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Abstract

This thesis considers three different estimation methods for the unobserved static factors
zt in the context of generalized dynamic factor models. These models assume that a high-
dimensional multivariate time-series xt is driven by a very low dimensional factor process
zt. This unobserved factors partly explain the observations xt through the equation xt =
Lzt+ξt. The models are generalized, because they allow for weak cross-sectional dependence
among the idiosyncratic components ξit. A drawback of this general assumption is that the
common (Lzt) and idiosyncratic component ξt are only asymptotically (for the number of
different time-series going to infinity) identified. Therefore all three estimation methods for
the static factors are based on restricted models. Despite these restrictions they consistently
estimate the linear space of static factors under generalized assumptions. However, no
further analytical properties for all three methods are available. Therefore a simulation
study was conducted, in order to understand their behavior and compare their performances
for finite dimensional panels. Also a data set from the US macroeconomy was analyzed in
order to get authentic parameters for the simulation study.

The aim of this simulation study was to study the performance of the estimators for
different models and parameters. The results suggest that all three estimators suffer from
neglecting the generalized dependence structure of the idiosyncratic component. If the id-
iosyncratic process is white noise, a ranking of the estimators seems to be possible. However,
high local dependencies could weaken or even erase relative advantages that could be ob-
served in the white noise case. This effect seems to be stronger for the cases where the
dimension of the dynamic factors is smaller than the dimension of the static factors. Dif-
ferent noise-to-signal ratios and especially a long-memory static factor process zt clearly
influence absolute and relative performance of the estimators.
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1 Introduction

1.1 Motivation

Non-technical introduction Statistical factor models were developed in the context of mul-
tivariate data. They assume that different observed entities linearly depend on unobserved
so-called factors (see [39] for an introduction). Generalized dynamic factor models are a very
general class of factor models for time-series data [26], [27], [14]. They don’t face strict assump-
tions common to classical factor models that may conflict with reality. In the last decade they
have become very popular in macroeconomics, because they are able to deal with large panels,
i.e. a very large number of variables and/or a large number of observations. Today macroe-
conomists are now able to observe a huge amount of aggregated and disaggregated data and use
this for example in order to forecast future economic variables [45] or to assess the impact of
economic policy (structural analysis) [8].

Example 1.1. Consider disaggregated and aggregated macro-economic time-series data dis-
played in Figure 1 that describe the US macro-economy1. This multivariate time-series consists
of 109 different economic entities observed between the years 1959 and 2006 (see Section 6 for a
complete description).

�

In order to work with high dimensional multivariate time-series data, many models suffer
from the so-called ”curse of dimensionality”. This means that the number of parameters grows
faster than the number of variables in the model. Take for example the vector auto-regressive
model. The number of model parameters is proportional to the squared number of model
variables. Generalized dynamic factor models try to overcome this curse by assuming that the
observed data is driven by a much lower dimensional unobserved factor process.

As illustrated in Figure 1 the idea is to summarize high dimensional time-series data (in
Example 1.1 the dimension is 109) by a few factors (in this case a 2 dimensional process).

The knowledge of the factor process is the basis for forecasting and structural analysis. This
thesis analyses three different ways of extracting these factors from the data, i.e. it compares
three different estimators procedures by conducting a simulation study.

Starting point The object of analysis will be an n× T panel

X ′ =

x11 x12 · · · · · · · · · · · · x1T
...

...
xn1 xn2 xnT

 ,

a finite realization of the stochastic process x = {xit, i ∈ N, t ∈ Z} where xit ∈ L2(P,C).
Factor models are characterized by splitting the observation xit into a common component

(also called latent variable) and an idiosyncratic component

xit = χit + ξit, i ∈ N, t ∈ Z (1)

1This data-set can be downloaded from http://www.princeton.edu/ mwatson/publi.html.

http://www.princeton.edu/~mwatson/publi.html
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Figure 1: Disaggregated macroeconomic time-series data from Stock and Watson [50]. The
109 already transformed univariate time-series have been plotted in gray-scale whereas the two
factors are represented by the red lines.
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This very general setting of a double sequence (xit, i ∈ N, t ∈ Z) is a characteristic of
generalized dynamic factor models. Let the number of variables (the cross-section dimension)
be finite, i.e. i = 1, . . . , n. Then the equations

xnt
(n×1)

= χnt
(n×1)

+ ξnt
(n×1)

= wn(z)

(n×q)

ut
(q×1)

+ ξnt
(n×1)

, t ∈ Z (2)

where the transfer function wn(z) =
∑∞

j=−∞wjz
j , wj ∈ Rn×q is called the factor loading

matrix, describe all different kinds of factor models in the context of multivariate data. It will be
assumed that the process χnt and ξnt fulfill Assumption A and that the Laurent series expansion
of wn(z) converges within and on the complex unit circle.

If wn(z) = L and the processes ut and ξnt are white noise, then Equation (2) describes the so-
called static factor model. With wn(z) = L ∈ Rn×q constant, and (ut), (ξ

n
t ) not necessarily white

noise, the representation of the so-called quasi-static factor model [15] is described. Dynamic
factor models are characterized through wn(z) =

∑∞
j=−∞wjz

j , wn(z) =
∑∞

j=0wjz
j and wn(z) =∑s

j=0wjz
j respectively.

The distinction between approximate factor models [11], [12] and strict factor models (or
factor models with idiosyncratic noise) arises from the way the process ξnt is modeled. Strict
factor models2 are characterized by a diagonal spectral density matrix (or the covariance matrix
in the static case) of ξnt , whereas in the context of approximate factor models a weak dependence
between the idiosyncratic variates is assumed (see Section 3). An approximate dynamic factor
model is called generalized dynamic factor model. A formal definition will be given in Section 3.1.

The q dimensional process ut drives the latent process χnt and is called the dynamic factor
process. In the case of a static factor model or if the order of the polynomial matrix wn(z) is
finite, the process ut can be stacked to an r ≥ q dimensional process zt, the so-called static factor
process. The unknown integer parameters q and r are of central interest. First, they indicate
to what extend the dimension of the observations n can be reduced. Second, the number of
dynamic factors has a special economic interpretation (see Section 3.5). In contrast to principal
component models [28], where the number of principal components is the result of a tradeoff
between approximation accuracy and dimensionality reduction, the number of static factors in
factor models is intrinsic in the sense that it is a property of the data.

Two identification problems in the context of factor models are the identification of the
latent and idiosyncratic component, given the observation xit and the identification of the static
factors given the latent component. As far as the latter problem is concerned, static factors are
identifiable only up to post-multiplication by a non-singular3 matrix. Concerning the former
problem, approximate factor models are in contrast to factor models with strict idiosyncratic
noise not identifiable for a finite number of variables n. The unique separation into common
and idiosyncratic component can however be achieved as n goes infinity [11], [12], [26] (see
Section 3.2).

The three estimation procedures for the static factors are based on simpler models that may
be identifiable for finite n. These simpler models are all assuming that the idiosyncratic spectrum
density matrix is diagonal or that ξnt is white-noise with a diagonal covariance matrix. It will
be shown that all three estimators are consistent in the sense that their estimates converge to a
certain basis of the linear static factor space as n, T →∞ (see Section 4).

2The static factor model with idiosyncratic noise is the classical factor model, with a long history dating back,
to the beginning of the twentieth century ([15], p. 156).

3Or an orthogonal matrix, if the static factors are assumed to be orthonormal.
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Finite sample properties of the three estimation methods were studied by several simulation
studies [49], [17], [18]. The added-value of this thesis is to extend the simulation setting of the
three mentioned articles in several ways (see Section 5).

Section 2 discusses the theoretical concepts that will be needed later in Section 4 where the
estimation procedures will be discussed.

Assumption A (General assumption): For any n ∈ N

A1. (xnt , t ∈ Z) is a centered, (wide sense) stationary4 process

A2. The auto-covariances of (xnt ) are absolutely summable, that is

∞∑
s=−∞

||γx(s)|| <∞.

This implies that (xnt ) has a spectral density Σn
x(·) : Θ→ Cn which is defined by

Σn
x(θ) :=

1

2π

∞∑
s=−∞

eiθsγx(s)

1.2 The research question

In this simulation study the goal is to assess the finite sample behavior of three different esti-
mation procedures for the static factors in the context of a generalized dynamic factor model.
Two questions govern the analysis. First, as the estimators are misspecified in the generalized
context, the influence of this misspecification on the absolute and relative estimation perfor-
mance will be of interest. Second, a finite sample comparison for different model specifications
shall shed light on the relative performances of these three estimation procedures and therefore
indicate points in the parameter space, where some method may outperform the other.

1.3 Framework and Notation

The double sequence {xit, i ∈ N, t ∈ Z} of random variables will be defined on an arbitrary
probability space P := (Ω,A, P ). For each xit, the first index always refers to the cross-section
dimension, whereas the second index represents the time-dimension. Therefore xit is the random
value of the i-th cross-section at time t. The first n random values at time t will be written
as xnt = (x1t, . . . , xnt)

′. Often the superscript n will be suppressed and the single-indexed xt
will be written instead xnt . A double sequence x = {xit, i ∈ N, t ∈ Z} will be written in bold
letters and is always indexed on N× Z. A cross-section sequence for a given t ∈ Z is written as
xt = {xit, i ∈ N}. If the context is clear, zt ∈ R means zt(ω) ∈ R, ω ∈ Ω. I do not distinguish
between sample and random variables as far as notation is concerned. In general X is a T × n
data matrix.

The basis for abstract geometric argumentation are sub-spaces of the Hilbert-space L2(P),
which is the space of all complex valued A-measurable square integrable functions. For the closed
linear sub-spaces span{yit, i = 1, . . . , n, t ∈ M, yit ∈ L2(P)}, n ∈ N, M ⊆ Z, abbreviations
like Hy(t), H(yns , 1 ≤ s ≤ t) or Hy will be used and explained in context. For example Hx(T )

4Only wide sense stationary processes will be discussed. Therefore stationary is a short cut for wide sense
stationary.
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corresponds toM = {1, . . . , T}. I say an n-dimensional vector x belongs to Hy if all components
of x are in Hy. Let z be the back-shift operator defined on Hx by zxit = xit−1 for every i ∈ N
and t ∈ Z. The variable z will be used as a complex variable as well as the back-shift operator.

For a given n, the h-lag covariance matrix of xnt , χnt , ξnt is denoted by γχ(h) = Eχnt χnt−h
′.

The spectral densities of xnt , χnt , ξnt are denoted by fnx (θ), fnχ (θ) and fnξ (θ) respectively. They
are defined on the set Θ := [−π, π].

For a quadratic matrix A ∈ Rk×k, A > 0 means that A is positive definite, and A ≥ 0 means
that A is positive semi-definite. The transposed matrix of a general m × n matrix A will be
written as A′. I denote Ai as its i-th column and A(i) or A(i) as its i-th row. An element at
position (i, j) is either denoted by Aij or A(i, j). The norm ||A|| stands for any matrix-norm
(e.g. the Frobenius norm, ||A|| = ||vec(A)||2 or the spectral matrix norm, ||A|| =

√
λmax(A′A)),

where vec(A) is defined in the Appendix (see Definition C.9) and ||x||2 is the spectral norm. I
will always use underlines for the vec-operator, i.e. A = vec(A). If not stated otherwise, all
matrices as well as the processes are considered to be real-valued.

The closed complex unit ball of radius one is sometimes denoted as U1 := {z ∈ C : |z| ≤ 1}.
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2 Theoretical Foundations

The main basic theorems which I will use later are stated in this section. If more elaborated
concepts are used somewhere, I will refer to specialized literature.

2.1 The theory of stationary processes

Hilbert geometry: As for every xnit the variance is finite, the theoretical focus is on the space
L2(P). This space equipped with the scalar product (f, g) :=

∫
Ω f(ω)g(ω) dλ(ω) is a Hilbert

space5. The scalar product induces the L2-norm ||xit||2 = E|xit|2 on L2. For this space the
theoretically valuable projection theorem can be used.

Theorem 2.1 (Projection theorem): Let the set H together with the scalar product (·, ·) be
a Hilbert space and M ⊆ H a closed linear sub-space. Then6 M ⊕M⊥, that is every x ∈ H
can be uniquely decomposed into x = y + z with y ∈ M and z ∈ M⊥. The summand y is the
orthogonal projection PMx of x on M and minimizes the L2-distance ||x− w||2, w ∈M .

The structure of stationary processes Theorem 2.2 (Wold theorem): Every stationary
n-dimensional process (xt) can be represented in a unique way as xt = yt + zt, where (yt) is
a regular, (zt) a singular (deterministic) process, and where (yt) and (zt) are orthogonal, i.e.
Eytz′s = 0, ∀s, t and that yt, zt ∈ span{xis, i ≤ n, s ≤ t} holds.

Wold representation: Every regular process (yt) can be represented as

yt =

∞∑
j=0

kjut−j ,

∞∑
j=0

||kj ||2 <∞ (3)

where (ut) is white noise and span{uis, i ≤ n, s ≤ t} = span{yis, i ≤ n, s ≤ t} holds.

Theorem 2.3 (Spectral factorization): Let xt be an n-dimensional process having a rational
spectral density matrix fx of rank q ≤ n. Then the (n× n) dimensional rational matrix can be
factorized as

fx(θ) =
1

2π
w(e−iθ)w∗(e−iθ) (4)

where the (n × q) dimensional spectral factor w(z), z ∈ C is a rational matrix which has no
poles and zeros for |z| ≤ 1. The transfer function w(z) is therefore stable and mini-phase.

This factorization is unique up to post-multiplication with constant orthogonal matrices.

5This statement is true, if L2 are the equivalent classes for the relation f ∼ g ⇔ f = g a.e. on Ω.
6M⊥ = {z ∈ H, (z,m) = 0, ∀m ∈M} and A⊕B is the orthogonal direct sum of A and B.
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2.2 Principal components

The classical statistical definition of principal components is based on finding a linear transfor-
mation P = (p1, . . . , pn) with orthonormal columns pj of given variates x = (x1, . . . , xn)′ such
that the new variates y = P ′x have maximal variance.

Definition 2.4 . For a random vector x = (x1, . . . , xn) with existing second moments, Σ = cov(x),
the first loading p1 ∈ Rn defines the first principal component (score) y1 = p′1x that maximizes
var(y1) = p′1Σp1 subject to p′1p1 = 1. It is easy to see that p1 solves (Σ − λ1In)p1 = 0, which
reveals λ1 as the biggest eigenvalue with λ1 = var(y1) and p1 its corresponding eigenvector.

The k-th principal component pk solves the maximization problem

max
p∈Rn

p′Σp− λk(p′p− 1)−
∑
j<k

φj(p
′pj)

The variance of the k-th score var(yk) is equal to λk and (p1, . . . , pn) form an orthonormal
basis of Rn.

In the context of time series, the characterization given in [38] is more appealing.
Suppose that we wish to predict x by a r-dimensional sub-space of span{x1, . . . , xn} in the

sense that we would like to minimize

E(x− CB′x)′(x− CB′x), B, C ∈ Rn×r (5)

This is achieved by taking B = C = (p1, . . . , pr). This characterization of principal compo-
nents is also the starting point for dynamic principal components (see [38], Ch. 11.2 or [10] Ch. 9).

Definition 2.5 (Static principal components of the process xt): Let xt be a stationary n dimen-
sional process with covariance matrix γx(0) and let (p1, . . . , pn) be the eigenvectors corresponding
to the spectral decomposition of γx(0) (see Theorem C.2). The variate yjt = p′jxt, j = 1, . . . , n
is called the j-th principal component of the process (xt)t∈Z.

Principal components of a stationary process xt can also be given in a dynamic sense. They
are defined as linear filters B(z) =

∑∞
j=−∞ bjz

j , bj ∈ Rr×n such that xt is approximated best in
the least squares sense by a filtered process of itself. This filtered process has spectral density
q. We therefore search for linear filters B(z) and C(z) =

∑∞
j=−∞ cjz

j , cj ∈ Rn×r such that

tr
[
E(xt − C(z)B(z)xt)(xt − C(z)B(z)xt)

′]
is minimized for fixed rank q.
It can be shown that similar to the static case, the solution to this problem is given through

the spectral decomposition of the spectral density of the process xt (see [28]).

Definition 2.6 (Dynamic principal components of the process xt): Let xt be a zero mean
stationary n-dimensional process with spectral density fx. Decompose

fx(θ) = O1(e−iθ)Λ1(θ)O1(e−iθ)∗ +O2(e−iθ)Λ2(θ)O2(e−iθ)∗

where O1(eiθ), O2(eiθ) contain the eigenvectors and Λ1(θ),Λ2(θ) the eigenvalues of the spec-
tral density matrix Σx(·). The matrices O1(eiθ), O2(eiθ) are the corresponding transfer functions
to the n× q and n× (n− q) dimensional linear filters O1(z), O2(z).



2 THEORETICAL FOUNDATIONS 13

The q dynamic principal components are then defined by yt = O1(z)∗xt.

Remark 2.7 .

1. Principal components can be seen as coordinates in the eigenbasis of γx(0). This can be
seen from Definition 2.4.

2. Definitions 2.5 and 2.6 are given at population level. If one replaces γx(0) by the sample
covariance matrix S := 1

T−1

∑T
t=1 xtx

′
t = 1

nX
′X, then its eigenvectors p̂1, . . . , p̂n define

the (sample) principal components p̂′jxt, j = 1, . . . , n. The spectral density fx can be
estimated in many ways (see [29]). The sample dynamic principal components in this
thesis are calculated from the smoothed periodogram estimates of the spectral density.

3. For any integer q, 1 ≤ q ≤ n, consider the orthonormal transformation y = B′x, where
B ∈ Rn×q, Σy = B′ΣB. Then by setting B = (p1, . . . , pq) the matrix B maximizes the
trace of Σy. This result also holds in the sample case. Then B = (p̂1, . . . , p̂q) maximize
tr(B′X ′XB) (see [38]).

�

2.3 The Kalman Filter apparatus

Two of the three discussed estimation methods are using the Kalman filter apparatus in order
to calculate the estimates. It is a very powerful iterative algorithm originally introduced as a
method primarily for use in aerospace-related research, especially used in electrical engineering,
but also in medicine, soil sciences and economics7. The procedure is based on so-called state
space models.

Consider the following state-space model with given (H,F,G,Q,R). For every t ∈ Z :

xt
(n×1)

= H

(n×m)

st
(m×1)

+ ξt
(n×1)

(6a)

st+1

(m×1)

= F

(m×m)

st
(m×1)

+ G

(m×q)

ut
(q×1)

(6b)

with ξt ∼WN(0, R), ut ∼WN(0, Q), Eξtu′s = 0, ∀s, t ∈ Z and Es0u
′
t = Es0ξ

′
t = 0, t > 0.

The Kalman filter is a linear filter which is the solution to the following optimization problem:

For the state space system in Equations (6), observations X = (x1, x2, . . . , xT ) and a
known distribution of s1 ∼ N (µ1, V1), find those linear estimates for st, t = 1, . . . , T
that minimize component-wise the mean square distance to st. By the projection
theorem this approximation is given by st|t−1 = P(st|x1, . . . , xt−1) (see [2]).

7See [48] for more references.
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Denote the best linear estimator (in mean square sense) of st given x1, . . . , xt−1 by st|t−1 and
the one-step ahead prediction error of xt given Xt−1

1 := {x1, . . . , xt−1} by et := xt−Hst|t−1. The
accuracy of the state prediction is given by the covariance matrix Pt|t−1 := E(st − st|t−1)(st −
st|t−1)′. Then for t = 1, . . . , T, the prediction equations are given by:

st+1|t = Fst|t−1 +Ktet (7a)

Kt = FPt|t−1H
′Σ−1
t (7b)

Σt = HPt|t−1H
′ +R (7c)

Pt+1|t = FPt|t−1F
′ −KtΣtK

′
t +GQG′ (7d)

The best estimation for t = 1 is given by s1|0 = 0 with covariance matrix P1|0 = Es1s
′
1. The

updating equations are given by:

st|t = st|t−1 + Pt|t−1H
′Σ−1
t et (8a)

Pt|t = Pt|t−1 − Pt|t−1H
′Σ−1
t HPt|t−1 (8b)

Substituting in (7a) and (7d) gives st+1|t = Fst|t and Pt+1|t = FPt|tF
′ +GQG′.

Remark 2.8 (Remarks on the Kalman Filter).

- The Kalman Filter equations can be derived based on Hilbert geometry (projections), as
done in [32], based on multivariate normal distribution theory, as done in [19], or from a
Bayesian perspective (see [42]). For example, the proof of Equations (7) and (8) using the
orthogonal decomposition of H(x1, . . . , xt) is not very difficult. The interested reader is
referred to Theorem 3.2.1 in [32].

- Often it is assumed that G = Im and ut is a m-dimensional random vector8. The general
case of Equations (6) is discussed in [19] and [2], Chapter 3.

- Note that the matrices H,F,R,G,Q, P1 and the vector a1 are assumed to be known a-
priori. The next section deals with the situation where most of these variables are unknown.

- Equations (7a) and (7d) relate the state approximations st|t−1 and its uncertainty Pt|t−1

to the approximation st+1|t and uncertainty Pt+1|t for the next period. The prediction
equations are derived by assuming that data until t− 1 is available for state prediction at
time t. The higher the uncertainty about state prediction at t− 1 and the more accurate
the determination of the innovations et (see Equation (7b)), the higher the influence of a
bad prediction of the observations on future state predictions. The updating equations are
needed after a new observation xt has arrived. The determined prediction error et changes
the approximation of the unknown state. This again depends on the state prediction
accuracy and the precision of the calculation of et. The uncertainty about the state
approximation Pt|t decreases, meaning that Pt|t ≤ Pt|t−1, where ≤ is the Loewner order.

8This is done in the R-packages dse, ? and the code of Shumway and Stoffer.
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- If a Gaussian state space model is assumed, meaning that ξt, ut jointly follow a normal
distribution, then st|t−1 = E(st|Xt−1

1 ) and Pt|t−1 = E(st − st|t−1)(st − st|t−1)′|Xt−1
1 ). This

means that st|t−1 provides the best estimators in the class of all σ(Xt−1
1 ) measurable and

square integrable functions. The second equation holds, because (st− st|t−1) is orthogonal
to (x1, . . . , xT ).

- The calculation of the Likelihood is a byproduct of solving Equations (7). As the likelihood
of the observations is the joint density of X = (x1, . . . , xT ) depending on a parameter θ,

L(X; θ) = fθ(x1)

T∏
t=2

fθ(xt|x1, . . . , xt−1),

where fθ(xt|x1, . . . , xt−1) is the density of a normal distribution with mean Hst|t−1 and
covariance Σt. The prediction error decomposition9 of the Log-Likelihood is given by

`(X; θ) = −nT
2

ln(2π)− 1

2

(
T∑
t=1

ln(det(Σt)) + e′tΣtet

)
, (9)

where et is defined above. Note all the factors needed for calculating L(X; θ) are given by
Equations (7).

�

Kalman smoother. The Kalman smoother is a fixed interval smoother10. For a given ”in-
terval” t = 1, . . . , T , it computes st|T = P(st|X) = (EstX)(EXX′)−1 and Pt|T = E(st −
st|T )(st − st|T )′, where X = (x1, . . . , xT ) and X = vec(X). The projections are computed
for t = T, T − 1, . . . , 1 with the help of the Kalman Filter recursions. For t < u ≤ T :

Jt = (Pt|t−1 − Pt|t−1H
′K ′t)P

−1
t+1|t = Pt|tF

′P−1
t|t−1 (10a)

st|u = st|t + Jt(st+1|u − st+1|t) (10b)

Pt|u = Pt|t + Jt(Pt+1|u − Pt+1|t)J
′
t (10c)

The matrix Jt in Equation (10a) is called the Kalman smoothing matrix . These equations
are derived by Hilbert projection arguments for example in [32], page 93–95. The second equality
of (10a) can be easily proved by substituting (8b) into (10a).

Remark 2.9 (Remarks on the Kalman smoother).

1. The Kalman smoother is not the orthogonal projection (or conditional expectation, if the
state space model is Gaussian) but the iterative procedure that computes the projections
st|T , t = 1, . . . , T.

9Terminology introduced by Harvey (1989).
10For a discussion about different types of smoothing see [2].
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2. The matrix Pt+1|t must not be invertible in general. Consider the identity Pt+1|t =
FPt|tF

′+GQG′. The matrix GQG′ must not have full column rank, as G is a real matrix
of dimension m×q. If Pt+1|t ≥ 0 is not invertible, i.e. it has eigenvalues equal to zero, then
the pseudo-inverse is taken instead. Let Pt+1|t = U diag(d1, d2, . . . , dk, 0, . . . , 0)U ′, where
U−1 = U ′ is a unitary matrix. Then P−1

t+1|t = U ′ diag(1/d1, 1/d2, . . . , 1/dk, 0, . . . , 0)U . The
integer k is equal to the rank of Pt+1|t.

3. Following [19], Chapter 4.3, an illustrative relation to Equations (10) is given by Hilbert
geometry. Let Hx be the Hilbert space spanned by all the components of x1, . . . , xT . This
space can be written as the direct orthogonal sum Hx =

⊕T
t=1H(et), where H(et) is the

Hilbert space spanned by the components of the innovations et = xt − Hst|t−1. The set
{e1, e2, . . . , eT } is a basis of Hx. The projection st|T can now be written as

st|T = P(st|X) = P(st|Xt−1
1 ) + P(st|et, et+1, . . . , eT )

= st|t−1 +

T∑
k=t

(st, ek) Σ−1
k ek

where Σk has been defined in Equation (7c), and (st, ek) = E(ste
′
k). A different system

of iterative equations arises out of the need to calculate the covariances (st, ek). For
t = T, T − 1, . . . , 1 :

st|T = st|t−1 + Pt|t−1rt−1 (11)

rt−1 = HΣ−1
t et +

T∑
j=t+1

L′tL
′
t+1 · · ·L′j−1H

′Σ−1
j ej , Lt := (F −KtH) (12)

rT = 0 (13)

The vectors rT can be calculated iteratively by

rt−1 = H ′Σ−1
t et + L′trt

rT = 0

It is shown in [19] that one can get to this sets of equations by starting from Equations (10).
Note also that no inversion of Pt+1|t is needed in these recursions11.

�

Equations (8a) and (10b) can be used to define an iterative system of equations for the
Lag-One Covariance Smoother. It will be needed to obtain expected sufficient statistics for the
EM algorithm.

11The R-package KFAS uses these equations to compute the Kalman smoother. Again it can be seen that
different equations can be used to compute the smoothing projections.
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Lemma 2.10 (Lag-One Covariance Smoother – version 1) Consider model (6) and define
Pt1,t2|u := E(st1 − st1|u)(st2 − st2|u)′. Then the lag-one covariance smoother Pt,t−1|T , t =
2, 3, . . . , T can be defined by:

PT,T−1|T = (Im − PT |T−1H
′Σ−1
T H)FPT−1|T−1 (14)

and for t = T, T − 1, . . . , 3 :

Pt−1,t−2|T = Pt−1|t−1J
′
t−2 + J ′t−1(Pt,t−1|T − FPt−1|t−1)J ′t−2 (15)

where Jt is defined in Equation (10a).

Proof. The proof uses the classical recursive equations and can be found in [48]. �

Lemma 2.11 (Lag-One Covariance Smoother – version 2) The covariance matrix Pt,t−1|T ∈
Rm×m, t = 2, . . . , T defined in Lemma 2.10 can also be calculated by

Pt,t−1|T = Lt−1Pt−1|t−2 − Pt|t−1N
′
t−1Lt−1Pt−1|t−2 (16)

where Lt = F−KtH and Nt−1 = H ′Σ−1
t H+

∑T
j=t+1 L

′
tL
′
t+1 · · ·L′j−1H

′Σ−1
j HLj−1 · · ·Lt+1Lt

are both m×m matrices.

Proof. A proof of these recursions can be found in [19]. �

2.4 Expectation Maximization (EM) Algorithm

The EM Algorithm [16] is an iterative procedure to compute the maximum likelihood estimates
for a given probability model with parameters τ ∈ T (where the parameter space is not specified
explicitly) under the setting of incomplete data. One assumes that only part of the sample can
be directly observed. There are two sample spaces A and B, where b ∈ B (incomplete data)
can be, whereas a ∈ A (complete data) can not be observed directly. In addition there exists
a mapping ι : A → B, ι(a) = b, meaning that a can be indirectly observed through b. All we
know is that a ∈ ι−1({b}) ⊆ A.

If fa(a|τ) and fb(b|τ) denote the respective sampling densities, then fb(b|τ) =
∫
ι−1({b}) fa(a|τ)da.

The aim of the EM Algorithm is to find τ̂ = arg maxτ∈T fb(b|τ) given observations
b. The algorithm does this by making essential use of the sampling density of the
complete data fa(a|·).

Definition 2.12 (EM Algorithm):

Initialization Set the parameter τ (0).
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E-step Assume that τ (k), k ∈ N is known already. Calculate

Q(τ |τ (k)) = E(log fa(a|τ (k))|b, τ), τ ∈ T

If the complete data sampling density comes from an exponential family, this means cal-
culating the expected sufficient statistics E(t(a)|b, τ (k)), where t is the sufficient statistic
for the complete data density fa.

M-step Recalculate the parameters. Choose τ (k+1) = arg maxτ∈T Q(τ |τ (k)).

Repeat both steps until the relative change of the incomplete data likelihood is smaller than a
tolerance level.

Remark 2.13 (Remarks on the EM algorithm).

- In the factor model setting, a = (s1, s2, . . . , sT , x1, x2, . . . , xT ) and b = (x1, . . . , xT ). For
an explanation of this notation and a detailed discussion on how to use the EM algorithm
in the context of a state space model, see Section 4.4.

�
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3 The generalized dynamic factor model

This chapter follows the paper of Forni and Lippi [27] and starts with the most general definition
of a generalized dynamic factor model. In order to meet the setting of the estimation procedures,
which are introduced in the next section, several technical and practical assumptions are made.

3.1 General definition

Factor models are based on the assumption, that observations can be divided into a strongly and
weakly dependent part (see Equation (1)). The concept of an idiosyncratic process or weakly
dependent process is therefore central for establishing a factor structure for a time series.

An intuitive example is coming from finance. Suppose a portfolio manager can choose be-
tween infinitely many assets. He sets up a portfolio, a linear combination of those assets, where
each one has a certain risk of return (variance). Now if you can distribute that risk by spreading
it over your infinitely many different assets such that the risk of the portfolio will be zero, your
assets don’t share a common systemic risk, only idiosyncratic risk and you would say that your
asset sequence is weakly dependent. In the end, you averaged the risk to zero.

In the context of a double-sequence x, the motivating example was given for a fixed t ∈ Z
and different i ∈ N, but you can also take averages across cross section and time dimen-
sion. In the papers of [11] and [12] cross section averaging was performed on xt, that is
yt = limn

∑n
i=1 a

n
i xit, where the averaging sequence satisfies12 limn

∑n
i=1 |ani |2 = 0. The arith-

metic mean ani = (1/n), i = 1, . . . , n is a simple example for such an averaging sequence. To
extend the idea of averaging, suppose that for a fixed n ∈ N every ani is a measurable complex
function on Θ. Averaging is now done on x and it means building sn =

∑n
i=1 a

n
i (z)xit where

ani (z)xit =
∑∞

j=−∞ a
n
ij xit−j .

This concept of averaging across the cross section and the time dimension is central for
identification and estimation.

In order to properly define such a dynamic averaging sequence, a little amount of spectral
theory is needed.

Definition 3.1 (Dynamic averaging sequence): Let fnx be the spectral density of (xnt )n∈N
and denote Ln2 (Θ, fnx ) the complex linear space of all n-dimensional vectors an = (an1 , . . . , a

n
n)∗,

where ani : Θ → C and (an, an)fnx =
∫ π
−π a

n(θ)∗fnx (θ)an(θ) dθ < ∞. This scalar product makes
Ln2 (Θ, fnx ) a Hilbert space, also called the frequency domain of the process xnt .

Now let an ∈ Ln2 (Θ, In) ∩ Ln2 (Θ, fnx ). Then (an)n∈N is a dynamic averaging sequence (DAS)
if limn ||an||In = limn

∫ π
−π a

n(θ)∗Ina
n(θ) dθ = 0.

This definition makes perfect sense, if the following definition of a weakly dependent process
is considered. It also reveals in which sense the finite sums sn are converging.

Definition 3.2 (Idiosyncratic process): A double sequence x on N × Z, where (xnt )t∈Z fulfills
Assumption A for all n ∈ N, is called idiosyncratic or weakly dependent if for any DAS (an)n∈N
the following holds

lim
n

V(an(z)xnt ) = lim
n
||an(z)xnt ||In = lim

n

∫ π

−π
an(θ)∗fnx (θ)an(θ) dθ = lim

n
||an||fnx = 0.

12Note that (xit, i ∈ N) is sequence of square integrable stochastic variables and that yt is the L2-limit of the
finite sums

∑n
i=1 a

n
i xit.
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Remark 3.3 .

1. An idiosyncratic process can be characterized via its eigenvalue function λx1 : θ 7→ supn∈N λ
x
1n(θ).

Here, λx1n(θ) is the largest eigenvalue of the complex matrix fnx (θ) for a fixed θ ∈ Θ. The
process x is idiosyncratic if and only if λx1 is essentially bounded on Θ (see for example
[21], Theorem 2.2.4).

2. Although the last definition is very formal, the intuition behind remains. Note that the
means square convergence of ynt =

∑n
i=1

∑∞
h=−∞ aihxj,t−h to zero means that the variance

of ynt vanishes when n → ∞. A double sequence is idiosyncratic if the components are
independent at all leads and lags with constant variances of its components, but an id-
iosyncratic process may also have some kind of weak dependencies over its cross-section
and time.

3. The sequence (a1(θ), a2(θ), . . .) used above is often called dynamic averaging sequence.

�

Definition 3.4 (Generalized dynamic factor model): The data-generating process of x follows
a generalized dynamic factor model or x can be represented as a q-dynamic factor sequence if

there exists a q-dimensional orthonormal white noise process ut = (u1t, . . . , uqt)
′,

a double sequence ξ = {ξit, i ∈ N, t ∈ Z} fulfilling Assumption A.

and square-summable filters bij(z) =
∑∞

k=−∞ β
(ij)
k zk, i ∈ N, j = 1, . . . , q

such that for any i ∈ N and t ∈ Z

xit = χit + ξit (17)
= bi1(z)u1t + bi2(z)u2t + . . .+ biq(z)uqt + ξit = bi(z)ut + ξit

and the following holds

(gdfm a) ξit⊥uj,t−k for any i ∈ N, j = 1, 2, . . . , q and k ∈ Z

(gdfm b) ξ is weakly dependent or idiosyncratic (see Definition 3.2)

(gdfm c) χ is strongly dependent, that is λχqn(θ)→∞ as n→∞ almost everywhere on Θ

Remark 3.5 .

- Note that q does not depend on n.

- As in the static case, we have fx(θ) = fχ(θ) + fξ(θ).

- The orthogonality assumption of common and idiosyncratic component has an economic
interpretation: Sargent, T.J. (1989). Two models of measurements and the investment
accelerator. Journal of Political, Economy 97, 251–287, (see [25], p. 1323)

- As shown in [27], Theorem 4, p. 117, the given assumptions of Definition 3.4 imply that the
representation of Equation (17) is unique. This means that the q-dynamic factor sequence
is identifiable (see Section 3.2).

�
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3.2 Identifiability

In the following identifiability for the (quasi-)static and dynamic case will be briefly summarized.

The (quasi-) static case. In this case the covariance matrix of the observations xnt = Lnzt+ξ
n
t

is given by

γnx (0) = γnχ(0) + γnξ (0) = Lγnz (0)L′ + γnξ (0), n ∈ N. (18)

In this context two problems of identifiability arise. The first deals with the unique de-
composition of a given γnx (0) into γχ(0) ∈ Rn×n, which is positive semi-definite, singular and
symmetric, and γξ(0), which is positive semi-definite and diagonal, such that Equation (18) is
satisfied.

The second problem deals with finding all possible L and γz(0) such that γχ(0) = Lγz(0)L′.
In fact if zt is a static factor then all static factors can be determined by choosing some non-
singular, quadratic matrix R and defining z̃t := R−1zt and L̃ := LR13. If Eztz′t = Ir is assumed,
then L is unique up to right-multiplication by orthogonal matrices. This is easily seen by Ir =
Ez̃tz̃′t = R−1Ir(R

−1)′, which implies that R−1 must be orthogonal. An immediate implication
of this is

The static factors can only be identified up to a non-singular linear transforma-
tion and a rotation respectively. Therefore extracting common static factors means
estimating the r-dimensional linear space of the static factors (see Section 3.3).

The answer to the first problem is, that γχ(0) and γξ(0) are generically unique if the dimension
of static factors r = rkγχ(0) is smaller than or equal to the so-called Lederman bound, i.e.

r ≤ 2n+ 1

2
−
√

(2n+ 1)2

4
− n2 + n (19)

This inequality results from the comparison of the number of parameters on both sides of
Equation (18). The number of parameters on the left side is 1

2n(n + 1). The number of free
parameters of the right side of this equation is nr + n. In order to guarantee identifiability
the condition that L′L or L′γξ(0)−1L is a diagonal matrix is imposed (see [39]). This implies
1
2r(r−1) restrictions. By building the difference between the known parameters and the unknown
parameters 1

2n(n+ 1)−nr−n+ 1
2r(r−1) ≥ 0 and solving for r gives the inequality from above.

If strict inequality in Equation (19) holds, then one could say that the factor model gives
a simpler interpretation of the data in the sense that the number of parameters needed to
describe the second moments is smaller than the free parameters of the covariance matrix of the
observations.

Equation (19) is of importance for my simulation study, as the number of static factors and
the dimension of the cross-section are not independent from each other. For example, generating
data with 5 variables which are driven by 3 static factors is not feasible.

The dynamic case where fξ is diagonal, has been studied by [46] and they showed that for
a given spectral density of the observations fx, the spectral density matrices fχ and fξ are
generically unique for q ≤ n−

√
n, where q = rkfχ, and satisfy

13See [14]
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fx(θ) = w(e−iθ)fu(θ)w(e−iθ)∗ + fξ(θ), θ ∈ Θ.

The case of an approximate factor structure. It can be easily seen that in case the number
of free parameters of γx(0) is equal to the number of free parameters of γξ(0), no identifiability
is possible for finite cross-section dimension n. Therefore in the approximate setting one looks
at sequences of factor models

xnt = Lnzt + ξnt , n ∈ N (20)

and at sequences of their moment (covariances in the static- and quasi-static case and spectral
densities in the dynamic case) relations.

In the case of a (quasi-) static approximate factor model, the problem of uniquely determining
γnχ(0) and γnξ (0) from γnx (0) can be solved for n→∞ ([11], [12]). Key conditions for asymptotic
identifiability are

1. The first r eigenvalues of γnx (0) diverge to ∞ as n→∞

2. The r + 1, . . . , n-th eigenvalue of γnx (0) is uniformly bounded for all n ∈ N

For generalized dynamic factor models a similar characterization has been given by [27]. The
necessary and sufficient key conditions in order to represent the double sequence (xit, i ∈ N, t ∈
Z) by a sequence of generalized factor models 20 are that

1. the first q eigenvalues of the spectral density matrix fnx (θ) diverge almost everywhere in
Θ as n→∞

2. the (q + 1)-th eigenvalue of fnx (θ) is uniformly bounded for almost all θ ∈ Θ and for all
n ∈ N.

They also showed that Assumptions (gdfm b) and (gdfm c) imply asymptotic identifiability.

Remark 3.6 . In fact for finite n and T we are working with an unidentified model. �

3.3 Static factors

Consider the generalized dynamic factor sequence of Definition 3.4, which can also be written
as (xnt , t ∈ Z)n∈N. Static factors will be defined for a fixed n ∈ N.

Definition 3.7 (Static factors): Let (χnt )t∈Z be an n-dimensional stationary process fulfilling
Assumptions A. The r dimensional vector process (zt) is called static factor process of dimension
r, if χt = Lnzt with Ln ∈ Rn×r for all t ∈ Z.

A minimal static factor process is a static factor process with minimal dimension r ∈ N such
that χnt = Lnzt.

Lemma 3.10 in Section 3.4 gives a structural interpretation of static factors. Static factors
can also be motivated from a Hilbert-space geometric point of view [11], [12], which is related



3 THE GENERALIZED DYNAMIC FACTOR MODEL 23

to Section 3.1. Consider the sequence xt for a fixed t ∈ Z. Now average across the xit by
talking the weights α ∈ `2(N), i.e. α = (αi)i∈N and

∑∞
j=1 |αi|2 < ∞, and define the so-called

static aggregation set14 A∗ := {y ∈ L2(P), ∃yn =
∑n

j=1 αixit, yn
L2→ y}. The components of

zt = (z1t, . . . , zrt) are a basis of A∗. This averaging is often called de-noising and also exists in
the finite sample case (see Section 4.1). Sloppily said, the static factors are the essence that is
left after de-noising the data.

Remark 3.8 .

1. The terminology minimal static factor [14] comes from structural analysis, where the state
of a state space realization of the latent process χnt is also a static factor. Static factors in
this thesis are always meant to be minimal static factors.

2. Note that in Definition 3.7 the number of static factors may vary for different n. Assump-
tion B3. will fix this by assuming that the minimal static factor dimension will be constant
for all but finite n. This assumption also implies that the space of static factors is of finite
dimension. Without this assumption, there doesn’t have to exist a finite amount of static
factors.

�

3.4 Structural analysis

Having introduced the generalized dynamic factor model and explained what static factors and
dynamic factors are, this section discusses the modeling of the latent process χnt . This results in
a restricted version of the model introduced in Definition 3.4 that will be used in the simulation
study. The following assumptions are closely related to those of [25] and are therefore labeled
as the assumptions of a structural factor model (see [25], p. 1323).

Assumption B (Structural factor model):

B1. For every n ≥ n0, the latent process χnt has a rational spectral density with rank q almost
everywhere on Θ. The rank q does not depend on the cross-sectional dimension n.

B2. The rational spectral factor w(z) can be written as w(z) = Ank(z), where An ∈ Rn×r and
k(z) is a r × q polynomial matrix which does not depend on n.

B3. Let λnj (Σn
χ) be the j-th largest eigenvalue of the covariance matrix of the latent process

χnt . Then

lim inf
n→∞

1

n
λnr (Σn

χ) > 0

B4. The models xnt = χnt + ξnt are nested in n, meaning that χit, ξit do not depend on bigger
n for i ≤ n.

14In [27] an aggregation set for the dynamic factors is defined. Related to that definition I call A∗ the static
aggregation set, which is also defined in [11] by P1.
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Remark 3.9 (Remarks on Assumption B).

- Following Remark C.1, Assumption B1. implies that the latent process has a Wold repre-
sentation χnt =

∑∞
j=0wjut−j , where ut ∼WN(0, Iq).

- Assumption B4. implies that the sequence of rational transfer functions (wn(z))n∈N is
nested.

- Assumption B2. can be replaced by the following Assumption

B2.? The dimension, m say, of a minimal state space realization of a stable and mini-phase
spectral factor of fnχ (·) is independent of n, for n ≥ n0.

For a every n ∈ N, we choose the following state space realization for wn(z)

χt = Hnst (21a)
st+1 = Fnst +Gnut+1 (21b)

with wn(z) = Hn(I − Fnz)−1Gn. Even more can be said about (Hn, Fn, Gn)n∈N.

Theorem 3.10 ([21], page 33 ): Let (wn(z))n∈N be a nested sequence of rational transfer
functions of dimensions n × q. Every wn(z) has rank q and zeros only outside the unit
circle. Let n ≥ n0 such that B2.? holds. Then there exist minimal stable state space
realizations (21) of wn(z) = Hn(I − Fnz)−1Gn such that F and G are independent of n
and the sequence (Hn)n∈N is nested.

The dimensions of the dynamic and static factors as well as the minimal state are related
by q ≤ r ≤ m. The number of static factors is determined by Lemma 3.11.

Lemma 3.11 [see[14], page 215] Let χt be a stationary vector process of dimension n.
Then the dimension of a minimal static factor is the rank, call it r, of the zero-lag variance
matrix γχ(0) = Eχtχ′t.

Proof. Due to Equations (21), there exists a ρ-dimensional zt, such that χt = Lzt, L ∈
Rn×ρ, q ≤ ρ ≤ m. The equation γχ(0) = Lγz(0)L′ implies ρ ≥ r. In order to show ρ = r,
consider the factorization

γχ(0) = (U1, U2)

(
Λ1 0
0 Λ2

)
(U1, U2)′, U ′i = U−1

i , i = 1, 2

where Λ1 ∈ Rr×r and Λ2 = 0. The matrix M := U1Λ
1/2
1 has rank r and Σχ = MM ′. The

equation

zt = (M ′M)−1M ′χt

defines a r dimensional static factor with covariance matrix I. This definition is not unique.
It is trivial to verify, by considering E(χt −Mzt)(χt −Mzt)

′, that χt = Mzt. �
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Note that the dimension r is also independent of n for n ≥ n0, because (Hn)n∈N is nested.

Now

zt = (M ′M)−1M ′w(z)ut = k(z)ut (22a)
χt = Mk(z)ut = w(z)ut (22b)

where M ∈ Rn×r clearly depends on n. Thus Assumption B2. follows from Assump-
tion B2.?.

- Assumption B3. implies that the number of static factors is unique and that rkAn = r for
n ≥ n0.

�

Assumption B2. let’s us define the static factors by zt := k(z)ut, where k(z) =
∑∞

j=0 kjz
j , kj ∈

Rr×q. Both w(z) and k(z) are tall matrices, because their number of rows is larger than their
number of columns. Each polynomial matrix can be represented by its Smith-McMillan Form
w(z) = u(z)d(z)v(z) (see [32]).

Definition 3.12 (Zeroless transfer function, [14], p. 216 ): An n × q transfer function w(z) is
called zeroless if the numerator polynomials of the diagonal matrix in its Smith-McMillan form
are all equal to one.

We already know that (wn(z))n∈N can be parameterized by (Hn, F,G)n∈N, where (Hn)n∈N
is nested. Clearly vec(Hn, F,G) ∈ Rnm+m2+mq. The following Theorem 3.13 states that for
values of (Hn, F,G) which form an open and dense subset of Rnm+m2+mq the transfer function
w(z) is zeroless.

Theorem 3.13 ([14], page 216 ): Consider an n × q rational transfer function wn(z) with a
minimal state space realization (Hn, F,G) with state dimension m. If n > q holds, then for
given m, the transfer function wn(z) is zeroless for generic values of (Hn, F,G).

The property of being zeroless is important as the following Theorem 3.14 shows.

Theorem 3.14 ([14], page 216 ): Let the latent process χt satisfy Assumptions B1, B2?, B4 and
let zt be an associated minimal static factor of dimension r. Then the following statements for
the process zt are equivalent:

1. The spectral factors k(z) of the spectral density fz are zeroless

2. There exists a polynomial left inverse k− corresponding to the Smith-McMillan form of
k(z) and thus the unobserved input process ut is determined from a finite number of
outputs z1, . . . , z` for some ` ∈ N

3. The process zt is a stationary solution of a stable AR system

zt = −e1zt−1 − · · · − epzt−p + νt, ej ∈ Rr×r (23)

where e(z) = Ir + e1z + · · ·+ epz
p and det(e(z)) 6= 0, |z| ≤ 1 and νt is a zero mean white

noise process with rkΣν = q.
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The following definition shall briefly summarize the arguments from above and introduce the
model which will be used for the simulation study.

Definition 3.15 (Structural factor model):
For any t ∈ Z and n ∈ N :

xt
(n×1)

= χt
(n×1)

+ ξt
(n×1)

= L

(n×r)

zt
(r×1)

+ ξt
(n×1)

(24a)

e(z)

(r×r)

zt = b

(r×q)

ut, (24b)

where ut ∼ WN(0, Iq) and det e(z) 6= 0, ∀|z| ≤ 1. For convenience we assume e(z) =
Ir + e1z + . . .+ epz

p. Further

1. The processes xt, zt and ξt fulfill Assumption A

2. ξt is weakly dependent

3. χt is strongly dependent

4. Eξtχ′s = 0 for all s, t ∈ Z

5. The largest r eigenvalues of Σn
χ diverge to ∞ as n→∞ (see B3.)

6. The observation matrix L depends on the cross-section dim. n and will be nested.

3.5 Economic interpretation of dynamic factors

Although static factors do not have a direct economic interpretation and for forecasting purposes,
little is to be gained from a clear distinction between the static factors and the dynamic factors
([6], p. 54), the dynamic factors indeed do have a structural economic interpretation.

Structural analysis for multivariate time-series, like structural vector autoregressive models
(SVAR), tries to answer the following macroeconomic research questions

What and how many are the shocks that drive economic fluctuations? What is the
relative importance of supply and demand disturbances? What are the effects of
macroeconomic policies? ([24])

The dynamic factors are the primitive or common shocks of the economy. The dimension
q is the number of such shocks that drive the latent process. The identification of such shocks
(supply shocks, demand shocks, fiscal or monetary policy shocks) and their impact on macro
variables like GDP output or unemployment is topic of ongoing research ([24], [23]).

The interpretation of ut as innovations for the latent process χnt is equivalent to the fact that
χt = w(z)ut is one wold-representation of the latent process χt. Assumptions B imply that w(z)
and w−(z) are rational and causal transfer functions, therefore Hχ = Hu. Further ||wj || → 0
geometrically as the power series expansion of w(z) is continuous and converges for all |z| < r
with r > 1.
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4 Estimation of static factors

Section 3.2 already discussed the asymptotic identification of the latent and idiosyncratic com-
ponent in a generalized dynamic factor model as well as the non-uniqueness of the static factors.
The following estimation procedures are developed under models that are restricted versions of
the structural generalized dynamic factor model (see Definition 3.15). For these models, the
latent and common component can be identified in the finite sample case. A consequence of
the imposed restrictions is that all three estimators are misspecified in the generalized context.
Nevertheless they consistently estimate the space of the static factors.

4.1 Cross-section averaging

Starting with equation (24a), the idea is to find a weighting matrix W ∈ Rn×r with W ′W = nIr
such that

n−1W ′xnt
p→ Ozt, O ∈ Rr×r, det(O) 6= 0. (25)

To see how this can be achieved decompose the weighted cross-section

n−1W ′xt = n−1W ′Lzt︸ ︷︷ ︸
(a)

+n−1W ′ξt︸ ︷︷ ︸
(b)

Assumption (gdfm b) implies that the eigenvalues of Σξt are bounded for all n ∈ N (see
Lemma C.6) and by using Theorem C.3, summand (b) converges component-wise in mean square
to 0. It follows that (b) vanishes in probability. Part (a) converges to Ozt if the condition

n−1W ′L
p→ O (26)

holds.
Note that the weighting n-tuple n−1Wj fulfills

(
n−1Wj

)′ (
n−1Wj

)
= n−2

∑n
i=1w

2
ij = 1

n
which converges to 0 as the cross-section dimension goes to ∞. Therefore for every j = 1, . . . , r,
the sequence (n−1Wj) is a static averaging sequence.

4.1.1 Method of asymptotic principal components

The method of principal components weights by W := P̂ = (p̂1, . . . , p̂r) ∈ Rn×r, where p̂j is
the eigenvector corresponding to the j-th largest eigenvalue of the sample covariance matrix
S = (1/T )X ′X.

The estimator is derived by solving the following non-parametric15 optimization problem

min
z1,...,zT ,L

V (Z,L) =
1

nT

T∑
t=1

(xit − L(i)zt)
′(xit − L(i)zt) (27)

= (nT )−1 tr
[
(X − ZL′)(X − ZL′)′

]
(28)

15Non-parametric in the sense that the likelihood of X = (x1, . . . , xT ) can not be described by a finite number
of parameters.
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subject to L′L/n = Ir (29a)
or subject to Z ′Z/T = Ir (29b)

where Z ∈ RT×r is the static factor panel, that is Z = (z1, . . . , zT )′ ∈ RT×r and X =
(x1, . . . , xT )′ ∈ RT×n is the observation panel.

Note that the solution is not unique (as noted in [5]). One solution can be obtained by
minimizing over Z given L, which gives (after building the derivative with respect to Z16 and
setting it equal to zero) together with the side condition in (29a) the matrix Z̃ = XL/n. Then

V (Z̃, L) = (nT )−1tr(XX ′)− (n2T )−1tr(L′X ′XL)

and this is equivalent to maximizing tr(L′X ′XL) subject to L′L/n = Ir. Following Re-
mark 2.7 the solution is given by L̂ =

√
nP̂ .

Principal component estimator: For a given T×n panel X = (x1, . . . , xT ), where xt = χt+ξt,
the common component χt is estimated by setting

ẑt = n−1/2P̂ ′xt and L̂ =
√
n P̂ , t = 1, . . . , T (30)

where P̂ are the eigenvectors corresponding to the r largest eigenvalues of the matrix X ′X ∈
Rn×n.

Remark 4.1 .

- Equation (29a) is just a normalization condition. We could also use (29b) and minimize
over L given Z. The optimization problem is then identical to maximizing tr(Z ′(XX ′)Z).
This is solved by setting Ẑ =

√
T V̂ , where V̂ are the eigenvectors corresponding to the r

largest eigenvalues of the matrix XX ′ ∈ RT×T (see [5]).

This solution would be preferable, if T > n.

�

4.1.2 Asymptotic behavior of the PC-estimator

The most important asymptotic characteristics of an estimator are its consistency and its asymp-
totic distribution. The former has been studied in [49] and [5] as well as in [18]. The latter
has been discussed in [4]. I follow the assumptions of Stock and Watson [49]. Suppose the
n-dimensional process xt has the representation xt = Lzt + ξt, where L ∈ Rn×r depends on n.

Assumption C (Assumptions of Stock and Watson):

C1. (L′L/n)→ Ir for n→∞

C2. Eztz′t = diag(σ1, . . . , σr) with σ1 > σ2 > · · · > σr > 0.

16The definition of the derivative ∂V
∂Z

=
(
∂V
∂Zij

)
i=1,...,T,j=1,...,r

can be found in [40], page 664.



4 ESTIMATION OF STATIC FACTORS 29

C3. |Lij | < h for all i, j ∈ N

C4. 1
T

∑T
t=1 ztz

′
t
p→ Eztz′t

C5. limn→∞ supt∈Z
∑∞

s=−∞ |E(ξ′tξt+s/n)| <∞

C6. limn→∞ supt∈Z
∑n

i=1

∑n
j=1 |(γnξ (0))ij/n| <∞

C7. limn→∞ sups,t∈Z
1
n

∑n
i=1

∑n
j=1 |cov(ξisξit, ξjsξjt)| <∞

Discussion of Assumptions 4.2. The Assumptions of Stock and Watson are closely related
to the Assumptions made in Defintion 3.15 and to the Assumptions E of Doz, Giannone and
Reichlin.

- Lemma C.5 implies that λk(L′L/n) → 1, k = 1, . . . , r as n → ∞, i.e. λk(L′L) = O(n).
Because the first r eigenvalues of LL′ are equal to the eigenvalues of L′L, Assumption C1.
implies that the first r eigenvalues of γnχ(0) and therefore of γnx (0) diverge to ∞.

A maybe more intuitive way to interpret this assumption is to say that each factor con-
tributes to the average variance of xit for every n and T . Let L(i) be the i-th row of
L ∈ Rn×r. Then for all t ∈ Z

1

n

n∑
i=1

Vxit ≥
1

n

n∑
i=1

E(z′tL
′
(i)L(i)zt) = E

(
n∑
i=1

(
z′t(L

′
(i)L(i)/n)zt

))

=E
(
z′t(L

′L/n)zt
)
→

r∑
j=1

Vzjt

- Assumptions C1. and C2. also imply that the static factors are identified up to a sign
change. Let χt = Lzt = LRR−1zt where R ∈ Rr×r is a non-singular matrix. The
factorizations (L, zt) and (L̃, z̃t) = (LR,R−1zt) are observationally equivalent and fulfill
both Assumptions C. The first assumption implies that

L̃′L̃/n→ Ir, L̃′L̃/n = R′(L′L/n)R→ R′R

and this implies that R is (asymptotically) an orthogonal matrix. If some z̃t fulfills the
second assumption with z̃t = Rzt, then diag(σ1, . . . , σr) = RE(ztz

′
t)R
′. It follows that

R−1diag(σ1, . . . , σr)R = E(ztz
′
t) and therefore E(ztz

′
t) must converge to a diagonal matrix.

This asymptotic identification up to a sign change is no restriction, as the static factors in
an approximate factor model are only asymptotically identified.

- Assumptions C3. and C4. are of technical nature. The former is related to Assumption E1.

- Assumption C5. allows for idiosyncratic serial correlations, whereas C6. allows for cross-
correlation between the idiosyncratic variates. Both assumptions are very central to the
generalized dynamic factor model class. The last Assumption C7. is again technical. Note
that all three Assumptions do not demand a stationary process (ξnt ). This generality is
needed to deal with time-varying factor loading matrices, in particular factor loadings with
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a stochastic drift. This will become important in the Empirical Section 6 as macroeconomic
multivariate time series seem to suffer from structural breaks.

Assumptions C5., C6., C7. are related to the assumption of bounded idiosyncratic covari-
ances, i.e. ∃M such that ||γnξ (0)|| ≤M <∞ for all n ∈ N.
Note that Assumption C6. implies

n∑
i=1

n∑
j=1

|(γnξ (0))ij/n| = 1′|(Σn
ξ )|1/n = 1′/

√
n|γnξ (0)|1/

√
n <∞

where 1 = (1, . . . , 1)′ ∈ Rn. Again using inequalities from Theorem C.2, this does not
imply that the eigenvalues of γnξ (0) are bounded for all n ∈ N. In the paper of Stock
and Watson the boundedness of the eigenvalues of the estimates idiosyncratic covariance
matrix γ̂nξ (0) is deducted from Assumption C6. by using Assumptions C5. and C7.:

Lemma 4.3 (see [49], Appendix ) Define the set M = {a ∈ Rn : a′a/n = 1}. Then

sup
a∈M

n−2 a′γ̂nξ (0)a
p→ 0, n, T →∞

�

The consistency proof is based on the idea that the largest eigenvalue of T−1X ′X converges
in probability to the largest eigenvalue of the unobservable sample covariance matrix of the
latent component T−1LZ ′ZL′. This is the statement of the next Lemma:

Lemma 4.4 Define R(a) := (n2T )−1a′
∑T

t=1 xtx
′
ta and R∗(a) := (n2T )−1a′

∑T
t=1 Lztz

′
tL
′a. Then

| sup
a∈M

R(a)− sup
a∈M

R∗(a)| p→ 0, n, T →∞

where M = {a ∈ Rn : a′a/n = 1} as in Lemma 4.3.

The following Lemma follows from Lemmata 4.3 and 4.4 and refers to Equation (26).

Lemma 4.5 (see [49], Appendix ) Let L̂ ∈ Rn×r the matrix of eigenvectors corresponding to
the r largest eigenvalues of T−1X ′X scaled such that L̂′L̂/n = Ir. Define S = diag(sgn(L̂′L̂)).
Then

SL̂′L/n
p→ Ir

Theorem 4.6 (Consistency of principal component estimator): Let Si denote a variable with
value of ±1, let n, T →∞ and suppose that Assumptions C hold. Then

Siẑjt − zjt
p→ 0, j = 1, . . . , r (31)
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where ẑt = n−1/2P̂ xt has been defined in Equation (30).

Proof. See [49]. �

Remark 4.7 . Again note that the zjt are just one basis of the latent space H(χit, i ∈ N). The
statement of the last theorem is that the principal component estimator is a consistent estimator
of the linear space of static factors. �

4.2 Identification of a singular AR system

In Section 3.4 assumptions where given such that the static factors follow a singular AR process

zt = −e1zt−1 − · · · − epzt−p + νt. (32)

The Yule-Walker equations are a standard method to identify vector auto-regessive systems,

(−e1, . . . ,−ep)Γ′p = (γ1, . . . , γp) (33a)

Σν = γ0 + (e1, . . . , ep)(γ1, . . . , γp)
′ (33b)

In the case q < r the matrix Γp+1 will be singular and the Block-Toeplitz matrix Γp ∈ Rrp×rp
may be singular. It therefore may be the case that no unique solution of the Yule-Walker
equations exists

Lemma 4.8 Let zt be our r dimensional static factor process that fulfills Assumption A. Suppose
e(z)zt = but, where det e(z) 6= 0, ∀|z| ≤ 1 and ut is q dimensional white noise. The polynomial
order of e(z) is p. Then (i) if q = r and rk(b) = r the auto-covariance matrix ΓZ,r > 0 for all
r ∈ N. If (ii) q < r and rk(b) = q, then det ΓZ,p+1 = 0.

Proof. Statement (i) is standard in the theory of stationary processes and will therefore not be
proven here. For statement (ii) choose a b⊥ ∈ Rr×(r−q) such that b′⊥b = 0. Then the matrix
b⊥(Ir, e1, e2, . . . , ep) is in the left kernel of ΓZ,p+1, because

(Ir, e1, e2, . . . , ep) E

 ztz
′
t

...
zt−pz

′
t

 = Eb(utz′t) = bb′

(Ir, e1, e2, . . . , ep) E

 ztz
′
t−k
...

zt−pz
′
t−k

 = Eb(utz′t−k) = 0.

It follows that b′⊥(Ir, e1, e2, . . . , ep)ΓZ,p+1 = 0.
�

We skip the discussion of finding a solution at the population level and refer to [14] or [21].
One solution of the (singular) Yule-Walker equations is the so-called minimum norm solution
which corresponds to taking the Moore-Penrose pseudo-inverse of Γp in order to determine e(z).
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If the static factors zt were known, the matrix Γp would be estimated by the sample covari-
ances

γ̂j =
1

T

T−j∑
t=1

zt+jz
′
t =

1

T

T∑
s=1+j

zsz
′
s−j

γ̂−j = (γ̂j)
′ =

1

T

T−j∑
t=1

ztz
′
t+j

The blocks of the sample covariance matrix Γ̂p are {Γ̂p}i,j = γ̂i−j , i, j = 1, . . . , p. Define

Gp :=


z1 z2 . . . zp zp+1 . . . zT 0 . . . 0

0 z1
. . . zT

. . .
...

...
. . . . . . . . . . . . 0

0 . . . 0 z1 z2 . . . zT−p+1 zT−p+2 . . . zT

 ∈ Rpr×T+p−1

Then Γ̂′p = 1
T Gp Gp′. The i-th row of the matrix Gp is

Gp[i, ] = ( 0, . . . , 0,︸ ︷︷ ︸
i−1 elements

z1, z2, . . . , zT , 0, . . . , 0︸ ︷︷ ︸
p−i elements

), i = 1, . . . , p

The determination of the rank of Γp = E(z′t, . . . , z
′
t−p)

′(z′t, . . . , z
′
t−p) is not trivial. It can be

done by looking at

Γ̃′p =
1

T
Hp · Hp′, Hp =


zp zp+1 . . . zT

zp−1 zT−1

...
...

z1 z2 . . . zT−p+1

 ∈ Rpr×T−p+1

The matrix Hp is simly a column-truncated version of Gp. The j-th column of Hp is the
j + p− 1-th column of Gp.

Note that Γp and Γ̃p have the same kernel a.e., as det Γp = 0 implies the existence of a ∈ Rrp
with Γpa = 0. This implies that (z′p, . . . , z

′
1)a = 0 a.e. and therefore Hp′a = 0.

Estimation of rkΓp can be done heuristically by looking at the singular values of Hp and
determining s = rkΓp by imposing a certain threshold on the minimal value of those eigenvalues.

Note that γ̂j , Gp, Hp are unknown, because the static factors zt are unobserved. Therefore zt
have to be replaced by their estimates ẑt which are determined by principal component analysis
or the Kalman smoothing algorithm (see next Sections).

Suppose we had successfully estimated the unknown integer rkΓp = s ≤ pr.We write

Γ̂ = (Op1, O
p
2)

(
Λp1 0
0 Λp2

)(
Op1
′

Op2
′

)
(34)
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where Λpi , i = 1, 2 are diagonal matrices containing the first s and last pr − s eigenvalues of
Γ̂p. Note that although rkΓp = s ≤ pr, the last pr − s eigenvalues are in general not zero. Also
looking at the eigenvalues of Γ̂p is not recommended, because the kernel of Γ̂p is different from
the kernel of Γp.

Theorem 4.9 ([21], page 68 ): Let the process zt be generated according to (32). If rkΓp = s < pr
and if all nonzero eigenvalues of Γp are distinct, then

−(ê1, . . . , êp) = (ˆ̂γ1, . . . , ˆ̂γp)O
p
1(Λp1)−1Op1

′
, (35)

where ˆ̂γj = 1
T

∑T−j
t=1 ẑt+j ẑ

′
t, is a consistent estimator of the minimum norm solution of the

Yule-Walker equations. We call the estimator in (35) the Yule-Walker estimator of the minimum
norm solution .

In the standard case where rkΣν = r and the static factors zt were known, the Yule-Walker
estimator always yields a stable autoregression. The next Theorem 4.10 deals with the case
where s ≤ pr and where the factors have to be estimated.

Theorem 4.10 ([14], page 220 ):

1. If rkΓp = pr holds, then the Yule-Walker estimator corresponding to (33), i.e. when the
γj are replaced by ˆ̂γj yields a stable autoregression

2. For rkΓp = s < pr, the solution (35) corresponds to a stable autoregression

4.3 Two step approach by Doz, Giannone, Reichlin

In the paper of Doz, Giannone and Reichlin (DGR) [18] the estimators of the factors zt minimize
the least-squares distance between zjt and a suitable linear combination of xit, i = 1, . . . , n, t =
1, . . . , T , for all j = 1, . . . , r.

Assume that the process (xnt )t∈Z fulfills Assumption A and has a static factor representation

xt
(n×1)

= L

(n×r)

zt
(r×1)

+ ξt
(n×1)

(36a)

zt = −e1zt−1 − e2zt−2 − . . .− epzt−p + νt (36b)

and assume that the assumptions of Definition 3.15 are fulfilled.

The two-stage estimator: At the population level, the estimator is the component-wise
orthogonal projection of zt on the linear sub-space Hx := Hx(T ). Let zt be our r dimen-
sional static factor process, with zit ∈ L2(P). Theorem 2.1 tells us that each zt can be
uniquely decomposed into zt = zt|T + (zt − zt|T ), where zt|T = P(zt|XnT

1 ), zj,t|T ∈ Hx and
(zjt − zj,t|T ) ∈ H⊥x , j = 1, . . . , r. For given matrices H,F,G, the Kalman smoother calculates
zt|T =

∑T
j=1 ajtxj , ajt ∈ Rr×n, j = 1, . . . , n, t = 1, . . . , T . As P is an orthogonal projection,
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Eztx′s = Ezt|Tx′s =
∑T

j=1 ajtExjx′s for s = 1, . . . , T . For X = vec(x1, . . . , xT ) ∈ RnT×1 the last
equations can be combined to

EztX′ = (a1t, . . . , aTt) ΓX (37)

where ΓX = E(XX′). Equation (37) has a unique solution as ΓX is the sum of a positive
semi-definite and a positive definite matrix (due to Assumption E8.) and has therefore full rank.
The least squares estimation can therefore be written as

zt|T := P(zt|XnT
1 ) = S′t

(r×rT )

ΓZ
(rT×rT )

(IT ⊗ L′)
(rT×nT )

Γ−1
X

(nT×nT )

X
(nT×1)

(38)

where S′t = (0, 0, . . . , 0, Ir, 0, . . . , 0) is a selection matrix having the identity matrix at the
t-th block, ΓZ = E(ZZ′), and X = vec(XnT

1 ), XnT
1 = (x1, . . . , xT ) ∈ Rn×T . Model (36) can also

be written as X = (IT ⊗L)Z+ ξ, where Z = vec(z1, z2, . . . , zT ) and ξ = vec(ξ1, ξ2, . . . , ξT ). Then

ΓX = (IT ⊗ L)ΓZ(IT ⊗ L)′ + IT ⊗ γξ(0) (39)

where ΓZ = (EZZ′) is the r(T + 1)× r(T + 1) auto-covariance matrix of the process zt.

Remark 4.11 . Depending on which assumptions are made about the static factor process, Equa-
tion (39) can be further simplified. Suppose that zt and ξt are white noise processes with
covariance matrices Ir and In respectively. Then the observations xt are uncorrelated and

zt|T = (Eztx′t)(Extx′t)−1xt = L′(LL′ + In)−1xt,

as EztX′ = (0, . . . , 0,E(ztx
′
t), 0, . . . , 0).

Using Lemma C.7 with A = C = Ir, U = L, V = L′ this expression becomes

L′(Ir − L(L′L+ Ir)
−1L′)xt = (L′L+ Ir − L′L)(L′L+ Ir)

−1L′xt = (L′L+ Ir)
−1L′xt.

An estimator for zt|T in this case is ẑt|T = (L̂′L̂ + Ir)
−1L̂′xt, where the columns of L̂ are

the eigenvectors corresponding to the largest r eigenvalues of X ′X. As the eigenvectors are
orthonormal, this estimator is proportional to the consistent PC-estimator of Section 4.1.1. �

In order to derive an estimator for zt|T one further assumes

Assumption D .

D1. The idiosyncratic process is white-noise with diagonal covariance matrix γnξ (0). The re-
stricted covariance matrix will be denoted by γξ,R(0)n in the following17.

17The superscript n for the cross-section dimension will be abandoned if the cross-section is fixed.
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and rewrites model (36) in state-space form. For t ∈ Z

xt = (L, 0, . . . , 0)︸ ︷︷ ︸
H

st︷ ︸︸ ︷
zt
zt−1
...

zt−p+1

+ξt = Hst + ξt (40a)

st+1 =


−e1 −e2 · · · −ep
Ir 0 0 0

0 · · · . . .
...

0 · · · Ir 0


︸ ︷︷ ︸

F

st + (b′, 0, . . . , 0)′ut+1 = Fst +Gut+1 (40b)

where st ∈ Rrp×1 (random), H ∈ Rn×rp, F ∈ Rrp×rp and G ∈ Rrp×q.
Equation (47b) is the companion form of Equation (46b) and the state is equal to the stacked

factors.

Two-stage estimation of static factors 4.12. The matrices H,F,G, γξ(0) are unknown and
observations are available for t = 1, . . . , T . Assuming, that we already know r, q, p ∈ N, the
static factors are estimated in two-stages

1. Estimate by parameters of the state space model.

- L̂ ∈ Rn×r is equal to the eigenvectors corresponding to the largest r eigenvalues of
X ′X, where X = (x1, . . . , xT ) ∈ Rn×T

- γ̂ξ(0) = diag(Ψ11, . . . ,Ψnn), with Ψ = 1
TX

′X − L̂L̂′.
- The parameters e1, . . . , ep are estimated by solving (singular) Yule-Walker equations
(see Section 4.2).

- b̂ ∈ Rn×q is equal to the first q eigenvectors of the spectral decomposition of Σ̂ν (see
Equations (33)).

2. Treat the parameters as known and estimate st|T through the Kalman Filter apparatus.

- The best approximation of s1 given no further information, i.e. s1|0 (see Section 2.3 for
notation), is set to the principal component estimates, that is ŝ1|0 := (ẑPCp̂ , . . . , ẑPC1 ),
where p is the order of polynomial e(z).
The variance of s1 is determined by the Lyapunov18 Equation. As the static factors
are assumed to be stationary, the state process is also stationary. Therefore by
considering equations (40)

Γp := Est+1s
′
t+1 = E

F


zt−1

zt−2
...

zt−p+1

+


νt
0
...
0


 (

(z′t−1, z
′
t−2, . . . , z

′
t−p)F

′ + (ν ′t, 0, . . . , 0)
)

= FΓpF
′ +GG′

18Aleksandr Mikhailovich Lyapunov, *June 6 1857, †November 3 1918.
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Applying the vec operator (see Definition C.9) yields

vec(Γp) = (F ⊗ F ) vec(Γp) + vec(GG′)
(Ir2p − F ⊗ F )vec(Γp) = vec(GG′)

vec(Γp)
(r2p×1)

= (Ir2p − F ⊗ F )−1

(r2p×r2p)

vec(GG′)
(r2p×1)

(41)

The initial covariance matrix Vs1 is based on (Ir2p − F̂ ⊗ F̂ )−1ĜĜ′.
- Make use of the recursive equations in Section 2.3 in order to calculate ŝt|T for t =

1, . . . , T .

Two-stage estimator for static factors: The estimator of zt is then equal to the first r
components of the estimated smoothed states, i.e. ẑt|T := (ŝ1,t|T , . . . , ŝr,t|T ), for t =
1, . . . , T .

�

Consistency of the two-stage estimator. The linear orthogonal projection of the compo-
nents of the static factor on the Hilbert space spanned by the components of the observations
is consistent for large cross-section and time dimension.

However this statement is only proved for r = q, whereas the case r > q has not been
addressed yet. The reason why this case needs to be addressed separately is given in Facts 4.15.

Assumption E (Assumptions of Doz, Giannone and Reichlin):

E1. Uniformly bounded variance, ∃M > 0 s.t. E(xitxit) ≤M for all i ∈ N.

E2. zt =
∑∞

j=0 cjεt−j , with
∑∞

j=0 ||cj || <∞ and (εt) is stationary of order 4.

E3. ξt =
∑∞

j=0 djζt−j , with
∑∞

j=0 ||dj || < ∞ and (ζt) is white noise with uniformly bounded
fourth moments, ∃M ∈ N s.t. Eζ4

it ≤M, ∀i ∈ N, t ∈ Z.

E4. Eztz′t = Ir (Normalization)

E5. lim supn→∞
∑∞

s=−∞ ||γξ(s)|| <∞ (Weak dependence)

E6. lim infn→∞
1
nλr(Σ

n
χ) > 0 (Persistence of static factors)

E7. lim supn→∞
1
nλ1(Σn

χ) <∞

E8. infn∈N λn(Σn
ξ ) > 0

E9. For every n ∈ N : λχ1 > λχ2 > . . . > λχr , λχk = λk(Σ
n
χ)

Assumption F (Further assumptions):

F1. The noise νt can be written as νt = but, where b ∈ Rr×q and ut is a q dimensional white
noise.
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Remark 4.13 (Discussion of Assumptions).

- Assumption E1. is a technical assumption and related to Assumption C3. of Stock and
Watson. It is needed in the proof of Theorem 4.16.

- Assumptions E2. and E3. define the processes χt and ξt a.e. and guarantee the existence of
their spectral densities. The conditions on the moments of εt and ζt are needed for proving
the consistency of the sample second moments and therefore of the AR coefficients.

- Although I assumed ξt to be weakly dependent, Assumption E5. is the original corre-
sponding assumption in [18]. It also implies weak dependence as

||Σn
ξ (θ)|| = ||(1/2π)

∞∑
s=−∞

γξ(s)e
iθs|| ≤ (1/2π)

∞∑
s=−∞

||γξ(s)|| <∞, ∀n ∈ N.

- The assumption Eztz′t = Ir implies that the static factors are identified up to orthogonal
rotation. To see this choose a non-singular quadratic matrix R and define z̃t := Rzt.
Then Ez̃tz̃′t = RR′ = Ir. In contrast to Stock and Watson [49], who assume L′L/n = Ir,
a specific basis of H(χit, i ∈ N) is chosen. Define A := L′L and look at its spectral
decomposition A = UDU ′, where U ′ = U−1. Define L∗ := LU and z∗t := U ′zt. It can
be easily seen, that this specific selection does not change model except for the case that
the loading matrices are not nested any more. In the following the static factors zt will be
that specific basis and are therefore identified up to a sign change.

- Assumptions E6. and E7. guarantee that r static factors have a non-negligible influence
on all the observations and that this influence is somehow ”stationary” for all observations.
Both state that the first r eigenvalues of the latent covariance matrix diverge of linear
order to infinity.

These assumptions also imply that the rank of the factor loading matrix Ln must be equal
to r for n ≥ n0 ∈ N as Σn

χ = Ln(Eztz′t)Ln′ and rkEztz′t = r.

- Assumption D1. is necessary to write the model in state-space form and use the Kalman
Filter in order to estimate the static factors. It is a restriction and implies that this
approximation model is a quasi-static strict factor model. It also means that only the
restricted covariance structure of ξt can be used for the estimation of zt.

- Assumption F1. is not made in the paper [18] and it challenges their proofs as the con-
sistency results of their estimator depend on the smallest eigenvalue of Eνtν ′t. In general
T > p and this implies that ΓZ is not invertible, if the static factor process is generated
by a singular AR system (see Facts 4.15).

�

The consistency of the projection of Equation (38) will be shown in two steps, first at the
population level, when the second moments and the parameter matrices of the system are known,
and then at the sample level, when only the observations XnT

1 are known. The full proofs are
given in [18], I will only sketch the main points.
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Theorem 4.14 . Consider model (36) where the dimension of the dynamic factors is equal to
the dimension of the static factors. Under Assumptions E, zt|T := P(zt|XnT

1 ) is a consistent
estimator for zt when n, T →∞, i.e.

zt|T
p→ zt, n, T →∞ (42)

In order to proof Theorem 4.14 the following facts will be used:

4.15. Facts

1. λmax(Γ−1
Z ) = O(1) as shown in [18], Lemma 1.

2. By using X = (I ⊗L)Z+ ξ, Γξ,R = IT ⊗Σξ,R and Lemma C.7 the inverse of ΓX (see (39))
is given by

Γ−1
X,R = IT ⊗ Σ−1

ξ,R − (IT ⊗ Σ−1
ξ,RL)(Γ−1

Z + IT ⊗ L′Σ−1
ξ,RL)−1(IT ⊗ L′Σ−1

ξ,R) (43)

3. For two matrices of suitable dimensions A,H and detA 6= 0 the following holds

(A+H)−1 = A−1 − (A+H)−1HA−1 (44)

The first two facts assume that ΓZ is non-singular. Lemma 4.8 shows that for q < r and
T > p this matrix can not be inverted. The proof for q < r must therefore rely on another
decomposition of Γ−1

X,R.
�

Proof (Theorem 4.14). Use Lemma C.10 and Equation (43) to write

zt|T = S′tΓZ(It ⊗ L′)Γ−1
X X

= S′tΓZ

[
IT ⊗ L′Σ−1

ξ,R − (IT ⊗ L′Σ−1
ξ,RL)(Γ−1

Z + IT ⊗ L′Σ−1
ξ,RL)−1(IT ⊗ L′Σ−1

ξ,R)
]
X

= S′t(Γ
−1
Z + IT ⊗ L′Σ−1

ξ,RL)−1(IT ⊗ L′Σ−1
ξ,R)X

Define M := L′Σ−1
ξ,RL. Use relation (44) to expand (Γ−1

Z + IT ⊗M)−1. This gives

zt|T = S′t(IT ⊗M−1L′Σ−1
ξ,R)X)︸ ︷︷ ︸

=:z
(1)
t|T

−S′t(Γ−1
Z + IT ⊗M)−1Γ−1

Z (IT ⊗M)−1(IT ⊗ L′Σ−1
ξ,R)X︸ ︷︷ ︸

=:z
(2)
t|T

The first summand is equal to zt plus something that vanishes asymptotically

s
(1)
t|T = S′t(IT ⊗M−1L′Σ−1

ξ,R)(Lzt + ξt) = zt +M−1L′Σ−1
ξ,Rξt
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If the second term converges in mean squares sense to zero, then it will also converge in
probability to zero. As λmax(Σ−1

ξ,R) = 1/λmin(Σξ,R), it follows that

||M−1L′Σ−1
ξ,Rξt||

2
2 = tr(M−1L′Σ−1

ξ,Rγξ(0)Σ−1
ξ,RLM

−1) ≤
λmax(γξ(0))

λmin(Σξ,R)
tr(M−1)→ 0

which is guaranteed by Assumption E6..
The second term will z(2)

t|T be split up again by using X = (IT ⊗ L)Z + ξ

z
(2.1)
t|T = S′t(Γ

−1
Z + IT ⊗M)−1Γ−1

Z Z

and

z
(2.2)
t|T = S′t(Γ

−1
Z + IT ⊗M)−1Γ−1

Z (IT ⊗M)−1(IT ⊗ L′Σ−1
ξ,R)ξ.

We look again at their L2 convergence to show that both terms vanish asymptotically

||z(2.1)
t|T ||

2
2 = tr(S′t(Γ

−1
Z + IT ⊗M)−1Γ−1

Z (Γ−1
Z + IT ⊗M)−1St)

≤λmax(Γ−1
Z )tr(M−2) = O

(
1

n2

)
The following inequalities use the sub-multiplicity of the spectral norm.

||z(2.2)
t|T ||

2
2 = tr(S′t(Γ

−1
Z + IT ⊗M)−1Γ−1

Z (IT ⊗M−1L′Σ−1
ξ,R)Γξ×

× (IT ⊗ Σ−1
ξ,RLM

−1)Γ−1
Z (Γ−1

Z + IT ⊗M)−1St)

≤||Γ−1
Z (IT ⊗M−1L′Σ−1

ξ,R)Γξ(IT ⊗ Σ−1
ξ,RLM

−1)Γ−1
Z || tr(S

′
t(Γ
−1
Z + IT ⊗M)−2St)

≤||Γ−2
Z || ||IT ⊗M

−1L′Σ−1
ξ,R|| ||Γξ|| ||IT ⊗ Σ−1

ξ,RLM
−1|| tr(S′t(Γ−1

Z + IT ⊗M)−2St)

Note that ||ΓZ ||2 = O(1), ||Γξ|| = O(1) and

tr(S′t(Γ
−1
Z + IT ⊗M)−2St) ≤ tr(S′t(IT ⊗M)−2St) = tr(M−2) = O

(
1

n2

)
,

||IT ⊗ Σ−1
ξ,RLM

−1|| = ||M−1L′Σ−1
ξ,R|| = O

(
1√
n

)
,

||IT ⊗M−1L′Σ−1
ξ,R|| = ||Σ

−1
ξ,RLM

−1|| = O

(
1√
n

)

Thus we have zt|T = zt +Op(1/
√
n) +Op(1/n) +Op(1/n

√
n).

�

The next Theorem shows that also the sample counterpart ẑt|T of zt|T is consistent. Again
a sketch of the proof will be given.
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Theorem 4.16 . Let ẑt be the principal components estimator of zt. Consider the assumptions of
Theorem 4.14 and assume further that lim sup T

n3 = O(1). Then

ẑt|T = P̂(zt|XnT
1 ) = S′t

(r×rT )

Γ̂Z
(rT×rT )

(It ⊗ L̂′)
(rT×nT )

Γ̂−1
X,T

(nT×nT )

X
(nT×1)

(45)

where L̂ is equal to the eigenvectors corresponding to the r largest eigenvalues of the sample
covariance matrix of XnT

1 , Γ̂X,T is the sample-counterpart of ΓX , and

Γ̂Z =


γ̂Z(0) γ̂Z(−1) · · · γ̂Z(−T + 1)

γ̂Z(1)
. . .

...
...

. . .
...

γ̂Z(T − 1) · · · · · · γ̂Z(0)


with

γ̂Z(h) =
1

T − h

T∑
t=h+1

ẑtẑ
′
t−h

is a consistent estimator of zt for n, T →∞.

The idea of the proof is the same as before at population level. The estimate ẑt|T will be
split up into three parts and for each convergence to its population counterpart will be shown.
The proof is a sketch, because it will use the following unproven facts.

4.17. Facts

1. The PC-estimates for L and Σξ,R are consistent. The former is equal to L̂ = (p̂1, . . . , p̂r),
where p̂j is the eigenvector of X ′X corresponding to the j-th largest eigenvalue. The
latter will be a diagonal matrix where the diagonal entries come from 1

T−1X
′X − L̂L̂′.

Proposition 2 in [18] gives the formal statements:

- For any i, j : L̂ij − Lij = Op(1/
√
n) +Op(1/

√
T )

- If Ψ̂ = 1
T−1X

′X − L̂L̂′, then for any (i, j) : ψ̂ij − (γξ(0))ij = Op(1/
√
n) +Op(1/

√
T )

2. The matrix Γ̂Z is a consistent estimate of ΓZ . This is proven in Proposition 4 in [18] and
it is not a standard argument, because the static factors zt have to be estimated.

- ||Γ̂Z − ΓZ || = Op(1/n) +Op(1/
√
T )

- ||Γ̂Z || = Op(1), ||Γ̂−1
Z || = Op(1)

- ||Γ̂−1
Z − Γ−1

Z || = Op(1/n) +Op(1/
√
T )

�

Proof (of Theorem 4.16). Let ẑ(1)
t|T , ẑ

(2.1)
t|T , ẑ

(2.2)
t|T be the sample counterparts of z(1)

t|T , z
(2.1)
t|T , z

(2.2)
t|T

(Theorem 4.14) defined by
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ẑ
(1)
t|T = M̂−1L̂′Σ̂−1

ξ,Rxt

ẑ
(2.1)
t|T = S′t(Γ̂

−1
Z + IT ⊗ M̂)−1Γ̂−1

Z (IT ⊗ M̂−1L̂′Σ̂−1
ξ,R)(IT ⊗ L)Z

ẑ
(2.2)
t|T = S′t(Γ̂

−1
Z + IT ⊗ M̂)−1Γ̂−1

Z (IT ⊗ M̂)−1(IT ⊗ L̂′Σ̂−1
ξ,R)ξ

where M̂ = L̂′Σ̂−1
ξ,RL̂.

Consider the L2 norm19 of ẑ(1)
t|T − z

(1)
t|T = (M̂−1L̂′Σ̂−1

ξ,R −M
−1L′Σ−1

ξ,R)xt

||ẑ(1)
t|T − z

(1)
t|T ||2 ≤ ||M̂

−1L̂′Σ̂−1
ξ,R −M

−1L′Σ−1
ξ,R|| ||xt||2

By Assumption E1. ∃c > 0 such that ||xt||2 ≤ c < ∞ for all n ∈ N. Lemma 5 (vi) in [18]
uses the consistency of the principal components in order to show

1

n
||M̂ ′Σ̂−1

ξ,RM̂ −M
′Σ−1
ξ,RM || = Op(1/n) +Op(1/

√
T ).

Therefore ẑ(1)
t|T = z

(1)
t|T +Op(1/n) +Op(1/

√
T ) and ẑ(1)

t|T = zt +Op(1/
√
n) +Op(1/

√
T ).

For the second and third term, define

∆ := (Γ̂−1
Z + IT ⊗ M̂)−1Γ̂−1

Z (IT ⊗ M̂−1L̂′Σ̂−1
ξ,R)− (Γ−1

Z + IT ⊗M)−1Γ−1
Z (IT ⊗M−1L′Σ−1

ξ,R)

Then ẑ(2.1)
t|T − z(2.1)

t|T = S′t∆(IT ⊗ L)Z and ẑ(2.2)
t|T − z(2.2)

t|T = S′t∆ξ.
Split up ∆ = ∆1 + ∆2 + ∆3 where

∆1 = (Γ̂−1
Z + IT ⊗ M̂)−1Γ̂−1

Z (It ⊗ (M̂−1L̂′Σ̂−1
ξ,R −M

−1L′Σ−1
ξ,R))

∆2 = (Γ̂−1
Z + IT ⊗ M̂)−1(Γ̂−1

Z − Γ−1
Z )(IT ⊗M−1L′Σ−1

ξ,R)

∆3 =
(

(Γ̂−1
Z + IT ⊗ M̂)−1 − (Γ−1

Z + IT ⊗M)−1
)

Γ−1
Z (IT ⊗M−1L′Σ−1

ξ,R)

and use the Facts 4.17 and Lemma 5 of [18] in order to show ||∆i||2 = Op(1/n
2√n) +

Op(1/n
√
nT ), i = 1, 2, 3.

Note that ||Z||2 = E(Z′Z) =
∑T

t=1 tr(Σz) = rT . Also ||ξ||2 =
∑T

t=1 ||ξt||2 =
∑T

t=1 tr(Σξ,R).
Therefore ||Z|| = Op(

√
T ) and ||ξ|| = O(nT ),

Finally the inequalities

||S′t∆(IT ⊗ L)Z||2 ≤ ||S′t|| ||∆|| ||IT ⊗ L|| ||Z|| = Op(
√
T/n2) +Op(1/n)

||S′t∆ξ||2 ≤ ||S′t|| ||∆|| ||ξ|| = Op(
√
T/n2) +Op(1/n)

together with the Assumption lim sup T
n3 = O(1) give ẑt|T = zt +Op(1/

√
n) +Op(1/

√
T ).

�

19The matrix A := (M̂−1L̂′Σ̂−1
ξ,R −M

−1L′Σ−1
ξ,R) is a linear function between the rT dimensional product space

of L2(P) and the nT dimensional product space of L2(P) and each space is equipped with the product norm
||x||22 = Ex′x.
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4.4 The QML estimation approach

The quasi-maximum likelihood estimation approach is based on a Gaussian state space frame-
work. The estimated static factors žt|T are equal to the estimated expected values of zt given
all observations xit, i = 1, . . . , n, t = 1, . . . , T under parameters that maximize the likelihood
of the sample X := (x1, . . . , xT ) ∈ Rn×T . The discussion of this approach is based on the paper
of Doz, Giannone and Reichlin (DGR) [17].

The model is still an approximate dynamic factor model, i.e.

xt
(n×1)

= L

(n×r)

zt
(r×1)

+ ξt
(n×1)

(46a)

zt = −e1zt−1 − e2zt−2 − . . .− epzt−p + but (46b)

where all assumptions of Definition 3.15 are fullfilled. Its companion form is

xt = (L, 0, . . . , 0)︸ ︷︷ ︸
H

st︷ ︸︸ ︷
zt
zt−1
...

zt−p+1

+ξt = Hst + ξt (47a)

st+1 =


−e1 −e2 · · · −ep
Ir 0 0 0

0
. . . . . .

...

0
. . . Ir 0


︸ ︷︷ ︸

F

st + (b′, 0, . . . , 0)′ut+1 = Fst +Gut+1 (47b)

where st ∈ Rrp×1 (random), H ∈ Rn×rp, F ∈ Rrp×rp and G ∈ Rrp×q. Additionally one
assumes

Assumption G (Quasi-maximum likelihood assumptions):

G1. (
ξt
ut

)
∼ N

(
0,

(
R 0
0 Iq

))
, i.i.d. (48)

G2. R is a diagonal matrix, where Rii = ϑ, i = 1, . . . , n (spherical noise) or where Rii =
ϑi, i = 1, . . . , n (heteroscedastic noise)

Remark 4.18 .

- Due to Assumption G1., Model (47) is a state-space model.
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- The approximate factor model assumptions of DGR [17] are

lim inf
n→∞

1

n
λmin(L′L) > 0

lim sup
n→∞

1

n
λmax(L′L) <∞

0 < lim inf
n→∞

λmin(γξ(0)) ≤ lim sup
n→∞

λmax(γξ(0)) <∞

The weak dependence of the process ξt implies the right inequality of the third line as
Assumption (gdfm b) implies the existence of 0 < M <∞ such that ||fξ(θ)|| <∞ a.e. on
Θ for all n ∈ N. This implies that ||γξ(0)|| = ||

∫ π
−π fξ(θ) dθ|| ≤

∫ π
−π ||fξ(θ)|| dθ ≤ 2πM <∞

for all n ∈ N.
The first line corresponds to the strong dependence of the latent process χt. As in DGR [18]
it is assumed that the first r eigenvalues of γχ(0) diverge of linear order to infinity. The
first inequality of the third line is a technical assumption and implies that the idiosyncratic
stochastic variables won’t be degenerated in the limit.

- In this parametric model the static factors zt are estimated by taking the conditional
expectation of zt given all observations X, i.e. žt = Eτ̂ (zt|Hx). If the maximum likelihood
estimates τ̂ where known, this could be calculated by the Kalman smoother recursions (see
Section 2.3). The aim of this section is therefore to illustrate a way in order to calculate
the parameters τ̂ .

- Note that because of st+1 = Fst+Gut+1, the vector st is not a real state in the sense that
it depends only on past inputs.

- The parameters τ = (H,F,G,Q,R, µ1, V1) determine the distribution of X = vec(x1, . . . , xT ).
By specifying matrix F , the dynamics of the static factors are modeled. Setting F such
that e1 = · · · = ep = 0, means that the static factors are modeled as white noise. Set-
ting R means specifying the amount of mis-specification as far as the dynamics of the
idiosyncratic component is concerned.

In the papers [18], [17] the parameters are given by (e(z), H, γ∗ξ (0)) and (Ir, H, γ
∗
ξ (0))

respectively, which is just another notation for the equivalent description given above.
The matrices R and F correspond to γ∗ξ (0) and e(z) respectively.

�

According to the Bayes formula, the joint density of X = vec(x1, . . . , xT ) ∈ RnT×1 can be
written as the quotient of conditional and marginal densities

fx(x|τ) =
fx|z(x|z, τ) fz(z|τ)

fz|x(z|x, τ)
(49)

where Z = vec(z1, . . . , zT ) ∈ RrT×1.
For X = (IT ⊗ L)Z + ξ, Assumptions G imply that (X′,Z′)′ ∼ N (µ,Σ), µ = (µ′x, µ

′
z)
′, µx =

(IT ⊗L)µz, Σxz = (IT ⊗L)Σzz, Σzx = Σ′xz, Σxx = (IT ⊗L)Σzz(IT ⊗L)′+ Γξ,R. The covariance
matrix Σ is suitably partitioned into Σxx,Σxz,Σzx, and Σzz. By applying Theorem C.14
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X|Z ∼ N ((IT ⊗ L)Z,Γξ,R),

where Γξ,R = IT ⊗ Σξ,R due to Assumption G2.
Consider Z ∼ N (µz,ΓZ), where ΓZ ∈ RrT×rT . If q = r, then ΓZ is always invertible and the

density of Z exists. For the case q < r the density does not exist if T > p. In the following the
case q < r is not analyzed although simulation studies have been conducted with this assumption
(see Section 6).

Based on Equation (49), the Log-Likelihood can be written as

`(X|τ) = log fx|z(x|z, τ) + log fz(z|τ)− log fz|x(z|x, τ) =

−nT
2

log(2π)− 1

2
log det(Γξ,R)− 1

2
(X− (IT ⊗ L)Z)′Γ−1

ξ,R(X− (IT ⊗ L)Z)

−rT
2

log(2π)− 1

2
log det(ΓZ)− 1

2
Z′Γ−1

Z Z

+
rT

2
log(2π) +

1

2
log det(Ωτ ) +

1

2
(Z− Ẑτ )′Ω−1

τ (Z− Ẑτ )

where ΓZ,T = EZZ′, Ẑτ = Eτ (Z|X), and Ωτ = E(Z− Ẑτ )(Z− Ẑτ )′.
Evaluated at Z = Ẑτ and by using Lemma C.10 this becomes

`(X|τ) = −nT
2

log(2π)− T

2
log det(Σξ,R)− 1

2
tr
[
(X − ẐτL′)Σ−1

ξ,R(X − ẐτL′)′
]

−1

2
log det(ΓẐ,T )− 1

2
Ẑ
′
Γ−1

Ẑ,T
Ẑ +

1

2
log det(Ωτ ) (50)

where X = (x1, . . . , xT ) ∈ RT×n.
In the following two statements will be discussed in more detail:

- In the paper of [17] it has been shown, that the estimator Eτ̂ (Z|X) for Z is consistent for
large n and T , i.e. n, T →∞.

- The ML-estimates τ̂ and therefore the estimator of the static factors Eτ̂ (Z|X) are not
directly calculated. Instead the iterative EM-algorithm will be used.

Consistency of QML-estimator. The conditional expectation of the static factors given
all observations, taken under the ML-parameters is consistent for large cross-section and time
dimensions.

Denote τ c as the case where the parameter matrices (H,F,G,Q,R, µ1, V1) are known and
e(z) = Ir.

Assumption H (Further assumptions for consistency):

H1. There exists a positive constant M such that for all i, j ∈ N and for all T ∈ Z

(a) E
(√

T ( 1
T

∑T
t=1 ξitξjt − ψij)

)2
< M , where ψij is the (i, j) element of γξ(0).

(b) E|| 1√
T

∑T
t=1 ztξjt||2 < M
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(c) E||
√
T
(

1
T

∑T
t=1 ztz

′
t − Ir

)
||2 < M

where || · || is a matrix norm.

H2. There exists δ > 0 such that c ≤ ψii − δ ≤ ψii + δ ≤ c for all i ∈ N, where c and c are the
constant terms defining the constrained maximization of the likelihood, i.e. 0 < c ≤ ψii ≤
c <∞ for all i ∈ N.

H3. The first r eigenvalues of Σn
χ are of order n 7→ n (see Remark 4.18) and

0 < lim inf
n→∞

λmin(γξ(0))

The result of the following Theorem 4.19 is that the time average of the squared deviations
between the factors that lie in the true factor space and the estimated factors vanishes as n, T
go to ∞.

Theorem 4.19 (see [17], Proposition 1 ): Consider the model of Definition 3.15 with r = q and
b = Ir. The observation equation can be written as X = (IT ⊗ L)Z + ξ. Under Assumptions G
and H the following holds

1

T
(Z− (IT ⊗ β̂)Ẑτ̂ )′(Z− (IT ⊗ β̂)Ẑτ̂ ) = Op

(
1

∆nT

)
(51)

where β̂ ∈ Rr×r is the multivariate OLS coefficient-matrix of regressing Z on Ẑτ̂ = Eτ̂ (Z|XnT
1 ),

i.e. β̂ = (Ẑ ′τ̂ Ẑτ̂ )−1Ẑ ′τ̂Z ∈ Rr×r, Z = (z1, . . . , zT ) ∈ RT×r, and ∆nT = min{
√
T , n

logn}.

In order to prove this theorem the following facts (which are proven in [17]) will be used.

Facts 4.20.

1. Consider τ = τ c, the parameter where e(z) = Ir and the covariance matrix of ξt is
a diagonal matrix R = Σξ,R. Then under Assumptions H1. and the assumptions of
Remark 4.18, the Log-Likelihood under this parameter can be written as

1

nT
`(X|τ c) = −1

2
log(2π)− 1

2n
log det(Σξ,R)− 1

2
+Op

(
log n

n

)
+Op

(
1√
T

)
(52)

as n, T →∞.

2. Lemma 2 in [17] states that under Assumptions H1. and the assumptions of Remark 4.18
the following inequality holds

1

nT
tr(X − Ẑτ̂ )Σ−1

ξ,R(X − Ẑτ̂ )′ ≥ 1

nT
tr
[
(L′Σ̂−1

ξ,RL)′(Z − Ẑτ̂ β̂)′(Z − Ẑτ̂ β̂)
]

− 2

(
1

T
(Z − Ẑτ̂ β̂)′(Z − Ẑτ̂ β̂)

) 1
2 (
Op(1/

√
T ) +Op(1/n)

) 1
2

+
1

n

n∑
i=1

ψii

ψ̂ii
+Op(1/

√
T ) +Op(1/n),
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where ψii and ψ̂ii are the diagonal entries of Σξ,R and Σ̂ξ,R respectively.
This inequality is basically obtained by regressing the observations XnT

1 on the QML-
estimates Ẑτ̂ . The matrix β̂ has been defined in Theorem 4.19.

�

Proof (of Theorem 4.19). Obviously

VnT :=
1

T
(Z− (IT ⊗ β̂)Ẑτ̂ )′(Z− (IT ⊗ β̂)Ẑτ̂ ) =

1

T
tr
(

(Z − Ẑτ̂ β̂)′(Z − Ẑτ̂ β̂)
)
≥ 0

The aim is therefore to show that VnT ≤ 0 somehow. The starting point is the difference of
`(XnT

1 |τ c) and `(XnT
1 |τ̂). Assumption H2. assures that τ c is in the set of possible maximum-

likelihood parameters. Therefore 0 ≥ 2
nT (`(XnT

1 |τ c)− `(XnT
1 |τ̂)).

Substituting Equations (50) and (52) gives

0 ≥− 1

n
log det(Σξ,R)− 1 +Op

(
1√
T

)
+Op

(
log n

n

)
+

1

n
log det(Σ̂ξ,R)

+
1

nT
tr
(

(X − Ẑτ̂ L̂′)Σ̂−1
ξ,R(X − Ẑτ̂ L̂′)′

)
+

1

nT
log det(ΓẐ,T )− 1

nT
log det(Ωτ̂ ) +

1

nT
Ẑ
′
Γ−1

Ẑ,T
Ẑ

Using the second fact of 4.20

0 ≥

[
− 1

n
log det(Σξ,R)− 1 +

1

n
log det(Σ̂ξ,R) +

1

n

n∑
i=1

ψii

ψ̂ii

]

+

[
1

nT
log det(ΓẐ,T )− 1

nT
log det(Ωτ̂ ) +

1

nT
Ẑ
′
Γ−1

Ẑ,T
Ẑ
]

+ Op

(
1√
T

)
+Op

(
log n

n

)
+

[
1

nT
tr
(

(L′Σ̂−1
ξ,RL)(Z − Ẑτ̂ L̂)′(Z − Ẑτ̂ L̂

)
− 2

(
1

T
tr((Z − Ẑτ̂ L̂)′(Z − Ẑτ̂ L̂))

(
Op(1/

√
T ) +Op(1/n)

)) 1
2

]
The first three summands are non-negative, which implies

0 ≥ 1

nT
tr
(

(L′Σ̂−1
ξ,RL)(Z − Ẑτ̂ L̂)′(Z − Ẑτ̂ L̂

)
− 2 (VnT )

1
2 Op

(
1√

∆nT

)
+Op

(
1

∆nT

)
≥λmin

(
L′Σ̂−1

ξ,RL

n

)
VnT − 2

√
VnT Op

(
1√

∆nT

)
+Op(1/∆nT )

By assumption lim infn λmin(L′Σ̂−1
ξ,RL/n) > 0 and therefore

0 ≤ VnT −
√
VnTOp(1/

√
∆nT ) +Op(1/∆nT )

which is a quadratic inequality in y =
√
VnT . Deriving conditions for y such that this inequality

holds implies VnT = Op(1/∆nT ).
�
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The EM Algorithm for State Space models. The determination of the parameter τ̂ that
maximizes the likelihood of the observations X = vec(X) is quite involved. The EM Algorithm
for state space models [52], [48] is one way to do that.

We start with Equations (47). As the states S = (s1, . . . , sT ) are unobserved we face an
incomplete data setting (see Remark 2.13). The EM algorithm is derived by assuming that the
complete data (S,X) was available. Then for a given parameter τ , the sufficient statistics for
the expected conditional complete data likelihood are determined. Finally given the expected
sufficient statistics for this likelihood, multivariate OLS regression (or equivalently by building
the derivates with respect to the parameters) lead to a new τ that maximizes the expected
conditional likelihood. The aim is to calculate τ̂ = arg max `(X, τ). An iterative application
of the EM algorithm gives a sequence τ (n) such that `(X, τ (n)) ≥ `(X, τ (n−1)) for all n ∈ N
(see [16]).

Assumption I .

I1. s1 ∼ N (µ1, V1) where µ1 = vec(ẑp, . . . , ẑ1) are the principal component estimates and
V1 = Γ̂p, which is determined through Equation (41). The state s1 is linear independent
of {ξt, ut, t = 1, . . . , T}.

Lemma 4.21 Consider the Structural Dynamic Factor Model in companion form (see Equa-
tion (47)) and assume that Assumptions G hold. Further assume that r = q and p = 1. Then
Q = GG′ with detQ 6= 0, and the complete data likelihood is given by

−2`(S,X|τ) = c+ log det(V1) + (s1 − µ1)′V −1
1 (s1 − µ1)+

+ T log det(Q) +
T∑
t=2

(st − Fst−1)′Q−1(st − Fst−1)+

+ T log det(R) +
T∑
t=1

(xt −Hst)′R−1(xt −Hst)

Proof. Let f(S,X) be the joint density of states and observations for t = 1, . . . , T 20. By
iteratively applying the well known relation f(x|y) = f(x, y)/f(y), we get

f(S,X) = f(xT |xT−1, . . . , x1, s1, . . . , sT )f(xT−1, . . . , x1, S) =

= f(xT |xT−1, . . . , x1, s1, . . . , sT )f(xT−1|xT−2, . . . , x1, s1, . . . , sT )f(xT−2, . . . , x1, S) =

= f(xT |sT )f(xT−1|sT−1)f(xT−2, . . . , x1, S) = . . .

. . . = f(s1, s2, . . . , sT )
T∏
t=1

f(xt|st)

Therefore fτ (S,X) = f(s1)
∏T
t=2 f(st|st−1)

∏T
t=1 f(xt|st). Using Lemmata C.11 and C.12

together with the assumptions made, one can show that st|st−1 ∼ N (st−Fst−1, Q), t = 2, . . . , T
and xt|st ∼ N (xt −Hst, R). The variable c is a constant.

20Throughout the proof the densities all depend on τ .
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�

Lemma 4.22 Let τ (k) be the parameter of step k ∈ N. Under the assumptions of Lemma 4.21,
the expected conditional likelihood Q(τ |τ (k)) = E(log fτ (s1, . . . , sT , x1, . . . , xT )|XT

1 , τ
(k)) can be

written as

Q(τ |τ (k)) = ln det(P1|0) + tr
[
V −1

1 (P1|T + (s1|T − µ1)(s1|T − µ1)′)
]

+ (T − 1) ln det(Q) + tr
[
Q−1(S11 − S10F

′ − FS′10 + FS00F
′)
]

+ T ln det(R) + tr

[
R−1

n∑
t=1

((xt −Hst|T )(xt −Hst|T )′ +HPt|TH
′)

]
(53)

where

S11 =

T∑
t=2

(st|T s
′
t|T + Pt|T )

S10 =

T∑
t=2

(st|T s
′
t|T−1 + Pt,t−1|T )

S00 =

T−1∑
t=1

(st|T s
′
t|T + Pt|T )

The matrix Pt,t−1|T = E(st − st|T )(st−1 − st−1|T )′ has been defined in Lemma 2.10. For the
definitions of st|T and Pt|T see Section 2.3.

Proof. The idea is to exploit the independence between (st − st|T ) and X = vec(XnT
1 ) and the

σ(X)-measurability21 of st|T for t = 1, . . . , T . Let s1 − µ1 = (s1 − s1|T ) + (s1|T − µ1) in order to
write

E[(s1 − µ1)′V −1
1 (s1 − µ1)|XnT

1 ] = E[(s1 − s1|T )′V −1
1 (s1 − s1|T )] + (s1|T − µ1)′V −1

1 (s1|T − µ1) =

= E[tr((s1 − s1|T )V −1
1 (s1 − s1|T )′)] + tr((s1|T − µ1)V −1

1 (s1|T − µ1)′) =

= tr(V −1
1 (P1|T + (s1|T − µ1)(s1|T − µ1)′)

Expand st − Fst−1 = (st − st|T ) + st|T − Fst−1|T − F (st−1 − st−1|T ) and write for every
t = 2, . . . , T

E[(st − Fst−1)′Q−1(st − Fst−1)|XnT
1 ] =

[
E(st − st|T )′Q−1(st − st|T ) + s′t|TQ

−1st|T

]
−

−
[
E(st − st|T )′Q−1F (st−1 − st−1|T ) + s′t|TQ

−1Fst−1|T

]
−
[
E(st−1 − st−1|T )′F ′Q−1(st − st|T ) + s′t−1|TF

′Q−1st|T

]
+
[
E(st−1 − st−1|T )′F ′Q−1F (st−1 − st−1|T ) + s′t−1|TF

′Q−1Fst−1|T

]
21The sigma-algebra σ(X) is the smallest sigma-algebra such that all xit, i = 1, . . . , n, t = 1, . . . , T are mea-

surable.
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Note that all other summands are zero due to the independence between (st − st|T ) and
su|T . Due to E(x′Mx) = tr(ExMx′) for M = M ′, the summands correspond to tr(Q−1S11),
tr(Q−1S10F

′), tr(Q−1FS′10 and tr(Q−1FS00F
′) respectively.

Write xt−Hst = (xt−Hst|T )−H(st− st|T ) and note that (xt−Hst|T ) belongs to H(XnT
1 )

whereas H(st − st|T ) belongs to H(XnT
1 )⊥. This implies

E[(xt −Hst)′R−1(xt −Hst)|XnT
1 ] = (xt −Hst|T )′R−1(xt −Hst|T )

+HE[(st − st|T )(st − st|T )′]H ′

which gives the last summand of Equation (53) after summing over t = 1, . . . , T .
�

Equation (53) is the basis for determining the new parameters (H,F,Q,R, µ1, V1). Follow-
ing [47] (p. 121, Equation 7), one could derive F by building the derivative ∂Q(·|τ (k))

∂F (τ) = 0.
If we assume to be in step k, the transition matrix F (k) = S10S

−1
00 . The same applied for

Q,R, µ1, V1 yields

Maximization step 4.23.

F (k) = S10S
−1
00

H(k) =

(
T∑
t=1

zt|TX(t)

)
(s1|T s1|T

′ + P1|T + S11)−1

Q(k) = (T − 1)−1(S11 − S10S
−1
00 S

′
10)

R(k) = T−1
T∑
t=1

(xt −H(k)st|T )(xt −H(k)st|T )′ +H(k)Pt|TH
(k)′

µ
(k)
1 = s1|T

V
(k)

1 = P1|T

�

Calculate H(k) by means of SUR22-equations: For H(k) one could apply the same rule or
argue by multivariate regression, which also gives the maximum likelihood estimator if the
errors where normally distributed. Assume again that (S,X) where known and start with xt =
Hst + ξt, t = p, . . . , T (see Remark 4.25) where st = (zt, . . . , zt−p+1). Because we assumed that
ξt ∼ WN(0, R) normally distributed, the errors are independent across time. The data-matrix
of our observations is now structured by columns, i.e. X := (X1, X2, . . . , Xn), Xk ∈ RT−p+1.
Denote the state matrix by S = (s1, . . . , sT ) ∈ R(T−p+1)×m with m = rp. The errors are put in
a matrix ε = (ξ1, ξ2, . . . , ξT )′ = (ε1, ε2, . . . , εn).

The model can therefore be written as

22SUR – seemingly unrelated regression.
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Xk = S H ′k + εk, k = 1, . . . , n

vec(X)

(nT×1)

= (In ⊗ S)

(nT×nrp)

vec(β)

(nrp×1)

+ vec(ε)
(nT×1)

where β = (H ′1, H
′
2, . . . ,H

′
n) and H ′k = [H(k)]

′. Note that because of H = (L, 0, 0, . . . , 0), the
parameter vector β := vec(β) has n(p− 1)r restrictions, which can be written as

β

(nrp×1)

= W

(nrp×nr)

γ

(nr×1)

(54)

where W is a matrix of zeros having entries of one at positions (i, j) = ((k− 1)r+ 1, rp(k−
1) + 1), . . . , (kr, rp(k − 1) + r), k = 1, . . . , n. By substituting (54) into X = (In ⊗ S)β + ε one
gets

X = [(In ⊗ S)W ] γ + ε

where (In ⊗ S)W = (In ⊗ Sr) with Sr = (s1, s2, . . . , sr) ∈ R(T−p+1)×r. Therefore W selects
elements of a block matrix that contain the first r components of st, which is zt.

Now because E(εε′|X) = (R⊗IT ) generalized least squares (GLS) would be the right thing to
do. It can be easily shown (as done in [30]) that this is equivalent to OLS equation by equation
if all equations have the regressors Sr. Therefore

γ̂ = (S′rSr)
−1S′rX,

which would determine β̂ and therefore H(k). Now because S is not available in practice,
expected sufficient statistics of (S′rSr) and S′rX are needed. Note that S′r = Z := (z1, . . . , zT ).
We denote the selection of the t-th row of a matrix M as t 7→ M(t) and take the conditional
expected values

E(ZX|X) =
T∑
t=1

E(Z(t)X(t)|X) =
T∑
t=1

zt|TX(t) = ẐX

where Ẑ = (z1|T , z2|T , . . . , zT |T )′. The second term is the inverse of

E(ZZ ′|X) =

T∑
t=1

E(Z(t)Z
′
(t)|X) =

T∑
t=1

(zt|T zt|T
′ + Pt|T )

where the second equality comes from zt = zt|T + (zt − zt|T ) and the fact that (zt − zt|T ) is
orthogonal on X and zt|T is measurable with respect to σ(X).

In order to summarize, a non-formal overview of the EM algorithm is given.

Algorithm 4.24 (EM algorithm for state space models).
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Initialization by principal component estimation and estimation of the factor dynamics. This
step is identical to the first step of 4.12 on page 34.

- H(0), R(0), µ
(0)
1 , V

(0)
1 are based on principal component estimation.

- F (0), G(0), Q(0) are estimated by means of solving (singular) Yule Walker equations.

For steps k = 1, 2, . . . , iter.max:

E-step Calculate expected sufficient statistics by running the Kalman filter and -smoothing
recursions for given τ (k). They depend on st|T , Pt|T , Pt,t−1|T , t = 1, . . . , T and can be
calculated by the Kalman Filter recursions and Lemma 2.10 (or Lemma2.11).

The Kalman filter also gives the value of the current log-likelihood `(X, τ (k)).

M-step Follow 4.23 in order to calculate τ (k+1) that maximizes Q(τ |τ (k)).

Convergence Iterate between Expectation- and Maximization step until the relative increase
of the log-likelihood is smaller a given tolerance level:

`(X, τ (k))− `(X, τ (k+1))

|`(X, τ (k))|
< tolerance

�

Remark 4.25 (What happens if p > 1). If p > 1, the state st must be stacked, i.e. st =
(z′t, z

′
t−1, . . . , z

′
t−p)

′, which implies that t must start at t = p. Therefore the first (p − 1) ob-
servations do not influence the estimation procedure and estimates for zt are available only for
t = p, . . . , T . �
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5 Simulation study

All three estimation methods consistently estimate the linear space of the static factors when
n and T become very large, as argued in Section 4. To my knowledge there is only a paper
by J. Bai [4] that analyzes the asymptotic distribution of the principal component estimator.
Therefore a simulation study has been conducted in order to compare the estimators for different
model specifications.

The starting point will be the structural factor model, which has already been discussed in
Section 3.4. For any fixed n, T ∈ N and t = 1, . . . , T

xt
(n×1)

= L

(n×r)

zt
(r×1)

+ ξt
(n×1)

(55a)

e(z)

(r×r)

zt = b

(r×q)

ut, (55b)

where e(z) is stable, ut ∼ WN(0, Iq) and ξt is either white-noise or weakly dependent. The
loadings are always generated according to Lij ∼ N (0, 1) i.i.d. and the rows of b are uniformly
drawn from the q-dimensional unit sphere.

The integer parameters are the number of dynamic (q) and static (r) factors and the lag (p)
of the autoregressive process of the static factors. Real parameters are the factor loadings L,
the parameter matrices (e1, . . . , ep), the matrix b and the noise-to-signal ratio ρi. Estimation
results have been evaluated by means of multivariate linear regression and canonical correlation
analysis respectively.

One can also approach model (55) from a different angle. Assumptions B2. and B3. imply
that zt = k(z)ut, where k(z) has a power series expansion in and on the complex unit circle. The
entries of the matrix k(z) are rational functions in z ∈ C. By looking at a right matrix-fraction-
description (MFD) k(z) = N(z)c−1(z), where N(z) is a r× q polynomial matrix of order s, one
obtains the following representation:

xt
(n×1)

= L0

(n×q)

ft
(q×1)

+ L1ft−1 + . . .+ Ls
(n×q)

ft−s
(q×1)

+ ξt (56a)

ft = a1

(q×q)

ft−1

(q×1)

+ . . .+ akft−k + ut (56b)

for some s ≥ 0 and k ≥ 0. Note that 0 < q ≤ r ≤ (s+ 1)q holds.
Figure 2 describes the simulation analysis in graphical terms. For a fixed panel size T×n, pa-

rameters r, q, p, σi, L, e(z), b and a specification of the process ξt, data matrices Z ∈ RT×r, ξ,X ∈
RT×n are generated 25 times23. Given X, each estimation method calculates estimators for the
static factors. Their different performances will be assessed in the evaluation step, whose out-
come is a measure of performance for each estimation method. The data generation, model
estimation and model evaluation steps are done for different factor loadings L, static factor dy-
namics (e(z), b) and noise-to-signal ratios σi. The parameters e(z), b can also be held fixed,

23It is true that this number if very low in order to make statistically reliable comparisons. The low number
of repetitions is due to computational restrictions.
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Figure 2: Simple illustration of the simulation setting.
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for example if they have been estimated from a real data-set. The generation of parame-
ters has also been repeated 25 times. The number of variables and observations vary, i.e.
(T, n) ∈ {25, 50, 100, 150} × {10, 25, 50, 100}. The maximum number has been motivated by
current macro-economic data-sets24. A more detailed description of the different models and
parameter settings is given in Section 5.1. Note that the model selection step (choosing q, r and
p from the data) is optional and has been omitted in this thesis.

Note, that comparing results of simulations where (e(z), b) have been chosen at random,
means comparing the estimation performance for different models. If one estimation method
outperforms the other, this could indicate a uniform dominance of that method on the pre-
selected parameter set.

The goal was to identify settings, where one estimation procedure performs better than the
other. To structure this vague formulation, the following questions have been raised.

Questions 5.1.

(a) What influence do different types of noise-misspecifications have on the estimation meth-
ods?

(b) Does the assumption q < r have an impact on the estimation results?

(c) What is the influence of different noise-to-signal ratios on the estimation accuracy?

(d) Are the estimation results invariant with respect to the location of the roots of det(e(z))?
A root near the complex unit circle would mean that the process had a long memory.

�

Question (a) addresses a key point of estimation methods in generalized dynamic factor
models. It asks for the effect of misspecification. Question (c) can be motivated by the theoretical
observation that for the case q < r, the density of the observations (likelihood) does not exist25

and therefore a formal description of the EM-algorithm is not straightforward (see Section 4.4).
The comparison between models with r = q and q < r may therefore provide a hint for the
theoretical analysis of the case q < r. Question (d) is a classical statistical question and one
expects the noise-to-signal ratio to depend negatively on the estimation accuracy. Moreover it
would be interesting to know, whether the relative estimation performances are invariant with
respect to the noise-to-signal ratio. A longer memory of the static factor process will make the
estimation of the observation covariance matrix more difficult and therefore lead to a decrease
in absolute performance of the estimation methods. Question (e) also asks what happens to the
relative performances in that case.

Simulation studies done in other papers. Comparable simulation studies have been con-
ducted in the papers of Stock and Watson [49] and Doz, Giannone and Reichlin [17], [18].

24The data-set which has been analyzed in Section 6 is of dimension 194× 107.
25See Definition C.13 for the general definition of a normally distributed n-dimensional random vector x with

rkE(xx′) = r < n.
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5.1 Simulation scenarios

A simulation scenario is determined by the integer parameters q, r, p, by the spectrum of ξt, by
the parameters of the ARMA representation (e(z), b) of zt, and by the signal-to-noise ratios of
the observations xit.

Model parameters. The dimension of the static factor process r can be greater of equal to
the dimension of the dynamic factor process q. The lag-parameter for the static factor dynamic
p will be 1, 2 or 3, and the noise-to-signal ratio26 ρi = Vξit/Vxit, i = 1, . . . , n is either fixed to
the values {0.5, 0.75, 0.9} or drawn uniformly from the interval [0.1, 0.9].

Idiosyncratic component. There are four different specifications for the idiosyncratic com-
ponent. The first one is ξt ∼ N (0, Iq) iid, and denoted as the strict case. The second setting
ξt ∼ N (0,Ξ0) iid, assumes a small amount of cross-sectional dependence among the idiosyncratic
influences. The entries of Ξ0 are defined by

ξit = αit +
1

2
(αi−1t + αi+1t), αit ∼ N (0, 1), Eαitαjt = δij , i, j = 1, . . . , n,

where α0t = αn+1t = 0. To obtain the correct noise-to-signal ratio, ξit needs to be weighted27.
I denote this setting by cross.

The third noise setting adds the feature of time-dependence (it is therefore called cross-time)

ξit = αit +
1

2
(αi−1t + αi+1t) +

1

5
αit−1, αit ∼ N (0, 1), Eαitαjt = δij , i, j = 1, . . . , n,

where α0t = αn+1t = 0. Again, re-weighting of ξit needs to be done. These equations define
Ξ1.

The last most general noise setting (denoted as the general setting) is taken from the sim-
ulation study conducted by [18]. It assumes that the idiosyncratic component has a Wold
representation defined by

ξit = dξit−1 + εit, d =
1

2
, εt ∼ N (0,Ψ) iid,

where

Ψij = ψ|i−j| (1− d2)
√
ai
√
aj , 0 < ψ < 1, i, j = 1, . . . , n,

and ai = (σi/(1−σi))Vχit. Note that ψ controls for the amount of cross-sectional correlation.
It is a key value in order to address Question (a). For the general noise-setting, ψ = 0.5. The
cases where ψ = 0.75, 0.9, 0.95 are denoted by g.psi075, g.psi09, g.psi095 respectively.

26Note that the signal here are the observations xt (not χt) and the noise is ξt. One could also interpret the
latent process χt as the unobserved noise-free signal.

27Define ξ̃it := αξit Then Vξit/Vχit = ρi/(1 − ρi) and the squared correction factor becomes α2 =
(1/Vξit)(ρi/(1− ρi))Vχit. In the first case Vξit = 3/2, in the second Vξit = 77/50.
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Static factors. The r-dimensional static factors follow a singular AR(p)-process

zit = e1(i)zt−1 + e2(i)zt−2 + . . .+ ep(i)zt−p + b(i)ut, i = 1, . . . , r

where ut ∼WN(0, Iq). Define b = (bij)i=1,...,r, j=1,...,q, as bij := (b̃ij/||b̃(i)||2), with b̃ij ∼ N (0, 1).
Then νt = but ∼WN(0, D), where Dii = 1, i = 1, . . . , r.

The matrix e(z) has been modeled in three different ways. First, as diagonal, i.e. e(z) =
diag(e1(z), . . . , er(z)), with random coefficients for the polynomials ei(z). Second, as determined
by means of an empirical analysis (see Section 6). The third way is connected to an attempt to
address the problem of how to uniformly draw from the stability region of e(z). A standard fact
is that this region is open.

Lemma 5.2 The parameter space for stable vector r-dimensional autoregressive processes of
order p is an open subset of R2rp.

Proof. The process is described by a(z)xt = ut. Being stable means det a(z) 6= 0 for all |z| ≤ 1,
which is equivalent to |λmax(A)| < 1, where A is the companion form of a(z). Calculating the
largest eigenvalue of a matrix and the modulus is a continuous operation28 and the set (−1, 1)
is open. �

For the univariate case (r = 1), a sampling procedure for parameters of an ARMA(p, q)
system based on the Levinson-Durbin algorithm has been discussed [7]. For the multivariate
case no similar procedure has been found. Often the parameters are generated by the ”generate
and test” methods. The following procedure is going in this direction.

Algorithm 5.3 (Generate parameters of e(z)). Let k be the number of restrictions on the matrix
(e1, e2, . . . , ep) ∈ Rr×rp.

1. Draw r2p− k times from standard normal distribution to set e(0) = (e
(0)
1 , e

(0)
2 , . . . , e

(0)
p ).

2. (m− 1) 7→ (m) : As long as there exist y ∈ C such that |y| < 1 and det e(y) = 0, multiply
every non-restricted entry of e(m−1) by 0 < ϑ < 1 to obtain e(m).

�

In general e(0) is unstable. If ϑ is set near to one, the determinant of e(z) will have zeros
near the unit circle. If one wishes to have a certain distance of the smallest root to the unit
circle, a ϑ near zero will help. Tables 1 and 2 indicate the support of the empirical distribution
of the modulus of the smallest root of randomly generated e(z).

The number of iterations of Algorithm 5.3 increases with ϑ. Generating a system with a root
very close to the unit circle therefore comes at a price, as can be seen in Table 3. The proposed
method is just another method of choosing random coefficient matrices. It is not a method for
uniformly selecting coefficients of polynomials e(z) from their stability region. This argument is
supported by Figure 3. In this figure also the effect of choosing ϑ near to one can be seen.

Factor loading matrix. The factors loadings L ∈ Rn×r have been modeled in such a way
that the factors have a ”stationary” influence on the observations. This means that Lij ∼
N (0, 1) i.i.d., i = 1, . . . , n, j = 1, . . . , r.

28See Theorem C.3 for the definition of the largest eigenvalue.
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stable 4× 4 polynomial matrices e(z) of order one.
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ϑ Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3 1.0280 1.4930 1.8590 1.9800 2.4350 3.1720
0.4 1.0130 1.1990 1.4720 1.5760 1.9050 2.3790
0.5 1.0090 1.1980 1.4620 1.4740 1.7160 1.9530
0.9 1.0020 1.0380 1.0650 1.0890 1.0960 1.7890
0.95 1.0010 1.0140 1.0280 1.0590 1.0440 1.7890
0.975 1.0000 1.0070 1.0130 1.0470 1.0220 1.7890
0.99 1.0000 1.0040 1.0070 1.0410 1.0090 1.7890

0.9925 1.0000 1.0020 1.0040 1.0390 1.0060 1.7890
0.995 1.0000 1.0010 1.0030 1.0380 1.0040 1.7890

Table 1: Summary statistics for the modulus of the smallest root of det(e(z)) for different ϑ.
The algorithm has been applied to polynomial matrices e(z) of dimension 3× 3 and order 1.

ϑ Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3 1.1580 1.3950 1.6760 1.7920 2.0320 3.2410
0.4 1.0200 1.1910 1.3890 1.5470 1.8270 2.4820
0.5 1.0010 1.1730 1.4830 1.4490 1.6670 1.9890
0.9 1.0010 1.0280 1.0470 1.0510 1.0770 1.1090
0.95 1.0000 1.0150 1.0260 1.0250 1.0350 1.0520
0.975 1.0010 1.0080 1.0140 1.0140 1.0200 1.0240
0.99 1.0000 1.0020 1.0050 1.0050 1.0080 1.0100

0.9925 1.0000 1.0020 1.0040 1.0040 1.0050 1.0070
0.995 0.9041 1.0010 1.0030 0.9994 1.0040 1.0050

Table 2: Summary statistics for the modulus of the smallest root of det(e(z)) for different ϑ.
The algorithm has been applied to polynomial matrices e(z) of dimension 4× 4 and order 1.

5.2 The models

The following data-generating processes had been the basis of analysis29.

Models A1 (q = r = 1, p = 1, 2, 3) This model has been used in [18] in order to demonstrate
the finite sample performance of the TS-estimator (see Section 4.3). For i = 1, . . . , n, t =
1, . . . , T

xit = L(i)zt + ξit, H(i), zt ∈ R
zt = azt−1 + ut, |a| < 1, ut ∼WN(0, 1)

Normally the parameter a is uniformly drawn from [0.6, 0.9]. For generating processes with
a longer memory, a is uniformly drawn from [0.998, 0.9992].

29Note that the word model can be misleading here. A specific model is characterized by its fixed parameters
r, q, p, e(z), b. The following categories A1, A2, A3, B1, B12, B2, C1, and C2 represent rather a collection of
different models, because they involve the random generation of e(z) and b.
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ϑ Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9 2 8 9 9 11 17
0.95 4 16 17 18 21 34
0.975 8 33 34 36 43 68
0.99 19 81 86 91 107 171

0.9925 26 108 114 121 143 228
0.995 39 162 172 176 214 251

Table 3: Number of iterations until the 3 × 3 polynomial matrix e(z) of order 1 was stable for
different ϑ.

Models A2 (q = r = 3, p = 1, 2, 3) In [17] a simulation study has been conducted based on
the following model. For i = 1, . . . , n, t = 1, . . . , T

xit = L(i)zt + ξit, H(i)′, zt ∈ R3×1

e(z)zt = ut, ut ∼WN(0, I3)

where e(z) =

1− a1z 0 0
0 1− a2z 0
0 0 1− a3z

. For p = 1 the coefficients are uniformly drawn

from different intervals, i.e. a1 ∼ U[0.85,0.9], a2 ∼ U[0.75,0.85], a3 ∼ U[0.65,0.75]. If the process shall
have a long memory, then a1 = 0.999, a2 ∼ U[0.95,0.9925], a3 ∼ U[0.85,0.95]. Also the more general
parameterization (see Section 5.1) for e(z) has been used for p = 1, 2, 3.

Models A3 (q = r = 4, p = 1, 2, 3) The specification corresponds to the specification of model
A2 with the appropriate dimensions. For the case e(z) = diag(e1(z), . . . , e4(z)) and p = 1, the
coefficients were generated according to the rule a1 ∼ U[0.85,0.9], a2 ∼ U[0.75,0.85], a3 ∼ U[0.7,0.8],
a4 ∼ U[0.65,0.75]. For the long-memory case, a1 = 0.999, a2 ∼ U[0.95,0.9925], a3 ∼ U[0.85,0.95], and
a4 ∼ U[0.8,0.9]. Again random and stable non-diagonal e(z) with higher orders p = 1, 2, 3 were
also generated.

Models B1 (q = 1, r = 3) For i = 1, . . . , n, t = 1, . . . , T

xit = L(i)zt + ξit, H(i)′, zt ∈ R3×1

e(z)zt = but, ut ∼WN(0, 1)

where e(z) is specified as in Model A2 and the rows of b are chosen randomly from the unit
sphere in Rq (see Section 5.1).

Model B12 (q = 2, r = 3) This model has been motivated by the data-set of Section 6.
The parameters p, b, e(z) and L have been estimated and are held fixed during the simulation
analysis. For this model, p = 4.
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Models B2 (q = 2, r = 4) The specification is the same as in Model B1 and differs only in
the dimensions of the variables. The parameters p, b, e(z) and L are either generated randomly
or set to estimated values which had been determined in the empirical study of Section 6.

The following models assume restrictions on the parameter matrices of e(z). Assume that
the DGP is described by model (56).

Model C1 Let

xt = L0ft + L1ft−1 + . . .+ Lsft−s + ξt

ft = e1ft−1 + e2ft−2 + ut

where ut and ft are q dimensional stationary processes. We set s = 1. Define zt = (f ′t , f
′
t−1)′,

then

xt = (L0, L1)zt + ξt

zt = Fzt−1 + but

with F =

(
e1 e2

Iq 0

)
and b = (Iq, 0)′ ∈ R2q×q.

Model C2 Let

xt = L0ft + L1ft−1 + . . .+ Lsft−s + ξt

ft = e1ft−1 + ut

where ut and ft are q dimensional stationary processes and s = 1. Define zt = (f ′t , f
′
t−1)′,

then

xt = (L0, L1)zt + ξt

zt = Fzt−1 + but

with F =

(
e1 0
Iq 0

)
and b = (Iq, 0)′ ∈ R2q×q.

Checking the assumptions.

- Strong dependence: The r-dimensional process zt has been modeled as a non-orthonormal
basis of the factor space. It is easy to see that γz(0) > 030. As Lij ∼ N (0, 1) it follows
that 1

n(L′L)ij = 1
n(Li)

′Lj = 1
n

∑n
k=1 LkiLkj → δij as n→∞. Using Lemma C.5 it follows

that the eigenvalues of L′L/n converge to 1.

Now γnχ(0) = Lnγz(0)Ln′ = (LnM)(LnM)′ ∈ Rn×n, where γz(0) = MM ′ and rkM = r.
The first r eigenvalues of γχ(0) are equal to the first r eigenvalues of

30The components of zt are linear independent a.e. for all t ∈ Z if and only if γz(0) > 0.
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(LnM)′(LnM) = M ′Ln′LnM ≥ λmin(Ln′Ln)M ′M

which implies λmin(M ′Ln′LnM) ≥ λmin(Ln′Ln)λmin(M ′M). As rkM = r, its smallest
eigenvalue is greater than zero and following the argument from above λmin(Ln′Ln)→∞
as n→∞. It follows that the first r eigenvalues of γχ(0) diverge to infinity for large n.

With similar arguments the divergence of the first q eigenvalues of the spectrum fχ can
be shown. As χt = Lzt and zt = k(z)ut, where k(z) = e−1(z)b is a r × q dimensional
rational transfer function without roots in and on the complex unit circle, it follows that
fz(θ) = 1

2πe
−1(e−iθ)bb′(e−1(e−iθ))∗. Because det(e−1(z)) = (det(e(z)))−1 6= 0 for all

|z| ≤ 1 and rkb = q, the rank of the spectrum of zt is equal to q for all θ ∈ Θ. In our
setting rkLn = r for all n ∈ N and therefore

rk(fχ(θ)) = rk(Lfz(θ)L
′) = q, ∀θ ∈ Θ.

As rk(k(z)) = q the smallest eigenvalue of k∗(z)k(z) is greater than zero and

(Lnk(e−iθ))∗(Lhk(e−iθ)) ≥ λmin(Ln′Ln)k∗(z)k(z).

- Weak dependence: The covariances of all four noise classifications have the following struc-
ture:

γnξ (0) =



c0b11 c1b12 · · · · · · cn−1b1n

c1b12 c0b22
. . .

...
...

. . . . . .
...

. . . c1bn−1,n

cn−1b1n · · · · · · c1bn−1,n c0bnn


∈ Rn×n

The bij correspond to the noise-to-signal ratio corrections, whereas 0 < cj < 1. In the
general noise setting bij =

√
ai
√
aj , where ai = (σi/(1 − σi))Vχit. The variance of χit is

bounded for all i ∈ N with a very high probability31 or can be easily bounded by scaling
the loadings L(i).

This implies the existence of a K ∈ N independent of n such that x′γnξ (0)x ≤ K
∑n−1

j=0 |cj |.
To see this consider the case n = 3:

γξ(0) = c0

b11 0 0
0 b22 0
0 0 b33


︸ ︷︷ ︸

=:M0

+c1

 0 b12 0
b12 0 b23

0 b23 0


︸ ︷︷ ︸

=:M1

+c2

 0 0 b13

0 0 0
b13 0 0


︸ ︷︷ ︸

=:M2

It is well known that for symmetric matrices Mi the norm inequality ||Mi||2 ≤ ||Mi||1 =
maxj=1,...,n

∑n
k=1 |Mi(k, j)| holds. Therefore x′γnξ (0)x ≤

∑n−1
j=0 c0λmax(Mj). If we model

L such that |Lij | ≤ ` for all i ∈ N, j = 1, . . . , r, then K = 2`.
31Note, that Vχit ≤ λmax(γz(0))L(i)L(i)′, and that L(i)L(i)′ ∼ χ2

r.
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In the first three specifications (strict, cross, cross-time) γnξ (0) is a band matrix and its
maximal eigenvalue is therefore bounded for all n ∈ N. In the last specification the
sequence

(∑n−1
j=0 |cj |

)
n∈N

converges in R as n goes to infinity. It can be easily verified that
also the spectrum of ξt is uniformly bounded for all n ∈ N.

It can also easily be seen that infn∈N λmin(Σn
ξ ) > 0 in all four settings.

5.3 Evaluation

Assumption 5.4 . The model-parameters r, q, p ∈ N are assumed to be known and will not be
estimated with model-selection procedures32. �

Multivariate Linear Regression. We assume the estimated factors Z̆ ∈ RT×r are a linear
function of its simulated counterparts Z ∈ RT×r plus a stochastic error term. The model is a
special case of the SUR (seemingly unrelated regression) model33. Let Y = (Y1, Y2, . . . , Yr) ∈
RT×r be the dependent variables and X = (X1, X2, . . . , Xm) ∈ RT×m be the independent
variables. The model is then

Y = Xβ + ε, β ∈ Rm×m (57)
vec(Y ) = (Im ⊗X) vec(β) + vec(ε), (58)

where E(εε′|X) = Σ⊗ Im with Σij = Eεitεjt. It is therefore assumed that the errors may be
linear dependent across equations but linear independent across time.

It can be easily shown that the OLS estimator β̂ = (β̂1, . . . , β̂m) is determined by OLS
equation by equation. This means that β̂i = (X ′X)−1X ′Yi, i = 1, . . . ,m.

Now suppose that r = m and X = Z, Y = Z̆, Z, Z̆ ∈ RT×r, where Z̆ is the result of one of
the three estimates of Section 4. The measure for the estimation accuracy is the following trace
statistic:

R2 := 1− tr(e′e)
tr(Z̆ ′Z̆)

=
tr(Z̆ ′Z̆)− tr(e′e)

tr(Z̆ ′Z̆)
=

tr(Z̆ ′IT Z̆ − e′e)
tr(Z̆ ′Z̆)

=
Z̆ ′Z(Z ′Z)−1Z ′Z̆

tr(Z̆ ′Z̆)

where e = Z̆ − Zβ̂ ∈ RT×r. The last equation holds because

e′e = Z̆ ′(It − Z(Z ′Z)−1Z ′)(It − Z(Z ′Z)−1Z ′)Z̆ = Z̆ ′IT Z̆ − Z̆ ′Z(Z ′Z)−1Z ′Z̆.

Note that one could also set X = Z̆, Y = Z and define R2
∗ = Z′Z̆(Z̆′Z̆)−1Z̆′Z

tr(Z′Z) .

32The only exception is model B2, where results from the empirical analysis of Section 6 are used for the
simulation study. This results however will not be reported, because the EM algorithm did not work in this
setting.

33A brief introduction can be found for example in [30].
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Canonical Correlation Analysis. The idea of canonical correlation analysis is to assess
the correlation between two random vectors of possibly different dimensions. Consider the
n-dimensional random vector x = (x1, x2) : Ω → Rn, where x1 ∈ Rn1 and x2 ∈ Rn2 with
n = n1 + n2. Let Ex = µ = (µ′1, µ

′
2)′ ∈ Rn be the mean of x and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
∈ Rn×n, Σ > 0

be the covariance matrix of x. If one assumes that Σ11 > 0 and Σ22 > 0 respectively, then
one could consider the n1- and n2-dimensional spaces H1 := span{x11, . . . , x1n1} ⊆ L2(P) and
H2 := span{x21, . . . , x2n2} ⊆ L2(P).

The idea of canonical correlation analysis (CCA) is to find new coordinate systems
in H1 and H2 which display unambiguously the system of correlation between x1

and x2 (see [3]).

As x1 and x2 are already a basis of H1 and H2 respectively, this means finding a non-
singular matrix which transforms the old bases x1 and x2 into new bases y1 ∈ Rn1 and y2 ∈ Rn2

respectively. This new bases will be the pairs of canonical correlations.

Definition 5.5 (CCA at population level, [3], p. 495 ): The r-th pair of canonical variates is the
pair of linear combinations y(r)

1 = a(r)′x1 and y(r)
2 = b(r)

′
x2, each of unit variance, uncorrelated

with the first r−1 pairs of canonical variates and having maximum correlation. The correlation
betwen y

(r)
1 and y

(r)
2 is the r-th canonical correlation. The components of y(r)

1 , y
(r)
2 are called

the canonical components. The vectors a(r), b(r) are called the coefficients of the canonical
components.

Theorem 5.6 (Sample CCA, [3], p. 500 ): Let x(1), . . . , x(N) be N observations from x ∼
N (µ,Σ). The covariance matrices are estimated by their sample counterparts, Σ̂ = 1

N

∑N
i=1(x(i)−

x(i))(x(i) − x(i))′. The maximum likelihood estimators of the canonical correlations are the
min(n1, n2) roots of

det

(
−cΣ̂11 Σ̂12

Σ̂21 −cΣ̂22

)
= 0 (59)

The maximum likelihood estimators of the coefficients of the j-th canonical component satisfy

(
−cjΣ̂11 Σ̂12

Σ̂21 −cjΣ̂22

)(
â(j)

b̂(j)

)
= 0 (60)

and

â(j)′Σ̂11â
(j) = 1, b̂(j)

′
Σ̂22b̂

(j) = 1

for j = 1, . . . ,min(n1, n2).
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The results of a sample CCA between the simulated and the estimated static factors are
r canonical correlations 1 ≥ c1 ≥ · · · ≥ cr ≥ 0 which should be near 1. One could look at
the different cj , especially on the last one to assess the different performances of the estimation
procedures.

Another possibility would be to summarize the r canonical correlations by one statistic, the
group correlation coefficient [22], which is defined as

ρ2
x1,x2 := 1−

min(n1,n2)∏
j=1

(1− cj) (61)

where cj are the canonical correlation coefficients.

Evaluation 5.7. The following statistics are proposed for evaluation the ”quality” of the esti-
mation procedures.

Multivariate goodness of fit (R2) R2 = 1−
∑r
i=1

∑T
t=1 e

2
it

||Z̆||2F
= 1− ||e||

2
F

||Z̆||2F
= 1− vec(e)′vec(e)

vec(Z̆)′vec(Z̆)

Group correlation coefficient ρZ,Z̆ = 1− (1− c1) · · · (1− cr)

Last canonical correlations Compare the last c(i)
j , j = r, r − 1, r − k for each i = 1, 2, 3

(estimation method)

�

The multivariate R2 has been selected for further analysis.

Notation for analysis. For each data-set of dimension T × n that comes from a model
µ of type A1, A2, A3, B1, B2, C1 and C2, the performance of an estimation method ν ∈
{PCA, TS,QML} is denoted by R2(µ, ν, n, T ). The variable µ is either used for a specific model
of a certain type (fixed e(z), b) or for the type itself (random e(z), b). To assess differences
in the relative performances the distribution of R2(µ,ν1,n,T )

R2(µ,ν2,n,T )
is considered. Define Rµ,ν1/ν2 :={

R2(µ,ν1,n,T )
R2(µ,ν2,n,T )

}
as the set of relative performances between methods ν1 and ν2 for a model (of

type) µ and fixed n, T . The set Rµ,ν1/ν2 contains 625 items, if µ represents a model type34, e.g.
A1, and it contains 250 items if µ is a fixed model with estimated parameters from the Stock
and Watson data-set.

34For each fixed model µ of a certain type 25 estimation results are available. The parameters were randomly
drawn 25 times.
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5.4 Results

The strategy of analysis: For the strict case ξt ∼ WN(0, diag) one expects the TS- and QML-
method to outperform the PC-method. Departing from this case, the impact of a non-diagonal
spectrum of ξt on the absolute and relative estimation performances will be shown. Furthermore,
the impact of modelling a long-memory for the static factor process and high noise-to-signal
ratios respectively on these results is of interest.

Absolute performances for each model are given in Section A. The EM-algorithm did not
work without problems. A more detailed report about this is given at the end of this section.

The case: ξt is white-noise with diagonal covariance matrix

When the idiosyncratic process ξt is white-noise with a diagonal covariance matrix, then the
models (40) and (47) are state-space models. Therefore, we expect a performance advantage of
the TS- and QML-method compared to the PC-method. Results are reported for simulations
where the polynomials e(z) were non-diagonal, stable and σi ∼ U[0.1,0.9], i = 1, . . . , n.

n/T A1 A2 A3 B1 B2 C1 C2

n=10
T=25 1.024 (0.026) 1.024 (0.023) 1.018 (0.024) 1.038 (0.058) 1.007 (0.052) 1.061 (0.086) 1.039 (0.068)

T=50 1.033 (0.019) 1.037 (0.02) 1.034 (0.023) 1.059 (0.06) 1.025 (0.059) 1.082 (0.08) 1.06 (0.061)

T=100 1.035 (0.015) 1.046 (0.021) 1.042 (0.027) 1.064 (0.072) 1.031 (0.066) 1.084 (0.082) 1.066 (0.06)

T=150 1.035 (0.014) 1.05 (0.019) 1.046 (0.027) 1.066 (0.071) 1.028 (0.076) 1.085 (0.08) 1.064 (0.062)

n=25
T=25 1.008 (0.009) 1.019 (0.011) 1.022 (0.015) 1.029 (0.024) 1.024 (0.024) 1.049 (0.045) 1.035 (0.038)

T=50 1.01 (0.006) 1.025 (0.01) 1.033 (0.017) 1.033 (0.02) 1.039 (0.021) 1.061 (0.04) 1.047 (0.029)

T=100 1.011 (0.004) 1.026 (0.009) 1.039 (0.018) 1.036 (0.019) 1.047 (0.021) 1.066 (0.03) 1.053 (0.024)

T=150 1.011 (0.004) 1.028 (0.008) 1.041 (0.017) 1.036 (0.018) 1.047 (0.02) 1.066 (0.022) 1.054 (0.02)

n=50
T=25 1.004 (0.005) 1.011 (0.006) 1.015 (0.008) 1.016 (0.013) 1.017 (0.014) 1.028 (0.028) 1.022 (0.023)

T=50 1.005 (0.002) 1.013 (0.004) 1.019 (0.007) 1.018 (0.01) 1.023 (0.013) 1.039 (0.021) 1.03 (0.016)

T=100 1.005 (0.002) 1.013 (0.003) 1.02 (0.005) 1.019 (0.009) 1.025 (0.012) 1.037 (0.014) 1.031 (0.01)

T=150 1.005 (0.001) 1.014 (0.003) 1.02 (0.004) 1.02 (0.009) 1.026 (0.012) 1.036 (0.01) 1.031 (0.008)

n=100
T=25 1.002 (0.002) 1.006 (0.003) 1.008 (0.004) 1.01 (0.008) 1.01 (0.007) 1.016 (0.019) 1.013 (0.015)

T=50 1.002 (0.001) 1.006 (0.002) 1.009 (0.003) 1.01 (0.005) 1.012 (0.006) 1.019 (0.011) 1.017 (0.009)

T=100 1.002 (0.001) 1.006 (0.002) 1.009 (0.002) 1.01 (0.004) 1.013 (0.006) 1.019 (0.006) 1.017 (0.005)

T=150 1.002 (0.001) 1.006 (0.001) 1.009 (0.002) 1.01 (0.004) 1.013 (0.006) 1.018 (0.004) 1.016 (0.004)

Table 4: Medians and mean absolute deviations of Rµ,ts/pc.

Tables 4–6 and Figures 5–7 confirm a performance advantage on average35. By looking at
the spread and the distributions of the results, a small sample effect (n = 10) leads to outliers
in the region, where the PC-estimator outperforms the TS- and QML-estimator respectively36.
These outliers disappear for larger panels except for the models C1 and C2.

For small panels the spread of results seems to be higher for models where q < r compared
to models where r = q. Nevertheless, especially for a small amount of variables (n = 10, 25)

35Although the medians are reported, the results also hold for the mean. The median was taken as a robust
statistic of the mean.

36This effect was strongest for models B2. An example where this happened is the specification e(z) =
diag(e1(z), . . . , e4(z)) of models A3. It disappeared, when e3(z) = 1− 0.35z and e4(z) = 1− 0.2z.
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Figure 5: The distribution of Rµ,ts/pc for different model specifications with ξt ∼WN(0, diag).

n/T A1 A2 A3 B1 B2 C1 C2

n=10
T=25 1.03 (0.038) 1.039 (0.055) 1.038 (0.067) 1.061 (0.071) 1.037 (0.062) 1.123 (0.114) 1.079 (0.078)

T=50 1.038 (0.025) 1.075 (0.048) 1.086 (0.078) 1.086 (0.073) 1.081 (0.066) 1.182 (0.113) 1.132 (0.072)

T=100 1.039 (0.02) 1.09 (0.044) 1.114 (0.089) 1.099 (0.072) 1.107 (0.069) 1.199 (0.111) 1.143 (0.071)

T=150 1.038 (0.017) 1.094 (0.042) 1.121 (0.086) 1.101 (0.072) 1.112 (0.068) 1.204 (0.097) 1.148 (0.059)

n=25
T=25 1.009 (0.012) 1.026 (0.02) 1.039 (0.033) 1.038 (0.028) 1.034 (0.029) 1.081 (0.065) 1.052 (0.04)

T=50 1.011 (0.007) 1.033 (0.015) 1.056 (0.032) 1.042 (0.024) 1.051 (0.027) 1.099 (0.056) 1.065 (0.035)

T=100 1.011 (0.004) 1.035 (0.012) 1.061 (0.026) 1.043 (0.023) 1.055 (0.024) 1.092 (0.036) 1.067 (0.027)

T=150 1.011 (0.004) 1.036 (0.01) 1.061 (0.021) 1.042 (0.022) 1.055 (0.023) 1.088 (0.028) 1.066 (0.024)

n=50
T=25 1.004 (0.006) 1.015 (0.01) 1.023 (0.015) 1.021 (0.015) 1.022 (0.018) 1.05 (0.039) 1.037 (0.027)

T=50 1.005 (0.003) 1.015 (0.006) 1.025 (0.01) 1.021 (0.011) 1.027 (0.015) 1.049 (0.024) 1.037 (0.016)

T=100 1.005 (0.002) 1.016 (0.005) 1.025 (0.007) 1.022 (0.009) 1.027 (0.013) 1.043 (0.014) 1.035 (0.011)

T=150 1.005 (0.002) 1.016 (0.004) 1.024 (0.005) 1.021 (0.009) 1.027 (0.013) 1.04 (0.01) 1.034 (0.009)

n=100
T=25 1.002 (0.002) 1.007 (0.004) 1.011 (0.007) 1.012 (0.008) 1.013 (0.009) 1.026 (0.022) 1.022 (0.018)

T=50 1.002 (0.002) 1.007 (0.003) 1.011 (0.004) 1.011 (0.006) 1.013 (0.007) 1.024 (0.012) 1.02 (0.009)

T=100 1.002 (0.001) 1.007 (0.002) 1.01 (0.003) 1.011 (0.005) 1.013 (0.006) 1.02 (0.006) 1.017 (0.005)

T=150 1.002 (0.001) 1.007 (0.002) 1.01 (0.002) 1.011 (0.005) 1.013 (0.006) 1.019 (0.004) 1.017 (0.003)

Table 5: Medians and mean absolute deviations of Rµ,qml/pc.
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Figure 6: The distribution of Rµ,qml/pc for different model specifications with ξt ∼WN(0, diag).

n/T A1 A2 A3 B1 B2 C1 C2

n=10
T=25 1.005 (0.015) 1.015 (0.039) 1.016 (0.054) 1.017 (0.036) 1.028 (0.053) 1.047 (0.077) 1.033 (0.061)

T=50 1.004 (0.007) 1.034 (0.032) 1.049 (0.056) 1.023 (0.028) 1.056 (0.051) 1.081 (0.065) 1.059 (0.051)

T=100 1.004 (0.004) 1.041 (0.03) 1.061 (0.062) 1.024 (0.026) 1.072 (0.053) 1.096 (0.065) 1.072 (0.049)

T=150 1.003 (0.003) 1.039 (0.026) 1.064 (0.061) 1.027 (0.025) 1.082 (0.058) 1.097 (0.065) 1.074 (0.055)

n=25
T=25 1 (0.003) 1.007 (0.012) 1.014 (0.022) 1.005 (0.01) 1.009 (0.016) 1.024 (0.032) 1.013 (0.02)

T=50 1 (0.001) 1.008 (0.008) 1.02 (0.016) 1.004 (0.005) 1.007 (0.008) 1.027 (0.023) 1.013 (0.014)

T=100 1 (0.001) 1.007 (0.006) 1.019 (0.011) 1.003 (0.003) 1.006 (0.005) 1.019 (0.014) 1.013 (0.011)

T=150 1 (0) 1.006 (0.005) 1.018 (0.008) 1.002 (0.002) 1.005 (0.004) 1.018 (0.012) 1.012 (0.011)

n=50
T=25 1 (0.001) 1.003 (0.005) 1.007 (0.009) 1.003 (0.005) 1.004 (0.007) 1.013 (0.017) 1.01 (0.012)

T=50 1 (0) 1.002 (0.002) 1.006 (0.004) 1.001 (0.002) 1.002 (0.003) 1.008 (0.008) 1.006 (0.006)

T=100 1 (0) 1.002 (0.002) 1.005 (0.003) 1.001 (0.001) 1.001 (0.002) 1.004 (0.003) 1.003 (0.003)

T=150 1 (0) 1.001 (0.001) 1.004 (0.002) 1.001 (0.001) 1.001 (0.001) 1.003 (0.002) 1.002 (0.002)

n=100
T=25 1 (0.001) 1.001 (0.002) 1.003 (0.003) 1.001 (0.002) 1.002 (0.003) 1.007 (0.009) 1.006 (0.007)

T=50 1 (0) 1 (0.001) 1.002 (0.002) 1.001 (0.001) 1.001 (0.001) 1.003 (0.003) 1.002 (0.003)

T=100 1 (0) 1 (0) 1.001 (0.001) 1 (0) 1 (0) 1.001 (0.001) 1.001 (0.001)

T=150 1 (0) 1 (0) 1.001 (0.001) 1 (0) 1 (0) 1.001 (0.001) 1.001 (0.001)

Table 6: Medians and mean absolute deviations of Rµ,qml/ts.
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Figure 7: The distribution of Rµ,qml/ts for different model specifications with ξt ∼WN(0, diag).
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the QML-method clearly outperforms the PC-method and demonstrates superiority over the
TS-estimator. For larger panels the performance advantage decreases, the advantage of QML-
over TS- disappears very rapidly. The results are invariant with respect to the order of e(z). I
simulated models with p = 1, 2, 3 and in this case only the cases where p = 1 are reported.

Be aware, that a comparison of the relative performances between the different models is
problematic, because the location of the roots of e(z) has an influence on the relative performance
gain (see more below). Thus from the results given above, one can not come to the conclusion
that the performance advantage of the TS- and QML-estimator respectively is higher for models
where r > q.

The effect of misspecification, i.e. a non-diagonal spectrum of ξt

Tables 7–9 and Figures 8–10 show the effects of local cross-sectional (weak) dependence of the
ξit for the same set of models as above. Again the polynomials e(z) were chosen randomly,
non-diagonal and stable, and σi ∼ U[0.1,0.9], i = 1, . . . , n. Results for the noise-specifications
cross, cross-section and general, and two more settings with very high local dependence, general,
ψ = 0.75 and general, ψ = 0.9, are shown. A global strong local dependence (ψ = 0.75, ψ = 0.9)
is a strong assumption, but nevertheless the results given below suggest a negative effect on
the relative performance advantages of the TS- and QML-estimator over the PC-estimator. An
overview of the results is given in Discussion 5.8.

n/noise A1 A2 A3 B1 B2 C1 C2

n=10
strict 1.035 (0.014) 1.05 (0.019) 1.046 (0.027) 1.066 (0.071) 1.028 (0.076) 1.085 (0.08) 1.064 (0.062)

cross 1.015 (0.018) 1.01 (0.039) 1.017 (0.034) 1.047 (0.093) 1.013 (0.081) 1.042 (0.093) 1.057 (0.074)

cross-time 1.023 (0.021) 1.032 (0.038) 1.02 (0.033) 1.022 (0.066) 1.02 (0.084) 1.044 (0.088) 1.017 (0.09)

g 1.012 (0.015) 1.027 (0.029) 1.013 (0.023) 1.044 (0.051) 1.012 (0.054) 1.055 (0.055) 1.029 (0.07)

g (ψ = 0.75) 0.999 (0.024) 1.012 (0.031) 1.009 (0.021) 0.984 (0.05) 0.936 (0.089) 1.043 (0.069) 0.997 (0.052)

g (ψ = 0.9) 0.993 (0.065) 1.001 (0.018) 1.005 (0.015) 0.813 (0.227) 0.926 (0.099) 0.998 (0.052) 0.983 (0.058)

n=25
strict 1.011 (0.004) 1.028 (0.008) 1.041 (0.017) 1.036 (0.018) 1.047 (0.02) 1.066 (0.022) 1.054 (0.02)

cross 1.008 (0.006) 1.02 (0.012) 1.021 (0.014) 1.041 (0.032) 1.035 (0.023) 1.047 (0.034) 1.036 (0.032)

cross-time 1.01 (0.005) 1.029 (0.014) 1.031 (0.016) 1.037 (0.029) 1.039 (0.032) 1.04 (0.034) 1.026 (0.033)

g 1.006 (0.005) 1.027 (0.018) 1.024 (0.015) 1.031 (0.023) 1.028 (0.025) 1.044 (0.03) 1.034 (0.022)

g (ψ = 0.75) 1.001 (0.008) 1.012 (0.014) 1.013 (0.014) 1.016 (0.025) 0.994 (0.045) 1.006 (0.063) 1.003 (0.04)

g (ψ = 0.9) 0.984 (0.021) 1.003 (0.015) 1.003 (0.013) 0.984 (0.063) 0.929 (0.086) 0.976 (0.058) 0.94 (0.084)

n=50
strict 1.005 (0.001) 1.014 (0.003) 1.02 (0.004) 1.02 (0.009) 1.026 (0.012) 1.036 (0.01) 1.031 (0.008)

cross 1.004 (0.003) 1.016 (0.007) 1.017 (0.008) 1.023 (0.015) 1.027 (0.012) 1.036 (0.019) 1.025 (0.017)

cross-time 1.005 (0.002) 1.014 (0.006) 1.021 (0.009) 1.022 (0.012) 1.028 (0.015) 1.029 (0.019) 1.028 (0.018)

g 1.003 (0.002) 1.014 (0.005) 1.017 (0.007) 1.019 (0.012) 1.019 (0.012) 1.027 (0.018) 1.025 (0.013)

g (ψ = 0.75) 1.002 (0.003) 1.011 (0.009) 1.012 (0.009) 1.014 (0.012) 1.018 (0.017) 1.013 (0.03) 1.003 (0.027)

g (ψ = 0.9) 0.995 (0.009) 1.003 (0.01) 1.006 (0.008) 1.002 (0.025) 0.972 (0.039) 0.984 (0.041) 0.95 (0.072)

n=100
strict 1.002 (0.001) 1.006 (0.001) 1.009 (0.002) 1.01 (0.004) 1.013 (0.006) 1.018 (0.004) 1.016 (0.004)

cross 1.002 (0.001) 1.007 (0.002) 1.009 (0.002) 1.012 (0.005) 1.015 (0.005) 1.018 (0.007) 1.014 (0.007)

cross-time 1.002 (0.001) 1.007 (0.002) 1.01 (0.003) 1.011 (0.005) 1.016 (0.007) 1.018 (0.006) 1.016 (0.007)

g 1.002 (0.001) 1.006 (0.002) 1.009 (0.003) 1.01 (0.005) 1.012 (0.007) 1.016 (0.007) 1.014 (0.005)

g (ψ = 0.75) 1.001 (0.001) 1.008 (0.004) 1.01 (0.006) 1.01 (0.007) 1.013 (0.009) 1.014 (0.013) 1.01 (0.012)

g (ψ = 0.9) 1 (0.002) 1.005 (0.005) 1.007 (0.006) 1.007 (0.008) 1 (0.019) 0.99 (0.03) 0.973 (0.043)

Table 7: The effect of non-diagonal idiosyncratic spectra on Rµ,ts/pc for T = 150.



70 5 SIMULATION STUDY

25
50

10
0

0.
90

0.
95

1.
00

1.
05

1.
10

● ● ● ● ●●● ●

●●

● ●● ●●

●●●●● ●●● ● ●●● ●●● ●

●●● ●

●● ●● ● ●● ●

●●●●● ● ●●●●● ●●

● ●● ● ●●

●● ● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ● ●

● ● ●● ●●● ●

●●● ●●● ● ●●● ● ●● ●●● ●

● ●● ●● ● ●●● ● ●●● ●●● ●● ●●●● ● ●● ● ● ●● ●● ● ● ● ●

●●●● ● ●● ● ●●

● ●●● ●●●

● ●● ●● ● ●● ●

● ● ●● ● ●

● ●●● ● ●● ● ●●● ●● ●

● ●● ●● ●● ●● ● ●●

●●●● ●● ●●● ● ●● ●●● ●●

● ●●●●

●● ●● ●●● ●●●● ●● ●●● ●

●● ●●● ● ● ●● ●● ●● ●

● ●●●● ●● ● ●● ● ●● ●● ●●●

●● ●●● ●● ●● ● ●●●● ● ●●●●

●● ● ●● ● ●● ● ●●● ● ● ● ● ●●● ● ●●

●● ●● ●● ● ● ●●● ●● ● ●

●●●●

● ●●●● ●● ● ●●● ● ● ●● ●●● ● ●● ● ●

●●● ●● ●● ● ●●● ●● ● ● ●● ●● ● ●● ●● ●● ● ● ●● ●

● ●● ●● ●● ●● ● ● ●●● ● ●●● ●

● ●●● ●● ● ● ●●● ●● ●● ● ●●● ● ● ●● ● ● ●●● ●●● ●●● ●● ●● ●● ●

● ●●●● ● ●● ●

● ● ●●● ●●●● ●● ●

●● ●● ●●

●● ●● ●●● ●● ● ●●●

● ● ● ●● ●● ●●● ● ●●

●● ● ● ●●

● ●● ●●●●●● ● ●● ●●● ●●●● ● ●● ●● ●●● ●●● ● ● ●●

● ●● ●●●●● ● ●●● ●● ●● ●●●● ● ●● ●

●●● ●● ● ●●● ●●● ●

● ● ●● ● ●

●●

● ● ● ●● ● ● ●● ● ● ● ●●●● ●● ● ●●● ●● ● ●●● ●●●● ●

●● ● ● ● ●●

● ● ● ● ● ●● ●● ● ●● ● ●● ●

●● ● ● ●●● ●● ● ●●● ● ●● ● ●●● ● ●● ●●● ●●● ●●

●●●● ●● ●●

● ●● ● ● ● ●●● ● ●●

●●● ● ●●

●● ●● ●● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●

●● ●●●●● ●●●● ● ●● ●● ●●●●● ●

●● ● ●●

● ● ●● ●

● ● ●● ●● ●● ●● ●● ● ●●● ●● ● ● ● ●●

●●●● ●● ●● ● ● ●● ●●● ●●● ●●●● ● ●●●● ●● ●●

● ●●● ●● ●● ● ●● ●●●●● ●● ●●● ●● ● ●●

● ●● ● ●● ●● ●●● ●●● ●● ●● ● ● ●●● ●● ● ●

●●●● ● ● ●

●

● ●●● ●● ●●
● ● ● ●● ●●● ● ● ● ●●● ● ● ●● ●●●● ●● ●● ●● ●● ●●

● ● ●● ●● ● ● ●● ● ●●

● ● ●● ●● ●● ● ●●●● ● ● ●● ●● ●● ●●● ●

●● ●● ● ●● ● ●●● ● ● ●● ●●● ●●● ● ●● ●●

●● ●●● ● ●● ● ●● ●●● ●●

●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●

●●● ●●● ●● ●●● ●● ●● ●

● ● ●● ●● ●● ● ●● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ● ● ● ●●●●● ● ●● ●●● ●

●

●

● ● ●●● ●●

● ●● ● ●● ●●

● ●●● ● ● ●● ●● ● ●● ●● ● ●●● ● ● ●● ● ●● ●●●● ●●

●

● ● ● ● ●

●● ● ● ●● ●● ●●●● ●● ● ●● ●●● ●● ●● ●● ● ●● ● ● ●●● ● ●●● ● ●● ● ● ●●● ● ●● ●● ●● ●●●●● ● ●● ●●●

● ●● ● ● ●●●●●● ● ●●● ●●● ●●● ●● ●● ● ●

●●● ● ●● ●● ●● ●● ●● ●●● ●

● ●● ● ●● ●● ● ●●●

● ●●●

●● ●● ●●● ● ● ●●● ● ●●● ●● ●● ● ●●

●

● ● ●● ●● ●●● ●●● ●

●● ●●● ● ●● ● ●● ●●● ●● ●● ● ● ●● ●● ●● ●

● ●●● ● ●● ● ● ● ●● ●● ●

●● ●● ●●● ● ●● ● ●● ● ●●● ●

● ●

●●

●● ●● ●●● ● ●● ● ●●●● ●● ●●●● ●● ●● ●●● ● ●●● ●● ● ●●● ●● ●●

●● ● ●●● ●●● ●● ● ●●● ●●●● ● ●● ● ●● ● ●●● ● ●

●● ●●

● ●● ●● ●●● ● ●● ●●

● ●●● ● ●● ●

● ●● ● ●●● ●● ●●●● ● ●●● ●●●● ●● ●● ● ●

●

● ● ●●● ● ●●● ●● ●●● ●● ● ● ●● ●● ●● ●● ●●●● ● ● ●● ● ●●●● ●● ● ●●● ●●●● ●● ●● ● ●

●● ●● ● ● ●● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ●● ●●●● ● ●●● ●● ●● ●

●● ● ●● ●●●●● ● ● ●● ●● ● ●●

●● ●●

●●● ●

● ● ●● ● ●● ● ●● ● ●●● ●● ●●● ● ● ●●● ●●●●● ●

● ●● ● ●●● ● ●● ●● ●●● ● ●●

● ●●● ● ● ●● ●● ●● ●● ●●●●● ●●● ● ● ●

● ●● ●● ● ●● ● ●● ●●● ● ●● ●● ●● ● ●● ● ●● ●●● ● ●●● ●● ●● ● ●● ●

●●● ●●●● ● ●●● ●●●●●● ●● ●

● ● ●● ● ●● ●● ● ●

●● ●● ● ●●● ●● ●●●

●● ● ● ●● ●● ●● ● ● ● ●● ●● ● ● ●● ● ● ●● ● ●●● ● ●● ●● ●●●● ●● ●● ●● ● ●●● ●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●●●●●● ● ●

● ● ●● ● ●●●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●● ●●● ● ● ●●●

● ● ●● ● ●●

150

A1

A2

A3

B1

B2

C1

C2

A1

A2

A3

B1

B2

C1

C2

A1

A2

A3

B1

B2

C1

C2

M
od

el

Multiv. R squared for ts/pc

no
is
e s c ct g g.

ps
i0

75
g.

ps
i0

9

Figure 8: The effect of non-diagonal idiosyncratic spectra on Rµ,ts/pc. In this illustration, T has
been fixed to 150 and n varies.
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n/ψ A1 A2 A3 B1 B2 C1 C2

n=10
s 1.038 (0.017) 1.094 (0.042) 1.121 (0.086) 1.101 (0.072) 1.112 (0.068) 1.204 (0.097) 1.148 (0.059)

c 1.024 (0.031) 1.008 (0.087) 1.052 (0.075) 1.114 (0.107) 1.068 (0.103) 1.174 (0.133) 1.122 (0.094)

ct 1.03 (0.029) 1.055 (0.089) 1.049 (0.081) 1.088 (0.096) 1.079 (0.13) 1.131 (0.106) 1.106 (0.084)

g 1.011 (0.021) 1.061 (0.067) 1.036 (0.065) 1.07 (0.058) 1.048 (0.066) 1.136 (0.084) 1.092 (0.072)

g.psi075 0.99 (0.058) 1.013 (0.068) 1.014 (0.047) 0.973 (0.092) 0.964 (0.101) 1.095 (0.08) 1.029 (0.038)

g.psi09 0.973 (0.16) 0.996 (0.044) 1.003 (0.042) 0.853 (0.139) 0.957 (0.104) 1.017 (0.039) 1.013 (0.034)

n=25
s 1.011 (0.004) 1.036 (0.01) 1.061 (0.021) 1.042 (0.022) 1.055 (0.023) 1.088 (0.028) 1.066 (0.024)

c 1.009 (0.007) 1.031 (0.023) 1.033 (0.029) 1.06 (0.044) 1.056 (0.03) 1.09 (0.051) 1.062 (0.038)

ct 1.01 (0.006) 1.044 (0.024) 1.059 (0.042) 1.048 (0.03) 1.065 (0.045) 1.085 (0.053) 1.06 (0.039)

g 1.005 (0.005) 1.046 (0.035) 1.041 (0.028) 1.045 (0.026) 1.047 (0.035) 1.071 (0.048) 1.064 (0.032)

g.psi075 0.997 (0.015) 1.016 (0.03) 1.021 (0.034) 1.034 (0.035) 1.018 (0.067) 1.051 (0.05) 1.033 (0.033)

g.psi09 0.943 (0.056) 0.999 (0.044) 1 (0.035) 0.954 (0.06) 0.964 (0.074) 1.016 (0.034) 0.995 (0.027)

n=50
s 1.005 (0.002) 1.016 (0.004) 1.024 (0.005) 1.021 (0.009) 1.027 (0.013) 1.04 (0.01) 1.034 (0.009)

c 1.004 (0.003) 1.021 (0.009) 1.025 (0.012) 1.028 (0.016) 1.033 (0.013) 1.049 (0.023) 1.035 (0.019)

ct 1.005 (0.002) 1.021 (0.01) 1.032 (0.015) 1.025 (0.014) 1.034 (0.017) 1.047 (0.023) 1.04 (0.018)

g 1.003 (0.002) 1.019 (0.008) 1.023 (0.012) 1.024 (0.012) 1.026 (0.018) 1.042 (0.024) 1.039 (0.017)

g.psi075 1.001 (0.005) 1.017 (0.023) 1.02 (0.02) 1.021 (0.019) 1.034 (0.029) 1.043 (0.034) 1.028 (0.029)

g.psi09 0.984 (0.023) 1.002 (0.028) 1.01 (0.023) 1.007 (0.028) 0.985 (0.055) 1.015 (0.032) 1.003 (0.024)

n=100
s 1.002 (0.001) 1.007 (0.002) 1.01 (0.002) 1.011 (0.005) 1.013 (0.006) 1.019 (0.004) 1.017 (0.003)

c 1.002 (0.001) 1.007 (0.002) 1.012 (0.003) 1.013 (0.004) 1.017 (0.005) 1.021 (0.007) 1.017 (0.007)

ct 1.002 (0.001) 1.008 (0.003) 1.012 (0.004) 1.012 (0.005) 1.018 (0.007) 1.022 (0.006) 1.019 (0.007)

g 1.002 (0.001) 1.008 (0.003) 1.012 (0.005) 1.012 (0.005) 1.016 (0.008) 1.02 (0.008) 1.018 (0.005)

g.psi075 1.001 (0.001) 1.01 (0.006) 1.016 (0.012) 1.014 (0.009) 1.021 (0.016) 1.032 (0.018) 1.021 (0.018)

g.psi09 0.999 (0.004) 1.007 (0.012) 1.01 (0.014) 1.012 (0.014) 1.015 (0.031) 1.019 (0.031) 1.008 (0.019)

Table 8: The effect of non-diagonal idiosyncratic spectra on Rµ,qml/pc for T = 150.



72 5 SIMULATION STUDY

25
50

10
0

0.
90

0.
95

1.
00

1.
05

1.
10

●● ●● ● ● ●●● ●

● ● ●● ● ●●● ●● ● ●● ●

●● ●● ●● ●● ●

● ●

●

●

● ●●●● ● ●● ●● ●●

●● ● ●● ●● ● ● ●● ●●● ●● ●●●

● ●●●● ●●

●● ●● ●●● ●● ●●●

●● ● ●● ● ● ●● ●●● ● ●

● ●● ●● ●

●●● ●●

●●● ●●● ● ●● ●● ● ●●● ●●

●● ● ●● ●● ●●● ●

● ● ● ●● ●● ● ●● ● ● ●● ●●●●

●

●● ●●●●● ● ● ●●●

●●●● ●●● ● ●●●

● ●● ●● ●

● ● ●● ●● ●● ● ●●● ● ● ●

●● ●

●● ● ●● ● ● ●● ● ●●● ●●

● ● ●● ●● ●●● ●●●● ●●● ● ●● ●●●● ● ●●● ●

● ●●●● ●● ●● ●● ●● ● ● ● ●● ●● ● ●● ●●● ●●● ●● ● ●● ●

●●● ●● ● ● ●● ●● ●●●●●● ●● ●

●●

●● ●● ● ● ●●● ●●●●● ●● ● ● ●● ●● ●● ●

●

●● ● ● ● ●●● ●●● ●● ●●●● ●

● ●● ● ●● ●● ●●● ●

● ●

●● ●● ●● ●● ●●● ● ●● ●●●● ● ● ●● ●●

● ● ●● ●●● ● ●● ●● ● ●●● ●●● ●● ● ●● ● ● ●● ●● ●● ● ●●

● ● ●●● ●●●● ●● ●

●● ●●● ● ●● ●

●●● ● ● ●●● ●●● ●●

●●

● ●● ●● ●●

● ●● ●● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●● ● ●

● ●●● ●● ●●●● ● ●● ● ●● ●

●●●● ● ●● ● ●●● ●●● ●

●●● ●● ●●●● ● ●●

●● ●● ●● ●●

● ● ●● ● ●

● ●● ● ●● ● ●

●●●
●● ●● ● ●● ● ●●●

●●●● ● ●●● ●

●● ●●● ●●●● ●● ● ● ●

●●●● ●

●●●● ●● ●● ●●● ●● ●

●● ●● ● ●● ●● ●●● ●● ●● ●

● ●●● ●●●● ● ●● ●●●

● ●●● ●● ●● ●●●

●● ● ●

●●● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●

● ● ● ●●● ●●● ● ● ●●● ●

● ● ● ●● ●●● ● ●● ● ●● ●●● ● ●● ●● ● ●● ●

●●● ●● ● ●● ●● ● ●● ●●●

●● ●● ● ●●● ● ●●●● ●

● ●●● ●●●● ●● ●● ●●

●● ●● ●

● ●●● ● ●●● ●●●● ● ●● ●●● ● ● ●● ●●● ● ● ●● ● ●

● ● ●● ●●● ●

●● ●● ●● ●●● ●●● ●●● ● ● ●● ● ●

●● ●● ● ● ●● ●● ●

●● ●● ●● ● ●●● ●●

●● ●● ●●●● ●● ●

●●● ● ●● ●● ●● ●● ●●●●● ●● ●●● ●● ●●● ●● ●●

● ●●● ●●●● ●● ● ●● ● ●● ●● ● ● ●● ●●● ● ●●● ●● ●●● ● ●● ●● ●

●● ●●● ●● ●● ●●● ● ● ●● ●● ●● ● ●● ● ●●●●● ●● ●● ● ● ● ●●●● ●●● ● ●● ●

●

● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●●● ● ●●● ●● ●

●● ● ● ●● ●● ●●● ●●● ●● ●● ● ●● ●●●●●● ●●●● ● ●●● ●●● ●● ●●●●● ●● ●●● ●●

● ● ●●●● ●●

●●● ●

● ● ●●● ● ● ●●● ●●● ●● ● ●

●●

● ●●● ● ● ●

●●● ● ●● ●●● ●● ● ●● ● ●● ●●● ●● ●●● ● ●●●● ● ●●● ● ●● ●●●● ● ●● ● ●● ● ●● ●● ●

●● ●●● ●● ● ●● ● ●●●●● ● ● ●● ●●

●●● ●● ● ●● ●● ●● ● ● ●●● ●

● ● ●● ● ●

●●●
● ●● ●●● ●●

●● ●●

● ● ●●● ●● ●●●●

● ●●● ● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●

● ●●● ● ●● ● ● ●●● ●● ●

●●● ● ●● ●● ● ●●
● ●● ●●● ●● ●●

●●

● ●● ●●● ● ● ● ●● ●●●● ●● ●● ● ●●● ●●●● ●●● ● ●● ●●● ● ●● ●●● ●●● ● ●

● ●● ● ●● ●● ●●● ● ●●●●● ●●

●●● ●● ●

● ●●● ● ●● ●●● ●● ● ●●● ●● ● ● ●●

●● ● ●● ●●● ● ●● ●● ●● ● ●

●●●● ●● ●●● ●●● ●● ● ● ●

●

● ●●● ●●●● ●● ● ● ●●● ● ●● ●● ● ●● ● ●● ●●● ● ●● ●●● ●●● ● ●● ● ●● ●● ●● ● ●● ●

●● ●●● ●● ● ●● ●● ●● ●●● ●● ●●● ●● ●● ● ● ●● ●●

●● ● ●● ● ●●● ● ● ●● ● ● ●● ● ●

● ● ●●●● ●● ●●● ● ●● ● ●● ●● ● ●

● ●●● ●● ●●● ● ●●● ●●

● ●● ● ● ● ●● ●● ●● ● ●● ●

● ●● ●● ● ●●●● ● ●

● ●●● ●● ● ●● ●

● ● ●●● ●● ● ●●●● ● ● ● ● ●

●●●● ● ●●●●● ●● ●● ●● ● ●●●●● ●● ● ●● ● ●● ●

●● ● ●●● ● ●● ●● ● ●● ●●● ● ● ● ● ●●●● ●●●

●● ● ●●● ● ●●●● ● ●●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●● ● ● ●●●

● ● ●●● ● ●●● ●●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●●● ● ● ● ●● ● ●

●● ● ● ●●●●●● ●● ●● ● ●●●

● ● ●● ●● ●● ● ●●● ●● ● ● ● ●●

● ●●● ● ●●● ●●●● ● ●● ● ●● ● ●● ●●● ●●● ● ●● ●●●● ●●●● ●● ●

150

A1

A2

A3

B1

B2

C1

C2

A1

A2

A3

B1

B2

C1

C2

A1

A2

A3

B1

B2

C1

C2

M
od

el

Multiv. R squared for qml/pc

no
is
e s c ct g g.

ps
i0

75
g.

ps
i0

9

Figure 9: The effect of non-diagonal idiosyncratic spectra on Rµ,qml/pc. In this illustration, T
has been fixed to 150 and n varies.
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n/ψ A1 A2 A3 B1 B2 C1 C2

n=10
s 1.003 (0.003) 1.039 (0.026) 1.064 (0.061) 1.027 (0.025) 1.082 (0.058) 1.097 (0.065) 1.074 (0.055)

c 1.008 (0.013) 0.996 (0.049) 1.03 (0.053) 1.054 (0.067) 1.05 (0.063) 1.113 (0.104) 1.054 (0.048)

ct 1.006 (0.012) 1.027 (0.054) 1.031 (0.056) 1.054 (0.054) 1.069 (0.063) 1.087 (0.074) 1.08 (0.067)

g 0.999 (0.008) 1.027 (0.045) 1.021 (0.044) 1.025 (0.04) 1.032 (0.045) 1.072 (0.061) 1.052 (0.049)

g.psi075 0.996 (0.036) 1.001 (0.04) 1.004 (0.032) 0.993 (0.052) 1.026 (0.074) 1.057 (0.06) 1.029 (0.037)

g.psi09 0.995 (0.081) 0.993 (0.026) 0.999 (0.029) 1.059 (0.222) 1.019 (0.04) 1.023 (0.029) 1.032 (0.043)

n=25
s 1 (0) 1.006 (0.005) 1.018 (0.008) 1.002 (0.002) 1.005 (0.004) 1.018 (0.012) 1.012 (0.011)

c 1.001 (0.001) 1.008 (0.011) 1.011 (0.015) 1.012 (0.012) 1.018 (0.015) 1.035 (0.029) 1.026 (0.023)

ct 1.001 (0.002) 1.014 (0.013) 1.025 (0.024) 1.009 (0.007) 1.021 (0.018) 1.034 (0.032) 1.028 (0.021)

g 0.999 (0.001) 1.016 (0.017) 1.014 (0.015) 1.009 (0.011) 1.017 (0.016) 1.024 (0.023) 1.028 (0.023)

g.psi075 0.997 (0.006) 1.004 (0.018) 1.008 (0.021) 1.012 (0.019) 1.022 (0.04) 1.046 (0.041) 1.042 (0.044)

g.psi09 0.964 (0.045) 0.995 (0.028) 0.997 (0.024) 0.987 (0.083) 1.028 (0.068) 1.055 (0.07) 1.053 (0.069)

n=50
s 1 (0) 1.001 (0.001) 1.004 (0.002) 1.001 (0.001) 1.001 (0.001) 1.003 (0.002) 1.002 (0.002)

c 1 (0) 1.004 (0.003) 1.007 (0.006) 1.003 (0.003) 1.006 (0.006) 1.011 (0.009) 1.007 (0.007)

ct 1 (0) 1.006 (0.005) 1.01 (0.007) 1.002 (0.001) 1.005 (0.004) 1.013 (0.011) 1.009 (0.007)

g 1 (0) 1.004 (0.004) 1.006 (0.005) 1.002 (0.002) 1.006 (0.007) 1.012 (0.01) 1.011 (0.008)

g.psi075 1 (0.001) 1.005 (0.011) 1.007 (0.012) 1.005 (0.007) 1.01 (0.016) 1.03 (0.027) 1.022 (0.023)

g.psi09 0.989 (0.014) 0.999 (0.018) 1.003 (0.018) 1.005 (0.022) 1.02 (0.049) 1.046 (0.052) 1.064 (0.074)

n=100
s 1 (0) 1 (0) 1.001 (0.001) 1 (0) 1 (0) 1.001 (0.001) 1.001 (0.001)

c 1 (0) 1.001 (0.001) 1.002 (0.001) 1.001 (0.001) 1.001 (0.001) 1.002 (0.002) 1.002 (0.002)

ct 1 (0) 1.001 (0.002) 1.002 (0.001) 1 (0) 1.001 (0.001) 1.003 (0.002) 1.002 (0.002)

g 1 (0) 1.001 (0.001) 1.002 (0.002) 1.001 (0.001) 1.002 (0.002) 1.003 (0.002) 1.003 (0.002)

g.psi075 1 (0) 1.002 (0.002) 1.005 (0.005) 1.002 (0.002) 1.006 (0.008) 1.013 (0.011) 1.012 (0.013)

g.psi09 0.999 (0.001) 1.001 (0.006) 1.003 (0.009) 1.005 (0.011) 1.015 (0.023) 1.036 (0.036) 1.045 (0.049)

Table 9: The effect of non-diagonal idiosyncratic spectra on Rµ,qml/ts for T = 150.
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Figure 10: The effect of non-diagonal idiosyncratic spectra on Rµ,qml/ts. In this illustration, T
has been fixed to 150 and n varies.
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Figure 11: Simulation with parameters coming from the Stock and Watson data-set. The effect
of strong local cross-dependencies for different n and T .
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Discussion 5.8. (The effects of a non-diagonal spectrum of ξt)

- As in the strict case, absolute performances decrease with the number of factors also in the
case of noise-misspecification. This can be seen by comparing the performances between
models A1, A2 and A3, as well as between models B1 and B2 (see the corresponding tables
in Section A). Figures 12 and 13 also suggest, that the relative performances of TS and
QML over PC increase with the number of static factors. This corresponds to the results
obtained in [17].

- In general, the absolute performances decrease with the degree of cross-sectional depen-
dence for all three estimators. The only exception are cases where the number of variables
is very small (n = 10). It is not clear which effects lead to an increase of absolute perfor-
mance with an increasing ψ.

- The simulation results above suggest a relative advantage of the TS and QML estimator
over the PC estimator if the level of cross-sectional dependence is moderate. This holds
for most models of all types A, B, C. Furthermore it confirms the results of [17], who
simulated models with r = q = 1, 3, e(z) = diag(1 − 0.9z, . . . , 1 − 0.9z) and ψ = 0.537.
Note, that there is also a small number of models, where the PC results are better than
the TS and QML results respectively. They are the ”outlier” cases in the figures shown
above.

- If the degree of dependence (ψ) increases, then especially for models of type A1 (r = q = 1)
and for the cases r > q, the performance advantage decreases, vanishes or even turns into
a disadvantage. This is especially true for the TS estimator. A drop in its absolute
performance can be observed. The picture partially changes for the QML estimator. It
dominates (except for the case r = q = 1) the TS estimator if the local dependence is very
high (but still weak).

- The results from above are confirmed for models where the parameters were estimated
from the Stock and Watson data set (see Figure 11). They also indicate a negative effect
of local dependence on the relative performance advantages of TS and QML over the PC
estimator. Also here, this advantage can even turn into a disadvantage.

- The variation of results is very high for simulations with a small number of different time-
series (n = 10, 25). This is also due to the fact, that the smallest roots of the non-diagonal
and random polynomial e(z) are nearly uniformly drawn from its support (see Tables 1
and 2)38. Especially in this case, no uniform statement about performance advantages can
be made. The negative effect of high local dependencies decreases when the number of
variables increases.

- Interestingly the QML method performs worse than the TS estimator if r = q = 1 and n
is small.

37In their paper, the following statement could be read

”Because of the explicit modelling of the dynamics and the cross-sectional heteroscedasticity, the
maximum likelihood estimates dominate the principal components. . . ” ([17], page 13).

Unfortunately they do not report standard errors (or give reports about significance) for their results.
38If e(z) = diag(e1(z), . . . , er(z)) with ei(z) ∼ U[ai,bi], then the variance of results decreases with the length of

the intervals [ai, bi] and the smaller the number of models considered respectively. This can be seen in Figures 12
and 13.
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To statistically support the negative effect of a strong local dependence on the relative perfor-
mance advantages, one could perform non-parametric (robust) permutation tests (independence
tests). K-Sample independence tests use resampling techniques in order to approximate the
distribution of a test statistic which tests the null hypothesis

H0 : L(y|x) = L(y), (62)

where the random variables x, y may be measured at arbitrary scales and may also be mul-
tivariate. L(y) specifies the random law of y. Here y are the relative performances coming
from different ”groups” y. The groups are then the different noise-specifications and different
levels of cross-sectional dependence. These tests assume, that the group-association (e.g. the
value of ψ) had been selected at random, which was not the case in this simulation. Classical
examples of tests that fit in this setting are the Wilcoxon-Mann-Whitney test (U test, Wilcoxon
rank sum test) [34]. For K different groups, testing whether a classification into groups has a
significant influence on the relative performances can be done by a non-parametric version of
the Kruskal-Wallis test [34], [37].

One could performs tests for every model of different types A, B, C and report the relative
amount of cases, where the null hypothesis that relative performance is influenced or decreases
with the level of local dependence, was rejected. Although such tests had been performed during
analysis, they are not reported, due to the small number of data repetitions (25) for each model.

The effect of static factor process having a long memory

Models with random and diagonal polynomial matrices e(z) were chosen in order to show the
effect of a long-memory static factor process on the estimation results. The specifications can
be seen in Section 5.2. The noise-to-signal ratio was again randomly drawn, i.e. σi ∼ U[0.1,0.9].
If the static factor process has a long memory (also a high number of p, the order of e(z)
achieves this39), then also the observations xt do have a long memory. This leads to poorer
estimates of the covariance matrix 1

TX
′X, which is the basis for the PC-estimator and therefore

the initialization step for the TS- and QML-estimator. Very poor estimates of the static factors
are the consequence (see tables in Section A). Nevertheless, Figures 12 and 13 show a relative
performance gain of the TS- and QML-estimator over the PC-method. The negative effect of
noise-misspecification can be clearly seen for small n, it decreases for larger n. The variance
of relative performances increases when the process has a long memory, especially for the case
r = q = 1. The described phenomena are similar for models where r > q.

The effect of the noise-to-signal ratio on performances

So far, the noise-to-signal ratio had been uniformly drawn from [0.1, 0.9]. The following example
shall demonstrate what happens, if the amount of noise is very high compared to the latent
signal. For this purpose simulation scenarios with constant σi = 0.5, 0.75, 0.9 were set up. By
looking at the absolute performances in Section A, one can observe, that a high noise-to-signal
ratio has a negative effect on the absolute performances of all three estimators. This performance
loss however decreases with the number of different time-series n.

39In fact disadvantages of the QML- compared to the PC-estimator could be observed for models A3 if T = 25.
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Figure 12: The effect of static factors with a long-memory process on the relative performance
of TS compared to PC. Results for the cases where r = q are shown.
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Figure 13: The effect of static factors with a long-memory process on the relative performance
of QML compared to TS. Results for the cases where r = q are shown.
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Figure 14 shows the effect of very high noise-to-signal ratios on the relative performances
of the TS- compared to the PC-estimator. Especially if the latent-signal is very weak, the
TS-estimator performs worse than the PC-estimator. The results are even poorer for the QML-
estimator compared to the TS-procedure.
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Figure 14: The effect of high noise-to-signal ratios on the relative performance of TS compared
to PC. Results are shown for models A2.
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The EM-Algorithm

The following paragraph is devoted to the implementation of the EM algorithm. Table 10 shows
model specifications where the EM algorithm did not work. The last column of this table shows
the relative number of cases40 where the likelihood did indeed decrease (the likelihood could in
fact decrease up to a tolerance level of 0.01 due to numerical considerations). Interestingly also
the model whose parameters where determined from real data (see Section 6) for the parameters
r = 4, q = 2 shows this behavior. This was not the case for the cases where r = 3, q = 2 and
r = 3, q = 3 respectively. Although the models A1 and C1 do have a certain amount of likelihood
decreases, they were not excluded from the analysis. Instead those cases of likelihood decreases
have been deleted from the analysis.

Model Noise spec. q r p psi LI (%)

A1 general 1 1 2 0.5 75.600
A1 general 1 1 3 0.5 75.170
A1 (near unit root) general 1 1 3 0.5 92.480
A1 general 1 1 1 0.5 5.410
B1 general 1 3 2 0.5 12.180
B1 general 1 3 2 0.5 12.880
B2 general 2 4 2 0.5 7.840
B2 (Stock and Watson) general 2 4 1 0.5 53.225
B2 (Stock and Watson) cross-time 2 4 1 0.5 36.400
B2 (Stock and Watson) cross 2 4 1 0.5 32.225
B2 (Stock and Watson) strict 2 4 1 0.5 37.925
C1 (near unit root) general 2 4 1 0.5 5.325
B2 cross 2 4 2 0.5 14.300
B2 strict 2 4 2 0.5 12.210
B1 cross-time 1 3 2 0.5 18.000
B1 cross 1 3 2 0.5 15.530
B1 strict 1 3 2 0.5 23.670

Table 10: Model specifications (see Section 5.2) where the Likelihood decreased during the
EM-Algorithm in more than 5% of the cases.

The number of maximal iterations was set to 25. Although convergence behavior of the
EM algorithm is slow, cases where the maximum number of iterations is greater or equal to 25
are considered as cases of either very slow convergence or cases where no convergence behavior
could be observed. Although it would be interesting to know, no distinction between those two
cases had been made. Their number though is in many cases impressively high. Figure 15 gives
examples of convergence behavior for different models. The empirical distribution of the number
of observations for two different noise specifications (strict and generalized) can be seen. Note
that the graph shows results for simulation settings with different numbers of variables n and
observations T , but nevertheless an overall interpretation can be given.

Models A1 and A3 correspond to the models given in [17]. For the A1 model the number of
iterations never exceeds 10 (if the case n = 5 is excluded). This can also be seen in the first two

40For each model type the simulation has been repeated 625 times.



82 5 SIMULATION STUDY

histograms in in Figure 15. The number of iterations for model A3 varies in their paper between
4 (n = T = 100) and 26 (n = 10, T = 50). To compare those results with my results, Figure 15
is not very useful. A more alarming result is the high number of cases (nearly 6000 cases for
the general and more than 3000 cases for the strict noise specification) where the number of
maximal iterations had been reached.

The number of iterations seems to depend on the noise specification. In general all models,
no matter if r = q or r > q, show a high amount of cases where the number of maximal
iterations had been reached. Figure 15 gives no clear indication that the implementation of the
EM Algorithm is problematic for models where q < r.
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Figure 15: Convergence behavior of EM algorithm for different model configurations. Distinction
between strict noise (s) and generalized noise (g) setting.
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6 Empirical study

The primary purpose of this empirical analysis has been to find parameter settings for the
simulation analysis. In contrast to many other empirical papers [13], the goal is not to do a
forecasting analysis for variables like industrial production, GDP growth or the interest rate.

6.1 The data of Stock and Watson

Description of the data. The data set has been compiled and used by Stock and Watson [50].
The raw data consists of 144 macroeconomic time series observed monthly and quarterly respec-
tively. In total 190 quarters between 1959(III) and 2006(IV ) of data are available. Different
types of data transformations are needed in order to make it stationary. To obtain quarterly
data from the monthly series, averages have been taken. There are no missing observations.

For factor estimation, Stock and Watson suggest in their paper to use only 110 series. This
is done, because some series are related by identities, i.e. an aggregate being the sum of the
subaggregates. It is worth mentioning, that for example in [49], the full data set was taken for
analysis.

The panel data includes real variables, like sectorial industrial production, real investment,
real personal consumption expenditures, employment and hours worked, nominal variables, like
price indices, the oil price, wages, money aggregates, interest rates, asset prices, like S&P’s stock
prices, exchange rates and bond yields, and survey data, like data from NAPM41. A complete
description of the data set can be found in the Data Appendix of [50].

Data transformation. A table with information about univariate data-transformation can
be found in the appendix of [50].

The Great Moderation. A problem with macroeconomic time-series data is the occurrence
of structural breaks which may have an impact on the analysis. Many economists observed,
that the structure of the data has changed in the early 1980’s [41]. Especially the variance of
key macro-economic variables has decreased. Economists call this effect the Great Moderation.
Stock and Watson argued in their paper [50] that structural breaks of small magnitude do
not have a big effect on static factor estimation, although they did not analyze model selection
methods. In the following results are often reported for the whole time frame and for sub-periods
related to the period before and after the Great Moderation respectively.

Testing for wide-sense stationarity. After transforming the data, statistical tests had been
conducted in order to see whether the suggested transformations (see [50], Data Appendix) were
good enough to obtain data coming from a wide-sense stationary process. Univariate tests
like the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and the Elliott, Rothenberg & Stock
unit root test had been performed. The testing procedures revealed two more potentially non-
stationary time series. They were excluded from subsequent analysis.

Descriptive analysis. The most important question is whether there is enough collinearity
in the data in order to apply dynamic factor models. In order to describe comovements among
series, the following relations are helpful

41National Association of Purchasing Managers.
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γx(0) = Lγz(0)L′ + γξ(0), fx(θ) = Lfz(θ)L
′ + fξ(θ), θ ∈ Θ

One can therefore look at the amount of variance of the panel explained by a certain number
of (static and dynamic) factors. The static factors can be estimated by the principal components
of γx(0), whereas dynamic principal components are used as estimates for the dynamic factors
(see [26] for more information).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Static 0.22 0.30 0.34 0.38 0.41 0.44 0.47 0.49 0.52 0.54 0.56 0.58 0.60 0.62 0.63

Dynamic 0.22 0.44 0.65 0.72 0.78 0.84 0.87 0.89 0.92 0.93 0.95 0.96 0.97 0.97 0.98

Table 11: Percentage of total variance (of the observations xit) explained by the first q dynamic
and r static principal components.

As can be seen in Table 11 quite few principal components explain most of the variance
of our 109 variables42. Note that the share of variance of same amount of dynamic principal
components is higher than the share of the same amount of static principal components. This
suggests that the data is not only driven by r static factors, but may be driven by q < r
dynamic factors. This panel of macroeconomic data seems to provide the structural features
that are necessary for factor analysis. The visual inspection of the cumulative relative variances
is however no statistical tool for choosing the unknown model parameters q and r, the numbers
of dynamic and static factors respectively.

6.2 Model selection

Number of static factors. The paper of Bai and Ng [5] describes a procedure (BNg) for
consistently estimating the number of static factors r. They use the penalized least squares
objective function to develop consistent information criteria

IC(r) = lnV (r, ẑr) + r g(n, T ), V (r, ẑr) = min
H∈Rn×r

1

nT

n∑
i=1

T∑
t=1

(xit −Hr
i
′ẑrt )

2

The estimator r̂ = arg min0≤r≤rmax IC(r) is consistent (see [5], Theorem 2), i.e. limn,T→∞ P [r̂ =
r] = 1, if g(n, T )→ 0 and min{n, T}g(n, T )→∞ as n, T →∞. They propose three criteria

IC1(r) = lnV (r, ẑr) + r

(
n+ T

nT

)
ln

(
nT

n+ T

)
IC2(r) = lnV (r, ẑr) + r

(
n+ T

nT

)
ln min{n, T}

IC3(r) = lnV (r, ẑr) + r

(
ln min{n, T}
min{n, T}

)
where ẑr is the PC-estimator assuming that the dimension of the space spanned by the factors

is r. The three information criteria43 are then defined as r̂i = arg min0≤r≤rmax ICi(r), i = 1, 2, 3.

42Note, that the results for the variance explained by dynamic principal components are very sensitive with
respect to the estimation of the spectral density of our observations. Therefore these number need to be consumed
with care. Nevertheless, the pattern is robust with respect to the spectral density estimation technique.

43A deeper analysis that also explains the role of rmax is given in [20] on page 58.
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Full data set 1959–1983 1984–2006
r̂1 4 3 3
r̂2 2 2 1
r̂3 20 20 20

Table 12: Estimates of r, the number of static factors by using the information criteria by Bai
and Ng. Maximum number of static factors is set to 20.

Conclusion: No clear conclusion about the number of static factors is possible. For the
simulation study r̂ = 3, 4 had been selected. The former number is the average between r̂1

and r̂2. This selection follows the recommendation of [20], who proposes to choose the average
between the first two criteria, if the penalty term for the last one was too small.

Number of dynamic factors. Different methods of estimating q have been proposed [6], [1], [31], [9].
All three are consistent for both n and T going to infinity, but their finite sample properties
depend on the DGP (see for example the results in [1]). I therefore apply all three information
criteria to the full and split data. A brief summary shall give a basic feeling of the methods for
determining q.

The criterion of Hallin and Liška [31] Their information criterion is based on the general model (17)
with one-sided filters. Their method is therefore based on more general assumptions and
does for example not need the idea of static factors. The principal idea though is very
similar to BNg, where a penalized least squares objective function needs to be minimized.
Their information criterion depends on the way the spectral density of the process xt is
estimated and is defined for 0 ≤ k ≤ qmax :

ICp(k, ζ) = ln

 1

n

n∑
i=k+1

1

2mT + 1

mT∑
j=−mT

λ̂pi (θj)

+ ζ k p(n, T )

ICc(k, ζ) =
1

n

n∑
i=k+1

1

T − 1

T−1∑
l=1

λ̂ci (ωl) + ζ k p(n, T )

where θj = πj/(mT + 1/2), ωl = 2πl/T and ζ ∈ R+. The subscripts p and c indicate
whether the spectral density fnx has been estimated by lag-window estimation (correlo-
gram) and periodogram smoothing respectively.

The estimator for q is defined for every ζ > 0 as

q̂HLa,ζ = arg min
0≤k≤qmax

ICa(k, ζ), a = p, q

Lemma 6.1 Assume that the double-sequence x can be represented as in Defintion 3.4
with one-sided square summable filters b(z), that xnt is a linearly regular process, i.e.
xnt =

∑∞
k=−∞ ckεt−k, where εt is a full-rank n-dimensional white noise process with finite
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fourth-order cumulants, and
∑

k∈Z |cijk||k|1/2 < ∞ for all 1 ≤ i, j ≤ n. Further assume
weak and strong dependence of the idiosyncratic and the common component respectively.
Finally assume that the first q eigenvalues of the latent spectrum diverge linearly to infinity
and that qmax is chosen such that the qmax + 1-th eigenvalue of the spectral density matrix
of xnt is bounded away from zero. Then

q̂HLa,ζ
p→ q, n, T →∞, ∀ζ > 0

provided that

1. p(n, T )→ 0 as n, T →∞
2. and

- for a = c : min(n,m2
T ,m

−1/2
T T 1/2) p(n, T )→∞

- for a = p : min(n,B−2
T , B

1/2
T T 1/2)p(n, T )→∞

The fact that consistency is guaranteed for every ζ > 0 is used to calibrate finite sam-
ple behavior. Their practical guide to select q consists of calculating the variance of
q̂HLa,ζ (nj , Tj), j = 1, . . . , J over different sample sizes and fixed ζ. As n and T are given
0 < n1 < n2 < . . . < nJ = n and 0 < T1 ≤ T2 ≤ . . . ≤ Tj = T . This sample variance is
simply

S(ζ) =
1

J

J∑
j=1

q̂HLa,ζ (nj , Tj)−
1

J

J∑
j=1

q̂HLa,ζ (nj , Tj)

2

A stability region [ζ1, ζ2] would be an interval, where S(ζ) = 0, ζ ∈ [ζ1, ζ2]. In their
paper they recommend to choose the ζ1 of the second stability region. The reason is
mainly that the first stability region stands for under-penalization (over-estimation of q)
and the higher ζ the more likely over-penalization (under-estimation of q) takes place. By
selecting a ζ the estimator for q is determined. The output of this analysis can be seen in
Figure 16. I used the smoothed periodogram in order to estimate the spectral density and
set nj = n− k · j, Tj = T −m · j, j = 1, . . . , 5, where k = 1, 5,m = 5, 10 depended on how
large n and T where.

The method of Amengual and Watson [1] Their method is based on the information criteria for
the static factors of Bai and Ng. The method assumes that the DGP follows model (24).
In order to estimate q, the model is rewritten to

xt +

p∑
j=1

Lejzt−j︸ ︷︷ ︸
:=yt

= Lb︸︷︷︸
:=K

ut + ξt, L ∈ Rn×q

They apply BNg (see above) to the model yt = Kut+ξt. As yt depends on unknown param-
eters (L) and data (zt), the model selection has to be performed on ŷt = xt+

∑p̂
j=1 L̂êj ẑt−j .

The matrix L and the static factors zt are estimated by principal components, whereas
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Figure 16: Determining q, the number of dynamic factors.

the coefficients ej are the result of an OLS regression44. The last unknown parameter p is
estimated by BIC. The resulting q̂1, q̂2, q̂3 will be denoted by q̂AW1 , q̂AW2 , q̂AW3 respectively.

Lemma 6.2 Under suitable assumptions similar to that of [49], [5]

q̂AWi
p→ q, n, T →∞, i = 1, 2, 3

The criterion of Bai and Ng [6] Their method is based on the same model (24), but they focus
on the eigenvalues of the residual covariance matrix of νt = but. They seek to determine q
by estimating the rank of the variance covariance matrix of the residuals ν̂t. Their analysis
is based on the spectral decomposition of Σ = Eνtν ′t and their consistent estimators are
summarized in Proposition 2. Let 0 ≤ cr ≤ . . . ≤ c2 < c1 be the eigenvalues of Σ and
define

D1,k =

(
c2
k+1∑r
j=1 c

2
j

)1/2

, D2,k =

(∑r
j=k+1 c

2
j∑r

j=1 c
2
j

)1/2

, k = 1, . . . , r − 1

The Nullhypothesis H0 : Σ(k) = Σ, k = q + 1, . . . , r where Σ(k) =
∑k

j=1 cjvjv
′
j and

vj , j = 1, . . . , r are the orthogonal eigenvectors of the spectral decomposition of Σ.

If ẑt is estimated by principal components and Σ̂ = 1
T

∑T
t=1 ν̂tν̂

′
t, then for 0 < mi < ∞

and 0 < δ < 1/2

q̂BNg1 = min{k : D̂1,k < m1/min[n1/2−δ, T 1/2−δ]} (63)

q̂BNg2 = min{k : D̂2,k < m2/min[n1/2−δ, T 1/2−δ]} (64)

44In their paper they argued that Mj = Hej can also be estimated by regressing the the observations xt on
the static factors zt.
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where D̂i,k, i = 1, 2 is computed via Σ̂ and mi as well as δ are determined in Monte-Carlo
simulations, are consistent estimators for q und H0.

In the simulations of Bai and Ng, δ = 0.1 and if the correlation matrix instead of Σ is
used, then m1 = 1.25 and m2 = 2.25. They choose m1 = m2 = 1 when estimating with Σ.

Full data set 1959-1984 1984-2006

Hallin and Liška q̂HL 2 2 2

Amengual and Watson
q̂AW1 2 max max
q̂AW2 2 max max
q̂AW3 3 max max

Bai and Ng q̂BNg1 ∞ ∞ ∞
q̂BNg2 ∞ ∞ ∞

Table 13: Estimates of q, the number of dynamic factors.

Conclusion: The estimators q̂BNg1 , q̂BNg1 did not work out, because the parameters mi were
not large enough. This shows how difficult the determination of model parameters in this case
is. Also for the criteria by Amengual and Watson the maximum number of factors was reached
in few cases. This is indicated by max. I selected q̂ = 2, 3 for the simulations.

6.3 Parameter estimation

The parameter p had been estimated by BIC, the estimation of the integer parameters r, q, p,
the coefficients of the r × r polynomial matrix e(z) and b ∈ Rr×q were estimated by solving
Yule-Walker equations (see Section 4.2). The matrix b is equal eigenvectors corresponding to
the first q eigenvalues of Σν . Because q < r, the minimum norm solution has been chosen in
order to estimate e(z) = (e1, . . . , ep).
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7 Summary and Conclusions

This thesis analyzed the effect of noise-misspecification for three different estimation methods
for the static factors by means of a simulation study. The study was based on the theoretical
framework of generalized dynamic factor models, where high-dimensional observations xt are
decomposed into a latent component χt and an idiosyncratic component ξt. The r-dimensional
static factors zt are linear functions of the latent component, i.e. χt = Lzt.

If one assumes that χt has a rational spectrum with constant rank q ≤ r < n, and that
the dimension r does not depend on n, then for an open and dense subspace of the parameter-
space that corresponds to the state-space realization of the latent process, the static factors
follow a singular vector auto-regressive process. Both, the two-stage (TS) and quasi-maximum
likelihood (QML) estimator are based on the assumption that zt is an autoregressive process.
They compute the estimates by means of the Kalman Filter, which computes the least squares
estimator of zit as a linear function of all available observations xit. The two methods differ in
the way the parameters of the state space model are estimated. The third estimator is based
on the spectral decomposition of the observation covariance matrix. It is the famous principal
component (PC) estimator.

In the generalized setting, the process ξt is assumed to be weak dependent. The TS and
QML estimators are misspecified in the sense that they are based on the assumption that ξt
is a white-noise process with diagonal covariance matrix. It has been shown, that the three
estimators consistently estimate the linear space of the static factors (who are only identified up
to a non-singular transformation) with increasing panel size, i.e. n, T →∞.

The aim of the simulation study was to assess performance differences for the finite sample
case. Performance was measured by the multivariate coefficient of determination. Results show
that for the case where ξt is indeed white noise with a diagonal covariance matrix, both the TS
and the QML estimators outperform the PC estimator in general. This dominance was expected
as the simulation models explicitly modeled the autoregressive dynamics of the static factors.
The relative performance advantages depend negatively on the degree of local cross-sectional
dependence of the idiosyncratic component and the panel size. High local dependence could
neutralize performance advantages, and a very high local dependence could even turn the relative
advantages into disadvantages. The memory of the static factor process, and therefore the ability
to estimate the covariances of the observations well enough, clearly influences the absolute and
the relative performance. Whereas the coefficient of determination decreases drastically, relative
performance advantages increase if the spectrum of zt has poles near the unit circle. If the
variance of the noise is very high compared to the latent signal, estimation of the static factors
becomes more difficult. A very high noise-to-signal ratio even leads to an advantage of the PC
over the TS and QML estimator if the process ξt is weak dependent.

An empirical analysis of a US macroeconomic time-series panel of dimension 194 × 107 for
the years 1960–2006 was carried out in order to estimate authentic parameters for the simulation
study. The high-dimensional time-series seemed to be driven by a 3−4 dimensional static factor
and a 2 − 3 dimensional dynamic factor process. The estimation of these integer parameters
proved to be difficult and inconclusive. Furthermore, for r = 4 and q = 2 the QML estimation
procedure did not work, which could be an indication for structural problems.

The following remarks maybe a starting point for further analysis. This thesis did not take
into account effects of the model selection step, which is a very important point in real data
analysis. It did not achieve to uniformly draw from the stability region of the polynomial matrix
e(z). Furthermore, no misspecification of the process zt, e.g. modeling zt as an ARMA-process,
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was studied, and it did not ask what impact performance differences have on forecasting results.
Other studies tackled that problem concluding that the way future observations are projected
onto this space is more important than the estimation of the linear static factor space (see [13]).
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A Further results

Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6116 0.6257 0.627 0.546 0.557 0.5538 0.4971 0.4945 0.482 0.2371 0.2773 0.2982
n=25 0.6629 0.6721 0.6727 0.6714 0.6742 0.6714 0.6374 0.6361 0.6147 0.5102 0.5085 0.4827
n=50 0.6835 0.6862 0.6856 0.7001 0.6976 0.6964 0.6869 0.6873 0.6847 0.6451 0.6325 0.615
n=100 0.6941 0.6957 0.6958 0.7079 0.7073 0.7062 0.7058 0.7016 0.7015 0.705 0.7031 0.6914
T=50
n=10 0.7805 0.806 0.8168 0.7421 0.7511 0.7461 0.6839 0.6747 0.6605 0.4394 0.4363 0.4226
n=25 0.8387 0.8475 0.8468 0.8247 0.8268 0.8243 0.7957 0.7909 0.7836 0.7346 0.7158 0.6739
n=50 0.8545 0.8583 0.8584 0.8472 0.851 0.8513 0.8341 0.8328 0.8303 0.8225 0.8124 0.7851
n=100 0.8642 0.8669 0.8668 0.8598 0.8614 0.8616 0.8463 0.8451 0.8451 0.8459 0.8429 0.8391
T=100
n=10 0.843 0.8704 0.8749 0.8224 0.8311 0.8263 0.7876 0.7762 0.7637 0.6194 0.5823 0.5334
n=25 0.8984 0.9083 0.9086 0.8954 0.9018 0.9017 0.8875 0.8852 0.8773 0.8633 0.8397 0.7875
n=50 0.916 0.9204 0.9202 0.9144 0.9182 0.918 0.9092 0.9106 0.9099 0.9147 0.9079 0.8903
n=100 0.9244 0.9264 0.9264 0.9233 0.925 0.9249 0.9194 0.9205 0.9197 0.9326 0.929 0.9263
T=150
n=10 0.8686 0.9023 0.9061 0.8465 0.8596 0.8586 0.8348 0.8211 0.8075 0.6417 0.6017 0.5586
n=25 0.9236 0.9356 0.9361 0.9134 0.9193 0.9187 0.9149 0.9139 0.9106 0.8834 0.8659 0.8186
n=50 0.9412 0.9458 0.9458 0.9308 0.9359 0.9358 0.9414 0.943 0.9419 0.9307 0.9219 0.9109
n=100 0.9493 0.9512 0.9512 0.9409 0.943 0.943 0.9494 0.9502 0.95 0.948 0.9489 0.9479

Table 14: Simulation results for model A1. Medians for different noise specifications.
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Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.4931 0.4982 0.4973 0.3876 0.3934 0.3882 0.2564 0.2858 0.3247 0.1021 0.1252 0.2162
n=25 0.5841 0.5896 0.5829 0.554 0.5517 0.5374 0.4093 0.4153 0.4162 0.1011 0.139 0.2633
n=50 0.6184 0.6182 0.6181 0.5936 0.5924 0.5844 0.5536 0.5457 0.5348 0.1076 0.149 0.3013
n=100 0.6332 0.6315 0.6312 0.6196 0.6198 0.6185 0.6371 0.634 0.6312 0.2217 0.2686 0.3756
T=50
n=10 0.7141 0.7143 0.7122 0.622 0.6088 0.5956 0.4591 0.4764 0.4873 0.1773 0.2228 0.3288
n=25 0.7742 0.7802 0.7769 0.7627 0.7577 0.7516 0.6822 0.6696 0.6407 0.1923 0.2658 0.3886
n=50 0.7942 0.7943 0.7938 0.792 0.7949 0.7891 0.7801 0.7714 0.7438 0.2404 0.3053 0.4343
n=100 0.8037 0.8032 0.8027 0.8022 0.8033 0.8007 0.8098 0.8071 0.8061 0.5232 0.5178 0.5229
T=100
n=10 0.8139 0.8153 0.8165 0.7501 0.7499 0.741 0.623 0.6239 0.6041 0.2786 0.3332 0.4167
n=25 0.8699 0.8759 0.8756 0.8661 0.8626 0.8558 0.8218 0.8013 0.7556 0.3484 0.4003 0.4825
n=50 0.8878 0.8918 0.8912 0.8854 0.8856 0.8849 0.8929 0.8822 0.8655 0.5152 0.5188 0.5479
n=100 0.8979 0.8979 0.8976 0.8927 0.8943 0.894 0.9089 0.9079 0.906 0.7962 0.7482 0.6461
T=150
n=10 0.8496 0.8582 0.8579 0.8023 0.8021 0.7932 0.6547 0.6587 0.641 0.3484 0.3791 0.473
n=25 0.9093 0.9139 0.9138 0.906 0.9094 0.9031 0.8575 0.8419 0.803 0.4402 0.4707 0.5264
n=50 0.9249 0.9285 0.928 0.9252 0.9268 0.9265 0.9193 0.9109 0.8961 0.6434 0.6175 0.5846
n=100 0.9322 0.934 0.9338 0.9308 0.9324 0.9323 0.9341 0.9336 0.9318 0.8667 0.8157 0.7022

Table 15: Simulation results of model A1 (continued). Medians for different cross-sectional
dependences.

Noise specification and noise-to-signal ratio
general, ntsr=0.75 general, ntsr=0.9 strict, ntsr=0.75 strict, ntsr=0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.1936 0.2008 0.2126 0.0604 0.0681 0.0782 0.3248 0.3310 0.3413 0.0800 0.0784 0.0815
n=25 0.3849 0.3830 0.3813 0.1144 0.1246 0.1294 0.4943 0.5002 0.5093 0.1901 0.1979 0.2019
n=50 0.4812 0.4723 0.4663 0.2268 0.2338 0.2359 0.5838 0.5924 0.5921 0.3059 0.3124 0.3271
n=100 0.5574 0.5491 0.5333 0.3284 0.3306 0.3327 0.6409 0.6425 0.6453 0.4310 0.4397 0.4436

T=50
n=10 0.4040 0.4026 0.4018 0.0580 0.0697 0.0887 0.5304 0.5741 0.6135 0.2261 0.2455 0.2742
n=25 0.6194 0.6093 0.6041 0.1819 0.1955 0.2159 0.6716 0.6969 0.7045 0.4151 0.4455 0.4871
n=50 0.7207 0.7141 0.7121 0.4110 0.4174 0.4145 0.7469 0.7581 0.7612 0.5511 0.5817 0.5992
n=100 0.7669 0.7595 0.7564 0.5652 0.5607 0.5585 0.7795 0.7817 0.7825 0.6588 0.6753 0.6823

T=100
n=10 0.5475 0.5410 0.5436 0.0779 0.1019 0.1395 0.6635 0.7256 0.7644 0.3975 0.4575 0.5544
n=25 0.7688 0.7623 0.7605 0.3359 0.3641 0.3805 0.7967 0.8234 0.8311 0.6121 0.6765 0.7244
n=50 0.8395 0.8338 0.8296 0.6385 0.6394 0.6359 0.8510 0.8609 0.8623 0.7318 0.7723 0.7880
n=100 0.8733 0.8697 0.8682 0.7573 0.7542 0.7510 0.8789 0.8814 0.8817 0.8086 0.8292 0.8350

T=150
n=10 0.6233 0.6102 0.6056 0.0781 0.1108 0.1501 0.7094 0.7780 0.8072 0.4464 0.5267 0.6431
n=25 0.8083 0.8075 0.8038 0.4132 0.4331 0.4482 0.8355 0.8633 0.8692 0.6679 0.7436 0.7818
n=50 0.8796 0.8766 0.8756 0.7038 0.7141 0.7176 0.8844 0.8952 0.8961 0.7860 0.8314 0.8447
n=100 0.9080 0.9051 0.9033 0.8226 0.8194 0.8189 0.9112 0.9150 0.9148 0.8596 0.8822 0.8848

Table 16: Simulation results for model A1 (continued). Medians for different noise specifications
and noise-to-signal ratios.
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Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.5318 0.5476 0.5577 0.5286 0.5365 0.5296 0.566 0.5681 0.5682 0.6053 0.6029 0.599
n=25 0.6427 0.6534 0.6639 0.6504 0.6548 0.6504 0.6321 0.638 0.6317 0.6255 0.624 0.625
n=50 0.6881 0.6951 0.6984 0.706 0.7097 0.7056 0.6803 0.6848 0.6818 0.6416 0.6425 0.6465
n=100 0.7097 0.7155 0.7169 0.7296 0.7319 0.7282 0.7095 0.7118 0.71 0.6738 0.6788 0.6823
T=50
n=10 0.6506 0.6865 0.7185 0.5913 0.6018 0.6108 0.6364 0.6414 0.6507 0.6828 0.6843 0.6793
n=25 0.7823 0.8054 0.8152 0.758 0.7671 0.7637 0.7253 0.7342 0.7359 0.7126 0.7145 0.7133
n=50 0.8302 0.8416 0.8452 0.8186 0.8268 0.8275 0.7912 0.8004 0.7986 0.7375 0.7427 0.7458
n=100 0.8547 0.8612 0.8625 0.8429 0.8477 0.848 0.8304 0.8348 0.836 0.7922 0.7959 0.7978
T=100
n=10 0.7133 0.7575 0.7931 0.6388 0.6554 0.6669 0.6748 0.6851 0.6897 0.742 0.7459 0.7336
n=25 0.8481 0.8733 0.8823 0.8209 0.8331 0.8388 0.7813 0.7894 0.7919 0.7648 0.7676 0.7641
n=50 0.8951 0.9084 0.9102 0.881 0.8895 0.8919 0.8547 0.8631 0.8647 0.8063 0.8102 0.8114
n=100 0.9176 0.9244 0.9252 0.9057 0.9103 0.9103 0.8968 0.9023 0.9058 0.8558 0.8586 0.8594
T=150
n=10 0.7341 0.786 0.8224 0.6615 0.6744 0.685 0.6901 0.6931 0.7103 0.7656 0.7637 0.7591
n=25 0.8666 0.8959 0.9042 0.8436 0.8594 0.8662 0.7925 0.8051 0.8041 0.7936 0.7894 0.784
n=50 0.9152 0.9285 0.9296 0.9024 0.9132 0.9147 0.8751 0.8862 0.8888 0.8297 0.8325 0.8301
n=100 0.9369 0.9431 0.9431 0.9302 0.9357 0.9362 0.922 0.9295 0.9301 0.8834 0.887 0.8893

Table 17: Simulation results for model A2. Medians for different noise specifications.

Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.7216 0.7354 0.7433 0.7093 0.7189 0.7165 0.7751 0.7725 0.769 0.825 0.8254 0.816
n=25 0.8457 0.8596 0.8689 0.8027 0.8111 0.811 0.8038 0.8092 0.806 0.8551 0.8538 0.8522
n=50 0.901 0.9128 0.9185 0.8648 0.8733 0.8718 0.8388 0.8402 0.844 0.8601 0.8608 0.8582
n=100 0.9318 0.9392 0.9433 0.9108 0.9169 0.9201 0.8923 0.8957 0.8988 0.8622 0.8606 0.8589
T=50
n=10 0.7318 0.7506 0.7668 0.7025 0.7109 0.7163 0.7798 0.7788 0.7762 0.8357 0.834 0.8272
n=25 0.8695 0.8842 0.8949 0.8061 0.8171 0.8177 0.8062 0.806 0.8057 0.8594 0.8596 0.8601
n=50 0.9275 0.9392 0.9457 0.8871 0.8963 0.9032 0.8478 0.8546 0.852 0.8653 0.8628 0.8593
n=100 0.9564 0.9637 0.9654 0.9412 0.9476 0.9532 0.9113 0.916 0.9203 0.8661 0.8634 0.8582
T=100
n=10 0.7306 0.7574 0.7806 0.6957 0.7065 0.716 0.7845 0.7839 0.7834 0.8474 0.8424 0.8298
n=25 0.8787 0.9022 0.9149 0.8101 0.8209 0.8277 0.8004 0.8005 0.7991 0.8736 0.8711 0.8673
n=50 0.9389 0.9542 0.9594 0.8988 0.9111 0.9224 0.8496 0.8536 0.8595 0.8791 0.8767 0.8685
n=100 0.9677 0.9747 0.9767 0.9568 0.9651 0.9678 0.9199 0.9265 0.9312 0.8769 0.8719 0.8663
T=150
n=10 0.7296 0.761 0.7842 0.698 0.7113 0.7185 0.7847 0.7904 0.7863 0.8563 0.8519 0.8406
n=25 0.884 0.9075 0.9194 0.814 0.8262 0.8297 0.807 0.811 0.8076 0.8809 0.8777 0.8734
n=50 0.9445 0.9579 0.9635 0.9059 0.9197 0.9295 0.8542 0.8578 0.86 0.8839 0.883 0.8778
n=100 0.971 0.9782 0.9799 0.9614 0.9687 0.9713 0.9243 0.9306 0.9358 0.8858 0.8806 0.8733

Table 18: Simulation results of model A2 (continued). Medians for different cross-sectional
dependences.
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strict general, ψ = 0.5 general, ψ = 0.75 general, ψ = 0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6569 0.6695 0.6342 0.6699 0.6792 0.6627 0.6652 0.6651 0.6577 0.7145 0.7122 0.7015
n=25 0.8017 0.816 0.7972 0.7954 0.8054 0.7841 0.7577 0.7743 0.7574 0.7275 0.7355 0.7338
n=50 0.8553 0.8651 0.8557 0.8457 0.8537 0.8428 0.8271 0.8354 0.8252 0.7719 0.7802 0.7773
n=100 0.8873 0.8921 0.8871 0.881 0.8847 0.8781 0.8753 0.8825 0.8795 0.8271 0.8311 0.8355
T=50
n=10 0.6959 0.7285 0.7317 0.6646 0.677 0.6844 0.6634 0.674 0.6708 0.7022 0.7037 0.6965
n=25 0.854 0.8787 0.8779 0.8304 0.8499 0.8433 0.7755 0.784 0.7805 0.7354 0.7389 0.736
n=50 0.9046 0.9196 0.9186 0.8982 0.9121 0.9086 0.867 0.8762 0.8781 0.78 0.7891 0.7978
n=100 0.9312 0.9384 0.9394 0.9312 0.9374 0.9376 0.9212 0.9299 0.9329 0.8686 0.8738 0.8766
T=100
n=10 0.7279 0.7773 0.8094 0.668 0.6872 0.7066 0.6459 0.6593 0.6744 0.7042 0.7035 0.7046
n=25 0.8799 0.9098 0.9136 0.8523 0.8723 0.8763 0.7813 0.7943 0.8019 0.718 0.7266 0.7341
n=50 0.9306 0.9452 0.9456 0.9232 0.9352 0.935 0.9005 0.9133 0.9155 0.7865 0.7922 0.7987
n=100 0.9564 0.9635 0.9636 0.9543 0.9605 0.96 0.9511 0.9579 0.9584 0.8962 0.905 0.9144
T=150
n=10 0.7406 0.7951 0.8344 0.6671 0.6853 0.7176 0.6474 0.6607 0.676 0.7061 0.7082 0.7107
n=25 0.891 0.9212 0.9244 0.8647 0.8936 0.898 0.7843 0.7992 0.8098 0.7261 0.7259 0.7291
n=50 0.9406 0.9544 0.9549 0.9354 0.9479 0.948 0.9117 0.9244 0.9275 0.7807 0.7888 0.801
n=100 0.9646 0.9715 0.9717 0.9637 0.9699 0.9698 0.9587 0.965 0.9649 0.9162 0.9258 0.9312

Table 19: Simulation results of model A2 (continued) with estimated parameters from the Stock
and Watson data-set. Medians for different cross-sectional dependences.

Noise specification and noise-to-signal ratio
general, ntsr=0.75 general, ntsr=0.9 strict, ntsr=0.75 strict, ntsr=0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.4970 0.5014 0.4811 0.2550 0.2560 0.2466 0.5245 0.5291 0.5239 0.2787 0.2798 0.2725
n=25 0.6504 0.6402 0.6205 0.2926 0.2860 0.2705 0.6886 0.6922 0.6980 0.3961 0.3958 0.3975
n=50 0.7412 0.7311 0.7101 0.3505 0.3411 0.3144 0.7980 0.7986 0.8012 0.5124 0.5175 0.5255
n=100 0.8032 0.7954 0.7814 0.3984 0.3892 0.3543 0.8733 0.8726 0.8726 0.6431 0.6495 0.6498

T=50
n=10 0.4620 0.4591 0.4517 0.2073 0.1961 0.1819 0.5331 0.5549 0.5869 0.2652 0.2715 0.2759
n=25 0.6348 0.6266 0.6168 0.2556 0.2427 0.2144 0.7261 0.7448 0.7622 0.4135 0.4262 0.4481
n=50 0.7641 0.7560 0.7477 0.3655 0.3481 0.3207 0.8374 0.8464 0.8531 0.5603 0.5727 0.5925
n=100 0.8509 0.8454 0.8405 0.4805 0.4617 0.4308 0.9052 0.9098 0.9123 0.7058 0.7181 0.7271

T=100
n=10 0.4534 0.4536 0.4418 0.1624 0.1560 0.1478 0.5434 0.5819 0.6314 0.2626 0.2748 0.2914
n=25 0.6507 0.6430 0.6393 0.2385 0.2248 0.2007 0.7437 0.7714 0.7928 0.4467 0.4701 0.5000
n=50 0.7932 0.7891 0.7851 0.4037 0.3852 0.3506 0.8497 0.8665 0.8746 0.6082 0.6369 0.6602
n=100 0.8869 0.8846 0.8841 0.5838 0.5717 0.5543 0.9181 0.9250 0.9284 0.7555 0.7758 0.7865

T=150
n=10 0.4511 0.4478 0.4389 0.1480 0.1432 0.1302 0.5468 0.5899 0.6415 0.2727 0.2859 0.3144
n=25 0.6548 0.6508 0.6460 0.2271 0.2134 0.1972 0.7512 0.7850 0.8051 0.4708 0.5000 0.5343
n=50 0.8049 0.8045 0.8043 0.4202 0.4059 0.3883 0.8556 0.8746 0.8823 0.6310 0.6658 0.6926
n=100 0.8985 0.8999 0.9007 0.6346 0.6311 0.6238 0.9215 0.9294 0.9319 0.7740 0.7978 0.8102

Table 20: Simulation results for model A2 (continued). Medians for different noise specifications
and constant noise-to-signal ratios.
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strict general general, ψ = 0.75 general, ψ = 0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.0325 0.0338 0.038 0.0422 0.0439 0.0499 0.0467 0.0468 0.0517 0.0608 0.0604 0.0617
n=25 0.0443 0.046 0.0506 0.0519 0.0522 0.0579 0.0494 0.0512 0.0544 0.058 0.0589 0.0583
n=50 0.0523 0.0536 0.0561 0.0628 0.0648 0.0659 0.0597 0.0612 0.063 0.0559 0.0571 0.0592
n=100 0.0588 0.0601 0.0604 0.068 0.0685 0.0683 0.0672 0.0684 0.0701 0.0622 0.0626 0.0635
T=50
n=10 0.0658 0.0714 0.0837 0.0723 0.0788 0.0882 0.0774 0.0792 0.0847 0.0964 0.0967 0.1022
n=25 0.0926 0.0985 0.1056 0.092 0.0953 0.1014 0.0846 0.0863 0.0917 0.0872 0.0886 0.094
n=50 0.1086 0.1136 0.1175 0.1119 0.1157 0.1182 0.0948 0.0972 0.1033 0.0822 0.0859 0.0935
n=100 0.1199 0.1214 0.1227 0.1261 0.1265 0.1272 0.1108 0.1127 0.1167 0.1014 0.1032 0.1047
T=100
n=10 0.1145 0.1278 0.1567 0.1105 0.1195 0.1326 0.1289 0.1349 0.145 0.1528 0.157 0.1585
n=25 0.157 0.1709 0.1812 0.1405 0.1517 0.1628 0.1383 0.1423 0.1522 0.1522 0.1542 0.1588
n=50 0.1747 0.1839 0.191 0.1727 0.1793 0.1814 0.167 0.174 0.1782 0.1523 0.1548 0.1622
n=100 0.1909 0.1967 0.1981 0.1914 0.1945 0.1964 0.1908 0.1939 0.1979 0.1728 0.1758 0.1787
T=150
n=10 0.1747 0.1959 0.2258 0.1478 0.1575 0.1723 0.169 0.1734 0.1837 0.1995 0.1997 0.2069
n=25 0.217 0.2288 0.2478 0.2015 0.2113 0.2193 0.1877 0.1936 0.2032 0.1987 0.1977 0.2074
n=50 0.2365 0.2481 0.2523 0.2311 0.2383 0.2425 0.2136 0.2192 0.2275 0.2125 0.2135 0.2209
n=100 0.2478 0.2541 0.2563 0.2468 0.2503 0.2518 0.2403 0.2427 0.2456 0.233 0.2345 0.2385

Table 21: Simulation results for model A2 (continued). Medians for processes with a long
memory.

Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.5324 0.5385 0.5422 0.5845 0.5789 0.5774 0.5694 0.5689 0.5657 0.6259 0.6199 0.6122
n=25 0.6317 0.6438 0.6459 0.6519 0.6578 0.6518 0.6322 0.6353 0.631 0.6406 0.644 0.6347
n=50 0.6841 0.6947 0.6979 0.6881 0.6909 0.6892 0.6726 0.6767 0.6733 0.6593 0.6612 0.6618
n=100 0.7132 0.7206 0.7223 0.7177 0.7189 0.7189 0.7091 0.7124 0.7104 0.6814 0.6854 0.6858
T=50
n=10 0.5975 0.6167 0.6508 0.6514 0.6614 0.6671 0.6374 0.6411 0.6351 0.7176 0.7124 0.7093
n=25 0.7367 0.7572 0.7686 0.7481 0.7584 0.7562 0.718 0.7274 0.7248 0.7457 0.7459 0.7432
n=50 0.7981 0.8113 0.8135 0.8038 0.813 0.8136 0.7746 0.7802 0.7859 0.7624 0.767 0.7706
n=100 0.8311 0.8411 0.842 0.8374 0.8421 0.841 0.8236 0.828 0.8326 0.7937 0.796 0.8001
T=100
n=10 0.6557 0.6864 0.7332 0.6791 0.6893 0.7051 0.6695 0.6744 0.6749 0.7501 0.7471 0.7381
n=25 0.8107 0.8403 0.8527 0.7944 0.8112 0.8171 0.768 0.7753 0.7774 0.78 0.7852 0.7815
n=50 0.8728 0.8882 0.8936 0.8664 0.8761 0.88 0.8316 0.841 0.8456 0.8145 0.8177 0.819
n=100 0.9039 0.9122 0.9136 0.903 0.9088 0.9094 0.8848 0.8913 0.8932 0.8545 0.8576 0.8634
T=150
n=10 0.6731 0.7063 0.7575 0.7022 0.7174 0.7255 0.6776 0.6817 0.6871 0.7708 0.767 0.7599
n=25 0.8356 0.8686 0.88 0.8162 0.8322 0.8399 0.7806 0.7916 0.7922 0.7996 0.7985 0.7972
n=50 0.897 0.9134 0.9166 0.8927 0.9035 0.9056 0.8509 0.8604 0.8641 0.8275 0.8308 0.8363
n=100 0.9276 0.9353 0.9368 0.9269 0.9329 0.9336 0.9072 0.9143 0.9181 0.8772 0.8818 0.8893

Table 22: Simulation results for model A3. Medians for different noise specifications.
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Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.7094 0.7191 0.7255 0.7369 0.7394 0.7348 0.814 0.8154 0.8004 0.8845 0.8803 0.8706
n=25 0.8257 0.8376 0.8441 0.818 0.825 0.8189 0.8345 0.8394 0.8325 0.9089 0.907 0.9038
n=50 0.8751 0.8844 0.891 0.8623 0.8675 0.8705 0.8515 0.8574 0.856 0.9112 0.9091 0.9036
n=100 0.9136 0.9211 0.9259 0.8974 0.9036 0.9091 0.8815 0.8877 0.8915 0.9004 0.9007 0.8974
T=50
n=10 0.6927 0.7049 0.7281 0.7234 0.7265 0.7272 0.807 0.8101 0.7964 0.8977 0.892 0.877
n=25 0.8335 0.8554 0.8679 0.8064 0.8133 0.8138 0.8178 0.8202 0.8179 0.9241 0.921 0.9142
n=50 0.8991 0.9121 0.921 0.8702 0.878 0.8862 0.8435 0.8491 0.8527 0.9234 0.9207 0.9139
n=100 0.9399 0.9491 0.9554 0.9209 0.9295 0.9374 0.8891 0.8964 0.9005 0.9122 0.9109 0.9067
T=100
n=10 0.6806 0.7004 0.7225 0.7171 0.7194 0.7212 0.8043 0.8106 0.7908 0.902 0.8982 0.8836
n=25 0.8384 0.8617 0.8823 0.8083 0.8132 0.8216 0.8098 0.8131 0.807 0.9326 0.9303 0.9247
n=50 0.9122 0.9281 0.939 0.8794 0.8918 0.9017 0.8319 0.8395 0.8464 0.9317 0.9291 0.9208
n=100 0.9564 0.9656 0.9695 0.939 0.949 0.9569 0.892 0.8989 0.9076 0.9197 0.9182 0.9149
T=150
n=10 0.676 0.6966 0.7317 0.7133 0.7207 0.7257 0.8063 0.8104 0.7967 0.9073 0.9038 0.888
n=25 0.8443 0.8692 0.89 0.8019 0.8076 0.818 0.8044 0.8077 0.8065 0.9347 0.934 0.9275
n=50 0.9171 0.9344 0.9446 0.8825 0.8939 0.907 0.8286 0.8378 0.8506 0.9376 0.9349 0.9265
n=100 0.9608 0.9705 0.9737 0.9451 0.9559 0.9636 0.8967 0.9039 0.9091 0.9221 0.9201 0.9146

Table 23: Simulation results of model A3 (continued). Medians for different cross-sectional
dependences.
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Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6647 0.672 0.6809 0.7009 0.7052 0.6986 0.7119 0.5886 0.632 0.7787 0.5181 0.5999
n=25 0.7287 0.7511 0.7567 0.7413 0.7903 0.7757 0.7305 0.7187 0.7257 0.7907 0.6553 0.676
n=50 0.7563 0.7776 0.7748 0.7611 0.8331 0.8055 0.7463 0.7799 0.765 0.7973 0.7473 0.7428
n=100 0.7689 0.7937 0.7874 0.774 0.8445 0.8224 0.7654 0.8212 0.806 0.809 0.8203 0.8044
T=50
n=10 0.7607 0.7767 0.804 0.7719 0.7698 0.784 0.791 0.621 0.6786 0.8546 0.4768 0.6065
n=25 0.8367 0.8586 0.8632 0.8322 0.8527 0.8548 0.8271 0.8093 0.8114 0.8661 0.6547 0.74
n=50 0.8678 0.879 0.8801 0.8573 0.8763 0.8713 0.8468 0.8613 0.8605 0.8718 0.8271 0.8361
n=100 0.877 0.8862 0.8865 0.8699 0.8884 0.8841 0.8645 0.8847 0.8819 0.8839 0.89 0.8821
T=100
n=10 0.8173 0.8333 0.8697 0.825 0.832 0.8431 0.8457 0.6724 0.7559 0.9032 0.4522 0.6643
n=25 0.8932 0.9105 0.9156 0.8955 0.9127 0.9157 0.8851 0.8761 0.8802 0.9077 0.692 0.8031
n=50 0.919 0.9283 0.9295 0.9181 0.9317 0.9315 0.914 0.9244 0.925 0.9117 0.8905 0.8954
n=100 0.9294 0.9357 0.9363 0.9294 0.9376 0.9379 0.9315 0.9373 0.9382 0.9292 0.9375 0.9396
T=150
n=10 0.8409 0.843 0.8993 0.8452 0.8489 0.8686 0.8694 0.7031 0.785 0.9158 0.4615 0.6845
n=25 0.9164 0.9351 0.9393 0.9054 0.9241 0.9272 0.9023 0.8993 0.903 0.92 0.7146 0.8261
n=50 0.9415 0.9522 0.9535 0.9314 0.9405 0.9403 0.9321 0.9433 0.9471 0.9268 0.9107 0.9171
n=100 0.9521 0.9576 0.9574 0.9405 0.9474 0.9475 0.9524 0.9575 0.9582 0.9432 0.9525 0.9578

Table 24: Simulation results for model B1. Medians for different noise specifications.
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Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.8283 0.8485 0.8678 0.8716 0.8466 0.8475 0.8593 0.6864 0.7359 0.9412 0.567 0.616
n=25 0.8961 0.9213 0.9289 0.8955 0.9032 0.9092 0.8954 0.8417 0.8543 0.9501 0.6008 0.6895
n=50 0.934 0.9481 0.9526 0.9309 0.9368 0.9452 0.9126 0.9009 0.9089 0.9535 0.7087 0.7788
n=100 0.9507 0.9596 0.9623 0.9473 0.9547 0.9589 0.936 0.9344 0.939 0.9499 0.7991 0.8304
T=50
n=10 0.8356 0.8608 0.8931 0.8798 0.8615 0.8524 0.8752 0.6923 0.7369 0.9507 0.4503 0.5359
n=25 0.9064 0.9391 0.9502 0.9017 0.9153 0.9273 0.9054 0.8638 0.8614 0.9647 0.4622 0.6152
n=50 0.9474 0.9661 0.9705 0.9451 0.956 0.965 0.9252 0.9179 0.9281 0.9669 0.6071 0.7408
n=100 0.9681 0.9764 0.979 0.9636 0.9729 0.9775 0.9491 0.9509 0.9566 0.964 0.7514 0.8061
T=100
n=10 0.8478 0.88 0.9094 0.8828 0.8772 0.8598 0.8984 0.6979 0.7467 0.9586 0.3757 0.5075
n=25 0.9122 0.9499 0.9606 0.9099 0.9255 0.941 0.9235 0.8874 0.879 0.9713 0.3569 0.5866
n=50 0.9558 0.9751 0.9794 0.9495 0.9664 0.9745 0.9426 0.9358 0.9474 0.9746 0.5358 0.7382
n=100 0.9746 0.9852 0.9871 0.9702 0.9819 0.9853 0.9617 0.9648 0.9752 0.9741 0.7296 0.8116
T=150
n=10 0.8516 0.8816 0.9137 0.8865 0.8794 0.8673 0.898 0.7008 0.7414 0.9637 0.3581 0.4919
n=25 0.9144 0.9534 0.9631 0.9121 0.9301 0.9449 0.9275 0.8963 0.8806 0.9735 0.3153 0.5801
n=50 0.9579 0.9782 0.9823 0.9533 0.9703 0.9784 0.9454 0.9424 0.9514 0.9771 0.4855 0.7297
n=100 0.977 0.9876 0.99 0.9732 0.985 0.988 0.9637 0.9689 0.9789 0.9765 0.7091 0.8022

Table 25: Simulation results of model B1 (continued). Medians for different cross-sectional
dependences.

Noise specification and noise-to-signal ratio
general, ntsr=0.75 general, ntsr=0.9 strict, ntsr=0.75 strict, ntsr=0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.5689 0.5443 0.5490 0.3285 0.2274 0.2346 0.6038 0.6272 0.6209 0.3521 0.2846 0.2945
n=25 0.7207 0.7238 0.7220 0.3977 0.3412 0.3218 0.7626 0.8031 0.8049 0.4923 0.4597 0.4803
n=50 0.8146 0.8215 0.8089 0.4804 0.4476 0.4126 0.8503 0.8797 0.8819 0.6407 0.6279 0.6458
n=100 0.8649 0.8668 0.8585 0.5658 0.5543 0.5099 0.9020 0.9234 0.9254 0.7548 0.7482 0.7737

T=50
n=10 0.5605 0.5521 0.5258 0.2715 0.1581 0.1611 0.6171 0.6699 0.6852 0.3549 0.3132 0.3318
n=25 0.7397 0.7525 0.7632 0.3585 0.3196 0.2902 0.7841 0.8437 0.8466 0.5412 0.5592 0.5762
n=50 0.8400 0.8600 0.8588 0.5057 0.5164 0.5001 0.8689 0.9091 0.9089 0.6834 0.7242 0.7420
n=100 0.9025 0.9130 0.9131 0.6601 0.6738 0.6717 0.9212 0.9456 0.9474 0.8006 0.8377 0.8461

T=100
n=10 0.5561 0.5592 0.5499 0.2460 0.1091 0.1298 0.6321 0.7071 0.7310 0.3634 0.3908 0.4190
n=25 0.7456 0.7729 0.7969 0.3566 0.3453 0.3623 0.8025 0.8649 0.8723 0.5625 0.6322 0.6579
n=50 0.8583 0.8884 0.8954 0.5582 0.5930 0.6217 0.8843 0.9267 0.9287 0.7136 0.7819 0.7989
n=100 0.9180 0.9397 0.9428 0.7230 0.7656 0.7770 0.9327 0.9595 0.9599 0.8235 0.8768 0.8840

T=150
n=10 0.5517 0.5542 0.5542 0.2247 0.1037 0.1203 0.6417 0.7182 0.7429 0.3678 0.4147 0.4538
n=25 0.7507 0.7819 0.8168 0.3449 0.3566 0.3957 0.8099 0.8740 0.8792 0.5798 0.6577 0.6839
n=50 0.8635 0.8974 0.9073 0.5731 0.6164 0.6581 0.8918 0.9321 0.9343 0.7254 0.8015 0.8171
n=100 0.9238 0.9470 0.9510 0.7547 0.7996 0.8095 0.9379 0.9633 0.9637 0.8349 0.8911 0.8982

Table 26: Simulation results for model B1 (continued). Medians for different noise specifications
and noise-to-signal ratios.
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strict general, ψ = 0.5 general, ψ = 0.75 general, ψ = 0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6746 0.6964 0.6771 0.7066 0.7132 0.6995 0.7198 0.7134 0.7132 0.7618 0.7428 0.7358
n=25 0.8116 0.8359 0.821 0.8139 0.8214 0.8186 0.8091 0.7994 0.7955 0.7835 0.7652 0.764
n=50 0.8747 0.8866 0.8798 0.8704 0.8767 0.8692 0.864 0.8691 0.8656 0.8153 0.802 0.8031
n=100 0.9019 0.9063 0.9066 0.9011 0.9018 0.9035 0.9012 0.9032 0.8997 0.8548 0.8438 0.8403
T=50
n=10 0.7222 0.7571 0.7604 0.6967 0.7101 0.7209 0.701 0.6766 0.6887 0.7536 0.6971 0.6989
n=25 0.8614 0.8983 0.8973 0.8403 0.8615 0.8678 0.802 0.7892 0.8006 0.7974 0.735 0.7619
n=50 0.9141 0.9318 0.9328 0.9116 0.9279 0.9291 0.8843 0.8941 0.8998 0.829 0.7942 0.8075
n=100 0.9402 0.9486 0.9489 0.9409 0.9486 0.9505 0.9288 0.9425 0.9455 0.8822 0.8724 0.8894
T=100
n=10 0.7415 0.802 0.8305 0.6953 0.6992 0.7336 0.6954 0.6454 0.6798 0.7634 0.6752 0.6902
n=25 0.8899 0.929 0.9317 0.8634 0.8981 0.9068 0.8083 0.7943 0.812 0.8031 0.7146 0.7321
n=50 0.9378 0.9598 0.9603 0.9292 0.9505 0.9526 0.8979 0.9206 0.9318 0.8416 0.7803 0.7961
n=100 0.9641 0.974 0.9741 0.9578 0.9669 0.9679 0.9513 0.9636 0.9664 0.8989 0.9087 0.9329
T=150
n=10 0.7458 0.8199 0.8457 0.694 0.7037 0.7334 0.6884 0.6465 0.6722 0.7698 0.6747 0.6858
n=25 0.8958 0.9364 0.9388 0.8694 0.9099 0.9197 0.813 0.7819 0.816 0.8036 0.709 0.7294
n=50 0.9443 0.9651 0.9654 0.937 0.9576 0.9595 0.9057 0.9329 0.9445 0.8466 0.7704 0.7904
n=100 0.9683 0.9783 0.9785 0.966 0.9759 0.9765 0.9596 0.9724 0.9739 0.903 0.9214 0.9506

Table 27: Simulation results of model B12 (r = 3, q = 2) with estimated parameters from the
Stock and Watson data-set. Medians for different cross-sectional dependences.

Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6019 0.5874 0.6024 0.6278 0.5968 0.6159 0.6511 0.5848 0.6021 0.6988 0.6056 0.6254
n=25 0.6817 0.6807 0.6861 0.6909 0.6981 0.6874 0.695 0.6637 0.6623 0.7155 0.6381 0.6517
n=50 0.7192 0.7273 0.7267 0.7128 0.7378 0.7192 0.7203 0.719 0.7204 0.717 0.6682 0.6818
n=100 0.7361 0.746 0.7446 0.7248 0.775 0.7311 0.7335 0.765 0.745 0.7304 0.7272 0.7308
T=50
n=10 0.7008 0.6728 0.7162 0.7214 0.6419 0.6901 0.7325 0.601 0.6465 0.7804 0.6184 0.6456
n=25 0.7861 0.7995 0.8035 0.8005 0.8005 0.8032 0.7903 0.7117 0.7394 0.8095 0.6526 0.6922
n=50 0.8256 0.8366 0.84 0.8273 0.8429 0.8326 0.8262 0.8072 0.8139 0.8194 0.7013 0.7381
n=100 0.8439 0.8544 0.8572 0.8449 0.866 0.8511 0.8437 0.8555 0.8544 0.8314 0.7908 0.8027
T=100
n=10 0.76 0.7319 0.807 0.7716 0.6806 0.7368 0.7878 0.6242 0.6607 0.8597 0.6222 0.6679
n=25 0.8506 0.8714 0.8773 0.8591 0.8626 0.8692 0.8423 0.7416 0.7832 0.8822 0.6648 0.7308
n=50 0.8913 0.902 0.9043 0.8904 0.9035 0.9038 0.8795 0.8537 0.8716 0.8973 0.73 0.8064
n=100 0.9113 0.9174 0.9186 0.9109 0.922 0.9204 0.9001 0.9057 0.9046 0.9103 0.8649 0.8912
T=150
n=10 0.7809 0.7417 0.835 0.7924 0.6982 0.7675 0.8133 0.6346 0.677 0.8715 0.6237 0.6647
n=25 0.8721 0.8932 0.9009 0.8789 0.8844 0.892 0.8669 0.7613 0.8129 0.896 0.6609 0.7419
n=50 0.9117 0.9238 0.9262 0.9139 0.924 0.9262 0.9053 0.8861 0.9085 0.9138 0.7291 0.8191
n=100 0.9328 0.9379 0.9394 0.9346 0.9437 0.9431 0.931 0.9371 0.941 0.9234 0.8795 0.9131

Table 28: Simulation results for model B2. Medians for different noise specifications.
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Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.7606 0.7569 0.7749 0.7701 0.7276 0.7407 0.8442 0.7668 0.7801 0.9104 0.795 0.8041
n=25 0.8549 0.8689 0.8751 0.8248 0.8093 0.8229 0.8646 0.8133 0.8329 0.9248 0.8262 0.8303
n=50 0.8996 0.9093 0.9145 0.8792 0.8816 0.8896 0.8817 0.8565 0.8621 0.9223 0.8351 0.8465
n=100 0.9279 0.934 0.9369 0.9123 0.9165 0.9209 0.9042 0.8965 0.9046 0.9135 0.8315 0.8464
T=50
n=10 0.7594 0.7569 0.8 0.7513 0.7059 0.7193 0.8415 0.7504 0.7575 0.9232 0.7758 0.7907
n=25 0.8589 0.8821 0.8969 0.8253 0.8096 0.8341 0.8636 0.7955 0.8155 0.9392 0.8059 0.8219
n=50 0.9143 0.9311 0.9387 0.8911 0.8998 0.9099 0.8833 0.8518 0.8683 0.9364 0.817 0.8337
n=100 0.9475 0.9571 0.9607 0.9324 0.9397 0.9461 0.9097 0.9062 0.9227 0.9195 0.8177 0.8372
T=100
n=10 0.7507 0.7603 0.8089 0.7493 0.7011 0.7248 0.8373 0.7461 0.7576 0.9289 0.7638 0.7868
n=25 0.8626 0.8951 0.9169 0.8198 0.8135 0.8385 0.864 0.7943 0.8189 0.9492 0.7974 0.8098
n=50 0.9253 0.9484 0.9553 0.8992 0.9124 0.9276 0.882 0.8463 0.8709 0.9455 0.8036 0.8208
n=100 0.9594 0.9714 0.9743 0.9438 0.957 0.9655 0.9118 0.9111 0.9314 0.9305 0.8108 0.8288
T=150
n=10 0.7497 0.7621 0.8131 0.7478 0.7028 0.7173 0.8434 0.7494 0.7591 0.9304 0.7645 0.7815
n=25 0.8639 0.902 0.9228 0.8231 0.8117 0.8402 0.8612 0.7905 0.8168 0.9516 0.7946 0.8075
n=50 0.9308 0.9536 0.9611 0.9013 0.9185 0.9368 0.88 0.8475 0.8706 0.9491 0.7988 0.8282
n=100 0.964 0.9773 0.9798 0.9484 0.9632 0.9724 0.9114 0.9118 0.9358 0.9325 0.8082 0.8298

Table 29: Simulation results of model B2 (continued). Medians for different cross-sectional
dependences.

Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.5837 0.6245 0.6614 0.677 0.6909 0.7379 0.6164 0.6363 0.6719 0.6885 0.716 0.7458
n=25 0.6924 0.7266 0.7483 0.7677 0.7885 0.8203 0.6911 0.7117 0.7324 0.7534 0.7793 0.7924
n=50 0.7513 0.7721 0.7858 0.8276 0.8466 0.8642 0.7375 0.7541 0.7693 0.796 0.8093 0.8172
n=100 0.7847 0.7966 0.8036 0.8697 0.8798 0.8932 0.7723 0.7849 0.794 0.8238 0.8315 0.8348

T=50
n=10 0.6188 0.6802 0.7361 0.6833 0.7026 0.776 0.6334 0.6536 0.7137 0.6922 0.7324 0.7783
n=25 0.7453 0.7884 0.8089 0.7914 0.8188 0.8582 0.7279 0.7506 0.7903 0.7783 0.8107 0.8355
n=50 0.8026 0.8304 0.8376 0.8567 0.8777 0.8987 0.7821 0.8029 0.8221 0.8313 0.8501 0.8628
n=100 0.8314 0.8457 0.8489 0.8982 0.913 0.9212 0.8197 0.8335 0.841 0.8639 0.876 0.881

T=100
n=10 0.6596 0.7268 0.798 0.7315 0.7662 0.8406 0.6914 0.7106 0.7829 0.7172 0.756 0.8135
n=25 0.7914 0.8406 0.8586 0.8408 0.8719 0.9099 0.7873 0.8108 0.8491 0.8146 0.8512 0.8771
n=50 0.8467 0.8766 0.881 0.9045 0.9268 0.9448 0.842 0.8653 0.878 0.8686 0.8904 0.9008
n=100 0.8732 0.8886 0.8898 0.9406 0.9553 0.9599 0.8745 0.8889 0.8933 0.9 0.914 0.9184

T=150
n=10 0.6889 0.7604 0.8314 0.7427 0.7806 0.854 0.7206 0.7417 0.811 0.7365 0.7788 0.8326
n=25 0.821 0.8707 0.8867 0.8507 0.8856 0.9205 0.8131 0.8348 0.8751 0.8341 0.8688 0.8973
n=50 0.8739 0.9041 0.9071 0.9125 0.9361 0.9521 0.8669 0.8897 0.9013 0.8877 0.9083 0.9209
n=100 0.8994 0.9144 0.9153 0.9479 0.963 0.9671 0.8962 0.9106 0.9138 0.9186 0.9316 0.9361

Table 30: Simulation results for model C1. Medians for different noise specifications.
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Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6142 0.6401 0.6685 0.6911 0.7003 0.738 0.7681 0.75 0.777 0.7842 0.7522 0.7633
n=25 0.6778 0.7082 0.7137 0.7382 0.7554 0.7786 0.7884 0.7641 0.792 0.7932 0.7621 0.774
n=50 0.72 0.7418 0.7451 0.7866 0.8014 0.8127 0.7956 0.7791 0.806 0.7906 0.7662 0.7776
n=100 0.749 0.7592 0.76 0.8183 0.8283 0.8326 0.8223 0.818 0.8352 0.7816 0.7517 0.7721

T=50
n=10 0.6242 0.6522 0.7022 0.7039 0.7215 0.7783 0.7731 0.7491 0.7899 0.8299 0.7922 0.8095
n=25 0.7081 0.7348 0.7593 0.751 0.7681 0.8065 0.7899 0.7413 0.7966 0.8384 0.7997 0.8148
n=50 0.7617 0.7817 0.7937 0.8141 0.8262 0.8464 0.8004 0.7677 0.8102 0.836 0.8027 0.8184
n=100 0.7943 0.8068 0.8107 0.8569 0.8673 0.8802 0.8312 0.8187 0.8506 0.8197 0.7779 0.8105

T=100
n=10 0.6674 0.6961 0.7568 0.7177 0.74 0.7948 0.7945 0.7605 0.8109 0.8645 0.8289 0.8431
n=25 0.7588 0.7869 0.8159 0.7674 0.7864 0.8293 0.8168 0.7498 0.8258 0.8729 0.8304 0.8491
n=50 0.8152 0.8365 0.8481 0.8353 0.8408 0.8736 0.8277 0.7787 0.8424 0.8717 0.8292 0.852
n=100 0.846 0.8582 0.8639 0.8848 0.8918 0.9106 0.8611 0.8384 0.8859 0.8583 0.7998 0.8475

T=150
n=10 0.68 0.7083 0.7708 0.7311 0.7558 0.8168 0.8073 0.7789 0.8302 0.8809 0.8434 0.8574
n=25 0.7738 0.8052 0.8311 0.7815 0.8009 0.8496 0.8312 0.7695 0.8431 0.8893 0.8431 0.8641
n=50 0.8295 0.8505 0.8616 0.8525 0.8553 0.8908 0.8408 0.7928 0.8545 0.8884 0.8435 0.8702
n=100 0.8586 0.8711 0.8748 0.9009 0.9092 0.9269 0.8743 0.8464 0.8974 0.876 0.8077 0.8658

Table 31: Model C1 (continued). Medians for near unit root setting and different cross-sectional
dependences.

Noise specification and noise-to-signal ratio
general, ntsr=0.75 general, ntsr=0.9 strict, ntsr=0.75 strict, ntsr=0.9

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.4361 0.4463 0.4839 0.2770 0.2736 0.2815 0.4487 0.4945 0.5386 0.2561 0.2625 0.2737
n=25 0.5167 0.5315 0.5749 0.3109 0.3430 0.3385 0.6017 0.6585 0.6961 0.3118 0.3346 0.3668
n=50 0.6088 0.6258 0.6253 0.3478 0.3635 0.3416 0.7117 0.7632 0.7807 0.3950 0.4335 0.4802
n=100 0.6776 0.6842 0.6775 0.3799 0.3935 0.3685 0.8079 0.8325 0.8473 0.5309 0.5502 0.6137

T=50
n=10 0.4289 0.4401 0.5168 0.2234 0.2032 0.2172 0.4537 0.5396 0.6552 0.2301 0.2389 0.2970
n=25 0.5434 0.5832 0.6491 0.2552 0.2463 0.2646 0.6440 0.7216 0.7758 0.3312 0.3606 0.4415
n=50 0.6645 0.6894 0.7194 0.3139 0.3276 0.3454 0.7698 0.8326 0.8533 0.4594 0.5009 0.5864
n=100 0.7694 0.7745 0.7848 0.4212 0.4148 0.4265 0.8553 0.8885 0.9052 0.5988 0.6307 0.7083

T=100
n=10 0.4491 0.4575 0.5959 0.2088 0.1613 0.1993 0.4876 0.6034 0.7418 0.2357 0.2751 0.3695
n=25 0.6122 0.6401 0.7249 0.2552 0.2328 0.3132 0.6904 0.7889 0.8412 0.3811 0.4689 0.5842
n=50 0.7393 0.7681 0.8041 0.3807 0.3867 0.4890 0.8085 0.8843 0.9024 0.5383 0.6220 0.7161
n=100 0.8334 0.8544 0.8675 0.5514 0.5592 0.6255 0.8880 0.9342 0.9410 0.6926 0.7504 0.8058

T=150
n=10 0.4615 0.4850 0.6206 0.2159 0.1492 0.2109 0.5071 0.6354 0.7745 0.2487 0.3081 0.4351
n=25 0.6281 0.6733 0.7513 0.2625 0.2410 0.3762 0.7083 0.8167 0.8628 0.4183 0.5286 0.6611
n=50 0.7584 0.7974 0.8308 0.4322 0.4371 0.6150 0.8287 0.9029 0.9178 0.5836 0.6881 0.7612
n=100 0.8621 0.8853 0.8983 0.6060 0.6347 0.7029 0.9029 0.9483 0.9524 0.7269 0.8093 0.8473

Table 32: Simulation results for model C1 (continued). Medians for different noise specifications
and noise-to-signal ratios.
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Noise specification
strict cross cross-time general

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6039 0.6345 0.6626 0.6333 0.6357 0.6705 0.5475 0.551 0.5768 0.6302 0.6598 0.6797
n=25 0.7076 0.7312 0.7464 0.7168 0.7371 0.7575 0.6186 0.6328 0.6544 0.7127 0.736 0.7418
n=50 0.7559 0.7742 0.7855 0.771 0.7871 0.8023 0.6712 0.6845 0.7014 0.7476 0.765 0.7659
n=100 0.7864 0.7984 0.8041 0.804 0.8153 0.8238 0.7031 0.7164 0.7235 0.7693 0.7818 0.782

T=50
n=10 0.6383 0.6811 0.7347 0.6795 0.687 0.7453 0.5977 0.5997 0.6484 0.6729 0.7007 0.7441
n=25 0.7552 0.7938 0.8117 0.7765 0.8006 0.8294 0.6808 0.7002 0.729 0.7698 0.7939 0.8137
n=50 0.8031 0.8275 0.8358 0.8328 0.8544 0.8687 0.7367 0.7556 0.7727 0.8139 0.8344 0.8417
n=100 0.8313 0.8465 0.849 0.8647 0.8788 0.8847 0.7673 0.7844 0.7896 0.8405 0.8536 0.8569

T=100
n=10 0.687 0.739 0.7991 0.7189 0.7228 0.7883 0.6579 0.6558 0.7238 0.7066 0.7271 0.7867
n=25 0.8071 0.8502 0.8639 0.8193 0.8476 0.8812 0.7473 0.7644 0.7989 0.8095 0.8317 0.8564
n=50 0.852 0.8777 0.8822 0.8779 0.9018 0.9143 0.8039 0.8225 0.837 0.8539 0.8707 0.8821
n=100 0.8765 0.8903 0.8917 0.9081 0.9221 0.9262 0.8323 0.8453 0.8498 0.8802 0.8916 0.8956

T=150
n=10 0.7117 0.7613 0.8281 0.7357 0.7408 0.8127 0.6922 0.6917 0.7617 0.7246 0.7509 0.8083
n=25 0.8333 0.8791 0.8904 0.8407 0.8717 0.9072 0.78 0.799 0.8354 0.8261 0.8503 0.8748
n=50 0.8773 0.9035 0.9071 0.9011 0.9259 0.9373 0.8348 0.8558 0.8677 0.8706 0.888 0.8988
n=100 0.9007 0.9145 0.9154 0.9314 0.9457 0.9492 0.8608 0.8737 0.8775 0.8958 0.9075 0.911

Table 33: Simulation results for model C2. Medians for different noise specifications.

Cross-section dependence
ψ = 0.5 ψ = 0.75 ψ = 0.9 ψ = 0.95

PC TS QML PC TS QML PC TS QML PC TS QML

T=25
n=10 0.6991 0.7162 0.7436 0.6667 0.6599 0.6926 0.7374 0.7149 0.7385 0.8215 0.785 0.8023
n=25 0.7755 0.7898 0.8033 0.7118 0.7235 0.7408 0.753 0.7349 0.7588 0.8316 0.8052 0.8115
n=50 0.8172 0.8319 0.8362 0.7486 0.7596 0.7676 0.7663 0.7578 0.7784 0.8288 0.7958 0.8125
n=100 0.8417 0.8476 0.8533 0.7764 0.7841 0.7888 0.7869 0.7884 0.8016 0.8232 0.7964 0.8087

T=50
n=10 0.7169 0.7339 0.772 0.7107 0.697 0.7453 0.7694 0.7346 0.7773 0.8432 0.8017 0.8167
n=25 0.8072 0.8231 0.8476 0.7598 0.7534 0.7916 0.7831 0.7433 0.785 0.8552 0.8119 0.8315
n=50 0.858 0.8764 0.8885 0.801 0.801 0.8252 0.7994 0.7673 0.8107 0.8531 0.8062 0.831
n=100 0.8884 0.8999 0.9047 0.8343 0.8428 0.8539 0.8228 0.8097 0.8411 0.8452 0.7935 0.8233

T=100
n=10 0.736 0.7547 0.8042 0.7556 0.7282 0.7916 0.8035 0.7605 0.8077 0.8696 0.833 0.8441
n=25 0.8384 0.8586 0.8882 0.8065 0.7766 0.8386 0.8151 0.7562 0.8176 0.8823 0.8365 0.8569
n=50 0.8924 0.9131 0.9263 0.8453 0.838 0.8726 0.8354 0.7785 0.8425 0.8803 0.8323 0.8565
n=100 0.9239 0.9361 0.9408 0.8812 0.8833 0.8995 0.8608 0.8355 0.8772 0.8721 0.8096 0.8512

T=150
n=10 0.7459 0.764 0.8172 0.7825 0.7456 0.8229 0.8243 0.7735 0.8272 0.8784 0.8419 0.8544
n=25 0.8528 0.8749 0.9052 0.8349 0.7955 0.8662 0.8354 0.7721 0.8365 0.8915 0.8436 0.866
n=50 0.9086 0.9294 0.9436 0.8713 0.8614 0.8989 0.8563 0.793 0.8637 0.8898 0.8296 0.8633
n=100 0.939 0.9521 0.9557 0.906 0.9076 0.9243 0.8821 0.8531 0.8953 0.8803 0.8066 0.8588

Table 34: Simulation results of model C2 (continued). Medians for near unit root setting and
different cross-sectional dependences.
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B Software

For empirical- and simulation analysis the statistical software R45 was used. An overview of the
functionality of this statistical software in the field of multivariate time series analysis is given
by the Time Series Task View, the Econometrics Task View and the Finance Task View. The
”Views” can be found on the R-homepage.

The author wrote thousands lines of computational and user-interface code. For principal
component analysis the function prcomp, for computing the Kalman smoother, the package KFAS
and for the EM-algorithm, modified code from Shumway and Stoffer was used. The estimation
of the AR-coefficients (e(z), b) of the static factors, was either done by means of the function
ar with the ’yw’ option, or by code of the author in order to calculate the minimum norm
solution of the singular Yule-Walker equations. A brief summary of different R-packages that
implemented the Kalman Filter and -smoother is given by [51]. Shumway and Stoffer provide
R-code on the homepage of their book [48]. The time-series data was generated with the help
of the dse package. This package also supported the author in generating random non-diagonal
stable polynomial matrices e(z). Realizations from multivariate normal distributions have been
generated with the help of the package mvtnorm. In order to compare results and debug the
code respectively, the package R.matlab helped a lot. Tables and figures were produced with
the packages xtable and reshape2 as well as ggplot2 respectively.

The simulations would not have been possible without the kind help of my friend Philip
Dobner, who supported me with computational power.

C Theoretical backups

Remark C.1 (From rational spectral density to Wold representation). Let (xt) be a wide sense
stationary n-dimensional stochastic process defined on Z such that his spectral density f(θ)
exists and rkf = q a.e. on Θ. Then according to Theorem 2.3

f(θ) =
1

2π
w(e−iθ)w∗(e−iθ)

with w(z) being rational and having neither zeros nor poles on {z ∈ C : |z| ≤ 1}. Therefore
w(z) can be expanded for |z| < r, r > 1:

w(z) =

∞∑
j=0

kj z
j , kj ∈ Rn×q.

Every n × q rational matrix of rank q can be written as w(z) = u(z)d(z)v(z), where u and v
are unimodular and d(z) has a diagonal form, with rational functions on the diagonal (see [32],
Lemma 2.4.3). Define

w− = v−1(d′d)−1d′u−1

as a left-inverse of w. Then w− is also causal as it has no poles and zeros in and on the complex
unit circle. Define

45The analysis in [50] was done with GAUSS, whereas the analysis based on the papers [17] and [18] was done
with Matlab.

http://www.r-project.org
http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/Econometrics.html
http://cran.r-project.org/web/views/Finance.html
http://www.stat.pitt.edu/stoffer/tsa3/
http://www.aptech.com/
http://www.mathworks.de/
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εt := w−xt,

then εt is white noise with covariance matrix 1
2π Iq. This can be shown easily with the

transformation theorem for spectral densities. As w− is causal Hx = Hε and because f(·) is
integrable,

∑∞
j=0 ||kj ||2 <∞.

All this leads to the conclusion, that xt = w(z)εt corresponds to a Wold decomposition (see
Theorem 2.2). �

Linear Algebra

Theorem C.2 (Spectral theorem for Hermitian matrices, [35]): Let A ∈ Cn×n. Then A
is Hermitian if and only if there is a unitary matrix U ∈ Cn×n and a real diagonal matrix
Λ ∈ Rn×n such that A = UΛU∗. Moreover, A is real symmetric if and only if there is an
orthogonal matrix O ∈ Rn×n and a real diagonal matrix Λ ∈ Rn×n such that A = OΛO′.

Theorem C.3 (Rayleigh-Ritz, [35]): Let A ∈ Cn×n be Hermitian, i.e. A = A∗, and let the
eigenvalues of A be arranged in decreasing order, i.e. λ1(A) ≥ · · · ≥ λn(A). Then for all x ∈ Cn

λnx
∗x ≤ x∗Ax ≤ λ1x

∗x

λmax = λ1 = max
x 6=0

x∗Ax

x∗x
= max

x∗x=1
x∗Ax

λmin = λn = min
x 6=0

x∗Ax

x∗x
= min

x∗x=1
x∗Ax

Theorem C.4 (Weyl, [35]): Let A,B ∈ Cn×n and let the eigenvalues λi(A), λi(B), and
λi(A+B) be arranged in decreasing order. For each k = 1, 2, . . . , n we have

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B)

Lemma C.5 Let A,B ∈ Rn×n be symmetric matrices. Then the convergence ||A − B|| → 0
implies the convergence of the eigenvalues of A to the eigenvalues of B.

Proof. As all norms are equivalent in euclidean spaces, we can choose ||A−B|| = λmax(A−B).
It follows from Theorem C.4 that λmax(A − B) ≤ λk(A) − λk(B). Theorem C.3 reveals the
relation λi(−A) = −λn−i+1(A) and by using the left inequality of Weyl’s Theorem, λn(B−A) =
−λ1(A− B) ≤ λk(B)− λk(A). We get for k = 1, . . . , n that |λk(B)− λk(A)| ≤ ||A− B|| → 0.
�

Lemma C.6 (see [18], Lemma 1) Let x = (xnt )n∈N be a double sequence of wide sense stationary
processes xnt . For a given n ∈ N, denote Σn

x as the covariance-matrix and Σn
x(θ), θ ∈ Θ as the
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spectral density of xnt . If Assumption (gdfm b) holds, then any eigenvalue of Σn
x belongs to

[2πm, 2πM ], with

m = inf{λmin(Σn
x(θ)), θ ∈ Θ \N}, M = sup{λmax(Σn

x(θ)), θ ∈ Θ \N},

where N is a Lebesgue-nullset. The existence of the nullset is motivated in Remark 3.3.

Proof. See [18], page 197. �

Lemma C.7 For matrices A,U,C, V of correct dimension the following holds:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (65)

This identity is also often called the Matrix Inversion Lemma (MIL).

Definition C.8 (Kronecker Product): Let A = (aij) and B be (m × n) and (p × k) matrices.
Then

A⊗B :=

a11B a12B . . . a1nB
...

...
am1B am2B . . . amnB


is a (mp× nk) matrix and called the Kronecker product or direct product of A and B.

Definition C.9 (Vec operator): Define vec(A) of a matrix A = (a1, a2, . . . , an) ∈ Rm×n as the
stacked columns of matrix A:

vec(A) := (a′1, a
′
2, . . . , a

′
n)′

Lemma C.10 Let A,B,C,D be matrices of suitable dimensions. Then for the Kronecker product
and the vec operator the following rules hold.

1. (A⊗B)′ = (A′ ⊗B′)

2. A⊗ (B + C) = A⊗B +A⊗ C

3. (A⊗B)(C ⊗D) = AC ⊗BD

4. If A and B are invertable, then (A⊗B)−1 = A−1 ⊗B−1

5. tr(A⊗B) = tr(A)tr(B)

6. vec(ABC) = (C ′ ⊗A)vec(B) = (I ⊗AB)vec(C) = (C ′B′ ⊗ I)vec(A)

7. vec(AB) = (I ⊗A)vec(B) = (B′ ⊗ I)vec(A)
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8. If A and B are square matrices with eigenvalues λA, λB, respectively, and associated eigen-
vectors vA, vB, then λAλB is an eigenvalue of A⊗B with eigenvector vA ⊗ vB

9. If A and B are m × m and n × n square matrices, respectively, then det(A ⊗ B) =
det(A)n det(B)m

Proof. Simple calculations using the definitions or see [36], Chapter 4 (eventually Notes and
Further Readings, p. 287). �

Lemma C.11 Consider the partitioned matrix M =

(
A B
C D

)
, where A,B,C,D are matrices of

conformable dimensions. If M and A and D are non-singular, then with S := (D − CA−1B)(
A B
C D

)−1

=

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

Probablity theory

Lemma C.12 Let Z ∼ N (µ,Σ) be anm dimensional random vector andW = AZ+a, where both
A ∈ Rm×k and a ∈ Rm are non-stochastic. If W has full row rank, then W ∼ N (Aµ+a,AΣA′).

Definition C.13 (Multivariate Normal distribution): An n dimensional random vector x with
mean µ and covariance matrix Σ is said to be normally distributed or distributed according to
N (µ,Σ), if there is an affine transformation x = a + Ay, a ∈ Rn, A ∈ Rn×m, where y is an
m ≤ n dimensional random vector, the number of rows of A is n, the number of columns is
equal to the rank of Σ, and where y has a density

(2π)−m/2 det(Q) e−
1
2

(y−ν)′Q−1(y−ν)

Theorem C.14 . Let x be a n-dimensional random vector with mean µ and covariance matrix Σ
which is partitioned according to x = (x1, x2) where x1 is n1-dimensional, x2 is n2-dimensional
and n = n1 + n2. Then µ = (µ′1, µ

′
2)′ and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

If the distribution of x is normal, then the conditional distribution of x1 given x2 = y is
normal with mean µ1 + Σ12Σ−1

22 (y − µ2) and covariance matrix Σ11 − Σ12Σ−1
22 Σ21.

Proof. See [3], Theorem 2.5.1, p. 35. �

Definition C.15 (Order in probability of a sequence of random variables, [43]): Let Zn be a
sequence of random variables, and let cn be a sequence of positive real numbers. We then say
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Zn is at most of order cn in probability, and write Zn = Op(cn), if for every ε > 0 there exists
a constant Mε < ∞ such that P (c−1

n |Zn| ≥ Mε) ≤ ε. We say that Zn is of smaller order in
probability than cn, and write Zn = op(cn), if c−1

n |Zn|
p→ 0 as n → ∞. (The definition extends

to vectors and matrices by applying the definition to each element or, equivalently, to the norm.)
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D Deutschsprachige Zusammenfassung

Verallgemeinerte lineare dynamische Faktormodelle (GDFM’s) dienen der Analyse hoch-dimensionaler
Zeitreihen, wo die Anzahl der einzelnen Zeitreihen relativ groß im Verhältnis zur Stichproben-
größe ist. Sie wurden in Forni et al. (2000), Forni und Lippi (2001) sowie Stock und Wat-
son (2002a) eingeführt, und verallgemeinern lineare dynamische Faktormodelle mit strikt id-
iosynkratischen Fehlern (Geweke (1977)) bzw. kombinieren diese mit verallgemeinerten statis-
chen Faktormodellen (Chamberlain (1983), Chamberlain und Rothschild (1983)). Erfolgreiche
Anwendungsgebiete dieser Modelle sind die Prognose sowie die Strukturanalyse von länderüber-
greifenden disaggregierten Finanz- und makroökonomischen Daten.

GDFM’s erlauben zwar eine schwache Abhängigkeit in den Fehlern, sind dadurch jedoch nur
noch asymptotisch identifizierbar. Diese Diplomarbeit betrachtet drei Schätzmethoden für den
nicht beobachtbaren statischen Faktorprozess, die auf vereinfachten identifizierbaren Modellen
beruhen. Das Ziel dieser Arbeit ist es in einer Simulationsstudie die Rolle der Missspezifika-
tion bei Anwendung der Schätzer im verallgemeinerten Kontext herauszuarbeiten, sowie her-
auszufinden, unter welchen Umständen eine Schätzmethode die andere dominiert. Der Vergleich
im Rahmen einer Simulation ist durch fehlende analytische Aussagen gerechtfertigt. Zwar wurde
in Stock und Watson (2002a) und Doz, Giannone und Reichlin (2008, 2011) gezeigt, dass alle
drei Schätzer den Raum der statischen Faktoren konsistent schätzen, doch gibt es meines Wis-
sens nur ein Paper von Bai (2003), welches die asymptotische Verteilung eines der drei Schätzer
betrachtet.

Die Arbeit ist in vier Teile gegliedert. Im ersten werden GDFM’s definiert und mit Hilfe von
Ergebnissen von Deistler et al. (2010) das Basismodell der Simulation hergeleitet. Der zweite
Teil definiert die drei Schätzer und betrachtet deren Konsistent und Berechnung.

Der principal component estimator (PC-Schätzer) entsteht aus der Spektralzerlegung der
Kovarianzmatrix der Beobachtungen. Er schätzt die Faktoren durch die Berechnung der er-
sten Hauptkomponenten des Beobachtungsprozesses. Der two-stage estimator (TS-Schätzer)
berechnet jene Linearkombination aller Beobachtungen, die den quadratischen Abstand zu den
statischen Faktoren komponentenweise minimieren. Er entspricht also der komponentenweise
orthogonalen Projekten der statischen Faktoren auf den linearen Raum, der von den Kompo-
nenten aller Beobachtungen aufgespannt wird. Berechnet wird dieser durch die Aufstellung
eines Zustandsraum-Modells und die Anwendung der Kalman Filter Rekursionen. Die Param-
eter werden durch die PC-Schätzer sowie die Lösung der Yule-Walker Gleichungen bestimmt.
Der quasi-maximum likelihood estimator (QML-Schätzer) entspricht ebenfalls der orthogonalen
Projektion der statischen Faktoren auf den Raum aller Beobachtungen, jedoch unter anderen
geschätzten Parametern für das Zustandsraum-Modell.

Die Beschreibung der Simulationsstudie, sowie deren Resultate, bilden den dritten Teil
meiner Arbeit. Es wird gezeigt, dass im Falle von white-noise Fehlern mit diagonaler Ko-
varianzmatrix, der zu erwartende relative Vorteil der TS- und QML-Schätzer gegenüber dem
PC-Schätzer eintritt. Kommen die Daten aus einem verallgemeinerten dynamischen Faktor-
modell, welches durch Missspezifikation des Fehlerspektrums gekennzeichnet ist, so geht dieser
Vorteil zurück bzw. verloren, und bei hoher lokaler Abhängigkeit zwischen den idiosynkratis-
chen Komponenten kann er sich sogar in einen Nachteil verwandeln. Ein langes Gedächtnis der
statischen Faktoren hat ebenso Einfluss auf die absolute wie die relative Schätzgenauigkeit, wie
das Ausmaß des Rausch-Anteils am latenten Signal.

Der vierte und letzte Teil betrachtet 107 makroökonomische Zeitreihen der US-Wirtschaft
für den Zeitraum von 1960 bis 2006. Es werden Methoden zur Schätzung der Dimension der dy-



D DEUTSCHSPRACHIGE ZUSAMMENFASSUNG 113

namischen und statischen Faktoren angewendet, sowie die Parameter des Faktormodells aus den
Daten geschätzt. Diese dienen als Grundlage für weitere Simulationsmodelle. In meiner Arbeit
stellte sich heraus, dass durch eine falsche Wahl der Dimensionen (der statischen Faktoren) der
EM-Algorithmus zur Berechnung der QML-Methode nicht mehr funktionierte.

Die Simulationsstudie ist ausbaufähig. Auf die Analyse des Einflusses der Schätzung der
Dimension der dynamischen und statischen Faktoren auf die Schätzgenauigkeit (Einfluss von
Modellselektion) wurde ebenso verzichtet, wie auf eine Missspezifikation der Dynamik der statis-
chen Faktoren. Der Mehrwert dieser Arbeit liegt vor allem in dem Versuch die Schätzmethoden
für einen Großteil der Parameter des Modells zu vergleichen. Weitere Aufgaben für die Zukunft
wären zum Beispiel die Erstellung eines Algorithmus, um gleichverteilt aus dem Stabilitäts-
bereich eines multivariaten Lag-Polynoms des AR-Prozesses der statischen Faktoren ziehen zu
können.
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