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2 Abstract 

Atherosclerosis and osteoporosis are two wide-spread, age-related diseases where calcium 

deposition, regulated by molecular mechanisms of osteogenic differentiation, plays a key role. 

Recently, we found that senescent endothelial cells mitigate osteogenic differentiation of 

adipose-derived stem cells by secreting a microRNA, miR-31, in microvesicles. Based on this 

finding we tested two hypotheses. First, if miR-31 inhibits the calcification of vascular 

smooth muscle cells - a cell type that was shown to undergo osteogenic differentiation in 

arteriosclerosis, causing vascular calcification. Second, if miR-31 is up-regulated in 

endothelial cells upon long-term treatment with hydrocortisone (HC) - a glucocorticoid 

inducing osteoporosis. We observed a decrease in calcification of VSMCs transfected with 

miR-31 in cells from one donor. Prior to this assay we tested different concentrations of 

Ca
2+

/Pi and adapted a previously published method based on staining of cells with SYBR 

Green I to normalize our data to DNA content. In addition, we attempted to design a 

luciferase reporter plasmid to identify further targets of miR-31 which remained unfinished 

due to time constraints. In order to investigate the long-term effect of HC on endothelial cells 

we incubated HUVECs with or without HC for 5 passages and determined expression of miR-

31 by qPCR. Despite a significant upregulation of miR-31 in previous short-term 

experiments, we did not observe a significant difference in miR-31 expression between cells 

receiving HC and control cells. 

3 Introduction 

3.1 Ageing and cellular senescence 

The ageing human being is challenged by several biological changes throughout its life. The 

individual suffers from a progressive loss of function, a decreasing fertility and increasing 

mortality
1
. There are diseases like cancer, Alzheimer's disease, type 2 diabetes, 

arteriosclerosis or osteoporosis to name just a few. The latter two, arteriosclerosis and 

osteoporosis, are two age-related diseases this thesis will address. Diseases affecting the 

circulatory system such as arteriosclerosis are the main causes of death for Europeans aged 65 

years and older
2
. Even Ötzi, the iceman discovered in the Alps who lived about 5300 years 

ago, suffered from arteriosclerotic calcifications
3
. Today, the number of aged individuals is 

rising in many countries, accompanied by rising age-related diseases and rising health costs. 

To understand the regulations and underlying causes of ageing and its diseases is, therefore, 
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one of the major challenges biomedical research has to face in the 21
st
 century in order to 

bring more health into the later years of an extended lifespan. 

A first clue on how ageing might work was discovered five decades ago. Hayflick and 

colleagues reported that cells in culture show a limited ability to proliferate. After a period of 

strong cell growth proliferation stops even though cells are still provided with sufficient 

nutrients, growth factors and space. This condition was termed replicative senescence and is 

defined as a permanent cell-cycle arrest of damaged cells. Senescent cells are unable to 

proliferate but remain metabolically active. This in vitro behaviour of cells was soon linked to 

organismal ageing and there is mounting evidence that replicative senescence indeed 

promotes ageing
4
. 

Besides the irreversible growth arrest, the senescent phenotype includes morphological 

changes
5
 and an altered gene expression

4
. Potent cell-cycle inhibitors are the main cause for 

growth arrest and usually, but not always, leave senescent cells with a DNA content that is 

characteristic of G1 phase. In addition, genes responsible for cell-cycle progression are 

repressed. Many cell types develop a resistance to certain apoptotic signals which might 

explain why senescent cells accumulate with age and why they are so stable in culture. 

Senescence and apoptosis have one regulator in common – the tumour suppressor p53. 

However, the exact mechanism that leads to apoptosis resistance waits to be elucidated. 

Furthermore, gene expression seems to change in a way that is unrelated to growth arrest or 

apoptosis resistance
4
. Intriguingly, the secretome of senescent cells undergoes profound 

changes and can affect the tissue microenvironment. This phenomenon was termed the 

senescence-associated secretory phenotype (SASP)
5
 - a key finding that is the basis of our 

work on the calcification of vascular smooth muscle cells (VSMCs). Additionally, senescent 

cells show expression of a senescence-associated β-galactosidase (SA-β-gal)
6
. 

Why does such a condition as cellular senescence exist? After its observation two hypotheses 

were established. First, cellular senescence could be a tumour-suppressive and, thus, 

beneficial mechanism. Second, cellular senescence in vitro may recapitulate the loss of the 

regenerative capacity of cells in vivo. The ability for tissue renewal deteriorates with age and 

cellular senescence could be the underlying cause
4
. 

Before we discuss the various forms of cellular senescence in detail let us have a brief look at 

the evolutionary context of this phenomenon. Cancer can be a fatal disease and can affect an 

organism's longevity considerably. Uninhibited proliferation is an essential part of 
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tumourigenesis and cellular senescence may be a mechanism that evolved to stop cancer cells 

from proliferating. Due to various hazards that limited the life of a human being throughout 

its evolution the tumour-suppressor mechanisms had to be effective for a shorter life span 

compared to the longevity of modern man. The possibly disadvantageous sides of senescence, 

for instance reduced tissue renewal, did not come into effect and, hence, there was no 

selective pressure to adapt this mechanism
4
. Consequently, senescence can be beneficial to 

young organisms but detrimental to old ones. This describes the concept of antagonistic 

pleiotropy, an important evolutionary theory of ageing
1
. 

Previously we have defined cellular senescence as a permanent growth arrest of damaged 

cells. The damage can be caused by several stressors such as shortened telomeres, non 

telomeric DNA damage, strong mitogenic signals, chromatin perturbations or other non-

genotoxic stresses
4
. All these stimuli can induce different forms of cellular senescence some 

of which we shall discuss now in greater detail. 

3.1.1 Replicative senescence 

After explantation of primary cells the proliferative capacity undergoes three phases. In phase 

I, the establishment of the culture before the first passage, the cells show little proliferation. 

Cells in phase II proliferate quickly whereas proliferation in phase III gradually ceases and 

finally comes to a complete halt
7
. One of the reasons for the transition from phase II to phase 

III is the progressive shortening of telomeres (repetitive sequences which form the protective 

ends of chromosomes). Since DNA polymerase is unable to replicate the lagging strand 

entirely, telomeres shorten each round of replication until they reach a critical minimal length. 

The subsequent state is termed replicative cellular senescence and the cell reached the so 

called "Hayflick limit"
5
. 

Once the telomeres do not provide a protective structure for chromosomes anymore, a DNA 

damage response (DDR) is triggered. The interaction of the cell cycle machinery and DDR-

associated factors is based on phosphorylation and activation of cell cycle proteins such as 

CDC25 and p53
5
. This process leads to a growth arrest that allows the cell to repair the DNA 

damage. However, if the DNA damage surpasses a certain limit the growth arrest remains 

permanent and the cell undergoes either apoptosis or senescence. The factors that decide 

which of the two possible outcomes takes place are not fully understood yet. The cell type, the 

nature of the damage as well as the duration and intensity of the signal seem likely to 

determine the outcome
8
. 
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There is, however, a way to bypass replicative senescence. Telomerase is able to add 

telomeric DNA repeats to shortening chromosome ends
9
. It consists of the catalytic protein 

TERT (telomerase reverse transcriptase) and an RNA template. Most cell types do not express 

telomerase or fail to express it at a sufficient level that maintains the length of telomeres
10

. On 

the contrary, most cancer cells and cells from the germ-line show effective TERT expression. 

Replicative senescence of human somatic cells can be avoided by ectopic expression of 

TERT. The result is an immortalized cell unable to undergo senescence caused by telomere 

erosion. Still there are stimuli such as non-telomeric DNA damage which can induce other 

forms of senescence
4
. 

3.1.2 Oncogene-induced senescence 

Oncogenes are mutant forms of normal genes that, together with further mutations, transform 

cells and, as a result, cause cancer. As a response to many oncogenes normal cells are able to 

undergo senescence. Oncogenes that elicit senescence usually promote cell proliferation via 

expression of strong mitogenic signals. Consequently, senescence may be an attempt of an 

incipient cancer cell to counter its transformation
4
. 

There are similarities between oncogene-induced and replicative senescence. Both stimuli, 

oncogenes and eroded telomeres, induce p16
4
 and a DDR as a result of aberrant DNA 

replication like misfired replication origins or replication fork collapse. The DDR, in turn, 

induces and maintains the senescent state
11

. 

Oncogene-induced senescence was first described as an in vitro phenomenon in normal 

fibroblasts by overexpression of oncogenic H-rasV12, a cytoplasmic transducer of mitogenic 

signals
12

. Not all cells are capable of undergoing this version of senescence. Nonetheless, 

there is evidence that supports its role in tumour suppression in vivo. It has been shown in 

mice that activated oncogenes or the loss of tumour suppressors elicit benign lesions and that 

these lesions contain senescent cells. Similarly, senescent cells that express the oncogene 

BRAF were found in benign naevi in human skin
4
. In both cases, however, the senescent cells 

were prominent in the pre-malignant state but scarce when the lesions became malignant. It is 

yet unclear if the tumours arise out of senescent cells which reverse the growth arrest or if 

they arise out of nonsenescent cells that eventually bypass senescence or apoptosis
11

. 

Interestingly, recent findings endorse the view that senescence is not only involved in tumour 

suppression but also in tumour promotion. This can be explained by the aforementioned 

SASP. Senescent cells secrete inflammatory factors which, in turn, fuel cancer progression
13

. 
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3.1.3 Stress induced senescence in vitro 

Cells in culture have to cope with conditions that differ from those experienced in vivo. The 

artificial environment provides abnormal concentrations of growth factors and nutrients or 

lack neighbouring cell types and components of the extracellular matrix. The resulting culture 

shock can initiate stress-induced premature senescence (SIPS). The ambient O2 level also 

plays a critical role. Unlike human cells, many mouse cells express telomerase and feature 

long telomeres (>20kb
4
). Nevertheless, they undergo SIPS when cultured under standard 

culture protocols which provide supraphysiological oxygen levels of 20%
5
. Human 

keratinocytes senesce under standard culture conditions despite long telomeres unless they are 

grown on feeder layers that consist of fibroblasts
4
. 

3.1.4 Linking cellular senescence with ageing 

Cellular senescence was first observed in vitro and has been studied mainly in cell culture in 

the past few decades
4
. Knowledge about senescent cells in vivo is now accumulating and the 

link between cellular senescence and ageing is currently taking shape, supported by three 

recent publications which we shall discuss later. 

In order to identify senescent cells in vivo, markers had to be established. However, none of 

these markers is expressed exclusively by senescent cells. Still, the number of cells expressing 

one or more of senescence-associated markers is low in young organisms but increases with 

age. Senescent cells were found in many epithelial organs, the haematopoietic system and the 

vasculature and, intriguingly, at sites of chronic age-related diseases like atherosclerosis. 

Furthermore, there is evidence that a decline in haematopoiesis, neurogenesis and pancreatic 

function in mice is linked to p16-dependent senescence that leads to a suppression of stem-

cell proliferation and tissue renewal. This might explain partly why brain and bone-marrow 

function deteriorate with age. It is, however, unclear if the p16-positive stem and progenitor 

cells are senescent or if the activities of p16 that fuel ageing are caused by mere growth 

suppression without actual senescence. Further research in mice revealed that a constitutively 

elevated p53 activity leads to multiple signs of premature ageing while these mice stay 

remarkably cancer-free
4
. Several other mouse models show a striking concurrence of 

senescent cells in vivo and age-related degenerative pathologies
11

. 

Another important characteristic of senescent cells - the SASP - can be linked to ageing. 

Senescent cells secrete factors that affect cell proliferation and differentiation, tissue structure 

and vascularization. These factors might disrupt the structure and function of tissues. In 
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addition, there are many inflammatory cytokines among the secreted factors of senescent 

cells. This may explain the low-level chronic and 'sterile' inflammation of ageing tissues
13

. 

A direct approach - eliminating cellular senescence and, as a result, extending life span and 

improving tissue function - was, until recently, not successful because organisms incapable of 

undergoing cellular senescence unavoidably develop cancer. Evidence linking cellular 

senescence with ageing was rather circumstantial
11

. Three recently published studies seem to 

have accomplished to provide this direct link. 

Jaskelioff et al. took an interesting and direct approach to investigate the effect of telomerase 

on telomerase-deficient mice
14

. All mice included in the study showed significant progeroid 

phenotypes, for instance tissue atrophy, testicular and splenic atrophy, decreased fecundity 

and longevity as well as intestinal crypt depletion. The knock-in mouse model featured a 4-

hydroxytamoxifen (4-OHT)-inducible TERT-oestrogen receptor and short dysfunctional 

telomeres. Telomerase was reactivated by applying 4-OHT for four weeks. The result was a 

remarkable tissue rejuvenation not seen in mice that received the vehicle. Testes and spleen 

were restored to a normal size. Fecundity, longevity and neural fitness increased, telomeres 

were elongated and DNA damage signalling stopped. It may be likely that replicative 

senescence contributed to the progeroid phenotype of telomerase-deficient mice, nevertheless, 

the study did not provide any evidence that senescent cells were found in the atrophic tissues 

nor did it compare the number of senescent cells in control mice with mice receiving 4-OHT. 

Such evidence, however, was delivered recently by another study. Baker et al.
15

 established a 

mouse model based on BubR1
H/H

 mice which develop an age-associated phenotype 

characterized by infertility, sarcopenia, fat loss, cataracts, arterial wall stiffening and dermal 

thinning. A known marker for senescent cells - p16
Ink4a

 - accumulates in adipose tissue, 

skeletal muscle and eye of these mice. A transgene was introduced to the BubR1
H/H

 mice that 

enabled the efficient elimination of p16
Ink4a

-positive cells upon administration of the synthetic 

drug AP20187. These cells also proved to express other senescence-associated markers. 

Early-life treatment led to a delayed onset of sarcopenia and cataracts, larger muscle fibre 

diameters and an increased performance in treadmill exercise tests compared with untreated 

mice. Moreover, the loss of adipose tissue was prevented. The treatment did not have an 

effect on longevity which the authors argue is due to the fact that most BubR1
H/H

 mice die of 

cardiac failure. Heart and aorta consist of tissues that do not express p16
Ink4a

 when undergoing 

senescence. Inguinal adipose tissue, skeletal muscle and eye of AP20187-treated mice showed 
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a decrease in senescence-related markers. The clearance of p16
Ink4a

-positive cells later in life 

did not reverse the age-related decline but attenuated its progression. 

One could argue that these two in vivo studies are based on mouse models that develop 

progeroid phenotypes early in life and that the knock-in of telomerase or the clearance of 

p16
Ink4a

-positive cells just reverses this artificial phenotype. Another study published last 

month by Bernardes de Jesus et al.
16

, however, demonstrates similar beneficial effects of a 

telomerase gene therapy on normal C57BL/6 mice. An adeno associated virus of wide tropism 

introduced telomerase in 1- and 2-year old mice. The result was a remarkable increase in 

median lifespan, health and fitness. The improvement was also detectable on molecular 

biomarkers of ageing. Moreover, telomerase-treated mice did not show an increased cancer 

rate compared to their control littermates. Introduction of a catalytically inactive form of 

mTERT did not have any effect, suggesting that elongation of telomeres led to the improved 

health. 

In conclusion, the link between ageing and cellular senescence is currently taking shape. 

Despite mounting evidence that senescent cells drive ageing, there are also other factors that 

certainly contribute to age-related diseases - apoptosis, for instance, or the simple loss of 

functionality of cells
11

. 

3.2 The ageing blood vessel 

There are many risk factors in life for developing cardiovascular diseases (CVDs) like stroke, 

congestive heart failure, hypertension or atherosclerosis. Among them one can find genetic 

factors, diabetes, dyslipidemia or a sedentary lifestyle. Advanced age, however, is the main 

risk factor
17

. As mentioned above, CVDs are the main cause of death in aged individuals. 

Before we take a close look to the various changes the vasculature experiences with 

advancing age let us familiarize ourselves briefly with the blood vessel. 

The artery consists of three layers called the tunica intima, tunica media and tunica adventitia 

(Figure 1). The inner coat - the one that has direct contact with the blood stream - is called the 

tunica intima, or intima. It consists of a single layer of plain endothelial cells which is 

supported by an elastic, fenestrated membrane (internal elastic lamina). The middle layer, 

termed the tunica media or media, mainly consists of VSMCs and elastic fibres. Tunica 

adventitia, also known as tunica externa, is the outermost layer and consists of connective 

tissue. It anchors the blood vessel to the surrounding tissue and in some cases is supported by 

a thin elastic membrane called the external elastic lamina
18

. 
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Figure 1. Anatomy of a large artery. The arterial wall consists of three layers called intima, media and 

adventitia. The normal intima usually is thinner; its size is exaggerated in this figure. Vascular smooth muscle 

cells are located in the media. 

The blood vessel undergoes several age-related alterations. It is, nonetheless, difficult to 

distinguish between changes caused by age per se and changes caused by cardiovascular or 

noncardiovascular diseases such as diabetes, borderline hypertension, thyroid dysfunction or 

heart failure. Surprisingly, age-related changes in the cardiovascular system do not always 

prove to be a decline in function. Some of them not only remain unimpaired but rather 

become enhanced in age
19

. 

First, let us have a look at the structural 

changes of the vasculature. Large arteries 

like the aorta have an enlarged lumen 

and become stiffer, elongated and 

tortuous
19

. The arterial wall thickens 

which primarily affects the intima and 

the media, with the thickening in the 

intima being more pronounced
20

. 

Endothelial cells can show an irregular 

shape and an increased height. Healthy 

elderly subjects do not show endothelial 

lesions or discontinuities. VSMCs may 

infiltrate the subendothelial space where 

an excessive deposition of proteoglycans and collagen can be observed. In addition, an 

unusually high number of macrophages and other leukocytes can be found. The ageing 

arterial intima may also secrete several substances involved in atherosclerosis and 

age-related vascular changes
19

 

Arterial wall thickness (intima-media) ↑ 

Subendothelial collagen ↑ 

Elastin ↓ 

Elastin fragmentation ↑ 

Proteoglycans ↑ 

Matrix metalloproteinase activity ↑ 

Intimal migration/proliferation of VSMCs ↑ 

Arterial distensibility ↓ 

Pulse wave velocity ↑ 

Total peripheral resistance ↑ 

Endothelial permeability ↑ 

Endothelial nitric oxide release ↓ 

Inflammatory markers/mediators ↑ 

Superoxide dismutase activity ↓ 

Adrenergic-mediated vasodilation ↓ 

Table 1. ↑ increase, ↓ decrease  
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inflammation, for instance proinflammatory cytokines, transforming growth factor-β (TGF-β), 

matrix metalloproteinases, adhesion molecules
19

 and IL-8
21

. 

Along with structural changes come functional changes. The deteriorating elasticity of arteries 

results in the impairment of the cushioning function of the aorta and its major branches. As 

mentioned before, aged arteries show increased stiffness which is partly dependent on 

endothelial and humoral regulation of vascular smooth muscle tone
19

. The endothelium sees a 

decline in its function as a barrier and, thus, plasma proteins are able to cross into the media 

which contributes to the arterial thickness
22

. The endothelial dysfunction is in part due to the 

increased production of reactive oxygen species (ROS)
23

. A summary of the structural and 

functional changes of the vasculature can be found in Table 1
19

. 

All these changes can be found in aged individuals that do not show any signs of CVDs such 

as atherosclerosis. Nevertheless, they form the basis on which CVDs can prosper
17

. Most of 

these age-related characteristics can also be found in atherosclerotic blood vessels which, in 

addition, develop focal lesions, vessel stenosis (narrowing) and plaque rupture
19

. A 

contribution to a better understanding of the processes of arteriosclerosis was one of the major 

goals of this thesis. The term arteriosclerosis frequently leads to misunderstandings because it 

is often used interchangeably with the term atherosclerosis. However, these two terms are 

different. Arteriosclerosis sums up three different lesions: atherosclerosis, Mönckeberg medial 

calcific sclerosis and arteriolosclerosis
24

. 

Atherosclerosis is defined as a lesion of large and elastic muscular arteries that develop an 

atheroma. The atheroma is a swelling of the arterial intima that consists of macrophages, 

lipids (e.g. cholesterol), connective tissue and calcium deposits. Mönckeberg medial calcific 

sclerosis, also known as Mönckeberg's sclerosis, is characterized by a calcification of the 

tunica media of large and medium-sized arteries. It rarely occurs in patients younger than 50 

years. Whether Mönckeberg's sclerosis involves the calcification of the internal elastic lamina 

- considered a part of the intima - or not is currently discussed in the field. Arteriolosclerosis, 

unsurprisingly, affects arterioles and is associated with diabetes mellitus, chronic kidney 

disease and hypertension
24

. 

Calcification of VSMCs occurs in both atherosclerosis and Mönckeberg's sclerosis. 

Atherosclerosis, in short, starts with the aggregation of low density lipoprotein (LDL) in the 

intima where it is prone to oxidation. Monocytes transmigrate across the endothelium into the 

intima, differentiate into macrophages, absorb the oxidised lipoprotein and become so called 
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foam cells. The resulting 'fatty streaks' in the artery have a fibrous cap consisting of 

extracellular matrix produced by VSMCs that migrated from the media into the intima where 

they start to proliferate and calcify. The fibrous cap surrounds a lipid-rich 'necrotic core'. 

Ultimately, the plaque can cause a narrowing of the vessel (stenosis) or ruptures, leading to 

thrombosis and infarction or stroke
25

. 

Mönckeberg's sclerosis is highly associated with cardiovascular mortality. It contributes to 

arterial stiffness which elicits increased pulse pressure and left ventricular atrophy
26

. 

Atherosclerosis is the leading cause of deaths in western countries. It is, therefore, important 

to understand the process that leads to the calcification of VSMCs. We shall discuss vascular 

calcification and its controversial role in atherosclerosis in detail in another chapter where we 

elucidate its similarity to bone formation. Prior to this, let us have a look how cellular 

senscence may contribute to vascular ageing. 

3.3 Cellular senescence in cardiovascular diseases 

At first glance, replicative senescence of endothelial cells seems unlikely to play an important 

role in CVDs because cell proliferation in the endothelium is very low. However, in parts of 

the vasculature susceptible to atherosclerosis - bifurcations and branching points - cell 

turnover is increased. At these sites, the bloodstream causes forces of shear and stretch which 

may be a source of chronic injury. The endothelium may respond with a higher cell turnover 

to maintain its integrity. Hence, senescent endothelial cells could accumulate especially at 

these sites. Besides telomere erosion, ROS produced by activated phagocytes or vascular cells 

themselves are another source of stress that may contribute to cellular senescence
27

. 

Indeed, senescent endothelial cells confirmed by SA-β-gal staining have been found in vivo 

on the surface of atherosclerotic lesions
28,29

. Another study demonstrates that coronary 

endothelial cells taken from atherosclerotic lesions have shorter telomeres compared with 

cells of healthy surrounding tissue
30

. Homocysteine, a risk factor for atherosclerosis, enhances 

telomere shortening and accelerates cellular senescence of endothelial cells in vitro
31

. Once 

senescent, endothelial cells show an increased interaction with monocytes. This is probably 

due to the upregulation of adhesion molecules and may promote atherogenesis. Another 

source for the aforementioned ROS is mitochondrial dysfunction. Young patients with a 

mitochondrial disease often suffer from vascular complications without being exposed to 

further risk factors for atherosclerosis. A correlation between mitochondrial DNA damage and 

the extent of atherosclerosis was observed
32

. 
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Not only senescent endothelial cells but also senescent VSMCs can be found in advanced 

atherosclerotic plaques. They are, however, confined to the intima, possibly a result of 

enhanced replication in the plaque
32

. VSMCs taken from atherosclerotic fibrous caps express 

markers of cell senescence and show a senescent morphology. They exhibit oxidative DNA 

damage and shorter telomeres compared with VSMCs taken from tunica media. This suggests 

that not only increased proliferation but also oxidative stress-induced DNA damage is a 

source of cell senescence. Furthermore, the rate of telomere attrition is positively correlated 

with the severity of atherosclerosis
33

. Burton et al. investigated the senescent phenotype of 

VSMCs by microarray analysis and observed that various genes up-regulated in 

atherosclerotic plaques are also highly up-regulated in senescent VSMCs
34

. Many genes that 

are involved in the development of atherosclerosis are differentially regulated upon 

senescence. Among them they discovered genes important in inflammation, tissue 

remodelling and vascular calcification. Another study similarly revealed that VSMCs in 

culture undergo a senescence-mediated osteoblastic transition and, hence, enhance 

calcification
35

. 

Recent work of our group investigated the SASP of endothelial cells (data not published yet). 

Upon senescence, HUVECs (human umbilical vein endothelial cells) enhance expression of 

miRNA-31 secreted in microvesicles. When applied to ASCs (adipose-derived stem cells) 

microvesicles from senescent HUVECs significantly reduce osteogenic differentiation of 

ASCs compared to the application of microvesicles from early-passage HUVECs. This 

suggests that endothelial cell senescence contributes to age-related osteoporosis. Questioning 

why endothelial cells up-regulate a miRNA inhibiting osteogenic differentiation, we 

hypothesized that senescent endothelial cells attempt to reduce calcification of neighbouring 

VSMCs (Figure 2). Calcification of VSMCs shows remarkable similarities to bone 

calcification. 
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Figure 2. The working hypothesis this thesis is based on: (1) senescent endothelial cells (grey) secrete miR-31-

enriched microvesicles that (2) reach mesenchymal stem cells in the bone via the blood stream where they inhibit 

their osteogenic differentiation. Microvesicles also target neighbouring VSMCs (3) where they attempt to reduce 

the calcification (brown) of the tunica media via miR-31. 

As mentioned before, calcification of VSMCs occurs in age-related diseases such as 

atherosclerosis and Mönckeberg's sclerosis. Our findings suggest a role of miR-31 in the 

calcification of bone and - due to the similarity to calcification of VSMCs - vasculature. It is, 

therefore, important to understand the process of vascular calcification and how miRNAs like 

miR-31 may play a role in ageing and CVDs. 

3.4 Calcification in vasculature and bone 

3.4.1 Clinical relevance of atherosclerotic calcification 

The clinical relevance of atherosclerotic calcification and its contribution to plaque rupture is 

still a matter of debate. Plaque rupture is considered to be responsible for most myocardial 

infarctions and stroke. In general, the more calcification is observed in coronary arteries, the 

more significant becomes coronary stenosis. Vascular calcification as detected in patients by 

radiography is an accepted and sensitive marker for atherosclerosis
36

. 

How does the calcification affect plaque stability? Abedin et al. hypothesize that the impact of 

calcification on plaque stability can be divided into two phases based on mechanical 

considerations. The mechanical stress acting on the plaque is highest at interfaces between 

tissues of different stiffness, in this case calcified plaque and cellular plaque. In the first 

phase, calcified spots occur on the plaque and create areas of interface leading to high risk of 

rupture. With increasing calcification, calcified spots coalesce and interface area decreases. 

This marks the second phase where the risk of rupture is declining
36

. On the contrary, another 

study suggests that plaques are less prone to rupture when calcified. Nonruptured plaques 



page 13 

exhibited more deep calcification than ruptured ones, but no difference in superficial calcium 

deposits was found
37

. The position of the calcification with regard to the plaque and the 

necrotic core seems to be an important factor of plaque stability
38

. 

3.4.2 Bone calcification 

Our understanding of how the calcification of the vasculature works has experienced a crucial 

change in the past decade. It was believed to be a process of passive precipitation of mineral 

crystals. Instead, recent findings describe it as an actively regulated process that is, as 

mentioned above, similar to bone mineralization. Osteoblasts are the cells mainly responsible 

for the formation of bones. They produce the extracellular proteins type I collagen, alkaline 

phosphatase and osteocalcin, the expression of the latter often considered characteristic for 

osteoblasts. The extracellular matrix is mainly composed of type I collagen and is called 

osteoid if not yet mineralized. Mineralization happens via the accumulation of hydroxyapatite 

that contains calcium and inorganic phosphate
39

. 

The differentiation of mesenchymal stem cells into osteoblasts is a highly regulated process 

with Runx2 (Runt-related transcription factor 2, also known as Cbfa1) considered the key 

transcriptional factor
40

. Runx2
-/-

 mice lack any signs of ossification
41,42

. Further differentiation 

of osteoblasts into osteocytes, however, is inhibited by Runx2, causing osteopenia and 

multiple fractures when overexpressed in mice. Overexpression led to an increase in immature 

osteoblasts but caused a decrease in mature osteoblasts and osteocytes
43

. Expression of Runx2 

seems to be essential for another important transcription factor in bone formation named 

osterix. Differentiation into osteoblasts and bone formation is impaired in osterix null mice 

while Runx2 is still expressed at a normal level. In contrast, there is no expression of osterix 

in the absence of Runx2
44

. Osterix is critical not only during embryonic development but also 

for postnatal differentiation and function of osteoblasts and osteocytes
45

. Furthermore, the 

tumour suppressor p53 was found to repress osterix expression
46

. 

Several developmental signals regulate the aforementioned transcription factors - hedgehog, 

notch, FGF, BMP and Wnt signalling. Wnt signalling can be either dependent on or 

independent of β-catenin. In the case of β-catenin-dependent Wnt signalling, Wnt binds to a 

membrane-bound receptor of the frizzled family (Fzd) which stabilizes cytosolic β-catenin. β-

catenin translocates to the nucleus where it initiates the transcription of Wnt target genes. The 

differentiation towards mature osteoblasts requires β-catenin. BMPs (bone morphogenetic 

proteins) also play a critical role in the differentiation of osteoblasts with BMP2 being 
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important for postnatal bone formation
39

. Osterix is regulated by BMP2 via Runx2 and 

Msx2
47

. 

Further regulatory factors involved in bone calcification have been determined, among them 

alkaline phosphatase (ALP), matrix Gla protein (MGP) and inorganic pyrophosphate (PPi). 

MGP and PPi both inhibit the mineralization of the extracellular matrix. ALP is able to cleave 

PPi and, thus, promotes bone calcification. The above described regulatory factors have also 

been found in blood vessels, in particular at sites of medial sclerosis. A differentially 

regulated expression can be observed when comparing diseased arteries with non-diseased
40

. 

3.4.3 Osteoblastic transition of VSMCs 

VSMCs seem to be the key players in calcification as seen in atherosclerosis and 

Mönckeberg's sclerosis. Mice deficient for MGP exhibit strong medial calcification and die of 

haemorrhaging and vascular rupture
48

. MGP is a circulating protein and is expressed by 

VSMCs. Rescuing MGP expression exclusively in VSMCs of MGP
-/-

 mice via the SM22α 

promoter avoids medial calcification which further shows that production of MGP locally by 

VSMCs is sufficient to prevent mineralization of the tunica media
49

. Membrane-bound matrix 

vesicles released by VSMCs have been linked to calcification in vivo and they were shown to 

contain MGP and fetuin-A, another potent and circulating inhibitor of calcification, in an in 

vitro study
50

. The same study demonstrated that apoptotic bodies also play a role in 

calcification and that inorganic phosphate induces VSMC calcification
50

. Uremic serum, as 

seen in patients with chronic kidney disease who frequently suffer from vascular calcification, 

was shown to contain higher levels of BMP2, inducing calcification of VSMCs in vitro via 

induction of Runx2
51

. Dedifferentiated VSMCs - the state in which they migrate into the 

intima during formation of atherosclerotic lesions - were demonstrated to up-regulate 

expression and secretion of BMP2 and, thus, inducing other osteogenic signals that contribute 

to the atherosclerotic intimal calcification
52

. These dedifferentiated VSMCs, however, did not 

exhibit an osteoblast-like phenotype as seen with differentiated VSMCs
52

. 



page 15 

Another inducer of Runx2 expression and 

VSMC calcification is H2O2
53

. However, it is 

possible that DNA damage caused by 

oxidative stress triggered SIPS which, in turn, 

mediated the osteoblastic transition. As 

mentioned earlier, senescent VSMCs have 

been shown to undergo an osteoblastic 

transition, expressing many bone calcification 

regulatory factors. Nakano-Kurimoto et al. investigated the phenotype of senescent VSMCs 

extensively in vitro
35

. Senescent VSMCs exhibit upregulation of Runx2, ALP and type I 

collagen compared to early-passage VSMCs. Runx2 fulfils its function as a key transcription 

factor also in senescent VSMCs. Its knockdown resulted in weaker VSMC calcification with 

lower levels of ALP. Knockdown of either type I collagen or ALP also reduced VSMC 

calcification. Surprisingly, the expression of osterix is decreased despite elevated levels of 

Runx2. Osteocalcin, a marker for mature osteoblasts, is not elevated in senescent VSMCs. 

The authors explain this with the expression of osteocalcin being reported as synchronous 

with osterix
54

 and that senescent VSMCs represent osteoblast-like cells rather than fully 

differentiated osteoblasts. MGP, the potent inhibitor of calcification, is significantly down-

regulated in the senescent state
35

. A study published by Burton et al.
34

 at the same time 

confirms these observations about the senescent phenotype of VSMCs except for BMP2 

which Burton et al. reported as elevated 3-fold rather than unaltered. Investigation of Runx2 

expression in vivo in arteries with medial calcification revealed an increase particularly where 

calcification was detected
35

. A part of the senescent phenotype of VSMCs is summarized on 

Table 2. 

Besides these factors, there are further regulators of osteogenic differentiation. As discussed 

above, our group found a microRNA being up-regulated during senescence of endothelial 

cells and inhibiting osteogenic differentiation. Not only miR-31 but also other miRNAs have 

been determined to be involved in bone formation. Moreover, miRNAs have been found to 

play an important role also in ageing and age-related diseases. 

3.5 MicroRNAs 

MicroRNAs are non-coding RNAs consisting of approximately 21 nucleotides. They are able 

to regulate the translation of mRNAs as well as their localization and polyadenylation. 

miRNAs bind to complementary sequences within their target mRNA and negatively 

the senescent phenotype of VSMCs
34,35

 

alkaline phosphatase (ALP) ↑ 

BMP2 ? 

matrix gla protein (MGP) ↓ 

osteocalcin - 

osteopontin ↑ 

osterix ↓ 

Runx2 ↑ 

type I collagen ↑ 
Table 2. ↑ upregulation, ↓ downregulation, ? con-

flicting results, - unaltered 
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modulate the gene expression post-transcriptionally. They play a critical role in many 

biological events such as proliferation, differentiation, apoptosis, tumourigenesis and, not to 

forget, ageing and bone remodelling
55,56

. 

Genes encoding miRNAs can be found on every human chromosome except for the Y 

chromosome. miRNA genes can be independent genes or can be localized in introns of other 

protein-coding or non-protein-coding genes. Transcription of miRNA genes is done by either 

RNA Pol II or Pol III, its regulation works through transcription factors or epigenetics. The 

transcript is called primary miRNA (pri-miRNA), can be several 1000 nucleotides in length 

and may contain multiple miRNAs that are being co-transcribed (Figure 3
57

). Just as mRNAs, 

the pri-miRNA is capped and polyadenylated. Still in the nucleus, a complex consisting of 

Drosha and DGCR8 (DiGeorge syndrome critical region gene 8) processes the pri-miRNA. 

The pri-miRNA forms an imperfect stem-loop that enables recruiting and binding by DGCR8. 

Drosha, an RNase III-type endonuclease, then cleaves the pri-miRNA, leaving a stem-loop 

precursor miRNA (pre-miRNA) of approximately 60 to 100 nucleotide length. Exportin5 

ensures the transport of the pre-miRNA from the nucleus to the cytoplasm. Exceptions to this 

pathway are mirtrons. Mirtrons are miRNAs located between two exons of another gene. 

Debranched and spliced, they bypass cleavage by Drosha and enter the canonical pathway of 

miRNA biogenesis after nuclear exportation
56

. 

Once in the cytoplasm, a complex of Dicer and TRBP (TAR RNA binding protein) further 

processes the pre-miRNA. Similar to Drosha/DGCR8, TRBP recruits and binds the pre-

miRNA, whereas Dicer is an RNase III-type endonuclease cleaving the pre-miRNA. Cleavage 

by Dicer requires the pre-miRNA stem-loop to contain central mismatches. The result is an 

approximately 21 nucleotide long miRNA duplex that becomes incorporated into another 

complex called RISC (RNA-induced silencing complex) that, among other proteins, includes 

Dicer. Helicases unwind the duplex into two single strands. One strand becomes the guide 

strand (pink in Figure 3), the other one is the passenger strand miRNA* which most often is 

degraded by the RISC. Some miRNAs*, however, remain functional and also regulate gene 

expression
56

. 
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The RISC then delivers the guide strand to the target mRNA. Base pairing mainly occurs at 

the 3'UTR (untranslated region) of the mRNA. A few exceptions have been found that bind to 

the 5'UTR or within the translated region of the mRNA. Binding is crucial in the so called 

seed region of the miRNA (nucleotides 2 to 8). Perfect binding leads to the degradation of the 

target mRNA. Most miRNAs, however, bind imperfectly to their target with a bulge between 

nucleotide 9 and 11. This results in translational repression by blocking the interaction of eIFs 

(eukaryotic initiation factors) or binding to the 5'cap of the mRNA. RISC-miRNA can also 

bind to mRNAs that are already actively translated which reduces elongation or leads to 

enhanced termination
56

. 

3.5.1 MicroRNAs in ageing and cardiovascular diseases 

The first miRNA ever discovered, lin-4 in Caenorhabditis elegans, was also the first being 

linked to the regulation of ageing a few years ago. Since then many other miRNAs have been 

Figure 3. The pathway of 

miRNA biogenesis. Picture 

copied with kind permission of 

Eva van Rooij
54

. miRNA genes 

can be located either intergenic, 

intronic or poly-cistronic. 

Transcription of the gene results 

in a pri-miRNA which is 

cleaved by Drosha (+DGCR8), 

producing a pre-miRNA of 

approximately 60 to 100 

nucleotide length. After 

exportation into the cytoplasm 

by Exportin 5, Dicer (+TRBP) 

cleaves the imperfect stem-loop, 

producing a duplex of about 21 

nucleotides length. RISC 

delivers the guide strand (pink) 

to the target of the miRNA. The 

target can either be degraded or 

its translation can be repressed. 
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found to be significantly up- or down-regulated in ageing. Many of these miRNAs play a role 

as regulators of ageing on the level of the organism, tissue or cellular senescence. A lot of 

work has been done in C. elegans revealing miRNAs associated with the nematode's lifespan. 

Nevertheless, miRNAs involved in mammalian ageing also have been found. A plethora of 

miRNAs are differentially expressed when comparing old versus young tissues. Research in 

mice has revealed various miRNAs being up-regulated in aged liver (e.g. miR-34a, miR-93, 

miR-214), brain (e.g. miR-22, miR-101a, miR-720) and skeletal muscle (e.g. miR-7, miR-

468, miR-542). There are miRNAs targeting both factors promoting longevity and factors 

antagonizing longevity. Moreover, miRNAs have been linked to cellular senescence as 

regulators by targeting factors involved in the response to senescence-inducing cellular stress 

(e.g. oxidative stress) or in tumour-suppressor pathways
58

. 

miRNAs are also important in signalling and function of vascular cells like endothelial cells 

or VSMCs. Many of these miRNAs are deregulated in CVDs such as atherosclerosis or 

coronary artery disease. Several miRNAs play a role in the differentiation of VSMCs. miR-

24, for instance, functions as a mediator of the contractile phenotype of VSMCs. As 

mentioned before, VSMCs can switch between a differentiated (contractile) state and a 

dedifferentiated (proliferative, synthetic) state in which they are able to migrate into the 

intima as seen in atherosclerosis. A critical regulator of this phenotype shifting of VSMCs is 

miR-26a which promotes proliferation and migration while inhibiting differentiation and 

apoptosis
59

. Another activator of VSMC proliferation is miR-146a which also promotes 

neointimal hyperplasia. On the contrary, the miR-143/145 cluster represses proliferation and 

promotes differentiation of VSMCs and is down-regulated in some CVDs, among them 

atherosclerosis. Taken together, miRNAs seem to play an important role in modulating the 

VSMC phenotype which suggests the development of therapies against proliferative CVDs 

based on miRNAs
59

. 

3.5.2 miRNA-31 

According to Valastyan et al.
60

 there are more than 200 mRNAs predicted in silico to be a 

target of miR-31. Many of these targets are genes involved in processes linked to motility like 

cytoskeletal remodelling, cell adhesion and cell polarity. Research done on miR-31 so far 

established its relevance mainly in cancer. For instance, miR-31 acts as an inhibitor of breast 

cancer metastasis
60

. Furthermore, it is down-regulated in highly malignant prostate cancer cell 

lines compared to benign prostate cancers. It targets antiapoptotic E2F6 promoting apoptosis 

induced by chemotherapeutic agents. The downregulation of miR-31, thus, may be involved 
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in apoptosis resistance of prostate cancer cells
61

. In lung cancer, miR-31 increases 

proliferation and tumourigenicity of lung cancer cells and was confirmed to target Dickkopf-1 

(Dkk-1) and DACT-3
62

. Moreover, miR-31 expression is enhanced in oral carcinoma, 

measurable in the saliva of cancer patients and, hence, serving as a potential biomarker of oral 

squamous cell carcinoma
63

. It is differentially regulated in other cancers such as 

glioblastoma
64

 or pancreatic cancer
65

. 

Apart from cancer, miR-31 was linked to various other processes. FOXP3 (forkhead box P3), 

involved in the regulation of regulatory T cells, is a direct target of miR-31
66

. Intriguingly, 

BMP2 was shown to induce upregulation of miR-31 in mouse embryonic mesenchymal 

cells
67

. Controlling of gene expression in murine skin and hair follicle was also associated 

with miR-31, revealing several factors of the BMP and Wnt pathway as its target
68

. Other 

studies link miR-31 with the regulation of neutrophil adhesion
69

, adipogenic differentiation in 

rats
70

 and, interestingly, osteogenic differentiation
71

. Zhang et al. recently published that miR-

31 is down-regulated during osteogenic differentiation of human ASCs
71

 which is consistent 

with our finding of miR-31 inhibiting osteogenic differentiation of ASCs which makes it a 

likely player in the development of osteoporosis. 

3.6 Cortisol-induced osteoporosis 

Glucocorticoids (GCs) are used to treat a variety of diseases, e.g. rheumatoid arthritis or 

polymyalgia rheumatica. They elicit, however, severe side effects such as hypertension, 

insulin resistance, glaucoma and osteoporosis. One of these GCs frequently prescribed is 

hydrocortisone (cortisol, HC). A meta-study revealed that about 3% of the population older 

than 50 years has taken GCs which leave the patients with a higher risk of fractures and bone 

loss. 30% of patients taking a GC more than 6 months develop osteoporosis. The GC-induced 

bone loss is divided in two phases - a rapid first phase with bone loss of 3 to 5% in the first 

year of treatment and a slower second phase with 0.5 to 1% annual bone loss during continued 

use. Moreover, 30% of patients on chronic GC treatment suffer from an incident fracture. GCs 

act on several pathways by binding to a cytosolic GC receptor. This leads to the translocation 

into the nucleus where they regulate various transcription factors
72

. The mRNA levels of type 

I collagen and osteocalcin are reduced by GCs and it has been shown that they modulate the 

expression of osteopontin, bone sialoprotein, fibronectin and insulin-like growth factors
73

. 

Ultimately, GCs lead to an enhanced apoptosis of osteoblasts and osteocytes via activation of 

caspase-3, a decreased differentiation of osteoblasts and a higher life span of osteoclasts 

(responsible for bone resorption). All this results in a critical decline of bone formation. 
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Instead of osteogenic differentiation, GCs promote a shift towards the adipogenic pathway. 

Furthermore, it was shown that GCs inhibit Runx2 and suppress the Wnt signalling pathway 

by increasing the expression of Dkk-1. Silencing Dkk-1 inhibits the ability of GCs to suppress 

the differentiation of osteoblasts
72

. 

As mentioned earlier, miR-31 was found to inhibit osteogenic differentiation of ASCs in vitro 

(data not published yet). Senescent endothelial cells up-regulate secretion of miR-31 in 

microvesicles, suggesting a role of miR-31 in age-related osteoporosis. Treatment with 

hydrocortisone exposes endothelial cells to this inducer of osteoporosis. Hence, we 

hypothesized that hydrocortisone leads to an upregulation of miR-31 in endothelial cells, 

contributing to the development of osteoporosis. Indeed, in a short-term experiment, HC led 

to an upregulation of miR-31 within 24 hours (not published yet).  
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4 Aims 

The aim of this thesis was to establish a role for miR-31 in two widespread diseases - 

arteriosclerosis and cortisol-induced osteoporosis. Unpublished work of our group showed 

that miR-31 is up-regulated in senescent endothelial cells and secreted in microvesicles. These 

microvesicles inhibit the osteogenic differentiation of ASCs which suggests that miR-31 is 

involved in age-related osteoporosis. Osteoporosis is a known and severe side effect of long-

term HC treatment. We hypothesized that HC leads to an upregulation of miR-31 in 

endothelial cells and that miR-31, hence, contributes to the development of cortisol-induced 

osteoporosis. Previously, we observed an upregulation of miR-31 in HUVECs upon short-

term treatment with HC. Therefore, we investigated the long-term effect of HC on the 

expression of miR-31 by HUVECs in vitro. 

Our data also suggest that miR-31 may be involved in arteriosclerosis. In both atherosclerosis 

and Mönckeberg's sclerosis VSMCs undergo osteogenic differentiation which leads to the 

calcification of the arterial intima or media respectively. We hypothesized that miR-31-

enriched microvesicles of senescent endothelial cells target neighbouring VSMCs to inhibit 

their osteogenic differentiation and, thus, mitigate their ability to calcify. Hence, we 

investigated whether transfection of aortic smooth muscle cells (AoSMCs) with miR-31 leads 

to a weaker calcification. Ultimately, a confirmed negative effect of miR-31 on osteogenic 

differentiation of VSMCs could be of clinical use in the treatment of the aforementioned 

diseases. 

Fzd3, a co-receptor involved in WNT signalling, is a confirmed target of miR-31
60

. To 

determine whether further regulatory factors in osteogenic differentiation are targets of miR-

31 we attempted to design a luciferase reporter construct in which the 3'UTR of putative 

targets of miR-31 can be cloned. In case of positive targeting transfection of miR-31 would 

lead to a lower secretion of luciferase into the culture medium which can be detected easily.  
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5 Materials and methods 

5.1 Measurement of calcium-content and SYBR Green I staining 

The calcification of AoSMCs was measured as described previously
74,75

. The accumulated 

calcium was dissolved by incubation of cells in 0.6 M HCl. The amount of calcium in the 

supernatant was quantified with a kit based on the o-cresolphthalein complexone method. 

Together with calcium, ortho-cresolphthalein complexone builds a complex of purple colour, 

which can be detected photometrically. For normalization to DNA-content a previously 

described method was applied with minor modifications
76

. After incubation with 0.6 M HCl, 

the cells remain in the well and are incubated with SYBR Green I, a dye that preferentially 

binds to double-stranded DNA. The quantification of calcium was normalized to the FI results 

(fluorescence intensity) of the SYBR Green I staining (Figure 4). 

For the standard curve of SYBR Green I staining the following numbers of AoSMCs were 

seeded in two 12-well-plates in duplicates: 5.5×10
4
, 6.0×10

4
, 6.5×10

4
, 7.0×10

4
, 7.5×10

4
, 

8.0×10
4
, 8.5×10

4
. Cell count was taken before seeding in the cells using a Bürker-Türk 

counting chamber. The individual duplicates were seeded on two different plates to see if the 

FI-values on different plates are comparable. As soon as the AoSMCs were attached to the 

well, cells were treated according to the following protocol: 

 remove media 

 wash 3 times with PBS w/o Ca & Mg (1 ml/well) 

 add 0.6 M HCl (0.5 ml/well), incubate o/n at 4°C 

 take HCl and measure the Calcium-content with Quantichrom Calcium Assay kit 

according to the manufacturer’s protocol 

 wash 1x cautiously with PBS (1 ml/well) 

 add 70 % EtOH (ice-cold, 1 ml/well), incubate for 2.5 h at -20°C 

 remove EtOH 

 wash 1x with PBS (1 ml/well) 

 for permeabilization add 0.5 ml/well of the following solution: 

 0,1 % Triton X-100 

 50 mM Tris-HCl pH 7.4 

 150 mM NaCl 

 5 mM EDTA 

 0.1 % gelatine 
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 0.05 % Nonidet P40 

 diluted in dH2O 

 incubate 30 min at RT 

 remove permeabilization-solution and wash 1x with PBS (1 ml/well) 

 add SYBR Green I solution (1:10.000 in PBS, 0.5 ml/well) 

 wrap plate in aluminium foil and incubate at RT for 4 h or o/n at 4°C 

 measure Fluorescence Intensity with TECAN-Reader (without lid): 

 Multiple Reads per Well (filled circle): 5x5 

 border: 4 mm 

 Excitation Wavelength: 488 nm 

 Emission Wavelength: 522 nm 

 

 

Figure 4. Procedure of how the calcification of AoSMCs is measured and normalized to the DNA-content. 
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5.2 RNA-Isolation 

Havest cells 

 harvest cells (protocol depends on cell type) 

 transfer cell suspension to a new RNase free Sarstedt tube 

 spin cells down (10 min, 170 g) 

 discard supernatant (keep the pellet) 

Homogenisation 

 add 500 µl TRIzol reagent (invitrogen) to harvest cells 

 homogenize by pipetting up and down 

 incubate at room temperature for 5 min. 

Phase separation 

 cool down centrifuge to 4°C 

 add 200µl chloroform to each tube 

 vortex for 15 seconds 

 incubate for 2-3 min. at 15-30°C 

 spin at 12,000 g for 15 min at 4°C 

RNA precipitation 

 stain RNA by adding 1 µl GlycoBlue (15 mg/ml, Ambion Inc.) to a new RNase free 

Sarstedt tube. 

 transfer the upper clear phase to the new RNase free Sarstedt tube. 

 precipitate RNA by adding 500 µl isopropanol 

 mix thoroughly by pipetting up and down 

 incubate 10 min at 15-30°C 

 spin down at 12,000 g for 10 min at 4°C 

Washing 

 discard supernatant (carefully with small tips) 

 add 500 µl 70% ethanol (1ml/ml Trizol) 

 spin down at 7,500 g for 5 min at 4°C 

 discard supernatant carefully (use small tips) 

 spin down (short) 

 discard the remaining liquid 

Dilution of the RNA pellet 

 dry pellet on air 
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 dilute RNA pellet in 30 µl nuclease free water (NFW) 

 incubate 10 min at 55-60°C 

 then chill on ice 

 store RNA at -80°C 

The absorbance at 260 nm and the A260/280 ratio of each sample was determined to measure 

RNA concentration and purity. 

5.3 cDNA-Synthesis 

5.3.1 TaqMan 

cDNA synthesis was performed using the TaqMan MicroRNA Reverse Transcription Kit 

(applied biosystems) and a Thermocycler T3 (Biometra). See Table 3 for reaction mixture and 

cycle protocol. 

(A) one reaction  (B) cycle protocol 

100mM dNTPs 0.10 µl  16°C 30 min 

MultiScribe Reverse 

Transciptase (RT) 50 U/μL 
0.60 µl 

 
42°C 30 min 

10× Buffer 1.00 µl  85°C 5 min 

RNase Inhibitor 20 U/μL 0.12 µl  4°C pause 

NFW 5.18 µl  Table 3. (A) reaction mixture 

for performing TaqMan-

based cDNA synthesis, (B) 

cycle protocol thereof. 

5× RT-Primer 2.00 µl  

RNA (10 ng) 1.00 µl  

total 10.00 µl  

 

The following primers were used: 

 U6b: RT 1093, RNU6B, 5x RT Primer (applied biosystems) 

 miR-31: RT 1100, hsa miR-31, 5x RT Primer (applied biosystems) 

5.3.2 Dynamo 

For SYBR-Green-based qPCR, cDNA was synthesized by using the DyNAmo™ cDNA 

Synthesis Kit (Finnzymes). See Table 4Table 3 for reaction mixture and cycle protocol. 
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(A) one reaction  (B) cycle protocol Table 4. (A) reaction 

mixture for performing 

DyNAmo™-based 

cDNA synthesis, (B) 

cycle protocol thereof. 

 

Random Hexamers 300 ng/µl 1.00 µl  25°C 10 min 

Reverse transcriptase 2.00 µl  37°C 30 min 

2× RT buffer 10.00 µl  85°C 5 min 

RNA (200 ng) 7.00 µl  4°C pause 

total 20.00 µl    

5.4 qPCR 

A threshold cycle (Ct) was defined within the exponential phase of the fluorescence signal of 

the qPCR. The Ct value of the target was subtracted by the Ct value of a housekeeping gene. 

The resulting dCt values were calculated as a fold change to a control sample (2
-(dCt-dCtcontrol)

). 

5.4.1 TaqMan 

qPCR for microRNAs was performed using the TaqMan Universal PCR Master Mix, No 

AmpErase UNG (applied biosystems) and Rotor-Gene 6000 (Corbett Research). Data were 

analysed with Rotor-Gene 6.0 (Corbett Research). See Table 5 for reaction mixture and cycle 

protocol. 

(A) one reaction  (B) cycle protocol 

Primer (20×) 0.5 µl  95°C 10 min  

reaction buffer (2×) 5.0 µl  95°C 10 sec 
55x 

NFW 3.5 µl  60°C 45 sec 

template 1.0 µl  
Table 5. (A) reaction mixture for performing 

TaqMan-based qPCR, (B) cycle protocol thereof. total 10.0 µl  

 

The following primers were used: 

 U6b: TM 1093, RNU6B, 20x Real Time (applied biosystems) 

 miR-31: TM 1100, hsa miR-31, 20x Real Time (applied biosystems) 

Results of qPCRs for miR-31 were normalized to U6b. 

5.4.2 Sensimix 

qPCR for mRNAs was performed using the SensiMix™ SYBR & Fluorescein Kit (Bioline). 

See Table 6 for reaction mixture and cycle protocol. See Table 7 for primer sequences. 
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(A) one reaction  (B) cycle protocol 

Primer sense (10 pmol/µl) 0.25 µl  95°C 10 min  

Primer antisense (10 pmol/µl) 0.25 µl  95°C 15 sec 

55x reaction buffer 5.00 µl  60°C 30 sec 

NFW 3.50 µl  72°C 15 sec 

cDNA 1.00 µl  65-99°C melting curve 

total 10.00 µl     

Table 6. (A) reaction mixture for performing Sensimix-based qPCR, (B) cycle protocol thereof. 

BGLAP (Osteocalcin) 
ATCAAAGAGGAGGGGAACCTA 

AGGAAGTAGGGTGCCATAACA 

SPP1 (Osteopontin)  
CACCTGTGCCATACCAGTTAAA 

AGCATTCTGTGGGGCTAGG 

Fzd-3 
TGTCGTAGGCTGTGTCAGCGGGC 

TCTCTGCACTGCCACTGGGGCTC 

GAPDH 
CGACCACTTTGTCAAGCTCA 

TGTGAGGAGGGGAGATTCAG 

Table 7. Primer sequences (forward and reverse) for four targets. 

5.5 cell culture 

Passaging cells: 

 for passaging HUVECs, the new Roux-flask needs to be coated before passaging: 3mL 

(T75) gelatine (1 % in PBS), incubate 10 min at 37°C. Remove excess gelatine and 

wash with PBS. HUVECs can now be passaged into the flask. 

 remove medium from cells 

 wash with PBS 

 add trypsin 0.1 % + 0.02 % EDTA, incubate 5 min at 37°C 

 check if cells are detached from flask wall 

 add medium containing serum to inhibit trypsin 

 resuspend cell suspension 

 transfer cell suspension into new Roux-flask (take half of the present volume and add 

it to a Roux-flask of the same size for a 1:2 passage; PD (population doubling) 

increases by 1) 

 add medium for a final volume of 6 mL (T25), 12 mL (T75) or 20 mL (T175) 
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5.6 Alizarin Red S staining 

To detect calcification of AoSMCs cells were stained with Alizarin Red S which forms 

precipitates with calcium. Stained calcium deposits can be dissolved with HCl/SDS and can 

be measured colorimetrically.  

 wash cells 3x with PBS (with Ca/Mg) 

 fix cells at -20°C with 70 % ethanol (1-2h) 

 wash 3x with AquaDest 

 add Alizarin Red S (40 mM Alizarin Red S pH 4,2 – 0,14 g Alizarin Red S in 10 mL 

AquaDest, set pH with HCl) and shake 10min 

 wash with PBS 10 min on shaker 

 keep plates wet and take pictures 

 add 500 μl 0,1 M HCl/0,5 % SDS, 30 min RT 

 measure OD at 425 nm (take 150 μl for measurement in a 96-well-plate) 

5.7 Calcification assay (high Ca2+/Pi) 

AoSMCs, previously acquired from Lonza (referred to as 1
st
 donor), were thawed at PD 8 and 

were cultured until PD 11 in growth medium consisting of SmGM-2 without the antibiotic 

GA-1000 (CC-3182, Lonza) and FBS (foetal bovine serum, final concentration 10 %). 8×10
4 

cells per well were seeded in growth medium (1 ml) in 12-well plates (Figure 5). Reverse 

transfection was done using siPORT Neo FX (applied biosystems). Cells were transfected 

with hsa-miR-31-precursor (AM17100) or pre-miR neg. ctr. 2 (Ambion) at a concentration of 

30 mM according to the manufacturer’s protocol. Transfection control was obtained 24 hours 

after transfection. To harvest cells, medium was removed, wells were washed with PBS and 

cells were treated with 0.5 ml 0.1 % Trypsin + 0.02 % EDTA for 5 – 10 min. 0.5 ml growth 

medium was then added and the cell suspension was transferred into an RNase/DNase free 

Sarstedt tube to further follow the RNA isolation protocol. 24 hours after seeding (referred to 

as day 1) the medium was changed to calcification medium (Dulbecco’s Modified Eagle’s 

Medium + 10 % FBS, 2.7 mM CaCl2, 2.0 mM NaH2PO4 based on an earlier report
50

) or 

control medium (DMEM + 10 % FBS) respectively. To measure calcification of cells, 

Alizarin Red S staining was performed on day 6 (plate 1) and on day 8 (plate 2). Pictures were 

taken before the Alizarin Red S staining was performed. To investigate intracellular levels of 

miR-31, cells were harvested on the same day as the Alizarin Red S staining. Cells which 

received calcification medium could not be detached by trypsinization. Therefore, cells were 
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harvested by directly adding Trizol to the well. RNA isolation, cDNA synthesis and qPCR 

were performed according to the given protocols. Results of qPCR were normalized to U6B. 

 

Figure 5. Plate design of the calcification assay. Three 12-well plates were used. Grey wells were filled with 

PBS. ca calcification media, ctr control media. 

5.8 Calcification assay (low Ca2+/Pi) – 1st donor 

The assay was performed twice independently with AoSMCs from the same donor. For the 

first assay AoSMCs, previously acquired from Lonza (referred to as 1
st
 donor),  were thawed 

at PD 4 and were cultured until PD 8 in growth medium consisting of SmGM-2 without the 

antibiotic GA-1000 (CC-3182, Lonza) and FBS (final concentration 10 %). For the second 

assay AoSMCs were thawed at PD 6 and were cultured until PD 10. 8×10
4 

cells per well were 

seeded in growth medium (1 ml) in 12-well plates (Figure 6). Reverse transfection was done 

using siPORT Neo FX (applied biosystems). Cells were transfected either with hsa-miR-31-

precursor (AM17100), pre-miR neg. ctr. 2 (Ambion), or siFzd3 (on target
+
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Dharmacon, L-005502-00-0005) at a concentration of 30 mM according to the manufacturer’s 

protocol. Transfection control was obtained 24 hours after transfection. To check transfection 

efficiency of siFzd3, cells were transfected with siGLO or siCTR and analysed by flow 

cytometry after 24 hours. To harvest cells, medium was removed, wells were washed with 

PBS and cells were treated with 0.5 ml 0.1 % Trypsin + 0.02 % EDTA for 5 – 10 min. 0.5 ml 

growth medium was then added and the cell suspension was transferred into an RNase/DNase 

free Sarstedt tube to further follow the RNA isolation protocol. 

24 hours after seeding (referred to as day 1) the medium was changed to calcification medium 

(DMEM + 10 % FBS, 2.0 mM CaCl2, 1.5 mM NaH2PO4) or control medium (DMEM + 10 % 

FBS) respectively. Calcification of cells of the first assay was measured on day 7, the second 

assay on day 9. The measurement of calcification and the normalization to DNA content was 

performed according to the aforementioned protocol. Pictures were taken before adding 0.6 M 

HCl. 

To investigate intracellular levels of miR-31 and mRNA levels of osteogenic markers, cells 

were harvested on the same day as the treatment for measuring the calcium concentration 

started. Cells which received calcification medium could not be detached by trypsinization. 

Therefore, calcifying and control cells were harvested by directly adding Trizol to the well. 

RNA isolation, cDNA synthesis and qPCR were performed according to the given protocols. 

U6B served as an internal control for qPCRs for miR-31. The level of osteogenic markers was 

normalized to GAPDH. 

To combine the results of the two assays, the difference in calcification of miR-31 and ctr#2 

transfected cells was calculated as a fold change to each value of the three control samples. 

We first calculated the mean of the resulting three fold changes per sample and then a mean of 

means of either miR-31 or ctr#2 transfected cells. Before analysing the statistical significance 

by student's t-test a log-transformation was applied to the fold changes. 
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Figure 6. Plate design of the calcification assay. Four 12-well plates were used. Grey wells were filled with 

PBS. ca calcification media, ctr control media. 

5.9 Calcification assay (low Ca2+/Pi) – 2nd donor 

The calcification assay performed with cells from the 1
st
 donor was repeated with minor 

modifications. AoSMCs were acquired from the ATCC at PD 2. They were then cultured until 

PD 8 in growth medium consisting of SmGM-2 without the antibiotic GA-1000 (CC-3182, 

Lonza), 5% FBS, 10 mM L-glutamine and 50 µg/ml L-ascorbic acid. Transfection with 

antimiR-31 (Ambion, AM11465) was included (Figure 7). The differentiation was stopped at 

day 9, pictures were taken the same day. 
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5.10 Long-term hydrocortisone treatment 

HUVECs were cultured in EGM excluding the antibiotic GA-1000 (Lonza, CC-3124) and 

FBS (final concentration 10 %). 10
5
 cells (PD 23) were seeded in a 6-well-plate and received 

either 2 ml culture medium free of HC or culture medium containing 2 µM HC. Cells were 
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Figure 7. Plate design of the calcification 

assay. Five 12-well plates were used. Grey 

wells were filled with PBS. ca calcification 

media, ctr control media. 
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passaged every 2 – 3 days. Medium was removed, wells were washed with PBS and cells 

were treated with 0.5 ml 0.1 % Trypsin + 0.02 % EDTA for 5 – 10 min. 0.5 ml culture 

medium was then added. Cell count was taken using a Bürker-Türk counting chamber. The 

same amount of cells (about half of the cell suspension) was seeded in every well of a new 6-

well-plate. The other half of the cell suspension was transferred into an RNase/DNase free 

Sarstedt tube. Cells were spinned down and 0.5 ml Trizol was added to the cell pellet for 

qPCR analysis of intracellular miR-31 levels. Results were normalized to U6b. To calculate 

the growth curve we assumed that cells grow on an infinite surface. The initially seeded cell 

count was multiplied by the growth rate of each passage. 

5.11 Luciferase reporter plasmid 

We used three different vectors to design the 

luciferase reporter plasmid (Figure 8): pCR2.1-

TOPO (Invitrogen), pVAX1 (Invitrogen) to 

obtain a Pcmv promoter for the hPLALP gene 

(human placental alkaline phosphatase) and 

pMetLuc-Control (Clontech) for the secreted 

luciferase (Figure 38, appendix). 

All gel and PCR clean-ups were performed 

using the Wizard® SV Gel and PCR Clean-Up 

System (Promega, A9281) according to the 

manufacturer's protocol. For minipreps we used 

Wizard® Plus SV Minipreps DNA Purification 

Systems (Promega, A1470). 

5.11.1 DNA ladders 

FastRuler
TM

 High Range DNA Ladder, ready-to-use (Fermentas, SM1123) 

Quantitas Fast DNA Marker: 100bp – 2kb (Biozym, 250224) 

Figure 8. Luciferase reporter construct. 
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5.11.2 PCR 

PCRs were performed either with either hot TaqPol or Phusion Pol. See Table 8 for reaction 

mixtures. Colony PCRs were performed by picking a colony from the plate and dissolving it 

in 20 µl LB medium. 1 µl of this medium served as a template. See Table 9 for cycle protocol 

used to amplify hPLALP out of Addgene plasmid 24595 (CMV-SEAP Amp
R
). Primer 

sequences used were: 

 GCTAGCGCCACCATGCTGGGGCCCTGCAT (hPLALP_NheI_s) 

 AATTGGGCCCACGCGCCGCAGCCA (hPLALP_XbaI_as) 

cycle protocol Table 9. Cycle protocol for amplifying 

hPLALP out of Addgene plasmid 24595 

by PCR. x1-8: 55.9 – 58.0 – 60.4 – 62.8 – 

65.2 – 67.6 – 69.9 – 72.1 °C 

 

98°C 30 sec  

98°C 10 sec 
35 cycles 

x1-8 °C 30 sec 

72°C 10 min  

13°C pause  

 

See Table 10 for cycle protocol used to amplify PCMV_hPLALP out of pVAX1. Primers with 

restriction sites for ClaI: 

 sense: ATCGATCGATGTACGGGCCAGATATACGC 

 antisense: ATCGATTTCGCTTGCTGTCCATAAAACC 

 

(A) reaction for hot TaqPol  (B) reaction for Phusion Pol 

dNTPs (10nM) 0.4 µl  dNTPs (10 nM) 0.4 µl 

Primers (10 µM, sense + antis.) 2.0 µl  Primers (10 µM, sense + antis.) 2.0 µl 

10× buffer 2.5 µl  5× HF buffer 4.0 µl 

hot TaqPol (peqlab) 0.2 µl  Phusion Pol (Finnzymes) 0.2 µl 

template (10 ng/µl) 1.0 µl  template (10 ng/µl) 1.0 µl 

ddH2O 18.9 µl  ddH2O 12.4 µl 

total 25.0 µl  total 20.0 µl 

Table 8. reaction mixture for PCRs performed with either (A) hot TaqPol or (B) Phusion Pol 
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cycle protocol 

98°C 30 sec  

98°C 10 sec 
35 cycles 

72°C 81 sec 

72°C 10 min  

13°C pause  

Table 10. Cycle protocol used for 

amplifying PCMV_hPLALP out of 

pVAX1. 

5.11.3 Addition of 3' A-overhangs 

For cloning into the pCR2.1 vector 3' A-overhangs had to be added to the PCR products 

which were amplified by Phusion polymerase. The PCR product was run on a gel and the 

band was then cut out and cleaned up. See Table 11 for the exact protocol applied to the gel 

clean-up. 

(A) reaction mixture  (B) temperature Table 11. (A) reaction mixture 

and (B) temperature applied to 

add 3' A-overhangs. 
Gel clean-up 21.3 µl  95°C 1 min 

dATP [5 mM] 1.0 µl  72°C 10 min 

10x Y buffer 2.5 µl  13°C pause 

Taq Pol 0.2 µl    

5.11.4 Blue/White screening 

The pCR2.1 vector provided the possibility for blue/white 

screening to see if a colony is likely to contain the insert. See 

Table 12 for the solution with which one plate had to be 

treated before plating E. coli TOP10 transformed with pCR2.1 

 

 

5.11.5 Ligation 

For ligation with T4-Ligase the TA Cloning Kit (Invitrogen, K4500-01) was used with minor 

modifications. The reaction mixture was first incubated at 16°C for 1 hour and then at 4°C 

o/n. 

1 plate 

IPTG [100 mM] 40 µl 

XGal [50mg/ml] 32 µl 

ddH2O 28 µl 

Table 12. Treatment of one 

plate to enable blue/white 

screening 
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5.11.6 Dephosphorylation 

To dephosphorylate the vector, the amount of DNA ends in pmol needs to be determined. 

This depends on the amount of vector present in a given volume y and the length of the 

vector. For x pmol DNA ends, x µl of ALP (diluted 1:100) has to be added. The exact 

equation is: x µl ALP1:100 + y µl digested vector + 4 µl 10× buffer + z µl ddH2O = 40 µl 

The whole reaction needs to incubate for 30 min in a shaking incubator (37°C, 300 rpm). The 

same amount x of ALP1:100' is then added and the reaction is incubated another 30 min in a 

shaking incubator (37°C, 300 rpm). 

5.11.7 Chemical transformation 

20 µl TOP10 competent cells were thawed from -80°C to 4°C and 5 µl ligation reaction were 

added. After an incubation of 30 min on ice a heat shock at 42°C for 90 sec was applied. Cells 

were put back on ice for 2 min, 80 µl SOC medium was added and cells were then put on a 

shaking incubator for 1 hour at 37 °C before they were plated. 

5.11.8 Restriction digest 

For restriction of DNA we used NheI, XbaI, BspHI, SmaI, ClaI and EcoRI FastDigest® 

restriction enzymes (Fermentas) according to the manufacturer's protocol. 

5.12 Statistical analysis 

To test the statistical significance of the data a student's t-test was performed. A p-value less 

than 0.05 was considered significant, a p-value less than 0.01 was considered highly 

significant. The data are shown as a mean ± standard deviation.  
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6 Results 

6.1 Establishment of an AoSMC calcification assay 

6.1.1 Calcification assay (high Ca2+/Pi) 

To test the influence of miR-31 on the calcification of AoSMCs, cells were either transfected 

with miR-31 or control#2 (ctr#2). The assay was performed twice on two different 12-well-

plates at the same time. A transfection control was obtained after 24h (Figure 9) which 

revealed a highly elevated intracellular level of miR-31 upon miR-31 transfection (77.7 fold). 

Cells received either calcification or control media. One plate was stained for calcium on day 

6, the other on day 8 to measure the calcification at an early and at a late stage of 

differentiation. Calcification media clearly led to a stronger Alizarin Red S staining compared 

to cells in control media. 

Both assays showed a difference in cell number depending on the transfection (as can be seen 

in the pictures of Figure 10). The cell count of miR-31 transfected cells was higher in number 

compared to ctr#2 transfected cells. The difference in cell count possibly distorts the data and 

shows higher calcification where more cells are present. Hence, we tried to determine the cell 

number for normalization. Alizarin Red S stained cells refrain from being counted as they 

dissolve when adding 0.1 M HCl/0.5 % SDS to quantify the staining. Therefore, we tried to 

count the cells harvested for qPCR analysis by using a Bürker-Türk counting chamber. 

However, calcified AoSMCs did not detach from the well by trypsin (neither 0.1% nor 0.25% 

trypsin). Determination of the cell count, thus, was not possible. Performing this assay clearly 

showed us the urgent need to normalize any quantification of calcification to the cell count or 

a comparable parameter and prompted us to develop an adequate normalization method (see 

chapter 6.1.3 Normalization by SYBR Green I). 

Furthermore, in this first attempt of investigating the effect of miR-31 on calcifying AoSMCs, 

cells calcified strongly in a very short period of time causing two problems. First, the effect of 

miR-31 could be too weak to interfere with such a quick process. Second, it makes it difficult 

to identify the moment where a significant difference in calcification is detectable before 

calcium deposition runs into saturation in both transfection conditions. These challenges had 

to be addressed before continuing with another calcification assay. 
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Figure 9. Transfection control taken 24 hours after transfection. Cells transfected (transf.) with miR-31 showed 

an increased level of miR-31 (77.7 fold) compared to cells transfected with ctr#2. Error bars indicate the 

standard deviation of the mean of quadruplets (technical replicates of the qPCR).  
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Figure 10. Pictures of AoSMCs in calcification or control media upon two different transfections taken (A) on 

day 6 after staining with Alizarin Red S and (B) on day 8 prior to the staining. A difference in cell count in 

favour of miR-31 transfected cells is clearly visible which possibly distorts any quantification results of the 

staining and prompted us to establish a method to normalize to DNA content. 
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On day 6 and 8, cells from one well of each condition were harvested for qPCR analysis 

(Figure 11A and B). miR-31 levels of miR-31 transfected cells were still elevated and ranged 

between 2 and 10 fold compared to ctr#2 transfected cells receiving the same media, proving 

that the transfection was effective enough to cover the whole time of the assay. In calcifying 

cells transfected with ctr#2, miR-31 was down-regulated between 3 and 5 fold. It should be 

noted that only one well per condition was harvested for qPCR. Nonetheless, together with a 

previous experiment done in our lab with the same conditions (Figure 11C) the present results 

provide strong evidence that miR-31 is down-regulated during the calcification process. 

 

6.1.2 Optimization of calcification assay and monitoring miR-31 expression of 

AoSMCs over time 

In the first calcification assay where we used a protocol kindly provided by Catherine 

Shanahan
50

, AoSMCs calcified strongly already after 6 days of incubation. Realizing that the 

calcification process might be too fast and calcium deposition might run into saturation we 

decided to test lower Ca
2+

/Pi concentrations. The Ca
2+

/Pi concentration used in the first 

calcification assay was included as a reference. An unusually high Ca
2+

/Pi concentration was 

also tested to see its influence on intracellular miR-31 level. Cells were either stained with 

Alizarin Red S or harvested for investigating the miR-31 level by qPCR analysis. 
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Figure 11. Intracellular miR-31 level obtained by qPCR analysis on 

day 6 (A) and day 8 (B). Error bars in (A) and (B) indicate the 

standard deviation of the mean of quadruplets (technical replicates of 

the qPCR). (C) Together with the result of one experiment conducted 

by Klemens Wassermann with the same conditions, AoSMCs from 

the first donor receiving 2.7 mM CaCl2 and 2.0 mM NaH2PO4 show a 

highly significant downregulation of miR-31 (n=3, ** p-value<0.01) 
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The amount of calcification of AoSMCs was clearly dependent on the Ca
2+

/Pi concentration 

in the differentiation media. As expected, AoSMCs receiving high Ca
2+

/Pi stained strongly 

with Alizarin Red S already on day 7 of differentiation while Ca
2+

/Pi concentrations ranging 

from 0.7/0.5 to 2.0/1.5 mM showed very little difference in calcification compared to cells 

receiving control media (Figure 12). Apparently there is a biological threshold within 2.0/1.5 

and 2.7/2.0 mM Ca
2+

/Pi over which AoSMCs show little resistance to calcification. 

On day 9, however, cells receiving 2.0/1.5 mM Ca
2+

/Pi have a more than 4-fold higher amount 

of calcification than cells in control media as can be seen in the inset of the graph of day 9 on 

Figure 12. This result convinced us to repeat the next calcification assay with media 

containing 2.0/1.5 mM Ca
2+

/Pi and stopping it at around day 9. 

The measurement of calcification at day 14 of AoSMCs receiving 8.1/6.0 mM Ca
2+

/Pi could 

not be determined correctly. Due to the extraordinarily high amount of calcium deposits, the 

Alizarin-calcium-precipitates formed during the staining could not be extracted entirely by 0.1 

M HCl/0.5 % SDS. Therefore the obtained OD value was too low and left out of the graph in 

order to avoid any misinterpretation. 

To gain more evidence that miR-31 is down-regulated during calcification we had a look on 

the intracellular miR-31 level. Unfortunately, the obtained data by qPCR analysis did not give 

us a clear picture. The variation within the duplicates was considerable, in particular at day 7 

for cells in control media or at day 9 across the board which makes it impossible to draw any 

substantial conclusions. Suspecting that the cDNA synthesis or qPCR did not work properly, 

both were repeated for the samples of day 9. Apart from one sample (0.7/0.5 mM Ca
2+

/Pi), the 

result of the second qPCR resembles the one of the first, showing high reproducibility of the 

assay (Figure 13). 

At day 11 no substantial differences between the various conditions was observed except for 

the cells in media containing 8.1/6.0 mM Ca
2+

/Pi which down-regulated miR-31 compared to 

cells in control media. 
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Figure 12. Calcification (left) and miR-31 level (right) measured at four different days in duplicates. The inset in 

the left graph of day 9 shows the Alizarin Red S readout of the four lowest Ca
2+

/Pi concentrations. The dilution 

(dil.) of Alizarin Red S prior to reading is indicated in the graphs. Results of qPCR were normalized to the level 

of cells receiving 0/0 Ca
2+

/Pi. Error bars in the right graphs indicate the standard deviation of the mean of 

quadruplets (technical replicates of the qPCR). The label of the x-axis of the lowest graph applies to all of the 

above. 

0.0

0.5

1.0

1.5

2.0

2.5

0 0.7 1.4 2 2.7 8.1

0 0.5 1 1.5 2 6

dil. 1:20 

Alizarin Red S (OD at 425nm) miR-31 level (fold change) 

day 7 

day 9 

day 11 

day 14 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
dil. 1:10 

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

dil. 1:20 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
dil. 1:10 

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0 0.7 1.4 2 2.7 8.1

0 0.5 1 1.5 2 6

0.00

0.02

0.04

0.06

0.08

mM Ca
2+

 

mM Pi 



page 43 

 

Figure 13. Result of two qPCRs from the same RNA samples, normalized to the level of cells receiving no 

Ca
2+

/Pi. 

6.1.3 Normalization by SYBR Green I 

In order to normalize the amount of calcification to the cell number, cells were stained with 

SYBR Green I. The measurement of calcification as done in the first calcification assay (high 

Ca
2+

/Pi) was changed and now included an overnight incubation with 0.6 M HCl. The 

incubation with HCl could hydrolyse DNA and hence make a DNA-based normalization 

inappropriate. To prove that this is not the case, various cell counts were seeded into 12-well 

plates and were treated with HCl as in the actual calcification assay. The number of cells 

correlates nicely with their FI caused by SYBR Green I staining (R
2
 = 0.92, Figure 14) which 

makes it an ideal way to normalize the calcification to the cell count. We had a close look at 

the cells after the incubation with 0.6 M HCl to check if the AoSMCs' integrity and 

attachment to the well is not touched by the treatment. Pictures were taken before and after 

the overnight incubation in 0.6 M HCl. The cells remained in the well throughout the 

treatment (Figure 15). 
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Figure 14. Standard curve for staining AoSMCs with SYBR Green I. Various cell counts were seeded in 

duplicates. FI Fluorescence Intensity. 

 

Figure 15. AoSMCs before (left) and after (right) incubation in 0.6 M HCl o/n at 4°C and washing with PBS. 

Cells stayed intact and did not detach from the well. 

6.1.4 Calcification assay (low Ca2+/Pi) – 1st donor 

The first calcification assay with a high concentration of Ca
2+

/Pi clearly revealed some 

challenges. AoSMCs calcified too fast and the results of the Alizarin Red S staining could not 

be normalized to the number of cells. Therefore the concentration of Ca
2+

/Pi in the 

differentiation media was lowered to 2.0/1.5 mM. The method for quantifying the 

calcification was changed as well. Instead of staining the cells with Alizarin Red S we 

determined the calcium content using the Quantichrom Calcium Assay kit (BioAssay 

Systems). After the decalcification of cells with 0.6 M HCl the cells remained attached to the 

well and we were able to perform the SYBR Green I staining. Results of the calcium 

measurement were normalized to the FI of the SYBR Green I staining. 
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AoSMCs were transfected either with miR-31, control#2 or siFzd3. As mentioned earlier, 

Fzd3 is a confirmed target of miR-31
60

. The assay was performed twice independently and 

was stopped either at day 7 or at day 9 of differentiation. The transfection control taken 24 

hours after transfection shows highly elevated intracellular miR-31 levels (between 850 and 

1200 fold compared to ctr#2, Figure 19). In both assays miR-31 transfected cells in 

differentiation media were calcifying less than ctr#2 transfected cells, though the difference 

was not significant due to the high standard deviation within the triplicates (Figure 16A and 

Figure 17A). Cells transfected with siFzd3 calcified less than ctr#2 transfected cells only 

when looking at day 7 of differentiation but still the difference was not significant. The 

transfection itself did not seem to have an effect on the cell number which can be seen on the 

pictures of Figure 16B and Figure 17B. As in the calcification assay before, the cells did not 

proliferate throughout the experiment. 

Taken the two experiments alone, miR-31 does not seem to have a significant effect on the 

AoSMCs' ability to calcify yet we see a clear trend towards miR-31 impeding this process. As 

mentioned above, the standard deviation of the triplicates is too high and was quite high in the 

assays performed before as well. To still prove significance the number of replicates had to be 

increased which we achieved by combining the two present assays performed with the same 

conditions and cells. The absolute amount of measured calcium differed between the two 

assays because they were stopped at two different days. Therefore, the difference in 

calcification was calculated as a fold change compared to ctr#2 transfected cells. The fold 

changes were then combined, a log-transformation was applied and a t-test was performed. 

AoSMCs were calcifying less by the amount of 25 % and this difference proved to be highly 

significant (P=0.004, Figure 18). As these in vitro data represent the reaction of only one 

donor, further evidence needs to be gained to prove the impeding effect of miR-31 on 

vascular calcification. First of all, more donors need to be included in the assay. 
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Figure 16. (A) Calcium content of cells after 6 days 

in differentiation or control media upon 3 different 

transfections. Error bars indicate the standard 

deviation of the mean of triplicates (n.s. not 

significant compared to ctr#2, P > 0.05). (B) pictures 

taken at day 7 of differentiation. 
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Figure 17. (A) Calcium content of cells after 8 

days in differentiation or control media upon 3 

different transfections. Error bars indicate the 

standard deviation of the mean of triplicates (n.s. 

not significant compared to ctr#2, P > 0.05). (B) 

pictures taken at day 9 of differentiation. 
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Figure 18. Fold change of calcification of AoSMCs when combining the two experiments to make the final 

number of replicates 6. (** P = 0.004) 

 

Figure 19. Transfection control taken 24 hours after transfection. The left graph (A) refers to the experiment 

stopped at day 7, the right one (B) to the experiment stopped at day 9. Error bars indicate the standard deviation 

of the mean of quadruplets (technical replicates of the qPCR). 

As the transfection with miR-31 led to a weaker accumulation of calcium, we also 

investigated the mRNA levels of three osteogenic markers – osteocalcin (BGLAP), 

osteopontin (SPP1) and frizzled-3 (Fzd3). Osteocalcin is expressed by osteoblasts
39

 and 

osteopontin is a reported inhibitor of calcification in vitro
77

 and in vivo expressed by 

VSMCs
78

. Fzd3, as mentioned earlier, is a cell surface receptor that binds Wnt and is a 

confirmed target of miR-31
60

. Osteocalcin was not differentially regulated during the 

calcification of miR-31 or ctr#2 transfected cells (Figure 21), neither at day 7 nor at day 9. 

Therefore we did not have a look at the siFzd3 transfected cells. Osteopontin, however, 

proved to be up-regulated in cells receiving Ca
2+

/Pi in the media. The difference in how much 

osteopontin is up-regulated in miR-31 and siFzd3 transfected cells is not significant compared 

to ctr#2 transfected cells. Regarding the assay which was stopped at day 9, miR-31 

transfection led to a highly significant downregulation of osteopontin in AoSMCs receiving 
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control media but not in calcification media. Transfection with siFzd3 did not lead to any 

significant difference in osteopontin expression. 

We did not observe any differential expression of Fzd3 at day 7 (Figure 21). The transfection 

control using siCTR/siGLO obtained after 24 hours showed a transfection efficiency of 41.7% 

and 63.6% for the assays stopped at day 7 and 9 respectively (Figure 20). Transfection with 

siFzd3 caused only a slight downregulation of Fzd3 in cells receiving control media. At day 9, 

however, Fzd3 was up-regulated in calcifying cells. AoSMCs transfected with miR-31 did not 

show a significantly lower upregulation of Fzd3 compared to ctr#2 transfected cells. siFzd3 

transfected cells in control media have a significantly lower level of Fzd3 (P = 0.016) and the 

transfection keeps Fzd3 down-regulated under osteogenic differentiation by 2.8-fold in 

comparison to calcifying ctr#2 transfected cells (P = 0.006). We investigated two more 

markers for osteogenic differentiation, ALP and Runx2, in several samples but observed no 

differential expression (data not shown). 

 

Figure 20. Cells transfected with siCTR and siGLO were analysed by FACS to estimate the transfection 

efficiency with siFzd3. Transfection efficiency was 41.7% (assay stopped at day 7, A) and 63.6% (assay stopped 

at day 9, B). Histogram: siCTR (black), siGLO (red). 

  

A 

B 

siCTR siGLO 

siCTR siGLO 
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Figure 21. Results of qPCRs for three osteogenic markers at day 7 or day 9. Results are normalized to ctr#2 

transfected cells receiving control media. Error bars show the standard deviation of the mean of triplicates. (* 

P=0.02, ** P<0.01) 
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6.1.5 Calcification assay (low Ca2+/Pi) – 2nd donor 

Given that AoSMCs from the first donor responded to miR-31 transfection with weaker 

calcification, AoSMCs from another donor were acquired from the ATCC and we repeated 

the previous calcification assay. Transfection with antimiR-31 was included to see if it would 

contribute positively to the calcification. 

In contrast to the first donor, miR-31 transfected AoSMCs from the second donor were 

calcifying significantly more than ctr#2 transfected cells (P = 0.04, Figure 22A). Transfection 

with antimiR-31, however, did not lead to the opposite effect and transfection with siFzd3 did 

not result in a significantly lower or higher amount of calcium as well. 

 

 

For transfection with miR-31, unfortunately, only a repeatedly frozen-thawed aliquot of miR-

31-precursor was available. The resulting transfection was not successful as can be seen in the 

transfection control taken 24 hours after transfection (Figure 22B). Previous transfections 

resulted in a more than 800-fold higher miR-31 level compared to ctr#2 transfection (see 

Figure 19). The transfection in the present assay, though, resulted only in 3-fold higher miR-
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Figure 22. (A) Calcium content of cells 

after 8 days in differentiation or control 

media upon 4 different transfections. 

Error bars indicate the standard 

deviation of the mean of triplicates (n.s. 
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ctr#2). Transfection control taken 24 

hours (B) and 9 days (C) after 
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31 level. Unsurprisingly, miR-31 levels were not elevated anymore at day 9 (Figure 22C). 

Transfection with antimiR-31 caused a strong downregulation of the intracellular miR-31 

level. The transfection control using siCTR/siGLO obtained after 24 hours showed a 

transfection efficiency of 52.0% (Figure 23). 

 

Figure 23. Cells transfected with siCTR and siGLO were analysed by FACS to estimate the transfection 

efficiency with siFzd3. Transfection efficiency was 52.0%. Histogram: siCTR (black), siGLO (red). 

As opposed to the AoSMCs of the first donor, the cells of the second donor proliferated after 

transfection and change to differentiation/control media till they reached confluence which 

can be seen on the pictures of Figure 24, hence diluting the already weak transfection with 

miR-31.  

siCTR siGLO 
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Figure 24. Pictures of AoSMCs from the 2
nd

 donor taken at day 9 of differentiation. 
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6.2 Long-term hydrocortisone treatment 

Previous short-term experiments showed an impact of HC on intracellular miR-31 level (data 

not shown). Treatment of HUVECs with 2 µM HC for 24 hours led to an upregulation of 

miR-31 compared to cells receiving no HC. To elucidate the long-term effect of 

hydrocortisone, HUVECs were treated with 2 µM HC for 5 passages. Before passaging, cells 

were counted and about half of the cells were harvested for qPCR analysis. In the beginning, 

we saw a trend that is consistent with our short-term experiments. The intracellular miR-31 

level in the first passage seemed indeed higher in cells treated with HC but the trend turned 

after passaging the cells and resulted in HC-treated cells exhibiting a lower miR-31 level 

compared to the control (Figure 25). As seen in previous experiments where we determined 

the level of miR-31, the variation among the triplicates was again considerable and none of 

the differences discovered between cells receiving HC and the control were statistically 

significant. Previous attempts using duplicates delivered similar results (data not shown). 

 

Figure 25. Result of qPCRs for intracellular miR-31 level in HUVECs treated with 2 µM HC or no HC (ctr). 

Error bars indicate the standard deviation of the mean of triplicates. None of the differences in miR-31 level 

between cells receiving HC and the control of the same passage proved to be significant. 

The cell count revealed a stronger proliferation of cells receiving no HC (Figure 26). 
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Figure 26. Cell count of HUVECs treated with 2 µM HC or no HC (ctr). 

6.3 Luciferase reporter plasmid 

In order to determine further targets of miR-31 we attempted to design a luciferase reporter 

plasmid where the 3'UTR of putative targets can be cloned into and secretion of the luciferase 

could be normalized to the expression of a placental alkaline phosphatase. An o/n culture of 

E. coli TOP10 featuring the gene for human placental alkaline phosphatase (hPLALP, 1548 

bp) was prepared (4 ml LB + 100 µg/ml ampicillin). A miniprep was performed the next day 

followed by a PCR to amplify hPLALP using eight different annealing temperatures. Primers 

hPLALP_XbaI_as and hPLALP_NheI_s were used, the latter introducing a restriction sites 

for NheI. The PCR products were run on a 1% agarose gel (Figure 27). The upper bands on 

lane 6, 7 and 8 were excised and cleaned up. 

 

3' A-overhangs were added to the amplified hPLALP by Taq Polymerase. The reaction 

product was cleaned up and 6 µl were ligated with pCR2.1. TOP10 competent cells were 

transformed chemically with the ligation product and spread on an LB plate (100 µg/ml 

ampicillin + XGal + IPTG for blue/white screening). 6 white colonies were checked for the 
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insert by colony PCR using primers hPLALP_NheI_s and hPLALP_XbaI_as. The PCR 

products were checked on a 1% agarose gel (Figure 28). 

 

Clones number 4 and 6 proved positive for the insert. Hence, o/n cultures of both were 

prepared in LB + Amp [100µg/ml]. A miniprep was performed the next day. Both minipreps 

were restricted with NheI/XbaI or BspHI to check the correct orientation of the insert. If 

correct, the resulting fragments of the BspHI restriction should be 3304 bp and 2173 bp long 

and the fragments after NheI/XbaI restriction should be 3879 bp and 1598 bp long. If falsely 

oriented, restriction with BspHI leads to a 3829 bp and a 1648 bp fragment and NheI/XbaI 

restriction results in two fragments of 5422 bp and 55 bp length. The reaction was then loaded 

onto a 1% agarose gel (Figure 29). 

  

Clone number 6 proved to contain the hPLALP insert in the correct orientation. A glycerol 

stock of this clone was therefore stored at -80°C and the clone was sequenced. The 

sequencing result showed sufficient alignment with the gene hPLALP (>99%) with only one 

silent mutation. A miniprep of clone 6 and TOP10_pVAX1 was restricted with NheI/XbaI. 

Unfortunately, the two restriction enzymes were chosen poorly as they produce 

complementary ends. This makes religation of the digested vector highly probable. Therefore, 

the vector pVAX1 was dephosphorylated after restriction. The restricted and 

dephosphorylated pVAX1, the restricted clone 6 containing hPLALP and a non-

dephosphorylated pVAX1 as a control were loaded onto a 1% agarose gel (Figure 30). 

Figure 28. 1% agarose gel to check for 

amplification products of a colony PCR of 6 

clones and a negative control (ddH2O) 

 

Figure 29. A restriction digest was 

loaded onto a 1% agarose gel to check if 

the hPLALP insert is oriented correctly 

in the pCR2.1 vector. 
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hPLALP and the dephosphorylated pVAX1 were excised from the gel and cleaned up. After 

the ligation was performed, TOP10 were transformed and spread on LB-plates (30 µg/ml 

kanamycin). O/n cultures of 8 colonies were prepared and a miniprep was performed the 

following day. To check if the clones contain the plasmid with insert, the minipreps were 

digested with SmaI which cuts a 316 bp long fragment out of the insert. 

 

Only clone number 7 did not contain the insert. The remaining seven were checked for correct 

orientation by digesting them with NheI/XbaI. The digestion only works if the insert is 

oriented correctly (Figure 32). Clones number 4 and 5 had the insert in the correct orientation. 

 

Minipreps of both clones were taken as a template for PCR with Phusion polymerase to 

amplify hPLALP together with a CMV promoter out of pVAX1. Primers for the PCR 

introduce a restriction site for ClaI. The PCR products were loaded on a 1% agarose gel 

(Figure 33). The expected size of PCMV_hPLALP is 2.6 kb.  

Figure 30. 1% agarose gel showing the 

result of a restriction digest with NheI/XbaI 

of the vector pVAX1 and hPLALP. The 

vector was dephosphorylated (P-) after 

restriction. 

Figure 31. Restriction digest with SmaI on 

a 1% agarose gel to check 8 clones for the 

insert. If positive, SmaI cuts out a 316 bp 

long fragment. 

Figure 32. Restriction digest with 

NheI/XbaI on a 1% agarose gel to check 

for correct orientation of hPLALP in the 

vector pVAX1. 
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The bands of the appropriate size were cut out, cleaned up and a 3' A-overhang was added. 

The product was cleaned up again and ligated with pCR2.1. TOP10 cells were transformed 

with pCR2.1_PCMV_hPLALP and spread on an LB plate containing kanamycin. A colony 

PCR with 8 white colonies was performed, the product was loaded on an agarose gel (Figure 

34). 

 

An o/n culture of clone number 1 and 6 was prepared. After performing a miniprep for both, 

the vector pMetLuc Control (4.6 kb) and pCR2.1_PCMV_hPLALP of clone 1 were cut with 

ClaI, pMetLuc Control was dephosphorylated and loaded on an agarose gel (Figure 35). 

 

Dephosphorylated pMetLuc Control was excised and cleaned up. PCMV_hPLALP was not cut 

by ClaI, hence the restriction digest was repeated together with a restriction digest with EcoRI 

to see if the insert may have changed (Figure 36). Not only could PCMV_hPLALP not be cut 

with ClaI but digestion with EcoRI also showed an additional band for both clones. 

Figure 33. Products of a PCR for 

PCMV_hPLALP on pVAX1 loaded on a 1% 

agarose gel. The expected product length is 

2.6 kb. 

Figure 34. Result of a colony PCR for 

pCR2.1_PCMV_hPLALP on a 1% agarose gel. 

8 different clones were checked. 

 

Figure 35. 1% agarose gel showing 

the dephosphorylated and ClaI 

digested vector pMetLuc(P-), ClaI 

digested pCR2.1_PCMV_hPLALP, 

non-dephosphorylated pMetLuc and 

uncut pCR2.1_PCMV_hPLALP. 
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Clones 2, 3 and 7 (referring to Figure 34) were checked as well by digesting them with ClaI. 

None of these clones could be restricted (Figure 37). Due to time constraints, the design of the 

luciferase reporter construct had to be stopped at this point and could not be finished. 

  

Figure 36. Restriction digest with ClaI, 

EcoRI or no restriction (non) of clones 1 

and 6 on a 1% agarose gel. 

Figure 37. Restriction digest with ClaI of 

clones number 2, 3 and 7 on a 1% agarose 

gel. 
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7 Discussion 

7.1 miR-31 inhibits osteoblastic transition of VSMCs in one donor 

CVDs are the main cause of death in the elderly population
2
. Atherosclerosis in particular 

accounts for most myocardial infarctions and stroke
36

. Mönckeberg's sclerosis contributes to 

arterial stiffness and is associated with widespread diseases like diabetes mellitus and chronic 

kidney disease
26

. In both atherosclerosis and Mönckeberg's sclerosis the arterial wall 

experiences calcification of VSMCs. It is now widely accepted that the calcification of 

VSMCs is a highly regulated process similar to bone calcification. There are a few miRNAs 

that have been established in the regulation of VSMCs so far. The miR-143/145-cluster, for 

instance, represses proliferation and promotes differentiation of VSMCs and is down-

regulated in atherosclerosis
59

. Several miRNAs have been shown to regulate the 

differentiation of osteoblasts
56

. Based on our finding that miR-31 inhibits the differentiation 

of ASCs into osteoblasts we tested the hypothesis that miR-31 also inhibits the osteoblastic 

transition of VSMCs. Liu et al. recently described that rat miR-31 promotes proliferation of 

cultured VSMCs
79

. Given that proliferation and differentiation are often inversely related, 

miR-31 could indeed impede the osteogenic differentiation of VSMCs. 

Our work on cultured human VSMCs supports this view. However, as we checked our 

hypothesis on VSMCs from only one donor successfully, its significance is limited. In order 

to properly investigate the effect of miR-31 on calcifying VSMCs we had to abolish our first 

attempt and changed the assay completely. The concentration of Ca
2+

/Pi was too high and 

measuring the calcium content by Alizarin red S staining gave us no chance to normalize the 

result to the cell number or DNA content. After adjusting the assay we observed an inhibitory 

effect of miR-31 on the osteogenic differentiation (Figure 18). To determine the effect not 

only on calcium deposition but also on regulatory factors, we checked the mRNA levels of 

several osteogenic markers (Figure 21). Osteocalcin was not differentially regulated during 

osteogenic differentiation of VSMCs even though it is up-regulated in the differentiation of 

osteoblasts
39

. However, Nakano-Kurimoto et al. reported that osteocalcin is not elevated in 

senescent VSMCs undergoing osteoblast-like differentiation
35

. Our data suggests that the 

same is true for early-passage calcifying VSMCs. We also checked the mRNA level of 

osteopontin and observed a highly significant downregulation in miR-31 transfected VSMCs 

receiving control media. This suggests that miR-31 may interfere with osteogenic 

differentiation via inhibition of not only Fzd3 but also osteopontin or an upstream regulator. 

Transfection with miR-31 did not lead to a significant downregulation of Fzd3. Transfection 
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with siFzd3, however, led to a highly significant downregulation of Fzd3 at day 9 in both 

calcifying and control cells. Nonetheless, the successful transfection with siFzd3 did not result 

in weaker calcification at this time point. On the contrary, we did not observe a differential 

expression of Fzd3 regardless of the transfection. Still, we saw the inhibitory effect of miR-31 

on calcification which suggests that Fzd3 cannot be the only target of miR-31 involved in 

osteogenic differentiation. A useful vector to investigate further targets of miR-31 would have 

been the luciferase reporter plasmid which remained unfinished due to time constraints. 

Similar reporter constructs were used previously to determine targets of miR-31
60,62,68

. Runx2 

and ALP were not differentially regulated during VSMC calcification, neither at day 7 nor 

day 9. Zhu et al. demonstrated that also PiT-1, sclerostin, DMP-1 and E11 are up-regulated in 

calcifying VSMCs
80

. We plan to check for these markers and, since it is an early marker of 

osteogenic differentiation, for ALP at earlier time points in future experiments. 

Furthermore, we asked if miR-31 is down-regulated during osteogenic differentiation of 

VSMCs as it was recently shown in human ASCs
71

. We saw this decline in miR-31 

expression in the assay with high Ca
2+

/Pi media (Figure 11A and B) and in a previous 

experiment done in our lab with the same conditions which leads to the conclusion that cells 

from the first donor significantly down-regulate miR-31 during the calcification process 

(Figure 11C). Monitoring the expression of miR-31 over time under different calcification 

media delivered inconsistent results with a considerable variation within duplicates (Figure 

12). We were not able to repeat the assay with a higher number of replicates due to limited 

time and cell supply. 

Repeating the calcification assay with VSMCs from a second donor was not successful 

because transfection with miR-31 failed (Figure 22B and CFehler! Verweisquelle konnte 

nicht gefunden werden.) and the cells proliferated until they reached confluence which 

further diluted the weak transfection. The interpretation of the results of the second donor is, 

therefore, impossible. In this assay, the weak transfection with miR-31 led to a significantly 

higher amount of calcification compared to control cells (Figure 22). If the transfection had 

failed completely no difference in calcification should have been observed. If miR-31 indeed 

has a negative effect on the osteogenic differentiation of VSMCs antimiR-31 should have the 

opposite effect. Unexpectedly, we observed no difference in calcification between antimiR-31 

transfected cells and control cells. As mentioned earlier, cells proliferated after the 

transfection which diluted its effect and makes it unclear if antimiR-31 was effective 

throughout the assay. Additionally, VSMCs from the second donor were cultured in 5% FBS 
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instead of 10%. Nevertheless, the calcification assay was performed as done previously with 

10% FBS. Liu et al. showed that FBS activates expression of miR-31
79

. Therefore, this switch 

in FBS concentration could have interfered with miR-31 expression, further distorting the 

results of this experiment. 

As mentioned before, the significance of our work on calcifying VSMCs is so far limited due 

to the low number of donors. Nevertheless, there are several findings of other groups 

supporting our hypothesis. Similar to the putative effect of miR-31, miR-26a was 

demonstrated to inhibit osteogenic differentiation of human ASCs with its expression 

constantly increasing until reaching the highest expression level at osteogenic maturation
81

. 

miR-26a is also a crucial regulator of phenotype shifting of VSMCs, promoting proliferation 

while inhibiting differentiation
59

. A recently published study supports our hypothesis of an 

arterioprotective communication between senescent endothelial and smooth muscle cells via 

miRNAs
82

. Hergenreider et al. discovered that shear-stress-stimulated HUVECs secrete 

extracellular vesicles enriched in miR-143/145 which affects the gene expression of co-

cultured smooth muscle cells. Application of these vesicles reduced the formation of 

atherosclerotic lesions in ApoE
-/-

 mice. 

Of course, there are a few findings opposing our view which should not remain unmentioned. 

BMP2 induces the differentiation of mesenchymal precursor cells into osteoblasts via 

activation of Runx2
83

. BMP2 was also shown to up-regulate miR-31 in mouse embryonic 

mesenchymal cells
67

. At first glance it seems contradictory that BMP2, a promoter of 

osteogenic differentiation, activates a putative inhibitor of VSMC calcification, miR-31. 

However, it is likely that activators of differentiation also induce expression of inhibitors as 

the process of differentiation requires fine-tuning and has to be stopped eventually. Moreover, 

it has been demonstrated in lung cancer cells that miR-31 targets Dkk-1
62

, an inhibitor of the 

Wnt signalling pathway. From this perspective one could consider miR-31 an activator of 

Wnt signalling and, thus, an activator of osteogenic differentiation. On the other hand, Fzd3, 

the aforementioned co-receptor binding to Wnt, is another target of miR-31
60

, demonstrating 

its negative interference at the very beginning of Wnt signalling. Generally, miRNAs target 

several mRNAs as well as one mRNA can be targeted by different miRNAs
84

. It is, hence, not 

unusual that miR-31 regulates different factors of the Wnt signalling pathway. 

The ultimate goal of miRNA research in CVDs could be their establishment as biomarkers or 

therapeutic agents. Several miRNAs have been proposed to serve as biomarkers for CVDs 

like heart failure, coronary artery disease, diabetes mellitus or stroke. Circulating miRNAs 
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were found in secreted vesicles (microvesicles, exosomes, apoptotic bodies), protein-miRNA 

complexes or as by-products of dead cells
85

. A possible therapeutic effect of miRNAs could 

be harnessed by administration of antimiRs or the use of miRNA sponges which bind the 

miRNA of interest, making it no longer available for its targets. Also the upregulation of 

miRNAs could be of interest although this strategy had limited success so far
86

. 

7.2 Investigating the role of hydrocortisone on the expression of miR-31 

in HUVECs 

Glucocorticoids are commonly prescribed to treat diseases like rheumatoid arthritis or 

polymyalgia rheumatica. Long-term treatment with GCs such as hydrocortisone, however, 

leads to severe side effects like hypertension, insulin resistance or osteoporosis. 30% of 

patients develop osteoporosis when taking a GC for more than 6 months. This leads to bone 

loss and a higher risk of fractures
72

. GCs act on several factors involved in osteogenic 

differentiation, for instance type I collagen, osteocalcin or osteopontin
73

. Other groups as well 

as findings of ours established miR-31 as an inhibitor of osteogenic differentiation of ASCs. 

Furthermore, we found that endothelial cells secrete miR-31 in microvesicles, up-regulating 

miR-31 when undergoing senescence. We hypothesized that GCs act on endothelial cells by 

increasing their expression of miR-31 which further contributes to the development of 

cortisol-induced osteoporosis. Indeed, in short-term experiments we observed an upregulation 

of miR-31 in HUVECs incubated in media containing HC compared to HUVECs receiving no 

HC.  

Here we tested the effect of HC treatment on HUVECs for 5 passages (Figure 25). The trend 

of the long-term experiment resembles the result of the short-term assay. While in the first 

passage miR-31 expression is higher in HC treated cells, values of HC and control cells level 

in the second passage. Control cells then start to increase expression of miR-31 compared to 

the first passage. Unfortunately, none of the differences between HC treated and control cells 

of the same passage is significant which makes a profound discussion of this data obsolete. 

Further experiments should include a marker sensitive to HC to check if the used 

concentration of 2µM is effective. Intriguingly, cells receiving no HC proliferated more 

(Figure 26) than cells receiving HC and seemed to have an increased level of miR-31 which 

raises the interesting question if miR-31 enhances proliferation not only in VSMCs
79

 but also 

in endothelial cells. It remains elusive why the measured values for miR-31 are varying 

considerably among the triplicates which caused a high standard deviation and statistical 

insignificance. As discussed above, we observed this also in one of our calcification assays.  
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10 Appendix 

10.1 Zusammenfassung 

Atherosklerose und Osteoporose sind zwei weitverbreitete, altersabhängige Krankheiten, die 

durch Kalziumablagerung, reguliert durch molekulare Mechanismen osteogener 

Differenzierung, gekennzeichnet sind. Vor kurzem entdeckten wir, dass seneszente 

Endothelzellen die osteogene Differenzierung von adipose-derived stem cells (Stammzellen, 

die aus Fettgewebe gewonnen werden) abschwächen können, indem sie Mikrovesikel 

sekretieren, welche mit einer microRNA, miR-31, angereichert sind. Von dieser Entdeckung 

ausgehend stellten wir zwei Hypothesen auf. Erstens, miR-31 inhibiert die Kalzifizierung von 

vaskulären glatten Muskelzellen (VSMCs) - ein Zelltyp, der in der Arteriosklerose osteogen 

zu differenzieren im Stande ist, was zur Kalzifizierung der Gefäße führt. Zweitens, 

Endothelzellen regulieren bei längerfristiger Behandlung mit Hydrocortison (HC) - ein 

Osteoporose verursachendes Glucocorticoid - miR-31 hoch. Wir beobachteten eine geringere 

Kalzifizierung in jenen VSMCs eines Spenders, die mit miR-31 transfeziert wurden. Bevor 

wir dieses Experiment beginnen konnten, testeten wir verschiedene Konzentrationen Ca
2+

/Pi 

an VSMCs in Kultur aus. Des Weiteren adaptierten wir eine bereits etablierte Methode 

basierend auf der Färbung von Zellen mit SYBR Green I um die gewonnenen Daten auf den 

DNA-Gehalt normalisieren zu können. Zur Feststellung weiterer Targets von miR-31 

entwarfen wir ein Luziferase-Reporter-Plasmid welches auf Grund zeitlicher 

Einschränkungen nicht zu Gänze fertiggestellt werden konnte. Um den Langzeiteffekt von 

Hydrocortison auf Endothelzellen zu untersuchen, inkubierten wir fünf Passagen lang humane 

Nabelschnurvenen-Endothelzellen (HUVECs) mit oder ohne HC und bestimmten die 

Expression von miR-31 mittels qPCR. In vorangegangenen kurzfristigen Experimenten 

stellten wir eine signifikante Hochregulierung von miR-31 fest. In dem vorliegenden 

längerfristigen Experiment jedoch gab es keine signifikanten Unterschiede in der Expression 

von miR-31 zwischen Zellen mit und solchen ohne HC im Medium. 
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10.3 Vector maps 

 

Figure 38. Vectors used to create the luciferase reporter plasmid. pCR2.1-TOPO (Invitrogen), pVAX1 

(Invitrogen) and pMetLuc-Control (Clontech) 
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10.4 List of abbreviations 

4-OHT ............. 4-hydroxytamoxifen 

ALP ................. alkaline phosphatase 

antis. ................ antisense 

AoSMCs .......... aortic smooth muscle cells 

ASCs ................ adipose-derived stem cells 

BGLAP ............ bone gamma-carboxyglutamic acid-containing protein (osteocalcin) 

BMP ................ bone morphogenetic protein 

C. elegans ........ Caenorhabditis elegans 

ctr#2 ................. control#2 

CVD ................ cardiovascular disease 

DDR ................ DNA damage response 

DGCR8 ............ DiGeorge syndrome critical region gene 8 

Dkk-1 ............... Dickkopf-1 

DMEM ............ Dulbecco’s Modified Eagle’s Medium 

eIF .................... eukaryotic initiation factor 

FBS .................. foetal bovine serum 

FGF .................. fibroblast growth factor 

FI ..................... fluorescence intensity 

FOXP3 ............. forkhead box P3 

Fzd ................... frizzled 

GAPDH ........... glyceraldehyde 3-phosphate dehydrogenase 

GC ................... glucocorticoid 

HC ................... hydrocortisone 

hPLALP ........... human placental alkaline phosphatase 

HUVECs .......... human umbilical vein endothelial cells 

MGP ................ matrix Gla protein 

miRNA/miR .... microRNA 

NFW ................ nuclease free water 

PD .................... population doubling 
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PPi .................... inorganic pyrophosphate 

pre-miRNA ...... precursor microRNA 

pri-miRNA ...... primary microRNA 

qPCR ............... quantitative polymerase chain reaction 

RISC ................ RNA-induced silencing complex 

ROS ................. reactive oxygen species 

RT .................... reverse transcriptase 

Runx2 .............. Runt-related transcription factor 2 

SASP ............... senescence-associated secretory phenotype 

SA-β-gal .......... senescence-associated β-galactosidase 

SDS .................. sodium dodecyl sulphate 

SIPS ................. stress-induced premature senescence 

SPP1 ................ secreted phosphoprotein 1 (osteopontin) 

TERT ............... telomerase reverse transcriptase 

TGF-β .............. transforming growth factor-β 

transf. ............... transfected 

TRBP ............... TAR RNA binding protein 

UTR ................. untranslated region 

VSMCs ............ vascular smooth muscle cells* 


