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Abstract 

 

The problem of avian fore limb digit homology remains one of the standards in 

EvoDevo research. Various hypotheses have been presented in recent years to 

resolve the apparent contradiction between embryological and paleontological 

evidence. The theories have ranged from excluding birds from the dinosaur clade 

to assuming a hexadactyl tetrapod limb ground state. At the moment there are 

two predominant approaches: the Frame Shift Hypothesis and the Pyramid 

Reduction Hypothesis. While the former postulates a homeotic shift of digit 

identities, the latter argues for a gradual remodeling of digit phenotypes. Here a 

new model is presented that integrates elements from both hypotheses with the 

existing experimental data. We trace the main features of both major hypotheses 

back to a common ontogenetic origin: the reduction of the anterior-most digit. A 

concerted mechanism of molecular expression and developmental mechanics is 

proposed that is capable of shifting the boundaries of hoxD expression as well as 

changing the phenotype of digits. The core of this mechanism is directional cell 

proliferation of digit II to the anterior side, once digit I development ceases. This 

results in an altered position of digit II cells relative to the zone of polarizing 

activity (ZPA) and hence a decreased level of Sonic Hedgehog protein. Since Shh 

is thought to be important in digit specification, this can easily affect digit 

morphology. Sonic Hedgehog also controls the expression of posterior hoxD genes 

in the limb bud. Therefore we assume that the hoxD expression pattern that has 

been shown in bird fore limbs is caused by this very mechanism as well. We 

introduce an alternative digit-reduction scheme that reconciles the current fossil 

evidence with the presented molecular-morphogenetic model. In this work three 

experiments were carried out: one that tried to reverse the digit modifications in 

the fore limb, and two, to deliberately cause them in the hind limb. Bead 

implantations with FGF-8 protein were used to rescue the digit I vestige in the 

fore limb bud. Mitosis inhibitor injections and invasive manipulations were 

applied to ablate hind limb digit I. 3D microCT imaging and alcian blue staining 

of the manipulated limbs revealed that it is possible that one digit takes the place 

and the morphological phenotype of another, if the development of the latter is 
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halted. In situ hybridizations detecting hoxD12 mRNA showed that the 

expression of hox genes also is affected if digits are lost. The integrated 

morphological and genetic evidence supports the proposed hypothesis, since it 

shows that the predicted effects the core mechanism are really inducible in 

embryonic systems. Furthermore the hypothesis also is consistent with currently 

available developmental and paleontological data. 
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Zusammenfassung 

 

In dieser Arbeit wird eines der klassischen Probleme der evolutionären 

Entwicklungsbiologie behandelt: die Homologie der Finger des Vogelflügels. In 

den vergangenen Jahren versuchten verschiedene Hypothesen, den scheinbaren 

Widerspruch zwischen embryologischen und paläontologischen Analysen 

aufzulösen, wobei sowohl in Erwägung gezogen wurde, die Vögel aus der 

phylogenetischen Gruppe der Dinosaurier herauszunehmen, als auch, dass die 

Gliedmaßen der Tetrapoda ursprünglich sechs- oder mehrfingrig waren.  

Zur Zeit sind zwei große Theorien vorherrschend: Die Frame Shift Hypothese 

und die Pyramid Reduction Hypothese. Während erstere eine homeotische 

Verschiebung der Fingeridentitäten Richtung anterior annimmt, geht letztere 

davon aus, dass die drei zentralen Finger durch eine graduelle, morphologische 

Umwandlung den Phänotyp der drei anterioren angenommen haben. In der 

vorliegenden Arbeit wird eine neue Herangehensweise vorgestellt, die Aspekte 

beider Hypothesen sowie aktuelle, experimentelle Ergebnisse integriert. Sowohl 

der morphologische Umbau als auch die veränderten Expressionsmuster 

posteriorer hoxD-Gene sind dieser neuen Theorie nach auf einen gemeinsamen 

Grund zurückzuführen: die Reduktion des anteriorsten Fingers. Es wird ein 

entwicklungsbiologisches Szenario vorgestellt, das molekulare Expression und 

biomechanische Aspekte verbindet. Der Kernmechanismus wäre eine ungleiche 

Zellproliferation, die eine Verschiebung von Finger II Richtung anterior bewirkt. 

Dadurch verändert dieser Finger seine Position relativ zur zone of polarizing 

activity (ZPA) und wird damit auch einem geringeren Niveau des Sonic Hedgehog 

(Shh)-Proteins ausgesetzt. Beim gegenwärtigen Stand der Forschung geht man 

davon aus, dass Shh eine tragende Rolle bei der Spezifizierung der 

Fingeridentitäten spielt, was nahe legt, dass es die Morphologie der einzelnen 

Elemente stark beeinflussen kann. Darüber hinaus ist die Expression posteriorer 

hoxD-Gene in der Extremitätenknospe von Shh abhängig; aus diesem Grund 

nehmen wir hier an, dass auch das Expressionsmuster des Vogelflügels durch 

den erwähnten Mechanismus zu Stande kommt. Des Weiteren wird ein 

evolutionäres Szenario vorgestellt, das den Fossilienbefund mit dem 
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vorgestellten Modell verbindet. Im Rahmen dieser Arbeit wurden Experimente 

durchgeführt, die entweder den hypothetischen Urzustand im Flügel 

wiederherstellen oder die morphologisch-genetischen Veränderungen absichtlich 

im Bein herbeiführen sollten. Dazu wurden entweder Kügelchen, die mit FGF-8-

Protein getränkt wurden, in die Extremitätenknospe eingebracht, um den 

Überrest des ersten Fingers im Flügel fertig zu entwickeln, oder die Entwicklung 

der ersten Zehe wurde durch invasive Manipulation oder Injektion von Mitose 

Inhibitoren verhindert. 3D-Darstellungen mikrotomographischer Scans und 

Alcian Blue-Färbungen belegten, dass es tatsächlich möglich ist, dass ein Finger 

den Platz und den morphologischen Phänotyp eines anderen einnimmt, wenn 

dessen Entwicklung gebremst wird. In situ Hybridisierungen, die hoxD12-mRNA 

nachweisen, ergaben außerdem, dass die Expression von hox-Genen dadurch 

ebenso beeinflusst werden kann. Gemeinsam unterstützen die morphologischen 

und genetischen Ergebnisse die eingeführte Hypothese, da sie eindeutig zeigen, 

dass die vorhergesagten Effekte des Kernmechanismus der Theorie in 

Embryonen tatsächlich induzierbar sind. Ferner wird gezeigt, dass die 

vorgestellte Hypothese mit derzeitigen entwicklungsbiologischen und 

paläontologischen Ergebnissen vereinbar ist. 
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Introduction 

 

Assigning homologies to the digits of the avian fore limb has developed into a 

classic of EvoDevo research (for reviews see 1-4). The problem has its origins in 

the question of the phylogenetic origin and the evolution of birds and has 

persisted for more than 150 years. Because of impressive skeletal similarities, 

the major theory is that birds are descendants of bipedal theropod dinosaurs 

(dromaeosaurs). This theory was proposed - or rather rediscovered - by John H. 

Ostrom5,6 and gained further support by many researchers such as Paul C. 

Sereno7 and Jaques A. Gauthier8. The major support came from the fossil of 

Archaeopteryx lithographica, which combines features of birds and dinosaurs5,6,9. 

 

Contradicting evidence 

 

The major problem with the dinosaurian descent theory is the contradictory 

evidence different disciplines provide for the identity of the three digits in the 

bird wing10-12. The fossil evidence suggests that the digits of the dromaeosaurian 

hand, which closely resembles that of Archaeopteryx7,8, are the anterior ones 

(thumb, index finger, and middle finger or DI, DII, and DIII). The main lines of 

evidence here are the resemblance of the first metacarpal of theropods to that of 

basal, pentadactyl dinosaurs3,8, and the fact that dinosaurs like Herrerasaurus13 

and Eoraptor14, which are considered to represent basal theropods, have two 

reduced or vestigial digits posterior to the three fully developing ones. This 

identification is further supported by the morphology of avian digits7,15. Also, the 

expression patterns of genes of the 5' hoxD cluster in the bird wing resemble the 

ones of DI, DII, and DIII in alligators and mice16-18. 

 

 The morphogenetic development of extant birds, however, suggests identification 

of the digits as DII, DIII, and DIV. The first line of evidence is the so-called 

primary axis19, by which the first skeletal elements that form during limb 

outgrowth are described. The first pre-chondrogenic condensation that is formed 

in the avian autopod is the one of digit DIV, followed by two more on the anterior 



 

side15,20,21. The last digit that is formed is the most anterior one, and therefore a 

likely candidate to be lost first

experimentally by injecting a mitosis inhibitor 

 

 

Figure 1: Different approaches to s
are right fore limbs (a is projected) from dorsal
u = ulna, mc = metacarpal, p = pis
posterior of the fully developing digits (a)
reconstruction of serial sections
expressing zones in the area of digit I and digit V plus a second posterior structure that could be 
a pisiform (d)25. In ostriches (e) the condensations could be visualized with alcian blue staining
f: X-ray micromorphological approaches of samples stained with phosphotungstic acid also 
showed the vestige on the anterior margin of the fore
Metscher).   
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. The last digit that is formed is the most anterior one, and therefore a 

likely candidate to be lost first15. In fact this has already 

experimentally by injecting a mitosis inhibitor into alligator eggs

: Different approaches to show the vestigial digit on the anterior side of the hand
limbs (a is projected) from dorsal. Roman numerals mark digit position

u = ulna, mc = metacarpal, p = pisiform. India Ink injections show avascular zones anterior and
of the fully developing digits (a)23. b shows sections stained with peanut agglutinin, c a 

reconstruction of serial sections24. Whole mount in situ hybridizations were able to detect 
expressing zones in the area of digit I and digit V plus a second posterior structure that could be 

. In ostriches (e) the condensations could be visualized with alcian blue staining
ray micromorphological approaches of samples stained with phosphotungstic acid also 

showed the vestige on the anterior margin of the fore limb (Image by Čapek, Bischof, Pokorny, 

 

. The last digit that is formed is the most anterior one, and therefore a 

already been proven 

to alligator eggs22.  

 
how the vestigial digit on the anterior side of the hand, shown 

Roman numerals mark digit position; r = radius, 
India Ink injections show avascular zones anterior and  

. b shows sections stained with peanut agglutinin, c a 
hybridizations were able to detect sox9 

expressing zones in the area of digit I and digit V plus a second posterior structure that could be 
. In ostriches (e) the condensations could be visualized with alcian blue staining26. 

ray micromorphological approaches of samples stained with phosphotungstic acid also 
limb (Image by Čapek, Bischof, Pokorny, 
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Major support for the DII, DIII, DIV identification came, when a transitory 

condensation anterior of the three developing digits was discovered in bird 

embryos. A condensation on the posterior margin that develops until the 

cartilage stage had already been known27,28. The first approach that was 

successful in finding this anterior condensation, was to inject india ink to the 

limb bud of chick embryos23 to visualize the avascular zones that arise with early 

cartilage formation (Fig. 1a). Shortly that peanut agglutinin staining of 

histological sections of chicken embryonic limbs24 (Fig. 1b) and alcian blue 

staining in ostrich embryos26 (Fig. 1c) were also able to visualize the digit I 

vestige. Finally, whole mount in situ hybridizations with sox9 probes provided 

molecular evidence for the anlage of the anterior-most digit25 (Fig. 1d). 

Discoveries of non-avian maniraptorans with feathers like Protarchaeopteryx 

robusta and Caudipteryx zoui29-31 and recently also of the large basal 

tyrrannosauroid Yutyrannus huali32, support the theropod descent strongly. 

Although the dinosaurian descent of birds is no longer really in doubt, the 

problem of the identity of the avian wing digits remains.  

 

Martín Ramírez used this specific problem as an example of ambiguous 

homology33 (Fig. 2). He introduces the difference between positional and 

compositional characteristics of any given structure in an organism. The first 

marks the location in which the structure is formed - typically relative to other 

structures - the latter describes the features of the structure itself, like 

morphological phenotype or the transcriptome of the cells that contribute to the 

structure. In most cases of homology, corresponding structures can be identified 

in related organisms by these two types of characteristics, even if one is more or 

less derived. In the case of avian digits however positional features identify the 

digits quite clearly as II, III, and IV, whereas compositional information gives 

strong evidence for them being 1, 2, and 3. In order to be able to distinguish 

between these two sets of evidence, identification of digits by means of positional 

information will be referred to with Roman numerals, while Arabic ones will be 

used for compositional nomenclature.  

 



 

Figure 2 modified after 33: Assignin
structure has specific positional and compositional features, which together give identity to it, 
and allow to compare it to homologous structures in other animals. 
be considered homologous to structure X in Organism A. However if compositional and 
positional information are in contradiction with each other no identity can be assigned to the 
structure and finding homologous structures in other animals is difficult. Orga
structure that shares compositional features with structure Y and positional ones with structure 
X. Therefore an unambiguous homology to either structure cannot be assigned. 

 

Different approaches to 

 

The aim of Evo-Devo research t

case especially interesting, because exactly this combination of

(paleontology and embryology) 

this problem does not offer a simple solution

been established in the past. This has 

since more techniques have become available. 

 

Birds have a different descent than dinosaurs

 

This oldest theory had its

Origin and Evolution of Birds

paleontological data concerning digit ide

for excluding birds from the dinosau

more basal archosaurs11. A

mainly based on the argument of the primary axis

unambiguous identification of dig

Therefore the discovery of a digit I vestige
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parsimony. It solved the problem of digit homology, but at the same time had to 

explain the entire mosaic form of 

evolution. With the finding of feathered dinosaurs
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ssigning homologies to structures in different animals
structure has specific positional and compositional features, which together give identity to it, 
and allow to compare it to homologous structures in other animals. Structure Y in animal B can 

considered homologous to structure X in Organism A. However if compositional and 
positional information are in contradiction with each other no identity can be assigned to the 
structure and finding homologous structures in other animals is difficult. Orga
structure that shares compositional features with structure Y and positional ones with structure 
X. Therefore an unambiguous homology to either structure cannot be assigned. 

Different approaches to the problem 

Devo research to integrate data from different fields

pecially interesting, because exactly this combination of

(paleontology and embryology) seems to be impossible in the present case

this problem does not offer a simple solution, a broad variety of hypotheses have 

been established in the past. This has even increased in the last 

since more techniques have become available.  

Birds have a different descent than dinosaurs 

This oldest theory had its main renaissance with Alan Feduc

Origin and Evolution of Birds11. The incompatibility of developmental and 

concerning digit identification is among his prime arguments 

for excluding birds from the dinosaur clade. Instead he suggests a desc

. At that time the identification of the avian digits was 

mainly based on the argument of the primary axis15,20

unambiguous identification of digits in a tetradactyl limb is not possible. 

e discovery of a digit I vestige23-26 was very much in favor of this 

hypothesis. The major flaw of this approach was from the beginning its lack of 

parsimony. It solved the problem of digit homology, but at the same time had to 

explain the entire mosaic form of Archaeopteryx lithographica

evolution. With the finding of feathered dinosaurs29,31,32 

 

 
g homologies to structures in different animals. Typically a 

structure has specific positional and compositional features, which together give identity to it, 
Structure Y in animal B can 

considered homologous to structure X in Organism A. However if compositional and 
positional information are in contradiction with each other no identity can be assigned to the 
structure and finding homologous structures in other animals is difficult. Organism C has a 
structure that shares compositional features with structure Y and positional ones with structure 
X. Therefore an unambiguous homology to either structure cannot be assigned.  

o integrate data from different fields3 makes this 
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in the present case. Since 

a broad variety of hypotheses have 

increased in the last two decades, 

uccia's book The 

. The incompatibility of developmental and 

is among his prime arguments 

Instead he suggests a descent from 

the avian digits was 

20,21, because an 

dactyl limb is not possible. 

was very much in favor of this 

roach was from the beginning its lack of 

parsimony. It solved the problem of digit homology, but at the same time had to 

Archaeopteryx lithographica as convergent 

 however most 



 

12 

 

researchers do not consider a different origin of birds and dinosaurs any longer, 

although attempts were made to explain the fossil feather traces with other 

features than feathers34.   

 

The Axis Shift Hypothesis 

 

This hypothesis was the first approach that explained the embryological data, 

while also considering the broad set of synapomorphies, which link birds to 

dromaeosaurid theropods8,35,36. It was based on the fact that the main evidence 

for identifying bird digits was the primary axis, and that only digits anterior to 

this axis, that usually represents digit IV are formed. Therefore if this axis would 

have shifted in avian evolution and would project through digit III in present day 

birds, this would identify the wing digits as I, II, and III35,37. This was somewhat 

supported by salamander development, in which digit II is the first to be formed 

and not digit IV38, but no such case is known in sauropsids. Furthermore 

Tyrannosaurus had a reduced digit IV, leaving only two fingers35. As another 

piece of evidence for the perturbation in the formation of the avian primary axis, 

Chatterjee35 mentioned that the ulnare usually is a part of the primary axis, but 

is lost in birds28. Finally Garner and Thomas39 pointed out that with the theropod 

hand having reduced digit IV, the only possible digit for the bird primary axis is 

digit III. Therefore an identification as DIV would only be possible by excluding 

birds from theropods. Thus using the primary axis as support for a non-

dinosaurian hypothesis10 would be tautological and lack a clear separation 

between hypothesis, evidence, and conclusion39. Although this hypothesis offered 

a plausible and parsimonious solution to the problem, it is not considered longer 

since the discovery of the digit I vestige23-26, which identified the bird wing digits 

clearly as positions II, III, and IV. However, Wagner3 has pointed out, that it is 

possible, although not very likely, that the digit I element is some kind of pre-

pollex, and the I, II, III assignment could still be correct. 

 

  



 

13 

 

The Frame Shift Hypothesis 

 

The Frame Shift Hypothesis (FSH) was proposed after the ASH but before it was 

ruled out due to DI discovery in avian embryos23-26. Its core assumption is a 

possible dissociation between the formation of a generic structure and its 

identity15. Examples where organ formation does not directly determine organ 

identity40, were the base for this idea3. Whereas previous hypotheses have tried 

to falsify one set of evidence (fossil or developmental) in favor of the other one, 

the FSH assumes that both identifications are correct (1, 2, 3 = II, III, IV). It 

argues that dinosaurs faced a selective pressure to reduce posterior digits, but 

developmental constrains only allowed those digit anlagen that form last to be 

reduced first15, i.e. DI followed by DV38. The frame shift was originally thought to 

have taken place after the reduction from 4 to 3 fingers after Coelophysis41 and 

Torvosaurus42, but before Allosaurus43 branched off15,44. After the finding of the 

ceratosaur Limusaurus inextricabilis45, which displays a tetradactyl fore limb, 

with digit I reduced further than digit IV, the hypothetical frame shift had to be 

moved to a time before the loss of the fourth finger44. To be more precise, it 

argues that digit 5 at position V was lost first, then the frame shift occurred, 

leading to digits 1-4 to be formed at positions II-V with position I being lost; then 

position V would have been reduced again, thereby losing digit 4, leaving a 

tridactyl hand with digits 1, 2, and 3 at positions II, III, and IV44. The major 

advantage of the frame-shift hypothesis is that is does not exclude any kind of 

evidence (paleontological, developmental or morphological). The biggest flaw on 

the other hand is that it has to assume the possibility that a structure can be 

removed from its location, to be formed at another one without losing its identity. 

In support of this it has been suggested that embryological characters, such as 

the digit position should be weighed less than adult morphological ones or gene 

expression patterns, because they reflect the identity of structure to a lesser 

extent46. Another point of critique has been the plausibility of such an 

evolutionary model and the selective pressure that could cause the loss of one 

digit, and at the same time replacing it by another one47. 
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The frame shift faction got molecular support by studies of expression patterns of 

hoxD12 and hoxD1316-18. These were able to show that in the bird hind limb and 

in pentadactyl limbs of mice and alligators the anterior-most digit is the only one 

negative for hoxD12 expression. Also in the bird fore limb the anterior-most digit 

has no hoxD12, but unlike the other examples, it originates from position II and 

not from position I. Following this approach the transcriptome of digit cells has 

been analyzed48. This also showed a linkage between FL D II (anterior-most) and 

HL DI (also anterior-most). However it was not possible to link the other 2 wing 

digits with hind limb digits unambiguously. Furthermore cell labeling showed 

that DIV in the chicken foot is made from cells of the Zone of Polarizing Activity 

(ZPA), whereas the cells of fore limb digit IV segregate early from the ZPA and 

seem to migrate towards the anterior49. 

 

 

The Pyramid Reduction Hypothesis 

 

With the discovery of avascular zones at the position of digit I in chicken and 

ostriches23, the II, III, IV identification was heavily supported, and hence the 

question arose, as to whether it was possible that the theropod ancestors also had 

a bilateral reduced manus and therefore II, III, IV digits23,47. Since the reduction 

of 4 to 3 fingers could have happened by losing V digit and not digit IV, this 

would be possible. Although this would make things a lot easier, the problem is 

that the fossils of Eoraptor and Herrerasaurus, which are considered basal 

theropods, show reduction of both posterior digits7,8,50. Supporters of the Pyramid 

Reduction (PRH) argue that the attribution of these taxa to the theropods is not 

unambiguous47. And even if they are included in the theropod taxon, their 

position within it is not clear47,51. In the initial publication Kundrát et al.23 also 

suggested a mechanism that would be able to derive the Archaeopteryx 

phalangeal formula from the archosaur one. While the archosaur groundstate is 

thought to be DI (2) - DII (3) - DIII (4) - DIV (5) - DV (3), Archaeopteryx could 

have DI (2) - DII (3) - DIII (4) - DV (0) - DV (0), but could also be interpreted as 

DI (0) - DII (2) - DIII (3) - DIV (4) - DV (0). It has been shown that modulating 



 

interdigital bmp signaling

is able to reduce one phalanx from each digit, and therefore a mechanism

that could have caused
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link this fossil to the theropods are hand characteristics

applicable in this case3. 
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Figure 3 (redrawn after Welten et al.
circles compositional features of digits, crosses designate reduced digits. The left column shows 
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normally. The central column shows the theropod trend, where first digit 5 at position VI and 
then digit 4 at position V are lost (e.g., 
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The Polydactylous Hypothesis

 

The most recent hypothesis suggests that the tetrapod ancestor had a six (or 

more) digit limb25. In this c

be DV and DVI and not DIV and DV (Fig. 3). The vestigial state of DI would 

therefore have been the archosaur ancestral condition. Furthermore Welten et al. 

argue that the pisiform or the Element X of b

15 

signaling52 or blocking bmp with a dominant negative receptor

is able to reduce one phalanx from each digit, and therefore a mechanism

d the archosaur central digits to resemble the 

upporters of the Frame Shift also admitted that the 

Eoraptor is problematic, because most apomorphies that 

link this fossil to the theropods are hand characteristics and therefore not 

. Taken this into account, it leaves 

t is in conflict with the Pyramid Reduction 

the most parsimonious approach at the moment

Welten et al.25): the polydactylous hypothesis. Squares mark positional
circles compositional features of digits, crosses designate reduced digits. The left column shows 
the archosaur ancestral condition with position I reduced and the other digits developing 
normally. The central column shows the theropod trend, where first digit 5 at position VI and 
then digit 4 at position V are lost (e.g., Herrerasaurus, Eoraptor, Coelophysis
shows the final dromaeosaur condition (e.g. Deinonychus, Gallus).  

The Polydactylous Hypothesis 

The most recent hypothesis suggests that the tetrapod ancestor had a six (or 

. In this case the vestigial digits of Herrerasaurus

be DV and DVI and not DIV and DV (Fig. 3). The vestigial state of DI would 

therefore have been the archosaur ancestral condition. Furthermore Welten et al. 

argue that the pisiform or the Element X of birds also have been interpreted as a 
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be DV and DVI and not DIV and DV (Fig. 3). The vestigial state of DI would 

therefore have been the archosaur ancestral condition. Furthermore Welten et al. 

irds also have been interpreted as a 
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vestigial DVI, the same has been suggested for the mammalian pisiform54,55. This 

would also make the digit reduction in dinosaurs bilateral again, as would be 

expected20. The authors themselves however pointed out that there is no evidence 

for six or more fingered archosaurs and that also the sox9 expression does not 

give a hint for a more posterior anlage then digit V25.  

 

 

A new approach: the Thumbs Down Hypothesis 

 

None of the current hypotheses is able to explain all of the evidence completely. 

The axis shift hypothesis is the only one that can be ruled out with some 

certainty due to embryological evidence, and excluding birds from dinosaurs is 

very un-parsimonious. Since there is no evidence for hexadactyl tetrapods, the 

prevalent hypotheses at the moment are the Pyramid Reduction and the Frame 

Shift. The first question I asked was, whether one or both can be tested by 

experimental means. This however seems hardly possible, since dinosaur 

embryos are not available and also digits do not tell us their identity voluntarily. 

The next logical point to ask is, what the hand of a bird with 4 or 5 digits would 

look like, and this leads to a new approach to the digit identity question.  

 

The hypothesis presented here argues that the molecular and the morphological 

changes in the avian fore limb are direct consequences of the loss of the anterior-

most digit at position I. Because this effect is thought to be triggered once DI is 

lost, this model is called the Thumbs Down Hypothesis (TDH). 

 

Morphogenetic aspects 

 

The hypothetical key player for this transformation of molecular and 

morphological features is differential cell proliferation and, to a certain extent 

cell migration. At the point in development where the growth of the pre-

chondrogenic condensation at position I ceases or falls behind the others, cells 

that will eventually form the digits II, III, and IV move towards the anterior, to a 
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Figure 4: A shows a hypothetical 
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I ceases at pre-cartilage stage. Posterior is 
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region where they form digit phenotypes 1, 2, and 3 instead. This

biomechanical conditions: if cell populations in the anterior limb 

slowly or stop completely they make way for faster 
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ZPA, which causes a change in the cells' 

Fig 4). It has to be pointed out that this mechanism is 
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hows a hypothetical right fore limb bud of a bird or a theropod with digit I 
developing normally; B shows an actual bird right fore limb bud, where the development of digit 

cartilage stage. Posterior is on the right. The blue region is the ZPA, in the purple 
is expressed, in the turquoise hoxd12 and 13 and in the pink region, 

. Broken white outlines mark projected digits. Blue arrows mark the proliferation shift 
in the growth of the respective digits, their size reflects the strength of the effect. The figure 
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targets a gene that lies quite far upstream. Possible candidates for this could be 

the genes of the 5' hoxD cluster57,58.  

 

Sonic Hedgehog and Hox 

 

In early limb development shh expression requires HoxA or HoxD signaling59. 

For the early limb bud Tarchini and colleagues60 have shown that shh expression 

in the ZPA is activated by the 5' genes of the hoxD cluster - specificaly hoxD10 

and even more important hoxD13, which at that point are expressed only at the 

posterior end of the limb bud, probably due to anterior repression by Gli361. After 

the establishment of the ZPA however, under the influence of Shh a new 

enhancer for the hoxD cluster, the general control region (GCR), is activated57,58. 

This enhancer region affects the 5' most gene strongest, hence hoxD13 is 

expressed throughout the limb bud, while hoxD12 leaves out digit I, and hoxD11 

is even more restricted (for a review of hoxD expression in the developing limb 

see 62). Therefore the hox expression pattern of the chicken fore limb16 - DII lacks 

hoxd12 - can be explained by a larger distance from the ZPA.  

 

Very recently Delpretti et al.63 showed that genes of the posterior hoxD cluster 

have a direct influence on the length of digits and limb segments in general. In 

mutant mice with deletions in hoxD12-10 the length of metacarpals and 

phalanges was reduced to under 90% of the WT length. 

 



 

Figure 5 modified after 57: After the establishment of the ZPA the general control region (GCR) is 
activated under Shh influence. It affects the closest genes strongest, which is indicate
green arrows. Therefore hoxd13
(turquoise) and hoxD11(pink) are far more limited
longer expressed in the limb bud. 
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fter the establishment of the ZPA the general control region (GCR) is 
activated under Shh influence. It affects the closest genes strongest, which is indicate

hoxd13 is expressed throughout the limb bud (purple), whereas 
(pink) are far more limited, hoxD genes that lie even further 3' are no 

expressed in the limb bud.  

Apical Ectodermal Ridge and Zone of Polarizing Activity 

the number of phalanges changes when the transcriptome of 

the cells forming the digit changes. But also a model in which the number of 

phalanges is directly depending on the ZPA is conceivable. The pro

outgrowth is regulated by FGF-8 signaling from the apical ectodermal ridge

for a review of vertebrate limb pattering see 64). Since Shh signaling from 
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This could also be responsible for lower phalanx numbers in digits situated more 

anteriorly. 

 

Compatibility with available data 

 

So far it has been shown that the TDH is consistent with the embryological data 

and to some extend with the molecular results that have been presented in recent 

years (e.g. the hox expression patterns16,18). However, the TDH must also be in 

line with additional data in order to be a viable hypothesis. 

 

Based on previous results70 Vargas and Wagner71 have treated chicken limbs 

with cyclopamine in order to obtain phenotypes with altered digit patterns. 

Cyclopamine is a steroid alkaloid that inhibits the hedgehog pathway by directly 

binding to the Smoothened receptor 72. When they applied cyclopamine between 

Hamburger & Hamilton73 stages 18-21, they achieved anterior digit phenotypes 

at posterior positions: positions III and IV formed digits with D1 and D2 

phenotypes (normally forming at positions II and III). These results are 

consistent with the TDH, and even support it strongly, because cyclopamine 

reduces the activity of the hedgehog pathway (not the actual protein level) and 

therefore shifts the boundaries of hoxD11 (Fig. 4, pink) and hoxD12 (Fig. 4, 

turquoise) towards the posterior71. Thus the digits arising from this region 

encounter the hox and shh environment of their anterior neighbor and 

consequently adopt its fate.     

 

Another study that supports the TDH is the cell labeling and grafting approach 

by Tamura et al.49. They were able to show that in the chicken hind limb and in 

mouse fore and hind limbs DIV is formed by cells that originate from the ZPA, 

while the DIV (D3 phenotype) cells in the chicken fore limb segregate early from 

the ZPA and migrate towards a region in which digit III usually is formed. Since 

this is exactly that kind of cellular anteriorization the TDH is based on, this is 

strong evidence for it.  
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Recently also the transcriptome of the digit cells was analyzed48. It showed a 

strong linkage between fore limb digit II and hind limb digit I (both are the 

anteriormost fully ossifying in the respective limb). However for both other fore 

limb digits the results were not clearly resolvable. FL DIII could not 

unambiguously be linked with either HL DII or HL DIII. The same was true for 

the most posterior fore limb digit. Since the TDH predicts that digit II will be 

affected most by the loss of digit I, due to its directly adjacent position, and that 

the effect has to be smaller for digits further away (Fig. 4, blue arrows), this is 

exactly the result that would be expected. If a homeotic shift would have 

occurred, which would have moved the entire digit frame towards anterior 

phenotypes, all digits should be affected in the same way.  

 

 

Compatibility with the fossil evidence 

 

Beside various molecular results, the fossil evidence has to be taken into account. 

Intriguingly the most recent developmental evidence was interpreted in favor of 

the frame shift48,49,74, whereas the newest fossil findings45 support the pyramid 

reduction44. The main line of argument for the PRH was that the first reduced 

digit was digit I followed by the posterior reduction from four to three fingers47 

(Fig 6, upper row). The FSH in contrast assumed that two digits were lost on the 

posterior side, and then the remaining three digits where shifted in such a way 

that had them formed from more posterior condensations (Fig. 6, lower row).  

 



 

Figure 6: Schematic overview over P
concerning the fossil evidence. Squares with R
with Arabic numerals mark compositional features of the digit. Crosses mark los
asterisks mark strongly altered phenotypes. The blue arrow indicates the hypothetical frame 
shift. The PRH argues that initially digit I was lost in th
posterior digits (e.g., Coelophysis
The FSH assumes the loss of both poster
digits to be formed from the central
Limusaurus, since it has a more strongly
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Coelophysis), afterwards DV is reduced, and the three central digits remain. 
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from being reduced further, and digit I starts to overtake digit IV

reduced until it is finally lost (the situation in Limusaurus). As soon as the DI 

development is lost, the biomechanical aspects comes into play, 

remaining digits to grow further away from the ZPA and therefore 

phenotypes of more anterior digits (Deinonychus, Archaeoptery

reduction scheme is very favorable, because it does not need to exclude fossils 

from the phylogenetic tree in order to work. 

Schematic overview of the updated Frame Shift Hypothesis and
fossil evidence. Squares with Roman numerals mark digit positions, 

rabic numerals mark compositional features of the digit. Crosses mark los
strongly altered phenotypes. The blue arrow indicates

After the discovery of Limusaurus with its strong reduced digit I, the 
Frame Shift had to be predated to the 4 digit state. After the FS position V was 

The thumbs down hypothesis accepts the initial loss of DV and 
partial reduction of DIV (e.g., Herrerasaurus, followed by Coelophysis). But then digit I is 
reduced much faster than digit IV. At the point where digit I is lost completely the 
morphogenetic effect causes the remaining digits to grow more anterior and therefore adopt 

Frame Shift Hypothesis 

The FSH postulates an evolutionary event in which a dissociation between the 

developmental formation of a repeated element (in this case the digits) and the 

subsequent individualization (digit identity) occurs15. This can be
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similar fashion as homeotic changes in the segment identity of Drosophila 

mutants75. Thus digits 1,2, and 3 are formed instead of II, III, and IV. According 

to the TDH no change of identity in a homeotic way happens, but only the 

phenotypic realization of the developmental process is altered. The digit identity 

stays the same. Also the TDH assumes that the patterning of the limb bud, by 

which the digits are laid down, and their morphological realization, are different 

developmental modules in the first place. The latter uses shh signaling and 

differential hox expression, whereas the first essentially is a matter of growth 

and activator-inhibitor interactions76. In our model this effect is a direct 

consequence of the increased distance of DII cells from the ZPA, which in turn is 

directly caused by the loss of digit I.  

 

 

Experiments 

 

As stated before, the problem with many of the established hypotheses is that 

they are not really testable experimentally. Therefore it is important to think of 

experiments that can give support to or falsify the TDH. Generally this is not an 

easy task in developmental biology, since heterochrony and epigenetic 

mechanisms play a major role in animal development. However there are some 

predictions of the TDH which can be tested: 

 

1) If birds would have retained their DI, their DII should not display a D1 

phenotype, hox pattern, and transcriptome. Therefore by reversing DI loss, the 

phenotypic and transcriptomic effects should be reversible.  

 

2) If a tetrapod reduces its DI until complete loss, its DII should adopt a D1 

phenotype, hox pattern, and transcriptome. Therefore by inducing DI loss, the 

phenotypic and transcriptomic effects should be inducible.  

 

  



 

25 

 

Bead implantations 

 

This experiment tries to test prediction 1, that no hox shift would occur if the 

vestigial digit I would develop fully. To rescue digit I, beads soaked with FGF 

protein are implanted into the anterior AER. It has been shown that FGF-8 

signaling from the AER is required to maintain proximo-distal outgrowth77. Also 

it was shown that if the AER is removed, FGFs can replace it and a normal limb 

is built78. In this case, beads soaked with FGF-8 are implanted into stage 27 and 

stage 29 fore limbs. The tetradactyl fore limbs thus obtained are analyzed with 

whole mount in situ hybridizations for hoxD12 and hoxD11. The working 

hypothesis is that the tetradactyl limbs have a DI negative for hoxD12 and a DII 

positive for hoxD12. HoxD11 served as a control since it should in both cases have 

a more limited zone of expression.  

 

Cauterization/Injuring of the AER 

 

To test the second assumption the first toe of the chicken hind limb was ablated. 

This experiment also worked as a backup, in case the bead implantations do not 

lead to a rescued digit I. The loss of hind limb digit I, according to our hypothesis, 

should make digit II negative for hoxD12. To achieve tridactyl chicken hind 

limbs, the anterior hind limb AER of stage 22-24 chicken was be interfered with. 

Two different approaches were tried here: the cauterization of the AER with a 

hot needle, and injuring with a sharpened tungsten needle.  

 

Mitosis inhibition with Cytosin Arabinoside 

 

Another approach to test the second assumption tries to place the experiment in 

a more realistic developmental environment. Instead of specifically interfering 

with the DI anlage, a global approach was tried. It has been shown22 that 

treating alligator embryos with the mitosis inhibitor cytosine arabinoside at the 

correct stage, removes digit I without impairing the development of the other 

digits. Effects of this drug have also been confirmed in chicken embryos79. Recent 
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results also showed that overexpressing the cyclin-dependent kinase inhibitor 

p21cip1, inhibits growth and causes anterior elements to be lost in chicken fore 

limbs80. Therefore the cytosine arabinoside treatment was applied to chick 

embryos of 3 and 4 days of age with the aim to simulate a slower growth rate in 

the limb bud. Depending on the stage and dose this should yield different 

phenotypes. The analysis then was done with hoxD11 and hoxD12 in situ 

hybridizations as well as with morphological staining procedures and 

measurements. 
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Material and Methods 

 

Animals 

 

Embryos of Gallus gallus domesticus (LINNAEUS, 1758) were obtained from 

Schropper Gmbh, Gloggnitz, Austria. They were incubated at 38.5°C and 39.5°C 

in the incubator of the Department of Theoretical Biology, University of Vienna. 

The incubation time was chosen to achieve the respective Hamburger-Hamilton73 

stages for each experiment.  

 

 

Bead Implantations 

 

Preparation of beads 

 

A number of Affi-Gel Blue beads (Bio-Rad 732-6708) was removed from the 

cartridge with tweezers and put to a 100µL drop of PBS. A 2µL drop of FGF-8 

protein (Sigma SRP 4053) was put in the center of a sterile 50mm petri dish, and 

around it about 20 8µL drops of PBS were applied for humidification. Then single 

beads of medium size (about 100µm) were taken from the PBS and first put onto 

the dry petri dish and then transferred to the FGF-8 drop, in order to avoid 

dilution of the protein. About 20 beads were collected in this manner. The petri 

dish was closed and sealed with parafilm, and the beads were soaked overnight 

at 4°C. 

 

Windowing of the eggs and bead application 

 

The eggs were incubated for 5 or 6 days to Hamburger Hamilton stage 27 or 29 

respectively. The eggs were windowed according to Korn & Cramer81. First they 

were cleaned with 70% ethanol and candled with a lamp to locate the embryo. 

Then a piece of tape (about 1x1cm) was placed on the acute end. The shell was 
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damaged with dissecting scissors and the egg membrane was pierced with a 

0.7mm needle, 3-4ml of albumin were removed. A larger piece of tape was applied 

to the top of the egg (about 3x2cm) and a window of about 1x1cm was cut into the 

shell.  

 

1ml of Chicken Ringer Solution (see Appendix) with 1% penicillin-streptomycin 

(Sigma P0781) was added to the egg. The solution was prewarmed to 40°C.  

Sterilized tungsten needles were used to open the amniotic membrane and to 

cause a wound in the anterior side of one fore limb bud. A bead was picked up 

from the FGF-8 drop and pushed into the wound with forceps or with a tungsten 

needle. After surgery the chick embryos were further incubated until stage 35. 

Beads soaked with PBS instead of FGF-8 were used as negative controls.  

 

 

 

Cauterization 

 

For the cauterization of the anterior AER the eggs were grown to Hamburger-

Hamilton stage 22-2473. The eggs were candled and windowed in the same way as 

for the bead implantations. The amnion was opened with tungsten needles. The 

anterior part of the AER was damaged with a 0.6mm needle, that was heated 

with a flame. After surgery the chick embryos were further incubated until stage 

35. 

 

 

Mitosis Inhibition 

 

The eggs were incubated at 39.5 °C for 3 or 4 days to the Hamburger Hamilton73 

stages 16-25. The egg surfaces were cleaned with 70% ethanol. After the embryo 

had been located by candling, the egg shell was cautiously cut with a metal saw 

blade. The egg membrane was not hurt, so that the shell could be removed with 

the subjacent membrane staying intact. A drop of Chicken Ringer Solution (no 
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antibiotic added) was placed on top of the membrane. A small hole was made at 

the acute end of the egg, and about 1ml of albumen was removed with a 0.7mm 

needle. After the embryo sunk down, the egg membrane was opened and the 

embryo was staged.  

 

Cytosine beta-D-arabinofuranoside (Sigma C1768) in 200µl Chicken Ringer 

Solution was then injected to the yolk through the hole at the acute end. Both 

openings were then sealed again with Leukofix. The cytosine arabinoside was 

diluted to a stock of 50mg/ml, and this was further diluted to between 1:10000 

and 1:200. Therefore between 1µg and 50µg of the drug were delivered with a 

200µl injection. After surgery the chick embryos were further incubated until 

stage 35. After the appropriate dose and the approximate time point that yields 

the required phenotype were roughly determined, a series of injections of the 

same dose was done. Every hour two eggs were injected, starting at 91 hours of 

incubation ending at 99 hours. This was done to pinpoint the correct time point of 

injection more accurate. This was extended later to the period from 100-120 

hours. Eventually the incubation temperature in this experiment was dropped to 

38.5°C as well in order to stretch the critical phase of digit development a little.  

 

 

Alcian Blue staining 

 

The Alcian Blue staining procedure was based on a protocol by Yamazaki et al.82. 

For a detailed protocol see Appendix. The chickens were fixed in 3.7% 

formaldehyde in PBS for 1 hour at room temperature. They were then stored in 

70% ethanol over night at 4°C. The samples were stained with Alcian Blue in 

70:30 Ethanol:Acetic Acid for 6-16 hours. After a couple of rinses in 70% ethanol 

they were rehydrated to water and subsequently macerated in 2% KOH for 4 

hours. The samples were transferred in a graded series from KOH to Glycerol (4 

steps, each 8-24 hours). Eventually they were photographed and stored in 

Glycerol.   

 



 

30 

 

Whole Mount In Situ Hybridization 

 

The in situ hybridizations were done according to a protocol from Cepko/Tabin 

lab, which I received from Christine Hartmann (Institute of Molecular Pathology, 

Vienna). It was again slightly modified. A detailed protocol can be found in the 

Appendix.  

 

RNA extraction and Cloning 

 

Chicken embryos of stages 24, 27, 29, and 35 were collected in sterile Eppendorf 

tubes. The head was removed and the rest was frozen with liquid nitrogen and 

stored at -80°C. The tissue of all 4 samples was homogenized with an RNAse free 

plunger and transferred to one tube. 250µl of the blended homogenized tissue 

were transferred to a fresh Eppendorf tube and 750µl TRIzol-Reagent (Invitrogen 

15596-026) were added. The mixture was again homogenized by pipetting. After 

5 minutes the liquid was transferred to a Phase Lock Gel Tube (5 prime 

2302820), 200µl of chloroform were added and the samples were mixed by 

shaking. After 3 more minutes they were centrifuged for 15 minutes at 4°C with 

12,000 x g. The aqueous phase was transferred to a new tube the rest was 

discarded. 500µl of Isopropanol were added, after incubation for 10 minutes at 

room temperature the samples were centrifuged at 12,000 x g for 10 minutes at 

4°C. The supernatant was discarded the remaining RNA pellet washed twice 

with 75% Ethanol. To do that 1 ml of ethanol was added, the sample was 

vortexed briefly and then centrifuged for at 7,500 x g 5 minutes at 4°C. After the 

second wash the pellet was air dried 10 minutes under the fume hood. The RNA 

was resuspended in RNAse free water and heated to 55°C for 5 minutes. 

Subsequently it was stored at -80°C.  

 

cDNA was synthesized by reverse transcription with SuperScript III (Invitrogen 

18080-044) for 60 minutes at 50°C (for reaction recipe see Appendix). The 

reaction was terminated by raising the temperature to 75°C for 15 minutes. 
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Subsequently a PCR with gene-specific primers was performed and the results 

checked on a 1% Agarose in TAE-buffer Gel.  

 

The PCR products were ligated into the pGEM-T easy II vector (Promega A1380) 

for 1 hour at room temperature and over night at 4°C (for the detailed recipe see 

Appendix). The vectors with the ligated insert were transformed into competent 

E.coli bacteria, which were spread out on agar plates containing ampicillin and 

incubated over night at 37°C (the protocol can be found in the Appendix). Six 

colonies of each plate were picked and stirred into 5µl of water; before that a 

small scratch was made on a new agar plate with ampicillin, the colonies and 

scratches were labeled correspondingly. For each clones 2 PCR reactions were 

performed using Phusion Flash High Fidelity Master Mix (Finnzymes F-548S) to 

check the direction of the insert (for the recipe see the Appendix). Both used the 

same gene specific primer and one that binds to a promoter site (T7 or SP6) for 

RNA polymerase.  

 

One clone per gene was selected and picked into 5ml of LB medium with 

ampicillin and incubated over night at 37°C in a shaker. The plasmids were 

harvested using a Qiagen QIAprep Spin Miniprep kit (Qiagen 27104) and stored 

at -20°C. Eventually the inserts were sequenced with T7 and SP6 primers and 

aligned to hoxD11 and hoxD12 mRNA sequences (downloaded from NCBI, 

accession numbers: NM_204620 & NM_205249), using the plasmid editor ApE 

from University of Utah (http://biologylabs.utah.edu/jorgensen/wayned/ape/). 

 

Probe synthesis 

 

First the insert of the respective plasmid was amplified with PCR using T7 and 

SP6 primers for sox9 probes and M13 primers for hoxD probes (for the recipe see 

Appendix). The products were run on a 1% agarose-TAE-gel. The correct bands 

were cut out and purified using Qiagen Gel Extraction kit (Qiagen 28704). The 

purified DNA then was used as template for the digoxygenin labeling. For this an 

in vitro transcription was performed(for the recipe see Appendix) with a DIG 
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RNA Labeling Mix (Roche) for 6 hours or overnight at 37°C. The product was 

cleaned up with Qiagen RNeasy MinElute Cleanup kit (Qiagen 74204). 

Alternatively 0.5µl of TurboDNAse (Invitrogen AM2238) was added and 

incubated for 15 minutes at 37°C. Thereafter 10µl nuclease-free water and 10µl 

of 7M Lithium chloride was added and the RNA was precipitated overnight at -

20°C. On the next day the probe was centrifuged at 14,000 rpm for 20 minutes at 

4°C and washed twice in 75% Ethanol. After air drying the RNA pellet was re-

suspended in 50µl of RNAse-free water, and 1µl was run on a agarose gel. The 

concentration was determined by nanodrop measuring. The probes were diluted 

to 50ng/µl with hybridization buffer and stored at -20°C.   

 

In situ Hybridisation 

 

Chicken embryos of 5, 6, or 8 days of age were fixed overnight in 3.7% 

formaldehyde at 4°C. They were then washed in methanol and stored in fresh 

methanol at -20°C. The embryonic membranes were dissected away in methanol 

and they were bleached in 3% H2O2 in Methanol to inhibit endogenous peroxidase 

activity. Thereafter the samples were rehydrated in a graded series to PBT (PBS 

+ 0.1%Tween 20). The embryos were digested with Proteinase K in PBT for 15 

minutes. The concentration was 20µg/ml for stage 27 samples, 30µg for stage 29 

and 60µg for stage 35 chicken. The digest was stopped with glycine and the 

specimens were refixed in 4% paraformaldehyde. The samples were then 

transferred to hybe-buffer and incubated between 1 and 4 hours at either 70°C. 

Thereafter the hybe-buffer was replaced with one that included RNA probes and 

the samples were incubated overnight or over weekend at 60 or70°C. On the next 

day the samples were washed thrice in washing solution I at 60 or 70°C and 

thrice in washing solution three at 55 or 65°C for raising the stringency.  

 

Antibody detection 

 

After that they were washed three times in TBST and then blocked in TBST + 

10% heat-inactivated sheep serum. A horse-radish peroxidase labeled anti-
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digoxygenin antibody (abcam ab6212) was diluted 1:5000 in TBST + 1% heat-

inactivated sheep serum. The samples were blocked between 1 and 6 hours and 

then incubated with the antibody over night at 4°C on a rocker. They were 

washed in TBST the next day at room temperature and over night at 4°C. On the 

next day they were transferred to water and washed a couple of times. 

 

Colour reaction 

 

Since the antibody was conjugated with horse-radish peroxidase instead of 

alkaline phosphatase, in order to be also able to precipitate silver nitrate83, 

diamino-benzidine (DAB) (Zymed 00-2013) was used instead of NBT/BCIP as a 

staining substrate. The samples were incubated 3-5 minutes in the solution and 

thereafter washed with water. Eventually they were transferred to glycerol.  

 

 

Imaging 

Photography of Mounted Samples 

 

Samples were transferred to Glycerol and mounted on microscopy slides. They 

were then analyzed with a Zeiss Imager.A1 microscope with 5x Magnification. 

Pictures were taken with ProgRes Mac CapturePro software. Image Processing 

was done using GIMP.  

 

MicroCT Scans 

 

Additionally some samples were scanned with microCT, in order to have 3D 

images of the limbs. The specimens were stained with 0.3% (w/v) phosphotungstic 

acid (PTA) in 70% ethanol or 1% (w/v) iodine in 100% methanol (I2M) for 16-24 

hours to enhance the contrast, which is otherwise weak in non-mineralized 

embryonic tissue84,85. They were then rinsed with 70% ethanol or 100% methanol 

respectively and mounted in pipette tips in 0.5% agarose. The samples were 
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scanned with a Xradia MicroXCT scanner with the source set to 40keV and 

100µA. Reconstructions were performed with the Xradia software, 2D image 

processing of the image stacks with ImageJ. The 3D processing, volume 

rendering and surface rendering was done with Amira.   

 

 

  



 

Results 

 

Bead Implantations 

 

This approach had the aim

implanting a bead soaked with FGF

for two reasons. First the lethality among the embryos was far to

single one survived until stage 35 and only one

the first night after surgery. The second point is that the injury f

implantation was very close to the site of interest, i.e. digit I and II, and therefore 

the surgery could possibly 

 

The one embryo that lived until day 7 was stained with P

microCT. The scan clearly showed an effect of the FGF

limb was lacking a condensation in the r

Instead a condensation in the interdigital mesenchyme 

visible.          

 

Figure 8: 3D image of a microCT scan of a
of stage 31 (7 days old). Roman numerals mark the digits
digits, whereas the treated one
more distal than the normal digit II condensation would be. 
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had the aim to rescue the vestigial digit I of the avian fore 

implanting a bead soaked with FGF-8 protein. This was given up after some time 

. First the lethality among the embryos was far to

until stage 35 and only one until day 7. The majority died in 

the first night after surgery. The second point is that the injury f

very close to the site of interest, i.e. digit I and II, and therefore 

possibly interfere directly with digit growth. 

embryo that lived until day 7 was stained with PTA and scanned with 

microCT. The scan clearly showed an effect of the FGF-8 protein. 

limb was lacking a condensation in the region where DII usually forms (Fig. 8). 

sation in the interdigital mesenchyme anterior of digit 

 
microCT scan of a bead implanted (left) and an unimplanted (right)

of stage 31 (7 days old). Roman numerals mark the digits. The untreated limb bud shows three
the treated one shows only two digits plus a third condensation that is situated 

more distal than the normal digit II condensation would be.  

 

igial digit I of the avian fore limb by 

was given up after some time 

. First the lethality among the embryos was far too high. Not a 

until day 7. The majority died in 

the first night after surgery. The second point is that the injury from the bead 

very close to the site of interest, i.e. digit I and II, and therefore 

TA and scanned with 

protein. The treated 

egion where DII usually forms (Fig. 8). 

anterior of digit III was 

bead implanted (left) and an unimplanted (right) limb 
. The untreated limb bud shows three 

plus a third condensation that is situated 
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Ablation of hind limb digit I  

 

The cauterization experiments did not alter the digit phenotype of the embryos. 

Neither cauterizing the anterior AER with a hot needle, nor injuring it with the 

tungsten needle were able to ablate digit I. The survival rate in this experiment 

was about 50%. All specimens were examined, but none showed digit reduction. 

 

 

Mitosis inhibition experiment  

 

The first step in this experiment was to determine the correct dose and time 

point for the mitosis inhibitor injections. The first set of embryos (labeled A1-

A20) was injected at stages 16-18, when the limb bud was just starting to form. 

The injection doses were 5, 10, 15, and 20µg of cytosine arabinoside in chicken 

ringer solution. Except one all embryos died, without any significant post-

injection-growth. The one sample that survived did not show any interesting digit 

phenotype, so it is possible that the injection did not hit the yolk, and therefore 

had no effect. For the next series (labeled B1-B20) more subtle doses were used: 

1, 2.5, 5, and 10 µg, and three samples were injected with Ringer solution only. 

This time the drug caused an effect. The weight of the treated embryos decreased 

as the injected dose increased (Fig. 9).  

 

The samples of this injection series did not display reduction of entire digits but 

only distal phalanges were reduced (Tab. 1). It also was interesting that neither 

the fore limbs nor hind limb digit I showed any reductions. Reductions were 

limited to the more-phalanxed digits of the hind limb. The next series was 

injected at stage 20 and generally showed the same picture. The animals became 

smaller if the dose was higher, and no digits were reduced. The next series 

labeled D, was injected at a later time point, when they reached stage 25. Since 

the embryos are larger at this stage, higher doses were injected: 10, 20, 30, 40, 

and 50µg. Ringer Injections were used as controls. 
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Figure 9: showing the correlation between the weight of the samples and the injected dose of 
series B. The weight is measured in g, while the injected dose' unit is µg. Although the embryos 
were incubated for the same time, some were rather stage 18 (blue rhombuses) and some stage 
19 (pink triangles). The general trend is that the weight decreases with increasing injection 
dose, but the sample size is too small to show this clearly. Also the stage at the time of injection 
has a major influence.   

 

 

Table 1: Results of the analysis of the B-series. Stage was determined after Hamburger and 

Hamilton73. The unit of the dose is µg, weight is measured in grams. The phalanx formulas go 

from anterior to posterior. 

 

Sample Stage Dose Weight Hind Limb Fore Limb 

B2 18 2.5 1.34 2-2-3-4 1-2-1 

B3 18 1 1.60 2-3-4-5 1-2-1 

B5 18 5 1.22 2-2-3-4 1-2-1 

B6 19 1 1.50 2-3-4-5 1-2-1 

B8 19 2.5 1.56 2-3-3-4 1-2-1 

B9 19 10 1.30 2-2-3-4 1-2-1 

B10 18 Ringer 1.20 2-3-3-4 1-2-1 

B12 19 Ringer 1.66 2-3-3-4 1-2-1 

B13 18 1 1.50 2-3-3-4 1-2-1 

B15 19 2.5 1.66 2-3-3-4 1-2-1 
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Interestingly, this time the mortality was almost 75%

control samples. However among the survivo

phenotypes (Fig. 10). The embryos with injections of 40 and 50µg reduced most of 

the autopod (Fig. 10B), leaving only two

injected with 10µg reduced all phalanges o

development of the other digits visibly

the same dose did not alter the phenotype at all. 

 

 

 

Figure 10: Three phenotypes of t
injected with 10µg. B shows the typical phenotype of 40 & 50µg samples, most of the autop
reduced, only two metatarsals can be seen. C also shows an embryos injected with 10µg, D IV is 
severely reduced. All are right hind limbs from dorsal.

 

Because of the high mortality, this approach was repeated, but the injections 

were done at stage 24 r

determined: usually an injection of 10µg will not lead to 

and injections of 30µg or higher lead to strong reduction of the autopod and are 

therefore not of any use for this experiment. Furthermore the combined data of 

series D and E showed connection

the embryo better, than the previous samples did (Fig. 11). 

contained another sample with reduced digit IV, but this was one injected with 
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this time the mortality was almost 75%, including both Ringer 

owever among the survivors there were som

The embryos with injections of 40 and 50µg reduced most of 

, leaving only two metatarsals. Also one of the samples 

injected with 10µg reduced all phalanges of digit IV, without impairing the 

development of the other digits visibly (Fig 10C). Another sample

the same dose did not alter the phenotype at all.    

: Three phenotypes of the D-series. A shows the regular wild type pattern of a
injected with 10µg. B shows the typical phenotype of 40 & 50µg samples, most of the autop

als can be seen. C also shows an embryos injected with 10µg, D IV is 
t hind limbs from dorsal. Scalebar is 1mm.  

Because of the high mortality, this approach was repeated, but the injections 

were done at stage 24 rather than 25. In this series E two things could be 

determined: usually an injection of 10µg will not lead to a phenotype at this stage 

and injections of 30µg or higher lead to strong reduction of the autopod and are 

any use for this experiment. Furthermore the combined data of 

series D and E showed connections between the injected dose and the we

the embryo better, than the previous samples did (Fig. 11). 

contained another sample with reduced digit IV, but this was one injected with 

 

, including both Ringer 

were some interesting 

The embryos with injections of 40 and 50µg reduced most of 

als. Also one of the samples 

f digit IV, without impairing the 

Another sample injected with 

 

ype pattern of a sample 
injected with 10µg. B shows the typical phenotype of 40 & 50µg samples, most of the autopod is 

als can be seen. C also shows an embryos injected with 10µg, D IV is 

Because of the high mortality, this approach was repeated, but the injections 

two things could be 

a phenotype at this stage 

and injections of 30µg or higher lead to strong reduction of the autopod and are 

any use for this experiment. Furthermore the combined data of 

between the injected dose and the weight of 

the embryo better, than the previous samples did (Fig. 11). Also this series 

contained another sample with reduced digit IV, but this was one injected with 
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20µg. After that it was clear that the correct dose for reducing specific digits – if 

possible at all at that stage – had to be between 10µg and 30µg. Therefore the 

next 2 series (F and G) were injected 15, 17.5, 20, and 25µg of the drug. F was 

injected slightly later than G (102hours vs. 96 hours).  

 

 
 

Figure 11: showing the correlation between the weight of the samples and the injected dose of 
series D and E. The weight is measured in grams, while the injected dose unit is µg. The trend 
that the bodyweight decreases with increasing cytosine arabinoside dose is here clearer than in 
sample B (Fig. 9).  

 

In general the samples of the F and G series showed that the injection of 20 and 

25µg usually is still too much. Most of the samples had the autopod reduced too 

strongly. In the F-series a couple of samples again displayed the reduction of 

digit IV to one phalanx plus the metatarsal. Among the G embryos there were 

more diverse phenotypes: one embryo had digit III reduced, in such a way that 

only half of the metacarpal was left (Fig. 12C); in another one the same applied to 

digit IV, and digit III was bent to the posterior side (Fig. 12D). The most 

interesting sample had two different reductions: both legs had digit IV reduced in 

the usual manner, but on the left leg only the metatarsal of digit I was left. The 

adjacent digit II was bent towards anterior and lacked one phalanx (Fig. 13). 

This sample was also dehydrated, stained with PTA, and scanned with microCT. 

However, the treatment seemed to be too harsh after the alcian blue staining 

procedure, because shrinking and warping made the effect rather difficult to 

recognize (Fig. 13C.).  
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Figure 12: samples G4 (A & C), injected with 15µg, 
fore, C and D hind limbs. A shows that DI is reduced completely. In C D
of the metatarsal only and the phalanges of DII have taken the place of DIII. D shows a strong 
DIV reduction only the majority of the metatarsal is left
occupying DIV space. Scalebar is 1m

 

 

 

Figure 13: The most exciting p
acquisition of D1 phenotype by DII in the left hind limb
be seen adjacent to digit II (black 
reduced one phalanx, in comparison to the right leg
Roman numerals mark digit positions. Scalebar is 1mm.
The digits are surface-rendered the general limb form is volume rendered with limited 
transparence, greyish Blue is DI, pink DII, turquoise DIII and purple DIV
visible, but not as strong as it is in the microscopic image (A).
white arrow. D shows a normal hind limb, the general limb form is outlined by a semi
transparent volume rendering the digits are surface
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), injected with 15µg, and G6 (B & D), with 17.5µg. A and B show 
fore, C and D hind limbs. A shows that DI is reduced completely. In C DIII is 

metatarsal only and the phalanges of DII have taken the place of DIII. D shows a strong 
DIV reduction only the majority of the metatarsal is left, DIII is bent to the left, probably also 

calebar is 1mm. 

The most exciting phenotype of the G-series showed a reduction of DI
of D1 phenotype by DII in the left hind limb (A). Only the metatarsal is left and can 

black arrow). Also digit II is bent further towards anterior and has 
reduced one phalanx, in comparison to the right leg (B). A is a mirror image
Roman numerals mark digit positions. Scalebar is 1mm. C shows a 3D image of the same sample. 

rendered the general limb form is volume rendered with limited 
reyish Blue is DI, pink DII, turquoise DIII and purple DIV. T

visible, but not as strong as it is in the microscopic image (A). The vestigial DI is indicated 
white arrow. D shows a normal hind limb, the general limb form is outlined by a semi
transparent volume rendering the digits are surface-rendered.   

 

 

and G6 (B & D), with 17.5µg. A and B show 
III is reduced to the half 

metatarsal only and the phalanges of DII have taken the place of DIII. D shows a strong 
, DIII is bent to the left, probably also 

 

eries showed a reduction of DI and a partial 
. Only the metatarsal is left and can 

I is bent further towards anterior and has 
is a mirror image of a left hind limb. 

C shows a 3D image of the same sample. 
rendered the general limb form is volume rendered with limited 

The bent away DII is 
The vestigial DI is indicated by the 

white arrow. D shows a normal hind limb, the general limb form is outlined by a semi-



 

In most of the cases the for

entirely (Fig. 12A). In the next two series all samples were injected with 15µg (H) 

or 17.5µg (I) respectively. The injections were made from

incubation, two embryos per time point. 

looked most interesting, 

showed a fusion between digits I and II, and a mixed phenotype, in that

separate late from the main limb (like DII) but in a rather orthogonal angle (like 

DI). Additionally this sample has lost the metatarsal of

metatarsal is bent towards anterior. M

reduction of distal DIII elements. The space and phenotype of DIII is then taken 

by digit DII, and DIV develops rather normal here. It also is remarkable tha

none of the drug-treated limbs displays the joints in the CT images as clearly as 

the wild type does.  

 

Figure 14: 3D images of chicken hind limbs, stage 35.
limbs, but are mirror images, 
renderings of the limbs with surface renderings of the digits.
turquoise DIII and purple DIV. A has only
metatarsal IV is involuted to its position. Digits I and II are not separated, they branch of the 
rest of the limb in a digit I like manner, but rather distal. In B only the proximal half of 
metatarsal III is formed. From the
phenotype is more digit III like
of the cytosine-arabinoside treated limbs displays the joints as clearly as the normal one does. 
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ases the fore limbs were rather unaffected, but one sample lost DI 

In the next two series all samples were injected with 15µg (H) 

or 17.5µg (I) respectively. The injections were made from 91 to 99 hours of 

embryos per time point. The samples H2 (Fig. 14A) and H6 (14B) 

 and therefore they were scanned with microCT. H2 

showed a fusion between digits I and II, and a mixed phenotype, in that

separate late from the main limb (like DII) but in a rather orthogonal angle (like 

Additionally this sample has lost the metatarsal of DIII,

metatarsal is bent towards anterior. Most of DIV however is reduced. 

reduction of distal DIII elements. The space and phenotype of DIII is then taken 

DIV develops rather normal here. It also is remarkable tha

treated limbs displays the joints in the CT images as clearly as 

chicken hind limbs, stage 35. View is from dorsal, A and B are actual left 
 C is a wild type right limb. Shown are semi-

with surface renderings of the digits. Greyish Blue is DI, pink DII, 
turquoise DIII and purple DIV. A has only the distal half of the metatarsal at position II, 

to its position. Digits I and II are not separated, they branch of the 
rest of the limb in a digit I like manner, but rather distal. In B only the proximal half of 
metatarsal III is formed. From the phalanges on digit II occupies the space of digit III, al

like, since it is longer and directly in the PD axis. 
arabinoside treated limbs displays the joints as clearly as the normal one does. 

 

ut one sample lost DI 

In the next two series all samples were injected with 15µg (H) 

91 to 99 hours of 

The samples H2 (Fig. 14A) and H6 (14B) 

fore they were scanned with microCT. H2 

showed a fusion between digits I and II, and a mixed phenotype, in that they 

separate late from the main limb (like DII) but in a rather orthogonal angle (like 

DIII, and the DIV 

ost of DIV however is reduced. H6 shows a 

reduction of distal DIII elements. The space and phenotype of DIII is then taken 

DIV develops rather normal here. It also is remarkable that 

treated limbs displays the joints in the CT images as clearly as 

 
View is from dorsal, A and B are actual left 

-transparent volume 
Blue is DI, pink DII, 

metatarsal at position II, 
to its position. Digits I and II are not separated, they branch of the 

rest of the limb in a digit I like manner, but rather distal. In B only the proximal half of 
phalanges on digit II occupies the space of digit III, also the 

, since it is longer and directly in the PD axis. Note also that none 
arabinoside treated limbs displays the joints as clearly as the normal one does.  



 

The following treatments

majority of cases 15µg will not cause digit loss (e.g. 12 of 17 in the H series) and 

20µg will cause all phalanges or even the entire autopod to be reduced. A dose of 

17.5µg can cause either result, or really reduce single digits 

completely. In the I series 11 of 20 samples showed no phenotype, 5 had DIV only 

reduced, and 3 showed DIV reduction and limited anterior reduction. Generally

the samples that were injected earlier (90

phenotype, while the later ones (93

 

Figure 15: Alcian Blue stained hi
(A) and 109 (B) hours of incubation. Arrows indicate the vestige of dig
While the phalanx of DII in the 120 hour sample is straight, the one of
somewhat to the anterior. 

 

The chance of getting rid of digit I seemed higher if the animals were injected 

later. Thus the series M contained embryos injected after 120 hours of incubation 

and the N series as a whole was injected after 108 to 109 hours of incubation. 

Some samples really showed DI reduction, 

except the first were reduced as well, mak

DII has a D2 or D1 phenotype. 
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following treatments narrowed down the injection dose further: in the 

majority of cases 15µg will not cause digit loss (e.g. 12 of 17 in the H series) and 

20µg will cause all phalanges or even the entire autopod to be reduced. A dose of 

17.5µg can cause either result, or really reduce single digits 

completely. In the I series 11 of 20 samples showed no phenotype, 5 had DIV only 

reduced, and 3 showed DIV reduction and limited anterior reduction. Generally

the samples that were injected earlier (90-93 hours of incubation) showed no digit 

phenotype, while the later ones (93-97 hours) showed digit IV reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alcian Blue stained hind limbs of embryos inject with cytosine-arabinoside after 120 
(A) and 109 (B) hours of incubation. Arrows indicate the vestige of digit I, the scalebar is 1mm. 
While the phalanx of DII in the 120 hour sample is straight, the one of the 109 hour sample points 

The chance of getting rid of digit I seemed higher if the animals were injected 

M contained embryos injected after 120 hours of incubation 

and the N series as a whole was injected after 108 to 109 hours of incubation. 

Some samples really showed DI reduction, but at the same time all phalanges 

the first were reduced as well, making it extremely difficult to decide if 

DII has a D2 or D1 phenotype.  

 

tion dose further: in the 

majority of cases 15µg will not cause digit loss (e.g. 12 of 17 in the H series) and 

20µg will cause all phalanges or even the entire autopod to be reduced. A dose of 

17.5µg can cause either result, or really reduce single digits partially or 

completely. In the I series 11 of 20 samples showed no phenotype, 5 had DIV only 

reduced, and 3 showed DIV reduction and limited anterior reduction. Generally, 

93 hours of incubation) showed no digit 

97 hours) showed digit IV reduction.  

arabinoside after 120 
it I, the scalebar is 1mm. 

the 109 hour sample points 

The chance of getting rid of digit I seemed higher if the animals were injected 

M contained embryos injected after 120 hours of incubation 

and the N series as a whole was injected after 108 to 109 hours of incubation. 

at the same time all phalanges 

ing it extremely difficult to decide if 



 

Figure 16: Results of whole mount in situ hybridizations developed with DAB (A & B) or 

NBT/BCIP (C). C is taken from Vargas & Fallo

the vestige of digit I, the arrow in B marks the border of hoxD12 expression in digit II of a 

sample that retained digit I. Only the sample with reduced digit I, has lost hoxD12 expression in 

digit II completely. 

 

However there was a difference between the sample from 120 hours, in which the 

DII phalanx pointed straight

phalanx was pointing towards 

 

In situ hybridization on the othe

there is no hoxD12 expression in digit II (Fig. 16A), whereas in the wild

the first digit is negative for 

that retained digit I despite drug treatment

anterior portion of digit II (Fig. 16B).
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Results of whole mount in situ hybridizations developed with DAB (A & B) or 

NBT/BCIP (C). C is taken from Vargas & Fallon16. Scalebars are 1mm. The Arrow in A indicates 

the vestige of digit I, the arrow in B marks the border of hoxD12 expression in digit II of a 

sample that retained digit I. Only the sample with reduced digit I, has lost hoxD12 expression in 

r there was a difference between the sample from 120 hours, in which the 

DII phalanx pointed straightly (Fig. 15A) and the 109 hour samples, in which the 

phalanx was pointing towards the anterior (Fig. 15B).  

In situ hybridization on the other limb of the 109 hour specimen

expression in digit II (Fig. 16A), whereas in the wild

the first digit is negative for hoxD12 (Fig. 16C). Interestingly some of the samples

digit I despite drug treatment lacked hoxD12 expression in the 

anterior portion of digit II (Fig. 16B).  

 

 

 
Results of whole mount in situ hybridizations developed with DAB (A & B) or 

The Arrow in A indicates 

the vestige of digit I, the arrow in B marks the border of hoxD12 expression in digit II of a 

sample that retained digit I. Only the sample with reduced digit I, has lost hoxD12 expression in 

r there was a difference between the sample from 120 hours, in which the 

(Fig. 15A) and the 109 hour samples, in which the 

109 hour specimen revealed that 

expression in digit II (Fig. 16A), whereas in the wild type only 

terestingly some of the samples 

xD12 expression in the 
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Discussion 

 

The aim of this study was to shed light on the complex changes that occurred in 

the development of the avian hand during the evolution of birds and their 

dinosaur ancestors. More specifically the goal was to either rescue the vestige of 

the anterior most digit in the avian fore limb or to deliberately lose this digit in 

the hind limb. The results of these experiments were then used to support or 

falsify the new Thumbs Down Hypothesis.  

 

The experiments however turned out to be not so easy to accomplish. Of three 

experiments, only one yielded significant results. Both other approaches failed so 

far. Therefore these two shall be discussed briefly, before I proceed to the mitosis 

inhibitor injection results.  

 

Bead Implantations 

 

The initial thought behind this approach was that the vestigial digit I can be 

rescued if the signaling from the apical ectodermal ridge (AER) could be 

prolonged. This was based on the fact that beads soaked with FGF protein, that 

were implanted into a developing limb bud, could sustain growth although the 

AER was removed surgically78. Among the proteins of the FGF family, FGF-8 

was chosen, because it is the main signal that comes from the AER77. The major 

problem of this approach was the high mortality of the embryos after surgery. 

The reason for this was very likely the time that was necessary to implant the 

bead successfully into the limb bud. The other main factor was injury during the 

surgery. Both of these problems were due to my lacking experience with 

embryonic surgery, and would have been possible to overcome with a lot of 

training. However there were two other things that were considered before this 

approach was stopped.  

 

First the implantation causes a wound that lies directly at the side of interest 

and therefore could have interfered easily with developing digits at positions I 
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and II (Gerd Müller, personal communication). Although negative controls – 

implanting a bead soaked with PBS only – can rule these effects out to a certain 

extent, it would remain problematic, since the implanted beads will never lie at 

the exact same position.  

 

The next concern was the FGF-8 protein itself. The main function of FGF-8 in the 

proximo-distal limb outgrowth is to keep the cells proliferating (reviewed in 64). 

Beside maintaining growth, the proliferative state of the limb mesenchyme cells 

also keeps them from forming pre-chondrogenic condensations76. Therefore a 

higher level of FGF-8 signaling not only causes the limb bud to grow stronger, 

but also doesn't allow it to form digits. If we take a look at the only sample that 

survived long enough (Fig. 8), we see that instead of a proper digit II it has a 

mesenchymal condensation next to digit III.  

 

It is possible that this shows that digit II could not form because the stronger 

FGF-8 signaling kept the cells from condensing at the proper time and position. 

The visible condensation would then have formed later (and therefore more 

distally), probably after all the protein had diffused from the bead.  

 

On the other hand this can also be interpreted as digit II returning to its "correct" 

phenotype, because of stronger proliferation on the anterior side. If this 

interpretation would be correct, this would give strong support to the Thumbs 

Down Hypothesis, since it claims that the adaption of the digit 1 phenotype by 

digit II is due to the loss of digit I. Therefore elevated cell proliferation on the 

anterior side, could be enough to keep digit II from moving there and adopt the 

phenotype.  

 

Ablation of hind limb digit I 

 

This experiment was undertaken because the bead implantations gave reasons 

for concern. The thought was that if fore limb digit I cannot be rescued, what 

about deliberately losing digit I in the hind limb. Instead of trying to revert the 
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fore limb, I tried to repeat the fore limb evolution effect in the hind limb. The 

main reason for why this approach did not yield any results is probably that it 

was too random. To injure the AER at the anterior side obviously is not enough to 

prevent entire the digit I from growing. Also the "tickling of the toes" with a hot 

needle did not harm the AER seriously. To really see an effect, it would probably 

have been necessary to remove the anterior portion of the AER entirely. Still it is 

not clear whether this would have been enough to entirely remove digit I, since 

signaling from other regions of the AER could still have reached its anlage and 

caused outgrowth. For these reasons this approach was given up in favor of the 

mitosis inhibitor injections.  

 

Injections of Cytosine Arabinoside 

 

At a first glance this seems to be an easy experiment. It was already known that 

the injection of the mitosis inhibitor cytosine arabinoside to the yolk of chicken 

eggs causes, among other effects, malformations of the limbs79. Furthermore it 

has been shown in alligators that the drug can cause the loss of digit I without 

removing any other elements of the limb22. Therefore it seems plausible that digit 

I can be removed in the chicken hind limb by this procedures as well, given that 

the correct time point and drug dose are used. To determine these two factors 

was the first issue, because they tend to influence each other. A given dose can 

kill the embryo on day 3 right away but may have no effect on day 4, simply due 

to the increased size of the embryo on that day. Although there were no usable 

phenotypes at the beginning, it was clear that the drug was working and also was 

taken up by the embryo from the yolk, because a clear decrease in the size of the 

embryos could be seen when the dose was increased (Fig. 9 & Fig. 11). Since the 

only structures that could be reduced were phalanges and never entire digits, the 

injections were then performed on four day old embryos. At this stage the correct 

dose again needed to be determined and was determined to work best at about 

17.5µg of cytosine arabinoside (see results section). But again this was only true 

on average, there were also samples that did not show any phenotype and some 
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that showed severe reduction. The reason for this is probably the diffusion within 

the yolk and the amount of the drug that really reached the embryos' limb buds.  

The digit that was reduced most easily was digit IV, which is surprising since 

this is opposing Morse's Law15. This law is thought to apply to digit reduction by 

evolutionary means, not caused by embryo manipulations. If digits were reduced 

in the fore limb, however, digit I was always reduced first. Taking further into 

account that during the evolution of birds digit V of the hind limb was reduced 

instead of digit I, it can be questioned whether this law applies to birds at all.  

 

Another interesting aspect is that according to the digit reduction scheme of the 

TDH (Fig. 7), digit IV of the bird fore limb had a state in which it was only 

metacarpal and 1 phalanx (e.g. Dilophosaurus, Limusaurus), before it grew 

longer again after the loss of digit I. The abundance of embryos that showed this 

exact phenotype in the hind limb supports the TDH digit reduction scheme to 

some extent.  

 

 The most digit IV reduced embryos were obtained, when the injections were 

made after 93-97 hours of incubation (at 39.5°C). But the other phenotypes, e.g. 

loss of digit III (Fig. 14B) or loss of digit I (Fig. 13A & C) were also injected after 

approximately 96 hours of incubation. This suggests two things: first, the digits 

in the avian hind limb are determined at an age of about 96 hours (the 93 hours 

of the experiment plus some time for diffusion of the drug) and second the time 

frame in which the digit anlagen arise is very narrow.  

 

Among those injected at this approximate time, there was only one embryo that 

had reduced a digit I. This sample had reduced digit I only on the left limb, and 

digit IV on both limbs. All other specimens that lacked digit I, also lacked the 

majority of their phalanges. This suggests that digit I is formed at a time point 

(approximately 108-120 hours of incubation), in which the second phalanges of 

the digits usually develop.  
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Conclusions and implications for the Thumbs Down Hypothesis 

 

The thumbs down hypothesis argues that the digit 1 phenotype in digit II is due 

to a move of digit II cells towards the anterior of the limb bud, following the 

reduction of digit I. Therefore the strongest support would have come from an 

embryo that reduced hind limb digit I, has a digit II with a digit 1 phenotype that 

is negative for hoxD12, and wild type digits III and IV. However, this pattern did 

not come up. Still there was one sample with reduced digit I and digit 1 

phenotype in digit II, digit III was normal, digit IV was partially reduced. The 

major flaw of this specimen was that it only had one leg, that looked this way. In 

the other one digit I was in place, and hence digit II looked normal. Although this 

is strong morphological evidence for the TDH, the availability of only one such leg 

ruled out the possibility of subsequent in situ hybridization.  

 

Among the samples in which digit I and several phalanges were reduced, there 

were some in which the first phalanx of digit II pointed straight, and two 

specimens in which it pointed to the anterior side. In the latter embryos in situ 

hybridization did not show any hoxD12 expression in digit II, although wild type 

digit II has it. Again this is good evidence for the TDH, but since most phalanges 

are missing it is not as strong as it could be.  

 

Specimens that lost other digits than DI can also be useful in evaluating the 

TDH. The core assumption of the TDH is that if one digit stops growing, another 

one can take its position and thereby also – entirely or partially – adopt its 

phenotype. This is exactly what we see in the embryo with reduced digit III (Fig. 

13B). Digit II takes the position of digit III as soon as the metatarsal stops 

growing and from the phalanges on even looks like digit 3 usually does.  

 

Taken together, the morphological evidence of the mitosis inhibition and the bead 

implantation experiments (although there is only one sample from the latter) has 

shown that the core mechanism underlying the TDH is viable. Furthermore it is 
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plausible that this mechanism is responsible for the difference between positional 

and compositional information33 of digit II in the avian fore limb.  

 

The genetic evidence of the hoxD12 in situ hybridizations further suggests that 

the expression pattern in the avian wing16-18 is caused by the same mechanism. 

However this evidence is not sufficient to decide whether the hoxD12 expression 

is directly linked to the digit's morphological phenotype, and if it is, what is 

upstream. Thus only the core concept of the TDH can be supported so far. The 

assumption that the effect is caused by lower Shh levels due to increased distance 

from the ZPA remains hypothetical.  

 

Are there other possible explanations? 

 

When examining the results of the mitosis inhibition experiment, I found it 

intriguing that hind limb digit IV was so much more often reduced than all the 

other digits, although it should be the other way round.  

 

The primary axis19-21,38 is the structure that should be lost least not most often. If 

we take into account that the primary axis was one of the major hints for the 

'two, three, four' interpretation3,15, the question comes to mind, if it is possible 

that the digits in the fore limb really are I, II, and III. Given that in the avian 

hind limb, digit V was lost during evolution instead of digit I, and that now digit 

IV was lost much more frequently than digit I, it makes me think that the fore 

limb could have behaved the same way.  

 

This also would agree with the reduction pattern we see in the fossil evidence 

(reviewed e.g. by Bever et al.44) with the exception of Limusaurus45. Wagner has 

mentioned the possibility that the structure that is usually identified as fore limb 

digit I23,24,26 could also be some kind of pre-pollex3. If this was true the axis shift 

hypothesis35,36,39 would be back in play and it would also make the 

polydactylous25 hypothesis more interesting.  
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On the other hand, it has to be kept in mind that all experiments are done on 

extant birds, in which development, and especially limb development is much 

derived. In particular, reptilian egg development is known to proceed much 

slower, and hence mitotic inhibition experiments are able to target individual 

digits much more easily. The sequence of digit loss achieved experimentally in 

Alligators is in accordance with the TDH (Gerd Müller, personal communication). 

Since alligators my better represent reptilian development at the time of the 

evolutionary digit loss, experimental results in extant birds must generally be 

taken with caution.  

 

 

Outlook 

 

In this work I presented a new approach to a long-standing problem. The major 

difference to the traditional hypotheses is that it integrates the morphogenetic 

and biomechanical aspects of development. The Thumbs Down Hypothesis was 

formulated in such a way that it is in agreement with currently available results 

from developmental biology as well as with the currently known fossil evidence. 

In this thesis I have presented experimental data that give further support to the 

hypothesis. However, all of the experiments could have yielded better results, 

therefore they should be refined and repeated until we have more solid evidence 

to support or to falsify the new approach. For example, the specimens that lost 

digit III should be analyzed with in situ tools for their hoxD expression patterns – 

not only for hoxD12, but also for hoxD11 and hoxD13. If there really exists 

differential cell proliferation in the avian fore limb this should be detectable with 

cell proliferation markers such as EdU and BrdU. Once the procedure for 

obtaining embryos without digit I in their hind limb is established, the 

transcriptome of their digits needs to be analyzed. And finally we will need to 

know about the gene regulatory network that controls digit differentiation to 

know if different levels of Sonic Hedgehog can really cause digits to change their 

phenotype. 



 

51 

 

Acknowledgments 

 

First I want to thank my advisors Brian Metscher and Gerd Müller for 

theoretical and practical support. It is needless to say that without them this 

thesis would not have been possible. I also want to thank all the other staff and 

students of the Department of Theoretical Biology for entertainment and 

scientific input. Furthermore special thanks go to the people from Technau 

group, who were of invaluable help for the molecular work, especially my old 

friend Alex Leithner. Rather personal thanks go out to my wife Manu, for 

initially leading me to the question of avian digit identity, and even more for 

simply being there. Finally I want to thank my family: my brother Michi, my 

sister Mirli and of course my parents, who have supported me in the last years. It 

is almost sure that I forgot somebody here and I apologize for this.   

 

 

  



 

52 

 

References 

 

1 Galis, F., Kundrát, M. & Metz, J. A. J. Hox genes, digit identities and the 
theropod/bird transition. Journal of Experimental Zoology Part B: 
Molecular and Developmental Evolution 304B, 198-205, 
doi:10.1002/jez.b.21042 (2005). 

2 Stopper, G. F. & Wagner, G. P. Of chicken wings and frog legs: A 
smorgasbord of evolutionary variation in mechanisms of tetrapod limb 
development. Developmental Biology 288, 21-39, 
doi:10.1016/j.ydbio.2005.09.010 (2005). 

3 Wagner, G. The developmental evolution of avian digit homology: An 
update. Theory in Biosciences 124, 165-183, doi:10.1016/j.thbio.2005.07.002 
(2005). 

4 Chiappe, L. M. The first 85 Million years od Avian Evolution. Nature 378, 
349-355 (1995). 

5 Ostrom, J. H. The Ancestry of birds. Nature 242, 136 (1973). 

6 Ostrom, J. H. Archaeopteryx and the Origin of Birds. Biological Journal of 
the Linnean Society 8, 91-182 (1976). 

7 Sereno, P. C. The Evolution of Dinosaurs. Science 284, 2137-2147, 
doi:10.1126/science.284.5423.2137 (1999). 

8 Gauthier, J. A. in The origin of birds and the evolution of flight   (ed K. 
Padian)  1-55 (Acad.Sci., 1986). 

9 Christiansen, P. & Bonde, N. Body plumage in Archaeopteryx: a review, 
and new evidence from the Berlin specimen. Comptes Rendus Palevol 3, 
99-118, doi:10.1016/j.crpv.2003.12.001 (2004). 

10 Burke, A. C. & Feduccia, A. Developmental Patterns and the Identification 
of Homologies in the Avian Hand. Science 278, 666-668, 
doi:10.1126/science.278.5338.666 (1997). 

11 Feduccia, A. The Origin and Evolution of Birds.  (Univ. Press., 1996). 

12 Feduccia, A. Bird origins: problem solved, but the debatte continues... 
Trend in Ecology and Evolution 18, 9-10 (2003). 



 

53 

 

13 Reig, O. A. La presencia de dinosaurios saurisquios en los "Estratos de 
lschigualasto" (Mesotriasico superior) de las procvincias de San Juan y La 
Rioja (Republica Argentina). Ameghiniana 3, 3-20 (1963). 

14 Sereno, P. C. Dinosaurian percursors from the Middle Triassic of 
Argentina: La,qerpeton chanarensis. J. Vert. Paleo. 13, 385-399 (1993). 

15 Wagner, G. & Gauthier, J. A. 1, 2, 3 = 2, 3, 4: A solution to the problem of 
the homology of the digits in the avian hand. Pnas 96, 5111 - 5116 (1999). 

16 Vargas, A. O. & Fallon, J. F. Birds have dinosaur wings: The molecular 
evidence. Journal of Experimental Zoology Part B: Molecular and 
Developmental Evolution 304B, 86-90, doi:10.1002/jez.b.21023 (2005). 

17 Vargas, A. O. & Fallon, J. F. The digits of the wing of birds are 1, 2, and 3. 
a review. Journal of Experimental Zoology Part B: Molecular and 
Developmental Evolution 304B, 206-219, doi:10.1002/jez.b.21051 (2005). 

18 Vargas, A. O., Kohlsdorf, T., Fallon, J. F., VandenBrooks, J. & Wagner, G. 
P. The Evolution of HoxD-11 Expression in the Bird Wing: Insights from 
Alligator mississippiensis. PLoS ONE 3, e3325, 
doi:10.1371/journal.pone.0003325 (2008). 

19 Burke, A. C. & Alberch, P. The Development and Homology of the 
Chelonian Carpus and Tarsus. Journal of Morphology 186, 119-131 (1985). 

20 Alberch, P. & Gale, E. A. Size dependence during the development of the 
amphibian foot. Colchicine-induced digital loss andreduction. J. Embryol. 
exp. Morph 76, 177-197 (1983). 

21 Müller, G. B. & Alberch, P. Ontogeny of the limb skeleton in Alligator 
mississippiensis: Developmental invariance and change in the evolution of 
archosaur limbs. Journal of Morphology 203, 151-164, 
doi:10.1002/jmor.1052030204 (1990). 

22 Müller, G. B. in Die Evolution der Evolutionstheorie   (ed Wolfgang Wieser)  
155-193 (Spektrum Akademischer Verlag, 1994). 

23 Kundrát, M., Seichert, V., Russell, A. P. & Smetana, K. Pentadactyl 
pattern of the avian wing autopodium and pyramid reduction hypothesis. 
Journal of Experimental Zoology 294, 152-159, doi:10.1002/jez.10140 
(2002). 

24 Larsson, H. C. E. & Wagner, G. n. P. Pentadactyl ground state of the avian 
wing. Journal of Experimental Zoology 294, 146-151, doi:10.1002/jez.10153 
(2002). 



 

54 

 

25 Welten, M. C., Verbeek, F. J., Meijer, A. H. & Richardson, M. K. Gene 
expression and digit homology in the chicken embryo wing. Evol Dev 7, 18-
28, doi:EDE05003 [pii] 10.1111/j.1525-142X.2005.05003.x (2005). 

26 Feduccia, A. & Nowicki, J. The hand of birds revealed by early ostrich 
embryos. Naturwissenschaften 89, 391-393, doi:10.1007/s00114-002-0350-y 
(2002). 

27 Hinchliffe, J. R. in Vertebrate Limb and Somite Morphogenesis   (eds D.A. 
Ede, J. Richard Hinchliffe, & M. Balls)  (Cambridge University Press, 
1977). 

28 Hinchliffe, J. R. in The beginnings of birds: proceedings of the International 
Archaeopteryx Conference, Eichstätt 1984   (ed Max K. Hecht)  (Freunde d. 
Jura-Museums Eichstätt, 1985). 

29 Ji, Q., Currie, P. J., Norell, M. A. & Shu-An, J. Two Feathered Dinosaurs 
from northeastern China. Nature 393, 753-761 (1998). 

30 Ji, Q., Norell, M. A., Gao, K.-Q., Ji, S.-A. & Ren, D. The distribution of 
integumentary structures in a feathered dinosaur. Nature 410, 1084-1088 
(2001). 

31 Zhou, Z., Barrett, P. M. & Hilton, J. An exceptionally preserved Lower 
Cretaceous ecosystem. Nature 421, 807-814, doi:10.1038/nature01420 
nature01420 [pii] (2003). 

32 Xu, X. et al. A gigantic feathered dinosaur from the Lower Cretaceous of 
China. Nature 484, 92-95, doi:10.1038/nature10906 (2012). 

33 Ramírez, M. J. Homology as a parsimony problem: a dynamic homology 
approach for morphological data. Cladistics 23, 588-612 (2007). 

34 Feduccia, A., Lingham-Soliar, T. & Hinchliffe, J. R. Do feathered dinosaurs 
exist? Testing the hypothesis on neontological and paleontological 
evidence. Journal of Morphology 266, 125-166, doi:10.1002/jmor.10382 
(2005). 

35 Chatterjee & S. Counting the Fingers of Birds and Dinosaurs. Science 280, 
355a-355, doi:10.1126/science.280.5362.355a (1998). 

36 Chatterjee, S. The Rise of Birds.  (John Hopkins Univ. Press, 1997). 

37 Shubin, N. in Interpreting the Hierarchy of Nature   (eds L. Grande & O. 
Rieppel)  (Academic Press, 1994). 



 

55 

 

38 Shubin, N. & Alberch, P. A morphogenetic approach to the origin and basic 
organization of the tetrapod limb. Evol. Biol. 20, 319-387 (1986). 

39 Garner, J. P. & Thomas, A. L. R. Counting the Fingers of Birds and 
Dinosaurs. Science 280, 355a-355a (1998). 

40 Hall, B. K. in Evolutionary Biology Vol. 28  (eds Max K. Hecht, R.J. 
Maclntyre, & M.T. Clegg)  1-30 (Plenum Press, 1994). 

41 Cope, E. D. On a new genus of Triassic Dinosauria. The American 
Naturalist 23, 626 (1889). 

42 Galton, P. M. & Jensen, J. A. A new large theropod dinosaur from the 
Upper Jurassic of Colorado. Brigham Young University Geology Studies 
26, 1-12 (1979). 

43 Marsh, O. C. Notice of new dinosaurian reptiles from the Jurassic 
formation. American Journal of Science and Arts 14, 514-516 (1877). 

44 Bever, G. S., Gauthier, J. A. & Wagner, G. P. Finding the frame shift: digit 
loss, developmental variability, and the origin of the avian hand. Evolution 
& Development 13, 269-279, doi:10.1111/j.1525-142X.2011.00478.x (2011). 

45 Xu, X. et al. A Jurassic ceratosaur from China helps clarify avian digital 
homologies. Nature 459, 940-944, doi:10.1038/nature08124 (2009). 

46 Young, R. L. & Wagner, G. P. Why ontogenetic homology criteria can be 
misleading: lessons from digit identity transformations. Journal of 
Experimental Zoology Part B: Molecular and Developmental Evolution 
316B, 165-170, doi:10.1002/jez.b.21396 (2011). 

47 Galis, F., Kundrát, M. & Sinervo, B. An old controversy solved: bird 
embryos have five fingers. Trend in Ecology and Evolution 18, 7-9 (2003). 

48 Wang, Z., Young, R. L., Xue, H. & Wagner, G. P. Transcriptomic analysis 
of avian digits reveals conserved and derived digit identities in birds. 
Nature 477, 583-586, doi:10.1038/nature10391 (2011). 

49 Tamura, K., Nomura, N., Seki, R., Yonei-Tamura, S. & Yokoyama, H. 
Embryological Evidence Identifies Wing Digits in Birds as Digits 1, 2, and 
3. Science 331, 753-757, doi:10.1126/science.1198229 (2011). 

50 Padian, K. A proposal to standartize tetrapod phalangeal formula 
designations. J. Vert. Paleontol. 12, 260-262 (1992). 



 

56 

 

51 Sereno, P. C. The pectoral girdle and forelimb of the basal theropod 
Herrerasaurus ischigulastensis. J. Vert. Paleo. 13, 425-450 (1993). 

52 Dahn, R. D. Interdigital Regulation of Digit Identity and Homeotic 
Transformation by Modulated BMP Signaling. Science 289, 438-441, 
doi:10.1126/science.289.5478.438 (2000). 

53 Zou, H. & Niswander, L. Requirement for BMP Signaling in Interdigital 
Apoptosis and Scale Formation. Science 272, 738-741, 
doi:10.1126/science.272.5262.738 (1996). 

54 Bardeleben, K. On the præpollex and præhallux, with observations on the 
carpus of Theriodesmus phylarchus. Proc. Zool. Soc. Lon, 259-262 (1889). 

55 Holmgren, N. An embryological analysis of the mammalian carpus and its 
bearing upon the question of the origin of the tetrapod limb. Acta Zoologica 
33, 1-115 (1952). 

56 Harfe, B. D. et al. Evidence for an Expansion-Based Temporal Shh 
Gradient in Specifying Vertebrate Digit Identities. Cell 118, 517-528, 
doi:10.1016/j.cell.2004.07.024 (2004). 

57 Deschamps, J. DEVELOPMENTAL BIOLOGY: Hox Genes in the Limb: A 
Play in Two Acts. Science 304, 1610-1611, doi:10.1126/science.1099162 
(2004). 

58 Zakany, J. A Dual Role for Hox Genes in Limb Anterior-Posterior 
Asymmetry. Science 304, 1669-1672, doi:10.1126/science.1096049 (2004). 

59 Kmita, M. et al. Early developmental arrest of mammalian limbs lacking 
HoxA/HoxD gene function. Nature 435, 1113-1116, 
doi:10.1038/nature03648 (2005). 

60 Tarchini, B., Duboule, D. & Kmita, M. Regulatory constraints in the 
evolution of the tetrapod limb anterior–posterior polarity. Nature 443, 985-
988, doi:10.1038/nature05247 (2006). 

61 Zúñiga, A. & Zeller, R. Gli3 (Xt) and formin (ld) participate in the 
positioning of the polarising region and control of posterior limb-bud 
identity. Development 126, 13 (1999). 

62 Wagner, G. P. & Vargas, A. O. On the nature of thumbs. Genome Biology 9, 
213, doi:10.1186/gb-2008-9-3-213 (2008). 



 

57 

 

63 Delpretti, S., Zakany, J. & Duboule, D. A function for all posterior Hoxd 
genes during digit development? Developmental Dynamics 241, 792-802, 
doi:10.1002/dvdy.23756 (2012). 

64 Benazet, J. D. & Zeller, R. Vertebrate limb development: moving from 
classical morphogen gradients to an integrated 4-dimensional patterning 
system. Cold Spring Harb Perspect Biol 1, a001339, 
doi:10.1101/cshperspect.a001339 (2009). 

65 Chiang, C. Manifestation of the Limb Prepattern: Limb Development in 
the Absence of Sonic Hedgehog Function. Developmental Biology 236, 421-
435, doi:10.1006/dbio.2001.0346 (2001). 

66 Kraus, P., Fraidnraich, D. & Loomis, C. A. Some distal limb structures 
develop in mice lacking Sonic hedgehog signaling. Mechanisms of 
Development 100, 45-58 (2001). 

67 Benazet, J. D. et al. A self-regulatory system of interlinked signaling 
feedback loops controls mouse limb patterning. Science 323, 1050-1053, 
doi:323/5917/1050 [pii] 10.1126/science.1168755 (2009). 

68 Scherz, P. J. The Limb Bud Shh-Fgf Feedback Loop Is Terminated by 
Expansion of Former ZPA Cells. Science 305, 396-399, 
doi:10.1126/science.1096966 (2004). 

69 Verheyden, J. M. & Sun, X. An Fgf/Gremlin inhibitory feedback loop 
triggers termination of limb bud outgrowth. Nature 454, 638-641, 
doi:10.1038/nature07085 (2008). 

70 Scherz, P. J., McGlinn, E., Nissim, S. & Tabin, C. J. Extended exposure to 
Sonic hedgehog is required for patterning the posterior digits of the 
vertebrate limb. Developmental Biology 308, 343-354, 
doi:10.1016/j.ydbio.2007.05.030 (2007). 

71 Vargas, A. O. & Wagner, G. P. Frame-shifts of digit identity in bird 
evolution and Cyclopamine-treated wings. Evolution & Development 11, 
163-169, doi:10.1111/j.1525-142X.2009.00317.x (2009). 

72 Chen, J. K. Inhibition of Hedgehog signaling by direct binding of 
cyclopamine to Smoothened. Genes & Development 16, 2743-2748, 
doi:10.1101/gad.1025302 (2002). 

73 Hamburger, V. & Hamilton, H. L. A Series of Normal Stages in the 
Development of the Chick Embryo. Developmental Dynamics 195, 231-272 
(1992). 



 

58 

 

74 Towers, M., Signolet, J., Sherman, A., Sang, H. & Tickle, C. Insights into 
bird wing evolution and digit specification from polarizing region fate 
maps. Nature Communications 2, 426, doi:10.1038/ncomms1437 (2011). 

75 Lewis, E. B. A gene complex controlling segmentation in Drosophila. 
Nature 276, 565-570, doi:doi:10.1038/276565a0 (1978). 

76 Newman, S. A. & Bhat, R. Activator-inhibitor dynamics of vertebrate limb 
pattern formation. Birth Defects Research Part C: Embryo Today: Reviews 
81, 305-319, doi:10.1002/bdrc.20112 (2007). 

77 Kawakami, Y. et al. WNT Signals Control FGF-Dependent Limb Initiation 
and AER Induction in the Chick Embryo. Cell 104, 891-900 (2001). 

78 Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 
replaces the apical ectodermal ridge and directs outgrowth and patterning 
of the limb. Cell 75, 579-587, doi:10.1016/0092-8674(93)90391-3 (1993). 

79 Romanoff, A. L. & Romanoff, A. J. Pahtogenesis of the Avian Embryo; an 
Analysis of Causes of Malformations and Prenatal Death.  (Wiley-
Interscience, 1972). 

80 Towers, M., Mahood, R., Yin, Y. & Tickle, C. Integration of growth and 
specification in chick wing digit-patterning. Nature 452, 882-886, 
doi:10.1038/nature06718 (2008). 

81 Korn, M. J. & Cramer, C. S. Placing Growth Factor-Coated Beads on Early 
Stage Chicken Embryos. Journal of Visualized Experiments 8, 
doi:10.3791/307 (2007). (2007). 

82 Yamazaki, Y., Yuguchi, M., Kubota, S. & Isokawa, K. Whole-mount bone 
and cartilage staining of chick embryos with minimal decalcification. 
Biotechnic & Histochemistry 86, 351-358, 
doi:10.3109/10520295.2010.506158 (2011). 

83 Metscher, B. D. & Müller, G. B. MicroCT for molecular imaging: 
Quantitative visualization of complete three-dimensional distributions of 
gene products in embryonic limbs. Developmental Dynamics 240, 2301-
2308, doi:10.1002/dvdy.22733 (2011). 

84 Metscher, B. D. MicroCT for comparative morphology: simple staining 
methods allow high-contrast 3D imaging of diverse non-mineralized 
animal tissues. BMC Physiology 9, 11, doi:10.1186/1472-6793-9-11 (2009). 



 

59 

 

85 Metscher, B. D. MicroCT for developmental biology: A versatile tool for 
high-contrast 3D imaging at histological resolutions. Developmental 
Dynamics 238, 632-640, doi:10.1002/dvdy.21857 (2009). 

 
 

  



 

60 

 

Appendix 

Protocols 

 

Alcian Blue Staining 

Fix chicken (st. 35) in 4% Paraformaldehyd in PBS for 1hr @ 4°C 

 

rinse in 70% EtOH 

 

store in 70% EtOH o/n @ 4°C 

 

soak 6-16 hrs in Alcian Blue (10mg Alcian Blue in 70 ml of 95% EtOH and 30ml 

of 99,7% Acetic Acid) 

 

wash 2-3x in 70% EtOH (10' @ RT each) 

 

rehydrate to Water (50%, 35%, 20%) 

 

soak it 4 hrs in 2% KOH (aqu.) @ RT 

 

clear in 3:1 (0.5% KOH:Glycerin) 

 1:1 (0.5% KOH:Glycerin) 

 1:3 (0.5% KOH:Glycerin) 

for 8-24 hrs each 

 

store in 100% Glycerol  

 

 

Transformation of competent bacteria 

 

Let competent cells thaw on ice 

 

Add 3µl of ligation product to the cells, mix gently 
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Leave on ice for 10 minutes 

 

Heat shock the cells for 45 seconds at 42°C (do not shake) 

 

Put on ice for 2 minutes 

 

Add 250µl of SOC medium (no antibiotic added) 

 

Shake for 30 to 60 minutes at 37°C 

 

Spread the 300µl with glass beads on a agar plate containing ampicillin 

 

incubate at 37°C over night. 

 

 

In Situ Hybridization 

 

DAY 1 - Hybridization of embryos with riboprobe 

(every step is done on the rocker, unless stated otherwise) 

 

1.) Bleach embryos with 3% hydrogen peroxide in MeOH for 1 hour at RT with 

gentle rocking (Note: embryos must have been previously dehydrated, if you are 

going to include the bleaching step). 

 

2.) Rehydrate embryos in a graded series of methanol/PBT (75%, 50% and 25%) 

at RT for 5-10 min. 

 

3.) Wash thrice in PBT for 5 min (use 0,1% Tween 20 for chick). 
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4.) Proteinase K treatment: 

 

Chick embryos: For younger embryos (<st10), treat with 1 to 3 µg/ml proteinase 

K in PBT for 15 minutes at RT (this will also work for ectodermal gene 

expression in older animals). Embryos < st18 are treated with 10µg/ml proteinase 

K for about 15 min at RT. For stages 18-24 the time can be extended to 20-25 

min. For stages 26-29 the treatment can last up to 40 min. Alternatively the time 

can stay at 15 min, but the concentration can be raised. 

 

 stage     concentration of proteinase K 

 26-27      20µg/ml 

 28-29      30µg/ml 

 30-31      40 µg/ml 

 33 and older     50-60µg/ml 

 

5.) Wash 10 min in 2mg/ml glycine in PBT (make fresh). This stops the 

proteinase K reaction. 

 

6.) Wash twice for 5 min with PBT. 

 

7.) Postfix with 4% paraformaldehyd and 0,2% glutaraldehyde (0,2 ml of 25% 

stock per 25 ml) in PBT for 20 min at RT. 

 

8.) Wash 2 times for 5 min with PBT. 

 

9.) Wash 10 min in a 1:1 mixture of hybridization solution/PBT. 

 

10.) Wash 10 min in hybridization solution. 

 

11.) Incubate at 70°C in hybridization solution for at least 1 hour (lower the 

temperature to 60°C for shorter probes). 
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12.) In a separate tube mix RNA probe into minimal volume of hybridization 

buffer (500µl - 1ml) (typically 1/50 to 1/10 of a transcription solution) 

I did 1ml of hybmix with 2uL of probe. 

 

13.) Replace pre-hyb buffer with buffer containing RNA probe. Hybridize over 

night at 70°C in shaking water bath (lower the temperature to 60°C for shorter 

probes). 

 

 

DAY 2 - Post hybridization washes, blocking and antibody incubation 

 

1.) Preheat solution I at 70°C and soultion III at 65°C (60°C and 55°C for shorter 

probes). 

 

2.) Wash embryos 3 times in pre-warmed soultion I for 30 min. at 70°C. 

Then change shaking water bath temperature to 65°C. 

 In the meantime prepare blocking solutions and block antibody (see below). 

 I blocked the antibody for 4 hrs.  

 

3.) Wash embryos 3 times for 30 min. each in 65°C with prewarmed solution III. 

 

4.) Wash 3 times with TBST for 5 min each at RT. 

 

Blocking of anti-DIG antibody 

 

During the above washes prepare blocking reagents for the antibody and the 

embryos. 

 

 

For chick embryos: 

Blocking solution for the antibody is 1% heat inactivated sheep serum in TBST  



 

64 

 

(Make enough to dilute antibody to the desired concentration). I did 0.5uL 

Antibody in 2.5ml Blocking solution (i.e. 1:5000). 

 

Blocking solution for the embryos is 10% heat-inactivated sheep serum in TBST. 

(Make approx. 1ml per vial) 

 

Keep both blocking reagents on ice or at 4°C until use. 

 

5.) Rock the embryos in the embryo blocking solution for at least 1 hour (I did 2.5) 

at RT. 

 

6.) Remove blocking solution and add antibody solution and incubate over night 

at 4 °C with rocking. (Concentration of the antibody should be 1:4000 to 1:10000) 

 

DAY 3 - Washes 

 

1.) Wash embryos 3x for 5 min with TBST at RT (0,1 % Tween). 

 

2.) Wash 5-8 times for 1 to 1,5 hrs. in TBST at room temperature (the more 

washes the better). 

 

3.) Wash overnight in TBST at 4°C with gentle rocking. 

 

 

Solutions and Buffers 

 

Chicken Ringer 

NaCl   7.2g 

CaCl2   0.17g 

KCl,   0.37g 

ddH2O  1000ml 

 



 

65 

 

PBS 

NaCl  8g 

KCl  0.2g 

Na2PO4 1.22g 

KH2PO4 2.4g 

ddH2O  1000ml 

pH  7.4 

 

Hybridization Solution (50ml) 

formamide   25ml 

SSC (20X, pH 4.5) 12.5ml 

20% SDS  2.5ml 

molbioH2O  9.7ml 

tRNA (10mg/µl) 250µl 

heparin (100mg/ml) 25µl 

 

Washing Solution I 

formamide   25ml 

SSC (20X, pH 4.5) 12.5ml 

20% SDS  2.5ml 

molbioH2O  10ml 

 

Washing Solution III 

formamide   25ml 

SSC (20X, pH 4.5) 5ml 

molbioH2O  20ml 

 

TBS 

NaCl   8g 

KCl   0.2g 

Tris.HCl (pH 7.5) 250ml 

ddH2O   750ml 
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TBST 

TBS + 0.1% Tween-20 

 

 

Reaction Recipes 

 

Reverse Transcription 

 1µl   oligoDT17 (Stock 100µM) 

2µl   mRNA (1µg/µl) 

1µl  dNTP mix (10mM each) 

9µl  molbioH2O  

13µl 

 

Heat to 65°C for 5 minutes, than incubate on ice for 1 minute. 

 

Centrifuge briefly and add: 

 

4µl   First Strand Buffer 

1µl  DTT (0.1 M) 

1µl  RNAseOUT (Invitrogen 10777-019) 

1µl  SuperScript III Reverse Transcriptase 

20µl 

 

PCR Amplification of cDNA 

25µl  GoTaq Green Master Mix (Promega M7112)  

1µl   sense primer (10µM) 

1µl  antisense primer (10µM) 

2µl  cDNA 

21µl  molbioH2O 

50µl 
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PCR Programme: 

82°C  Hot Start 

94°C  2 minutes 

 

94°C  15 seconds 

55°C  15 seconds x 33 cycles 

72°C  90 seconds 

 

72°C  8 minutes 

 

Primers: 

hoxD11 forward: TTGCCGGTCAGTGAGGTTGAGC 

hoxD11 reverse: CAACGCATTGAAGCCTCCCGGT 

 

hoxD12 forward: CCACAAAACACGCGAGCGCC 

hoxD12 reverse: GGCGGCTCTGCCCACCATTT 

 

hoxD13 forward: GGACTCCGGCAATGCGGCTT 

hoxD13 reverse:  CCCGGGCAGTGCCGTAACTT 

 

 

Ligation into pGEM-T easy II vector 

 hoxD11 hoxD12 Pos. control Neg. control 

2X buffer 5µl 5µl 5µl 5µl 

Vector 1µl 1µl 1µl 1µl 

PCR product 3µl 3µl - - 

Control DNA - - 2µl - 

T4 Ligase 1µl 1µl 1µl 1µl 

ddH2O - - 1µl 3µl 
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Colony Check PCR 

6µl  ddH2O 

10µl  Phusion Flash Master Mix (2X) 

1µl  specific primer (hoxD11/hoxD12 reverse) 

1µl  promoter-binding primer (SP6/T7) 

2µl  bacterial suspension 

20µl 

 

PCR programme: 

98°C 10 seconds 

 

98°C 1 second 

50°C 5 seconds 30 cycles 

72°C 20 seconds  

 

72°C 1 minute  

 

Insert amplification PCR 

19.5µl  ddH2O 

25µl  Phusion Flash Master Mix (2X) 

2.5µl   T7 or M13 forward primer (10µM) 

2.5µl  SP6 or M13 reverse primer (10µM) 

0.5µl  plasmid (25ng/µl) 

50µl 

 

PCR programme for T7/SP6: 

98°C 10 seconds 

 

98°C 1 second 

48°C 5 seconds 30 cycles 

72°C 20 seconds  

72°C 1 minute  
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PCR programme for M13: 

98°C 10 seconds 

 

98°C 1 second 

55°C 5 seconds 30 cycles 

72°C 20 seconds  

 

72°C 1 minute  

 

 

In vitro transcription for synthesis of digoxygenin-labeled RNA probes 

 

6.5µl molbioH2O 

5µl purified template 

2µl DIG RNA labeling mix (10X) 

4µl transcription buffer (5X) (Promega P1181) 

0.5µl RNAsin (Promega N2511) 

2µl T7/SP6 Polymerase (Promega T2075/P1085) 

20µl 
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