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Abstract 

 

The first cultivation of coffee plants can be traced back to Yemen in the begin-

ning of the 13th century (ICO, 2011). From then on, coffee gained more and 

more importance all over the world. Nowadays, coffee is one of the most valua-

ble products in world trade, especially a crucial export good for the least devel-

oped countries as it contributes to over 50 % of the foreign exchange earnings 

through exports. Therefore, it is clearly stated that coffee shows a great poten-

tial concerning geographical origin discrimination and avoiding fraud or mislead-

ing of the consumer.  

The first part of this work was the establishment of an optimized sample prepa-

ration method using a rare earth element specific resin to separate the analytes 

from the sample matrix and to apply REE patterns to define elemental finger-

prints of green coffee beans originating from Africa, Asia and America. The 

main aim of the separation procedure was the reduction of interfering matrix 

parts such as barium and iron. While these substances could be successfully 

separated, the resin did not show specific REE adhesion, resulting in high loss 

of original REE contents. Only a limited number of rare earth elements were 

above limits of detection and total combined uncertainties of measurements 

were quite high. Based on the results, the method was not adequate to solve 

the research question and requires further development. 

The second part of the thesis puts a special emphasis on the combination of 

different elemental and isotopic data to define a unique fingerprint of green cof-

fee beans and to classify their geographical origins. These patterns include rare 

earth element patterns determined by ICPQMS, multi-element patterns deter-

mined by ICPSFMS, strontium isotope ratios determined by HR-MC-ICPMS as 

well as light stable isotope ratios determined by IRMS. The data were evaluated 

statistically by use of principal component and canonical discriminant analysis. 

While rare earth patterns did not show satisfying results, strontium and light 

stable isotope ratios as well as the multi-element pattern did support successful 

origin classification up to 100%. 
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Zusammenfassung 

 

Die Wurzeln der Kultivierung von Kaffee gehen zurück auf Yemen im 13. Jahr-

hundert (ICO, 2011). Von dieser Zeit an gewann Kaffee immer mehr an Bedeu-

tung im globalen Handel. Heute ist Kaffee eines der wertvollsten Produkte im 

Welthandel und ein wichtiges Exportgut der wirtschaftlich weniger prosperie-

renden Länder, wo er bis zu 50% der Auslandsgeschäfte ausmacht. Aus die-

sem Grund ist klar ersichtlich, dass einer Herkunftsbestimmung von Kaffee be-

sondere Bedeutung zukommt.  

Der erste Teil dieser Arbeit beschäftigt sich mit der Entwicklung einer Methode 

zur Separation der Seltenen Erdelemente (REE) von der Matrix. Die REE-

Verteilung soll letztendlich als Fingerabdruck für die geografische Herkunft die-

nen, um Kaffeebohnen aus Afrika, Asien und Amerika zu unterscheiden. Das 

Hauptziel der Trennmethode war die Abtrennung interferierender Elemente, in 

erster Linie Barium und Eisen. Obwohl diese Elemente abgetrennt werden 

konnten, zeigte das verwendete Harz keine Rückhaltung der Seltenen Erden, 

woraus sich ein hoher Verlust der Seltenerdmetalle ergab. Als Konsequenz lag 

nur eine beschränkte Anzahl an Seltenen Erden oberhalb der Nachweisgrenze, 

die Gesamtmessunsicherheit dieser Elemente war sehr hoch.  

Als Resultat dieser Untersuchungen zeigte sich, dass die vorgeschlagene Me-

thode nicht geeignet zur Lösung der Fragestellung war.  

Im zweiten Teil der Arbeit wurde die Kombination der aus verschiedenen Quel-

len gewonnenen Daten von Elementverteilungen und Isotopenverhältnissen 

herangezogen, um grüne Kaffeebohnen gemäß ihres geografischen Ursprun-

ges zu klassifizieren. Diese Verteilungen beinhalten Seltenerdmetalle, (gemes-

sen mit ICPQMS), Multielementverteilungen (ICPQMS-Messungen), Sr Isoto-

pen (MC-ICPMS-Messungen) und leichte stabile Isotope (C, H, O, gemessen 

mit IRMS). Diese Daten wurden mithilfe von Hauptkomponentenanalyse und 

kanonischer Diskriminanzanalyse untersucht. Die Seltenen Erden zeigten kein 

erfolgreiches Ergebnis, während Strontium und die leichten stabilen Isotope 

gemeinsam mit den Multielementverteilungen die Herkunft bis zu 100% richtig 

klassifizierten.  
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1 Introduction 

 

The main goal of food authenticity studies is to protect consumers from fraud 

and wrong declarations. Moreover, tracing food through the production and dis-

tribution chain is important to identify risks and protect public health (EC, 2002). 

Consequently, food traceability is equally essential for the quality as well as for 

the safety of products. 

 

More and more analytical methods regarding food authenticity are applied (see 

chapter 1.2). This thesis pursues the work with isotopic fingerprinting using in-

ductively coupled plasma mass spectrometry (ICPMS), which is a fairly new but 

promising approach for determining the origin of food and has been proven in 

several studies dealing, for instance, with asparagus from the Marchfeld 

(Brunner, 2007; Swoboda et al. 2008), pumpkin see oil (Grabmann, 2009) and 

paprika (Brunner et al., 2010) amongst others. 

 

The geology as well as environmental conditions (e.g. wind, precipitation, traffic) 

influence the elemental composition of food. Trace elements are taken up by 

plants through air, water or soil, allowing the determination of geographical 

origin and enabling traceability “from farm to fork” (Prohaska et al., 1999). 

 

In this work’s research, special emphasis is put on the analysis of the rare earth 

element composition of green coffee beans, reflecting a possible specific geo-

graphical pattern. A pilot was carried out to test a newly developed rare earth 

resin, which was at the time of the project start to be launched on the market for 

its ability to minimize interferences via chromatographic separation during sam-

ple preparation in order to improve accuracy of obtained data. In future, the pro-

cedure would enable the development of an on-line measurement method for 

REE pattern. 

 

An inter-disciplinary approach to confirm and fortify the determination of geo-

graphical origin of the samples under examination will be applied merging data 
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of multiple elemental and isotopic patterns to produce combined and significant 

results. The Centre for Environmental Biology, Stable Isotopes and Instrumental 

Analysis Facility (SIIAF), University of Lisbon, provided the latter data (Ro-

drigues et al., 2009; Rodrigues et al., 2011), which had been accomplished 

within a research project of the VIRIS laboratory and the SIIAF. 

 

In the first part of this thesis, general information on the analytical substrate 

green coffee beans, methods, materials and instrumentation used will be given. 

The experimental section in part two contains details about the pilot study men-

tioned above, sample treatment, experimental setups and protocols as well as 

about the measurements. Part three deals with the interpretation of different 

data, which were derived within this study and parallel studies. Finally, a short 

overview as well as a prospective on geographical origin determination and the 

future of methods mentioned in the thesis will be given. 

 

1.1 Objective of the pilot study 

 

The aim of the work was to establish an optimized environment for newly devel-

oped rare earth elements resin, provided by Triskem International (Bruz, 

France). The resin was used to decrease isobaric interferences, which are a 

main contribution to inaccurate measurement results. Hence it is supposed to 

alleviate the determination of a rare earth fingerprint of green coffee beans with-

in the scope of food traceability studies using ICPMS. By the end of all data ac-

quisitions it should be possible to combine data from several different method 

approaches (e.g. REE composition, multielement pattern, Sr isotope ratios and 

stable light isotopes) to acquire a holistic and validated final result concerning 

the origin of the green coffee bean samples. Each approach will be discussed in 

detail in the following chapters and a summary of all methods and their ability to 

determine the exact origin of the samples will be given at the end of this section. 
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1.2 Food authenticity and traceability 

 

Food authenticity has become a key issue for consumer protection. As more 

and more products are labeled PDO (Protected Denomination of Origin), PGI 

(Protected Geographical Indications) and TSG (Traditional Speciality Guaran-

teed), special focus is put on the traceability as well. 

 

Food traceability is defined as “the ability to track any food, feed, food-

producing animal or substance that will be used for consumption, through all 

stages of production, processing and distribution” (EC, 2002) and is meant to 

guarantee that food purchased by the consumer matches its description. While 

undeclared addition of cheap(er) materials or wrong amounts of ingredients 

mislead consumers, this thesis puts special emphasis on false statements con-

cerning the geographical origin of food and food ingredients (FSA, 2011). 

 

Recent publications deal with the optimization of food traceability systems 

(Dabenne et al., 2011, Zhang et al., 2011) and emphasize that they have to be 

based on accurate and reliable analytical techniques.  

Many different approaches are applied to determine the geographical origin. 

Among these approaches, a number of analytical methods is applied which de-

termine specific chemical compounds or the chemical composition of the inves-

tigated food compartment. Commonly used methods applied are biochemical, 

molecular and separation based as well as spectrometric methods and ele-

mental analyses. In this particular content, elemental fingerprinting or specific 

isotopic patterns are among the most prominent and promising approaches. 

Advantages of isotopic fingerprints are their natural variation, the uniqueness of 

their analytical values and sample integrity. (Prohaska et al., 1998) 

 

As this study focuses on the determination of the geographical origin of green 

coffee beans, the following table below gives a short overview of studies recent-

ly performed on green coffee beans: 
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Tab. 1 Overview of recent studies on (green) coffee beans 

Aim Method Group 

 
Effect of temperatures and rain on coffee berry 
disease caused by Colletotrichum kahawae 
 

 
epidemiological study 

 
Mouen et al., 
2012 

Green coffee extracts and their effect on the neuro-
toxicity induced by aluminium chloride 
 

biomolecular study Elsaid et al., 
2011 

Determination of iodine-like flavor-causing compo-
nents in Brazilian coffee  

GC, olfactometry Kato et al., 
2011 

Determination of the best production model of a 
coffee plantation according to environmental per-
formance 
 

comparison of emergy 
indices 

Giannetti et 
al., 2011 

Analysis of radical activity, phenolic and volatile 
compounds of coffee beans 

GC, MS Somporn et 
al., 2011 

Determination of melatonin and serotonin contents HPLC, ESI-MS Ramakrishna 
et al., in press 

Geographical origin determination Electronic noses Sberveglieri et 
al., 2011 

Detection of fungal contamination Electronic noses, GC, 
MS 

Sberveglieri et 
al., 2011 

Determination of maturity of green coffee beans FTIR Craig et al., 
2011 

Feasibility of storing green beans in different kinds 
of packaging 

Sensory analysis, pho-
tometric methods 

Ribeiro et al., 
2011 

Determination of interaction between coffee plant 
and local environment 

IRMS, ICPMS Rodrigues et 
al., 2011 

Dependence of roasting process and amount of 
bioactive components  

GFC Chen et al., 
2011 

Determination of chlorogenic acid content in green 
coffee (and their inhibitory effect on alpha-amylase) 
 

HPLC Narita et al., 
2011 

Discrimination between different coffee species Raman spectroscopy, 
chemometric analysis 

El-Abassy et 
al., 2011 

Authenticity of coffee via Strontium and oxygen 
isotope fingerprints 

MC-ICPMS, IRMS Rodrigues et 
al., 2011 

Quality evaluation of green coffee beans IRMS, NIRS Santos et al., 
2012 

Development of a tensiometric model for surface 
energy characterization of raw coffee beans 
 

PFPE Rossi et al., 
2012 
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Pesticide analysis in green coffee beans  GC-MS, NCI-SIM Pizzutti et al., 
2012 

Extraction of chlorogenic acids from green coffee 
beans 

MAE Tezotto et al., 
2012 

Impact of climatic factors on the organic compound 
fingerprint in green coffee beans 
 

GC-MS Bertrand et 
al., 2012 

Discrimination of arabica coffee cultivars  Fourier transform ion 
cyclotron resonance 
mass spectrometry 

Garrett et al., 
2012 (in 
press) 

 

 

1.3 General aspects of coffee 

 

It is essential to gain knowledge about coffee to be able to develop feasible 

methods for authenticity studies on coffee plants as well as for the interpretation 

of the data. This chapter will therefore give a short description of the coffee 

plant itself, its nutritional value and its metabolism with focus on the green cof-

fee bean, which will be under examination in the experimental section. 

 

1.3.1 The coffee plant 

The genus Coffea belongs to the family Rubiaceae and covers approximately 

70 species, the two most important being C. arabica L. and C. canephora Pierre 

(commonly known as “Robusta”) both originating from Africa (N.N., 2007). Each 

coffee fruit (picture) contains two beans, which are elliptical and plane-convex 

(Eira et al., 2006) 

 

Fig. 1 Structure of a coffee plant (Rodrigues, 2010) 
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Fig. 2 Structure of a coffee berry (fruit) (Wintgens, 2004) 

 

 

 

 

 

 

 

  

Fig. 3 Longitudinal cut 
(green coffee bean) 

Fig. 4 Transverse cut (green 
coffee bean) 
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What is commonly known as bean is actually the endosperm of the coffee fruit. 

After self-pollination (Arabica) or cross-pollination (Robusta), the embryo (coffee 

bean) starts growing and gradually replaces the integument. Five weeks later, 

the beans are fully formed and start changing their color which signals the opti-

mal point for harvest. Subsequently, the beans are processed, dried and roast-

ed to varying degrees, depending on the desired flavor. Before consumption, 

they are grinded and brewed (National Coffee Association, 2011). Beans used 

for this research have not been processed further.  

 

The roots of coffee plants can extend up to 25 km in length and about 30 cm 

below the surface. Their growth is strongly dependant on the composition of the 

soil, especially on its nitrogen, calcium and magnesium content (Nutman, 1993) 

which emphasizes the reciprocity of soil and plant and its potential for analytical 

interaction research. 

 

1.3.2 Nutritional value 

Although coffee is best known for its caffeine content, it offers far more (micro) 

nutrients like magnesium, potassium, niacin, vitamin E, and secondary plant 

products like chlorogenic and caffeinic acid expressing antioxidative effects on 

the human organism. The table below lists the main nutritional ingredients of 

coffee. 

 

Tab. 2 Ingredients of Coffee (Souci et al., 2008) 

Ingredients of roasted coffee (g /100 g) 
(mean values, depending on degree of roasting and breed) 

Dietary fiber 58,2 

Carbohydrates 1,5 

Protein 13,5 

Fat 13,4 

Mineral nutrients 4,16 

Water 3,43 

Chlorogenic acid 4,11 

Caffeine 1,28 
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Moderate daily intake of coffee shows physiological benefits such as stimulation 

of the central nervous system resulting in higher awareness and concentration, 

reduction of cerebral apoplexy incidents or lower risk of liver and colorectal can-

cer (Binns et al. 2008; Lopez-Garcia et al. 2009; Nkondjock, 2009; WCR 2007). 

 

1.4 Isotopic systems used in provenance studies 

 

Even though there are numerous isotopic systems, only the ones relevant for 

this thesis will be explained in more detail. Stable isotopes are atoms with the 

same number of protons but different number of neutrons in the core. They do 

not undergo radioactive decay over time. Fractionation processes alter the iso-

topic composition during chemical and physical processes due to different 

atomic weights, e.g. the heavier the atom the more energy is needed to break 

bonds. These processes can either be controlled by kinetics or thermodynamics 

– therefore, kinetic fractionation can be distinguished from equilibrium fractiona-

tion. 

 

1.4.1 The isotopic system of Strontium (Sr) 

The isotopic patterns of the alkaline earth metal strontium are well established 

as a parameter for origin authentication, lately in the food traceability area as 

well. The element has four naturally occurring stable isotopes: 84Sr (abundance 

0.56%), 86Sr (9.86%), 87Sr (7.00%) and 88Sr (82.58%). (International Union of 

Pure and Applied Chemistry, 2011). Due to the radioactive decay of 87Rb into 

87Sr, the amount of 87Sr increases with time and thus the 87Sr/86Sr ratio depends 

on the geochemical composition and the geological age of the maternal rock 

and is an indicator for the geographic location.  

 

As a proxy for calcium, strontium can be incorporated into organisms similar to 

that trace element. (Capo et al., 1998) The natural variation of this heavy ele-

ment due to radioactive processes results in significantly different distribution of 

the isotopes regarding the local weather and the geographical location, respec-

tively. (Aggarwal et al., 2008) The 87Sr/86Sr ratio can be used for geographical 
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origin determination, because biological processes involved in plant metabolism 

do not fractionate strontium isotopes significantly. (Rodrigues et al., 2011) 

 

1.4.2 Light stable isotopes: carbon, oxygen, nitrogen, hydrogen, sulfur 

Light, stable isotopes include 12C, 13C; 16O, 17O, 18O; 14N, 15N; 1H, 2H as well as 

the sulfur isotopes 32S, 33S, 34S and 36S. The Centre for Environmental Biology, 

Stable Isotopes and Instrumental Analysis Facility (SIIAF), University of Lisbon, 

has been researching in this field (Rodrigues et al., 2009; Rodrigues et al, 2011) 

and provided data for this thesis to allow a combination and connection of sev-

eral isotopic fingerprints.  

The specific proportions of the isotopes of hydrogen, oxygen and carbon de-

pend on climatic and geographical environments as well as on the plant’s me-

tabolism – these influences are also referred to as isotopic fractionation, meas-

ured mainly by isotope ratio mass spectrometry (IRMS). (Rodrigues et al., 2011)  

 

Tab. 3 Average terrestrial abundances of stable isotopes H, C, N, O, S (modif. Ehleringer, 2011) 

Element Isotope Abundance (%) 

Hydrogen 
1
H 99.985 

 
2
H 0.015 

Carbon 
12

C 98.89 
 

13
C 1.11 

Nitrogen 
14

N 99.63 
 

15
N 0.37 

Oxygen 
16

O 99.759 
 

17
O 0.037 

 
18

O 0.204 
Sulfur 

32
S 95.00 

 
33

S 0.76 
 

34
S 4.22 

 
36

S 0.014 

 

 

1.5 Multi-element patterns 

 

Multi-elemental analysis allows the determination of specific geographical pat-

terns as well as the discussion on nutritional values of coffee. The major focus 

of this work was the determination of rare earth element pattern. As the method 
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of determining other multi-elemental patterns via ICPMS has been well estab-

lished, additional elements were included in this work to provide more parame-

ters for the combined data evaluation. Additional Elements under examination 

were: Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, 

Rb, Sr, Mo, Ag, Cd, Te, Ba, Tl, Pb and Bi. Only elements which were above the 

detection limits according to a pilot study were selected. 

1.5.1 Rare earth elements 

The rare earth elements (listed in the table below) were used for the analysis of 

geochemical source fingerprints for instance of sea sediments (Alargasamy et 

al., 2009), soil (Aström et al, 2001) and to understand the formation of the 

Earth’s crust mantle and the sedimentary system (Baker et al, 2002) as well as 

for water samples, ground and drinking waters (Dia et al, 2000; De Boer et al., 

1996; Bahramifar et al, 2005) or otoliths of fish (Arslan et al., 2003). One main 

goal of this thesis is to apply rare earth element patterns for the analysis of 

green coffee beans, which is a promising approach. 

 

Tab. 4 Rare earth elements and their natural abundances (modif. IUPAC, 2005 and University of 
Alberta, 2011) 

Name Z Symbol 
Mass of Atom 
(u) 

Abundance 
(%) 

Scandium 21 
45

Sc 44.955910 100.00 

Yttrium 39 
89

Y 88.905848 100.00 

Lanthanum 57 
138

La 
139

La 
137.907107 
138.906348 

0.09 
99.91 

Cerium 58 
136

Ce 
138

Ce 
140

Ce 
142

Ce 

135.907144 
137.905986 
139.905434 
141.909240 

0.19 
0.25 

88.45 
11.11 

Praseodymium 59 
141

Pr 140.907648 100.00 

Neodymium 60 
142

Nd 
143

Nd 
144

Nd 
145

Nd 
146

Nd 
148

Nd 
150

Nd 

141.907719 
142.909810 
143.910083 
144.912569 
145.913112 
147.916889 
149.920887 

27.20 
12.20 
23.80 

8.30 
17.20 

5.70 
5.60 
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Promethium 61 
145

Pm 144.912744 not present in 
nature 

Samarium 62 
144

Sm 
147

Sm 
148

Sm 
149

Sm 
150

Sm 
152

Sm 
154

Sm 

143.911995 
146.914893 
147.914818 
148.917180 
149.917271 
151.919728 
153.922205 

3.07 
14.99 
11.24 
13.82 

7.38 
26.75 
22.75 

Europium 63 
151

Eu 
153

Eu 
150.919846 
152.921226 

47.81 
52.19 

Gadolinium 64 
152

Gd 
154

Gd 
155

Gd 
156

Gd 
157

Gd 
158

Gd 
160

Gd 

151.919788 
153.920862 
154.922619 
155.922120 
156.923957 
157.924101 
159.927051 

0.20 
2.18 

14.80 
20.47 
15.65 
24.84 
21.86 

Terbium 65 
159

Tb 158.925343 100.00 
Dysprosium 66 

156
Dy 

158
Dy 

160
Dy 

161
Dy 

162
Dy 

163
Dy 

164
Dy 

155.924278 
157.924405 
159.925194 
160.926930 
161.926795 
162.928728 
163.929171 

0.06 
0.10 
2.34 

18.91 
25.51 
24.90 
28.18 

Holmium 67 
165

Ho 164.930318 100.00 

Erbium 68 
162

Er
 

164
Er

 

166
Er

 

167
Er

 

168
Er

 

170
Er

 

161.928775 
163.929197 
165.930290 
166.932045 
167.932368 
169.935460 

0.14 
1.61 

33.61 
22.93 
26.78 
14.93 

Thulium 69 
169

Tm 168.934211 100.00 

Ytterbium 70 
168

Yb 
170

Yb 
171

Yb 
172

Yb 
173

Yb 
174

Yb 
176

Yb 

167.933894 
169.934759 
170.936322 
171.936378 
172.938207 
173.938858 
175.942568 

0.13 
3.04 

14.28 
21.83 
16.13 
31.83 
12.76 

 Lutetium 71 
175

Lu 
176

Lu 
174.940768 
175.942682 

97.41 
2.59 
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Additionally, REEs can be classified according to their mass into heavy (HREE, 

Terbium to Lutetium), middle (MREE, Neodymium to Gadolinium) and light 

(LREE, Scandium to Praseodymium) elements (Cao et al., 2001). 

 

The most challenging aspect of REE determination studies is the similarity of 

their chemical properties, especially when dealing with REE mixtures in the 

analyte material due to numerous interferences as well as their low abundanc-

es, often ranging below limit of detection (LOD) levels of the instrumentation. 

Therefore, sample pretreatment in terms of preconcentration and separation is 

often applied to increase sensitivity and selectivity although time-consuming. 

The most common techniques for the analysis of REE are ICPMS, ICPOES, 

XRF as well as NAA.  

 

Tab. 5 Review of analytical techniques used to analyze REE, adapted from (Zawisza et al., 2011) 

Analytical Tech-
nique 

 Analyzed material Author 

    
ICPMS ICPSFMS 

 
Biological samples 
Water  
Sediments  
Geological materials 
Nuclear materials 

Riondato et al., 2001 
Zhu et al., 2010 
Ardini et al., 2010 
Varga et al., 2010 
Isnard et al., 2005 
 

 ICPQMS Geological materials Nakamura et al., 2007 
 LA-ICPMS Geological materials Petrelli et al., 2007 
 MC-ICPMS Nuclear materials Isnard et al., 2005 
ICPOES  Biological samples 

Water  
Sediments  
Geological materials 

Li et al., 2010 
Shariati et al., 2009 
Ardini et al., 2010 
Jain et al., 2002 

XRF   Geological materials Baryshev et al., 2001 
NAA  INAA Water 

Sediments 
Geological materials 

Kayasth et al., 2004 
Rezaee et al., 2010 
 
El-Taher, 2007 

 RNAA Geological materials Minowa et al., 2003 
Spectrophotome-
try UV-Vis 

 Water 
Geological materials 

Alaa et al., 2001 
El-Dessouky et al., 2007 

PIXE  Geological materials Hirokawa et al., 2001 
SIMS  Polycristalline materials Palcut et al., 2008 

 

 

 



22 

 

1.6 Inductively coupled plasma mass spectrometry (ICPMS) 

 

ICPMS has developed to one of the most reliable techniques for the determina-

tion of elemental contents (as well REE) due to its high sensitivity, multi-element 

capability and the possibility to perform isotopic measurements as well as re-

garding its cost- and time-efficiency. (Zawisza et. al, 2011) 

1.6.1 Principle 

 
Inductively coupled plasma mass spectrometry (ICPMS) allows fast and reliable 

quantitative analysis of almost all (trace) elements along with isotope ratios. It is 

based on generating positively charged ions using a high temperature Ar plas-

ma discharge, and subsequent separation of the ions in a mass separator ac-

cording to their mass-to-charge (m/z) ratio. (Longerich, 2000). Liquid samples 

are converted into aerosols, injected into the plasma and dried, vaporized, at-

omized and ionized in the different heating zones of the plasma. Ions are trans-

ported to the mass separator of the instrument where they are separated and 

subsequently detected and translated into a signal output. 

 

The three ICPMS instruments used in this thesis were a high resolution sector 

field ICPMS (ICPSFMS ELEMENT2, Thermo Scientific, Bremen, Germany), an 

ICP quadrupole MS instrument (ICPQMS ELAN DRC-e, PerkinElmer, Waltham, 

Massachusetts, USA) equipped with a dynamic reaction cell and a multiple col-

lector sector field ICPMS (MC-ICPSFMS Nu Plasma, Nu Instruments Ltd., 

Wrexham, UK) 

 

The basic structure of an ICPMS instrument is shown in the figure below, each 

part will be described in more detail.  
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Fig. 5 Schematic View of ICPMS, adopted from (Horsky, 2010) 

 

1.6.1.1 Sample introduction system 

The first part of an ICPMS is the sample introduction system. As most samples 

analyzed by this analytical technique are liquids, the introduction system con-

sists of a peristaltic pump, a nebulizer and a spray chamber. Solid samples can 

be analyzed directly using laser ablation systems. The liquid sample introduced 

into the nebulizer is converted into an aerosol with the help of nebulizer gas (ar-

gon). The two primarily applied nebulizer types are concentric and crossflow 

nebulizers. While concentric nebulizers are used for clean samples, provide 

excellent sensitivity and stability, but can face blockage problems at the occur-

rence of particles, crossflow nebulizers are the method of choice for samples 

with solid particles due to their larger diameter, but are not as efficient or sensi-

tive.  

The nebulizer is attached to a double pass or cyclonic spray chamber, where 

droplet selection according to droplet size and velocity takes place.  
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1.6.1.2 Ion source 

The ICP torch in combination with an RF coil and RF power supply generates 

the plasma which serves as the ion source, converting the analyte atoms to ions 

through extremely high temperatures (up to 8000 K). Three different Ar gas 

flows contribute to the maintenance of the plasma, which consists of a mixture 

of argon atoms, ions and electrons: plasma gas, auxiliary gas and the nebulizer 

gas transporting the sample. (Thomas, 2001a) 

As the atoms of the sample solution travel through the plasma, they absorb 

more energy from the plasma and eventually release one electron to form a 

singly charged ion. The singly charged ions exit the plasma and enter the inter-

face region. (Hoffmann et al., 2007) 

 

1.6.1.3 Interface 

 

 

Fig. 6 Interface Region (Thomas, 2001) 

 

An interface region links the atmospheric pressure outside the ICPMS to a vac-

uum ranging between 10-6 torr and 10-8 torr, which is needed due to the fact that 

ions do not move very far at atmospheric pressure before a collision occurs. 

The beginning of the interface is represented by a sampler cone and ends at a 

skimmer cone, both made of nickel in most cases. (Longerich, 2000) 
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1.6.1.4 Ion optics 

The main aim of ion optics is to focus the analyte ions and guide them through 

the analyzing part of the system to the detector. Since the ions generated in the 

plasma are nearly all positively charged, they have a natural tendency to repel 

each other. Moreover, their different mass-to-charge ratios result in different 

kinetic energies. The lens of an ICPMS, a charged device, focuses ions into a 

beam for transmission into the analysis unit. Additionally, ion optics stop other 

particles such as photons from entering the analyzing unit as they would cause 

signal instability and degraded detection capabilities due to higher background 

levels. 

 

The ICPQMS used for measurements in this work includes a dynamic reaction 

cell (DRC). The DRC is equipped with a quadrupole in a closed cell, where re-

action gases can be applied.  Gas phase reactions in the cell with e.g. highly 

reactive gas (e.g. NH3) convert polyatomic interfering ions like 40Ar16O (interfer-

ing with 56Fe) to non-disturbing species or – when using e.g. O2 as reaction gas 

- changing the analyte itself by converting it to another mass or neutral shifted 

species takes place before ions enter the mass analyzing unit. Neutral atoms 

don’t carry charges and are therefore not stable in the quadrupole resulting in 

their exclusion from the cell. Reaction cells remove interfering ions very effec-

tively while preserving the analyte ions.  

 

1.6.1.5 Mass analyzer 

The analyzer represents the core part of an ICPMS enabling the separation of 

ions according to their mass-to-charge (m/z) ratio. Three types of mass analyz-

ers are generally applied in ICPMS instruments: Quadrupole, double focusing 

magnetic sector and time-of-flight analyzers. The used instruments were 

equipped with either a quadrupole or magnetic sectorfield device and will be 

explained in more detail. 
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1.6.1.5.1 Quadrupole mass analyzer 

The quadrupole analyzer consists of four rods arranged in a square. A DC volt-

age is applied resulting in the same charge of each pair of opposing rods which 

is then overlaid by an RF voltage. Ions enter the region between the four rods 

which act as a mass filter, only allowing ions with the selected mass to pass 

through. (Longerich, 2000)  

A major problem present in this technique is the separation of analyte- and in-

terfering masses due to the limitations in resolving power. Quadrupole based 

ICPMS instruments offer resolutions only ranging between 0.7 and 1.0 amu (low 

resolution, resolving power app. 300) – a fact that contributes to resolution re-

lated spectral interferences. (Thomas, 2001)  

 

1.6.1.5.2 Magnetic sectorfield mass analyzer 

A magnetic sectorfield device consists of a curved magnet for mass separation 

in general in combination with an electrostatic sectorfield in order to accomplish 

energy focusing. The magnetic and electrostatic sectorfield arranged subse-

quently in one curvature is mostly referred to Nier Johnson geometry (MC-

ICPMS). The backward arrangement is called reverse Nier Johnson geometry 

and is found in single collector ICPSFMS instruments. In the magnetic field, the 

ions are separated according to their mass/charge ratio (Jakubowski, 2011). 

The introduction of a slit in the ion beam path allows accomplishing mass reso-

lutions up to 12.000. Therefore, interfered elements such as Fe, K, As, V and Cr 

can be quantified. Higher resolutions always correlate with lower sensitivity - 

changing from low to high resolution can result in more than a 100-fold loss in 

sensitivity. (Longerich et al., 2000) 

A multi collector device is generally equipped with a magnetic sector field.  

 

1.6.1.6 Detector 

Single collector ICPMS instruments are generally equipped with discrete dy-

node detectors. These detectors can convert the ion beam to an output either 

via pulse counting (PC) or digital mode (DC) depending on the number of in-
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coming ions. Faraday detectors can be found in MC-ICPMS instruments which 

allow higher ion beam currents and are therefore used for higher concentra-

tions. MC-ICPMS instruments preferably use faraday cups as their small geom-

etry allows to arrange multiple cups adjacent to each other.  

 

The ICPMS software finally translates the ion counts measured by the detector 

into counts per second. The concentration of each element is determined by 

comparing the counts measured for a selected isotope to an external calibration 

curve that was generated for that element.  

 

 

1.6.2 Data correction in ICPMS: interferences, matrix effects and mass 

bias 

1.6.2.1 Spectral interferences 

Interferences can be classified either as spectral or non-spectral. Most present 

are spectral interferences which can further be divided into isobaric, polyatomic 

and molecular species. Their occurrence depends e.g. on the gas used, matrix 

components and temperature.  

An isobaric interference is the result of equal mass isotopes of different ele-

ments present in the sample solution. Low resolution instruments cannot distin-

guish between these isotopes. Polyatomic interferences arise due to recom-

bined sample and matrix ions, for instance 40Ar16O is formed in case of aqueous 

sample solutions and argon gas flow and competes with 56Fe. The formation of 

oxides, hydroxides, hydrides or doubly charged species impairs with the out-

come of certain analyte isotopes as well. Rare earth elements, for instance, 

tend to form molecular species and form doubly charged ions more easily than 

other elements. The complicated interferences concerning REEs results from 

overlap of the polyatomic ions (MO+, MOH+) of LREEs on MREEs and HREEs 

as well as of BaO+ and BaOH+ (Cao et al., 2001).  
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Possible interferences of REE with barium, argon and the REEs themselves are 

given in the appendix. The evaluation was made using an ICP Interference De-

termination Utility (Nu Instruments Ltd:, Wrexham, UK). Main components of 

coffee were taken into account. Single atom, double atom and doubly charge 

interferences were evaluated.  

 

The table in the appendix indicates the importance of the separation of e.g. bar-

ium from the sample matrix to reduce interferences. Several solution strategies 

minimize the bias by interferences. The formation of doubly charged ions can 

be reduced via optimization and tuning of the ICPMS instrument with respect to 

plasma conditions, gas flow (the lower the gas flow the lower the interfering ox-

ide species), RF power and sampling position. Isobaric interferences can be 

avoided by choosing alternatives of other, less interfered isotopes or mathemat-

ical interference correction equations (Jakubowski et al., 2011). Furthermore, 

spectral interferences can be overcome by adequate sample preparation before 

measurement, such as separation of possibly interfering substances with the 

support of e.g. chromatographic techniques. Another possibility of avoiding 

poly-atomic interferences is the use of dynamic reaction cells as present in the 

ELAN DRCe or the application of high mass resolution. (Baker et al., 2002; 

Prohaska et al., 1998) 

 

1.6.2.2 Matrix effects 

The classic way to compensate for the matrix effect, which is a physical inter-

ference emerging during measurement is to use internal standardization. With 

this method of correction, certain elements (usually at the parts-per-billion level) 

– in our lab 115In is the mainly used isotope - are spiked to the samples, calibra-

tion standards, and blanks to correct for any variations in the response of the 

elements caused by the matrix. Moreover, they enable to compensate for long-

term signal drift produced by matrix components slowly blocking the sampler 

and skimmer cone orifices. An internal standard needs to fulfill criteria such as 

non-presence in the sample, non-interfering with the analyte’s mass as well as 

a similar ionization potential (Thomas, 2001).  
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1.6.2.3 Mass bias 

The mass discrimination effect occurs due to the preferential transmission of 

heavier or lighter isotopes after ionization in the plasma, resulting in inaccurate 

measurements and inconsistent results especially in isotopic ratio measure-

ments. This so called “space charge effect”, where ions of heavy masses stay 

closer to the beam center while ions of light masses are rather located on the 

outside of the ion beam, needs to be corrected through the application of stand-

ard or certified reference material to obtain the true isotopic composition of the 

sample (Longerich, 2000). 

Several mathematical models have been established for correcting mass dis-

crimination when dealing with ICPMS measurements, the four commonly used 

being the Exponential Law, the Linear Law, the Power Law and the Russel 

equation which are described in more detail elsewhere. Next to mathematical 

correction, the application of an isotope reference standard and internal normal-

ization with an isotopic system relating to the sample system result in a de-

crease of the mass bias. 
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2 Experimental section 

 

Sample preparation as well as all measurements were performed either in the 

VIRIS (Vienna Isotope Research Investigation Survey) laboratory at the Univer-

sity of Applied Life Sciences (Division of Analytical Chemistry, Muthgasse 18, 

1190 Vienna) or in the VIRIS laboratory located at the University of Vienna (Al-

thanstraße 14, 1090 Vienna). The latter location is equipped with a cleanroom 

(class 10 000 and 100 000, respectively). 

 

2.1 Materials 

2.1.1 Laboratory equipment 

All parts used for sample preparation and treatment consisted of polyethylene 

material, were only used once and subjected to a washing procedure including 

24 hours in a 10% nitric acid bath, followed by 24 hours in a 1% nitric acid bath 

and rinsing with purified water (resistivity > 18 MΩ cm, SG, Wasseraufbereitung 

und Regenerierstation GmbH, Barsbuttel, Germany) before air drying and use.  

 

2.1.2 Reagents and Standards 

All samples – unless otherwise stated - and standards were prepared gravimet-

rically in an approximately 2% nitric acid solution. Water used was subboiled in 

a purification system (MLS DuoPur, MLS, Leutkirch im Allgäu, Germany) be-

forehand. Similarly, p.a. grade nitric acid (Merck KGaA, Darmstadt, Germany) 

had to undergo a subboiling process (MLS DuoPur, MLS, Leutkirch im Allgäu, 

Germany) twice. 

 

Reagents, standard solutions and Standard Reference Materials (SRMs) used 

for the methods explained in this thesis were: 

- ICP Multi Element Solution Standard 1 (CertiPrep, Spex Industries, Middle-

sex, United Kingdom) 

- ICP Multi Element Standard Solution VI (CertiPur, suprapure, Merck KGaA, 

Darmstadt, Germany) 
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- Indium ICP Standard, 1000 mg L-1 In (CertiPur, Merck KGaA, Darmstadt, 

Germany) 

- HNO3 (65 % w/w) (MERCK KGaA, Darmstadt, Germany) 

- H2O2 (31 % w/w) (MERCK KGaA, Darmstadt, Germany) 

- Indium ICP Standard: 1000 mg L-1 In (CertiPur, MERCK KGaA, Darmstadt, 

Germany) 

- Rhodium ICP Standard: 1000 mg L-1 Rh (CertiPur, MERCK KGaA, Darm-

stadt, Germany) 

- Rubidium ICP Standard 1000 mg L-1 Rb (CertiPur, MERCK KGaA, Darm-

stadt, Germany) 

- Germanium ICP Standard: 1000 mg L-1 Ge (CertiPur, MERCK KGaA, Darm-

stadt, Germany) 

- ICP Multi Element Standard VI (MERCK KGaA, Darmstadt, Germany) 

- TM-28.3 and 25.3 Certified Reference Material (Beta-Analytik, Austria, 2007) 

- SRM 987 SrCO3 (NIST, Gaithersburg, MD, USA)  

 

2.2 Measurement by using the ELAN DRCe 

110 ppb 115Indium were placed in a PE tube as internal normalization standard 

to reach a final concentration of 10 ppb 115In in the sample solution. Afterwards 

0.1 mL of the previously resin-separated sample was added to the tube filled up 

with 1% HNO3 to reach the wanted dilution (f.e. 1:50 when dealing with the 10 

ng g-1 REE standard) and thoroughly shaken. External calibration standards 

were also prepared with 10 ppb 115In. Multi VI standards with concentrations of 

1 ng g-1, 50 ng g-1 and 100 ng g-1 were measured as well to calibrate the Ba and 

Fe concentrations. For external calibration, 10 REE standard solutions with the 

concentrations of 0.001 ng g-1, 0.005 ng g-1, 0.01 ng g-1, 0.025 ng g-1, 0.05 ng g-

1, 0.1 ng g-1, 0.25 ng g-1, 0.50 ng g-1, 1.00 ng g-1 and 10.00 ng g-1 REE in 1% 

HNO3 were prepared. For the surveillance of the measurement quality itself, a 

certified reference material (TM25.3) was added to the sample list. 140Ce, 164Dy, 

166Er, 153Eu, 158Gd, 165Ho, 139La, 175Lu, 142Nd, 141Pr, 45Sc, 152Sm, 159Tb, 169Tm, 

89Y, 137Ba, 138Ba, 56Fe and 57Fe were measured with the ICPQMS, referring to 

the optimized selection of least interfered REEs from previous studies (Lang, 
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2010). The isotope 232Th is not defined as rare earth element, but was also 

measured and used for the data evaluation.  

 

After running the daily performance check on the ICPQMS (ELAN), measure-

ment of the samples was started applying the following instrument parameters: 

 

Tab. 6 ELAN DRC-e Settings 

Mode DRC standard 

RF power  1250 W  1250 W 

nebuliser gas flow rate  1 L min-1  1 L min-1 

auxiliary gas flow  0.6 L min-1  0.6 L min-1 

plasma gas flow  15 L min-1  15 L min-1 

sample cone  nickel  nickel 

skimmer cone  nickel  nickel 

nebulizer  PFA  PFA 

spray chamber  cyclonic spray chamber  cyclonic spray chamber 

sample uptake rate  100 μl min-1  100 μl min-1 

Cell gas  O2 - 

cell gas flow  0.55 L min-1  0 

Rpq  0.25  0.25 

Rpa  0  0 

signal intensity  650 000-900 000 cps  650 000-1000 000 cps 

number of sweeps  10  10 

number of readings  1  1 

number of replicates  5  5 

lens settings  < 12 V  < 12 V 

flush delay  60 sec  60 sec 

wash time  120 sec  120 sec 

pump velocity  20 rpm  20 rpm 

measurement  dual mode  dual mode 
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2.2.1 Membrane desolvation nebulizer linked to the ELAN DRCe 

The Apex (APEX IR, Elemental Scientific Inc., Omaha, USA) is a semipermea-

ble membrane desolvation unit leading to dried aerosols, which are further 

transported to the plasma. Therefore, as water vapor us reduced, interfering 

oxides are supposed to be reduced significantly (Thomas et al., 1998) 

 

 

 

Fig. 7 Measurement Setup ELAN DRCe with APEX and autosampler 

 

The APEX (APEX IR, Elemental Scientific Inc., Omaha, USA) was used as 

sample introduction system to evaluate a possible difference to the single use of 

a conventional nebulizer used in previous measurement setups.  

REE elements were also analyzed using external calibration and internal nor-

malization. The applied standards are described below.  

 

Tab. 7 Gravimetrically prepared standard solutions 

c (ng g
-1

) Std. 1 Std. 2 Std. 3 Std. 4 Std. 5 Std. 6 Std. 7 Std. 8 Std. 9 

Ce 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

Dy 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

Er 0,001 0,005 0,011 0,027 0,053 0,105 0,264 0,510 1,059 

Eu 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

Gd 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,511 1,060 

Ho 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,062 
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La 0,001 0,005 0,011 0,027 0,052 0,104 0,262 0,506 1,050 

Lu 0,001 0,005 0,011 0,027 0,053 0,104 0,264 0,509 1,056 

Nd 0,001 0,005 0,011 0,027 0,053 0,105 0,264 0,510 1,059 

Pr 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

Sc 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

Sm 0,001 0,005 0,011 0,027 0,052 0,104 0,262 0,506 1,050 

Tb 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

Th 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,511 1,060 

Tm 0,001 0,005 0,011 0,027 0,052 0,104 0,263 0,507 1,053 

Y 0,001 0,005 0,011 0,027 0,053 0,105 0,264 0,510 1,057 

Yb 0,001 0,005 0,011 0,027 0,053 0,105 0,265 0,512 1,063 

 

 

2.3 Measurement by using the Element 2 

The same calibration standards as used for ICPQMS measurements were 

measured by using a HR-ICPSFMS, as well. As a consequence, the final re-

sults of the ICPSFMS were taken for further data evaluation as this instrument 

shows higher sensitivity as compared to an ICPQMS.  

The standard measurement parameter as given in the following table were ap-

plied. 

Tab. 8 Element 2 Settings 

RF power  1400 W  

nebuliser gas flow rate  1.1 L min-1  

auxiliary gas flow  0.6 L min-1  

plasma gas flow  14 L min-1  

sample cone  nickel  

skimmer cone  nickel  

nebulizer  PFA  

spray chamber  cyclonic spray chamber  

sample uptake rate  100 μl min-1  

 

2.4 Method validation 

Method validation, traceability and uncertainty are important aspects concerning 

the measurements and should therefore be taken into account. While validation 

leads to the conclusion if the method used fits the purpose, traceability enables 
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comparison with other results as well as relation to stated references. Uncer-

tainty budgets show the reliability and knowledge of measured data. 

 

Method validation is needed as a quality system ensuring consistently produced 

valid data. The ISO/IEC 17025:2005 guideline points out the “general require-

ments for the competence of testing and calibration laboratories” including pa-

rameters defined below to ensure validation, traceability and uncertainty of 

measurement results. It is a process of establishing a method’s performance 

characterization, scope and limitation of a measurement procedure as well as 

identification of influences and plays a key role concerning the confidence of 

measured and evaluated data. 

 

2.4.1 Working range 

The working or measurement range is defined by the lowest and highest stand-

ard concentration of the external calibration. Calibration curves are calculated 

using linear regression and correlation factors ranging between 0.78 (Eu) and 

1.00 (Ce, Er, Ho) could be achieved. 

 

Element concentrations prepared for the external calibration for each instrument 

used for measurements are shown in the table below. Calculations were made 

according to the stock solution certificates (see appendix).  

 

2.4.2 Sensitivity 

This parameter is expressed by the slope of the calibration curve and repre-

sents the change in the response of the ELAN divided by the corresponding 

change in stimulus. Sensitivity can be specified either as cps∙ng-1∙g∙int(In)-1 or 

cps∙ng-1∙g (Currie, 1999). 

 

2.4.3 Limit of Detection (LOD) and Limit of Quantification (LOQ) 

Two important figures supporting the decision of elements chosen for statistical 

evaluation. While the LOD is calculated as three times the standard deviation of 
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the method blank and defines the smallest amount detectable during measure-

ment, the LOQ even uses ten times the SD of the same blanks and ensures 

proper quantification limits for the analyte. Measurement data ranging below 

LOD levels has to be excluded from further data reprocessing.  

 

                                  

                                   

Equ. 1 Calculation of LOD and LOQ (Prohaska, 2010) 

 

2.4.4 Traceability 

This validation marker is needed to guarantee a transparent traceability of all 

data produced. As all of the data mentioned in this thesis is expressed in units 

according to SI (système international d’unités), results are comparable and 

comprehensible.  

 

2.4.5 Uncertainty budget 

The calculation of uncertainty budgets is a main contribution to increase confi-

dence of the measurement results. According to GUM (Guide to the Expression 

of Uncertainty in Measurement), uncertainty is defined as a parameter which 

characterizes the dispersion of measured values taking into account possible 

uncertainty sources such as sample preparation, dilution procedures, storage 

conditions, instrument effects, reagent purity, matrix effects or interferences. It 

also takes into account the recovery, robustness, repeatability and reproducibil-

ity of measurement results. 

In this thesis, method validation was carried out according to GUM, CITAC and 

EURACHEM guidelines either by using the GUM Workbench Pro (Metrodata 

GmbH, Germany) or Microsoft Excel and the Kragten approach. A model equa-

tion was established to find all sources of uncertainty. The expanded uncertain-

ty U is obtained by multiplying the standard uncertainty u by a coverage factor k 

(=2, confidence level equals to 95%). 
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2.4.6 Selectivity 

This parameter refers to the extent to which the method can be used to deter-

mine a specific analyte in a certain matrix without interferences from other com-

ponents which might behave similarly.  

 

2.4.7 Recovery 

Recoveries represent the percentage of measured analyte amounts compared 

to expected and certified values, respectively. The closer recoveries are to 

100%, the smaller is the bias in the procedure applied. Recoveries higher than 

100% refer to successful preconcentration of the REE during sample prepara-

tion or – on the downside - to interfering substances or contamination resulting 

in higher detection values. The main contribution to recoveries close to 0% is 

loss of analytes. Recoveries are calculated using the following equation: 

 

              
          

              ⁄  

 
Equ. 2 Calculation of Recovery (%) 
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2.5 Methods: REE Resin experiments 

 

For all trials, the REE resin (Eichrom RE Resin, Triskem, Bruz, France) was 

used as agent to separate REEs from interfering substances and to preconcen-

trate the REEs under examination. Preconcentration steps are necessary when 

determining analytes in the ppb range to ensure proper measurement results. 

The resin was slurred in 2% nitric acid 24 hours before usage, stored at room 

temperature in a PE vessel and only used once. REE standard solutions con-

taining each of the occurring REEs with the concentration of either 0.03 ng g-1, 

which equals the expected range in coffee beans (Dietz et al., 1992) or  

10 ng g-1 (for better sensitivity of the measurements) were prepared and en-

riched with a multi element standard containing Ba and Fe. Due to isobaric in-

terferences, the washing step should eliminate Ba, while REEs are meant to be 

held back in the resin until elution. Coffee contains a fairly high amount of iron 

(Dietz et al., 1992) compared to its REE content and might result in interfer-

ences as well.  

 

Fig. 8 Structure of CMPO (Triskem, 2011) 

 

Fig. 9 Scheme of Resin Particle (Triskem, 2011) 

The principle of this extraction chromatography is based on a combination of 

Octyl(phenyl)-N,N-di-isobutylcarbamoyl-methylphosphine oxide (CMPO), which 
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is the main component of this separation aid, and tributyl phosphate (TBP). All 

REEs ought to show similarly good retention and affinity to the resin in HNO3, 

although acidities above 4M HNO3 increase the affinity of heavy REEs to the 

resin, but decrease it for light REEs (Triskem, 2010). It should be taken into ac-

count that in previous studies iron shows an increasing retention in correlation 

with higher molarities of nitric acid and can be found in the matrix to be ana-

lyzed, the green coffee beans. If yttrium is found to be interfered in later data 

evaluation, it is most likely that the interfering substance is iron. (Dietz et al., 

1992) On the other hand, it has to be mentioned that the resin might enhance 

the REE concentration, resulting in better sensitivity during the measurement 

(Esser et al., 1994). Moreover, when dealing with the original coffee bean di-

gests, resin separation clears the sample solution, which later avoids blockage 

of the measurement instruments. Advantages of the use of the REE resin are 

the simple and cost efficient separation process which can be accomplished in 

a batch process in parallel vials as well as the resin’s selectivity. 

 

The first approach in this study was the optimization of separation conditions in 

a batch process to fully investigate the resin’s potential for separation. 

2.5.1 Offline setup with PP frits 

The first offline setup – as can be seen in the figure below - consisted of 3 mL 

PP frits equipped with filters (10 µm pore size), previously washed in 5 % w/w 

and then stored in 1 % w/w nitric acid. 

 

 

 

 

 

 

 

 

 
 

Fig. 11 Scheme of frit used for resin 
trials 

Fig. 10 Schematic overview of 
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The separation procedure was divided into the following steps: 

- Conditioning with HNO3 to prepare the resin for the separation process. Vol-

umes used were 0.750 mL, 1.125 mL, 1.500 mL and 1.875 mL. 

- The REE standard solution had to be diluted to the same molarity of HNO3 

used for the conditioning. Subsequently, the resin was coated with 2 mL of 

the sample (10 ng g-1 REE solution), added slowly drop by drop. Along with 

each sample batch, a blank using 2 % HNO3 was prepared. 

- Washing steps were always carried out using the same molarities as well as 

volumes as the HNO3 used for conditioning. 

- Three equal fractions, altogether summing up to the same volume used for 

conditioning or washing, were always eluted and collected separately. 

After completion of the separating procedure, frits were flushed with 2 % HNO3 

and stored in 10 % HNO3 for at least 24 hours and rinsed with HQ water before 

reuse. Filters were cleaned in an ultrasonic bath (Transsonic T80, Elma Hans 

Schmidbauer GmbH & Co. KG, Singen, Germany) for five to ten minutes and 

then stored in 5 % HNO3. 

 

This setup is very time-consuming due to the fact that all steps need to be moni-

tored and executed manually. Also, setup conditions are hard to be kept con-

sistent, as the bias is already quite high during the setup preparation concerning 

for instance the same amount of resin in the frits, the speed of manually apply-

ing the solutions etc. 

 

2.5.2 Offline setup with resin column and peristaltic pump 

The second offline setup was connected to a peristaltic pump (Perimax 12, Spe-

tec, Erding, Germany), which was supposed to simulate parts of the online 

sample injection system. All resin columns were prepared at the laboratories of 

the Vienna University of Technology (TU Wien, Institute of Chemical Technolo-

gies and Analytics). PE tubes were primarily cut into approximately 10 cm piec-

es and equipped with punched out filters (10 µm pore size). Afterwards, differ-

ent amounts of resin ranging between 100 µL and 200 µL were added to the 

columns with the help of a vacuum pump to enable dense packing. Finally, an-
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other fitting filter was added on top of the resin to avoid percolation of the resin. 

To keep the resin damp, 1% HNO3 was filled into the tubes. Columns were then 

stored in the fridge. The flow rate of the peristaltic pump was consistently main-

tained at 150. As offline systems and sample pretreatments are often very com-

plicated, expensive and time-consuming, this setup was seen as first step to-

wards the development of an online, automated preparation procedure. Previ-

ous studies showed that with online systems, up to 80% of sample preparation 

time could be saved (Zawisza et al., 2011). 

 

 

Fig. 12 Peristaltic Pump Experimental Setup 

 

Volumes used for the separation process were 1.5 mL HNO3 for conditioning, 

2.0 mL sample solution, 1.5 mL HNO3 for washing, 1.5 mL reagent for elution. 

When dealing with this setup, every single separation step output was collected 

to be able to determine whether REEs get lost during application of the sample 

solution or during the washing step. The second setup is still time consuming, 

as the columns need to be placed manually into the particular test tubes. The 

same column and therefore the same resin is used several times. Even though 

washing steps are included, the resin might lose its effectiveness. Advantages 

are the continuous flowrate and the approach to an automated online sample 

separation setup.  

2.5.3 Online setup experiment 

The third separation setup was an approach to an online ELAN DRC-e setup 

with a transient signal, but was not a main focus of this work. It would need fur-

ther development to be usefully applied in this matter. In this case, the same 

columns used for the peristaltic pump setup were used. 
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For this special on-line testing procedure, a second internal standard consisting 

of 1ppb Ge and Rh was used additionally to Indium to monitor the effect of the 

sample solution, directly diluted prior to being injected to the spray chamber. 

Also, all reagents as well as the sample solutions used needed to be adjusted 

to approximately 6M to be comparable and to avoid damage of the measure-

ment instrument caused by too high acidities. The setup can be seen in the pic-

tures below. The hydride generator was used as additional mixing device of the 

solutions. 

 

 

 

 

 

 

 

 

The commonly used PFA nebulizer was not working with this setup due to the 

high pressure resulting from the sample and internal standard solution mixture. 

A groovy nebulizer was applied instead with the downside being a loss of sensi-

tivity. As the volume of this nebulizer was not sufficient either, the 2nd internal 

standard had been removed from the setup with only one internal standard re-

maining and no further dilution of the samples taking place. Another problem 

was the lack of impermeability of the filters in the resin columns, resulting in a 

nebulizer blockage due to resin particles. The online setup trial was stopped at 

this point and would need further development. 

 

 

 

  

Fig. 13 Online setup 
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2.6 Analysis of Green Coffee Beans 

 

Overall, 27 green coffee bean samples from three different continents were pro-

vided by the Center for Environmental Biology, Science Faculty of the University 

of Lisbon, Portugal for further analysis.  

 

Tab. 9 Index and Origin of Samples 

Assigned No. Origin Part of plant 

1B Ethiopia Bean 

1P  Ethiopia Pulp 

2 India Bean 

3 Ethiopia Bean 

4 Ethiopia Bean 

5B Ethiopia Bean 

5H Ethiopia Husk 

ICAT 253 Congo Bean 

ICAT 254 Vietname Bean 

ICAT 255 Ethiopia Bean 

ICAT 256 Guatemala Bean 

ICAT 257 Tanzania Bean 

ICAT 258 Hawaii Maui Bean 

ICAT 259 Timor Bean 

ICAT 260 Ethiopia Bean 

ICAT 261 Peru Bean 

ICAT 262 Ethiopia (Lake Tane) Bean 

ICAT 263 Laos Bean 

ICAT 264 India Bean 

ICAT 265 Hawaii Kona Bean 

ICAT 266 Colombia Bean 

ICAT 267 Brasil Bean 

ICAT 268 New Caledonia Bean 

ICAT 269 Uganda Bean 

ICAT 270 Peru Bean 

ICAT 271 Galapagos (Santa Cruz) Bean 

ICAT 272 Costa Rica Bean 
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Fig. 14 Origin of Samples: Highlighted Countries 

After indexing the samples, about 2 g of each bean sample were grinded in a 

ball mill between 30 and 60 minutes to obtain a homogenous powder, dried at 

50°C (cabinet dryer, WTB Binder Labortechnik GmbH, Tuttlingen, Germany) 

over night and stored in petri dishes.  

 

2.6.1 Microwave Digestion 

All coffee samples were digested with a high performance microwave digestion 

unit (MLS 1200 mega, Leutkirch im Allgäu, Germany). 0.5 g of the grinded cof-

fee samples was weighed into teflon bombs. 6 mL HNO3 (65 % w/w) and 1 mL 

H2O2 (31 % w/w) were added until the coffee powder was fully soaked. The mi-

crowave digestion program consisted of the following time and heat levels: 

 

Tab. 10 Microwave Digestion Program 

Time Power 

2 min 250 W 

2 min 0 W 

6 min 250 W 

5 min 400 W 

5 min 600 W 
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10 min Vented 

 

After cooling of the samples, the now clear and transparent to yellowish colored 

digests were transferred into 50 mL PE bottles and gravimetrically weighed up 

to 20 g with sub boiled H2O and then stored at room temperature.  

The Teflon bombs were filled with 3 mL concentrated doubly sub boiled HNO3 

(65 % w/w) and had to undergo the same microwave program for cleaning rea-

sons before reapplication.  

Subsequently, 5 mL of each coffee bean digest were filtered (0.45 µm filters, 

Minisart RC 25, non-sterile, RC membrane, PP-housing) into PE tubes using a 

5 mL syringe to avoid blocking of the measuring instrument due to solid parti-

cles remaining in the coffee digest.  

Each sample was prepared in a two-fold determination and digestion blanks 

with 2 % HNO3 instead of coffee powder were prepared with each digestion 

batch.  

 

During multi-elemental analysis of the coffee bean samples by the ELAN, the 

following isotopes were screened: 7Li, 9Be, 10B, 11B, 23Na, 24Mg, 26Mg, 27Al, 39K, 

42Ca, 43Ca, 44Ca, 51V, 52Cr, 55Mn, 56Fe, 57Fe, 59Co, 58Ni, 60Ni, 63Cu, 65Cu, 66Zn, 

68Zn, 69Ga, 75As, 77Se, 82Se, 85Rb, 88Sr, 98Mo, 107Ag, 109Ag, 111Cd, 114Cd, 115In 

(internal standard), 128Te, 130Te, 137Ba, 138Ba, 203Tl, 205Tl, 207Pb, 208Pb, 209Bi, 

238Bi.  

2.6.2 Sr/Rb separation 

A Rb/Sr separation had to be accomplished for Sr isotope ratio measurements 

due to the fact that 87Rb interferes with 87Sr and therefore has to be eliminated 

in a separation procedure to minimize this bias. Additionally, other possibly in-

terfering matrix elements will be removed, as well (e.g. Ca)  

A Sr specific resin (EiChrom Industries, Inc., Darien, IL, USA) containing 

4,4'(5')-di-t-butylcyclohexano 18-crown-6 in 1-octanol immobilized on an inert 

substrate with a pore size of 100 µm to 150 µm is used for solid phase extrac-

tion. 
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Fig. 15 Resin Structure (Eichrom Technologies Inc., 2010) 

 

The separation procedure has been adapted from Brunner 2007, Swoboda et 

al. 2008 and Lang 2010 for the matrix used in this thesis. The resin was stored 

in 1% HNO3 in the refrigerator. Before use, it was washed four times with sub 

boiled H2O. The setup consistedof 3 mL PE frits equipped with 10 µm pore 

sized filters. The final bed volume of the resin summed up to approximately  

0.5 mL per frit.  

At the beginning of the separation procedure, the resin was conditioned with  

0.5 mL 6M HNO3 five times. Subsequently, 2 mL acidified coffee bean digests 

were added drop by drop manually to keep the flow rate below 1 mL min-1. It is 

essential to proceed slowly to optimize the interaction between the resin and the 

Sr and to completely remove Rb. The sample application was followed by at 

least 16 times 0.5 mL 8M HNO3 to wash out the unwanted matrix components. 

When working with coffee beans, numerous washing steps are necessary, as 

they contain a very high amount of Rb. Finally, the sample solution was eluted 

with four times 0.5 mL sub boiled H2O and collected in previously cleaned PE 

tubes.  

 

The achievement of sufficient Rb removal was confirmed by ICPQMS screening 

of the separated samples. Additional separation was applied if Rb residuals 

above 1% Rb (compared to the total Sr content) were detected. Satisfyingly 

separated sample solutions were diluted to a final Sr concentration ranging be-

tween 15 and 20 ng g-1 to provide optimal signal intensity and stability during 

HR-MC-ICPMS measurement. Determination of SRM 987 (certified 87Sr/86Sr 
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ratio: 0.710263 ± 0.000016 ng g-1) was performed every 6th sample to provide 

sufficient quality control of the measurement. Mass bias correction as well as 

correction of residual Rb traces were adopted from Ehrlich et al. (2001). 

Total combined uncertainty budgets were calculated according to ISO/GUM and 

EURACHEM including blank correction, mass bias correction, Rb correction 

and the error of the measured ratio. 

 

Sr isotope ratios analysis was performed with an MC-ICPSFMS equipped with 

12 Faraday cups, a membrane desolvation unit and a PFA nebulizer for sample 

introduction. Instrumental parameters for the measurement are shown in the 

table below. 

 

Tab. 11 Nu Plasma and Nebulizer settings 

Nu Plasma settings  

Rf power 1,300 W 

Auxiliary gas flow rate/cooling gas flow rate 0.75mL min-1/13.0 mL min-1 

Sample uptake rate 100 µL min-1 

Sample/skimmer cone Ni 

Nebulizer Perfluoralkoxy nebulizer 

Sampling mode 6 blocks of 10 measurements 

Measurement time 10 min per sample 

Mass analyser pressure <10-8 mbar 

Background/baseline determination HNO3 (1% w/w) 

Washout time 3 min 

Axia mass/mass separation 86.05/0.5 

Detection system 12 Faraday collectors 

Cups L5 L4 L3 L2 L1 Ax H1 H2 H3 H4 H5 H6 

Isotope 82Kr 83Kr 84Sr 85Rb 86Sr 87Sr 88Sr 

DSN-100 nebulizer settings  

Nebulizer pressure 2 bar (30 psi) 

Hot gas flow 0.7 – 0.9 L min-1 

Membrane gas flow 4 L min-1 

Spray chamber temperature 112 °C 
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Membrane temperature 122 °C 

 

2.6.3 Statistical data evaluation 

 

Statistical data evaluation was performed using SPSS version 18.0 (SPSS Inc., 

Chicago). An anti-image correlation matrix with a measure of sampling adequa-

cy (MSA) was applied to corroborate the results of the principal component 

analysis (PCA). Also, a univariate ANOVA analysis was done to ensure the sig-

nificant separation of the variables/elements. Scree plots were produced to de-

termine significant factors, although only factor one and two were considered.  

 

In addition to the PCA, the data was classified by maximizing the variance be-

tween groups as well as minimizing the variance within groups via canonical 

discriminant analysis (DA) using the U-method.  

 

The Eigenvalue – expressing the variance – was set ‘above 1’ in all cases. Val-

ues below the LOD were excluded from statistical analysis and all results are 

based on mean values of the twofold sample determination and of the different 

isotopes of an element respectively. 
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3 Results and Discussion 

 

3.1 Optimization of the separation using Rare Earth Element resin 

 

The aim of this investigation was to optimize the separation procedure using a 

newly developed rare earth elements resin. Aim of using the resin was the po-

tential for: 

 Matrix separation to remove possible interferences and reduce matrix effects 

 Separation of REE into groups to avoid oxide interferences of REE on other 

REE 

 Pre-concentration of REE in order to facilitate the measurement 

 

As the resin was only classified for high concentration levels so far, the investi-

gation of using REE levels as found in coffee digest was challenging and not 

predictable.  

 

As a consequence, several parameters were examined in this progress, such 

as: 

 

- The ideal amount of resin used for the separation procedure: Different bed 

volumes ranging from 50 µL to 200 µL of resin were put in the PP frits or the 

resin columns in the peristaltic pump setup, respectively. 

 

Concerning the ideal amount of resin used for the separation procedure, no sig-

nificant differences could be found when dealing with numerous amounts of res-

in, leading to the conclusion that at least 100 µg of resin (the least amount ap-

plied) should be sufficient enough to hold onto all REEs from the sample solu-

tion. 

 

- The acidity of the solutions used for the conditioning, sample provision, 

washing as well as elution  



50 

 

- The acidity of HNO3 used for the conditioning step: Throughout the sample 

preparation variations, acidities ranging from 0.015 molar HNO3 to 10 molar 

HNO3 were applied, all standard solutions gravimetrically diluted with sub-

boiled H2O. 

 

- The acidity of the sample solution (prepared REE standard to be able to 

monitor and evaluate the results): If not mentioned otherwise – the sample 

solutions were pretreated to equal the acid concentration of HNO3 used for 

the conditioning step. 

 

- The acidity of HNO3 for the washing step to wash out unwanted substances 

while keeping the wanted substances held back in the resin also varied be-

tween 0.015 and 10 molar HNO3. 

 

- The solution of choice for the elution step was chosen from subboiled water, 

0.015 molar HNO3 and 0.03 molar HNO3. 

 

The table below shows the recoveries of cerium as a representative for the 

group of rare earth elements. It can be concluded that the lower the HNO3 mo-

larity used in the separation process and the lower the acidity of the elution 

agent, the higher recoveries can be achieved. Therefore, when working with 

green coffee bean digests, they should be diluted to achieve lower acidities to 

improve measurement results. The solution of choice for the elution step turned 

out to be subboiled H2O. 

 

Tab. 12 Comparison of mean recoveries (%) of Ce in respect to molarity of HNO3 and elution 
agents 

Elution with: H2O 0.015M HNO3 0.03M HNO3 

M  HNO3 for condition-
ing and washing (be-
low) 

Recovery Ce  
[mean, %] 

Recovery Ce  
[mean, %] 

Recovery Ce  
[mean, %] 

6M 32,75 26,16 19,30 

8M 14,61 2,23 1,30 

10M 0,18 0,18 0,08 
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Additional conclusions lead to the fact that even higher HNO3 concentrations 

need to be tested as 10M HNO3 approximately equals the molarity of digested 

coffee beans which should be subject of analysis in the future. 232Th and 45Sc 

showed lowest recoveries and could not be detected at all at some points due 

to interference problems.  

 

- The capability of the resin to pre-concentrate REEs to subsequently en-

hance measurement sensitivity. 

 

The capability of the used resin to preconcentrate REEs could not be proven as 

recoveries were always below 100%. The resin had no significant effect at the 

applied concentration levels. 

 

- The capability of the resin to fractionate heavy (Er – Lu), middle  (Eu – Gd) 

and light (La – Eu) REEs as suggested in the literature (Baker et al. 2002), 

whereas heavy REEs are supposed to elute earlier than middle and light 

REEs. To prove this hypothesis, three elution fractions were collected. 

 

The capability of the resin to fractionate heavy, middle and light REEs could 

also not be observed. Regarding the fractionation of high, middle and light rare 

earth elements, one representative of each class was chosen for comparison. 

According to the table below, 175Lu should be eluted first, followed by 164Dy and 

89Y. No fractionated elution can be verified, as middle and light isotopes are 

eluted in the first fraction as well. There is no significant difference regarding the 

mass of the isotopes and their elution time. 
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Tab. 13 Results for a set of REE in subsequent fractions 

 

- The capability of the resin to separate barium and iron from the REE solu-

tions as these substances lead to interferences later on. 

 

Barium separation could be achieved according to the calculated recoveries in 

the final elution solutions. There is no indication that the concentration of HNO3 

/ the sample plays a significant role in this matter. 

 

Tab. 14 Ba recovery in the elution solutions 

HNO3/ 
Sample concentration Ba Recovery (%) 

0.5 M 0.12 

1.0 M 0,19 

2.5 M 0.18 

4.0 M 0.17 

5.0 M < 0.1 

6.0 M 0.15 
 

 

As a conclusive summary of the optimization procedure, it turned out that the 

resin was not suitable for the successful preparation of the green coffee bean 

digests in order to facilitate the REE measurements by ICPMS: As a conse-

quence, the REE pattern were determined in the selected samples according to 

the applied standard procedure, i.e. direct REE analysis after digestion using 

external calibration and internal normalization.  

 

 1st fraction 
2nd frac-

tion 3rd fraction 1st fraction 
2nd frac-

tion 3rd fraction 

 0.50M 0.50M 0.50M 6.00M 6.00M 6.00M 

 0.25 ml 0.25 ml 0.25 ml 0.25 ml 0.25 ml 0.25 ml 

       
175Lu (ng/g) 0,21 0,67 0,58 0,03 0,23 0,23 
164Dy (ng/g) 0,68 0,36 0,03 0,56 0,42 0,08 

89Y (ng/g) 0,13 0,04 0,00 0,33 0,13 0,02 
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3.2 Application of a membrane desolvation unit (APEX) 

The method validation parameter (see. 3.3) were both evaluated for the regular 

setup (PFA nebulizer with cyclonic spray chamber) as well as with the APEX, 

also using a PFA nebulizer but with a cooled spray chamber and an additional 

membrane desolvation unit. The validation parameters did not show any signifi-

cant difference and thus, the nebulizer cannot be seen of major advantage in 

common REE analysis. The validation parameters in the following chapter are 

derived by the common setup as the latter is used throughout the measurement 

of the green coffee bean samples.  

 

3.3 REE analysis by ICPQMS - method validation 

As already mentioned before, method validation is needed to indicate the suita-

bility of a method.  

 

3.3.1 Working range 

Element concentrations of the REE standard solutions which were used for fur-

ther evaluation ranged from 0.001 to 1.00 ng g-1. 

3.3.2 Sensitivity 

The absolute sensitivity in cps for the ICPQMS system are given in table 14.  

The sensitivity was calculated as slope of the non – normalized count rates and 

calculated for 100% abundance. 

 

Tab. 15 Absolute sensitivity for REE measurements 

Analyte sensitivity (cps / ng g-1) 

Ce 2.15E+05 

Dy 2.24E+05 

Er 2.16E+05 

Eu 2.31E+05 

Gd 2.20E+05 

Ho 2.09E+05 

La 2.02E+05 

Lu 2.22E+05 

Nd 2.50E+05 

Pr 2.39E+05 

Sc 6.70E+04 
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Sm 2.45E+05 

Tb 2.16E+05 

Th 2.86E+05 
Tm 2.16E+05 
Y 1.55E+05 

Yb 2.36E+05 

 

It is evident from the data that REE ranging from atomic number 58 – 71 show 

similar sensitivity in ICPMS. 

3.3.3 LOD/LOQ 

LOD/LOQ were determined according to the equations given in 2.3.3. and are 

shown in table 14.  

 

Tab. 16 LOD and LOQ of REE measured by ICPQMS 

Analyte Isotope mass LOD LOQ 

  
pg g-1 pg g-1 

Ce 140 1.82 5.46 

Dy 164 0.10 0.30 

Er 166 0.17 0.50 

Eu 153 0.06 0.17 

Gd 158 0.14 0.42 

Ho 165 0.05 0.15 

La 139 0.05 0.16 

Lu 175 0.03 0.09 

Nd 142 1.00 3.00 

Pr 141 0.01 0.02 

Sc 45 15 45 

Sm 152 0.18 0.55 

Tb 159 0.04 0.13 

Th 232 0.20 0.60 

Tm 169 0.01 0.02 

Y 89 0.06 0.18 

Yb 174 0.06 0.18 

 

3.3.4 Traceability 

Traceability of the results was achieved by using reference standards as cali-

brants, which were certified for their REE content. All reference standards were 

traceable to SI according to their written description provided with the bottles. 

All sample preparation was accomplished by using a balance, which is gauged 

on a regular basis against a standard weight. 
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3.3.5 Uncertainty 

Uncertainty estimations were calculated according to the following model equa-

tion: 

   [
     ⁄

 
       ]  

    

  
 

Equ. 3 Model equation 

 where: 
 C = final concentration 
 I = measured intensity of the sample 
 IIn = measured 

115
In intensity in the sample 

k = slope of the calibration curve (forced through zero) 
wDil = dilution weight 
ws = weighted sample 
 

The uncertainty contribution of the standard deviation of the single measure-

ment intensities was calculated to be the major contributor to the uncertainty. 

Therefore the average RSD of REE measurements was taken as uncertainty 

estimate and is given in the following table. 

 

Tab. 17 Uncertainty estimates for REE 

Concentration range Uncertainty estimation in % (RSU) 

> 0.1 ng g-1 5 % 

0.5 pg g-1 – 0.1 ng g-1 20% 

 

 
 

3.4 Results of the analysis of the green coffee beans 

The green coffee beans were analyzed for the REE content, which was the ma-

jor task within this study. In addition, multi-element data were determined as 

described in chapter 2.5.1. along with Sr isotope ratios. In addition, light isotope 

data were provided by the University of Lisbon for increasing the information 

content of the data. 

3.4.1 REE measurements 

The REE data for the investigated coffee bean samples are given in the appen-

dix (6.3.1). The measurements were accomplished using an Element 2 

ICPSFMS as it provided higher sensitivity for the analysis of REE. It is evident, 
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that most of the concentrations were below the LOD and only a selected num-

ber of REE could be taken for further evaluation (chapter 3.5). These results 

show evidently, that a further development for pre-concentration and matrix 

separation has to be accomplished, which was unfortunately not successful 

within this work. 

 

3.4.2 Multielement data 

The multielement data, which were analyzed for the coffee samples are given in 

the appendix (6.3.2). Only data above the LOD were taken into account for fur-

ther evaluation. It is evident from the data, that a number of elements vary sig-

nificantly between the different regions. If these differences are reproducible 

and selective for a certain region cannot be defined exactly as statistical data 

are missing. 

 

3.4.3 Sr isotope data 

The Sr isotopic data measured within this study are given in the appendix 

(6.3.3). The data was taken for further evaluation in order to discriminate the 

samples for their geographic origin. It is evident from the data, that significant 

differences are seen depending on the growing region. In many cases, different 

adjacent regions show similar geological properties and therefore similar isotop-

ic composition. Otherwise, small regional differences could be seen.  

 

3.5 Statistical data evaluation 

Statistical data evaluation was performed using SPSS version 18.0 (SPSS Inc., 

Chicago). An anti-image correlation matrix with a measure of sampling adequa-

cy (MSA) was applied to corroborate the results of the principal component 

analysis (PCA). Also, a univariate ANOVA analysis was done to ensure the sig-

nificant separation of the variables/elements. Scree plots were produced to de-

termine significant factors, although only factor one and two were considered.  

 



57 

 

In addition to the PCA, the data was classified by maximizing the variance be-

tween groups as well as minimizing the variance within groups via canonical 

discriminant analysis (DA) using the U-method.  

 

The Eigenvalue – expressing the variance – was set ‘above 1’ in all cases. Val-

ues below the LOD were excluded from statistical analysis and all results are 

based on mean values of the twofold sample determination and of the different 

isotopes of an element respectively. 

 

3.5.1 Determination of the geographical origin with REE data 

 

Fig. 16 Discriminant analysis of REE data 

 

If only taking the REE element pattern into account, it was not possible to signif-

icantly distinguish between the continents of origin of the coffee bean samples. 

The major cause of the failure was the limited amount of information as most of 
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the elemental concentrations were below LOD. Only 67,3 % of the original 

samples could be classified correctly.  

 

 

Tab. 18 Classification Results of REE data 

Classification Results
b,c

 

  Continent code Predicted Group Membership 

Total   Africa America Asia 

Original Count 

dimension2 

Africa 13 7 4 24 

America 0 15 3 18 

Asia 2 1 7 10 

% 

dimension2 

Africa 54,2 29,2 16,7 100,0 

America ,0 83,3 16,7 100,0 

Asia 20,0 10,0 70,0 100,0 

Cross-validated
a
 Count 

dimension2 

Africa 6 10 8 24 

America 1 12 5 18 

Asia 3 1 6 10 

% 

dimension2 

Africa 25,0 41,7 33,3 100,0 

America 5,6 66,7 27,8 100,0 

Asia 30,0 10,0 60,0 100,0 

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is 

classified by the functions derived from all cases other than that case. 

b. 67,3% of original grouped cases correctly classified. 
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3.5.2 Determination of the geographical origin with multi-element data 

As the figure below indicates, it is possible to clearly distinguish the sample ori-

gins regarding the continents with Eigenvalues of the first two canonical discri-

minant functions of 15.879 and 21.350, respectively. As a consequence multi-

element pattern are a straight forward and easily achievable factor for origin 

determination.  

 

 

Fig. 17 Discriminant analysis of multielement data 

 

It is evident, that 100% of the original samples could be classified correctly.  
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Tab. 19 Classification Results of multi-element data 

  Continent code Predicted Group Membership 

Total   Africa America Asia 

Original Count 

dimension2 

Africa 24 0 0 24 

America 0 18 0 18 

Asia 0 0 10 10 

% 

dimension2 

Africa 100,0 ,0 ,0 100,0 

America ,0 100,0 ,0 100,0 

Asia ,0 ,0 100,0 100,0 

 

 

3.5.3 Determination of the geographical origin combining multi-element, 

Sr isotope ratio and light stable isotope ratio data 

 

In this statistical evaluation, all multi-element (this work), strontium isotope (this 

work) and light stable isotope ratios data (provided by the University of Lisbon) 

of the samples ICAT 253 to ICAT 272 were combined to show the potential to 

determine the geographical origin of green coffee beans by means of a multi-

data approach. REE data were not used due to insufficient classification power. 

 

The initial Eigenvalue regarding the multi-element data shows that the first 

component has the most influence with 19.56 % and the second 15.34 %. Tak-

ing the dataset with strontium isotope ratios and light stable isotope ratios into 

account, the influence of the first component was decreased to 18.12 % and the 

second component to 7.68 %. Strontium and the light stable isotope ratios ex-

press their influence at the second and third component. The scree plots of both 

approaches show the same drift of the affected components. 
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Tab. 20 Eigenvalues of the multi-element, light stable isotope and Sr ratio data 

Eigenvalues 

Function 

Eigenvalue % of Variance Cumulative % 

Canonical Cor-

relation 

dimension0 

1 18,117
a
 70,2 70,2 ,973 

2 7,681
a
 29,8 100,0 ,941 

a. First 2 canonical discriminant functions were used in the analysis. 

 

 

 
Fig. 18 Discriminant analysis of multielement, light stable isotope and Sr isotope ratio data 

 

While coffees originating from Africa and America can still be classified satisfy-

ingly, Asian samples don’t show a clear grouping around their centroid. The 

grouping is expected and can easily be explained as a result of sample hetero-

geneity due to different growing regions within one continent.  
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4  Conclusive summary, Outlook and Future 

Perspectives 

 

During this work, the time consuming development and full evaluation and vali-

dation of REE separation by means of a new resin clearly failed as the resin did 

not show the expected properties for the sample pretreatment of REE solutions 

in the low ng g-1 range and below. Whereas the resin showed satisfactory re-

sults for higher concentration levels, it clearly is not suitable to accomplish ma-

trix separation and pre-concentration as a prerequisite for accurate REE deter-

mination at the < ng g-1 REE concentration levels as found in the green coffee 

digests. Therefore, the resin could not be applied for the further study. As a 

consequence, the investigated REE concentrations in the green coffee bean 

samples were too low in order to be used for origin discrimination. Nonetheless, 

REE still imply the potential to discriminate food commodities for their geo-

graphic origin. Therefore, further investigations have to be accomplished in or-

der to develop or further optimize chromatographic separation procedures.  

In addition, a special focus needs to be put on the development of appropriate 

reference materials for solid food such as coffee beans to ensure proper meth-

od validation. 

 

It is nonetheless evident from the results, that multi-element data along with 

isotopic data give the best discriminators. It has to be seen clearly that a combi-

nation of data is the most adequate approach to trace the provenance of food.  

In future approaches, collaborative efforts have to be undertaken in order to 

increase the statistical number of results in order to obtain satisfactory findings 

about sources. As a consequence, all obtained data should be consolidated 

within one database for future evaluation strategies. A holistic approach and the 

combination of various analysis approaches and data bases will lead to valid 

and confident results. 
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In order to successfully interpret the data, fractionation processes of elemental 

or isotopic uptake have to be conceived and to my understanding, further re-

search is necessary in order to obtain reliable data. Therefore, many aspects 

besides the actual food matrix should be taken into account and compared 

when dealing with proof of origin, such as soil composition, precipitation or cli-

mate. 

 

As the accomplished survey was performed on green coffee beans, it is defi-

nitely of interest to which extent various processing steps are influencing ele-

mental or isotopic fingerprints. This consideration is even more important taking 

intensely processed food into account.  

 

It can be concluded, that the establishment of elemental and isotopic finger-

prints of food using ICPMS techniques is a very promising field and key to suc-

cessful origin determination of food. 
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6 Appendix 

6.1 REE – isotopes and their interferences 

REEs in coffee beans and their interfering species (asterisk (*) indicates iso-

topes selected for measurement due to their abundance and lowest interfer-

ences) 

Symbol Abundance 

(%) 

Interferences Interfering Mass 

45
Sc* 100.00 

22
Ne

23
Na 

9
Be

36
Ar 

7
Li

38
Ar 

44,981 

44,979 

44,978 

 
89

Y* 100.00 
53

Cr
36

Ar 

 

 

88,908 

 

 
138

La 
 

 

139
La* 

0.09 

 

 

99.91 

138
Ba 

138
Ce 

 
9
Be

130
Ba 

7
Li

132
Ba 

137,905 

137,906 

 

138,912 

138,921 

 
136

Ce 

 

 

 

 
138

Ce 

 

 

 

 

 
140

Ce* 

 

 

 
142

Ce 

0.19 

 

 

 

 

0.25 

 

 

 

 

 

88.45 

 

 

 

11.11 

136
Ba 

100
Mo

36
Ar 

98
Mo

38
Ar 

6
Li

130
Ba 

 
138

Ba 
138

La 
100

Mo
38

Ar 
98

Mo
40

Ar 
6
Li

132
Ba 

 
100

Mo
40

Ar 
10

B
130

Ba 
6
Li

134
Ba 

 
142

Nd 
10

B
132

Ba 
7
Li

135
Ba 

6
Li

138
Ba 

 

135,905 

135,875 

135,868 

135,921 

 

137,905 

137,907 

137,870 

137,867 

137,920 

 

139,869 

139,919 

139,920 

 

141,908 

141,918 

141,922 

141,920 

141
Pr* 100.00 

11
B

130
Ba 

9
Be

132
Ba 

7
Li

134
Ba 

140,916 

140,917 

140,920 
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Li
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Ba 
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Nd* 
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Nd 
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Nd 
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Nd 
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Nd 
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7
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Ag
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Li
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- - 
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7
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9
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Nd 
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146,867 

146,867 

146,914 

146,919 

146,917 

 

147,917 
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149

Sm* 

 

 

 
150

Sm 
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Sm 

 
154

Sm 

 

 

 

13.82 

 

 

 

7.38 

 

26.75 

 

22.75 
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B

137
Ba 
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B
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Ba 
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36

Ar 
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Ar 
11
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Ba 
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6.2 Measurement results  

6.2.1 REE data 

REE data in ng g-1, values 0.0 correspond to 0.1 ng g-1 

Origin 
89

Y 
139

La 
140

Ce 
141

Pr 
147

Sm 
149

Sm 
143

Nd 
145

Nd 
146

Nd 
151

Eu 
153

Eu 
165

Ho 

             

Ethiopia 30.1 31.6 58.7 7.0 6.1 6.5 28.5 29.6 29.2 6.2 9.5 0.5 

Ethiopia 27.5 29.4 54.1 6.5 5.8 5.9 26.7 26.8 26.6 6.5 9.7 0.3 

Ethiopia 108.3 108.5 176.1 24.6 21.5 21.4 100.9 101.3 100.1 13.1 18.4 3.2 

Ethiopia 194.0 184.1 301.8 42.0 37.6 36.7 171.0 176.0 173.1 24.1 33.3 6.1 

India 5.6 12.3 19.3 1.8 1.4 1.5 7.4 7.2 8.1 5.0 8.3 0.0 

India 6.2 11.8 20.6 2.0 1.6 1.6 8.0 7.8 8.3 4.8 8.3 0.0 

Ethiopia 5.5 10.2 14.3 1.5 1.3 1.5 6.3 6.7 6.5 4.6 7.4 0.0 

Ethiopia 5.8 63.8 16.8 1.5 1.4 1.3 6.3 6.0 6.9 4.6 7.8 0.0 

Ethiopia 6.6 11.1 23.6 2.0 1.7 1.8 8.6 8.3 9.1 3.4 5.2 0.0 

Ethiopia 5.8 10.8 23.2 1.9 1.6 1.9 9.1 8.2 8.2 3.7 5.6 0.0 

Ethiopia 5.0 10.5 20.1 1.7 1.5 1.5 6.9 6.9 7.6 3.4 5.4 0.0 

Ethiopia 5.4 10.2 19.1 1.7 1.4 1.3 6.9 6.8 7.7 3.6 5.5 0.0 

Ethiopia 6.7 16.2 24.0 2.6 1.9 1.9 10.5 10.0 10.7 3.7 5.8 0.0 

Ethiopia 6.9 16.1 23.9 2.6 1.9 2.0 10.6 10.4 10.9 3.5 5.7 0.0 

Congo 35.0 76.3 150.0 15.2 10.5 10.7 56.4 56.7 56.6 9.2 13.8 0.7 

Congo 34.1 87.1 168.9 17.1 11.6 11.6 63.0 64.0 63.6 5.9 8.5 0.7 

Vietname 6.4 9.3 19.1 1.7 1.8 1.8 8.0 7.5 8.0 1.1 1.2 0.0 

Vietname 6.2 8.9 19.1 1.7 1.8 1.9 7.9 7.4 8.1 1.2 1.4 0.0 

Ethiopia 4.9 4.5 9.1 0.4 0.8 0.8 3.1 2.9 3.5 3.9 6.2 0.0 

Ethiopia 3.5 4.4 7.6 0.5 0.6 0.8 3.0 2.8 3.2 3.4 5.6 0.0 

Guatemala 1.3 1.6 1.7 0.0 0.3 0.4 1.3 0.8 1.5 1.2 1.7 0.0 

Guatemala 2.8 3.0 3.6 0.2 0.5 0.5 2.4 2.3 2.5 2.4 3.9 0.0 

Tanzania 33.6 53.4 65.7 9.4 6.9 6.8 38.0 39.0 38.7 10.8 17.0 0.4 

Tanzania 31.8 47.7 56.9 8.8 6.4 6.8 36.6 35.7 35.3 10.6 17.4 0.2 

Hawaii Maui 12.0 19.5 35.7 2.6 2.3 2.1 11.4 12.2 11.4 2.1 2.9 0.0 

Hawaii Maui 14.0 12.3 20.0 2.0 2.5 2.2 9.7 10.0 9.7 6.5 10.5 0.0 

Timor 3.8 6.8 14.7 1.3 1.3 1.6 6.0 5.7 6.3 0.9 1.0 0.0 

Timor 3.4 5.4 11.8 0.9 1.2 1.2 4.5 4.7 4.8 0.7 0.8 0.0 

Ethiopia 2.0 3.8 6.1 0.2 0.5 0.5 2.6 2.0 2.7 1.0 1.3 0.0 

Ethiopia 4.2 9.5 15.4 1.2 0.9 0.9 5.5 4.9 5.8 2.3 3.5 0.0 

Peru 2.8 4.0 8.6 0.6 0.9 0.9 4.0 3.9 4.1 2.0 2.9 0.0 

Peru 2.8 5.0 10.9 0.7 0.7 0.8 4.5 3.8 4.3 1.8 2.6 0.0 
Ethiopia (Lake 
Tane) 3.5 4.9 9.0 0.7 0.9 0.9 4.2 4.1 4.2 2.8 4.5 0.0 
Ethiopia (Lake 
Tane) 3.4 4.8 8.7 0.8 0.9 0.9 4.5 3.9 4.3 3.2 4.8 0.0 

Laos 9.4 14.6 27.7 2.8 2.6 2.9 12.9 12.3 12.9 1.3 1.5 0.0 

Laos 9.5 17.3 35.5 3.1 3.0 3.0 13.7 13.0 13.3 1.3 1.5 0.0 

India 5.9 12.4 13.8 1.4 1.1 1.2 6.1 5.9 6.3 2.2 3.0 0.0 

India 5.5 14.4 14.8 1.6 1.1 1.2 6.4 6.2 6.7 2.0 3.1 0.0 

Hawaii Kona 0.9 2.1 4.2 0.0 0.3 0.3 1.4 0.9 1.5 0.4 0.3 0.0 
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Hawaii Kona 1.2 10.0 17.9 0.7 0.4 0.4 4.0 2.9 3.4 0.5 0.4 0.0 

Colombia 3.7 5.6 8.5 0.7 0.9 0.9 3.9 3.4 3.9 6.7 11.5 0.0 

Colombia 3.6 7.5 11.9 1.2 1.1 1.2 5.7 5.0 5.6 6.8 11.1 0.0 

Brasil 5.7 23.6 70.5 4.3 2.5 2.9 16.3 15.8 16.3 2.4 3.5 0.0 

Brasil 4.9 23.9 68.9 4.1 2.4 2.6 16.7 15.7 16.4 2.4 3.2 0.0 

Uganda 11.2 37.7 69.2 6.1 4.0 4.0 22.6 22.9 23.1 3.2 4.7 0.0 

Uganda 12.1 31.7 59.5 5.4 3.7 3.5 20.6 19.2 20.8 3.4 5.3 0.0 

Peru 3.4 1.6 3.1 0.0 0.5 0.6 1.7 1.5 1.8 2.0 3.2 0.0 

Peru 3.5 1.5 3.1 0.0 0.4 0.7 1.4 1.4 1.6 2.0 3.2 0.0 
Galapagos (Santa 
Cruz) 2.6 2.2 5.2 0.4 0.7 0.8 2.6 2.3 2.9 0.1 0.0 0.0 
Galapagos (Santa 
Cruz) 2.6 2.1 5.1 0.3 0.6 0.8 2.2 2.5 2.7 0.2 0.0 0.0 

Costa Rica 4.4 4.4 3.8 0.4 0.8 1.0 2.4 2.6 2.8 4.6 7.6 0.0 

Costa Rica 4.3 4.4 3.6 0.3 0.6 0.7 2.7 2.2 3.0 5.0 8.1 0.0 

             

Origin 
166

Er 
167

Er 
169

Tm 
171

Yb 
172

Yb 
173

Yb 
155

Gd 
175

Lu 
159

Tb 
161

Dy 
163

Dy 
232

Th 

             

Ethiopia 2.7 3.1 0.0 0.0 0.0 0.0 56.1 0.0 0.5 5.6 5.0 5.4 

Ethiopia 2.5 2.7 0.0 0.0 0.0 0.0 59.1 0.0 0.5 5.3 5.0 3.9 

Ethiopia 10.2 10.0 0.9 0.6 0.9 0.4 110.5 0.8 3.0 20.8 19.4 11.9 

Ethiopia 18.9 18.4 1.9 7.2 7.6 8.1 198.8 1.8 5.8 36.1 34.4 24.3 

India 0.1 0.6 0.0 0.0 0.0 0.0 50.7 0.0 0.0 1.0 0.8 1.6 

India 0.3 0.6 0.0 0.0 0.0 0.0 50.3 0.0 0.0 1.1 0.8 1.3 

Ethiopia 0.1 0.6 0.0 0.0 0.0 0.0 46.8 0.0 0.0 0.9 0.7 0.0 

Ethiopia 0.2 0.6 0.0 0.0 0.0 0.0 45.9 0.0 0.0 0.8 0.7 0.1 

Ethiopia 0.3 0.7 0.0 0.0 0.0 0.0 34.2 0.0 0.0 3.8 1.0 0.0 

Ethiopia 0.2 0.7 0.0 0.0 0.0 0.0 34.9 0.0 0.0 1.0 0.9 0.0 

Ethiopia 0.2 0.5 0.0 0.0 0.0 0.0 35.1 0.0 0.0 1.1 0.8 0.0 

Ethiopia 0.2 0.6 0.0 0.0 0.0 0.0 35.4 0.0 0.0 1.1 0.7 0.0 

Ethiopia 0.3 0.7 0.0 0.0 0.0 0.0 37.9 0.0 0.0 1.3 1.0 0.4 

Ethiopia 0.4 0.6 0.0 0.0 0.0 0.0 37.3 0.0 0.0 1.2 1.0 0.5 

Congo 3.4 3.7 0.0 0.0 0.0 0.0 88.5 0.0 1.0 7.5 6.9 26.4 

Congo 3.4 3.6 0.0 0.0 0.0 0.0 61.3 0.0 0.9 7.8 6.9 31.2 

Vietname 0.3 0.6 0.0 0.0 0.0 0.0 10.0 0.0 0.0 1.5 1.1 0.1 

Vietname 0.3 0.6 0.0 0.0 0.0 0.0 10.6 0.0 0.0 1.3 1.0 0.0 

Ethiopia 0.0 0.7 0.0 0.0 0.0 0.0 36.9 0.0 0.0 0.6 0.5 0.0 

Ethiopia 0.0 0.4 0.0 0.0 0.0 0.0 33.4 0.0 0.0 0.6 0.3 0.0 

Guatemala 0.0 0.2 0.0 0.0 0.0 0.0 12.3 0.0 0.0 0.2 0.0 0.0 

Guatemala 0.0 0.3 0.0 0.0 0.0 0.0 24.8 0.0 0.0 0.5 0.1 0.0 

Tanzania 2.5 3.0 0.0 0.0 0.0 0.0 104.7 0.0 0.0 5.3 5.0 1.7 

Tanzania 2.5 2.6 0.0 0.0 0.0 0.0 103.2 0.0 0.0 5.5 4.6 1.5 

Hawaii Maui 0.5 0.9 0.0 0.0 0.0 0.0 20.3 0.0 0.0 2.2 1.7 0.0 

Hawaii Maui 0.6 0.9 0.0 0.0 0.0 0.0 62.6 0.0 0.0 1.9 1.7 0.0 

Timor 0.0 0.5 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.9 0.6 0.0 

Timor 0.0 0.4 0.0 0.0 0.0 0.0 7.6 0.0 0.0 0.7 0.5 0.0 

Ethiopia 0.0 0.3 0.0 0.0 0.0 0.0 11.2 0.0 0.0 0.3 0.2 0.0 

Ethiopia 0.1 0.4 0.0 0.0 0.0 0.0 22.5 0.0 0.0 0.8 0.4 0.0 

Peru 0.0 0.4 0.0 0.0 0.0 0.0 18.9 0.0 0.0 0.5 0.4 0.0 
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Peru 0.0 0.3 0.0 0.0 0.0 0.0 17.7 0.0 0.0 0.5 0.2 0.0 
Ethiopia (Lake 
Tane) 0.0 0.4 0.0 0.0 0.0 0.0 27.9 0.0 0.0 0.6 0.4 0.0 
Ethiopia (Lake 
Tane) 0.0 0.4 0.0 0.0 0.0 0.0 29.2 0.0 0.0 0.6 0.4 0.0 

Laos 0.7 1.2 0.0 0.0 0.0 0.0 11.3 0.0 0.0 2.2 1.8 1.7 

Laos 0.6 1.0 0.0 0.0 0.0 0.0 11.5 0.0 0.0 2.2 1.8 2.2 

India 0.3 0.5 0.0 0.0 0.0 0.0 21.1 0.0 0.0 1.1 0.7 0.0 

India 0.1 0.5 0.0 0.0 0.0 0.0 21.6 0.0 0.0 1.0 0.6 0.0 

Hawaii Kona 0.0 0.1 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.1 0.0 0.0 

Hawaii Kona 0.0 0.2 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.3 0.0 0.0 

Colombia 0.0 0.3 0.0 0.0 0.0 0.0 65.4 0.0 0.0 0.6 0.3 0.0 

Colombia 0.0 0.3 0.0 0.0 0.0 0.0 64.1 0.0 0.0 0.6 0.4 0.0 

Brasil 0.3 0.6 0.0 0.0 0.0 0.0 25.7 0.0 0.0 1.3 1.1 8.1 

Brasil 0.2 0.5 0.0 0.0 0.0 0.0 24.2 0.0 0.0 1.3 0.9 8.0 

Uganda 1.0 1.2 0.0 0.0 0.0 0.0 35.0 0.0 0.0 2.5 2.1 7.0 

Uganda 1.1 1.3 0.0 0.0 0.0 0.0 37.2 0.0 0.0 2.6 2.1 6.4 

Peru 0.0 0.1 0.0 0.0 0.0 0.0 19.9 0.0 0.0 0.3 0.0 0.0 

Peru 0.0 0.2 0.0 0.0 0.0 0.0 18.0 0.0 0.0 0.2 0.0 0.0 
Galapagos (Santa 
Cruz) 0.0 0.4 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.5 0.3 0.0 
Galapagos (Santa 
Cruz) 0.0 0.3 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.5 0.3 0.0 

Costa Rica 0.0 0.4 0.0 0.0 0.0 0.0 45.4 0.0 0.0 0.6 0.3 0.0 

Costa Rica 0.0 0.4 0.0 0.0 0.0 0.0 48.0 0.0 0.0 0.6 0.3 0.0 
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6.2.2 Multielement data 

Sample  Origin Li Be B Na Mg Al V Mn Fe 

  ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g 

ICAT 253 A Congo <1 < 1 8.41E+03 2.28E+04 2.50E+06 9.00E+04 144.0 2.59E+04 2.50E+05 

ICAT 254 A Vietna-
me 

4.0 6.3 1.33E+04 6.91E+03 2.16E+06 1.60E+04 < 1 2.10E+04 5.73E+04 

ICAT 255 A Ethiopia 4.5 < 1 1.16E+04 1.89E+04 2.44E+06 2.43E+03 4.0 2.18E+04 9.08E+04 

ICAT 256 A Guate-
mala 

36.0 6.5 1.05E+04 2.47E+04 2.42E+06 1.85E+03 < 1 1.37E+04 4.32E+04 

ICAT 257 A Tanzania 3.7 7.2 1.02E+04 8.43E+03 2.20E+06 1.44E+04 < 1 4.32E+04 3.94E+04 

ICAT 258 A Hawaii 
Maui 

16.2 < 1 1.68E+04 2.00E+05 3.22E+06 1.01E+04 15.0 3.64E+04 1.04E+05 

ICAT 259 A Timor 6.4 7.2 1.37E+04 8.13E+03 2.35E+06 8.18E+03 < 1 4.47E+04 4.42E+04 

ICAT 260 A Ethiopia 12.5 < 1 1.05E+04 1.86E+04 2.05E+06 5.59E+03 4.0 1.72E+04 8.37E+04 

ICAT 261 A Peru 11.9 < 1 1.13E+04 6.57E+03 2.18E+06 2.28E+04 28.0 7.24E+04 1.14E+05 

ICAT 262 A Ethiopia 
(Lake 
Tane) 

3.6 7.8 2.80E+04 6.01E+03 2.29E+06 3.51E+03 < 1 1.51E+04 3.53E+04 

ICAT 263 A Laos 5.2 9.9 9.57E+03 8.03E+03 1.91E+06 2.46E+04 < 1 1.64E+04 6.02E+04 

ICAT 264 A India 8.9 < 1 1.28E+04 2.97E+04 2.11E+06 8.00E+03 5.0 1.70E+04 1.03E+05 

ICAT 265 A Hawaii 
Kona 

5.6 < 1 1.12E+04 4.82E+04 2.64E+06 1.46E+03 9.0 2.99E+04 1.00E+05 

ICAT 266 A Colom-
bia 

6.3 5.6 1.11E+04 4.86E+03 2.44E+06 4.98E+03 < 1 4.11E+04 3.34E+04 

ICAT 267 A Brasil 4.9 < 1 8.90E+03 4.62E+03 2.45E+06 5.40E+04 62.0 2.98E+04 1.37E+05 

ICAT 269 A Uganda 13.5 < 1 1.52E+04 8.69E+03 2.47E+06 2.86E+04 33.0 1.86E+04 1.33E+05 

ICAT 270 A Peru 26.2 10.7 1.11E+04 6.16E+03 2.29E+06 1.09E+03 < 1 2.77E+04 3.40E+04 

ICAT 271 A Galapa-
gos 
(Santa 
Cruz) 

3.4 6.7 1.10E+04 1.04E+05 2.17E+06 2.17E+03 < 1 1.56E+04 3.70E+04 

ICAT 272 A Costa 
Rica 

5.8 11.0 1.12E+04 1.10E+04 2.38E+06 2.58E+03 < 1 3.38E+04 3.99E+04 

           

           

           

Sample Origin Co Ni Cu Zn Ga As Se Rb Mo 

  ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g 

ICAT 253 A Congo 2.30E+02 4.52E+03 1.70E+04 1.24E+04 3.44E+02 19.0 1.30E+02 1.90E+04 3.47E+02 

ICAT 254 A Vietna-
me 

4.89E+02 3.52E+03 1.46E+04 6.60E+03 4.43E+01 < 1 2.03E+02 4.62E+04 5.35E+01 

ICAT 255 A Ethiopia 3.98E+01 2.61E+02 1.53E+04 7.62E+03 2.33E+02 10.0 2.25E+01 1.23E+04 3.84E+02 

ICAT 256 A Guate-
mala 

5.99E+01 0.00E+00 1.53E+04 5.76E+03 2.02E+02 < 1 4.99E+01 5.81E+04 1.39E+02 

ICAT 257 A Tanzania 1.07E+02 1.89E+02 1.32E+04 6.75E+03 8.69E+02 < 1 1.55E+02 7.78E+04 1.09E+02 

ICAT 258 A Hawaii 
Maui 

3.27E+02 1.16E+03 1.69E+04 7.31E+03 7.82E+01 18.0 6.09E+02 1.06E+04 1.25E+02 

ICAT 259 A Timor 4.47E+01 9.88E+02 1.69E+04 8.41E+03 3.27E+01 < 1 6.85E+01 2.87E+04 7.99E+01 

ICAT 260 A Ethiopia 4.75E+01 2.65E+02 1.46E+04 6.77E+03 1.11E+02 24.0 3.51E+02 2.27E+04 1.90E+02 

ICAT 261 A Peru 7.96E+01 3.42E+03 1.49E+04 1.17E+04 9.20E+01 12.0 5.13E+01 2.94E+04 2.11E+02 

ICAT 262 A Ethiopia 
(Lake 
Tane) 

3.91E+01 3.41E+02 1.32E+04 7.55E+03 2.04E+02 < 1 1.40E+02 4.14E+04 1.19E+02 

ICAT 263 A Laos 4.73E+02 2.64E+03 1.14E+04 6.84E+03 2.81E+01 < 1 1.34E+02 4.29E+04 7.07E+01 

ICAT 264 A India 4.41E+02 3.61E+03 2.08E+04 8.46E+03 8.88E+01 11.0 1.49E+02 3.79E+04 1.05E+02 

ICAT 265 A Hawaii 
Kona 

1.07E+02 6.38E+02 1.67E+04 8.65E+03 2.57E+01 24.0 9.36E-01 9.59E+03 5.58E+01 
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ICAT 266 A Colom-
bia 

1.77E+02 4.30E+02 1.55E+04 8.41E+03 5.04E+02 < 1 1.57E+02 1.55E+04 8.45E+01 

ICAT 267 A Brasil 9.90E+01 1.78E+03 1.87E+04 7.31E+03 1.19E+02 19.0 5.92E+01 1.37E+04 9.87E+01 

ICAT 269 A Uganda 1.80E+02 1.10E+03 2.06E+04 8.89E+03 1.63E+02 16.0 2.24E+02 2.75E+04 4.96E+02 

ICAT 270 A Peru 2.95E+01 6.28E+02 1.66E+04 7.65E+03 1.39E+02 < 1 1.08E+02 9.77E+03 1.70E+02 

ICAT 271 A Galapa-
gos 
(Santa 
Cruz) 

4.28E+01 0.00E+00 1.71E+04 8.08E+03 0.00E+00 < 1 3.46E+02 9.93E+03 8.97E+01 

ICAT 272 A Costa 
Rica 

1.90E+02 3.52E+02 1.69E+04 7.31E+03 3.66E+02 < 1 1.28E+02 2.34E+04 6.17E+01 

           

           

Sample Origin Ag Cd Te Ba Tl Pb Bi Ca Sr 

  ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g 

ICAT 253 A Congo 1.1 1.3 0.0 6.95E+03 0.76 31.4 15.6 6.34E+05 5.87E+03 

ICAT 254 A Vietna-
me 

1.3 4.7 2.9 1.26E+03 0.93 28.5 < 1 1.57E+06 3.73E+03 

ICAT 255 A Ethiopia 0.2 2.1 < 1 6.64E+03 <0.1 7.49 < 1 9.93E+05 4.94E+03 

ICAT 256 A Guate-
mala 

2.3 5.5 3.2 4.28E+03 2.19 42.5 55.4 1.89E+06 9.77E+03 

ICAT 257 A Tanzania 1.7 3.0 < 1 1.74E+04 0.82 43.6 6.8 1.61E+06 9.83E+03 

ICAT 258 A Hawaii 
Maui 

1.1 9.2 1.1 < 1.0E+3 0.68 22.4 16.0 8.51E+05 8.82E+03 

ICAT 259 A Timor 4.3 1.1 4.8 1.15E+03 0.67 40.2 2.9 1.43E+06 2.83E+03 

ICAT 260 A Ethiopia 161 1.1 2.2 3.44E+03 <0.1 17.2 < 1 1.10E+06 5.73E+03 

ICAT 261 A Peru 0.3 5.3 5.1 3.44E+03 0.91 35.9 < 1 9.00E+05 7.81E+03 

ICAT 262 A Ethiopia 
(Lake 
Tane) 

2.1 2.4 2.5 4.26E+03 0.55 34.4 1.6 1.29E+06 4.38E+03 

ICAT 263 A Laos 3.3 6.2 < 1 8.90E+02 0.81 30.3 2.2 1.23E+06 2.92E+03 

ICAT 264 A India < 1 7.2 8.0 3.00E+03 0.44 3.54 < 1 7.61E+05 3.53E+03 

ICAT 265 A Hawaii 
Kona 

< 1 25.3 < 1 < 1.0E+3 0.61 28.2 15.7 7.49E+05 3.37E+03 

ICAT 266 A Colom-
bia 

3.8 9.0 0.4 1.01E+04 0.47 46.6 1.5 1.46E+06 8.96E+03 

ICAT 267 A Brasil 44.5 1.6 < 1 3.06E+03 0.33 27.1 < 1 7.03E+05 5.02E+03 

ICAT 269 A Uganda < 1 5.5 < 1 4.79E+03 0.03 3.99 < 1 1.07E+06 8.20E+03 

ICAT 270 A Peru 28.8 20.1 0.3 3.21E+03 0.41 65.4 1.1 1.33E+06 2.79E+03 

ICAT 271 A Galapa-
gos 
(Santa 
Cruz) 

2.7 4.5 2.5 5.48E+01 0.16 36.7 < 1 8.94E+05 1.38E+03 

ICAT 272 A Costa 
Rica 

31.1 4.9 1.0 7.30E+03 0.44 41.9 < 1 1.76E+06 1.34E+04 
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6.2.3 Sr isotope data 

 

Sample No. Origin Continent code 87/86 corr SU 

1B A Ethiopia 1 7.0856E-01 0.00035 

1B B Ethiopia 1 7.0822E-01 0.00035 

1P A Ethiopia 1 7.0384E-01 0.00035 

1P B Ethiopia 1 7.0498E-01 0.00035 

3 A Ethiopia 1 7.0879E-01 0.00035 

3 B Ethiopia 1 7.0876E-01 0.00035 

4 A Ethiopia 1 7.1375E-01 0.00035 

4 B Ethiopia 1 7.0900E-01 0.00035 

5B A Ethiopia 1 7.1089E-01 0.00035 

5B B Ethiopia 1 7.0926E-01 0.00035 

5H A Ethiopia 1 7.0744E-01 0.00035 

5H B Ethiopia 1 n.a. 
 

ICAT 253 A Congo 1 7.2066E-01 0.00036 

ICAT 253 B Congo 1 7.0979E-01 0.00035 

ICAT 255 A Ethiopia 1 n.a. 
 

ICAT 255 B Ethiopia 1 7.0697E-01 0.00035 

ICAT 257 A Tanzania 1 7.2296E-01 0.00036 

ICAT 257 B Tanzania 1 7.2260E-01 0.00036 

ICAT 260 A Ethiopia 1 7.0852E-01 0.00035 

ICAT 260 B Ethiopia 1 7.1001E-01 0.00036 

ICAT 262 A Ethiopia (Lake Tane) 1 7.0842E-01 0.00035 

ICAT 262 B Ethiopia (Lake Tane) 1 7.0998E-01 0.00035 

ICAT 269 A Uganda 1 7.2306E-01 0.00036 

ICAT 269 B Uganda 1 7.2518E-01 0.00036 

ICAT 256 A Guatemala 2 7.0665E-01 0.00035 

ICAT 256 B Guatemala 2 7.0587E-01 0.00035 

ICAT 258 A Hawaii Maui 2 7.0853E-01 0.00035 

ICAT 258 B Hawaii Maui 2 7.0919E-01 0.00035 

ICAT 261 A Peru 2 7.1252E-01 0.00035 

ICAT 261 B Peru 2 7.1151E-01 0.00036 

ICAT 265 A Hawaii Kona 2 7.1228E-01 0.00036 

ICAT 265 B Hawaii Kona 2 7.1024E-01 0.00036 

ICAT 266 A Colombia 2 7.0993E-01 0.00035 

ICAT 266 B Colombia 2 7.1031E-01 0.00036 

ICAT 267 A Brasil 2 7.1009E-01 0.00036 

ICAT 267 B Brasil 2 7.0961E-01 0.00035 

ICAT 270 A Peru 2 7.1153E-01 0.00036 

ICAT 270 B Peru 2 7.1114E-01 0.00036 

ICAT 271 A Galapagos (Santa Cruz) 2 7.0586E-01 0.00035 

ICAT 271 B Galapagos (Santa Cruz) 2 7.1669E-01 0.00036 

ICAT 272 A Costa Rica 2 7.0559E-01 0.00035 

ICAT 272 B Costa Rica 2 7.1413E-01 0.00036 

2 A India 3 7.2172E-01 0.00036 
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2 B India 3 7.2339E-01 0.00036 

ICAT 254 A Vietname 3 7.1011E-01 0.00036 

ICAT 254 B Vietname 3 7.1873E-01 0.00036 

ICAT 259 A Timor 3 7.2454E-01 0.00036 

ICAT 259 B Timor 3 7.2541E-01 0.00036 

ICAT 263 A Laos 3 7.1496E-01 0.00036 

ICAT 263 B Laos 3 7.1527E-01 0.00036 

ICAT 264 A India 3 7.2404E-01 0.00036 

ICAT 264 B India 3 7.1894E-01 0.00036 
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6.2.4 C, N, O isotope data (source: C. Rodrigues, University of Lisbon) 

 

Sample Origin Continentcode d
13

C d
15

N d
18

O 

      
ICAT 253 A Congo 1 -27 4.2 31.3 

ICAT 254 A Vietname 3 -27.9 2 32 

ICAT 255 A Ethiopia 1 -26.9 2.9 30.2 

ICAT 256 A Guatemala 2 -28.8 1.5 30 

ICAT 257 A Tanzania 1 -26.3 3.2 32 

ICAT 258 A Hawaii Maui 2 -28.1 1.1 32.2 

ICAT 259 A Timor 3 -28.9 1.5 26.4 

ICAT 260 A Ethiopia 1 -27.2 4.2 34.2 

ICAT 261 A Peru 2 -28.9 2.1 27.5 

ICAT 262 A Ethiopia (Lake Tane) 1 -28.6 3.5 36.9 

ICAT 263 A Laos 3 -28.2 2.1 24.1 

ICAT 264 A India 3 -28.2 3.1 28.8 

ICAT 265 A Hawaii Kona 2 -26.7 2.8 29.5 

ICAT 266 A Colombia 2 -28 2.5 26.7 

ICAT 267 A Brasil 2 -27.5 2.7 26.7 

ICAT 269 A Uganda 1 -27.1 4.1 32.8 

ICAT 270 A Peru 2 -30.9 3.6 20.5 

ICAT 271 A Galapagos (Santa Cruz) 2 -29 3 28.7 

ICAT 272 A Costa Rica 2 -28.2 1.8 24.7 
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6.3 Certificates of Analysis  

6.3.1 SRM 987, Strontium Carbonate 

 



87 
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6.3.2 TM-25.3
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°C degree Celsius 
a year 
AAS  Atomic absorption spectrometry  
AESA  Atomic emission spectral analysis  
amu atomic mass unit 
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cps counts per second 
CRM certified reference material 
DRC dynamic reaction cell 
EDXRF Energy dispersive X-ray fluorescence spectrometry 
equ. equation 
et al. et alii 
ETV  Electrothermal vaporization 
FAAS  Flame atomic absorption spectrometry  
fig. figure 
g gram 
HPLC  High-performance liquid chromatography 
HR high resolution 
HREE heavy rare earth elements 
HR-ICPMS  High resolution inductively coupled plasma mass spectrometry 
Hz Hertz 
ICP inductively coupled plasma 
ICPMS  Inductively coupled plasma mass spectrometry 
ICPOES  Inductively coupled plasma optical emission spectrometry 
ICPQMS  Inductively coupled plasma quadrupole mass spectrometry 
ICPSFMS  Inductively coupled plasma sector-field mass spectrometry 
ICPTOFMS Inductively coupled plasma time of flight mass spectrometry 
INAA  Instrumental neutron activation analysis 
int intensity 
IRMS isotope ratio mass spectrometry 
IUPAC International Union of Pure and Applied Chemistry 
J Joule 
k coverage factor 
kcal kilogram calorie 
L liter 
LA LASER ablation 
LA-ICPMS  Laser ablation microprobe inductively coupled plasma MS 
LOD limit of detection 
LREE light rare earth elements 
m mass 
M molar 
m/z mass-to-charge ratio 
MC multiple collector 
MC-ICPMS  Multiple-collector inductively coupled plasma mass spectrometry 
MPT-OES  Microwave plasma torch-optical emission spectrometry 
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MREE medium rare earth elements 
MS mass spectrometry 
m-XRF  Micro X-ray fluorescence 
n.c. not certified 
n.d. not determined 
NAA  Neutron activation analysis 
p.a. pro analysi 
PCA principal component analysis 
PE polyethylene 
PFA perfluoroalkoxy 
PIXE  Particle-induced X-ray emission 
PP polypropylene 
PTFE polytetrafluoroethylene 
QMS quadrupole mass spectrometry 
R resolution 
REE rare earth elements 
RM reference material 
RNAA  Radiochemical neutron activation analysis 
rpm revolutions per minute 
RSU relative standard uncertainty 
SD standard deviation 
SF sector field 
SIMS  Secondary-ion mass spectroscopy 
SPE  Solid-phase extraction 
SU standard uncertainty 
subb. subboiled 
tab. table 
TIMS  Thermal ionization mass spectrometry  
TXRF  Total-reflection X-ray fluorescence 
U voltage 
UV ultraviolet 
UV-VIS  Ultraviolet-visible spectrophotometry 
V volt 
VIRIS Vienna Isotope Research, Investigation and Survey 
W watt 
WC-OES Tungsten coil optical emission spectrometry 
XRF  X-Ray fluorescence spectrometry 
z charge 
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