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Abstract

In this thesis, we are concerned with methods for solving large scale bound con-
strained optimization problems. This kind of problems appears in a wide range
of applications and plays a crucial role in some methods for solving general
constrained optimization problems, variational inequalities and complementarity
problems. In the first part, we provide the general mathematical background of op-
timization theory for bound constrained problems. Then the most useful methods
for solving these problems based on the active set strategy are discussed. In sec-
ond part of this thesis, we introduce a new limited memory quasi Newton method
for bound constrained problems. The new algorithm uses a combination of the
steepest decent directions and quasi Newton directions to identify the optimal ac-
tive bound constraints. The quasi Newton directions are computed using limited
memory SR1 matrices and, if needed, by applying regularization. At the end, we
present results of numerical experiments showing the relative performance of our
algorithm in different parameter settings and in comparison with another algo-
rithm.
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Zusammenfassung

Diese Arbeit befasst sich mit Methoden zur Lösung von hochdimensionalen Opti-
mierungsproblemen mit einfachen Schranken. Probleme dieser Art tauchen in ei-
ner grossen Anzahl von unterschiedlichen Anwendungen auf und spielen eine ent-
scheidende Rolle in einigen Methoden zur Lösung von Optimierungsproblemen
mit allgemeinen Nebenbedingungen, Variationsungleichungen und Komplemen-
taritätsproblemen. Im ersten Teil dieser Arbeit beschreiben wir den allgemeinen
mathematischen Hintergrund der Optimierungstheorie für Optimierungsprobleme
mit Schrankenbedingungen. Danach werden die nützlichsten auf aktiven Mengen
beruhenden Verfahren zur Lösung dieser Probleme diskutiert. Im zweiten Teil die-
ser Arbeit stellen wir ein neues Limited Memory Quasi Newton-Verfahren für
hochdimensionale und einfach eingeschränkte Probleme vor. Der neue Algorith-
mus verwendet eine Kombination aus den steilsten Abstiegsrichtungen und Quasi
Newton Richtungen, um die Menge der optimalen aktiven Variablen zu identi-
fizieren. Die Quasi Newton-Richtungen werden mit Hilfe der Limited Memory
SR1 Matrizen und, falls erforderlich, durch die Anwendung einer Regularisie-
rung berechnet. Zum Schluss präsentieren wir die Ergebnisse von numerischen
Experimenten, die die relative Performance unseres Algorithmuses bezüglich un-
terschiedlicher Parametereinstellungen und im Vergleich mit einem anderen Al-
gorithmus darstellen.
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Chapter 1

Introduction

1.1 Formulation and Motivation
In this thesis we are concerned with method for solving the bound constrained
optimization problem. Such a problem appears quite naturally in a wide range
of applications including optimal design problem [5], contact and friction in rigid
body mechanics [19], the obstacle problem [22], journal bearing lubrication and
flow through a porous medium [18]. Some approaches for solving variational in-
equalities and complementarity problems have been proposed [1], in which these
problems are reduced to bound constrained problems. Moreover, the bound con-
strained optimization problem arises as a subproblem of the algorithms for solving
general constrained optimization problems based on the augmented Lagrangian
and penalty schemes [17, 16, 20]. In fact, some authors claim that each variable
for optimization problems can only be considered meaningful within a particu-
lar interval [13]. These facts have motivated significant research dealing with
development of efficient numerical algorithms for solving bound constrained op-
timization problems, especially when the dimension of the problem is large.

The bound constrained optimization problems have the form

minimize f (x)
subject to l ≤ x≤ u (1.1)

where the objective function f : Rn→ R is a sufficiently smooth function and the
number of variables n is assumed to be large. Moreover, the fixed vectors l and u
are lower and upper bounds on the variables respectively and the inequalities are
componentwise.

The organization of this thesis goes as follows: In the rest of this chapter we
review some fundamental results of optimization theory in case of bound con-
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Introduction

strained problems. Chapter 2 describes some effective methods used for solving
large scale bound constrained problems. In chapter 3 we introduce a new quasi
Newton method for solving bound constrained problems. In chapter 4 we present
numerical results demonstrating the relative performance of our algorithm in dif-
ferent cases and in comparison to other algorithms. Finally, chapter 5 concludes
the thesis with directions for future work.

Throughout this thesis, we use the following notation. With the superscript T
we denote the transpose of a matrix(or vector), g and B represent the gradient and
the Hessian matrix of the objective function respectively.

1.2 Preliminaries
For solving problem (1.1), first, we need to characterize its solutions and their
properties. In addition, once the solutions of the problem are mathematically
characterized, questions arise about the solution for example, whether it is unique
or under which conditions it is the global minimizer of the problem. The following
theorems and definitions answer these questions.

Theorem 1.2.1. Let F = {x ∈ Rn : l ≤ x ≤ u} be feasible region of (1.1) and
suppose that f is continuously differentiable on F with the gradient g.

1. If x∗ is the solution of (1.1) then

g(x∗)T (x− x∗)≥ 0, x ∈F . (1.2)

2. If f is convex on F then, conversely, every x∗ ∈F satisfying (1.2) is global
solution of the (1.1).

3. The problem (1.1) has an unique solution x∗ whenever the objective function
f is strictly convex on feasible region F .

Proof. The proof of Abstract first order optimality conditions for general con-
strained optimization problem [24, p, 97].

Theorem 1.2.2 (General first order optimality conditions for bound constrained
problem). Let x∗ be the solution of (1.1), then there exist vectors λ ,µ ∈ Rn such
that 

g(x∗)−λ +µ = 0,

(x∗− l)T
λ = 0,

(u− x∗)T
µ = 0,

λ ,µ ≥ 0,
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1.2 Preliminaries

where above conditions are called Karush-Kuhn-Tucker or KKT conditions and
they are equivalent to 

gi(x∗)≥ 0, if x∗i = li,
gi(x∗)≤ 0, if x∗i = ui,

gi(x∗) = 0, if li < x∗i < ui.

(1.3)

Proof. The proof of General first order optimality conditions [24, p, 105].

Note that the KKT conditions are necessary conditions for every solution of
(1.1) but converse of above theorem does not hold unless, for example, the objec-
tive function of (1.1) is convex in a neighbourhood of the feasible point satisfying
KKT conditions.

Definition 1.2.1. A point x̄∈F is said to be a stationary point for problem (1.1) if
it satisfies KKT conditions, or equivalently, the conditions (1.3) hold for x̄. More-
over, strict complementarity is said to hold at x̄ if the strict inequality hold in the
first and second implications of (1.3).

In general, convergence to a stationary point is all that we can expect of
an algorithm for solving problem (1.1). In order to construct an algorithm for
solving (1.1) we need to characterize the stationary point in a more convenient
way. Hence, if we define the reduced gradient of a feasible point x as a vector
gred = gred(x) with components

(gred)i : =


min(0,gi(x)) if xi = li,
max(0,gi(x)) if xi = ui,

gi(x) if li < xi < ui,

(1.4)

a stationary point x̄ can be characterized as

gred(x̄) = 0.

Definition 1.2.2. We call a stationary point x̄ of (1.1) degenerate whenever the
strict complementarity fails to hold at x̄. In other words, there are some variables
x̄i ∈ {li,ui} with gi(x̄) = 0.

Degeneracy is a property of stationary points that causes difficulties for some
algorithms. When the strict complementarity does not hold at a solution of the
problem, there are some constraints of the problem that are weakly active at the
solution. In other words, all optimal Lagrange multipliers corresponding to these
constraints are equal to zero. This fact makes it hard for an algorithm to find out
whether these constraints are active at the solution. Particularly, in the case of
active-set methods and gradient projection methods this indecisiveness may cause
zigzagging, which means that the iterates of an algorithm move on and off these
weakly active constraints successively.
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Chapter 2

Proposed Algorithms for Bound
Constrained Problems

2.1 Introduction
In this chapter we discuss several proposed algorithms for solving bound con-
strained optimization problems. We begin this chapter by giving an overview of
the standard active-set method. This method consists of two main steps. First,
identifying the set of optimal active bound constraints or reaching the face con-
taining a stationary point of the problem. Second, exploring the face of feasible
region by solving an unconstrained subproblem. Then, we study the gradient pro-
jection methods and their applications in the active-set methods. Indeed, all of the
algorithms described in this chapter deal with the bound constraints by explicitly
distinguishing between steps that search through the faces of the feasible region
and steps that explore the current face of the feasible region. The last two sections
of this chapter are concerned with algorithms that, at each iteration, approximate
the objective function by a quadratic model whose Hessian matrix is computed by
a limited memory method.

2.2 Standard Active-Set Method
In this section we describe the standard active-set method for solving quadratic
bound constrained optimization problems. A quadratic bound constrained prob-
lem has the form

minimize f (x) = xT Bx+aT x,
subject to l ≤ x≤ u, (2.1)

where B is symmetric and a belongs to Rn. Problem (2.1) is a special form of
the (1.1), In addition, we will see later that some effective algorithms for solving
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2.2 Standard Active-Set Method

(1.1) approximate the objective function of (1.1) with a quadratic model at each
iteration. Therefore, they rely on the solution of (2.1) at each iteration.

The standard active-set method for solving (2.1) finds step from one iterate to
next by solving an unconstrained quadratic subproblem in which some of variables
are fixed in one of their bounds. We call this subset of variables working set and
denote it at the kth iteration xk with Wk ⊂A (xk), where A (x) is the set of active
variables and defined by

A (x) = {i : xi = li∨ xi = ui}. (2.2)

We call variables with indices in Wk bound variables and other variables are re-
ferred to as free variables. Now it is also helpful to define the binding set at x by

B(x) = {i : xi = li∧g(x)i ≥ 0, ∨ xi = ui∧g(x)i ≤ 0,}, (2.3)

where g(x) is the gradient of the objective function.

We assume that the initial point x0 is feasible and W0 ⊂A (x0). Now suppose
that we are at the kth iteration with working set Wk, in order to compute xk+1 we
solve the following subproblem

minimize f (xk + p)
subject to pi = 0, i ∈Wk.

(2.4)

The above problem is an unconstrained quadratic problem defined over the sub-
space of free variables corresponding to Wk. Once the (2.4) is solved, we have two
cases:

1. Problem (2.4) has a global solution pk. In this case if pk is zero, then xk is
a global solution of the (2.1) over the working set Wk. Now assume that the
vector pk is nonzero. For computing xk+1 we need to know how far we can
go along pk while staying in the feasible region. If xk + pk is feasible with
respect to all bound constraints, we set xk+1 = xk + pk. Otherwise, we set

xk+1 = xk +αk pk,

where the step length αk is defined by

αk := min
(

1, min
i/∈wk∧pk

i >0

ui− (xk)i

pk
i

, min
i/∈wk∧pk

i <0

li− (xk)i

pk
i

)
.

If αk < 1, that is, the step along direction pk is blocked by at least one of
the bound constraints whose indices are not in Wk. Consequently, the new
working set Wk+1 is updated by adding atleast one of the constraints which
becomes active at xk+1 to Wk.
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2. Problem (2.4) has no global solution. In this case it is possible to find the
direction pk such that the objective function of (2.4) is strictly decreasing
and unbounded below along the ray xk +α pk for α > 0. In this case either
f (x) is unbounded in the feasible region, or we set xk+1 = xk +αk pk, where
the finite step length αk is defined by

αk := max{α ≥ 0 : l ≤ xk +α pk ≤ u}.

This means at least one bound constraints becomes active at xk+1.

In both of the cases once xk+1 is computed, Wk+1 is updated by adding at least one
of the blocking bound constraints to the Wk. Usually just one constraint is added
to the working set at each iteration.

We continue to iterate in the manner that outlined above, adding constraints to
the working set until we reach a point xt for t ≥ 1, which minimize the quadratic
objective function of (2.1) over the working set Wt . Equivalently, we keep iter-
ating until pt = 0 is obtained as the global solution of the subproblem (2.4) with
respect to Wt .

After the global solution xt of subproblem (2.1) has been found we have two
cases, either the working set Wt is a subset of B(xt), or there exist some indices
of Wt that do not belong to B(xt). If Wt is a subset of B(xt), then xt is a stationary
point of (2.1) and algorithm terminates with xt . On the other hand, if there is a
index in Wt that does not belong to B(xt), the KKT conditions are not satisfied for
xt , in particular, a Lagrange multiplier corresponding to an index in Wt is negative.
Furthermore, by dropping this index from the working set the objective function
of (2.1) may be decreased. Therefore, we remove this index from the working
set and solve the subproblem (2.4) with a new working set. It can be shown by a
short computation that it is possible to find xt+1 with respect to the new working
set such that

f (xt+1)< f (xt).

If the quadratic function f (x) is bounded below on the feasible region, it is
not difficult to show that the active-set method converges to a stationary point
in a finite number of iterations. Our argument for verifying this result is quite
instructive. At each iteration either we reach a global minimizer of the subproblem
or we increase the size of the working set. Because the cardinality of working set
is always bounded by n, the global solution of (2.4) will be obtained after at most
n iterations. On the other hand, if the global solution xt of the subproblem is
determined with respect to some working set Wk, then xt is a global solution of the
f (x) subject to the face of the feasible region which is defined by

{x ∈ Rn : l ≤ x≤ u,xi ∈ {li,ui}, i ∈Wt}. (2.5)
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2.3 The Gradient Projection Methods

Since f (xt+1)< f (xt), it is impossible for the algorithm to arrive in this face again
in an iteration xr with r > t. Moreover, the number of possible faces is finite, thus
the active set method terminates in a finite number of iterations.

Finally, we summarize the active-set method in two main steps:

Global Step: If xt is a global solution of the f (x) subject to the face (2.5), then
find a feasible point xt+1 such that f (xt+1)< f (xt) . Indeed, in this step we
move from a face to another until we land on the face that contains a global
solution of (2.1).

Local Step: Otherwise find a feasible point xt+1 such that f (xt+1) ≤ f (xt) and
Wt ⊂Wt+1. If Wt =Wt+1 then xt+1 must be a global solution of f (x) subject
to the face (2.5). In this step we explore the face of the feasible region which
is defined by the current working set.

As it has been mentioned, the standard active-set method drops only one con-
straint from the current working set in the global step and adds only one constraint
to the current working set in the local step. That is, at each step of the standard
active-set method, the dimension of the subspace of bound variables is changed
only by one. This fact implies that if there are n1 active constraints on x0 and n2
active constraints on the solution of (2.1), we need at least |n2− n1| iterations to
reach the solution of (2.1). This may be serious drawback in the case of large scale
problems. This observation motivated many authors, specially BERTSEKAS [2],
to use gradient projection method for solving bound constrained problems. He has
established that the set of active constraints at the nondegenerate stationary point
of bound constrained problem (1.1) is identified in a finite number of iterations by
using gradient projection method. We will see later how the gradient projection
method and active-set method are combined with each others in order to construct
an efficient algorithm for solving bound constrained problems.

2.3 The Gradient Projection Methods
In this section we begin with an overview of the gradient projection methods for
solving general optimization problems with the form

minimize f (x)
subject to x ∈F

(2.6)

where f :Rn→R is continuously differentiable and F is a convex feasible region.
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Given an iterate xk, the next iterate xk+1 is computed by the gradient projection
method as follows

xk+1 = PF [xk−αkg(xk)].

Where PF [x] is the orthogonal projection on the feasible region F , g(x) is the gra-
dient of objective function, and the step length αk > 0 is chosen so that f (xk+1)<
f (x). The projection part plays important rule in the gradient projection method
and it must be computed in a fairly simple way. Otherwise, it does not make
practical sense to use the gradient projection method. In general the orthogonal
projection on the feasible region has the form

PF [x] = arg min
y∈F
‖x− y‖. (2.7)

The computation of (2.7) for general constrained optimization problems can be
expensive but in the case of bound constrained problems with F = {x ∈ Rn : l ≤
x≤ u}, it requires only order of n operations and it is defined by

(PF [x])i = (P[x, l,u])i =


li if xi ≤ li,
ui if xi ≥ ui,

xi if li < xi < ui.

(2.8)

It can be shown that by choosing an appropriate step length αk, the gradient
projection method is able to identify the set of active constraints at the nondegen-
erate stationary point in finite number of iterations. This is a consequence of the
fact that if x̄ is a nondegenerate stationary point of the problem, then there exists
a neighbourhood N (x̄) of x̄ such that A (xk+1) = A (PF [xk−αkg(xk)]) provided
xk ∈N (x̄). This identification ability of the gradient projection method is valid
according to [12, 2, 8]. Now we describe some methods for computing the step
length αk, in which the gradient projection method has this identification ability.

2.3.1 Armijo Rule Along the Projection Arc
This procedure was proposed by BERTSEKAS [3, 4] and its concept is really sim-
ple. First we chose the fixed scalers ᾱ , β , and σ > 0, with ᾱ > 0, β ∈ (0,1), and
σ ∈ (0,1). Then we define the following piecewise linear path

xk(α) := PF [xk−αg(xk)], α > 0, (2.9)

where P is the projection into the feasible region F and g represents the gradient
of the objective function. Finally the step length αk is determined by propor-
tionally reduction of the ᾱ with a factor β ∈ (0,1) until the Armijo condition
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2.3 The Gradient Projection Methods

is satisfied. In other words, we set αk = β rkᾱ , where rk is the first nonnegative
integer r for which the following conditions holds.

f (xk)− f (xk(β
r
ᾱ))≥ σg(xk)

T (xk− xk(β
r
ᾱ)). (2.10)

It can be shown that the above step-size rules is well defined, That is, after a finite
number of trials based on the (2.10) the steplength αk will be found. Further-
more, the gradient projection method with the above linesearch procedure is able
to identify the set of active constraints at the nondegenerate solution of the (2.6)
in finite iterations.

2.3.2 Projected Search
The projected search is a procedure for finding αk for the case in which f (x) =
xT Bx+aT x and the feasible region F consisting of bound constraints. This pro-
cedure was proposed by MORÉ and TORALDO [21, 22]. In this procedure the
computation of αk relies on the function defined by

φk(α) := f (PF [xk +α pk]), (2.11)

where P is the projection (2.8) into the bound constraints and pk is a search di-
rection with φ ′k(0) < 0. We determine a step-length αk > 0 so that the sufficient
decrease condition holds for φk(α). The sufficient decrease condition is defined
by

φk(αk)≤ φk(0)+σg(xk)
T (PF [xk +α pk]− xk), (2.12)

where σ ∈ (0, 1
2) is fixed. Since the path PF [xk +α pk] is a linear function on

any interval on which the set of active constraints at PF [xk +α pk] is unchanged,
φk(α) is a continuous piecewise quadratic function. For defining Breakpoints for
φk(α) we compute

0 = t1 < t2 < ... < tm < tm+1 =+∞

so that A (PF [xk +α pk]) is unchanged on the intervals (ti, ti+1) for i = 0, ...,m. If
we allow infinite value for li or ui, it is possible to have m = 0 in the computations
of breakpoints. Moreover, the first breakpoint has a interesting feature, namely it
can be shown that there is α ∈ [0, t1] that satisfies the sufficient decrease condition
(2.12) and for all α ∈ [0, t1] we have also

φk(α) = f (PF [xk +α pk]) = f (xk +α p̂k), (2.13)

where p̂k is given from pk by taking the components whose indices correspond
to the free variables at xk. Similarly, we define matrix B̂k which is obtained from
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B by choosing the rows and columns whose indices are corresponding to the free
variables. To put it another way, if Zk denotes the matrix whose columns span the
subspace of free variables at xk, we have

p̂k = ZT
k pk, B̂k = ZT

k BZk.

The projected search method generate a positive decreasing sequence {αr
k}r of

trial values until a trial value is found which satisfies (2.12). Note that this process
will terminate after a finite number of steps, since there exists a trial value in the
interval [0, t1] which fulfils (2.12).

Now for choosing the initial trial value α0
k we have two cases depending on

the behaviour of φk on the interval [0, t1]:

1. φk is strictly convex on the [0, t1]. In this case the initial trial value is given
by the first minimizer of the quadratic function φk(α) in [0, t1] and computed
by

α
0
k =
−φ ′k(0)
φ ′′k (0)

=
‖p̂k‖2

p̂T
k B̂k p̂k

,

where p̂T
k B̂k p̂k > 0. Note that if α0

k < t1, the procedure terminates with the
acceptable step length αk = α0

k .

2. φk is not strictly convex on [0, t1] and also p̂T
k B̂k p̂k ≤ 0. In this case the

quadratic function φk(α) is on [0, t1] strictly decreasing and unbounded be-
low. Consequently, it is better to choose α0

k desirable large. Hence, we
set

α
0
k = tm.

Now suppose that the initial trial value α0
k is given. If it satisfies (2.12), we ter-

minate with αk = α0
k . Otherwise, given the current trial value αr

k with r > 1, for
which the (2.12) is not satisfied. For computing the new trial value, we determine
the minimizer of the quadratic approximation that interpolates the pieces of in-
formation φk(0), φ ′k(0), and φk(α

r
k). Then the new trial value α

r+1
k is given by

max(t1,mid(0.01α
r
k , α̂,0.5α

r
k)), (2.14)

where mid(0.01αr
k , α̂,0.5αr

k) is the middle element of the set {0.01αr
k , α̂,0.5αr

k}.
The above process is continued until a trial value satisfying (2.12) is found. The
finite termination is also guaranteed. Since, if either p̂T

k B̂k p̂k ≤ 0 or α0
k > t1, t1

satisfies the sufficient condition with σ ≤ 0.5.

Note that for the projection gradient method, we use −g(xk) as the search
direction pk at each iteration.
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2.4 Approaches for Quadratic Bound Constrained
problems

In this section we will deal with the algorithms for solving bound constrained
quadratic problems (2.1). As we have mentioned, the standard active-set method
has the major disadvantage that at each iteration the cardinality of the working
set is changed by dropping or adding only one constraint. On the other hand, as
we have discussed in the previous section, the gradient projection method is able
to identify the set of optimal active set in finite number of iterations. This facts
motivated many authors, for example, MORÉ and TORALDO [21, 22] to propose
algorithms that use the gradient projection method in an efficiently manner in
the active-set method schema. Particularly, these algorithms take advantage of
the identification property of the gradient projection method to reach the face
containing the solution quickly, and to explore each face of the feasible region,
they solve an unconstrained optimization subproblem (2.4).

2.4.1 BCQP

This algorithm is proposed by MORÉ and TORALDO [21] to solve the quadratic
bound constrained problem (2.1) and it consists of two main steps:

Global Step: Set xk = u0 and generate the iterations u0,u1, ...,us by the gradi-
ent projection method. If for some j ∈ {1, ...,s} the condition A (u j) =
A (u j−1) is satisfied then we set xk+1 = u j. Otherwise, we set xk+1 = us.

Local Step: Otherwise find a feasible xk+1 such that f (xk+1) ≤ f (xk) and Wk ⊂
Wk+1. If Wk = Wk+1 then xk+1 must be a global solution of f (x) subject to
the face {x ∈ Rn : l ≤ x≤ u,xi ∈ {li,ui}, i ∈Wk}.

As we can see, the only deference of the above algorithm and the standard active-
method is in the global step. Indeed, the gradient projection method is used in
the global step to modify the standard active-set method in two aspects. Firstly,
the cardinality of the working set is changed by dropping and adding many con-
straints. Secondly, the algorithm tends to find the optimal active constraints more
quickly.

It should be noted that, in the global step the gradient projection method is
performed with the help of projected search method 2.3.2. That is, a sequence
{u j} is computed by

u j+1 = PF [u j−α jg(u j)],

11
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where P is the projection (2.8) in to the bound constrained feasible region F , the
step length α j is determined by the projected search strategy 2.3.2, and g repre-
sent the gradient of quadratic objective function. Moreover, Since in the case of
degenerate solutions, the optimal active set may not settle down, in addition, in the
case of nondegenerate solutions, it is only assured that the set of active constraints
settles down in a neighbourhood of the solution, it is better to impose a bound s
on the number of gradient projection iterations.

The local step of the above method is exactly the same as the standard active
set method. That is, in this step we determine the solution pk of the following
unconstrained quadratic subproblem

minimize f (xk + p)
subject to pi = 0, i ∈Wk.

(2.15)

and we set xk+1 = xk +αk pk, where f (x) = xT Bx+aT x and αk is computed by

αk := min
(

1, min
i/∈wk∧pk

i >0

ui− (xk)i

pk
i

, min
i/∈wk∧pk

i <0

li− (xk)i

pk
i

)
.

Now suppose that the working set Wk is given and j1, j2, . . . , jmk represent the
indices of free variables with respect to Wk, i.e. the variables that do not belong to
Wk. And let Zk ∈ Rn×mk be the matrix whose columns span the subspace of free
variables. Then we can transform the above subproblem (2.15) to the following
subproblem.

min
v∈Rmk

fk(v), (2.16)

where

fk(v) = f (xk +Zkv)− f (xk) =
1
2

vT Bkv+ ĝT
k v,

B̂k = ZT
k BZk, ĝk = ZT

k g(xk).

Now we determine the solution pk of (2.4) with help of the unconstrained sub-
problem (2.16), In other words, we choose a vector vk ∈ Rmk and set pk = Zkvk.
For choosing vk we have the following cases:

1. B̂k is positive definite. In this case we set vk =−B̂−1
k ĝ, since it is the global

solution of fk(v).

2. B̂k is not positive definite. In this case vk is determined such that the follow-
ing conditions hold

vT
k B̂kvk ≤ 0, ĝT

k vk ≤ 0, min{vT
k B̂kvk, ĝT

k vk}< 0 (2.17)

12
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This is possible whenever B̂k is either not positive semidefinite or regular,
or ĝk /∈ Im(B̂k)

The computation of vk is based on the Cholesky factorization of B̂k and we
need almost one factorization for all matrices. If B̂k is positive definite then the
Cholesky factorization of the matrix exists and is used for computing vk. Other-
wise, while computing of Cholesky factorization we try to find the largest positive
definite principal minor of the matrix. Let this principal minor has the order l
and be represented by Ck, then the principal minor of order l + 1 of B̂k has the
following form (

Ck wk
wT

k θk

)
(2.18)

Due to positive definiteness, Ck has a Cholesky factorization RT
k Rk. Now we claim

that
θk ≤ wT

k C−1
k wk. (2.19)

Suppose on contrary that (2.19) does not hold, then it is easy to verify that the
Cholesky factorization of (2.18) is(

RT
k 0

qT
k ηk

)(
Rk qk
0 ηk

)
,

where
RT

k wk = qk, ηk = (θk−‖qk‖2)
1
2 = (θk−wT

k C−1
k wk)

1
2 .

But this is contradiction with the fact that (2.18) is not positive definite. Therefore
(2.19) holds. Consequently, if we define the vector vk ∈ Rmk by

vk =±(C−1
k wk,−1,0, . . . ,0),T

where the sign of vk is chosen such that vT ĝk ≤ 0, we have

vT
k B̂kvk = θk−wT

k C−1
k wk ≤ 0.

This shows that (2.17) is satisfied, provided either vT
k ĝk 6= 0 or vT

k B̂kvk 6= 0.

It should be noted that if for vk the condition (2.17) is satisfied, then the
pk = Zkvk defines a direction such that f (xk + α pk) is strictly decreasing and
unbounded below for α > 0. Hence, similar to the standard active-set method,
either f is unbounded below on the feasible region or a finite αk corresponding to
a blocking constraint is computed.

The BCQP algorithm terminates at the iterate xk if one of the following cases
occurs:

13
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1. The matrix B̂k is positive semidefinite, ĝk = 0, and Wk ⊂ B(xk). In this
case the vector pk = 0 is the global solution of the unconstrained quadratic
subproblem (2.15) with respect to the working set Wk. In addition, because
Wk is a subset of B(xk), iterate xk is a stationary point of the problem.

2. For all α > 0, the ray xk +α pk is feasible and the function f (xk +α pk) is
decreasing and unbounded below.

3. For all α > 0, the ray xk +α pk is feasible and the function f (xk +α pk) is
constant and pk = 0. In this case we have two possible situations, either f (x)
is unbounded below on the feasible region, or there exists a arbitrary small
perturbation on the ĝk or B̂k which leads to the fact that f is unbounded on
the feasible region.

Moreover, in [21, p. 388] it has been shown that if the quadratic objective func-
tion f : Rn→R is bounded from the below on the feasible region, then the BCQP
algorithm terminate at a stationary point in finite iteration steps.

It should be mentioned that in the global step of the BCQP, only one constraint
is added to the working set. This can be serious disadvantage for large scale
problems, hence we aim to construct an algorithm that is able to add many variable
to the working set in the global step.

2.4.2 GPCG
In this section we present an algorithm to find the solution of (2.1), where the
quadratic function f is strictly convex, i.e. the matrix B in (2.1) is positive definite,
and the number of variable is assumed to be large. This algorithm was developed
by MORÉ and TORALDO [22]. Similar to the standard active-method and BCQP,
this method generates a sequence of iterations xk that terminates at a solution of
(2.1) in finite number of iterations. Moreover, the termination typically is obtain
by solving a sequence of unconstrained quadratic subproblems of the form

minimize f (xk + p)
subject to pi = 0, i ∈Wk

(2.20)

with a working set Wk, and changing the size of working set by dropping and
adding constraints at each iteration. In particular, this algorithm performs the gra-
dient projection method until either an adequate working set Wk is identified or
the gradient projection method is no longer able to deliver an acceptable improve-
ment. Furthermore, the conjugate gradient method is applied to find approximate
solution of the above unconstrained subproblem with respect to the current Wk.

14
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As we know from the previous section, the above subproblem can be trans-
formed to the following quadratic unconstrained problem

min
v∈Rmk

fk(v) =
1
2

vT B̂kv+ ĝT
k v, (2.21)

where the matrix B̂ consists of the columns and rows of B which correspond to
free variables at xk, similarly, ĝk is defined by taking the elements of the gradient
of f at xk which correspond to free variables, and mk denotes the number of free
variable at xk.

Since the matrix B̂ is positive definite, the conjugate gradient method can be
used to solve (2.21). Suppose that the initial point v0 is given, the conjugate gra-
dient method generates a sequence of iterations v0,v1, . . . which terminates at the
solution of (2.21) in at most mk iterations. In GPCG algorithm the conjugate gra-
dient method is performed until an iterate v j is obtained that satisfies the following
condition

fk(v j−1)− fk(v j)≤ η1 max
1≤s< j

( fk(vs−1)− fk(vs)) (2.22)

for a fixed constant η1 > 0. Then the approximate solution of (2.20) with respect
to Wk is obtained by pk = Zkv jk , where Zk is a matrix whose columns span the sub-
space of free variable at xk, and jk is a first index for which the condition (2.22)
holds. In fact, the condition (2.22) reveals the situation in which the conjugate
gradient method does not make reasonable progress.

As we have seen in previous sections, in the standard active-set method and
BCQP the new iterate xk+1 is defined by

xk+1 = xk +α
′
k pk,

where

α
′
k := min

(
1, min

i/∈wk∧pk
i >0

ui− (xk)i

pk
i

, min
i/∈wk∧pk

i <0

li− (xk)i

pk
i

)
,

and pk is the minimizer of (2.20). Indeed, in this strategy only one constraint is
added to the working set, and it can make algorithm inefficient. Therefore, it is
desirable to use a strategy for finding αk, in which more than one constraint can
be added to the working set at each iteration. For this reason, in CGQP the new
iterate xk+1 is computed by

xk+1 = PF [xk +αk pk], (2.23)

where PF is the orthogonal projection in to the bound constrained feasible re-
gion F , and αk is determined by the projected search strategy, which has been
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described in the subsection 2.3.2. Note that if αk > α ′k, then more than one con-
straint might be added to the working set.

Now assume that a new iteration xk+1 has been computed by the conjugate
gradient method. If xk+1 is in the face containing the solution of problem, this
face will be explored further by the conjugate gradient method. This decision is
made in terms of verifying the following condition

A (xk+1) = B(xk+1), (2.24)

where A (x), B(x) denote, respectively, the set of active and binding variables at
x. Note that, if xk+1 is in the face containing the solution, the condition (2.24)
holds.

Remark 2.4.1. Note that if (2.24) holds, it does not necessarily mean that xk+1 is
in the face that contains the solution of the problem. Nevertheless, if xk+1 is not
in this face, because of the finite termination property of the conjugate gradient
method, an iterate xr with r > k + 1 is eventually generated which violates the
condition A (xr) = B(xr).

Once a face has been explored by conjugate gradient method, the gradient
projection method is used to search through the different faces by generating a
sequence {u j} which is defined by

u j+1 = PF [u j−α jg(u j)],

where P is the projection (2.8) in to the bound constrained feasible region F , the
step length α j is determined by the projected search strategy 2.3.2, and g denotes
the gradient of the quadratic objective function. The gradient projection method
is used to choose a new face as follows: assume that we are at the kth iteration
with xk, we set u0 = xk and generate iterations u0,u1,u3, . . . until for some fixed
η2 one of the following conditions

A (u j) = A (u j−1), (2.25)
f (u j−1)− f (u j)≤ η2 max

1≤s< j
( fk(us−1)− fk(us)) (2.26)

is satisfied. The justification of the condition (2.25) is based on the result which
says, in the case of nondegenerate problems there exists a neighbourhood of the
solution such that the condition (2.25) is satisfied provided that xk belongs to this
neighbourhood. Furthermore, the condition (2.26) prevents the gradient projec-
tion method from making deficient progress.

The above description can be summarized in to the following steps:
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Global step: Generate a sequence u0,u1,u2, . . . with u0 = xk by the gradient pro-
jection method. Set xk+1 = u jk , where jk is the first index j which fulfils
either (2.25) or (2.26).

Local step: Generate a sequence v0,v1,v2, . . . by the conjugate gradient method
with v0 = 0 in order to solve (2.21) approximately. Then set pk = Zkv jk ,
where jk is the first index that fulfils (2.22). Use the projected search strat-
egy to determine the step length αk and define xk+1 by (2.23). If (2.24) is
satisfied, continue the conjugate gradient method.

It is claimed in [22] that if the termination of GPCG is occurred in a finite number
of iterations, then it terminates at the solution of the problem. If the termination
occurs in the global step, duo to standard result of the gradient projection method
it terminates at the solution of the problem. Moreover, In local step the termina-
tion can only occur if the conjugate gradient method generates an iterate xs with
ĝs = 0 and A (xs) = B(xs). Which implies that gred(xs) = ĝs = 0, so xs is the
solution.

The main theoretical result for convergence of GPCG is based on the following
theorem which is represented in [22, p, 101]:

Theorem 2.4.1. Suppose that f : Rn→ R is a strictly convex quadratic function.
If xk is the sequence generated by GPCG for solving the problem (2.1), then either
xk terminates at the solution x∗ of the problem (2.1) in a finite number of iterations,
or xk converges to the solution x∗.

2.5 A Trust Region Algorithm for Bound Constrained
Problems

In this section we describe a method of trust region type for solving problem
(1.1), where the objective function f : Rn→R is a arbitrary function which is suf-
ficiently smooth. We have no convexity assumption on f . Recall that the feasible
region is the set of all x ∈ Rn for which l ≤ x≤ u.

This method proposed by CONN, GOULD and TOINT [10, 9] is a combination
of the active set method strategy and trust region method. That is, at each iteration
of this algorithm, the objective function is approximated by a quadratic model
within a region surrounding the current iteration. Then the algorithm chooses a
new feasible point in that region for the next iterate such that it gives a sufficient
decrease in the value of the quadratic model. If the value of objective function
at this point decreases sufficiently as it is predicted by the quadratic model, then
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the computed feasible point within the region is accepted as the next iterate and
the algorithm expands the region. Otherwise, the algorithm rejects this point and
shrinks the region. Moreover, the set of active constraints changes in this method
rapidly. The general convergence theory of this method is presented in [9].

2.5.1 Outline of the Algorithm
Before describing the method, we define the active set at point x with respect
to vectors l and u as the set of all indices i ∈ {1, . . . ,n} for which either xi ≤ li
or xi ≥ ui,. We denote this set with A (x) = A (x, l,u). Furthermore, P[x, l,u]
represents the projection on to the set {x ∈ Rn : l ≤ x≤ u} computed by

(P[x, l,u])i =


li if xi ≤ li,
ui if xi ≥ ui,

xi if li < xi < ui.

Now suppose that we are at the kth iteration with xk, the gradient gk of the
objective function f at xk. The objective function f is approximated at xk by
a quadratic model mk whose gradient coincides with gk, and whose symmetric
Hessian matrix Bk is computed by a limited memory quasi Newton method. In
addition, we need a scaler ∆k as the radius of the trust region at the kth iteration,
i.e. a bound on the displacement around xk. we believe that in this region the
behaviour of the quadratic model

mk(x+ p) = f (xk)+gT
k p+

1
2

pT Bk p, s.t. ‖p‖ ≤ ∆k (2.27)

is similar to the objective function. Then a trial point x̄k+1 = xk + pk for next iter-
ation is determined by finding an approximation to the solution of the following
trust region problem

minimize mk(x)
subject to l ≤ x≤ u,

‖x− xk‖ ≤ ∆k,

(2.28)

where ‖.‖ is the infinity norm. The acceptance of the trial point x̄k+1 as the new
iterate and the modification of the trust region radius ∆k are based on the agree-
ment of the quadratic model mk with the objective function f at the iteration xk.
That is, we compute the following ratio

ρk :=
f (xk)− f (xk + pk)

mk(xk)−mk(xk + pk)
, (2.29)
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where the numerator and dominator of (2.29) are called actual and predicted re-
duction, respectively. Then we set

xk+1 =

{
xk + pk if ρk > µ,

xk if ρk ≤ µ,

and modify the radius ∆k as follows

∆k+1 =


γ1∆k if ρk ≤ µ,

∆k if µ < ρk < η ,

γ2∆k if ρk ≥ η ,

(2.30)

where 0 < γ1 < 1 < γ2, µ and η are fixed numbers. Now we describe how the
solution of (2.28) is approximated at each iteration. Since ‖.‖ in (2.28) is the
infinity norm, the shape of the trust region is like a box. Hence, we can transform
(2.28) to the following bound constrained problem

minimize mk(x)
subject to lk ≤ x≤ uk,

(2.31)

where

(lk)i :=max(li,(xk)i−∆k),

(uk)i :=min(ui,(xk)i +∆k),
(2.32)

for all i ∈ {1, . . . ,n}.

According to [9], in order to fulfil the global convergence theory, it is required
to find a feasible point of (2.31) at which the value of the quadratic model mk is not
greater than its value at the generalized Cauchy point (CP). Where the generalized
Cauchy point is defined as the first local minimizer of the following univariate,
piecewise quadratic function

qk(t) := mk(P[xk− tgk, lk,uk]). (2.33)

In other words, the CP is the first minimizer of the quadratic model mk along the
piecewise linear path P[xk− tgk, lk,uk] which is defined by projecting the steepest
descent direction into the region

{x ∈ Rn : lk ≤ x≤ uk}.

Note that the generalized Cauchy point is a kind of the gradient projection meth-
ods that we have described in section (2.3). Therefore, it allows the algorithm to
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add and drop many indices from the active set at each iteration and it is also able
to find optimal active set in a finite number of iterations, which is desirable for the
case of large scale problems.

In order to obtain a fast asymptotic rate of convergence for the method, we
need to find a better minimizer of (2.31) than the generalized Cauchy point. Hence,
given xcp

k the generalized Cauchy point for (2.31), and A (xcp
k ) = A (xcp

k , lk,uk)
the set of active variables at the Cauchy point, we solve the following problem
approximately

minimize mk(x)
subject to (lk)i ≤ xi ≤ (uk)i, i /∈A (xcp

k ),
xi = (xcp

k )i, i ∈A (xcp
k ).

(2.34)

For solving (2.34), Firstly we ignore the bound constraints on the free variables
and treat the problem as an unconstrained optimization problem in the subspace of
free variables which correspond to the set of indices {i ∈ {1, . . . ,n} : i /∈A (xcp

k )}.
Then the conjugate gradient method is applied with the initial point x = xcp

k to the
problem

minimize mk(x)
subject to xi = (xcp

k )i, i ∈A (xcp
k ).

We terminate the conjugate gradient method at a new trial point x̄k+1, if one of the
following conditions holds:

1. The residual in the conjugate gradient method is small enough.

2. One or more of the variables, whose index is in not contained in A (xcp
k )

violates one of the bounds.

3. The conjugate gradient does not make efficient progress.

We describe the conjugate gradient method in more details later.

2.5.2 The Generalized Cauchy Point
In this section we outline an algorithm for computing the CP as the first local
minimizer of the quadratic model mk along the piece wise linear path

x(t) = P[xk− tgk, lk,uk], for t ≥ 0, (2.35)

which is obtained by projecting the points along steepest descent direction in to
the bound constraints. For convenience, we define x̂ = xk and drop the index k
of the outer iteration throughout this section. Therefore, g, l, u and B represent,
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respectively, gk, lk, uk and Bk. Subscripts are used to denote the components of a
vector.

For deriving an explicit expression for piece wise linear path (2.35), we define
the breakpoints in each coordinate by

ti :=


x̂i−ui

gi
if gi < 0

x̂i−li
gi

if gi > 0

∞ otherwise,

(2.36)

and we sort breakpoints ti for i = 1, . . . ,n in an ascending order to obtain the
ordered set {t̄ j : t̄ j ≤ t̄ j+1, j = 1, . . . ,n}. Then the piecewise linear search path x(t)
can be expressed by

xi(t) =

{
x̂i− tgi if t ≤ ti
x̂i− tigi if t > ti,

(2.37)

which is linear on each interval [t̄ j, t̄ j+1] with j = 1, . . . ,n−1. For finding the CP
we examine the intervals [0, t̄1], [t̄1, t̄2], [t̄2, t̄3], . . . in turn until the one that contains
the CP is located.

Assume that we have examined the intervals [t̄k−1, t̄k] for k = 1, . . . , j and de-
termined that the local minimizer lies at some value t ≥ t̄ j. Now we are examining
the interval [t̄ j, t̄ j+1]. We define the jth breakpoint by

x j = x(t̄ j).

Hence, on the interval [t̄ j, t̄ j+1] we have

x(t) = x j +∆td j, (2.38)

where
∆t = t− t̄ j, ∆t ∈ [0, t̄ j+1− t̄ j], (2.39)

and

d j
i =

{
−gi if t̄ j < ti
0 otherwise.

(2.40)

In order to compute the generalized Cauchy point, we need to investigate the
behaviour of the quadratic model

m(x) = f (x̂)+gT (x− x̂)+
1
2
(x− x̂)T B(x− x̂) (2.41)
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for points lying on the interval [t̄ j, t̄ j+1]. By substituting (2.38) in (2.41), we can
express the quadratic model m on the line segment [x(t̄ j),x(t̄ j+1)] as

m(x) = f (x̂)+gT (v j +∆td j)+
1
2
(v j +∆td j)T B(v j +∆td j),

where
v j = x j− x̂. (2.42)

Consequently, m can be written as a quadratic function in ∆t,

m̂(∆t) =( f (x̂)+gT v j +
1
2
(v j)T Bv j)+(gT d j +(d j)T Bv j)∆t

+((d j)T Bd j)∆t2.

By expanding and grouping the coefficients 1, ∆t, and ∆t2 we can write the above
one dimensional quadratic function m̂ as

m̂(∆t) = f j + f ′j∆t +
1
2

f ′′j ∆t2, (2.43)

where the coefficients f j, f ′j, and f ′′j are determined by

f j := f (x̂)+gT v j +
1
2
(v j)T Bv j,

f ′j :=gT d j +(d j)T Bv j, (2.44)

f ′′j :=(d j)T Bd j. (2.45)

By differentiating m̂ with respect to ∆t and setting it to zero, we obtain ∆t∗ =
− f ′j/ f ′′j . Now we have these cases:

• If f ′′j > 0 and ∆t∗ ∈ [0, t̄ j+1− t̄ j], we deduce that there exists a local mini-
mizer of m(x(t)) at t = t̄ j +∆t∗. Hence, the CP lies at x(t̄ j +∆t∗).

• Otherwise, the CP lies at x(t̄ j), provided that we have f ′j > 0.

• In all other cases the CP lies at x(t̄ j+1) or outside of interval [t̄ j, t̄ j+1]. There-
fore, we continue to search through the next interval. In these cases we need
to calculate the new direction d j+1 from (2.40), and use this vector for cal-
culating f j+1, f ′j+1 and f ′′j+1. Since the difference between d j and d j+1 is
typically in just one component, we can made computational save by updat-
ing the coefficients f j+1, f ′j+1 and f ′′j+1 rather than calculating them from
the scratch.
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Now we need to be concerned with computing f ′j+1 and f ′′j+1. Assume that
I is the set of indices corresponding to the variables that become active at
t̄ j+1. That is,

I j+1 := {i ∈ {1, . . . ,n} : ti = t̄ j+1}. (2.46)

Then we have
d j+1 = d j− ∑

k∈I j+1

dkek,

where ek is the kth column of the identity matrix. Now we can compute

f ′j+1 = f ′j +∆ j f ′′j − (b j+1)T x j+1− ∑
k∈I j+1

dkg′k,

f ′′j+1 = f ′′j +(b j+1)T
(

∑
k∈I j+1

dkek−2d j
)
,

(2.47)

where g′ := g−Bx̂, ∆t j := t̄ j+1− t̄ j and

b j+1 := B( ∑
k∈I j+1

dkek) = ∑
k∈I j+1

dk(Bek). (2.48)

Note that the computations (2.47) need only a matrix-vector multiplication
(2.48) and two inner products of vectors. Furthermore, the matrix-vector
multiplication includes columns of B which are indexed by I j+1. Since
|I j+1| is usually small, the product can be done very efficiently.

Now we give an algorithm for computing the generalized Cauchy point.

Algorithm 2.5.1. Generalized Cauchy Point

Step 0: (Initialization)

Given xk, lk, l,uk,u,gk, and Bk, Initialize

x := xk,

g := gk−Bkxk

d := lim
t→0+

P[xk− tgk, l,u]− xk,

f ′ := (gk)
T d, and

f ′′ := dT Bkd,

If f ′ ≥ 0, go to step 4
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Step 1: (Finding the next breakpoint)

Compute
∆t := max{t : lk ≤ x+ td ≤ uk},

and find index set I of the indices corresponding all the variables that be-
come active at x+∆td.

Step 2: (examining whether the CP has been found)

If f ′′ > 0 and 0 <−( f ′/ f ′′)< ∆t, set

x := x− ( f ′/ f ′′)d,

and go to step 4

Step 3: (Updating the line derivatives)

Compute

b := Bk

(
∑
i∈I

diei

)
,

Reset

x := x+∆td

f ′ := f ′+∆t f ′′−bT x−∑
i∈I

digi,

f ′′ := f ′′+bT
(
∑
i∈I

diei−2d
)
,

di := 0 for all i ∈ I.

If f ′ ≥ 0, go to step 4.

Otherwise, go to step 1

Step 4: (Termination with CP)

Set xcp := x.

2.5.3 A Conjugate Gradient Type Method
In this subsection we are concerned with solving the problem

minimize mk(x)
subject to (lk)i ≤ xi ≤ (uk)i, i /∈A (xcp

k ),
xi = (xcp

k )i, i ∈A (xcp
k ).

(2.49)
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In particular, the variables in which the generalized Cauchy point lies at the bounds
remain fixed and we minimize mk(x) over the subspace of free variables subject
to the bound constraints. The index set of free variables at the iteration k defined
by

Fk = {1,2, . . . ,n}\A (xcp
k ).

Suppose that t denotes the number of free variables, and Z is a n× t matrix whose
columns are unit vectors which span the subspace of free variables, Now we can
transform (2.49) to the following quadratic problem for x̂ ∈ Rt

minimize m̂k(x̂) :=
1
2
(x̂− x̂k)

T B̂k(x̂− x̂k)+(x̂− x̂k)
T rk (2.50)

subject to (l̂k)≤ x̂≤ (ûk), (2.51)

where
B̂k := ZT

k BkZk, (2.52)

is the reduced Hessian matrix,

x̂k := ZT xk rk := ZT gk, l̂k := ZT lk, and ûk := ZT uk (2.53)

represent, respectively, the projection of the xk, gk, lk, and uk onto the subspace of
free variables.

For Solving the above problem, we ignore the bound constraints (2.51) and
apply the conjugate gradient method with the starting point ZT xcp to the system
of linear equations

B̂kx̂ =−rk− B̂kx̂k, (2.54)

and terminate the iteration when one or more of the bound constraints (2.51) is vi-
olated, or when an excessive number of iterations has been done by the conjugate
gradient method, or when the residual is smaller than

δk := min(0.1,
√
‖ḡk‖)‖ḡk‖, (2.55)

where ḡk is projected gradient at xk and defined by

ḡk := P[xk−gk]− xk.

Algorithm 2.5.2. Cunjugate Gradient Method

Step 0: (Initialization.)
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Compute B̂k, l̂k, ûk from (2.52) and (2.53), and δk from (2.55). Set

x := xcp,

x̂ := ZT x,

r̂ :=−ZT (gk +Bk(x− xk)),

p̂ := 0,
ρ1 := 1,

ρ2 := r̂T r̂,

Step 1: (Test for required accuracy)

If ρ2 < δk, go to step 3.

Step 2: (Conjugate gradient iterations)

Set

β := ρ2/ρ1,

p̂ := r̂+β p̂,

ŷ := B̂k p̂,

α1 := max{α : l̂ ≤ x̂+α p̂≤ û},

If p̂T ŷ≤ 0, set x̂ := x̂+α1 p̂ and go to step 3.

Otherwise, compute α2 := ρ2/p̂T ŷ.

If α2 > α1, set x̂ := x̂+α1 p̂ and go to step 3.

Otherwise, reset

x̂ := x̂+α1 p̂,
r̂ := r̂−α2ŷ,

ρ1 := ρ2,

ρ2 := r̂T r̂,

and return step 1.

Step 3: (Termination of conjugate gradient algorithm)

Set for i = 1, . . . ,n

(x̄k+1)i =

{
xcp

i if i /∈F

(Zkx̂)i if i ∈F .
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2.5.4 The Algorithm
In this subsection, we summarize the method, which we have described in 2.5.1, in
an algorithm. Before that we give some explanations about the approximated Hes-
sian matrix Bk. We should mention that for global convergence of the algorithm,
it is required that the Hessian approximations satisfy the following condition

∞

∑
k=0

1/(1+ min
0≤i≤k

‖Bi‖) = ∞

The above condition is satisfied if, for example, we have

‖Bk‖ ≤ λ1 + kλ2 (2.56)

for k ∈ N and fixed positive numbers λ1 and λ2.

The Hessian matrix can be approximated at each iteration by a number of
different methods including BFGS,

Bk+1 = Bk +
ykyT

k
yT

k sk
−

BksksT
k Bk

sT
k Bksk

,

and DFP,

Bk+1 = Bk +
rkyT

k + ykrT
k

yT
k sk

−
rT

k skykyT
k

(yT
k sk)2 ,

updating strategies. Where sk and yk represent, respectively, the displacement
xk+1− xk and the change of the gradient gk+1−gk, and rk defined by

rk := yk−Bksk.

In both of the cases, we update only if the new approximation Bk+1 is guaranteed
to be positive definite, more precisely, the updates are performed provided sk, yk
satisfy the following condition

yT
k sk

yT
k yk
≥ 10−8.

It has been shown in [15] that for the case of convex problems, the BFGS updates
remain uniformly bounded, therefore, the condition (2.56) is automatically sat-
isfied in this case. Another method for approximating the Hessian matrix is the
symmetric rank-one(SR1) method which has the following update formula

Bk+1 = Bk +
rkrT

k
rT

k sk
,
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This method does not guarantee that the new approximation is positive definite
and must be controlled so that the condition (2.56) holds. Moreover, we skip the
update whenever the condition

‖
rkrT

k
rT

k sk
‖> 108

holds for the rank-one correction.

Now we are in the position, in which we can specify the algorithm.

Algorithm 2.5.3. A Trust region type algorithm for bound constrained optimiza-
tion problems

Step 1: (Initialization)

Given the initial feasible point x0 with the gradient g0, an initial trust region
radius ∆0, and an initial symmetric approximation of the Hessian matrix B0.
In addition, the positive constant γ0 < 1 < γ2,µ,η and ε are defined. Set

k = 0.

Step 1: (Test for convergence)

Compute the projected gradient

ḡk := P[xk−gk]− xk.

If ‖ḡk‖< ε, Stop

Step 2: (Computing the Generalized Cauchy Point)

Determine the bounds lk and uk from (2.32). Compute the generalized
Cauchy point by algorithm 2.5.1.

Step 3: (Finding the new iteration)

Determine the active set A (xcp
k , lk,uk). Use the conjugate gradient algo-

rithm 2.5.2 to find an approximation x̄k+1 to the solution of the problem
(2.34).

Step 4: (Computing the ratio of actual reduction to predicted reduction in the
function value)

Compute f (x̄k+1) and set

ρk := ( f (xk)− f (x̄k+1))/(mk(xk)−mk(x̄k+1)).

28



2.6 L-BFGS-B

Step 5: (Updating)

Set

xk+1 =

{
x̄k+1 if ρk > µ,

xk if ρk ≤ µ,

gk+1 =

{
g(x̄k+1) if ρk > µ,

gk if ρk ≤ µ,

and update ∆k+1 from (2.30). Apply a method for approximating the Hes-
sian matrix Bk+1 at xk+1 while ensuring that the condition (2.56) is satisfied.
Set

k := k+1,

and go to step 1

Remark 2.5.1. It can be shown by short computation that

P[xk−gk]− xk =−gred(xk),

therefore, the termination condition

‖P[xk−gk]− xk‖< ε

in the algorithm 2.5.3 is equivalent to the following condition

‖gred(xk)‖< ε,

where gred is reduced gradient defined by (1.4). That is, the algorithm 2.5.3 ter-
minates whenever a stationary point is reached.

2.6 L-BFGS-B
In this section we give the description of the limited memory BFGS method for
solving the bound constrained optimization problem (1.1) with a large number of
variables n. This method, which was proposed by BYRD, LU, ZHU and NOCEDAL

[6], uses a limited quasi-Newton update method for approximating the Hessian
matrices in such manner that the required storage is linear in n. Similar to all the
algorithms that we have described in this chapter, the gradient projection method
is applied to identify the set of active variables at each iteration. In fact, using lim-
ited memory BFGS matrices and the line search strategy are the main properties
that make this method distinguished from the other methods, especially, from the
trust region type method described in the previous section.
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2.6.1 Outline of the Algorithm
Similar to 2.5 at each iteration k with the iterate xk, we approximate the objective
function f with a quadratic model of the form

mk(x) = f (xk)+gT
k (x− xk)

T Bk(x− xk), (2.57)

where gk is the gradient of objective function at xk, Bk is a positive definite matrix
computed by the limited memory BFGS method. Then the quadratic model mk is
approximately minimized with respect to the feasible region {x ∈Rn : l ≤ x≤ u}.
This task is done by, first, applying the gradient projection method to fix some
variables in one of their bounds and then minimizing the quadratic model over the
subspace of free variables.

The gradient projection method is performed by first considering the piece-
wise linear path

xk(t) = P[xk− tgk, l,u],

which is obtained by projecting the steepest descent direction onto the feasible
region, where the projection P[, , ] is computed from (2.5.1). Then we find the
generalized Cauchy point xcp as the first local minimizer the piece-wise quadratic
univariate function

qk(t) = mk(xk(t)).

After xcp
k has been computed, the values of variables whose index belongs to

A (xcp
k ) = A (xcp

k , l,u) are held fixed. Then we solve approximately the following
quadratic programming over the subspace of free variables

minimize mk(x)
subject to li ≤ xi ≤ ui, i /∈A (xcp

k ),
xi = (xcp

k )i, i ∈A (xcp
k ),

(2.58)

where A (xcp
k , l,u), is defined as the set of indices corresponding to the variables

whose value at xcp is at one of their bounds. To solve (2.58), first we ignore the
bound constraints and minimize the quadratic model mk(x) over the subspace of
free variables, which can be done either by a direct method or an iterative method
with respect to the subspace of free variables, or by a dual method in which the
active bounds are dealt by Lagrange multipliers. Then the path toward the solution
is truncated in such a way that the condition

li ≤ xi ≤ ui, i /∈A (xcp
k ) (2.59)

is fulfilled.
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After the approximated solution x̄k+1 of (2.58) has been obtained, the new
iterate xk+1 is computed by a line search strategy which enforces the strong Wolfe
conditions along the descent direction Pk := x̄k+1− xk. That is, the new iterate is
computed by

xk+1 = xk +αk pk (2.60)

where αk is a step-length that satisfies in the sufficient decrease condition

f (xk+1)≤ f (xk)+ γ1αkgT
k pk, (2.61)

and the curvature condition

|gT
k+1 pk| ≤ γ2|gT

k pk|, (2.62)

where γ1 < γ2 < 1 are fixed positive numbers. Now it remains to show that the
direction pk is a descent direction. Firstly, since the generalized Cauchy point xcp

is the minimizer of the quadratic model mk along the projected steepest descent
direction, we have

mk(xk)> mk(xcp),

unless the projected gradient is equal to zero. Moreover, x̄k+1 lies on a path from
xcp to the point that minimizes the quadratic model mk over the subspace of free
variables. Hence, the value of the quadratic model mk decreases along this path,
in particular, mk(x̄k+1) can not be greater than mk(xcp) and we have

f (xk) = mk(xk)> mk(xcp)≥ mk(x̄k+1) = f (xk)+gT
k pk +

1
2

pT
k Bk pk,

which implies that

gT
k pk +

1
2

pT
k Bk pk < 0.

Since in this algorithm at each iteration, the limited memory BFGS method is used
to approximate the Hessian matrix, Bk is positive definite. Consequently, we have

gT
k pk < 0.

2.6.2 Limited Memory BFGS Update
In this section we describe a method in which computing the limited memory
BFGS can be done efficiently. BYRD, NOCEDAL and SCHNABEL [7] have de-
rived the compact representation form of the BFGS method which allows us to
implement the limited memory BFGS method efficiently.

31



Proposed Algorithms for Bound Constrained Problems

Suppose that we are at the iterate xk, and the pair correcter vectors {si,yi} for
i = 0, . . . ,k−1 are defined by

si =: xi+1− xi, yi := gi+1−gi, (2.63)

and also for i = 0, . . . ,k−1 the curvature condition

sT
i yi > 0 (2.64)

is satisfied. Then the new BFGS matrix is computed by formula

Bk+1 = Bk−
BksksT

k Bk

sT
k Bksk

+
ykyT

k
yT

k sk
. (2.65)

Now we have the following theorem [7, p, 6]

Theorem 2.6.1 (Compact Representation Of BFGS). Let B0 be symmetric and
positive definite and k pairs {si,yi}k−1

i=0 satisfy the curvature condition (2.64).
Moreover, assume that k times update are applied to B0 by using pairs vectors
{si,yi}k−1

i=0 and the direct BFGS formula (2.65), then the symmetric positive defi-
nite matrix Bk can be expressed as

Bk = B0−
[
B0Sk Yk

][ST
k B0Sk Ck
CT

k −Dk

]−1[ST
k B0
Y T

k

]
(2.66)

Where Ck ∈ Rk×k and diagonal matrix Dk ∈ Rk×k are defined by

(Ck)i, j :=

{
sT

i−1y j−1 if i > j
0 otherwise,

(2.67)

Dk :=diag [sT
0 y0, . . . ,sT

k−1yk−1], (2.68)

and the correction matrices Sk,Yk ∈ Rn×k have the form

Sk := [s0, . . . ,sk−1], Yk = [y0, . . . ,yk−1]. (2.69)

Now we can use the update procedure, which is described in the above the-
orem, to compute the limited memory BFGS matrices. In the case of limited
memory BFGS, at each iteration we store a small number r of recent correction
pairs {si,yi} in the correction matrices Sk and Yk. This matrices are updated by
removing the oldest pair and adding the new pair to them. That is, the correction
matrices belong to Rn×r and have the forms

Sk := [sk−r, . . . ,sk−1], Yk := [yk−r, . . . ,yk−1]. (2.70)
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Moreover, we choose B(k)
0 = ωkI as the initial matrix where ωk is a positive scaler

computed by

ωk :=
yT

k−1yk−1

sT
k−1yk−1

. (2.71)

Now if the curvature condition (2.64) holds for correction pairs {si,yi} with i =
k− r, . . . ,k− 1, then the limited memory BFGS matrix Bk which is computed
by applying r times updates to the initial matrix ωkI, using the correction pairs
{si,yi}k−1

k−r and the BFGS formula can be expressed as

Bk = ωkI−UkNkUT
k (2.72)

where

Uk :=
[
Yk ωkSk

]
, (2.73)

Nk :=
[
−Dk CT

k
Ck ωkST

k Sk

]−1

, (2.74)

and Ck and Dk belong to Rr×r and defined as

(Ck)i, j :=

{
sT

k−r−1+iyk−r−1+ j if i > j
0 otherwise,

(2.75)

Dk :=diag [sT
k−ryk−r, . . . ,sT

k−1yk−1]. (2.76)

It should be mentioned that the matrix Nk is a 2r×2r matrix and since the positive
integer r is chosen to be small, the computation of N−1

k is cheap. Furthermore,
throughout the algorithm we do not compute Bk explicitly.

It has been shown in [7] that similar to (2.72), the inverse limited memory
BFGS matrix Hk can be represented by

Hk =
1

ωk
I−ŪkN̄kŪT

k , (2.77)

where

Ūk :=
[

1
ωk

Yk Sk

]
, (2.78)

N̄k :=

[
0 −Q−1

k
−Q−T

k Q−T
k (Dk +

1
ωk

Y T
k Yk)Q−1

k

]
, (2.79)
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and Qk ∈ Rr×r defined as

(Qk)i, j :=

{
sT

k−r−1+iyk−r−1+ j if i≤ j
0 otherwise.

(2.80)

(2.81)

Note that although the line search procedure, which is used in this method,
imposes the strong Wolfe conditions, the condition sT

k yk > 0 may not always hold.
This is due to presence of bound constraints. Hence, to preserve the positive
definiteness of the limited memory BFGS matrices, we skip to update the limited
memory BFGS matrice Bk and discard the correction pair {sk,yk} if the curvature
condition

sT
k yk > eps‖y‖2 (2.82)

does not hold, where eps is the machine precision. In this situation we do not
remove the oldest correction pair from the correction matrices (2.70).

2.6.3 The Generalized Cauchy Point

The computation of the generalized Cauchy point in the L-BFGS-B method is
similar as it has been described in 2.5.2. Except that because of the special struc-
ture of limited memory BFGS matrices, the computations and updating of the
direction derivations f ′j, and f ′′j are different and can be done in a more efficient
manner.

Suppose that we have searched through the intervals [t̄k−1, t̄k] with k = 1, . . . , j
and the generalized Cauchy point has been not found. Now we are examining the
interval [t̄ j, t̄ j+1]. we set

x j+1 = x j +∆t jd j, with ∆t j = t̄ j+1− t̄ j. (2.83)

Suppose that only one variable with index b becomes active at t̄ j+1. we compute
the search direction d j+1 by updating d j as follows

d j+1 = d j +gbeb, (2.84)

where eb is the unit vector with one at the bth component and zeros elsewhere.
According to the definitions (2.42) and (2.83) we have

v j+1 = v j +∆ jd j (2.85)
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Hence by using (2.44), (2.45), (2.84) and (2.85) we have

f ′j+1 =gT d j+1 +(d j+1)T Bv j+1

=gT d j +g2
b +(d j)T Bv j +∆t j(d j)T Bd j +gbeT

b v j+1

= f ′j +∆t j f ′′j +gT
b +gbeT

b Bv j+1

(2.86)

and

f ′′j+1 =(d j+1)T Bd j+1

=(d j)Bd j +2gbeT
b Bd j +g2

beT
b Beb

= f ′′j +2gbeT
b Bd j +g2

beT
b Beb.

(2.87)

Note that since B is a dense matrix, the only expensive computations in (2.86) and
(2.87) are

eT
b Bv j+1, eT

b Bd j, and eT
b Beb,

which can be accomplished in order O(n) operations . Nevertheless, by using the
limited memory BFGS formula

B = ωI +UNUT , (2.88)

and the definition (2.40), we can express the updating formula (2.86) and (2.87)
as

f ′j+1 = f ′j +∆t j f ′′j +g2
b +ωgbv j+1

b −gbUT
b:NUT u j+1, (2.89)

f ′′j+1 = f ′′j −2ωg2
b−2gbUT

b:NUT d j +ωg2
b−g2

bUT
b:Nub, (2.90)

where UT
b: represents the bth row of the matrix U . Note that in (2.89) and (2.90)

only the computations of UT v j and UT d j require O(n) operations. However, be-
cause from (2.84) and (2.85), the vectors v j+1 and d j+1 can be updated at each
iteration by simple computation, we can accomplished these computations in or-
der O(r2) operations for a small integer r, provided we maintain the following
2r-vectors at each iteration

q j+1 :=UT d j+1 =UT (d j +gbeb) = q j +gbub,

w j+1 :=UT v j+1 =UT (v j +∆t jd j) = w j +∆t jq j.

By using q j+1 and w j+1, we can express the directional derivatives f ′j+1 and f ′′j+
as

f ′j+1 = f ′j +∆t j f ′′j +g2
b +ωgbv j+1

b −gbUT
b:Nw j+1,

f ′′j+1 = f ′′j −ωg2
b−2gbUT

b:Nq j−g2
bUT

b:NUb:.
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If more than one variables will be active at t̄ j+1 the above process, which outlined
above, will be repeated again.

Now we are in the position that we can specify an algorithm for computing CP
point:

Algorithm 2.6.1. Generalized Cauchy Point

Step 0: (Initialization)

Given x, l,u,g, and B = ωI +UNUT , for i = 1, . . . ,n compute the break
points and the components of the direction d in each coordinate by

ti :=


x̂i−ui

gi
if gi < 0

x̂i−li
gi

if gi > 0

∞ otherwise,

di :=

{
0 if ti = 0
−gi otherwise

Initialize

F := {i : ti > 0}, (The set of indices corresponding to the free variables)

q :=UT d,
w := 0,
t := min

i∈F
ti, (using the heapsort algorithm)

told := 0,
∆t := t− told = t−0,
b := i such that ti = t. Remove the b from F .

step 1: (Examining the first interval [0, t̄1])

Compute

f ′ := gT d =−dT d,

f ′′ := ωdT d−dTUNUT d =−ω f ′−qT nq
∆tmin :=− f ′/ f ′′.

If ∆tmin < ∆t go to Step 4.
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Step 2: (examining the subsequent segments)

Set

xcp
r :=

{
ub if db > 0
lb if db < 0.

Compute

vb := xcp
b − xb,

w := w+∆tq,

f ′ := f ′+∆t j f ′′+g2
b +ωgbvb−gbUT

b:Nw,

f ′′ := f ′′−ωg2
b−2gbUT

b:Nq−g2
bUT

b:NUb:.

q := q+gbUb:

Set

db := 0,
∆tmin :=− f ′/ f ′′,

told := t,
t := min

i∈F
ti,

∆t := t− told,

b := i such that ti = t. Remove the b from F .

Step 3: (Loop)

If ∆tmin ≥ ∆t go to step 2.

Step 4: Set

∆tmin := max(∆tmin,0),
told := told +∆tmin,

xcp
i := xi + tolddi, for all i such that ti ≥ t,

For all i ∈F with ti = t, remove i from F .

w := w+∆tminq

Note that at last step of the above algorithm, the vector w is updated so that at
the termination we have

w =UT (xcp− xk). (2.91)

we will use this vector in the primal direct and the conjugate gradient method.
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2.6.4 Subspace Minimization
After the generalized Cauchy point xcp has been determined, we deal with approx-
imating the solution of (2.58) which consists of minimizing the quadratic model
mk over the subspace of free variables, and enforcing the bound constraints on the
free variables. In this section we shall present three methods including a directed
primal method, a conjugate gradient method which is similar to 2.5.3 and a dual
method. In all of the three methods, first, we disregard the bound constraints and
solve the unconstrained problem with objective function mk over the subspace of
free variables. Then the path obtained by the solution of unconstrained problem
is truncated so that the bound constrained conditions are satisfied.

From now on, we denote the index set corresponding to the free variables at
xcp by F , which can express alternatively as

Fk = {1,2, . . . ,n}\A (xcp
k ),

where the subscript k stands for the outer iteration. Moreover, we define Zk to be
a matrix with unit columns which span the subspace of free variables.

A Directed Primal Method
In the directed primal method, the variables in which the generalized Cauchy point
lies at the bound remain fixed and we minimize mk over the subspace of free
variables by starting from xcp and enforcing the bound constraints corresponding
to F . Hence, we consider only points x ∈ Rn of the form

x = xcp +Zk p,

where vector p belongs to the subspace of free variables. Now we can rewrite the
quadratic model mk(x) as

mk(x) = f (xk)+gT
k (x− xcp + xcp− xk)+

1
2
(x− xcp + xcp− xk)

T Bk(x− xcp + xcp− xk)

= (gk +Bk(xcp− xk))
T (x− xcp)+

1
2
(x− xcp)T Bk(x− xcp)+ζ

:= pT rk +
1
2

pT B̂k p+ζ ,

where ζ is a constant,
B̂k := ZT

k BkZk (2.92)

is the reduced Hessian matrix, and

rk := ZT
k (gk +Bk(xcp− xk))
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represents the projected gradient of the mk at xk onto the subspace of free variables.
By using (2.91) and (2.72) the projected gradient rk can be rewritten as

rk = ZT
k (gk +ωk(xcp− xk)−UkNkw), (2.93)

where the vector w has been already computed while computing the generalized
Cauchy point. Now we can transform (2.58) to the following problem

minimize mk(p) :=
1
2

pT B̂k p+ rT
k p (2.94)

subject to li− xcp
i ≤ pi ≤ ui− xcp

i , i ∈Fk. (2.95)

As we have mentioned to solve the above problem, we ignore the bound con-
straints (2.95) and solve the unconstrained problem (2.94), which is done by

pu :=−B̂−1
k rk. (2.96)

Since the limited memory BFGS matrix Bk is a small-rank correction of a diag-
onal matrix, for computing B−1

k we can apply the Sherman-Morrison-Woodbury
formula, In particular, by using (2.72) we can express the reduced Hessian matrix
B̂ as

B̂ = ωI−ZTU(NUT Z),

where the subscript k of the outer iteration is dropped for simplicity. By using
Sherman-Morrison-Woodbury formula we obtain

B̂−1 =
1
ω

I +
1
ω

ZTU(I− 1
ω

NUT ZZTU)−1NUT Z
1
ω
.

By substituting above expression in (2.96), the solution of unconstrained problem
can computed by

pu =
1
ω

r+
1

ω2 ZTU(I− 1
ω

NUT ZZTU)−1NUT Zr. (2.97)

Once the Newton direction pu has been computed, we impose the bound con-
straints (2.95) which is done by setting

p∗ := α
∗pu, (2.98)

where the positive number α∗ is defined by

α
∗ = max{α : α ≤ 1, li− xcp

i ≤ α pu
i ≤ ui− xcp

i , i ∈F}. (2.99)

Thus, we can express the approximated solution x̄ of (2.58) as

x̄i =

{
xcp

i if i /∈F

xcp
i +(Zk p∗)i if i ∈F .

(2.100)
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Algorithm 2.6.2. (Direct Primal method)
Given x, l,u,g,w and B = ωI+UNUT .(Note that the subscript k for the outer

iteration have been omitted for simplicity)

Step 1: (Computing NUT Zr)

Compute

Zr := ZZT (g+ω(xcp− x)−UNw)

v :=UT Zr
v := Nv

Step 2: (Computing M := I− 1
ω

NUT ZZTU)

Set

M :=
1
ω

NUT ZZTU

M := I−NM

Step 3: (Computing the Newton direction pu)

Compute

v := M−1v

pu :=−( 1
ω

r+
1

ω2 ZTUv)

Step 4: (Imposing the bound constraints (2.95))

Compute

α
∗ := max{α : α ≤ 1, li− xcp

i ≤ α pu
i ≤ ui− xcp

i , i ∈F}
p∗ := α

∗pu

x̄i :=

{
xcp

i if i /∈F

xcp
i +(Zk p∗)i if i ∈F .

A Primal Conjugate Gradient Type Method
Another approach for approximating the solution of (2.58) is to solve the positive
definite linear system

B̂k pu =−r, (2.101)

iteratively, by applying the conjugate gradient method. Similar to 2.5.3 the algo-
rithm terminates whenever one the following conditions is satisfied:
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• One or more of the bound constraints (2.95) is violated.

• The residual in the conjugate gradient method is smaller than

δk := min(0.1,
√
||rk||)||rk||. (2.102)

It should be mentioned that since the limited memory BFGS matrix Bk is positive
definite and also all of its eigenvalues are almost identical, it is suitable to use the
conjugate gradient method.

Algorithm 2.6.3. (Conjugate Gradient Method)
Given x, l,u,g,w,B = ωI+UNUT ,and δ from (2.102).(Note that the subscript

k of the outer iteration have been omitted for simplicity)

Step 0: (Initialization.)

Set

d := 0,

r̂ := ZT (g+ω(xcp− x)−UNw),
p̂ :−r̂,

ρ1 := 1,

ρ2 := r̂T r̂,

Step 1: (Test for required accuracy)

If ρ2 < δ 2, go to step 3.

Step 2: (Conjugate gradient iterations)

Set

β := ρ2/ρ1,

p̂ :=−r̂+β p̂,

ŷ := B̂p̂,
α1 := max{α : li ≤ xcp

i +di +α p̂i ≤ ui},
α2 := ρ2/p̂T ŷ.

If α2 > α1, set d := d +α1 p̂ and go to step 3.

Otherwise, reset

d := d +α1 p̂,
r̂ := r̂+α2ŷ,

ρ1 := ρ2,

ρ2 := r̂T r̂,

and return step 1.
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Step 3: (Termination of conjugate gradient algorithm)

Set for i = 1, . . . ,n

(x̄k+1)i :=

{
xcp

i if i /∈F

xcp
i +(Zkd)i if i ∈F .

A Dual Method
In practice, it is usually observed that the number of active variables is small in
comparison to the dimension of the problem. Thus, it should be appropriate to deal
with active bounds by corresponding Lagrange multipliers. This kind of methods
is referred to as a dual method. We consider the point x ∈ Rn of form

x := xk + p,

where xk + p is restricted to lie on the subspace of free variables at xcp. Which is
done by enforcing the condition

LT
k p = LT

k (x
cp− xk), (2.103)

where Lk is a matrix whose columns are unit vectors which constitute a basis for
the subspace of active variables at xcp. In addition, we have

LT
k Zk = 0, LkLT

k +ZkZT
k = I.

Now by stetting
bk := LT

k (x
cp− xk),

we form the following subspace problem

minimize gT
k p+

1
2

pT Bk p (2.104)

subject to LT
k p = bk (2.105)

l ≤ xk + p≤ u. (2.106)

Similar to other approaches in this section first we solve this problem without
considering the bound constraints (2.106). This is done by writing the optimality
conditions

gk +Bk p∗+Lkµ
∗ = 0, (2.107)

LT
k p∗ = bk. (2.108)
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2.6 L-BFGS-B

for (2.104)-(2.105), and multiplying (2.107) by LT
k Hk from the right-hand-side,

where Hk represents the inverse of Bk. This yields

LT
k Hkgk +LT

k P∗+LT
k HkLkµ

∗ = 0,

by using (2.108) we obtain

(LT
k HkLk)µ

∗ =−LT
k Hkgk−bk. (2.109)

Since Lk is a full rank matrix and whose columns are unit vectors, LT
k HkLT

k is
a principal sub-matrix of Hk. Hence we can determine µ∗ by solving (2.109).
Furthermore, since Hk is limited memory BFGS matrix and LT

k Lk = I, we can
again use the Sherman-Morrison-Woodbury formula to solve the linear system
(2.109). To see this, we have

LT
k HkLk =

1
ωk

I +(LT
k Ūk)(N̄kŪT

k LK).

By using the Sherman-Morrison-Woodbury formula we obtain

(LT
k HkLk)

−1 = ωKI−ωkLT
k Ūk(I +ωkN̄kŪT

k LkLT
k Ūk)

−1N̄kŪT
k Lkωk. (2.110)

Once µ∗ has been determined, we compute p∗ by solving the linear system

Bk p∗ =−Lkµ
∗−gk. (2.111)

Finally, the approximated solution x̄ of (2.58) is computed by

x̄ = xcp +α
∗(xk + p∗− xcp), (2.112)

where the positive number α∗ is defined by

α
∗ = max{α : li− xcp

i ≤ α((xk)i + p∗i − xcp
i )≤ ui− xcp

i , i ∈F}. (2.113)

Algorithm 2.6.4. (Dual Method)
Given x, l,u,g,w,H = 1

ω
I + ŪN̄Ū .T and we define nA the number of active

variables at xcp, In other words,

nA = |A (xcp, l,u)|.

(Note that the subscript k of the outer iteration have been omitted for simplicity)

Step 1: If nA = 0, Compute

u := ŪT g
u := N̄u

p∗ :=− 1
ω

g−Ūu

and go to step 5
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Step 2: (Computing the right-hand-side of (2.109))

Compute

b :=−LT (xcp− xk)

v := ŪT g
v := M̄u

q := LTŪv

q :=− 1
ω

LT g−q−b

Step 3: (Computing µ∗)

Reset
u := ŪT Lq

Form M = (I +ωN̄ŪT LLTŪ) as follows

M̄ := ωŪT LLTŪ
M̄ := I + N̄M̄

Compute

u := M̄−1N̄u

µ
∗ := ω

2LTŪu
µ
∗ :=−ωq+µ

∗

Step 4: (Computing p∗)

Compute

u := ŪT Lµ
∗

u := N̄u+ v

p∗ :=− 1
ω
(Lµ

∗+g)+Ūu

Step 5: Compute

α
∗ = max{α : li− xcp

i ≤ α((xk)i + p∗i − xcp
i )≤ ui− xcp

i , i ∈F},

and set
x̄ = xcp +α

∗(xk + p∗− xcp)
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2.6.5 The Algorithm for L-BFGS-B
Now, at this moment we can summarize the L-BFGS-B method in to an algorithm.
Similar to 2.5.3 we use

‖P[xk−gk]− xk‖∞ < 10−5 (2.114)

as the termination condition.

Algorithm 2.6.5. (L-BFGS-B)

Step 0: (Initialization)

Choose an initial point x0, and an integer r to be the number of limited mem-
ory corrections stored. Define the initial limited memory Hessian matrix B0
to be identity. Set

k := 0

Step 1: (Test for convergence)

If the condition (2.114) is satisfied, stop

Step 2: (Computing the generalized Cauchy point)

Compute xcp by algorithm 2.6.1.

Step 3: (Computing the descent direction)

Use one of the methods described in 2.6.4, including the directed primal
method, the conjugate gradient method or the dual method, to determine
the approximated solution x̄k+1 of (2.58). Then set

pk := x̄k+1− xk

Step 4: (Line search iteration)

Implement a line search iteration along the direction pk, with respect to the
bound constraints, to determine the step length αk, and set

xk+1 = xk +αk pk

Note that the line search starts with the unit as the initial value and satisfies
the strong Wolfe conditions (2.61) and (2.64) with γ1 = 10−4 and γ2 = 0.9.

Step 5: (Updating gradient)

Set
gk+1 := ∇ f (xk+1)
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Step 6: If yk and sk satisfy the condition (2.82) with eps = 2.2× 10−16, add the
vectors yk and sk to the correction matrices Sk and Yk.

If both of the matrices Sk and Yk have more than r update columns, remove
the oldest columns from both of them.

Step 7: (Updating limited memory BFGS)

Update ST
k Sk,Y T

k Yk,Ck and Qk, and set

ω =
yT

k yk

yT
k sk

.

Step 8: (Loop)

Reset
k := k+1,

and go to step 1
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Chapter 3

A New Quasi Newton Method for
Bound Constrained problems

3.1 Introduction
In this chapter we introduce a new approach [24] to solve the bound constrained
problem (1.1). Our proposed method is an active set method that uses a combi-
nation of the steepest descent directions and quasi Newton directions to identify
the optimal active bound constraints. Once the optimal set of active variables
has been identified, these variables are fixed at their bounds and the problem is
reduced to a smaller problem over the subspace of free variables. This reduced
problem is solved by performing the bent line search method along the quasi New-
ton direction. Particularly, the quasi Newton direction is computed by help of the
limited memory symmetric rank-one matrix. As it is known the SR1 matrices are
not necessarily positive definite, consequently, the quasi-Newton direction need
not be a descent direction. In such a case, we regularize this direction so that it
will become a descent direction. The convergence theory of the algorithm is also
provided.

3.2 Bent line Searches
In this subsection, we give a description of a line search approach for the case of
bound constrained optimization problems

minimize f (x)
subject to l ≤ x≤ u

(3.1)

In general, a line search method generates a descent sequence of feasible points
which is constructed at each iterate xk by choosing a search direction pk satisfying
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the descent condition
gT

k pk < 0, (3.2)

and a corresponding search path xk +α pk for α > 0. Then the positive parameter
αk is chosen in such a way that xk+1 := xk +αk pk satisfies the condition

f (xk+1)< f (xk), (3.3)

where the positive parameter αk is referred to as step-length.

From now on throughout this chapter, we drop the subscript k of the outer
iteration for simplicity. Therefore, x,g, and p represent xk,gk and pk, and we write
x̂ for xk+1. Given a current iterate x, we call a component xi and the corresponding
index i active if either xi = li or xi = ui. Otherwise, if xi ∈ (li,ui), we call the ith
component and its corresponding index nonactice or free. In the case of bound
constrained optimization problems, a search direction p must be also a feasible
direction at x in addition to satisfy the descent condition.

Definition 3.2.1. Given a feasible point x, we call the direction vector d feasible
at x if there exists a sufficiently small α > 0 such that x+αd is feasible.

The feasibility of p at x requires that

pi ≥ 0 if xi = li,
pi ≤ 0 if xi = ui.

}
(3.4)

If the gradient g = g(x) has a nonzero component gi at a nonactive index i, we can
move from xi along both of the directions ±gi while remaining within feasible
region. Therefore the value of objective function is reduced by moving from xi
along the direction −gi. However, if xi is active in one of their bounds, only
changes xi in one direction is possible, since by moving from xi along the opposite
direction we would lose the feasibility. Therefore, for an active variable i the
objective function f decreases if we have

gi < 0 if xi = li,
gi > 0 if xi = ui.

}
(3.5)

In this case, we say the variable xi can be freed from its bound.

As we have mentioned in 1.2, at a local minimizer x̄ of the bound constrained
optimization problem (1.1), we have

gred(x̄) = 0, (3.6)

where gred is the reduced gradient.
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3.2 Bent line Searches

Definition 3.2.2. For an arbitrary feasible point x of the bound constrained opti-
mization problem (1.1), we call an active bound on xi strongly active if one of the
following conditions is satisfied.

1. gi > 0 and xi = li,

2. gi < 0 and xi = ui.

Consequently, an active bound called weakly active if it is not strongly active.

While creating a line search method for bound constrained optimization prob-
lems, we face several difficulties. First of all, as we have mentioned, in addition
to being a descent direction the search direction p must be also a feasible direc-
tion. Moreover, the search path must be modified since linear search path may
leave the feasible region. To be more accurate, let p be a search direction and
x+α p(α > 0) be the corresponding linear search path, then for an index i the
bound constraint [li,ui] is violated, provided either pi > 0 and ui < ∞, or pi < 0
and li >−∞. To overcome this difficulty, we define the following piecewise linear
Bent line search path

x(α) = P[x+α p, l,u], (3.7)

which is obtained by projecting the linear path x+α p(α > 0) onto the bound
constraints

{x ∈ Rn : l ≤ x≤ u},

where P[, , ] is a projection defined by

(P[x, l,u])i =


li if xi ≤ li,
ui if xi ≥ ui,

xi if li < xi < ui.

The bent line search path is linear on each interval [αi−1,αi] for i = 1, ...,m+ 1.
Where

0 = α0 < α1 < · · ·< αm < αm+1 = ∞,

and the break points α1, . . . ,αm belong to the set

S :=

{
ui− xi

pi
: pi > 0

}
∪

{
li− xi

pi
: pi < 0

}
\{0,∞}. (3.8)

Proposition 3.2.1. Suppose p is a feasible direction at x for which the following
conditions hold

1. gT
red p < 0,
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2. pi = 0 if either xi = li, gi > 0 or xi = ui, gi < 0,

then for sufficiently small α > 0 the bent search path (3.7) is feasible, and also we
have f (x(α))< f (x).

Proof. Due to the definition of the reduced gradient and second condition, it can
easily be shown that

gi pi = (gred)i pi for all i = 1, . . . ,n.

Hence, we have
gT p = gT

red p≤ 0.

Since p is a feasible direction, we have x(α)= x+α p and consequently f (x(α))=
f (x+α p) = f (x)+αgT p+o(α) if α > 0 is sufficiently small.

There are many ways to construct a bent line search. According to our con-
vergence theory we need only to impose the following conditions

B1 If S = /0 or α < minS, the line search is efficient.

B2 If α ≥minS, the condition

f (x(α))< f (x) (3.9)

is satisfied.

To implement the bent line search satisfying the above conditions. First, we de-
termine the values of α for which each component reaches its bound along the
chosen search direction p by

ᾱi :=

{
(ui− xi)/pi if pi > 0 and ui < ∞

(li− xi)/pi if pi < 0 and li >−∞
(3.10)

Then we eliminate the duplicate values of ᾱi from the set {ᾱ1, . . . , ᾱn} and sort
the remaining elements in an increasing ordered sequence α1,α2, . . . so that

0 = α0 < α1 < · · ·< αm < ∞.

Then we start with the first trial value α = α j with j = m. If (3.9) holds we
terminates the line search method and accept αm as the step length. Otherwise,
we replace j by b j

2c iteratively until one of the following cases is occurred:

1. An index j > 0 is obtained, for which the condition

f (x(α j))< f (x)

is satisfied.
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2. j = 0

In the first case, we apply a bisection procedure on the index set to improve index
j until it is determined that there is no neighbouring breakpoint than has a smaller
function value. Then the corresponding breakpoint α j is accepted as the step
length. In the second case, the breakpoint search failed. Therefore, we perform
an ordinary line search iteration by using an efficient line search method with
α ∈ (0,α1). Note that while performing the bent line search method, the set of
active variables is changed either by dropping some variables when pi 6= 0 for
some active components, or by adding atleast one variable when a break point is
accepted as a step length.

3.3 Overview of the Algorithm
In the case of bound constrained optimization problems, the choice of the search
direction is a crucial point for proving global convergence of algorithms. There-
fore close attention should be devoted to that. As it is has been mentioned in 1.2,
the zigzagging behaviour is the major cause that makes the algorithms inefficient.
In this situation, algorithms are unable to identify the set of optimal active bound
constraints, therefore, they free and fix the same variable alternatively in a large
number of successive iterations. Indeed, we have no full control over whether the
Bent line search fixes variables, because often the Bent line search is not able to
find a efficient step length α < minS, and consequently accepts a break point as
the step length. Therefore, it remains just one way to prevent the bad zigzagging
behaviour which is to control the conditions under which the variable are freed.

In order to obtain the fast rate of locally convergence, we have to perform
locally steps which are done by means of an efficient unconstrained optimization
method over the subspace of nonactive variables; but this is reasonable only if the
resulting step is not bent. Therefore such a local step is performed whenever in the
previous step no variable has been fixed in one of its bounds. On the other hand, if
in the previous step a new variable was fixed in its bounds, it does not make sense
to perform the local step as the set of active variables is likely to change again.
In such a case we perform a standard step which is done by performing the
bent line search iteration along the steepest descent direction over the subspace of
nonactive variables. The search direction p used in a standard step is negative of
the scaled gradient direction in the subspace of nonactive variables, which consists
of components

pi =

{
−digi if i ∈ I,
0 otherwise ,

(3.11)
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where di are positive scaling numbers of the order of square of typical change in
the ith component, and I consists of indices corresponding the variables which
either are nonactive or can be freed, provided the previous step was a freeing step.
In all other cases I consists only of indices corresponding nonactive variables.

Suppose that in the previous step no variable has been fixed in one of its
bounds, now we have to make a decision between performing a freeing step or
local step. In order to prevent the zigzagging behaviour, first we perform a local
step. Then we check whether a new variable became active. If a variable has been
active, we perform a standard step. After that, again we check whether a active
variable can be freed. If a variable can be free, we do a freeing step. Otherwise,
we repeat the local step again.

while implementing the algorithm, We terminate the algorithm whenever one
of the following conditions are satisfied

1. The norm of reduced gradient (1.4) is sufficiently small.

2. A large number of iterations have been done.

Note that if the first condition is satisfied, the algorithm terminates at a station-
ary point of problem and consequently the first optimality condition holds for this
point.

In order to analyse the convergence of the algorithm, we need to consider
infinity many iterations. Thus, in the following idealized version of the algorithm,
we only terminate the algorithm whenever the reduced gradient is zero.

Algorithm 3.3.1. (Proposed Algorithm)

Step 1: (Initialization)

Given a feasible initial point x0 with function value f 0 and gradient vector
g0. Set

I := {i : li < x0
i < ui or (g0

red)i 6= 0}

Step 2: (Standard step)

If the reduced gradient is zero, Stop

Otherwise, if I = /0, go to step 4.

Otherwise, Perform the bent line search method along the standard direc-
tion over the subspace of variables corresponding to I to compute the new
x. Set

I := {i : li < xi < ui}.
Then, if some bound have been fixed, repeat step 2
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Step 3: (Local step)

If reduced gradient is zero, stop

Otherwise, perform the bent line search method along the direction deter-
mined by a quasi Newton method over the subspace of variables corre-
sponding to I to compute new x. Set

I := {i : li < xi < ui}.

Then, if a new bound has been fixed, go to step 2.

If no variable can be freed, repeat step 3

Step 4: (Freeing step)

Set
I := {i : li < xi < ui or (gred)i 6= 0},

and continue with step 2.

The initial point in the first step is either chosen by user, or is given by

x0
i :=

{
li if li > 0,
ui if ui < 0,

as the absolutely smallest point x0 in the feasible region.

3.4 Convergence Analysis
In this section, we derive the global convergence result for our method. To ensure
global convergence, not only the step length must be well chosen but also the
search direction must be well chosen. In particular, additional to be feasible, an
another requirement is imposed on the angle between the search direction and the
steepest descent direction.

Definition 3.4.1. let sk =: xk+1− xk be the step and pk be a descent search direc-
tion, along which xk+1 is obtained by performing a line search method. We call
this line search method efficient if at each iteration, it produces a step such that
satisfies the condition

inf
0≤l≤k

( fl− fl+1)‖sl‖2

(gT
l sl)2 > 0, (3.12)
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where ‖.‖ is an arbitrary norm in Rn. Equivalently, a line search procedure is
referred to as efficient if there exists an ε > 0 such that for all steps 0≤ l ≤ k, we
have

fl+1 ≤ fl− ε
gT

l sl

‖sl‖2 .

Efficiency of the line search procedure is one of the key requirements which
is need to be satisfied in order to obtain global convergence of the algorithms in-
volving the line search strategies.

In order to obtain the convergence result, it is required that the sequence of
iterations {xk}k to be bounded. This condition is satisfied whenever for some
index k the level set

{x ∈F : f (x)≤ f (xk)}
is bounded, where F is the feasible region of (1.1) consisting of only bound con-
straints. In most applications, this is satisfied for some iterates xk.

In the following convergence result, the degenerate stationary point is the only
case in which the weakly active constraints might pop in and out of the active set
in the zigzagging manner.

Theorem 3.4.1. Let f be continuously differentiable on the feasible region F .
Assume that all search directions p are feasible and also satisfy

pi = 0 if either xi = li,gi > 0 or xi = ui,gi < 0, (3.13)

and the reduced angle condition

sup
gT

red(x)p
‖gred(x)‖‖p‖

< 0. (3.14)

If the sequence of iteration points {xk}k is bounded then:

(i) The the reduced gradient gred(xk) satisfy

inf
k≥0
‖gred(xk)‖= 0. (3.15)

(ii) If the algorithm does not terminate but xk→ x̂ for k→ ∞, then x̂ satisfies the
first order optimality conditions gred(x̂) = 0, and for all i and sufficiently
large k, we have

(xk)i = x̂i = li if gi(x̂)> 0,
(xk)i = x̂i = ui if gi(x̂)< 0.

(3.16)
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Note that the condition (3.14) is automatically satisfied for the steepest descent
direction, consequently this condition always holds at the standard step.

Proof. Every thing is trivial when the algorithm terminates at a stationary point;
therefore, we might assume that infinitely many iterations are done. W.l.o.g., we
can assume that li < ui for all i.

(i) Suppose that the line search is efficient only finitely often then there exists an
integer L such that for all iterations k > L, condition B1 is violated, and con-
sequently the condition B2 is satisfied, in particular, the set of breakpoints
is not empty, and atleast a new bound is fixed. Hence ultimately, at each
iteration some new bounds are fixed. But this means that ultimately, only
step 2 is executed. Since the number of variables n is finite and no bound
can be freed in the step 2, this can happen only in a finite number of itera-
tions. This is a contradiction with our assumption.

Therefore, the line search is infinitely often efficient, and by (3.4.1), there
exists a number δ > 0 such that infinitely often

( fk− fk+1‖sk‖2)

gT
k sk

≥ δ . (3.17)

Now by (3.13) and definition of the reduced gradient, for each component
i ∈ {1, ...,n} we have one of the following cases

1. gred(xk)i = (gk)i,

2. gred(xk)i = 0≤ (gk)i and (xk)i = li,

3. gred(xk)i = 0≥ (gk)i and (xk)i = ui.

By (3.13) for the cases 2 and 3 we have

(xk+1)i− (xk)i = (sk)i = α(pk)i = 0.

Therefore for all cases, gred(xk)i(sk)i = (gk)isi, and by summing over all
i ∈ {1, ...,n} we obtain

gT
k sk = gT

red(xk)sk.

Since the sequence of iterations {xk}k is bounded and the objective function
f is continuous, the sequence fk := f (xk) is also bounded. Therefore f̂ :=
inf fk is finite. Moreover, Since we generate a descent sequence, we have
lim fk = f̂ . Hence, after infinitely many iterations satisfying (3.17), we have
( writing −ε < 0 for the left hand side of (3.14))

ε‖gred(xk)‖≤−
gT (xk)pk

‖pk‖
=
|gT

red(xk)pk|
‖pk‖

=
|gT

red(xk)sk|
‖sk‖

≤
√

fk− fk+1

δ
→ 0,
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as k→ ∞, and consequently we have

inf
k≥0
‖gred(xk)‖= 0.

(ii) By continuity of the gradient, we have

ĝ := g(x̂) = lim
l→∞

gk.

If i is an index for which ĝi > 0 and (xk)i = li, then there exists a number
L′′ such that (gk)i > 0 for k > L′′, analogously, there exist a number L′

such that (gk)i < 0 for all k > L′ provided ĝi < 0 and (xk)i = ui. Now
due to the definition (1.4) of the reduced gradient we have for all iterations
k > L := max(L′,L′′),

(gred(xk))i =


0 if (xk)i = li,
0 if (xk)i = ui,

(gk)i otherwise.

By part (i), there is a subsequence of gred(xk) which converges to zero.
Now we show that the active variables (xk)i = li and (xk)i = ui remain fixed
at their bounds for infinitely many iterations k > L. Since for each active
variable (xk)i = li

(
(xk)i = ui

)
we have (gk)i > 0

(
(gk)i < 0

)
for all k > L,

all active variables are strongly active. Therefore, they can not be freed
anymore. This fact implies that (xk)i = li

(
(xk)i = ui) for all k > L, and

consequently, x̂i = limk→∞(xk)i = li
(
x̂i = limk→∞(xk)i = ui

)
. Therefore the

conditions (3.16) are satisfied.

From (3.16) and the definition of the reduced gradient, we conclude that
gred(x̂) = limgred(xk) = 0. Hence the first order optimality condition is sat-
isfied.

3.5 Local Step
In this section we are dealing with computation of the search direction in the lo-
cal step of the algorithm 3.3.1. As we have mentioned, in order to obtain fast
locally convergence we apply a limited quasi Newton method for unconstrained
optimization problems in the local step. To be more accurate, suppose that while
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performing algorithm 3.3.1, no variable has been fixed after execution of the stan-
dard step and also the feasible point x with I := {i : li < xi < ui} has been de-
termined. Now in local step, the quasi Newton search direction is computed by
solving the following optimization problem

minimize pT Bp+gT p+ f (x)
subject to pi = 0, i /∈ I,

(3.18)

where g is the gradient of f at feasible point x, and B is a limited memory SR1
approximation of the Hessian matrix ∇2 f . Now the problem (3.18) can be trans-
formed to the following unconstrained problem defined over the subspace of non-
active variables corresponding to the set I

min
p̂∈R|I|

p̂T B̂p̂+ ĝT p̂, (3.19)

where
B̂ := ZT BZ (3.20)

is the reduced Hessian matrix, and

ĝ := ZT g (3.21)

represents the projection of the gradient vector g(x) onto the subspace of non-
active variables corresponding to I, and Z is a matrix whose columns are unit
vectors spanning the subspace of nonactive variables corresponding to I. As we
know from general theory of unconstrained optimization, the solution of (3.19) is
computed by

p̂ f :=−B̂−1ĝ. (3.22)

Hence the solution of (3.18) is determined by

p f := Z p̂ f . (3.23)

Since the matrix B̂ is computed by the limited memory SR1 method, we have
no guarantee that the search direction p f is a descent direction. However, from
our convergence result, the search directions p f must satisfy the angle condition
(3.14). In following we will explain, how this search direction is regularized in
order to satisfy the condition (3.14) in case it fails to hold for (3.23). First we give
a description about updating the limited memory SR1 matrices.

3.5.1 Limited Memory SR1 Update
Similar to the BFGS matrices, the compact representation of SR1 matrices can
be derived. This compact representation introduced by BYRD, NOCEDAL and

57



A New Quasi Newton Method for Bound Constrained problems

SCHNABEL [7] is similar to ones developed for the BFGS formula, except that
under some conditions it requires less storage. The SR1 matrices are updated at
each iteration k by the following update formula

Bk+1 = Bk +
(yk−Bksk)(yk−Bksk)

T

(yk−Bksk)T sk
, (3.24)

where
sk := xk+1− xk, yk := gk+1−gk.

It should be mentioned that the above update is well defined only if

(yk−Bksk)
T sk 6= 0.

In our implementation it has been observed that, the SR1 method does not break
down and performs well if the update is skipped whenever the denominator of
(3.24) is small. In particular, the update formula (3.24) is applied whenever the
following condition

|(yk−Bksk)
T sk| ≥ 10−8‖sk‖‖yk−Bksk‖ (3.25)

holds. Now we present the compact representation of SR1 matrices by means of
the following theorem.

Theorem 3.5.1. (Compact Representation of SR1 [7, p, 20]) Suppose that the
symmetric matrix B0 is updated k times by the SR1 formula (3.24) using the pairs
{si,yi}k−1

i=0 , and assume that each update is well defined. In another words, we
have (y j−B js j)

T s j 6= 0 for all j = 1, . . . ,k− 1. Then the symmetric SR1 matrix
Bk can be expressed as

Bk = B0 +(Yk−B0Sk)N−1
k (Yk−B0Sk)

T , (3.26)

where the correction matrices Sk,Yk ∈ Rn×k have the form

Sk := [s0, . . . ,sk−1], Yk = [y0, . . . ,yk−1], (3.27)

the matrix
Nk := Dk +Ck +CT

k −ST
k B0Sk (3.28)

is nonsingular, Ck ∈ Rk×k and diagonal matrix Dk ∈ Rk×k are defined by

(Ck)i, j :=

{
sT

i−1y j−1 if i > j
0 otherwise,

(3.29)

Dk :=diag [sT
0 y0, . . . ,sT

k−1yk−1]. (3.30)
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Similar to the limited memory BFGS method described in 2.6.2, we can de-
velop the above update formula for the limited memory SR1 matrices. To see this,
the initial matrix B0 is replaced with a basic matrix B0

k = ωkI at the kth iteration,
where ωk is positive scaling number or can be computed by

ωk :=
yT

k−1yk−1

sT
k−1yk−1

. (3.31)

Moreover, in the case of limited memory the correction matrices Yk and Sk contain
only the r most recent correction vectors

Sk := [sk−r, . . . ,sk−1], Yk := [yk−r, . . . ,yk−1], (3.32)

where r is a fixed integer number. At each iteration, these matrices are updated
by removing the oldest correction pair and inserting the new correction pair. Now
we can express the limited memory SR1 matrices as follows:

Bk = ωkI +UkN−1
k UT

k , (3.33)

where

Uk :=Yk−ωkSk, (3.34)

Nk :=Dk +Ck +CT
k −ωkST

k Sk, (3.35)

Ck and Dk belong to Rr×r and are defined as

(Ck)i, j :=

{
sT

k−r−1+iyk−r−1+ j if i > j
0 otherwise,

(3.36)

Dk :=diag [sT
k−ryk−r, . . . ,sT

k−1yk−1]. (3.37)

Note that the matrix Nk belongs to Rr×r, furthermore, the positive integer r is
chosen to be small. Therefore, the computation of Nk is cheap at each iteration.

3.5.2 Computing the Search Direction
Now we are in the position that we can explain how the quasi Newton search
direction is computed in order to satisfy the condition (3.14). As it has been
mentioned before the first quasi Newton direction is computed by solving the
following linear system

B̂p̂ =−ĝ (3.38)

By using (3.33) and (3.20), we can rewrite the above linear system as

(ω Î +ÛN−1ÛT )p̂ =−ĝ, (3.39)
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where Û := ZTU and Î ∈ Rr×r is the identity matrix. Note that the subscription
k of the outer iteration is eliminated for simplicity. Now by using (3.39) and
defining vector

h := N−1ÛT p̂, (3.40)

we have
p̂ =− 1

ω
ĝ− 1

ω
Ûh. (3.41)

Furthermore, by substituting (3.41) in (3.40) we have

h = N−1ÛT (− 1
ω

ĝ− 1
ω

Ûh), (3.42)

where (3.42) is a linear system containing only an unknown vector h. By solving
this linear system we have

h = (N +
1
ω

ÛTÛ)−1(− 1
ω

ÛT ĝ). (3.43)

Now we can define our search direction as a function of κ as follows

p̂(κ) =− 1
ω

ĝ−κq, (3.44)

where
q :=

1
ω

Ûh.

In our proposed method, first we set κ = 1 and test whether the condition

ĝT p̂(κ)
‖ĝ‖‖p̂(κ)‖

≤ −δ , (3.45)

is satisfied for a fixed positive number δ ∈ (0,1). If it is satisfied then p(1) is
accepted as the search direction in the local step. But if the above condition does
not hold for κ = 1, we choose κ such that the condition (3.45) will be satisfied for
chosen κ .

Now, it remains to show how κ is chosen in order to satisfy (3.45). By substi-
tuting (3.44) into the condition (3.45) we have

− 1
ω
‖ĝ‖2−κ ĝT q

‖ĝ‖‖− 1
ω

ĝ−κq‖
≤ −δ , (3.46)

and consequently

‖ĝ‖ 1
δ

( 1
ω

+κ
ĝT q
‖ĝ‖

)
≥ ‖− 1

ω
ĝ−κq‖. (3.47)
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Now by defining

τ :=
1
δ

( 1
ω

+κ
ĝT q
‖ĝ‖2

)
, (3.48)

we can rewrite (3.47) as

‖ĝ‖τ ≥ ‖ 1
ω

ĝ+κq‖. (3.49)

Since the both sides the above inequality are nonnegative, we can compute the
squares of them without switching the inequality direction as follows

‖ĝ‖2
τ

2 ≥ 1
ω2‖ĝ‖

2 +κ
2‖q‖2 +

2κ

ω
ĝT q. (3.50)

By computing κ from (3.48), we obtain

κ := (δτ− 1
ω
)
‖ĝ‖2

ĝT q
(3.51)

By using (3.50) and (3.51) and eliminating ‖ĝ‖2 from the both sides of the in-
equality we have

τ
2 ≥− 1

ω2 +
2δτ

ω
+(δτ− 1

ω
)2‖ĝ‖2‖q‖2

(ĝT q)2 . (3.52)

Now by adding −δ 2τ2 to the both sides of the above inequality we obtain

(1−δ
2)τ2 ≥− 1

ω2 +
2δτ

ω
−δ

2
τ

2 +(δτ− 1
ω
)2‖ĝ‖2‖q‖2

(ĝT q)2 , (3.53)

which can be express as

(1−δ
2)τ2 ≥ (δτ− 1

ω
)2
(‖ĝ‖2‖q‖2

(ĝT q)2 −1
)
, (3.54)

Since (1−δ 2) is positive we can rewrite (3.54) as

τ2

(δτ− 1
ω
)2
≥
(‖ĝ‖2‖q‖2− (ĝT q)2

(1−δ 2)(ĝT q)2

)
, (3.55)

which implies that
τ

1
ω
−δτ

≥ ∆, (3.56)

where

∆ :=

√
‖ĝ‖2‖q‖2− (ĝT q)2

(1−δ 2)(ĝT q)2 . (3.57)
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By using (3.56), we have

τ ≥ (
1
ω
−δτ)∆,

⇔ τ(1+∆δ )≥ ∆

ω
,

⇔ τ ≥ ∆

(1+∆δ )ω
. (3.58)

By substituting (3.48) into (3.58), we obtain

1
δ

( 1
ω

+κ
ĝT q
‖ĝ‖2

)
≥ ∆

(1+∆δ )ω
, (3.59)

which yields

κ
ĝT q
‖ĝ‖2 ≥

δ∆

(1+δ∆)ω
− 1

ω
=

−1
(1+δ∆)ω

, (3.60)

and consequently 
κ ≥

( −1
(1+∆δ )ω

)‖ĝ‖2

ĝT q
if ĝT q > 0,

κ ≤
( −1
(1+∆δ )ω

)‖ĝ‖2

ĝT q
if ĝT q < 0.

(3.61)

In our proposed method, we choose

κ =
( −1
(1+∆δ )ω

)‖ĝ‖2

ĝT q
, (3.62)

where ∆ is computed from (3.57). After κ has been computed, we define the
search direction as

p := Z p̂(κ) =−Z(
1
ω

ĝ+κq) (3.63)

Now we can summarize the description outlined above into the following algo-
rithm

Algorithm 3.5.1. (Local step)

Step 2: (Initialization)

Given ω,U,N, a fixed number δ ∈ (0,1) and the gradient g of the current
iterate x. Assume that the set of free variable I at x has been determined.
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Step 1: (Computing p̂ = B̂−1ĝ )

Set

θ :=
1
ω

ĝ := ZT g

Û := ZTU

T := N +θÛTÛ

h :=−θÛT ĝ
h := T\h
q := θÛh
p̂ :=−θ ĝ−q

Step 3: (Testing the angle condition (3.45))

Set

nĝ := ‖ĝ‖
np̂ := ‖ p̂‖

If ĝT p̂
n p̂nĝ
≤ δ , then go to step 4

Otherwise,set

η := ĝT q
nq := ‖q‖

∆ :=

√
n2

ĝn2
q−η2

η2(1−δ 2)

κ :=
( −θ

1+∆δ

)n2
ĝ

η

p̂ :=−θ ĝ−κq

Step 4: (Computing the search direction)

Set
p := Z p̂
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Chapter 4

Numerical Experiments

4.1 Introduction
In this chapter, we test our proposed algorithm by solving a list of bound con-
strained optimization problems. These problems are selected from CUTEr collec-
tion [14] and most of them are large scale problems. Then, the performance of our
algorithm is demonstrated for different choices of the limited memory parameter
r. Finally, we compare the performance of our algorithm with L-BFGS-B.
Throughout our implementations, we use

‖gred(x)‖∞ ≤ 10−5 (4.1)

as the termination condition. Moreover, while performing the bent line search ap-
proach if the break point search fails, we perform the efficient line search by means
of the routine of MORÉ and THUENTE [23] which tries to impose the strong Wolfe
conditions. After testing a small number of test problems, we have realized that
the algorithm works well with the choice of δ = 0.01 for the most of problems,
where δ is defined in the angle condition (3.14). All of codes have been written
in MATLAB and we have used the new MATLAB interface of CUTEr testing en-
vironment from http://www.cuter.rl.ac.uk/download.html.

4.2 Numerical Results
First, we have tested our algorithm with different choices of the limited memory
parameter r which represents the number of stored correction pairs in the correc-
tion matrices. Namely, we set r = 3, r = 5, r = 17 and r = 29. The corresponding
numerical results are represented by table 4.1, where the first column in this table
reveals the names of test problems, the second column represents the dimensions
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n of the problems. We record the total run time Time, the number of function
evaluations n f e and the number of gradient evaluations nge for each test problem.

Problem n r = 3 r = 5 r = 17 r = 29
Time nfe nge Time nfe nge Time nfe nge Time nfe nge

TORSION1 5476 1.962 2880 318 1.313 1933 207 2.225 2049 241 3.685 2062 242
TORSION2 5476 1.884 2406 266 1.222 1711 196 2.034 1780 211 5.246 2786 342
TORSION3 5476 1.221 1395 191 1.119 1590 230 1.206 1092 152 2.700 1487 212
TORSION4 5476 1.144 1382 187 0.666 929 128 0.928 844 114 3.321 1807 267
TORSION6 5476 0.610 638 97 0.377 501 70 0.611 514 74 0.643 446 66
BDEXP 5000 0.081 2 2 0.015 2 2 0.005 2 2 0.010 2 2
BQPGASIM 50 0.220 347 64 0.035 249 43 0.033 173 30 0.040 173 30
JLBRNGA 10000 9.422 8158 853 6.703 5543 569 13.467 6354 671 35.113 10719 1217
LINVERSE 1999 10.479 27162 3187 3.168 8334 810 5.040 9284 842 6.640 8395 740
MCCORMCK 5000 0.408 221 41 0.364 273 80 0.326 184 34 0.308 168 32
PROBPENL 500 0.436 5 3 0.026 5 3 0.004 5 3 0.002 5 3
NONSCOMP 5000 0.151 8 4 0.025 8 4 0.019 8 4 0.006 8 4
OBSTCLAE 10000 9.303 8095 657 4.668 3992 363 8.196 4261 370 13.395 4682 363
OBSTCLAL 10000 3.728 3144 290 2.973 2569 237 3.647 1946 178 5.330 1821 174
OBSTCLBL 10000 3.696 3016 258 3.611 3022 259 5.011 2663 218 7.445 2644 215
OBSTCLBM 10000 3.265 2683 238 2.439 2036 174 4.721 2461 233 6.831 2350 218
OBSTCLBU 10000 3.811 3197 287 3.696 3120 270 4.441 2372 207 5.655 2033 170

Table 4.1: Results of the algorithm 3.3 for various choices of the limited memory param-
eter r

An important observation on the results in table 4.1 is that on these problems
in the case of r = 5 the algorithm works more efficient than in the other cases. In
other word, in the case of r = 5, the algorithm requires less time, function evalua-
tions and gradient evaluations for the most of problems.

In order to analyse the result of table 4.1, we use the performance profile
introduced by DOLAN and MORÉ [11]. This performance profile is defined by

ρAlg(τ) =
number of test problems for which log2(rP,Alg)≤ τ

number of all test problems
, (4.2)

where τ ≥ 0, and rP,Alg is the performance ratio defined by

rP,Alg =
the time required to solve problem P by algorithm Alg

the shortest time required to solve problem P
. (4.3)

Note that, the performance ratio (4.2) can be computed with respect to an ar-
bitrary performance measure, for instance, the number of function evaluations or
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the number of gradient evaluations. Furthermore, if an algorithm Alg fails to solve
a test problem P, the corresponding performance ratio rP,Alg is set to be infinity
(or a large number).

The nondecreasing, piecewise constant function ρAlg : R→ [0,1] is the cu-
mulative distribution function for performance ratio. In the performance profiles
the value of ρAlg(τ) at τ = 0 yields the percentage of the test problems for which
the algorithm Alg is the best and the value of ρAlg(τ) for large enough values of
τ gives the percentage of the test problems that the algorithm Alg can solve. In
addition, the value of ρAlg(τ) at τ = 1 gives the probability that the algorithm Alg
will win over the rest of algorithms. Therefore, if the number of wins is of our
interest, we need to compare the value of ρAlg(1) for all of the algorithms.

The figures 4.1 show the performance profile of the algorithm 3.3 based on the
table 4.1. These figures reveal the relatively performance of the algorithm for dif-
ferent setting of the limited memory parameter r with respect to the performance
measures including the number of objective function evaluations, the number of
gradient evaluations and the required time. Furthermore, the relative efficiency
of the algorithm in each case can be directly observed from the figures. In other
word, the higher is the particular curve, the better is the corresponding case for
the algorithm.

As we can see from the figure 4.1(b), in the case r = 5 the algorithm has the
most wins, consequently, it has the highest probability for being the optimal solver
when the computational time is compared. However as the figures 4.1(c) , 4.1(a)
reveal, the performance of the algorithm is almost the same in all the cases when
the number of function or gradient evaluations is compared. In the case of r = 3
and r = 5 updating the Hessian matrix is cheaper than the other cases while in
these cases the algorithm needs more iterations to solve the problem in compari-
son to the cases r = 17 and r = 29. Since in cases r = 19 and r = 29 the updating
Hessian matrix require longer time in comparison to evaluation of the objective
function and gradient, the algorithm has the better performance in the case of
r = 5. Although in case r = 3, updating the Hessian matrix is cheaper than in
the rest of cases, the algorithm needs more iterations to reach the stationary point.
This is due to the fact that in the case r = 3, the limited memory Hessian matrix
is updated by using just the three most recent correction vectors at each iteration.
Therefore, the limited memory Hessian matrix can not be good approximation for
the Hessian matrix and consequently the algorithm performs many iterations to
solve the problem.

In the next part of this chapter we compare the performance of our algorithm in
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(a) Function evaluations

(b) Time

(c) Gradient evaluations

Figure 4.1: Performance profiles of the algorithm 3.3 based on the table 4.1
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tow cases with L-BFGS-B method described in 2.6. The L-BFGS-B codes is writ-
ten in MATLAB from [6]. The test functions are the same test function presented
in table 4.1. we test our algorithm with different bent line search approaches:

Alg 1: The bent line search used in the algorithm performs the bisection proce-
dure to improve the index at each iteration.

Alg 2: The bent line search used in the algorithm does not perform the bisection
procedure.

The figure 4.2 shows the performance profiles of our algorithm in comparison
to L-BFGS-B. As performance measures, we use number of objective function
evaluations (4.2(b)), number of gradient evaluations (4.2(c)), and required com-
putational time (4.2(a)). In figure 4.2(a) we see that our algorithm in both of
cases dominates L-BFGS-B. This stems from the following facts: first, updating
the limited memory SR-1 matrices is cheaper that updating the limited memory
BFGS matrices. In addition, at each iteration our algorithm needs to solve just a
system of linear equations of order r, while at each iteration the L-BFGS-B al-
gorithm needs to compute the inverse of a 2r× 2r matrix and a linear system of
order r for computing the direction in direct primal method. Finally, after solving
the chosen test functions by these algorithms, we have realized that the L-BFGS-
B needs more iterations compared to both variants of our algorithm. This means
that our algorithm is able to identify the optimal active set of bound constraints
faster.

In contrast to figure 4.2(a), as it is illustrated in figure 4.2(c), the L-BFGS-B
dominates our algorithms when the number of objective function evaluations is
compared. While performing the bent line search, our algorithm evaluates objec-
tive function at many breakpoints. Specially in the case of large scale problem,
the number of break point is usually large at each iteration. We consider this as a
major drawback of our algorithm.

As we have mentioned before, our algorithms compared to L-BFGS-B need
less iterations to solve most of the chosen test problems. This fact can be eas-
ily observed from figure 4.2(c). As we can see from figure 4.2(c), the curves
corresponding to Alg1 and Alg2 are higher than the red curve corresponding to
L-BFGS-B. Moreover, in all of the algorithms, we have only a gradient evaluation
at each iteration.

Now if we consider the two above variants of our algorithm, it can be easily
observed that the Alg2 is faster than Alg1 with respect to the chosen test functions.
This is due the fact that at each iteration Alg1 performs many objective function
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(a) Time

(b) Function evaluations

(c) Gradient evaluations

Figure 4.2: Performance profiles of the algorithm 3.3 compared to L-BFGS-B
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evaluations during the bisection procedure. This consideration is demonstrated by
figure 4.2(b).
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Chapter 5

Conclusion and Future Work

In this thesis, we introduced a new quasi Newton method for solving large scale
bound constrained optimization problems. This method contains a number of fea-
tures that make it distinguished from the other algorithms: firstly, we use the com-
bination of the steepest descent directions and quasi Newton directions in order
to find the optimal active variables. Moreover, in order to prevent the zigzagging
behaviour, a new schema for active set method is presented. Lastly, the quasi
Newton direction is computed by limited memory SR-1 matrices. As it is known
the SR1 matrices are not necessarily positive definite. Therefore the quasi New-
ton direction computed by these matrices need not to be a descent direction. In
such case we regularize the direction such that it will be a descent direction. We
reported numerical results of our algorithm applied to a list of bound constrained
problems from CUTEr. In addition, the relative performance of our algorithm
compared to L-BFGS-B have been demonstrated.

Although our proposed algorithm appears to be effective already, there of
some further points to be considered in order to make algorithm more efficient.
As we have mentioned in previous chapter, the bent line search method involved
in our algorithm requires too many objective function evaluations to find the step
length at each iteration. This fact makes our algorithm inefficient in case of large
scale problems. In future work we expect to propose a new bent line search that
requires less function evaluations. Moreover, during the implementation of our
algorithm, we have observed for a few test problems at some iterations the lin-
ear system (3.43) is ill-conditioned. As further work we would like to equip our
algorithm with a preconditioning method.
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