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Abbreviations 

 

Å Angstroem 

Amp ( or Ap) Ampicillin 

b-ME β-mercaptoethanol 

Bac Bacmid 

BBS Bardet-Biedl syndrome 

BBSome A complex of Bardet–Biedl syndrome (BBS) proteins 

C. elegans (or Ce) Caenorhabditis elegans 

C-terminal Carboxy terminal 

CCD Coiled coil domain 

Chl Chloramphenicol 

CPB Cryptic polo-box 

C. reinhardtii (or Cr) Chlamydomonas reinhardtii 

CTD C-terminal domain 

cv Column volume 

D. rerio (or Dr) Danio rerio 

Da Dalton 

DLS Dynamic light scattering 

Dm Drosophila melanogaster  

ddH2O Double-distilled water 

DTT Dithiothreitol 

E.coli Escherichia coli 

eYFP Enhanced yellow fluorescent protein 

FGF Fibroblast growth factor 

G0  Resting phase 

G1 Gap phase 1 

G2 Gap phase 2 

HF cells High Five insect cell line that originated from the ovarian cells of 

the cabbage looper, Trichoplusia ni 

Hh Hedgehog signaling 



His‐tag Hexahistidine‐tag 

IPTG Isopropyl‐β‐D‐thiogalactopyranoside 

IFT Intraflagellar transport  

IFT-A Intraflagellar transport complex A 

IFT-B Intraflagellar transport complex B 

ITC Isothermal titration calorimetry 

IgG Immunoglobulin G 

IPTG Isopropyl‐β‐D‐thiogalactopyranoside 

JBTS Joubert syndrome 

Kan Kanamycin 

Kd Dissociation constant 

LB Lysogeny broth 

MBP Maltose binding protein 

MKS Meckel-Grüber syndrome 

MTOC Microtubule-organizing center 

MT(s) Microtubule(s) 

Ni‐NTA Nickel nitrile triacetate 

N-terminal Amino terminal 

OFDS Orofaciodigital syndrome 

PBD(s) Polo-box domain(s) 

PCM Pericentriolar material 

PCP Planar cell polarity 

PDGF Platelet-derived growth factor 

PKD Polycystic kidney disease 

PLK1 Polo-like kinase 1 

PLK4 Polo-like kinase 4 

PP2A Protein phosphatase 2A 

RNAi RNA interference 

S phase Synthesis phase 

SAS-5 Spindle assemble abnormal 5 

SAS-6 Spindle assemble abnormal 6 



SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Sf9 cells Spodoptera frugiperda ovary cells 

SLS Static light scattering 

Spec Spectinomycin 

Tb (or T. brucei) Trypanosoma brucei  

TPR Tetratricopeptide repeat 

v/v Volume per volume 

WAA Degenerate TPR-like repeats 

WD repeats Stretch of ~40 amino acids usually ending with Trp‐Asp 

wt wild-type 

w/w Mass per mass 

X-gal 5-bromo-4-chloro-indolyl-β-D- galactopyranoside 

  

 

Amino acids were abbreviated according to the standard one or three letter Nomenclatures
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1. Abstract 

 

Cilia and flagella are specialized organelles present in most eukayotic cells and consist of a 

membrane-sheathed axoneme and about 700 associated proteins. These organelles play im-

portant roles in cell motility and/or signal transduction and have recently been associated with 

a plethora of human disorders. One of my PhD projects focused on the cloning and probably 

structural studies of a few proteins and their complexes that are essential for ciliogenesis.  

Devoid of ribosomes and membrane-bound vesicles, cilia and flagella are assembled and main-

tained by intraflagellar transport (IFT), which is a bidirectional transport process along the mi-

crotubules of the axoneme. I started my PhD study trying to clone and over-express the IFT 

complex A (IFT-A), which is responsible for the retrograde transport in cilia. The six IFT-A genes 

were successfully cloned into three different MultiBac transfer vectors specifically designed for 

multi-gene amplification. These constructs were fused using Donor-Acceptor in vitro Cre-loxP 

recombination to generate two multi-gene expression constructs, which later were integrated 

into two MultiBac plasmids using Tn7 transposition for baculovirus production in insect cells. 

Expressions of all six IFT-A proteins in both Sf9 and Hi-Five insect cells were confirmed by anti-

6×His western blot. However, the yield was low and purification by Ni-NTA proved not very suc-

cessful. Future plans are both to increase the yield of co-expressed proteins and to refine puri-

fication strategies. 



 1 

2. Zusammenfassung 

 

Zilien oder Flagellen sind hochspezialisierte Organellen, die auf der Mehrzahl eukaryotischer 

Zellen zu finden sind und aus einem von der Plasmamembran umschlossenen Axonem 

bestehen. Diese Zellfortsätze spielen eine wichtige Rolle bei der zellulären Fortbewegung sowie 

in verschiedenen Signalkaskaden und konnten bereits mit diversen Erkrankungen in Verbindung 

gebracht werden. Eines meiner PhD Projekte beschäftigte sich mit der Klonierung und 

Aufreinigung von sechs verschiedenen Proteinen, die eine wichtige Rolle in funktionierenden 

Zilien spielen. 

Essenziell für den Aufbau und die Instandhaltung von Zilien ist der sogenannte Intraflagellare 

Transport (IFT), ein bi-direktionaler Transport von ciliären Bestandteilen entlang des 

mikrotubulären Axonems. Dieser Transport wird von zwei großen Proteinkomplexen, IFT 

Komplex A und IFT Komplex B, durchgeführt. 

Zu Beginn meines PhD-Studiums versuchte ich den IFT Komplex A (IFT-A), der für den 

retrograden Transport verantwortlich ist, zu klonieren und in einem eukaryotischen 

Expressionssystem zu überexprimieren. Die sechs verschiedenen Untereinheiten von IFT-A aus 

Trypanosoma brucei wurden in drei MultiBac Transfervektoren kloniert, welche speziell für die 

Amplifikation von mutliplen Genen geeignet sind. Die erfolgreich generierten Konstrukte 

wurden via einer Donor-Akzeptor in vitro Cre-loxP Rekombination fusioniert um zwei multi-Gen 

Expressionsvektoren zu generieren. Diese wurden darauffolgend  mittels Tn7 Transposition in 

zwei MultiBac Plasmide integriert und für die Baculovirus-Produktion in Insektenzellen 

verwendet. 

Die Expression aller sechs IFT-A Proteine in sowohl Sf9 als auch Hi-Five Inseketenzellen konnte 

mittels anti-6xHis Western Blot nachgewiesen werden. Leider konnten nur geringe Mengen des 

Komplexes isoliert werden und die Aufreinigung via Affinitätschromatographie war nicht 

zufriedenstellend. Zukünftige Studien werden sich auf eine Steigerung des Expressionslevels der 

rekombinanten Proteine und auf die Verbesserung der Aufreinigungstrategie fokussieren. 
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3. Introduction 

 

3.1 Cilia 

Cilia and flagella are specialized organelles present in most eukaryotic cells with the exception 

of fungi and higher plants. There are two types of cilia: motile and non-motile (primary) cilia. 

Both types of cilia regulate an excessive number of cell signaling and cell development process-

es (Christensen et al. 2007; Eggenschwiler and Anderson 2007).  

Motile cilia and flagella are typically assembled by nine peripheral doublet microtubules sur-

rounding two central single microtubules (central pair), hence designated ‘9+2’ cilia (Figure 1). 

The axoneme of 9+2 cilia also contains accessory structures including inner and outer dynein 

arms, radial spokes and nexin links, which are involved in motility. There are exceptions of mo-

tile cilia that are devoid of the central microtubules, for example, motile 9+0 cilia on the nodal 

cells of developing mammalian embryos (Hirokawa et al. 2006).  

Most non-motile cilia contain 9+0 axonemes, which lack the central microtubules and the 

dynein arms (Figure 1). The 9+0 axonemes of the motile nodal cilia lack the central microtu-

bules but have dynein arms.  

Despite of structural variations in different classes of cilia, all cilia and flagella share similarities 

in the basic structure, which includes a basal body, a transition zone, a microtubule-based 

axoneme and the ciliary membrane (Figure 1). The ciliary axoneme projects out from the cell 

surface and is surrounded by a bilayer lipid membrane that is continuous with the plasma 

membrane of the cell body but contains a different subset of membrane receptors and ion 

channels. The region that separates the two membrane compartments at the ciliary base, 

called ‘ciliary necklace’, is connected by fibers to the transition zone of the basal body (Figure 1) 

(Gilula and Satir 1972). Different classes of cilia have various tissue-specific locations, which 

accordingly carry out different tissue-specific functions.  
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Figure 1 Ciliary structure. Cilia are composed of the basal body, the transition zone, the axoneme, the singlet zone, 

and the ciliary membrane. With a few exceptions, most cilia are divided into two groups: primary immotile cilia 

and motile cilia. Immotile cilia are characterized by 9+0 architecture, which has nine outer doublets, but no central 

microtubules, whereas motile cilia share a common 9+2 scaffold, which has outer nine doublets and two central 

microtubules (Czarnecki and Shah 2012).  

 

3.1.1. Functions of Cilia  

Primary cilia (non-motile cilia) and motile cilia have different specific functions. Primary cilia are 

mainly involved in sensing environmental cues, as cellular antennae that receive signals from 

the periphery (Berbari et al. 2009; Marshall and Nonaka 2006). Mutational analyses of individu-

al cilia proteins have exhibited that cilia are involved in processing of both activator and re-

pressor signal-transducing proteins (Goetz and Anderson 2010; Murdoch and Copp 2010). The 

cell signaling that primary cilia are associated with, include the Hedgehog (Hh), Wnt (canonical 

and non-canonical), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) 

signaling pathways.  
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The motile functions of cilia are generated by coordinated activation and inactivation of the 

dynein motor proteins within the inner and outer dynein arms along the length of the axoneme 

(Figure 1). The motility of cilia is required in numerous biological processes. For example, the 

motility of cilia allows them to generate an extra-embryonic fluid flow (nodal flow) at the em-

bryonic nod, which is important for the establishment of left-right (L-R) patterning during de-

velopment (McGrath and Brueckner 2003; Tabin and Vogan 2003). Motile cilia of respiratory 

epithelial cells play an important role in lung clearance. Cerebrospinal fluid circulation and ep-

endymal flow requires the motility of cilia (Ibanez-Tallon et al. 2004). Flagellar motility is essen-

tial for male and female fertility. Recently, motile cilia have been suggested to have sensory 

functions as well (Bloodgood 2010). 

 

3.1.2. Ciliopathies 

 An expending number of cilia-related diseases have been identified, which are commonly re-

ferred to ciliophathies. Ciliophathies are related with developmental defects affecting the cen-

tral nervous system, the skeleton or other organ systems.  

Polycystic kidney disease (PKD or PCKD, also known as polycystic kidney syndrome) is a very 

common inherited cilia-related disease. The phenotype of PKD is frequently characterized by 

loss of glomerular filtration, variable ages of reaching end-stage renal disease, hypertension, 

renal cysts and subarachnoid hemorrhage from intracranial ‘berry’ aneurysm (Cano et al. 2004; 

Igarashi and Somlo 2002; Kiser et al. 2004; Oh and Katsanis 2012). Kidney epithelial cells with 

polycystin defects proliferate excessively, fail to differentiate fully and form cysts that can even-

tually destroy the kidney in about half of affected individuals. Scanning electron microscopy 

showed that PKD mice had abnormal cilia in their kidneys (Pazour et al. 2000).  

Defects in cilia also lead to another human disorder called Bardet-Biedl syndrome (BBS), which 

is a rare genetic disorder characterized by renal cysts, polydactyly, mental retardation, obesity, 

hepatic fibrosis, hypertension, hypogonadotropism, anosmia, decrease in peripheral sensation 

and neocortical and hippocampal volume loss (Pan et al. 2005).  BBS is genetically heterogene-

ous. Up to now, 16 loci have been identified in humans. Proteins encoded by the BBS loci local-

ize primarily to the ciliary basal body and axoneme (Zaghloul and Katsanis 2009); many of them 

are components of the so-called BBSome, a protein complex involved in cilia targeting (Jin and 
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Nachury 2009; Jin et al. 2010). Mutations of a number of BBS loci in mouse had caused defects 

in cilium assembly and function, in addition to the phenotypes of BBS (Norris and Grimes 2012). 

Other ciliopathies include Meckel-Grüber syndrome (MKS), which is one of the most severe 

human ciliopathies and consistently results in neonatal lethality; orofaciodigital syndrome 

(OFDS), which encompasses oral, facial and digital defects; Joubert syndrome (JBTS), which is an 

autosomal recessive disorder that comprises mental retardation, abnormal breathing, atypical 

eye movements and ataxia in association with agenesis of the cerebellar vermis (Sattar and 

Gleeson 2011).  

 

3.2.3. Ciliogenesis 

Formation of cilia is tightly coupled with the cell cycle. During G1 stage, the mother centriole-

associated Golgi-derived vesicles fuse with the plasma membrane, forming a membrane 

sheath, which later covers the newly emerging ciliary axoneme. The distal appendages of 

mother centrioles were thought to be responsible for docking of mother centriole/basal body 

to the apical cell membrane. Next, microtubules nucleated by the basal body begin to grow, 

protruding beneath the membrane. The distal part of the basal body is called transition zone, 

where the nine outer MT doublets begin to emerge. The outer doublets only assemble at the 

distal end of the cilia. However, cilia and flagella are not able to synthesize de novo proteins. 

Therefore, assembly and maintenance of cilia require the transport of axonemal precursors 

from the cytoplasm to the growing ciliary tip, which is carried out by IFT. Exception, however, 

does exist in some species, such as Drosophila sperm cells, which assemble axonemes in the 

cytoplasm in an IFT-independent manner (Han et al. 2003).  

When cilia stop to elongate, they still remain dynamic. New materials for cilia assembly are still 

imported to the tip, whereas the turn-over products are constantly transferred back to the base 

of the cilium, where there is a large pool of IFT components. This dynamic metabolism is re-

quired for cilia to maintain their steady-state.  

 

3.2. IFT 

As mentioned above, since cilia/flagella lack the machinery for synthesizing proteins and since 

the axoneme assembly exclusively happens at the tip of cilia/flagella (Johnson and Rosenbaum 
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1992), transport of axonemal components is required. The cell has solved this logistical problem 

by means of IFT, a bi-directional movement of large protein complex along the axoneme. The 

IFT particles move to the distal tip of the flagellum (anterograde) by kinesin II at the speed of ~2 

µm/s whereas back to the cell body (retrograde) by cytoplasmic dynein 2 at the speed of ~3.5 

µm/s (Kozminski et al. 1995; Kozminski et al. 1993; Porter et al. 1999).  

 

 

 

Figure 2 Schematic representation of intraflagellar transport (IFT). Anterograde IFT particles, which are motivated 

by Kinesin II along B tubules of outer doublet microtubules, transfer axoneme precursors from the base of the 

cillium out to the distal tip by heterotrimeric kinesin-II. Retrograde IFT particles, which are mediated by cytoplas-

mic dynein 2, transfer the turn-over products from ciliary distal tip back to the ciliary base (Cole 2003). 

 

IFT particles are composed of at least 18 different proteins, which form two sub-complexes, IFT-

A and IFT-B (Taschner et al. 2012). IFT-A and IFT-B function in different aspects of the IFT pro-

cess. IFT-A is specifically involved in anterograde and IFT-B is involved in retrograde transport. 

Mutational analysis studies have shown that mutations of IFT-B subunits cause cilia dramatical-

ly shortened or absent (Brazelton et al. 2001; Hou et al. 2007), analogous with kinesin II muta-

tions (Matsuura et al. 2002). IFT-A mutants, however, lead to malformed cilia with prominent 

bulges containing accumulations of IFT proteins (Iomini et al. 2009; Piperno et al. 1998), which 

is similar to what was observed in cytoplasmic dynein 2 mutations (Pazour et al. 1999; Porter et 

al. 1999; Schafer et al. 2003). 
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IFT proteins are highly conserved in ciliated organisms from green algae to mammals 

(Rosenbaum and Witman 2002). Proteins of the IFT complexes in Chlamydomonas were named 

after their apparent molecular weight on SDS-PAGE as IFT43, 121, 122, 139, 140, and 144 for 

IFT-A subunits and IFT20, 22, 25, 27, 46, 52, 54, 57, 70, 74, 80, 81, 88 and 172 for IFT-B subunits. 

Mutational analyses indicated that a subset of IFT-A proteins (IFT144/140/122) form a stable 

12S subcomplex, referred to the IFT-A core (Behal et al. 2012; Taschner et al. 2012) (Figure 3). 

Analogously, biochemical studies suggested that the IFT-B complex can be stripped of weakly 

associated subunits to form a nine-protein salt-stable subcomplex 

(IFT22/25/27/46/52/70/74/81/88), which is referred as the IFT-B core (Bhogaraju et al. 2011; 

Lucker et al. 2005; Lucker et al. 2010; Taschner et al. 2012) (Figure 3). At present, high-

resolution structures are only available for the IFT25/IFT27 complex (Bhogaraju et al. 2011) and 

cytoplasmic dynein motor domain (Kon et al. 2012) (Figure 3). Pigino et al.  have published 

electron tomographic reconstruction of IFT trains using subtomographic averaging, which rep-

resents a major step forward in structural understanding of IFT particles (Pigino et al. 2009) 

(Figure 3). 

 

 

 Figure 3 High‐resolution structures of dynein, electron tomographic reconstruction of IFT particles, and 

high‐resolution crystal structure of IFT complex 25/27. (Mizuno et al. 2012) 
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3.2.1. IFT-A 

Bioinformatic analysis suggests that, except for IFT43, all other components of the IFT-A com-

plex are large proteins with molecular weights more than 120 kDa. According to secondary 

structure prediction, IFT144, IFT140, IFT 122 and IFT121 have a notably similar domain organi-

zation with an N-terminal WD-repeat and a C-terminal α-helical tetratricopeptide repeats (TPR) 

motif or degenerate TPR-like repeats (WAA). WD repeats, also known as WD40, are degenerate 

repeats of 40 or more amino acids that often contain conserved tryptophan and aspartic acid 

residues (Smith et al. 1999; Yu et al. 2000). WD-repeats are known to form β-propellers. The 

TPR motif consists of highly degenerate 34 amino acid repeats where a minimum of three tan-

dem repeats are thought to form a binding domain that cradles a short, specific amino acid se-

quence, often the C-terminal part of a binding partner (Das et al. 1998; Lamb et al. 1995; 

Scheufler et al. 2000). Two IFT-A proteins without β-propellers are IFT139, which appears to 

contain only TPR repeats, and IFT43, which probably does not contain any motif (Figure 4). The 

predicted domain arrangement reflects that the IFT-A complex likely serves as a structural plat-

form that binds to multiple proteins, such as motor proteins and the IFT-B components.  

 

 

 

Figure 4 IFT-A particle components and domain predictions. IFT proteins were purified from Chlamydomonas and 

identified at the level of the gene. Putative protein-protein binding motifs have been identified through sequence 

analysis. WD: WD repeats; TPR: tetratricopeptide repeats; WAA: degenerate TPR-like repeats. 
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3.2.1.1. IFT144 

IFT144 is predicted to have two 7-blade β-propellers (each blade having 4 β-strands), with the 

highest confidence in the first β-propeller. Chalmydomanas IFT144 mutant causes decreased 

velocities of retrograde IFT particles, reduced concentration of IFT-A proteins in flagella and the 

formation of a characteristic flagellar ‘bulge’ containing IFT-B proteins at the permissive tem-

perature (Iomini et al. 2009; Lin et al. 2003). Homologous proteins of IFT144 are WDR19 in hu-

mans and DYF-2 in C. elegans (Efimenko et al. 2006; Lin et al. 2003). In agreement with the 

function of CrIFT144, dyf-2 mutant similarly caused the accumulation of IFT-B proteins in cilia. 

Mutations in human IFT144 lead to both Sensenbrenner and Jeune Syndromes with skeletal 

anomalies and renal insufficiency phenotypes (Bredrup et al. 2011). 

 

3.2.1.2. IFT140 

Similar to IFT144, IFT140 has one highly plausible β-propeller followed by a number of potential 

β-propellers. However, literature about IFT140 is limited. 

 

3.2.1.3. IFT139 

Different from other components of IFT-A, IFT139 does not contain any WD repeats, but in-

stead have TPR repeats throughout the whole sequence (Figure 4). TPR repeats are believed to 

often act as a scaffold which transiently interacts with two or more proteins. Secondary struc-

ture analysis suggests that TPR repeats may allow IFT139 to simultaneously bind to as many as 

five proteins. Potential binding partners of IFT139 are IFT-A and IFT-B proteins, as well as 

axonemal precursors. CrIFT139 mutants cause similar phenotypes to those from IFT144 mu-

tants (Iomini et al. 2009; Piperno et al. 1998). IFT139 is suggested to be essential for recycling 

IFT complex A from the flagellum back to the cell body (Williamson et al. 2011). Analogously, 

mutations in mammalian orthologs result in defective retrograde IFT (Goetz and Anderson 

2010; Tran et al. 2008). 
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3.2.1.4. IFT122 and IFT121 

IFT122 and IFT121 show a remarkable similarity in domain organization with predicted β-

propellers formed by WD repeats at the N-terminus and degenerate TPR repeats (WAA) at the 

C-terminus, respectively. IFT122 is not required for ciliogenesis in Tetrahymena. The null mu-

tant, however, caused IFT-B proteins to accumulate at ciliary tips (Tsao and Gorovsky 2008b). 

IFT122 orthologs in C. elegans, humans and other mammals lead to severe defects in retro-

grade IFT (Bell et al. 2006; Cortellino et al. 2009; Qin et al. 2001; Qin et al. 2011). Mutant IFTA-

1, the ortholog of IFT121 in C. elegans, causes chemosensory and dye-filling defects, abnormal 

cilia structure, and the accumulation of IFT-B proteins in cilia (Blacque et al. 2006). Mutant 

WDR35, the human ortholog of IFT121, leads to multiple ciliophathies, such as Sensenbrenner 

Syndrome (Mill et al. 2011). 

 

3.2.1.5. IFT43 

IFT43, the smallest component of IFT-A, does not contain any clearly distinguishable motif. Ini-

tially, IFT43 was not included in the IFT complex, probably due to different purification proce-

dure (Piperno et al. 1998). This was corrected later when it was found out that defective IFT43 

in human cells resulted in a characteristic malfunction in retrograde IFT, as anticipated for dys-

functional IFT-A components (Arts et al. 2011). 

 

3.2.2. Subunit interactions of IFT-A 

Behal et al have carried out extensive studies on the interactions between IFT-A subunits. A ~12 

S subcomplex, referred as the IFT-A core, was fractionated during co-sedimentation of whole 

cell extract from ift121 cells, which contains IFT122, IFT140 and IFT144 (Behal et al. 2012). The 

yeast-based two-hybrid analyses showed that IFT43 and the IFT121 C-terminal part interact 

with each other. It was further confirmed by the observation that IFT43 co-eluted with the 

MBP-tagged IFT121 when they were heterologously expressed in bacteria. The interaction be-

tween IFT43 and IFT122 was also observed. Mutational analysis indicates that the presence of 

IFT139 required IFT121, whereas the presence of IFT139 relied on IFT122. 
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3.2.3. IFT-B 

IFT-B is biochemically divided into a salt-stable core of nine subunits and several peripheral 

subunits. Sufficient evidences have shown that knock-out of any components of IFT-B almost 

completely abolishes the assembly of cilia, suggesting that IFT-B is essential for anterograde 

transport of axonemal precursors to the ciliary tip (Absalon et al. 2008; Beales et al. 2007; Ko-

bayashi et al. 2007; Li et al. 2008; Omori et al. 2008; Tran et al. 2008; Tsao and Gorovsky 

2008a).   

 

3.2.3.1. The IFT-B core proteins 

It was shown that there is an absolute request of IFT88 for flagellar assembly in 

Chlamydomonas and as well as for ciliogenesis in vertebrates (Pazour et al. 2002; Pazour et al. 

2000). IFT70 has a conserved role among green algae, nematodes and zebrafish. Deletion of 

IFT70 leads to abnormal and destabilized axonemes (Fan et al. 2010). IFT74 and IFT81 both con-

tain long predicted coiled coil region. It was initially suggested that there exists a tetrameric 

IFT74-81-81-74 complex (Lucker et al. 2005). According to Taschner and colleagues, however, 

an IFT88/81/74/70/52/46/27/25 octamer can form in their reconstruction and purification ex-

periments, suggesting that the formation of a (IFT81)2/(IFT74)2 heterotetramer is not a condi-

tion for complex assembly (Taschner et al. 2011). Mutation of IFT52 had an analogous pheno-

type as IFT88 mutant, which causes a failure in flagellum assembly. IFT52 directly interacts with 

IFT46, IFT70 and IFT88 as well as with the IFT81/74/27/25 heterotetramer (Taschner et al. 

2011). In agreement with the observation that IFT46 interacts with IFT52, IFT70 and IFT88 with-

in the IFT-B core, western blot results revealed that when IFT46 was mutated, multiple compo-

nents of IFT-B core level dramatically decreased. These results indicate that IFT46 is required 

for the stability of the IFT-B core (Fan et al. 2010; Lucker et al. 2010; Taschner et al. 2011). Addi-

tionally, IFT46 mutant also caused the axonemal outer dynein arms to be missing, implying that 

IFT46 might have a secondary role of recognizing the outer dynein arms (Hou et al. 2007). IFT27 

and IFT25 form a stable subcomplex, whose structure has been solved at a high resolution (Fig-

ure 3) (Bhogaraju et al. 2011). Resent data have shown that the IFT27/IFT25 complex acts both 

during IFT complex assembly and at IFT initiation (Bhogaraju et al. 2011; Wang et al. 2009). 

IFT22 was the last identified component of IFT-B (Cole et al. 1998; Lucker et al. 2005), whose 

function awaits further characterization.  
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3.2.3.2. The peripheral IFT-B proteins 

IFT172, IFT80, IFT57, IFT54 and IFT20 are not parts of the IFT-B core complex (Figure3), since 

they weakly associate with IFT-B core and dissociate at 300 mM slat concentration (Lucker et al. 

2005). Nevertheless, these peripheral IFT-B proteins play important roles in IFT regulation and 

carrier versicle targeting from Golgi network to the clilium (Taschner et al. 2012). 
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4. Aim of the study 

 

Whereas the complexes IFT A/B have been studied for nearly two decades, little is known about 

their architecture and assembly. The lack of high-resolution structural information on these 

complexes has now become a limiting step in gaining an understanding of their function at the 

molecular level.  

This project mainly focused on cloning and expression of the IFT-A complex in a eukaryotic ex-

pression system, which, if successful, will enable us to carry out structural studies of the com-

plex to elucidate the assembly mechanisms of the IFT-A complex for cargo transport within the 

cilium at the atomic level. The strategy we used for producing the IFT-A complex is to co-

express all six components of IFT-A using the baculovirus-insect cell expression system that has 

been established and used successfully for other multimeric protein complexes (Bieniossek et 

al. 2008; Nie et al. 2009; Palomares et al. 2004). Following confirmation of overexpression of 

these proteins, purification by affinity and size exclusion chromatography would be carried out. 

Purified samples will be subjected to electron microscopy analysis and further crystallization 

trials. While successful X-ray crystallography will allow us to visualize these proteins and their 

complexes at the atomic level, large particles could also be examined by cryo-electron micros-

copy to provide a medium resolution but still useful information about the assembly of the 

complex.  
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5. Results 

 

5.1. Cloning of IFT-A complex proteins into multiBac vectors 

To establish the multigene expression system for the IFT-A complex, we took advantage of the 

established expression plasmids classified as either ‘Acceptor’ or ‘Donor’, which can be fused in 

vitro to generate multigene constructs (Fitzgerald et al. 2006) (Figure 5). A loxP sequence pre-

sent on all vectors allows in vitro fusion of one or two Donors (pUCDM and pSPL) with the Ac-

ceptor (pFL) by Cre recombinase (Figure 5). Acceptor plasmids contain standard replication ori-

gins, while Donor plasmids carry an R6Kg conditional origin, rendering their propagation de-

pendent on hosts expressing the pir gene (see Materials and Methods). Transformation of in 

vitro fusion reaction mixture of Donors and Acceptors into pir- bacterial strains would eliminate 

non-fused Donors, while the unique antibiotic-resistance markers present on the Donor (s) and 

the Acceptor together allow for selection of the desired Donor-Acceptor fusions.  

In this study, IFT-A complex proteins were divided into two groups of constructs during cloning, 

due to the large gene sizes. The first group contains T. brucei IFT43, IFT121, IFT122, IFT140. One 

Donor (pUCDM) carries T. brucei IFT43 and T. brucei IFT121, and the other Doner (pSPL) carries 

T. brucei IFT122. They were fused with the Acceptor pFL carrying IFT140 using in vitro recombi-

nation reaction by the Cre recombinase (Figure 5a). The second group contains T. brucei IFT43, 

IFT139, IFT144, IFT140. Donor pUCDM carrying T. brucei IFT43 and IFT139 and Doner pSPL car-

rying T. brucei IFT144 were fused with Acceptor pFL carrying IFT140 using in vitro recombina-

tion (Figure 5b).  

Donor-Acceptor fusions enter the MultiBac genome by Tn7 transposition in DH10Multi-Bac cells 

(Berger et al. 2004). Successful Multibac bacmids are ready to transfect insect cells to generate 

bacoluvirus for protein expression.  
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Figure 5 In vitro recombination of Acceptors and Donors carrying target genes. The Acceptor plasmid pFL and two 

Donor plasmids pUCDM and pSPL are fused to an Acceptor-Donor-Donor triple fusion plasmid by a single Cre-loxP 

reaction. Recombinant genes encode for (a) T. brucei IFT43, IFT121, IFT122 and IFT140, (b) T. brucei IFT43, IFT139, 

IFT144 and IFT140. Antibiotic markers (colored boxes), expression cassettes (open arrows), loxP (red and grey 

circles) and Tn7 transposition sequences (blue triangles). Acceptor-Donor fusions access the Multi-Bac plasmid 

through Tn7 transposition. 

 

5.2. IFT-A complex proteins were expressed in insect cell system 

Baculovirus were generated by transfecting the Sf9 or High-Five insect cells with multibac 

bacmids. Overexpression of heterologous proteins using the third generation of viruses (V3) 

was analyzed. Each IFT-A complex component has a C-terminal 6×His tag, which allowed us to 

use anti-His Western Blot to analyze the expression of the IFT-A proteins. Western Blot results 

revealed that IFT43, IFT121, IFT122 and IFT140 were successfully expressed in both Sf9 and 

High-Five cells transfected with virus A; so did for IFT43, IFT139, IFT144 and IFT140 in the Sf9 
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and High-Five cells transfected with virus B. The expression levels of two viruses were compa-

rable to each other.  

 

Figure 6 Expression of IFT-A compelx proteins in the baculovirus/insect cell system. Multigene constructs shown in 

Figure 5 were assembled in the MultiBac plasmid and overexpressed proteins were analyzed by anti-His Western 

blot. Each IFT-A protein contains a 6×His tag at its C-terminus. IFT-A proteins (red asterisks) and a degradation 

band (blue asterisks) were identified in cells by western blot with a mouse anti-His antibody and a secondary goat 

antibody coupled to alkaline phosphatase for identification of target proteins using color development. 

 

Most of the protein bands were visualized on the Western blot except that TbIFT121 and 

IFT122 bands were too close to each other on the 12% SDS-PAGE to be distinguished apart. A 

degradation band with a smaller molecular weight than IFT43 was also constantly detected on 

the Western blot, which we suspect to be a N-terminal degraded product of either IFT43 or 

IFT140 (Figure 6, blue asterisks). To assess whether the expression level of the IFT-A proteins 

are sufficient for protein production for further structural studies, I carried out Ni-NTA purifica-

tion tests. The results suggested that the soluble proteins had very low abundance and multiple 

degradation bands appeared, indicating that some IFT-A proteins are not stable under current 

purification condition. Taken together, I have established the multiBac expression system for 

the T. brucei IFT-A complex, however, the expression needs to be further optimized so as to 



 17 

increase the expression yield, and different purification buffers/strategies need to be tested to 

maintain the stability of the proteins. 
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6. Discussion 

 

Using the multiBac expression system, I have established the protocol for co-expressing the 

800-kDa IFT-A complex consisting of 6 protein components. Considering the large protein size, 

the complex was divided into two subgroups for expression, and expressed proteins in both 

groups have been identified with anti-His Western blots. This result should be further con-

firmed by Mass Spectrometry, especially for TbIFT121 and IFT122.  

The expression system that we used especially favors the expression of eukaryotic protein 

complex by taking advantage of insect cell culture, which provides necessary post-translational 

modifications to target proteins that might stabilize and/or solubilize the proteins. However, 

the expression level appears not high enough to proceed with further structural studies. In the 

future, expression should be further optimized to identify conditions for a higher yield. To mon-

itor the expression level and to optimize the best harvesting time point, a donor carrying eYFP 

(enhanced yellow florescence protein) could be inserted into the bacmid via Cre-loxP recombi-

nation before the Tn7 transpostion takes place (Fitzgerald et al. 2007). By evaluating the flo-

rescent level of eYFP, the expression level of the IFT-A complex could be analyzed to decide 

when expression reaches the peak point and insect cells should be harvested. DH10EMBacY can 

be used for this purpose, which has YFP gene on the bacmid backbone already (described on 

Dr. Berger lab homepage 

http://www.embl.fr/multibac/multiexpression_technologies/multibac/MultiBac_manual.pdf). 

To constitute the IFT-A complex in vivo, the proteins could be expressed via co-transfecting in-

sect cells using the two viruses carrying the two subgroups of IFT-A components. This would 

ensure all interactions among different components to occur in vivo. For purification, the pro-

tein complex can be isolated first via Ni-NTA, which is followed by size exclusion chromatog-

raphy to remove extra copies of certain components to obtain only the complex assembled in 

the correct stoichiometry. The complex should be further confirmed by mass spectroscopy 

and/or Western blot. Crystallization trials could be applied to the purified IFT-A complex to ob-

tain high-resolution structural information.  

In case that the whole complex could not be crystallized, the smaller IFT-A core complex in-

stead should be tried for structural and/or biochemical studies. It has been reported that the 

http://www.embl.fr/multibac/multiexpression_technologies/multibac/MultiBac_manual.pdf
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IFT-A core (IFT122, IFT144 and IFT140) could be obtained using high-salt stripping (Behal et al. 

2012; Taschner et al. 2012). Compared with the IFT-A complex, the IFT-A core is much smaller 

in size, around 470 kDa, with the assumption that all subunits are single copies. Therefore, it 

might be easier to handle during purification and structural studies.  

Similarly, the IFT-B complex and its core could also be expressed using this approach. Successful 

purification of both IFT-A and IFT-B complexes would offer an opportunity for combinatorial 

analyses of interactions between the two protein complexes, which still remain mysterious at 

present. Furthermore, future characterization of the interactions between IFT complexes and 

their accessory proteins, such as chaperones, specific kinases and phosphatases, would open 

another door for biochemical studies of ciliogenesis 
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7. Methods and materials 

 

7.1. Constructs used for insect cell expression 

The multigene baculoviral constructs which were designed for this study are listed in Table 1. 

C-terminal tag Protein  Type vector 

6×His tag TbIFT43+IFT121 Full length, wild type pUCDM 

6×His tag TbIFT43+IFT139 Full length, wild type pUCDM 

6×His tag TbIFT122 Full length, wild type pSPL 

6×His tag TbIFT144 Full length, wild type pSPL 

6×His tag TbIFT140 Full length, wild type pFL 

Table 1 All multigene baculoviral constructs used in this study 

 

7.2. Generation of multigene expression cassettes 

All IFT-A component constructs described in this study were expressed using the multiBac ex-

pression system (Fitzgerald et al. 2006). The acceptor plasmid pFL is a derivative of pFBDM 

(Berger et al. 2004) with an additional loxP sequence. pFL contains a high copy number ColE1 

replicon and an ampicillin (Ap)-resistance marker. The donor plasmids are pUCDM (Berger et al. 

2004) and pSPL. pUCDM and pSPL are identical except that the resistance markers are chlo-

ramphenicol and spectinomycin, respectively. All vectors contain two expression cassettes and 

a multiplication module that allows for adding additional cassettes. All vector sequences and 

further details about expression cassettes, recombination elements, and restriction maps can 

be found on the website of Dr. Berger lab homepage 

(http://www.embl.fr/multibac/multiexpression_technologies/multibac/index.html). Insert PCR 

amplifications were carried out with Phusion high-fidelity DNA polymerase (Finzymes).  To cre-

ate multigene expression cassettes, two in vitro Cre-loxP reactions were carried out. Donor 

plasmids pUCDM and pSPL were fused via loxP with the acceptor plasmid pFL by in vitro Cre-

fusion reaction, which was carried out as recommended by the manufacturer (NEB). The first 

reaction generated the fused plasmid combining pUCDM containing TbIFT43 and TbIFT121, 

pSPL containing TbIFT122 and pFL containing TbIFT140. The second reaction generated the 

fused plasmid combining pUCDM containing TbIFT43 and TbIFT139, pSPL containing TbIFT144 

and pFL containing TbIFT140. 5 microliters of the Cre recombination reaction were used to 

http://www.embl.fr/multibac/multiexpression_technologies/multibac/index.html
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transform competent Top10 E.coli cells and selection for growth was carried out by plating the 

transformed cells on LB agar plates containing Chloramphenicol, Spectinomycin and Ampicillin 

resistance markers. The plasmid DNA amplified from single colonies was verified by restriction 

digestion and further by DNA sequencing.  

 

7.3. Generation of recombinant bacmids carrying the genes of interest 

Multibac bacmids were generated by chemical transformation of the acceptor-donor fused 

plasmids into the DH10Bac E. coli strain. Transformed cells were incubated in a shaker incuba-

tor for at least 8 hours at 37°C to allow transposition of the donor-acceptor fusion expression 

construct into the lacZ gene of the bacmid. Afterwards, cells were plated onto a LB-Agar plate 

containing kanamycin (50 μg/ml), gentamycin (10 μg/ml), tetracycline (10 μg/ml), X-gal (500 

μg/ml) and IPTG (0.5 mM) to enable blue-white selection of the clones containing the genes of 

interest (white colonies). White colonies were re-streaked and re-evaluated to confirm the re-

sult. Positive clones were amplified in an over-night cultures containing 50 μg/ml kanamycin, 10 

μg/ml gentamycin and 10 μg/ml tetracycline in 5 ml LB-medium using a shaker incubator (200 

rpm) at 37°C.  

The recombinant bacmid DNA was purified with a modified version of the Qiagen Miniprep pro-

tocol. Cells were resuspended in 250 μl of Qiagen buffer P1, mixed with 250 μl of Qiagen buffer 

P2 and inverted the tubes 10-15 times to lyse the cells. 420 μl of Qiagen buffer P3 was added to 

precipitates cell debris. Lysate was cleared by centrifugation at 13,000×rpm for 20 minutes at 

room temperature. The supernatant was transferred into a clean tube, supplemented with 800 

μl of ice cold isopropanol and thoroughly mixed. Precipitated bacmid DNA was pelleted by cen-

trifugation at 13,000×rpm for 40 minutes at 4°C. The supernatant was decanted carefully. The 

bacmid DNA pellet was washed with 1 ml of 70% (v/v) ethanol. Ethanol in the supernatant was 

discarded after centrifugation at 13,000×rpm for 5 minutes at 4°C. The DNA pellets were resus-

pended in 50 μl of steril ddH2O.  

 

7.4. Generation of recombinant baculoviruses and protein expression in insect cells 

To transfect insect cells, approximately 1.0×106 adherently grown S.frugiperda (Sf9) cells or 

High-Five cells (Invitrogen) per well grown in a 6-well plate (Nunc) were washed with 2 ml of Sf-

900 II serum-free medium. To generate recombinant baculovirus, the transfection mix contain-
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ing 6 μl of resuspended bacmid DNA and 6 μl of Cellfectin II Reagent (Invitrogen) in 200 μl of Sf-

900 II serum-free medium (Gibco) was incubated for 30 minutes in a laminar flow cabinet. 

About 200 μl of transfection mix and 800 μl of Sf-900 II serum-free medium were added to one 

well and incubated for 4 hours at 27°C. After transfection, insect cells were washed once with 2 

ml of Sf-900 II serum-free medium and then incubated in 3 ml of Sf-900 II serum-free medium 

for 72 hours. Baculoviruses start to be released into the medium 3 days post transfection and 

transfected cells appear larger in size and tend to detach.  

To generate the 1st virus amplification (V1), 1 ml of baculovirus containing supernatant derived 

from bacmid transfection (V0) was added to semi-confluent Sf9 cells (~2X106 cells/ml) in a T-80 

flask containing 25 ml of Grace’s insect medium supplemented with 9% L-glutamine (Sigma-

Aldrich), 100 U/ml penicillin-streptomycin solution (Sigma-Aldrich) and 5% heat inactivated fe-

tal bovine serum (Gibco). After 5-6 days of incubation at 27°C, baculoviruses containing super-

natant were filtered using 0.22 μm Steriflips (Millipore) and were stored at 4°C to protect it 

from light. To generate the 2nd virus amplification (V2), 5 ml of V1 was added to semi-confluent 

Sf9 cells (~2X106 cells/ml) or HF cells in a T-175 flask containing 50 ml of Grace’s insect medium 

supplemented with 9% L-glutamine (Sigma-Aldrich), 100 U/ml penicillin-streptomycin solution 

(Sigma-Aldrich) and 1% heat inactivated fetal bovine serum (Gibco). Usually, the 3rd virus ampli-

fication (V3) was used for protein expression. For large-scale protein production, 600-800 ml of 

0.8-1.0x106 Sf9 suspension cells or High-Five cells grown in Grace’s insect medium supplement-

ed with 9% L-glutamine (Sigma-Aldrich), 100 U/ml penicillin-streptomycin solution (Sigma-

Aldrich) and 5% heat inactivated fetal bovine serum (Gibco) were inoculated with 15-20 ml of 

V3 viruses and incubated in a shaker incubator (100×rpm) at 27°C for 60-72 hours. After protein 

expression, insect cells were spun down at 1,500×rpm for 30 minutes at 4°C. Cell pellets were 

resuspended in lysis buffer containing 20 mM Tris-HCl (pH8), 300 mM NaCl, 0.5% Tween 20, 

10% glycerol, 20 mM Imidazole pH 8, supplemented with 1 mM phenylmethanesulfonylfluoride 

(PMSF). The cells were broken using emulsiflex-C3 homogenizer (Avestin). The centrifugation at 

13,000×rpm for 40 minutes at 4°C was carried out to obtain the supernatant containing soluble 

proteins.  
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7.5. Anti-His Western blot to detect expressed IFT-A complex proteins  

IFT-A complex proteins were identified in cell lysates by western blot using a mouse antibody 

against 6×His tag (Calbiochem) and a secondary anti-Mouse IgG (H+L) antibody conjugated with 

alkaline phosphatase. The proteins were visualized by adding the Sigma FAST BCIP/NBT Tablet 

(Sigma-Aldrich). 
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PART 2: THE SAS-6 COILED COIL STRUCTURE AND ITS SPECIF-

IC INTERACTION WITH SAS-5 SUGGEST A REGULATORY 

MECHANISM IN CENTRIOLE ASSEMBLY 
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1. Abstract 

 

The centriole is a conserved microtubule-based organelle essential for both centrosome for-

mation and cilium biogenesis. Five centriolar proteins have been identified in Caenorhabditis 

elegans and their homologues in other species have also been reported. Two of them, SAS-5 

and SAS-6, physically interact with each other and are codependent for their targeting to 

procentrioles. However, it remains unclear how these two proteins interact at the molecular 

level and why the C. elegans centriole has a unique central tube that is absent in non-nematode 

centrioles. Here, I demonstrate that the SAS-5 C-terminal domain (CTD, residues 390-404) spe-

cifically binds to the central region (residues 275-289) of the SAS-6 coiled coil. To further inves-

tigate their interaction, I have solved the crystal structure of the SAS-6 coiled coil domain (CCD, 

residues 248-410) and established that the association of the SAS-6 CCD and the SAS-5 CTD is 

mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also 

shows a periodic charge pattern along the SAS-6 CCD which, in the absence of SAS-5, gives rise 

to an anti-parallel tetramer of its CCD. Electron microscopy studies of the SAS-5/SAS-6 complex 

suggest that the central tube of C. elegans centrioles is formed by SAS-5 circularly arranged on 

SAS-6; SAS-5 alone forms aggregates. We further show that mutations of key residues within 

the CCD disrupt SAS-6 recruitment and function in centriole assembly in vivo. Overall our find-

ings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and sug-

gest that both proteins individually adopt a self-associated conformation that is disrupted upon 

the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmet-

ric centriole.  
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2. Zusammenfassung 

 

Das Zentriol ist ein konserviertes, mikrotubuläres Organell, welches für die Bildung von 

Zentrosomen und die Biogenese von Zilien verantwortlich ist. Fünf verschiedene Proteine, die 

für die Duplikation von Zentrosomen notwendig sind, wurden zuerst in Caenorhabditis elegans 

identifiziert, und ihre Homologe konnten später auch in anderen Spezies nachgewiesen 

werden. 

Zwei dieser Proteine, SAS-5 und SAS-6, interagieren direkt miteinander und sind voneinander 

abhängig um zu den Prozentriolen lokalisieren zu können. Wie diese beiden Proteine 

miteinander interagieren und warum das Zentriol in C. elegans eine einzigartige tubuläre 

Zentralstruktur besitzt, welche nur in Nematoden zu finden ist, konnte bisher noch nicht geklärt 

werden.  

In folgender Studie zeige ich, dass die C-terminale Domäne von SAS-5 (CTD, Aminosäuren 390-

404) spezifisch in der zentralen Region der SAS-6 Coiled-coil Domäne (Aminosäuren 275-289) 

bindet. Um ihre Interaktion genauer zu untersuchen habe ich die Kristallstruktur der Coiled-coil 

Domäne von SAS-6 (CCD, Aminosäuren 248-410) gelöst und gezeigt, dass die Bindung von SAS-6 

CCD und SAS-5 CTD auf hydrophoben und elektrostatischen Wechselwirkungen basiert. Weiters 

besitzt die Kristallstruktur von SAS-6 CCD eine periodische Ladungsverteilung entlang des 

Coiled-coils,  wodurch das Protein in der Abwesenheit von SAS-5, ein antiparalleles Tetramer 

bildet. Elektonenmikroskopische Studien des SAS-5/SAS-6 Komplexes implizieren, dass SAS-5 

zirkulär an SAS-6 bindet und so die zentrale Röhrenstruktur der C.elegans Zentriolen bildet. 

Interessanterweise formt  SAS-5, dass ohne SAS-6 aufgereinigt wird, Aggregate.  

Zusammengenommen zeigen die vorliegenden Ergebnisse die molekulare Grundlage der 

spezifischen SAS-5/SAS-6 Interaktion, und legen nahe, dass beide Proteine in der Abwesenheit 

des jeweils anderen selbst-assoziierte Konformationen einnehmen. Diese werden erst durch die 

Bildung des Heterokomplexes SAS-5/SAS-6 aufgelöst, so dass ein korrekter Aufbau des Zentriols 

ermöglicht wird. 
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3. Introduction 

 

Centrioles are microtubule based, cylindrical shaped organelles that exist in most animal 

eukrayotic cells, although they were lost in yeast and vascular plants (Carvalho-Santos et al. 

2011) (Figure 1). The centriole is usually a cylinder-like structure composed of nine microtubule 

triplets. It is ~0.5 μm long and ~0.2 μm wide and has appendages at the distal end upon matu-

ration. There are variations of this structure, in which triplets are substituted by singlet or dou-

blets or there are no appendages. Centrioles have two distinct functions that involve the bio-

genesis of two different organelles – centrosomes and cilia (Marshall 2007). The centrosome is 

the microtubule-organizing center of animal cells. It regulates cell motility, polarity and adhe-

sion, and facilitates the organization of spindle poles during mitosis (Bettencourt-Dias and 

Glover 2007). Abnormalities of centrosomes have been firmly linked to a variety of cancers, 

mainly due to genomic instability caused by irregular cell division. In addition, during 

ciliogenesis the mother centriole anchors on the plasma membrane to become the ‘basal body’, 

which serves as a template to nucleate cilia or flagella. Cilia and flagella in turn play an im-

portant role in physiology, cell development and diseases.  

 

3.1. Centriole structure  

The centrosome, which is comprised of two centrioles and the surrounding pericentriolar mate-

rial (PCM), is the major microtubule-organizing center (MTOC) in animal cells and regulates the 

nucleation and spatial organization of microtubules (MT). The two orthogonally arranged cen-

trioles are surrounded by the PCM to form the centrosome. They are linked together by the 

interconnecting fiber until disengagement at the exit from mitosis. The centriole pair displays 

structural and functional asymmetry due to the generational difference between each member 

of the pair: the old fully mature mother centriole is distinguished by two sets of nine append-

ages at its distal end while the young immature daughter centriole, assembled during the pre-

vious cell cycle, is about 80% the length of the mother centriole (Figure 2) (Bornens 2012). In 

most ciliated cells, centrioles are composed of a cartwheel structure and nine triplets of MTs 

(Marshall 2001; Preble et al. 2000). In each triplet, the internal tubule is termed the A-tubule, 

followed by the B-tubule and C-tubule. The C-tubule does not extend to the distal end of the 

centriole. 
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Figure 1 Conservation of the centriole/basal body structure throughout the organisms. The feathered microtubule 

core structure of cilia and flagella are present in most of eukaryotes. Centrioles and axonemes were lost in some 

species, such as angiosperms and higher fungi, which are marked by a red cross. Adapted from (Azimzadeh and 

Marshall 2010). 

 

However, there are variations on centriole structure. For instance, centrioles may have 9 MT 

triplets, doublets or singlets, depending on species. It is 200-500 nm in length and 100-200 nm 

in diameter (Figure 3). Examples are the nine doublet MTs in cenrtrioles of Drosophila melano-

gaster embryos and the nine singlets in centrioles of C. elegans sperm cells and early embryos 

(Delattre and Gonczy 2004). Additionally, nematode centrioles presents a double-layered cen-

tral tube, which is in contrast to the cartwheel structure seen in non-nematode species 

(Pelletier et al. 2006). 

http://en.wikipedia.org/wiki/Drosophila_melanogaster
http://en.wikipedia.org/wiki/Drosophila_melanogaster
http://en.wikipedia.org/wiki/Caenorhabditis_elegans
http://en.wikipedia.org/wiki/Sperm
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Figure 2 Schematic view of a centrosome containing mother and daughter centrioles. Adapted from (Bettencourt-

Dias and Glover 2007).  

  

Despite the morphological differences, centrioles from different species share common origins. 

During the last decade, a number of conserved centriolar proteins have been identified 

(Azimzadeh and Marshall 2010; Carvalho-Santos et al. 2011). Functional genomics in nema-

todes and flies has identified a small set of conserved proteins required for the initiation of cen-

triole/basal body assembly and for centrosome reproduction (Bornens 2012). The biochemical 

composition of the centrosome explains its structural complexity: more than 100 proteins are 

localized either in the centrioles or in the centrosomal matrix (Kobayashi and Dynlacht 2011; 

Nigg and Raff 2009), among which several are disease gene products. For example, all genes 

involved in microcephaly syndromes, which have been identified so far, encode centrosomal 

proteins (Megraw et al. 2011). 
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Figure 3 Different centriole structures of different species. The canonical centriole has 9 MT triplets and is 450 nm 

in length and 200 nm in diameter; for Drosophila melanogaster embryos, the centriole has nine doublet MTs and is 

200 nm long and 120 nm wide; for Caenorhabditis elegans embryos, the centriole has singlet MTs and is 150 nm in 

length and 100 nm in diameter.  

 

3.2. Centrioles functions 

 

3.2.1. Centrosome as the microtubule-organizing center 

As mentioned before, the centrosome acts as the main microtubule-nucleating organelle in 

animal cells and plays a critical role in mitotic spindle orientation and in genome stability 

(Bornens 2012). The most evident function is that the centrosome serves as the MTOC. During 

cell division, the centrosome shapes the bipolar mitotic spindle to ensure faithful chromosome 

segregation (Marshall 2009). At the prophase stage, centrosomes are associated with the nu-

clear membrane. Then the nuclear membrane breaks down so that centrosomes nucleat-

ed MTs can interact with the chromosomes to build up the mitotic spindle. Interestingly, how-

ever, centrioles are not required for the progression of mitosis. When the centrioles are irradi-

ated by a laser, mitosis proceeds normally with a morphologically normal spindle. Moreover, 

development of the fruit fly Drosophila is largely normal when centrioles are absent due to a 

mutation in a gene required for their duplication (Basto et al. 2006). In the absence of the cen-

trioles the MTs of the spindle are focused by motors, allowing the formation of a bipolar spin-

dle. Many cells can completely undergo interphase without centrioles (Rieder et al. 

2001). Unlike centrioles, centrosomes are required for survival of the organism. Acentrosomal 

http://en.wikipedia.org/wiki/Drosophila
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cells lack radial arrays of astral MTs. They are also defective in spindle positioning and inability 

to establish a central localization site in cytokinesis. The function of centrosomes in this context 

is hypothesized to ensure the fidelity of cell division because it greatly increases the efficacy.  

 

3.2.2. Centriole as a template for cilia and flagella 

Another distinct function of centrioles is to ‘seed’ cilia and flagella. Cilia and flagella are projec-

tions from the cell surface, which either enable movement of the cell itself or facilitate the 

movement or sensing of substances around cells. The cilium is composed of a MT-based core 

structure called the axoneme, which is surrounded by the ciliary membrane that is continuous 

with the plasma membrane. The axoneme is constructed from nine parallel doublet MTs known 

as outer doublets, which elongate from the basal body (Ishikawa and Marshall 2011). The 

axoneme of primary cilia typically has a ring of nine outer MT doublets (called a 9+0 axoneme), 

and the axoneme of a motile cilium has two central MT singlets in addition to the nine outer 

doublets (called a 9+2 axoneme) (Figure 4). In vertebrate cells, only the mature mother centri-

ole can nucleate primary cilia. The appendages that are only present on mother centriole seem 

important. In mouse cells, knockout ODF2 (an appendage marker) leads to the mother centriole 

missing appendages and thus no cilia are formed (Ishikawa et al. 2005).  

The majority of eukaryotic cells form cilia at certain point during their life cycle. Ciliogenesis 

begins when cells exit the cell cycle and enters a quiescent (G0 phase) and/or differentiated 

state, with the centrosome being translocated from the periphery of the nucleus to the plasma 

membrane. There, the cilium emanates from the basal body, which is converted from the 

mother centriole. The mature basal body is anchored to the plasma membrane and serves as 

the template for the outgrowth of the ciliary axoneme. For cells to exit G0 to re-enter the cell 

cycle, cilia have to be resorbed to convert the basal bodies back to centrioles to re-form centro-

somes. Importantly, while centrioles are not strictly required for mitosis, they are indispensable 

for ciliogenesis (Pedersen and Rosenbaum 2008).  

Abnormalities of cilia or flagella have now been firmly linked to a variety of human diseases, 

which are collectively called ciliopathies, including McKusick-Kaufmann syndrome, Joubert syn-

drome, Meckel-Gruber syndrome, Bardet-Biedl syndrome, Nephronophthisis, and Leber con-

genital amaurosis (Rachel et al. 2012).  

http://en.wikipedia.org/wiki/Astral_microtubules
http://en.wikipedia.org/wiki/Cell_division
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Figure 4 Schematic of the cilium structure. Primary cilia are non-motile, as their axonemal microtubules have only 

9 microtubule pairs (9 + 0), while motile cilia have an additional pair of central microtubules (9 + 2) (Saudou 2012). 

 

3.3. Centrosome cycle 

There are four consecutive steps characterized for centrosome cycles: centriole disengagement, 

nucleation of the daughter centrioles, elongation of the procentrioles, and separation of the 

centrosomes (Kuriyama and Borisy 1981) (Figure 5). To maintain the constant centriole num-

bers in proliferation cells, it requires two types of controls. The first one is cell-cycle control. 

Every centriole must duplicate once and only once in every cell cycle. And the second is to en-

sure that only one new centriole is formed during centriole duplication. As summarized in Fig-

ure 5, centriole duplication begins at the G1 to S transition of the cell cycle with the formation 

of one procentriole adjacent to each pre-existing parental centriole.  
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Figure 5 The centriole duplication cycle in C. elegans is coupled with the chromosome replication and segregation 

cycle. In C. elegans, SPD-2 and ZYG-1 recruitment initializes the procentriole formation in S phase, which is fol-

lowed with the recruitment of SAS-6 and SAS-5. In G2, ZYG-1 diminishes and SAS-6 and SAS-5 form an elongate the 

central tube. SAS-4 incorporates into the newly forming procentriole to recruits MTs to complete centriole assem-

bly. The daughter centriole reaches full elongation and maturation. When a cell exits mitosis, sister chromatid 

separation and centriole disengagement are triggered by the separase. Figures are redrawn based on (Debec et al. 

2010). 

 

The Polo-like kinase 4 (PLK4) initiates this event by phosphorylation its substrates, hence trig-

gers the centriole duplication. In C. elegans, SAS-6 has been identified as a substrate of ZYG-1 

(zygotic defective: emryotic lethal 1), which is a functional homolog of PLK4 (Kitagawa et al. 

2009). However, it is not clear yet whether SAS-6 is also phosphorylated by PLK4 in other spe-

cies. The importance of PLK4 during the centriole duplication has been underlined by the ob-

servation that overexperssion of PLK4 induces multiple newly formed centrioles adjacent to the 

mother centriole; conversely, deletion of PLK4 causes the reduction of centriole numbers 

(Habedanck et al. 2005).  

The initiation of procentrioles is morphologically different in C. elegans compared with other 

species, which is a tubular structure rather than a cartwheel. But the proteins involved in 

procentriole initiation are conserved and limited in numbers. SAS-6 protein has been identified 

recently to be critical for the emergence of procentrioles (Kitagawa et al. 2011b; van Breugel et 

al. 2011). In Chalamydomonas, SAS-6 protein is localized at the cartwheel structure of centriole; 

when SAS-6 is null (bld12), the centriole lacks the central hub of the cartwheel structure 

(Nakazawa et al. 2007). Likewise, in Drosophila, SAS-6 is important for centriole assembly but 

itself cannot form the 9-fold symmetry. It is a tetramer by itself, but it can form the tubules 
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highly reminiscent of the cartwheel hub by co-experssion with its binding partner ANA2 

(Gopalakrishnan et al. 2010; Rodrigues-Martins et al. 2007; Stevens et al. 2010b). Functional 

homologs of ANA2 are STIL in humans and zebrafish and SAS-5 in C. elegans, but they are struc-

turally distinct based on bioinformatic analysis. Recent studies suggest that there are other pro-

teins besides SAS-6 being crucial for centriole assembly initiation, one of which is strongly sug-

gested to be SAS-5 (Delattre et al. 2004). Therefore, it would be very important to investigate 

the interaction between SAS-6 and SAS-5 so as to understand the mechanism of the initiation of 

the centriole assembly.  

When centriole formation is initiated, the procentriole starts to elongate throughout S and G2 

phase. Several proteins are required during procentriole elongation, which include SAS-4 (CPAP 

or CENPJ in humans) (Dammermann et al. 2008; Tang et al. 2009), POC5 (Azimzadeh et al. 

2009), OFD1 (Singla et al. 2010), and CP110 (Schmidt et al. 2009). Disengagement of the centri-

ole pair requires PLK1 function, a mitotic kinase (Tsou et al. 2009), as well as separase, the pro-

tease responsible for sister chromatid separation during metaphase-to-anaphase transition 

(Uhlmann et al. 2000). Available evidence suggests that PLK1 and separase are only active dur-

ing mitosis. This fact favors the explanation for the coupling of centriole duplication to traverse 

of the cell cycle. It also ensures that the disengagement of the centriole pair is coordinated with 

chromatid separation and in the meantime prevents the formation of multiple centrosomes.  

 

3.4. Centriole biogenesis and regulation in C. elegans 

In metazoans, there is a dual parental contribution to forming the centrosome in the wild-type 

one-cell-stage C. elegans embryo. The sperm provides a pair of centrioles stripped of PCM 

components, whereas the oocyte is devoid of centrioles but provides an abundant source of 

PCM proteins. After fertilization, the parentally contributed centrioles recruit PCM components 

to form the centrosome in the zygote. This single centrosome undergoes duplication during S 

phase, yielding two centrosomes, each containing one mother and one daughter centriole, 

which assemble a bipolar spindle during mitosis (Leidel and Gonczy 2005). 
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Figure 6 Structural schematic representation of proteins required for daughter centriole formation in C. elegans 

embryos. Predicted domains and motifs are represented by colored boxes. Adapted from (Leidel and Gonczy 

2005). 

 

Studies in a number of research groups have uncovered five C. elegans centriolar proteins, 

namely the kinase ZYG-1 (O'Connell et al. 2001), and the four coiled coil-containing proteins, 

SPD-2 (Kemp et al. 2004; Pelletier et al. 2004), SAS-4 (Kirkham et al. 2003; Leidel and Gonczy 

2003), SAS-5 (Delattre et al. 2004), and SAS-6 (Dammermann et al. 2004; Leidel et al. 2005) 

(Figure 6). Homologues of these proteins have been identified in flies and humans (Andersen et 

al. 2003; Basto et al. 2006; Bettencourt-Dias et al. 2005; Habedanck et al. 2005; Hung et al. 

2000; Leidel et al. 2005; Stevens et al. 2010a; Tang et al. 2011) (Table 1) . 

 

 

 

 

 

 



 37 

Centrosomal proteins and their localization and interaction partners 

Centrosomal  Homologs Interaction partners  
Centrosomal localization 

proteins 

  

   

PCM, 

mother,  

daughter  

procentriole 

Proximal  Region 

   

distal 

along 

 

     PLK4/Sak Plk4 (Dm), Zyg1 (Ce) Cep152, CPAP, Sas6,   M, D, Pr P, A Outer walls, lumen 

  

FBXW5, β-TrCP/Slimb 

   Cep152 Asl (Dm), Cep 152 (Dr) CPAP, Plk4 M, D, PCM P Outer walls 

Cep192 Spd2 (Ce, Dm) 

 

M, D, PCM A Outer walls 

hSas6 Sas6 (Ce, Dm, Dr, Tt, Pm), 

CrSas6/Bld12p (Cr) 

Sas5, Ana2, Zyg1 Pr P Cartwheel (spokes, 

hub) 

Cep135 Bld10 (Dm, Pm), Bld10p (Cr) C-Nap1 M, D, Pr P Cartwheel, lumen, 

outer walls 

Centrin Cdc31, (Sc, Cp), CEN2/3 (Pt),  

CEN1 (Tt), VFL2 (Cr) 

hPoc5, CP110 M, D, Pr Di Lumen 

Cep120 Cep120(Mm), Uni2 (Cr) 

Ninein, Cep164, 

Cep290 M, D, Pr A Outwalls 

CPAP Sas4 (Ce, Dm) γ-tubulin, αβ-tubulin, 

Cep152, Plk2, Plk4 

M, D, Pr P, A, Di Cartwheel, lumen, 

walls 

γ-tubulin γ-tubulin (Dm, Pt), Gtu1 (Tt),  

Tbg1 (Ce), Tubg (Mm), Tug 

(Cr) 

CDK5RAP2 

CPAP, Cep170 

M, D, Pr, 

PCM 

P Lumen 

Centrobin CG5690 (Dm), Cntrob (Mm),  

Nud1p (Sc), Cdc11p (Sp) 

αβ-tubulin, Plk1, 

NEK2 

D, Pr P Lumen, outer walls 

CP110 CP110 (Dm) Centrin, Cep97, 

Kif24, 

Cep76, Cep290 

M, D, Pr Di Cap 

Cep97 Cep97 (Dm) CP110, Cep76, Kif24 M, D, Pr Di Cap 

Cep76 Cep97 (Xl, Dr) CP110, Cep97, Kif24 M, D, Pr Di 

 ε-tubulin Bld2 (Cr), Tube1 (Dr, Mm, Xl) EB1 M, D, Pr Di, A Subdistal appendag-

es, 

outer walls 

δ-tubulin Tubd (Dr, Mm, Xl) 

 

M, D, Pr P outer walls 

 

Uni3 (Cr), δPT1 (Pt) 

    hPoc5 Poc5 (Cr, Pm) Centrin M, D Di, A Lumen 
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hPoc1 Poc1 (Dm, Cr, Tt, Pm) αβ-tubulin M, D, Pr Di, A Lumen, walls 

Ofd1 Ofd1 (Mm), BUG11 (Cr) γ-tubulin M, D, Pr Di, A Lumen 

Ofd2 Ofd2 (Mm) Ninein, Trichoplein M Di All appendages 

Cep164 XP_929307 (Mm), 

NP_611787 

(Dm), XP_697015 (Dr) 

 M Di Distal appendages 

Ninein Nin (Dr, Mm) 

γ-tubulin, Odf2 

Trichoplein, EB1 M Di Subdistal appendages 

EB1 Mal3 (Sp), Bim1 (Sc) CDK5RAP2, FOP, 

Cep290, Cep170 

M Di Subdistal appendages 

Cep170 Cep170 (Mm) Plk1, EB1 M Di Subdistal appendages 

CAP350 Cep350 (Mm) FOP M, D A 

 FOP Fgfr1op (Mm) CAP350, EB1 M, D A Outer walls 

Kif24 Kif24 (Mm) CP110, Cep97 M Di Subdistal appendages 

CDK5RAP2 Cnn (Dm),  

CDK5RAP2 (Mm) 

Cdc20, PCNT,  

γ-tubulin, EB1 

M, PCM Di Outer walls, append-

ages 

C-Nap1 Cep250 (Mm) Cep135 M, D P Linker 

Plk1 Cdc5 (Sc), Plk1 (Dr, Mm),  

Plk1/2 (Ce), Plo1 (Sp), Polo 

(Dm) 

Cep170 PCM   

Plk2 Plk2 (Dm, Mm), Plk2b (Dr) CPAP M, D 

  β-TrCP Slimb (Dm), β-TrCP (Mm)  SKP1, Plk4 Centrosome 

  Cul1 Cul1 (Ce, Mm, Sp),  

Cul1a (Dr) 

SKP1, SKP2, PPP1CA M Di  

Stil Ana2 (Dm), Sas5 (Ce) Sas6 (Ce, Dm) M, D, BB P, Di 

  

Table 1 The homologs, interaction partners, and centriolar localization details of human centriole proteins. Abbre-

viations in ‘Centrosomal localization’ in the table: M, mother centriole; D, daughter centriole; Pr, procentriole; P, 

proximal region; Di, distal region; A, along the centriole. Abbreviations in ‘Homologs’ in the table: Ce, 

Caenorhabditis elegans; Cr, Chlamydomonas reinhardtii; Dm, Drosophila melanogaster; Dr, Danio rerio; Mm, Mus 

musculus; Pt, Paramecium tetraurelia; Sc, Schizosaccharomyces cerevisiae; Sp, Schizosaccharomyces pombe; Tt, 

Tetrahymena thermophila; Xl, Xenopus laevis. Adapted from (Brito et al. 2012) 

 

RNAi and mating-based assays in C. elegans have shown that centriole duplication is a multistep 

process, with the five centriolar proteins being recruited in a sequential manner (Delattre et al. 

2006; Pelletier et al. 2006).  Firstly, SPD-2 is brought close to the mother centriole. The kinase 

ZYG-1, which is required for the subsequent recruitment of the SAS-5/SAS-6 complex, is then 
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incorporated into the nascent daughter centriole. SAS-5 and SAS-6 together form the initial 

central tube and following their arrival ZYG-1 dissociates. Subsequently, SAS-4 is recruited to 

build an outer wall of the central tube. Finally, nine singlet MTs are assembled around the cen-

tral tube to generate a daughter centriole that is identical to the mother (Figure 7). 

 

 

 

Figure 7 Schematic representation of daughter centriole assembly during the first mitotic division in C. elegans. 

SPD-2 and ZYG-1 are recruited during meiosis, before daughter centriole assembly. SPD-2 is required to recruit 

ZYG-1 to the mother centriole. Both SPD-2 and ZYG-1 are required for the recruitment of the SAS proteins, coinci-

dent with the formation of the daughter centriole central tube. SAS-5 and SAS-6 are required for SAS-4 recruit-

ment, which in turn recruits MTs. My work has focused on the SAS-5/SAS-6 complex. 

 

3.4.1. SPD-2 

SPD-2, spindle defective protein-2, is a component of the PCM. It has been found to be the first 

loaded and required for the centriolar localization for other proteins (Kemp et al. 2004; 

Pelletier et al. 2004). Intriguingly, SPD-2 family members are only found in the genomes of 

Unikonts, a branch of the eukaryotic tree comprising the Fungi/Metazoan group as well as 

Amoebozoa, such as the model organism Dictyostelium discoideum (Pelletier et al. 2004). The 
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results of the database searches with the sequence of the C. briggase ortholog of SPD-2 identi-

fied one human and one D. melanogaster homologous protein. There are six putative CDK 

phosphorylation sites conserved in nematodes (Figure 8). Among these species, the homolo-

gous region is restricted to a 200 amino acid domain, called SPD-2 domain, which is located at 

the C-terminal part of the protein in nematodes. The similarity between C. elegans SPD-2 do-

main and its human and Drosophila orthologs are 15%/36% and 14%/34%, respectively, sug-

gesting that the function of the SPD-2 domain might be conserved. In addition, like C. elegans 

SPD-2, its orthologs also comprise a large coiled coil domain preceding the SPD-2 domain (Fig-

ure 8). 

 

 

 

Figure 8 Domain structure of C. elegans SPD-2. SPD-2 has 824 amino acids, containing a coiled coil domain (aa 

200–470, orange box) and a SPD-2 domain (aa 484–714, blue box) defined by similarity to its orthologs in other 

species. There are six conserved CDK phosphorylation sites at aa positions 143, 171, 220, 233, 259 and 545 in C. 

elegans SPD-2. The putative CDK phosphorylation sites are circled in green. Ce, C. elegans. Adapted from (Pelletier 

et al. 2004).  

 

Previous studies on SPD-2 orthologs in human and Drosophila indicate that the primary func-

tion of SPD-2 is to recruit PCM proteins. In C. elegans embryos, SPD-2 localizes to the PCM and 

the centrioles, suggesting that SPD-2 is also a centrosomal component (Pelletier et al. 2004). It 

genetically interacts with the kinase ZYG-1 (Kemp et al. 2004). The human ortholog of SPD-2, 

called Cep192, is a major regulator of PCM recruitment, centrosome maturation and centriole 

duplication (Zhu et al. 2008). Interestingly, its ortholog in Drosophila seems dispensable for cen-

triole duplication (Dix and Raff 2007). Taken together, C. elegans SPD-2 shares homology with 

human and Drosophila centrosome proteins and involves in both PCM recruitment and centri-

ole duplication. 
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3.4.2. ZYG-1 

ZYG-1 is a Ser/Thr kinase. As mentioned above, centriole assembly is regulated by the Polo-like 

kinase Plk4/SAK, and ZYG-1 in C. elegans is suggested to be the functional ortholog of PLK4 

(Giddings et al. 2010; Kitagawa et al. 2009; Leidel and Gonczy 2005). PLK4 and SAK are neces-

sary for centriole duplication in human and Drosophila cells, respectively (Bettencourt-Dias et 

al. 2005). Over-expression of PLK4/SAK4 induces formation of multiple new centrioles in these 

cells (Kleylein-Sohn et al. 2007; Basto et al. 2008; Peel et al. 2007). In C. elegans, ZYG-1 transi-

ently localizes to centrosomes. The two parental ZYG-1 alleles play different roles. Paternal 

ZYG-1 regulates duplication and bipolar spindle assembly while maternal ZYG-1 regulates these 

processes thereafter. It has been reported that there are several temperature-sensitive muta-

tions which affect ZYG-1 regulatory function, such as oj7 and b1 (O'Connell et al. 2001). Inter-

estingly, it has been shown that truncations of ZYG-1 blocked centrosome duplication in mitotic 

cycle but leaded to centrosome amplification in the meiotic cycle. The mechanism of ZYG-1 

regulation in centriole assembly still remains elusive. Nevertheless, the phosphorylation of cen-

triole conserved protein SAS-6 at serine 123 in vitro has been demonstrated recently. Moreo-

ver, such a phosphorylation is shown to be required for the maintenance of SAS-6 at the newly 

formed centriole (Kitagawa et al. 2009). 

 

 

 

Figure 9 Structure Schematic representation of Polo-like kinases and their functional homologous proteins. Pre-

dicted domains and motifs are represented with colored boxes. PBD: Polo-box domain, CTD: C-terminal domain. 

 

Structurally, ZYG-1 shares certain similarity with its functional homologs (Figure 9). There are 

four types of Polo-like kinases, PLKs 1-4. All of them share a conserved N-terminal Ser/Thr pro-

tein kinase domain. PLKs 1-3 are also similar in their C-terminal part by the presence of two 

highly conserved polo-box domains (PBDs). However, PLK4 differs from PLKs 1-3 significantly in 
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its C-terminal region. Instead of two PBDs, PLK4 has a central cryptic polo-box (CPB) domain 

and a C-terminal PBD. It has been shown that both the CPB and the PBD in PLK4 form a dimer 

(Leung et al. 2002). ZYG-1 is the putative homolog of mammalian PLK4 in C. elegans. 

Bioinformatical analysis indicates that ZYG-1 has three domains: an N-terminal kinase domain, a 

central CPB, and a globular C-terminal domain (CTD) (Figure 9). The CTD of ZYG-1 is necessary 

for targeting to centrosomes and is important for differentiating mitotic and meiotic centriole 

duplication (Peters et al. 2010). 

 

3.4.3. SAS-6 and SAS-5 

Recently, crystal structures of the N-terminal head group of SAS-6 from several organisms have 

been determined, which suggested that SAS-6 could self-associate in vitro into assemblies akin 

to the central hub of the cartwheel via the head domain (Figure 10) (Kitagawa et al. 2011b; van 

Breugel et al. 2011).  

 

 

Figure 10 Crystal structure of C. elegans SAS-6 N-terminal domain dimer (PDB code: 3PYI). I154 forms a hydropho-

bic plug inserting into a hydrophobic socket formed by a second SAS-6 N-terminal domain, as shown in stick 

presentation in details (Kitagawa et al. 2011a). 
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This head domain interaction takes place mainly through a residue I154, which forms a hydro-

phobic plug that inserts into a socket located toward the end of the PISA motif of the neighbor-

ing molecule (Figure 10). Both I154 and the residues shaping the hydrophobic cavity are well 

conserved among SAS-6 orthologs, suggesting functional relevance. However, whether SAS-6 

alone could faithfully drive the formation of the strict nine-fold symmetry of centrioles or 

whether it merely has a propensity to oligomerize into circular structures but the strict nine-

fold symmetry is enforced by interactions with other factors is still a matter of some debates 

(Figure 11) (Cottee et al. 2011).  

 

Figure 11 The interactions of CrSAS-6 take place via the coiled coil interaction and N-terminal head interaction, 

which is through a hydrophobic plug. The coiled coil domain initializes the SAS-6 dimerization and the head domain 

interaction leads to SAS-6 oligomerization, forming a ring structure. Adapted from  (Cottee et al. 2011) 

 

Indeed, modelings based on the available crystal structures show the potential for SAS-6 to 

adopt variant oligomeric conformations: spirals of different orientations or a flat ring that con-

tains eight or nine dimers (Figure 12). For example, CrSAS-6 head domain crystal structure sup-

ports both a flat ring oligomer structure and a left-handed spiral, whereas the D. rerio struc-

tures can be modeled into either a right-handed spiral or an almost flat ring with approximately 

eight-fold symmetry (Figure 12). Therefore, the head domain of SAS-6 is seemingly not suffi-

cient to answer the question how the oligomer is arranged.  
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Figure 12 Possible SAS-6 oligomer models generated using different SAS-6 N-terminal head domain structures 

from Chlamydomonas and Zebra fish. Three alternative models are shown. SAS-6 N-terminal crystal structure from 

Chlmaydomonas could form either a flat ring structure (on left side) with ten dimer per circle or a left-handed 

spiral structure (in the middle) with ten dimer per helical turn. Similarly, SAS-6 N-terminal crystal structure from 

Zebra fish could generate a flat ring (on left side) with eight fold symmetry or a right-handed spiral structure with 

eight or nice dimers per helical turn (Cottee et al. 2011). 

 

Even if we assume that SAS-6 is sufficient to establish the nine-fold symmetry, the spoke dimers 

would have to associate rigidly with a precise geometry to generate a 40° angle. Can it be re-

strained by SAS-6 head domains alone? Although the binding affinity between the head groups 

of C. elegans SAS-6 is comparable to that of C. reinhardtii, H. sapiens, and D. rerio SAS-6, re-

combinant C. elegans SAS-6 alone does not form a cartwheel-like structure similar to that of 

non-nematode SAS-6 proteins (Kitagawa et al. 2011b; Pelletier et al. 2006; van Breugel et al. 

2011). Notably, the head group interaction of different SAS-6 proteins (dissociation constant, Kd 

~ 60 - 110 µM) is relatively weak and has been thought unlikely to be the driving force for form-

ing the nine-fold symmetry (Cottee et al. 2011).  
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Additionally, the oligomeric structure of recombinant D. melanogaster SAS-6 (DmSAS-6) is dif-

ferent from the in vivo structure of centrioles. It was characterized as a stable tetramer by elec-

tron microscopy (Gopalakrishnan et al. 2010). Furthermore, velocity sedimentation analyses 

indicate that the endogenous DmSAS-6 is in significantly denser fractions than recombinant 

DmSAS-6, suggesting DmSAS-6 probably needs the presence of additional factors that are re-

quired to enhance the structural assembly (Gopalakrishnan et al. 2010). Taken together, these 

data suggest that faithful duplication of the strict nine-fold symmetric centrioles likely requires 

other symmetry-ensuring factors.  

It was shown previously that, although over-expression of DmSAS-6 alone resulted in an irregu-

lar tube-like structure, co-expression of DmSAS-6 with Ana2, the putative Drosophila ortholog 

of SAS-5, generated a highly ordered tubular structure, the SAS tubule. This structure looked 

the same as the in vivo cartwheel structure, suggesting that Ana2 assists SAS-6 in Drosophila 

centriole assembly (Stevens et al. 2010b). Similarly, STIL, the vertebrate homologue of SAS-5, 

regulates centrosome integrity (Castiel et al. 2011), and depletion of either SAS-6 or STIL made 

the other protein fail to target to the procentriole, implying that SAS-6 and STIL in vertebrates 

are also mutually dependent for centriolar localization (Arquint et al. 2012; Tang et al. 2011; 

Vulprecht et al. 2012). Earlier experiments carried out in worms revealed that SAS-5 and SAS-6 

physically interact with each other for their codependent centriolar localization and that centri-

ole duplication failed in embryos with a sas-5-mutant that fails to interact with SAS-6, indicating 

that SAS-5 works synergistically with SAS-6 in C. elegans centriole assembly (Delattre et al. 

2004; Leidel et al. 2005). Altogether, these findings suggest that the SAS-5/Ana2/STIL family of 

proteins is likely the extra factor needed for SAS-6 to generate the nine-fold symmetry of cen-

trioles.  

In C. elegans, SAS-5 is a dynamic protein that shuttles between centrioles and cytoplasm 

throughout the cell cycle, whereas SAS-6 is stably located in centrioles. It has been found that 

SAS-5 centriolar localization is regulated by ZYG-1. In double allele mutants of SAS-5, the cells 

had monopolar spindle assembly and failed to divide, suggesting that SAS-5 presence is crucial 

for daughter centriole formation (Delattre et al. 2004). Bioinformatic analysis suggests that SAS-

5 consists of a coiled coil domain, and its orthologs in the related nematode species can be 

readily identified by NCBI BLAST.  
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Figure 13 Role of PP2A in the centriole assembly pathway Dephosphorylation of SAS-5 by PP2A assists its localiza-

tion to centrioles. However, a putative kinase, phosphorylating SAS-5 is still not known. It is suggested PP2A might 

also act on ZYG-1 to stabilize it. It seems that recruitment of SAS-5/SAS-6 to centrioles needs both the phosphory-

lation of SAS-6 by ZYG-1 and dephosphorylation of SAS-5 by PP2A (Megraw 2011). 

 

Recently, it has been reported that ZYG-1 and SAS-5 level is regulated by protein phosphatase 

2A (PP2A) (Figure 13). In PP2A subunit SUR-6 deleted embryos, the levels of both ZYG-1 and 

SAS-5 significantly decreased and SAS-6, the recruitment of which depends on ZYG-1 and SAS-5, 

failed to take on at the nascent centriole (Song et al. 2011). However, PP2A phosphatase does 

not antagonize ZYG-1 kinase. PP2A dephosphorylates SAS-5 while ZYG-1 phosphorylates SAS-6. 

It has been reported that ZYG-1 is required for SAS-6 maintenance rather than its recruitment, 

by serine phosphorylation at position 123 (Kitagawa et al. 2009). ZYG-1 might act on SAS-5/SAS-

6 after PP2A-SUR6, which does not localize to centrioles (Figure 13). Moreover, it has been 

shown that in PP2A-deleted embryos, SAS-5 is undetectable in centrioles, indicating that PP2A 

might dephosphorylate SAS-5 before its localizing at centrioles (Megraw 2011).  

It was previously reported that SAS-5 binds to the SAS-6 coiled coil and that SAS-6 fails to inter-

act with the sas-5 (t2079) mutant, which corresponds to a C-terminal single residue mutation of 
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SAS-5, R397C (Leidel et al. 2005). Live imaging studies of centriole duplication in C. elegans indi-

cate that the SAS-5/SAS-6-based central tube is the first observable structure in procentrioles, 

which grows wider upon the recruitment of SAS-4 (Pelletier et al. 2006). However, it remains 

elusive what the molecular mechanism of SAS-5 and SAS-6 interaction is and how the central 

tube of C. elegans centrioles is formed. 

 

3.4.4. SAS-4 

SAS-4 (spindle assembly defective 4) has been identified as a component necessary for proper 

spindle assembly in C. elegans (Leidel and Gonczy 2003; Salisbury 2003a). Its importance is un-

derlined by the fact that in sas-4 RNAi treated cytoplasm, the pair of centrioles from sperm in-

dividually get mature but fail to duplicate, which leads to the blastomeres of the two-cell em-

bryos inheriting a centrosome with only a single centriole (Figure 14a). SAS-4 is an 808-residue 

protein with a calculated molecular weight of 92 kDa. It contains two coiled coil domains, which 

are common motifs for mediating protein-protein interactions. Such a character is shared by 

the majority of centrosome related proteins (Salisbury 2003b). BLAST result of SAS-4 shows that 

it contains a short N-terminal motif that spans about 70 amino acid residues and is conserved 

among different species (Figure 14b). In C. elegans, SAS-4 localizes to the centrosome during 

the cell cycle and determines the centrosome size (Kirkham et al. 2003). CPAP, the homolog of 

SAS-4 in human, interacts with γ-tubulin complex (Tang et al. 2009) and regulates the daughter 

centriole length (Tang et al. 2009). The functional similarity of SAS-4 between species suggests 

SAS-4 is a centriole assembly organizer. 
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Figure 14 Schematic representations of SAS-4 affecting centrosome dynamics in C. elegans cell cycle and structural 

comparison with its orthologs. (a) In contrast to wide type worms (upper row), sas-4 RNAi treated worms (lower 

row) show that the sperm contributed centrioles are not able to duplicate. Although centrioles separate to form 

bipolar during the first cell division, each spindle pole only inherits one centriole, which in turn leads to the failure 

of bipolar spindle assembly in the second division cycle. (b) Structural features of C. elegans SAS-4 (808 amino 

acids) and its orthologs ORF CG10061 (891 amino acids) in Drosophila melanogaster and CPAP (1338 amino acids) 

in Homo sapiens. Predicted domains and motifs are represented with colored boxes. (Salisbury 2003a). 
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4. Aim of the study 

 

The centriole is a conserved nine fold symmetric MT-based organelle essential for both centro-

some formation and cilium biogenesis. Five centriolar proteins initially identified in C. elegans 

are essential for centriole assembly, and their related proteins serve analogous functions in 

other organisms. Among them, SAS-6 plays a crucial role of assembling the nine-fold radial 

symmetry of centriole across evolution. SAS-5 physically interacts with SAS-6 and may act as a 

symmetry-ensuring factor in centriole assembly. 

I propose to carry out structural studies and biochemical characterization on SAS-6 and SAS-5 in 

hopes of gaining insight into how SAS-6 and SAS-5 interact at the molecular level and how the 

central tube of the procentriole forms. To achieve these goals, high-resolution structure infor-

mation of SAS-6, SAS-5, and the SAS-6/SAS-5 complex needs to be obtained using X-ray crystal-

lography, which will allow us to visualize the single proteins and/or the SAS-5/SAS-6 complex 

and to understand how the complex contribute to the nine fold symmetry. In case that struc-

ture determination of the SAS-6/SAS-5 complex is unsuccessful, the complex will be examined 

using electron microscopy. Mutational analysis and biochemical and biophysical studies will as 

well be used to reveal how SAS-5 and SAS-6 interact via short motifs. The ultimate goal is to 

provide a structural insight into how SAS-6 and SAS-5 cooperate in centriole assembly and what 

their roles are in defining the nine-fold symmetry.  
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5. Results 

 

5.1. The C-terminal domain of SAS-5 is necessary and sufficient for interaction with SAS-6 

Previous studies using yeast two-hybrid assays showed that the interaction between SAS-6 and 

SAS-5 was undetectable when using SAS-5 corresponding to the sas-5(t2079) mutant allele 

(Leidel et al. 2005). Since this natural mutation (R397→C) is located close to the C-terminus of 

SAS-5 and as the last 15 residues of SAS-5 are predicted to form an alpha helix, we wondered 

whether this C-terminal helix alone is sufficient for binding SAS-6.  

 

 

 

Figure 15 The C-terminal domain of SAS-5 interacts with SAS-6. (a) Deletion constructs of SAS-5 used for in vitro 

binding assays with SAS-6. CTD, carboxy-terminal domain. Numbers indicate amino acid positions and ranges. The 

right column shows the summary of the binding results in (c). (b) Purified maltose binding protein (MBP) or soluble 

fractions of SAS-5 proteins for in vitro pull-down assays. (c) In vitro pull-down results of SAS-5 proteins using Ni-

NTA bound SAS-6 as the bait. MBP is used as a negative control for tag-dependent binding. SAS-5 proteins specifi-

cally pulled down by SAS-6 are indicated by arrow heads. Marked by asterisks are the two degradation products of 

SAS-6. The upper and lower bands are confirmed by N-terminal amino acid analyses to be sequences starting at 

residues 225 and 239, respectively.  (d) Mock experiments to check the binding of SAS-5 proteins to Ni-NTA resin 

loaded with 6×His-tagged MBP. No nonspecific interaction to the resin was detected.  
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To test this, we carried out in vitro pull-down experiments using five truncations of SAS-5 in 

addition to the full-length protein (Figure 15a). In order to increase yield and to better visualize 

the smaller fragments, we added maltose-binding protein (MBP, M.W. ~42kDa) as a fusion tag 

to the N-termini of all six constructs (Figure 15b). Our in vitro pull-down results showed that the 

SAS-5 CTD (residues 390-404) is both necessary and sufficient to bind SAS-6 (Figure 15c). In a 

control experiment, we used MBP-loaded Ni-NTA beads to pull down SAS-5, which shows no 

bound SAS-5 (Figure 15d), indicating that the determined interaction between SAS-5 and SAS-6 

is specific. Notably, during purification of SAS-6 we consistently observed two degraded frag-

ments on SDS-PAGE gels (Figure 15c, asterisks). Using N-terminal amino acid analysis, we found 

that the two fragments correspond to sequences starting at residues 225 and 239, respectively. 

It indicates that this neck region of SAS-6 (in reference to the head group and the coiled coil 

tail), approximately spanning residues 220-240, is flexible and prone to proteolysis.   

 

5.2. The C-terminal domain of SAS-5 binds specifically to the central part of the SAS-6 coiled 

coil 

It was previously reported that SAS-5 binds specifically to the coiled coil domain of SAS-6 (resi-

dues 180-415) (Boxem et al. 2008; Leidel et al. 2005). The results in Figure 15 show that only 

the last 15 residues of the SAS-5 CTD are required for SAS-6 interaction. As this CTD is much 

smaller in size compared to the SAS-6 coiled coil, we anticipated that only a small segment of 

the SAS-6 coiled coil would be involved in their interaction. To locate the SAS-5 binding site, we 

generated six truncations of SAS-6 (Figure 16a), which were all expressed and soluble (Figure 

16b).  In vitro binding assays were carried out. MBP-tagged SAS-5 CTD preloaded on the amyl-

ose beads was used as the bait to pull down SAS-6 proteins. The results visualized on the SDS-

PAGE showed that the SAS-5 CTD specifically bound to the central region of the SAS-6 coiled 

coil, spanning residues 248-303 (Figure 16c).  

To exclude the possibility that MBP tag caused the unspecific binding during the pull-down as-

say, a control assay was carried out. MBP alone was used as the bait to pull down SAS-6 and no 

significant binding was detected (Figure 16d). Taken together, the pull-down assays showed 

that the interaction between the SAS-5 CTD and the SAS-6 coiled coil is specific.  
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Figure 16 The SAS-5 CTD binds specifically to the central part of the SAS-6 coiled coil. (a) Truncation constructs of 

SAS-6 used for in vitro binding assays with the SAS-5 CTD (residues 390-404). Numbers in front of the constructs 

indicate amino acid ranges. The right column shows the summary of the binding results in (c). (b) Soluble fractions 

of SAS-6 proteins used in the in vitro pull-down assays. Arrowheads indicate the target proteins. (c) In vitro pull-

down results of SAS-6 proteins using amylose beads preloaded with the MBP-tagged SAS-5 CTD as the bait. Filled 

arrowheads indicate SAS-6 proteins pulled down by SAS-5. An empty arrowhead indicates the MBP-dependent 

nonspecific binding of the construct containing residues 1-218 of SAS-6, which is comparable to what is seen in the 

control experiment in (d). Marked by asterisks are the degradation products of SAS-6. (d) Control experiments to 

check the nonspecific binding of SAS-6 proteins to the MBP tag. Except for SAS-6 (residues 1-218), which is indicat-

ed by an empty arrowhead, no other significant binding was detected. 

 

In a reciprocal binding experiment, we used Ni-NTA bound SAS-6 constructs to pull down the 

MBP-tagged SAS-5 CTD, which further confirms that SAS-5 binds to the same region of the SAS-

6 coiled coil (Figure 17).    
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Figure 17 The SAS-5 CTD binds specifically to the central part of the SAS-6 coiled coil. (a) Truncation constructs of 

SAS-6 used for in vitro binding assays with the SAS-5 CTD (residues 390-404). Numbers in front of  the  constructs  

indicate  amino acid  ranges.  The right column shows the summary of the binding results in (b).  (b)  In vitro pull-

down results of MBP-tagged SAS-5 CTD using Ni-NTA bound SAS-6 of various lengths as the baits. Arrowheads 

indicate SAS-6 proteins. 

 

5.3. Crystal structure of the SAS-6 coiled coil domain reveals an electrostatic periodicity along 

the coiled coil 

To investigate the interaction between SAS-5 and SAS-6 at the molecular level, we determined 

the crystal structure of the SAS-6 CCD (residues 248-410). This contains the SAS-5 binding site 

mapped above. The structure was determined to 3.3 Å resolution (Table 2 and Figure 18a).  
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Table 2 Data collection and refinement statistics 

Data collection   

Space group P61  

   

    a, b, c (Å) 140.29, 140.29, 

74.67 

 

Resolution (Å) 39-3.3 (3.48-3.30) 

* 

 

No. unique reflections 12775 (1851)  

I / σI 10.4 (1.9)  

Overall completeness (%) 99.9 (100.0)  

Overall redundancy 7.2 (7.4)  

Anomalous completeness 

(%) 

99.5 (99.7)  

Anomalous redundancy 

Refinement 

3.7 (3.7)  

Resolution (Å) 39-3.3  

Rwork / Rfree (%) 25.8/29.9  

No. atoms   

    Protein 2578  

R.m.s. deviations   

    Bond lengths (Å) 0.009  

    Bond angles () 1.30  

*Values in parentheses are for highest-resolution shell. 

 

In the structure, each of the two chains is folded into a continuous alpha helix spanning resi-

dues 250-405. The two helices form a parallel coiled coil extending to 230 Å in length. Interest-

ingly, an electrostatic surface plot indicated that the SAS-6 CCD exhibits a periodically charged 

pattern along the helices - the segments spanning residues 250-293 and 343-390 are predomi-

nantly negatively charged, and residues 294-342 and 391-407 are mainly positively charged 

(Figure 18b).  
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Figure 18 Crystal structure of the SAS-6 coiled coil domain. (a) Stereo view of a representative portion of the 2Fo − 

Fc experimental electron density map (contoured at 2.0 σ) covering residues 268-290. For clarity, only the main 

chains of the final model are shown. (b) Ribbon diagram and electrostatic surface plot of the SAS-6 CCD structure. 

Residues at the boundaries of differently charged segments are indicated. (c) Schematic representation of the SAS-

6 dimer. Dashed lines indicate the regions lacking a known structure. Positive and negative charges along the 

coiled coil and in the C-terminal domain are depicted as “+” and “-”, respectively. 

 

Sequence alignment of SAS-6 proteins from three different Caenorhabditis species indicated 

that the surface of the coiled coil region preceding the CCD, spanning residues 220-250, is also 
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negatively charged (Figure 19), whereas the C-terminal part of SAS-6 (residues 410-492) con-

tains five conserved lysine/arginine residues and is positively charged (Figure 20).  

 

 

Figure 19 The “neck” region of the C. elegans SAS-6 coiled coil(residues 221-300) is predominantly negatively  

charged.  (a) Sequence alignment of the N-terminal part of the SAS-6 coiled coil from three Caenorhabditis species. 

Ce, Caenorhabditis elegans; Cr, C. remanei; Cb, C. briggsae. Identical negatively-charged residues (D or E) are high-

lighted in red; conserved ones are highlighted in grey.  The heptad registers of the residues are shown beneath the 

aligned sequences. Registers of residues 250-300 are extracted from the crystal structure and those for the pre-

ceding residues are derived from coiled coil predictions (http://www.ch.embnet.org/software/COILS_form.html).  

(b) Helical wheel diagram looking down the helix axis from the N- to the C-terminus of the SAS-6 coiled coil (resi-

dues 221-300).  Heptad positions are labeled from a to g.  Positions a and d are occupied predominantly by nonpo-

lar hydrophobic residues whereas other positions are mostly polar or charged residues. (c) Helical wheel represen-

tation of the parallel homodimer of the SAS-6 coiled coil (residues 221-300). Inter-helical hydrophobic interactions 

are denoted as a wide arrow. Negatively charged surfaces formed by residues at positions b, c, f, and g are shown 

by red curves. 
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Previously published crystal structures of SAS-6 proteins have shown that the head group to-

gether with the N-terminal part of the coiled coil domain of SAS-6 forms a dimer (Kitagawa et 

al. 2011b; van Breugel et al. 2011). Taken together, we conclude that C. elegans SAS-6 folds into 

a tadpole-like structure with an alternating charge distribution along its coiled coil tail (Figure 

18). 

 

 

Figure 20 Sequence alignment of SAS-6 proteins from three Caenorhabditis species. Ce, Caenorhabditis elegans; Cr, 

C. remanei; Cb, C. briggsae. The five conserved positive residues in the C-terminal domain are indicated by arrows. 

 

5.4. Crystallization of the SAS-6-CCD/SAS-5-CTD complex 

To understand the mechanism of SAS-6 and SAS-5 interaction, different length of truncations of 

the SAS-6 CCD and the MBP fusion SAS-5 CTD (residues 390-404) have been expressed in E. coli 

and purified by Ni-NTA and amylose affinity chromatography, respectively (Figure 21a). After 

mixing the SAS-6 CCD with excess amount of the SAS-5 CTD, the complex was purified on a size 

exclusion column (Figure 21b). Crystallization trials have been carried out for purified complex-

es of SAS-6 (residues 192-410) and the SAS-5 CTD, SAS-6 (residues 210-410) and the SAS-5 CTD, 

SAS-6 (residues 248-410) and the SAS-5 CTD. Thin needle-shaped crystals grew from multiple 

conditions at both 22°C and 4°C. Crystals finally reached the maximum size of 0.5 × 0.02 × 0.01 

mm after optimization (Figure 21c). The best crystals of SAS-6 (residues 248-410) and the SAS-5 

CTD were gained by the hanging drop vapor diffusion method with the reservoir of 8% 

PEG4000, 0.1 M MES pH6.5, 0.2 M MgCl2. Unfortunately, these crystals only diffracted to ~7 Å. 

The other two types of crystals of SAS-6 (192-410) and SAS-5 CTD, and SAS-6 (residues 210-410) 

and SAS-5 CTD diffracted more poorly, to ~10 Å.  
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Figure 21 Purification and crystallization of the SAS-6-CCD/SAS-5-CTD complex. SAS-6 CCD, SAS-6 coiled coil do-

main (residues 248-410); SAS-5 CTD, SAS-5 C-terminal domain (residues 390-404). (a) Constructs of the SAS-6 CCD 

used for co-purification with the SAS-5 CTD. (b) Size exclusion column (SEC) chromatography of mixture of the SAS-

6 CCD and an excess amount of the SAS-5 CTD. Mixed proteins were applied to Superdex 200 16/60. SDS-PAGE 

confirmed that the first peak was the complex of both proteins. (c) Needled-shaped crystals were obtained at 8% 

PEG4000, 0.1 M MES pH6.5, 0.2 M MgCl2, in a hanging droplet after optimization. About ten crystals were picked, 

thoroughly washed in reservoir solution, and applied on an SDS-PAGE to confirm that the crystals are the protein 

complex instead of a single protein. 

 

5.5. Association of SAS-5 and SAS-6 is based on synergistic hydrophobic and electrostatic in-

teractions 

Due to the limitation of the low resolution diffraction data of the crystal of the SAS-6 CCD and 

the SAS-5 CTD, biochemical analyses instead were carried out to further locate the specific 

binding site of SAS-5 on SAS-6. We generated multiple structure-based deletion constructs of 

SAS-6 in the coiled coil region covering residues 248-303 that is essential for their interaction 

(Figure 17). To avoid disrupting or distorting the coiled coil structure, each deletion removed 

n×7 residues (n = 2, 3, or 4) to maintain the register of the heptad repeats of the coiled coil 

(Figure 22a).  
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Figure 22 SAS-5 binds to a short region in the SAS-6 CCD, residues 275-288. (a) Schematic of SAS-6 deletion con-

structs. The right column summarizes the interaction results in (b). (b) In vitro pull-down results of SAS-5 using Ni-

NTA bound SAS-6 as the bait. The two deletions of SAS-6 that failed to pull down SAS-5 are indicated by arrow-

heads. (c) Sequence alignment of the SAS-5 binding site from three Caenorhabditis species. Ce, Caenorhabditis 

elegans; Cr, C. remanei; Cb, C. briggsae.  The three hydrophobic residues on the coiled coil interface are indicated 

beneath the sequences. Mutations of the four groups of conserved, solvent-exposed residues (to alanines) are 

highlighted in different colors. (d) Coomassie stained SDS-PAGE gel showing the result of in vitro pull-down of the 

SAS-5 CTD by wild-type (wt) and the four mutations of SAS-6. All mutations except for mC failed to interact with 

SAS-5.  

 

We also generated a deletion outside of this region, spanning residues 317 - 344, as a control to 

show that a partial deletion of the SAS-6 coiled coilded did not affect its folding or the binding 

ability of the neighboring region to SAS-5. Using in vitro pull-down assays, we determined that 

the region containing residues 275-288 of SAS-6 is essential for SAS-5 binding (Figure 22a and 

b). To determine which individual residues are directly involved in the interaction, we generat-

ed four structure-based mutations of all residues in this 14-residue segment that are conserved 

among Caenorhabditis species but are not a part of the coiled coil interface (Figure 22c, mA, 

mB, mC & mD). Results of the in vitro pull-down experiments indicated that mutations of either 

the central hydrophobic residues (mB: I279A+M283A) or the flanking negatively charged resi-

dues (mA: E275A+E276A+E278A, mD: E287A) nearly completely abolished the SAS-5/SAS-6 in-

teraction. In contrast, mutation of another charged residue in the same region (mC: E286A) 
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seemed not to affect the interaction (Figure 22d). The influence of the mutations on the SAS-

5/SAS-6 interaction was further measured by isothermal titration calorimetry (ITC) assays. The-

se indicated that each of the three mutations (mA, mB and mD) completely abolished the inter-

action between SAS-5 and SAS-6, whereas the mutation mC only slightly reduced the binding 

affinity (Figure 23). Given that all these mutated residues are solvent exposed, as seen in the 

crystal structure, this suggests that the interaction between SAS-5 and SAS-6 is structure-based 

rather than a nonspecific electrostatic interaction. 

To test whether SAS-6 mutations in vivo also disrupt the interaction with SAS-5, in turn defect 

centriole assembly, we generated constructs carrying each of the three sets of mutations which 

disrupted interaction with SAS-5 in vitro (mA, mB and mD) and used these for C. elegans trans-

formation. We collaborated with Dr. Alex Dammermann, who obtained several independent 

strains of mA and mD with identical behavior. However the strain carrying an integration of mB 

was not able to be obtained. This could be explained by technical limitations or reflect differ-

ences in the ability of C. elegans to tolerate the two classes of mutations (mA, mD charge vs. 

mB hydrophobicity). Interestingly, SAS-6 mutants mA and mD both localized to centrioles, how-

ever, after deleting the endogenous protein by RNAi, the embryos showed the characteristic 

monopolar second division phenotype, in turn neither mutant could successfully assemble cen-

triole. The results from mating experiment (Dammermann et al. 2008; Dammermann et al. 

2004; Kirkham et al. 2003) to specifically assess SAS-6 recruitment showed that SAS-6 recruit-

ment was nearly completely abolished for both mutants when endogenous SAS6 was depleted, 

similar to what was seen with wild-type SAS-6 following depletion of SAS-5. Consistent with in 

vitro data, the in vivo results suggest that the residues mutated in mA and mD are indeed criti-

cal for SAS-6 recruitment and function in centriole assembly, and the severity of the phenotype 

mirrors that of depleting SAS-5 itself.  
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Figure 23 ITC titration and fit curves for wild-type (wt) and the four mutations of SAS-6 interacting with the SAS-5 

CTD. Mutations mA, mB, and mD completely abolished the interaction between SAS-6 and SAS-5, whereas the 

mutation mC only mildly reduced the binding affinity. For wild-type (wt) and mC, “N” represents the molar ratio 

between the monomeric SAS-5 CTD and the dimeric SAS-6 CCD. 

 

We showed above that the SAS-5 CTD (residues 390-404) is responsible for interacting with 

SAS-6 (Figure 15). To further identify which residues in this region are directly involved in the 

interaction with SAS-6, we generated eleven mutations in the SAS-5 CTD that substituted each 

non-alanine residue with an alanine, except for the residue R397, which was replaced by a cys-

teine as in the previously reported sas-5(t2079) mutant (Leidel et al. 2005) (Figure 24a). All SAS-

5 CTD mutations were fused to the C-terminus of MBP to facilitate the visualization of the pro-

teins on SDS-PAGE gels. We then carried out in vitro binding assays using Ni-NTA bound 6×His-

SAS-6 (residues 1-410) to pull down SAS-5. While most of the mutations did not affect the 
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amount of SAS-5 pulled down, four of them (M4/I396A, M5/R397C, M8/Y400A, and 

M10/R403A) drastically reduced the interaction between SAS-6 and SAS-5 (Figure 24b). To 

quantify the influence of the mutations on the interaction, we again carried out ITC experi-

ments using individually purified proteins. None of the four mutations that could not be pulled 

down by SAS-6 showed a measurable Kd (Figure 24c). In contrast the other seven mutations of 

SAS-5 showed no or only slight reduction of binding affinity toward SAS-6 (data not shown).  

 

 

 

Figure 24 Four of the 15 residues in the SAS-5 CTD contribute to its specific interaction with SAS-6. (a) Sequence of 

the SAS-5 CTD. Mutations (to Alanines) are indicated as M1 - M11. (b) Coomassie stained SDS-PAGE gel showing 

the results of in vitro pull-down of wild-type or mutants of the SAS-5 CTD by SAS-6. The four mutations that show a 

drastic decrease of binding to SAS-5 are indicated by arrowheads. (c) ITC titration and fit curves for wild-type and 

four mutations of the SAS-5 CTD interacting with the SAS-6 CCD. No measurable Kd was detected for all these mu-

tations.  

 

Based on the pull-down and ITC results, a docking trial was carried out by ClusPro 2.0 (Kozakov 

et al. 2010) using the crystal structure of the SAS-6 CCD as the receptor and a theoretical helical 

model of the SAS-5 CTD as the ligand. Multiple predicted interaction models were generated 

(Figure 25). In a representative docked model (Figure 26), the helix of the SAS-5 CTD was placed 

nearly perpendicular onto the SAS-6 coiled coil. This arrangement allowed both the hydropho-

bic interactions between the central two pairs of non-polar residues (SAS-6: I279/M283 vs. SAS-
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6: I396/Y400) and the electrostatic interactions between the flanking oppositely charged resi-

dues (SAS-6: E275/E276/E278 vs. SAS-5: R403). 

 

 

Figure 25 Five alternative interacting models of SAS-5 and SAS-6 predicted by the ClusPro 2.0 docking server 

(http://cluspro.bu.edu/). Side chains of the residues involved in the interaction, which were mapped by our muta-

genesis studies, are shown in sticks with color schemes of magenta in SAS-6 and yellow in SAS-5. 

 

However, the distance between E287 of SAS-6 and R397 of SAS-5 seems too far for establishing 

an electrostatic interaction. One possibility is that the side chains of these two charged residues 

form salt bridges with the backbone of the opposite molecule. An alternative is that the SAS-6 

coiled coil might bend at the interaction site to maximize the intermolecular contacts, which 

has been seen in other interactions between a helix and a coiled coil (Sibanda et al. 2001). Giv-

en the nearly symmetric arrangement of the SAS-6 coiled coil and the stoichiometry of the 
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complex (SAS-6 dimer : SAS-5 = 1:1. See the ITC results for “wt” in Figure 23 and Figure 24c), it 

suggests that SAS-5 only binds to one side of the SAS-6 coiled coil, which implies that binding of 

SAS-5 to one site either occludes the other site or disrupts the structural symmetry by inducing 

local conformational changes of the SAS-6 coiled coil. 

In summary, we have identified the residues on both SAS-5 and SAS-6 that are directly involved 

in the interaction between these two centriolar proteins. These conclusions, together with the 

crystal structure of the SAS-6 CCD and the predicted helical structure of the SAS-5 CTD, allowed 

us to generate a docking model for the interaction between the two proteins (Figure 26).  

 

 

 

Figure 26 Docking the SAS-5 CTD to its binding site on the SAS-6 CCD. Side chains of the residues that participate in 

the interaction are shown and labeled.  

 

5.6. SAS-6 molecules form an anti-parallel tetramer through the electrostatic interactions of 

their coiled coil domains  

Rotary metal shadowing electron microscopy studies of purified recombinant SAS-6 protein 

showed that although many of the observed particles are tadpole-like structures as reported 

previously (Kitagawa et al. 2011b), a significant fraction of them (~20%) are dumbbell-like struc-

tures with a central rod measuring 35-45 nm in length (Figure 27a). As shown in Figure 18c, 
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there is an alternating charge distribution along the SAS-6 CCD, which we suspected may direct 

further self-association of SAS-6 dimers along their coiled coils to form a tetramer. To test this 

hypothesis, we carried out a dilution ITC experiment that has been used successfully for analyz-

ing the dissociation equilibrium of other proteins (Lovatt et al. 1996). In this assay, a series of 

small aliquots of concentrated SAS-6 CCD were injected into a large volume of buffer, which 

generated a sequence of endothermic heat pulses, characteristic of molecular dissociation (Fig-

ure 27b, top). It has been reported that the Kd of the SAS-6 coiled coil dimer is ~0.9 µM 

(Kitagawa et al. 2011b). The fit dissociation curve had a Kdiss of 56.2 ± 7.6 µM and ΔHdiss of 2.84 

± 0.05 kcal/mole, which suggests a dimer-tetramer equilibrium (Figure 27b, bottom). The 

tetrameric association of the SAS-6 CCD is apparently much weaker than the coiled coil dimer 

and thus may not always survive the grid preparation for rotary metal shadowing as the coiled 

coil dimer does. This explains why the dumbbell-like tetramer structure was not as frequently 

observed as the tadpole-like structure of the SAS-6 dimer.  

To better understand the self-association of the SAS-6 CCD, we subjected our solved crystal 

structure of the SAS-6 CCD to the ClusPro 2.0 protein-protein docking server (Kozakov et al. 

2010). The docking results suggested an anti-parallel interaction of the coiled coils, with the 

opposite charges complementing each other in each segment (Figure 27c). The fully extended 

central rod of the anti-parallel SAS-6 tetramer based on this docking model is calculated to be 

~45 nm long, which is in agreement with the length of the rod in the dumbbell-like structure 

seen in the electron micrographs (Figure 27a). The length variation of the central rods in the 

dumbbell-like structures is likely due to the flexible region at the N-terminal part of the coiled 

coil as shown above (Figure 15c, asterisks). These data altogether suggest that C. elegans SAS-6 

forms a dumbbell-like tetramer through the anti-parallel association of the coiled coils. Notably, 

the SAS-5 binding sites on the SAS-6 CCD are obscured in the anti-parallel SAS-6 tetramer (Fig-

ure 27c, boxes).    
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Figure 27 C. elegans SAS-6 forms an anti-parallel tetramer via the electrostatic interaction of the coiled coils. (a) 

Schematic model and the rotary metal shadowing electron micrographs of recombinant SAS-6. Scale bars, 30 nm. 

(b) Experimental and integrated dilution ITC curves for the SAS-6 CCD (residues 248-410). (c) Docking of the SAS-6 

CCD self-association by the automated protein docking program ClusPro 2.0 (Kozakov et al. 2010). Both ribbon 

diagrams and electrostatic surface plots are shown. Ribbons are rainbow colored from blue (N-terminus) to red (C-

terminus). In the surface plots, positive and negative charges are shown in blue and red, respectively. Boxed are 

the SAS-5 binding sites on the SAS-6 CCD. 
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5.7. Binding of SAS-5 both disrupts the tetrameric association of the SAS-6 CCD and promotes 

the formation of a ring-like structure resembling the central tube of C. elegans centrioles   

We found that SAS-5 binds specifically to a segment of the SAS-6 CCD that is part of the period-

ic charge region being obscured in the anti-parallel tetramer (Figure 27c, boxes). Moreover, the 

interaction between SAS-5 and SAS-6 (Kd ~ 2 µM) is more than one order of magnitude stronger 

than the self-association of the SAS-6 CCD tetramer (Kd ~ 56 µM). Therefore, binding of SAS-5 

may disrupt SAS-6 self-association. To test this, we carried out a dilution ITC assay similar to 

that for the SAS-6 CCD alone but with 1.5 × fold (molar ratio) of the SAS-5 CTD supplemented to 

both the injections and the buffer. There would be two possibilities for the results. One possible 

result is that the presence of the SAS-5 CTD in the buffer prevents the dissociation of the SAS-

5/SAS-6 complex and no self-dissociation of SAS-6 is observed. The other possibility is that the 

anti-parallel self-association of SAS-6 is not affected by SAS-5 binding and we would still ob-

serve the dissociation of the tetramer of the SAS-6 CCD to dimers. As shown in Figure 28a, no 

endothermic heat pulses were observed, which was in contrast to the strong dissociation signal 

for the SAS-6 CCD (Figure 27b). This suggests that the binding of SAS-5 might disrupt the 

tetrametric association of the SAS-6 CCD. This interpretation was further supported by an addi-

tional experiment to exclude the possibility that the binding of SAS-5 stabilizes the SAS-6 CCD 

tetramer. As shown in Figure 28b, analysis of the complex by static light scattering (SLS) indi-

cated that the complex is a hetero-trimer (MW ~80kDa; MWs of the SAS-6 CCD monomer and 

the MBP-SAS-5 CTD are 19kDa and 44kDa, respectively). Therefore, disruption of the 

tetrametric association of the SAS-6 CCD by binding of SAS-5 accounts for the loss of endo-

thermic heat pulses in the ITC.  

Moreover, examination using dynamic light scattering (DLS) also indicates that the SAS-5 CTD 

shifts the equilibrium between two species of the SAS-6 CCD into one species when mixing the 

two proteins in a stoichiometric 1:1 ratio (Figure 29). Therefore, binding of SAS-5 disrupts the 

tetrameric association of the SAS-6 CCD. 

 



 68 

 

 

Figure 28 The SAS-5/SAS-6 complex forms curved structures with an extrapolated diameter similar to the central 

tube of C. elegans centrioles. (a) Experimental and integrated dilution ITC curves for SAS-6 CCD + SAS-5 CTD. (b) 

SLS analysis of the complex of the SAS-6 CCD and the MBP-SAS-5 CTD. The SAS-6 CCD by itself forms a dimer (MW 

~38kDa), whereas mixing it with the MBP-SAS-5 CTD (molar ratio = 1:1.5) gave rise to a hetero-trimer (MW 

~80kDa). MW of the MBP-SAS-5 CTD is 44kDa. (c) Rotary metal shadowing electron micrographs of the full-length 

SAS-5-/SAS-6 complex. Scale bar, 30 nm. (d) Histogram representation of mean diameters of the rings measured 

from circle structures. The majority of the circle structures have a diameter of 60-65 nm, which is in good agree-

ment with that of the central tube of C. elegans centrioles. 

 

It was previously reported that SAS-5 and SAS-6 are mutually dependent for their centrosome 

localization and removal of either one results in failure of centriole duplication in C. elegans 

(Pelletier et al. 2006). Observation of the tadpole- and dumbbell-like structures rather than the 

cartwheel structure of recombinant C. elegans SAS-6 (Figure 27a) suggests that the nine-fold 

symmetry formation of C. elegans centrioles needs additional symmetry-ensuring factor to as-

sociate with SAS-6. In this case, SAS-5 may take an important part.  
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Figure 29 DLS-determined size distributions of SAS-5 CTD, SAS-6 CCD, and their complex. (a) MBP-SAS-5 CTD (resi-

dues 390-404, 20µM) shows a monodisperse signal.  (b) SAS-6 CCD (residues 248-410, 15µM) shows two peaks. 

The majority of the mass (~99.9%) is in the 4-nm peak, which is the dimer of the SAS-6 CCD, whereas the 50-nm 

peak only represents 0.1% of the total mass and is likely the oligomeric form of the CCD, which, without the ob-

struction of the head group, could form a large assembly. (c) Mixture of the SAS-6 CCD dimer and the SAS-5 CTD 

(1:1, 15µM each) shows a single peak, which suggests that binding of SAS-5 prevents the oligomerization of the 

SAS-6 CCD. 
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To find this out, we used rotary metal shadowing electron microscopy to examine the purified 

complex of recombinant SAS-6 and MBP-tagged SAS-5. Interestingly, we repeatedly observed 

curved structures (n=22) with particles of the same size arranged with a similar distance in be-

tween (Figure 28c). These particles are 2-3 times larger than the SAS-6 head group shown in 

Figure 27a and are likely SAS-5 molecules. The mean diameter of the fit rings of these struc-

tures is 63.2 ± 9.2 nm (Figure 28d), which is in good agreement with the 60-nm diameter of the 

central tube of C. elegans centrioles (Pelletier et al. 2006).  

 

 

 

Figure 30 SAS-5 on its own forms aggregates. (a) Partially purified recombinant MBP-tagged SAS-5 using ammoni-

um sulfate precipitation. (b) Size exclusion chromatography of MBP-SAS-5 on a Superdex-400 (16/60) column. SAS-

5 was eluted at factions near the void volume of the column. (c) Negative staining electron micrograph of MBP-

SAS-5. Large irregular aggregates can be seen. Scale bar, 100 nm. 
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To find out whether SAS-5 alone can form such structures, we tried to purify the MBP-SAS-5 

with a C-terminal 6×His-tag. However, we could not purify the protein using Ni-NTA resin (data 

not shown), suggesting that the His-tag is inaccessible either due to being shielded by a neigh-

boring structure or being buried in aggregates. Using size exclusion chromatography and nega-

tive staining electron microscopy we found that SAS-5 forms large aggregates (Figure 30).  

Interestingly, the C-terminus of SAS-5 became accessible when mixing with SAS-6 as demon-

strated by the success in the pull-down of SAS-5 by Ni-NTA bound SAS-6 (Figure 15c), and the 

complex shows semicircle and arc-like structures (Figure 29c). This indicates that binding to 

SAS-6 indeed releases SAS-5 from its aggregates.  

Overall, our data suggest that while SAS-6 and SAS-5 individually form a self-associated confor-

mation, together they can assemble into a highly ordered structure resembling the central tube 

of the C. elegans centrioles. 
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6. Discussion 

 

Accumulating data indicate that SAS-5 and its functional orthologs, Ana2 in flies and STIL in ver-

tebrates, work cooperatively with SAS-6 in centriole formation (Arquint et al. 2012; Stevens et 

al. 2010a; Stevens et al. 2010b; Tang et al. 2011; Vulprecht et al. 2012). To find out how SAS-5 

assists SAS-6 in centriole assembly, we first need to know how the two proteins interact. Here, 

we demonstrate that the short SAS-5 CTD specifically interacts with a narrow segment of the 

SAS-6 coiled coil. We have also solved the crystal structure of the SAS-6 CCD that contains the 

binding site of SAS-5 and further used structure-based mutagenesis studies to identify the resi-

dues on both proteins that are directly involved in their interaction. Interestingly, we found that 

the interaction is mediated by synergistic hydrophobic and electrostatic interactions of multiple 

residues on either protein. Single residue mutation analyses showed that mutating any one of 

these residues completely abolished the interaction. We further showed that the recombinant 

SAS-5/SAS-6 complex could form semicircular or arc-like structures. How can one put this into 

the context of centriole duplication?  

Unlikely the clearly visible cartwheel structure in non-nematode centrioles, centriole duplica-

tion in C. elegans begins with a 60-nm central tube dependent on SAS-5/SAS-6. This central 

tube grows wider and longer at the pronuclear migration stage when SAS-4 is recruited, imply-

ing that SAS-4 may contribute to the tube expansion (Pelletier et al. 2006). Further examination 

of the effect of SAS-4 depletion by RNAi showed that daughter centriole central tubes failed to 

expand in width whereas elongation occurred normally, suggesting that SAS-4 contributes only 

to the broadening of the central tube (Pelletier et al. 2006). Additionally, the increase in the 

width of the central tube coincides with the emergence of an outer wall and hook-like struc-

tures around it at positions where MT assembly occurs (Pelletier et al. 2006). In earlier studies, 

SAS-4 had been revealed to localize to the outer wall of centrioles and have a ring-like distribu-

tion around the centriole (Kirkham et al. 2003). Consistently, SAS-4 homologues in flies and 

humans also localize to the outer wall of centrioles and are essential for recruiting MTs and 

pericentriolar materials (Gopalakrishnan et al. 2011; Kohlmaier et al. 2009; Tang et al. 2009).   
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Figure 31 A working model for centriole assembly in C. elegans. (a) Schematic of SAS-6 dimer and the nearly sym-

metric arrangement of the residues involved in SAS-5 binding. (b) Hypothetical mechanism of recruitment of SAS-

5, SAS-6, and SAS-4. Interaction of SAS-5 and SAS-6 releases SAS-5 from the aggregates and opens up the anti-

parallel tetramer of SAS-6, which subsequently assembles into a nine-fold cartwheel with SAS-5 arranged as a ring. 

The diameter of the ring is calculated to be about 59 nm, which is in good agreement with the diameter of the 

emerging central tube of C. elegans centrioles (60 nm). The assembled structure of SAS-5 and SAS-6 may direct the 

loading of SAS-4, which subsequently generates a wider tube with outward projecting hooks for recruiting MTs as 

reported previously (Pelletier et al. 2006).  

 

In this study, we show that SAS-6 forms a self-associated tetramer whereas SAS-5 aggregates. 

Crystal structure of the SAS-6 CCD reveals a periodic charge distribution with the SAS-5 binding 

site in the center of the coiled coil (Figure 31a). We also discovered that binding of the SAS-5 

CTD to the SAS-6 coiled coil both releases SAS-5 from its aggregates and prevents the 
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tetrameric association of SAS-6. This would allow the efficient interaction between the SAS-6 

head groups. Our electron microscopy studies demonstrate that the recombinant SAS-5/SAS-6 

complex assembles into arc-like structures with an average diameter of 63.2 ± 9.2 nm for the 

corresponding rings (Figure 29). We therefore believe that the emerging 60-nm wide central 

tube in the procentriole is formed by circularly arranged SAS-5 molecules bound onto the coiled 

coils of SAS-6 (Figure 31b). SAS-5 and SAS-6 together assemble into an unstable tubular struc-

ture, whereas loading of SAS-4 stabilizes this tube (now the inner wall) by generating an outer 

wall with protruding hook-like appendages that serve to recruit the nine singlet MTs (Figure 

31b).  

Apart from disrupting the tetrameric association of SAS-6, SAS-5 may also play a more active 

role in centriole assembly by inducing conformational changes in the SAS-6 coiled coil. The crys-

tal structure of the SAS-6 CCD indicates that each SAS-6 coiled coil contains two almost sym-

metrically arranged SAS-5 binding sites (Figure 31a). However, results of both ITC and SLS ex-

periments indicate that only one SAS-5 molecule could bind to the SAS-6 dimer (Figure 28b). 

How might this occur? The crystal structure of the C. elegans SAS-6 head group shows that it 

has a similar fold to that of the Xrcc4 family of DNA repair proteins (Junop et al. 2000; Kitagawa 

et al. 2011b). DNA ligase IV binds to a short segment of the coiled coil domain of Xrcc4. Inter-

estingly, the interaction occurs in a similar manner to that between SAS-5 and SAS-6, i.e., a helix 

from one protein binds to the central part of the coiled coil of the other. The crystal structure of 

the Xrcc4-DNA ligase IV complex shows that binding of a short helix of DNA ligase IV induces a 

bending of the Xrcc4 coiled coil (Figure 32) (Sibanda et al. 2001).  

In analogy to the DNA ligase IV-induced bending of the Xrcc4 coiled coil, we predict that binding 

of SAS-5 to the SAS-6 CCD may generate a kink of the SAS-6 coiled coil. It has been proposed 

that SAS-6 may assemble into a spiral-like structure with the coiled coils pointing outwards to 

form the spokes (Cottee et al. 2011). If that is the case, the SAS-5 induced structural change on 

the SAS-6 coiled coil may facilitate the spiral assembly of the oligomeric complex of SAS-6 (Fig-

ure 33).  

Notably, SAS-5 was shown to self-associate in a reported domain-based interactome network in 

C. elegans (Boxem et al. 2008). The self-association of SAS-5 could bridge gaps between SAS-6 

coil coils and/or neighboring layers of the spiral, which may strengthen the curved structure 



 75 

and accelerate the elongation of the central tube. These altogether may serve to enforce the 

nine-fold symmetry of centrioles and to regulate centriole duplication in vivo.  

 

 

Figure 32 Binding of a helix of DNA ligase IV induces bending of the XRCC4 coiled coil. (a) Crystal structure of 

XRCC4 (pdb code: 1FU1). (b) Crystal structure of XRCC4/DNA ligase IV complex (pdb code: 1IK9). (c) Superposition 

of the two structures shows clearly that binding of the short helix of DNA ligase IV induces a kink (indicated by an 

arrow) of the coiled coil of XRCC4. 
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Figure 33 Assembly of C. elegans centrioles. Binding of SAS-5 may bend the SAS-6 coiled coil, serving to facilitate 

the spiral assembly of the SAS-5/SAS-6 complex. This spiral unit would expand the long axis through added SAS-

5/SAS-6 proteins to form the initial central tube of the procentriole (SAS-6 is omitted for clarity). Afterwards, SAS-4 

would be recruited to generate the outer wall of the central tube. The hook-like structures along the length of the 

outer tube recruit singlet microtubules to generate the daughter centriole that is identical to the mother. 

 

Since ZYG-1 is required for the recruitment of SAS-5/SAS-6, it is likely that ZYG-1 plays a direct 

or indirect structural role in the assembly of the central tube. It was reported previously that 

ZYG-1 phosphorylates SAS-6 and this phosphorylation is crucial for centriole duplication in vivo 

(Kitagawa et al. 2009). The phosphorylation site, serine 123, is located in a long flexible loop 

(disordered in the crystal structure) next to the dimerization interface of the SAS-6 head group 

(Kitagawa et al. 2011b). It is conceivable that the phosphorylation by ZYG-1 might strengthen 

the head group interaction of SAS-6 by providing an electrostatic interaction between the 

phospho-group and a positively charged surface patch on the opposite molecule (Figure 34). 

The phosphorylation-dependent stable head group interaction may facilitate the SAS-5-induced 

spiral formation of the complex. This hypothesis is consistent with the observation that ZYG-1-

dependent phosphorylation of SAS-6 is needed for both central tube formation and mainte-

nance of SAS-6 at the central tube (Kitagawa et al. 2009). This would explain why we only ob-

served arc-like structures of the SAS-5/SAS-6 complex in vitro but not closed rings or spirals. In 

the future, it should be checked whether adding ZYG-1 to the recombinant SAS5/SAS-6 complex 

or co-expressing the three proteins could stimulate the formation of ring- or spiral-like struc-

tures.  
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Figure 34 ZYG-1 mediated phosphorylation of S123 on SAS-6 may strengthen the interaction between the head 

groups of SAS-6. The residue S123 is located in the _exible loop (gold) adjacent to the dimerization interface. It is 

spatially close to a positively charged surface patch (magenta circles) on the neighboring molecule. It is conceiva-

ble that phosphorylation of S123 by ZYG-1 may stabilize the head group interaction of SAS-6 by providing an elec-

trostatic interaction between the phospho-group and the positive surface patch on the opposite molecule. (A) 

View of thespatial orientation of S123 on chain A and a positive patch on chain B. (B) The same view as in (A) but 

showing the spatial orientation of S123 on chain B and a positive patch on chain A.  
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It was shown previously that SAS-5 failed to localize to centrioles in a mutant sas-5 (t2033) cor-

responding to a single amino acid substitution (R397C) in SAS-5 (Delattre et al. 2004). This sub-

stitution disrupts SAS-5 and SAS-6 interaction as demonstrated in a yeast two-hybrid assay 

(Leidel et al. 2005). Using in vitro pull-down and ITC assays, here we showed that the R397C 

substitution in SAS-5 completely abolishes its interaction with SAS-6. Thus, SAS-5 seems to 

shuttle to procentrioles through the specific interaction of its CTD with SAS-6. 

Given that ZYG-1 dependent recruitment of SAS-6 failed when SAS-5 was depleted (Delattre et 

al. 2006; Pelletier et al. 2006), SAS-5 likely helps SAS-6 to target the procentriole by forming 

with SAS-6 a specific recognition site for ZYG-1. Indeed, the combination of conserved charges 

on the SAS-5 CTD and its binding site on the SAS-6 CCD may provide a unique recognition site 

for ZYG-1 binding (Figure 31a). Notably, although the SAS-5 CTD is sufficient to bind SAS-6, the 

N-terminal part of SAS-5 seems to ensure the fidelity of the interaction. As shown in Figure 15c, 

while full-length SAS-5 was pulled down stoichiometrically relative to SAS-6, considerably more 

protein was pulled down for all the three N-terminal truncations of SAS-5. This disproportionate 

interaction occurs only when using full-length SAS-6 but not for SAS-6 lacking the C-terminal 

disordered tail (residues 411-492) (see “wt” lanes of Figure 22d and Figure 24b). Therefore, we 

conclude that the N-terminal domain of SAS-5 (residues 1 - 389) prevents the nonspecific inter-

action between the SAS-5 CTD and the unstructured SAS-6 C-terminal tail. Consistently, most of 

the N-terminal part of SAS-5 is conserved in the three Caenorhabditis species (Figure 35a), and 

there is a region containing ~20 highly conserved residues in several more divergent SAS-5 

homologues (Figure 35b). These conserved residues may confer on SAS-5 the ability to regulate 

its interaction with SAS-6. 

How does our finding of SAS-5/SAS-6 interaction relate to the mechanisms of centriole for-

mation in other organisms? Homologues of both C. elegans SAS-5 and SAS-6 have been identi-

fied in flies and vertebrates, which are DmSAS-6/hSAS-6 and Ana2/STIL, respectively. Crystal 

structures of several SAS-6 proteins show that the head group of SAS-6 has a conserved fold 

that mediates the intermolecular interaction in SAS-6 oligomeric assembly, implying that the 

mechanism of centriole biogenesis may be conserved through evolution. While structural seg-

mentation of SAS-6 family of proteins is easy to define, domain arrangements of SAS-

5/Ana2/STIL are very vague because of the lack of distinct motif structures. A ~90 residue re-

gion toward the C-terminus of the SAS-5 family of proteins, the STAN motif, was suggested to 
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be important for their function (Stevens et al. 2010a). However, while the STAN motif is mod-

estly conserved between Ana2 and STIL (31% sequence identity), it is very divergent in SAS-5. 

Notably, in the STAN motif alignment, none of the four residues in the SAS-5 CTD that partici-

pate in its interaction with SAS-6 is conserved in Ana2 or STIL (Stevens et al. 2010a). 

 

Figure 35 Primary sequence alignment of SAS-5 homologues in different nematode species. (a) Sequence align-

ment of SAS-5 from three Caenorhabditis species. C.el, Caenorhabditis elegans; C.re, C. remanei; C.br, C. briggsae. 

(b) Sequence alignment of six more divergent SAS-5 proteins.  The highly conserved region is boxed.  A.ce, 

Ancylostomaceylanicum; B.me, Brugia malayi; L.lo, Loa loa. 
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Moreover, unlike the helical structure of the SAS-5 CTD, the corresponding regions of Ana2 and 

STIL in this alignment are predicted to be disordered by the PSIPRED protein structure predic-

tion server (http://bioinf.cs.ucl.ac.uk/psipred/). Most recently, a second conserved motif called 

TIM was identified at the extreme C-terminus of STIL/Ana2 (Arquint et al. 2012). This motif is 

predicted to form a helix as the SAS-5 CTD. More interestingly, we found that the TIM motif 

contains two of the four conserved residues that we found in the SAS-5 CTD essential for its 

interaction with SAS-6 (Figure 36a); the other two residues are conserved only in fly or verte-

brate species (Figure 36b). It is likely that the STAN motif might have a specific function in flies 

and vertebrates, whereas the TIM motif participates in or regulates the interaction of Ana2/STIL 

with SAS-6. The different combinations of the four SAS-6-interacting residues in Ana2 and STIL 

may reflect the uniqueness of their interaction with SAS-6 in flies and vertebrates, respectively. 

Notably, two recent studies indicate there is no strong physical interaction between STIL and 

SAS-6 (Arquint et al. 2012; Vulprecht et al. 2012), while robust interaction between Ana2 and 

DmSAS-6 could be detected in an immunoprecipitation experiment (Stevens et al. 2010a). The 

other unique feature of DmSAS-6 is that it forms a parallel tetramer (Gopalakrishnan et al. 

2010), and the binding site of Ana2 has been mapped onto a region spanning the head group 

and the N-terminal part of the coiled coil of DmSAS-6 (Stevens et al. 2010a). It will be important 

to investigate how interaction with SAS-6 and centriolar localization are affected using 

Ana2/STIL with these potential binding sites mutated.    

Intriguingly, in the rotary metal shadowing micrographs of recombinant SAS-6 or SAS-5/SAS-6 

we did not observe the 23-nm central hub as that formed by C. reinhardtii and D. rerio SAS-6 

(Kitagawa et al. 2011b; van Breugel et al. 2011), which is notably consistent with the missing 

cartwheel structure in C. elegans centrioles in vivo. We found that although the majority of the 

C. elegans SAS-6 coiled coils well folded as seen in the crystal structure, the N-terminal region 

(approximately residues 220-240) of the SAS-6 coiled coil seems flexible and sensitive to prote-

olysis (Fig. 1c, asterisks). It needs to be investigated whether the flexibility of this region ac-

counts for the invisible hub structure in C. elegans centrioles. 
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Figure 36 Comparison of the SAS-5 CTD to the TIM motifs at the extreme C-terminus of Ana2 and STIL.  (a) The TIM 

motifs of Ana2 and STIL contain two of the four residues in the SAS-5 CTD that are essential for SAS-6 interaction.  

C. el, Caenorhabditis elegans;  D. me,  Drosophila melanogaster; H. sa, Homo sapiens. (b) These regions are all 

predicted to form a α-helix, which is preceded by a disordered loop. Two of the four conserved residues in the SAS-

5 CTD essential for SAS-6 interaction are also conserved in flies and vertebrates (arrows), whereas the other two 

residues are only conserved in flies or vertebrates species (arrowheads). 

 

In summary, our findings uncover the specific interaction between SAS-5 and SAS-6 and provide 

an explanation for the unique central tube structure in C. elegans centrioles. The data further 

confirm a role for SAS-5 in assisting SAS-6 to determine the 9-fold symmetry of centrioles and 

suggest a possible mechanism of the regulation. Our results also provide hints for SAS-6 and 

Ana2/STIL interaction in other organisms and may have general relevance for future studies. 
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7. Methods and materials 

 

7.1. Cloning, protein expression and purification  

Constructs made in this study for expression and purification from E. coli cells 

are summarized in Table 2. 

Name Expression 

vectors 

Cloning ranges Lengths 

CeSAS-6_1/1H pET29a, 1-492 492 

CeSAS-6_1/2 pET15b, 

HM15b 

1,410 410 

CeSAS-6_1/2 Δ240-260 pET15b 1-410 (240-260 deleted) 389 

CeSAS-6_1/2 Δ261-288 pET15b 1-410 (261-288deleted) 382 

CeSAS-6_1/2 Δ275-288 pET15b 1-410 (275-288 deleted) 396 

CeSAS-6_1/2 Δ289-316 pET15b 1-410 (289-316 deleted) 382 

CeSAS-6_1/2 Δ317-344 pET15b 1-410 (317-344 deleted) 382 

CeSAS-6_1/2 mA*  pET15b 1-410 410 

CeSAS-6_1/2 mB* pET15b 1-410 410 

CeSAS-6_1/2 mC* pET15b 1-410 410 

CeSAS-6_1/2 mD* pET15b 1-410 410 

CeSAS-6_1/2dEK11& pET15b 1-410 (11a.a deleted) 399 

CeSAS-6_1/3 pET15b 1-116 116 

CeSAS-6_2/2 pET15b 119-410 292 

CeSAS-6_1/4 pET15b 1-358 358 

CeSAS-6_1/5 pET15b, 1-303 303 

CeSAS-6_1/6 pET15b 1-250 250 

CeSAS-6_1/7 pET15b 1-192 192 

CeSAS-6_1/7c pET15b,  

KiM5α 

1-218 218 

CeSAS-6_1/7b pET15b (no-His), 

pET15b 

1-203 203 

CeSAS-6_3/2 pET15b, 

pET29a 

192-410 219 

CeSAS-6_4/2 pET15b 230-410 181 

CeSAS-6_5/2 pET15b 248-410 163 

CeSAS-6_6/2 pET15b 304-410 107 

CeSAS-6_6/1H pET29a, 

pCDF 

304-492 189 

CeSAS-6_7/1H pET29a, 

pCDF 

407-492 85 
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CeSAS-6_5/1H pET29a 248-492 245 

CeSAS-6_1/1HS123D pET15b, 

pET29a 

1-492 492 

CeSAS-6_1/5S123D pET15b 1-303 303 

CeSAS-6_8/8 pET15b 210-290 80 

CeSAS-6_8/2 pET15b, 

pET29a 

210-410 200 

CeSAS-6_1/9 pET15b, 

KiM5α 

1-170 170 

CeSAS-6_1/9 dRKK% pET15b 1-170 167 

CeSAS-6_2b/2 pET15b, 

pET29a 

171-410 240 

CeSAS-6_1/9I154E pET15b 1-170 170 

CeSAS-6_7b/1H pETGB 410-492 83 

CeSAS-6_4b/2 pET29a 239-410 172 

CeSAS-6_4b/4 pET29a 239-358 120 

CeSAS-5_1/1 pET15b, 

KiM5α 

1-404 404 

CeSAS-5_1/3 KiM5α 1-389 389 

CeSAS-5_1/2b KiM5α 1-320 320 

CeSAS-5_1/2 KiM5α 1-260 260 

CeSAS-5_2/1 KiM5α 261-404 143 

CeSAS-5_2b/1 KiM5α 321-404 84 

CeSAS-5_3/1 KiM5α 377-404 28 

CeSAS-5_3/1M1-11§ KiM5α 377-404 28 

 

*: mA-E275A+E276A+E278A, mB-I279A+M283A, mC-E286A, mD-E287A 

&: dEK11-deletion from E108 to K118 

%: dRKK-deletion from R116 to K118 

§: M1-E391A+E393A, M2-R392A, M3-R394A+R395A, M4-I396A, M5-R397A, M6-E398A, M7-

K399A, M8-Y400A, M9-R402A, M10-R403A, M11-K404A 

Table 2 Bacterial expression constructs designed for structural and biochemical studies. pET29a has no tag; HM15b 

has an N-terminal 6×His tag, which can be cut off by the protease thrombin, followed by MBP and cloning site; 

pET15b has an N-terminal 6×His tag (cleavable by thrombin); KiM5α has a non-cleavable N-terminal MBP tag. 

 

Sequences encoding full-length C. elegans SAS-6 (residues 1-492) and SAS-5 (residues 1-404) 

were amplified by PCR from cDNA and cloned respectively into pET-29a (Novagen) and a cus-

tom vector KiM5α that adds an N-terminal MBP tag to the target protein. Truncations of SAS-6 



 84 

were cloned into pET-15b (Novagen), which provides an N-terminal 6×His tag cleavable by 

thrombin. Truncations of SAS-5 were cloned in a similar manner to full-length SAS-5. Deletions 

and point mutations were generated by the QuickChange Kit (Stratagene) and confirmed by 

DNA sequencing. 

All recombinant proteins were expressed in Escherichia coli BL21 (DE3) cells. The cells were 

grown at 37°C. At an OD600 of 0.6-0.8, the cells were cold shocked on ice for 10 min and then 

shifted to 18°C. Protein induction was done overnight with 0.5 mM of isopropyl-beta-D-

thiogalactopyranoside (IPTG). The cells were harvested and resuspended in cold lysis buffer (20 

mM Tris-HCl (pH 8), 300 mM NaCl, 20 mM imidazole, and 5% glycerol). The cells were broken 

by the EmulsiFlex-C3 homogenizer (Avestin) and the lysate was cleared by centrifugation at 

30,000 × g for 30 min. The supernatant was filtered through a 0.4 µm filter and loaded onto a 

Ni-HiTrap column (GE Healthcare) pre-equilibrated in the same lysis buffer. The column was 

washed with 5 × column volume (cv) of lysis buffer, and bound protein was eluted by a liner 

gradient concentration of imidazole (20 - 500 mM, 10 × cv) in the lysis buffer. The N-terminal 

6×His tag was removed by incubation with 2% (w/w) of thrombin overnight at 4°C. The protein 

was concentrated and further purified with a Superdex-200 16/60 column (GE Healthcare) pre-

equilibrated with 20 mM Tris-HCl (pH 8), 50 mM NaCl and 5% glycerol. The protein was concen-

trated to 10 mg/ml, divided into aliquots and stored at -80°C. 

Selenomethionine(SeMet)-substituted SAS-6 CCD (residues 248-410) for crystallization was ex-

pressed using M9 minimal medium supplemented with all amino acids (2 mg/ml) except for 

methionine. Prior to induction, L-SeMet was added to 80 mg/l, and additional threonine, lysine, 

phenylalanine, leucine, isoleucine, and valine were added to inhibit the methionine biosynthet-

ic pathway (Doublie 1997). The SeMet-protein was purified as described above, except for the 

addition of 15 mM β-mercaptoethanol (b-ME) for Ni-HiTrap purification and 10 mM 

dithiothreitol (DTT) for gel filtration. 

 

7.2. Crystallization and data collection  

SAS-6 CCD (residues 248-410) was crystallized at 4°C by the hanging drop method against a res-

ervoir solution containing 0.1 M tri-sodium citrate (pH 5.6), 10% (w/v) PEG 4000 and 10% (v/v) 

isopropanol. Rod-shaped crystals appeared in two days and reached the maximal size of ~0.03 × 

0.03 × 0.5 mm after one week. The crystals belong to space group P61 (a = b = 140.29 Å, c = 
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74.67 Å). For harvesting, crystals were soaked in the same reservoir solution augmented with 

increasing concentrations of glycerol (final concentration 20% [v/v]), loop mounted, and flash 

frozen in liquid nitrogen. Diffraction data to 3.3Å resolution was collected at the beamline ID23-

1 at the European Synchrotron Radiation Facility (ESRF). A complete and highly redundant data 

set at the anomalous peak of Se (λ = 0.9792 Å) was collected. 

 

7.3. Structure determination and model docking 

Data were integrated using iMosflm (Battye et al. 2011) and scaled using the program SCALA 

(Evans 2006). Selenium sites were located and experimental maps were calculated using 

AutoSol in the software suite Phenix (Terwilliger et al. 2009). Models were built using the pro-

gram COOT (Emsley and Cowtan 2004), and refinement carried out using CNS (Brunger et al. 

1998) to final Rwork of 0.258 and Rfree of 0.299.  

For modeling of the SAS-6 coiled coil tetramer and the SAS-6/SAS-5 complex, we submitted our 

solved crystal structure of the SAS-6 CCD and a theoretical helical model the SAS-5 CTD to the 

web-based ClusPro 2.0 docking server (http://cluspro.bu.edu/), which filters docked confor-

mations with good surface and charge complementarity and ranks them based on their cluster-

ing properties. The docking was carried out with default parameters. 

 

7.4. Pull-down assays 

Small aliquots (50 µl of beads) of 6×His-tagged full-length or truncated SAS-6 proteins bound to 

Ni-NTA beads (QIAGEN) were used to pull down MBP-tagged SAS-5 protein from crude cell ly-

sate. Afterwards, the beads were washed using 5 × cv of lysis buffer supplemented with 0.1% 

Triton X-100 to remove contaminants. After boiling for 2 min in 1×SDS loading buffer, the pro-

teins were separated on an SDS-PAGE gel and stained with Coomassie Brilliant Blue G250 (Sig-

ma-Aldrich). In a reciprocal binding experiment, we loaded MBP-tagged SAS-5 CTD onto amyl-

ose beads and then used these beads to pull down SAS-6 proteins. Subsequent wash and exam-

ination were carried out in the same way as the Ni-NTA pull-down. As a negative control to 

show that SAS-5 proteins did not nonspecifically bind to Ni-NTA beads and SAS-6 did not bind to 

MBP and/or the amylose beads, mock experiments were carried out, in which we used Ni-NTA 

bound 6×His-tagged MBP to pull down SAS-5 or MBP alone on amylose beads to pull down SAS-

6.  

http://cluspro.bu.edu/
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7.5. Isothermal titration calorimetry 

The purified SAS-6 CCD and the synthetic SAS-5 CTD (residues 390-404) or purified recombinant 

SAS-5 CTD fused to MBP were dialyzed overnight against a buffer containing 20 mM Tris-HCl 

(pH 8.0) and 50 mM NaCl. Protein and peptide concentrations were determined by ND-1000 

spectrophotometer (PEQlab). ITC experiments were carried out at 25°C using a VP-ITC Microcal 

calorimeter (MicroCal, GE healthcare). The cell contained 1.4 ml of SAS-6 CCD dimer (10 μM, 

wild type or mutants), which was titrated with 29 injections × 10 µl of the SAS-5 CTD at a con-

centration of 105 µM. The ITC data were analyzed using the program Origin version 7.0 provid-

ed by MicroCal. One-site binding model was used to fit the integrated data to calculate the stoi-

chiometry and binding constants.  

For dilution ITC experiments, 300 µM of the SAS-6 CCD (dialyzed overnight) alone or in mixture 

with 450 µM of the SAS-5 CTD was injected into 1.4 ml of the same buffer in the temperature-

controlled cell at 25°C. A total of 29 × 10 µl injections were carried out. Dissociation constants 

(Kd) were calculated by integrating and fitting the endothermic heat pulses to a dimer-tetramer 

dissociation model using Orign Version 7.0 (MicroCal).  

 

7.6. Static light scattering (SLS) 

The SLS studies were carried out on an instrument from the Wyatt Technology Corp. The liquid 

chromatography equipment consists of a HPLC system (Agilent Technologies) connected in se-

ries with a triple-angle laser light scattering detector (miniDAWN TREOS), a UV detector at 280 

nm (Agilent technologies) and a refractive index detector (RI-101, Shodex). 100 µl of protein 

samples (4 mg/ml for the SAS-6 CCD and 6 mg/ml for the MBP-SAS-5 CTD) were eluted from a 

Superdex 200 10/300 GL column (GE healthcare) at a flow rate of 0.5 ml per min. Data analysis 

was carried out using the Astra software (Wyatt technology). 

 

7.7. Electron microscopy 

Purified full-length SAS-6, either alone or in complex with MBP-tagged SAS-5, was prepared at  

0.05-0.1 mg/ml in 100 mM ammonium bicarbonate (pH 7.5), 30% (v/v) glycerol. The samples 

were sprayed onto freshly cleaved mica chips. After drying in a Bal-Tec MED020 high vacuum 

coater (Leica Microsystems) for at least 6 h, the chips were rotary shadowed with 0.7 nm plati-

num/carbon at an elevation angle of 4 degree for SAS-6 and 7 degree for SAS-5/SAS-6 complex 
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and with carbon at a tilted angle of 45 degree. Electron micrographs were taken on an FEI 

Morgagni 268D transmission electron microscope operated at 80 kV equipped with a 11 mega-

pixel CCD camera. Images were examined and analyzed using ImageJ (http://imagej.nih.gov/ij/). 

 

 

http://imagej.nih.gov/ij/
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