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Abstract 

 

The inventory management is one of the major tasks a company is faced with. The challenge is 

that the company orders the products before customers demand them. There are two main reasons 

why this happens.  First of all, there is a lead-time between the ordering time and the delivery 

time. Second of all, due to certain ordering costs, it is often necessary to order in batches instead 

of unit for unit. This means that the company needs to forecast the future demand. A demand 

forecast is an estimated average of the demand size over some future periods. Therefore, the 

company also needs to determine how uncertain the forecast is. The forecast reflects on the stock 

level held by the company and its uncertainty influences the company to hold additional stock for 

the unpredictable demand. An accurate forecast or at least one with the smallest forecast error is 

crucial for every company, because it ensures two major tasks of the inventory management: to 

satisfy a given level of demand and to minimize the inventory cost. The accurate demand forecast 

ensures that there would be no lost sales, which in the worst case leads to lost customers and in 

the same time, there would be no unnecessary tied capital in inventories. 

In order to solve these problems two main forecasting approaches have been developed: the time 

series forecasting methods and the causal forecasting models. 

This work provides a comparison between these two forecasting approaches. In addition two 

critical assumptions for the causal forecasting methods, namely the homoscedasticity and the 

nonautocorrelation, will be discussed.  

Furthermore, the work investigates the safety stock planning in (  ,  ) inventory policy with zero 

and positive lead time. The impact which the Order Service Level (OSL), the Unit Service Level 

(USL) and the forecasting inaccuracy have on safety stock planning will be investigated. For this 

purpose a sales data for “Schwechater” beer canes sold in Austria for 2005, 2006 and 2007 by 

ADEG Austria Ltd will be used. 
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Exposé 

 

Das Bestandsmanagement ist eine der wichtigsten Aufgaben, mit der ein Unternehmen 

konfrontiert wird. Die Herausforderung besteht darin, dass das Unternehmen die Produkte 

beschaffen muss, bevor die Kundennachfrage entsteht. Es gibt zwei Hauptgründe, warum dies 

geschieht. Zunächst kommt es zu einer Vorlaufzeit zwischen dem Zeitpunkt der Bestellung und 

der Lieferzeit. Zweitens ist es aufgrund bestimmter Bestellkosten oft notwendig Großmengen 

statt Kleinmengen zu bestellen. Dies bedeutet, dass in einem Unternehmen der künftige Bedarf 

prognostiziert werden muss. Eine Bedarfsprognose ist die geschätzte durchschnittliche 

Nachfragegröße über einige zukünftige Perioden. Deshalb hat das Unternehmen festzustellen, 

wie unsicher die Prognose ist. Die Prognose spiegelt den Lagerbestand wieder und ihre 

Ungenauigkeit veranlasst das Unternehmen zusätzliche Bestände für die unvorhersehbare 

Nachfrage vorrätig zu halten. Eine exakte Prognose oder zumindest eine mit dem 

kleinstmöglichen Prognosefehler ist von entscheidender Bedeutung für jedes Unternehmen, da sie 

zwei wichtige Funktionen des Bestandsmanagements erfüllt: ein bestimmtes Nachfrageniveau zu 

befriedigen und die Lagerkosten zu minimieren. Die genaue Bedarfsprognose sorgt dafür, dass 

keine entgangenen Umsätze entstehen, die im schlimmsten Fall zu einem Kundenverlust führen 

können, und zugleich verhindert sie eine unnötige Kapitalbindung im Lagerbestand.  

Um diese Probleme zu lösen wurden zwei wesentliche Prognoseverfahren entwickelt: das 

Zeitreihenprognoseverfahren und die Kausalprognosemodelle. 

Die vorliegende Magisterarbeit stellt einen Vergleich zwischen diesen beiden Prognoseansätzen 

her. Zusätzlich werden zwei bedeutende Annahmen für die Kausalprognosemodelle diskutiert: 

die Homoskedastizität und die Non-Autokorrelation. Darüber hinaus untersucht die 

Magisterarbeit die Sicherheitsbestandsplanung der (  ,  ) Lagerhaltungspolitik mit null und 

positiver Lieferzeit. Die Auswirkungen, die der Order Service Level (OSL), der Unit Service 

Level (USL) und die Prognoseungenauigkeit auf die Sicherheitsbestandsplanung haben, werden 

beleuchtet. Zu diesem Zweck werden die Verkaufsdaten von ADEG Österreich AG für 

„Schwechater Bier“ in Dosen am österreichischen Markt aus den Jahren 2005, 2006 und 2007 

verwendet. 
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1. Introduction 

1.1. Problem definition 

 

The inventory management is one of the major tasks a company is faced with. Inventories are the 

needed quantities that must be kept on stock in order to satisfy a certain level of demand. The 

problem, however, is that the company orders the products before customers demand them. There 

are two main reasons why this happens.  First of all, there is a lead-time between the ordering 

time and the delivery time. Second of all, due to certain ordering costs, it is often necessary to 

order in batches instead of unit for unit. This means that the company needs to forecast the future 

demand. A demand forecast is an estimated average of the demand size over some future periods. 

Therefore, the company also needs to determine how uncertain the forecast is.
1
 However, there is 

only one certain thing about the future and it is that the future is uncertain. Therefore, variations 

between actual demand and forecast are inevitable.
2
 The forecast reflects on the stock level held 

by the company and its uncertainty influences the company to hold additional stock for the 

unpredictable demand, which is known as safety stock. An accurate forecast or at least one with 

the smallest forecast error is crucial for every company, because it ensures two major tasks of the 

inventory management: to satisfy a given level of demand and to minimize the inventory cost. 

The accurate demand forecast ensures that there would be no lost sales, which in the worst case 

leads to lost customers and in the same time, there would be no unnecessary tied capital in 

inventories. The inventories must be stored for the time before they are taken away from stock by 

customers. This occurs holding costs that consist of space and equipment costs, insurance costs, 

personnel wedges, opportunity costs for holding stocks, energy costs and taxes.
3
 

Moreover, one of the well-known phenomena in the Supply Chain Management – the Bullwhip 

Effect, can be caused by the forecast. If the members of the supply chain have access only to a 

local information system, each member will update the forecast based on the demand of the 

subsequent member in the supply chain. This could cause that even small order variability at the 

customer level amplifies the orders for upstream participants, such as wholesalers and 

                                                 
1
 Axsäter Sven, Inventory Control, 2006, p. 7 

2
 Krupp J. (A), 1997 

3
 Kapkova Albena, Inventory Management for Perishable Goods, Master Thesis, 2006, pp.1 



 2 

manufacturers, as the order moves up along a supply chain. Even when consumer sales show 

relatively constant demands, the order placed by a retailer to a wholesaler is likely to fluctuate 

more than the actual demand perceived by that retailer. The wholesaler’s order to the 

manufacturer and the order of the manufacturer to the supplier fluctuate even more. 

The increased variability and uncertainty requires each member of the supply chain to increase 

the level of stocks in order to maintain established service levels causing increased inventory 

holding costs due to overstocking throughout the supply chain. This leads to inefficient use of 

resources and may result in poor customer service and profitability.  

Demand forecast updating suggests that demand amplification occurs due to the safety stock and 

long lead time. As orders are forecasted and transmitted along the supply chain, the safety stocks 

are built up, and thus the bullwhip effect occurs. Because the bullwhip effect has the detrimental 

impacts on the performance of the whole supply chain, an accurate forecast is crucial for every 

member of the supply chain.
4
 

On the other hand the variation of the demand, this is the forecasting error, is used to plan the 

safety stock of a given product. This raises the question what kind of forecasting model should be 

used in order to fulfill the accuracy requirement. 

There two major forecasting categories – quantitative and qualitative. Quantitative methods can 

be divided into time series and causal methods, and qualitative can be divided into explanatory 

and normative methods. In this thesis, the quantitative methods will be considered. Although the 

quantitative methods represent the past and nothing remains the same, the past evidences tend to 

repeat in the future.
5
 

In the “Journal of the Operation Research Society” “time series + safety stock” was given as 

search criteria and 21 results that match were found. In the same journal for the search criterion 

“linear regression models + safety stock” there have been found only five results that match. In 

the “International Journal of Forecasting” the results were 32 articles for the criterion “time series 

+ safety stock” and 16 for “linear regression models + safety stock”. 

The results from the search show that the forecasting is still considered as a technical process, 

dominated by statistical methods applied to historical data. Nowadays, however, the demand of a 

certain product is influenced by psychological, social or political factors. Under psychological 

                                                 
4
 Keller, Die Reduzierung des Bullwhip-Effektes, 2004, pp. 21; Seung-Kuk Paik, Prabir Bagchi, 2007 

5
 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, p. 8 
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factors, for example, can be considered the expected rise or fall of the personal earnings. For 

example, at the end of 2008 the sales of new automobiles in the USA sunk with 32 % compares 

with same period one year earlier and with 15% in Europe as a consequence of the financial 

crises started in 2007, because the people were not sure for their jobs at the time of crises. As a 

response to the decreased sales the producers sank the prices trying to raise the sales.
6
 In such 

cases, a forecasting based on historical data would be more inaccurate than a forecasting based on 

customers’ earnings expectations and product’s changed price. 

The both methods require sufficient information about the past, which can be quantified in the 

form of numerical data. The both methods assumed that some aspects of the past pattern will 

continue into the future. However, these two methods have their strengths and weaknesses and 

are used for different purposes. The time-series methods predict the continuation of growth or 

decrease in sales, for example, based on past values and past errors, while the causal methods try 

to understand, for example, how prices and advertising affect sales. The causal methods assume 

that there is cause-effect relationship between the factor and one or more independent variables.
7
 

The objective of this thesis is to provide an insight into the time series forecasting methods and 

linear regression forecasting methods, to compare them and to observe the planning of the safety 

stock based on the forecasting. 

 

1.2. Organization of the Thesis 

 

Apart from this introductory chapter, this thesis contains a further seven chapters. 

In chapter two an overview of the basic time-series methods is introduced.  

Chapter three reviews the linear regression models.  

Chapter four presents classical safety stock planning techniques and the (  ,   ) inventory policy. 

In Chapter five one of the basic assumptions of the linear regression models, namely the 

homoscedasticity, is discussed. 

Chapter six overviews another basic assumption of the linear regression models, namely the 

autocorrelation. 

                                                 
6
 Spiegel, 25th November, 2008, German Auto Industry Facing the Abyss 

7
 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, pp. 8 
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After having provided a basic theoretical background of the forecasting methods and the classical 

safety stock planning techniques, these different forecasting methods are compared in Chapter 

seven by using a company’s product sales record.  

Chapter eight delivers a comparison of the forecasting methods with safety stock planning 

techniques on the (  ,   ) policy base. 

Finally, Chapter nine delivers a concluding remark on the investigations performed. 
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2. Time-Series Forecasting Methods 

 

Time-series methods are the one that can be used more easily to forecast when the necessary data 

are available. In this case a forecasting relationship can be hypothesized either as a function of 

time or as a function of independent variables.  A very important step in selecting the time-series 

method is to consider the types of data patterns, so that the most appropriate method can be used. 

There are four types of data that can be distinguished: horizontal, seasonal, cyclic and trend. 

A horizontal pattern exists when data values fluctuate around a constant mean. For example, a 

product whose sales do not deviate over time would be of this type. A seasonal pattern exists 

when a series is influenced by seasonal factors such a certain day of the week or a certain quarter 

of the year. The ice cream, for example, is a product with such a pattern.  

A cyclical pattern exists when the data are influenced by long-term economic fluctuations. The 

main difference between a seasonal and cyclical pattern is that the seasonal has a constant length 

and regular periodic basis, while the cyclical has varying length and magnitude.  

A trend pattern exists when there is a long-term secular increase or decrease in the data. An 

example for such a pattern is the gross national product.
8
 

Appropriate time-series methods exist for every type of data. Because there are plenty of 

methods, in thesis only the basic average and exponential smoothing methods would be 

considered. 

There are two groups of time series methods - the averaging methods and the exponential 

smoothing methods. While the averaging methods consider all observations to be equally 

weighted, the exponential methods apply an unequal set of weights to the past which typically 

decay in an exponential manner from the most recent to the most distant datapoint.
9
 

 

 

                                                 
8
 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, pp. 9 

9
 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, p. 67 
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2.1. Averaging Methods 

2.1.1. The Mean Method 

 

The Mean Method is the simplest one of all averaging methods. This method takes the average of 

all data and the forecast for the coming period is the average of the data. If the data X1, X2, X3 

…… XN-1, XN is given the forecast for the next period can be compute with the following 

formula: 




 
T

i

iT TXXF
1

1 /            (2.1) 

The forecast for the next periods are calculated in the same way.  

Because every forecast has an error, it can be computed as a difference between the forecasted 

value and the observed value: 

111   TTT FXe   

This simple method is appropriate only if the data has no noticeable trend or noticeable 

seasonality. If the mean is based on a larger and larger past history data set, the forecasting 

becomes more stable, assuming that the underlying process is stationary. Exactly this is the main 

disadvantage of this method, because there is very unlikely that the business process would be 

based on an underlying constant process.  When the data series is a step function or exhibits trend 

and seasonality, then the mean used as a forecast for the next period will be inappropriate, 

because it will give values away from the observed data. 
10

 

 

2.1.2. Single Moving Average 

 

This model modifies the influence of the past data by specifying the number of the past data 

observations that will be included in a mean. It is called moving average because as each new 

observation becomes available, a new average can be computed by dropping the oldest one and 

adding the newest one. The new average will then be the forecast for the next period. If the data 

                                                 
10

 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, pp.70 
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X1, X2, X3 …… XN-1, XN is given the forecast for the next period can be compute with the 

following formula: 




 
T

i

iT TXXF
1

1 /           (2.2) 

In this method, the number of data points remains constant in each average and includes the most 

recent observations. Compared with the mean method the moving average has the following 

advantages and disadvantages: 

 It deals only with the latest periods of known data, but it requires more storage because all 

of the latest observations must be stored, not just the average.  

 It can forecast better trend and seasonality, because the number of data points does not 

change over time, but the results are still not good enough.  

The number of the periods in the moving average is crucial for the forecasting result. If the 

method contains only one data, then the last observation will be the forecast for the next period. 

This is also known as a naive forecast. The use of a small number of data will allow the moving 

average to follow the pattern, but these forecasts will trail the pattern, lagging behind by one or 

more periods. With the increasing of the data contained in the average a higher smoothing effect 

is achieved, but the attention paid to the fluctuations in the data series decreases. However, the 

method can be helpful in decomposing the series into trend, seasonal and other components, but 

would not be effective as a forecasting tool for data showing trend or seasonality. Because of the 

disadvantages mentioned above, this method is not very used in practice. The time-series 

methods used in practice are the exponential smoothing methods, because they are in generally 

superior.
11

 

 

2.2. Exponential Smoothing Methods 

The fundamental principle underlying these methods is the idea that the recent data contain more 

information than the older data. Thus, the averages are weighted with the greatest weight 

assigned to recent data. Because the weighting given to historical data decreases geometrically as 

                                                 
11

 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, pp.72 
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we go back in time and the exponential curve is a continuous approximation to geometrically 

decaying points, these methods are named exponential smoothing.
12

 

 

2.2.1. Single Exponential Smoothing 

 

The exponential smoothing assumes that in order to get a new estimate of the average demand, a 

fraction of the amount by which the demand of this period exceeds the estimate should be added. 

This fraction is called a “smoothing constant” and is conventionally noted by the Greek letter 

alpha – α.  

The basic rule of the exponential smoothing can be represented in its general form
15

:  

Ft+1 = α Xt + (1- α) Ft         (2.3) 

The single exponential smoothing method requires the specification of an α value which must be 

between 0 and 1. If a small value is chosen for the smoothing constant, say α = 0.01, the response 

will slow and gradual, since it is based on the average of many past periods. A high value, say α 

= 0.5, will cause the estimates to respond quickly, not only to real changes, but also to the 

random fluctuations.
16

 

In his earliest book the founder of the exponential smoothing methods, Robert Brown, states that 

in his practice he had found that an α value of 0.1 is a satisfactory compromise between a very 

stable system that fails to track real changes and a system that fluctuates with demand. 

Although Brown’s suggestion, it is common sense that it is not always suitable to keep  

α = 0.1. That is why over the time different adaptive methods have been developed. For single 

exponential smoothing methods with one smoothing parameter, there are two main types of 

adaptive approaches that have been developed. The first group of approaches changes the 

smoothing parameter α stepwise rather than continuously.  

In his method W. Chow (1965) simply replaces at each period t the smoothing parameter α, by αt-

1 + δ or αt-1 - δ, where δ is constant, according to which of these values (αt-1 + δ, αt-1 - δ) would 

have given a better forecast in the previous period. 

                                                 
12

 Silver, Pyke , Peterson , "Inventory Management and Production Planning and Scheduling", 1998, p.89 
15

 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, p.86 
16

 Brown R., Statistical Forecasting for Inventory Control, 1959, pp. 53 



 9 

D.C. Whybark (1978) develops another method. He defines three allowed values for α (0 < 
B  < 

M  < 
H  < 1) and a Boolean variable  t defined by: 

 

 

if | et | > 4ζ, 

if | et | > 1.2 ζ  and | et-1 | > 1.2 ζ and etet-1 > 0,            (2.4) 

otherwise, 

 

where et is the forecast error at period t and ζ is the standard deviation of series {xt}. The 

adaptive smoothing coefficient takes the predefined values depending on δt, as it is shown in the 

next equation:      

 

if t , 

if t =0  and 1t =1,               (2.5) 

otherwise. 

     

The values for { H , M , B } recommended by Chow are {0.2, 0.4, 0.8}. 

Another method is developed by J.D. Dennis (1978). According to his method, whenever the 

number Lt of consecutive errors of the same sign is found to be greater than a prespecified limit 

N, α is increased by Δ. Whenever Lt is found to be less than N, α returns to a base value B . The 

method is described by the following two equations: 

 

if  etet-1<=0, 

otherwise,                  (2.6) 

 

 

if  Lt<N, 

otherwise.                (2.7) 
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In the second approach, the smoothing parameter is calculated by backward equations. 

The most well known approach is developed by Trigg and Leach (1967), which defined the 

smoothed absolute error as: 

1)1(  ttt e            (2.8) 

and the smoothed error as 

1)1(  ttt EeE   ,        (2.9) 

where ф in [0, 1] is some smoothing constant, and α is updated according to the following 

equation: 

ttt E  / 17
         (2.10) 

 

2.2.2. Holt’s Two-Parameter Method 

 

If the demand follows a trend demand model, two parameters need to be estimated, compared to 

only one in case of a constant demand. This forecasting method uses two smoothing constants,    

and γ, with values between 0 and 1 and three equations: 

))(1( 11   tttt bSXS          (2.11) 

11 )1()(   tttt bSSb          (2.12) 

mbSF ttmt  ,         (2.13) 

where S is the smoothed value, b is the trend and m is the number of periods that will be 

forecasted. 

The first equation (2.13) adjusts St directly for the trend of the previous period, bt-1, by adding it 

to the last smoothed value St-1. In this way, St is brought to the approximate base of the current 

data value. The next equation (2.14) updates the trend, which is expressed as the difference 

between the last two smoothed values. This is appropriate because if there is a trend in the data, 

new values should be higher or lower than the previous ones. Because there may be some 

randomness, the trend of the last period is smoothed with γ and added to the previous estimate of 

the trend multiplied by (1-γ). This is similar to the single smoothing but applies to the updating of 
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the trend. The last equation (2.15) is used to forecast ahead. The trend bt is multiplied by the 

number m of periods needed to be forecasted and added to the base value St. 

The Holt’s method requires two estimates – one to get the first smoothed value for S1 and the 

other to get the trend b1. For the first one S1=X1 can be chosen. The estimation of the trend can be 

more problematic, because we need an estimate of trend from one period to another. If one 

chooses the trend to be equal to the differences between the last and previous period’s demand, 

b1=X2-X1, there is obviously nothing disturbing. However, if one decides to compute the trend as 

an average value of the differences between the demands for several periods, 

3

)()()( 342312

1

XXXXXX
b


 , and if there is a significant drop or raise in the data, 

one can have trouble with the forecast. So in this case the estimate of the initial slope will be 

inaccurate and it could take a long time until the forecast overcomes this influence.
18

 

 

2.2.3. Winter’s Three-Parameter Trend and Seasonality Method 

 

If the data are stationary, then moving averages or single exponential smoothing methods can be 

applied. The Holt’s linear method can be used, if the data exhibit a linear trend. However, if the 

data are seasonal, these methods cannot give an accurate forecast. For these cases, one 

appropriate method is the Winter’s method. 

This method is based on three smoothing equations – one for stationarity, one for trend and one 

for seasonality. It is similar to Holt’s method, but with one additional equation to deal with 

seasonality. The basic equations for Winter’s method are: 

))(1( 11 



 tt

tLt

t
t bS

I

X
S         (2.14) 

11 )1()(   tttt bSSb          (2.15) 

Lt

t

t
t I

S

X
I  )1(          (2.16) 

mLtttmpt ImbSF   )( ,        (2.17) 
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where S is the smoothed value, b is the trend, L is the length of seasonality, I is the seasonal 

adjustment factor, m is the number of periods that will be forecasted, p is the periodicity of the 

demand, α is a smoothing constant for the smoothed value, 0 < α < 1, γ is a smoothing constant 

for the trend, 0 < γ < 1 and β is a smoothing constant for the seasonal factor, 0 < β < 1. 

The seasonal smoothing equation (2.18) is comparable to a seasonal index that is found as a ratio 

of the current value of the series, Xt, divided by the current single smoothed value of the series, 

St. If Xt is larger than St, the ratio will be greater than one, while if it is smaller than St, the ratio 

will be less than one. This is so, because St is an average value of the series that does not include 

seasonality. On the other hand, the data values Xt contain seasonality and include randomness. In 

order to smooth this randomness the newly computed seasonal factor is weighted with β and the 

most recent seasonal number corresponding to the same season is weighted with (1-β). This prior 

seasonal factor is computed in period t-L, since L is the length of seasonality. The 

deseasonalizing process can presented also as:  

actual data – index  = deseasonalized data.
19

 

The overall smoothing equation (2.16) differs from Holt’s method’s equation in that the first term 

is divided by the seasonal number It-L. This is done in order to eliminate seasonal fluctuations 

from the data values, Xt. If  It-L is greater than 1, which occurs when the value in period t-L than 

the average in its seasonality, dividing Xt by this number greater than 1 gives a value that is 

smaller than the original value by percentage just equal to the amount that the seasonality of 

period t-L was higher than average. The opposite adjustment occurs when the seasonality number 

is less than 1. The value It-L is used in these calculations because It cannot be calculated until St is 

known from the overall smoothing equation. 

One of the major problems in using this method is to determining the values for α, β and γ that 

will minimize Mean Squares Error (MSE) or Mean Absolute Percentage Error (MAPE). The 

approach for determining these values is usually trial and error, although it might be possible to 

use nonlinear optimization algorithms to give optimal parameters values.
20

 

Another problem in using this method is that it is quite often difficult to distinguish systematic 

seasonal variations from independent stochastic deviations. The problem is that there are many 
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parameters to estimate and the indices may become very uncertain. Therefore, it can be 

recommended that only data with obvious seasonal variations should be accepted as seasonal 

items and in these cases the Winter’s method should be used.
21

 

 

2.4. Measurements of the Forecasting Accuracy 

 

The crucial part for every forecasting method is the accuracy. A decision whether to use a certain 

method or not is taken by it. Each data has two main components: the functional relationship 

governing the system, also known as pattern and randomness, known as error.  

The critical task in the forecasting is to separate the pattern from the error component so that the 

former can be used for forecasting. The procedure for estimating the pattern of a relationship is 

through fitting some functional form in such a way as to minimize the error component of the 

data. One form of this estimation is least squares. The name least square is based on the fact that 

this estimation procedure seeks to minimize the sum of the squares errors in the following 

equation: error = data – pattern. 

 The mean squares error (MSE) is a mathematical function whose properties can be established 

using calculus. The following procedure describes the necessary steps of doing it. 

For convenience, the error will be denoted by e, the data by X and the pattern by X , the subscript 

i (i=1, 2, 3, ….., n) will be added to denote the i
th

 customer, for example.  

The first step is to identify the error by the following equation: 

e = Xi - X .          (2.18) 

To examine the squared error both sides must be squared, giving: 

e
2 

= (Xi - X )
2          

(2.19) 

Summing these squared errors for all n customers yield: 

2

11

2 )(



n

i

i

n

i

XXe          (2.20) 
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The value X , which will minimize the sum of the squared errors, is not known, but it can be 

found applying necessary conditions for minimum, i.e. by taking the derivative of  , setting is 

equal to zero and solving for X , as follows: 

  0)(2 XX
Xd

d
i


 

so that 

0
1




XnX
n

i

i  

which implies 





n

i

iX
n

X
1

1
 .          (2.21) 

 

This solution (2.17) gives a value that minimizes the sum of the squared errors. As a single point 

estimate of the pattern of the data, the mean fits the data as closely as possible, given the criterion 

of minimizing the MSE. 

Minimizing the MSE is the most popular method for estimating the accuracy of the forecasting 

method for several reasons. If one attempts to minimize Σei one will involve extra complications 

because some ei values will be positive and some will be negative. To avoid having errors 

canceling each other, one might minimize the absolute errors, Σ|ei|. However, this is not as easy 

computationally as minimizing the MSE. Choosing to minimize Σei
4
 or to the high power has the 

disadvantage that it has more than one minimum, which meets again the computational and 

practical problems. On the other hand, increasing the power of the error term gives more weight 

to extreme values which is attractive, because large errors are less desirable than small errors, but 

it should be overdone. The use of MSE is a compromise between giving too much weight to 

extreme errors and giving the same weight to all values using the absolute errors, Σ|ei|.
23

 

Although the MSE is widely used, it has two main drawbacks. The first refers to fitting a model 

to historical data. Such fitting does not necessarily imply good forecasting, because a MSE of 

zero can always be obtained in the fitting phase by using a polynomial of sufficiently high order. 

This leads to overfitting a model to a data series, which is equivalent to including randomness as 
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part of the generating process, and fails to indentify the nonrandom pattern in the data. The 

second main drawback of the MSE as a measure of accuracy is related to the fact that different 

methods use different procedures in the fitting phase. The smoothing methods, for example, are 

highly dependent upon initial forecasting estimates. The regression methods, on the other hand, 

minimize the MSE by giving equal weight to all observations. Thus, the comparison of the 

methods only on MSE is of limited value.
24

 

Other widely used statistical measures are: 

 

Mean Absolute Deviation 

  XX
n

MAD i

1
 ,        (2.22) 

 

Standard Deviation of Errors 

  )1/(2 neSDE i ,        (2.23) 

 

Mean Absolute Percentage Error 

nPEMAPE
n

i

i /
1




 ,         (2.24) 

where PE refers to Percentage Error and is equal to: 

 

)100(








 


t

tt
t

X

FX
PE .        (2.25) 

 

The most common way to describe variations around the mean is through the standard deviation. 

However, in the practice is common to estimate the Mean Absolute Deviation (MAD) instead. 

The original reason that MAD is estimated instead of the standard deviation was that this 

simplified the computations. Nowadays, it is no problem to estimate the standard deviation 

directly, but still MAD is more preferable to be estimated. In most cases, the standard deviation 

and the MAD give a very similar picture of the variations around the mean and it is possible to 
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relate them to each other. A common assumption is that the forecast errors are normally 

distributed. In that case the relationship is: 

MADMAD 25.12/   .        (2.26) 

 

The MAD can be updated with exponential smoothing method. In this case the forecast for the 

absolute error at the end of period t is consequently determined as: 

ttttt xxMADMAD ,11)1(    ,      (2.27) 

where 0 <    < 1 is a smoothing constant, but not necessarily the same as in the forecasting 

smoothing method.
25

 

Another ratio that evaluates the forecast is the tracking signal (TS). This ratio has two 

components – the bias and the MAD, and is given as: 

t

t
t

MAD

bias
TS  .          (2.28) 

The bias is used to determinate whether a forecast method consistently over- or underestimates 

demand. The sum of forecast errors is used to evaluate the bias, where the following holds: 





n

t

tn eBias
1

.          (2.29) 

The bias will fluctuate around 0 if the error is truly random and not biased. If the TS at any period 

is outside the range  6, this is a signal that the forecast is biased and is either underforecasting 

(TS < -6) or overforecasting (TS > +6). In this case, one can decide to choose a new forecasting 

method in order to improve the forecast.
26
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3. Causal Forecasting Models  

 

The causal,  also called econometric, forecasting methods are estimating techniques based on the 

assumption that the variable to be forecast, known as dependent variable, has cause-and-effect 

relationship with one or more other variables, known as , dependent variables.
27

 

Econometric models are just one of a number of different ways of characterizing an economic 

system. They are typically aggregate linear or almost linear models with a well defined stochastic 

structure. Model parameters are estimated from the data using well understood and statistically 

techniques based on these stochastic assumptions. The variables modeled are typically 

measurable and often based on accounting data. The whole system can be modeled through a 

simultaneous approach, where the variables being modeled are determined jointly or a recursive 

approach, where the model is built up sequentially.
28

 

A special type of econometric models is the linear regression model, which is under consideration 

in this thesis.  This fails among the basic econometric models, concentrating on just a single 

equation. The forecast of this model will be expressed as a function of a certain number of factors 

that determine its outcome.  

It is important to bear in mind that although regression analysis deals with relationship between a 

dependent variable and one or more independent variables, it does not necessarily imply 

causation. This means that it is not necessarily that the independent variables are the cause and 

the dependent variable is the effect. If causality between two exists, it must be justified from the 

theory that underlies the phenomenon that is tested empirically. 

The objective of the regression analysis may be to estimate the mean value of the dependent 

variable, when the values of the independent variables are given, or to test hypotheses about the 

nature of the dependence, which are suggested by the underlying theory, or to predict the mean 

value of the dependent variable, when the values of the independent variables are given, or one or 

more of the preceding objectives combined.
29

 

There are two types of linear regression methods – the simple regression and the multiple 

regression. 
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3.1. The Simple Regression Model 

 

The term “simple regression” refers to any regression of a single Y measure, which is the 

dependent variable, on a single    measure, which is the independent variable. The mathematical 

expression of this model is: 

iii xy   ˆˆ   for i=1,……., n,     (3.1) 

where ̂  is the intercept, ̂  is the slope and ε is the error term, also known as disturbance. 

This is commonly called the population linear regression equation of y on x. In this equation, y is 

also known as regressand and x as regressor.
30

  

The slope coefficient, ̂ , measures the rate of change in the mean value of Y per unit change in 

  . The intercept coefficient, α, is the mean value of Y, if    = 0.
31

 

Like every model the simple linear regression comprise some assumptions. The basic set of 

assumptions are: 

1. Zero mean of the distributance: E[ε i] = 0 

The first assumption states that the factors, which are not explicit included in the model, 

and therefore subsumed in ε i, do not systematically affect the mean value of Y. In other 

words, the positive εi values cancel out the negative ε i values so that their average affect 

on Y is zero. 

 

2. Homoscedasiticy:  Var[ε i] = ζ², constant for all i 

The second assumption states that the variance of the disturbance for each     is some 

positive constant number equal to ζ². This means that the Y populations corresponding to 

various    values have the same variance. 

 

3. Nonautocorrelation: Cov[ε i, ε j] = 0 if j ≠ i 

This assumption states that the disturbances εi and εj are uncorrelated. This means that the 

deviations of any two Y values from their mean value do not exhibit correlated patterns. 
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4. Uncorrelatedness of regressor and disturbance: Cov [xi, ε j] = 0 for all i and j. 

The fourth assumption states that the disturbance and the explanatory variable are 

uncorrelated. If the assumption is not true and there is correlation, then the explanatory 

variable,    , will increase or decrease when the disturbance increases or decreases. In 

these cases, it will be difficult to isolate their influence on Y. This assumption is 

automatically fulfilled if the explanatory variable is nonstochastic and the first assumption 

holds. 

 

5. Normality: εi ~N[0, ζ²], i. e. εi  are supposed to be normally distributed with mean 0 and 

variance ζ². 

If the disturbances are normally distributed, then the third assumption implies that they 

are independent as well. This assumption is useful for making exact statements about the 

behavior of estimators and hypothesis testing procedures.
32

   

 

3.1.1. The Significance of the Disturbance Term 

 

The deviation of an individual Yi around its expected value can be express as: 

 iii xy  ˆˆ  ,         (3.2) 

where the deviation i  is an unobservable random variable taking positives or negatives values. 

This random variable, i , is known as stochastic error term or disturbance term.  

The disturbance term is a surrogate for all these variables that are omitted from the model but 

which collectively affect the dependent variable, Y. There are many reasons why these variables 

are not introduced into the model. 

One of the reasons is that the theory determining the behavior of Y may be incomplete. It might 

be known that the    influences the dependent variable, but other variables affecting Y might be 

ignorant. Even if it is known what some of the excluded variables are and therefore one considers 

a multiple regression rather than a simple regression, one may not have quantitative information 
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about these variables. It is a common experience in empirical analysis that the data that the 

forecaster would like to have often are not available.  

Another reason is that the influence of all or some of the omitted variables might be so small and 

at best nonsystematic that as a practical matter and for cost considerations it does not pay to 

introduce them into the model explicitly. Even if all the relevant variables are introduced into the 

model, there is bound to be some randomness in individual Y, which cannot be explained no 

matter how one tries.  

Although the simple regression model assumes that the independent and the dependent variables 

are measured accurately, in practice the data may be plagued by errors of measurement.  For 

example, the data on Y, which let say is quantity demand, may be rounded to the nearest digit. In 

this case, the disturbance term represents the errors of measurement.  

The last but not the least reason is the principle of Occam’s razor. It states that the descriptions 

should be kept as simple as possible until proved inadequate. This means that the regression 

model should be kept as simple as possible, but the relevant and important variables should not 

be excluded just to keep the regression model simple. Therefore, even if one knows what other 

variables might affect Y, their influence may be so small that one can represent them through the 

disturbance term. 
33

 

 

3.1.2. The Least Squares Method 

 

If the data of the whole population are given, it will be a straightforward task to estimate values 

of the parameters ̂  and ̂ . All it has to be done is to find the conditional means of Y 

corresponding to each    and then join these means. However, in practice is rarely to have the 

entire population at one’s disposal. Often the forecaster has a sample from this population and his 

task is to estimate the population regression function on the basis of the sample information.
34

  

In this method, the unknown parameters of equation (3.1) are the objects of estimation. It is 

necessary to distinguish between population quantities, such as ̂  and ̂ , and the sample 
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estimates of them, denoted as    and   . The expected estimate of the independent variable from 

the sample is represented as: 

ii xbay ˆ .          (3.3) 

The disturbance associated with the i
th

 data point is: 

iiiii xyyy  ˆˆˆ  .        (3.4) 

The residual which estimates the disturbance for any values of     and    is: 

iii xbaye  .         (3.5) 

Form here follows that: 

iiiii exbaxy   ˆˆ .       (3.6) 

The population quantities ̂  and ̂  are unknown parameters of the probability distribution of yi 

whose values can be estimated with the sample data. The parameters    and    should be so chosen 

so that the fitted line, ixba  , is close to the actual data points. The measure of closeness 

constitutes a fitting criterion. Although there are several methods that have been suggested, the 

most used one is least squares. 

The method of least squares states that    and    should be chosen in such a way that the residual 

sum of squares, 
2

ie  is as small as possible. The algebraically expression of this statement is: 

  
22

: iii xbayeMinimize ,       (3.7) 

where a and b are the least squares coefficients that minimize this fitting criterion. 

The values of the last squares coefficients can be determined by solving the following two 

simultaneous equations: 

bxany
i

i

i

i 







  ,        (3.8) 

bxaxyx
i

i
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i

ii 



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











  2 ,       (3.9) 

 where n  is the sample size. 

These simultaneous equations are known as the least squares normal equation. These two 

equations are obtained from the partial differential of equation (3.8) with respect to    and   . The 

first order condition for the minimum are: 
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or, equivalently, the mean value of the residual is zero: 

 
i

ie 0 ,           (3.10) 

and 
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,  

which implies that the residual is uncorrelated with the independent variable: 

 
i

ii ex 0 .          (3.11) 

Solving the normal equations simultaneously, the result for the least squares coefficients is: 

xbya  ,          (3.12) 
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222
,      (3.13) 

where x  and y  are the sample means of  x and y.
35

 

 

3.1.4. The Coefficient of Determination r
2
 

 

As already mentioned, there will be some positive   i and some negative   i around the sample 

regression line, which is presented with the following equation: iiiii eyexbay  ˆ)( . 

There are n pairs of values  ii YY ˆ,  and it is of great interest to know how these two values related 

to each other. The correlation between these iY  and iŶ  is usually designed with R. It is usually to 

present this correlation in squared form and this statistic is known as the coefficient of 

determination. 
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The coefficient of determination r
2
 (for simple regression) or R

2
 (for multiple regression) is a 

summary measure which tells how well the sample regression line fits the data or in other words 

how large are these residuals around the sample regression line. In the language of mathematics, 

the coefficient of determination tells the proportion of variance in Y that can be explained by   . 

The dependent variable Y has a certain amount of variability, which is defined by its variance. 

The estimated Ŷ  values also have a certain amount of variance. The ratio of these two variances 

is r
2
: 

)(

)ˆ(2

YVar

YVar
r  .          (3.14) 

Since the Ŷ are defined with reference to the estimated regression equation, this may be 

expressed as follows: 

)(

)(exp2

YVartotal

YVarlained
r  .        (3.15) 

Since the variation of the dependent variable is defined in terms of deviations from its mean, the 

total variation in Y is the sum of squared deviations: 

 2 
i

i yyTSS .         (3.16) 

In terms of the regression equation, it may be written: 

iiiiiii exbxbyexbaeyy  ˆ . 

Subtracting y  from both sides gives: 

  iiiii exxbeyyyy  )(ˆ .       (3.17) 

Squaring on both sides it yields: 

        
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i exxbeyyyy
222222

ˆ .     (3.18) 

After these definitions, equation (3.20) can be transformed into following equation: 

 
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The quantity r
2
 thus defined is known as the sample coefficient of determination and is the most 

commonly used measure of the goodness of fit of a regression line. It tells the proportion of 
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variation in the dependent variable explained by the independent variable and therefore provides 

an overall measure of the extend to which the variation in one variable determine the variation in 

the other. 

Two properties of these coefficients can be noted: 

1. It is a nonnegative quantity. 

2. Its limits are 10 2  r . An r
2
 of 1 means a perfect fit, whereas an r

2
 of zero means no 

relationship between the dependent variable and the explanatory variable.
37

 

 

3.1.5. The Significance of the Simple Regression Equation 

3.1.5.1. The F-Test of Overall Significance 

 

The F-test answers the statistical question if there is a significant relationship between the 

explanatory variable and the dependent variable. In other words, it tests the significance of the 

overall regression model. This test helps the forecaster to decide whether the chosen explanatory 

variable is the proper one.  

The F-test can be presented as a ratio between two mean squares as follows: 
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where  k  is the number of parameters, which for the case of simple regression is k = 2, MS = 

mean square, SS = sum of squares, df = degrees of freedom. 

The F-test is closely connected to the definition of the coefficient of determination, r
2
. Thus it can 

be presented with another formula, as follows: 
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It should be pointed out that in the case of simple regression, the F-test for overall significance is 

the same as testing the significance of the slope coefficient.
38

 

 

3.5.1.2. The t-Tests for Individual Coefficients 

 

The values of the coefficients    and    fluctuate from sample to sample. The pair of values (  ,   ) 

have a joint sampling distribution and there is a very strong negative correlation between    and   , 

because if one increases the slope (  ), one automatically decrease the intercept (  ) and the 

opposite. In order to investigate the stability of    and   , separately, the marginal distribution have 

to be considered. The sampling distribution of the intercept coefficient has a normal distribution 

with mean ̂ and standard error as follows: 
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The sampling distribution of the slope coefficient has a normal distribution with mean ̂  and 

standard error as follows: 
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The estimate of the standard deviation of the errors in these two equations is given by: 
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This test is a procedure by which sample results are used to verify the truth or falsity of a null 

hypothesis. The null hypothesis is used to find out whether Y is related to   at all. If there is no 

relationship between variables, then there will be no point to include the explanatory variable in 

the model. Therefore, if    belongs in the model, one would fully expect to reject the null 

hypothesis H0. The key idea of the t-test of significance is that of a test statistic and the sampling 

distribution of such a statistic under the null hypothesis. The decision to accept or reject H0 is 

based on the value of the test statistic obtained from the data. 
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Using the standard errors formulas in equations (3.28) and (3.29) two t-tests can be set up to test 

the intercept and slope values as follows: 

 t-value for interceptor 

a

n
se

a
t

̂
2


 ,         (3.25) 

where a   is the estimated value, ̂   is the hypothesized value, sea is the standard error of a

and the subscript on t indicates the degree of freedom. 

 t-value for slope 
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b
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
 ,         (3.26) 

where b   is the estimated value, ̂   is the hypothesized value, seb is the standard error of b

and the subscript on t indicates the degree of freedom. 

Using the null hypothesis, it can be assumed that 

H0: ̂  = β* 

where  β* is a specific numerical value of ̂  (e.g., β* = 0), then 

b

n
se

b
t

*
2


 ,         (3.27) 

can be computed from the sample data. Since all quantities in the latter equation are known, 

the t-value can be computed and used as test statistic, which follows the t distribution with   

n-2 degrees of freedom. 

In order to use the t-test in a concrete application, which is used for the intercept coefficient 

as well as for the slope coefficient, three things should be known: 

 

1. The degrees of freedom, which are always n-2 for the simple regression model. 

2. The level of significance, ̂ , which determines whether the tested parameter is 

significantly different from zero. The level of significance is a matter of personal 

choice, although 1%, 5% or 10% levels have been usually used in empirical analysis. 

If the t-value lies outside the value of 1% critical t-value, then the hull hypothesis can 

be rejected and the explanatory variable can be considered as highly significant.  If the 
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t-value lies close to the 5% or 10% critical t-value, the forecaster must decide whether 

the explanatory variable is significant or not. 

3. Whether to use a one-tailed or two-tailed test. The t-testing procedure remains the 

same in both cases, however the problem is whether the probability of an error is 

equally divided between the two tails of the t-distribution or it is concentrated in only 

one tail, either left or right.
39

 

 

3.1.6. Forecasting Using the Simple Regression Model 

 

The most common use of the regression model is for prediction. Once the demand function is 

obtained, based on the historical data, the forecaster can predict the demand of a given good. 

There are two kinds of prediction: (1) prediction of the conditional mean value of Y 

corresponding to a chosen   , say   0, that is the point on the population regression line itself and 

(2) prediction of an individual Y value corresponding to   0. 

Supposing that   0 is a known value of the regressor, the Y0 value can be predicted. This is the 

value Y associated with   0. The predicted true value of the independent variable yields: 

000
ˆˆ   xy .         (3.28) 

In this case, two sources of error should be kept in mind. One source of error will be the sampling 

error of parameters estimates. But regardless of the precision of the parameter estimates, the 

forecast error,   , can never be forecasted perfectly. 

The forecast will be: 

00
ˆ xbay  .          (3.29) 

Since    and   are both random variables having a joint probability distribution, the standard error 

of 0Ŷ  can be determined as follows: 

1. Standard error of 0Ŷ  as a mean prediction 
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Applying the t-test, it yields: 
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where the variable t follows the t-distribution with N-2 degree of freedom. Therefore, the t-

test can be used to derive confidence intervals for the true Y0 value and test hypothesis about 

it. 

 

2. Standard error of 0Ŷ  as an individual prediction 
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Applying the t-test, it yields: 
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t

ˆ

00
ˆ

 ,        (3.33) 

where the variable t follows the t-distribution with N-2 degree of freedom. Therefore, the t-

test can be used to draw inference about true Y0 value. 

It should be mentioned that the forecasting ability of the historical sample regression line falls 

markedly as   0 departs progressively from X . Therefore, a great caution should be paid in 

extrapolating the historical regression line to predict Y0.
40

 

 

3.2. The Multiple Regression Model 

 

The simple regression model, mentioned previously, is a special case of multiple regression 

model. In multiple regression there is one dependent variable to be predicted, but there are two or 
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more independent variables that has been identified to have influence on the dependent variable. 

The general form of multiple regression is: 

iikkiii xxxy   ˆ...ˆˆ
2211 ,        (3.34) 

where Y is the dependent variable,   1….  k are the explanatory variables, ε is the stochastic 

disturbance term, i corresponds to the i
th

 observation and   i1 = 1 for each observation. 

The coefficient β1 is the intercept term and as before, it represents the average value of Y when 

  2….  k are equal to zero. The coefficients ̂ 2 .... ̂ k are called partial regression coefficients or 

partial slope coefficients. The meaning of the partial slope coefficients is that ̂ 2 measures the 

change in the mean value of Y per unit change in   2, holding the value of the other independent 

variables constant. Likewise, every ̂ k partial slope coefficients measures the change in the mean 

value of Y per unit change in   k. This unique feature of multiple regression enables not only more 

than one explanatory variables to be included in the model but also the effect of each    variable 

on Y to be isolated.  

As in the simple regression model, the multiple regression model includes some basic 

assumptions. The only difference here is the number of the right-hand variables. The assumptions 

are: 

1. The explanatory variables   1,   2,…   k are nonstochastic and their values are fixed in 

repeated sampling. 

2. The error term ε has a zero mean value:  
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3. Homoscedasticity, that is, the variance of ε is constant: 
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4. No autocorrelation exist between the error terms εi and εj:   0, jiCov  . 

5. Uncorrelatedness of regressor and disturbance: Cov [xi, ε j] = 0 for all i and j. 
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6. No exact collinearity exists between the explanatory variables. This means that there is no 

exact linear relationship between the explanatory variables. This is the only assumption 

that differs from the simple regression assumptions and it implies that none of the 

explanatory variables can be expressed as an exact linear function of another variable. 

7. The error term follows the normal distribution with mean zero and homoscedastic 

variance: ε i ~N[0, ζ²I].
41

 

 

3.2.1. The Method of Least Squares 

 

As for the simple regression model, the most common method of estimating the parameters of the 

multiple regression model is the least squares method. 

The first step in finding the least squares estimators is to write the sample regression function 

corresponding to the population regression function, as follows: 

iiiikkiii eyexbxbxby  ˆ...2211 ,      (3.35) 
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, ie is the residual term, iŶ  is the estimate of Yi and   i1 = 1. 

The least squares principle chooses the values of the unknown parameters in such a way that the 

residual sum of squares (RSS) is as small as possible. Rewriting the latter equation and 

expressing the error term, it yields: 

iii yye ˆ .
42

          (3.36) 

Applying the least squares method, it yeields: 

minimize        xbyxbyyyyyeee iiiiiii
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where  'ˆ' ii yye   is the transpose of e , xbyi

~
ˆ  , y


 is an    x k matrix, x


 is an    x k matrix, b

~
 

is a k x 1 matrix and ê  is a k x 1 matrix. 

This problem is solved by taking partial derivatives of ф with respect to ,
~
b  which yields the 

solution:  

yxxxb


')'( 1          (3.38) 

where 
1)'( xx


is the inverse of )'( xx


. 

In order to verify that this is indeed a minimum, the following equation is required to be a 

positive definite matrix: 

XX
bb

bS ˆˆ2
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
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
         (3.39) 

Let cXXcq ˆˆ   for some arbitrary nonzero vector, c. Then: 


i

ivvvq 2
,         (3.40) 

where cXv ˆ . 

For every element of v different from zero, q is positive. However, if v is zero, v would be a liner 

combination of the columns of    that equals zero. This contradicts the assumption that    has full 

rank.
43

 

 

3.2.2. The Multiple Coefficient of Determination, R
2
 

 

In the simple regression case the coefficient of determination r
2
 measures the goodness of fit of 

the fitted sample regression line that gives the proportion of the total variation in the independent 

variable explained by the single explanatory variable. This concept can be extended to multiple 

regression model containing any number of explanatory variables ( 1X̂ … kX̂ ). The quantity that 

gives this information is conceptually similar to r
2
 and is known as the multiple coefficient of 

determination, and is denoted by the symbol R
2
. 

Also, as in the simple regression model, R
2
 is defined as: 
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where TSS = the total sum of squares of the dependent variable and ESS = the explained sum of 

squares (explained by all the independent variables). 

Like r
2
, R

2
 also lies between 0 and 1. The closer it is to 1, the better is the fit of the estimated 

regression line. The unexplained part refers to the factors that influence the model but are not 

included in it.
46

 

An important property of the coefficient of determination is that the larger the number of 

explanatory variables is, the higher the value of R
2
 will be. This is because the definition of        

R
2 

= ESS/TSS does not take into account the degrees of freedom. Thus, a measure of goodness of 

fit that is adjusted for the number of explanatory variables in the model is needed. Such a 

measure has been created and it is known as the adjusted R
2
, denoted by the symbol 

2

R . It can be 

derived from the conventional R
2
, as follows: 
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where k is the number of the independent variables. 

The features of the adjusted R
2
 are: 

1. If k > 1, 
22

RR  . This means that as the number of explanatory variables increases, the 

adjusted coefficient of determination becomes increasingly less than the unadjusted 

coefficient of determination. 

2. Although the unadjusted R
2
 is always positive, the adjusted 

2

R can on occasion turn out to 

be negative.
47
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3.2.3. Significance of the Multiple Regression Equation 

3.2.3.1. The F-Test for Overall Significance 

 

As in the simple regression case, the F-test answers the statistical question if there is a significant 

relationship between the explanatory variable and the dependent variable. The F-test can be 

presented as a ratio between two mean squares as follows: 
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where k  is the number of parameters including the intercept, MS = mean square, SS = sum of 

squares, df = degrees of freedom. 

It can be seen from the latter equation that the F-test is sensitive to the relative strength of the 

numerator and denominator. If the unexplained MS, which is the variance of the errors, is large, 

then F̂  becomes smaller. If the explained MS is large relative to the unexplained MS, then F̂  

becomes larger. 

As in simple regression, there is an important relationship between F-test and the adjusted 

coefficient of determination, 
2

R . The relationship can be presented, as follows: 
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The direct relationship between the two statistics can be seen from the latter equation. When 

0
2

R , which means that there is no relationship between the dependent and the independent 

variables, F will be also zero. When 
2

R  increases, F̂  will increase too and its value will be 

infinity when the adjusted coefficient of determination equals one.
48

 

3.2.3.2. The t-Tests for Individual Partial Regression Coefficients 

 

Although the coefficient of determination gives an overall measure of goodness of fit of the 

estimated regression line, it does not give information whether the estimated partial regression 

coefficients are statistically significant, which means that the partial coefficients are tested 
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against the value zero. A t-test on an individual partial coefficient is a test of its significance in 

the presence of all other regressors. If the value is zero, it would mean that the independent 

variable in question is not helping at all in the prediction of the dependent variable in the 

presence of the other regressors.  

As in the simple regression case, for each estimator jb  a standard error can be determined  and 

given the normality assumption in the regression model, it follows that t has t-distribution with 

 kn   degrees of freedom, as follows: 
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,         (3.45) 

where jb  = estimated j
th

 coefficient, j̂  = hypothesized j
th

 parameter, se(bj) = standard error of 

jb , k = number of independent variables. 

The use of the t-test is meaningful, because if the F-test indicates a significant regression line, it 

will be expected that at least one of the t-test would also be significant. However, this is not 

always true, which raises the question whether the regressors are properly chosen. Additionally, 

considering the t-test, the stability of the partial coefficient can be tested. Their stability depends 

upon the intercorrelation among the independent variables. The higher the correlation between 

them is, the more unstable will be the partial coefficients. Another aspect to be considered is the 

estimated correlation among the partial regression coefficients themselves. Since the partial 

regression coefficients are all random variable, which fluctuate form sample to sample and have 

joint probability distribution, it is possible the correlations among the coefficients to be 

determined. In the simple regression case it is pointed out that the slope coefficient and the 

intercept are always going to be negatively correlated because the regression line goes through 

the mean of Y and the mean of    and an increase in the slope automatically means a decrease in 

the intercept and the opposite. In the multiple regression case, it is more complicated, but, if for 

instance, two partial coefficients are found to be positively or negatively significant correlated, 

then the forecasted should be warned that the individual t-test on these coefficients should not be 
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considered in isolation of each other, because these two coefficients are dependent on each 

other.
49

 

 

3.2.3.3. Selecting Independent Variables 

 

The forecaster is often faced with the decision problem which explanatory variable to include 

into the model and which to omit. Gujarati (1992) introduced one decision method. He suggested 

that variables should be added as long as the adjusted R
2
 increases. For this purpose he examines 

whether the absolute t-value of the coefficient of the added variable is large than one, where the t-

value is computed under the hypothesis that the population value of the said coefficient is zero. If 

the absolute value is larger than one, then the adjusted R
2
 will increase and the independent 

variable should be added to the model.
50

 

Makridakis, Wheelwright and McGee (1983) introduced alternative approaches. One of these is 

to consider the intercorrelations among the regressors of all potential candidates and every time 

when a large correlation is encountered to remove one of the two variables from further 

consideration. Another approach is to construct a multiple linear regression on all the regressors 

and to disregard all variables whose t-values are very small. According to them the t-value should 

be considered as small if the absolute t-value is smaller than 0.5. 

However, if the forecaster is not satisfied with the value of the adjusted R
2
, then the problem may 

be not in the chosen variables, but in the seasonality. For this case Makridakis, Wheelwright and 

McGee (1983) also introduced an approach. They suggested that dummy variables, each of which 

with only two allowed values – zero or one, should be added to model. One dummy variable is 

added per period, respectively with value one if the variable corresponds to the given period and 

zero otherwise (D1=1, for the first period and 0 otherwise; D2=1, for the second period and 0 

otherwise and so on). In order to avoid multicollinearity (P-1) dummy variables should be 

introduced, where P denotes the number of the periods. If there is seasonality then the value of 

the adjusted R
2
 will improve. However, two factors regarding this approach should be considered. 

The first one is that four seasonal dummy variables for four quarters will result in perfect 

                                                 
49

 Makridakis, Wheelwright, McGee, Forecasting, Methods and Applications, 1983, pp.263; Gujarati, Damodar, 

2005 refer to Gujarati, Damodar, Essentials of Econometrics, 1992, pp.196 
50

 Gujarati, Damodar, 2005 refer to Gujarati, Damodar, Essentials of Econometrics, 1992, p. 206 



 36 

nulticollinearity. The second one is that each new dummy variable is a new regressor, which 

requires the estimation of another regression coefficient and thereby one degree of freedom will 

be lost. This eventually could result in lowering the adjust coefficient of determination than 

increasing it.
51

 

 

3.2.3.4. Forecasting Using the Multiple Regression Model 

 

In the simple regression case it was already defined the standard error of forecast for Ŷ  as a 

mean and as a single point. For the general case of multiple regression model, the standard error 

are, as follows: 

  cXcse
meanaasY

1

)(

'X'ˆ





        (3.46) 

  cXcse
poaasY

1

int)(

'X'1ˆ





        (3.47) 

where c is the vector [
*

1X *

2X  ….
*

kX ] of new values for the regressors and    is a    x k matrix of 

rank K. 

For any forecast to be made, a set of values for the regressors has to be provided (the 
*

1X *

2X  …

*

kX  values). These are then put into the regression equation and a predicted value, ,Ŷ  is 

obtained. The independent variable values often have to be forecasted before dependent variable 

values can be forecasted. Therefore, it is important to get good forecasts for these independent 

variables. The equations (3.44) and (3.45) are used to evaluate the accuracy of the prediction. It 

should be pointed out that these latter equations are based on the assumption that the regressors 

are measured without an error. When forecasts of Ŷ  are made, they often depend on forecast of 

the regressors, so that these regressors values are definitely subject to error, and the standard error 

formulas underestimate the actual forecast error.
52

 

The mathematical expression of the model is as follows: 

0

22110 '.....ˆ xbxbxbxbay kk         (3.48) 
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where 0x is the regressor vector.
53

 

Although the regression analysis is a powerful method of estimation and commonly used causal 

approach to forecasting, it has its disadvantages. One reason, why multiple regression models 

might be expected lead to less accurate forecasts than alternative methods, is that the models may 

be too complex in that they include representations of false patterns in the noise associated with 

past data. For example, Gigerenzer and Todd (2000) have suggested that multiple linear 

regression (MLR) tends to lead to models, which are overfitted to past observations so that hold-

out sample forecasts are relatively inaccurate. 

On the other hand, MLR models may be too simple. Because they are, by definition, linear they 

will be unable to represent non-linear relationships between variables. For example, this may 

occur in situations where the outcome depends on a non-compensatory combination of cue values 

(e.g. a low score on one cue might determine the outcome irrespective of whether the other cues 

have high or low values) or where outcomes depend upon products of some of the cue values 

rather than their weighted sums.  

A third possibility is that changes in the environment mean that the structure of the data used to 

derive the MLR model differs from that that which applies in the forecasting periods. In these 

periods, new relationships between the outcomes and cues might apply or special, rare events 

may occur which mean that the normal relationships are temporarily suspended.
54

 

However, as Chiasson, Fildes and Pidd (2006) pointed out, it should be kept in mind that 

regression models are always simplifications and far from being a limitation of the reality. The 

essential point is that the regression models are used by people and their value lies in a 

combination of the models and the people who build and use them. It should be distinguished 

between the use of a model with the model itself, though the two are clearly linked. Forecasters 

use regression models in many ways: for example, to explore situations, to support automated 

decision-making and to enable people to think through options. In all cases, causation is 

something that the modeler and model user must set their minds to consider, because it does not 

spring from the model. 

Modelers do not and cannot, in practice, pursue inconsequential relationships between butterfly 

wings and seasonal affective disorder. It is doubtful that practitioners would regard modeling as 
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just a means to the discovery of patterns from easily available data without some practical or 

theoretical goal. Rather, a model may contain causal relationships and some of these may be 

simple and easily testable (e.g. increasing the service time in a simulation model will lead to 

longer queues if demand stays the same). Complex forecasting models are used automatically, for 

example, managing electricity demand. They are also used to gain understanding, as users testify 

in macroeconomic policy, while simple exponential smoothing models provide the basis for 

judgmentally incorporating market intelligence in supply chain planning. 

It should not also be forgotten that the regression models are no substitute for intelligent thinking 

with the purpose to find out causal relationships and to forecast.
55
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4. Safety Stock Planning 

 

In the previous chapters of this thesis, some basic methods for forecasting of the demand were 

discussed. However, the accurate demand forecast is only one part of the successful inventory 

management. The inventory level is a crucial management decision in every company, because 

the company must have enough items to satisfy the demand. At the same time, the inventory level 

should not be too high, because the company locks capital in stock and thus reducing its liquidity. 

The lack of liquidity can be overwhelming for the company particularly in tough times. The 

reason for this is that the inventory is the balance sheet asset that is most subject to fraudulent 

overstatement and banks seldom finance more than 50% of inventory value.
56

 Other 

consequences of keeping the inventory level too high are the lost of floor space which is a 

valuable asset, reducing the cash through increasing the insurance and tax expenses, and the 

opportunity lost on the funds invested in the excess inventory.
57

 

On the other hand, variations between actual demand and forecast are inevitable. That is why, a 

tool that provides protection against inventory imbalances is need. This tool is called safety stock.  

However, in order to set the safety stock levels one needs the standard deviation of forecast 

errors. For this purpose, the relationship between the standard deviation and the true MAD (the 

average absolute deviation from the mean) can be used. Although this relationship is not simple, 

it can be shown that for the normal distribution the following equation holds: 

)(25.1)(2/ MADtrueMADtrue   .      (4.1) 

For several other common distributions the theoretical conversion factor form the MAD to σ is 

not very different from 1.25. However, the factor can vary enough so that the safety stock 

obtained may not provide the required level of service.
58

 

In this chapter, the safety stock will be examined and methods to calculate the safety stock using 

statistical data will be discussed. Additionally, (  ,   ) inventory policy will be presented and on its 

base the different types of forecasting methods will be compared in Chapter eight.  
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4.1. What is Safety Stock 

In order to be given a precise definition of the safety stock, it will be meaningful the different 

categories of inventory to be presented. Zipkin (2000) categorizes inventories, as follows: 

   (  ) = inventory at time    

This inventory’s category is also known as On-hand stock and represents the stock that is 

physically on the shelf. This quantity determines whether a particular customer demand is 

satisfied directly from the shelf and is always positive.
59

 

 

 IO(  ) = inventory on order 

This is the total stock ordered before    but not yet received by   . 

 

 IN(  ) = net inventory at time    =   (  )  – B(  ), where B(  ) = backorders at time    

 

 IP(  ) = inventory position at time    = IN(  ) + IO(  ) 

 

The net inventory captures information in the inventory and in the backorders. Since any 

available stock is used to fill demand, at any given point, at least the inventory or the backorder 

function is zero. Therefore, I(  ) = [IN(  )]+
 and B(  ) = [IN(  )]-

. 
60

 

As it can be seen, the net inventory definition treats backorders as negative inventories. 

Therefore, a buffer stock is needed to satisfy the customer demand. Silver, Pyke and Peterson 

(1998) define safety stock as “the average level of net inventory just before a replenishment 

arrives”.
61

 

Over many reorder cycles, the inventory or the stock on hand will sometimes be positive quantity 

and sometimes negative quantity. However, this is true only for the case, when the demand that 

occurs in out of stock situation is backordered and filled as soon as replenishment arrives. This 

case is suitable for some supply systems, but it is not the general case. For many products, the 

customer does not want to wait until the replenishment and goes elsewhere to satisfy his need. In 
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this case, the demand that occurs in out of stock situation is lost, instead of being back ordered. 

Here the safety stock will be effectively the average of only the positive quantities, since stock 

outs results in a zero balance, rather than a negative balance.
62

 

 

4.2. Safety Stock Planning Techniques 

 

It was already mentioned that safety stock provides a buffer against the uncertainty of demand 

during lead-time. However, before safety stock planning techniques be presented, it would be 

meaningful to set some constrains which will affect the techniques. The first one is that the 

demand is stochastic and it is normally distributed. Although, as Zipkin (2000) states, the basic 

demand model is the Poisson process, which is the simplest model of random events over time in 

which demands occur one unit at a time, a Poisson distribution with a large mean can be 

approximated closely by a normal distribution. This approximation is very useful because it 

allows the usage of the normal distribution properties. The second one is that the lead time is 

constant. Although, in the practice this is not always the case, the assumption that the lead time is 

constant simplifies the techniques.   

Another criterion that must be kept in mind when the safety stock techniques are considered is 

the specification of the service level. Defining service level is most important when an 

organization does not know its stockout costs or it is difficult to estimate them. It is common for 

management to set service levels from which recorder points can be ascertained.  

There are several ways to measure a service level. Here will be considered two of them. A service 

level can be measured by either order service level (OSL) or unit service level (USL). USL, 

which is sometimes known as “fill rate”, counts the average number of units short expressed as 

the percentage of the order quantity. The OSL measures the percentage of cycles that will be out 

of stock or the probability of stockouts. It is crucial to define whether the service level is OSL or 

USL because the safety stock level would be quite different in these two measurements.
63

 The 

techniques that will be considered will use OSL. However, the difference between these two 
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service levels will be discussed and it will also be shown how the considered techniques can be 

applied in USL case. 

 

4.2.1. Constant safety stock (CSS) 

This technique maintains a constant safety stock through the planning horizon. The safety stock 

(SS) is expressed as a product of the safety stock factor k̂  and the standard deviation of the 

demand over the replenishment lead time ζL. Therefore, can be presented as follows: 

LTkSS ˆ .          (4.2) 

The advantage of expressing the safety stock in this way and assuming the normal distribution of 

the demand is that there are available tables that express the chance of stockout as a function of 

the safety stock factor, as it is shown on Table 1. Thus one way of setting the safety stock will be 

first to choose the chance of stock out that best represents company policy and then to use the 

safety stock factor that corresponds to that chance.  

Some scientists use the mean absolute deviation (MAD) instead the standard deviation. However, 

this changes only the value of the safety stock factor but have no impact on the safety stock value 

and respectively on the desirable service level. This is so, because, as it was already mentioned in 

Chapter 2, MAD = 1.25 x ζ.
64

 This can also be seen on the Table 1. 

 

Table 1: Service Levels and Corresponding    Multipliers, (Krupp J. (A), 1997) 
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The above presented CSS technique does not include the lead time. Zipkin (2000) and Brown 

(1967) point out that the standard deviation of the demand increases with the square root of the 

lead time (LT). This means that a shorter lead time will improve the performance. This leads to 

the classical CSS technique which considers the replenishment lead time: 

LTkSS LTˆ .         (4.3) 

This technique considered the safety stock as a fixed value, which becomes applicable to all 

future planning periods. This raises the treat that the safety stock does not respond properly to 

seasonal or trend variations in the future demand and creates exposure to inadequate service. On 

the other hand, in decreasing conditions, the fixed safety stock can generate excess inventory, 

which can be dangerous particularly when a product approaches the end of its life cycle.
65

 

 

4.2.2. Time Increment Contingency Factor (TICF) 

 

This technique is proposed by Krupp (1982) to calculate safety stock. The basic idea is that safety 

stock should remain consistent with the time-sensitive fluctuating patterns. He adapts the 

classical theory by expressing statistical variance of demand in units of time through converting 

the deviation in a discrete time period to a decimal factor by dividing the deviation in units by the 

forecast for that time period. The mathematical expression yields the following equations: 
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,         (4.4) 
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  ,        (4.5) 

where  

ui = average demand or forecasted for period i 

ix  = actual demand in period i  

n  = total number of time periods being considered 
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It should be noted that the expression 1
~
t

u  represents the forecast period following the period    

for which the safety stock is being determined. This ensures that the safety stock that exists at the 

end of each future planning period    is adequate to cover the next period’s forecast. This 

technique provides the potential of adequate coverage of demand variability which will flex 

proportionately with forecast variations and will avoid an exposure to inventory excess. 

However, such flexing may not be desirable in periods of extreme growth or in the cases where 

the demand is influenced, for example, by promotions, special sales or dating terms. On the other 

hand, such flexing is crucial where a declining trend may exist. Krupp considers the extreme case 

in which the product is reaching the end of its life cycle and shows the advantage over the CSS. 

The fixed safety stock will remain as “dead” inventory at the end of the planning horizon, while 

the TICF will compensate for this declining trend and ensures that no excess inventory will 

remain.
66

 

 

4.3. Safety Stock Based on Customer Service 

 

As it was already mentioned, the customer service level may measure the order service level 

(OSL), also known as cycle service level, or unit service level (USL), also known as fill rate. 

Here will be discussed the criteria which the safety stock factor must satisfy in order to be applied 

in one of these customer service levels. The criteria and formulas, which will be presented, 

consider a (  ,   ) system, also known as a (  ,   ) control system. The formulas previously used to 

determine the safety stock in this chapter considered the lead-time. However, the duration of the 

lead-time in this system is the sum of the lead-time and the time of the periodic review (   or   ). 

Because of this when the above formulas are used in this system LT must equal   +LT.
67
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4.3.1. Safety Stock Factor in Order Service Level (OSL) 

 

At the beginning of this chapter it was mentioned that a Poisson distribution with a large mean 

can be approximated closely by a normal distribution. Using the normal distribution 

approximation the demand quantity can be converted to the normalized form, as follows: 

i

ii
i

ux
k



)(ˆ 



,          (4.6) 

where 

ui = average demand or forecasted for period i 

ix = actual demand in period i. 

Then the safety factor    is selected to satisfy the following equation: 

11)( Pkpu 
  ,         (4.7) 

where 

P1 is the desired order service level; 

)(kpu


 = probability that a unit normal (mean 0, standard deviation 1) variable takes on a value of 

k  or larger. 

It should be noted that )(kpu


  is often expressed as 1-Φ( k ), where the Φ( k ) is the cumulative 

distribution function of the unit normal evaluated at k  and equals: 
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Therefore the equation that has to be satisfied can be presented, as follows: 
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where  

   = the order-up-to level; 

   = the review interval; 

LTR
u

ˆ
= the average demand during the lead time; 

LTRˆ
  = the standard deviation during the lead time and the review interval. 
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Once the desired cycle service level is defined the techniques described previously can by applied 

for planning the safety stock during the replenishment time. 
68

  

 

4.3.2. Safety Stock Factor in Unit Service Level (USL) 

 

Analogically to the OSL the safety stock factor in USL is chosen to satisfy the following 

equation: 

)1()( 2
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LTR

u 



 ,        (4.9) 

where 

DR = the demand during the review interval; 

LTRˆ
  = the standard deviation during the lead time and the review interval; 

P2 = desired unit service level (fill-rate). 

The desired unit service level, P2, can be presented as: 
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where ESPRC = Expected shortage per replenishment cycle. 

 

The )(kGu
  is the standard normal loss function, which equals: 

)(ˆ)()( 0 kkkkGu
  ,        (4.11) 

where 

)(0 k = the standard normal complementary cumulative distribution function = 1- );(k  

)(ˆ k  = the standard normal probability density function = 

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Once the desired fill-rate level is defined the techniques described previously can by applied for 

planning the safety stock during the replenishment time. However, the given )(kGu
 equation is 

for the complete backording case. In this case, it is assumed that the demand that occurs during 
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the stock out is backordered. This means that the customers will wait until the shipment arrives 

and then the demand will be satisfied. Although this is true for some products, this is not the 

general case. There are many products for which the customers will not wait and if a given 

retailer is out of stock the customer will go elsewhere to satisfy his need. This case is known as 

complete lost sales. In this case, the )(kGu
 equation has to be modified as follows: 
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

 .        (4.12) 

Considering the equations above, it can be intuitively expected that the required safety stock will 

increase if: 

 the order quantity decreases, which will increase the stockouts 

 the uncertainty of the forecast increases (increases of 
LTRˆ

 ) 

 a better fill-rate service level is desired 

If any of these changes takes place, )(kGu
  will decrease, which implies an increase of the safety 

stock factor. This is exactly the desired behavior and this relationship can be seen in Figure 1. 

 

Figure 1: Sensitivity of the P2 Service Measure (Silver, Pyke, Peterson, 1998) 

 

In addition, it should be mentioned that on average 
LTRˆ

  tends to increase with the increase of 

the demand. Therefore, the increase in    with increasing 
LTRˆ

  says that, on the average in USL 
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case, the safety stock factor will be higher for faster-moving items than for slower-moving 

items.
69

 

 

4.4. Safety Stock Suppression 

 

Krupp (1997) presents a method of safety stock suppression in case of overoptimistic forecast. As 

he mentions, in applying the statistical theory to safety stock calculations, it must be kept in mind 

that the basic assumption revolves around a unimodal, normal distribution of occurrences around 

the assumed mean of demand. Therefore, absolute values of each increment of variance are used. 

This approach is valid only to the extend that that the historical forecast approximates the mean 

average of demand. However, this is rarely the case. Therefore, a measure is needed to evaluate 

the degree of variance and the bias between the forecast. He suggests the simple forecast error 

tracking signals (FETS) technique, which is monitoring the degree and bias of cumulative 

forecast errors at the stock keeping unit level. The degree and bias of cumulative forecast error 

can be factored in by using a simple FETS. The value of FETS includes both a magnitude or an 

order and the bias and ranges from -1.0 to +1.0. Using traditional MAD as a bias, the equation is 

computed as follows: 
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It should be noted that the numerator of the equation does not use absolute values, but considers 

the netting of positive and negative values. FETS for time-based MAD applications is computed 

as follows: 
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In this application, a FETS of zero signals the optimum circumstance. It defines a condition, 

where regardless of the magnitude of the individual deviations, plus and minus deviations 
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ultimately compensate for each other. In this case, the rolling forecast is considered appropriate. 

The condition where all actual demands have been greater than forecast is the extreme case of 

FETS = -1.0. Conversely, a positive FETS = + 1.0 defines a condition where all actual demands 

have been less than forecast. 

In the cases where FETS equals zero or is negative an application of safety stock as calculated 

through the normal algorithms would be appropriate. However, if forecasts are adjusted to 

compensate for the bias, safety stock levels would need to be reevaluated and adjusted to a 

revised forecast based on FETS signals. In the case, where  FETS = +1, which represents that 

actual demands are consistently less than forecast, the statistical variance will be larger than in 

the case, where FETS = 0. It is so, because the calculation of statistical deviation in units of both 

quantity and time is based on the absolute values of the variance. It can be intuitively expected 

that the a lesser safety stock is expected in this case, as actual demands consistently fail to 

consume even the inventory replenishment planned based on the base forecast. However, because 

the safety stock is proportional to the statistical variance, the safety stock will be maximized, 

despite the fact that no actual demand equaled or exceeded forecast. However, in the case where 

the calculated FETS is less than +1.0 but greater than zero, some degree of safety stock will be 

still required to meet those customer demands which exceed forecast. Therefore, a totally 

abandoned safety stock in these cases may not be an option. One alternative is to consider 

calculating statistical variance only in those cases where demand in fact exceeded forecast. This 

approach has the disadvantage of reducing the total number of occurrences on which the 

algorithm is based and potentially assigning disproportionate importance to each of the reduced 

number of occurrences measured, where exaggerated anomalies would have an increased impact 

on the calculation. A second alternative is the development of a suppression factor (s) which is 

applied as a supplemental multiplier to the safety stock calculation, presented earlier in this 

capter, only in cases where FETS is greater than zero. A straight-line suppression is defined by 

the following equation: 

FETSs 1 .          (4.15) 

If accelerated suppression is desired, this can be derived by considering the square root of the 

FETS, as follows:
70

 

FETSs 1 .         (4.16) 
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4.5. (  ,   ) Policy  

 

Naddor (1971) presents a periodic review (  ,   ) policy with lost sales and deterministic demand 

where the order cycle length is predetermined and constant over time. The order quantity is 

chosen so that the inventory increases to   . Because of the deterministic demand and 

predetermined order cycles the order size will vary in every order. He considers this policy in two 

cases: with zero lead time and with positive lead time. 

 

4.5.1. (  ,   ) Policy with Zero Lead Time 

 

Figure 2 demonstrates the operating characteristics of the (  ,   ) policy with zero lead time.  

 

Figure 2: The (  ,   ) system with zero lead time (Naddor, E., 1971) 

 

The inventory level    must be chosen so that no stockout occurs during an order cycle. This 

means that the inventory level should be equal to the maximal demand of a given order cycle. 

This can be presented as: 

)ˆ(ˆ
max tuS  ,          (4.17) 

where 

   = order-up-to level 

u = demand 

   = order cycle 
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However, in order to minimize the costs, the case )ˆ(ˆ
max tuS   should not be considered. 

71
 

4.5.2. (  ,   ) Policy with Positive Lead Time 

 

Figure 3 demonstrates the operating characteristics of the (  ,   ) policy with positive lead time.  

 

Figure 3: The (  ,   ) system with positive lead time (Naddor, E., 1971) 

 

The inventory level    must be chosen so that no stockout occurs during an order cycle. This 

means that the inventory level should be equal to the maximal demand of a given order cycle. 

This can be presented as: 

)ˆ(ˆ
max tLTuS  ,         (4.18) 

where 

LT = lead time 

However, in order to minimize the costs, the case )ˆ(ˆ
max tLTuS   should not be considered.
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5. Homoscedasticity 

 

In Chapter three the assumptions behind the linear regression model were described and 

explained. In this chapter, the assumption that the disturbances appearing in the population 

regression function are homoscedastic, which is critical for the linear regression model, will be 

examined. Here will be considered the consequences when the homoscedasticity assumption is 

not fulfilled, how it can be detected and the measures that can be taken when the assumption does 

not hold. 

 

5.1. The Consequences of Heteroscedasity 

 

One of the important assumptions of the linear regression models is that the disturbances of the 

population regression function are homoscedastic. This means that the variance is constant. If the 

variance of the disturbance indicates variation from sample to sample, the case of 

heteroscedasticity or nonconstant variance is observed. A better explanation about the difference 

between homoscedasticity and heteroscedasticity will be provided by example. Let a two-variable 

linear regression model be considered in which the dependent variable is personal savings and the 

independent variable is personal disposable income (PDI).  

 

 

Figure 4: (a) Homoscedasticity; (b) Heteroscedasticity (Gujarati, 1992) 
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The diagrams of the Figure 4 show the difference between homoscedasticity and 

heteroscedasticity. Figure 4 (a) shows that as PDI increases, the mean level of savings also 

increases but the variance of savings around its mean value remains the same at all levels of PDI. 

On the other hand, Figure 4 (b) shows the heteroscedasticity case. Although the average level 

increases as the PDI increases, the variance of savings does not remain the same at all levels of 

PDI. 

Researchers have observed that heteroscedasticity is usually found in cross-sectional data and not 

in time series data. In cross-sectional data one generaly deals with members of a population at a 

given point in time, such as individual consumers or geographical subdivisions, such as country 

or city. Moreover, these data may be of different size and there may be some scale effect. On the 

other hand, the variables in the time series data tend to be of similar order of magnitude because 

one generally collects data for the same entity over a period of time.
73

 

However, it is controversial whether the heteroscedasticity has impact on the forecast or not. 

Researchers, as Fildes (1985), state that the constant variance is vital for the forecasting 

performance. Their counter-argument is that if, for some time periods, et has larger variance, this 

has the effect of weighting those observations more heavily when minimizing .2 te  This might 

lead to less weight being given to the most recent observations, which causes the parameter 

estimates to be inefficient and the standard errors of the parameters to be underestimated. This 

causes the forecasts to be also mis-estimated.
74

 

Gujarati (1992) presents the consequences if all assumptions of the linear regression model hold, 

except the assumption of the homoscedasticity, as follows: 

1. Least Squares (LS) estimators are still linear. 

2. They are still unbiased. 

3. But they no longer have minimum variance, which means that they are no longer 

efficient. 

4. The formulas to estimate the variance of LS estimators are generally biased. A positive 

bias occurs if LS overestimate the true variances of estimators and a negative bias occurs 

if LS underestimate the true variances of estimators. However, if the homoscedasticity 

does not hold, one cannot tell a priori whether the bias will be positive or negative. 
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5. The bias arises from the fact that 2 , the conventional estimator of true ζ
2
, is no longer an 

unbiased estimator of ζ
2
. 

6. As a result, the usual confidence intervals and hypothesis tests based on t and F 

distributions are unreliable. Therefore, the conclusion that in the presence of 

heteroscedasticity, the usual hypothesis-testing routine is not trustworthy which raising 

the possibility of drawing misleading conclusions, can be made.
75

 

 

5.2. Detection of Heteroscedasticity 

 

Although theoretically it is easy to document the consequences of heteroscedasticity, its detection 

in a concrete situation is not so easy. This is so because the variance can be known only if one 

has the entire population corresponding to the chosen independent variables. However, one 

typically has a sample of some members of this population, more specifically a single value of 

the dependent variable for given values of the independent variable(s), which makes very 

difficult the determination of the variance. There is no sure method of detecting the 

heteroscedasticity. However, some tests have been developed which aid the researcher in 

detecting it. Some of these tests, which according to Gujarati are the basic test for 

hoteroscedasticity detection, will be presented in the thesis. 
76

 

 

5.2.1. Park Test 

 

Park (1966) suggests to transform the regression equation into the following form: 

iii xba   lnln 2
,        (5.1) 

where νi is a residual term. 

However, the latter equation is not operational since the heteroscedastic variance is unknown. For 

this purpose he suggests to use     as proxies for εi and running the following equation: 
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iii xbae  lnln 2
,        (5.2) 

where the 
2

ie  is taken from the original linear regression model. 

Once the residuals from the original linear regression equation are obtained, squared and their 

logs are taken against each explanatory variable included in the regression model, the null 

hypothesis is tested,     = 0. If the null hypothesis holds, there is no heteroscedasticity. If a 

statistically significant relationship exists between 
2ln ie  and ixln , the null hypothesis of no 

heteroscedasticity can be rejected. If the null hypothesis is accepted, the b1 in the latter equation 

can be interpreted as giving the value of the homoscedastic variance.
77

 

 

5.2.2. Glejser Test 

 

Glejser (1969) presented another test which is similar to the Park test. After the residuals from the 

original linear regression model are obtained, he suggests to regress the absolute value of the 

residuals, ie , on the independent variable. Some functional forms that he has suggested for this 

regression are: 

iii xbae  ,         (5.3) 

iii xbae  ,         (5.4) 

i

i

i
x

bae 









1
,         (5.5) 

iii xbae  ,         (5.6) 

As in the Park test case, if the null hypothesis holds there is no heteresceddasticity. If the null 

hypothesis is rejected, there is probably evidence of heteroscedasticity.  

However, Goldfred and Quandt (1972) point out that the error term i  can itself be 

heteroscedastic as well as serial correlated. Moreover, some of the equations suggested by Glejser 
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such as equation (5.6) are nonlinear in the parameters and therefore cannot be estimated with the 

usual LS procedure.
 78

 

Glejser, however, has maintained that in large samples the preceding models are fairly good in 

detecting heteroscedasticity. Therefore, this test may be used for large samples as practical matter 

and may be used in small samples strictly as a qualitative device with the purpose to learn 

something about the heteroscedasticity.
79

 

 

5.2.3. Goldfeld-Quandt test 

 

This method is applicable if it is assumed that the heteroscedastic variance is positively to one of 

the explanatory variables in the regression model. For simplicity, as in the previous tests, the two-

variable model is considered. Following the assumption, the heteroscedastic variance is positively 

related to the explanatory variable, as follows: 

222

ii x  ,          (5.7) 

where σ
2
 is a constant. 

This assumption postulates that the heteroscedastic variance, 
2

i , is proportional to the square of 

the independent variable. From this follows that the heteroscedastic variance increases with the 

increase of the explanatory variable’s value. If that is the case, heteroscedasticity is most likely to 

be present.
80

 

 

5.2.4. Remedial Measures 

 

As it was already mentioned, in the presence of heteroscedasticity the LS estimators are no longer 

efficient. Therefore, it is important redial measures to be taken. Different variance stabilizing 
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models have been developed with the aim to transform the original regression model in such a 

way so that in the transformed model the heteroscedasticity to be removed.
81

 

5.2.4.1. The Method of Weighted Least Squares 

 

This method can be applied if the true error variance is known. Assuming that the error variance 

for each observation is known the original regression model can be transformed, as follows: 

i

i

i

i

ii

i x
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y
























1
,        (5.8) 

where i  is the square root of the “known” variance. 

The transformed error term can be denoted with νi and it is equal to: 

i

i
i




  .          (5.9) 

It can be easily shown that the transformed error term is homoscedastic. In the presence of 

heteroscedasticity the disturbance is no longer constant it can be presented for each observation 

as: 

  22

iiE   .          (5.10) 

Squaring equation (4.9) and implying equation (4.10), it can be proofed that the error term νi is 

homoscedastic, as follows: 
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 .     (5.11) 

This proofs that the transformed model (5.8) does not suffer from the heteroscedasticity problem 

and therefore it can be estimated by the usual LS method. The LS estimators thus obtained are 

called weighted least squares estimators, because in each observation the dependent and 

independent variables are weighted by its own heteroscedastic standard deviation. Because of this 

weighting procedure, the LS method in this context is known as the method of weighted least 

squares.
82
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5.2.4.2. Remedial Measures When True Variance Is Unknown 

 

As noted earlier, the true variance is rarely known, therefore in the absence of knowledge about 

the true variance additional assumptions about the unknown variance can be made and will be 

considered by two cases, which for simplicity, will be discussed with the simple regression 

model. 

 

5.2.4.2.1. Case 1: The error variance is proportional to   i. The square root transformation 

 

In this method, after estimating the usual LS regression, the residuals from this regression are 

plotted against the explanatory variable. If the observe pattern is similar to that shown in Figure 

5, the indication is that the error variance is linearly related to the explanatory variable.  

 

 

Figure 5: Error variance proportional to    (Gujarati, 1992) 

 

The mathematical expression of the statement that the heteroscedastic variance is proportional to 

the explanatory variable is expressed with the following formula: 

  ii xE 22 ~  ,           (5.12) 

where 2~  is the constant factor of proportionality. 

Using equation (4.12), the simple regression model can be transformed as follows: 
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This method is known as the square root transformation because both sides of the regression 

model are divided by the square root of   i. It is important to be noted that in order to estimate the 

latter equation, the regression-through-the-origin estimating procedure must be used. In the 

multiple regression case, the model is divided by the square root of   i, which is chosen on the 

basis of graphical plot. If the appropriate candidates are more than one, the mean value of the 

dependent variable, iy , can be used as the transforming variable. This can be made because the 

mean value of the dependent variable is a linear combination of the independent variables. 

The proof that the transformed model does not suffer from the heteroscedasticity problem and 

therefore it can be estimated by the usual LS method is: 
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       (5.14) 

 

5.2.4.2.2. Case 2: The error variance is proportional to 2ˆ
iX  

 

After the usual LS regression is estimated, the residuals from this regression are plotted against 

the explanatory variable. If the observe pattern is similar to that shown in Figure 6, the indication 

is that the error variance is not linearly related to the explanatory variable, but increases 

proportional to the square of the explanatory variable.  

 

Figure 6: Error variance proportional to 
2X̂  (Gujarati, 1992) 
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The mathematical expression of the statement is expressed with the following formula: 

  222

ii xE   .          (5.15) 

In this case the appropriate transformation of the simple regression model is to divide both sides 

of the model by explanatory variable, rather than by its square root, as follows: 
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where i

i

i

x



 .  

This equation has an interesting feature, namely, the original slope coefficient becomes the 

intercept and the original intercept becomes the slope coefficient. However, this change is only 

for estimation. After the estimation, multiplying by the explanatory variable on both sides, the 

original model is obtained again.
84

 

The proof that the transformed model does not suffer from the heteroscedasticity problem and 

therefore it can be estimated by the usual LS method is: 
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5.2.4.3. Respecification of the Model 

 

If heteroscedasticity is detected, it can be reduced by choosing a different functional form of the 

population regression function. One possible solution that reduces the heteroscedasticity is to 

estimate the model in the log form, as follows: 

iii xbay  lnln .          (5.18) 

In this transformation, the heteroscedasticity problem may be less serious because the log 

transformation compresses the scales in which the variables are measured. In this way, a tenfold 

difference between two values is reduced to a twofold difference.
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6. Autocorrelation 
 

Another assumption of the linear regression model is that there is no autocorrelation among the 

disturbances entering the population regression function. This means that the disturbance term 

relating to any observation is not related to or influenced by the disturbance term relating to any 

other observation. Said in other words, the assumption states that the expected value of the 

product of two different error terms is zero. 

However, sometimes autocorrelation patterns occur because some important variables that should 

be included in the model are not included or because used data is smoothed by transforming the 

raw daily data into weekly, monthly or quarterly data.
103

 

 

6.1. The Consequences of Autocorrelation 

 

If the assumption of no autocorrelation is violated the consequences are: 

1. The least square estimators are still linear and unbiased but they do not have the minimum 

variance compared to the producers that take into account autocorrelation. 

2. Therefore, the computed variances and standard errors seriously underestimate the true 

variances and standard errors. This makes the t-test and the F-test not generally reliable. 

3. The conventionally computed R
2
 may be an unreliable measure of the true R

2
. 

4. The conventionally computed variances and standard errors of forecast may also be 

inefficient.
104

 

 

6.2. Detection of Autocorrelation 

 

The detection of the autocorrelation is as difficult as for the heteroscedasticity because the true 

error variance is unknown. Therefore, we can rely on the proxies obtained from the ordinary least 

squares to make conclusions about the presence or lack of autocorrelation.
105
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 Although, there is no unique method for detecting the autocorrelation, there are several tests with 

which help its presence can be proved. However, the deeper analysis of the autocorrelation 

process which can be applied for the time series and causal forecasting models can be done more 

appropriate with the time series analysis. This analysis will be presented in the thesis. 

 

6.2.1. Time Series Analysis 

 

The key statistics in time-series analysis are the autocorrelation coefficient and the partial 

autocorrelation coefficient. 

The autocorrelation coefficient is the correlation of the time series with itself, lagged by 0, 1, 2, 

or more periods. The autocorrelation coefficient can be obtained using the following equation: 

 

 
       

                 
 
   

         
 
   

  
          (6.1) 

 

where   is the autocorrelation coefficient. 

The autocorrelation of random data have a sampling distribution that can be approximated by 

normal curve with mean zero and standard error      . This information can be used to develop 

test of hypothesis similar to F-test and t-tests examined in Chapter 3. These can be used to 

determine whether some rτ comes from a population whose value is zero at τ time lag. This 

means that all autocorrelation coefficients must lie within the 95 percent upper and lower 

confidence limits in order to be confirmed that the data are random. 

The partial autocorrelation coefficients are used to measure the degree of association between Xt 

and Xt-n when the effects of other of other time lags – 1, 2, 3, ….up to τ-1 – are partialled out. The 

partial autocorrelation coefficient of order m is defined as the last autoregressive coefficient of an 

AR (  ) model. The mathematical expression is: 

 

                                               ,   (6.2) 

 

where     is the partial autocorrelation coefficient. 
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The partial autocorrelation coefficients are used to identify the autocorrelation order. If the 

process is autoregressive (AR) they will be significantly different from zero only up to the order 

of the true AR process. If the generating process is moving average (MA) rather than 

autoregressive, then the partial autocorrelations will decline to zero exponentially.
106

 

 

6.2.2. Remedial Measure for Autocorrelated Demand 

 

As the autocorrelation has impact on the variance and therefore the safety stock planning can be 

under or overestimated, the variance needs to be corrected depending on the grade of the 

autocorrelation process. 

A general optimization approach is proposed by Inderfurth (1995). Assuming a general m-order 

type of autocorrelation the approach has the following mathematic expression: 
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where    is the autocorrelation coefficient at lag τ.
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7. Comparison of the Forecasting Models 

 

In this chapter, the forecast accuracy of the time series forecasting methods will be compared 

with the causal forecasting methods. Furthermore, the impact of the forecast accuracy on the 

safety stock inventory planning will be investigated. For these purposes, we will use the sales 

data for “Schwechater” beer canes sold in Austria for 2005, 2006 and 2007 by ADEG Austria 

Ltd. (see Table 2) 

 
Table 2: Beer Sales Data
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For the times series forecast methods we will take as basis the first 126 weeks from the data and 

then using the Mean method and the Winter’s three-parameter trend and seasonality method we 

will compare the forecast results for the next 30 weeks with a forecast period for 1, 3, 5, 10,15 

and 30 weeks. 

The causal forecast methods will be compared in an identical way – the first 126 weeks of the 

data will be taken as basis and then the results from the simple regression model will be 

compared with the results from the multiple regression model. The variable for the simple 

regression will be the price of a bier cane and for the multiple regression the price and the 

temperature will be taken as variables. The temperature data are the maximal daily air 

temperature converted on a mean weekly basis for the city of Salzburg.
109

 We decided to take the 

temperature of this region, because the company’s headquarter is in Bergheim, nearby Salzburg, 

and most of the company’s branches are in the western part of Austria. That is why, it could be 

assumed that the temperature of Salzburg should be a good variable for the multiple regression 

method. 

The comparison of the forecasting methods is based on the measurements described in Chapter 

2.4. Once the forecast methods are compared, the impact of the forecast accuracy on the safety 

stock planning will be investigated. For this purpose the most accurate time series and causal 

methods will be compared in (  ,   ) inventory system with 3 and 5 weeks review periods and with 

0, 3 and 5 weeks positive lead time with regards on the order service level and unit service level. 

Before starting with the forecast comparison, we need to analyze the data.  Figure 7 shows the 

sales variations on weekly basis. 
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Figure 7: Graphic of the sold beer canes 

 

As it can be seen from the graphic, the sales data has a weekly seasonality which is obviously 

driven by the discounts that the company has done in these weeks and additionally a yearly based 

seasonality. This can be clearly seen for the first 2 years (104 weeks). It can be also seen that for 

the third year, 30 weeks of which will be forecasted, the sales do not have the typical behavior of 

the previous two years – the yearly seasonality cannot be seen clearly. It can be also seen that the 

peaks are above the peaks of the previous two years and the lows are below the previous lows. A 

possible explanation for the change of the seasonality can be the changed customer behavior 

during the time of crises. 

 

7.1. Time Series Forecast Methods 

7.1.1. The Mean Method 

 

Using Equations 2.1, we will take the average of the first 126 weeks of the sales data and the 

forecast for the coming week(s) is the average of these 126 weeks. As the forecast goes ahead 

with T= 1, 3, 5, 10, 15 and 30 weeks, the data of the past weeks will also be included in the past 

data, which are used for the forecast. Applying these rules, we receive: 
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For T=1:  

 

Table 3: Mean Method Forecast with T=1 

 

For T=3: 

 
 

Table 4: Mean Method Forecast with T=3 
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For T=5: 

 
 

Table 5: Mean Method Forecast with T=5 

 

 

For T=10: 

 
 

Table 6: Mean Method Forecast with T=10 
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For T=15: 

 
 

Table 7: Mean Method Forecast with T=15 

 

For T=30: 

 
 

Table 8: Mean Method Forecast with T=30 
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Comparing the results (see Figure 8), it can be seen that the increasing of the time horizon does 

not have a great impact on the forecast behavior. All of the results, except for T= 15 and T=30 

which are the mean values of the previous periods, have almost the same values, which widely 

differ from the actual data.  

 

 
 

Figure 8: Forecast using the Mean Method 

 

However, even in this case, the results raise the question whether the increasing of the time 

reduces the accuracy of the forecast. For this purpose we will use the measurements of the 

forecasting accuracy described in chapter 2.4. 

 

Average Values T=1 T=3 T=5 T=10 T=15 T=30 

Sum of Abs. Error 74.470 74.701 74.339 74.238 74.284 74.296 

MAD 2.482 2.490 2.478 2.475 2.476 2.477 

MAPE 184 185 183 183 181 181 

 

Table 9: Forecast accuracy of the Mean Method 

 

As Table 9 shows, using different measures for the forecasting accuracy, it is difficult to estimate 

which time horizon gives the most accurate forecast. If we sum the absolute errors, the most 

accurate forecast is the one with 10 weeks time horizon. We receive the same result using the 
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Mean Absolute Deviation. Comparing the Mean Absolute Percentage Error (MAPE) the forecast 

results with 15 and 30 weeks time horizon give the most accurate results. This can be expected 

because the forecast of these two is the mean value of the stored data. The better performance of 

the forecast with 10 weeks time horizon can be explained with the weekly seasonality of the data. 

In addition, it should be mentioned that none of the results is either underforecasting (TS < -6) or 

overforecasting (TS > +6). So according to the theory the mean method should give a good 

forecast. However, as Figure 9 shows the Mean Method does not achieve the task. The statistical 

results have a good performance only because the forecast fluctuate around the mean. 

 

 
 

Figure 9: Comparison of the Mean Method forecast with T=10 and the actual data 

 

7.1.2. Winter’s Three-Parameter Trend and Seasonality Method 

 

As Figure 7 shows, the data has trend and seasonality. In this case, according to the theory the 

most appropriate time series forecast method should be the Winter’s model.  

In order to use the model, the following steps must be done: 1) first of all, the demand must be 

deseasonalized; 2) to ensure that the each season is given equal weight, the length of the cycle 

must be determined. 3) then the initial level and the trend must be estimated by running a 

regression between deseasonalized demand and time. The initial level is obtained as the intercept 

coefficient and the trend is obtained as the variable coefficient from the regression results.  
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As the length of the data varies from 6 to 8 weeks, a comparison of the model with cycle length 

of 6, 7 and 8 weeks for the first 126 weeks will be done. The result with the lowest SSE can be 

considered as the one that corresponds to the data’s cycle length. 

The results of the comparisons are shown in Table 10 and determine that a cycle with length of 7 

weeks will be the appropriate for this forecast model. 

 

Cycle Length L=6 L=7 L=8 

SSE 1.120.870.275  858.208.145 1.198.832.435  

 

Table 10: SSE for L= 6, 7and 8 weeks 

 

Following the steps described above, we deseasonalize the demand and after starting a regression 

between deseasonalized demand and time, the initial level and the trend are obtained (Table 11). 

 

 

Table 11: SLR between deseasonalized demand and time 

 

Using equations 2.14 to 2.17 the forecast for the historical data and the level, trend and the 

seasonal factor for a given period can be found (Table 13). Then minimizing the SSE, the 

smoothing constants α, β and γ can be estimated (Table 12). 

 

   β γ 

0,00 1,00 0,22 

 

Table 12: Estimated smoothing constants 
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T 
(weeks) 

Demand       
(beer 

canes) 

Deseasonalized 
Demand 

Ď Š Level Trend 
Seasonal 

Factor 
Forecast Error 

0         3.234 -0,08       

1 1.314   3.234 0,41 3.234 -0,08 0,56 1.798 484 

2 1.125   3.234 0,35 3.234 -0,08 0,55 1.767 642 

3 1.517   3.233 0,47 3.233 -0,08 0,88 2.850 1.333 

4 1.356 2.681 3.233 0,42 3.233 -0,08 1,93 6.227 4.871 

5 6.456 2.702 3.233 2,00 3.233 -0,08 1,88 6.089 -367 

6 5.687 2.774 3.233 1,76 3.233 -0,08 0,80 2.586 -3.101 

7 1.312 2.759 3.233 0,41 3.233 -0,08 0,52 1.680 368 

8 1.458 3.631 3.233 0,45 3.233 -0,08 0,52 1.692 234 

9 1.633 3.608 3.233 0,51 3.233 -0,08 0,50 1.627 -6 

10 1.412 2.969 3.233 0,44 3.233 -0,08 0,79 2.560 1.148 

11 7.456   3.233 2,31 3.233 -0,08 1,60 5.167 -2.289 

12 6.300   3.233 1,95 3.233 -0,08 1,91 6.168 -132 

13 1.214   3.233 0,38 3.233 -0,08 1,01 3.260 2.046 

14 1.577   3.233 0,49 3.233 -0,08 0,49 1.600 23 

15 1.657   3.232 0,51 3.232 -0,08 0,51 1.641 -16 

16 1.798   3.232 0,56 3.232 -0,08 0,50 1.628 -170 

17 1.888   3.232 0,58 3.232 -0,08 0,71 2.310 422 

18 7.345   3.232 2,27 3.232 -0,08 1,75 5.664 -1.681 

19 6.812   3.232 2,11 3.232 -0,08 1,92 6.195 -617 

20 1.344   3.232 0,42 3.232 -0,08 0,87 2.815 1.471 

21 1.566   3.232 0,48 3.232 -0,08 0,49 1.594 28 

22 1.723   3.232 0,53 3.232 -0,08 0,51 1.644 -79 

23 1.945   3.232 0,60 3.232 -0,08 0,52 1.665 -280 

24 9.876   3.232 3,06 3.232 -0,08 0,69 2.218 -7.658 

25 7.932   3.232 2,45 3.232 -0,08 1,87 6.028 -1.904 

26 1.612   3.232 0,50 3.232 -0,08 1,96 6.328 4.716 

27 1.956   3.232 0,61 3.232 -0,08 0,77 2.494 538 

28 2.156   3.231 0,67 3.231 -0,08 0,49 1.588 -568 

29 2.430   3.231 0,75 3.231 -0,08 0,51 1.661 -769 

30 2.204   3.231 0,68 3.231 -0,08 0,53 1.725 -479 

31 1.974   3.231 0,61 3.231 -0,08 1,20 3.882 1.908 

32 9.467   3.231 2,93 3.231 -0,08 1,99 6.441 -3.026 

33 8.103   3.231 2,51 3.231 -0,08 1,64 5.302 -2.801 

34 1.467   3.231 0,45 3.231 -0,08 0,74 2.377 910 

35 1.921   3.231 0,59 3.231 -0,08 0,53 1.711 -210 

36 2.133   3.231 0,66 3.231 -0,08 0,57 1.828 -305 

37 1.742   3.231 0,54 3.231 -0,08 0,57 1.829 87 

38 1.542   3.231 0,48 3.231 -0,08 1,07 3.467 1.925 

39 8.463   3.231 2,62 3.231 -0,08 2,20 7.098 -1.365 

40 7.453   3.231 2,31 3.231 -0,08 1,83 5.910 -1.543 

41 1.455   3.230 0,45 3.230 -0,08 0,67 2.179 724 

42 1.688   3.230 0,52 3.230 -0,08 0,54 1.756 68 

43 1.863   3.230 0,58 3.230 -0,08 0,59 1.894 31 

44 1.912   3.230 0,59 3.230 -0,08 0,56 1.810 -102 

45 1.732   3.230 0,54 3.230 -0,08 0,94 3.048 1.316 
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46 1.548   3.230 0,48 3.230 -0,08 2,29 7.393 5.845 

47 5.865   3.230 1,82 3.230 -0,08 1,93 6.244 379 

48 4.972   3.230 1,54 3.230 -0,08 0,63 2.021 -2.951 

49 1.532   3.230 0,47 3.230 -0,08 0,54 1.741 209 

50 1.412   3.230 0,44 3.230 -0,08 0,58 1.887 475 

51 2.477   3.230 0,77 3.230 -0,08 0,57 1.832 -645 

52 1.533   3.230 0,47 3.230 -0,08 0,85 2.761 1.228 

53 1.412   3.230 0,44 3.230 -0,08 1,90 6.121 4.709 

54 1.138   3.229 0,35 3.229 -0,08 1,91 6.161 5.023 

55 1.469   3.229 0,45 3.229 -0,08 0,82 2.662 1.193 

56 6.702   3.229 2,08 3.229 -0,08 0,53 1.695 -5.007 

57 4.525   3.229 1,40 3.229 -0,08 0,55 1.783 -2.742 

58 1.301   3.229 0,40 3.229 -0,08 0,61 1.972 671 

59 1.469   3.229 0,45 3.229 -0,08 0,77 2.494 1.025 

60 1.280   3.229 0,40 3.229 -0,08 1,58 5.097 3.817 

61 5.530   3.229 1,71 3.229 -0,08 1,57 5.068 -462 

62 4.657   3.229 1,44 3.229 -0,08 0,74 2.402 -2.255 

63 1.114   3.229 0,35 3.229 -0,08 0,86 2.783 1.669 

64 1.625   3.229 0,50 3.229 -0,08 0,74 2.379 754 

65 1.473   3.229 0,46 3.229 -0,08 0,57 1.826 353 

66 1.864   3.229 0,58 3.229 -0,08 0,70 2.271 407 

67 2.136   3.228 0,66 3.228 -0,08 1,32 4.266 2.130 

68 1.870   3.228 0,58 3.228 -0,08 1,60 5.168 3.298 

69 1.799   3.228 0,56 3.228 -0,08 0,90 2.892 1.093 

70 1.425   3.228 0,44 3.228 -0,08 0,75 2.420 995 

71 7.423   3.228 2,30 3.228 -0,08 0,69 2.215 -5.208 

72 6.655   3.228 2,06 3.228 -0,08 0,54 1.749 -4.906 

73 1.212   3.228 0,38 3.228 -0,08 0,68 2.182 970 

74 1.845   3.228 0,57 3.228 -0,08 1,18 3.803 1.958 

75 1.364   3.228 0,42 3.228 -0,08 1,38 4.450 3.086 

76 1.798   3.228 0,56 3.228 -0,08 0,82 2.654 856 

77 10.037   3.228 3,11 3.228 -0,08 0,68 2.203 -7.834 

78 8.563   3.228 2,65 3.228 -0,08 1,04 3.346 -5.217 

79 2.036   3.227 0,63 3.227 -0,08 0,87 2.815 779 

80 2.455   3.227 0,76 3.227 -0,08 0,61 1.971 -484 

81 2.712   3.227 0,84 3.227 -0,08 1,05 3.376 664 

82 1.847   3.227 0,57 3.227 -0,08 1,17 3.778 1.931 

83 9.625   3.227 2,98 3.227 -0,08 0,76 2.467 -7.158 

84 8.533   3.227 2,64 3.227 -0,08 1,21 3.906 -4.627 

85 2.685   3.227 0,83 3.227 -0,08 1,39 4.480 1.795 

86 2.422   3.227 0,75 3.227 -0,08 0,82 2.645 223 

87 2.512   3.227 0,78 3.227 -0,08 0,64 2.076 -436 

88 1.864   3.227 0,58 3.227 -0,08 1,00 3.231 1.367 

89 1.956   3.227 0,61 3.227 -0,08 1,04 3.358 1.402 

90 2.135   3.227 0,66 3.227 -0,08 1,25 4.023 1.888 

91 2.145   3.227 0,66 3.227 -0,08 1,52 4.911 2.766 

92 8.465   3.226 2,62 3.226 -0,08 1,27 4.089 -4.376 

93 7.388   3.226 2,29 3.226 -0,08 0,80 2.596 -4.792 

94 1.586   3.226 0,49 3.226 -0,08 0,67 2.170 584 
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95 6.432   3.226 1,99 3.226 -0,08 0,91 2.934 -3.498 

96 5.549   3.226 1,72 3.226 -0,08 0,95 3.053 -2.496 

97 1.659   3.226 0,51 3.226 -0,08 1,12 3.612 1.953 

98 1.736   3.226 0,54 3.226 -0,08 1,34 4.309 2.573 

99 1.487   3.226 0,46 3.226 -0,08 1,56 5.039 3.552 

100 5.348   3.226 1,66 3.226 -0,08 1,13 3.637 -1.711 

101 4.650   3.226 1,44 3.226 -0,08 0,63 2.043 -2.607 

102 1.325   3.226 0,41 3.226 -0,08 1,15 3.694 2.369 

103 2.827   3.226 0,88 3.226 -0,08 1,11 3.595 768 

104 1.833   3.226 0,57 3.226 -0,08 0,99 3.187 1.354 

105 844   3.225 0,26 3.225 -0,08 1,16 3.749 2.905 

106 1.051   3.225 0,33 3.225 -0,08 1,32 4.266 3.215 

107 2.256   3.225 0,70 3.225 -0,08 1,24 4.008 1.752 

108 5.176   3.225 1,60 3.225 -0,08 0,81 2.609 -2.567 

109 2.907   3.225 0,90 3.225 -0,08 0,99 3.178 271 

110 1.099   3.225 0,34 3.225 -0,08 1,06 3.427 2.328 

111 1.243   3.225 0,39 3.225 -0,08 0,90 2.892 1.649 

112 2.658   3.225 0,82 3.225 -0,08 0,97 3.117 459 

113 2.608   3.225 0,81 3.225 -0,08 1,11 3.567 959 

114 7.319   3.225 2,27 3.225 -0,08 1,12 3.627 -3.692 

115 5.701   3.225 1,77 3.225 -0,08 0,98 3.167 -2.534 

116 1.457   3.225 0,45 3.225 -0,08 0,97 3.119 1.662 

117 1.158   3.225 0,36 3.225 -0,08 0,91 2.921 1.763 

118 2.767   3.224 0,86 3.224 -0,08 0,79 2.533 -234 

119 2.959   3.224 0,92 3.224 -0,08 0,94 3.017 58 

120 11.504   3.224 3,57 3.224 -0,08 1,04 3.358 -8.146 

121 4.291   3.224 1,33 3.224 -0,08 1,37 4.429 138 

122 1.102   3.224 0,34 3.224 -0,08 1,15 3.717 2.615 

123 1.048   3.224 0,33 3.224 -0,08 0,86 2.757 1.709 

124 1.259   3.224 0,39 3.224 -0,08 0,79 2.537 1.278 

125 6.361   3.224 1,97 3.224 -0,08 0,80 2.583 -3.778 

126 6.193   3.224 1,92 3.224 -0,08 0,93 3.004 -3.189 

 

Table 13: Estimation of the trend, level and the seasonal factor of the Winter’s model 

 

Using equation 2.17 the demand for the next 30 weeks can be estimated with forecast period from 

T= 1, 3, 5, 10, 15 and 30 weeks and accuracy of the forecast can be measured with the statistical 

measures described in chapter 2.4. Applying these rules, we receive: 
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For T=1 

 

Table 14: Winter’s method forecast with T=1 

 

For T=3 

 

Table 15: Winter’s method forecast with T=3 
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For T=5 

 

Table 16: Winter’s method forecast with T=5 

 

For T=10 

 

Table 17: Winter’s method forecast with T=10 
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For T=15 

 

Table 18: Winter’s method forecast with T=15 

 

For T=30 

 

Table 19: Winter’s method forecast with T=30 
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Comparing the Winter’s forecast results with the actual demand (see Figure 10), it can be seen 

that the increase of the time horizon has a great impact on the forecast behavior. The results with 

shorter time horizon forecast better the real demand. Figure 11 shows the comparison of the 

Winter’s model with T= 1, 3 and 5 weeks with the actual demand. As it can be seen from the 

graphic the forecast with time horizon of one week closely follows the demand, although it fails 

to predict the peeks in week 8, 14, 18 and 26. The forecast with time horizon of 3 and 5 weeks 

give results that are above the actual demand.  

 

 

Figure 10: Forecast using the Winter’s model 
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Figure 11: Forecast using the Winter’s model with T=1; 3 and 5 weeks 

 

Using the measurements of the forecasting accuracy described in chapter 2.4., shown in Table 20, 

it can be confirmed again that the increase of the time horizon impacts the forecast accuracy. It 

should be also noticed that the forecast with time horizon of 1 week has not only the best 

statistical measurements but it is also the only result which is neither underforecasting (TS < -6), 

nor overforecasting (TS > +6).  

The conclusion that can be made by the graphic comparison and the statistical measurements of 

the forecasting accuracy verifies the theory behind the Winter’s model that the forecast with the 

shortest time horizon is the most accurate. 

 

Average Values T=1 T=3 T=5 

Sum of Abs. Error 2.675 4.887 8.357 

MAD 2.407 4.567 6.780 

MAPE 134 307 445 

 

Table 20: Forecast accuracy of the Winter’s model 
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7.1.3. Comparison between the Mean method and the Winter’s model 

 

Figure 12 shows a comparison of the best results of the both time series models. As it can be 

expected for data with seasonal pattern the Winter’s model overwhelms the Mean method. This 

result confirms that the Winter’s model at best can forecast the seasonality. However, this is true 

only for a forecast with a short time horizon. As the results in chapter 4.5.2 show the increase of 

the time horizon makes the model inaccurate. 

 

 

Figure 12: Comparison between the Mean method and the Winter’s model 

 

7.2. Causal Forecasting Models 

7.2.1. The Simple Regression Model 

 

Investigating the data shown in Table 2 it can be seen that the higher demand of the beer canes 

corresponds to the price discounts that has been made in the same periods. Considering this 

relationship between the demand and the price of the beer cane we will investigate whether the 

price has a significant relationship to the beer demand that can be used as dependent variable by 
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forecasting the beer demand. For this purpose the simple regression model will be used with the 

formulas describe in chapter 3.1. 

Running the regression model for the first 126 weeks we receive the following result: 

 

 

Table 21: Result of the SLR model 

 

At first, the measurement of the goodness of the fit of the regression line, r
2
, will be checked. The 

value of 80.3% can be considered as an evidence of significant relationship between the 

independent variable and the dependent variable. This means that 80.3% of the beer demand is 

explained by the price of the beer. The correlation coefficient which is measuring the strength of 

the linear relationship between the demand and the price, multiple R, shows also that a strong 

linear relationship exists. Because the coefficient of the price is negative, it shows also that a 

decrease of the price causes an increase of the demand. Since the p-value, which for the simple 

regression model corresponds to the F-test, can be shown to be 1.65*10
-45

 and  001.0tt   we can 

reject the null hypothesis proving that there is strong evidence that the regression relationship is 

significant. 

The next step is to prove whether the disturbances of the population regression function are 

homoscedastic or there exists heteroscedasticity. Analyzing the residual plot of the price, shown 

in Figure 13, it can be seen that the variance is not constant. 
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Figure 13: Price Residual Plot (SLR) 

 

Using the Park test described in chapter 5.2.1 we receive a t-value of -3,096 for 124 degrees of 

freedom. This results that 01.0tt   which proves the existence of heteroscedasticity. 

Because of the existence of heteroscedasticity, we use the logarithmic transformation which takes 

the natural logarithm of each dependant and independent value. 

 

 

Table 22: Result of the SLR model using the logarithmic transformation 

 

As it can be seen from the regression statistics, using the logarithmic transformation and due to 

this compressing the scales, the independent variable explains the dependent variable better. 

Considering the F-test we can conclude that there is also a strong evidence that that the regression 

relationship is more significant.  

Using equation 3.29 the demand for the 30 weeks will be forecasted. 
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Table 23: Forecast using the simple linear regression model 

 

Although the results in Table 23 show that the simple regression model is underforecasted (TS < 

-6) from the 6
th

 week on, the comparison of the forecast accuracy between Winter’s model and 

the simple regression model (Table 24) shows that the simple regression model gives better 

statistical measurements than the best time series model. As Figure 14 shows, the simple 

regression model can predict better the demand than the Winter’s model. However, the simple 

regression model achieves to predict the peaks in the demand but does not achieve to predict the 

demand during the peak. This failure explains the underforcasting performance of the model. 

 

Average Values 
Winter’s model 

with T=1 
Simple linear 
regression 

Sum of Abs. Error 2.675 1.651 

MAD 2.407 1.214 

MAPE 134 93 

 

Table 24: Forecast accuracy Comparison between the Winter’s model with T=1 

 and the simple linear regression model 
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Figure 14: Forecast comparison between the simple regression model and the Winter’s model 
 

7.2.2. The Multiple Regression Model 

 

In the simple regression model the price of the beer was taken as a variable for the model. 

Although the results in Chapter 7.2.1 show that there is a strong relationship between the demand 

and the price, analyzing Figure 7 it can be seen that among the peaks caused by the price there 

are also three cycles in the data and each of them corresponds to 52 weeks. From this analysis it 

can be concluded that year seasons also influence the demand of the beer. As the biggest peaks in 

these three cycles always correspond to the summer months we will include the maximal average 

weekly temperature as a second variable. 

Running the regression model for the first 126 weeks we receive the following result: 
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Table 25: Result of the MLR model 

 

 

Because we detect the heteroscedasticity using the price as a variable in the simple linear 

regression, the first thing that we will exanimate in the multiple linear regression is the existence 

of heteroscedasticity.  Analyzing the residual plot of the both variables, shown in Figure 15 and 

Figure 16, it can be seen that the variance is again not constant for the price. From the residual 

plot of the temperature it could not be concluded whether the heteroscedasticity exists or not. 

Using the Park test described in chapter 5.2.1 we receive a t-value of -2,427 for 124 degrees of 

freedom for the price and 1,588 for the temperature. This results that 01.0tt   for the price which 

proves the existence of heteroscedasticity and 05.0tt   for the temperature which reject the 

existence of the heteroscedasticity. 

 

 

Figure 15: Price Residual Plot (MLR) 
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Figure 16: Temperature Residual Plot (MLR) 

 

Because of the existence of heteroscedasticity for one of the both variables, we use the 

logarithmic transformation which takes the natural logarithm of each dependant and independent 

value and we receive the following result: 

 

 

Table 26: Result of the MLR model using the logarithmic transformation 

 

Comparing the regression statistics of the MLR with the SLR, it can be seen that the temperature 

as a second variable improves the measurement of the goodness of the fit of a regression line, 

which means that the both independent variables together explain better the dependent variable. It 

can be also seen that there is a negligibility difference between the R Square and the Adjusted R 

Square, which shows that there is no overestimation of the model. 

Considering the F-test we have even stronger evidence that the model is significant since 

61.4ˆ089.388)(modˆ
01.0  FelF , based on 2 numerator and 123 denominator degrees of 

freedom. Additionally, as the p-value of the price and the p-value of the temperature are smaller 
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than 0.001 we can reject the null hypothesis proving that there is strong evidence that the 

regression relationship is significant for both variables. 

Using equation 3.48 the demand for the 30 weeks will be forecasted. 

 

 

Table 27: Forecast using the multiple linear regression model 

 

The results in Table 27 show that the multiple regression model is underforecasted (TS < -6) 

from the 13
th

 week on which is improvement compared to the forecasting performance of the 

simple linear regression. The comparison of the forecast accuracy between multiple regression 

model and simple regression model (Table 28) shows that including the temperature as a second 

variable we improve the statistical measurements of the regression model.  

 

Average Values 
Multiple linear 

regression 

Simple linear 

regression 

Sum of Abs. Error 1.654 1.651 

MAD 1.178 1.214 

MAPE 40 93 
 

Table 28: Forecast accuracy comparison between the multiple regression model  

and the simple linear regression model 
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Observing Figure 17 we can see that having better explanation of the variance and better 

statistical performance the multiple regression model achieves to predict the peaks in the demand 

better than the simple regression model only till week 21. For the last 9 weeks of the forecasted 

periods the simple regression model forecasted better the demand of beer. The underperformance 

of the multiple regression model can be explained with the coefficient of the temperature. The 

coefficient of the temperature has a positive value which means that an increase in the 

temperature will increase the demand of the beer or a decrease in the temperature will decrease 

the demand of the beer. On the other hand the coefficient of the price has a negative value which 

means that decrease of the price will increase the demand of the beer. Observing the last 9 weeks 

of the forecasted period which correspond to the last 9 weeks of the year we are facing the 

problem that the second variable forecasts lower demand as the temperatures are falling down in 

the late autumn and early winter. At the same time there are 5 holidays in Austria (Christmas and 

the New Eve are among them) in the last 4 weeks of the forecasted period which may influence 

the demand of beer. These two factors can explain the underperformance of the multiple 

regression model and should be investigated in another research. 

 

 

Figure 17: Forecast comparison between the simple and multiple regression models 

 

 

 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Actual 

Forecast SLR 

Forecast MLR 



 90 

8. Safety Stock Planning under Demand Forecasting and 

Positive Lead Time 
 

In this chapter the safety stock planning caused by the forecasting results of the Winter’s model 

with T=1 and the multiple regression model will be compared using the (  ,   ) inventory policy 

with   = 3, 5 weeks and lead time (LT) = 0, 3, 5 weeks with a given Order Service Level (OSL) 

and Unit Service Level (USL). For the inventory policy the lost sales case will be considered. 

In addition, the presence of autocorrelation in the data will be examined and the remedial 

measure will be taken if needed. 

 

8.1. Examination of Autocorrelation 

 

As the accurate variance is the basis for reliable safety stock planning the data needs to be 

examined for the presence of autocorrelation. Using equations (6.1) and (6.2) the autocorrelation 

coefficients and partial autocorrelation coefficients will be calculated and with their help the 

grade of the autocorrelation process will be determined. Using the Minitab program we compute 

the autocorrelation coefficients and partial autocorrelation coefficients. The results are plotted on 

Figure 18 and Figure 19. 

The autocorrelation coefficients do not lie within the 95 percent upper and lower confidence 

limits and therefore it cannot be confirmed that the data are random. It can be seen from the 

plotted partial autocorrelation coefficients that the third partial autocorrelation coefficient is not 

significantly different from zero which is evidence of autoregressive process of second grade 

(AR2). 
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Figure 18: Autocorrelation coefficients 
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Figure 19: Partial autocorrelation coefficients 
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8.2. Safety Stock Planning with a given OSL 

An OSL of 95% and 85% will be used for the safety stock planning for both models. After 

receiving the forecasted weeks, we can find the standard deviation for each model using equation 

2.26. The standard deviation (or sigma) that will be used for the safety stock planning is the one 

from period 6. We can assume that in this period the deviation should be closed to the true one as 

it is stabilized and the deviation of the forecast from the actual demand is acceptable, as shown in 

the previous chapter. 

 

 

Table 29: Standard deviation for the Winter’s model and MLR 

 

Because of the presence of autocorrelation the variance is corrected using equation (6.3). In the 

equation we will consider the first two autocorrelation coefficients as we have AR(2) process 

with the T = 30 as we are forecasting 30 periods. 

The adjusted standard deviation equals 11.925 for the Winter’s model and 2.956 for the MLR 

model. 
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After defining the standard deviation we use equations 4.2 and 4.3 with the   -values from 

Table.1 for OSL 95% and 85% in order to find the safety stock for the (  ,   ) inventory policy 

with   = 3, 5 weeks and lead time (LT) = 0, 3, 5 weeks. Using the (  ,   ) inventory policy as 

described in Chapter 4.5.1 and 4.5.2, we receive the inventory levels for 95% OSL shown in 

Table 30 and for 85% OSL shown in Table 31. 

 

 

Table 30: Inventory levels for 95% OSL using (  ,   ) inventory policy with   = 3, 5 and LT = 0, 3, 5 weeks 

 

The inventory levels for the Winter’s model are plotted on Figure 20. As it can be seen, the 

increase of the periodic review and the increase of the lead time lead to increase of the inventory 

levels. As it can be seen with the (  ,   ) inventory policy and the adjusted variance we can manage 

the availability by building up high inventory levels. With the increase of the periodic review and 

the lead time we increase the inventory levels. The question in this case is what would be the 

better off situation for the company in this case – to keep the high inventory levels in order to 

meet the demand or to have optimized inventory and to be prepared for lost sales. 
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Figure 20: (  ,   ) inventory policy with   =3, 5 and LT= 0, 3, 5 for the Winter’s model with OSL 95% 

 

The inventory levels for the MLR model are plotted on Figure 21. The tendency that the increase 

of the periodic review and the increase of the lead time lead to increase of the inventory levels 

can be seen also for the (  ,   ) inventory policy using the forecasted results of the MLR model. It 

can be also seen that due to the fact that the MLR model has smaller standard deviation the 

inventory levels are significantly lower in comparison of the inventory levels of the Winter’s 

model. However, as shown on the Figure 17 the MLR model does not achieve to predict the exact 

demand during the peaks. This fail of the model together with the lower inventory levels lead to 

more stockouts in comparison with the inventory levels of the Winter’s model.  

Which of the both models is better for the company’s profit must be investigated in another 

research where the inventory costs and the sales profit must be considered. 
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Figure 21: (  ,   ) inventory policy with   =3, 5 and LT= 0, 3, 5 for the MLR model with OSL 95% 

 

The results of reducing the OSL from 95% to 85% are shown in Table 31. The invenotry levels 

for Winter’s model and MLR using (  ,   ) inventory policy are plotted on Figure 22 and 23.  It 

can be seen that the tendency that was observed for OSL 95% remeins the same and for OSL 

85% - the increase of the periodic review and the increase of the lead time lead to increase of the 

inventory levels. Due to the lower standard deviation of the MLR model the inventory levels are 

significant lower compared to the inventory levels of the Winter’s model with T=1 which again 

leads to more stockouts in the (  ,   )inventory policy using the MLR model. Reducing the OSL 

we reduce also the safety stock factor which downsizes the product availability in the presence of 

demand variability. As a result more stockouts in comparison with the 95% OSL are observed.  
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Table 31: Inventory levels for 85% OSL using (  ,   ) inventory policy with   = 3, 5 and LT = 0, 3, 5 weeks 

 

 

Figure 22: (  ,   ) inventory policy with   =3, 5 and LT= 0, 3, 5 for the Winter’s model with OSL 85% 

0  

20.000  

40.000  

60.000  

80.000  

100.000  

120.000  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

B
e

e
r 

C
an

e
s 

Winter's model 
OSL 85% 

t ̂=3 LT=0 

t ̂=3 LT=3 

t ̂=3 LT=5 

t ̂=5 LT=0 

t ̂=5 LT=3 

t ̂=5 LT=5 



 97 

 

Figure 23: (  ,   ) inventory policy with   =3, 5 and LT= 0, 3, 5 for the MLR model with OSL 85% 

 

8.3. Safety Stock Planning with a given USL 

 

As already described in Chapter 4.2, the USL counts the average number of units short expressed 

as the percentage of the order quantity while the OSL measures the percentage of cycles that will 

be out of stock. 

However, every given OSL has a corresponded USL and can be transformed with some simple 

steps as shown in Table 32. The transformation shown in Table 32 uses the data from MLR 

model for (  ,   ) inventory policy with   = 3 and LT=0 for OSL= 95% and 85%. 

As it can be seen from Table 32 the USL that corresponds to a given OSL has a higher value.  It 

can be also noticed that a 10% reduction of the OSL results only in 0,8% reduction of USL. 
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OSL  95% 85% 

Safety Stock LTtkSS  ˆˆ  8.499 5.325 

Sigma LTt
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

ˆ
ˆ   2956 2956 
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


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ˆ
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ˆ
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


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 1,74 42,06 

USL   uESCuUSL /  99,95% 98,8% 

 

Table 32: Transforming the OSL into a USL
110

 

 

Using the USL of 99,95% and 98,8% we can compare again the forecasted results of the Winter’s 

model and MLR model in a (  ,   ) inventory policy with   = 3, 5 weeks and lead time (LT) = 0, 3, 

5 weeks. The inventory levels for 99,95% USL are shown in Table 33 and for 98,8% OSL shown 

in Table 34. 

 

Table 33: Inventory levels for 99,95% USL using (  ,   ) inventory policy with   = 3, 5 and LT = 0, 3, 5 

                                                 
110

 S. Chopra, P. Meindl, Supply Chain Management, 2007, pp. 310 
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Table 34: Inventory levels for 98,8% USL using (  ,   ) inventory policy with   = 3, 5 and LT = 0, 3, 5  

 

Observing the inventory levels we can see that the behavior and the relationships that were 

analyzed for OSL for the Winter’s model and MLR model remain the same. However, analyzing 

the inventory levels of MLR model more carefully we can see that with the increase of the 

periodic review or the lead time following the given USL of 99,95% or 98,8% we are more often 

in the out of stock situation. A comparison between 95% OSL and 99,95 USL with   =5 and LT=3 

is shown in Figure 24. 

This is caused by the fact that the USL is defined for   =3 and LT=0. With the increase of the 

periodic review time and/or the lead time the demand for a given replenishment cycle also 

increases which leads to higher values for USL in the transformation process shown in Table 32. 

This leads to the conclusion that with the increase of the periodic review time and/or the lead 

time the OSL does not change but the USL increases.
111

 

 

                                                 
111

 S. Chopra, P. Meindl, Supply Chain Management, 2007, p. 312 
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Figure 24: (  ,   ) inventory policy with   = 5 and LT= 3 for the MLR model with OSL 85% and USL 99,8% 
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9. Conclusion 
 

This work provided a comparison between the time series forecasting models and the causal 

forecasting models. Additionally, the work investigates the safety stock planning in (  ,   ) 

inventory policy and the impact that the forecasting models with their inaccuracy have on it. For 

the comparison a sales data for “Schwechater” beer canes sold in Austria for 2005, 2006 and 

2007 by ADEG Austria Ltd were investigated. 

In Chapter 7 the different forecasting models were investigated and compared. It was shown that 

the causal forecasting models are more accurate than the time series forecasting models, 

especially for longer time horizon. It was also shown that the increase of the variables included in 

the model improves the forecast accuracy.  

However, it must not be forgotten that the variables included in the regression model should be 

chosen very carefully and their impact on the model investigated. Nevertheless a method that can 

be used in case of heteroscedasticity in order to eliminate its effect was also presented. 

In Chapter 8 the forecasting results of the Winter’s method and the multiple regression model 

were compared in the (  ,   ) inventory policy with    = 3, 5 weeks and lead time (LT) = 0, 3, 5 

weeks with a given OLS and USL. The autocorrelation impact on the safety stock planning and a 

general optimization approach for the presence of autocorrelation were also presented 

The impact of the forecasting inaccuracy on the inventory levels was shown as well as that the 

increase of the lead time and/or the periodic review time increases the inventory levels. In 

addition the main relationships and differences between the OSL and USL were also highlighted. 

It was paid especially attention to the fact that if a given OSL is transformed into a USL, the USL 

increases as the demand for a given replenishment cycle increase while the OSL remains the 

same. 

As the importance of the inventory management will be more crucial for the company’s success 

in the future there is no doubt that the safety stock planning will continue to develop. However, 

the current state already offers some methods that can ensure an accurate planning of the 

inventory levels.   
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List of notations 
 
 

α A positive constant 

    A smoothing constant 

̂  The intercept for the whole population 

   The intercept for the sample data 

β A smoothing constant 

β*  A specific numerical value of ̂  

̂  The slope for the whole population 

b The trend 

   The slope for the sample data 

b
~

 A k x 1 matrix of    

B(  )  The backorder at time    

c An arbitrary nonzero vector 

  A Boolean variable 

δ A positive constant 

D A dummy variable 

DR The demand during the review interval 

ε The error term in the regression model 

e Difference between the forecasted value and the observed value 

e  The residual 

ê  A k x 1 matrix of e  

ESC Expected shortage per replenishment cycle 

  A smoothing constant 

  Sum of the squared errors 

   The partial autocorrelation coefficient 

)(ˆ k  The standard normal probability density function 

Φ( k ) The cumulative distribution function 
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)(0 k  The standard normal complementary cumulative distribution function 

F Forecast result 

F̂  Variable for the F-test for overall significance 

)(kGu


 
The standard normal loss function 

H0 The null hypothesis 

i A state counting variable 

I The seasonal adjustment factor 

  (  ) The inventory level at time    

IN(  )  The net inventory at time    

IO(  )  The inventory on order at time    

IP(  ) The inventory position at time    

j A state counting variable 

k The number of the independent variables 

k  The number of parameters 

k̂  The safety stock factor 

L Number of consecutive errors of the same sign 

L The length of seasonality 

LT The lead time 

m  The number of forecasted periods 

   The order of the autocorrelation process 

n The last state of a state counting variable 

n  The sample size 

n   The total number of time periods being considered 

N A prespecified limit 

OSL Order Service Level 

P The number of periods 

P The periodicity of the demand 

P1 The desired order service level 

P2 The desired unit service level 

   The autocorrelation coefficient 
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r
2
 The coefficient of determination for simple regression 

R
2
 The coefficient of determination for multiple regression 

2

R  The adjusted coefficient of determination for multiple regression 

    The time of the periodic review 

ζ The standard deviation of a normally distributed random variable 

ζ² The variance of a normally distributed random variable 

L  The standard deviation of the demand over the replenishment lead time 

2~  The constant factor of proportionality 

̂  The standard deviation of the errors 

s A suppression factor 

S The smoothed value 

   The order-up-to level 

SS The safety stock  

η A state counting variable 

t Variable for the t-test 

   The time of the periodic review 

T Time period 

u The average demand for a given period 

USL Unit Service Level 

x The regressor 

0x  The regressor vector 

x  The actual demand for a given period 

x  The sample means of x 

X  Mean of the data 

   A    x k matrix of rank K. 

   The independent variable 

X Element from the data 

X* A value for the regressor 

y The regressand 

ŷ  The expected estimate of the independent variable from the sample 
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y  The sample means of y 

Y The dependent variable 

Ŷ  The estimated value 

γ A smoothing constant 
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