the cells were washed three times to remove any surplus of particles. Images 

were taken immediately after incubation in order to prevent internalization. 

 

 

Figure 7: SV-HUC single cells incubated with WGA-BOD-NP (focus was set to the middle of the cell).  
Figure 7 shows an image of the interaction between particles and single cells. The focus was set to the 
middle of the cell in order to demonstrate particle binding to the cell surface.  
 
 

In this image clusters of particles that are bound to the cells are visible. The picture shows 

different particle clusterings at the cell surface with slightly varying diameter. 

Fluorescence intensity naturally increases with the size of the particle clusterings. Single 

nano particles are not directly visibly, but contribute to the staining effect of the cell 

surface. In the area of the left two cells overlapping, fluorescence intensity naturally 

increases.  

 

 

Studies with primary cells: 

Cell lines provide models that are characterized by their comparability, which is crucial 

for scientific investigations. Isolation took place often years ago and usually the cells can 

be cultured continuously for several months as well as deep frozen for storage. Moreover, 

conditions for cultivation and splitting were studied in detail, so no major problems 

should occur. Cell lines are thus a perfect model for broad studies. However, one 

15µm 
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drawback might be found in some differences as compared to in vivo accompanied by a 

lack of significance.  

Primary cells on the other hand might reflect more realistic the in vivo situation due to the 

recent isolation. However, the cells originate from various -often multi morbid- patients 

of different age and gender. This comes with the challenge of knowing very little about 

their preferences and needs with respect to cultivation, since each sample is rather unique. 

The donor cells used in this study derived from cooperation with the Department of 

Urology and the Department of Pathology and Microbiology of the Wilhelminenspital 

Vienna. 

 

Concentration dependency of WGA-BOD-NP to primary cells: 

In order to elucidate the interaction potential of particles with primary cells, an 

experiment was carried out, featuring cells of three different tissue samples. Herein, the 

concentration dependency of the WGA-BOD-NP binding was investigated with passage 2 

of the samples 89 and 92 (both peritumoral). Due to the moderate amount of cells of 

sample 92 measurements were analyzed only in duplicates in this case.  

Unfortunately the cells of sample 83, which derived from a healthy area, had to be 

investigated at passage 1 due to culturing reasons. For this sample the amount of available 

cells was also rather limited. Thus, only two particle dilutions could be tested, but these 

were analyzed in triplicate. Incubation time was set to 30min at 4°C as above. 
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Figure 8: Interaction of WGA-BOD-NP with primary cells of peritumoral and healthy origin (Sample 89 & 
92 peritumoral, Sample 83 healthy).  
 

According to their origin the samples showed different binding activity for WGA-BOD-

NP. Nevertheless within each sample a proportionality between particle quantity and 

mean cell-associated fluorescence intensity could be observed. For sample 89 P2 e.g. the 

fluorescence intensity was almost doubled when increasing the amount of particles from 

500FI to 1000FI. Increasing the particle concentration to 2000FI resulted in an increase of 

99.6%. For sample 92 P2 similar results could be determined. Sample 83 P1 was only 

tested at two concentrations of particles. Interestingly, these cells revealed a considerably 

higher tendency for particle binding at the individual particle concentrations.  

 

Binding activity of WGA-BOD-NP vs. HSA-BOD-NP: 

Experiments with cell lines showed higher binding activity for lectin modified particles. 

Thus the benefit of surface modification with WGA as compared to HSA should be 

investigated also for primary cells. The experiment included the respective particles at 

two concentrations, 2500 and 5000 fluorescence intensity (FI). Incubation time was set to 

30min at 4°C and samples were analyzed in triplicates. 

 

 

Figure 9: WGA-BOD-NP binding activity as compared to HSA-BOD-NP for sample 81.  

 

As to the results obtained with cell lines, this sample of primary cells confirmed the trend 

of increased binding of WGA-BOD-NP in comparison to HSA-BOD-NP. In the case of 
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sample 81, which derived from a healthy area, lectin modification doubled the amount of 

particles bound to single cells. 
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DISCUSSION 

   

Targeted delivery of active chemotherapeutic agents to the site of disease is a promising 

strategy for the future improvement of cancer treatment, and has therefore attracted 

attention in multiple fields of experimental and clinical oncology.  

However, comparatively little research has addressed the application of refined delivery 

strategies for the therapy of superficial bladder cancer, where a straightforward local 

accessibility would greatly facilitate the use of bioadhesive or targeted formulations. 

Previous studies regarding binding and uptake of plant lectins in human urothelial cell 

lines (7) have shown the potential of using specific interactions with luminally exposed 

glycoproteins for an improved and more targeted tissue delivery. In particular, wheat 

germ agglutinin (WGA) exhibited a very high bioadhesive potential, while peanut 

agglutinin (PNA) emerged as the most potent discriminator between healthy and 

cancerous tissue. These findings might be essential for developing more potent local 

therapy schedules for urothelial cancer in future.  

PNA and WGA were thus subjected to a more detailed screening with regard to their 

ability of serving as targeting/cytoadhesion-mediating ligands in particle-based drug 

delivery systems. The initial step in this study was to establish a visual proof of the ability 

of PNA to effectively discriminate healthy from diseased tissue. This could be achieved 

via fluorescence microscopy in a co-culture tissue model featuring healthy (SV-HUC) 

and cancerous (5637) cells, which indicated that also cells growing in close proximity 

will be selectively affected by a PNA-based targeting strategy. 

F-PNA and F-WGA modified microparticles: 

As a next critical step for the development of lectin-mediated treatment strategies, it was 

necessary to advance from the level of the single, fluorescence-tagged targeting molecule 

to a delivery system that is able to carry pharmaceutically active ingredients as a payload 

while still maintaining the functional recognition principle of the targeting ligand.  

In this study, particulate carriers made of PLGA where chosen as a delivery system. This 

biodegradable matrix not only fulfils the criteria mentioned above, but is already 

successfully used in biomedical scaffolds with controlled, sustained release and other 
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delivery systems (4). PLGA is approved by the Federal Drug Administration (FDA) and 

established protocols for surface modification using NHS and EDAC are already 

available (8). The next step towards the use of lectins in bladder cancer therapy was to 

evaluate the possibility of performing surface modification of PLGA particles with the 

two most promising lectins, WGA and PNA, and to characterize the thereby induced 

effect upon particle-cell interaction. For ease of handling and to enable straightforward 

analysis of the results, preliminary experiments were carried out on particles in the size 

range of 1– 10µm. Since the microparticle matrix does not show any autofluorescence in 

the respective wavelength, it was possible to use fluorescence-labeled lectins (F-WGA 

and F-PNA) to demonstrate successful surface modification. To remove any unbound 

lectin and side products, the surface modification protocol was completed by washing the 

particles four times via centrifugation. As illustrated in figure 2, the microparticles 

showed a characteristic peripheral staining after the coupling procedure, indicating 

successful surface modification.  

WGA-, HSA- and non-surface-modified BOD-NP: 

Successful surface modification of microparticles with both lectins, however, does not 

automatically guarantee appropriate results for particles in the nanometer size range. PNA 

and WGA distinguish themselves not only in their characteristics concerning the future 

field of application; the two lectins also possess a significantly different molecular weight 

and differ in other physicochemical parameters. With a molecular weight of 110 kDa, 

PNA requires an individual washing procedure during and after surface modification as 

compared to WGA. The dimer of WGA, which is usually formed in physiological 

environment, has a molecular weight of 36 kDa and is therefore less complicate to 

remove. This work thus primarily focused on BOD-NP modified with WGA. 

As expected, no major alterations were found when using WGA for the surface 

modification of NP in comparison to the microparticle preparation. The particle 

suspensions could be stored in small aliquots at -70°C to provide an easy handling for 

experiments. 
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Influence of incubation time and Pluronic-F68® concentration on 

particle-cell interaction: 

To give a proof of concept, the time-dependent binding of WGA-BOD-NP to urothelial 

cells was to be examined as one of the key parameters. When WGA-BOD-NP were 

incubated with human bladder cells, the maximum binding capacity was reached within 

30min irrespective of the cells histological origin (healthy or cancerous tissue). The short 

time required to reach maximum binding might be advantageous considering the potential 

application in form of an instillation, which typically lasts no longer than 60 minutes.  

Prolonged incubation did not lead to higher cell-associated fluorescence intensities. It 

seemed, on the contrary, that incubation for more than one hour resulted in a tendency for 

lower fluorescence signals. Since internalization was unlikely due to a constant 

temperature of 4°C and photo bleaching was prevented by protection from light, this 

effect might be based on quenching effects between adjacent fluorophores at the cell 

surface. 

Besides time dependency, the influence of the surfactant Pluronic-F68® had to be 

examined. This nonionic tenside is – like PLGA – approved by the FDA, and generally 

considered as not harmful. In NP preparations, the use of Pluronic-F68® often is 

obligatory to assure the stability of the suspension during modification and storage. 

However, since Pluronic-F68® is an amphoteric molecule, it might influence the particle 

interaction with the cell membrane to a certain extent. The necessity to clarify its effect 

on binding capacities was thus evident.  

Preliminary experiments were carried out comprising different dilutions of Pluronic-

F68® and a constant amount of WGA-BOD-NP. The results showed only negligible 

influence of Pluronic-F68® on particle binding for surfactant concentrations of 0.11% to 

2.00%. Nevertheless, care was taken to carry out all experiments at a constant level of 

0.25% Pluronic-F68® to guarantee direct comparability. 

During surface modification, the Hepes/NaOH buffer pH 7.4 contained 0.5% Pluronic-

F68®. The potential influence of this concentration on the quantity of lectin coupled to 

the PLGA matrix was not determined, but successful immobilization of WGA was 

achieved in all cases. 
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Interaction of WGA-, HSA- and non-surface-modified BOD-NP with 

bladder cells: 

After evaluating the optimum parameters for cell interaction studies with regard to time 

and stabilizer concentration, it was of great interest to determine the differences in 

binding capacities of WGA-BOD-NP, HSA-BOD-NP and non-surface-modified particles. 

This experiment comprised a comparative analysis of all three cell lines incubated with 

different amounts of WGA-, HSA- and non-surface-modified BOD-NP. As expected, the 

results showed a clear concentration dependency. Moreover, it could be confirmed that 

modification with WGA resulted in higher binding rates. WGA-modification 

approximately tripled the amount of particles bound to SV-HUC, for 5637 cells the 

binding rates were doubled and for HT-1376 binding rates increased 2.5 fold, 

respectively, in comparison to non-surface- modified- BOD-NP. 

HSA-BOD-NP showed notedly lower binding rates as compared to WGA-BOD-NP. The 

fact that SV-HUC bound more HSA- and WGA-BOD-NP than 5637 was unexpected, 

since a recent study (7) revealed higher binding for the pure WGA to 5637 cells. Thus, it 

might be concluded that the binding rate of a free lectin in solution cannot be directly 

compared to the binding behavior of a particle decorated with the same lectin.  

Interestingly, HSA-BOD-NP generally showed higher binding rates than non surface-

modified particles. This might be explained by the more hydrophilic surface, caused by 

the process of modification with a protein that is rather hydrophilic as compared to the 

pristine PLGA matrix. However, since the physicochemical characteristics of the PLGA 

matrix may change during modification, particle-cell interaction naturally might also be 

affected. The unspecific binding of non surface-modified particles to urothelial cells can 

thus not be directly compared to particles that were subjected to the process of 

modification.  

Binding rates for non-surface-modified NP correlated to the applied concentration, but 

showed a different relative distribution between the individual cell lines, as compared to 

lectin-modified NP. The highest affinity was found for HT-1376 and the lowest for SV-

HUC, whereas in case of modified particles the lowest binding rates were observed for 

5637 cells. 
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Binding Specificity of WGA-BOD-NP: 

For targeted delivery applications, it is crucial to quantify the degree of specificity in the 

particle-cell interaction. In order to investigate the extent to which the binding of WGA-

BOD-NP to SV-HUC and 5637 cells is mediated by the specific interaction of the 

immobilized lectin with carbohydrate moieties of the cells’ glycocalyx, a competitive 

inhibition assay was performed. Since N, N`, N``-triacetylchitotriose is the carbohydrate 

that shows the highest affinity for the active binding site of WGA, it was used to 

antagonize the lectin–cell interaction.  

As expected, increasing amounts of the sugar component generally led to a corresponding 

decrease of the mean cell-associated fluorescence intensity caused by WGA-BOD-NP.  

With the maximum inhibitor concentration, specific particle binding to SV-HUC was 

reduced by 56%, indicating that up to 44% of the total binding capacity might be 

mediated via unspecific interaction. This ratio could not be reached with 5637 cells, 

where the decrease of the mean cell-associated fluorescence intensity amounted up to 

31% in presence of the complementary carbohydrate. Higher concentrations of N, N`, 

N``-triacetylchitotriose led to higher medium viscosity; to guarantee relatively equal 

conditions, the maximum concentration for testing was thus set to 0.0625µmol per 50µl. 

Due to the limit given by the increase in viscosity, the maximum possible inhibition was 

probably not reached for 5637 cells. The amount of specific binding may thus be higher 

than determined via the given setup. However, considering the results obtained with non-

surface-modified particles, 5637 are likely to hold a generally higher degree of unspecific 

binding. 

The influence of neuraminidase treatment on PNA binding:  

Since the benefit resulting from a predominant targeting of cancerous cells is obvious, 

various assays focused on PNA as the targeting ligand. The results obtained in the co-

culture staining of SV-HUC and 5637 cells confirmed a highly selective binding of F-

PNA to cancerous cells under completely equal conditions.  

The next step was to gain more information about the underlying mechanism of the F-

PNA-cell interaction and its selectivity for cancerous cells. Tumor cells develop different 

glycosylation patterns as compared to normal ones, which might allow PNA to more 
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directly access its corresponding binding site. In healthy cells, these binding sites are 

shielded by sialic acid, hindering PNA from reaching the reactive carbohydrate moiety. 

Due to the ability of neuraminidase to cleave terminal sialic acid groups in the glycocalyx 

and thereby reveal the underlying binding sites, its application could present a suitable 

model for investigating the selectivity of PNA for cancerous cells. That way the process 

of incomplete glycosylation, which is known to increasingly occur with malignant 

transformation in the human urothelium, might be mimicked. All three cell lines were 

treated with different concentrations of the enzyme followed by a F-PNA binding assay 

analyzed via flow cytometry to determine any differences that might be associated with 

the process of tumor development.  

The binding of 25 pmol F-PNA per 100µl to SV-HUC increased ten-fold after treatment 

with 0.1 units of neuraminidase per 100µl. Since this cell line represents healthy 

urothelial cells with presumably complete glycosylation, these cells were characterized by 

the most significant alteration due to the enzyme treatment. 

 

Because of their more incomplete glycosylation, 5637 cells did not show such a strong 

increase in F-PNA binding. When compared to the assays without neuraminidase, 5637 

cells showed only little increase of the mean cell-associated fluorescence. This is most 

probably due to the fact that sialic acid groups are already lacking in this stage of tumor 

development, so that the effect caused by the enzyme treatment is reduced to a minimum.  

For HT-1376 cells, two-fold higher binding rates of F-PNA were found even without 

neuraminidase treatment. Interestingly, HT-1376 revealed an additional increase of lectin 

binding by raising the concentration of neuraminidase, even though these cells derived 

from a high grade carcinoma. However, the HT-1376 cell line represents an isolated 

example for a single cancer, and might not necessarily be regarded as a general 

representative for high grade carcinoma. Incomplete glycosylation also is only one out of 

various characteristic differences that distinguish healthy from cancerous cells. 

Regardless of the unexpected result for this cell line, neuraminidase generally increased 

PNA binding rates, indicating an important role of incomplete glycosylation associated 

with higher binding to terminal cancer.  

 

The experiments discussed above focused on the quantitative evaluation of BOD-NP 

binding to bladder cell lines. In addition, time lapse imaging was used to visualize the 

process of particle-cell binding and confirm the results of the fluorometric analysis. 
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Single cells were incubated with WGA-BOD-NP at 4°C for 30min and then washed three 

times to remove any unbound particles. Images were taken instantly to prevent 

internalization.  

Images depicted particles bound to the surface of respective single cells, which were not 

removed during the three washing steps after incubation. The focus was set to a middle 

plane, so the silhouette of the cells appeared dominant. Moreover, not only cells but also 

particles clustering in aggregates of slightly varying diameter were visible.  

Studies with primary cells: 

The experiments described above were carried out with cell lines representing healthy 

tissue or low and high grade carcinoma, respectively. Cell lines provide models that are 

highly valuable in regard to their comparability, which is crucial for scientific 

investigations. In principle, they are a perfect model for testing, but may lack in 

significance for the in vivo state. Primary cells, on the other hand, are closer to the in vivo 

state, but entail a higher maintenance effort and may cause problems in regard to inter- 

and intraexperimental comparability. Recent isolation from various - often multi-morbid - 

patients of different age and gender are only a few issues to be mentioned in this respect. 

In order to show the characteristics of particle binding on primary cells and gain first 

insights into the more in vivo-like state, an experiment was carried out featuring donor 

cells of three different tissue samples. The samples designated “89” and “92” derived 

from peritumoral tissue; samples “81” and “83” were cultivated from a morphologically 

healthy region of the bladder wall. 

According to their origin, the samples showed different binding activity for WGA-BOD-

NP. Yet, each sample demonstrated proportional variations of the mean cell associated 

fluorescence intensity with regard to the particle quantity used for incubation. So within 

each sample, a clear dependency between binding rates and the concentration of WGA-

BOD-NP could be established.  

Since the experiments with cell lines showed higher binding activity for lectin-modified 

particles, the purpose of the experiments with primary cells was to investigate the benefit 

of surface modification with WGA as compared to HSA also for ex vivo samples. For this 

experiment the respective particles were applied in two concentrations, (2500 and 5000 

fluorescence intensity) and incubated with cells of sample “81” that derived from a 



36 
 

healthy urothelium region. As observed previously for the cell lines, this sample showed 

distinctively higher mean-cell associated fluorescence intensities for the particles 

modified with WGA, proving the benefit of surface modification with lectins. 
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CONCLUSIONS 

 

Various assays featuring three bladder cell lines (representing healthy and differently 

staged malignant tissue) indicated a higher affinity for PLGA nanoparticles after surface 

modification with wheat germ agglutinin as compared to human serum albumin- and non-

surface-modified particles.  

Whereas recent studies with free plant lectins (7) showed an increased affinity of WGA 

for malignant cells as compared to healthy ones (HT-1376 > 5637 > SV-HUC), the results 

found for lectin-modified particles could not confirm this trend (HT-1376 > SV-HUC > 

5637). Since SV-HUC bound more WGA-BOD-NP than 5637, it seemed that the binding 

rates of free lectins cannot be directly compared to the binding behavior of a lectin-

modified particle.  

For comparison, the results obtained for WGA-BOD-NP were related to particles 

modified with human serum albumin and non-modified particles. The relatively high 

binding rates for HSA-BOD-NP as compared to non-surface-modified particles can be 

explained by the more hydrophilic surface caused by the process of modification with a 

protein. For HSA-BOD-NP, binding rates increased exactly as for WGA-BOD-NP: 5637 

< SV-HUC < HT-1376. In contrast, non surface-modified particles showed the trend to 

bind more particles with increasing degree of malignancy.   

First experiments using primary cells from healthy and peritumoral regions incubated 

with surface-modified particles matched the results obtained with the cell lines. However, 

more data are required to definitely conclude on the binding pattern. 

Since lectins are a potential tool to deliver drug-entrapping PLGA particles to their target, 

it might be a highly useful approach for future intravesical therapy. Lectins coupled to 

nanoparticles may thus provide a versatile delivery system for various urothelial diseases 

including bladder cancer, since particle suspensions could be easily applied in form of a 

conventional instillation. All particles (surface-modified and non-modified) reached their 

maximum binding rates within 30min which is a reasonable incubation time for this 

application. Based on the current results of this work, further research to improve the 

targeted therapy of urinary bladder cancer would be highly warranted.   
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ZUSAMMENFASSUNG 

 

In der vorliegenden Arbeit wurden Untersuchungen mit PLGA-Nanopartikeln an drei 

unterschiedlichen Urothelzelllinien durchgeführt, mit dem Ziel, die Therapie von 

Erkrankungen der Harnblase, allen voran Blasenkrebs, zu verbessern. Die drei dafür 

eingesetzten Zelllinien bestanden aus SV-HUC als Modell für gesundes Gewebe und den 

zwei malignen Zelllinien 5637 und HT-1376, die von verschieden differenziertem 

Tumor-Urothel stammen. 

Lektine stellen einen neuartigen Ansatz zur Entwicklung von biorekognitiv getargeteten 

Delivery-Systemen dar, die auch an der Oberfläche arzneistoffbeladener Polymer-Partikel 

immobilisiert werden können. Durch Wechselwirkung mit an der Zellmembran 

exprimierten Zuckerketten könnte so die Partikel-Gewebe-Interaktion verbessert und eine 

effizientere Anreicherung des Wirkstoffes am Zielort erreicht werden. Bei der 

Anwendung in der instillativen Therapie könnte ein derartiges Delivery-System nicht nur 

von der einfachen Zugänglichkeit profitieren, sondern darüber hinaus den verkapselten 

Wirkstoff vor äußeren Einflüssen schützen und durch Bioadäsion zu einer 

längerdauernden Exposition führen, wodurch die Frequenz der notwendigen 

Behandlungen verringert werden könnte. Im hier vorgestellten Ansatz wurde aufgrund 

seiner ausgeprägten Zellaffinität am urothelialen Gewebe WGA als Lektin  ausgewählt. 

Mittels Flowzytometrie konnte festgestellt werden, dass eine Oberflächenmodifikation 

der Nanopartikel mit WGA generell zu einer erhöhten Bindungsaffinität führt. Als 

Vergleich dienten sowohl nicht modifizierte Nanopartikel, als auch Nanopartikel, die mit 

HSA modifiziert worden waren. 

Eine kürzlich veröffentlichte Studie (7), beschreibt die mit unmodifizierter Lektinlösung 

gefundenen Zusammenhänge zwischen Bindungsaffinität und Malignizitätsgrad (SV-

HUC < 5637 < HT-1376) für WGA. Für WGA-modifizierte Partikel konnte diese 

Reihenfolge jedoch nicht bestätigt werden. In der vorliegenden Arbeit zeigte sich 

folgende Abfolge in der Bindungsaffinität: 5637 < SV-HUC < HT-1376. Da hier 

„gesunde“ SV-HUC Zellen eine stärkere Partikelinteraktion aufwiesen als die Zelllinie 

5637, liegt der Schluss nahe, dass sich das Bindungsverhalten eines Lektins nicht direkt 

auf das eines Lektin-modifizierten Partikels umlegen lässt. 

Interessant war auch, dass eine relativ hohe Bindungsaffinität für HSA-modifizierte 

Partikel festgestellt werden konnte. Dies könnte sich eventuell dadurch erklären lassen, 
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dass die Partikeloberfläche durch die Modifikation mit einem Protein im Gegensatz zu 

der reinen PLGA-Matrix an Hydrophilie gewinnt. Für nicht modifizierte Partikel wurde 

ein Bindungsmuster ermittelt, das – ähnlich wie für WGA in Lösung beobachtet – einen 

Bezug zur Malignität nahelegt. In diesem Fall war die Reihenfolge jedoch umgekehrt: 

SV-HUC > 5638 > HT-1376.  

Die Spezifität der Bindung von WGA-BOD-NP wurde mit Hilfe von N, N`, N``-

Triacetylchitotriose, das mit den Zuckerstrukturen an der Zelloberfläche um die 

Bindungsstellen des Lektins konkurriert, nachgewiesen. Da N, N`, N``-

Triacetylchitotriose nur die Interaktion zwischen WGA und Glycocalyx inhibiert, sind 

unspezifische Wechselwirkungen zwischen Partikel und Zelloberfläche immer noch 

möglich. Deshalb erreicht die Zellbindung ein Plateau, das auch duch weitere Erhöhung 

der Konzentration von N, N`, N``-Triacetylchitotriose nicht unterschritten werden konnte 

und somit dem Ausmaß der unspezifischen Partikelinteraktion entsprechen dürfte. Zusatz 

von N, N`, N``-Triacetylchitotriose führte bei der Zelllinie SV-HUC zu einer Reduktion 

der Bindung von WGA-BOD-NP auf weniger als die Hälfte. Bei der Zelllinie 5637 war 

dieser Effekt etwas schwächer ausgeprägt. Der Anteil an unspezifischer Bindung liegt 

hier bei etwa 60% . 

Mit Neuraminidase, die Sialinsäurereste von Zuckerstrukturen der Glykokalyx abspalten 

kann, wurde eine Zelloberfläche erhalten, die malignen Urothelzellen stark ähnelt, da bei 

zunehmender Malignität die Glykosylierung inkomplett ist. Eine Vorbehandlung mit 

diesem Enzym bewirkt bei SV-HUC Zellen, die als gesund einzustufen sind, eine 

zehnfach gesteigerte Bindung von F-PNA. Da die Zelllinien 5637 und HT-1376 von 

Tumor-Urothel abstammen und damit bereits malign transformiert sind, war dieser Effekt 

hier deutlich geringer ausgeprägt. Daraus lässt sich ableiten, dass PNA eine gewisse 

Selektivität für maligne Zellen aufweisen sollte, und dies ließe sich für eingezieltes 

targeting ausnützen. 

 

Erste Versuche an Primärzellen aus peritumoralem Gewebe bzw. gesunden Regionen 

bestätigten die Ergebnisse, die in den Studien an Zelllinien ermittelt wurden. Auf diesem 

Gebiet sind für eine abschließende Beurteilung allerdings noch umfangreichere Daten 

notwendig. 

In der Praxis könnte ein nanopartikuläres Delivery-System, wie in dieser Arbeit 

vorgestellt, in Form einer konventionellen Instillation verabreicht werden. Hierbei wäre 
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von Vorteil, dass die Partikelinteraktion nach WGA-Modifikation sehr rascherfolgt und 

ihre volle Ausprägung bereits nach 30min erreicht hat.   

Allgemein könnte auf diese Weise nicht nur die intravesikale Therapie des 

Blasenkarzinoms sondern auch die Behandlung anderer lokal zugänglicher Erkrankungen 

des Urothels, wie beispielsweise bakterielle Harnwegsinfekte, entscheidend vereinfacht 

werden. Dennoch bleiben für eine abschließende Einschätzung des generellen Potentials 

umfangreichere Tests in klinischen Studien abzuwarten. 
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ABKÜRZUNGEN/ ABBREVIATIONS 

 

BCG………….Bacillus Calmette- Guérin 

BPE…………..Bovine pituitary extract  

cKSFM………complete keratinocyte serum free medium 

EGF………….. Human growth factor 

EDAC………..1-ethyl-3(3-dimethylaminopropyl) carbodiimide 

EMDA………..Electromotive drug administration 

FDA………….Federal Drug Administration 

FIU…………..Fluorescence Intensity Units 

HSA………….Human serum albumin 

MP……………Microparticles 

NA…………….Neuraminidase 

NHS…………..N-hydroxysuccinimide 

NP…………….Nanoparticles 

PLGA…………polyD,L-lactide-co-glycolide  

PNA…………..Peanut agglutinin 

TURBT……….Transurethral resection of the bladder tumor 

WGA………….Wheat germ agglutinin 
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