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I. INTRODUCTION 

 

 

I.1. Revenue Management  

 

Ever since, the main objective of Revenue Management (RM) is to maximize 

revenue. Within a competitive environment Revenue Management Systems (RMS) 

are getting more and more important and are mainly applied in industries that have 

a high ratio of fixed to variable costs like in energy, railway, shipping and lately even 

smaller service provider sectors. But within the airline branch, RM certainly has its 

longest tradition, highest level of complexity and most sophisticated approaches. 

Originally, RM started with overbooking, i.e. selling beyond its capacity in order to 

compensate no-shows1  and cancellations on short notice, thus, avoiding empty 

seats when departing. Over time, RM in the aviation sector developed more 

different tools such as forecast, seat allocation and pricing models in order to 

maximize revenues. In the main parts of this thesis focus on demand forecast and 

seat allocation while overbooking models or pricing strategies will not be discussed 

here. 

Given a fixed capacity, that equals the number of seats on a certain flight, the 

science of RM is maximizing expected revenues through market demand 

forecasting and the mathematical optimization of price and availability of these 

seats. Thus, seat allocation optimization or seat inventory control is the process of 

limiting the number of seats sold at different price levels, basically managing the 

tradeoff between yield and spoilage. 

                                            

1
 A „No-Show“ refers to a passenger who has a valid booking for a specific flight but does not show 

up at the departure, e.g. due to misconnex.  
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The forthcoming subchapters will briefly explain the general development of RM, 

both, prior and after worldwide deregulation in the aviation sector that had a huge 

impact on RM. 

 

I.1.1. The Impact of Deregulation on Airline RM 

 

The deregulation in the United States as well as in Europe within the aviation sector 

changed this industry dramatically. Before the U.S. airline deregulation in 1978 

there almost was no such thing as RM in the airline industry. U.S. airlines had no 

freedom to set the level of their airfares themselves; tariffs were rather determined 

by the Civil Aeronautics Board (CAB) on a price-per-miles basis, i.e. there was one 

single price per compartment flying from a certain point A to B, mainly depending on 

the distance between the two points and regardless of the time of travel or the time 

of (advanced) booking. Airlines’ requests to increase or decrease their fares were 

mostly denied and increases were only allowed in case of losses in order to 

compensate the costs. Prices were comparably high to today’s tariffs which resulted 

in both, poor loads and poor revenues. From today’s RM point of view that focuses 

on revenue maximization this situation can be described as overprotection, 

capturing revenue from passengers who could afford it with their high willingness to 

pay only (see Chapter I.1.2, Figure 1.1: Overprotection and Dilution). 

The development of airline RM in Europe was not much different than the one in the 

United States and lead to similar consequences. After the Second World War each 

European nation had its own national “flag carrier”, in each case fully or partly 

owned by the respective government. European Nation’s governments negotiated 

mutually about frequencies and tariffs between the gateways in their two countries. 

Similar as in the United States, the airfares in these bilateral agreements were 
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determined according to the suggestion done by the IATA, the International Air 

Transport Association (IATA) which was founded in 19452.  

Due to the fact that each national carrier was owned by its nation there was 

practically no space for any competition to arise. Moreover, the national airlines 

were often highly subsidized which created no incentive to change their inefficient 

cost or pricing behavior. But after the successful development in the U.S. aviation 

industry during the 1980s, the first measures towards deregulation in the Europe 

airline industry were triggered by the European Council in 1987. This process was 

finally completed in 1997.  

The first steps to a more dynamic pricing and revenue management – then still 

known as yield management – were taken in the United States in the early 1970s 

when airlines started offering discounted fares within the same compartment 

combined with certain restrictions. For example, British Airlines, which was still 

known as BOAC in that time, offered a lower fare to passengers who purchased 

their ticket at least 21 days before departure in order to attract passengers with a 

lower willingness to pay (WTP) and, thus, trying to sell more seats that may have 

been empty otherwise at the time of departure3. But selling all the fixed capacity, i.e. 

the number of seats in the aircraft on the certain departure date, at the lower fare is 

also not the optimal choice (see following Chapter I.1.2).  

After deregulation in both areas, North Atlantic and Europe, the airlines entered a 

more competitive environment as suddenly all airlines were free to choose their 

airfares themselves. The need for the right seat allocation as described above and, 

hence, the need for a RM system that maximizes revenue was becoming more 

obvious and needed.  

 

                                            

2
 Burghouwt, G., M. Huys. 2003. Deregulation and the Consequences for Airport Planning in Europe. 

DISP Volume 154, p. 37. 
3
 McGill, G.I., G.J. van Ryzin. 1999. Revenue management: research overview and prospects. 

Transportation Science. Volume 33, Issue 2, pp. 233-256. 
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I.1.2. Further Development of Airline RM 

 

The product an airline is the flight transportation service from a certain point A to 

another point B on a specified future date. As described earlier, before deregulation 

there was one single price for this service regardless of other preconditions like 

demand, competition or the time of booking prior departure.  

As an airline can set prices by itself since the deregulation the question raises what 

is the right price. If the price is set too high the airline will eventually produce a 

suboptimal output in terms of revenue maximization. Assuming a certain demand 

curve, this high price captures the revenue that results from high price and low 

quantity – only passengers with a willingness to pay equal or greater than the full 

fare will be affected. Hence, the airline has a lot of unused seats at the time of 

departure; lost revenue that could have been gained through selling the rest of the 

capacity offered at a lower price than the full fare. Even when today’s pricing 

structures are different and more complex than before the deregulation the problem 

of overprotection remains the same. 

However, if the price is set at a lower level, meaning that most passengers’ 

willingness to pay exceeds the (discounted) fare, the total capacity can be sold most 

of the time. Consequently, passengers enjoy a great consumer surplus, especially 

high yield customers. From those high yield passengers airlines usually expect 

strong revenue streams, however, with this pricing strategy expected high revenues 

are diluted with low fares.  

Hence, the airlines have developed strategies over time in order to maximize 

revenues by charging not only one price for the flight from A to B but offering 

several pricing levels depending on certain conditions such as time of booking prior 

departure, lengths of stay, the possibility to refund the ticket and others. With these 

conditions airlines were able to distinguish between the passenger types and their 

willingness to pay, thus, inventing different “products” fitting each passenger type. In 

general, two types of passengers can be distinguished: leisure and business 
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travelers. Referring to the first one, leisure passengers, they have the following 

main characteristics: a comparable low willingness to pay (as many other costs 

have to be beard next to the flight, as for example accommodations) and an early 

booking behavior as they tend to fix their holiday somewhat in advance. Moreover, 

leisure travelers usually stay at least some days or over the weekend and their 

holidays are rarely rescheduled. In contrast, business passengers often need to fly 

on very short notice, they might need to rebook or even refund their booked flight 

when, for instance, a meeting is rescheduled or cancelled. Business travelers 

usually stay only one or two days never using their spare time staying over the 

weekend. In order to have this flexibility they are willing to pay a higher price than 

leisure passengers.  

 

Figure 1.1: Overprotection and Dilution, reproduced from Keyser4 

 
                                            

4
 Keyser, M. R. 2008. RM Methods for Multiple Fare Structure Environments. Master’s Thesis, 

Massachusetts Institute of Technology, Cambridge, MA. pp. 15-16 
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Knowing these characteristics one can use certain practices in order to separate 

these target groups, thus, being able to reflect the true demand and true willingness 

to pay for each group maximizing revenue, respectively minimizing the revenue 

losses through overprotection and dilution (see Figure 1.1). Lowest fares are 

combined with restrictions that hinder business travelers of purchasing them such 

as advanced purchase, minimum stays and Saturday/Sunday rules. Advance 

purchase implicates that a fare is purchasable only until a fixed period prior 

departure, e.g. 21 days. Minimum stay refers to a certain period of days the 

passenger has to stay between departure and return. Whereas, meeting the 

Saturday/Sunday rule the passenger needs to stay over the weekend in order for 

this fare to be applicable. Furthermore, low fares are often neither rebookable nor 

refundable. The smaller the discounts from the full fare – actually the original and 

highest fare within a compartment – the more flexible the products become. The full 

fare has no restrictions at all. If one of these restrictions is violated the higher fare is 

applicable where all demanded conditions are met. In other words, different pricing 

levels in combination with certain restrictions are used for market segmentation and 

to allocate the correct price to each travel type, i.e. the price that equals the 

passenger’s willingness to pay (see Figure 1.2). 
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Figure 1.2: Dynamic Pricing, reproduced from Keyser 4 

 

However, with this new innovation of dynamic pricing consequently a problem 

arose: how many seats per flight should be sold at a lower fare and how much of 

the fixed capacity should be protected for late high yield bookings? A brief overview 

about the traditional tools that were developed as a response to this question will be 

given in Chapter II.1. Later on, an explanation about the RM Tools of the new 

environment will follow as well.  
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I.2. Objective of the Thesis  

 

For each sophisticated RM system an accurate forecast for future demand is a 

crucial factor influencing the outcome of revenue maximization process essentially. 

Traditional network carrier (NWC) used to separate and forecast passenger 

demand through certain restrictions. However, through the emergence of the low 

cost carrier (LCC) the traditional RM systems using this separation became invalid; 

especially a correct forecasting process was not possible anymore after the removal 

of the separating restrictions. Traditional RMS used by NWC had – and still have – 

great difficulties in classifying business and leisure demand in this new semi- or 

unrestricted market environment where fare structures are indifferent except for the 

price level. This resulted in the development of new RM methods eventually. Hybrid 

Forest is one method of this “new generation” of RM systems generating two 

separate forecasts for two different passenger demand types: yieldable and 

priceable demand. Priceable demand refers to price-sensitive customers who strive 

to buy the cheapest available fare only whereas yieldable demand represents 

passengers who buy a fare because of its characteristic, for example the possibility 

to rebook or refund the fare. As these two demand types vary in their booking 

behavior two different forecasting methods apply too. Both forecasts of yieldable 

and priceable demand are then taken together to a total “hybrid” forecast model.  

The objective of this thesis is to evaluate the effectiveness of Hybrid Forecasting 

over other traditional RM methods in unrestricted environments. In order to test this 

thesis a simulation tool called REMATE is used. REMATE was developed and 

provided by Deutsche Lufthansa AG together with the University of Berlin. The 

simulation environment contains of a small network with one hub and three routes 

where two airlines compete against each other; one LCC and one NWC. The 

simulation itself offers four different scenarios where the NWC always uses a 

different RM techniques including first-come-first-serve RM, leg based RM, OD 

(origin-destination) based RM and, finally, hybrid forecast RM. The results of all 
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scenarios will be compared and discussed to find an appropriate forecast method 

for the current aviation environment. 

 

 

I.3. Structure of the Thesis 

 

This thesis is organized into two three parts: a description about all relevant 

literature and theory relating to this topic, an overview of the simulation environment 

used for this thesis and, finally, the presentation and analysis of the simulation 

results. 

Chapter I and II provide insight about the basic theory of airline revenue 

management presenting the historical development and the most important RM 

tools applicable. Overbooking, forecasting and inventory control are the topics 

covered here. Moreover, the low cost carrier business model is discussed. 

In Chapter III the problems of today’s network carrier are described: the reason for 

spiral down effect they experienced and the consequential need to evolve traditional 

RM tools. The hybrid forecast and optimization model which represents one of the 

new RM tools is also explained in this section.  

A detailed introduction of the simulation tool REMATE and the environment that has 

to be created in order to run a successful realistic simulation is presented in Chapter 

IV. This includes the development of a network and schedules as well as the 

demand generation in form of different customer types that reflect the true 

passenger behavior in a most realistic way.  

Chapter V explains the four different simulated scenarios and offers an analysis of 

all simulation results. The simulation outputs include the airline’s revenue, final 

booked passengers, yield but also the fare class mix and the customer type 
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distribution. Finally, Chapter VI concludes this thesis with a summary of the findings 

particularly with regards to the thesis’ objection and further research direction is 

considered.   
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II. LITERATURE REVIEW 

 

 

The first literature published about airline RM dates back to the 1960s and focuses 

on overbooking as the first tool to improve airlines’ revenue. After deregulation in 

the late 1970s the airline environment grew and competition increased leading to 

greater efforts improving RM quality, and, hence, more papers and thesis about that 

topic were published. Especially in the last two decades there was another 

worldwide raise of competition caused by the emergence of low cost carrier which 

again increased the awareness to enhance airline RM methods. This chapter starts 

discussing the traditional RM techniques that have been developed before giving an 

overview about the low cost carrier and the business model they adopt.  

 

 

II.1. Traditional RM Tools  

 

Soon after the deregulation, airlines realized that each seat on board of their 

aircrafts is a perishable good, meaning once a seat is left unsold at the time of 

departure, the chance to sell it is gone forever. So the bottom question was how to 

optimize those seats most efficiently, in other words, following task should be 

solved: selling the right seat at the right time to the customer at the right price. 

When airlines first started to record all bookings in their system they were not able 

to use this information effectively; not until they could compare the expected 

booking curve from previous flights with the actual booking curve, thus developing 
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the first optimization models. Barnhart et al5 provides insight of the development of 

airline RM systems from the early 1980s until the “third generation” RM systems 

were developed, as seen in Figure 2.1. A typical third generation RM model 

consists of three main components: a forecast model, an overbooking model and a 

seat optimization model. External inputs needed as a basis are revenue data, e.g. 

provided from revenue accounting in order to estimate the value of a fare and 

booking class, actual bookings, collected data from historical booking and no shows 

for each single flight. Ultimately, this RM component model will output optimal 

overbooking levels and recommended booking limits in order to maximize overall 

revenue.  

In the following subchapters all three main components will be briefly discussed, 

overbooking, forecasting and different seat allocation optimization models. More 

literature about RM systems are provided by McGill and van Ryzin2 as well as 

Clarke and Smith6.   

                                            

5
 Barnhart, C., P.P. Belobaba, A.R. Odini. 2003. Applications of Operations Research in the Air 

Transport Industry. Transportation Science, Volume 37, Issue 4, pp. 368-391.  
6
 Clarke, M., B. Smith. 2004. Impact of Operations Research on the Evolution of the Airline Industry. 

Journal of Aircraft, Volume 41, Issue 1, pp. 62-72.  
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Figure 2.1: Third Generation Revenue Management Component Model, reproduced 

from Barnhart et al.5 

 

II.1.1. Overbooking 

 

The first measure taken to improve revenue performance was to overbook flights. 

When airlines realized that there are always some so called no-shows, i.e. 

passengers who do not show up at departure due to short term cancellations, 

misconnections or other reasons, they started selling above the capacity they 

actually offered. This avoids a fully booked flight leaving with empty seats. Of 

course, this creates the risk of possible denied boardings if more passengers show 

up than expected eventually exceeding the total physical capacity of the operating 

aircraft. This causes costs and customer dissatisfaction. Consequently, overbooking 

profiles were developed with sufficient data and appropriate tools to minimize the 
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risk of denied boardings. The first overbooking models were developed in the late 

1960s and early 1970s by Simon7, 8, Falkson9, Biermann and Thomas10, Rothstein11 

and Vickrey12 and since then further research was done continuously till today. In 

this thesis the overbooking as RM tool will not be discussed any further.  

 

 

II.1.2. Forecasting 

 

Another crucial tool of revenue management is forecasting. As mentioned in the 

earlier Chapter I.1.2 if airlines are offering different fares to the customer there is 

always the problem of uncertainty about how many seats should be distributed to 

early booking passengers, typically with lower willingness to pay (WTP) and how 

many seats should be saved for late booking passengers, usually business 

travelers with a higher WTP. An accurate forecasting of overall demand of a market 

but also on a more disaggregated level, i.e. forecast of a certain day of week, of a 

certain flight and of each fare class, is inevitable to solve this problem and has 

direct influence on the overall optimization process of RMS.  

There are several methods developed and used to forecast passengers’ behavior. 

First research on this topic concentrated on aggregated demand forecast on a 

macro level. The overall forecast, for example between two regions during a certain 

time period was projected with Poisson and regression models using historical 

                                            

7
 Simon, J. 1968. An Almost Practical Solution to Airline Overbooking. Journal of Transport Economy 

and Policy. Volume 2, p. 201-202. 
8
 Simon, J. 1972. Airline Overbooking: The State of the Art – A Reply. Journal of Transport Economy 

and Policy. Volume 6, pp. 254-256. 
9
 Falkson, L. M. 1969. Airline Overbooking: Some Comments. Journal of Transport Economy and 

Policy. Volume 3, pp. 352-354. 
10

 Biermann, H. Jr. and J. Thomas. 1975. Airline Overbooking Strategies and Bumping Procedures. 
Public Policies. Volume 21, pp. 601-606. 
11

 Rothstein, M. 1971a. An Airline Overbooking Model. Transportation Science. Volume 5, pp.180-
192. 
12

 Vickrey, W. 1972. Airline Overbooking: Some Further Solutions. Journal of Transport Economy 
and Policy. Volume 6, pp. 257-270. 
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booking data only. Early regression techniques and experiments with airline data to 

aggregate airline forecasting are described by Taneja13 and in the Master thesis of 

Sa14.  

Later, disaggregated and, moreover, short term booking information was collected 

and used additionally. The use of this information for demand forecasting models 

has been discussed by Harris and Marucci15 at Alitalia, L’Heureux16 at Canadian 

Airlines International, Adams and Micheal17 at Quantas and Smith, Leimkuhler and 

Darrow 18  at American Airlines. Lee’s 19  doctoral dissertation examines several 

issues of disaggregated airline demand using Poisson models. 

Current practice is to use collected information of historical booking data as well as 

current booking developments as a basis in order to forecast accurately at a 

disaggregated micro level, i.e. forecast of each fare class on each individual flight. 

Forecast models can apply either for individual flight legs or for whole Origin-and-

Destination (OD) itineraries. The methods, combining historical and future 

forecasting, most commonly used by airlines RM are pick-up forecasting, time-

series models, moving average and exponential smoothing. While Zeni20 examines 

the moving average method, the multiplicative pick-up model and the exponential 

smoothing, Wickham21 compares pick-up models to linear regression methods and 

                                            

13
  Taneja, N.K. 1978. Airline Traffic Forecasting: A Regression Analysis Approach. Chapter 1. 

Lexington Books. 
14

 Sa, J. 1987. Reservation Forecasting in Airline Yield Management. Master’s Thesis, 
Massachusetts Institute of Technology, Cambridge, MA. 
15

 Harris, P. and G. Marucci. 1983. A Short Term Forecasting Model. 23
rd

 AGIFORS Symposium 
Proceedings, Memphis, TN. 
16

 L’Heureux, E. 1986. A New Twist in Forecasting Short-Term Passenger Pickup. 26
th
 AGIFORS 

Symposium Proceedings, Bowness-On-Windermere, England. pp. 248-261.  
17

 Adams, W. and V. Michael. 1987. Short-Term Forecasting of Passenger Demand and Some 
Application in Quantas. 27

th
 AGIFORS Symposium Proc., Sydney, Australia. 

18
 Smith B.C., J.F. Leimkuhler and R.M. Darrow. 1992. Yield Management at American Airlines. 

Interfaces. Volume 22, pp. 8-31. 
19

 Lee, A.O. 1990. Airline Reservation Forecasting: Probabilistic and Statistical Models of Booking 
Process, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
20

Zeni, R.H. 2001. Improved Forecast Accuracy in Revenue Management by Unconstraining 
Demand Estimates from Censored Data. Ph.D. Thesis, Rutgers, the State University of New Jersey, 
Newark, NJ.  
21

 Wickham, R.R. 1995. Evaluation of Forecasting Techniques for Short-Term Demand of Air 
Transportation. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
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to simple time series. In his master’s thesis Wickham discovered that pick-up 

forecasting consistently outperforms other methods discussed in his theses leading 

to the highest revenue outcome. The Pick-up method divides the timeline prior to 

the flight’s departure in certain well specified periods. Then it compares historical 

booking data within these timeframes with current bookings, thus, forecasting the 

“picked-up” number of the incremental bookings for each single period. Deeper 

analysis of classical pick-up forecasting and different time-series models can be 

found in Zickus22, Skwarek23, Usman24 and Gorin25.  

Due to the very dynamic nature of passenger’s booking behavior that changes over 

time historical booking data may deviate from future booking patterns, hence, 

disaggregated forecasting on a passenger level turns out to be extremely difficult 

and complex which results in a permanent research for even more accurate 

forecasting models. Latest development in this field that should be highlighted here 

is the hybrid forecast model which combines two different forecasting methods as a 

reaction of the new environment airlines have entered. This model will be explained 

explicitly and in detail later in Chapter II.2.  

 

 

II.1.3. Seat Allocation Optimization 

 

Once having an accurate forecast this information needs to be processed by the 

seat allocation optimizer or inventory control. There are different approaches of how 
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to achieve the optimal seat allocation in order to maximize revenue and models 

have evolved during the past four decades. Before inventory control it was a simple 

first-come-first-served system. In the following subchapters I will briefly discuss the 

most common and important methods of seat allocation distinguishing between 

single leg based control and origin-destination (OD) control.  

 

 

II.1.3.a Leg Based Control 

 

In 1972, Littlewood26 was the first to present a solution for the question whether a 

seat should be sold or rather protected in an environment for a single leg flight with 

two different fare classes, by taking the displacement cost into consideration. In 

airline revenue management, the displacement or opportunity cost of a booking 

includes all future revenues that may be lost if the booking is accepted. Thus, 

Littlewood created a “nesting” rule that sets certain booking limits for each fare class 

restricting the seats that can be sold at the discounted fare level according to the 

expected revenue forecast of sellable seats at the higher full fare class. With this 

method he “linked” the revenues of all fare classes with each other instead of 

seeing the forecasts of each fare class independently. Littlewoods Rule says that 

given the average full fare Y and the average discounted fare B, where Y > B, full 

fare demand D and s seats remaining, the demand for the discounted fare should 

be satisfied as long as  

         (     ), 

where P (D > s) is the probability that the demand is greater than the 

remaining seats. 
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Based on Littlewood’s work Belobaba 27  extended this rule to be applicable in 

multiple fare classes. In his Ph.D. thesis 1987, he created the Expected Marginal 

Seat Revenue (EMSR) heuristic which he even refined in 1992 to the more robust 

EMSRb probabilistic decision model28. EMSR is referring to the average fare of the 

seat being considered multiplied by the probability that demand will materialize for 

that marginal seat. Similar to Littlewood’s rule the EMSRb assumes stochastic and 

independent demand for each fare class and, furthermore, is a top down approach, 

i.e. a class protection is set for the highest fare class first. Thus, a seat for this 

higher fare is protected as long as the expected marginal value of saving it exceeds 

the expected revenue from the fare class below; and so on until total inventory has 

been allocated to each fare class (Figure 2.2 that is reproduced from Barnet et al.). 

 

Figure 2.2: Nested Booking Limits (BL) and Class Protection Levels, reproduced 

from Barnhart et al.5 
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The EMSRb model optimizes the revenue of a single leg by setting booking limits 

per fare class from the highest fare class top down. But since it is a leg-based 

algorithm that optimizes each leg independently might not maximize revenue for 

transfer passengers who travel more than one leg on their trip. Although if a transfer 

passenger contributes less on one flight leg than a local passenger the transfer 

might bring more revenue in total for the airline, meaning EMSRb does not 

maximize overall network revenue. It is obvious that especially hub-and-spoke 

network carrier need to optimize the overall revenue, i.e. all traffic types have to be 

taken into consideration, local but also transfer. This enhancement will be discussed 

in the following subchapter.  

Although other authors such as Curry 29 , Wollmer 30 , Robinson 31 , Brunelle and 

McGill32 have developed optimal seat allocation algorithms for multiple fare classes 

independently as well, Belobaba’s EMSRb model has become accepted and 

incorporated in many airlines’ revenue management systems worldwide. More 

detailed information about the EMSRb model provides Belobaba and 

Weatherford33, Williamson34 and Lee35. 
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II.1.3.b Origin-Destination Control 

 

Airlines with leg based inventory control as RM technique, as discussed in the 

previous chapter, registered significant revenue improvements compared to simple 

first-come-first-serve systems. Since the 1980s the number of connecting 

passengers, travelling more than just one leg, dramatically increased which went 

along with an expansion of hub-and-spoke networks. However, in a hub-and-spoke 

network with multiple legs a leg based inventory control might lead to sub-optimal 

results, especially in bottleneck situations, as the system forecasts and optimizes 

each leg while the passenger’s booking behavior is per path or OD (Origin-

Destination) that may consist of more than just one leg. So OD based optimization 

was developed in order to meet the growing hub-and-spoke network needs 

accordingly by allocating the seats rather on paths than on individual legs. An 

example of such a situation leading to suboptimal results is shown in Table 2.1; 

assuming a two leg network environment and two fare classes available: Y and B. 

The price for the local passenger shall be 800 in Y class and 500 in B class while 

the fares for the transfer passenger shall be 1500 and 1000 in Y, respectively B 

class. The first leg faces high demand offering higher class Y only while on the 

second leg with low demand still both classes, B and Y are available.   

 

 

Table 2.1: bottle neck situation with leg based optimization 
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Due to different journey destinations the transfer passenger might contribute more 

revenue in total in a lower class than a local passenger in a higher class as 

assumed above. In order to get a specific class accepted this class must be 

available on the whole itinerary; otherwise this booking request will be rejected. In a 

leg based optimization the system would reject a transfer passenger in B class on 

leg 1 who is willing to pay 1000 in total for both legs but favoring a local Y class 

passenger paying 800 instead. A transfer passenger might contribute less revenue 

to a single leg than a local and is thus rejected. But in total the transfer passenger 

has a higher revenue contribution to the network. An OD algorithm would recognize 

this difference as it takes the whole journey of a passenger into consideration 

instead of individual legs.  

The first method for OD control was developed by Smith and Penn36 at American 

Airlines in 1988. They did not compare fare classes anymore but Origin-Destination-

Fares (ODF) of local and transfer passengers. Smith and Penn created RM internal 

“virtual buckets”; the ODFs of each passenger were clustered into single leg 

booking classes and allocated according to their values into the “right” virtual 

bucket. This process of “virtual nesting” enables a better comparison of passengers’ 

values contributing to the total network.  Then, booking limits are set in these virtual 

buckets, thus achieving a better network control.  

Unlike the leg based control, this method always favors the highest fare which might 

result in favoring transfer over local passengers, even if two locals would bring more 

total revenue together. A simplified example of such a situation can be found in 

Table 2.2 where high demand is assumed on both legs but only one seat is left to 

sell on each leg. 
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Table 2.2: bottleneck situation with virtual bucket OD based control 

 

Subsequently, Smith and Penn34 refined their process and developed Displacement 

Adjusted Virtual Nesting (DAVN) that corrects the ODF by taking the costs of 

displacing another local passenger into consideration. Shadow prices that can be 

interpreted as displacement costs are generated for each single leg using linear 

programming. Those shadow prices and the actual fare are then used to calculate a 

“pseudo fare” which represents the ODF corrected by the displacement costs or, in 

other words, the network revenue value. As a consequence, connecting passengers 

are not necessarily favored over local passengers anymore. More in-depth 

information on DAVN approach and OD control provide Williamson37, Vinoid38 , 

Lee33 and Wei39.  

Another widespread method of OD control is the Bid Price Model (BP) that was 

developed by Simpson40, Williamson41 but also discussed by Smith and Penn34. 
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This RM method is using linear programming and the expected demand (instead of 

random forecast) to calculate a bid price for each individual leg, thus incorporating 

the displacement cost. A booking is accepted when the OD fare of the requested 

class is greater than the sum of all bid prices on the passenger’s itinerary. The bid 

price replaces multiple booking limits and pseudo fares that need complex 

calculation efforts for each offered ODF and is a much simpler approach and easier 

to implement then virtual buckets. This is why, the bid price model method has 

achieved best acceptance in most network carrier’s RM systems.  

More information about the calculation of different bid price algorithms provides 

Belobaba 42  who developed the Network Bid Price and the Heuristic Bid Price 

method and Bratu43 for the Probabilistic Bid Price method.  

All RM methods were successful tools to maximize revenue until the low cost carrier 

emerged worldwide with a new business model that harmed network carrier and 

their traditional RM methods. The low cost carrier business model and the 

subsequent development will be explained in detail in the following chapters II.2 and 

III.1.  
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II.2. Low Cost Carrier Business Model 

 

According to Swelbar44, typical target markets for low cost carrier (LCC) are “under-

served and over-priced” shorthaul markets where no prompt reaction from another 

competitor is expected. The LCC offer parallel service on high demand routes at 

lower fares and often lower service levels, i.e. no food service on board or only 

against a fee. With this strategy a lot of new carrier all over the world emerged and 

quickly gained huge market share from traditional network carrier (NWC), beginning 

in the 1990s in the US and followed by Europe, Asia and Australia. Southwest, 

Ryanair and Easy Jet, Tiger, Virgin Blue and Jet Blue are some names of the world 

wide operating LCC today. The reason why LCC’s concept has been succeeded is 

indeed the name giving lower cost factor. They operate at a lower cost level which 

allows them the possibility of offering lower fares to the customer.  

One main reason why LCC bear lower cost than NWC is their fleet. Since LCC 

started operations a few years ago, to serve their shorthaul network, they use a new 

and harmonized fleet. Having aircrafts from one aircraft family only qualifies all 

employees to work on each airplane. This increases flexibility in terms of workforce 

scheduling and reduces cost of crew training. In contrast, NWC usually have a fleet, 

consisting of many different aircrafts types, not only due to their longhaul and 

international flight operations but also due to historical growths. Hence, a crew or 

the technicians for a longhaul airplane needs to be trained differently than on a 

shorthaul plane and both crews cannot serve on a different type of aircraft. That 

increases the cost of work. Furthermore, the average age of a NWC’s fleet is most 

likely higher than LCC’s fleet which results in clearly lower cost of maintenance for a 

young and harmonized fleet.  

Additionally, LCC mainly transport point-to-point passengers on shorthaul routes 

only, using comparable large aircrafts. That decreases the average cost per unit. 
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On shorthaul routes there usually is enough demand to fill aircrafts with point-to-

point traffic. That is why LCC do not offer any longhaul flights where more transfer 

passengers are needed in order to satisfy demand. Since LCC usually do not have 

a hub-and-spoke network they might not be able to fill those longhaul flights, in 

contrast to NWC, which operate even larger aircrafts on longhaul flights with a high 

share of connecting passengers. This means more passengers to board and 

deboard, more time to clean the airplane and more waiting time due to delayed 

connecting incoming flights, hence, more time on ground for NWC’s aircrafts. 

Turnarounds for hub-and-spoke carrier simply need more time than for carrier 

serving point-to-point passengers only. Consequently, LCC’s aircraft utilization is 

usually higher which further reduces the overall cost.  

Another reason of LCC’s reduced cost can be found in their distribution and 

passenger processing. The distribution channels of LCC are often limited to their 

own reservation system only, i.e. passengers can book the airline’s own webpage 

or own call center only, and moreover, LCC make increased use of electronic 

ticketing, i.e. no printed ticket is occurring and, hence, no ticket printer needed 

anymore. Both minimize cost over NWC’s methods; beside their own call center and 

web page NCW also participate in different expensive global reservation systems 

which, however, make them available and bookable for a majority of travel agents 

too.   

Finally, the service offered to the customer usually differs between the two airline 

business models. NWC often claim to be an all-in carrier, offering free drinks and 

food on board, a lounge service as well as a lot of pre-flight services free of charge, 

e.g. seat reservation. LCC usually charge extra for each additional service 

requested and they do not offer any business or first class service at all. However, 

there is clear convergence of both different approaches as more and more NWC 

start charging an additional fee for certain services copying their competitor’s 

behavior while some LCC tend to relax their fee policy, e.g. granting free non-

alcoholic drinks on board.  
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Due to these cost advantages LCC are able to offer lower prices in the market than 

NWC. But the most crucial difference between NWC and LCC is not the price level 

itself but the lack of restrictions within LCC’s fare structure. LCC do not segment 

passenger demand according their WTP like NWC traditionally do in order to 

maximize their revenue; the sole differential between the pricing levels simply 

depends on how close the time of booking is to the day of departure. LCC usually 

offer one-way pricing, thus, not distinguishing the demand by its point-of-origin and, 

furthermore, repealing the minimum-stay or Saturday/Sunday rule that is used by 

NWC to segregate demand. This lack of restrictions in combination with lower fares 

triggers the spiral-down effect that heralded the ruin of many airlines. The reasons 

and consequences of the spiral-down effect will be exactly described in the 

subsequent Chapter III.1.  

With these advantages over NWC, LCC usually avoid direct competition with other 

LCC but rather seek to compete against NWC where they exploit their advantage, 

thus, stealing market share. This strategy provides sustainable profitability for the 

LCC – at least in the short run. However, it can be observed that over time both, 

LCC and NWC adept parts from their competition’s business model in their own. A 

good analysis of the LCC business model compared to the NWC’s as well as brief 

expectations of its development in near future provides Dunleavy and 

Westermann45. Since the raise of LCC, NWC realized that they needed to optimize 

their cost to a more competitive level copying some of LCC’s strategies. In contrast, 

LCC realized that the more they grow the more they become a network carrier – 

with all the benefits and drawbacks. Moreover, as NWC will respond cost wise or 

LCC will compete directly against each other eventually, it is obvious that the 

today’s LCC business model needs to be adjusted as well in the long run, focusing 

also on a better demand differentiation with a more sophisticated RM – related with 

higher cost.  
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Summarizing the cost advantages of a LCC business model over a NWC model 

Gorin 46  can be quoted as follows:  low fares combined with low-frills service, 

simplified distribution and passenger processing, higher aircraft utilization with a 

simplified fleet and higher labor productivity. Deeper information about the business 

model of LCC provides Weber and Thiel47.  

 

 

II.3. Chapter Summary 

 

This chapter started with a brief review of traditional airline revenue management 

tools showing how overbooking, forecasting and seat allocation are used to 

maximize revenue. Since there are always passengers who do not show up at 

departure the RM tool of overbooking is used to avoid having fully booked flights 

departing with empty seats. An accurate forecasting separates passenger demand 

and is a precondition for each RM system, also for the seat allocation optimization 

that maximizes revenue by protecting seats for passengers with higher willingness 

to pay. Later, an insight of the low cost business model followed presenting the 

most important differences to traditional legacy network carrier and the reasons for 

their lower cost that enables LCC offering lower fares in the market. In the following 

section the consequences of the rise of low cost carrier will be discussed and how 

legacy carrier reacted. Next, the hybrid forecaster will be explained as a revenue 

management tool of this new environment.  
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III.  CHANGES OF RM METHODS 

 

 

The previous chapter presented the business model of LCC and provided reasons 

why they can offer tickets at a lower price than traditional network carrier. Their fast 

gain on market share at the cost of the NWC made the latter one realize that they 

need to react. But it was not as simple as just reducing prices to the LCC’s lower 

level after their emergence. This chapter describes the problems and the 

consequences NWC still face when matching fares and, more crucial, all fare 

conditions of their low cost competition. The second part of this chapter describes 

new RM techniques that have been developed as a consequence of the new 

environment focusing on the hybrid forecast and optimization model.  

 

 

III.1. Fare Conditions and the Spiral-Down Effect 

 

As described in previous sections NWC try to distinguish between leisure 

passengers with a lower willingness to pay who usually book very early prior 

departure and business travelers, usually late bookers with less price sensitivity. 

Though, a rational person will always choose the cheapest available fare 

independently of her/his WTP as long as there is no incentive or restriction that 

keeps them in classes corresponding to her/his WTP. So how do airlines “force” 

business passengers purchasing higher fares? This can be achieved by conditions 

or so called “fare rules” that apply for certain classes. E.g. lower fares usually can 

neither be rebooked nor refunded while higher fares offer more flexibility to the 

passenger. This flexibility condition is often more important to business travelers 

having meetings cancelled or rescheduled on short notice than to leisure travelers 
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who fix their holiday including the flight much earlier and have no necessity to 

change it afterwards. Lower fares usually have an “advanced purchase” conditions 

(AP), i.e. they can be booked until a specific number of days prior departure only. 

Closer to departure than the days set in the AP rule of the fare class the fare is not 

available anymore so that passengers booking on short notice need to buy-up to a 

higher fare with a less restrictive or even without  an AP rule. In general, it can be 

stated that the closer to departure the booking is made, the higher the probability for 

the lower class to be closed. Furthermore, lower fares often have so called 

“Minimum Stay” (MN) or “Saturday/Sunday” rules. These fares only apply if the 

passenger stays at least a certain number of days before returning home or, 

alternatively, the night from Sat to Sun over the weekend. All those conditions might 

restrict (business) travelers with higher WTP of purchasing low fares because they 

usually do not stay longer than one night or over the weekend for business reasons. 

Typically, they book a daytrip during the week. An example of possible conditions 

per fare class can be seen in Table3.1. 

 

Table 3.1: Example of a More Restricted Fare Structure 

 

The price per fare is as follows: Y > B > M > Q; contrarily is the degree of restriction: 

Y class represents the full fare that has no restrictions at all and offers full flexibility 

while Q class, as the most discounted one, has several restriction. MN and Sat/Sun 

rule are usually linked with an “or”-function, so a passenger needs to stay at least 

five days or one night from Saturday to Sunday before returning in order to be able 

fare class price AP MN Sat/Sun Rebooking Refund

Y 1000 none none none Free of Charge Free of Charge

B 700 7 2 none against a fee of $ 100 against a fee of $  100

M 500 14 3 yes against a fee of $ 100 against a fee of $ 100

Q 300 21 5 yes not possible not possible

example of a more restricted fare structure
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to purchase Q class fare. In addition, she/he needs to book at least 21 days before 

departure and this fare is neither re-bookable nor refundable. All these conditions 

are typically not favored by business travelers and keep full-fare passengers from 

buying lower classes, thus, reflecting their higher WTP. All airline revenue 

management systems which have been developed in the 20 years between 1980 

and 2000 were designed for restricted fare structures like the example in Table 3.1 

assuming segmented independent fare class demand; forecast models using these 

historical booking data were adequate as long as passenger segmentation was 

possible with fare class restrictions.   

When low cost carrier entered the markets they usually introduced not only lower 

fares because of their lower cost structure but offered also a fare structure with 

more relaxed fare condition or even removed them completely. Due to the one way 

fare pricing concept of many low cost carrier the minimum stay rule became 

obsolete anyway. As a first reaction to regain market share legacy carrier often 

matched their low cost competition – pricing and condition wise – changing their 

traditional fare concept (compare Table 3.1) to a so called semi-restrictive or 

simplified fare structure. An example of a semi-restricted fare structure can be seen 

in Table 3.2. Hence, the most effective segmentation restrictions have been relaxed 

or even removed and passengers with high WTP can purchase lower fares. In 

extreme cases or highly competitive markets fare conditions were removed 

completely, i.e. the only separation left between fare classes is a different price level 

as presented in Table 3.3. 

 

Table 3.2: Example of a Less Restricted Fare Structure 

fare class price AP MN Sat/Sun Rebooking Refund

Y 700 none none none Free of Charge Free of Charge

B 450 none none none Free of Charge Free of Charge

M 250 7 none none against a fee of $ 100 against a fee of $ 100

Q 150 14 none none against a fee of $ 100 against a fee of $ 100

example of a less restricted fare structure
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Table 3.3: Example of an Unrestricted Fare Structure 

 

This had dramatic consequences for legacy carrier’s revenue and RMS known as 

the “spiral down” effect (see Figure 3.1). With fewer restrictions on lower fares 

passengers with higher WTP will “buy-down”, e.g. from Y class to B, M or Q class. 

As a consequence the revenue management system that retrieves its information 

also from historical as well as future bookings receives the input that less bookings 

in higher classes occur but more in lower classes instead which leads the system to 

forecast and protect less seats for high yield passengers and grant more availability 

in lower classes in future, i.e. keeping B, M, Q classes open. This will encourage 

even more passengers to buy-down which leads this cycle to repeat resulting in 

severe revenue dilution. 

 

fare class price AP MN Sat/Sun Rebooking Refund

Y 700 none none none Free of Charge Free of Charge

B 450 none none none Free of Charge Free of Charge

M 250 none none none Free of Charge Free of Charge

Q 150 none none none Free of Charge Free of Charge

example of an unrestricted fare structure
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Figure 3.1: The Spiral Down Effect, reproduced from Cléaz-Savoyen53 

 

Summarizing, the new adjustments to less restricted fare structures traditional 

revenue management systems suddenly were not able to maximize revenue 

anymore; forecasting models became invalid not being able to reflect the true high 

fare demand anymore.  

Cooper et al.48 developed a mathematical model describing the spiral down effect 

while Cusano49 has analyzed the consequences of the spiral down effect in his 

master thesis. The need of adjusted RM methods and new ways to maximize 

revenue was obvious. 
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III.2. RM Tools of the New Environment 

 

Before the rapid rise of LCC, NWC offered more restrictive fare structures than 

today, where they were still able to separate demand into business and leisure 

travelers, thus, forcing passengers to pay prices close to their WTP, by having 

conditions to separate the different price levels. Then, NWC have adjusted their fare 

structure to a less restrictive one in order to gain back market share. Consequently, 

traditional RMS used by NWC suddenly failed segregating the demand in high and 

low value customers which led to severe revenue dilution through a spiral down 

effect. In this section a detailed explanation about Hybrid Forecast (HF) will follow 

as a new approach of classifying the demand within fully undifferentiated fare 

structure environments by merging two different forecast methods. Later in this 

section a brief insights about Fare Adjustment will be presented too which is 

another approach to counter-steer against yield declines of NWC. While HF is used 

for the simulation in this thesis FA is not. Both techniques are supposed to help 

recapturing some of the lost revenue due to the removal of the important fare 

conditions. 

 

 

III.2.1. Hybrid Forecasting 

 

Although facing completely unrestricted fare structures the two customer types and 

their different booking behavior remain. Leisure travelers keep booking earlier than 

business customers who still have a higher WTP. The latter just take advantage of 

unrestricted fares and “buy-down” from a higher class they would have been willing 

to pay to a lower class enjoying a big consumer surplus. While traditional RM tools 

cannot handle this change, HF is one method of the new RM generation that is 

supposed to have a solution for the buy-down spiral. HF aims to reflect the 
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passengers’ willingness to pay and, furthermore, the potential sell-up not taking the 

segregation through fare restrictions into consideration. Instead of considering total 

demand as a whole, it classifies passenger demand in two different categories: 

yieldable (or product-orientated) and priceable (price-orientated). Product-oriented 

demand purchases a higher fare with desired product characteristics while a price-

oriented passenger buys the lowest available fare only. The segregation of yieldable 

and priceable demand was firstly proposed by Boyd and Kallesen50.  

Facing two different demands means creating two separate forecasts, thus, HF also 

uses a different forecast methods for each: yieldable and priceable demand. In 

order to forecast yieldable demand traditional RM foresting methods like pick-up 

forecasting (see Chapter II.1.2) are used. Those forecasting techniques remain still 

valid for the product-orientated or yieldable customer presuming independence 

among each fare class. So no new techniques need to be adopted.  

In contrast, priceable demand is more tricky and modeled by a technique called Q-

forecasting that assumes fully unrestricted and undifferentiated fares so that each 

passenger always buys the lowest fare. Instead of forecasting each fare class 

separately, Q forecasting forecasts the demand at the lowest fare only (traditionally 

called Q class in former times – hence the name), and then uses estimates of 

passengers’ WTP to force sell-ups by closing lower fares classes. Those estimates 

are done taking historical booking data. Q-Forecasting was developed by 

Hopperstad and Belobaba51, 52 and further discussed by Cléaz-Savoyen53 in his 

Master’s Thesis. A basic overview of the Q-forecasting process can be found in 

Figure 3.2. 

                                            

50
 Boyd, E. A., R. Kallesen. 2004. The Science of Revenue Management when Passengers 

Purchase the Lowest Available Fare. Journal of Revenue and Pricing Management. Volume 3, Issue 
2, pp. 171-177. 
51

 Belobaba, P., C. Hopperstad 2004. Algorithms for Revenue Management in Unrestricted Fare 
Markets. INFORMS Section of Revenue Management, Massachusetts Institute of Technology, 
Cambridge, MA. 
52

 Belobaba, P., C. Hopperstad. 2004. “Q investigations – Algorithms for Unrestricted Fare Classes”. 
PODS Consortium Meeting. Amsterdam.   
53

 Cléaz-Savoyen, R. L. 2005. Airline Reservation Management Methods for Less Restricted Fare 
Structures. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
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Figure 3.2: Q-Forecasting Process, reproduced from Cléaz-Savoyen53 

 

Q-forecasting starts with the conversion of historical bookings to equivalent Q-

bookings. I.e. upsell when lowest class (formerly Q class) is closed, which is 

calculated by the sum of inverse cumulative bookings divided by its sell-up 

probability. However, this conversion requires estimates of sell-ups from the lowest 

class. Those sell-up rates equal WTP curves and can be estimated by collecting 

data from historical bookings by fare class. Especially bookings in higher classes 

given lower classes closed contain valuable information about WTP and sell-up 

behavior. With historical bookings per fare class the inverse cumulative bookings 

are calculated, thus, estimating the sell-up probability for each fare class with 

following formula:  

 (                   )    
                            

 ( ) (                                 )
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Table 3.4: Example of Inverse Cumulative Estimator of Sell up 

 

Table 3.4 provides an example of calculating the Sell-up estimator. The sell up 

estimations are usually done for several time periods before departure, so called 

data collection points (DCP). Each DCP represents a time frame between 360 days 

prior departure and the actual day of departure in which all booking and cancellation 

information is collected and forecasted for future flights. DCPs usually grow smaller 

as they approach closer to the days of departure because more bookings are made 

closer to departure. An example of a DCP list can be seen in Table 3.5.  

 

Table 3.5: Example of a DCP Table 

 

With the sell-up probabilities the WTP curve and the FRAT5 for each DCP is 

estimated. FRAT5 is the Fare Ratio at with 50% of passengers will sell up from the 

lowest fare class; i.e. FRAT5 is the median for passenger’s WTP. Continuing with 

the example before, this results in a FRAT5 of approximately 2,1; so 50% of all 

passengers are likely to pay a factor of 2,1 of the lowest class. The curve to that 

example is presented in Figure 3.3 with the sell-up probabilities on the X-axis and 

DCP # 1 2 3 4 5 6 7 8 9

days prior departure 360 234 174 122 90 69 49 38 28

DCP # 10 11 12 13 14 15 16 17 18

days prior departure 22 15 10 8 6 3 1 0 -1
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the fare ratio on the Y-Axis. Higher FRAT5 curves indicate higher WTP or more sell 

up from lower to higher fare classes.  

Next, the FRAT5s of all DCPs are calculated and plotted on a time scale as 

presented in Figure 3.4. The FRAT5 curve per DCP reflects the customer type mix 

(leisure versus business passenger) as the curve increases closer to departure 

representing the WTP the late booking business traveler with higher WTP. Now, the 

sell-up probability can be estimated for the point of time prior departure. More 

detailed discussion about inverse cumulative and sell up estimations are provided 

Hopperstad54, Gou55 and   Bohudinsky56.  

 

Figure 3.3: Example of FRAT5 WTP Curve within a DCP 

 

                                            

54
 Hopperstad, C. 2007. Methods for Estimating Sell-up: Part II. AGIFORS Joint Revenue 

Management and Cargo Study Group Meeting. 
55

 Gou, J. C. 2008. Estimating Sell-Up Potential in Airline Revenue Management Systems. Master’s 
Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
56

 Bohutinsky, C. H. 1990. The Sell Up Potential of Airline Demand. Master’s Thesis, Massachusetts 
Institute of Technology, Cambridge, MA. 
 



- 43 - 
 

 

Figure 3.4: Example of FRAT5 Estimates over all DCPs 

 

Once having the sell-up estimation per fare class and DCP the Q- equivalents can 

be calculated with the formula mentioned already above:  

                              ∑( )
                              

                                   
  

Continuing the calculation of the example from above Table 3.6 shows the total Q-

equivalent bookings amount to 133. Finally, the Q-equivalents and sell-up rates are 

both used to generate demand forecast for higher fares classes as follows:  

                             

                             

   (                   )    (                  (     ))  

Table 3.7 provides the final calculation of the continuing example showing a final 

demand forecast of 13 passengers in highest booing class Y and suggests 56 
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passengers in lowest Q class. B class and M class have a demand of 20, 

respectively 44 passengers.  

 

Table 3.6: Example of Calculating Q-equivalent Bookings 

 

 

Table 3.7: Example of Calculating Repartitioning Demand to each Fare Class 

 

Taken the demand provided by Q-forecasting for the price-oriented customer and 

the demand from pick-up forecasting for yieldable demand together, these two 

different forecast models provide the total “hybrid”  demand for each fare class for 

each itinerary sent to the seat allocation optimizer. A summary of the HF model is 

presented in Figure 3.5.   

In his master’s thesis Cléaz-Savoyen53 proofs that Q-forecasting in unrestricted fare 

environments is effective in reducing the revenue loss that airlines suffer due to the 

removal of fare restrictions.  
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Figure 3.5: Hybrid Forecast Model 

 

 

III.2.2. Fare Adjustment  

 

Another RM method of the new generation is Fare Adjustment (FA) which was 

developed by Fiig and Isler57 at Swiss air and Scandinavian Airlines. This technique 

is also supposed to be an answer to the buy-down behavior and heavy yield 

decline. FA applies in market environments where NWC face both, less restricted 

fare structures in presence of low cost competition and more restricted fare 

structured in less competitive markets. Usually, booking classes of both fare 

structures are allocated in the same virtual bucket when using DAVN optimization. 

FA adds the Marginal Revenue Transformation into the DAVN process and 

                                            

57
 Fiig, T., K. Isler. 2004. “SAS O&D low cost project.” PODS Consortium Meeting, Minneapolis, MN.  
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“adjusts” the original OD fares in less restricted fare structures. Figure 3.6 offers an 

overview of this process. However, FA does not apply in the scenario of this thesis.  

 

Figure 3.6: Integration of Marginal Revenue into DAVN process, reproduced from 

Keyser58 

 

In less restricted structures there is a risk that passengers buy-down; so the OD 

fares are re-calculated by deducting the cost of price-elasticity (PE) from the original 

fare, thus, giving them a new (lower) value. However, differentiated fares in more 

restricted structures are not affected as there is no such risk of buy-down due to the 

demand segregation through restrictions. This decoupling process of more 

restricted and less restricted fare structures allows the airline to control both 

independently, thus, allocating them into different virtual buckets. Therefore, this 

technique increases the effectiveness of DAVN optimization in terms of revenue 

maximization. Figure 3.7 provides an overview of the adapted process. As the 

original pseudo fare of the less restricted structure would have been allocated into 

the same virtual bucket V4, like pseudo fares from the more restricted structure 

without FA, and hence having availability. With FA, however, it is distributed into 

(closed) virtual bucket V5 after the adjustment of the PE costs, with no availability. 
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Cléaz-Savoyen53 and Kayser 58  provide more detailed information about FA in 

combination with HF in their masters’ thesis.  

 

Figure 3.7: Example of Decoupling Multiple Fare Structures, reproduced from 

Keyser58 

 

 

III.3. Chapter Summary 

 

This Chapter started explaining the spiral-down effect; the reasons that caused this 

phenomenon as well as the consequences it had on traditional RMS.  

Next, hybrid forecast was discussed and how this technique forecasts two different 

demand types: yieldable and priceable demand. While forecasting yieldable 

                                            

58
 Kayser, M.R. 2008. RM for Multiple Fare Structure Environments. Master’s Thesis, Massachusetts 

Institute of Technology, Cambridge, MA. 
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demand is still possible with traditional RM methods, priceable demand needs a 

new approach, Q-forecasting, to be forecasted. Q-forecasting seeks to forecast the 

maximum demand potential at the lowest fare and converts it into partitioned 

forecasts for each fare class. However, this requires an estimation of passenger’s 

WTP and sell-up probability by time of departure. HF presumes a less or 

unrestricted fare structure environment and is supposed to handle the forecast 

problems that rose with the spiral-down effect much better than traditional RM tools.  

At last, Fare Adjustment was briefly presented as another technique recently 

developed to meet the new market conditions. FA presumes an environment in 

which both, less and more restrictive fare structures exist. FA transforms the DAVN 

optimization process by adjusting fares from a less restricted fare structure allowing 

RMS to allocate them differently than fares from the more restrictive structure. Thus, 

FA improves revenue maximization results of the DAVN process in competitive 

markets. 
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IV.  SIMULATION ENVIRONMENT – AN 

APPROACH TO REMATE 

 

 

To test RM methods in an environment where competitive behavior of airlines as 

well as the dynamic behavior of passenger choices is considered, a simulation is a 

valuable tool for experimentation and validation. For the purpose of this thesis it was 

decided to simulate this environment with REMATE, which will be introduced and 

explained in the following chapter. REMATE is a simulation system that models 

airline revenue management as a combination of flexible customer behavior, 

realistic algorithmic systems of forecast and optimization methods and competitor 

interaction. It also is used to test and validate the impact of Hybrid Forecasting and 

Optimization for this thesis.  

The simulation system REMATE was developed by Deutsche Lufthansa AG 

together with the University of Berlin and means Revenue Management Training for 

Experts. Its main goal is to set up realistic scenarios in order to train Lufthansa 

employees and to improve overall RM know-how, understanding complex 

interactions of RMS and giving decision support in RM situations during daily work. 

It hence can be used to validate expected economic benefits of changes in 

methods, like switching to another RM method or to validate benefits of strategic 

changes like the introduction of new unrestricted fares.  

REMATE is a simulation of an interaction of two groups – passengers and airlines – 

in a user-defined environment (transportation network). More concrete, it links 

passenger’s choices to the output of airline’s RMS in order to analyze the 

effectiveness of different RM techniques. The different passenger groups have their 

own characteristics, including a particular choice set with the preference of airline, 

Origin-Destination-Itinerary (ODI), and maximum price, respectively booking class. 

Then, this decision meets the airlines offer, based on the RMS output but also on 
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the schedule and other factors. If it fits passenger’s expectation a booking is done, 

otherwise rejected. An overview of REMATE’s architecture is presented in Figure 

4.1. 

 

Figure 4.1: Basic REMATE Structure 

 

Various prerequisites are needed for this simulation: a number of basic blocks 

including customer types and their preferences representing the demand side 

(passengers) and data sets describing supply plus RM methods (airlines) that have 

to be defined before running and analyzing the simulation. A detailed description of 

these prerequisite utilities for the scenario follows in the next section. The demand 

set up includes the definition of the customer type models and the buying and 

booking behavior in terms of distribution curves. For the supply network and 

destinations, the participating airlines, aircrafts and the possible aircraft 



- 51 - 
 

configurations have to be defined. Additionally the flight schedule, the booking 

classes and the prices need to be set up. Afterwards, the Revenue Management 

Method needs to be specified, i.e. which method of forecasting and allocation 

optimization shall be used in the scenario. Historical booking data of each scenario 

is created by doing 500 simulation runs before the actual simulation starts running. 

The following sections are mainly based on REMATE’s user manual59. For the 

scenario presented in this thesis, the values chosen for the attributes of demand 

and supply of this scenario are assumptions taken by the author’s close monitoring 

and experience of several years in the airline industry and verified by a few more 

persons all working for an airline in revenue management department having as 

well several years of experience. Furthermore, those values were tested to be 

plausible to reflect realistic parameters and then calibrated to the specific scenarios 

in this thesis. 

 

 

IV.1. Supply Setup  

 

Supply, in terms of airline revenue management, is understood as capacity offered, 

more concrete, how many seats in which aircrafts on which routes. The necessary 

basic step of the simulation is to set up a network with origins and destinations, 

airlines, flight schedules and aircraft types that also need to be chosen. This 

subchapter describes the setup of the supply side. 

In this scenario two airlines are competing in the same hub. Carrier 1 is a traditional 

network carrier (NWC) called “AA”, which offers also connecting transfers via its hub 

next to point-to-point transportation. Carrier 2, on the other hand, is a low cost 

carrier (LCC), called “LC” offering point-to-point transportation only. LCC uses solely 

                                            

59
 REMATE 6.0 User Manual for Administrators, Version 21.03.2011 
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Boeing 737 (B737) aircraft types with 140 seats per aircraft while the NWC uses 

Airbus 320 (A320) and 319 (A319) offering 140, respectively 120 seats. As many 

low cost carrier offer no Business Class at all, it was for the purpose of the scenario 

assumed that both, LCC and NWC offer economy class only.  

The Network for this scenario includes one hub in Vienna (VIE) and three more 

destinations: Brussels (BRU), Berlin (BER) and Moscow (MOW) which can be seen 

in Figure 4.2.  

 

 

Figure 4.2: Airline’s Simulation Network  

 

The network shows three routes with different competitive levels. The route 

between MOW and VIE is dominated by the NWC flying three times a day while the 

LCC offering two daily flights only. The route from BER to VIE is dominated by the 

LCC operating four times a day versus NWC with three daily frequencies. BRU-VIE 

route is flown solely by the NWC three times a day. The exact schedule for all flights 

of both competitors including arrivals, departures and travel time is shown in Tables 
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4.1 and 4.2. For simplification it is assumed that this schedule is valid every day and 

the simulation is on a one-day-basis only. Summarizing, NWC offers 18 flights (12 

ODs, i.e. 12 possible journeys including all transfer connections within the defined 

time frame) with 2400 seats per day in total while LCC has 12 flights (4 ODs) and 

1680 seats to sell each day. In total there is a supply of 4080 seats to sell on one 

day.  

 

 

Table 4.1: NWC AA’s Schedule  

Origin Destination Departure Arrival Traveltime (min) A/C type

VIE BER 07:15 08:30 75 A320

VIE BER 17:50 19:05 75 A320

VIE BER 20:10 21:25 75 A320

BER VIE 07:20 08:40 80 A320

BER VIE 15:10 16:30 80 A320

BER VIE 20:00 21:15 75 A320

VIE MOW 10:05 14:55 170 A320

VIE MOW 12:45 17:30 165 A320

VIE MOW 20:35 01:15 160 A320

MOW VIE 05:45 06:30 165 A320

MOW VIE 15:45 16:40 175 A320

MOW VIE 18:20 19:20 180 A320

VIE BRU 07:10 08:55 105 A319

VIE BRU 15:10 16:55 105 A319

VIE BRU 17:25 19:10 105 A319

BRU VIE 10:10 12:00 110 A319

BRU VIE 17:45 19:35 110 A319

BRU VIE 20:00 21:45 105 A319

BER MOW 07:20 14:55 335 A320/A320

MOW BER 05:45 08:30 285 A320/A320

MOW BER 15:45 19:05 320 A320/A320

MOW BER 18:20 21:45 305 A320/A320

BER BRU 15:10 19:10 240 A320/A319

BRU BER 17:45 21:25 220 A319/A320

BRU MOW 10:10 17:30 320 A319/A320

BRU MOW 17:45 01:15 330 A319/A320

MOW BRU 05:45 08:55 310 A320/A319

MOW BRU 15:45 19:10 325 A320/A319

NETWORK CARRIER AA

transfer /connecting flights via VIE Carrier AA
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Table 4.2: LCC’s Schedule 

 

As mentioned before, due to simplification the scenario date range includes one 

flight day only, i.e. 24 hours from 06.February 2012, 00:00 to 06.February 23:59. 

The Maximum and Minimum Connecting Time decides which two legs are 

considered to be a transfer OD and which are not accepted as a transfer connection 

anymore. In this scenario the minimum connection time is 30 minutes while the 

maximum time for a combination with another flight allowed is three hours. Thus, 

the time period of the arrival of one flight and the departure of another potential 

connection flight must be between 30 and 180 minutes. The Maximum Travel 

Distance specifies the factor between origin and destination in relation to the total 

distance flown; it prevents passenger flying irrational itineraries. A factor of 2 for 

example allows a passenger to travel a maximum of 200 Kilometer via a transfer 

hub if the distance between his origin and destination is 100 Kilometer. Since this a 

small network with only a few destinations this attribute is not relevant.  

Both airlines have four pricing levels in four booking classes in order to generate an 

upsell. NWC’s nesting order of booking classes is Y, B, M and Q, whereas Y refers 

to highest and Q to the lowest booking class. The LCC’s booking class structure is 

E, K, L, T, whereas E is the highest and T the lowest class. The availability of all 

Origin Destination Departure Arrival Traveltime (min) A/C type

VIE BER 06:25 07:40 75 B737

VIE BER 08:45 09:55 70 B737

VIE BER 14:55 16:10 75 B737

VIE BER 19:25 20:40 75 B737

BER VIE 06:40 07:55 75 B737

BER VIE 08:50 10:05 75 B737

BER VIE 17:20 18:35 75 B737

BER VIE 21:20 22:35 75 B737

VIE MOW 11:10 15:45 155 B737

VIE MOW 18:10 22:45 155 B737

MOW VIE 06:05 06:50 165 B737

MOW VIE 16:30 17:10 160 B737

LOW COST CARRIER LC
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booking classes is according forecast and booking behavior since there are no 

restrictions anymore that separate leisure from business class passengers (see 

section III.1.). Hence, an upsell from a lower to a higher class according customers’ 

WTP cannot be obtained with restrictions but is possible only if the lower class is 

closed. Therefore an accurate forecast and optimization is needed. The price 

structure on a specific OD is exactly identical in both directions, e.g. pricing points 

for the itinerary VIE-BER-VIE equals BER-VIE-BER. It which is common practice for 

LCC to have the same pricing structure in both directions; this method was adapted 

for this scenario as well. The simulation will be made when the NWC has already 

reacted on LCC’s market entry by removing all restrictions in all booking classes. 

Moreover, NWC’s prices are matched according LCC’S pricing structure on all 

routes where both airlines operate wing-to-wing, i.e. on VIE-BER v.v. and on VIE-

MOW v.v. route. Precise information about the all booking classes and pricing 

points can be found in Table 4.3. 

 

Table 4.3: Carrier’s Pricing Structure (matched) 

 

All values needed for the supply setup, i.e. time schedule and the price matrix of 

both airlines, are derived from actual airlines and calibrated to the specific scenarios 

in this thesis. Furthermore, the distances between the cities used in this network 

equal the actual geographical distances.   

 

ONDs Q M B Y Carrier

VIE-BER v.v. 89 138 208 306 AA / LC

VIE-BRU v.v. 99 155 225 344 AA

VIE-MOW v.v. 179 256 354 543 AA / LC

BRU-BER v.v. 179 256 354 543 AA

BER-MOW v.v 219 296 394 583 AA

BRU-MOW v.v. 239 323 421 631 AA

prices per booking class
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IV.2. Demand Setup 

 

Setting up the demand side means to create a volume of theoretical passengers 

and to simulate passenger behavior in the most realistic way. The decision if a 

passenger finally books a certain flight or turns the offer down or even cancels it 

again after the booking has been made is influenced by numerous external factors 

that have to be defined. Answers to the questions “When is the passenger’s 

preferred departure time?” and “How much is he or she willing to deviate from that 

preferred time?”, “What is the minimum and the maximum a passenger is willing to 

pay for a flight?” are just some of the characteristics that can influence this choice 

and those have to be defined. As mentioned before there is also not only one type 

of passenger, but the leisure, early booking, and also the business, late booking, 

passenger. It is obvious these two types have a lot of different booking 

characteristics so that is why there are two different types defined in this scenario. 

This section explains the demand set up for this simulation foremost giving insight 

about the mathematical distributions and formulas that simulate the passenger 

behavior in following sub chapters. The two passenger types and their attributes are 

explained in detail subsequently while the final demand generation is presented 

afterwards.   

 

 

IV.2.1. Distributions 

 

Each passenger has his own preferences when booking a flight that are described 

in distribution functions in this simulation. Those distributions define the passenger 

preferences. The distribution utility offers four different distribution functions that 

have to be defined: the departure time distribution, request date distribution, 
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cancellation distribution and day-of-week distribution. Again, for each customer type 

a different distribution pattern shall apply according to realistic customer behavior.   

Departure Time Distribution describes the time of day at which the passenger 

prefers to depart. The time of day is separated into 24 data point where each can 

reach a value between 0 and 1. The expected probability that any of the hours is 

going to be the preferred departure time of a customer is equal to the weight 

assigned to this hour divided by the sum of all weights. Within those hours, the 

preferred departure time in minutes is drawn from a uniform distribution. 

The Request Date Distribution describes at which point of time prior to departure 

a passenger is likely to make his booking. A flight can be booked earliest one year 

prior to departure and on departure day at the latest. This period is separated into 

certain intervals that grow smaller as departure approaches. The weights attributes 

of each interval are cumulative and the probabilities sum up to 1, so every customer 

will end up having requested a booking at one of the days before departure from 

360 to 0. The fact that each passenger requests a booking does not necessarily 

mean that he accepts this offer. The passenger might reject it because of the the 

price or the travel time that is not according his desire. Within the intervals, the 

request date in days is drawn from a uniform distribution.  

Cancellation Distribution – Similar to the request date distribution, the time of 

cancellation is divided into the same intervals and the weights of each interval is 

cumulative too. However, a passenger can only cancel after a successful booking 

has been made. So the probability pattern that is entered refers to a customer who 

has booked one year prior departure only. For every booking done later the 

cancelation distribution is derived from this original pattern.  

Day of Week Distribution – This distribution allows a customer’s preference 

concerning the week day of departure. Since this scenario simulates only one 

departure day, this distribution is irrelevant and the Day of week Distribution will be 

uniform for each week day.  
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IV.2.2. Customer Types 

 

As a basis for the demand side of the simulation customer types have to be created 

which should reflect the demand side through realistic passenger behavior. Two 

types are created: a low value and a high value passenger type. In the next 

paragraphs the various attributes that define each customer type are described in 

detail before presenting the values of all attributes for each type.  

The Error Term of a certain customer type is used to cause volatility in demand 

generated from this type and is drawn from a normal distribution with an expected 

value of 1. The error term is the value of the standard deviation. Hence, a larger 

deviation creates higher volatility for every simulation run. The Willingness to Pay 

Factor reflects the highest price a customer is willing to pay for his ticket and 

depends on the distance travelled. In REMATE simulation tool a value between 1 

and 15 is considered to be a high price sensitive customer type while a value 

between 15 and 30 reflects low price sensitivity. The Willingness to Pay Error 

Factor causes more volatility and allows a wider range of maximum prices 

accepted in the demand generated from this customer type and is drawn from a 

normal distribution with the expected value of 1. The value of the WTP error factor 

represents the standard deviation. Hence, the passenger’s maximum price he is 

willing to pay is described through following function:  

   (             )   (                      )   √                 

where WTP error = Norm (1, WTP error factor) 

As a simplified example two different passenger types shall travel from Vienna to 

Berlin where the distance between these two cities amounts to approximately 550 

kilometer. First passenger type has a WTP factor of 5 with a WTP error factor set 

that the maximum deviation shall be 40% (i.e. 40% of 5 = 2) while the second 

customer type has a WTP factor of 20 with a WTP error factor set that the error 

term equals a maximum 15% (i.e. 15% of 20 = 3). The two functions are as follows:  
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   (             )                                  √    

   (             )                                    √    

The exact amount is calculated for each single passenger in each run within this 

simulation. The range for these outputs can vary according to the attribute values 

set. In this example the first passenger type accepts a range of maximum prices 

between 70 and 164 while the second type is willing to accept a price in a range 

from 399 to 539. All these values result in the maximum WTP, leading the 

passenger’s acceptance of the offer if the price is below the calculated value. This 

holds true unless the booking is cancelled afterwards again. This attribute is defined 

via the Cancellation Probability of a passenger type. It sets the probability that a 

customer type will cancel after having made a successful booking.  

The above mentioned WTP value can additionally be affected by other attributes as 

well. In order to compensate negative aspects of passengers’ expectation, such as 

not preferred departures times or certain restrictions, cost can be added up that 

decreases the customer’s willingness to pay and thus influence his choice of 

booking. Each of those restrictions represents the conditions within a certain 

booking class a customer may accept or not. Low Cost Carrier usually do not offer 

any restrictions such as “nonrefundable” tickets or tickets requiring a “minimum 

stay”; not even in their lowest booking class. Within the proposed scenario, an 

environment with low cost competition is presented where the network carrier has 

already matched all conditions of its competitor. Meaning the booking classes will 

have no restrictions offered but “Eco” for each carrier’s booking class. Eco 

describes if a booking class belongs to economy or business class, but as 

mentioned earlier, no business class is offered in the simulation anyway. The 

customer may then accept the next higher class or reject the offer, i.e. no booking is 

made, depending on the defined customer type. In this scenario all booking classes 

are offered in economy class only and no business class is offered. The Restriction 

Factor and the Restriction Value are used to define which customer type accepts 

which restriction, respectively which cost arise if a restriction does not meet 



- 60 - 
 

passenger’s expectation by following function depending on the distance of the 

route travelled: 

                                         √                

As in this scenario the NWC matched the LCC’s conditions, this utility function is 

redundant for this thesis and hence the values are set to zero. The Departure Cost 

Factor and the Maximum Accepted Departure Deviation determines the cost 

associated with the deviation from a preferred departure time, respectively the 

maximum deviation a customer type is willing to accept. The same concept applies 

to the Transfer Cost Factor and the Maximum Number of Transfers. The 

scenario, however, displays itineraries that include mainly point-to-point traffic or a 

maximum number of one transfer in this scenario and hence this restriction is not 

relevant either. The Maximum Travel Time Factor describes the factor by which 

the acceptable total travel time may be greater than the minimum connecting time 

for a certain OD. It is calculated by the following function:  

                    

                                              

  √                 

If customers of a certain type prefer or detest a specific brand it can be also 

associated with a positive or negative Brand Cost Factor. This applies for a certain 

percentage of the customer type which is set in the Operating Carrier Preference.  

Thus, two customer types are defined in this scenario, each one with different 

attribute values in accordance with realistic passenger behavior. The customer type 

Low Value Passenger refers to leisure travelers that are usually very price 

sensitive and show long term booking behavior. In order to reflect this adequately 

the willingness-to-pay-factor is set at a low level of 6,0 with a WTP Error of 0,4 while 

the cost factor for departure time deviation is almost zero, i.e. 0,25 cost units per 

minute deviated to the preferred time and the cost for a possible transfer is 20. For 

a lower price a longer travel time and a bad departure time is accepted. Once the 
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leisure passenger fixed the journey the cancellation probability is rather low, thus, a 

factor of 5% is chosen here. In general, leisure passengers are not loyal to a certain 

brand meaning the brand cost factor is zero. In order to meet the requirements of 

the low-value-customer type the distribution curves for request date and 

cancellation are set on a long term basis. Departure times are usually equally 

distributed during the day time as they are not that important as for business 

travelers. For that reason the departure cost factor is set at a low level of 0,25 per 

minute and the maximum-accepted-departure-deviation is high at 240 minutes. All 

values and distribution curves comparing leisure with business travelers will be 

summarized in Figures 4.3 to 4.6. 

On the other hand, the customer type High Value Passenger describes the 

business client that books on short notice. This type displays a much higher 

willingness to pay, compared to leisure customers but also a clear expectation of 

the time to depart and the travel time. These attributes are reflected in the higher 

willingness-to-pay-factor of 18,0 with a WTP error of 0,3 and the higher departure-

cost-factor of 2,0 per minute. Since the WTP variation is expected to be higher 

among the low value customer group (i.e. a standard deviation value of 0,4), the 

WTP error factor of the high value passenger group is set lower with a value of 0,3. 

The departure-time-distribution curve has its peaks in the morning and early 

evening and the short term request- and cancellation-date-distribution are as 

characteristic for business travelers as the higher cancellation probability of 20%. 

For business passengers the maximum accepted departure deviation and the 

maximum travel time factor need to be set lower as well (i.e. at 90 minutes) due to 

the expectations of business travelers of reaching the final destinations within tight 

time frames. Business clients tend to be loyal to a certain brand expecting 

standards that low cost carrier do not offer, participating in certain loyalty programs 

NWC usually offer. Especially business passengers who fly more frequently than 

leisure travelers benefit from those loyalty programs. Hence, there is a small 

negative cost of -25 associated with the network carrier AA. Five percent of high 

value passengers prefer AA as carrier over another one.  
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Additionally it is noted that the day-of-week distribution is not relevant and uniform 

for all three customer types, as the scenario includes only one operational day. 

Same applies for the maximum-transfer-limit which is set at a value of 1. The error 

term of each customer type and each willingness-to-pay-factor, equals to the 

standard deviation, is set at a value of 0,1 for both types in order to grant some 

volatility. The maximum travel time factor is set at a value of 4,0 for both customer 

types. Table 4.4 presents an overview of all customer type’s values.  

 

Table 4.4: Customer Type Attribute’s Values 

 

As mentioned before, all those values are verified and calibrated to this specific 

scenario. The functions below show how each attribute affects the passenger’s 

WTP and thus, the final booking decision: 

                   (                         ) 

                           (      )  √     

                                                        

Attributes low value CT high value CT

Error Term 0,1 0,1

Willingness to Pay Factor 6,0 18,0

WTP Error 0,4 0,3

Cancellation Probability 0,05 0,2

Depature Cost Factor 0,25 2,0

Max Accepted Depature Dev 240 90

Transfer Cost Factor 20 80

Max Transfer 1 1

Max Travel Time Factor 4,0 4,0

Brand - AA

Brand Cost Factor - -25
Operating Carrier Preferrence 

Factor (ocp)
- 0,05
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where 

WTPF = willingness to pay factor 

WTPE = willingness to pay error factor 

C = total cost factor  

CT = customer type (attribute from high value or respectively low value CT) 

TD = travel distance 

ocp = operating carrier preference factor 

 

The functions show that the passenger’s WTP is positively influenced by the WTP 

factor (WTP error factor causes more volatility and allows a wider range of 

maximum prices accepted), the travel distance and eventually by the brand cost 

factor (that are usually negative costs). Each condition that does meet the exact 

expectations of a passenger is associated with “costs” that are deducted from the 
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total passenger’s WTP. Those cost conditions are for example if a passenger needs 

to transfer instead of flying directly or if the actual departure time of the flight 

deviates from his expectations. With each minute of deviation from the passenger’s 

preferred departure time the departure cost increases. The preferred departure 

pattern of each customer type is presented in the subsequent paragraphs. Hence, 

those costs affect the passenger’s WTP in negative way. Nevertheless, a booking is 

accepted by if following four conditions hold:  

                         

                                         {
                              
                             

 

                            

                                      

 

Of course, the passenger’s WPT has to exceed the price offered by the airline but 

also some other travel attributes must not be exceeded, as the maximal time of 

travel, the maximal number of transfers and the limits of deviation from the desired 

departure time, so that a booking is finally accepted by the passenger.  

The following tables show all distribution curves that are described in Chapter IV.2.1 

for both passenger types. Starting with the preferred departure time in Figure 4.3 it 

can be seen that the high value customer type on the right has peaks between 6 

and 8 a.m. and 4 and 7 p.m. while during the rest of the day time it is very low and 

during night time mostly zero. The low values passenger’s curve on the other hand 

is much smother during the day time; only from midnight to 6 a.m. the demand to 

depart it is very low.  
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Figure 4.3: Preferred Departure Time Distribution of both Customer Types: Low 

Value Passenger (left) and High Value Passenger (right) 

 

The comparison of distribution curves displayed in Figures 4.4 and 4.5 shows the 

request date and the cancellations of both customer models. As one can see the 

time of booking for the low value travelers, the left graph, is rather early, starting 

even 360 days before departure. The same behavior, however, also applies for a 

potential cancellation in case there is one. Most of the cancellations are done more 

in advance and only very few leisure passengers cancel on short notice. The high 

value type will request the booking later, with a good chance of booking even on the 

day of departure itself. Same applies for the possible cancellation that takes place 

on very short notice, sometimes even at the day of departure.  
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Figure 4.4: Request Date Distribution prior Departure of both Customer Types: Low 

Value Passenger (left) and High Value Passenger (right) 

 

 

Figure 4.5: Cancellation Date Distribution of both Customer Types: Low Value 

Passenger (left) and High Value Passenger (right) 

 

The last distribution curve, displayed in Figure 4.6, represents the preferred day of 

departure. As this simulation only runs through a single day it is exactly the same 

for both customer models and irrelevant. While low value types usually start the 



- 67 - 
 

journey on Fridays or weekends the high value passenger hardly travels on 

Saturdays or Sundays but almost always departs during the week.  

 

Figure 4.6: Preferred Day of Departure 

 

In this subchapter all attributes for the two customer types low value and high value 

passengers have been presented. In the following section the final demand creation 

will be discussed.  

 

 

IV.2.3. Demand Generation 

 

In order to create the final demand eventually, the number of requests per day is set 

at a level of approximately 8000. Requests are the search for the respective 

itinerary and price, indifferent of an occurring booking or not. The amount has been 

derived from the standard requests an airline receives on its webpage for routes 

similar to the simulation. This demand is distributed among the different markets to 

all destinations and further among all customer types. Furthermore, it is assumed 

that the demand for a certain flight is not only at the point of origin but also at the 

final destination or even at another place, i.e. rest of the world (RoW). In order to 
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have statistical confidence the demand is created within 1500 runs in this 

simulation. For all journeys starting in Vienna 81% are done there while 15% 

request their booking at the point of destination. In Berlin, Brussels and Moscow the 

requests at the point of origin are a little lower between 64% and 71% but higher at 

the point of destination. Four percent are distributed equally to all other markets 

(rest of the world). The exact demand distribution can be seen in Table 4.5, 

respectively Figures 4.7 and 4.8.  

 

Table 4.5: Detailed Requests per Day Distribution  

 

Origin Destination

Requests 

per day

Low Value 

Customer

High Value 

Customer

at Point of 

Origin

at Point of 

Destinaion

RoW (rest 

of world)

VIE BER 958 686 272 81% 15% 4%

VIE BRU 938 672 266 81% 15% 4%

VIE MOW 979 701 278 81% 15% 4%

BER VIE 673 482 191 64% 32% 4%

BER BRU 528 378 150 64% 32% 4%

BER MOW 550 394 156 64% 32% 4%

BRU VIE 659 472 187 70% 26% 4%

BRU BER 528 378 150 70% 26% 4%

BRU MOW 538 386 152 70% 26% 4%

MOW VIE 666 477 189 71% 26% 4%

MOW BER 533 382 151 71% 26% 4%

MOW BRU 522 374 148 71% 26% 4%
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Figure 4.7: Demand Distribution per Market 

 

This leads to the market distribution shown in Figure 4.7. As Vienna is the hub of 

both carrier the demand from the home market is the highest of all markets, 

summing up to 36% of all booking requests. All other markets have between 19% 

and 21% of total demand while four percent are distributed equally among all other 

markets (rest of the world).  

The request distribution between low and high customers is 72% to 28% which 

represents a realistic ratio between leisure and business demand. This does not 

necessarily mean, however, the passengers that eventually depart have the same 

distribution ratio. This is reasoned by the fact that both user groups have different 

conditions whether they buy or they do not buy the ticket.  
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Figure 4.8: Demand per Customer Type 

 

Given the previously set and discussed for both customer types added together, the 

following results can be obtained to describe the demand preview by a WTP curve, 

the demand over time of Day and the Demand / Cancellation over DBD (Days 

Before Departure) as shown in Figures 4.9 to 4.11 below.  

 

Figure 4.9: Overall WTP Curve 
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While the X-axis of this customers-over-willingness-to-pay chart represents the 

monetary value in terms of the price, the Y-axis shows the expected number of 

customers who have WTP greater than the price offered. The blue and the red 

straight lines on the top of the chart show the price range both airlines offer in the 

market. The red line represents the airline LC and starts at a price of 89 ending at 

543 in the highest class. The blue line displays airline AA, offering a price range 

from 89 to 631. The expected number of customers as a function of the price is as 

follows:  

   (     )             (     √             √  ( ))  

Where: 

Y = number of customers 

P = price 

WTPF= willingness to pay factor 

WTPE = willingness to pay error factor 

R = total requests 

TD = travel distance 

 

Here, Norm(µ, σ)(x) denotes the value of the cumulative normal distribution with 

mean mu and standard deviation sigma calculated at x. E[Y] denotes the expected 

value of the random variable Y.  

These values describe all customer types together on all ODs. All approximate 8000 

customers requesting a booking would be willing to pay a price of 32, which can be 

considered the starting point of the WTP curve. Afterwards it displays a sharp 
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decline towards the x-axis as the passenger volume declines with the price level. 

Only about 1000 passengers are expected to be willing to pay 600 for a ticket.  

Figure 4.10 shows the expected request and cancellation distribution of both 

passenger types over time; differentiated in low value customer type on the left and 

the high value passenger type on the right. The X-axis describes the timeline to 

departure, i.e. days before departure (DBD). On the Y-axis both, the expected 

cumulative demand per day (primary) and the expected cumulative cancellations 

per day (secondary), are displayed, both preconfigured to the customer type 

distributions explained in the previous Chapters IV.2.1 and IV.2.2.  

 

Figure 4.10: Demand and Cancellations over DBD of both Customer Types: Low 

Value Passenger (left) and High Value Passenger (right) 

 

The demand developments of both customer types put together can be seen in 

Figure 4.11, as well as the demand-over-time-of-day chart. Again, the X-axis 

represents the time – in the chart on the right the hours of the days – and the Y-axis 

the expected number of customers at time t. The demand at the time t is the product 

of the total requests and the probability that a request occurs at time t related to the 

distribution described in previous Chapters IV.2.1 and IV.2.2. 
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Figure 4.11: Total Demand and Cancellations over DBD and Demand over Time of 

Day (both Customer Types together) 

 

Whereas there is a total expected demand of 8070 passengers, only 4758 are 

active expected demand, that means customers that actual book and pay for a 

flight. This was found to be true after 1500 runs of simulating the demand, i.e. 

58.96% of all potential customers. On the other hand the results show 3312 

expected duds, that is the number of customers that do not end up with a booking 

eventually. Duds occur if passengers’ WTP is too low or based on a not accepted 

restriction or on the acceptable deviation from their desired departure time of a 

passenger.  A detailed overview of the final demand output, also separated into the 

two customer types, is shown in Table 4.6.  
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Table 4.6: Final Demand output 

 

The average overall willingness to pay, based on the 1500 simulation runs and 

calculated as described in Chapter IV.2.2, amounts to 200 for low value passengers 

and 403 for high value customers. As the WTP is dependent on the travel distance 

it does vary from OD to OD. Therefore for each customer set a list of acceptable 

ODIs and acceptable booking classes is calculated. If the airline offers both, 

accepted ODI and right booking class at the time of request the customer becomes 

an active demand. Both customer types have an active expected demand rate 

closely below 60% of their total demand and show a rate a little above 40% of duds 

within their customer group. The majority of all duds, however, can be found within 

the low value passenger type with a rate of 70,27%. The reason therefore can be 

found at the same stake in both among low value customers: not fitting OD 

itineraries and the lack of willingness to pay the lowest available class. Not 

surprisingly the willingness to pay is hardly a reason for the high value passenger to 

refuse a booking as the percentage amounts only 0,35% of those travelers. Here 

the lack of a perfect schedule according to their travel plan expectations plays a 



- 75 - 
 

more important role: 42,65% of this customer type refuse to book because of this 

reason. The No-Show rate, i.e. booked passengers that do not turn up at the 

departure is low, in total at a rate of 1,29%, respectively 104 passengers. Within the 

high value passenger group, however, it is significantly higher due to the late 

cancellation behavior and higher cancellation rate of this customer type.  

 

 

IV.3. Chapter Summery 

 

This chapter delivered insight into the REMATE simulation tool and the two basic 

requirements that are necessary for the simulation: The supply including a hub-and-

spoke network with schedule and price matrices for both airlines as well as the 

demand generation with its two customer type models. The demand set-up defines 

the different attributes of the two customer types, especially determining the WTP of 

each passenger, i.e. which maximum price he or she is willing to accept to make a 

booking. The price matrices of each carrier, i.e. different price levels for each 

booking class (Q, M, B, Y for carrier AA, respectively T, L, K, E for carrier LC) on 

each itinerary, are fixed. However, the applicable RMS decides on each day for 

each flight individually which booking classes are to be opened and to be closed, 

thus, steering the actual price offered to the customer each day. The RM techniques 

that apply in the different scenarios, thus, offering different prices to the passenger, 

will be explained in more detail in the following chapter. The passenger choice 

model delivers the necessary booking information as input for the RMS (compare 

Figure 2.1 and Figure 4.1), i.e. if a booking is done or rejected by the passenger. 

This decision depends on various factors as presented in depth in this chapter.  

In the next section four different scenarios will be explained, each with a different 

RM method that applies for the NWC. Afterwards, the results of these four 

simulations will be presented and discussed. 
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V. SIMULATION RESULTS 

 

 

After setting up all requirements in the last part, the following chapter leads through 

four different scenarios that are simulated. This simulation assumes that the LCC 

has already entered the market and the NWC reacted by matching fares and 

removing all restrictions according to LCC’s unrestricted fare structure. The results 

within a totally unrestricted fare structure environment in terms of revenue, seat load 

factor (SLF) and yield will be discussed next, mainly focusing on NWC’s output. 

Furthermore, the segregation of the two customer types and the distribution within 

the four booking classes of the NWC will be examined in detail and compared within 

the four different scenarios, thus, showing if the hybrid method leads to a better 

result over the other methods.  

To ensure statistical confidence each simulation is run 1500 times, thereof 500 

initial runs in order to let the system create historical data it can fall back to when 

calculating the future demand. Each run represents a single departure day. The 

final results presented in the following subchapters are the averaged values of all 

simulation runs from number 501 to 1500. Due to the fact that the NWC offers more 

seats in total it is clear that the overall revenue will always be higher than the LCC’s 

revenue. However, the goal of the simulations is to examine the changes in revenue 

outcomes of the NWC when using different RM methods, especially if there is an 

increase in efficiency using RM method of hybrid forecast and optimization.  

The very first scenario is the base case and indicates that both airlines in this 

network do not use any kind of forecast or optimization tool, this refers to a first-

come-first-serve scenario. In the following three scenarios LCC uses always leg 

based forecast and optimization tool, i.e. all parameters of the LCC are fixed, while 

the NWC changes its RM method from leg based forecast and optimization to OD 

based and finally to hybrid forecast and optimization.  
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As precise forecasting for each single day into the future for each flight and each 

booking class on each OD would be too time consuming for each optimization, all 

RM systems usually use data collecting points (DCP). Each DCP represents a time 

frame between 360 days prior departure and the actual day of departure in which all 

booking and cancellation information is collected and forecasted for future flights. 

DCPs usually grow smaller as they approach closer to the days of departure.  

Following DCPs are used by the airlines in this simulation whereas it is assumed 

that AA uses more DCP than LC due to their more sophisticated RMS:  

 

 

 

Table 5.1: DCP Tables of AA and LC 

 

AA uses 18 data collection points whereas the first period between DCP one and 

two is 126 days while the later periods between DCP 12 and 18 last for three to one 

days only. The reason why the periods are getting smaller is that the number of 

booking and cancellation movements per day increase closer to departure, hence, 

the forecast per day and optimization has to be more precise here. On the other 

hand LC uses 11 DCPs as LC’s is not as sophisticated as the NWC’s.  

In the following subchapters the environment of all four simulations will be 

explained, i.e. which RM method was used and the outcome in terms of revenue, 

booked passengers, yield, seat load factor as well as the distribution between low 

and high value passengers booked will be presented. The focus will be on the AA’s 

performance and changes rather than on LC’s as the network carrier’s RM methods 

DCP # 1 2 3 4 5 6 7 8 9

days prior departure 360 234 174 122 90 69 49 38 28

DCP # 10 11 12 13 14 15 16 17 18

days prior departure 22 15 10 8 6 3 1 0 -1

DCP # 1 2 3 4 5 6 7 8 9 10 11

days prior departure 360 174 69 28 15 8 6 3 1 0 -1
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are the one to investigate. Furthermore, AA’s bookings class distribution will be 

examined closely, i.e. how many passengers booked which class in each 

simulation. Finally all results will be compared and discussed. As the definition of 

yield may alter in literature this thesis refers yield as revenue divided by booked 

passengers. The SLF is the quotient of booked passenger over capacity.  

 

 

V.1. No RM – First Come First Serve Scenario 

 

In this simulation both airlines do not work with any RM method; hence neither 

forecast nor optimization algorithms are used. The seats are assigned to the 

customers as requested and every booking request is accepted as long as capacity 

is available. The average output of simulation run 501 to 1500 can be seen in Table 

5.2. It shows the overall revenue, i.e. the total revenue that is generated in this 

simulation for each airline. Furthermore, it shows the number of final booked 

passenger, yield, SLF and total capacity output.  

 

 

Table 5.2: Simulation Result without RM 

 

Without any form of RM the overall revenue results are expected to rather poor 

compared to later results when RM methods are used. Although the SLF is at a 

share of 88,50% at carrier AA, the yield is very low due to the fact that all 

no RM Revenue Booked Yield SLF Cap

AA (overall) 243.865     2.124          115              88,50% 2.400          

LC (overall) 162.005     1.306          124              77,74% 1.680          

TTL 405.870     3.430          118              84,07% 4.080          
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passengers book into the lowest class. This can be observed in Table 5.3 that 

provides an overview about the booking class mix of airline AA. Even high value 

passengers with a willingness to pay that is much greater than the offered price buy 

the lowest Q class as there is neither any restriction nor any availability restriction 

that would prevent them from doing so. Furthermore, the final booked number of 

both customer groups on AA as well as their contributed revenue to carrier AA and 

the average yield for AA’s complete network can be seen. The ratio between low 

and high yield passengers in terms of revenue share without any RM method is 

89% to 11%.  

 

 

Table 5.3: AA’s Customer Type and Booking Class Mix without RM 

 

This simulation works with neither forecast nor any optimization and represents the 

base case. The following subchapters will provide results with different RM methods 

that will be compared to this case and among each other.  

 

 

AA's Customer Type 

Distribution Revenue Booked Yield

   High Value (AA) 26.795        222              121              

   Low Value (AA) 217.069     1.902          114              

Passenger TTL 243.865     2.124          115              

AA's Booking Class 

Distribution

Y -              -              -              

B -              -              -              

M -              -              -              

Q 243.865     2.124          115              

TTL 243.865     2.124          115              
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V.2. Flight-leg Based RM Scenario 

 

In this scenario both carrier are using a flight-leg based RM method. While AA will 

change the RM technique in the forthcoming chapters, LC’s technique will remain at 

this leg-bad RM method. It works by forecasting demand to arrive at each DCP for 

each flight and booking class offered by the airline. Forecasts are updated based on 

actual bookings at each DCP and availabilities are optimized using the EMSRb 

algorithm. They are re-optimized after each update of the forecast. Nested booking 

limits are assigned to each class and flight and sellable seats are updated 

whenever a booking is accepted within this method. EMSRb refers to expected 

marginal seat revenue method from Belobaba and is explained in Chapter II.1.3.a in 

more detail. Table 5.4 shows the overall revenue, final booked passengers, the 

average yield, the SLF and capacity of both airlines in this scenario.  

 

 

Table 5.4: Simulation Result with leg based RM 

 

It can be observed that the number of the final booked passengers and, thus, the 

SLF does not change significantly compared to the simulation without any RM 

method used The yield, however, increases tremendously – especially at AA – 

which results in a 36,4% higher revenue outcome for carrier AA and a 5,39% higher 

revenue result for LC. The reason for this yield growth at AA can be found in Table 

5.5 that shows the distribution of both, customer types and booking classes.  

 

leg based RM Revenue Booked Yield SLF Cap

AA (overall) 332.641     2.127          156              88,62% 2.400          

LC (overall) 170.738     1.328          129              79,02% 1.680          

TTL 503.379     3.455          146              84,67% 4.080          
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Table 5.5: AA’s Customer Type and Booking Class Mix with leg based RM 

 

While without any RM method passengers simply book into the lowest class 

according to the first-come-first-serve principle, the leg optimization reserves seats 

for later bookings of high value customers, especially during peak flights, as can be 

observed in Figure 5.1. It shows the comparison of low and high value passengers’ 

booking behavior on airline AA in terms of time-of-booking in scenario without RM 

on the left versus leg based RM scenario on the right.  

It clearly shows that in the scenario without forecast and optimization the low value 

group booking early, purchases more than 1900 tickets until approximately 20 days 

prior departure. At this point in time the late booking high value passengers start to 

fix their flight but only less than 200 passengers of this group can get a seat for their 

desired itinerary. In contrast, the low value type rush stops at a booking level of 

about 1600 in the leg based RM scenario protecting a number of seats for the later 

booking high value customer. The low value passenger group naturally books flights 

at their most preferred departure time which is usually equal to the high value 

passenger group, i.e. morning and early evening hours as can be seen in Figure 

4.11. Due to their early booking behavior they block most of the seats on those 

peak flights leaving more seats empty during off-peak times. However, high value 

AA's Customer Type 

Distribution Revenue Booked Yield

   High Value (AA) 90.968        550              165              

   Low Value (AA) 241.673     1.577          153              

Passenger TTL 332.641     2.127          156              

AA's Booking Class 

Distribution

Y -              -              -              

B 91.713        425              216              

M 134.583     789              171              

Q 106.345     914              116              

TTL 332.641     2.127          156              
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passengers that book later have only very little demand for those off-peak flights. As 

a consequence of the optimization process a part of low value group is shifted to 

flight times during the day where the demand is not as high as during peak times in 

the morning and evening hours (compare Figure 4.11). The seats of those flights 

are in some extent protected for the passengers with a higher WTP by offering 

higher fare classes only. How many seats are to be protected is subject to an 

accurate forecast. This ends up in a great revenue contribution of high value 

passenger for carrier AA. 

 

Figure 5.1: Booking behavior of Customer Types in Simulation without RM vs. 

Simulation with leg based RM 

 

The revenue contribution of the high value types without optimization at AA is 

26.795 in absolute figures or at a share of 11,0%. In the second scenario, however, 

the high yield group contributes 90.968 or 27,3% of AA’s total revenues. Moreover, 

the booking class distribution in table 5.5 shows that leg based forecast and 

optimization generated an upsell from Q to higher classes M and B, therefore 

increasing the overall yield without the SLF to suffer. This implicates that the RM 

method could reflect the passengers’ WTP in an appropriate manner. However, leg 

based RM methods prefer point-to-point over transfer passengers compared to OD 
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based RM methods, as explained in Chapter II.1.3, which may lead to suboptimal 

results. This will be examined in the subsequent chapter in more detail.  

 

 

V.3. Origin-Destination Based RM Scenario 

 

In contrast to the flight-leg based RM method an OD Based RM method works by 

forecasting demand to arrive at each DCP for each itinerary, respectively OD, and 

booking class offered by the airline. Forecasts are updated based on actual 

bookings at each DCP and availabilities are optimized using a combination of linear 

and dynamic programming. They are re-optimized after each update of forecast. 

The inventory control method assigns a bid price to each compartment on each 

flight. Only classes with a price that exceeds the bid price are available for booking. 

More details about Origin-Destination Control can be found in Chapter II.1.3.b. The 

key figures for this simulation with OD based RM are summarized in Table 5.6. 

 

Table 5.6: Simulation Result with OD based RM 

 

The first significant difference to the leg based scenario is that both, yield and 

booked passengers, and hence SLF and total revenue could be increased with OD 

based RM for AA. With this method this carrier’s revenue has raised to 361.369, a 

48,2% increase over the base case’s revenue level and even another 8,6% 

increase over the leg based RM scenario. This increase is not only a consequence 

of an even better passengers’ WTP reflection but also because point-to-point is not 

OD based RM Revenue Booked Yield SLF Cap

AA (overall) 361.369     2.202          164              91,76% 2.400          

LC (overall) 170.636     1.335          128              79,45% 1.680          

TTL 532.005     3.537          150              86,69% 4.080          
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preferred over transfer traffic as already discussed in Chapter II.1.3 and will also be 

explained in more detail in the following paragraphs.  

The revenue share of the high value customer type is 36,3% equaling 131.133 in 

absolute figures and represents an augmentation over the leg based RM scenario. 

The raised share is on cost of the low value passengers’ revenue contribution. 

However, this decline is smaller than the gain of high value customer. The booking 

class mix in this simulation shows that an upsell even to the highest class could be 

obtained which influences the yield in a positive way. The overall yield in an OD 

based RM simulation is 5,2% higher compared to the leg based RM scenario and 

42,6% higher than in the base simulation. The detailed figures of this scenario’s 

distribution of customer types and booking classes are presented in Table 5.7. 

 

Table 5.7: AA’s Customer Type and Booking Class Mix with OD based RM 

 

Both results imply that OD based RM method reflects passengers’ WTP even better 

than leg based RM does. Moreover, another fact leads to the improved result of OD 

based RM over leg optimization: as already described in Chapter II.1.3.a and 

II.1.3.b the leg based RM method tends to prefer point-to-point over transfer 

passengers in bottleneck situation leading to suboptimal results. However, OD RM 

AA's Customer Type 

Distribution Revenue Booked Yield

   High Value (AA) 131.133     596              220              

   Low Value (AA) 230.236     1.606          143              

Passenger TTL 361.369     2.202          164              

AA's Booking Class 

Distribution

Y 60.076        178              338              

B 65.808        282              233              

M 108.802     651              167              

Q 126.683     1.091          116              

TTL 361.369     2.202          164              
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amends this drawback due to a more sophisticated approach. Having a look in 

Table 5.8 one can see that this is also true in this scenario as this network also has 

a bottleneck situation in the morning hours during peak demand times between 6 

and 8 a.m. and 5 to 7 p.m. The table compares AA’s revenues made by point-to-

point versus transfer passengers in both scenarios: leg based RM as well as OD 

based RM.  

 

Table 5.8: P2P and Transfer Revenue mix: leg based vs. OD based RM 

 

While the revenue produced by point-to-point traffic remains almost stable, transfer 

revenue is increased by 23,4% in the scenario using OD based RM method. Exactly 

this advantage leads to an overall increase of both factors positively influencing the 

revenue, AA’s yield and SLF, by stimulating transfer traffic through granting more 

availability in lower booking classes and selling up point-to-point traffic into higher 

booking classes. Taking into consideration that this scenario has a very small 

network with one hub and only three more destinations, the expected benefit of an 

OD based RM method over a leg based, will be rather small. The gain of OD based 

optimization clearly increases with a greater and more complex network, e.g. a 

multi-hub network.   

 

 

 

 

AA's RevenueDistribution 

(P2P vs transfer) leg based RM OD based RM

   Revenue: P2P 209.186                             208.978                             

   Revenue: Transfer  123.455                             152.390                             

Total Revenue 332.641                             361.369                             
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V.4. Hybrid Forecast RM Scenario 

 

Similar to the OD based RM the hybrid forecast RM method works by forecasting 

demand to arrive at each DCP for each itinerary – point-to-point as well connecting 

ODIs – and fare class offered. As discussed in detail in Chapter III.2.1 there are two 

different sets of demand forecasted: price-oriented and product-oriented. While 

product-oriented customers request to book one specific booking class regardless 

of other classes availability, price-oriented passengers always request to book the 

cheapest class available. Sell-up indicators are calculated for this hybrid RM 

technique as described in Chapter III.2.1 depending on the share of priceable 

customers. As in the last simulations, forecasts are updated based on actual 

bookings at each DCP. Availabilities are optimized using the same combination of 

linear and dynamic programming that is applied in the OD based RM method 

scenario. They are re-optimized after each update of the forecast and the inventory 

assigns a bid price to each compartment on each flight as well. Hence, only classes 

with a price exceeding the bid price are available for bookings.  

 

Table 5.9: Simulation Result with Hybrid RM 

 

Table 5.9 presents the overall results of this simulation where carrier AA uses the 

hybrid forecast model. An interesting fact is that the number of final booked 

passengers on AA in this scenario is lower than in any other simulation before 

ending at an overall SLF of 79,6% only. Still, the AA’s revenue outcome is the 

highest of all simulation results with a total amount of 373.892 due to an overall 

average yield of 196. Interestingly, LC also has the highest revenue in this scenario 

and a significant higher SLF result than in other simulations while LC’s yield 

Hybrid RM Revenue Booked Yield SLF Cap

AA (overall) 373.892     1.911          196              79,61% 2.400          

LC (overall) 181.731     1.448          125              86,20% 1.680          

TTL 555.624     3.359          165              82,32% 4.080          
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remains stable. Here, AA obviously protects more seats for passengers with higher 

WTP which leaves more low value passengers for low cost competition. A 

comparison of all revenue and SLF results in one chart is presented in Figure 5.2.  

 

Figure 5.2: Comparison of all Simulation Results: Revenue and SLF 

 

Highest Revenue with lowest SLF indicates that the revenue quality, i.e. the 

average yield, is the highest one in this scenario. HF seems to be able to model 

passengers’ WTP better than other RM techniques in an environment of 

unrestricted fares. The customer type mix and the booking class distribution in this 

HF RM scenario (as seen in table 5.10) support this theory too. The revenue share 

of the high yield customer group is higher than the one from low value passengers, 

i.e 52% or 195.122 of all revenues contributed by high value group. The booking 

class mix shows that both, revenue and booked passengers in the highest classes 

Y and B have increased compared to the other scenarios, mostly due to the 

calculated up-sell of HF RM method.  
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Table 5.10: AA’s Customer Type and Booking Class Mix with HF RM 

 

The following figures present comparisons of AA’s customer type and booking class 

distribution results among all four simulations. While Figure 5.3 shows the customer 

type mix in terms of revenue and the overall yield for each simulation, Figure 5.4 

presents the booking class mix. Not surprisingly, the scenario without any RM 

method, where first-come-first serve applies has simple outputs which result in 

hardly any customer type mix and no booking class mix at all. As no seat allocation 

optimization process takes place all bookings are done in lowest class Q and, 

hence no protected seats for late booking high yield passengers. Additionally, one 

can observe that by using higher sophisticated RM methods the revenue 

distributions are improving in terms of overall revenue maximization. Better forecast 

and optimization methods force passengers to book into higher booking classes that 

rather correspond to their true WTP. Bookings in highest fare classes Y only occur 

in the OD based and in the HF RM simulation. Especially the HF RM method 

increases the revenue generated in higher booking classes significantly, this 

however, on cost of Q class revenue, and thus, resulting in a higher total yield as 

seen in Figure 5.3 at the left scale on the second axis. HF achieves the overall 

averaged highest yield with a value of 196 due to a more balanced customer type 

and booking class mix (Figure 5.4).  

AA's Customer Type 

Distribution Revenue Booked Yield

   High Value (AA) 195.122     900              217              

   Low Value (AA) 178.770     1.011          177              

Passenger TTL 373.892     1.911          196              

AA's Booking Class 

Distribution

Y 62.861        188              334              

B 133.463     583              229              

M 137.155     816              168              

Q 40.414        324              125              

TTL 373.892     1.911          196              
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Figure 5.3: Simulation Comparison of AA’s Revenue Distribution per Customer 

Type and total Yield  

 

Figures 5.5 and 5.6 compare the outputs among the different scenarios. Figure 5.5 

presents the changes in percentage of revenue, final booked passengers and yield 

of each simulation over the base case where no RM method was used. The final 

booked passengers show no significantly changes when comparing flight-leg based 

or OD based RM methods. This number, however, is reduced by 10% compared to 

the base case when HF RM technique is being used. The most significant change 

among all simulation is the yield increase that can be obtained in the simulations 

where HF RM is used. 
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Figure 5.4: Simulation Comparison of AA’s Revenue Distribution per Booking Class 

 

The highest overall yield of 196 in the HF RM method scenario – an increase of 

70% towards the base case – even overcompensates the lowest SLF of 79,6% (i.e. 

10% less than in the base case), still leading to an overall revenue that is higher 

than in any other simulation. This means that HF RM finds the optimal seat 

allocation that maximizes revenue within the different methods presented by 

granting fewer seats in total but to higher prices.  

Figure 5.6 shows the improvements of HF over all other RM methods in percentage 

of total revenue only. Hybrid forecast method delivers 53% more revenue for AA 

than in the same scenario where no RM is used. Furthermore, HF even outperforms 

the other two methods, leg based and OD based RM, by an increase in total 

revenue by 12% respectively 3%. Obviously, the best output can be achieved with 

HF RM method with which indicates that HF is the best RM method among these 
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four to reflect true passengers’ WTP accurately and, hence, is a better RM 

technique for NWC when competing against a LCC in an unrestricted environment. 

 

Figure 5.5: Improvements over Base Case with no RM method 

 

Figure 5.6: Revenue Improvements of Hybrid RM method over other RM techniques 
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V.5. Chapter Summery  

 

In this section the results of all four different simulations were presented and 

discussed with a focus on carrier AA’s overall revenue, the customer type mix and 

the booking class distribution. The chapter began providing the results of the base 

case, i.e. the simulation where no RM method was used by AA and continued with 

the simulation results of the scenarios where RM methods were used: leg based 

RM, OD based RM and HF RM. While the base case delivered total revenue of 

243.865 this result could be increased with each further simulation as the methods 

became more sophisticated and ended up at 373.892 by using HF method. 

Although, the number of final booked passengers clearly decreased in this 

simulation using HF RM, the overall yield could be increased so that the total 

revenue exceeded the other scenario’s results. The reason for the better yield can 

be found in the better customer mix and booking class distribution passenger finally 

booked, i.e. more high yield customer booked into higher fare classes when using 

HF. The conclusion of those findings will be discussed in the subsequent chapter.  
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VI. CONCLUSION 

 

 

After the entrance of the low cost carrier in many markets worldwide the airline 

industry and especially network carrier faced heavy yield declines. This yield decline 

was caused by the fact that low cost carrier removed all fare restrictions in all 

booking classes down to the lowest one. Fare restrictions such as minimum stay, 

Saturday or Sunday rule, advanced purchase and often also restrictions to rebook 

or refund tickets were important for traditional carrier to segregate demand into low 

yield and high yield target groups. Hence, without these restrictions every customer 

suddenly was able to buy the lowest class available, leading to an undesirable down 

sell. Forecast of traditional RM systems learned quickly that demand in lowest 

booking classes had increased and granted even more availability in those classes; 

a down sell spiral started that traditional RM systems could not handle. The effect of 

this tremendous yield decline hit network carrier even harder as they faced higher 

costs than their low cost competition. New RM systems were developed as a 

consequence, including the model of hybrid forecast and optimization. This thesis 

was set up in order to examine the potential benefits on revenue development 

network carrier may face when using the revenue management method of hybrid 

forecasting and optimization. The personal contribution of the author was to develop 

a small network with two airlines competing against each other – one traditional 

network carrier and one low cost carrier – in a realistic environment regarding 

demand and competition behavior and, thus, to evaluate the effectiveness of hybrid 

forecast over traditional RM methods. Therefore the simulation tool REMATE was 

used to develop and test this theory using four different scenarios. In each scenario 

the NWC used another RM method, including hybrid forecast, and the overall 

revenue results of the NWC was compared.  

The first and the second chapter of this thesis present an overview about the history 

of airline revenue management including the deregulation in the US and its impact. 
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Moreover, traditional RM tools and methods are described as well as the low cost 

carrier business model and the reason of the lower cost they face. Within the third 

chapter the down sell spiral is explained in detail, concluding with the hybrid 

forecast RM method, which was developed as a reaction of the new environmental 

and competitive challenges in the airline business. This RM method distinguishes 

the demand into two categories, yieldable and priceable demand, and forecasts 

each separately per flight and booking class. The Q forecasting is discussed 

additionally as it is used to estimate the sell-up probability of priceable demand. 

Yieldable demand, in contrast, can be forecasted with ordinary pick-up forecasting 

methods. Furthermore, a brief insight into FA as another RM method of the new 

competitive environment is presented.  

Chapter four introduces the simulation tool REMATE explaining all the basic 

requirements that are needed for the simulation. The exact schedules of both 

airlines are presented as well as their pricing structure offered to the passengers. 

Furthermore the two customer types with all possible attributes are discussed that 

should represent leisure and business traveler and their booking behavior and the 

final demand generation.  

Findings of the simulations are finally presented and discussed in Chapter five. In 

each of the four different scenarios another RM method is used by the NWC AA but 

the first one. This base case, where no RM method applies, simulates a first-come-

first-serve scenario, obviously resulting in the lowest revenue outcomes. The three 

other scenarios provide results when AA is using leg based RM, OD based RM and, 

finally, HF RM method against its low cost competition. Results show that using a 

RM method increases NWC’s revenue significantly compared to the base case, 

where all passengers book the lowest Q class only and where seats are allocated 

mainly to the low value early bookers. The scenarios when RM methods are in use 

by the NWC shows that upsells to higher class are generated and seats are 

protected for late booking passengers. This is a better reflection of the passengers’ 

WTP and hence increases the yield and moreover even the overall revenue output 

of carrier AA. The leg based and OD based RM simulation deliver very similar 
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results in terms of overall revenue. However, it is shown that OD RM method 

increases the revenue contributed by transfer passengers which further improves 

the overall network revenue maximization compared to the leg-based RM 

technique. Hence, it can be assumed that in a bigger and therefore, more complex 

network than provided in this thesis, the revenue results have even more potential 

to improve by the means of using OD RM.  

When focusing on the results of the simulation where HF is used as RM method by 

carrier AA, two interesting effects can be observed. There are significant changes in 

SLF and yield output compared to the results of previous simulation with leg based 

and OD based RM method. While the overall SLF drops down to 79,6%, the total 

yield increases to a level of  196, thus, overcompensating the fewer passengers in 

terms of overall revenue. HF RM simulation increases the total revenue of carrier 

AA by 3%, respectively 12% compared to the OD based and flight-leg based RM 

method. Figure 6.1 provides an overview of the simulation results. 

 

Figure 6.1: Comparison of all Simulation Results: Revenue and SLF 
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All four simulation scenarios have the same precondition of an unrestricted fare 

structure. This means a demand separation into high and low yield customers 

cannot be done by means of fare rules but with accurate forecasting only. Although 

HF RM simulation has the lowest SLF and final booked passenger number, it 

delivers the highest revenue output through high yield as a result of a better 

customer type and booking class mix. That indicates that HF can reflect true 

passengers’ WTP even better than the other RM methods tested in this thesis. This 

further suggests that HF is an appropriate RM tool to segregate passenger demand 

in unrestricted market environments, thus, maximizing an NWC’s revenue. 

Moreover, the simulation results support the theory that HF can counter-steer 

against the spiral down effect NWC face when competing against LCC in 

unrestricted markets. 

Although this thesis supports the theory that HF outperforms compared to traditional 

RM methods in unrestricted environments, it should be considered that the 

simulation environment consists of a small network with one hub and three more 

destinations. In order to obtain further evidence of this theory a possible 

enhancement could be to enlarge carrier’s network. Furthermore, only one day of 

operation was simulated I this thesis. Another possible enhancement could be an 

extension of the simulation over more days.  
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List of Abbreviations 

 

A319 – aircraft Airbus 320 

A320 – aircraft Airbus 320 

AA – name of the NWC in this thesis’ simulation 

B737 – aircraft Boing 737 

BER – Berlin 

BRU – Brussels 

C – total cost factor 

CT – customer type 

DBD – days before departure 

DCP – data collecting points  

FA – fare adjustment 

HF – hybrid forecast 

LC – name of the LCC in this thesis’ simulation  

LCC – low cost carrier 

MOW – Moscow 

NWC – network carrier 

OD / OnD – origin-(and)-destination 

ODF – origin-destination fare 
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ODI – origin-destination itinerary  

OCP – operating carrier preference factor 

RM – revenue management 

RMS – revenue management system 

RoW – Rest of the World 

SLF – seat load factor 

TD – travel distance 

VIE – Vienna 

WTP – willingness to pay 

WTPF – willingness to pay factor 

WTPE – willingness to pay error factor 
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Abstract (English version)  

 

Over the last decades airline revenue management (RM) has become a very 

sophisticated and complex topic that was subject to big changes during the recent 

years. Due to the growth of the low cost carriers and their new approach of low and 

unrestricted fares, traditional revenue management tools used by legacy network 

carriers suddenly became invalid. Traditional carriers used to separate and forecast 

passenger demand through certain restrictions as a crucial precondition of their 

revenue optimization process. These restrictions have been removed in low cost 

competition, thus, inhibiting revenue maximization with the common systems. 

Consequently, this led to a new generation of revenue management tools; one of 

these new approaches is Hybrid Forecasting seeking to maximize revenues in an 

unrestricted or semi-restricted fare environment by segregating passenger demand 

in priceable and yieldable demand.  Once having this “hybrid” demand separate a 

hybrid forecast, i.e. separate forecast for yieldable and priceable can be created as 

a precondition for revenue optimization process in a low cost carrier environment.  

This thesis starts with a brief historical insight over airline revenue management 

including the impact of deregulation in US and Europe. Furthermore, the low cost 

carrier business model is described and the consequences of their worldwide rise 

for legacy carries’ RM systems. It continues examining the different RM tools that 

airlines are using in order to maximize revenue, especially the new method of 

Hybrid Forecasting will be explained in more detail.  

In the second part of the thesis the simulation tool REMATE which was developed 

at Lufthansa together with the University of Berlin is presented. REMATE is used to 

create and develop a certain scenario, i.e. a small network with one hub and three 

legs where a traditional network carrier competes against a low cost carrier. 

Assuming that the legacy carrier has already matched fares and conditions of the 

low cost carrier the revenue outcome of the network carrier is simulated using 

different revenue management methods. These are First Come First Serve RM, leg 
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based optimization, Origin-Destination (OD) based optimization and, finally, Hybrid 

Forecast RM.  The results will be presented and discussed afterwards.  The goal of 

this thesis shall be to examine – with a simplified model – if Hybrid Forecast is an 

appropriate RM tool for traditional network carriers to steer against the down-sell 

and revenue dilution that usually occurs when a low cost carrier enters the market.   

 

 

Abstract (German version)  

 

Während der letzten Jahrzehnte veränderte sich Airline RM stetig hin zu einem 

immer komplexer werdenden Themengebiet. Vor allem in den letzten Jahren 

gewann RM erheblich an Bedeutung auf Grund des rasanten Wachstums der Low 

Cost Carrier und deren neuartiges Geschäftsmodel. Dieses sah neben der 

niedrigeren Preise auch eine Aufhebung der Tarifkonditionen vor. Diese 

Restriktionen werden bei Netzwerkcarrier mit traditionellen RM-Systemen jedoch 

dazu verwendet Kunden entsprechend ihrer Zahlungsbereitschaft zu segmentieren 

– eine unerlässliche Voraussetzung für den Ertragsoptimierungsprozess. Durch die 

Entfernung genau jener Restriktionen wurden traditionelle RM Systeme 

ausgehebelt, was dazu führte, dass eine neue Generation von RM Techniken 

notwendig wurde. Eine dieser neuen Techniken ist der sogenannte „Hybrid 

Forecast“, entwickelt um die Nachfrage auch in einem Umfeld ohne 

Tarifrestriktionen zu segmentieren. Passagiere werden demnach nach der 

Kategorien „priceable“ und „yieldable“ unterschieden. Diese neue „Hybrid“-Methode 

die diese Unterscheidung möglich macht, dient wieder als Voraussetzung für den 

Ertragsoptimierungsprozess in einem Umfeld, wo Netzwerkcarrier mit Low Cost 

Carrier konkurrieren. 
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Zu Beginn dieser Diplomarbeit wird kurz auf die Geschichte der Ertragssteuerung in 

der Airline Branche eingegangen, unter anderem auch auf die Auswirkungen der 

Liberalisierung des Airline Sektors in den U.S.A und Europa. Des Weiteren wird das 

Business Model der Low Cost Airlines beschrieben, sowie die dadurch weltweit 

entstandenen Konsequenzen auf traditionelle RM Systeme. Danach werden die 

verschiedenen Komponenten eines traditionellen RM Systems beschrieben, 

darunter auch detailliert die neuartige Technik des „Hybrid Forecasts“. 

Im zweiten Teil der Arbeit Simulationsprogramm REMATE präsentiert. Dieses 

wurde von Lufthansa gemeinsam mit der Universität Berlin entwickelt. REMATE 

wird in dieser Arbeit dazu benutzt ein kleines Netzwerk zu entwickeln, um darin 

verschiede RM Techniken zu simulieren und deren Auswirkungen zu studieren. Das 

Netzwerk besteht aus einem „Hub“ und drei anzufliegenden Destinationen, in dem 

zwei Fluglinien nebeneinander konkurrieren: ein traditioneller Netzwerkcarrier und 

eine Low Cost Carrier. Es werden vier verschiedene Situationen simuliert, in denen 

der Netzwerkcarrier jeweils eine andere RM Technik zur Ertragsoptimierung 

einsetzt. Bei der „First-Come-First-Serve“ Methode wird keine Optimierung 

eingesetzt. Des Weiteren wird streckenbasierte Optimierung, OD-basierte (Origin-

Destination); Optimierung und schließlich Hybrid Forecast-Optimierung simuliert. 

Dabei wird vorausgesetzt, dass der Netzwerkcarrier bereits die Preise und 

Tarifkonditionen an die der Low Cost Konkurrenz angeglichen hat. Danach werden 

die Ergebnisse der unterschiedlichen Szenarien präsentiert. Als Ziel dieser 

Diplomarbeit soll untersucht werden, ob Hybrid Forecast eine angemessene RM 

Technik für Netzwerkcarrier darstellt, um in einem Umfeld hoher Konkurrenz zu 

bestehen und dem Ertragsverfall entgegenzusteuern.  
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