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0. Introduction

This thesis considers the so called path spaces of smooth mappings from a compact interval
I into Riemannian manifolds M . They can be viewed as manifolds modelled on convenient
vector spaces which were introduced in [10, The Convenient Setting of Global Analysis].

Following [2, Connections on the path bundle of a principal fiber bundle] we can construct
fiber bundles which contain path spaces as base and total manifolds and consider connections
on principal path bundles.

The aim is to change the calculus on infinite dimensional manifolds used in [2] to the
convenient calculus introduced in [10] with the benefit of easier calculations showing the
smoothness of the mappings under consideration.

Chapter 1 is devoted to the fundamentals of this calculus. It starts with the introduction
of convenient vector spaces. Next the notion of smoothness is introduced which is based on
smooth curves in locally convex spaces. Afterwards infinite dimensional manifolds modelled
over convenient vector spaces are introduced together with their tangent spaces. Thereafter a
short section about actions of Lie groups fixes notation and is stated for further reference. The
first chapter ends with theorems concerning the extension of smooth maps by [15, Extension
of C∞ Functions Defined in a Half Space] and their application to the construction of the
modelling space of the infinite dimensional manifolds in later chapters.

Chapter 2 deals with the construction and fundamental properties of the path bundle. Here
the notion of the manifold of paths as the space of all mappings from a compact interval
[a, b] in R to a Riemannian manifold is introduced. This construction can be applied to Lie
groups too. So by starting at a given principal fiber bundle of finite dimensional objects, the
notion of a principal fiber bundle consisting of path manifolds and a path Lie group becomes
available. A large variety of submanifolds and subbundles are constructed and some criteria
for triviality are given.

After the introductions of the main objects under consideration Chapter 3 starts by stating
the definitions of differential forms and connections on the path bundle. A smooth lift of
curves in the base manifold is constructed which is mainly used in the proofs of triviality
of special subbundles of the path bundle. Furthermore it is shown how connections on the
finite dimensional principal fiber bundle induce connections on the path bundle and criteria
are given to recognise induced connections.

Chapter 4 introduces the notion of curvature on the path bundle and shows how Lie
algebra valued connection forms can be characterized by mappings from the tangent space
of the base space into the Lie algebra of the structure group of the path bundle. In the end
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0. Introduction

of the thesis a special type of connections, the so called uniform ones, are introduced. They
contain the induced connections and further a special kind called Polyakov connections. The
motivation of these constructions is the relation to a problem of quantum field theory which
was discussed in [13, Gauge fields as rings of glue] and made mathematically more precise
in [2].

Nevertheless some significant changes which go beyond simple changes of smoothness ar-
guments took place and are stated in the following.

First of all there is a more precise formulation of the construction of the modelling space
of the manifold of paths at the end of Chapter 1.

The definition of the charts of the path spaces in the beginning of Chapter 2 is now based
on [10].

Section 3.2 generalizes the construction of a smooth lift in the path bundle. Where the con-
struction in [2] is restricted to matrix Lie groups, the formulation in this thesis is applicable
to general Lie groups.

Section 3.4 includes Lemma 3.25 which clarifies how vector subbundles of the tangent
bundle of the finite dimensional manifold lead to vector subbundles of the corresponding
path manifold. This leads to a more rigorous formulation and proof of a result in [2] which
is stated now as Proposition 3.27.

The part of the proof of Theorem 3.36 concerning smoothness is totally different to the
original one. It depends strongly on properties introduced in the calculus of convenient vector
spaces. The same is true for Theorem 4.13.

I would like to thank my supervisor Andreas Kriegl for his very helpful, constructive
support on this thesis and his time spent for discussing the problems which arose during the
writing process. I have been extremely lucky to have a supervisor who cared so much about
my work, and who responded to my questions and queries so promptly.
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1. Preliminary results for infinite
dimensional manifolds

This chapter consists mainly of preparation work for the following chapters. Its objective is to
introduce convenient vector spaces and construct the modelling space for the path manifolds
used later on.

1.1. Convenient vector spaces

We begin with the definitions required for the introduction of convenient vector spaces. First
we state the definition of locally convex spaces.

Definition 1.1. [10, p. 575] A locally convex space E is a vector space together with a
Hausdorff topology such that addition E ×E → E and scalar multiplication R×E → E (or
C × E → E) are continuous and 0 has a basis of neighbourhoods consisting of (absolutely)
convex sets (see Definition A.7).

Equivalently: The topology on E can be described by a system of (continuous) seminorms
(see Chapter A.1).

The next task is to introduce differentiability and other properties of curves in locally
convex spaces.

Definition 1.2. [10, p. 8] Let E be a locally convex vector space. A curve c : R → E is
called differentiable if the derivative c′(t) := lims→∞

1
s (c(t+ s)− c(t)) at t exists for all t. A

curve c : R → E is called smooth or C∞ if all iterated derivatives exist. It is called Cn for
some finite n if its iterated derivatives up to order n exist and are continuous.

Likewise, a mapping f : Rn → E is called smooth if all iterated partial derivatives
∂i1,··· ,ipf := ∂

∂xi1
· · · ∂

∂xip
f exist for all i1, · · · , ip ∈ {1, · · · , n}.

Definition 1.3. [10, p. 9] A curve c : R → E is called locally Lipschitzian if every point
r ∈ R has a neighbourhood U such that the Lipschitz condition is satisfied on U , i.e., the
set {

1

t− s
(c(t)− c(s)) : t, s ∈ U, t 6= s

}
is bounded.
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1. Preliminary results for infinite dimensional manifolds

Also the usual notion of convergence has to be generalized to work for locally convex
spaces.

Lemma 1.4. [10, p. 12] Let B be a bounded and absolutely convex subset of a locally convex
space E and let (xγ)γ∈Γ be a net in the normed space EB, the linear span of B in E equipped
with the Minkowski functional (see Definition A.11). Then the following two conditions are
equivalent:

1. xγ converges to 0 in the normed space EB

2. There exists a net µγ → 0 in R, such that xγ ∈ µγ ·B.

Definition 1.5. [10, p. 12] A net (xγ) for which a bounded absolutely convex B ⊆ E exists,
such that xγ converges to x in EB is called Mackey convergent to x or for short M-convergent.

As a generalization of Cauchy sequences and completeness we introduce Mackey-Cauchy
nets and Mackey completeness:

Definition 1.6. [10, p. 14] A net (xγ)γ∈Γ in E is called Mackey-Cauchy provided that there
exists a bounded (absolutely convex) set B and a net (µγ,γ′)(γ,γ′)∈Γ×Γ in R converging to 0,
such that xγ − xγ′ ∈ µγ,γ′ ·B.

Lemma 1.7. [10, p. 15] For a locally convex space E the following conditions are equivalent:

1. Every Mackey-Cauchy net converges in E.

2. Every Mackey-Cauchy sequence converges in E.

3. For every absolutely convex closed bounded set B the space EB is complete.

4. For every bounded set B there exists an absolutely convex bounded set B′ ⊇ B such that
EB′ is complete.

Definition 1.8. [10, p. 15] A space satisfying the equivalent conditions of Lemma 1.7 is
called Mackey complete. Note that a sequentially complete space is Mackey complete.

With the generalisations of convergence and completeness in mind one turns to the inte-
gration of curves.

Lemma 1.9. [10, p. 15] For continuous curves c : [0, 1] → E one can show analogously
to 1-dimensional analysis that the Riemann sums R(c, Z, ξ), defined by

∑
k(tk − tk−1)c(ξk),

where 0 = t0 < t1 < · · · < tn = 1 is a partition Z of [0, 1] and ξk ∈ [tk−1, tk], form a Cauchy
net with respect to the partial strict ordering given by the size max{|tk− tk−1| : 0 < k < n} of
the mesh. So under the assumption of sequential completeness we have a Riemann integral
of curves.
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1.1. Convenient vector spaces

Lemma 1.10. [10, p. 16] Let c : R → E be a continuous curve in a locally convex vector
space. Then there is a unique differentiable curve

∫
c : R→ Ê in the completion Ê of E such

that
(∫
c
)

(0) = 0 and
(∫
c
)′

= c.

Proposition 1.11. [10, p. 17] Let c : [0, 1]→ E be a Lipschitz curve into a Mackey complete
space. Then the Riemann integral exists in E as (Mackey)-limit of the Riemann sums.

Via the definition of smooth curves in E we define the following topology on E:

Definition 1.12. [10, p. 19] The c∞-topology on a locally convex space E is the final topology
with respect to all smooth curves c : R→ E. Its open sets will be called c∞-open.

So after the introduction of the necessary terms we finally arrive at the definition of
convenient vector spaces given by the following theorem.

Theorem 1.13. [10, p. 20] Let E be a locally convex vector space. E is said to be c∞-complete
or convenient if one of the following equivalent (completeness) conditions is satisfied:

1. Any Lipschitz curve in E is locally Riemann integrable.

2. For any smooth c1 : R → E there exists a smooth c2 : R → E with c′2 = c1 (existence
of an anti-derivative).

3. E is c∞-closed in any locally convex space.

4. If c : R → E is a curve such that ` ◦ c : R → R is smooth for all ` ∈ E∗, then c is
smooth.

5. Any Mackey-Cauchy sequence converges; i.e. E is Mackey complete.

6. If the set B is bounded closed absolutely convex, then EB is a Banach space.

7. Any continuous linear mapping from a normed space into E has a continuous extension
to the completion of the normed space.

Various constructions of convenient vector spaces inherit the c∞-completeness property.

Theorem 1.14. [10, p. 21] The following constructions preserve c∞-completeness: limits,
direct sums, strict inductive limits of sequences of closed embeddings;
The same is true for formation of `∞ (X, .): Let X be a set together with a family B of

subsets of X containing all finite ones. We call the elements of B bounded. Now denote by
`∞ (X,E) the space of all functions f : X → E, which are bounded on all B ∈ B, supplied
with the topology of uniform convergence on the sets in B.

Remark 1.15. [10, p. 21] The definition of the topology of uniform convergence as initial
topology shows, that adding all subsets of finite unions of elements in B to B does not change
this topology. Hence, we may always assume that B has this stability property; this is the
concept of a bornology on a set.
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1. Preliminary results for infinite dimensional manifolds

1.2. Smooth mappings on locally convex spaces

Now we want to discuss smooth mappings between locally convex vector spaces E and F

where the notion of smoothness is introduced via smooth curves.

Definition 1.16. [10, p. 28] Let C∞(R, E) be the locally convex vector space of all smooth
curves in E, with the pointwise vector operations, and with the topology of uniform conver-
gence on compact sets of each derivative separately.

Lemma 1.17. [10, p. 28] The topology given by Definition 1.16 is the initial topology with
respect to the set of linear mappings

C∞(R, E)
dk−→ C∞(R, E)→ `∞ (K,E) ,

for k ∈ N and K ⊂ R compact, where `∞ (K,E) carries the topology of uniform convergence.
The derivatives dk : C∞(R, E) → C∞(R, E), the point evaluation evt : C∞(R, E) → E

and the pullbacks g∗ : C∞(R, E)→ C∞(R, E) for g ∈ C∞(R,R) are continuous and linear.

Lemma 1.18. [10, p. 28] A space E is c∞-complete if and only if C∞(R, E) is.

Example 1.19. As a first simple example for a convenient vector space we get C∞(R,R)

since R is obviously locally convex and c∞-complete.

Definition 1.20. [10, p. 30] A mapping f : E ⊇ U → F defined on a c∞-open subset U is
called smooth (or C∞) if it maps smooth curves in U to smooth curves in F .

Let C∞(U,F ) denote the locally convex space of all smooth mappings U → F with point-
wise linear structure and the initial topology with respect to all mappings c∗ : C∞(U,F )→
C∞(R, F ) for c ∈ C∞(R, U).

For U = E = R this coincides with our usual definition. Obviously, the composition of
smooth mappings is also smooth.

As we defined smoothness for mappings between locally convex vector spaces, we get that
some commonly used mappings are automatically smooth.

Theorem 1.21. [10, p. 30] Let Ui ⊂ Ei be c∞-open subsets in locally convex spaces, which
need not be c∞-complete. Then a mapping f : U1 × U2 → F is smooth if and only if the
canonically associated mapping f∨ : U1 → C∞(U2, F ) exists and is smooth.

Corollary 1.22. [10, p. 31] Let E, F , G, etc. be locally convex spaces, and let U , V be
c∞-open subsets of such. Then the following canonical mappings are smooth.

1. ev : C∞(U,F )× U → F, (f, x) 7→ f(x)

2. ins : E → C∞(F,E × F ), x 7→ (y 7→ (x, y))

3. ( )∧ : C∞(U,C∞(V,G))→ C∞(U × V,G)

6



1.2. Smooth mappings on locally convex spaces

4. ( )∨ : C∞(U × V,G)→ C∞(U,C∞(V,G))

5. comp : C∞(F,G)× C∞(U,F )→ C∞(U,G), (f, g) 7→ f ◦ g

6. C∞( , ) : C∞(E2, E1)× C∞(F1, F2)→ C∞(C∞(E1, F1), C∞(E2, F2)),

(f, g) 7→ (h 7→ (g ◦ h ◦ f)

7.
∏

:
∏
C∞(Ei, Fi)→ C∞(

∏
Ei,
∏
Fi), for any index set.

The new definition of smoothness is a generalization of the finite dimensional case.

Corollary 1.23. [10, p. 31] The smooth mappings on open subsets of Rn in the sense of
Definition 1.20 are exactly the usual smooth mappings.

Later on we need a differential operator not only for curves but for arbitrary smooth
mappings between locally convex vector spaces.

Theorem 1.24. [10, p. 33] Let E and F be locally convex spaces, and let U ⊆ E be c∞-open.
Then the differentiation operator

d : C∞(U,F )→ C∞(U,L(E,F )) df(x)(v) := limt→0
f(x+ tv)− f(x)

t

exists, is linear and bounded (smooth). It also satisfies the chain rule:

d(f ◦ g)(x)(v) = (df(g(x)) ◦ dg(x)) (v)

Finally the following proposition gives some examples of spaces of smooth functions which
are convenient vector spaces.

Proposition 1.25. [10, p. 66] Let M be a smooth finite dimensional paracompact manifold.
Then the space C∞(M,R) of all smooth functions on M is a convenient vector space in any
of the following (bornologically)(see Definition A.16) isomorphic descriptions, and it satisfies
the uniform boundedness principle for the point evaluations.

1. The initial structure with respect to the cone

C∞(M,R)
c∗−→ C∞(R,R)

for all c ∈ C∞(R,M).

2. The initial structure with respect to the cone

C∞(M,R)
(u−1
α )∗−−−−→ C∞(Rn,R)

where (Uα, uα)α∈ is a smooth atlas with uα(Uα) = Rn.

7



1. Preliminary results for infinite dimensional manifolds

3. The initial structure with respect to the cone

C∞(M,R)
jk−→ C∞(Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions on M , where
jk is the jet prolongation, and where all the spaces of continuous sections are equipped
with the compact open topology.

1.3. Infinite dimensional manifolds

The following definitions are generalizations of the standard definitions of manifolds:

Definition 1.26. [10, p. 264] A chart (U, u) on a set M is a bijection u : U → u(U) ⊆ EU

from a subset U ⊆M onto a c∞-open subset of a convenient vector space EU .

Definition 1.27. [10, p. 264] For two charts (Uα, uα) and (Uβ, uβ) on M the mapping
uαβ := uα ◦ u−1

β : uβ(Uαβ) → uα(Uαβ) for α, β ∈ A is called the chart changing, where
Uαβ := Uα ∩ Uβ . A family (Uα, uα)α∈A of charts on M is called an atlas for M , if the
{Uα}α∈A form a cover of M and all chart changings uαβ are defined on c∞-open subsets.

Definition 1.28. [10, p. 264] An atlas (Uα, uα)α∈A forM is said to be a C∞-atlas, if all chart
changings uαβ : uβ(Uαβ)→ uα(Uαβ) are smooth. Two C∞-atlases are called C∞-equivalent,
if their union is again a C∞-atlas for M .

An equivalence class of C∞-atlases is sometimes called a C∞-structure on M . The union
of all atlases in an equivalence class is again an atlas, the maximal atlas for this C∞-structure.
A C∞-manifold M is a set together with a C∞-structure on it.

To study C∞-manifolds we describe mappings between them.

Definition 1.29. [10, p. 264] A mapping f : M → N between manifolds is called smooth if
for each x ∈M and each chart (V, v) on N with f(x) ∈ V there is a chart (U, u) on M with
x ∈ U , f(U) ⊆ V , such that v ◦ f ◦ u−1 is smooth. This is the case if and only if f ◦ c is
smooth for each smooth curve c : R→M . The space of all C∞-mappings from M to N will
be denoted by C∞(M,N).

Definition 1.30. [10, p. 264] A smooth mapping f : M → N is called a diffeomorphism if
f is bijective and its inverse is also smooth. Two manifolds are called diffeomorphic if there
exists a diffeomorphism between them.

Next we mean to induce a topology on the manifold M .

Definition 1.31. [10, p. 265] The natural topology on a manifold M is the identification
topology with respect to some (smooth) atlas (uα : M ⊇ Uα → uα(Uα) ⊆ Eα), where a
subset W ⊆M is open if and only if uα(Uα ∩W ) is c∞-open in Eα for all α. This topology

8



1.3. Infinite dimensional manifolds

depends only on the C∞-structure of M , since diffeomorphisms are homeomorphisms for the
c∞-topologies. It is the final topology with respect to all inverses of chart mappings in one
atlas and it is also the final topology with respect to all smooth curves.

To discuss metrizability of a manifold we require the following corollary and lemma.

Corollary 1.32. [10, p. 42] Let E be a bornological (see Definition A.16) convenient vector
space containing a nonempty c∞-open subset which is either locally compact or metrizable in
the c∞- topology. Then the c∞-topology on E is locally convex. In the first case E is finite
dimensional, in the second case E is a Fréchet space (see Definition A.17).

Lemma 1.33. [10, p. 267] A manifold M is metrizable if and only if it is paracompact and
modeled on Fréchet spaces.

Proof. A topological space is metrizable if and only if it is paracompact and locally metriz-
able. The c∞-open subsets of the modeling vector spaces are metrizable if and only if the
spaces are Fréchet (see Corollary 1.32).

Next we introduce C∞-submanifolds.

Definition 1.34. [10, p. 268] A subset N of a manifoldM is called a submanifold, if for each
x ∈ N there is a chart (U, u) of M such that u(U ∩N) = u(U) ∩ FU , where FU is a closed
linear subspace of the convenient modeling space EU . Then clearly N is itself a manifold
with (U ∩N, u|U∩N ) as charts, where (U, u) runs through all these submanifold charts from
above.

A submanifold N ofM is called a splitting submanifold if there is a cover of N by subman-
ifold charts (U, u) as above such that the FU ⊆ EU are complemented (i.e. splitting) linear
subspaces. Then every submanifold chart is splitting.

The following lemma states a generalization of Proposition 1.25 and brings up new exam-
ples of convenient vector spaces.

Lemma 1.35. [10, p. 273] For a convenient vector space E and any smooth manifold M the
set C∞(M,E) of smooth E-valued functions on M is also a convenient vector space in any
of the following isomorphic descriptions, and it satisfies the uniform boundedness principle
for the point evaluations.

1. The initial structure with respect to the cone

C∞(M,E)
c∗−→ C∞(R, E)

for all c ∈ C∞(R,M).

9



1. Preliminary results for infinite dimensional manifolds

2. The initial structure with respect to the cone

C∞(M,E)
(u−1
α )∗−−−−→ C∞(uα(Uα), E)

where (Uα, uα) is a smooth atlas with uα(Uα) ⊆ Eα.

1.4. The kinematic tangent bundle

We start this section by introducing the notion of a tangent vector at a given point of a
convenient vector space.

Definition 1.36. [10, p. 276] Let E denote a convenient vector space and p ∈ E. A
kinematic tangent vector with foot point p is simply a pair (p,X) with X ∈ E. Let TpE = E

be the space of all kinematic tangent vectors with foot point p. It consists of all derivatives
c′(0) at 0 of smooth curves c : R→ E with c(0) = p, which explains the choice of the name
kinematic.

For each open neighbourhood U of p in E the pair (p,X) induces a linear mapping

Xp : C∞(U,R)→ R Xp(f) := df(p)(X)

which is continuous for the convenient vector space topology on C∞(U,R) and satisfies

Xp(f · g) = Xp(f) · g(p) + f(p) ·Xp(g),

so it is a continuous derivation over evp.

In contrast to the finite dimensional case there exists the possibility to define a more
general notion of tangent vectors which contains the kinematic ones. They are bounded
derivations and called operational tangent vectors [10, p. 276]. Because we will only use
kinematic tangent vectors the general case is not discussed in more detail. Next we construct
the kinematic tangent space of a manifold.

Definition 1.37. [10, p. 284] Let M be a C∞-manifold with a smooth atlas (Uα, uα)α∈A

where uα : Uα → uα(Uα) ⊆ Eα denote the charts to c∞-open subsets of convenient vector
spaces Eα. On the disjoint union ⊔

α∈A
{Uα} × {Eα} × {α}

we define the equivalence relation

(x, v, α) ∼ (y, w, β) ⇐⇒ x = y and d(uαβ)(uβ(x))w = v

10



1.4. The kinematic tangent bundle

where uαβ denotes the chart changing mapping (see Definition 1.27). The quotient space to
this equivalence relation is denoted by TM and called the kinematic tangent space.

Analogously to the finite dimensional case we want TM to become a manifold and TM →
M a vector bundle.

Definition 1.38. [10, p. 284] With the notation from above we define the mappings:

πM : TM →M πM ([x, v, α]) = x

Tuα : TUα → uα(Uα)× Eα Tuα([x, v, α]) = (uα(x), v)

where TUα := π−1
M (Uα) ⊆ TM . The pairs (TUα, Tuα) satisfy the the chart properties for

TM and the chart changings are given by

Tuα ◦ (Tuβ)−1 : uβ(Uαβ)× Eβ → uα(Uαβ)× Eα
(x, v)→ (uαβ(x), d(uαβ)(x)v)

So the family (TUα, Tuα)α∈A becomes a C∞-atlas for TM . The chart changing formula
also implies that the smooth structure on TM depends only on the equivalence class of the
C∞-atlas for M .

The mapping πM : TM →M is obviously smooth. It is called the (foot point) projection.
The triple (TM,M, πM ) is called the kinematic tangent bundle. The natural topology is
automatically Hausdorff: (p,X), (q, Y ) ∈ TM can be separated by open sets of the form
π−1
M (V ) for V ⊂ M , if p 6= q, since M is Hausdorff, and by open subsets of the form

(Tuα)−1(Eα ×W ) for W open in Eα, if p = q.

Definition 1.39. [10, p. 284] For x ∈ M the set TxM := πM (x) is called the kinematic
tangent space at x or the fiber over x of the tangent bundle. It carries a canonical convenient
vector space structure induced by Tx(uα) := Tuα|TxM : TxM → {x} × Eα ∼= Eα for some
(equivalently any) α with x ∈ Uα.

Remark 1.40. [10, p. 286] From the construction of the tangent bundle (see Definition
1.38) it follows that

T (M ×N) ∼= TM × TN

in a canonical way.

The following paragraphs give a description of TM as the space of all velocity vectors of
curves, which motivates the name kinematic tangent bundle:

Remark 1.41. [10, p. 285] We put on C∞(R,M) the equivalence relation: c ∼ e if and only
if c(0) = e(0) and in one (equivalently each) chart (U, u) with c(0) = e(0) ∈ U we have:

d

dt

∣∣∣
0
(u ◦ c)(t) =

d

dt

∣∣∣
0
(u ◦ e)(t)

11



1. Preliminary results for infinite dimensional manifolds

To c ∈ C∞(R,M) we associate the tangent vector δ(c) := [c(0), ∂∂t
∣∣
0
(uα ◦ c)(t), α].

C∞(R,M)/ ∼
∼=

��

C∞(R,M)oo

ev0

��

δ

vvmmmmmmmmmmmmm

TM
πM // M

This mapping factors to a bijection C∞(R,M)/ ∼→ TM , whose inverse associates to [x, v, α]

the equivalence class of
t→ u−1

α (uα(x) + h(t)v)

for h an absolutely small function with h(t) = t near 0.

Lemma 1.42. [10, p. 41] Let E be a convenient vector space, U a c∞-open subset of E ×R
and K ⊆ R compact. Then the set

U0 :=
{
x ∈ E : {x} ×K ⊆ U

}
is c∞-open in E.

Remark 1.43. [10, p. 285] With the equivalence relation defined in Remark 1.41 the c∞-
topology on R×Eα is the product topology by Lemma 1.42. So one can choose h uniformly for
(x, v) in a piece of a smooth curve. Thus, a mapping g : TM → N into another C∞-manifold
is smooth if and only if

g ◦ δ : C∞(R,M)→ N

maps smooth curves to smooth curves, by which is meant C∞(R2,M) to C∞(R, N).

In Definition 1.37 we defined the kinematic tangent space and in Definition 1.38 the kine-
matic tangent bundle. Now we focus on the tangent mapping of a given mapping between
C∞-manifolds. We give a definition analogues to the finite dimensional case using local
trivializations.

Definition 1.44. Let f : M → N be a smooth mapping between C∞-manifolds. Then TpM
denotes the tangent space in the point p ∈ M and Tf(p)N the tangent space in the point
f(p) ∈ N . Elements of TpM can be denoted by equivalence classes [(p, ν, α)] where α denotes
a chart index and ν a tangent vector at p, which is an element of the modelling vector space.

Now let uα : M ⊇ Uα → uα(Uα) ⊆ E denote a chart of M satisfying p ∈ Uα and
vβ : N ⊇ Vβ → vβ(Vβ) ⊆ F a chart of N satisfying f(p) ∈ Vβ where E and F denote the
modelling convenient vector spaces of the manifolds M and N respectively. Then f induces
a linear mapping Tpf by

Tpf : TpM → Tf(p)N [(p, ν, α)] 7→ [(f(p), (vβ ◦ f ◦ u−1
α )′(uα(p))(ν), β)]

where we use the derivative defined for convenient vector spaces. The mapping Tpf is called

12
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the tangent mapping of f at p.

N ⊇ Vβ
vβ // vβ(Vβ) ⊆ F

M ⊇ Uα

f

OO

uα // uα(Uα) ⊆ E

vβ◦f◦u−1
α

OO

1.5. Actions of Lie groups

We start with a review of the definition of Lie group to fix some notation.

Definition 1.45. [10, p. 369] A Lie group is a group G carrying the structure of a smooth
manifold for which the following maps are smooth:

µ : G×G→ G (g, h) 7→ g · h (multiplication) and

ν : G→ G g 7→ g−1 (inverse)

If not stated otherwise, G may be infinite dimensional. Furthermore we write for the left
and right translation by an element g ∈ G: µg(x) := g · x and µg(x) = x · g.

A Lie group homomorphism is a smooth group homomorphism between two Lie groups.

The following lemma leads to a closer view of the tangent mappings of the just introduced
mappings.

Lemma 1.46. [10, p. 370] For Xa ∈ TaG and Yb ∈ TbG the kinematic tangent mapping µ
is given by

T(a,b)µ : TaG× TbG→ Ta·bG T(a,b)µ(Xa, Yb) = Taµ
b(Xa) + Tbµa(Yb)

and the tangent mapping of the inverse is given by

Taν : TaG→ Ta−1G Taν(Xa) = −(Teµ
a−1 ◦ Taµa−1)(Xa) = −(Teµa−1 ◦ Taµa

−1
)(Xa).

Next we introduce sections of the kinematic tangent bundle and view some of their prop-
erties.

Definition 1.47. [10, p. 321] Let M be a smooth manifold. A kinematic vector field X on
M is a smooth section of the kinematic tangent bundle TM →M . The space of all kinematic
vector fields will be denoted by X (M) := Γ (TM →M).

Definition 1.48. Let M and N be smooth manifolds and f : M → N a smooth mapping.
Two kinematic vector fields ξ ∈ Γ (TM →M) and ζ ∈ Γ (TN → N) are called f-related if

Tf ◦ ξ = ζ ◦ f,

13



1. Preliminary results for infinite dimensional manifolds

making the following diagram commute:

TM
Tf // TN

M

ξ

OO

f // N

ζ

OO

Definition 1.49. [5, p. 46] A Lie algebra (over R) is a real vector space V equipped with a
bilinear map [·, ·] : V × V → V , the Lie bracket, satisfying:

(i) [X,X] = 0 for all X ∈ V .

(ii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X, Y , Z ∈ V .

A Lie algebra homomorphism is a linear mapping between two Lie algebras which is compat-
ible with the Lie brackets.

Definition 1.50. [10, p. 370] Let G be a (real) Lie group. A (kinematic) vector field ξ on
G is called left invariant, if µ∗aξ = ξ for all a ∈ G, where µ∗aξ := Tµa−1 ◦ ξ ◦ µa.

The Lie bracket on the space of all kinematic vector fields X(G) is defined in the following.

Definition 1.51. With the notation already introduced let U denote an open subset of G
which is diffeomorphic to an open subset V of a convenient vector space. Furthermore let ξ
denote a vector field on G which can be written locally in coordinates on V as ξ̄.

TG ⊇ TU

πG
��

πU
��

// V × E

G ⊇ U ∼= V ⊆ E

ξ

OO

(Id,ξ̄)

55jjjjjjjjjjjjjjjj

Then the Lie bracket of two vector fields ξ and η can be defined locally as:

[ξ, η] : V 3 x 7→ (ξ̄′(x) · η̄(x)− η̄′(x) · ξ̄(x))

This is well defined because ξ̄(x) ∈ E and ξ̄′(x) ∈ L(E,E).
The mapping µ∗a satisfies µ∗a[ξ, η] = [µ∗aξ, µ

∗
aη], so the space XL(G) of all left invariant

vector fields on G is closed under the Lie bracket and is a sub Lie algebra of X(G).

Remark 1.52. [10, p. 370] Any left invariant vector field ξ is uniquely determined by
ξ(e) ∈ TeG, since ξ(a) = Teµa(ξ(e)). Thus, the Lie algebra XL(G) of left invariant vector
fields is linearly isomorphic to TeG, and the Lie bracket on XL(G) induces a Lie algebra
structure on TeG, whose bracket is again denoted by [ , ]. This Lie algebra will be denoted
as usual by g.

Definition 1.53. [10, p. 370] Analogously a vector field η on G is called right invariant, if
(µa)∗η = η for all a ∈ G.

14
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Remark 1.54. [10, p. 370] The right invariant vector fields form a sub Lie algebra XR(G) of
X(G), which also is linearly isomorphic to TeG and induces a Lie algebra structure on TeG.
Since ν∗ : XL(G) → XR(G) is an isomorphism of Lie algebras, Teν = − Id : TeG → TeG is
an isomorphism between the two Lie algebra structures.

This leads to the definition of further mappings.

Definition 1.55. [10, p. 373] Let G be a Lie group with Lie algebra g. For a ∈ G we define

conja : G→ G conja(x) = a · x · a−1

as the conjugation or the inner automorphism by a ∈ G. This defines a smooth action of G
on itself by automorphisms.

Next we define the adjoint representation of the Lie group G

Ad : G→ GL(g) ⊂ L(g, g) Ad(a) := (conja)
′ = Teconja : g→ g for a ∈ G.

The mapping Ad(a) is a Lie algebra homomorphism and satisfies:

Ad(a) = Teconja = Taµ
a−1 ◦ Teµa = Ta−1µa ◦ Teµa

−1

The adjoint representation of the Lie algebra g is given by:

ad : g→ gl(g) := L(g, g) ad := Ad′ = Te Ad

Definition 1.56. Let g ∈ G and µg−1 denote the right multiplication by g−1 in G. Then
the mapping

κrg := Tg(µ
g−1

) : TgG→ g

defines the right Maurer-Cartan form κr ∈ Ω1 (G, g).
Analogously the left multiplication by g−1 denoted as µg−1 leads to the left Maurer-Cartan

form κl ∈ Ω1 (G, g).

As we will need principal fiber bundles later on, we introduce the action of Lie groups on
manifolds together with the notation required.

Definition 1.57. [5, p. 50] [10, p. 375] One says that G acts on a smooth manifold M from
the left if there is a smooth mapping

` : G×M →M

(g, x) 7→ g · x

that respects the Lie group structure of G in the sense that

g(hx) = (g · h)x ∀g, h ∈ G, x ∈M.

15
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Then the mapping `∨ : G→ Diff(M) is a group homomorphism and the mappings `g : M →
M and `x : G→M satisfy `g(x) = `x(g) = `(g, x) = g · x.

Analogously one defines the action from the right r : (x, g) 7→ x · g with (x · g)h = x(g · h).
Then r∨ : G→ Diff(M) is a group anti homomorphism and the mappings rg : M →M and
rx : G→M satisfy rg(x) = rx(g) = r(x, g) = x · g.

Definition 1.58. [10, p. 375] For any X ∈ g we define the fundamental vector field ζX =

ζMX ∈ X(M) by
ζX(x) = Te`

x(X) = T(e,x)`(X, 0x)

or alternatively for a right action by

ζX(x) = Terx(X) = T(x,e)r(0x, X).

1.6. Fiber bundles and vector bundles

After the introduction of manifolds and the action of Lie groups the next necessary definitions
are related to fiber bundles.

Definition 1.59. [10, p. 375] A (fiber) bundle (π : E → M,S) = (E,M, π, S) consists of
smooth (finite or infinite dimensional) manifolds E, M , S, and a smooth mapping π : E →
M . Furthermore, each x ∈ M has an open neighbourhood U such that E|U := π−1(U) is
diffeomorphic to U × S via a fiber respecting diffeomorphism ψ:

E|U
π

!!B
BB

BB
BB

B

ψ // U × S
pr1

||yy
yy

yy
yy

y

U

In this notation E is called total space, M is called base space or basis, π is a final surjective
smooth mapping, called projection, and S is called standard fiber. The pair (U,ψ) is called
a fiber chart.

Definition 1.60. [10, p. 376] A collection of fiber charts (Uα, ψα) such that the set (Uα) is
an open cover ofM , is called a fiber bundle atlas. If we fix such an atlas, then ψα◦ψ−1

β (x, s) =

(x, ψαβ(x, s)), where ψαβ : (Uα ∩ Uβ) × S → S is smooth and ψαβ(x, .) is a diffeomorphism
of S for each x ∈ Uαβ := Uα ∩Uβ . These mappings ψαβ are called transition functions of the
bundle. They satisfy the cocycle condition: ψ̌αβ(x) ◦ ψ̌βγ(x) = ψ̌αγ(x) for x ∈ Uα ∩ Uβ ∩ Uγ
and ψαα(x) = IdS for x ∈ Uα. Therefore, the collection (ψαβ) is called a cocycle of transition
functions.

For the special case where the fiber S is a vector space the fiber bundle becomes a vector
bundle which is described in the following.
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1.6. Fiber bundles and vector bundles

Definition 1.61. [10, p. 287] Let p : E → M be a smooth mapping between manifolds.
By a vector bundle chart on (E, p,M) we mean a pair (U,ψ), where U is an open subset
in M , and where ψ : p−1(U) → U × V is a fiber respecting diffeomorphism. In the finite
dimensional case V is an Rn, in the infinite dimensional case this can be generalized to V
being a convenient vector space called the standard fiber or the typical fiber.

Two vector bundle charts (U1, ψ1) and (U2, ψ2) are called compatible, if ψ1 ◦ψ−1
2 is a fiber

linear isomorphism, i.e., (ψ1 ◦ ψ2)(x, v) = (x, ψ1,2(x)v) for some mapping ψ1,2 : U1,2 :=

U1 ∩ U2 → GL(V ). The mapping ψ1,2 is then unique and smooth into L(V, V ), and it is
called the transition function between the two vector bundle charts.

A vector bundle atlas (Uα, ψα)α∈A for p : E → M is a set of pairwise compatible vector
bundle charts (Uα, ψα) such that (Uα)α∈A is an open cover of M . Two vector bundle atlases
are called equivalent, if their union is again a vector bundle atlas.

A (smooth) vector bundle p : E → M consists of manifolds E (the total space), M (the
base), and a smooth mapping p : E →M (the projection) together with an equivalence class
of vector bundle atlases.

Again we define morphisms between the just introduced structures.

Definition 1.62. [10, p. 289] Let q : F → N and p : E → M be vector bundles. A vector
bundle homomorphism ϕ : F → E over Φ is a fiber respecting, fiber linear smooth mapping
i.e., we require that ϕx : Fx → EΦ(x) is linear. We say that ϕ covers Φ, which turns out to
be smooth. If ϕ is invertible, it is called a vector bundle isomorphism.

F

q

��

ϕ // E

p

��
N

Φ // M

Definition 1.63. [11, p. 93] A vector subbundle (F, p,M) of a vector bundle (E, p,M) is a
vector bundle and a vector bundle homomorphism τ : F → E, which covers IdM , such that
τx : Fx → Ex is a linear embedding for each x ∈M .

Lemma 1.64. [11, p. 93] Let ϕ : (F, q,N) → (E, p,M) be a vector bundle homomorphism
between finite dimensional vector bundles such that rank

(
ϕx : Fx → EΦ(x)

)
is locally constant

in x ∈M . Then kerϕ, given by (kerϕ)x = ker(ϕx), is a vector subbundle of (F, q,N).

Definition 1.65. [10, p. 377] Let (E,M, π, S) be a fiber bundle, and consider a smooth
mapping f : N →M . Let us consider the pullback

N ×(f,M,p) E := {(n, e) ∈ N × E : f(n) = p(e)};
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1. Preliminary results for infinite dimensional manifolds

we will denote it by f∗E. The following diagram sets up some further notation for it:

f∗E

f∗π

��

π∗f // E

π

��
N

f // M

Proposition 1.66. [10, p. 377] The pullback construction introduced in Definition 1.65
satisfies that (f∗E, f∗π,N, S) is a fiber bundle, and π∗f is a fiberwise diffeomorphism.

Definition 1.67. [10, p. 293] For a fixed vector bundle p : E → M on each fiber Ex :=

p−1(x) for x ∈ M there is a unique structure of a convenient vector space, induced by any
vector bundle chart (Uα, ψα). So 0x ∈ Ex is a special element, and 0 : M → E 0(x) := 0x,
is a smooth mapping called the zero section.

Next we consider the kinematic tangent bundle of a vector bundle.

Lemma 1.68. [10, p. 292] Let p : E → M be a vector bundle with fiber addition +E :

E ×M E → E and fiber scalar multiplication mE
t : E → E. Then πE : TE → E, the

tangent bundle of the manifold E, is itself a vector bundle, with fiber addition +TE and
scalar multiplication mTE

t .

Proof. If (Uα, ψα : E|Uα → Uα × V )α∈A is a vector bundle atlas for E, and if (uα : Uα →
uα(Uα) ⊆ F ) is a manifold atlas for M , then (E|Uα , ψ′α)α∈A is an atlas for the manifold E,
where

ψ′α := (uα × IdV ) ◦ ψα : E|Uα → Uα × V → uα(Uα)× V ⊆ F × V.

Hence, the family

(T (E|Uα), Tψ′α : T (E|Uα)→ T (uα(Uα)× V ) = (uα(Uα)× V × F × V )α∈A

is the atlas describing the canonical vector bundle structure of πE : TE → E.
The transition functions are:

(ψα ◦ ψ−1
β )(x, v) = (x, ψαβ(x)v)

(uα ◦ u−1
β )(x) = uαβ(x)

(ψ′α ◦ ((ψ′β)−1)(x, v) = (uαβ(x), ψαβ(u−1
β (x))v)

(Tψ′α ◦ T (ψ′β)−1)(x, v, ξ, w) =

= (uαβ(x), ψαβ(u−1
β (x))v,d(uαβ)(x)ξ, (d(ψαβ ◦ u−1

β )(x)ξ)v + ψαβ(u−1
β (x))w).

So we see that for fixed (x, v) the transition functions are linear in (ξ, w) ∈ F × V . This
describes the vector bundle structure of the tangent bundle πE : TE → E.
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Lemma 1.69. [10, p. 292] Let p : E → M be a vector bundle with the same mappings as
defined in Lemma 1.68. Then Tp : TE → TM is a vector bundle too.

Proof. Considering the proof of Lemma 1.68 it follows for fixed (x, ξ) that the transition
functions of TE are also linear in (v, w) ∈ V × V . This gives a vector bundle structure on
Tp : TE → TM . Its fiber addition will be denoted by

T (+E) : T (E ×M E) = TE ×TM TE → TE,

since it is the tangent mapping of +E . Likewise, its scalar multiplication will be denoted by
T (mE

t ). One might say that the vector bundle structure on Tp : TE → TM is the derivative
of the original one on E.

Definition 1.70. [10, p. 292] Let p : E →M be a vector bundle. The subbundle

{X ∈ TE : Tp(X) = 0 in TM} = (Tp)−1(0) ⊆ TE

is denoted by V E and is called the vertical bundle over E. With the notation introduced in
Lemma 1.68, the local form of a vertical vector X is Tψ′α(X) = (x, v, 0, w), so the transition
functions look like

(Tψ′α ◦ T (ψ′β)−1)(x, v, 0, w) = (uαβ(x), ψαβ(u−1
β (x))v, 0, ψαβ(u−1

β (x))w).

They are linear in (v, w) ∈ V × V for fixed x, so V E is a vector bundle over M . It coincides
with 0∗(TE, Tp, TM), the pullback of the bundle TE → TM over the zero section.

Now we introduce sections of vector bundles and their properties.

Definition 1.71. [10, p. 294] A section u of p : E → M is a smooth mapping u : M → E

with p◦u = IdM . The support of the section u is the closure of the set {x ∈M : u(x) 6= 0x} in
M . The space of all smooth sections of the bundle p : E →M will be denoted as Γ (E →M)

or Γ (E) if there is no risk of confusion. Clearly this set is a vector space with fiber wise
addition and scalar multiplication.

Remark 1.72. [10, p. 294] If (Uα, ψα)α∈A is a vector bundle atlas for p : E →M , then any
smooth mapping

fα : Uα → V x 7→ ψ−1
α (x, fα(x)),

where V is the standard fiber, defines a local section on Uα. If (gα)α∈A is a partition of unity
subordinated to (Uα), then a global section can be formed by:

x 7→
∑
α

gα(x) · ψ−1
α (x, fα(x))
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Next we want to show that Γ (E →M) has the structure of a convenient vector space.
First we state a theorem that describes the embedding of a vector bundle into a trivial one.

Theorem 1.73. [10, p. 291] For any vector bundle p : E → M with M smoothly regular
there is a smooth vector bundle embedding into a trivial vector bundle over M with locally
(over M) splitting image. If the fibers are Banach spaces, and M is smoothly paracompact
then the fiber of the trivial bundle can be chosen as Banach space as well.
A fiberwise short exact sequence of vector bundles over a smoothly paracompact manifold

M which is locally splitting is even globally splitting.

With this theorem in mind, the convenient structure of Γ (E →M) can be defined via the
following lemma.

Lemma 1.74. [10, p. 295] If M is smoothly regular, choose a smooth closed embedding
E → M × F into a trivial vector bundle with fiber a convenient vector space F . Then
Γ (E →M) can be considered as a closed linear subspace of C∞(M,F ), with the natural
structure from Lemma 1.35.
The space Γ (E →M) of sections of the vector bundle p : E → M with this struc-

ture satisfies the uniform boundedness principle with respect to the point evaluations evx :

Γ (E →M)→ Ex for all x ∈M .

Remark 1.75. Analysing the special case M = R, we see that the smooth sections of an
arbitrary vector bundle with base space R form a convenient vector space. The next task is
to show that by restricting to a compact interval I ⊂ R one gets a closed subspace.

1.7. Extension of smooth functions on compact intervals

This section is dedicated to the extension of smooth functions on the compact interval I =

[a, b] to smooth functions on R and the discussion of closed subspaces of C∞(R,R). For this
the results in [15] are used together with the special case described in [10, p. 170].

Theorem 1.76. [15] Let x ∈ Rn and t ∈ R then one defines the sets S+ = Rn×{t > 0} and
D+ = {f : f ∈ C∞(S+,R), f and all its derivatives have continuous limits as t→ 0+}. The
set D+ has the topology of uniform convergence of each derivative on compact subsets of the
closure of S+ in Rn+1 and C∞(Rn+1,R) has a corresponding topology.
There is a continuous linear extension operator E : D+ → C∞(Rn+1,R) satisfying

Ef(x, t) = f(x, t) for t > 0.

Lemma 1.77. [10, p. 170] The subspace {f ∈ C∞(R,R) : f(t) = 0 for t ≤ 0} of the Fréchet
space C∞(R,R) is a direct summand.
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Because we want to show that C∞(R,R) is the direct sum of {f ∈ C∞(R,R) : f |R+ = 0}
and C∞(R+,R) we discuss the following sequence:

{f ∈ C∞(R,R) : f |R+ = 0} ↪→ C∞(R,R) � C∞(R+,R)

By Theorem 1.76 for the case n = 0 we get a section s : C∞(R+,R) → C∞(R,R). This
sequence is exact in the category of locally convex spaces because the image of the embedding
is the kernel of the quotient map to C∞(R+,R).

Remark 1.78. [9, p. 101] Up to an isomorphism we have the following description of short
exact sequences:

0 // A
i //

∼=
��

B
p // C //

∼=
��

0

i(A) � � // B // // B/i(A)

Lemma 1.79. [9, p. 101] For a short exact sequence of locally convex vector spaces

0 // A
f // B

g // C // 0

with f a linear embedding and g a quotient map the following statements are equivalent:

1. There is an isomorphism of locally convex vector spaces ϕ : A ⊕ C → B such that the
diagram below is commutative.

2. g has a continuous linear right inverse ρ.

3. f has a continuous linear left inverse λ.

A C

Id
��

ρ

{{
0 // A

f //

Id

OO

B
g //

λ

cc

C // 0

0 // A
inj1 // A⊕ C

pr2 //

ϕ ∼=

OO

C // 0

Under these equivalent conditions the sequence is called splitting.

Proof. (1 =⇒ 2): For c ∈ C define

ρ := ϕ ◦ inj2 c 7→ ϕ(0, c)

where inj2 denotes the injection from C into the second component of A⊕C. Of course this
mapping is a right inverse of g: The application of g on ϕ(0, c) gives again c because g is the
same as pr2 ◦ϕ−1.
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(2 =⇒ 3): Because g◦ρ = IdC we get that g◦ρ◦g = g. This implies that g◦(IdB −ρ◦g) =

g − g = 0 and that IdB −ρ ◦ g has image in ker(g) which is by exactness the image of f . So
IdB −ρ ◦ g factors to a morphism λ : B → A since f is an embedding. We get that

f ◦ λ ◦ f = (IdB −ρ ◦ g) ◦ f = f − 0 = f ◦ IdA

which implies that λ ◦ f = IdA. This shows that λ is the left inverse of f .
(3 =⇒ 1): We define ψ := (λ, g) : B → A⊕C. Because pr2 ◦ψ = g and ψ ◦f = (IdA, 0) =

inj1 the diagram becomes commutative. By taking into account Remark 1.78 we get that ψ
is an isomorphism which shows the first statement.

Remark 1.80. If we consider a short exact sequence where

0 // A
f // B

g // C // 0

consist of continuous mappings f and g and we assume that one of the three statements
in Lemma 1.79 is true for a continuous mapping, then we get that the other two mappings
are continuous too. This follows because our constructions involved only compositions and
factorizations of continuous mappings.

Remark 1.81. By Lemma 1.79 it follows that we get the direct sum:

C∞(R,R) ∼= {f ∈ C∞(R,R) : f |R+ = 0} ⊕ C∞(R+,R)

Because the sets (−∞, b] and [a,∞) are diffeomorphic to R+ we get the direct sums:

C∞(R,R) ∼= {f ∈ C∞(R,R) : f |(−∞,b] = 0} ⊕ C∞((−∞, b],R)

C∞(R,R) ∼= {f ∈ C∞(R,R) : f |[a,∞) = 0} ⊕ C∞([a,∞),R)

With that we get that C∞([a,∞),R) and C∞((−∞, b],R) are embedded as closed linear
subspaces of C∞(R,R).

Because this construction can be done simultaneously at both ends of the interval we get
that C∞(I,R) is a closed linear subspace too.

1.8. Extensions of smooth sections of vector bundles over a
compact interval

The next step is to generalize this result to vector bundles with finite dimensional fiber. Our
aim is to show that the smooth sections of the vector bundle E → I = [a, b] with typical
fiber F = Rn can be extended to smooth sections of G→ R again with typical fiber Rn. We
select an open subinterval Va = [a, c) of I which contains the left boundary a and there is
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1.8. Extensions of smooth sections of vector bundles over a compact interval

a trivialization of the bundle over Va of the form E|Va ∼= Va × F . The same can be done
for an open subinterval Vb = (d, b] of I which contains the right boundary b and there is a
trivialization of the bundle over Vb of the form E|Vb ∼= Vb × F .

For the extension we define for points outside of the interval I as typical fiber again F and
get the trivializations G|(−∞,c) ∼= (−∞, c)× F and G|(d,∞)

∼= (d,∞)× F .
The results of the previous section are applicable for each component of the typical fiber.

So the vector bundle E → I can be viewed as a restriction of a greater vector bundle G→ R
with typical fiber F . By Corollary A.37 both bundles are trivial.

The space of sections of the bundle G → R forms a convenient vector space by Lemma
1.74 and Γ (E → I) is a closed subspace which will be used as a modelling space for infinite
dimensional manifolds later on.
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2. Path bundles

2.1. Construction of the manifold of paths

This section describes the construction of the manifold of paths corresponding to a given
Riemannian manifold. The main part of this construction is contained in the theorem about
the infinite dimensional manifold of all smooth mappings between smooth finite dimensional
manifolds. Because this theorem is essential for the whole thesis, in the following not only
the result is stated, but also the proof, which gives a major insight in the way this infinite
dimensional manifold is constructed.

We start with preliminary results reformulated for a compact interval I. We require the
notion of smooth curves in spaces of smooth mappings, in particular C∞(I,N).

Lemma 2.1. [10, p. 299] For a smooth vector bundle p : E →M a curve c : R→ Γ (E →M)

is smooth if and only if c∧ : R×M → E is smooth.

Corollary 2.2. [10, p. 300] Let p : E → I and p′ : E′ → I be smooth vector bundles with a
compact interval I as base manifold (with boundary). Let W ⊆ E be an open subset, and let
f : W → E be a fiber respecting smooth (nonlinear) mapping. Then

Γ (W → I) := {s ∈ Γ (E → I) : s(I) ⊆W},

is open in the convenient vector space Γ (E → I).
The mapping f∗ : Γ (W → I)→ Γ (E → I) is smooth.

The following lemma was stated for a more general case in [10, p. 442]. Together with
Theorem 1.76 we get a simplified version of that lemma on the compact interval I.

Lemma 2.3. [10, p. 442] Let I be a compact interval and N be smooth finite dimensional
manifold. Then the smooth curves c in C∞(I,N) correspond exactly to the smooth mappings
c∧ ∈ C∞(R× I,N)

The theorem about the infinite dimensional manifold of all smooth mappings between
smooth finite dimensional manifolds is reformulated for the case of a compact interval I.

Theorem 2.4. [10, p. 439] Let I be a compact interval and N a smooth finite dimensional
manifold. Then the space C∞(I,N) of all smooth mappings from I to N is a smooth manifold,
modelled on spaces Γ (γ∗TN → I) of smooth sections of pullback bundles along γ : I → N

over I. We will call C∞(I,N) the path manifold or manifold of paths to N .
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2. Path bundles

Proof. First choose a smooth Riemannian metric on N . Let exp : TN ⊇ U → N be
the smooth exponential mapping of this Riemannian metric, defined on a suitable open
neighbourhood of the zero section. We may assume that U is chosen such that (πN , exp) :

U → N ×N is a smooth diffeomorphism onto an open neighbourhood V of the diagonal.
For γ ∈ C∞(I,N) we consider the pullback vector bundle I ×N TN = γ∗TN .

γ∗TN

γ∗πN
��

π∗Nγ // TN

πN

��
I

γ // N

Now define
S(γ) := {µ ∈ C∞(I,N) : (γ(t), µ(t)) ∈ V for all t ∈ I}

and consider the mappings
Φγ : S(γ)→ Γ (γ∗TN → I)

Φγ(µ)(t) =
(
t, exp−1

γ(t)(µ(t))
)

=
(
t, ((πN , exp)−1 ◦ (γ, µ))(t)

)
Then Φγ is a bijective mapping from S(γ) onto the set

{s ∈ Γ (γ∗TN → I) : s(I) ⊆ γ∗U = (π∗Nγ)−1(U)},

whose inverse is given by
Φ−1
γ (s) = exp ◦(π∗Nγ) ◦ s,

where we view U → N as a fiber bundle. The set Φγ(S(γ)) is open in Γ (γ∗TN → I) by
Corollary 2.2.

The spaces Γ (γ∗TN → I) of smooth sections of pullback bundles along γ : I → N are
convenient vector spaces by Section 1.8.

Now we consider the atlas (Sγ ,Φγ)γ∈C∞(I,N) for C∞(I,N). Its chart change mappings are
given for

s ∈ Φµ(S(γ) ∩ S(µ)) ⊆ Γ (γ∗TN → I)

by
(Φγ ◦ Φ−1

µ )(s) = (IdI , (πN , exp)−1 ◦ (γ, exp ◦(π∗Nµ) ◦ s)) = (τ−1
γ ◦ τµ)∗(s),

where τµ is the smooth diffeomorphism

τµ : µ∗TN ⊇ µ∗U → (µ× IdN )−1(V ) ⊆ I ×N τµ(t, Yµ(t)) := (t, expµ(t)(Yµ(t)))

which is fiber respecting over I.
Smooth curves in Γ (γ∗TN → I) correspond by Lemma 2.1 to smooth mappings from
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2.2. The construction of the path bundle

R× I → γ∗TN which correspond to smooth sections of the bundle pr∗2 γ
∗TN → R× I.

pr∗2 γ
∗TN

pr∗2 γ
∗πN

��

(γ∗πN )∗ pr2 // γ∗TN

γ∗πN
��

π∗Nγ // TN

πN

��
R× I

pr2 // I
γ // N

The chart change Φγ ◦Φ−1
µ = (τγ ◦ τµ)∗ is defined on an open subset and it is also smooth

by Corollary 2.2.
Finally, the natural topology on C∞(I,N) is the identification topology from this atlas

(with the c∞-topologies on the modeling spaces), which is finer than the compact-open
topology and thus Hausdorff.

The equation Φγ ◦ Φ−1
µ = (τγ ◦ τµ)∗ shows that the smooth structure does not depend on

the choice of the smooth Riemannian metric on N .

Remark 2.5. [10, p. 442] For a compact interval I and a convenient vector space E the
smooth manifold C∞(I, E) is diffeomorphic to the convenient vector space C∞(I, E), which
is a special case for a trivial bundle with finite dimensional base. Throughout this thesis we
will not distinguish between the two notions of C∞(I, E).

2.2. The construction of the path bundle

The construction of the manifold of paths in the previous section can be accomplished for
the base and total space of a given principal fiber bundle. The aim of this section is to
show that the resulting manifolds together with the path Lie group constructed by the same
procedure from the structure group of the finite dimensional principal fiber bundle form again
a principal fiber bundle which we will call path bundle.

Lemma 2.6. Let f : M → N be a smooth mapping between finite dimensional manifolds.
Then the mapping

f∗ : C∞(I,M)→ C∞(I,N) γ 7→ f ◦ γ

is smooth.

Proof. The smoothness of this mapping is shown by the property that smooth curves are
mapped to smooth curves (see Definition 1.20). This means that smooth curves c : R →
C∞(I,M) have to be mapped to smooth curves in C∞(I,N).

Lemma 2.3 shows that such smooth curves c correspond to smooth mappings

c∧ ∈ C∞ (R× I,M) .

The composition with the finite dimensional smooth mapping f : M → N gives an element
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2. Path bundles

of C∞ (R× I,N).

R× I c∧ // M
f // N

This shows the smoothness of (f ◦ c)∧ = f ◦ c∧ and therefore the smoothness of f∗.

The following proposition was stated in [2, p. 204]. The proof has been changed and is
given now in terms of convenient calculus.

Proposition 2.7. Let π : P →M be a principal fiber bundle with structure group G and let
r : C∞(I, P )× C∞(I,G)→ C∞(I, P ) be defined by

r(µP , a)(t) := rfin (µP (t), a(t))

for µP ∈ C∞(I, P ), a ∈ C∞(I,G) and t ∈ I where rfin denotes the finite dimensional right
action of G on P . Then r is smooth.

Proof. First observe that the domain of r may also be viewed as the space C∞(I, P × G).
The mapping r is nothing else than rfin ∗ and is therefore smooth by Lemma 2.6.

The final result of this section will be that for a given principal fiber bundle (P,M, π,G)

the tuple (C∞(I, P ), C∞(I,M), π∗, C
∞(I,G)) forms again a principal fiber bundle, we will

call it the path bundle of (P,M, π,G).
We start by showing the smoothness of the projection where we keep the already introduced

notation in mind. The following lemma, originally a part of the proof of the theorem in [2,
p. 205], is now shown by arguments introduced in [10].

Lemma 2.8. The mapping π∗ : C∞(I, P ) → C∞(I,M) defined by π∗(µP ) = π ◦ µP is
smooth.

Proof. Again the smoothness of this mapping is shown by Lemma 2.6.

Theorem 2.9. [2, p. 205] Let (P,M, π,G) be a principal fiber bundle. The tuple

(C∞(I, P ), C∞(I,M), π∗, C
∞(I,G))

is a principal fiber bundle consisting of C∞-manifolds.

Proof. Lemma 2.8 shows that the mapping π∗ : µP 7→ π ◦µP is smooth and from Proposition
2.7 it follows that the action of C∞(I,G) on the total space C∞(I, P ) is smooth. The fibers
of π∗ are orbits under C∞(I,G) because they are pointwise orbits under G.

To complete the proof it is necessary to show that (C∞(I, P ), C∞(I,M), π∗, C
∞(I,G)) is

smoothly locally trivial. This is done by showing that for each γ ∈ C∞(I,M) there exists a
neighbourhood S(γ) such that π−1

∗ (S(γ)) is smoothly trivial.
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2.2. The construction of the path bundle

In Theorem 2.4 we used an open neighbourhood U of the zero section in the bundle
TM →M for the definition of charts of the manifold C∞(I,M) as bijective mappings to the
set

{s ∈ Γ (γ∗TM → I) : s(I) ⊆ γ∗U = (π∗Mγ)−1(U)}.

It was also mentioned that U →M is a fiber bundle.
Now we want to consider again the bundle γ∗U → I. By Corollary A.37 we know that

this bundle is smoothly trivial and therefore diffeomorphic to a bundle I ×O → I. Because
we chose U to be an open neighbourhood of the zero section in TM →M we can restrict it
to a smaller neighbourhood such that O becomes smoothly contractible. In [2, p. 203] the
charts of C∞(I,M) where already chosen in such a way that this condition was satisfied.

Now we apply the exponential mapping to this trivial bundle and we get a smoothly
contractible open neighbourhood N(γ) of the image of I 3 t 7→ (t, γ(t)) in I ×M .

Taking into account the principal fiber bundle (I × P, I ×M, IdI ×π,G), the restriction to
N(γ) yields the principal fiber bundle

(
(IdI ×π)−1(N(γ)), N(γ), IdI ×π,G

)
with a smoothly

contractible base space.
So by Remark A.35 the bundle is trivial and there exists a smooth section s̄ : N(γ) →

(IdI ×π)−1(N(γ)) which maps N(γ) into a subset of I × P such that (IdI ×π) ◦ s̄ = IdN(γ).
This section can be rewritten as s̄(t,m) = (t, st(m)) for (t,m) ∈ N(γ) where the mapping

st is defined as a local section st : N(γ)t → P for each t ∈ I.
Together with the projection πP : I × P → P we define the mapping:

s̀ : C∞(I,M) ⊇ S(γ)→ π−1
∗ (S(γ)) ⊆ C∞(I, P ) s̀(µ) := πP ◦ s̄ ◦ µ̃

where µ̃ : t 7→ (t, µ(t)) denotes a smooth section of I ×M → I.
Because forming µ̃ is trivially smooth by the inclusion C∞(I, P ) ↪→ C∞(I, I×P ), we have

to focus on the composition with the finite dimensional smooth mappings s̄ and πP . But
this is nothing else than forming s̄∗ and πP∗ which is smooth by Lemma 2.6.

The last step of this proof is to show that the trivialization is smooth and has a smooth
inverse.

The mapping

S(γ)× C∞(I,G)→ π−1
∗ (S(γ)) (µ, a) 7→ r(s̀(µ), a)

is smooth because of the smoothness of s̀, the smoothness of r given by Proposition 2.7 and
the smoothness of their composition given by Corollary 1.22.

Let f : (IdI ×π)−1 (N(γ))→ G be the unique mapping defined by the implicit relation

u = s̄ ((IdI ×π)(u)) · f(u)
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2. Path bundles

for u ∈ (IdI ×π)−1 (N(γ)). This gives the mapping:

ψ : (IdI ×π)−1 (N(γ))→ N(γ)×G ψ(u) := ((IdI ×π)(u), f(u))

It is smooth because of the smoothness of (IdI ×π) and the smoothness of s̄ which implies
the smoothness of f .

Now the inverse of the trivialization is given as

π−1
∗ (S(γ))→ S(γ)× C∞(I,G) µP 7→ (π∗(µP ), f ◦ µ̃P )

where the smoothness of π∗ is already shown in Lemma 2.8. The second component is the
mapping:

C∞(I, P ) ⊃ π−1
∗ (S(γ)) // Γ (I × P → I) ⊂ C∞(I, I × P )

f∗ // C∞(I,G)

The only non trivial step is to prove that the composition with the mapping f which is
defined on a finite dimensional manifold is a smooth mapping. But this is just the formation
of f∗ which is smooth by Lemma 2.6.

So we get that the tuple

(C∞(I, P ), C∞(I,M), π∗, C
∞(I,G))

is a principal fiber bundle.

2.3. Submanifolds of the total space of the path bundle

In the last section we discussed the construction of the principal fiber bundle
(C∞(I, P ), C∞(I,M), π∗, C

∞(I,G)). Now we want to give examples for submanifolds of its
total space C∞(I, P ). To simplify notation let I = [0, 1].

Definition 2.10. Let x0 be an element of M , then the set C∞(I,M)x0 denotes the set of
paths in M starting at the point x0. As a further restriction the set C∞(I,M)x0→x0 denotes
the set of all closed paths beginning and ending at x0, so called loops at x0.

Now define Imm (I,M) as the set of all γ ∈ C∞(I,M) such that γ̇(t) 6= 0 for all t ∈ I.
Combinations of these definitions give sets of the sort:

Imm (I,M)x0 := {γ ∈ C∞(I,M) : γ̇(t) 6= 0∀t ∈ I, γ(0) = x0}

With the projection π of a given principal fiber bundle (P,M, π,G) one gets via the inverse
image of the projection mapping in the path bundle subsets of the path space C∞(I, P )
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2.3. Submanifolds of the total space of the path bundle

where u0 ∈ π−1(x0), for example:

C∞(I, P )u0 =
(
π−1
∗ (C∞(I,M))

)
u0

=
(
π−1
∗ (C∞(I,M)x0)

)
u0

First we prove a lemma concerning the subset Imm (I,M) using methods from [10].

Lemma 2.11. The set Imm (I,M) is an open submanifold of C∞(I,M).

Proof. Let c : R → C∞(I,M) denote a smooth curve in the path space of the finite dimen-
sional manifold M . Then the corresponding mapping c∧ : R × I → M is smooth too (see
Lemma 2.3).

Now let c(0) be an element of Imm (I,M). This is equivalent to:

∂

∂t
c∧(0, t) 6= 0 ∀t ∈ I

Because c∧ is smooth we find for each t0 ∈ I a δt0 > 0 such that for all |s| < δt0 and
|t− t0| < δt0 we get that

∂

∂t
c∧(s, t) 6= 0.

So by compactness it follows that there exists a neighbourhood of c(0) in C∞(I,M) such
that all elements of this neighbourhood are contained in Imm (I,M). Because c(0) was
chosen arbitrary we get that Imm (I,M) is open in C∞(I,M). It is an open submanifold
because we get the charts by restriction of those who are given by C∞(I,M).

The proof of the following proposition was changed compared to [2, p. 206] and is now a
simple consequence of Lemma 2.11.

Proposition 2.12. [2, p. 206] The set π−1
∗ (Imm (I,M)) of all paths of P which project to

elements of Imm (I,M) is an open submanifold of the manifold C∞(I, P ).

Proof. We saw in Lemma 2.11 that Imm (I,M) is an open submanifold of C∞(I,M). Because
π∗ is smooth by Lemma 2.8 we get that the inverse image π−1

∗ (Imm (I,M)) is open in
C∞(I, P ).

Now we turn to the discussion of special splitting submanifolds by fixing the starting point
of the paths under consideration.

Lemma 2.13. [2, p. 208] Let Q be any finite dimensional manifold and q0 ∈ Q. Then the
space C∞(I,Q)q0 is a splitting submanifold of C∞(I,Q).

Proof. In Theorem 2.4 we saw that the manifold C∞(I,Q) is modelled on the convenient

31



2. Path bundles

vector spaces Γ (γ∗TQ→ I) where γ : I → Q and we have the following pullback diagram:

f∗TQ

γ∗π

��

π∗γ // TQ

π

��
I

γ // Q

Let γ0 ∈ C∞(I,Q)q0 ⊆ C∞(I,Q) and let Γ (γ∗0TQ→ I)0 3 v denote the space of sections
of the pullback of the tangent bundle along γ0 satisfying v(0) = 0. Then the inclusion ι of
Γ (γ∗0TQ→ I)0 ↪→ Γ (γ∗0TQ→ I) is clearly an embedding.

Next we consider the evaluation ev0 : Γ (γ∗0TQ→ I) → Tq0Q which assigns each element
σ ∈ Γ (γ∗0TQ→ I) its value at the point 0 ∈ I by σ 7→ σ(0). By Corollary 1.22 the mapping
ev0 is smooth which implies continuity and it is clearly surjective.

The kernel ker(ev0) consists of the elements satisfying σ(0) = 0 which shows that it is
equal to Γ (γ∗0TQ→ I)0. So we get the following short exact sequence:

0 // Γ (γ∗0TQ→ I)0
ι // Γ (γ∗0TQ→ I)

ev0 // Tq0Q // 0

The evaluation ev0 has a continuous right inverse. It is given by the extension of the value
in the fiber over q0 to a section over I. So it follows by Lemma 1.79 that

Γ (γ∗0TQ→ I) ∼= Γ (γ∗0TQ→ I)0 ⊕ Tq0Q

and Γ (γ∗0TQ→ I)0 is a closed subspace of Γ (γ∗0TQ→ I).
Now we restrict the charts of the manifold C∞(I,Q) to the set C∞(I,Q)q0 . Because

their images lie in Γ (γ∗0TQ→ I)0 we get by Definition 1.34 that C∞(I,Q)q0 is a splitting
submanifold modelled on the convenient vector space Γ (γ∗0TQ→ I)0.

This lemma can be used to prove that special infinite dimensional manifolds of paths which
start or end in a point are submanifolds of C∞(I, P ).

Lemma 2.14. [2, p. 208] The set
(
π−1
∗ (Imm (I,M))

)
u0

=
(
π−1
∗ (Imm (I,M)x0)

)
u0

is a
splitting submanifold of π−1

∗ (Imm (I,M)).

Proof. By Lemma 2.13 C∞(I, P )u0 is a splitting submanifold of C∞(I, P ). We can write(
π−1
∗ (Imm (I,M))

)
u0

as the intersection π−1
∗ (Imm (I,M)) ∩ C∞(I, P )u0 .

C∞(I, P )

π−1
∗ (Imm (I,M))

' �

55jjjjjjjjjjjjjjj
C∞(I, P )u0

6 V

iiSSSSSSSSSSSSSS

(
π−1
∗ (Imm (I,M))

)
u0

6 V

iiSSSSSSSSSSSSSSS ( �

55llllllllllllll
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2.4. Subbundles of the path bundle

The arguments used in Lemma 2.14 are applicable similarly to other subsets of C∞(I, P ).
Examples are seen in the formulation of the following corollary where x0 → x0 denotes paths
starting and ending in the same point.

Corollary 2.15. [2, p. 207] The following sets are open submanifolds of the corresponding
path spaces:

(
π−1
∗ (Imm (I,M)x0→x0)

)
u0
⊆

(
π−1
∗ (C∞(I,M)x0→x0)

)
u0

π−1
∗ (Imm (I,M)x0→x0) ⊆ π−1

∗ (C∞(I,M)x0→x0)(
π−1
∗ (Imm (I,M)x0)

)
u0
⊆

(
π−1
∗ (C∞(I,M)x0)

)
u0

π−1
∗ (Imm (I,M)x0) ⊆ π−1

∗ (C∞(I,M)x0)

Proof. This follows by the same argument as in the proof of Proposition 2.12. We consider
again the inverse images of π∗.

As a summary of the previous results we state the following proposition:

Proposition 2.16. [2, p. 208] Each path space in the following diagram is a splitting sub-
manifold of any other path space which contains it.(

π−1
∗ (Imm (I,M)x0→x0)

)
u0� _

��

� � // π−1
∗ (Imm (I,M)x0→x0)

� _

��(
π−1
∗ (Imm (I,M)x0)

)
u0

� � // π−1
∗ (Imm (I,M)x0) � � // π−1

∗ (Imm (I,M))

The same holds for the diagram:(
π−1
∗ (C∞(I,M)x0→x0)

)
u0� _

��

� � // π−1
∗ (C∞(I,M)x0→x0)� _

��
C∞(I, P )u0 =

(
π−1
∗ (C∞(I,M)x0)

)
u0

� � // π−1
∗ (C∞(I,M)x0)

� � // π−1
∗ (C∞(I,M)) = C∞(I, P )

Each path space in the first diagram is an open submanifold of the corresponding path space
in the second diagram.

Proof. This proposition follows by the application of the steps introduced in Proposition
2.12, Lemma 2.14 and Corollary 2.15.

2.4. Subbundles of the path bundle

Definition 2.17. Let C∞(I,G) denote the Lie group of smooth mappings from I to G then
C∞(I,G)0 denotes the subgroup of all a such that a(0) is the identity of G.
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Proposition 2.18. [2, p. 209] Let (P,M, π,G) be an arbitrary principal fiber bundle and
u0 ∈ π−1(x0) for x0 ∈M . The bundle((

π−1
∗ (Imm (I,M))

)
u0
, Imm (I,M)x0 , π∗0, C

∞(I,G)0

)
with π∗0 := π∗|(π−1

∗ (Imm(I,M)))
u0

is a principal fiber bundle.

Proof. The sets Imm (I,M) and π−1
∗ (Imm (I,M)) are open submanifolds of C∞(I,M) and

π−1
∗ (C∞(I,M)) = C∞(I, P ) respectively. This follows by Proposition 2.12 and Lemma 2.11

in the case of Imm (I,M). By Lemma 2.14 the sets
(
π−1
∗ (Imm (I,M))

)
u0

and Imm (I,M)x0
are splitting submanifolds. So with some slight modifications of the proof of Theorem 2.9
the tuple

(
π−1
∗ (Imm (I,M)), Imm (I,M) , π∗0, C

∞(I,G)
)
becomes a principal fiber bundle.

The mapping π∗0 is smooth as the restriction of π∗ which is smooth by Lemma 2.8.
By the restriction of the right action in Proposition 2.7 the mapping

r : π−1
∗ (Imm (I,M))× C∞(I,G)→ π−1

∗ (Imm (I,M))

is smooth and r
((
π−1
∗ (Imm (I,M))

)
u0
× C∞(I,G)0

)
⊆
(
π−1
∗ (Imm (I,M))

)
u0
. This induces

an action
r0 :

(
π−1
∗ (Imm (I,M))

)
u0
× C∞(I,G)0 →

(
π−1
∗ (Imm (I,M))

)
u0

The last step is to show that π∗0 :
(
π−1
∗ (Imm (I,M))

)
u0
→ Imm (I,M)x0 is locally trivial.

This follows analogues to the proof of Theorem 2.9 by restricting the sets and mappings
under consideration to the ones in this theorem.

Proposition 2.19. [2, p. 209] Let (P,M, π,G) be an arbitrary principal fiber bundle and
u0 ∈ π−1(x0) for x0 ∈ M . Each of the path spaces of Proposition 2.16 defines a principal
fiber bundle over the corresponding set of paths in M . The group of each bundle is either
C∞(I,G) or C∞(I,G)0 depending on whether or not the bundle consists of paths which begin
at u0.

Proof. The proofs for the different principal fiber bundles are similar to the proof of Propo-
sition 2.18. They differ by the appropriate choice of restrictions of the bundle mapping and
the group action.

The following proposition shows how the triviality of the bundle P → M corresponds to
the triviality of C∞(I, P )→ C∞(I,M).

Proposition 2.20. [2, p. 210] There is a smooth global section of the bundle C∞(I, P ) →
C∞(I,M) which takes constant mappings of C∞(I,M) to constant mappings of C∞(I, P ) if
and only if P →M is smoothly trivial.
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2.4. Subbundles of the path bundle

Proof. Any global section σ of P →M induces a global section s of C∞(I, P )→ C∞(I,M)

by:
s(f) := σ ◦ f for f ∈ C∞(I,M)

Then s clearly carries constant mappings to constant mappings.
Any finite dimensional manifoldQ can be identified with the constant mappings in C∞(I,Q).

It is even a submanifold of C∞(I,Q): In the proof of Lemma 2.13 we saw the decomposition
of the modelling space into Rdim(Q) and the rest. Constant curves are uniquely defined by
their starting point. The neighbourhoods S of constant curves in the set of constant curves
are just the points. So we get the finite dimensional manifold as a restriction of the chart
mappings of C∞(I,Q).

It follows that the restriction of s : C∞(I,M)→ C∞(I, P ) to M ⊆ C∞(I,M) is a global
smooth section of the bundle P →M .
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3. Connections and horizontal lifts

3.1. Differential forms

In the following we introduce differential forms. They have a vital part in the discussion of
connections and curvature.

Definition 3.1. [10, p. 352] Let M be a C∞-manifold. The space of all differential forms
of order k on a manifold M consists of the smooth sections of the bundle

Lkalt (TM,M × R)→M

and will be denoted by Ωk(M). Here Lkalt is the space of bounded k-linear alternating
mappings. Then Ωk(M) carries the structure of a convenient vector space induced by the
embedding:

Ωk(M)→
∏
α

C∞
(
Uα, L

k
alt(E,R)

)
s 7→ pr2 ◦ψα ◦ (s|Uα)

where (Uα, uα : Uα → E)α∈A is a smooth atlas for the manifold M and ψα are the vector
bundle charts of the bundle Lkalt (TM,M × R) → M induced by the charts of M . This
situation is illustrated in the following diagram.

Lkalt (TM,M × R) |Uα
ψα // Lkalt (Uα × E,Uα × R)

∼= // Uα × C∞
(
Uα, L

k
alt (E,R)

)
pr2

��

M ⊇ Uα

s|Uα

OO

C∞
(
Uα, L

k
alt (E,R)

)
In a similar way the set

Ωk (M,V ) := Γ
(
Lkalt(TM,M × V )→M

)
denotes the space of differential forms of order k with values in a convenient vector space V
and

Ωk (M,E) := Γ
(
Lkalt(TM,E)→M

)
the space of differential forms of order k with values in a vector bundle p : E →M .
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3. Connections and horizontal lifts

By omitting the upper index k one arrives at the notation for the graded algebras of all
differential forms in each of the cases above respectively.

Next we define common mappings on the spaces of differential forms. We choose a local
description in charts.

Definition 3.2. [10, p. 342, 348, 352] Let U ⊆ E be c∞-open in a convenient vector space
E and let ω ∈ C∞

(
U,Lkalt (E,R)

)
be a kinematic k-form on U 3 x. We define (by abuse of

notation) the exterior derivative dω ∈ C∞(U,Lk+1
alt (E,R)) as the skew symmetrization of the

derivative dω(x) : E → Lkalt(E,R), i.e.

(dω)(x)(X0, . . . , Xk) =

k∑
i=0

(−1)idω(x)(Xi)
(
X0, . . . , X̂i, . . . , Xk

)
+

+
∑
i<j

(−1)id(ω( )(X0, . . . , X̂i, . . . , Xk))(x) (Xi)

where the Xj ∈ E and X̂i denotes the missing vector field.
So far this definition is given only for open subsets of convenient vector spaces. But

taking into account that the manifolds under consideration are modelled on such spaces and
therefore charts to open subsets of convenient vector spaces exist, we get a local definition
of the mapping d by putting together the chart mappings and the above definition.

By the same arguments we define the insertion mapping and the Lie derivative locally via:

(iXω)(x)(X1, . . . , Xk−1) = ω(x)(X,X1, . . . , Xk−1)

(LXω)(x)(X1, . . . , Xk) = ((iX ◦ d+ d ◦ iX)ω) (x)(X1, . . . , Xk)

Corollary 3.3. [10, p. 352] For a smooth mapping f : N →M , the pullback mapping

f∗ : Ωk(M)→ Ωk(N)

is smooth.

Proof. The pullback mapping is smooth because it is induced by Tf × . . .× Tf .

3.2. Connections on principal fiber bundles

In Section 1.6 we introduced fiber and vector bundles and discussed vertical bundles. So
again let ker(Tπ) =: V E be the vertical bundle of a fiber bundle (E,M, π, S). The aim of
this section is to introduce connections on principal fiber bundles.

Definition 3.4. [10, p. 376] A connection form on the fiber bundle (E,M, π, S) is a vector
valued 1-form Φ ∈ Ω1 (E, V E) with values in the vertical bundle V E such that:
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3.2. Connections on principal fiber bundles

1. Φ ◦ Φ = Φ

2. img (Φ) = V E

So Φ is just a projection TE → V E.
The kernel ker(Φ) is a sub vector bundle of TE, it is called the space of horizontal vectors

or the horizontal bundle, and it is denoted by HE. So it follows (for example with Lemma
1.79) that TE = HE ⊕ V E and TuE = HuE ⊕ VuE for u ∈ E.

Definition 3.5. [10, p. 376] Now we consider the mapping:

(Tp, πE) : TE → TM ×M E := {(X, e) ∈ TM × E : pr1(X) = π(e)}

Then by definition (Tp, πE)−1(0p(u), u) = VuE, so (Tp, πE)|HE : HE → TM ×M E is a fiber
linear isomorphism over E. Its inverse is denoted by ((Tp, πE)|HE)−1 : TM ×M E → HE.
Together with the inclusion HE ↪→ TE one gets the mapping

C : TM ×M E → TE

which is fiber linear over E and a right inverse for (Tp, πE). It is called the horizontal lift
associated to the connection form Φ.

Remark 3.6. [10, p. 376] The formula Φ(ξu) = ξu − C(Tp(ξu), u) holds for ξu ∈ TuE. So
we can equally well describe a connection form Φ by specifying C. Then we call Φ vertical
projection and χ := IdTE −Φ = C ◦ (Tp, πE) will be called horizontal projection.

Theorem 3.7. [10, p. 386] Let (P,M, π,G) be a principal fiber bundle with principal right
action r : P ×G→ P . Then the following assertions hold:

1. (TP, TM, Tπ, TG) is a principal fiber bundle with principal right action Tr : TP ×
TG→ TP , where the structure group TG is the tangent group of G.

2. The vertical bundle (V P, P, pr1, g) of the principal bundle is trivial as a vector bundle
over P , written as V P ∼= P × g.

3. The vertical bundle of the principal bundle as bundle over M is a principal bundle
written as (V P,M, π ◦ pr1, TG).

In the case of a principal fiber bundle (P,M, π,G) there is a refinement of the notion of a
connection form. As introduced above a (general) connection form on P is a fiber projection
Φ : TP → V P , viewed as a 1-form in Ω1 (P, V P ) ⊂ Ω1 (P, TP ).

Definition 3.8. [10, p. 387] Such a connection form Φ is called a principal connection form
if it is:

1. G-equivariant for the principal right action r : P ×G→ P , so that Trg ◦Φ = Φ ◦ Trg,
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3. Connections and horizontal lifts

2. rg-related to itself, or (rg)∗Φ = Φ, for all g ∈ G.

Definition 3.9. [10, p. 387] Because of Theorem 3.7 the bundle V P → P is trivial. So one
can define the 1-form ω by

ω(Xu) := ((Teru)−1 ◦ Φ)(Xu) ∈ g

with u ∈ P and Xu ∈ TuP . So ω ∈ Ω1 (P, g) and is called the Lie algebra valued connection
form of the connection form Φ. Recalling the definition of the fundamental vector field
of a right action from Definition 1.58 one can reformulate the defining relation of ω as
Φ(Xu) = ζω(Xu)(u).

Lemma 3.10. [10, p. 387] If Φ ∈ Ω1 (P, V P ) is a principal connection on the principal fiber
bundle (P,M, π,G), then the Lie algebra valued connection form ω has the following three
properties:

1. ω reproduces the generators of fundamental vector fields, so that we have ω(ζX(u)) = X

for all X ∈ g.

2. ω is G-equivariant, ((rg)∗ω)(Xu) = ω(Tur
g(Xu)) = (Ad(g−1) ◦ ω)(Xu) for all g ∈ G

and Xu ∈ TuP .

3. We have for the Lie derivative LζXω = −ad(X) ◦ ω.

Conversely, a 1-form ω ∈ Ω1 (P, g) satisfying (1) defines a connection form Φ on P by
Φ(Xu) = (Teru ◦ ω)(Xu), which is a principal connection form if and only if (2) is satisfied.

For the construction of horizontal lifts on the path bundle later in the section we introduce
and review some definitions and results for the finite dimensional case.

Definition 3.11. [1, p. 75] A connection on a finite dimensional principal fiber bundle
(P,M, π,G) is a horizontal tangent bundle HP of P which satisfies

Tur
g(HuP ) = Hu·gP for g ∈ G and u ∈ P.

Theorem 3.12. [1, p. 75] There is a bijection of the connections and Lie algebra valued
connection forms on a finite dimensional principal fiber bundle (P,M, π,G) described by:

1. Let HP be a connection on P . Then the relation

ω(X̃(u)⊕ Yu) := X ∀u ∈ P, X ∈ g, Yu ∈ Hu(P )

defines a Lie algebra valued connection form ω on P .

2. Let ω ∈ Ω1 (P, g) be a Lie algebra valued connection form on P . Then the mapping

P 3 u 7→ Hu(P ) := ker(ω|u)
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3.2. Connections on principal fiber bundles

defines a connection on P .

Definition 3.13. [1, p. 88] Let (P,M, π,G) be a finite dimensional principal fiber bundle
and X a vector field on M . A vector field X̃ on P is called horizontal lift of X if for all
u ∈ P :

1. X̃(u) ∈ HuP

2. Tuπ(X̃(u)) = X(π(u))

Theorem 3.14. [1, p. 88] Let (P,M, π,G) be a finite dimensional principal fiber bundle.

1. For each vector field X on M there exists a unique horizontal lift X̃ on P . The vector
field X̃ is right invariant.

2. If Z is a horizontal and right invariant vector field on P , then there exists a unique
vector field X on M such that X̃ = Z.

Lemma 3.15. [1, p. 12] Let G be a finite dimensional Lie group and v : [0, 1] → TeG a
smooth path. Then there exist unique smooth paths a, g : [0, 1]→ G which satisfy the following
differential equations:

ȧ(t) = Tela(t)(v(t)) with a(0) = e

ġ(t) = Ter
g(t)(v(t)) with g(0) = e

Compare the following lemma with [1, p. 38, modified]. We require only the first part
and the notation is adapted to the one we use in this thesis.

Lemma 3.16. The tangent mapping of the right action r : P ×G→ P is given by

T(u,g)r(Xu, Yg) = Tur
g(Xu) + ζTglg−1 (Yg)(u · g)

where Xu ∈ TuP and Yg ∈ TgG.

Proof. By Remark A.20 the tangent space T(u,g)(P ×G) of P ×G at (u, g) is isomorphic to
TuP ⊕ TG. Because of linearity and r(u, g) = ru(g) = rg(u) = u · g the tangent mapping of
the right action can be written as:

T(u,g)r(Xu, Yg) = T(u,g)r(Xu, 0) + T(u,g)r(0, Yg) = Tur
g(Xu) + Tgru(Yg)

Now we write Yg = Telg ◦ Tglg−1(Yg) with Tglg−1(Yg) ∈ TeG ∼= g. So we get:

T(u,g)r(Xu, Yg) = Tur
g(Xu) + (Tgru ◦ Telg ◦ Tglg−1)(Yg)

and with the application of the chain rule (see Theorem 1.24) for the tangent mapping this
reads

T(u,g)r(Xu, Yg) = Tur
g(Xu) + Teru·g(Tglg−1(Yg)).
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3. Connections and horizontal lifts

With the definition of the fundamental vector field (see Definition 1.58) we get:

T(u,g)r(Xu, Yg) = Tur
g(Xu) + ζTglg−1 (Yg)(u · g)

Definition 3.17. [1, p. 89] For M and P finite dimensional manifolds let γ : I → M and
γ̃ : I → P be paths, then γ̃ is called horizontal lift of γ if:

1. π(γ̃(t)) = γ(t) ∀t ∈ I and

2. the tangent vectors ˙̃γ are horizontal ∀t ∈ I.

Theorem 3.18. [1, p. 89] Let γ : I → M be a path in the finite dimensional manifold M ,
t0 ∈ I and u ∈ π−1(γ(t0)) a point in the finite dimensional fiber above γ(t0). Then there
exists a unique horizontal lift γ̃u of γ with γ̃u(t0) = u.

Proof. For simplicity let I = [0, 1] and t0 = 0. As P is locally trivial, there exists a path
δ : I → P with δ(0) = u and π◦δ = γ. To prove the theorem one has to show that this path δ
can be deformed into a horizontal path γ̃u : I → P such that γ̃u(t) := δ(t) ·g(t) = r(δ(t), g(t))

with g(t) : I → G.
By Definition 3.9 the Lie algebra valued connection form ω on P and the tangent vector

˙̃γ(t) satisfy ω
(

˙̃γ(t)
)

= 0 if and only if ˙̃γ(t) is horizontal. Inserting the result from Lemma
3.16 this reads:

0 = ω
(
T(δ(t),g(t))r(δ̇(t), ġ(t))

)
= ω

(
Tδ(t)r

g(t)(δ̇(t)) + ζ[
Tg(t)lg−1(t)(ġ(t))

](δ(t) · g(t))

)
Because of linearity and the properties of ω (see Lemma 3.10) this can be rewritten to:

0 =
(
Ad(g−1(t)) ◦ ω

)
(δ̇(t)) + Tg(t)lg−1(t)(ġ(t))

After the multiplication from the left with Telg(t) this condition reads:

0 =
(
Ter

g(t) ◦ ω
)(

δ̇(t)
)

+ ġ(t)

Now we define the smooth path

v : I → g v(t) := −ω
(
δ̇(t)

)
.

Lemma 3.15 shows that there exists a unique smooth path g : I → G with g(0) = e satisfying
−
(
Ter

g(t) ◦ ω
) (
δ̇(t)

)
= ġ(t). So we found the path g(t) in G which deforms δ to the

horizontal path γ̃u(t).
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3.2. Connections on principal fiber bundles

Proposition 3.19. [10, p. 377] The pullback construction introduced in Definition 1.65
satisfies that if Φ ∈ Ω1(E, TE) is a connection form on the bundle E, then the vector valued
form f∗Φ, given by

(f∗Φ)u(X) := (Tu(π∗f)−1 ◦ Φ ◦ Tuπ∗f)(X)

for X ∈ TuE, is a connection on the bundle f∗E. The forms f∗Φ and Φ are π∗f -related.

Our next aim is to show that the mapping sω : C∞((I, 0), (M,x0))→ C∞((I, 0), (P, u0)),
which assigns each path in M its horizontal lift, is a smooth section to π∗. For this we
have to show that smooth curves in C∞((I, 0), (M,x0)) are mapped to smooth curves in
C∞((I, 0), (P, u0)) as illustrated in the following diagram where c̃ is the image of c:

C∞((I, 0), (P, u0))

π∗
��

R

c̃
55kkkkkkkkk c // C∞((I, 0), (M,x0))

By Lemma 2.3 we get that the smoothness of curves c : R → C∞((I, 0), (M,x0)) and c̃ :

R→ C∞((I, 0), (P, u0)) is equivalent to the smoothness of mappings

c∧ : R× I →M with (s, 0) 7→ x0 and c̃∧ : R× I → P with (s, 0) 7→ u0.

So this problem can be reformulated: For a given smooth mapping c∧ one has to show that
its lift in the bundle π : P →M is smooth too, which is illustrated in the following diagram:

P

π

��
R× I

c̃∧
77nnnnnnn

c∧ // M

By introducing the pullback of P along c∧, which is a trivial bundle over R× I by Remark
A.35, we get:

R× I ×G

&&NNNNNNNNNNN (c∧)∗(P )
π∗c∧ //

c∧∗π
��

P

π

��
R× I

c̃∧

66nnnnnnnn
c∧ // M

With Theorem 3.18 we assign to the mapping c(0) : I → M a mapping g(0) : I → G. This
mapping g(0) is given as the solution of an ordinary differential equation. Because we are
considering a smooth variation of mappings c∧(s, ·) we get a smooth family of differential
equations. So the solutions of these differential equations depend smoothly on the variation
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3. Connections and horizontal lifts

parameter. This gives a smooth curve g in the space C∞(I,G) and we can define a section

sec : R× I → R× I ×G sec(s, t) := (s, t, g∧(s, t)).

Because of Proposition 1.66 and Proposition 3.19 we get a fiberwise diffeomorphism from
the pullback bundle to P . So the composition with sec defines a smooth mapping c̃∧. This
shows that forming the horizontal lift of curves is a smooth mapping and the section sω is
smooth.

The previous results are used to prove the following theorem stated in [2, p. 213]. We do
not restrict ourself to matrix Lie groups in the construction of the global section sω.

Theorem 3.20. [2, p. 213] Let (P,M, π,G) be a principal fiber bundle and x0 ∈ M , u0 ∈
π−1(x0) then (C∞(I, P )u0 , C

∞(I,M)x0 , π∗, C
∞(I,G)0) is smoothly trivial. Moreover each

Lie algebra valued connection form ω on P induces a smooth global section

sω : C∞(I,M)x0 → C∞(I, P )u0

where, for γ ∈ C∞(I,M)x0 , the section sω(γ) is the ω-horizontal lift of γ to u0.
Finally the restriction of sω to C∞(I,M)x0→x0 is a smooth section of the principal fiber

bundle
((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
.

Proof. From the previous results of this chapter it follows that sω is smooth. Now consider
the mapping:

F−1 : C∞(I,M)x0 × C∞(I,G)0 → C∞(I, P )u0 F−1(µ, a) 7→ sω(µ) · a = r(sω(µ), a)

It is smooth because sω and the right action r are smooth (see Proposition 2.7). Moreover
it has an inverse denoted by

F : C∞(I, P )u0 → C∞(I,M)x0 × C∞(I,G)0 F (µP ) = (π∗(µP ), a)

where a is the unique element of C∞(I,G)0 satisfying µP = sω(π∗(µP )) · a. Again by the
results from above the assignment k : µP 7→ a is smooth. So one can write F = (π∗, k) which
is smooth. We found a smooth trivialization of C∞(I, P )u0 over C∞(I,M)x0 so the bundle
is trivial.

The restriction of sω to the closed submanifold C∞(I,M)x0→x0 ⊆ C∞(I,M)x0 is smooth
and consequently the bundle

((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
is smoothly trivial.

3.3. Existance of bump functions

Definition 3.21. [10, p. 153] We consider a Hausdorff topological spaceX with a subalgebra
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3.4. Connections on the path bundle of a principal fiber bundle

S ⊆ C(X,R), whose elements will be called the smooth or S-functions on X. We assume
that for functions h ∈ C∞(R,R) (at least for those being constant off some compact set, in
some cases) one has h∗(S) ⊆ S, and that f ∈ S provided it is locally in S, i.e., there exists
an open covering U such that for every U ∈ U there exists a fU ∈ S with f = fU on U . In
particular, we will use for S the classes of C∞-mappings on c∞-open subsets X of convenient
vector spaces with the c∞-topology.

Definition 3.22. [10, p. 153] For a (convenient) vector space F the carrier carr(f) of a
mapping f : X → F is the set {x ∈ X : f(x) 6= 0}. The zero set of f is the set where f
vanishes, {x ∈ X : f(x) = 0}. The support of f , written as support(f), is the closure of
carr(f) in X.

We say thatX is smoothly regular (with respect to S) or S-regular if for any neighbourhood
U of a point x there exists a smooth function f ∈ S such that f(x) = 1 and carr(f) ⊆ U .
Such a function f is called a bump function.

Proposition 3.23. [10, p. 153] Every Banach space with S-norm is S-regular. More general,
a convenient vector space is smoothly regular if its c∞-topology is generated by seminorms
which are smooth on their respective carriers. For example, nuclear Fréchet spaces have this
property.

3.4. Connections on the path bundle of a principal fiber bundle

First of all we review some results from Section 2.1 and reconsider them under the view of
the terms introduced in the previous section. For γ ∈ C∞(I, P ) we introduced the pullback
of the tangent space TP along γ and considered its sections Γ (γ∗TP → I). Together with
the exponential mapping on each fiber we defined charts for the manifold C∞(I, P ).

The set Γ (γ∗TP → I) may also be viewed as the set of all vector fields along γ and
therefore as the set of vectors tangent to C∞(I, P ) at the point γ. This considerations show
that Γ (γ∗TP → I) is the kinematic tangent space Tγ(C∞(I, P )) (see Definition 1.39) of the
C∞-manifold C∞(I, P ) in the point γ.

This means δ is an element of Tγ(C∞(I, P )) if and only if δ is a section of the pullback
bundle γ∗TP → I.

γ∗TP

γ∗ prP
��

pr∗P γ // TP

prP
��

I
γ // P

The projection π∗ : C∞(I, P )→ C∞(I,M) defined by π∗(γ) := π ◦γ allows to define vertical
vector fields on this bundle. So it follows that a vector field δγ along γ is called π∗-vertical
if and only if for each t ∈ I, δγ(t) is π-vertical.
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3. Connections and horizontal lifts

We write V P for the vertical bundle introduced in Definition 1.70, so for u ∈ P we define
VuP := {v ∈ TuP : Tuπ(v) = 0}. Then the vertical tangent space of C∞(I, P ) at the point
γ is defined as:

Vγ(C∞(I, P )) = {δ ∈ Γ (γ∗(TP )) : δ ∈ ker(Tπ∗)}

That means δ ∈ Vγ(C∞(I, P )) if and only if it is a vector field along γ with δ(t) being a
vertical vector of Tγ(t)P for all t ∈ I.

With the considerations in Definition 1.38 we get the kinematic tangent bundle

T (C∞(I, P ))→ C∞(I, P )

and the kinematic vertical bundle

V (C∞(I, P ))→ C∞(I, P )

where we have to take into account Lemma 1.68, Lemma 1.69 and Definition 1.70.
For later use note that the space of sections Γ (γ∗(TP )) is a C∞(I,R)-module. This can be

seen easily by taking f ∈ C∞(I,R) and δ ∈ Γ (γ∗(TP )). Then the multiplication is defined
as (fδ)(t) := f(t)δ(t) for all t ∈ I and it follows that fδ ∈ Γ (γ∗(TP )). Moreover this implies
that Vγ(C∞(I, P )) is a submodule of Tγ(C∞(I, P )).

Now that we have introduced the vertical bundle of the path bundle, we go on with the
horizontal bundle and a generalization of Definition 3.11.

Definition 3.24. [2, p. 214] One says that H(C∞(I, P )) is a (strong) connection on
C∞(I, P ) if H(C∞(I, P )) is a vector subbundle of T (C∞(I, P )) such that

1. for each γ ∈ C∞(I, P ), the space Hγ(C∞(I, P )) is a closed C∞(I,R)-submodule of
Tγ(C∞(I, P )) such that

Tγ(C∞(I, P )) = Hγ(C∞(I, P ))⊕ Vγ(C∞(I, P )),

2. for g ∈ C∞(I,G), one gets:

Tγr
g(Hγ(C∞(I, P ))) ⊆ Hγ·g(C

∞(I, P )).

The following lemma shows how vector subbundles of the tangent bundle of a manifold
give rise to vector subbundles of the corresponding path space of this manifold.

Lemma 3.25. Let P be smooth manifold and F a vector subbundle of the tangent bundle
TP → P of fiber dimension k. Then the subset F ⊆ T (C∞(I, P )) defined fiberwise as

Fγ := {µ ∈ Γ (γ∗(TP )→ I) ∼= Tγ (C∞(I, P )) : µ(t) ∈ Fγ(t) ⊆ Tγ(t)P ∀t ∈ I}
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3.4. Connections on the path bundle of a principal fiber bundle

is a vector subbundle.

Proof. We saw in Theorem 2.4 that the smooth manifold C∞(I, P ) is locally diffeomorphic
to Γ (γ∗(TP )→ I). We defined charts from open subsets of C∞(I, P ) into the modelling
space via

Φγ : C∞(I, P ) ⊇ S(γ)→ Γ (γ∗(TP )→ I) Φγ(µ)(t) = (π∗Pγ)−1
(

exp−1
γ(t)(µ(t))

)
with the inverse

Φ−1
γ : Γ (γ∗(TP )→ I) ⊇ {v ∈ Γ (γ∗(TP )→ I) : v(I) ⊆ γ∗U = (π∗Pγ)−1(U)} → C∞(I, P )

v 7→
(
t 7→ expγ(t)(π

∗
Pγ(v(t)))

)
where U denotes a suitable open neighbourhood of the zero section in TP and V an open
neighbourhood of the diagonal in P × P .

γ∗TP

γ∗πP
��

π∗P γ // TP

πP

��
I

γ // P

Thus the tangent mapping TΦγ gives a local diffeomorphism

T (C∞(I, P )) ∼=loc Γ (γ∗(TP )→ I)× Γ (γ∗(TP )→ I) ∼= Γ (γ∗TP ×I γ∗TP → I) .

So the composition with Φ−1
γ × Id gives vector bundle charts

T (C∞(I, P )) ∼=loc C
∞(I, P )× Γ (γ∗(TP )→ I) .

By Corollary A.37 we get that the bundle γ∗TP → I is trivial. So it follows that

Γ (γ∗(TP )→ I) ∼= Γ (I × Rn → I) ∼= C∞(I,Rn)

where n = dim(P ) denotes the fiber dimension.
Let F̃ be the to F corresponding subset in the bundle C∞(I, P ) × Γ (γ∗(TP )→ I). We

have to find local vector bundle isomorphisms

C∞(I, P )× Γ (γ∗(TP )→ I) ∼=loc C
∞(I, P )× C∞(I,Rn)

which map F̃ to C∞(I, P )× C∞(I,Rk).
For this consider the smooth mapping

ε : γ∗TP → P vt 7→ expγ(t)(π
∗
Pγ(vt))
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3. Connections and horizontal lifts

and the pullback bundle ε∗TP → γ∗TP :

ε∗TP

ε∗πP
��

π∗P ε // TP

πP

��
γ∗TP

ε // P

Since F is a vector subbundle of TP → P we get that ε∗F is a vector subbundle of ε∗TP .
The base manifold γ∗TP is a vector bundle over I and hence contractible by Corollary A.37.
So ε∗TP is a trivial bundle by Corollary A.38 and the trivialization ψ : γ∗TP ×Rn → ε∗TP

may be chosen such that ψ−1(ε∗F ) = γ∗TP × Rk.
Furthermore, ε∗TP is isomorphic to γ∗TP ×I γ∗TP where ε∗F corresponds to the set

{(u,w) ∈ γ∗TP ×I γ∗TP : w ∈ F̃ε(u)}.

The isomorphism in the converse direction is given by assigning

d

ds
|s=0 expγ(t)(u+ s · w) = Tu expγ(t) ·w ∈ Tε(u)P

to (u,w) ∈ γ∗TP ×I γ∗TP , i.e. u, w ∈ Tγ(t)P for some t ∈ I.
Composing these two isomorphisms gives a vector bundle isomorphism

χ : γ∗TP × Rn → ε∗TP → γ∗TP ×I γ∗TP,

which maps {v} × Rk to {v} × F̃expγ(t)(v(t)).

γ∗TP × Rn
∼= //

&&MMMMMMMMMM

χ

''
ε∗TP

ε∗πP
��

∼= // γ∗TP ×I γ∗TP

wwooooooooooo

γ∗TP

γ∗πP
��
I

Finally,

χ∗ : Γ (γ∗TP × Rn → γ∗TP → I)→ Γ (γ∗TP ×I γ∗TP → γ∗TP → I)

is the required vector bundle isomorphism.

How this fits to the discussion of connections in the previous section will become clear in
the next definition.
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3.4. Connections on the path bundle of a principal fiber bundle

Definition 3.26. [2, p. 214] Let ω be a Lie algebra valued connection form on P , then one
can define the connection Hω(C∞(I, P )) induced by ω on the path bundle as

Hω
γ (C∞(I, P )) := {δ ∈ Tγ(C∞(I, P )) : δ(t) is ω-horizontal ∀t ∈ I},

where γ ∈ C∞(I, P ). Thus if HP is the subbundle (connection) of TP given by HuP =

ker(ω|u) for each u ∈ P , one can rewrite the definition in the following form:

Hω
γ (C∞(I, P )) := {δ ∈ Tγ(C∞(I, P )) : δ(t) ∈ Hγ(t)P ∀t ∈ I}

Now that we defined induced connections we turn to the discussion of how special vector
subbundles lead to connections on the path bundle.

Proposition 3.27. [2, p. 214] Let CompP denote a vector subbundle of TP which satisfies
that for each γ ∈ C∞(I, P ) and for all t ∈ I the space Compγ(t) P is a subspace of Tγ(t)P

which is complementary to Vγ(t)P . Now define

Hγ(C∞(I, P )) := {δ ∈ Tγ(C∞(I, P )) : δ(t) ∈ Compγ(t) P ∀t ∈ I}.

Then H(C∞(I, P )) =
⊔
γ∈C∞(I,P )Hγ(C∞(I, P )) is a connection on C∞(I, P ) if the assign-

ment γ 7→ Compγ P satisfies the condition that if δ(t) ∈ Compγ(t) P then Tγ(t)r
g(t)(δ(t)) ∈

Comp(γ·g)(t) P for all t ∈ I and g ∈ C∞(I,G).

Proof. By Lemma 3.25 H(C∞(I, P )) is a vector subbundle of TC∞(I, P ). For H(C∞(I, P ))

to be a connection on C∞(I, P ) it has to satisfy

Tγr
g(Hγ(C∞(I, P ))) ⊆ Hγ·g(C

∞(I, P ))

for arbitrary γ ∈ C∞(I, P ) and g ∈ C∞(I,G). For a given element δ ∈ Hγ(C∞(I, P )) and
t ∈ I this mapping reads

Tγr
g(δ)(t) = evt(Tγr

g(δ)).

Because of the structure of the tangent space it is the same for the tangent mapping first to
evaluate the variable with respect to t and then use the mapping at the so given points, or
first to use the mapping and then evaluate the result. So the condition reads

Tγr
g(δ)(t) = evt(Tγr

g(δ)) = Tγ(t)r
g(t)(δ(t)) ⊆ Comp(γ·g)(t) P.

Furthermore we require that the decomposition

Tγ(C∞(I, P )) = Hγ(C∞(I, P ))⊕ Vγ(C∞(I, P )) ∀γ ∈ C∞(I, P )

exists. But this is trivial because the horizontal spaces were chosen complementary to the
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3. Connections and horizontal lifts

vertical ones for each t ∈ I and for f ∈ C∞(I,R) and δ ∈ Hγ(C∞(I, P )) the product
(fδ)(t) := f(t)δ(t) ∈ Compγ(t) P for each t ∈ I.

Next we see how a given connection on the path bundle induces a decomposition of the
tangent spaces along curves.

Theorem 3.28. [2, p. 215] If H(C∞(I, P )) is any connection on the principal fiber bundle
(C∞(I, P ), C∞(I,M), π∗, C

∞(I,G)) and if, for t ∈ I and γ ∈ C∞(I, P ) one defines

Compγ(t) P := {δ(t) : δ ∈ Hγ(C∞(I, P )) ⊆ Tγ(C∞(I, P ))},

then Compγ(t) P is a subspace of Tγ(t)P of dimension dim(M) which is complementary to
Vγ(t)P . Moreover, if

Compγ P :=
⊔
t∈I

Compγ(t) P and VγP :=
⊔
t∈I

Vγ(t)P,

then Compγ P → I is a vector subbundle of γ∗TP → I such that

γ∗TP ∼= Compγ P ⊕ VγP,

and
δ ∈ Hγ(C∞(I, P )) if and only if δ(t) ∈ Compγ(t) P ∀t ∈ I.

Proof. Step 1, Identifications: Let γ ∈ C∞(I, P ). The bundle γ∗TP → I is trivial because
of Corollary A.37. The same is true for the subbundle VγP → I of vertical spaces along
γ. Let {em+i}di=1 denote a set of sections of VγP → I such that {em+i(t)}di=1 are linearly
independent for all t ∈ I. This can be enlarged to an ordered set of sections {ei}m+d

i=1 of the
bundle γ∗TP → I with {ei(t)}m+d

i=1 forming a basis of γ∗TPt ∀t ∈ I. Because of triviality
one can identify the bundle γ∗TP → I with I × Rm+d → I and the bundle VγP → I with
I × Rd → I.

The connection H(C∞(I, P )) on C∞(I, P ) defines a subspace

Hγ(C∞(I, P )) ⊆ Tγ(C∞(I, P )) ∼= Γ (γ∗TP )

complementary to Vγ(C∞(I, P )) ⊆ Tγ(C∞(I, P )). Then the space Γ (γ∗TP ) can be identified
with Γ

(
I × Rm+d

) ∼= C∞(I,Rm+d) so that Vγ(C∞(I, P )) can be identified as the subspace
Γ
(
I × Rd

) ∼= C∞(I,Rd). With these identifications Hγ(C∞(I, P )) is a C∞(I,R)-submodule
of C∞(I,Rm+d) complementary to Vγ(C∞(I, P )) = C∞(I,Rd).
Step 2, maxt∈I

(
dim(Compγ(t) P )

)
≥ m: The space Compγ(t) P is a subspace of Rm+d

for each t ∈ I because Hγ(C∞(I, P )) is a C∞(I,R) module. Define now

s := max
I

(
dim(Compγ(t) P )

)
.
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3.4. Connections on the path bundle of a principal fiber bundle

Then there exists a t0 ∈ I so that s = dim(Compγ(t0) P ). Now let f1, f2, · · · , fs ∈
Hγ(C∞(I, P )) such that {fi(t0)}si=1 is a basis of Compγ(t0) P and let {ej}m+d

j=1 be the standard
basis of Rm+d. Then the fi can be written as

fi(t) =
m+d∑
j=1

cji (t) · ej

and the rank of the transformation matrix formed by the coefficients cji (t) is maximal at
t = t0. Since the rank can not fall locally there exists an open interval J ⊆ I around t0 such
that the transformation matrix has rank s for each t ∈ J , which means that {fi(t)}si=1 is a
basis of Compγ(t) P for each t ∈ J .

Every vector w ∈ Rm+d defines a constant map w̄ ∈ C∞(I,Rm+d) by I 3 t 7→ w. By the
identifications above this can be written as w̄ = w̄H + w̄V ∈ Hγ(C∞(I, P ))⊕ Vγ(C∞(I, P )).
So one gets for all t ∈ I that w = w̄H(t) + w̄V (t) ∈ Compγ(t) P + Vγ(t)P which means that
the whole space Rm+d is generated by the sum

Rm+d = Compγ(t) P + Vγ(t)P.

So the equation for the dimensions m+ d = s+ d− dim
(

Compγ(t) P ∩ Vγ(t)P
)
holds and it

follows that dim
(

Compγ(t) P ∩ Vγ(t)P
)

= s−m is constant for t ∈ J and s ≥ m.
Step 3, s = m on J : Assume s > m and let Compγ P |J → J and VγP |J → J be

subbundles of γ∗TP |J → J . Now we consider the bundle mappings

λComp P : γ∗TP |J → γ∗TP |J
/

Compγ P |J

λVP : γ∗TP |J → γ∗TP |J
/
VγP |J

and define for v ∈ γ∗TP |J the mapping:

λ : γ∗TP |J →
(
γ∗TP |J

/
Compγ P |J

)
⊕
(
γ∗TP |J

/
VγP |J

)
λ(v) :=

(
λComp P (v), λVP (v)

)
Then λ is a bundle homomorphism (see Definition 1.62) with

ker(λ)t = Compγ(t) P |J ∩ Vγ(t)P |J ∀t ∈ J

because of the quotients defined above. Since dim (ker(λ)t) = s − m is locally constant it
follows from Lemma 1.64 that ker(λ) → J is a subbundle of γ∗TP |J → J . This bundle
is trivial by Corollary A.37 because J is an interval. So there exists a smooth section
σ : J → γ∗TP |J such that σ(t) is a nonzero element of Compγ(t) P |J ∩ Vγ(t)P |J for all t ∈ J .
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3. Connections and horizontal lifts

With the basis f1, f2, · · · , fs of Hγ(C∞(I, P )) introduced above, one can write σ as

σ(t) =

s∑
j=1

aj(t) · fj(t)

with σ(t) ∈ Rs−m for each t ∈ J . By definition σ is nonzero at least at one point t0 ∈ J . So
Proposition 3.23 is applicable because J is an open neighbourhood of t0 ∈ R and of course
R is a Banach space. It follows that there exists a bump function c such that c(t0) = 1 and
c(I \ J) = 0. So the function

cσ =

s∑
j=1

(caj) · fj

is smooth on I, not only on J , nonzero and in Hγ(C∞(I, P ))∩Vγ(C∞(I, P )). This means we
found a nonzero function lying in Hγ(C∞(I, P )) and Vγ(C∞(I, P )) which is a contradiction
to the assumption that these two spaces are complementary and we get that s has to be
equal to m = dim

(
Compγ(t) P

)
for all t ∈ J .

Step 4, s = m on I: Let u ∈ I then Rm+d = Compγ(u) P + Vγ(u)P and m + d =

dim
(

Compγ(u) P
)

+ d− dim
(

Compγ(u) P ∩ Vγ(u)P
)
. Hence

m = max
t∈I

dim
(

Compγ(t) P
)
≥ dim

(
Compγ(u) P

)
= m+ dim

(
Compγ(u) P ∩ Vγ(u)P

)
≥ m

which means that m has to be equal to dim
(

Compγ(u) P
)
for all u ∈ I and so s = m.

Step 5, γ∗TP = Compγ P⊕VγP : From the equation form in the step before it follows that
the intersection Compγ(u) P ∩Vγ(u)P is zero, so it follows that γ∗TPt = Compγ(t) P ⊕Vγ(t)P

for each t ∈ I. We already introduced the subset {fi}mi=1 of Hγ(C∞(I, P )) and discussed
that it can be chosen depending on t0 ∈ I such that the set {fi(t0)}mi=1 forms a basis of
Compγ(t0) P . As the set {fi(t)}mi=1 is a basis for all t in an open neighbourhood of t0 we get
that

Compγ P =
⋃
t∈I

Compγ(t) P

is locally trivial as a vector bundle over I. Even more it is a trivial subbundle of γ∗TP such
that:

γ∗TP ∼= Compγ P ⊕ VγP

Step 6, δ ∈ Hγ(C∞(I, P )) if and only if δ(t) ∈ Compγ(t) P for all t ∈ I: The first direction
is clear because for a δ ∈ Hγ(C∞(I, P )) it follows that δ(t) ∈ Compγ(t) P for all t ∈ I by the
definition of Compγ(t) P .

Now let δ ∈ C∞(I,Rm+d) such that δ(t) ∈ Compγ(t) P for each t ∈ I. Choose again
{fi}mi=1 in Hγ(C∞(I, P )) such that {fi(t)}mi=1 forms a basis of Compγ(t) P for all t in an open
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interval J ⊆ I. Then δ can be written as

δ(t) =
m∑
j=1

bj(t)fj(t)

for all t ∈ J . By modifications of the bump function in Proposition 3.23 there exists a
bump function c ∈ C∞(I,R) such that c is 1 on some relatively open interval K ⊆ J and
c(I \ J) = 0. Then it follows that

cδ =
m∑
j=1

(cbj)fj

is an element of Hγ(C∞(I, P )) because of the choice of the basis {fi}mi=1 and one gets that
cδ|K = δ|K .

Define K as the set of all ξ ∈ C∞(I,Rm+d) such that for each t0 ∈ I there exists a
relatively open interval K such that t0 ∈ K ⊆ I and ξ|K = η|K for some η ∈ Hγ(C∞(I, P )).
So clearly Hγ(C∞(I, P )) is contained in K. Since Hγ(C∞(I, P )) is a C∞(I,R) submodule
of C∞(I,Rm+d) the same is true for K. We get that δ lies in K because of the construction
of cδ above.

Let now τ ∈ K ∩ Vγ(C∞(I, P )) and τ 6= 0. Then τ |K = η|K for some η ∈ Hγ(C∞(I, P ))

and for some K ⊆ I such that τ |K 6= 0. By Proposition 3.23 there exists a bump function
c ∈ C∞(I,R) with carrier on K and c equal to 1 at some point of K at which τ is nonzero.
So one gets that cτ = cη.

It is clear that cτ ∈ Vγ(C∞(I, P )) because it had been in the intersection K∩Vγ(C∞(I, P )).
On the other side cη is inHγ(C∞(I, P )) by the definition of η. So we found a nonzero element
of Hγ(C∞(I, P )) ∩ Vγ(C∞(I, P )) which is a contradiction to the choice of Hγ(C∞(I, P )).
Thus we get that K ∩ Vγ(C∞(I, P )) = {0}. We had before that Hγ(C∞(I, P )) ⊆ K which
means that C∞(I,Rm+d) is the sum of K and Vγ(C∞(I, P )). Because we just proved that
K ∩ Vγ(C∞(I, P )) = {0} this is a direct sum and we get

Hγ(C∞(I, P ))⊕ Vγ(C∞(I, P )) ∼= C∞(I,Rm+d) ∼= K ⊕ Vγ(C∞(I, P ))

and K = Hγ(C∞(I, P )). Because δ ∈ K, it is an element of Hγ(C∞(I, P )) too and the last
step is proved.

3.5. Connection forms on the path bundle

Definition 3.29. [2, p. 218] Every connection γ 7→ Hγ(C∞(I, P )) ⊆ Tγ(C∞(I, P )) on
C∞(I, P ) defines a Lie algebra valued connection form ω̄ : T (C∞(I, P ))→ C∞(I, g) by:

ω̄(Hγ(C∞(I, P ))) = 0 and ω̄(ζa(γ)) = a, for a ∈ C∞(I, g)

53



3. Connections and horizontal lifts

where ζa is the corresponding fundamental vector field on C∞(I, P ).

Lemma 3.30. [2, p. 218] The Lie algebra valued connection form ω̄ has the following
properties:

1. ω̄ is smooth.

2. At each γ ∈ C∞(I, P ), the mapping ω̄γ is a C∞(I,R)-module homomorphism.

3. (rg)∗(ω̄) = Ad(g−1)(ω̄) for g ∈ C∞(I,G), AdG : G → g the usual adjoint representa-
tion of G and Ad(g) = AdG ◦g.

Proof. This follows from the first section of this chapter and the finite dimensional case for
each t ∈ I.

Remark 3.31. On the other hand, if we have already a Lie algebra valued connection form
ω̄, then it defines a connection. This is analogues to the finite dimensional case already
introduced in Theorem 3.12.

The next paragraphs discuss the correspondence between Lie algebra valued connection
forms on P and on C∞(I, P ). We start by describing how a Lie algebra valued connection
form on P induces one on C∞(I, P ).

Proposition 3.32. [2, p. 218] Let ω : TP → g denote a Lie algebra valued connection form
on P . Then the mapping

ω̄ : T (C∞(I, P ))→ C∞(I, g) ω̄γ(δ)(t) = ωγ(t)(δ(t))

for γ ∈ C∞(I, P ), δ ∈ Tγ(C∞(I, P )), t ∈ I defines a Lie algebra valued connection form on
C∞(I, P ).

Proof. For each t ∈ I one gets for the tangent mapping of the right action

Tγr
g(δ)(t) = Tγ(t)r

g(t)(δ(t))

for g ∈ C∞(I,G). This leads together with the G-equivariance of ω to

((rg)∗ω̄)γ(δ)(t) = ωγ(t)(Tr
g(δ)(t)) = (rg(t))∗ω(δ(t)) =

= Ad(g(t)−1)ωγ(t)(δ(t)) =
(
Ad(g−1)(ω̄γ(δ))

)
(t)

which reads in short (rg)∗ω̄ = Ad(g−1)ω̄.
The smoothness of ω̄ follows by adaptations of the arguments in Section 3.2 and the

application of Corollary 1.22. See Definition 3.1 and the discussion followed for more details
of the definition of smooth differential forms.
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The mapping ω̄ is a C∞(I,R)-module homomorphism for each γ ∈ C∞(I, P ) by the
properties of ω. For a ∈ C∞(I, g) it follows that ω̄γ(ζa(γ)) = a because it is true for each
t ∈ I and ω.

What we have seen in the last proposition leads to the following definition.

Definition 3.33. [2, p. 218] If ω : TP → g is a Lie algebra valued connection form on
the bundle (P,M, π,G), then the Lie algebra valued connection form ω̄ : T (C∞(I, P )) →
C∞(I, g) defined by ω̄γ(δ)(t) := ωγ(t)(δ(t)) for γ ∈ C∞(I, P ), δ ∈ Tγ(C∞(I, P )), t ∈ I is
called the Lie algebra valued connection form on C∞(I, P ) induced by ω.

Naturally the question arises, whether or not the Lie algebra valued connection forms on
C∞(I, P ) induced by connections of P can be characterized. The answer is given in the
following proposition.

Proposition 3.34. [2, p. 218] If (P,M, π,G) is a principal fiber bundle then a Lie algebra
valued connection form ω̄ on (C∞(I, P ), C∞(I,M), π∗, C

∞(I,G)) is induced by a Lie algebra
valued connection form ω of P if and only if ω̄γ(δ) is a constant element of C∞(I, g) whenever
γ and δ are constant elements of C∞(I, P ) and Tγ(C∞(I, P )), respectively.

Proof. The first direction is clear, indeed assume ω̄ induced by ω on P . Let γ ∈ C∞(I, P )

and δ ∈ Tγ(C∞(I, P )) = C∞(I, Tγ(0)P ) be constant. Since ω̄γ(δ)(t) := ωγ(t)(δ(t)) for all
t ∈ I it follows that ω̄γ(δ) is constant.

For the other direction assume ω̄γ(δ) is constant whenever γ ∈ C∞(I, P ) and δ ∈ Tγ(C∞(I, P ))

are constant. Now define the mappings

J : P → C∞(I, P ) J(u)(t) = u

j : M → C∞(I,M) j(x)(t) = x

for x ∈M , u ∈ P and t ∈ I. The following diagram commutes:

P

π

��

J // C∞(I, P )

π∗
��

M
j // C∞(I,M)

If we define for g ∈ G the mapping ḡ : I → G via ḡ(t) = g for all t ∈ I then the following
identity is satisfied for all u ∈ P :

J(u · g) = J(u) · ḡ or equivalently J ◦ rg = rḡ ◦ J (3.1)

Next define ω on P by ω := J∗ω̄. For u ∈ P and X ∈ TuP the definition leads to

ωu(X)(t) = ω̄J(u) ((TJ)(X)) (t)
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for all t ∈ I. Since J(u) and TuJ(X) are constant for all t ∈ I it follows that ωu(X)

is constant too and may be identified as an element of g ⊆ C∞(I, g), again by constant
mappings. By Equation 3.1 and the property (rg)∗ω̄ = Ad(g−1)ω̄ of ω̄ we get

(rg)∗(J∗ω̄) = J∗
(
(rḡ)∗ω̄

)
= Ad(g−1)(J∗ω̄).

For a ∈ g and u ∈ P we get again by constant mappings that

TuJ(ζa(u))(t) = ζa(u) = ζā(J(u))(t) ∀t ∈ I

which leads to

ω(ζa(u)) = (J∗ω̄)(ζa(u)) = ω̄(TuJ(ζa(u))) = ω̄(ζā(J(u))) = ā = a.

This property shows that ω is a Lie algebra valued connection form on P . Clearly ω̄ is
induced by ω.

3.6. Connections on subbundles of the path bundle

As far we discussed connections on the bundle (C∞(I, P ), C∞(I,M), π∗, C
∞(I,G)) as de-

scribed in Definition 3.24. Now we want to specialize these results for the bundles

(C∞(I, P )u0 , C
∞(I,M)x0 , π∗, C

∞(I,G)0) and((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
.

For these bundles Definition 3.24 can be reformulated by replacing the total space and the
group of the path bundle by the total spaces and groups of the subbundles respectively.

Theorem 3.35. [2, p. 219] If H (C∞(I, P )u0) and H
((
π−1
∗ (C∞(I,M)x0→x0)

)
u0

)
are con-

nections on the principal fiber bundles (C∞(I, P )u0 , C
∞(I,M)x0 , π∗, C

∞(I,G)0) and((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
, then the conclusions of Theo-

rem 3.28 hold on the tangent spaces of the total spaces at each point γ of the principal bundles
under consideration.

Proof. Let γ be an element of the total space of one of the principal bundles being considered.
The argument in the proof of Theorem 3.28 is a local one. So it works for the two cases
under consideration too.

Lie algebra valued connection forms on (C∞(I, P )u0 , C
∞(I,M)x0 , π∗, C

∞(I,G)0) and((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
are given by Definition 3.33

and appropriate restrictions of the spaces under consideration.
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3.6. Connections on subbundles of the path bundle

Theorem 3.36. [2, p. 220] If (P,M, π,G) is a principal fiber bundle such that P and G are
path connected and if ω̄ is a Lie algebra valued connection form on
(C∞(I, P )u0 , C

∞(I,M)x0 , π∗, C
∞(I,G)0), then ω̄ is induced by a Lie algebra valued connec-

tion form ω on P if and only if ω̄ has the property that whenever (γ1, v1) and (γ2, v2) are
elements of T (C∞(I, P )u0) such that γ1(1) = u = γ2(1) and v1(1) = v2(1) it follows that
ω̄γ1(v1)(1) = ω̄γ2(v2)(1).

Proof. Step 1, First direction: If ω is a Lie algebra valued connection form on P then ω

induces a Lie algebra valued connection form ω̄ on C∞(I, P )u0 by ω̄γ(v)(t) := ωγ(t)(v(t)). So
it follows that

ω̄γ1(v1)(1) = ωγ1(1)(v1(1)) = ωu(v1(1)) = ωγ2(1)(v2(1)) = ω̄γ2(v2)(1)

which shows the first direction of the theorem.
Step 2, Definition of ω: Let ω̄ be a Lie algebra valued connection form on C∞(I, P )u0

which satisfies the conditions stated in the theorem. For u ∈ P and X ∈ TuP choose
γ̃u ∈ C∞(I, P )u0 such that γ̃u(1) = u and a vector field vX along γ̃u with vX(1) = X. Their
existence is shown by their smooth construction in step 4. Now define ω by:

ωu(X) := ω̄γ̃u(vX)(1).

Since the definition of ωu(X) is independent of the choice of γ̃u and vX we get a well-defined
g-valued 1-form on P .
Step 3, Connection properties of ω: Let g1 ∈ G and u ∈ P then we can choose g ∈

C∞(I,G)0 such that g(1) = g1 and γ̃u ∈ C∞(I, P )u0 such that γ̃u(1) = u because of the
path connectedness of G and P . So we get by the right actions of the principal bundles
involved that γ̃u · g ∈ C∞(I, P )u0 and (γ̃u · g)(1) = u · g1 ∈ P . The tangent mapping of the
right action gives (Trg(vX)(1) = Tur

g1(X) so that

((rg1)∗ω)u(X) = ω(Tur
g1(X)) = ω̄γ̃·g((Tr

g)(vX))(1)

follows which is equal to ((rg)∗ω̄)γ̃u(vX)(1). By the properties of ω̄ (see Lemma 3.30), it
follows that

((rg)∗ω̄)γ̃u(vX)(1) = [Ad(g−1)ω̄γ̃u(vX)](1) = Ad(g−1)ωu(X).

So we found that ω satisfies ((rg1)∗ω)u(X) = Ad(g−1)ωu(X).
Let a1 ∈ g and a ∈ C∞(I, g)0 such that a(1) = a1. Let ζa denote the fundamental vector

field on C∞(I, P )u0 induced by a such that for µ ∈ C∞(I, P )u0 one gets ζa(µ)(t) = ζa(t)(µ(t)).
Then it follows that

ωu(ζa1(u)) = ω̄γ̃u(ζa(γ̃u))(1) = a(1) = a1
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3. Connections and horizontal lifts

by using Definition 3.29.
Step 4, Smoothness: To prove smoothness we first have to review some definitions and

results already introduced. First let c ∈ C∞(R, P ) denote a curve in P . Then by Remark
1.41 its associated tangent vector at the point c(0) is defined via the mapping

δ : C∞(R, P )→ TP δ(c) := [c(0),
∂

∂t

∣∣
0
(uα ◦ c)(t), α]

where uα denotes a chart.
By Remark 1.43 a mapping g : TP → N from the tangent space TP of a manifold P to a

C∞-manifold N is smooth if and only if the composition

g ◦ δ : C∞(R, P )→ N

maps smooth curves to smooth curves i.e. induces a map from C∞(R2, P ) to C∞(R, N).
In our case we are interested in the mapping ω : TP → g from the tangent space of P into

the Lie algebra g of G. By Remark 1.43 ω is smooth if and only if

ω ◦ δ : C∞(R, P )→ g

is smooth.
We defined ω in a point u ∈ P and for a tangent vector X ∈ TuP as

ωu(X) := ω̄γ̃u(vX)(1)

where γ̃u ∈ C∞(I, P )u0 denotes an arbitrary smooth path starting in u0 ∈ P and ending in
u and vX an arbitrary vector field along γ̃u satisfying vX(1) = X.

By the path connectedness of P it follows that for given u there exists a smooth curve γ̃u.
What we do not know up to now is, whether this choice depends smoothly on u.

First we want to know how ω ◦ δ is exactly defined. Therefore let c ∈ C∞(R, P ). Then we
have to insert c(0) = pr1(δ(c)) instead of u and pr2(δ(c)) instead of X in the definition of ω.
So we get:

ω ◦ δ : C∞(R, P )→ g (ω ◦ δ)(c) := ω̄γ̃c(0)(vpr2(δ(c)))(1)

To prove its smoothness we have to show that smooth curves in C∞(R, P ) are mapped to
smooth curves in g or the space C∞(R× R, P ) to the space C∞(R, g).

Let therefore d : R → C∞(R, P ) denote a smooth curve in C∞(R, P ), which means that
d∧ ∈ C∞(R× R, P ) satisfying d∧(0, t) = c(t). Then it follows that s 7→ d∧(s, 0) is a smooth
curve in P and c(0) = d∧(0, 0).

By the path connectedness of P there exists a smooth curve γ̃c(0) ∈ C∞(I, P ) with
γ̃c(0)(0) = u0 and γ̃c(0)(1) = c(0). W.l.o.g. we may assume that I = [0, 1]. Then we can
reparametrize γ̃c(0) smoothly such that γ̃c(0)(t) = c(0) ∀t ∈

[
1
2 , 1
]
.
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3.6. Connections on subbundles of the path bundle

Next we require a smooth bump function (see Definition 3.22) h : R→ R satisfying h = 0

for t ≤ 1
2 and h = 1 for t ≥ 1.

Now define a curve
bs :

[
1

2
, 1

]
→ P t 7→ d∧(h(t) · s, 0)

which describes the smooth curve segment from d∧(0, 0) to d∧(s, 0).
So we can consider the concatenation of γ̃c(0) with bs which is a piecewise smooth curve.

It can be reparametrized to a smooth curve with starting point u0 ∈ P and endpoint d∧(s, 0)

which we will denote as γ̃d∧(s,0) : I → P .
This shows that γ̃d∧(s,0) depends smoothly on s which means that the assignment of γ̃c(0)

to a curve c is a smooth mapping. We require furthermore that the vector field vγ̃d∧(s,0) along
γ̃d∧(s,0) depends on s smoothly too. To achieve that we define

vγ̃d∧(s,0)(t) := h(t) · pr2(δ(d(h(t) · s))).

It is zero for t ≤ 1
2 and then increases until it satisfies vγ̃d∧(s,0)(1) = pr2(δ(d(s))). The factor

h(t) in the argument of d is necessary to guarantee that the vectors for each t lie in the right
tangent space. So we get the smooth dependence of vpr2(δ(c)) on the curve c too.

C∞(R, P )

c 7→(γ̃c(0),vpr2(δ(c)))
��

δ // TP
ω // g

T (C∞(I, P )u0)
ω̄ // C∞(I, g)0

ev1

;;vvvvvvvvvv

So the mapping ω ◦ δ is a composition of the smooth assignments of c 7→ γ̃c(0) and c 7→
vpr2(δ(c)), the smooth connection ω̄ and the by Corollary 1.22 smooth evaluation mapping.
This shows the smoothness of ω.

Remark 3.37. [2, p. 222] The last theorem can also be formulated for the bundle((
π−1
∗ (Imm (I,M))

)
u0
, Imm (I,M)x0 , π̂, C

∞(I,G)0

)
, where only little modifications are re-

quired. The paths which connect the point u0 with the points u can be chosen such that their
projection γ̇(t) 6= 0 for each t ∈ I. The idea is to avoid problematic points by modifying
γ in a small neighbourhood of them such that this modification can take place in a local
trivialization above this neighbourhood too.

The last bundle where we characterize Lie algebra valued connection forms induced by the
ones on P →M is

((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
.

Theorem 3.38. [2, p. 222] A Lie algebra valued connection form ώ on((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
is induced by a Lie algebra val-

ued connection form ω on P if and only if ώ has an extension ω̄ defined on
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3. Connections and horizontal lifts

(C∞(I, P )u0 , C
∞(I,M)x0 , π∗, C

∞(I,G)0) such that ω̄γ1(δ1)(1) = ω̄γ2(δ2)(1) for all (γ1, δ1)

and (γ2, δ2) in T (
(
π−1
∗ (C∞(I,M))

)
u0

) such that γ1(1) = γ2(1) and δ1(1) = δ2(1).

Proof. If ώ is a Lie algebra valued connection form on
(
π−1
∗ (C∞(I,M)x0→x0)

)
u0

which is in-
duced by a Lie algebra valued connection form ω on P then ω also induces a Lie algebra valued
connection form ω̄ on

(
π−1
∗ (C∞(I,M))

)
u0
. The restriction of ω̄ to T (

(
π−1
∗ (C∞(I,M)x0→x0)

)
u0

)

is precisely ώ.
Otherwise if ώ has an extension with the properties formulated above, then Theorem 3.36

gives the Lie algebra valued connection form ω on P .
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4. Curvature

4.1. Curvature on infinite dimensional manifolds

In the last chapter we introduced connections on principal fiber bundles. Now we discuss the
curvature of the connections. To simplify the notation let w.l.o.g. I be the interval [0, 1] as
in the previous chapter.

Definition 4.1. [10, p. 377] Let Φ be a connection form on the fiber bundle (E,M, π, S).
We define the curvature form R of Φ as

R :=
1

2
[Φ,Φ] =

1

2
[Id−Φ, Id−Φ] ∈ Ω2 (E, V E) .

The curvature form R is an obstruction against involutivity of the horizontal subbundle in
the following sense: If the curvature form R vanishes, then horizontal kinematic vector fields
on E also have a horizontal Lie bracket.

Proposition 4.2. [10, p. 377] Let (f∗E,N, f∗π, S) be the pullback bundle of (E,M, π, S)

over f : N → M and π∗f : f∗E → E the mapping between the total spaces of the bundles.
The curvatures of f∗Φ and Φ are π∗f -related.

For principal fiber bundles we get:

Proposition 4.3. [10, p. 388] Let Φ be a principal connection form on the principal fiber
bundle (P,M, π,G). The curvature form R = 1

2 [Φ,Φ] is G-equivariant, that means (rg)∗R =

R for all g ∈ G.

Definition 4.4. [10, p. 388] Let Φ be a principal connection form on the principal fiber
bundle (P,M, π,G) and ω ∈ Ω1 (P, g) the corresponding Lie algebra valued connection form.
Since R has vertical values we may define a g-valued 2-form F ∈ Ω2 (P, g) by

F (Xu, Yu) := − (Teru)−1R(Xu, Yu)

for all u ∈ P . We call it the Lie algebra valued curvature form.

Proposition 4.5. [10, p. 388] The curvature form R and the Lie algebra valued curvature
form F satisfy the following relation with the fundamental vector field ζ.

R(Xu, Yu) = −ζF (Xu,Yu)(u)
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4. Curvature

where u ∈ P and Xu, Yu ∈ TuP .

Definition 4.6. [10, p. 388] We consider the space Ω (P, g) of all g-valued forms on P

equipped with the structure of a graded Lie algebra in a canonical way by

[Ψ,Θ]g∧(X1, . . . , Xp+q) :=
1

p!q!

∑
σ

sign(σ)[Ψ(Xσ(1), . . . , Xσ(p)),Θ(Xσ(p+1), . . . , Xσ(p+q))]g.

Equivalently this can be written as

[Ψ⊗X,Θ⊗ Y ]∧ := Ψ ∧Θ⊗ [X,Y ]g.

So it follows with the outer derivative d that

• d[Ψ,Θ]∧ = [dΨ,Θ]∧ + (−1)deg Ψ[Ψ, dΘ]∧ and

• [ω, ω]g∧(X,Y ) = 2[ω(X), ω(Y )]g for ω ∈ Ω1 (P, g).

Theorem 4.7. [10, p. 388] The Lie algebra valued curvature form F of a principal connection
with Lie algebra valued connection form ω has the following properties:

1. F is horizontal, i.e., it kills vertical vectors.

2. F is G-equivariant in the following sense: (rg)∗F = Ad(g−1)F

Consequently, LζXF = − ad(X)F .

3. The Maurer-Cartan formula holds: F = dω + 1
2 [ω, ω]∧.

4.2. Curvature on the path bundle

The terms introduced in the previous section are used for the path bundle as shown in the
following.

Theorem 4.8. [2, p. 224] Let (P,M, π,G) be a principal fiber bundle and ω a Lie algebra
valued connection form on P . Furthermore let x0 ∈ M , u0 ∈ π−1(x0) and A an arbitrary
smooth C∞(I, g)0-valued 1-form on C∞(I,M)x0.

1. There exists a unique Lie algebra valued connection form ω̄ on C∞(I, P )u0 such that
s∗ω(ω̄) = A where sω is the global section of C∞(I, P )u0 → C∞(I,M)x0 defined by
requiring that sω(γ) be the unique ω-horizontal lift of γ to u0.

2. Conversely every Lie algebra valued connection form ω̄ on C∞(I, P )u0 → C∞(I,M)x0

arises as the pullback of a smooth mapping A : T (C∞(I,M)x0) → C∞(I, g)0 in this
way.

3. If F̄ is the Lie algebra valued curvature form of ω̄ then s∗ω(F̄ ) = dA+ 1
2 [A,A]∧.
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4.2. Curvature on the path bundle

4. Similarly Lie algebra valued connection forms ω̄ on
(
π−1
∗ (C∞(I,M)x0→x0)

)
u0

are char-
acterized by smooth mappings A : T (C∞(I,M)x0→x0)→ C∞(I, g)0 with a correspond-
ing characterization of the curvature of ω̄.

Proof. This theorem is a consequence of the fact that

C∞(I, P )u0
∼= sω(C∞(I,M)x0)× C∞(I,G)0

is trivial in the sense that global sections sω exist as shown in Theorem 3.20. The following
commutative diagram shows (1) and (2).

T (C∞(I, P )u0)

ω̄

vvmmmmmmmmmmmm
//

Tπ∗
��

sω(C∞(I,M)x0)× C∞(I,G)0

π∗
��

C∞(I, g)0 T (C∞(I,M)x0)
Aoo //

Tsω

OO

C∞(I,M)x0

sω

OO

(3) is true because of Theorem 4.7.
(4) follows through modifications of previous arguments and due to the fact that(
π−1
∗ (C∞(I,M)x0→x0)

)
u0

is trivial too by Theorem 3.20.

The following example should help to avoid misinterpretations.

Example 4.9. Assume that A is the trivial mapping, which means that each element in
T (C∞(I,M)x0) is mapped to the curve I → {0 ∈ g}. Then (and only in this case) ω̄ is
the Lie algebra valued connection form induced by ω because all horizontal lifts are again
mapped to the trivial path. In general the association between these Lie algebra valued
connection forms is not that simple.

So this example should be a warning not to mistake the Lie algebra valued connection
forms induced by the section sω for the induced Lie algebra valued connection forms by the
finite dimensional ω.

The following theorem is a modification of the one stated in [2, p. 224]. There the theorem
assumes that G is a matrix Lie group because the smooth horizontal lift sω was only defined
for matrix Lie groups. This is different now because we showed the existence of a smooth
horizontal lift for general Lie groups in Section 3.2.

Theorem 4.10. [2, p. 224] Let (P,M, π,G) be a principal fiber bundle, ω a Lie algebra
valued connection form on P , x0 ∈M and u0 ∈ π−1(x0). Define the mapping

ψω : C∞(I, P )u0 → C∞(I,G)0

which assigns each γ ∈ C∞(I, P )u0 a path ψω(γ) ∈ C∞(I,G)0 such that the horizontal lift γ̄
of π ◦ γ is given by

γ̄(t) = γ(t) · ψω(γ)(t).
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4. Curvature

Then ψω is a smooth equivariant mapping which maps all of C∞(I, P )u0 onto C∞(I,G)0.
The inverse image ψ−1

ω (ē) of the identity ē ∈ C∞(I,G)0 is a subbundle of C∞(I, P )u0 and
precisely the set of all γ ∈ C∞(I, P )u0 which are ω-horizontal.
In a similar way the mapping ψω|(π−1

∗ (C∞(I,M)x0→x0 ))
u0

has analogous properties on(
π−1
∗ (C∞(I,M)x0→x0)

)
u0
.

Proof. The smoothness of ψω is discussed in the proof of Theorem 3.20 and follows there by
the projection to the second component of the trivialization mapping.

Because the bundle (C∞(I, P )u0 , C
∞(I,M)x0 , π∗, C

∞(I,G)0) is smoothly trivial by The-
orem 3.20, we can factorize γ into the horizontal lift γ̄ to u0 of its projection π ◦ γ and
an element a ∈ C∞(I,G)0. So for each t ∈ I one can write γ(t) = γ̄(t) · a(t). Now take
g ∈ C∞(I,G)0, so one gets γ(t) · g(t) = γ̄(t) · a(t) · g(t).

Using the trivialization the mapping ψω reads γ 7→ a−1. Inserting the product γ ·g = γ̄ ·a·g
one gets for all t ∈ I that ψω satisfies

ψω : γ 7→ (a · g)−1 = g−1 · a−1.

With the definition of ψω this reads

ψω(γ · g)(t) = g−1 · ψω(γ)(t)

which shows the equivariance of ψω.
With the help of the global section sω we get that ψω(sω(λ)) = ē for each λ ∈ C∞(I,M)x0 .
Conversely, if we take γ ∈ C∞(I, P )u0 which satisfies ψω(γ) = ē then ψω(γ)(t) = e for

all t ∈ I where e is the unit element of G. In this case γ = γ̄ = sω(π ◦ γ). So we get that
ψ−1
ω (ē) = sω(C∞(I,M)x0) and hence is a submanifold of C∞(I, P )u0 .
By restriction to ψω|(π−1

∗ (C∞(I,M)x0→x0 ))
u0

one gets the similar result for the bundle((
π−1
∗ (C∞(I,M)x0→x0)

)
u0
, C∞(I,M)x0→x0 , π∗0, C

∞(I,G)0

)
.

Remark 4.11. [2, p. 225] A slight modification of the last two theorems leads to analogous
results for the bundle

((
π−1
∗ (Imm (I,M)x0)

)
u0
, Imm (I,M)x0 , π̂, C

∞(I,G)0

)
.

4.3. Uniform connections on the path bundle

Definition 4.12. [2, p. 230] A Lie algebra valued connection form ω̄ on
(C∞(I, P )u0 , C

∞(I,M)x0 , π∗, C
∞(I,G)0) is uniform if and only if it satisfies the property

that ω̄γ(v)(t) = ω̄γt(vt)(1) for every (γ, v) ∈ T (C∞(I, P )u0) and t ∈ I where γt(s) := γ(ts)

and vt(s) := v(ts) for each s ∈ I
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4.3. Uniform connections on the path bundle

Theorem 4.13. [2, p. 231] There is a bijection between the set of all uniform connection
forms on (C∞(I, P )u0 , C

∞(I,M)x0 , π∗, C
∞(I,G)0) and the set of all mappings

f : T (C∞(I, P )u0)→ g

satisfying the following conditions:

1. f is smooth,

2. f is equivariant, in the sense that (rg)∗f = Ad(g(1)−1)f for g ∈ C∞(I,G)0, and

3. f(γ, ζa(γ)) = a(1) for a ∈ C∞(I, g)0 with corresponding fundamental vector field ζa,
γ ∈ C∞(I, P )u0 .

In the following we denote the set of all such f with A(C∞(I, P )u0 , g).

Proof. Step 1, First direction: Let ω̄ be a uniform connection form on C∞(I, P )u0 . Define
the mapping

fω̄ : T (C∞(I, P )u0)→ g fω̄(γ, v) := ω̄γ(v)(1) = ev1(ω̄γ(v))

which is smooth by the smoothness of ω̄ and the smoothness of the evaluation mapping by
Corollary 1.22. Applying the right action on fω̄ we get by the equivariance property of ω̄
that

(rg)∗fω̄(γ, v) = ω̄rgγ(Tγr
g(v))(1) =

(
Ad(g−1)(ω̄γ(v))

)
(1) = Ad(g(1)−1)fω̄(γ, v)

for arbitrary pairs (γ, v) ∈ T (C∞(I, P )u0). The use of the ω̄-property for fundamental vector
fields gives

fω̄(γ, ζa(γ)) = ω̄γ(ζa(γ))(1) = a(1)

for each a ∈ C∞(I, g)0. This finishes the first direction.
Step 2, Connection properties: For a given f ∈ A(C∞(I, P )u0 , g) define the Lie algebra

valued one form

ω̄f : T (C∞(I, P )u0)→ C∞(I, g)0 (ω̄f )γ(v)(t) := f(γt, vt)

for arbitrary pairs (γ, v) ∈ T (C∞(I, P )u0) and t ∈ I.
First we show the uniformity condition. We get that (ω̄f )γt(vt)(1) = f((γt)1, (vt)1) by the

definition of ω̄f . Then f((γt)1, (vt)1) = f(γt, vt) follows because (γt)1 = γt and (vt)1 = vt

as the maximal subpaths of γt and vt respectively. Again using the definition of ω̄f leads to
(ω̄f )γt(vt)(1) = (ω̄f )γ(v)(t) for each t ∈ I.

Next we discuss the equivariance property. For t ∈ I we get by the application of (rg)∗ on
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4. Curvature

one forms and the definition of ω̄f that

((rg)∗ω̄f )γ(v)(t) = (ω̄f )γ·g(Tγr
g(v))(t) = f(rg(γ)t, Tγr

g(v)t).

Because it is the same first to apply the right action and then to take only the paths up to t
or the other way around, it follows that

f(rg(γ)t, Tγr
g(v)t) = f(rgt(γt), Tγtr

gt(vt)) = ((rgt)∗f)(γt, vt).

Using the equivariance property of f and having in mind the subpath constructions of gt, γt
and vt, this leads to

((rgt)∗f)(γt, vt) = (Ad(gt(1)−1)f)(γt, vt) = (Ad(g(t)−1)(ω̄f )γ)(v)(t)

So we get
((rg)∗ω̄f )γ(v)(t) = Ad(g−1)((ω̄f )γ(v))(t).

Similar arguments lead to the fundamental vector field property. Taking a ∈ C∞(I, g)0

and t ∈ I one gets that

(ω̄f )γ(ζa(γ))(t) = f(γt, (ζa)(γ)t) = f(γt, ζat(γt)) = at(1) = a(t).

Step 3, Smoothness: As in the situation of Theorem 3.36 we start by reviewing some
definitions and notation. First let c ∈ C∞(R, C∞(I, P )u0) denote a curve in C∞(I, P )u0 .
Then by Remark 1.41 its associated tangent vector at the point c(0) is defined via the
mapping

δ : C∞(R, C∞(I, P )u0)→ T (C∞(I, P )u0) δ(c) := [c(0),
∂

∂t

∣∣
0
(uα ◦ c)(t), α]

where uα denotes a chart.
This is similar to the situation in Theorem 3.36 with the difference that in the infinite

dimensional case instead of the point u ∈ P we consider the curve γ ∈ C∞(I, P )u0 and
instead of a tangent vector X a tangent vector field v along γ.

As before we define γι(t) := γ(ι · t) and vι(t) := v(ι · t) for each t, ι ∈ I. In order to show
the smoothness of

ω̄f : T (C∞(I, P )u0)→ C∞(I, g)0 (ω̄f )γ(v)(ι) := f(γι, vι)

we have to show that smooth curves in T (C∞(I, P )u0) are mapped to smooth curves in
C∞(I, g)0.
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By Remark 1.43 it suffices to show that

ω̄f ◦ δ : C∞(R, C∞(I, P )u0)→ C∞(I, g)0

maps smooth curves to smooth curves which means that f(γι, vι) defines a mapping from
C∞(R2, C∞(I, P )u0) to C∞(R, C∞(I, g)0).

Let now c∧ ∈ C∞(R × I, P ) denote the smooth mapping corresponding (see Lemma 2.3)
to a smooth curve c : R → C∞(I, P )u0 . We want to show that the assignment of a smooth
family of mappings to a curve c defined by

Λ : C∞(R, C∞(I, P )u0)→ C∞(I, C∞(R, C∞(I, P )u0)) c 7→ (ι 7→ (s 7→ (t 7→ c(s, ι · t))))

is smooth. To see this we have to show that elements d of C∞(R, C∞(R, C∞(I, P )u0)) are
mapped to elements Λ(d) of C∞(R, C∞(I, C∞(R, C∞(I, P )u0))).

The notation gets quite complicated here, so we discuss after applying Lemma 2.3 mappings
d∧ ∈ C∞(R × R × I, P )u0 which are mapped to elements Λ(d)∧ ∈ C∞(I × R × R × I, P )u0

where the index u0 means that d∧(κ, s, 0) = Λ(d)∧(κ, ι, s, 0) = u0.
In this setting we can define

Λ(d)∧(κ, ι, s, t) := d∧(κ, s, ι · t).

So Λ(d)∧ is obviously an element of C∞(I × R × R × I, P )u0 by the smoothness of d∧ and
the smoothness of the multiplication with ι ∈ I. This implies that Λ is a smooth mapping.

Next we consider the following diagram:

C∞(R, C∞(I, P )u0)

Λ
��

δ // T (C∞(I, P )u0)
ω̄f // C∞(I, g)0

C∞(I, C∞(R, C∞(I, P )u0))
δ // C∞(I, T (C∞(I, P )u0))

f
55kkkkkkkkkkkkkk

Because f : T (C∞(I, P )u0)→ g is smooth, the same is true for the composition f ◦ δ. So
the composition f ◦ δ ◦ Λ is smooth which proves the smoothness of ω̄f .

Example 4.14. [2, p. 230] If (P,M, π,G) is a principal fiber bundle and ω is any Lie algebra
valued connection form on P , then the induced connection form ω̄ on
(C∞(I, P )u0 , C

∞(I,M)x0 , π∗, C
∞(I,G)0) is uniform. This follows because the equation

ω̄γ(δ)(t) = ω̄γt(δt)(1)

is trivially satisfied by an induced connection form.

The following (and last) section of this thesis gives as an example of a uniform connection
which is not an induced connection. It is called Polyakov connection on C∞(I, P )u0 .
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4. Curvature

4.4. Polyakov connection

In this section we will discuss a special uniform connection on the path bundle which arose
through a discussion of a physical problem in gauge theories. A thorough motivation can be
found in [2] where this construction is applied to a result given in [13]

Example 4.15. [2, p. 229] Let (P,M, π,G) be a principal fiber bundle, x0 ∈ M , u0 ∈
π−1 (x0) and ω an arbitrary Lie algebra valued connection form on P . As shown in Theorem
3.20 there exists a global section sω : C∞(I,M)x0 → C∞(I, P )u0 . Furthermore by Theorem
4.10 there is an equivariant mapping ψω : C∞(I, P )u0 → C∞(I,G)0. Now let κ denote the
Maurer-Cartan form of Definition 1.56 where we can choose the right or left one as we like.

The Maurer-Cartan form on G induces a Maurer-Cartan form κ on C∞(I,G)0 by

κg(v)(t) = κg(t)(v(t))

for g ∈ C∞(I,G)0, v ∈ Tg(C∞(I,G)0) and t ∈ I. So it is possible to define a Lie algebra
valued connection form

ω̄ = (ψ−1
ω )∗κ

as the composition of the smooth mapping ψω and the smooth Lie algebra valued one form
κ.

At this point it is easy to observe that

(s∗ωω̄)λ(vλ) = (ψ−1
ω ◦ sω)∗(κ)λ(vλ) = 0

for λ ∈ C∞(I,M)x0 and vλ ∈ Tλ(C∞(I,M)x0) because the composition ψ−1
ω ◦ sω gives only

the unit element ē ∈ C∞(I,G)0. This implies that the curvature is 0 and so ω̄ is flat.

Proposition 4.16. [2, p. 230] The Lie algebra valued connection form ω̄ = (ψ−1
ω )∗κ intro-

duced in Example 4.15 is a uniform connection on (C∞(I, P )u0 , C
∞(I,M)x0 , π∗, C

∞(I,G)0).

Proof. Let γ ∈ C∞(I, P )u0 and t ∈ I. Because of the construction of subpaths introduced
in Definition 4.12, one gets that ψω(γt) = ψω(γ)t. The same property follows for its inverse:

(ψ−1
ω )(γt) = ψ−1

ω (γ)t

Now let v ∈ Tγ(C∞(I, P )u0). We get for t, s ∈ I that

Tγt(ψ
−1
ω )(vt)(s) = Tγ(ψ−1

ω )(v)(ts) =
(
Tγ(ψ−1

ω )(v)
)
t
(s).

By inserting the definitions of ω̄ and κ we get for all t, s ∈ I:

((ψ−1
ω )∗κ)γt(vt)(s) = κψ−1

ω (γt)
(Tγt(ψ

−1
ω ))(vt)(s) = κψ−1

ω (γt)(s)
(Tγt(ψ

−1
ω )(vt)(s)) =
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4.4. Polyakov connection

= κψ−1
ω (γ)(ts)(Tγ(ψ−1

ω )(v)(ts)) = ((ψ−1
ω )∗κ)γ(δ)(ts).

Setting s = 1 the proposition follows.

Remark 4.17. [2, p. 233] According to Theorem 4.13 there exists a mapping
f : T (C∞(I, P )u0 → g defined by

f(γ, v) = ((ψ−1
ω )∗κ)γ(v)(1).

Although there are still some open problems concerning arbitrary connections or uniform
ones in special, we close here our discussion of the principal path bundle and its connections.
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A. Appendix

A.1. Functional Analysis

Definition A.1. [7, p, 9] A mapping p : E → R where E is a vector space is called sublinear
if the following properties are satisfied:

• p(x+ y) ≤ p(x) + p(y) (subadditivity)

• p(λ · x) = λ · p(x) for all λ ∈ R+. (R+-homogeneity)

Definition A.2. [10, p. 575] A seminorm p : E → R is specified by the following properties:

• p(x) ≥ 0

• p(x+ y) ≤ p(x) + p(y)

• p(λ · x) = |λ| · p(x)

Definition A.3. [7, p, 13] Let E be a vector space, p a mapping E → R and c ∈ R. Then
we define

p<c := {x : p(x) < c} p≤c := {x : p(x) ≤ c}

as the open and closed p-balls around 0 with radius c.

Definition A.4. [7, p, 13] A subset A in a vector space E is called absorbing if

∀x ∈ E ∃λ > 0 : x ∈ λ ·A.

Equivalently [10, p. 575]: A subset A in a vector space is called absorbing if⋃
{r ·A : r > 0}

is the whole space.

Definition A.5. [7, p, 13] A subset A of a vector space E is called convex if for all λi ≥ 0

such that
∑n

i=1 λi = 1 and xi ∈ A follows that
∑n

i=1 λixi ∈ A.

Lemma A.6. [7, p, 13] For each sublinear mapping 0 ≤ p : E → R and c > 0 the subsets
p≤c and p<c of E are convex and absorbing. The mapping p satisfies the following properties:

• p≤c = c · p≤1
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• p<c = c · p<1

• p(x) = c · inf{λ > 0 : x ∈ λ · p≤c}

Definition A.7. [7, p, 14] A subset A of a vectorspace is called absolutly convex if from
xi ∈ A and λi ∈ R with

∑n
i=1 |λi| = 1 follows that

∑n
i=1 λixi ∈ A.

Definition A.8. [7, p, 14] A set A is called balanced, if for all x ∈ A and |λ| = 1 it follows
that λ · x ∈ A, too.

Lemma A.9. [7, p, 14] For each seminorm p : E → R and c > 0 the sets p≤c and p<c are
absorbing, absolutely convex and they satisfy p(x) = inf{λ > 0 : x ∈ λp≤1 = p≤λ}.

Lemma A.10. A set A is absolutely convex if and only if it is convex and balanced. [7, p,
14]

Definition A.11. [7, p, 14], [10, p. 575] The Minkowski functional is defined as

pA(x) := inf{λ > 0 : x ∈ λ ·A} ∈ R

for all x ∈ E. It satisfies pA(x) <∞ if and only if x is in the cone generated by A which is
the set {λ ∈ R : λ > 0} ·A.

Lemma A.12. [7, p, 14] Let A be a convex and absorbing set. Then the Minkowski functional
is a well defined sublinear mapping p := pA ≥ 0 on E and it satisfies for λ > 0 that

p<λ ⊆ λ ·A ⊆ p≤λ.

If A is absolutely convex then p is a seminorm.

Example A.13. [7, p, 16] C(R,R): Space without reasonable norm. Define for each compact
set K ⊆ R the mapping

pK(f) := sup{|f(x)| : x ∈ K}.

So one gets a family of seminorms pK .

Definition A.14. [7, p, 16] Let P0 be a family of seminorms on the vector space E. Then
we call a subset O ⊆ E open if

∀a ∈ O ∃p1, · · · , pn ∈ P0, ∃ε > 0 : a ∈ {x : pi(x− a) < ε for i = 1, · · · , n} ⊆ O

The set T := {O : O is open inE} is the topology generated by P0.

Definition A.15. [10, p. 34] A radial subset U (i.e. [0, 1]U ⊆ U) of a locally convex space
E is called bornivorous if it absorbs each bounded set, i.e. for every bounded B there exists
r > 0 such that [0, r]U ⊇ B.
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Definition A.16. [10, p. 34] A locally convex vector space E is called bornological if and
only if the following equivalent conditions are satisfied:

1. For any locally convex vector space F any bounded linear mapping T : E → F is
continuous; it is sufficient to know this for all Banach spaces F .

2. Every bounded seminorm on E is continuous.

3. Every absolutely convex bornivorous subset is a 0-neighborhood.

Definition A.17. [10, p. 577], [7, p, 46] A Fréchet space is a complete locally convex space
with a metrizable topology, equivalently, with a countable base of seminorms.

Corollary A.18. [4, p. 59] The projective limit of a projective system of complete (quasi-
complete, sequentially complete) Hausdorff topological vector spaces is again a complete (quasi-
complete, sequentially complete) topological vector space.

A.2. Differential Geometry

A.2.1. Abstract Manifolds

Remark A.19. [11, p. 11] Let M and N be smooth finite dimensional manifolds described
by smooth atlases (Uα, uα)α∈A and (Vβ, vβ)β∈B, respectively. Then the family (Uα×Vβ, uα×
vβ)(α,β)∈A×B is a smooth atlas or the cartesian productM×N . The projections fromM×N
to the factors M and N are smooth.

Remark A.20. [11, p. 11] From the construction of the tangent bundle for finite dimensional
manifolds and A.19 it follows that the tangent space of a product is equal to the product
of the tangent spaces in a canonical way. This generalizes to products of finitely many
manifolds.

Definition A.21. [3, p. 29] A halfspace of Rn, or a n-halfspace, is a subset of the form

H = {x ∈ Rn : λ(x) ≥ 0}

where λ : Rn → R is a linear map. If λ ≡ 0 then H = Rn; otherwise H is called a proper
halfspace. If H is proper, its boundary is the set ∂H = kerλ. This is a linear subspace of
dimension n− 1. If H = Rn we set ∂H = {}.

We now extend the definition of chart on a space M to mean a mapping φ : U → M

which maps the open set U ∈ M homeomorphically onto an open subset of a halfspace in
Rn. This includes all charts as defined earlier, since Rn is itself a halfspace, and many new
charts as well. Using this definition of chart, we systematically extend the meaning of atlas,
Cr-atlas, Cr-differential structure, and finally, Cr manifold for r ∈ {0, 1, 2, . . . ,∞}. We call
those manifolds with boundary.
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A.2.2. Riemannian Geometry

Let M denote a finite dimensional Riemannian manifold.

Definition A.22. [8, p. 141] Let ξx ∈ TxM . The length of ξx is defined as
√
gx(ξx, ξx).

Definition A.23. [8, p. 141] Let c : [0, 1] → M be a smooth curve. The length of c is
defined as

L(c) :=

∫ 1

0

√
gc(t)(c′(t), c′(t))

Definition A.24. [8, p. 141] Given an Riemannian metric, the distance function dg :

M ×M → R+ is defined as:

dg(p, q) := inf{L(c) : c ∈ C∞(R,M); c(0) = p, c(1) = q}

This distance function defines the topology on M .

Example A.25. [14, p. 24] Let (Mi, gi)(i = 1, 2) be Riemannian manifolds. On the product
manifold M1×M2 one may introduce the product Riemannian metric g1× g2 (or g1⊕ g2) by

(g1 × g2)(p1,p2)((u1, u2), (v1, v2)) := (g1)p1(u1, v1) + (g2)p2(u2, v2),

where one uses the identification T(p1,p2)(M1 ×M2) ∼= Tp1M1 ⊕ Tp2M2.

Lemma A.26. [8, p. 201] Let (M, g) be a Riemannian manifold. Then for all p ∈ M and
ξ ∈ TpM there exists a unique geodesic cξ : I → M , defined on a maximal Interval I ⊆ R,
with constant scalar velocity and initial conditions cξ(0) = p and c′ξ(0) = ξ.
Now define the mapping exp : TM ⊃ U → M by (p, ξ) 7→ cξ(1). The exponential map is

defined on an open neighborhood U of the zero section of M in TM and is smooth there (see
Lemma A.27).
The mapping expp := exp |TpM : TpM →M satisfies expp(0p) = p and T0p(expp) = idTpM .

The geodesic cξ is given by cξ(t) = exp(tξ).

Lemma A.27. [5, p. 18] The exponential map expp maps a neighborhood of 0 ∈ TpM

diffeomorphically onto a neighborhood of p ∈M .
Or: There exists ε > 0 such that the ε-ball Bε(p) := {q ∈ M : dg(p, q) < ε} is precisely
expp(Uε(p)) where Uε(p) := {v ∈ TpM : gp(v, v) < ε2}

A.3. Topology

Lemma A.28. [12, p.175] Let A be an open covering of the metric space (X, d). If X is
compact, there is a δ > 0 such that for each subset of X having a diameter less than δ, there
exists an element of A containing it.
The number δ is called the Lebesgue number of the covering A.
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Definition A.29. [6, p. 37] Let X be a topological space. It is a T1-space if {x} is a closed
set of X for each x ∈ X. If any two disjoint closed sets are separated by open sets in X then
X is a T4-space. The topological space X is called normal space if it is a T1- and a T4-space.

Definition A.30. [6, p. 170] A Hausdorff space X is called a locally compact space provided
that every point of X has an open neighbourhood the closure of which is compact.

Definition A.31. [16, p. 50] Let the topological space X be normal, locally compact and
such that any covering of X by open sets is reducible to a countable covering, then X is
called a Cσ-space.

Theorem A.32. [16, p. 25] Let p : E → X be a bundle over the differentiable manifold
X such that E is a differentiable manifold, p is differentiable, and E, p, X, φj, and pj

(trivialization and restriction of projection) have class ≥ r (r = 1, 2, · · · ,∞).
Let f : X → E be a continuous cross-section. We shall suppose that f is of class ≥ r on a

closed subset A of X. This means that f is of class ≥ r in some open set U of X containing
A. (The case of A being vacuous is not excluded.) Finally, let ρ be a metric on E, and let ε
be a positive number.
There exists a differentiable cross-section f ′ : X → E of class ≥ r such that ρ(f(x), f ′(x)) <

ε for each x ∈ X, and f ′(x) = f(x) for x ∈ A.

Theorem A.33. [16, p. 36] A finite dimensional principal fiber bundle with group G is
equivalent in G to the product bundle if and only if it admits a cross-section.

Corollary A.34. [16, p. 53] If X is a Cσ-space and is contractible on itself to a point, then
any bundle over X is equivalent to a product bundle.

Remark A.35. By Corollary A.34 a principal fiber bundle over a contractible base space
is continuously trivial. This means there exists a global continuous section. So by Theorem
A.33 there exists a continuous section. With Theorem A.32 it follows that a smooth section
exists. So the continuously trivial principal fiber bundle is smoothly trivial too.

The trivialization for a principal bundle X → B with group G and section s is given by:

B ×G→ X (x, g) 7→ s(x) · g

Lemma A.36. [3, p. 89] Let ξ = (P,E,B× I) be a Cr vector bundle and 0 ≤ r ≤ ∞. Then
each b ∈ B has a neighborhood V ⊂ B such that ξ|V×I is trivial.

Corollary A.37. [3, p. 89] Every Cr vector bundle with 0 ≤ r ≤ ∞ over an interval is
trivial.

Corollary A.38. [3, p. 97] Every vector bundle over a contractible paracompact space is
trivial.
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Abstract

This thesis describes the construction of the so called path bundle and is mainly based
on [2] and [10]. The starting point of the construction is a principal fiber bundle of finite
dimensional manifolds. Next one considers the spaces of all mappings from a compact interval
I into the base space and the total space of the bundle. These spaces are manifolds modelled
over convenient vector spaces as described in Chapter 1 and Chapter 2. They are called
manifolds of paths.

Together with the Lie group of all paths in the structure group of the finite dimensional
principal fiber bundle, one constructs a principal fiber bundle where the base and total spaces
are infinite dimensional manifolds of paths. This is called the path bundle. After that one
can consider natural subbundles of the path bundle.

In Chapter 3 connections and connection forms on the path bundle are introduced and
used to show the triviality of certain subbundles. Also it is discussed how connections on the
finite dimensional principal fiber bundle induce connections on the path bundle and which
properties they posses.

Chapter 4 defines curvature on the path bundle. Furthermore as a special type of connec-
tions, the uniform ones are introduced together with a non trivial example.
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Zusammenfassung

Diese Arbeit beschreibt die Konstruktion des sogenannten Pfadbündels und basiert auf [2]
und [10]. Ausgehend von einem Hauptfaserbündel bestehend aus endlich dimensionalen
Mannigfaltigkeiten werden die Räume aller Abbildungen von einem kompakten Intervall I
in diese Mannigfaltigkeiten betrachtet. Diese Abbildungsräume können als unendlich dimen-
sionale Mannigfaltigkeiten modelliert über “convenient vector spaces” betrachtet werden was
in Kapitel 1 und Kapitel 2 beschrieben wird. Diese Abbildungsräume werden als Pfadman-
nigfaltigkeiten bezeichnet.

Diese Konstruktion kann auch für die Lie Gruppe des endlich dimensionalen Hauptfaser-
bündels durchgeführt werden und man erhält eine unendlich dimensionale Lie Gruppe beste-
hend aus Pfaden in der endlich dimensionalen Lie Gruppe. Nun ist es möglich die so
entstandenen Pfadmannigfaltigkeiten und die Pfad Lie Gruppe zu einem Hauptfaserbün-
del zusammenzufügen. Dieses aus unendlich dimensionalen Mannigfaltigkeiten bestehende
Hauptfaserbündel wird als Pfadbündel bezeichnet. Anschließend können kanonische Teilbün-
del dieses Hauptfaserbündels betrachtet werden.

In Kapitel 3 werden Konnexionen und Konnexionsformen auf dem Pfadbündel definiert.
Diese werden verwendet um die Trivialität bestimmter Teilbündel nachzuweisen. Weiters
folgt eine Betrachtung wie Konnexionen auf dem endlich dimensionalen Hauptfaserbündel
wiederum Konnexionen auf dem Pfadbündel induzieren und welche Eigenschaften diese be-
sitzen.

Kapitel 4 definiert den Begriff der Krümmung auf dem Pfadbündel. Desweiteren werden
spezielle Konnexionen definiert. Diese heißen uniforme Konnexionen. Für diese wird ein
spezielles, nicht triviales Beispiel konstruiert.
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