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“... knowledge must continually be renewed by ceaseless effort, if it is not to be lost. 

It resembles a statue of marble which stands in the desert and is continually 

threatened with burial by the shifting sand. The hands of service must ever be at 

work, in order that the marble continue to lastingly shine in the sun. To these serving 

hands mine shall also belong.” Albert Einstein (1950) 
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1 Introduction 

 

1.1 Bacterial ammonia-oxidation 

 

The oxidation of NH3 to NO2
-
, the first step of nitrification, is one of the key processes in the global 

nitrogen cycle and also very important for human built systems like wastewater treatment plants 

(WWTPs). For more than a hundred years, this process is known to be performed by certain 

chemolithoautotrophic bacteria (Winogradsky, 1890) and today several ammonia-oxidizing genera 

within the Beta- and Gammaproteobacteria have been recognized (Teske et al., 1994; Purkhold et al., 

2000). Biochemically, bacterial ammonia-oxidation consists of two-steps catalyzed by two enzymes, 

ammonia monooxygenase (Amo) and hydroxylamine oxidoreductase (Hao). In the first step NH3 is 

oxidized to NH2OH and in the second step it is then further oxidized to NO2
-
 (Fig. 1.1). 

 

 

 

 

 

Figure 1.1.  Ammonia-oxidation of AOB catalyzed by two enzymes (Amo and Hao). 

 

The bacterial Amo is a membrane-associated enzyme and it consists of three subunits (AmoA, AmoB 

and AmoC) encoded by the genes amoA, amoB and amoC (Klotz and Norton, 1998). The subunit 

AmoA is used as a phylogenetic marker of ammonia-oxidizing bacteria (AOB) (Purkhold et al., 

2000) and contains the active site of the enzyme (Ensign et al., 1993) . 

 

1.2 Ammonia-oxidizing archaea 

 

Initially, microbial ammonia-oxidation was thought to be exclusively performed by certain bacterial 

species. However, this hypothesis was challenged a couple of years ago when unique amo genes were 

detected on an archaeal-associated metagenomic scaffolds from the Sargasso Sea (Venter, 2004) and 

on terrestrial metagenome fragments derived from unusual mesophilic Crenarchaeota (Treusch et al., 

2005). The final proof for the existence of ammonia-oxidizing  archaea (AOA) was delivered in the 

same year, when Nitrosopumilus maritimus, an autotrophic member of the so-called marine 

Crenarchaea capable of growing by the oxidation of ammonia, was isolated (Könneke et al., 2005). 

In the meantime, cultivation-independent methods revealed that AOA occur in almost every nitrifying 

environment (Wuchter, 2004; Treusch et al., 2005; Francis et al., 2005; Beman and Francis, 2006; 

Leininger et al., 2006; Park et al., 2006; Lam et al., 2007; Mincer et al., 2007; Nakagawa et al., 2007; 
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Coolen et al., 2007; Weidler et al., 2007; Herfort et al., 2007; Chen et al., 2008; Reigstad et al., 2008; 

Santoro et al., 2008; Shen et al., 2008; Urakawa et al., 2008; de la Torre et al., 2008; Hansel et al., 

2008; Hatzenpichler et al., 2008; Herrmann et al., 2008; de Vet et al., 2009; Sauder et al., 2011) and 

even outnumber AOB in certain habitats (Wuchter, 2004; Beman and Francis, 2006; Leininger et al., 

2006; Park et al., 2006; Nakagawa et al., 2007; de la Torre et al., 2008; Shen et al., 2008; 

Hatzenpichler et al., 2008; Reigstad et al., 2008; Erguder et al., 2009; Martens-Habbena et al., 2009; 

Zhang et al., 2010; Xia et al., 2011; Pratscher et al., 2011), which raises interesting questions 

regarding their ecophysiology and importance for the global nitrogen cycle. 

Amo is also an essential enzyme for AOA and thus, it is now used as a phylogenetic marker for both 

AOA and AOB (Treusch et al., 2005). Recently, AOA were re-assigned to a newly proposed phylum 

called the Thaumarchaeota (Brochier-Armanet et al., 2008; Spang et al., 2010). A widely accepted 

assumption is that all Thaumarchaeota which carry amoA are able of autotrophic nitrification 

(Mussmann et al., 2011). However, it was postulated that maybe not all Thaumarchaeota possess 

amoA genes ( Agogué et al, 2008, Muller et al., 2010). This hypothesis was then disproven and 

furthermore explained to be probably caused by a failure of quantitative PCR primers of certain 

amoA sequences (Konstantinos et al., 2009). Furthermore, recent findings suggest that not all 

Thaumarchaetoa perform autotrophic ammonia-oxidation. For example, they occur in amounts in 

several industrial WWTPs that cannot be explained by ammonia oxidation alone (Mussmann et al., 

2011). 

Currently, only a handful of AOA are well described, cultivated or even isolated in pure culture. In 

contrast, it was recently shown by 454 amplicon sequencing of archaeal amoA genes that in less than 

1 g of certain soils up to 83 different AOA species can be found (Pester et al., 2012). Apparently, we 

have just started to discover their diversity and understand their role in nature.  

 

1.3  Lipids of AOA 

 

Mainly (hyper-)thermophilic archaea synthesize a characteristic core membrane lipid called glycerol 

dibiphytanyl glycerol tetraether (GDGT) (Schouten et al., 2007). About 20 different types of GDGTs 

have been described, encompassing crenarchaeol (Fig. 1.2), which so far has been exclusively been 

detected in all AOA (Damsté, 2002; Schouten et al., 2008; de la Torre et al., 2008; Pitcher et al., 

2009) and has thus been used as biomarker in environmental studies of these organisms (Leininger et 

al., 2006; Pitcher et al., 2011a; Pitcher et al., 2011b) 
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Figure 1.2. Chemical structure of crenarchaeol (Smith et al., 2012). 

 

Crenarchaeol, which would be more accurately termed thaumarchaeol, contains four cyclopentane 

and one cyclohexane ring, long alkyl chains, 11 methyl - side groups and two biphytanyl glycerol 

diethers. Many archaea have been found in habitats with extreme conditions and the ester linkages in 

the membrane lipids are less stable than ether linkages, which could be an explanation for their 

occurrence in (hyper-)thermophilic archaea (Damsté et al., 2002). 

The chemical structure of crenarchaeol is highly similar to the structure of other GDGT lipids found 

in many archaeal species, besides the cyclohexane ring. It was proposed that pelagic Crenarchaeota 

inherited the ability to build cyclopentanes-containing GDGT membrane lipids from 

hyperthermophilic Crenarchaeota. Nevertheless, the pelagic Crenarchaeota have a much cooler 

tempered environment. Hence, it was suggested that they modified their GDGT lipids so that they 

also contain a cyclohexane ring. This evolutionary step was thought to prevent a highly densed 

packing characteristic of the membrane lipids, which is needed for higher temperatures (Damsté et 

al., 2011). On the contrary, crenarchaeol was recently also found in hydrothermal marine sediments 

(Schouten et al., 2003) and thermal hot springs (Pearson et al., 2004). It was further postulated that 

besides to the water temperature, the water chemistry (e.g. salinity, pH, etc.) plays a major role in the 

distribution of GDGTs (Pearson et al., 2004). 

During the diploma thesis I also had contact with other lipids, which do not occur in currently known 

AOA but do have some structural resemblances (Fig. 4.2). This membrane spanning lipid is called 

13,16-Dimethyl-octacosanedioic acid or Iso-diabolic acid. It was previously thought to be restricted 

to certain thermophilic Thermoanaerobacter species (Jung et al., 1994; Balk et al., 2009). However, it 

was recently also found in other bacteria, especially in the subclasses 1 and 3 of Acidobacteria, 

where this lipid accounts for up to 43% of the total fatty acids (Damsté et al., 2011). 

AOA are very difficult to cultivate and in many cases only an enrichment culture is available. This 

makes further genomic analyses very challenging and thus, new ways for the identification of AOAs 

are needed. Since so far all analyzed AOA contain the special membrane lipid crenarchaeol (Fig. 1.2) 
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this might be a putative factor to distinguish them from other microorganisms. Thus, Raman 

spectroscopy was chosen for this diploma thesis because it is able to reveal the chemical composition 

on a single cell level. This technique can also be applied to living cells which makes further analyses 

possible like single cell genomics or cultivation. 

 

1.4 Raman microspectroscopy 

 

Raman microspectroscopy is based on molecular vibrations which derive from an inelastic light 

scattering process (“Raman effect”). The existence of inelastic light scattering was first postulated by 

the Austrian physicist A. Smekal in 1923 and five years later observed from two indian physicists 

(Raman and Krishnan, 1928). In 1930, C.V. Raman proved the inelastic light scattering process, 

which was then named after him (Fechner, 2005). Raman spectroscopy measures the intensities of 

wavelengths of inelastically scattered light. 

During a modern Raman measurement a laser beam is focused onto a sample and the photons interact 

with the atoms/molecules in different ways. Photons can be either absorbed or scattered. Absorption 

occurs most likely if the wavelength of the radiation is in the infrared (IR) or in the ultraviolet (UV). 

The IR absorption leads to an excitation of vibrational modes of the molecules, whereas the UV 

absorption leads to an excitation of an electronic transition, which is often followed by fluorescence. 

However, scattering is a little bit more complex. When monochromatic light is directed on a 

microbiological sample, radiation will pass through the obstacle (transmission). Nevertheless, a small 

amount of radiation will be scattered from the molecules. First of all, there is the elastic scattering 

process, which means that there is no measureable loss of energy (Rayleigh scattering). Second of all, 

approximately 1 out of 10
6
 to 10

8
 photons will be scattered inelastically, which means that the 

radiation is scattered at optical frequencies different from the frequency of the incident photons 

(Raman scattering) (Schrader, 1995; Petry et al., 2003).  

This process is called the “Raman effect”. Raman scattering can be differentiated between the so 

called Stokes and Anti-Stokes scattering. The characteristic wavelengths of a Raman spectrum 

describe the wavelength/frequency shift (Raman shift) of the Stokes and Anti-Stokes scattering in 

relation to the Rayleigh scattering (Bugay and Findlay, 1999; Schittkowski and Brüggemann, 2002). 

These shifts are characteristic for every molecule in a sample. 

The incident photons of the Stokes scattering lose energy on the vibrational level (excited state). On 

the contrary, the incident photons of the Anti-Stokes scattering gain energy on the vibrational level 

(Fig. 1.3) (Popp and Kiefer, 2006). When working with biological samples, often fluorescence can be 

observed (Fig. 1.3 E). The excitation of fluorescence is sometimes magnitudes bigger than the actual 

Raman cell spectrum, which can make reasonable Raman spectrum acquisition very challenging or 

sometimes nearly impossible. Additionally, biological samples often contain fluorophores which 
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fluoresce when the wavelength of the used Raman laser is in the UV range (Petry et al., 2003). This 

drawback can be avoided by using a laser with a different wavelength or by photo-bleaching of the 

sample (Ivleva et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Schematic illustration of the differences between Rayleigh (elastic) scattering (A), Raman (Stokes) scattering 

(B), Raman (anti-Stokes) scattering (C),  absorption (D) and fluorescence (E). 

 

Raman spectra of prokaryotic microorganisms provide information about major cellular compounds 

(e.g. storage compounds, carbohydrates, nucleic acids, proteins and lipids (Fig. 1.4)) and the intra- 

and intermolecular interactions at a single cell resolution (Petry et al., 2003). Raman 

microspectroscopy only requires a very small amount of sample, hardly any preparations and the 

technique is in general non-destructive. In addition, spectra can be acquired from living or fixed 

samples for qualitative and quantitative analysis of their chemical composition and Raman 

microspectroscopy can be combined with fluorescence in situ hybridization (FISH) (Huang et al., 

2007, Wagner et al., 2009) and single cell stable isotope probing (Huang et al., 2007; Haider et al., 

2010). 

During the last decade, different kinds of lasers have been used for Raman microspectroscopy. Argon 

and krypton lasers were applied in many laboratories, whereas currently also helium-neon (He-Ne) 

and neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers are in use, which have a 

wavenumber of up to 1064 nm (Petry et al., 2003). Those near-infrared lasers pushed the application 

of Raman microspectroscopy in the biological sciences since they often avoid the excitation of 

fluorescence or even open new opportunities for optical trapping of cells (Barbarossa et al., 1991; Xie 

et al., 2002; Creely et al., 2005; Min et al., 2005; Huang et al., 2009).  
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Figure 1.4. Illustration of the complexity of a Raman cell spectrum (E. coli). Indicated are certain peaks and bands which 

originate from major cell macromolecules. The spectrum was not processed in any way. 

 

A Raman cell spectrum is a very complex fingerprint, which can consist of thousands of single peaks 

that merge into broad peaks, shoulders and bands (Fig. 1.4) and in this diploma thesis, a huge amount 

of cell spectra had to be compared under each other. Furthermore, peaks of specific compounds like 

lipids of AOA can potentially be very small and thus, be overseen by the human eye. Therefore, a 

more sophisticated high-throughput approach was mandatory – a cluster analysis in the case of this 

study. 

 

1.5 Cluster analysis 

 

Cluster analysis is a method applied to large data sets to find meaningful groups and similarities and 

it is a very important process in data mining. These similar groups are called clusters and they are 

based on specific features, so that the given data points of one cluster are more similar to each other 

than to data points of other clusters (Jiang et al., 2004). There are many different algorithms to 

achieve a clustering and they vary in how they join objects together into groups, using the 

measurement of similarity or distance. 

In this study a hierarchical clustering was performed on all acquired Raman cell spectra of different 

prokaryotic species. They were assigned into clusters and sub clusters, which derived from so called 

distances to each other. In general, clusters contain objects with a lower distance (higher similarity) to 
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each other than to other objects. Basically, there are two main types of cluster methods that rely either 

on divisive or agglomerative clustering (Fig. 1.4). 

Divisive or top-down clustering is a variant of hierarchical clustering where it starts at the top with all 

objects in one cluster. This cluster is then split into groups using a clustering algorithm. In contrast, 

agglomerative or bottom-up clustering starts at the bottom with all objects being a cluster by itself. 

They merge into one single cluster that contains all the objects by the use of cluster algorithms 

(Fraley, 1998). In this study an agglomerative clustering algorithm was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Schematic illustration of the differences between agglomerative (bottom-up) and divisive (top-down) 

clustering. 

 

1.6 Aims of this study 

 

It was the major aim of this study to explore if AOA can be reliably identified via Raman 

microspectroscopy. For this purpose, a comprehensive Raman reference spectra library of several 

AOA as well as of many other prokaryotic organisms, representing various phyla, was established 

and analyzed. In addition, also the spectra of various chemical compounds including lipids were 

recorded in order to make an attempt to understand which cellular compounds contributed in which 

manner to the obtained AOA spectra.  

Ultimately, in collaboration with Dr. David Berry, a Post-Doc at the Department of Microbial 

Ecology (Vienna), a statistical software application should be established that allows to calculate the 

probabilities of a Raman spectrum of unknown origin to be an AOA species or not. This approach 

should prove itself by testing it first on AOA enrichment cultures and then on a more complex level 
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on environmental samples which contain putative AOA. 

Ultimately, my work should provide a basis for combining Raman based single cell identification of 

AOA with an optical tweezer system (König, 2000; Creely et al., 2005; Huang et al., 2009), which 

optically traps living cells in a capillary for a quick Raman spectrum acquisition. If a trapped single 

cell would then have a highly calculated probability to be an AOA, this (still living) cell could then 

be specifically separated from the sample and further analysed by either multiple displacement 

amplification (MDA) and genome sequencing or cultivation.  
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2 Materials and Methods 

 

2.1 Software 

 

Table 2.1. Software used. 

Name of software Reference/Manufacturer 

Adobe Photoshop CS4 Adobe Systems, San Jose, California, USA 

irAnalyze 
LabCognition, Analytical Software GmbH & Co. 

KG, Köln, Germany 

LabSpec 5 Horiba, Kyoto, Japan 

LSM 510 Meta V.3.2. sp2 Carl Zeiss MicroImaging GmbH, Jena, Germany 

LSM Image Browser Carl Zeiss MicroImaging GmbH, Jena, Germany 

Microsoft Office 2010 Microsoft Corporation, Redmond, WA, USA 

probeBase Loy et al., 2003 

R 
R Development Core Team (2012). R Foundation 

for Statistical Computing, Vienna, Austria 

Zotero 
Center for History and New Media, George 

Mason University, USA 

 

2.2 Technical equipment 

 

Table 2.2. Technical equipment used. 

Equipment Company 

CCD camera BX41 Olympus Corporation, Tokio, Japan 

Centrifuge Mikro 22 R 
Andreas Hettich GmbH & Co KG, Tuttlingen, 

Germany 

Centrifuge Rotina 35 S 
Andreas Hettich GmbH & Co KG, Tuttlingen, 

Germany 

Hybridization oven UE-500 Memmert GmbH, Schwabach, Germany 

Microscope LSM 510 Meta (CLSM) Carl Zeiss MicroImaging GmbH, Jena, Germany 
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pH-meter inoLab pH Level 1 
Wissenschaftlich-Technische Werkstätten  GmbH 

& Co KG, Weilheim, Germany 

Raman Spectrometer HR800 Horiba, Kyoto, Japan 

Vortex Genie 
Vortex Genie 2, Scientific Industries, New York, 

USA 

Water bath DC10 Thermo Haake, Karlsruhe, Germany 

Water purification system Milli-Q Biocel, Millipore GmbH, Vienna, Austria 

 

2.3 Expendable items 

 

Table 2.3. Expendable items used. 

Expandable item Company 

CaF2 carrier slide („Raman slide“) Crystran,  Poole, UK 

Cover slips (24×50 mm) 
Paul Marienfeld, Bad Mergentheim, 

Germany 

Erlenmeyer-Kolben DURAN®, various sizes Schott Glas, Mainz, Germany 

Eppendorf Reaktionsgefäße, various sizes Eppendorf AG, Hamburg, Germany 

Pipette tips, various volumes Carl Roth GmbH & Co, Karlsruhe, Germany 

Sampling vessels (50 ml) 
Greiner Bio-One GmbH, Frickenhausen, 

Germany 

Slides (10 wells) 
Paul Marienfeld, Bad Mergentheim, 

Germany 

Syringes, various sizes 
B. Braun Melsungen AG, Melsungen, 

Germany 

Syringe filters, various sizes Satorious AG, Goettingen, Germany 
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2.4 Chemicals 

 

Table 2.4. Chemicals used. 

Chemical Company 

Blocking reagent Roche Diagnostics Vienna GmbH, Vienna, Austria 

Casein-peptone Fluka Chemie AG, Buchs, Switzerland 

Citifluor AF1 Agar Scientific Ltd., Stansted, UK 

DAPI 
Lactan Chemikalien und Laborgeräte GmbH, Graz, 

Austria 

Dextran-sulfate Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

EDTA Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Ethanol absolute Fluka Chemie AG, Buchs, Switzerland 

Formaldehyde (37 % (w/w)) Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Formamide Fluka Chemie AG, Buchs, Switzerland 

Glucose Fluka Chemie AG, Buchs, Switzerland 

Hydrochloric acid (37% (w/w) Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Hydrogen peroxide (30%) Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Paraformaldehyde Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Potassium acetate J. T. Baker, Deventer, Holland 

Sodium chloride Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Sodium dodecyl sulfate Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Sodium hydroxide Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Tris Carl Roth GmbH & Co KG, Karlsruhe, Germany 

Yeast extract Oxoid Ltd., Hampshire, England 
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2.5 List of all 16S rRNA probes used in this study 

 

For the selection of the appropriate probe (Tab. 2.5), the online database probeBase (Loy et al., 2003) 

was used. 

 

Table 2.5. Characteristics and specifications of all 16S rRNA probes used. 

primer name Sequence 5’-3’ specific to FA conc. (%) reference 

Arch915 
GTG CTC CCC 

CGC CAA TTC CT 
Archaea not determined 

Stahl and 

Amann., 1991 

CREN512 
CGG CGG CTG 

ACA CCA G 
most Crenarchaeota 0 

Jurgens et al., 

2000 

EUB338 
GCT GCC TCC 

CGT AGG AGT 
most Bacteria 0 – 50 

Amann et al., 

1990 

EUB338 II 
GCA GCC ACC 

CGT AGG TGT 
Planctomycetales 0 – 50 Daims et al., 1999 

EUB338 III 
GCT GCC ACC 

CGT AGG TGT 
Verrucomicrobiales 0 - 50 Daims et al., 1999 

 

2.6 Buffers, media and solutions  

 

2.6.1 General buffers  

 

PBS stock solution  

solution 1 NaH2PO4: 200mM (35.6 g/l) 

solution 2 Na2HPO4: 200 mM (27.6 g/l) 

(pH of solution 1 adjusted the with solution 2 to 7,2 - 7,4) 

 

1xPBS solution 

NaCl  130 mM (7.6 g/l) 

PBS stock solution 10 mM (50 ml/l) 

MQ  ad 1000 ml 

(pH adjusted to 7.2 – 7.4) 
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3xPBS solution 

NaCl  390 mM (22.8 g/l) 

PBS stock solution 30 mM (150 ml/l) 

MQ  ad 1000 ml 

(pH adjusted to 7.2 – 7.4) 

 

TE buffer 

Tris  10 mM 

EDTA  5 mM 

(pH adjusted to 8.0 using HCl) 

 

2.6.2 General solutions 

 

0.5 M EDTA, pH (8.0) 

186.1 g of Na2-EDTA x 2H2O were dissolved in 700 ml MQ. In addition, the pH was adjusted to 8.0 

by 10 M NaOH. At last, the volume was filled up to 1000 ml with MQ. 

 

1 M Tris/HCl,  pH (8.0) 

121 g of Tris were dissolved in 800 ml of MQ and the pH was adjusted to 8.0 with HCl (conc.). 

 

Lysozyme solution (10 mg/mL) 

Lysozyme 100 mg 

0.5 M EDTA 1 ml 

1 M Tris/HCl 1 ml 

MQ  8 ml 

 

2.6.3 Culture medium for Edaphobacter modestus (DSM 18101) 

 

Casein peptone 0.50 g 

Glucose 0.10 g 

Yeast extract 0.25 g 

MQ  ad 1000 ml 

(pH adjusted to 5.0) 
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2.6.4 Paraformaldehyde solution 

 

4 % Paraformaldehyde (PFA) solution 

3xPBS solution 

1 M NaOH 

1 M HCl 

 

Procedure: 33 ml MQ were heated at 65°C. 2 g PFA and 1 M NaOH were added until the solution  

was clear. Further, 16.6 ml 3xPBS were added. The solution was then cooled down to room 

temperature and the pH was adjusted to 7.2 - 7.4 by 1 M HCl. Last but not least, the solution was 

filter-sterilized (0.22 μm) and stored at -20°C. 

 

2.6.5 Fluorescence in situ hybridization buffers 

 

Table. 2.6 Hybridization buffer of FISH. 

FA conc. (%) 0 5 10 20 25 30 35 

5M NaCl (μl) 180 180 180 180 180 180 180 

1M Tris/HCl (μl) 20 20 20 20 20 20 20 

MQ (μl) 800 750 700 600 550 500 450 

Formamide (μl) 0 50 100 200 250 300 350 

10% SDS (μl) 1 1 1 1 1 1 1 

 

 

Table. 2.7 Washing buffer of FISH. 

FA conc. (%) 0 5 10 20 25 30 35 

5M NaCl (ml) 9 6.3 4.5 2.15 1.49 1.02 0.7 

1M Tris/HCl (ml) 1 1 1 1 1 1 1 

MQ (ml) 

ad 

50ml 

ad 

50ml 

ad 

50ml 

ad 

50ml 

ad 

50ml 

ad 

50ml 

ad 

50ml 

EDTA (ml) 0 0 0 0.5 0.5 0.5 0.5 
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2.6.6 Catalyzed reporter deposition fluorescence in situ hybridization buffers 

 

Hybridization buffer (HB) – 20 ml 

5M NaCl 3.6 ml 

1M Tris-HCl 400 µl 

Dextran sulfate 2 g 

Formamide (X %) x ml 

Blocking reagent (10 %)  2 ml 

SDS (10 %) 20 µl 

MQ  ad 20 ml 

 

Volume of formamide in 20 ml of HB 

20 % FA in HB 4 ml FA 

25 % FA in HB 5 ml FA 

30 % FA in HB 6 ml FA 

 

Washing buffer (WB) – 50 ml 

5M NaCl x µl 

1M Tris-HCl 1 ml 

0.5 M EDTA 500 µl 

SDS (10 %) 50 µl 

MQ  ad 50 ml 

  

Volume of 5 M NaCl in 50 ml of WB 

20 % FA 2150 µl 

25 % FA 1490 µl 

30 % FA 1020 µl 
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2.7 List of microorganisms used for Raman spectra acquisition 

 

Table 2.8. Alphabetical list of microorganisms used in this diploma thesis and their Raman acquisition parameters. Filter 

0 = 100 %; filter 0.3 = 58 %; filter 0.6 = 28 %, filter 1= 8 % laser intensity. The Raman reference spectra library consists 

of all listed microorganisms (exclusive of the two AOA enrichment cultures SV8-6 and SV9-19). The used objectives 

(Olympus) were Mplan-achromat with a numerical aperture of 0.90. 

species strain 
acquisition 

time (s) 
pinhole (µm) filter 

objective 

magnification 

Acetonema longum DSM 6540 45 600 0.3 100 

Acidobacterium capsulatum DSM 11244 50 600 0.6 100 

AOA enrichment SV8-6 *** - 25 600 0.6 100 

AOA enrichment SV9-19 *** - 30 600 0.6 100 

Bacillus mycoides DSM 309 25 600 1 100 

Burkholderia cepacia DSM 7288 40 600 0.3 100 

Desulfoacinum infernum DSM 9756 20 600 0.6 100 

Desulfobacca acetoxidans DSM 11109 30 600 1 100 

Desulfobacterium niacini DSM 2650 40 600 1 100 

Desulfobacula phenolica DSM 3384 30 600 0.6 100 

Desulfobulbus propionicus DSM 2032 18 600 0.6 100 

Desulfocella halophila DSM 11763 30 600 0.6 100 

Desulfofustis glycolicus DSM 9705 35 600 0.6 100 

Desulfomicrobium apsheronum DSM 5918 33 600 1 100 

Desulfomusa hansenii DSM 12642 25 600 1 100 

Desulfovibrio halophilus DSM 5663 45 600 0.6 100 

Desulfovibrio longus DSM 6739 35 600 0.6 100 

Desulfovibrio piger DSM 749 30 600 0.6 100 

Desulovibrio oxyclinae DSM 11498 60 600 0.6 100 

Edaphobacter aggregans DSM 19364 35 600 0.3 100 

Edaphobacter modestus DSM 18101 32 600 0.3 100 

Escherichia coli DSM 30083 20 500 0 50 

Fervidobacterium pennivorans DSM 9078 40 600 0.6 100 
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Gemmata obscuriglobus DSM 5831 40 600 0.6 100 

Candidatus Kuenenia stuttgartiensis * - 40 600 0.6 100 

Methanothermobacter margburgensis ** - 45 600 1 100 

Methylobacter tundripaludum sp. nov. DSM 17260 35 600 0.6 100 

Methylocystis rosea sp. nov. DSM 17261 30 600 0.6 100 

Nitrolancetus hollandicus - 27 600 1 100 

Nitrosominus uzonensis - 60 600 0 100 

Nitrosopumilus maritimus*** - 120 500 0 100 

Nitrososphaera gargensis - 60 600 0.3 100 

Nitrososphaera viennensis*** - 80 600 0.6 100 

Nitrospira moscovienses - 25 600 0.6 100 

Rhodopirellula baltica DSM 10527 40 600 0.6 100 

Sarcina ventriculi DSM 3758 35 600 0.6 100 

Sphaerobacter thermophilus DSM 20745 34 600 1 100 

Sporotomaculum syntrophicum DSM 14795 30 600 0.6 100 

Streptococcus salivarius DSM 20560 10 500 0 100 

Sulfolobus acidocaldarius *** DSM 639 25 600 0.6 100 

Sulfolobus islandicus *** Y.N.15.51 30 600 1 100 

Sulfolobus tokodaii *** strain 7 25 600 0.6 100 

Thermosipho africanus DSM 5309 50 600 0.6 100 

Thermotoga maritima DSM 3109 40 600 0.6 100 

* donated from Dr. Markus Schmid, Lab-scale reactor, Nijmegen, The Nederlands, Radboud University 

** donated from Dr. Rudolf Thauer (see description Schmid et al., 2000) 

*** donated from Dr. Christa Schleper, Vienna, Austria, University Vienna 
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2.8 List of compounds/materials used for Raman spectra acquisition 

 

Table 2.9. Alphabetical list of compounds/materials used in this diploma thesis and their Raman acquisition parameters. 

The used objectives (Olympus) were Mplan-achromat with a numerical aperture of 0.90. 

 

compound/material origin 
acquisition 

time (sec) 
pinhole (µm) filter 

objective 

magnification 

1,2-di-O-phytanyl-sn-glycerol  

INstruchemie BV, 

Delfzijl, The 

Nederlands 

10 600 0.6 100 

1,2-di-O-phytanyl-sn-glycero-3-

phosphoethanolamine 

INstruchemie BV, 

Delfzijl, The 

Nederlands 

10 600 0.6 100 

calciumdifluoride Crystran, Poole, UK various 600 0 100 

crenarchaeol 
provided by Jaap. S. 

Damsté 
20 600 0.6 100 

cylcohexane 

Sigma-Aldrich 

Chemie GmbH, 

Steinheim, Germany 

3 300 0 10 

cylcohexane – cyclopentane (1:1) 

mix 

Sigma-Aldrich 

Chemie GmbH, 

Steinheim, Germany 

5 300 0 10 

cyclopentane 

Sigma-Aldrich 

Chemie GmbH, 

Steinheim, Germany 

2 500 0 10 

glycogen 

Sigma-Aldrich 

Chemie GmbH, 

Steinheim, Germany 

10 600 0.3 100 

methylcyclohexane 

Sigma-Aldrich 

Chemie GmbH, 

Steinheim, Germany 

3 500 0.3 50 

methylcyclopentane 

Sigma-Aldrich 

Chemie GmbH, 

Steinheim, Germany 

2 500 0 10 

 

2.9 Arctic AOA enrichment cultures 

 

The two arctic AOA enrichment soil samples (SV8-6 and SV9-19) were collected from Spitsbergen, 

in the Svalbard (an archipelago in the Artic, 78º north). They were grown in an autotrophic 

freshwater medium with the addition of streptomycin and ammonia. Archaeal but no bacterial amoA 

genes could be amplified by PCR. In addition, quantitative polymerase chain reaction (qPCR) based 

on the archaeal amoA showed a 17% (SV8-6) and a 26% (SV9-19) AOA-content in these 

enrichments. Furthermore, no sequences of fungi or other eukaryotes could be found by PCR. 

Finally, restriction fragment length polymorphism (RFLP) of the archaeal amoA gene featured a 

different pattern between the AOA enrichment cultures, indicating that the enriched AOA represent 

different species (Alves, 2011). 
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2.10 Cultivation of Edaphobacter modestus 

 

An actively growing culture of Edaphobacter modestus (Koch et al., 2008), DSM No.: 18101, was 

ordered from DSMZ (Germany). The culture was cultivated and maintained in a special medium 

(chapter 2.6.3) at room temperature (RT) for two weeks before a sample was PFA-fixed (chapter 

2.15.1.) for Raman spectrum acquisition. 

 

2.11 Raman microspectroscopy 

 

2.11.1 Raman spectrometer 

 

Raman spectra were acquired using a Raman spectrometer (Horiba, HR 800). This spectrometer is 

coupled to a fluorescence microscope (Olympus, BX41) and equipped with a Nd:YAG laser emitting 

photons of a wavelength of 532.09 nm. To focus the laser beam onto the single cells a x100/x50 

Mplan-achromat objective (Olympus) with a numerical aperture of 0.90 was used, which led to a 

laser spot size of approximately 800 nm. The spectral resolution was 1.5 cm
-1

. 

 

2.11.2 Calibration of the spectrometer 

 

The Raman spectrometer was calibrated every day by the use of a calibration script by the Labspec 5 

software (Horiba). Pure silica was used for this calibration measurement. In addition, also a laser 

alignment should be done at least every week to ensure that the positions where the photons are 

generated and where most photons are captured stay the same. Unfortunately, this was not executed 

during this diploma thesis which could have resulted in varying spectra intensities for specific 

acquisition parameters. The red diode of the CCD detector should be activated and the green dot of 

the Labspec 5 software must then be aligned with the center of the red diode. This green dot indicates 

where the optimal position of the laser should be. Finally, the laser has to be aligned to this position 

by the use of the internal mirrors. 

 

2.11.3 Treatment of the samples 

 

Approximately 4 to 10 μl of PFA-fixed sample (depending on the density of the culture) were 

pipetted on a CaF2 carrier slide (Crystran). In order to immobilize the cells by drying, the slide was 

then put at 46°C for approximately 10 to 15 minutes, then shortly dipped into double distilled water 

(MQ) to remove most of the salts and last but not least air dried. 
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2.11.4 Raman spectra acquisition 

 

Raman spectra with a high signal to noise ratio (SNR) were acquired using the LabSpec 5 software 

(Horiba) at 20 to 120 sec of acquisition time. Additionally, the LabSpec 5 controlled filter for the 

laser power was set from the range 0 to 1 to prevent cells from taking photodamage. Additional tests 

were run to evaluate the laser intensity for each filter. Filter setting 0 allowed a laser intensity of 100 

%. Filter 0.3 let pass around 53 %, filter 0.6 around 28 % and filter 1 around 8 % of laser intensity. 

Furthermore, the pinhole size of the CCD detector was set to 600 µm because this resulted in Raman 

cell spectra with a higher intensity compared to a smaller pinhole adjustment. Moreover, cell spectra 

were recorded at the range from wavenumbers 400 cm
-1 

to 3200 cm
-1

 with the most relevant Raman 

peaks of microbial cells being located between 400 cm
-1 

and 1900 cm
-1

. Hence, only spectra within 

this shorter range are displayed in this diploma thesis.  

 

2.12 Processing of Raman raw data 

 

2.12.1 Smoothing 

 

Acquired Raman spectra were smoothed using the Labspec 5 software from Horiba. This step was 

done to denoise the spectra. This function is based on a so-called linear Savitsky-Golay smoothing. 

“Savitsky-Golay smoothing fits a polynomial function of a specific “degree” through a range 

(“size”) of adjacent pixels, and replaces those pixels with the polynomial curve. Typically, the 

smaller the “degree” and the larger the “size”, the more significant the smoothing” (Labspec 5 user 

manual). In the case of this diploma thesis, the following parameters were executed two times: degree 

2, size 3.  

 

2.12.2 Baselining 

 

In this study the Labspec 5 software (Horiba) was used to perform baselining. In general, this method 

is applied to remove fluorescence from a Raman spectrum. The baselining of Labspec 5 is based on a 

curve fitting approach where a polynomial curve that has the best fit to a series of data points is 

constructed. The chosen data points depend on the polynomial degree, 8
th

 degree in the case of this 

diploma thesis. The 8
th

 degree equation of a polynomial curve will exactly fit 9 data points. The 

Labspec 5 line-segmented baseline approach works as follows: 

The program fits an 8
th

 degree polynomial regression to all spectrum data points. The points above 

the curve are then excluded from consideration and the program calculates the new best fitted 

polynomial 8
th

 degree curve for the data points that are left. This operation is repeated until there are 



 Materials and Methods 

 

~ 21 ~ 

 

no more data points left to exclude. Furthermore, the program uses the non-excluded points and 

draws straight lines (line-segmented) between those points. The data points below these lines become 

subtracted from the total Raman spectrum. The general formula to calculate the baseline offsets is 

pictured in Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1. The general formula to calculate the baseline offsets. 

 

2.12.3 Normalization 

 

Raman spectra were normalized in order to compare them to each other. The intensities of a Raman 

spectrum are heavily influenced by the acquisition parameters (e.g. filter, acquisition time, objective, 

selected pinhole diameter). The higher the numbers of photons are (e.g. less or no filter), the more 

intense are the peaks of the Raman spectrum. Hence, three different methods of normalization were 

applied in this study: 

a) Mean normalization was directly applied by the Labspec 5 software (Horiba). Every data point (of 

a wavenumber) was divided by the sum of all data points of each spectrum. 

b) Median normalization was manually applied to the data set of the recorded microorganisms by 

taking the median intensity of all data points of a Raman spectrum and dividing the intensity value of 

every wavenumber of a spectrum by this median value. 

c) Phenylalanine (Phe) normalization was also manually applied to the data set of the recorded 

microorganisms by taking the value of the Phe peak at the position 1004 cm
-1 

from a Raman cell 

spectrum and dividing every single data point on all spectra positions by this Phe value. This was 

executed for all microorganisms. Thus, at the end the Phe data point at the position 1004 cm
-1

 of all 

acquired Raman spectra had a normalized value of 1. 

 

2.12.4 Spectra alignment based on phenylalanine 

 

All acquired Raman cell spectra were aligned so that their most prominent Phe peak was located at 

the wavenumber position 1004 cm
-1

. The proper position of the Phe peak has been confirmed in the 

past by many other studies (Maquelin et al., 2000; Buschman et al., 2001; Xie et al., 2002; Huang et 
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al., 2003; Krishna et al., 2004; Mannie et al., 2005; Schallreuter et al., 2005; Shao et al., 2005; De 

Gelder et al., 2007; Hu et al., 2008; Teh et al., 2009; Meyer and Smith, 2011). This step was crucial 

for this study because specific AOA peaks might be very small. Thus, minor shifts in the spectrum 

caused by an inaccurate calibration of the spectrometer could cause major problems in finding of 

those characteristic peaks. 

 

2.12.5 Mean spectra 

 

In order to work with a smaller and easier manageable number of spectra, the single cell spectra of a 

specific microbial strain were combined to a mean spectrum. In case that certain cell spectra of a 

species contained the characteristic Raman peaks of the storage compound polyhydroxybutyrate 

(PHB), an isolated mean spectrum was created out of them. 

 

2.12.6 Polyhydroxybutyrate filter script 

 

In order to improve the search for AOA specific peaks, it was necessary to subtract storage 

compounds from certain mean Raman cell spectra. It might have been possible to discover AOA 

specific peaks even though the cell spectrum was covered by storage compound peaks, but the goal 

was to prevent a clustering of microorganisms which was mainly based on storage compounds even 

though the organisms themselves where not closely related. In this diploma thesis only PHB was 

considered because it is a very abundant storage compound, no other ones could be clearly identified 

within our library and PHB does have a very complex spectrum, which took a lot of time to analyze 

and fully understand. A polyhydroxybutyrate (PHB) filter script was built based on a difference 

Raman spectrum of Sarcina ventriculi with and without the storage of PHB, which derived from a 

difference in the growth stage (Fig 3.8). The script was built and executed in R (R Development Core 

Team, 2011) by Dr. David Berry. Further, the processed (chapter 2.12) data set of all mean cell 

spectra (=Raman reference spectra library) was read in and the PHB filter script evaluated the Raman 

wavenumbers between 1724 and 1741 cm
-1

, the area where PHB has its most characteristic peak. 

This peak was chosen for monitoring the storage of PHB because no other significantly strong cell-

derived Raman peaks could be detected in this region. This was not true for the other peaks of the 

PHB spectrum. Furthermore, if there was a data point in this area that was as high as or even higher 

than the phenylalanine peak in the same spectrum, it was handled as a PHB containing cell spectrum. 

The script then chose the maximum value out of the data points between 1724 and 1741 cm
-1 

and 

aligned the difference spectrum (Fig. 3.9) with reference to this position to the height of this putative 

PHB peak. In addition, every Raman spectrum was manually inspected to prove the storage of PHB. 

The cluster dendrograms (Fig. 3.1 – 3.6) also worked as a positive control of this method because 
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two spectra of the same species, with subtracted and without PHB storage, should theoretically 

cluster together, at least for S. ventriculi this must be true. 

 

2.13 Random Forest 

 

Random Forest (RF) (Breiman, 2001) is a powerful statistical classifier which performs classification 

and regression based on a forest of decision trees (chapter 2.13.1) that were grown using randomly 

selected subsets of the input data. In this diploma thesis the RF package (Liaw and Wiener, 2002) in 

the open software R (R Development Core Team, 2011) was used. RF is one of the most accurate 

learning algorithms today (Caruana et al., 2008), and it can handle very large data sets (Breiman, 

2001). Further, RF has proved to be an accurate method for various prediction questions (Chen and 

Liu, 2005; Díaz-Uriarte and Alvarez de Andrés, 2006; Prasad et al., 2006; Dutilh et al., 2011). 

Furthermore, it has its roots in two methods called classification and regression trees (CART) 

(Breiman, 1984) and bootstrap aggregating (bagging) (Breiman, 1996). CART is “… a recursive 

partitioning method” and it is used to build classification and regression trees (Statsoft(a)). To 

achieve this, raw data is used and decision trees (chapter 2.13.1) are generated by growing them to 

their maximum size. In addition, a certain number of potential optimal trees are produced. At the end, 

the best tree is evaluated by the use of the Gini diversity index (chapter 2.13.3) (Wu et al., 2007). 

Bagging is a very effective method to improve the predictive power (stability and classification 

accuracy) of a classifier. Furthermore, bagging reduces the variance of a predictor, but its success 

relies on the instability of the used learning algorithm (Dietterrich, 2000). Especially, for large, high 

dimensional data sets this approach is used quite often (Bühlmann and Yu, 2002). 

 

2.13.1 Decision trees 

 

A decision tree is a predictive model where distinct rules are applied to calculate a target value 

(Horning). Furthermore, a specific algorithm is used to determine where the best split at a node is. RF 

creates many of those decision trees using a randomly selected subset of spectral data at each node.  

Each tree is grown using a binary partitioning that means each parent node is split into two children 

nodes. Furthermore, each tree is grown, at least partially, at random. Once a node is split, the process 

is then repeated for every following child node (Steinberg et al, 2004), which means that all the trees 

are grown to their absolute maximum extent possible and left unpruned (Breiman, 2001). Pruning 

involves editing of a tree to simplify its structure (e.g. by removing nodes) (Zhang and Shasha, 

1989). After a “forest” of N decision trees is generated, all of these trees “vote” (classify) for a 

distinct target attribute (class) and Random Forest then chooses the classification with the most out of 

N votes as it works with the principle: “The winner takes it all” (Lüthy, 2009). In addition, RF can 
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inject randomness (e.g. candidate predictors at nodes are chosen partly at random; growing of trees is 

achieved by the selection of a random subsamples of the training data), so that each tree is different 

(Breiman, 2001; Steinberg et al., 2004). 

 

2.13.2 Error rates 

 

RF does not require the need of a special test data set to calculate its accuracy. For every tree grown, 

approximately one third of all cases (training data) are not in the bootstrap sample, they are simply 

left out (out of bag (OOB)). “Each tree is constructed using a different bootstrap sample from the 

original data” (Breiman – statistics Berkeley). Each OOB case of the individual tree construction is 

put down to this tree to obtain a test set classification for each case in about one third of the trees. At 

the end, one class achieves the most votes every time a specific case was OOB (Breiman – statistics 

Berkeley). The final OOB error estimate for the whole forest is calculated simply by cumulating the 

individual OOB results. These values are then averaged over the trees in the forest and the OOB error 

curve flattens out when enough trees are added to the RF. Furthermore, RF uses these OOB samples 

to compare the error rates of the original input data with the error rates of the variable permutated 

data and calculates the importance of variables (Breiman, 2001). 

 

2.13.3 Weighting of variables 

 

RF gives an output of the most important variables in the classification and produces an unbiased 

estimate of the test set prediction error (Breiman - statistics Berkeley). Those relevant predictor 

variables have been used quite a lot for many different data like DNA sequencing and microarrays 

(Lunetta et al., 2004; Arun and Langmead, 2005; Bureau et al., 2005; Huang et al., 2005; Díaz-

Uriarte and Alvarez de Andrés, 2006; Qi et al., 2006; Ward et al., 2006; Statnikov et al., 2008; Wu et 

al., 2008; Moorthy and Mohamad, 2011). Furthermore, RF generated precise results even when the 

important predictor variables were correlated (Strobl et al., 2007). In addition, RF does not overfit, so 

it is possible to run any number of trees in a short amount of time (Breiman, 2001). Moreover, you 

gain information about the importance of all variables for a desired group clustering because they are 

weighted by the RF algorithm.  

Two types of variable importance measures are offered by the program: the Gini importance and the 

raw importance score, also known as the permutation accuracy importance. The Gini importance is 

calculated by the principle of impurity reduction (Breiman – statistics Berkeley). This is based on the 

Gini coefficient, which is “…a measure of inequality in a population (frequency distribution)” 

(Damgaard). A low Gini coefficient value implies that values are similar, whereas a high value 

expresses a higher inequality (Damgaard). Taken together, the Gini importance is the sum of the 
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averaged impurity decreases of all nodes in a Random Forest where a specific predictor variable was 

chosen for splitting a node (Schwarz et al., 2010). Additionally, a split at a node is made when the 

Gini impurity criterion for a parent is higher than a daughter node (Izenman, 2008). When all the 

Gini decreases for each variable in the forest are added up, the outcome is an importance score 

which, often but not always, is consistent with the raw importance score (Breiman – statistics 

Berkeley). The idea behind the raw importance is not to measure the gain of information, but the 

comparison of the measurement of prediction accuracy from the model with the original data and the 

prediction accuracy of the permuted data. When a variable is permuted, it loses its influence to the 

response. If the prediction accuracy of the permuted data decreases substantially, then it is said, that 

this variable seems to be important. Further, this is done averaged over all trees in the forest to 

measure the variable importance values. The mathematics behind it is that every tree from the forest 

is taken, the OOB cases are put down it, and the numbers of votes for the correct class are calculated. 

Then the data in the OOB cases are randomly permuted and then these cases are then put down the 

tree. The number of votes for the correct class in the permuted OOB data set is then subtracted from 

the number of votes for the correct class in the original OOB data set. The average of this number 

over all trees in the forest is the raw importance score for a variable (Breiman, 2001, Breiman - 

Berkeley)). In this study only the raw importance score was used, since it is known to produce 

statistically more precise results (Díaz-Uriarte and Alvarez de Andrés, 2006; Strobl et al., 2007). 

 

2.14 Clustering – R function 

 

The data was hierarchically clustered by using the R software (R Development Core Team, 2011) 

and its function hclust, which is available in the standard R software without any additional packages. 

Furthermore, this function needs two arguments to work, a distance matrix and an algorithm method. 

 

2.14.1 Euclidean distances 

 

In this study, Random Forest (chapter 2.13.) calculated the weight of each peak of a Raman spectrum 

based on the whole data set of the microorganisms mean spectra to be important for AOA. In 

addition, RF produces data which have to be processed into a final graphical output file, the cluster 

dendrogram. To achieve this, a hierarchical clustering analysis was applied which assigned a given 

set of objects to groups on the basis of dissimilarity (Mimmack et al., 2001). A distance matrix was 

generated which derived from distances between these clustered groups. For this study, Euclidean 

distances (Fig. 2.2) were used. Geometrically, an Euclidean distance is the shortest distance (a 

straight line) between any two given points. Moreover, it is one of the most commonly used types of 

distances and it is simply calculated by the Phytagorean formula (Fig. 2.3).  
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Figure 2.2. Graphical illustration of an the Euclidean distance. 

 

 

 

Figure 2.3. Formula of Pythagoras. 

 

2.14.2 Ward’s method 

 

The Ward’s method (Joe and Ward, 1963) was used in this study as the clustering algorithm of choice 

to build the cluster dendrogram. This method “…uses an analysis of variance approach to evaluate 

the distances between clusters” (Ender). Its objective is to find at each level those two distinct 

clusters whose merger gives the minimum sum of squares of any two clusters that can be formed at 

this stage (Hervada-Sala and Jarauta-Bragulat, 2004). 

 

2.14.3 Classification weighting 

 

How the weighting works is described in chapter 2.13.3. Two weighting patterns were used in this 

study, the AOA weighting (a) and the AOA+ weighting (b). 

 

a) The AOA weighting comprises all four AOA mean spectra (N. gargensis, N. maritimus, N. 

uzonensis and N. viennensis) and evaluates which similarities they have in common against all other 

acquired cell spectra of the reference library. Those similar peaks receive a higher weighting 

compared to other peaks. The cluster dendrogram is then calculated based on these weightings. 

 

b) The AOA+ weighting is a modified weighting pattern for Random Forest. It contains not only all 

four AOA species (see a), but also certain other microorganism. In short, all species from the Raman 

reference library which contain iso-diabolic acid (Acidobacterium capsulatum, Edaphobacter 
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aggregans, Edaphobacter modestus, Fervidobacterium pennivorans, Thermosipho africanus and 

Thermotoga maritima) and the bacterium Desulfovibrio oxyclinae. 

 

2.14.4 Arctic AOA enrichment cultures 

 

The prediction of a Raman spectrum of unknown origin to belong to the group of AOA was 

accomplished by using the RF package (Liaw and Wiener, 2002) of R (R Development Core Team, 

2011). Every Raman spectrum of the two arctic AOA enrichments SV8-6 (Fig. 8.41 – 8.50) and SV9-

19 (Fig. 8.51 – 8.70) was individually evaluated. The calculation is based on a bootstrap algorithm 

and it shows the probability of a spectrum to be assigned to the AOA cluster of the dendrogram (Fig. 

3.1 – 3.6).  

 

2.15 Fluorescence in situ hybridization 

 

Fluorescence in situ hybridization (FISH) is a culture-independent method, which is used to detect 

specific prokaryotic microorganisms by fluorescently labeled rRNA targeted oligonucleotide probes. 

It allows to differentiate between different taxonomic levels and to perform a quantitative analysis. 

For the best results, cells have to be chemically fixed before the probes can hybridize under stringent 

conditions. Furthermore, FISH can be performed on a slide or in a liquid. After the hybridization, a 

final washing step is conducted and the cells can then be detected by an epifluorescence microscope 

(Daims et al., 2005). In this diploma thesis only the liquid FISH technique was used. Hence, the 

following steps (besides PFA fixation) will only refer to this type of hybridization. 

 

2.15.1 Cell fixation 

 

A tube with 1 ml of a culture was centrifuged at 14,000 rpm for 6 min. After the disposal of the 

supernatant the cell pellet was resuspended in 1 ml 1xPBS and again centrifuged with the same 

parameters. The supernatant was discarded and 250 ml of 1xPBS were added. After that, 750 ml of 

4% PFA were added and the content of the tube was resuspended and put at 4°C for 3 hours. The 

tube was then centrifuged (14,000 rpm, 6 min) and the supernatant was disposed. 1 ml of 1xPBS 

solution was added, followed by the disposal of the supernatant and centrifugation (14,000 rpm, 6 

min). The final step was performed by adding some PBS/EtOH (1:1 solution). The amount of 

solution varied due to the density of the culture. Usually the amount was between 20 and 100 μl. All 

PFA-fixed microbial samples were stored at – 20°C. 
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2.15.2 Dehydration of the fixed sample 

 

About 6 μl of a PFA-fixed sample were pipetted in a 2 ml tube with the addition of 150 μl EtOH 

(96%) to dehydrate the cells. After 5 min on room temperature (RT), the tube was centrifuged 

(14,000 rpm, 5 min). Finally, the supernatant was discarded and the sample dried within seconds. 

 

2.15.3  In situ hybridization 

 

50 μl of the hybridization buffer (HB) (Tab. 2.6) were pipetted onto the cells and 1 μl of the specific 

probe was added. The tube was closed and put at 46°C for 2 hours where it was used as a 

hybridization chamber. 

 

2.15.4 Washing of the hybridized sample 

 

The tube was centrifuged at 46°C (14,000 rpm, 5 min) and subsequently, the supernatant was 

discarded. The pellet was then resuspended in 500 μl of washing buffer (WB) (Tab. 2.7) and put back 

at 46°C for 5 min. After this step the tube was centrifuged again at 46°C (14,000 rpm, 10 min) and 

the supernatant was discarded. Subsequently, the sample was resuspended in 50 μl ice-cold MQ and 

again centrifuged (14,000 rpm, 10 min, 4°C). Finally, the sample was resuspended in approximately 

30 μl of PBS:EtOH (1:1) and stored at -20°C for further usage (e.g. analysis under the fluorescence 

microscope, Raman spectrum acquisition). 

 

2.16 Catalyzed reporter deposition fluorescence in situ hybridization  

 

Most known AOA cannot be successfully detected with conventional FISH using mono-labeled 

oligonucleotide probes (chapter 2.15). In addition, if a cell has a low ribosomal content or a high 

autofluorescence, there is a need for a technique which circumvents these drawbacks. The catalyzed 

reporter deposition fluorescence in situ hybridization (CARD-FISH) works with a tyramide signal 

amplification. The sample is hybridized with a horseradish peroxidase conjugated probe, and these 

probes are then detected by the addition of fluorophore labeled tyramides. The sample can again be 

analyzed by epifluorescence microscopy and the signal intensity is much stronger compared to the 

standard FISH (Hoshino et al., 2008). The CARD-FISH protocol (Pernthaler et al., 2002) of this 

study was adapted and performed on slides. 
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2.16.1 Cell fixation 

 

The cell fixation for the CARD FISH protocol was performed similar to the standard FISH approach 

(chapter 2.15.1.). 

 

2.16.2 Embedding 

 

10 μl of the PFA-fixed sample were pipetted onto the wells of the glass slide and dried in an oven at 

46°C for about 10 min. After this step, an increasing EtOH series was performed. The slide was put 

into 50%, 80% and 96% EtOH for 3 min each. After this dehydration step, the cells on the slide wells 

were covered by 10 μl of 0.1% agarose. The slide was air dried at 30°C for about 10 min. 

 

2.16.3 Permeabilization of the cell wall 

 

15 μl proteinase K (15 μl/ml) were pipetted on each well of the slide and incubated for 10 min at RT. 

Further, the slide was put into a tube with MQ and incubated for 1 min at RT. The slide was then 

incubated in a tube with 0.01 M HCl for 10 min at RT to bleach endogenous peroxidases and to 

inactivate proteinase K, followed by 30 min incubation in methanol + 0.15 % H2O2. Finally, the slide 

was washed in MQ, dipped in 96 % EtOH and air dried. 

 

2.16.4 In situ hybridization and washing  

 

The HB (chapter 2.6.6) and the probe working solution (50 ng/μl) were mixed in a 300:1 ratio. 

Further, 10 μl of this mixture were pipetted onto the wells of the slide with the samples. The slide 

was then put into a tube (hybridization chamber) with 50 ml volume in which a tissue was soaked 

with the remaining HB. The tube was closed and put in an oven at 46°C for 2 hours. During this step, 

the WB (chapter 2.6.6) was pre-warmed at 48°C in a water bath. After 2 hours, the slide was 

removed of the hybridization chamber und put into a 50 ml tube with washing buffer for 10 min at 

48°C. Finally, the slide was briefly dipped into ice-cold MQ. 

 

2.16.5 Tyramide signal amplification 

 

The slide was incubated in a tube with 1xPBS at RT for 10 min. After this step, the liquid was 

removed by blotting the slide on a piece of paper. The slide was then incubated in a humid chamber 

in a substrate mix (1 part (1.8 µl) of dye-labeled tyramide (1:10) and 100 parts (standard 180 µl) of 

amplification buffer + 0.0015 % H2O2 end concentration (1.8 µl; freshly prepared; 1 ml MQ + 5 µl 
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H2O2 (30 %)) for 45 min at 45°C in the dark. Subsequently, the slide was washed in a tube with 

1xPBS at RT for 10 min in the dark and then in MQ for 1 min in the dark. After a final air drying step 

in the dark the slide was ready for storage at -20°C or for the analysis under the fluorescence 

microscope. For this purpose the wells of the slide were mounted with Citifluor and a cover slip was 

put on it. 
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3 Results 

 

3.1 Cluster dendrogram of the Raman library reference microorganisms 

 

The following cluster dendrograms are based on mean spectra of the Raman reference library 

microorganisms (Tab. 2.8 – exclusive the two artic AOA enrichment cultures). The Raman cell 

spectra were processed as follows: They were aligned to the phenylalanine peak at wavenumber 1004 

cm
-1

. Furthermore, they were smoothed, baselined (line-segmented 8
th

 degree) and normalized 

(chapter 2.12). Three different methods of normalization were applied: Normalization based on the 

phenylalanine peak at position 1004 cm
-1

 (chapter 3.1.1). Moreover, median (chapter 3.1.2) and mean 

normalization (chapter 3.1.3) approaches were applied. 

Random Forest (chapter 2.13) was used to weight the variables of the data set. Two different kinds of 

weighting types were performed. Weighting towards only the AOA species (chapter 2.14.3a) and 

weighting towards the AOA+ group (chapter 2.14.3b). The RF weighting calculation was based on 

10,000 trees and 31 variables tried at each split. The OOB error estimate was calculated for all cluster 

dendrograms individually. 

 

3.1.1  Phenylalanine normalized data set 

 

The two cluster dendrograms based on the phenylalanine normalized (chapter 2.12.2.c) Raman 

reference data set are shown in Figure 3.1 (AOA weighted) and Figure 3.2 (AOA+ weighted). Figure 

3.1 featured two main clusters. Cluster 1 contained all AOA species (red), all iso-diabolic acid 

containing species (green) and five mean spectra of microorganisms, which were not expected to 

cluster within the AOA group (indicated by a black arrow). Cluster 1 also consisted of two main sub-

clusters, A and B. All four AOA mean spectra were assigned within the sub cluster B. Cluster 2 

(purple) contained all Sulfolobus species (blue). The calculated OOB error estimate was 12.5 %. This 

value was the highest error rate of all dendrograms. 

Figure 3.2 was based on the AOA+ RF weighting and showed a similar, but slightly improved result. 

Again, all four AOA species (red) were assigned to the same sub cluster (B), but much closer. In 

addition, only two iso-diabolic acid containing organisms were left inside the sub cluster B, plus 

three unexpected species (D. oxyclinae, M. tundripaludum and M. rosea). D. oxyclinae clustered 

together with N. viennensis in both RF weighting methods (Fig. 3.1 and 3.2). The OOB error estimate 

of Figure 3.2 was again 12.5 %. 
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Figure 3.1. Cluster dendrogram based on the Raman reference library. Cluster 1 contains the AOA (red). In addition, the 

sub clusters A and B of cluster 1 are indicated in the figure. Cluster 2 (violet) does not contain AOA species. Sulfolobus 

species are indicated by a blue labeling. The classification was based on a Random Forest weighting towards only the 

AOA mean spectra. PHB next to a species name indicates that these Raman mean spectra contained signals from the 

storage compound polyhydroxybutyrate, which was subtracted by the PHB filter script (chapter 2.12.6). The data were 

mean spectra and processed as follows: phenylalanine-shifted to position 1004 cm
-1

, line-segmented 8
th

 degree baselining 

and phenylalanine normalized (chapter 2.12). 
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Figure 3.2. Cluster dendrogram based on the Raman reference library. Cluster 1 contains the AOA (red). In addition, the 

sub clusters A and B of cluster 1 are indicated in the figure. Cluster 2 (violet) does not contain AOA. Sulfolobus species 

are indicated by a blue label. The classification was based on a Random Forest weighting towards the AOA+ mean 

spectra (chapter 2.14.3). PHB next to a species name indicates that these Raman mean spectra contained signals from the 

storage compound polyhydroxybutyrate, which was subtracted by the PHB filter script (chapter 2.12.6). The data were 

mean spectra and processed as follows: phenylalanine-shifted to position 1004 cm
-1

, line-segmented 8
th

 degree baselining 

and phenylalanine normalized (chapter 2.12). 
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3.1.2  Median normalized data set 

 

The two cluster dendrograms based on the median normalized (chapter 2.12.2.b) Raman reference 

data set are shown in Figure 3.3 (AOA weighted) and Figure 3.4 (AOA+ weighted). Figure 3.3 

showed two main clusters. Cluster 1 contained all AOA species (red), all iso-diabolic containing 

species (green) and three mean spectra of microorganisms, which were not expected to cluster within 

the AOA group (indicated by a black arrow). Cluster 1 also consisted of two main sub-clusters, A and 

B. All four AOA mean spectra were assigned to the sub cluster B. Cluster 2 (purple) contained S. 

acidocaldarius. However, the other two Sulfolobus species (blue) were found in cluster 1, sub cluster 

A. The calculated OOB error estimate was 12.5 %. 

Figure 3.4 was based on the AOA+ RF weighting and showed an improved result compared to the 

AOA only weighting (Fig. 3.3). The AOA N. uzonensis (red) was now located in sub cluster A, and 

the other three AOA (red) were in the sub cluster B. In addition, all iso-diabolic acid containing 

organisms (green) were inside the sub cluster B, plus one unexpected species (D. oxyclinae), 

indicated by a black arrow. In comparison to the AOA-only weighting, two organisms (A. longum, M. 

rosea) which were not expected to be assigned to the cluster 1 fell out of it. D. oxyclinae clustered 

together with N. viennensis in both RF weighting methods (Fig. 3.3 and 3.4). The OOB error estimate 

of Figure 3.4 improved to 5 % in comparison to the AOA only weighting (12.5 %).  
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Figure 3.3. Cluster dendrogram based on the Raman reference library. Cluster 1 contains the AOA (red). In addition, the 

sub clusters A and B of cluster 1 are indicated in the figure. Cluster 2 (violet) does not contain AOA species. Sulfolobus 

species are indicated by a blue label. The classification was based on a Random Forest weighting towards only the AOA 

mean spectra. PHB next to a species name indicates that these Raman mean spectra contained signals from the storage 

compound polyhydroxybutyrate, which was subtracted by the PHB filter script (chapter 2.12.6). The data were mean 

spectra and processed as follows: phenylalanine-shifted to position 1004 cm
-1

, line-segmented 8
th

 degree baselining and 

phenylalanine normalized (chapter 2.12).The data were mean spectra and processed as follows: phenylalanine-shifted to 

position 1004 cm
-1

, line-segmented 8
th

 degree baselining and median normalized (chapter 2.12). 
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Figure 3.4. Cluster dendrogram based on the Raman reference library. Cluster 1 contains the AOA (red). In addition, the 

sub clusters A and B of cluster 1 are indicated in the figure. Cluster 2 (violet) does not contain AOA. Sulfolobus species 

are indicated by a blue label. The classification was based on a Random Forest weighting towards the AOA+ mean 

spectra (chapter 2.14.3). PHB next to a species name indicates that these Raman mean spectra contained signals from the 

storage compound polyhydroxybutyrate, which was subtracted by the PHB filter script (chapter 2.12.6). The data were 

mean spectra and processed as follows: phenylalanine-shifted to position 1004 cm
-1

, line-segmented 8
th

 degree baselining 

and phenylalanine normalized (chapter 2.12). 
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3.1.3  Mean normalized data set 

 

The two cluster dendrograms based on the mean normalized (chapter 2.12.2.a) Raman reference data 

set are shown in Figure 3.5. (AOA weighted) and Figure 3.6. (AOA+ weighted). Figure 3.5 featured 

two main clusters. Cluster 1 (red) contained all AOA species, all iso-diabolic containing species 

(green) and two mean spectra of microorganisms which were not expected to cluster within the AOA 

group (indicated by a black arrow). Cluster 1 also consisted of two main sub-clusters, A and B. N. 

viennensis and N. gargensis clustered in sub cluster A and N. uzonensis and N. maritimus were 

assigned to sub cluster B. Cluster 2 (purple) contained all three Sulfolobus species (blue). The 

calculated OOB error estimate was 12.5 %. 

Figure 3.6 was based on the AOA+ RF weighting and showed a highly similar result. Differences in 

the assignment could only be seen in cluster 2 and the scale of the overall distances. In both figures, 

M. rosea clustered together with N. maritimus and D. oxyclinae was closely assigned to N. 

viennensis. The OOB error estimate of Figure 3.6 improved to 5 % compared to the AOA-only 

weighting (12.5 %). 
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Figure 3.5. Cluster dendrogram based on the Raman reference library. Cluster 1 contains all AOA species (red). In 

addition, the sub clusters A and B of cluster 1 are indicated in the figure. Cluster 2 (violet) does not contain AOA. 

Sulfolobus species are indicated by a blue label. The classification was based on a Random Forest weighting towards only 

the AOA mean spectra. PHB next to a species name indicates that these Raman mean spectra contained signals from the 

storage compound polyhydroxybutyrate, which was subtracted by the PHB filter script (chapter 2.12.6). The data were 

mean spectra and processed as follows: phenylalanine-shifted to position 1004 cm
-1

, line-segmented 8
th

 degree baselining 

and phenylalanine normalized (chapter 2.12). 
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Figure 3.6. Cluster dendrogram based on the Raman reference library. Cluster 1 contains all AOA species (red). In 

addition, the sub clusters A and B of cluster 1 are indicated in the figure. Cluster 2 does not contain AOA (violet). 

Sulfolobus species are indicated by a blue labeling. The classification was based on a Random Forest weighting towards 

the AOA+ mean spectra (chapter 2.14.3). PHB next to a species name indicates that these Raman mean spectra contained 

signals from the storage compound polyhydroxybutyrate, which was subtracted by the PHB filter script (chapter 2.12.6). 

The data were mean spectra and processed as follows: phenylalanine-shifted to position 1004 cm
-1

, line-segmented 8
th

 

degree baselining and phenylalanine normalized (chapter 2.12). 

 

Taken together, the best results (5% OOB error estimate) were achieved by the AOA + weighting and 

the use of the mean and median normalization. D. oxyclinae clustered together with N. viennensis in 

all approaches. The Sulfolobus species were never assigned to the same sub cluster as the AOA 

species. It was not possible to exclude all iso-diabolic acid containing species from the AOA cluster. 
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3.2 Artic AOA enrichments: SV8-6 and SV9-19 

 

3.2.1 FISH/CARD-FISH images 

 

Dr. Markus Schmid performed a FISH (chapter 2.15) and CARD-FISH (chapter 2.16) of the arctic 

AOA enrichment samples. In both enrichments, SV8-6 (Fig. 3.7 A) and SV9-19 (Fig. 3.7 B and D) 

signals were observed after performing a FISH with the general bacterial probe EUB338 (green). In 

addition, in SV9-19 some cells could be successfully labeled by performing a CARD-FISH with the 

general archaeal probe ARCH915 (red) (Fig. 3.7 C). Furthermore, in SV9-19 also a FISH was 

performed with the general bacterial probe EUB338 after a successful CARD-FISH (probe: 

ARCH915) was done (Fig. 3.7 D). Unfortunately, it was not possible to achieve an archaeal 

hybridization signal for the cells from the SV8-6 enrichment (data not shown). 
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Figure 3.7. Images showing probe-hybridized cells of the two arctic AOA enrichments. A = SV8-6, FISH, probe: 

EUB338 mix, FA 10%; B = FISH, SV9-19, probe: EUB338 mix, FA 10%; C = SV9-19, CARD-FISH, probe: ARCH915, 

FA 20%; D = SV9-19, FISH, probe: EUBmix338 (blue), FA 10 % and CARD-FISH, probe: ARCH915 (green), FA 20%. 

 

 

3.2.2 AOA cluster probabilities of arctic AOA enrichment cells 

 

Figure 3.8 shows the probabilities of Raman spectra from randomly chosen individual cells of the 

arctic AOA enrichments SV8-6 and SV9-19 to cluster together with the AOA reference spectra (mean 

normalization of the reference spectra library data set and use of an AOA+ weighting) (Fig. 3.6) 

based on the AOA prediction script (chapter 2.14.3). 

 

The minimum percentage of probability to be positively assigned to the AOA cluster was achieved 

from cell 13 of the AOA enrichment culture SV9-19 with 35.21 % (Fig. 3.8). All cells with a lower 

percentage were not assigned to the AOA cluster of the dendrogram (Fig. 3.6). Hence, they were not 

A 

D C 

B 
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considered to be an AOA species. Based on this prediction approach SV8-6 featured a total AOA 

content of 30%, whereas 45% of all measured SV9-19 cells were assigned to the AOA cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Cluster probabilities (in %) of the arctic AOA enrichments SV8-6 and SV9-19. Cells which were assigned to 

the AOA cluster (red) of Fig. 3.6 using the AOA prediction script (chapter 2.14.3). The cell spectra were processed as 

follows: phenylalanine shifted, baselined (8
th
 degree, line segmented) and mean normalized. Furthermore, an AOA+ 

weighting was used for calculating the RF weightings. 

 

3.2.3 Images of predicted AOA cells from arctic AOA enrichments 

 

Raman spectra of the arctic AOA enrichments SV8-6 (n = 10) and SV9-19 (n = 20) were acquired. 

These 30 cells were chosen at random and an image of every cell was recorded directly by the 

Labspec 5 software. The following images (Fig. 3.9 A - L) show the red indicated cells from Figure 

3.8, which were predicted to be AOA species and thus were assigned to the AOA cluster of Figure 

3.6. The quality of the shown images is rather low. This is a result of an abdication of an embedding 

solution, which would have caused problems for the Raman acquisition. Theoretically, also the use of 
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water- instead of air-objectives would improve the quality of the images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Brightfield images of cells from two AOA enrichment cultures SV8-6 and SV9.19, which were assigned to 

the AOA cluster of Figure 3.4. The following cell numbers are referring to the Figure. 3.8: SV8-6 cell 1 (A), cell 9 (B) 

and cell 10 (C), and SV9-19 cell 1 (D), cell 2 (E), cell 3 (F), cell 4 (G), cell 5 (H), cell 6 (I), cell 7 (J), cell 13 (K) and cell 

17 (L) were assigned to the AOA cluster of Figure 3.6 by the application of the AOA prediction script (chapter 2.14.3). 

 

3.3 Raman spectra of storage compounds 

 

Storage compounds are very abundant in both, bacteria and archaea. During the diploma thesis I 

observed that a storage compound like PHB can overlay the whole cell spectrum of a microorganism 

(Fig. 3.11). The main goal of this study was to find AOA specific peaks and such an immense 
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contribution made this very challenging. As a result, the subtraction of storage compounds was 

necessary to reveal even small peaks which may be covered by storage compounds. Thus, Raman 

spectra of certain abundant ones were acquired during this diploma thesis in order to create a filter for 

them, because different cell types can have similar storage compounds even if they are not closely 

related. 

 

3.3.1 Glycogen 

 

The branched polymer glycogen (Sigma-Aldrich) was analyzed by Raman microspectroscopy on a 

CaF2 carrier slide (Crystran). The most pronounced peaks of the mean Raman spectrum (Fig. 3.10) 

can be seen at the Raman shift positions: 440, 479, 575, 710, 756, 835, 938, 1054, 1082, 1124, 1259, 

1335, 1377 and 1458 cm
-1

. This spectrum is in accordance with other Raman spectroscopy analyses 

of glycogen (Majed and Gu., 2010). The spectra were acquired by using the following parameters in 

the Labspec 5 (Horiba) software: 10 seconds of acquisition time, pinhole size 600 µm and filter 0.3 

(58 % laser intensity). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Mean Raman spectrum of glycogen (n = 13). The data were smoothed, line-segmented baselined (8
th

 degree) 

and mean normalized (chapter 2.12). 

 

No indicative glycogen peaks could be found in our library of microorganisms. Hence, I assumed it 

did not have a significant influence to the clustering process. 
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3.3.2 Polyhydroxybutyrate 

 

During this diploma thesis numerous Raman spectra were acquired that contained the storage 

compound polyhydroxybutyrate (PHB). It was found in the following microorganisms: Burkholderia 

cepacia (Fig. 8.7), Sarcina ventriculi (Fig. 8.27), Nitrosotenius uzonensis (Fig. 8.34) and 

Methylocystis rosea (Fig. 8.5). Presence of PHB affects large parts of a cellular Raman spectrum 

(Fig. 3.11). The Raman difference spectrum of Sarcina ventriculi, with and without PHB storage 

(Fig. 3.12), showed characteristic peaks at the Raman shift positions 619 cm
-1

, 833 cm
-1

, 860 cm
-1

, 

901 cm
-1

, 958 cm
-1

, 1060 cm
-1

, 1106 cm
-1

, 1145 cm
-1

, 1209 cm
-1

, 1236 cm
-1

, 1299 cm
-1

, 1355 cm
-1

, 

1425 cm
-1

, 1457 cm
-1

 and 1737 cm
-1

.These results were quite similar to other Raman measurements 

of PHB with the exception of minor peak shifts (e.g. 1737 instead of 1735 cm
-1

) (Furukawa et al., 

2006; De Gelder et al., 2008; Ciobotă et al., 2010; Majed and Gu, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Overlay spectra of two Sarcina ventriculi Raman spectra with (red) and without (black) the storage of 

polyhydroxybutyrate. The spectra were acquired from two cells of the same culture. The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and normalized to the height of the Phe peak at position 1004 

cm
-1

 (chapter 2.12). 
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Fig. 3.12. Difference spectrum of two Sarcina ventriculi Raman spectra - with and without the storage compound 

polyhydroxybutyrate (Fig. 3.11). The remaining peaks showed the characteristic spectrum of PHB. 

 

 

No other storage compounds were analyzed by Raman spectroscopy during this study because PHA 

and glycogen belong to the most abundant ones in prokaryotic cells. In addition, Raman spectra of 

other storage compounds like sulfur (Ward, 1968) and polyphosphates (Majed and Gu, 2010) were 

checked in the literature and compared to the library of microorganism of this study. No presence of 

these could be observed. 

 

3.4 CaF2 Raman spectrum 

 

Figure 3.13 features the mean Raman spectrum of the used CaF2 carrier slide (Crystran). CaF2 

showed a highly characteristic peak at position 321 cm
-1

. Furthermore, there are some less 

pronounced peaks in the area between 400 and 1100 cm
-1

, which were shown in more detail in Figure 

3.14. The marked peaks indicated the most prominent peaks at around wavenumber 517, 809, 909 

and 1556 cm
-1

. Two different baselining approaches were performed on the Raman spectrum CaF2. 

The ratio between the peaks at position 517 and 809 cm
-1

 differed significantly based on the degree 

of the polynomial equation used for baselining (Fig. 3.15). 
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Figure 3.13. Mean Raman spectrum of the CaF2 Raman carrier slide (Crystran) used in this study (n = 17). The data were 

not processed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Raman spectrum of the CaF2 Raman carrier slide (Crystran) used in this study. The data was not processed. 

Unlike the Fig. 3.14, the spectrum of this figure starts at 400 and not at 300 cm
-1

. This shows the influence of CaF2 to the 

acquired Raman spectra during this diploma thesis. 
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Figure 3.15. Comparison of the effect of different baselining parameters to the same Raman spectrum (Fig. 3.14) of the 

used CaF2 carrier slide (Crystran) used in this study. The data were line-segmented baselined 8
th

 degree (red) and 4
th
 

degree (black).  

 

3.4.1 CaF2 intensity based on Raman acquisition time 

 

At a rather low acquisition time of 20 seconds (without the use of a laser intensity filter, pinhole size: 

600 µm, the CaF2 background signal does only significantly influence the spectrum of a cell at 

wavenumber 321 cm
-1

. However, this situation changed dramatically the longer the acquisition time 

became (Fig. 3.16). Subsequently, also the use of laser intensity filters had a major impact to the 

height of Raman peaks of CaF2. Characteristic CaF2 peaks after 120 seconds of acquisition time (no 

filter, pinhole size: 600 µm) could be observed at the wavenumbers 520, 804, 898 and 1554 cm
-1

. To 

put this in perspective, cell spectra in this study where acquired using different parameters. From low 

intensity (D. infernum; 20 seconds, pinhole size: 600 µm, filter 0.6 for 28% laser intensity) to high 

intensity settings (N. maritimus; 120 seconds, pinhole size: 500 µm, no filter). 
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Figure 3.16. Influence of the acquisition time to the Raman spectrum of the CaF2 carrier slide (Crystran) used in this 

study. The data were unprocessed raw spectra and no filter was used during the spectra acquisition. The wavenumbers of 

four peaks that were most pronounced after 120 sec of acquisition time with the use of no laser intensity filter (pinhole 

size 600 µm) were indicated in the image.  

 

3.4.2 Influence of CaF2 to cell spectra 

 

I discovered that the increase of intensity of the CaF2 peaks was stronger than the increase of the cell 

spectra peaks when the laser acquisition time was increased (data not shown). Subsequently, the cell 

spectra that were recorded with more intense laser settings contained a stronger CaF2 background 

signal contribution. Furthermore, also smaller cells had a stronger CaF2 contribution because less cell 

material and more slide support was measured with the relatively large pinhole diameter applied in 

this study. The two cell spectra in Figure 3.17 were acquired with the same acquisition time (60 

seconds), but the spectrum of N. gargensis (red) was recorded with the filter 0.3 (58 % laser 

intensity), whereas the cell spectrum of D. oxyclinae (black) was acquired with the filter 0.6 (28 % 

laser intensity). Hence, the laser intensity for D. oxyclinae was only around half as much and in 

addition, the cells of N. gargensis were even smaller than the ones of D. oxyclinae. As a consequence, 

the spectrum of N. gargensis contained a much stronger CaF2 background compared to the cell 

signal. The effect of the used baselining parameters (line-segmented, 8
th

 degree) on these two cell 

spectra were shown in Figure 3.18. The formerly quite different cell spectra were changed to very 
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similar looking spectra due to the chosen baselining parameters and the resulting subtraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Raman spectra comparison between N. gargensis (red) and D. oxyclinae (black). The data were aligned to 

the phenylalanine peak at position 1004 cm
-1

, smoothed, (chapter 2.12). The most characteristic wavenumbers of the CaF2 

peaks (Fig. 3.16) were indicated to show their influence to the whole cell spectrum. 
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Figure 3.18. Impact of baselining to the Raman spectra comparison (Fig. 3.17) between N. gargensis (red) and D. 

oxyclinae (black). The data were aligned to the phenylalanine peak at position 1004 cm
-1

, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). The most characteristic wavenumbers of the CaF2 peaks (Fig. 

3.16) were indicated to show their influence to the whole-cell spectrum. 

 

3.5 Raman spectrum of crenarchaeol 

 

3.5.1 Raman spectrum of crenarchaeol with CaF2 background signal 

 

The lipid crenarchaeol was a gift from Jaap. S. Damsté and measured on a CaF2 carrier slide.  Hence, 

the acquired Raman spectrum of crenarchaeol (Fig. 3.19) contained the characteristic CaF2 

background signal, which was mainly indicated by the very strong peak at wavenumber 321 cm
-1

 (see 

Fig. 3.13 for a comparison with CaF2). 
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Figure 3.19. Mean Raman spectrum of crenarchaeol (n = 7). The data were smoothed and the most pronounced peak of 

the spectrum (321 cm
-1

) indicated a CaF2 background signal (see Fig. 3.13). The Raman spectra were acquired by Dr. 

Markus Schmid. 

 

3.5.2 Raman spectrum of crenarchaeol without CaF2 background signal 

 

Crenarchaeol was the only spectrum obtained in this study (besides CaF2 itself) which was recorded 

between the wavenumbers 200 and 3200 cm
-1

, thus the influence of CaF2 could be investigated and 

subtracted because it had its indicator peak at the position 321 cm
-1

 (Fig. 3.13). Based on the height 

of this peak, the CaF2 spectrum was aligned to the spectrum of crenarchaeol. However, the overlay 

was not precise concerning the wavenumbers starting at 1100 cm
-1 

of the CaF2 spectrum. Numerous 

low values of the data points of the CaF2 were below zero compared to the crenarchaeol spectrum 

data points after the alignment to the height of the peak (321 cm
-1

). Hence, CaF2 was subtracted from 

crenarchaeol only between 200 and 1100 cm
-1

, a region in which all pronounced peaks of the 

spectrum of CaF2 are located (Fig. 3.13). The CaF2 subtracted spectrum of crenarchaeol (red) was 

relatively consistent with the non-subtracted spectrum (black) (Fig. 3.20). Moreover, the peak 

positions stayed the same, but the intensities of the peaks changed slightly. Taken together, the short 

acquisition time (20 sec) required for the acquisition of the crenarchaeol spectrum resulted in a rather 

weak contribution of CaF2 to the whole spectrum. 
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Figure 3.20. Overlay of Raman spectra of crenarchaeol with CaF2 background (black) and after CaF2 subtraction in the 

region from 400 to 1100 cm
-1

 (red) (n = 7). The data were smoothed and the Raman spectra were acquired by Dr. Markus 

Schmid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Influence of baselining to the Raman spectra of crenarchaeol with (black) and without (red) CaF2 

background signal from Fig. 3.20. The data were polynomial baselined (8
th

 degree) and the Raman spectra were acquired 

by Dr. Markus Schmid. 
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3.6 Peak assignment of crenarchaeol 

 

The most pronounced Raman peaks of crenarchaeol (Fig. 3.22) were analyzed using the irAnalyze 

software (LabCognition). For all peaks a tentative assignment could be made with the exception of 

the small peak at position 1600 cm
-1

 (Tab. 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Mean Raman spectrum of crenarchaeol (after subtraction of the CaF2 background), n=7. The data were 

smoothed and polynomial baselined (8
th

 degree). The wavenumbers of the most pronounced peaks were indicated. The 

Raman spectra were acquired by Dr. Markus Schmid. 

 

Table 3.1 Crenarchaeol (Fig. 3.22) peak assignment based on the irAnalyze software. Relative intensities were denoted 

by: s = strong, m = medium, w = weak, v = very, sh = shoulder. 

Raman band (cm-1) functional group vibration 

479 (w) aliphatic hydroxy compound C-O in plane, C-O-C Def 

728 (m) long chain hydrocarbon C-H, rock CH2 

814 (sh) 
branched alkyl, methyl/long chain 

alkyl/aliphatic ether 
C-C stretch (weak)/CCC 

stretch/C-O stretch (sym) 

838 (s) 
branched alkyl, methyl/long chain 

alkyl/aliphatic ether 
C-C stretch (weak)/CCC 

stretch/C-O stretch (sym)  

880 (sh) long chain hydrocarbon/aliphatic ether 
C-C-C stretch (weak)/C-O 

stretch (sym)  

913 (w) branched alkyl, methyl C-C stretch  
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950 (w) 
unsaturated hydrocarbon (ether 

conjugated)/branched alkyl, methyl 
C-H bend out of plane/C-C 

stretch 

978 (w) large ring or long chain alkyl C-C stretch ring 

998 (sh) large ring or long chain alkyl C-C stretch ring 

1058 (m) large ring or long chain alkyl C-C stretch ring 

1104 (sh) aliphatic ether C-O stretch (asym) 

1133 (m) aliphatic ether C-O stretch (asym) 

1197 (m) unsaturated hydrocarbon (ether conjugated) C-O stretch 

1301 (s) aliphatic ether (polyethoxy) CH2 bend 

1342 (sh) branched alkyl, methyl C-H bend, CH3  

1436 (vs) branched alkyl, methyl C-H, bendCH2/CH3 

1456 (sh) branched alkyl, methyl C-H, bendCH2/CH3 

1600 (vw) unkown unknown 

 

3.7 Raman spectra of diphytanoyl lipids 

 

Raman spectra of two lipids, 1,2-di-O-phytanyl-sn-glycerol and 1,2-di-O-phytanyl-sn-glycero-3-

phosphoethanolamine (Fig. 3.23), which have some structural similarities with crenarchaeol (chapter 

1.3), were acquired using the following parameters: 10 sec of acquisition time, pinhole size 600 µm 

and filter 0.6 (28 % laser intensity) by Labspec 5 (Horiba). Furthermore, the chosen acquisition 

parameters (low intensity due to a short acquisition time and the used laser filter) resulted in a very 

minor contribution of CaF2 to these spectra. The two lipids differed between each other just by one 

phosphoethanolamine side group. The Raman spectra showed a very high similarity with each other 

except for two remarkably different peaks at positions 761 and 1093 cm
-1

, indicating the influence of 

the additional side group. Compared to crenarchaeol (Fig. 3.24), they lacked peaks at the Raman shift 

positions 479, 706, 998, 1133, 1197 and 1600 cm
-1

. On the other hand, the majority of the peaks were 

rather comparable between crenarchaeol and the two diphytanoyl lipids 
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Figure 3.23. Comparison between the mean Raman spectra of the lipids 1,2-di-O-phytanyl-sn-glycerol (black, n = 6) and 

1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine (red, n = 6). The data were smoothed, line-segmented baselined 

(8
th

 degree) and mean normalized (chapter 2.12). The wavenumbers of the most pronounced differences were indicated in 

the figure. These Raman spectra were acquired by Dr. Markus Schmid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Comparison between the mean Raman spectra of the lipids 1,2-di-O-phytanyl-sn-glycerol (black) and 

crenarchaeol (red). The data were smoothed but not baselined.The wavenumbers of the most pronounced differences were 

indicated in the figure and the Raman spectra were acquired by Dr. Markus Schmid. 
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3.8 Raman spectra of cycloalkanes 

 

Raman spectra of various cycloalkanes: cyclohexane (Fig. 3.25 A), cyclopentane (Fig. 3.25 B), an 

equimolar mix of cyclohexane and cyclopentane (Fig. 3.25 C), methylcyclohexane (Fig. 3.25 D) and 

methylcyclopentane (Fig. 3.25 E) were acquired (acquisition parameters can be seen in Table. 2.8). 

Cyclohexane showed certain characteristic peaks at the positions 425, 801, 1028, 1158, 1266, 1347, 

1445 and 1466 cm
-1

. On the other hand, cyclopentane had distinct Raman peaks at the positions 889, 

1025, 1278, 1449 and 1481 cm
-1

. Subsequently, the equimolar mix of both compounds (Fig. 3.25 C) 

showed all of those peaks. In addition, the peaks of cyclohexane were stronger in this equimolar mix, 

indicating that cyclohexane gives stronger Raman signals than cyclopentane. Furthermore, the 

methyl-group in cyclohexane (Fig. 3.25 D) and cyclopentane (Fig. 3.25 E) caused numerous 

additional weak peaks. Additionally, the most characteristic peak of cyclohexane at wavenumber 801 

cm
-1

 was significantly shifted to the left (position 770 cm
-1

) in the Raman spectrum of 

methylcyclohexane, whereas the methyl-group of cyclopentane did not cause a noteworthy shift. 

Taken together, these findings indicated that side groups can cause strong shifts in the Raman spectra 

of cycloalkanes, which makes an accurate theoretical prediction of the exact position of the 

cycloalkanes in the crenarchaeol spectrum very difficult.  
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Figure 3.25. Comparison between the mean Raman spectra of cyclohexane ((A), n = 10), cyclopentane ((B), n = 5), 

equimolar mix of cyclopentane and cyclohexane ((C), n = 10), methylcyclohexane ((D), n = 3) and methylcyclopentane 

((E), n = 5). For an easier comparison certain peaks were indicated in the figure. The data were smoothed and acquired by 

Dr. Markus Schmid. 
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4 Discussion 

 

4.1 Macromolecules – lipids as discriminating factor 

 

The major macromolecules of a cell mainly consist of nucleic acids, polysaccharides, proteins and 

lipids. Nucleic acids are nucleotide polymers and store the genetic information of a cell. There are 

four different nucleotides (plus uracil in RNAs) that are used for the biosynthesis of nucleic acids, 

which are of course the same for all prokaryotes. Polysaccharides consist of polymers of a huge 

variety of simple sugars and can occur as functional and structural components of a cell (e.g. 

glycoproteins) or as storage compounds (e.g. glycogen). Most proteins are synthesized from a series 

of up to 20 different amino acids (Poeggel, 2005; Engelking, 2010). A typical cell contains thousands 

of different proteins - each of them has a different structure and function. Proteins are usually not 

stored in prokaryotes like polysaccharides and lipids. Lipids serve for example as membrane 

components or storage form. Bloor (1943) suggested the following main subclasses: simple lipids 

(e.g. triglycerides, waxes), compound lipids (e.g. phospholipids, glycolipids), and derived lipids (e.g. 

various forms of fatty acids). 

The reason why lipids and polysaccharides should be generally well suited as discrimination factors 

between different microbial strains via Raman microspectroscopy is because nucleic acids and 

proteins of all organisms consist of the same basic components, whereas lipids and polysaccharides 

(i) can have a rather unique chemical composition in certain prokaryotic strains and (ii) can occur in 

large amounts in a cell, which is why they can cause strong Raman peaks. This is also the reason why 

the membrane spanning lipid crenarchaeol is at least in theory a good Raman indicator for AOA. 

 

4.2 Random Forest 

 

In this study, RF was used to calculate similarities and differences between Raman spectra of 

different organisms. To this end, these data were used to build a clustering tree and to find peaks 

which were most characteristic for AOA spectra. Additionally, these data built the basis for the AOA 

prediction tool in order to cluster spectra of unknown origin in- or outside the AOA group. To 

calculate differences (distances) between numerous spectra, the Euclidean distances were chosen. 

Furthermore, the Ward’s method was used to create clusters based on these distance values. These 

two methods will be discussed below in more detail and also some alternatives will be shown. 

 

4.2.1 Euclidean Distance 

 

Euclidean distances are the most popular distances for computing distances between objects of multi-
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dimensional clusters. However, this type of distances is known to have one drawback. They do not 

take into consideration that some variables might be correlated (Mimmack et al., 2001). There are 

certain other distance measures, which are better suited for the analysis of correlated data (e.g. 

Mahalanobis distance (Mahalanobis, 1936)). The Mahalanobis distance is basically the Euclidean 

distance but normalized by the variance of each variable. This way, the covariance among variables is 

considered when distances are calculated (De Maesschalck et al., 2000; Imai et al., 2001; Cunderlik 

and Burn, 2006; Abril et al., 2011). Unfortunately, the Mahalanobis distance was not a selectable 

distance for RF. Nevertheless, Euclidean distances showed the best results over numerous other 

distance methods in many studies (Golub, 1999; Ramoni, 2002). However, other distance methods 

for clustering will be tested in the future once the CaF2 filter (chapter 2.12.6) is working for the 

whole Raman reference spectra library. 

 

4.2.2 Ward’s method 

 

The Ward’s method is known to show a good discriminant efficiency (Karydis, 2009). However, it is 

also known that it tends to create small clusters with roughly the same small size (Statsoft(b)). In 

addition, this method is different from other algorithms, as it does not compute distances between 

clusters. It is forming clusters by maximizing the homogeneity within clusters (Sharma, 1996). In 

order to obtain more appropriate cluster groups it is suggested to first use hierarchical clustering to 

determine the number of clusters and then use an iterative partitioning (Punji and Stewart, 1983). For 

this diploma thesis only the hierarchical clustering method was applied. In order to improve the 

results of this study, aiming for the pipeline proposed by Punji and Stewart (1983) could be 

considered. 

 

4.2.3 Alternative: Proximities for scaling 

 

There is a built-in clustering method in the R package of Random Forest that is based on proximities 

between pairs of observations in order to visualize dis/-similarities (distances) in a given data set. The 

graphical output file is a multi-dimensional plot, called the multi-dimensional scaling (MDS) plot. 

The proximities (range between 1 and 0, where 1 are identical spectra) are a measure of similarity 

between two spectra. Proximity values are calculated as the number of trees for which any two 

spectra show a terminal node, normalized by dividing by the number of trees. Further, a matrix of 

these proximity values is created. This similarity matrix is used to calculate Euclidean distances 

between spectra and they are then projected/visualized into a lower-dimensional space by the use of a 

metric scaling algorithm (Izenman, 2008).  

In summary, MDS attempts to put spectra in space with a distinct number of dimensions based on the 



 Discussion 

 

~ 61 ~ 

 

calculated distances (Statsoft(c)). This kind of clustering has been successfully performed on various 

data in the past (Svetnik et al., 2003; Shi et al., 2004). However, this clustering method was not 

performed in this diploma thesis because the highly popular Ward’s method was already well-

established in the scientific field. In addition, there was the possibility to change the distance measure 

from Euclidean distance to different ones to try to improve the results. 

 

4.3 Challenges and issues during this study 

 

4.3.1 Raman background spectrum of CaF2 carrier slide 

 

At the end of my diploma thesis an issue concerning the CaF2 carrier slides, which were used for the 

acquisition of the Raman spectra, was discovered. In the beginning, this type of slide was chosen 

because it was generally assumed in the group that it only had a single Raman band at the position 

321 cm
-1

 that was strong enough to affect Raman spectra of microbial cells (Fig. 4.1). Hence, this 

carrier slides would have been perfect for the acquisition of cell spectra, as I aimed for background-

free cell spectra in the region between 400 and 3200 cm
-1

. 

 

 

Figure 4.1. Raman spectrum of CaF2 from the RRUF database; Locality: Hunan Province, China, Source: Eugene 

Schlepp; RRUF ID: R050045.2. 

 

When carefully inspecting the Raman spectra of various reference organisms, I encountered a 

characteristic peak pattern in numerous spectra in the region between 400 and 1100 cm
-1

. 

Interestingly, these spectra also showed a strong signal increase towards 400 cm
-1

. This observation 

raised the hypothesis that CaF2 might have a stronger influence on the spectra than previously 

assumed. Hence, I had a closer look at the spectrum of the CaF2 slide. At the start of this study I 

recorded a Raman spectrum of this slide with an acquisition time of 10 sec (without a filter). Doing 

this, I achieved similar results (data not shown) compared to a CaF2 spectrum that I found in the 

http://www.statsoft.com/textbook/multidimensional-scaling/
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literature (Fig. 4.1). Unfortunately, this short acquisition time was not in accordance to the ones 

which were used to record the cell spectra. Numerous spectra were recorded for more than 60 

seconds acquisition time, some of them even without a laser intensity filter. Thus, these extended 

acquisition settings were applied to the CaF2 slide (without any cells) and an unexpected more 

complex spectrum (Fig. 3.16) was obtained. Especially in the region between wavenumber 400 and 

1100 cm
-1 

strong peaks, which resembled the peak pattern of cells that were obtained using long 

acquisition times (Fig. 3.17) were found. Therefore, I assumed that these spectra did not only contain 

information about the cell, but also background signal of the CaF2 carrier slide. Unfortunately, all cell 

spectra were recorded at starting wavenumber 400 cm
-1

. This is why it was very challenging to 

conclude how strong the CaF2 impact to each individual spectrum was, because the carrier slide had 

its unique indicator peak at position 321 cm
-1

 (in the region around position 400 cm
-1

, not only peaks 

of CaF2, but also peaks caused by cellular material can be found). In addition, I discovered that the 

bands of CaF2 became more prominent in relation to the bands of a cell spectrum the longer the 

acquisition time was chosen (data not shown). Therefore, I am quite certain that cells, which were 

exposed to a longer laser radiation and in addition, also small sized cells (the laser hits less cell 

material and less Raman photons of the CaF2 material underneath the cell get absorbed by it), 

contained a stronger CaF2 background signal. In addition, as mentioned in chapter 2.11,2, the 

misalignment of our laser position also caused an artificial error which could not be corrected by the 

choice of a smaller pinhole. In theory, when the laser is perfectly aligned which the position where 

the most photons are caught, and the laser hits a cell, a very small pinhole should exclude any 

background signal of a carrier slide. These issues led to an imprecise Random Forest calculation 

because the AOA were not only the smallest cells of this library, but they were also obtained using 

the most intense Raman acquisition parameters. In addition, a significantly stronger CaF2 background 

also affected the subtraction by baselining because the algorithm cannot clearly distinguish between 

peaks caused by the cell, fluorescence or background. Thus, at this stage it can only be speculated if 

Random Forest was really selecting for AOA peaks or rather for small cells with a CaF2 background 

signal. In summary, these findings have to be kept in mind while reading the discussions and 

conclusions about the cluster dendrograms (Fig. 3.1 – 3.6). Moreover, I can exclude that the Raman 

spectrum of CaF2 derived from any contamination on the surface of the slide, since it was not only 

washed with EtOH and CHCl3, but also various carrier slides were tested in parallel. On the other 

hand, I am confident that the CaF2 spectrum maybe covered AOA specific, maybe even crenarchaeol 

peaks. After a proper CaF2 subtraction, the results may become even better. Unfortunately, the time 

window of this diploma thesis was too small to analyze this issue any further. Hence, it will be 

addressed in the near future. 

Nevertheless, at the end of this diploma thesis our group started to experiment with other materials as 

carrier slides and aluminum looked quite promising. There still was a background signal, but it 



 Discussion 

 

~ 63 ~ 

 

seemed rather low compared to the intensity of the cell spectrum. More tests with aluminum will be 

necessary to confirm its suitability as a useful Raman carrier slide. 

 

4.3.2 Baseline parameters 

 

In this diploma thesis a baselining approach (line segmented, 8
th

 degree) was performed on all Raman 

cell spectra. This approach was necessary because fluorescence can be one of the major contributors 

to a cell spectrum. Raman raw spectra of the same pure culture do very often not look exactly the 

same. The peaks are at the same position, but the intensity values and the form of the spectrum curve 

sometimes varies considerably because background signals like the fluorescence underlie the 

spectrum. Unfortunately, this effect is rather unpredictable which results in a very challenging 

comparison of peak heights between different cell spectra, even more between different phyla. A 

baselining approach basically tries to remove fluorescence by subtracting underlying data by the 

calculation of a (in most cases) polynomial curve. This application is commonly used for processing 

of Raman spectra (Lieber and Mahadevan-Jansen, 2003). Furthermore, there are also methods to 

reject the development of a fluorescence background (e.g. by the use of FT-Raman spectroscopy 

(Chase, 1986), by the use of “Kerr gated temporal rejection with shifted excitation Raman difference 

spectroscopy” (Matousek et al., 2002), or by the use of the shifted-excitation Raman difference 

spectroscopy (SERDS) technique (da Silva Martins et al., 2010). 

For this diploma thesis, a line-segmented, 8
th

 degree baselining approach was chosen because it 

generated spectra which were aligned to the baseline throughout the whole range. In addition, this 

method was used before for various Raman approaches. Nevertheless, an “optimal” baselining 

approach is absolutely vital for the weighting process of RF, which means the baselining should be 

reasonable for all recorded spectra from different phyla. Nevertheless, it has to be considered that 

every baselining method is changing the data. This was shown in this study for CaF2 (Fig. 3.15), 

certain microorganisms (Fig. 3.18) and crenarchaeol (Fig. 3.21).  In order to choose the best suited 

baselining type and degree parameter it is not just necessary to understand how each method works 

(chapter 2.12.3), but also to run various empirical tests. Unfortunately, the time window in this 

diploma thesis was again too small, so it was not possible to dig much deeper into this topic. In 

conclusion, the chosen baselining type affected the outcome of this study and it should be mentioned 

that there is still room for optimization here. Especially after a proper CaF2 subtraction of the Raman 

reference spectra library (chapter 4.3.1), which will significantly influence the subtraction process of 

the used baselining type. 
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4.3.3 Different normalization methods 

 

Normalization is a crucial step when different Raman spectra are compared. The absolute values of 

the intensities will most likely vary because of different acquisition parameters (e.g. filter, acquisition 

time, pinhole size). However, if certain compounds of various cells need to be compared, spectra of 

varying intensity have to be processed to make them comparable. Accordingly, numerous 

normalization methods are performed in the scientific field, for instance: the mean normalization 

(Stone et al., 2002; Teh et al., 2008), the normalization by acquisition time (Orendorff et al., 2005), 

the normalization to the intensity of a specific peak that is shared by all compared spectra (Stone et 

al., 2002; Gniadecka et al., 2004; Ferraro et al., 2002), the normalization to the value 1 at the 

maximum intensity of a spectrum (Caspers et al., 2003) or the normalization by using the standard 

deviation to the values of the intensities (Baeten et al., 1998). 

Three different normalization methods were used for this diploma thesis based on the height of most 

prominent phenylalanine peak, the median and mean value of the data set (see chapter 2.12.2). In 

addition, the effect of these normalization methods on the reproducibility of the Raman spectra of 

multiple cells from the same culture had been evaluated. The obtained results indicated a consistent 

outcome. Most single Raman spectra of a pure culture were comparable under each other after the 

application of one of these three normalization methods (data not shown). Furthermore, the effect of 

the subtraction by baselining plays a major role for all three normalization methods because putative 

peaks derived by cell compounds could be lost during a baselining approach. In this study, the 

baselining was performed before the normalization step. As a result, fluorescence, which can have a 

big impact on a spectrum of a biological sample, gets subtracted first. However, small signals can be 

lost due to this process. A second possibility would have been to normalize the spectra first and then 

to the baselining. In this case the fluorescence would have also been normalized which generates an 

artificial error because the amount of fluorescence is not the same for every spectrum of the library. 

The idea behind the Phe normalization is that basically all microorganisms should have a comparable 

ratio between the amount of the basic amino acid Phe and other cell compounds. This approach 

seemed plausible but this method also has a noteworthy drawback. If the height of the phenylalanine 

peak is influenced by any other cell/storage or pigment peaks (e.g. carotenoids), a source of error is 

created that will affect the RF-weighting. However, in this diploma thesis reasonable results could 

still be achieved with the Phe normalization approach, but it did not generate the best ones out of the 

three methods. The OOB error estimate of this method was 12.5 %, which was the highest percentage 

of all three used methods. The median normalization was a reasonable method because it is relatively 

resistant to outlier peaks when a mean out of numerous single spectra is created. However, outlier 

peaks can originate for example from a different growth stage and must not be artifacts or storage 

compounds which were not of interest for goal of the clustering. In the case of a different growth 



 Discussion 

 

~ 65 ~ 

 

stage, spectra information would be lost if the majority of the single spectra were in another level of 

their life cycle. Nevertheless, the OOB error estimate of the mean normalization method (with AOA+ 

weighting) was 5 %. The same percentage was achieved by using the mean normalization. This 

method is more prone to outlier peaks compared to the median normalization. On the other hand, 

therefore different growth stages are potentially better considered when mean spectra are used.  

In conclusion, the median and mean normalization generated the best results, when the AOA+ 

weighting was used for the classification. The mean normalization is more prone to outlier peaks than 

the median normalization (e.g. storage compounds in only some of the spectra) when mean spectra 

are used. The Phe normalization can be influenced by other chemical compounds which generate 

bands at the wavenumber position 1004 cm
-1

. Furthermore, also outlier peaks contribute to the mean 

spectrum of Phe normalized data sets, just like discussed for the mean normalization. To improve the 

results even further, it might be worth considering individual and not mean spectra for each reference 

species. This would probably improve the precision of the clustering tree and the discrimination 

between AOA and non-AOA because it cannot be totally excluded that some spectra might have been 

from a contaminant. Especially for the AOA, this would cause a tremendous influence, since the RF 

looks for peaks which are specific for these type of archaea. Furthermore, the useage of single rather 

than mean spectra would create a much easier possibility in finding those contaminant spectra in the 

clustering tree. Those could then be eliminated from the data set. 

 

4.3.4 Storage compounds 

 

Many different storage compounds can be found in different prokaryotic microorganisms, for 

example: polyhydroxyalkanoates (PHA), polyglucans, extracellular polysaccharides, lipids, 

polyphosphates, sulphur granules or even triglycerols (TAG) and wax esters (WEs) (Shively, 1974; 

Dawes, 1992; Alvarez et al., 1997; Lee, 2000; Steinbüchel, 2001; Alvarez and Steinbüchel, 2002; 

Hezayen et al., 2002; Bredemeier et al., 2003; Wältermann and Steinbüchel, 2005; De Gelder et al., 

2008).  In addition, also pigments (e.g. carotenoids) do occur in a lot of prokaryotes and can cause an 

enormous influence on the Raman spectrum of the cell containing them (Hayashi et al., 1989; 

Marshall et al., 2007; Maquelin et al., 2009; Willemse-Erix et al., 2009). PHB for example can 

accumulate to approximately 80% of dry mass if the bacterial cell lives under highly stressed 

conditions or is grown in a rich medium (Luzier, 1992; Kim et al., 1994; Wong and Lee, 1998; York 

et al., 2003; Thuoc, 2009). In some cases, storage compounds can also be beneficial for the analysis 

by Raman, for example if only specific lineages of a phylogenetic group are able to build them, 

Raman spectroscopy could easily distinguish them from each other.  

This fact shows that the knowledge about these compounds and their influence on the Raman spectra 

of cells is crucial for the goals of this diploma thesis because these storage compounds and pigments 
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often lead to very strong Raman peaks and they can overlay the complete cell spectrum (Fig. 3.11). 

Hence, this makes a meaningful RF weighted cluster dendrogram nearly impossible because all the 

prokaryotes with the same storage compounds or pigments would cluster together. The application of 

storage compound/pigment filters is therefore absolutely necessary. This study mainly concentrated 

on the removal of PHB signals from microbial Raman spectra (chapter 2.12.6) as this storage 

compound was frequently found in the analyzed reference strains reflecting its widespread 

distribution. Hence, there is still some work to do in the future in that area to subtract also the peaks 

from the remaining compounds and thus, further improve the RF weighting and clustering. 

 

4.3.4.1 Polyhydroxybutyrate 

 

 Polyhydroxybutyrate (PHB) belongs to the class of polyhydroxyalkanoates (PHAs), and is one of the 

most common intracellular polymers, which is also involved in the enhanced biological phosphorus 

removal process in waste water treatment plants (Majed and Gu, 2010). This compound is built and 

stored in big granules when the environmental conditions become unfavorable for the growth 

requirements of the cell (e.g. high carbon/nitrogen ratio) (Misra et al., 2004; De Gelder et al., 2008).  

PHB consists of just one type of monomer called 3-hydroxybutyrate (3HB). Nevertheless, more than 

a hundred other types of monomers have been shown to be present in microbial polyesters 

(Steinbüchel and Valentin, 1995; Steinbüchel and Doi, 2001; Jendrossek and Handrick, 2002). 

In addition, PHA exists in two forms – amorphous and crystalline. PHA that accumulates inside the 

cell, also called the native form, is in the amorphous state. The proteins and phospholipids of the 

surface layer are sensitive to chemical and physical stress, which leads to a changing of the polymer 

structure into the crystalline state when it is stressed and damaged. Crystalline PHA also occurs 

extracellular, when the polymer is released by a lysing cell. The ratio of crystalline to amorphous 

PHA in such polymers is about 50:50 to 60:40 (Jendrossek and Handrick, 2002).  

The suggestion that not-damaged intracellular PHB granules are only amorphous and not crystalline 

was proven by certain studies (Horowitz and Sanders, 1995; Merrick et al., 1999; Jarute et al., 2004). 

Additionally, the strong peak at wavenumber 1740 cm
-1

 of certain PHB spectra was assigned to a 

C=O stretch and further, suggested to be shifted to position 1726 cm
-1 

when PHB is crystalline 

instead of amorphous (Murakami et al., 2007).   

The position of this shifted peak was assigned to 1725 cm
-1 

in certain other publications (Jarute et al., 

2004; Izumi and Temperini, 2010). Jarute et al. (2004) postulated that this shift in the crystalline form 

of PHB is a result of an intensified hydrogen bonding. 

Furthermore, it was postulated that besides this peak, also a band at position 1731 cm
-1

 can be 

observed in the Raman spectra of crystalline PHB. In addition, the broadness of the band at 

wavenumber 1725 cm
-1

 was shown to be altered by the degree of crystallinity of the sample (Izumi 
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and Temperini, 2010). 

Murakami et al. (2007) also revealed additional bands which are located at the positions 434, 1259, 

1402 and 1444 cm
-1

 that are characteristic for the crystalline state of PHB. 

Furthermore, PHB also exists in two types of molecular conformations, the so called helical alpha- 

and planar beta-form (Murakami et al., 2007; Chaturvedi et al., 2009). 

Murakami et al. (2007) revealed that there are specific peaks which only occur in the beta-form of 

PHB: 966, 935, 908, 858 and 1735 cm
-1

. There does not seem to be peaks specific for the alpha 

conformation. 

In the Raman spectra library of this diploma thesis, several different PHA contributions could be 

observed. Amorphous PHB (indicator peak: 1740 cm
-1

) could be discovered in the Raman spectra of 

Methylocystis rosea (1734 cm
-1

; Fig. 8.5) and Sarcina ventriculi (1734 cm
-1

; Fig. 8.27), whereas 

crystalline PHB (main indicator peaks: 1725 and 434 cm
-1

) could be observed in Burkholeria cepacia 

(1727 and 433 cm
-1

; Fig. 8.7) and Nitrosotenius uzonensis (1731 and 433 cm
-1

; Fig. 8.34). I assume 

that spectra with strong crystalline PHB contribution (B. cepacia, N. uzonensis) could be observed 

because of the fixation of the culture, which damaged the polymer. Minor amounts of crystallinity 

and hence, small modifications in the spectra compared to the natural PHB can probably be explained 

by additional monomers in the polyesters of the cells storage compound as described by Izumi and 

Temperini (2010). Last but not least, no Raman peaks specific for the beta-conformation of PHB 

could be found within the spectra library of this study. 

 

4.3.4.2 Polyhydroxybutyrate filter 

 

Most prokaryotes contain either the PHA sub-type called PHB or the co-complex PHB-PHV. Hence, 

a filter for the subtraction of PHB was created (chapter 2.12.6). For this filter, a difference spectrum 

of two spectra of S. ventriculi (with and without the storage of PHB) (Fig. 3.12) was used. At the time 

the PHB filter was created and used, neither did the group know how complex the Raman spectrum 

of this storage compound is, nor what is causing the shifts of certain peaks in different bacteria 

(chapter 4.3.4.1). 

The reason why a difference spectrum of S. ventriculi was used for the PHB filter  in order to subtract 

any PHB influence in numerous species was that the group initially thought that Raman spectra of 

PHB, originating from different phylogenetic groups, do not vary much and in addition, that a 

spectrum of bacterial PHB is always different than synthetic PHB. However, bacterial PHAs are 

often not only consisting just out of one type of monomer and in addition, there are other factors like 

the conformation or different states (amorphous, crystalline).  

The PHB filter used for this study is actually a filter for amorphous α-PHB. Indeed, it is not known if 

S. ventriculi accumulates pure α-PHB. Since it should have its indicator peak at 1740 cm
-1

 (S. 
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ventriculi: 1734 cm
-1

), it is very likely that this is not the case. Hence, this filter should better not be 

used as a general PHB filter, especially not for Raman cell spectra that contain crystalline PHB (B. 

cepacia, N. uzonensis). Nevertheless, the filter was created as follows: The two Raman cell spectra of 

S. ventriculi (with and without PHB) were aligned to the intensity of the prominent phenylalanine 

peak at position 1004 cm
-1

. This emanated from the assumption that different cells from a pure 

culture should contain a comparable amount of this amino acid. Moreover, these two aligned spectra 

were subtracted from each other and the resulting spectrum was compared with various PHB spectra 

from the literature (De Gelder et al., 2008; Ciobotă et al., 2010). It became obvious that the difference 

spectrum did not just consist of PHB but also of an unknown contribution in the region between 

wavenumbers 1520 and 1670 cm
-1

 (data not shown). Hence, this contribution from unknown origin 

was cut out, resulting in a flat line in the spectrum (Fig. 3.12). The PHB filter was then applied to all 

cell spectra of the reference library that seemed to contain some sort of PHA. The wavenumber 

region 1725 – 1740 cm
-1

 appeared to be a good indicator peak for monitoring the storage of PHA 

because no contribution from other cell compounds could be observed in that region in the Raman 

reference library. After the end of the diploma thesis the group realized the complexity of the PHB 

Raman spectrum and further realized that the used filter did not work properly for all 

microorganisms, especially not the ones with crystalline PHB, because the alignment of the 

amorphous PHB filter was based on the region 1725 – 1740 cm
-1

. Consequently, this resulted in the 

subtraction of some false bands in certain cell spectra because the whole filter spectrum was aligned 

to this one shifting peak, whereas not all peaks of PHB do shift the same way as the band of this one 

specific region. 

Self-evidently, the filter performed well when applied to the PHB-containing Raman spectrum of S. 

ventriculi (spectra with subtracted and without PHB storage clustered together in all normalization 

and weighting approaches (Fig. 3.1 – 3.6)) because the filter was based on a S. ventriculi difference 

spectrum. On the contrary, the filter did not operate perfectly for the other microorganisms which 

contained PHB, e.g. B. cepacia (Fig. 3.1 – 3.6). The mean spectra of B. cepacia (with subtracted and 

without PHB contribution) were assigned to different sub clusters after all normalization and 

weighting methods were applied (Fig. 3.1 – 3.6). It is very likely that S. ventriculi and B. cepacia 

stored a different sub type of PHA. Furthermore, I assume that PHA is not the only distinguishing 

factor between cells with and without this storage compound. Prokaryotic cells accumulate polymeric 

materials for a reason, so it could be that these cells were in a different growth stage or encountered 

stress, which could for example have resulted in an alteration in their membrane lipid composition, 

which is known for certain microorganisms (Ray et al., 1971; Darveau et al., 1980; Hazel and 

Williams, 1990; Nichols et al., 2000). In the difference spectrum of S. ventriculi, small additional 

peaks could be observed, which did not show up in various PHB spectra of the literature (De Gelder 

et al., 2008; Ciobotă et al., 2010). These peaks were excluded from the PHB filter because they were 
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most probably not similar for other microorganisms of different phyla since they did not originate 

from PHB. This supports the hypothesis of the formation of other Raman active compounds next to 

the PHB signals under certain conditions. In conclusion, the filter was not working as intended, 

which will also have affected the clustering of N. uzonensis and M. rosea. While the latter one also 

stored amorphous PHB, the effect will be less severe, but for N. uzonensis which had a rather strong 

contribution of crystalline PHB the subtraction generated an artificial error. These mistakes also 

affected the quality of the RF weighting of AOA spectra in general and hence, also the results of the 

AOA cluster prediction tool. 

 

4.3.4.3 Validity of filter application and spectra processing 

 

Although the used PHB filter (chapter 2.12.6) did not seem to work perfectly (chapter 4.3.4.2), the 

application of a storage compound filter appears to be both valid and necessary. Perfect results over a 

variety of microorganisms will not be accomplished with this kind of application because before the 

storage compound can be subtracted, the spectra have to be baselined due to fluorescence and 

normalized due to different reasons (e.g. acquisition parameters, cell size). Baselining has shown to 

be a putative source of error (chapter 4.3.2.). However, the results after baseline-subtraction should 

still be reasonable enough for further RF weighting. One way to improve the filter-approach would 

be to acquire and compare the Raman spectra of certain PHAs and then create various filters out of it 

instead of just one, which should produce a more robust data. In addition, also the possibility of 

generating two data sets for clustering should be mentioned. One data set including only cell spectra 

with and one without storage compounds like PHB would deny the need for a filter and yet, specific 

AOA bands could be discovered. Maybe there are characteristic sub-types of storage compounds for 

AOA which can be overseen when using a general PHA filter. 

Furthermore, the type of baselining plays a major role, not just for a reasonable comparison of 

different spectra, but also for an effective and valid subtraction of storage compounds. The varying 

and rather unpredictable contribution of fluorescence to the full spectrum makes baselining very 

challenging. Accordingly, it even becomes more complicated if not only fluorescence but also cell 

derived data was subtracted by baselining. 

 

4.4 AOA cluster enigmas 

 

4.4.1 Iso-diabolic acid 

 

As seen in the cluster dendrograms (Fig. 3.1 – 3.6), several bacteria did cluster together with the 

AOA. I discovered the influence of the CaF2 background signal on this clustering (chapter 4.3.1), but 
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there might also be other contributors. In most cases, the bacteria A. capsulatum, E. aggregans, E. 

modestus, F. pennivorans, T. africanus and T. maritima were assigned to the AOA cluster and they all 

contain a very characteristic membrane spanning lipid called 13,16-dimethyl octacosanedioic acid 

(iso-diabolic acid). It shows a structural similarity with crenarchaeol (Fig. 4.2), as both have long 

methylated alkyl chains. Recently, even a biosynthetic relationship between these two lipids was 

suggested (Damsté et al., 2011). In addition, iso-diabolic acid was previously thought to be restricted 

to certain thermophilic Thermoanaerobacter species (Jung et al., 1994; Balk et al., 2009). However, it 

was recently also found in other bacteria, especially in the subclasses 1 and 3 of Acidobacteria, 

where this lipid accounts for up to 43% of the total fatty acids (Damsté et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Difference between crenarchaeol (A) and iso-diabolic acid (B) 

 

All acquired Raman cell spectra, which contain iso-diabolic acid were assigned to the AOA in one or 

another cluster dendrogram depending on the type of normalization or RF weighting (Fig. 3.1 – 3.6), 

so it is possible that the Raman bands of long methylated alkyl chains resulted in this clustering. 

 

4.4.2 Sulfolobus species 

 

Three Crenarchaeota (S. acidocaldarius, S. islandicus and S. tokodaii) were analyzed during this 

study and none of them clustered together with one of the AOA (Fig. 3.1 – 3.6). This was rather 

unexpected since it is known that these Crenarchaeota also contain GDGT (Damsté, 2002; Ellen et 

al., 2008) and this lipid was thought to be a discriminative factor for the cluster dendrogram because 

of its structural similarity with crenarchaeol. Moreover, all Acidobacteria (A. capsulatum, E. 

aggregans and E. modestus) of the Raman reference library were assigned to the AOA cluster 

depending on the cluster parameters (Fig. 3.1 – 3.6). Hence, I hypothesized that iso-diabolic acid 
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could have a major influence to this clustering (chapter 4.6), since also the other iso-diabolic acid 

containing microorganisms were assigned to the AOA cluster after application of certain 

normalization and weighting methods (Fig. 3.1 – 3.6) Therefore, long methylated alkyl chains were 

thought to be a major discriminating factor for the RF weighting. However, also the Sulfolobus 

species of the Raman reference library contain GDGT. Consequently, it seemed that were also other 

factors which affected the clustering of AOA and iso-diabolic acid containing prokaryotes. One 

possibility was the influence of the CaF2 background signal from the carrier slide, which was used for 

the acquisition of the cell spectra. The longer the acquisition time and the weaker the used laser 

intensity, the stronger became the influence of the CaF2 background signal in relation to the cell 

spectra peaks (data not shown). The cell spectra of S. acidocaldarius and S. tokodaii were recorded 

with 28 % laser intensity (filter 0.6), an acquisition time of 25 sec and a pinhole size of 600 µm, 

whereas the cells of S. islandicus were recorded with the same settings but 30 sec of acquisition time. 

This resulted in a weaker CaF2 background signal compared to the spectra of iso-diabolic acid 

containing organisms (e.g. A. capsulatum: 45 sec, filter 0.6, pinhole 600 µm; E. aggregans: 35 sec, 

filter 0.6, pinhole 600 µm) and the AOA (e.g. N. uzonensis: 60 sec, no filter, pinhole 600 µm; N. 

maritimus: 120 sec, no filter, pinhole 500 µm) (Tab. 2.8). In short, the influence of GDGT to the RF 

weighting can only be validated by the removal of the CaF2 background signal from the whole data 

set. I still think that the slide contribution is not the only relevant contributor to this clustering, 

because there were also other bacteria with an intense laser acquisition time and they were not 

assigned to the AOA cluster (e.g. Acetonema longum (45 sec / laser intensity 58 % (filter 0.3)), 

Burkholderia cepacia (40 sec / 58 % laser intensity (filter 0.3)). 

 

4.4.3 Desulfovibrio oxyclinae 

 

Surprisingly, the sulfate-reducing bacterium Desulfovibrio oxyclinae (DSM 11498) (Krekeler et al., 

1997) was assigned to the ammonia oxidizing archaeum N. viennensis in all cluster dendrograms 

(Fig. 3.1 – 3.6). However, the comparison of their raw (Fig. 3.14) with the baselined spectra (Fig. 

3.15) showed the significant influence of the applied baselining method. There are several aspects 

which can be improved. First of all, the CaF2 background spectrum needs to be subtracted from all 

spectra of the reference library. Second of all, different kinds of baselining methods have to be 

evaluated to achieve the best result possible. And last but not least, a Raman spectrum of D. 

oxyclinae should be acquired using a different carrier slide material, to validate the CaF2 subtraction 

success. Taken together, there were certain similarities between the spectra of N. viennensis and D. 

oxyclinae, but without the knowledge about the content of fluorescence and CaF2 background, it was 

hard to predict whether D. oxyclinae had in fact a very similar spectrum which derived e.g. from 

similar lipids or not.  
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4.4.4 Methylocystis rosea 

 

Besides D. oxyclinae (chapter 4.4.3), also the mean spectrum of Methylocystis rosea (without the 

storage of PHB) (Fig. 8.4) was assigned to the AOA cluster using different normalization and 

weighting methods (Fig. 3.1, 3.2, 3.3, 3.5 and 3.6). In contrast, the spectrum of Methylocystis rosea 

with PHB storage (Fig. 8.5) was not (Fig. 3.1 – 3.6). This was surprising because the PHB filter 

script (chapter 2.12.6) was performed on this mean spectrum. In addition, M. rosea and S. ventriculi 

had their most characteristic PHB bands on the same Raman shift positions. Therefore, it can be 

assumed that they contained a similar type of PHA. Consequently, the subtraction was valid and a 

wrongly applied PHB filter can be excluded as the reason for the assignment of M. rosea to the AOA 

cluster. Furthermore, I discovered that the Raman spectrum of M. rosea (without PHB storage) 

featured some very strong Raman bands (1154 and 1511 cm
-1

), which could be assigned to a pigment 

subclass called carotenoids.  

The most important carotenoids for many prokaryotes are beta-carotene (Fig. 4.3) and 

bacterioruberin. It was shown that carotenoids have their most pronounced Raman peaks at the 

positions around 1000, 1152 and 1505 cm
-1 

(Marshall et al., 2007; Fendrihan et al., 2009). The mean 

spectrum of M. rosea with PHB storage, which was assigned outside the AOA cluster did not contain 

the peaks of this pigment. Consequently, this could explain why this spectrum was not assigned to the 

AOA cluster after PHB subtraction. The overlaying Raman spectrum of carotenoids probably led to 

the assignment of M. rosea to the AOA cluster. Another possibility would be that cells which contain 

PHB are less penetrable for Raman photons from the CaF2 material underneath the measured cells, 

thus less CaF2 background signals are in those spectra and hence, they do not cluster. Furthermore, 

the Raman peak of carotenoids which is centered at wavenumber 1000 cm
-1

 is a rather broad peak 

and thus, it added up to the one of phenylalanine (1004 cm
-1

). Therefore, these pigments have a 

strong influence to any clustering approach when the Phe-normalization method (chapter 2.12.2.b) is 

performed. Consequently, in order to perform this type of normalization, a carotenoid filter has to be 

applied first to the Raman reference library.  
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Figure 4.3. Chemical structure of beta-carotene (Marshall et al., 2007) 

 

4.5 Peak assignment of crenarchaeol 

 

Certain noteworthy differences and similarities between the Raman spectra of crenarchaeol and 1,2-

di-O-phytanyl-sn-glycerol could be observed (Fig. 3.24). The differences were indicated by the 

following peaks: 479 (w), 706 (vs), 998 (sh), 1133 (m), 1197 (m) and 1600 cm
-1

 (vw). Consequently, 

those bands are putative indicators for either cyclohexane or –pentane of crenarchaeol because 

besides the ether linkages and the two types of cycloalkanes, these two lipids are very much alike. 

The following analysis is based on the baselined spectrum of crenarchaeol (Fig. 3.19) and the results 

of the irAnalyze software (Tab. 3.1). 

For the Raman peak of crenarchaeol at wavenumber 479 cm
-1

 a hydroxyl compound was suggested, 

which can be found in the pure crenarchaeol. The very small peak at position 706 cm
-1

 was 

subtracted by the baselining approach and therefore not included in this analysis which is based on a 

baselined spectrum. However, the medium peak at wavenumber 998 cm
-1 

(a shoulder peak)
 
was 

suggested to derive from a large ring or long alkyl chain. Subsequently, this band probably originated 

from the cyclohexane or –pentane rings, as this peak was not detectable in 1,2-di-O-phytanyl-sn-

glycerol, which also has large alkyl chains (Fig. 3.21). Furthermore, the medium peak at position 

1133 cm
-1

 was proposed to derive from an aliphatic ether. Crenarchaeol has four aliphatic ether 

linkages in its chemical structure (Fig. 1.2) whereas 1,2-di-O-phytanyl-sn-glycerol has two of them in 

its structure. Therefore, this could be a wrong peak assignment for crenarchaeol. Moreover, the 

software suggests an unsaturated hydrocarbon to be responsible for the band at wavenumber 1197 

cm
-1

, which was disproven by the chemical structure of crenarchaeol. Finally, there was no 

suggestion for the very small peak at position 1600 cm
-1

. It might be possible that this small peak 

derived from a minor contamination of the sample. The software exploits a comprehensive database 

of many different chemical molecules and linkages, but a peak can derive from many different 

origins or even be generated by numerous contributors. This was also true for putative cyclohexane 

and –pentane bands, because the crenarchaeol peaks at the wavenumbers 978 and 1058 cm
-1

 were 

suggested by the irAnalyze program to originate from large rings and/or long chain alkyls. 

Theoretically, the peaks in these regions could be either from one of these bondings or from both of 
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them, which makes a peak assignment rather difficult. 

The similarities between crenarchaeol and 1,2-di-O-phytanyl-sn-glycerol (Fig. 3.21) were indicated 

by the following peaks: 728 (m), 814 (s), 838 (vs), 880 (sh), 913 (m), 950 (sh), 978 (sh), 1058 (sh), 

1104 (m), 1301 (vs) and 1342 cm
-1

. Several bands which might be the result of long (branched) alkyl 

groups like: 728, 814, 838, 880, 913, 950, 1342, 1436 and 1456 cm
-1

 (Tab. 3.1) could be detected. In 

addition, the crenarchaeol peaks at wavenumber 1104 and 1301 cm
-1

 were suggested to be promising 

additional candidates for aliphatic ether bands. Pure cyclohexane and –pentane had strong Raman 

peaks at the wavenumber positions 801, 889, 1025, 1266 and 1449 cm
-1

 (Fig. 3.22). These bands 

could not be seen in the Raman spectrum of crenarchaeol. However, it was discovered that even 

simple methyl side groups can result in a significant Raman shift of strong peaks in cycloalkanes 

(Fig. 3.19). Furthermore, there is the slight possibility that the Raman spectrum of crenarchaeol 

might be shifted inside the cell compared to the extracted pure lipid form which the spectra were 

taken from in this diploma thesis. 

 

4.6 Detection of crenarchaeol in whole-cell Raman spectra 

 

Based on the preliminary results (Fig. 3.1 – 3.6) it is not possible to discriminate the AOA spectra 

from those of all other prokaryotic organisms just based on crenarchaeol (= AOA-only weighting in 

RF). The findings of this study (chapter 4.3.1) indicated that the CaF2 carrier slide caused a strong 

influence to the acquired Raman cell spectra that can currently not be removed without a re-recording 

of all reference spectra. Furthermore, the impact of the CaF2 background signal increased compared 

to the intensity of a cell spectrum if longer acquisition times and/or a lower filter were chosen (data 

not shown). In addition, the Raman peaks of cyclohexane and cyclopentane from crenarchaeol could 

be much weaker compared to the other bands of cell compounds than expected. Nevertheless, 

keeping in mind the location of the CaF2 peaks, it might very well be possible that the CaF2 

background spectrum covered characteristic crenarchaeol peaks. Furthermore, the most pronounced 

Raman peaks of crenarchaeol seemed to derive from long methylated alkyl groups, which can also be 

found in other lipids (Fig. 3.21). In the case of crenarchaeol it was already possible to subtract the 

CaF2 background signal (Fig. 3.17) since the spectrum was recorded starting at the Raman shift 

position 200 cm
-1

 and CaF2 had its indicator peak at position 321 cm
-1

. On the contrary, the Raman 

reference spectra library was recorded from beginning at wavenumber 400 cm
-1

, which made a 

subtraction much more difficult. Either all Raman spectra have to be re-recorded to include the major 

CaF2 peak or a different carrier slide has to be chosen. Ultimately, I will try to subtract the CaF2 

background from all acquired Raman cell spectra to discover if crenarchaeol is in fact the 

discriminating factor of AOA against other archaea and bacteria. The usage of the AOA+ weighting 

led to a tighter clustering of the AOA and a lower OOB error estimate (Fig. 3.4 and 3.6). Hence, at 
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the moment it seems that the AOA can be discriminated against most other prokaryotes, with the 

exception of organisms that contain iso-diabolic acid or certain pigments. 

 

4.7 Arctic AOA enrichments 

 

In order to test the reliability of the AOA prediction tool and the peak areas which were chosen by RF 

to be specific for AOA, AOA spectra from outside the library have to be analyzed. Our group had 

access to two arctic AOA enrichments from Dr. Christa Schleper. The presence of AOA was 

confirmed by qPCR and CARD-FISH. Raman spectra of randomly chosen cells should then feature a 

similar AOA-content like the qPCR suggested. 

 

4.7.1 Quality of acquired Raman spectra 

 

The signal to noise ratio of the acquired spectra of the arctic AOA enrichments, SV8-6 (Fig. 8.41 – 

8.50) and SV9-19 (Fig. 8.51 – 8.70), was relatively low compared to the spectra of the reference 

library (Fig. 8.1 – 8.40). The Raman spectra of these AOA enrichment cultures were difficult to 

measure, because many cells showed unexpected photo damage during spectrum acquisition. It 

would have been possible to extend the acquisition time for all recorded cells, but this would have 

resulted in loss of many more cell spectra. Since I chose cells at random to acquire Raman spectra 

from, I had to use low intensity laser settings to avoid losing phylogenetic groups of cells which were 

not able to withstand stronger parameters. I would have lost the natural diversity of cells inside the 

enrichment cultures which would have made a comparison to the qPCR data very difficult, so I 

decided to choose low laser intensity settings in order to acquire a Raman spectrum from every 

selected cell even though the resulting SNR was not favorable for the AOA prediction tool. Hence, 

the final cell spectra of SV8-6 and SV9-19 lacked a good signal to noise ratio. It is necessary to re-

record the cell spectra of these enrichment cultures in liquid inside a capillary to avoid the issue of 

photo damage. Unfortunately, this approach was not yet fully established by the end of this thesis. 

This approach could provide spectra of higher quality which would have a positive effect on the 

quality of the AOA cluster prediction of these cells. 

 

4.7.2 Morphology 

 

The morphology of the AOA used to generate the reference spectra library showed that they were in 

general roundish shaped and approximately 0.7 – 1.0 µm in size (data not shown). CARD-FISH 

results of the arctic AOA enrichment SV8-6 (Fig. 3.D C) suggested a similar morphology. Bright 

field images of the AOA enrichment cells of SV8-6 and SV9-19 (Fig. 3.F A – Fig. 3.F L) which were 
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positively assigned to the AOA cluster (mean normalization, AOA+ weighting) using the AOA 

prediction script also featured cells which were small in size, about 0.7 – 1.0 µm, but not uniform in 

morphology. Some were roundish shaped (Fig. 3.F A, -B, -F, -G, -I, -K and -L), whereas others had a 

rod-shaped structure (Fig. 3.F C, -D, -E, -H and –J). Because of the low quality of their Raman 

spectra, the currently unpredictable CaF2 influence, the issues concerning the choice of baselining 

type and issues like storage compounds, the observed variety of morphologies might suggest that the 

results were adversely affected by an inaccurate RF weighted data set. 

 

4.7.3 Significance of cluster assignment 

 

The Raman reference library data set was artificially influenced by the CaF2 background signal 

(chapter 3.4.2). It is hard to predict if the AOA clustering will become worse or even better after the 

subtraction of these background signals. Nevertheless, the cluster percentages of randomly picked 

arctic AOA enrichment cells (Fig. 3.6) looked promising compared to the qPCR results (chapter 2.9), 

but also the low signal to noise ratio of the spectra of the arctic AOA enrichment cultures (chapter 

4.7.1) played a major role concerning the probabilities of clustering because the spectra of the Raman 

reference library were of higher quality. First, a proper CaF2 filter has to be implemented to the 

Raman reference library data set and then the arctic AOA have to be re-recorded using less-damaging 

methods. Finally, the AOA cluster prediction tool has to calculate new probabilities for the 

assignment of the AOA enrichment cells.  
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5 Summary 

 

Nitrification is the oxidation of ammonia to nitrite and further to nitrate. It is one of the key steps in 

the global nitrogen cycle and also a very important reaction for industrial agriculture and in 

wastewater treatment plants. Hence, it is fundamental to understand the key players of ammonia 

oxidation, which were thought for a century to be exclusively ammonia oxidizing bacteria (AOB). 

Recently, ammonia oxidizing archaea (AOA) were discovered to occupy a major role in the global 

nitrification, as they outnumber AOB in numerous habitats. The ammonia monooxygenase (Amo) has 

been used as a phylogenetic marker for the AOA for a couple of years. In addition, AOA can be 

detected in environmental samples by CARD-FISH. However, this technique requires fixation of the 

target cells and thus, makes further single cell genomic analyses very difficult. 

In this diploma thesis Raman microspectroscopy was used because it is a non-destructive technique 

and it allows the identification of a plethora of macromolecules of a cell. The long term goal is to use 

Raman microspectroscopy to identify living AOA by a signature spectrum while they are trapped in 

an optical laser tweezer system. With tweezer sorted cells downstream applications like cultivation or 

MDA combined with genome sequencing (single cell genomics) will be performed. In this study a 

comprehensive Raman reference spectra library of various phyla was created. In addition, the spectra 

were statistically analyzed by an accurate classifier (Random Forest) in order to evaluate, which 

Raman bands are characteristic or even unique for AOA. Certain challenges had to be dealt with (e.g. 

carrier slide background signal, storage compounds, pigments, normalization and baselining of the 

Raman spectra). Preliminary results showed that AOA can be assigned to one cluster. Nevertheless, it 

was not possible to exclude certain other species from this cluster. There was strong evidence that 

long methylated alkyl groups of lipids (e.g. crenarchaeol, iso-diabolic acid) gave rise to Raman 

signature bands which resulted in a clustering of these specific organisms. However, I discovered that 

the used carrier slide material – calciumdifluoride – caused a more intense background signal than 

expected at the beginning of the study. Additionally, an AOA prediction script based on the Random 

Forest algorithm, which calculated significance values for all peaks was created in collaboration with 

Dr. David Berry and applied on two arctic AOA enrichment cultures. Cells were chosen at random 

and automatically assigned to either the AOA or non-AOA cluster. The results of the AOA cluster 

assignments based on the prediction script (predicted AOA content of the arctic AOA enrichments 

SV8-6: 30%; SV9-19: 45%) were plausible compared to the qPCR data (AOA content of the arctic 

AOA enrichments SV8-6: 17%; SV9-19: 26%) since just 30 cells were measured in total. 

In order to prove the preliminary results, certain experiments have to be performed (e.g. subtraction 

of carrier slide and storage compound spectra). Taken together, the obtained results show the 

potential of Raman microspectroscopy for rapid and non-destructive characterization of the chemical 

composition of microbial cells – a feature that is particularly attractive if combined with subsequent 
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cell sorting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Zusammenfassung 

 

~ 79 ~ 

 

6 Zusammenfassung 

 

Nitrifikation ist die Oxidation von Ammonium zu Nitrit und weiter zu Nitrat. Es ist einer der 

wichtigsten Schritte im globalen Stickstoffkreislauf und außerdem ist die Reaktion auch sehr wichtig 

für die industrielle Landwirtschaft und das Funktionieren von Kläranlagen. Deshalb ist es 

unerlässlich die wichtigsten verantwortlichen Mikroorganismen in diesem System zu verstehen. Für 

lange Zeit glaubte man, dass für den ersten Schritt der Nitrifikation ausschließlich Ammoniak-

oxidierende Bakterien (AOB) verantwortlich sind, jedoch wurden vor einigen Jahren die 

Ammonium/Ammoniak-oxidierenden Archaeen (AOA) entdeckt. Sie sind den AOB in bestimmten 

Umweltproben zahlenmäßig weit überlegen und darum besonders interessant für 

Nitrifikationsforscher. Bisher wurde die Ammoniummonooxygenase (Amo) als phylogenetischer 

Marker für die Identifizierung von AOA verwendet und zusätzlich CARD-FISH eingesetzt um diese 

Organismen in Umweltproben nachzuweisen. Durch die Anwendung dieser Techniken werden 

allerdings die Zellen zerstört bzw. chemisch stark verändert, was eine weitere genomische Analyse 

auf Einzelzellniveau sehr schwierig gestaltet. 

In dieser Diplomarbeit hatte ich die Raman Mikrospektroskopie verwendet, da sie mehr oder weniger 

zerstörungsfrei arbeitet und in kurzer Zeit eine Vielzahl an Makromolekülen einer Zelle identifizieren 

kann. Das Ziel auf lange Sicht hin ist es mittels Raman Mikrospektroskopie lebende AOA Zellen 

anhand von spezifischen Ramanspektren zu identifizieren während sie in einem Laserpinzetten-

System gefangen sind. In der Folge könnte man dann diese, immer noch lebenden, Zellen 

aussortieren und kultivieren bzw. genomische Einzelzell-Analysen basierend auf MDA damit 

durchführen. Um erste Schritte in diese Richtung zu entwickeln, wurde im Verlauf dieser 

Diplomarbeit eine umfassende Referenzspektrenbibliothek angelegt welche aus Organismen diverser 

Phyla besteht. Die Spektren dieser Organismen wurden dann durch einen maschinellen 

Lernalgorithmus (Random Forest) analysiert und für AOA wichtige Bereiche wurden identifiziert. Im 

Verlauf der Studie gab es verschiedene Schwierigkeiten mit denen ich konfrontiert wurde (z.B. 

Hintergrundsignal der Trägerfläche, Speicherkomponenten, Pigmente, Normalisierung und 

„Baselinen“ der Ramanspektren). Die Ergebnisse dieser Diplomarbeit haben jedoch gezeigt, dass es 

möglich ist die AOA basierend auf ihren Ramanspektren in einem Cluster zu vereinen, jedoch war es 

nicht möglich einen reinen AOA-Cluster zu erzeugen. Es gab starke Hinweise, dass lange methylierte 

Alkylgruppen von Lipiden (z.B. Crenarchaeol, „iso-diaolic acid“) zu charakteristischen 

Ramansignalen führten welche eine gemeinsame Cluster-Zuweisung von AOA und bestimmten 

Bakterien bedingten. Im Verlauf der Studie wurde des Weiteren herausgefunden, dass die verwendete 

Trägerfläche für Zellen ein weitaus stärkeres Hintergrundsignal generierte als zu Beginn der Studie 

vermutet. Zusätzlich wurde in Zusammenarbeit mit Dr. David Berry ein AOA-Vorhersageskript 

entworfen, welches aufgrund der vom Random Forest Algorithmus gewichteten AOA-spezifische 
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Spektrumbereiche berechnen konnte, mit welcher Wahrscheinlichkeit ein Spektrum unbekannter 

Herkunft von einem AOA stammt oder nicht. Ich hatte dieses Skript an Ramanspektren von zufällig 

ausgewählten Zellen von zwei arktischen AOA-Anreicherungskulturen ausprobiert. Die Resultate der 

Cluster-Zuweisung, basierend auf dem AOA Vorhersage Skript (AOA-Inhalt der arktischen AOA 

Anreicherungskulturen: SV8-6: 30%; SV9-19: 45%), wirkten plausibel im Vergleich zu den qPCR 

Daten (AOA-Inhalt der arktischen AOA Anreicherungskulturen: SV8-6: 17%; SV9-19: 26%). Um 

diese Resultate zu bestätigen müssen in Zukunft noch einige darauf aufbauende Experimente 

ausgeführt werden, wie zum Beispiel die Subtraktion vom Trägermaterial-Hintergrundspektrum und 

diverser Speichersubstanzen. Zusammenfassend kann man sagen, dass die erzielten Resultate 

eindeutig das Potential der Raman Mikrospektroskopie aufzeigen, wenn es um eine schnelle, nicht 

destruktive Charakterisierung der chemischen Zusammensetzung von mikrobiellen Zellen geht – eine 

Eigenschaft die diese Technik vor allem in Kombination mit nachfolgender Zellsortierung attraktiv 

macht. 
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7  List of abbreviations 

 

(a.u.) arbitrary units 

16S rRNA small subunit of rRNA 

λ wavelength 

μ mikro (10
-6

) 

°C degree Celsius 

% percent 

abs absolut 

Amo ammonium monooxygenase 

amoA gene coding for subunit A of Amo 

amoB gene coding for subunit B of Amo 

amoC gene coding for subunit C of Amo 

AOA ammonia-oxidizing archaea 

AOB ammonia-oxidizing bacteria 

AOP ammonia-oxidizing prokaryotes 

bagging bootstrap aggregating 

CARD catalyzed reporter deposition 

CART classification and regression trees 

CaCl2 calciumchloride 

CaF2 calciumdifluoride 

CLSM confocal laser scanning microscope 

cm centimeter(s) 

cm
-1

 reciprocal centimeter/wavenumber 

conc. concentration 

Cy3  5,5'-di-sulfo-1,1'-di-(X-carbopentynyl)-3,3,3',3'-tetra-methylindol-Cy3.18-

derivative N-hydroxysuccimidester 

Cy5 5,5'-di-sulfo-1,1'-di-(X-carbopentynyl)-3,3,3',3'-tetra-methylindol-Cy5.18-

derivative N-hydroxysuccimidester 

DAPI 4’-6’-di-amidino-2-phenylindole 

DNA desoxyribonucleic acid 

e
-
 electron 

EDTA Ethylenedinitrilotetraacetic acid 

et al. et alteri 

EtOH ethanol 

FA formamide 
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Fig. Figure 

FISH fluorescence in situ hybridization 

fluos 5,(6)-carboxyfluorescein-N-hydroxysuccimidester 

g gram(s) 

GDGT glycerol dibiphytanyl glycerol tetraether 

h hour(s) 

H
+
 proton(s) 

H2O water 

H2O2 hydrogen peroxide 

Hao hydroxylamine oxidoreductase 

HB hybridization buffer 

He-Ne helium-neon 

m milli 10
-3 

M molar 

MDA multiple displacement amplification 

MDS multi-dimensional scaling 

MO microorganism 

MQ Milli-Q (double distilled water) 

min minute(s) 

NaCl sodium chloride 

NaOH sodium hydroxide 

Nd:YAG neodymium-doped yttrium aluminum garnet 

NH3 ammonia 

NO nitrous oxide 

NO2
-
 nitrite 

NO3
-
 nitrate 

O2 oxygen 

OOB out of box 

PBS phosphate buffered saline 

PHA polyhydroxyalkanoates 

Phe phenylalanine 

PFA paraformaldehyde 

qPCR quantitative polymerase chain reaction 

RNA ribonucleic acid 

rpm rotations per minute 

rRNA ribosomal ribonucleic acid 
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RF random forest 

RT room temperature 

SDS sodium dodecyl sulfate 

sec second(s) 

SERDS shifted-excitation Raman difference spectroscopy 

SNR signal to noise ratio 

sp. species 

Tab. Table 

TAG triglycerols 

temp. temperature 

vol. volume 

v/v volume/volume 

WB washing buffer 

WEs wax esters 

WWTP wastewater treatment plant 

w/v weight/volume 
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8 Appendix 

 

8.1 Acidobacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. Mean Raman spectrum of Acidobacterium capsulatum (n = 15). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2. Mean Raman spectrum of Edaphobacter aggregans (n = 14). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.3. Mean Raman spectrum of Edphobacter modestus (n = 15). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.2 Alphaproteobacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4. Mean Raman spectrum of Methylocystis rosea (n = 9). The data were phenylalanine peak aligned, smoothed, 

line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.5. Mean Raman spectrum of Methylocystis rosea containing PHB, (n = 15). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.3 Betaproteobacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6. Mean Raman spectrum of Burkholderia cepacia, (n = 9). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.7. Mean Raman spectrum of Burkholderia cepacia containing PHB, (n = 6). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

  

8.4 Chloroflexi  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8. Mean Raman spectrum of Sphaerobacter thermophilus, (n = 12). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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8.5 Crenarchaeota 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9. Mean Raman spectrum of Sulfolobus acidocaldarius, (n = 15). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10. Mean Raman spectrum of Sulfolobus islandicus, (n = 10). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.11. Mean Raman spectrum of Sulfolobus tokodaii, (n = 15). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.6 Deltaproteobacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.12. Mean Raman spectrum of Desulfacinum infernum, (n = 24). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.13. Mean Raman spectrum of Desulfobacca acetoxidans, (n = 16). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14. Mean Raman spectrum of Desulfobacterium niacini, (n = 21). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.15. Mean Raman spectrum of Desulfobacula phenolica, (n = 18). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.16. Mean Raman spectrum of Desulfobulbus propionicus, (n = 21). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.17. Mean Raman spectrum of Desulfocella halophila, (n = 16). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.18. Mean Raman spectrum of Desulfofustis glycolicus, (n = 13). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.19. Mean Raman spectrum of Desulfomicrobium apsheronum, (n = 11). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.20. Mean Raman spectrum of Desulfomusa hansenii, (n = 18). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.21. Mean Raman spectrum of Desulfovibrio halophilus, (n = 13). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.22. Mean Raman spectrum of Desulfovibrio longus, (n = 20). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.23. Mean Raman spectrum of Desulfovibrio oxyclinae, (n = 14). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.24. Mean Raman spectrum of Desulfovibrio piger, (n = 17). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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8.7 Firmicutes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.25. Mean Raman spectrum of Acetonema longum, (n = 15). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.26. Mean Raman spectrum of Sacrina ventriculi, (n = 6). The data were phenylalanine peak aligned, smoothed, 

line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.27. Mean Raman spectrum of Sacrina ventriculi containing PHB, (n = 14). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.28. Mean Raman spectrum of Sporomaculum syntrophicum, (n = 17). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.29. Mean Raman spectrum of Streptococcus salivarius, (n = 13). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.8 Gammaproteobacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.30. Mean Raman spectrum of Escherichia coli, (n = 15). The data were phenylalanine peak aligned, smoothed, 

line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.31. Mean Raman spectrum of Methlobacter tundripaladum, (n = 15). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.9 Nitrospirae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.32. Mean Raman spectrum of Nitrolancetus hollandicus, (n = 16). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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8.10 Planctomycetes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.33. Mean Raman spectrum of Candidatus Kuenenia stuttgartiensis, (n = 14). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.11 Thaumarchaeota 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.34. Mean Raman spectrum of Nitrosotenius uzonensis containing PHB, (n = 8). The data were phenylalanine 

peak aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.35. Mean Raman spectrum of Nitrosopumilus maritimus, (n = 11). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.36. Mean Raman spectrum of Nitrososphaera gargensis, (n = 8). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.37. Mean Raman spectrum of Nitrososphaera viennensis, (n = 8). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

8.12 Thermotogae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.38. Mean Raman spectrum of Fervidobacterium pennivorans, (n = 15). The data were phenylalanine peak 

aligned, smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.39. Mean Raman spectrum of Thermotoga maritima, (n = 16). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.40. Mean Raman spectrum of Thermosipho africanus, (n = 14). The data were phenylalanine peak aligned, 

smoothed, line-segmented baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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8.13 arctic AOA enrichment SV8-6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.41. Raman spectrum of SV8-6 cell 1. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.42. Raman spectrum of SV8-6 cell 2. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.43. Raman spectrum of SV8-6 cell 3. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.44. Raman spectrum of SV8-6 cell 4. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.45. Raman spectrum of SV8-6 cell 5. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.46. Raman spectrum of SV8-6 cell 6. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.47. Raman spectrum of SV8-6 cell 7. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.48. Raman spectrum of SV8-6 cell 8. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.49. Raman spectrum of SV8-6 cell 9. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.50. Raman spectrum of SV8-6 cell 10. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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8.14 arctic AOA enrichment SV9-19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.51. Raman spectrum of SV9-19 cell 1. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.52. Raman spectrum of SV9-19 cell 2. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.53. Raman spectrum of SV9-19 cell 3. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.54. Raman spectrum of SV9-19 cell 4. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.55. Raman spectrum of SV9-19 cell 5. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.56. Raman spectrum of SV9-19 cell 6. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.57. Raman spectrum of SV9-19 cell 7. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.58. Raman spectrum of SV9-19 cell 8. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.59. Raman spectrum of SV9-19 cell 9. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.60. Raman spectrum of SV9-19 cell 10. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.61. Raman spectrum of SV9-19 cell 11. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.62. Raman spectrum of SV9-19 cell 12. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.63. Raman spectrum of SV9-19 cell 13. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.64. Raman spectrum of SV9-19 cell 14. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.65. Raman spectrum of SV9-19 cell 15. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.66. Raman spectrum of SV9-19 cell 16. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.67. Raman spectrum of SV9-19 cell 17. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.68. Raman spectrum of SV9-19 cell 18. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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Figure 8.69. Raman spectrum of SV9-19 cell 19. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.70. Raman spectrum of SV9-19 cell 20. The data was phenylalanine peak aligned, smoothed, line-segmented 

baselined (8
th

 degree) and mean normalized (chapter 2.12). 
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