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Abstract

An almost Grassmannian geometry of type (p, q) is a parabolic geometry
modelled on the Grassmann manifold Grp(Rp+q) of p-dimensional subspaces
in Rp+q. It is well-known that for p = q = 2 the structure is equivalent to the
four-dimensional conformal geometry. In view of the equivalence, there ex-
ists an analogue of the conformally invariant Paneitz operator, transforming
functions to densities. This invariant operator is known as the non-standard
operator for the almost Grassmannian geometry of type (2, 2). In this thesis
we deal with almost Grassmannian geometries of type (2, q) with q > 2. It
follows from the general theory of parabolic geometries that the complete
obstruction against its local flatness (i.e. isomorphism to the homogeneous
model Gr2(R2+q)) are two invariants - a torsion and a curvature. Vanish-
ing of the first one ensures existence of a torsion-free connection. In such a
case there exists a family of non-standard invariant operators of order four
between exterior forms. We use curved Casimir operators to construct the
first of these operators, transforming functions to sections of an irreducible
subbundle of four-forms. Next we find a formula for this operator, which is
analogous to the formula for Paneitz operator in the sense that it has the
same form but contractions with metric are replaced by projections to sub-
bundles of exterior forms. In particular, it shows that the operator factorizes
through one-forms and three-forms. The main result of the thesis is theorem
3.15, where we prove that this operator can be extended to an invariant op-
erator on arbitrary almost Grassmannian geometries, including torsion. We
also give an explicit formula for this corrected operator and we prove that in
the presence of torsion this operator does not factorize as in the torsion-free
case.
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Introduction

An almost Grassmannain structure on a smooth manifold M (briefly an
AG-structure) is given by a fixed identification of the tangent bundle TM
with the tensor product of two auxiliary vector bundles, together with the
identification of their top degree exterior powers. It turns out that this is a
specific example of a so called parabolic geometry, i.e. a Cartan geometry
of type (G,P ), where P ⊂ G is a parabolic subgroup of a semi-simple Lie
group G, and so the rich set of tools of parabolic geometries summarized in
[4] applies. The AG-structure is one of the simplest examples of parabolic
geometries since the Lie algebra corresponding to the group G comes en-
dowed with a |1|-grading. Such structures are known under the name almost
Hermitian symmetric structures (or briefly AHS-structures). They are also
known under the name generalized conformal structures since the prototyp-
ical structure from this class is the conformal structure - probably at most
studied structure since it is the natural setting for the physics of massless
particles and other theories in Physics.

In this text, we will deal with AG-structures for which one of the defin-
ing vector bundles has rank two and the other has rank q ≥ 2. Such
a structure is called the AG-structure of type (2, q). It is a generaliza-
tion of conformal structures in the above sense and moreover, it is well-
known that the AG-structure on a four-dimensional manifold M (the case
q = 2) is even equivalent to the conformal structure on M . This equiv-
alence can be seen from the description of the two structures as classical
first-order G-structures. Namely, the identification of TM with the tensor
product of two bundles of rank two together with the identification of the
top-degree forms yields the reduction of the frame bundle to the structure
group G0 = S(GL(2,R) × GL(2,R)) ⊂ GL(4,R), and this group is known
to be isomorphic to the conformal spin group CSpin(2, 2). Indeed, the ad-
joint action of (A,B) ∈ G0 on TxM ∼= M2(R) is given by X 7→ BXA−1,
and it is an easy observation that the determinant defines a quadratic form
of signature (2, 2) on M2(R) and satisfies det(BXA−1) = det(B)2 det(X)

since det(A) det(B) = 1. Hence the adjoint action defines a homomorphism
G0 → CSO(2, 2), which is evidently a two-fold covering of the connected
component of the identity of the conformal group, i.e. G0

∼= CSpin(2, 2). Of
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4 INTRODUCTION

course, AG-structures of type (2, q) for q > 2 are not equivalent to confor-
mal structures. One of the main differences is that this structure generally
does not allow the existence of a torsion-free connection. Nevertheless, we
may still try to generalize concepts from conformal geometry. One of the
important concepts is that of a conformally invariant differential operator,
like the conformal Laplacian (sometimes called the Yamabe operator), the
Maxwell operator, or the Paneitz operator. Such operators act on sections
of natural vector bundles, and may be defined by universal natural formu-
lae which depend only on the conformal structure and not on any choice
of metric tensor from the conformal class. Similarly, invariant differential
operators for AG-structures are defined by universal natural formulae which
depend only on the structure and not on any particular choice. It turns out
that most of conformally invariant operators have their invariant analogues
for AG-structures. The aim of this text is to construct an analogue of the
Paneitz operator.

The construction of an invariant operator is a difficult task in general.
An easier situation is in the case of a manifold which is locally isomorphic
to a homogeneous space G/P , so called locally flat manifold. There the
problem of the existence and the construction of invariant operators can be
reduced to a purely algebraical problem. Namely, invariant operators are
constructed in an unique way from homomorphisms of so called generalized
Verma modules. The structure of such homomorphisms is well understood in
the literature, and so the full classification of invariant operators on locally
flat manifolds is available. In particular, in the case of a locally flat manifold
M equipped with the AG-structure there is exactly one non-trivial operator
(up to scalar multiples) of order four acting on the bundle of functions E ,
see e.g. [18]. Precisely, given an identification TM = E∗ ⊗ F where E is a
rank two vector bundle and F is a rank q ≥ 2 vector bundle, the there is an
unique invariant operator

E → F ∗[−2].

The bundle F ∗[−2] := F ∗ ⊗ E [−2] is an irreducible subbundle of the
bundle of differential four-forms which is induced by the representation Rq∗

of SL(q,R), and the one-dimensional representation R[−2] := (Λ2R2)2. It
follows from the theory of Verma modules that there is actually a whole
family of invariant operators, namely for each 0 ≤ k ≤ q − 2 we have an
operator

k6
?
... ... F ∗[−k]→ k + 26

?
... ... F ∗[−k − 2].

These operators are known as non-standard invariant operators for (flat)
AG-structures.
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In the thesis, we will mainly deal with the non-standard operator on
functions. It is easy to see that in the dimension four, where the AG-structure
is equivalent to a conformal structure, the line bundle E [−2] corresponds
exactly to the bundle of functions with conformal weight −2, and that F ∗

is the line bundle (Λ2F ∗)2 which is by the second defining property of the
AG-structure isomorphic to (Λ2F ∗)2 ∼= (Λ2E)2 = E [−2]. Hence the non-
standard operator on functions in dimension four is an invariant operator
E → E [−4]. It is well known that there is a unique invariant operator
between the respective bundles over flat structures, namely the second power
of the Laplacian. Moreover, it is also well known that it admits a unique
curved analogue - the Paneitz operator. Thus we see that the non-standard
operator on functions in dimension four exists also on curved manifolds, and
coincides with the Paneitz operator. In this sense, we may view the non-
standard operator on functions in higher dimensions as an analogue of the
Paneitz operator.

There is a large class of invariant operators on curved manifolds which
have a similar behavior as the invariant operators on locally flat structures,
so called strongly invariant operators. These operators can be also con-
structed from homomorphisms of induced modules, called semi-holonomic
Verma modules. In particular, this is the case of all invariant operators of
order at most two. However there exist higher-order invariant operators on
curved manifolds which do not have this property, and are of much more sub-
tle nature. One of them is by [10] the conformally invariant critical power
of the Laplacian, i.e. conformally invariant operator on manifold of even di-
mension n with principal part ∆

n
2 . This power is called critical since the all

lower powers are strongly invariant, and moreover there are no conformally
invariant operators with principal part ∆k for k > n

2 . This was proved by
Graham for n = 4 and k = 3 in [14], and generalized by Gover and Hirachi in
[17]. We observe that the Paneitz operator in dimension four is exactly the
critical power and thus is not strongly invariant. This can be also shown for
the non-standard operator for AG-structures in higher dimensions, see [19],
which indicates that the construction of a curved analogue will be difficult.

Nevertheless, the curved analogue is known to exist on a class of curved
manifolds. Precisely, the existence of all the non-standard invariant operators
on curved manifolds which admit a torsion-free connection was proved by
Gover and Slovák [11]. The proof is via an invariant local tractor calculus
developed therein. We give an alternative construction of the non-standard
operator on functions via curved Casimir operators, originally introduced
in [5] in the setting of general parabolic geometries. The curved Casimir
operator is a basic invariant differential operator acting between smooth
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sections of associated natural vector bundles, which on locally flat manifolds
reduces to the action of the quadratic Casimir element well-known from the
representation theory. It may be expressed by a Laplacian like formula in
terms of the fundamental derivative and so it inherits its strong naturality
properties. In contrast to the Laplace operator, the order of Casimir operator
is at most one. In particular, it acts by a scalar on any irreducible bundle,
and this scalar (in sequel called the Casimir eigenvalue) can be computed
from representation theory data. These properties allow to use the curved
Casimir operators to construct in a conceptual way higher order invariant
differential operators. In [6] it was demonstrated on the construction of
several conformally invariant operators, among them the Paneitz operator.
We will proceed along the lines of the construction, and we will construct a
curved analogue of the non-standard operator on functions. The construction
works in the torsion-free case only. However, we can use explicit formulae
obtained from the construction to prove the existence of an invariant operator
also in the case of non-vanishing torsion.

Structure of the text. In the first chapter, we give a short introduc-
tion to the theory of parabolic geometries and we summarize basic facts,
which we will need in the course of the thesis. We also introduce the curved
Casimir operators. The second chapter is devoted to the description of the
almost Grassmannian geometry and related structures. We make explicit
some of the general results from the first chapter. The crucial part of the
thesis is the third chapter, which has two parts. In the first one we use
the curved Casimirs to construct the non-standard operator on functions
for AG-structures admitting a torsion-free connection. In the second one
we prove the main result that there exist correction terms involving tor-
sion which make the non-standard operator into an invariant operator for
AG-structures with arbitrary torsion. Some of the technical computations
concerning Bianchi identity is placed into an appendix. The second part
of the appendix contains a description of an alternative construction of the
non-standard operator in torsion-free case, which then leads to an analogue
of the conformal Q-curvature.
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CHAPTER 1

Background On Parabolic Geometries

1.1. Cartan geometries

The concept of Cartan geometries was introduced by E. Cartan under
the name "generalized spaces" in order to make a connection between differ-
ential geometry and geometry in the sense of F. Klein’s Erlangen program.
This concept associates to an arbitrary homogeneous space G/H a differ-
ential geometric structure on smooth manifolds whose dimension equals the
dimension of G/H. A manifold endowed with such a geometry is called Car-
tan geometry of type (G,H) and it can be considered as a curved analog of
the homogeneous space G/H.

1.1.1. Basic concepts. Let G be a Lie group with Lie algebra g and
let H ⊂ G be a closed subgroup. The basic idea behind Cartan geometries
is to endow the homogeneous space G/H with a geometric structure, whose
automorphisms are exactly the left actions of the elements of G. It turns out
that the right ingredient to recognize these automorphisms is the Maurer
Cartan form ωMC ∈ Ω1(G, g) which gives a trivialization of the tangent
bundle TG by left translations. For ξ ∈ TgG, it is defined by

ωMC(g)(ξ) = Tλg−1 · ξ ∈ TeG = g,

where λg−1 denotes left translation by g−1 ∈ G. One can then prove for
connected homogeneous spaces G/H that the left translations λg are exactly
the principal bundle automorphisms of G → G/H which pull back ωMC to
itself, c.f. proposition 1.5.2. in [4].

Before generalizing this picture to the case of a general manifold, let us
recall some basic properties of the Maurer-Cartan form. Namely, it follows
from its definition that (ρg)∗ωMC = Ad(g−1)◦ωMC where ρg is the principal
right action on the bundle G → G/H given by the right translation by g.
The next obvious property is that ωMC(LX) = X for all X ∈ g where LX
is left invariant vector field generated by left translations of X. The third
property says that for all vector fields ξ and η on G, the following holds

dωMC(ξ, η) + [ωMC(ξ), ωMC(η)] = 0,

9



10 1. BACKGROUND ON PARABOLIC GEOMETRIES

This equation is known under the name Maurer-Cartan equation and it fol-
lows from the definition of the exterior derivative and the definition of the
Lie bracket on g.

The definition of a Cartan geometry is now obtained by replacing the
cannonical principal bundle G → G/H by an arbitrary principal H–bundle
and ωMC by a form which has all the properties of ωMC that make sense in
the more general setting. Let ζX denote a fundamental vector field defined by
the formula ζX(x) = d

dt |0ρexp tX(x), for all x ∈M , X ∈ h. The fundamental
vector field thus provides an infinitesimal version of the principal right action
and it coincide with the left-invariant vector field LX on the cannonical
bundle G→ G/H. Then the Cartan geometry is defined as follows.

Definition 1.1. (1) A Cartan geometry of type (G,H) on a smooth manifold
M is a principalH–bundle p : G →M together with a one-form ω ∈ Ω1(G, g),
called the Cartan connection, such that
• (rh)∗ω = Ad(h)−1 ◦ ω for all h ∈ H.
• ω(ζX) = X for all X ∈ h.
• ω(u) : TuG → g is a linear isomorphism for all u ∈ G.

(2) A morphism between two Cartan geometries (G → M,ω) and (G̃ →
M̃, ω̃) is a principal bundle homomorphism Φ : G → G̃ such that Φ∗ω̃ = ω.
(3) The curvature form K ∈ Ω2(G, g) of a Cartan geometry (G → M,ω) of
type (G,H) is defined by

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)],

for ξ, η ∈ X(G). Since the Cartan connection ω trivializes the tangent space
TG, the curvature form K is determined by its values on the constant vec-
tor fields ω−1(X). Therefore, the complete information about K is given
by the curvature function κ : G → Λ2g∗ ⊗ g defined by κ(u)(X,Y ) =

K(ω−1(X), ω−1(Y )). And since K is horizontal, the curvature function may
be viewed as a map G → Λ2(g/h)∗⊗g. The formula for the exterior derivative
d then yields

κ(u)(X,Y ) = [X,Y ]− ω(u)([ω−1(X), ω−1(Y )])

By definition (G → G/H,ωMC) is a Cartan geometry of type (G,H),
and by (2) in the proposition 1.5.2 in [4] the automorphisms of this geometry
are exactly the left translations by elements of G. This geometry is called
the homogeneous model of Cartan geometries of type (G,H). Since the
Cartan connection coincides with the Maurer-Cartan form in such case, the
curvature vanishes and so the homogenous case is also reffered to as the flat
case. Moreover, the following proposition shows that the curvature measures
exactly the local difference to the flat model of the given geometry. For more
details, see [4].
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Proposition 1.1. The curvature of a Cartan geometry (G →M,ω) vanishes
identically if and only if (G →M,ω) is locally isomorphic to the homogeneous
model.

1.1.2. Natural vector bundles. The name "natural" comes from the
general definition in [15] which defines a natural bundle F as a regular
functor on the cathegory of n-dimensional smooth manifolds and local dif-
feomorphisms assigning to any manifold a fibre bundle and to any local
diffeomorphism a bundle map. In the case of the Cartan geometries, a sim-
pler concept of natural bundles is sufficient. Namely, it can be easily shown
that the left multiplication on G/H by elements in G lifts to F (G/H) which
means that the structure of the whole bundle F (G/H) is determined by the
H-action on its standard fibre S := F0(G/H).

Therefore, given a H-action on a manifold S and a Cartan geometry
(G →M,ω), we define the natural bundle as the associated bundle G ×H S.
In sequel, we consider exclusively the case when the standard fibre is a vector
space V . In such a case, the H-module V gives rise to natural vector bundle
VM = G ×H V . Recall that

G ×H V := G × V/ ∼,

where ∼ denotes the equivalence (u, v) ∼ (u · h, h−1 · v) for all h ∈ H. The
functorial properties of associated vector bundles guarantee that it is also the
natural bundle in the sense described above. The space Γ(VM) of smooth
sections of a natural vector bundle is identified with the space C∞(G, V )H

of smooth H-equivariant functions. The isomorphism is given by the map
which assigns to an equivariant function f the equivalence class of (u, f(u))

in G ×H V .
We also observe that natural vector bundles depends only on the princi-

pal Cartan bundle G but not on the Cartan connection ω. Nevertheless, ω is
necessary to identify the natural bundles with traditional objects like tensor
bundles. We clarify this on the example of the tangent bundle.

Let (p : G → M,ω) be a general Cartan geometry of type (G,H). We
show that the tangent bundle TM may be identified via ω with the natural
vector bundle G ×H g/h. Consider the mapping G × g → TM defined by
(u,X) 7→ Tup · ω−1

u (X). This map factors to G × (g/h) since for X ∈ h, the
field ω−1(X) is the fundamental field ζX and thus vertical. Fixing u, one gets
a linear isomorphism g/h→ Tp(u)M and the equivariancy of ω immediately
implies that this factors to a bundle map G×Hg/h→ TM . This map induces
a linear isomorphism in each fiber and covers the identity on M and so it is
an isomorphism of vector bundles. Likewise, the cotangent bundle T ∗M may
be identified with the natural bundle corresponding to (g/h)∗ and hence all
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tensor bundles may be viewed as natural bundles induced by an appropriate
tensor product of copies of (g/h) and (g/h)∗.

1.1.3. Tractor bundles. Tractor bundles form a special class of natu-
ral vector bundles for which the inducing H-representation V is a restriction
of a representation of the whole group G. The main reason for the impor-
tance of such bundles is that the Cartan connection induces a linear connec-
tion on them. So the tractor bundles come equipped with cannonical linear
connections, called tractor connections.

The fundamental example of a tractor bundle is the adjoint tractor bun-
dle. This is a tractor bundle denoted byAM which is induced by a restriction
of the adjoint action Ad : G → GL(g), i.e. AM = G ×H g. According to
the previous identification of the tangent bundle, the short exact sequence
0 → h → g → g/h → 0 of H-modules induces a short exact sequence of
natural vector bundles

0→ G ×H h→ AM → TM → 0.

Therefore, there is a natural surjective bundle map Π : AM → TM and
so the adjoint tractor bundle may be viewed as an extension of the tangent
bundle. Now let us summarize some important properties which we will need
later. For a proof, see the section 1.5.7. in [4].

Proposition 1.2. Let (G → M,ω) be a Cartan geometry of type (G,H),
AM →M its adjoint tractor bundle and Π : AM → TM the natural projec-
tion. Let VM be the tractor bundle corresponding to a representation of G
on V .

(1) The curvature κ of the Cartan connection ω can be naturally inter-
preted as a two-form κ on M with values in AM .

(2) There is a natural bundle map { , } : AM × AM → AM , which
makes each fibre AxM into a Lie algebra isomorphic to g.

(3) There is an isomorphism between the space Γ(AM) of smooth sections
of AM and the space X(G)H of vector field on G which are invariant under
the principal right action of H. This induces a Lie bracket [ , ] on Γ(AM).
For s1, s2 ∈ Γ(AM), one has Π([s1, s2]) = [Π(s1),Π(s2)], where one has the
Lie bracket of vector fields on the right-hand side.

(4) There is a natural bundle map • : AM×VM → VM . For each point
x ∈ M , this makes the fibre VxM into a module over the Lie algebra AxM .
In particular, for sections s1, s2 ∈ Γ(AM) and t ∈ Γ(VM), we get

{s1, s2} • t = s1 • (s2 • t)− s2 • (s1 • t)
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(5) The operations introduced in (2) and (4) are parallel for the cannon-
ical tractor connections. Denoting them by ∇A and ∇V we get

∇Aξ {s1, s2} = {∇Aξ s1, s2}+ {s1,∇Aξ s2}

∇Vξ (s • t) = (∇Aξ s) • t+ s • (∇Vξ t)

1.1.4. Fundamental derivative. The property (3) from the previous
proposition which says that smooth sections Γ(AM) of the adjoint bundle
are identified with H-invariant vector fields X(G)H has an important conse-
quence. Namely, it gives rise to a family of natural differential operators on
arbitrary natural bundles. Indeed, any section σ of natural vector bundle
VM (which is not ncessarily tractor bundle) corresponds to an equivariant
function f : G → V , which we we can differentiate along the invariant vector
field ξ corresponding to section s of AM , and we get a function ξ ·f : G → V .
Since

ξ(u · h) · f = (Trh · ξ(u)) · f = ξ(u) · (f ◦ rh) = h−1 · (ξ(u) · f),

this function is equivariant and thus corresponds to a section of VM which
we dentote by Dsσ. Hence we get an differential operator D : Γ(AM) ×
Γ(VM) → Γ(VM), called fundamental derivative which is by construction
linear over C∞(M,R) in s.

It follows straight from the definition of the fundamental derivative that
it has strong naturality properties which we describe below. We also show
that although its action is defined by a differntiation, it is tensorial on a
subbundle of AM . Indeed, let • : (G ×H h) × VM → VM denotes the
bundle map arising from the derivative of the representation V inducing
VM (which is a H-equivariant map h × V → V ), i.e. it coincides with the
map from the part (4) in the proposition 1.2 in the case that VM is a tractor
bundle. Then the following proposition summarizes the basic prpoperties of
the fundamental derivative. For a proof, see 1.5.8. in [4].

Proposition. (1) For a smooth function f : M → R and s ∈ Γ(AM) we
get Dsf = Π(s) · f .

(2) If s is a section of the subbundle G ×H h ⊂ AM , then Dsσ = −s • σ
for any σ ∈ Γ(VM).

(3) The fundamental derivative is compatible with all natural bundle maps
coming from H-equivariant maps between the inducing representations. In
particular, for natural vector bundles VM and WM , the dual V∗M of VM ,
sections σ ∈ Γ(VM), τ ∈ Γ(WM) and β ∈ Γ(V∗M) and a function f ∈
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C∞(M,R) we get

Ds(fσ) = (Π(s) · f)σ + fDsσ

Ds(σ ⊗ τ) = Dsσ ⊗ τ + σ ⊗Dsτ

Π(s) · (β(σ)) = (Dsβ)(σ) + β(Dsσ)

Of course, the fundamental derivative may be also viewed as a differential
operator Γ(VM)→ Γ(A∗M ⊗ VM). Hence it alows iterating, i.e. for k ∈ N
we have Dk : Γ(VM) → Γ(⊗kA∗M ⊗ VM). In a sense, the fundamental
derivative is an analog of the covariant derivative by the Levi-Civita connec-
tion in Riemannian geometry. Its differential part also satisfies (analog of)
Bianchi and Ricci identities which are obtained by differentiating the basic
identities for the curvature of the Cartan connection.

Observe that the dual of the natural projection Π gives an inclusion
T ∗M → A∗M which means that differential forms onM cannonically extend
to the adjoint tractor bundle. In sequel, we omitt writting this inclusion and
we simply allow appearence of sections of AM in arguments of differential
forms. Then the Bianchi and Ricci identities for the fundamental derivative
have the following form. For a proof, see 1.5.9. in [4].

Proposition 1.3. Let (p : G →M,ω) be a Cartan geometry of type (G,H)

with the curvature κ ∈ Ω2(M,AM) and { , } the algebraic bracket on AM .
(1) (Bianchi-identity) The curvature κ satisfies∑

cycl

(
{s1, κ(s2, s3)} − κ({s1, s2}, s3) + κ(κ(s1, s2), s3) + (Ds1κ)(s2, s3)

)
= 0

for all si ∈ Γ(AM), where the sum is over all cyclic permutations of the
arguments.

(2) (Ricci-identity) For any natural vector bundle E and any section
σ ∈ Γ(EM), the alternation of the second order fundamental derivative is
given by

(D2σ)(s1, s2)− (D2σ)(s2, s1) = −Dκ(s1,s2)σ +D{s1,s2}σ

Let us mention that in the case that VM is a tractor bundle, we have
also another natural operation available, namely the covariant derivative by
the tractor connection. Its relation to the fundamental derivative is given by

∇VΠ(s)t = Dst+ s • t

for s ∈ Γ(AM) and t ∈ Γ(VM). For more details, see theorem 1.5.8. in [4].
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1.2. Parabolic geometries

Parabolic geometries are Cartan geometries which are of type (G,P ),
where the group G is a semisimple Lie group and P is a parabolic subgroup
in G. A parabolic subgroup may be defined in several ways. For our pur-
pose, the most convenient way is the definition below via |k|-gradings. The
important feature of parabolic geometries is that we can use a rich set of
algebraic tools from the theory of semisimple Lie algebras.

1.2.1. |k|-gradings. In order to define parabolic geometries, we need
first to define |k|-gradings on semisimple Lie algebras.

Definition 1.2. Let g be a complex or real semisimple Lie algebra. A |k|–
grading on g is a vector space decomposition

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

such that [gi, gj ] ⊂ gi+j and such that the subalgebra g− := g−k ⊕ · · · ⊕ g−1

is generated by g−1.

One of the basic properties of |k|-graded Lie algebras is the existence of
a unique element E in the center of the Lie subalgebra g0, called the grading
element, which satisfies [E,X] = iX for X ∈ gi for i = −k, . . . , k. The next
important property is that the Killing form of g induces an isomorphism
gi ∼= g∗−i of g0-modules for each i = 1, . . . , k. It also induces an isomorphism
of p-modules (g/p)∗ and p+ := g1 ⊕ · · · ⊕ gk. The Lie algebras g0 and
p := g0 ⊕ · · · ⊕ gk can be characterized by

g0 = {X ∈ g : ad(X)(gi) ⊂ gi for i = −k, . . . , k}

p = {X ∈ g : ad(X)(gi) ⊂ gi for i = −k, . . . , k},

where gi = gi ⊕ · · · ⊕ gk. A proof of these basic facts about |k|-graded Lie
algebras can be found in section 3.1.2. of [4]. It can be also shown that the
Lie subalgebra p contains the Borel subalgebra b, i.e. the maximal solvable
subalgebra in g. Such subalgebras p ≤ g are called parabolic subalgebras. For
details, see e.g. section 3.2.1. in [4].

Closed subgroup P ⊂ G with Lie algebra p is called a parabolic subgroup
(corresponding to the given |k|-grading). This is satisfied for the group

P := {g ∈ G : Ad(g)(gi) ⊂ gi for i = −k, . . . , k}

since it has Lie algebra p and it is the intersection of the normalizers of gi

in G and thus closed. Any other parabolic subgroup with Lie algebra p then
lies between this group and its connected component of identity. The closed
subgroup defined by

G0 := {g ∈ P : Ad(g)(gi) ⊂ gi for i = −k, . . . , k}
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has Lie algebra g0 and it is called Levi subgroup of P . The relation of the
groupsG0 and P is described by the theorem 3.1.3. in [4] which basically says
that the map (g0, Z) 7→ g0 exp(Z) defines a diffeomorphism G0 × p+ → P .
Moreover, P+ := exp(p+) is a closed nilpotent subgroup of G and P/P+

∼=
G0.

After introducing parabolic subgroups, we are now able to formulate the
definition of a parabolic geometry.

Definition 1.3. A parabolic geometry is a Cartan geometry of type (G,P ),
where G is a semisimple Lie group with Lie algebra g equipped with a |k|-
grading and P is a parabolic subgroup corresponding to this grading.

For our purposes, we switch now to the case of |1|-gradings, although
most of the concepts we are going to introduce apply to a general parabolic
geometry corresponding to a |k|-grading. Hence we assume that the Lie
algebra g is endowed with a grading of the form

g = g−1 ⊕ g0 ⊕ g1.

We refer to a parabolic geometry with such a Lie algebra as |1|-graded par-
abolic geometry. As we shall see, |1|-graded parabolic geometries are equiv-
alent to so called the almost Hermitian symmetric structures, or briefly the
AHS structures. These structures were intensively studied, see e.g. [7], [8],
[9].

1.2.2. Complex |1|-gradings. In the case of a simple complex Lie al-
gebra g, the meaning of a |1|-grading is easy to describe. We know from
above about the existence of the grading element E which acts by i on gi for
i = −1, 0, 1. Since the action is diagonizable, we can extend CE by semisim-
ple elements of g0 to a Cartan subalgebra. Conjugating by an appropriate
inner automorphism, we may therefore assume that E ∈ h. Moreover, the
grading element E lies in a real form of h on which all roots are real and thus
it defines a set of positive roots ∆+ by requiring α(E) = 0 for all α ∈ ∆+.
The corresponding root spaces then lie in p = g0 ⊕ g1 which means that p

contains the standard Borel subalgebra

b := h⊕
⊕
α∈∆+

gα

and thus is a parabolic subalgebra. Next to the Borel subalgebra, p also
contains a direct sum of root spaces corresponding to a subset of negative
roots.

In order to describe possibilities for such subsets and hence the structure
of |1|-gradings, let us consider the action of the grading element on the
highest root of g. If we choose a set of simple roots ∆0, the highest root
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is equal to α0 =
∑

i aiαi where αi ∈ ∆0 and the coefficients ai are strictly
positive integers. The highest root space obviously lies in the top component
of the gradation, i.e. g1, and thus the evaluation of the highest root on the
grading element then yields the equation

∑
i aiαi(E) = α0(E) = 1. Since

ai = 1 and αi(E) may only have values 0 or 1, the equation is satisfied if
and only if ak = 1 and αk(E) = 1 for an index k and αi(E) = 0 for all i 6= k.
Hence the all root spaces corresponding to simple roots must lie in g0 exept
the root space gαk which is in g1.

In analogy with a general case of |k|-grading, we define a map ht : ∆→
{−1, 0, 1} by associating to a root α =

∑
i aiαi the coefficient ak correspond-

ing the root αk from above. Then the set {α : ht(α) = 0} is spanned by
simple roots α ∈ ∆0 \ {αk} and the g0-component of the |1|-grading has the
form

g0 = h⊕
⊕

ht(α)=0

gα

while the g1-part of the grading is given by a direct sum of root spaces gα

for which ht(α) = 1. Obviously, the g−1-part is a direct sum of root spaces
with ht(α) = −1.

The subalgebras g−1 and g1 are irreducible g0-modules and the reductive
subalgebra g0 = z(g0) ⊕ gss0 has one-dimensional center z(g0) = CE. It can
also be easily shown that the grading element E is a multiple of the coroot
Hαk ∈ h and thus g−αk , z(g0), gαk form a sl(2,C) tripple in g. The Cartan
subalgebra is equal to h = z(g0) ⊕ h′′ where h′′ is spanned by Hα with
α ∈ ∆0 \ {αk} and gss0 = h′′ ⊕

⊕
ht(α)=0 gα is the root decomposition of the

semisimple part of g0. For details, see section 3.2.1. in [4], where the general
case of a |k|-grading is treated.

So we obtained that any |1|-grading, or equivalently any parabolic sub-
algebra, is given by a choice of a simple root αk. Thus the |1|-gradings are
classified by Dynkin diagrams, where the simple root αk in g1 is emphasized.
We will use the usual notation with a cross instead of the corresponding
node. Due to the condition ak = 1, not every simple root can be crossed.
Going through the list of Dynkin diagrams and looking at the corresponding
highest roots, one immediately sees which simple roots satisfy the condition
on the corresponding coefficient and so one obtains the full classification of
|1|-gradings. Namely, for Al series, an arbitrary simple root can be crossed
since the highest root is the sum of all simple roots and thus all the coeffi-
cient are equal to one. For Dl series, there are two different options while for
Bl, Cl, E6, E7 there is an unique choice of a simple root which may appear
in g1. The table with highest roots corresponding to simple complex Lie
algebras can be found in appendix B of [4]. It follows straight from the root
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decomposition of the semisimple part gss0 that the corresponding Dynkin di-
agram is obtained from the diagram for g by removing the crossed node and
all edges connected to this node. The detailed description of all |1|-gradings
is given in the section 3.2.2. of [4].

1.2.3. Real |1|-gradings. In the case of a real Lie algebra g, one can
proceed similarly. A subalgebra p of a real (semi)simple g is called parabolic,
if its complexification pC is a parabolic subalgebra of gC. Now we recall
the form of the root decomposition of g in the real case and then we give a
description of real |1|-gradings.

Choosing a Cartan involution θ : g → g, the Lie algebra g decomposes
as g = k⊕ q into eigenspaces to the eigenvalues 1 and -1 respectively. Recall
that then k is a subalgebra, [k, q] ⊂ q and [q, q] ⊂ k. Now let h be a θ-stable
Cartan subalgebra of g such that a := h ∩ q has maximal dimension from
all θ-stable Cartan subalgebras. One can easily show that ad(A) for A ∈ a

is simultaneously diagonisable. The eigenvalues are functionals λ : a → R,
called restricted roots and denoted by ∆r and g decomposes as

g = zk(a)⊕ a⊕
⊕
λ∈∆r

gλ

By construction, the elements of ∆r are restrictions to a of the root system
of gC. If the positive roots ∆+ form an admissible subsystem in ∆, i.e. for
a α ∈ ∆+ we have either σ∗α = −α or σ∗α ∈ ∆+, where σ∗ : ∆ → ∆ is
the involutive automorphism defined by the conjugation of gC with respect
to the real form g, then the restriction gives a subsystem ∆+

r of positive
restricted roots and also a subset of simple restricted root ∆0

r .
Since we described |1|-gradings in the complex case, it is now easy to see

that g0-component of any |1|-grading on a real g is given by

g0 = zk(a)⊕ a⊕
⊕

ht(λ)=0

gλ

where λ ∈ ∆r is a restricted root and the map ht : ∆r → {−1, 0, 1} is
the restriction of the map from the complex case. The g±1-component is
a direct sum of root spaces g±λ for restricted roots satisfying ht(λ) = ±1.
There is one more restriction on the root αk in the real case. Namely, the
simple restricted root given by σ∗αk must lie in the same grading component.
Hence if σ∗αk 6= αk on a then we cannot obtain |1|-grading on g.

The real simple Lie algebras are classified by Satake diagrams which
one obtains from Dynkin diagrams of the complexifications by denoting the
simple roots in ∆0

r by a white dot ◦ and the other, which vanish under
the restriction to a, called compact roots, by a black dot •. Moreover, the
simple restricted roots α and σ∗α are connected with an arrow if they do not
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coincide. A table with Satake diagrams for real simple Lie algebras can be
found in table B4 in [4]. Similarly to the complex case, the real |1|-gradings
are denoted by crossing an admissible restricted root which then defines g1.

1.2.4. Underlying structures. Let us fix a |1|-grading g = g−1 ⊕
g0 ⊕ g1, a Lie group G with Lie algebra g, parabolic subgroup P ⊂ G

corresponding to the grading and consider a parabolic geometry (p : G →
M,ω) of type (G,P ). From above we know that we have the reductive
subgroup G0 ⊂ P and the nilpotent normal subgroup P+ ⊂ P . Since P acts
freely on the Cartan bundle G, the same is true for P+ and so we can form the
orbit space G0 := G/P+. One concludes from the construction of G0 that the
projection p factors to a smooth map p0 : G0 → M which defines a smooth
principal bundle with structure group G0 = P/P+, called the underlying
bundle.

Now observe that T iG := ω−1(gi) for i = −1, 0, 1 defines a filtration on
TG which is stable under the principal right action. Since T 1G is vertical
subbundle of G → G0, we have T 1G0 = {0} and so the filtration descends
to a filtration TG0 = T−1G0 ⊃ T 0G0 ⊃ T 1G0 = {0}. Since ω reproduces
the generators of fundamental vector fields, the bundle T 0G0 is spanned
by fundamental vector fields with generators in g0 = p and therefore it is
exactly the vertical bundle of the underlying bundle p0 : G0 → M . One
can also show that the definition ω0

−1(u)(ξ) := ω−1(ũ)(ξ̃) for u = π(ũ) and
ξ = Tπ(ξ̃), where π is the natural projection G → G0 and ω−1 is the g−1-
component of ω, does not depend on the choice of ũ and ξ̃ and thus gives a
map ω0

−1 : TG0 → g−1. Moreover, it turns out that the kernel of this map is
T 0G0 and the map is G0-equivariant. Now fixing a point u ∈ G0, one obtains
a linear isomorphism TuG0/T

0
uG0 → g−1. On the other hand, the tangent

map Tup induces a linear isomorphism TuG0/T
0
uG0 → TxM , where x = p0(u).

Hence we may interpret ω0
−1(u) as a linear isomorphism TxM → g−1 and

so it defines an element in the fibre over x of the linear frame bundle P1M .
And since ω0

−1 is G0-equivariant, it defines a bundle map G0 → P1M over
the inclusion G0 → GL(g−1) defined by the adjoint action which covers the
identity on M . But this is exactly the definition of a reduction of the frame
bundle of M to the structure group G0, i.e. a G-sructure with structure
group G0.

Thus we get that any |1|-graded parabolic geometry (p : G → M,ω)

of type (G,P ) gives rise to a classical first-order G-structure on M with
structure group the Levi subgroup G0 ⊂ P . A similar result holds for all
|k|-graded parabolic geometries. The induced underlying structures then are
so called infinitesimal flag structures. For details, see sections 3.1.5. and
3.1.6. in [4].
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In the rest of this section, we discuss the opposite direction, i.e. construc-
tion of a |1|-graded parabolic geometry from a G-structure. It turns out that
such construction is possible and, under certain conditions it is even unique
and thus defines an one to one correspondence between a class of |1|-graded
parabolic geometries and G-structures.

1.2.5. Kostant codifferential and Hodge decomposition. In order
to formulate the condition on |1|-graded parabolic geomeries which then
leads to the equivalence with G-structures, we need to introduce the Kostant
codifferential.

First recall that for an abelian Lie algebra m and its representation V ,
Λkm∗ ⊗ V is the space Ck(m, V ) of k-cochains on m with values in V , and
the coboundary operator Ck(m, V )→ Ck+1(m, V ) is defined by

∂φ(X0, . . . , Xk) :=

k∑
i=0

Xi · φ(X0, . . . X̂i . . . , Xk) (1.1)

Since it is a differential, it defines the cohomology H∗(m, V ) of m with co-
efficients in V . Now let consider the complex (C∗(g−1, V ), ∂) which com-
putes the Lie algebra cohomology H∗(g−1, V ) of the abelian Lie algebra
g−1. It is easy to see that the cochaines Ck(g−1, V ) are g0-modules and
that the codifferentials are g0-homomorphisms and hence Hk(g−1, V ) are
naturally g0-modules. Although the identification of g−1 and g/p makes the
cochains even into p-modules, the codifferential ∂ is not p-homomorphism.
On the other hand, one can prove using the formula above that it is a p-
homomorphism if we consider ∂ as the coboundary operator in the complex
(C∗(g1, V

∗), ∂). The space Ck(g1, V
∗) is dual to Ck(g/p, V ) since the Killing

form induces an isomorphism g1
∼= (g/p)∗ of p-modules and therefore, dual-

izing the p-homomorphism ∂ gives a p-homomorphism ∂∗ : Ck+1(g/p, V )→
Ck(g/p, V ), called the Kostant codifferential. For V = g, we get a map
∂∗ : Λk+1(g/p)∗⊗g→ Λk(g/p)∗⊗g and using the identification g1 = (g/p)∗,
we easily obtain the following formula on decomposable elements.

∂∗(Z0 ∧ · · · ∧ Zl ⊗A) =
l∑

i=0

(−1)i+1Z0 ∧ · · · ∧ Ẑi ∧ · · · ∧ Zl ⊗ [Zi, A]

Next, one defines the associated Kostant Laplacian by � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂.
By construction, it is a g0-automorphism of Ck(g−1, g). One can construct
an inner product with respect to which the operators ∂ and ∂∗ ar adjoint
and use this to prove the following version of Hodge decomposition. For a
proof and results for |k|-grading, see sections 3.1.11. and 3.3.1. in [4].
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Proposition 1.4. For each n ≥ 0, the chain space Ck(g−1, g) naturally
splits into a direct sum of G0-submodules as

Ck(g−1, g) = im(∂∗)⊕ ker(�)⊕ im(∂),

with the first two summands adding up to ker(∂∗) and the last two summands
adding up to ker(∂).

It is evident from the proposition that we may naturally identify the G0-
module Hk(g−1, g) with ker(�) ⊂ Ck(g−1, g). We may also view Hk(g−1, g)

as ker(∂∗)/ im(∂∗), which naturally makes the cohomology groups into P -
modules since ∂∗ is a p-homomorphism and thus P -equivariant. Moreover,
one can compute using the formula for ∂∗ that the action of g1 maps ker(∂∗)

to im(∂∗) and thus acts trivially on the quotient. This shows that that the
action of g1 and hence the action of P+ = exp(g1) on the cohomology groups
Hk(g−1, g) is trivial.

The cohomology groups also possess a g0-invariant grading induced by
the grading of g. Namely, the spaces Hk(g−1, g) decompose into direct
sums ⊕`Hk(g−1, g)` according to homogeneous degrees of representative co-
cycles. Of course, we also have the associated p-invariant filtration given by
Hk(g−1, g)` = ⊕i=`Hk(g−1, g)i.

A complete description of the g0-module structure of the cohomology
spaces H∗(g−1, g) in the complex case is given by Kostant’s version of the
Bott-Borel-Weil theorem. This description is in terms of the Hasse diagram
which provides an algorithm for computing the cohomologies. For details,
see section 3.3. in [4].

1.2.6. Normal parabolic geometries. The constructions from the
previous subsection can be directly carried over to a manifold endowed with a
|1|-graded parabolic geometry. Suppose that (p : G →M,ω) is such a geom-
etry of type (G,P ) and consider the bundle ΛkT ∗M ⊗AM = Ωk(M,AM),
whose sections are k-forms with values in the adjoint tractor bundle. By
definition, the adjoint tractor bundle is induced by g and the cotangent
bundle is induced by (g/p)∗. Consequently, the bundle Ωk(M,AM) is in-
duced by a P -module L(Λk(g/p), g) of linear maps Λk(g/p) → g and since
the Kostant codifferential ∂∗ is P -equivariant, it gives rise to bundle maps
∂∗ : Λk+1T ∗M ⊗ AM → ΛkT ∗M ⊗ AM for any k. A formula for this map
is obtained directly from the explicit formula for the P -equivariant map ∂∗

by replacing the elements of g1 by one forms φi and the Lie bracket by the
algebraic bracket { , } on AM introduced in the proposition 1.2.

∂∗(φ0 ∧ · · · ∧ φl ⊗ s) =

l∑
i=0

(−1)i+1φ0 ∧ · · · ∧ φ̂i ∧ · · · ∧ φl ⊗ {φi, s} (1.2)
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Now consider the curvature function of the Cartan connection ω. By
definition, it is a P -equivariant map κ : G → Λ2(g/p)∗ ⊗ g and so it defines
a section in the bundle G ×P Λ2(g/p)∗ ⊗ g ∼= Λ2T ∗M ⊗AM . Hence we may
view the curvature κ as a two-form with values in the adjoint tractor bundle
and we may act on it by the Kostant codifferential ∂∗.

Definition 1.4. Let (p : G →M,ω) be a (real or complex) parabolic geom-
etry on a manifold M , and let κ ∈ Ω2(M,AM) be the curvature of ω. Then
the parabolic geometry is called normal if ∂∗κ = 0.

It turns out that the normality is the right condition to uniquely associate
a |1|-graded parabolic geometry to an underlying structure. Namely, one can
show that starting with a G-structure, one can construct a Cartan bundle
and a normal Cartan connection. Moreover, this connection is under certain
cohomological condition unique. Consequently, one obtains the following
theorem which relates |1|-graded parabolic geometries and G-structures. It
is a special case of the theorem 3.1.14. in [4], where also a proof can be
found.

Theorem 1.5. Let g = g−1⊕ g0⊕ g1 be a |1|-graded semisimple Lie algebra
such that none of the simple ideals of g is contained in g0, and such that
H1(g−1, g) is concentrated in homogeneous degrees 5 0. Suppose that G
is a Lie group with a Lie algebra g, and P ⊂ G is a parabolic subgroup
corresponding to the grading with Levi subgroup G0 ⊂ P .

Then associating to parabolic geometry of type (G,P ) its underlying G0-
structure and to any morphism of parabolic geometries the induced morphism
of the underlying G0-structures defines an equivalence between the category of
normal parabolic geometries of type (G,P ) and the category of G-structures
with structure group G0.

Using the Kostant’s version of the Bott-Borel-Weil theorem, one can
compute the first cohomology in individual examples. Then it turns out
that H1(g−1, g)2 6= 0 only if g contains a simple summand isomorphic to
sl(2). Moreover, H1(g−1, g)1 6= 0 only if a simple factor of g is a simple |1|-
graded Lie algebra from A` series which corresponds to classical projective
structures. In this case, one needs to choose additional data on the level of
the G-structure to specify a normal parabolic geometry. Namely, one ob-
tains an equivalence of torsion-free projective structures with corresponding
normal geometries.

In all other case, the cohomological condition from the theorem is satis-
fied and the normal geometries are equivalent to their underlying structures.
Therefore, we will use freely both the names "structure" and "geometry" in
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sequel. A panorama of structures corresponding to |1|-gradings is given in
section 4.1. in [4].

1.2.7. Harmonic curvature. The simplest parabolic geometries are
those which are locally isomorphic to their homogenous model. These ge-
ometries are called locally flat, and as mentioned above, they are character-
ized exactly by κ = 0. As we shell see, it is not necessary to look at the whole
curvature since a simpler object, called the harmonic curvature, is already a
complete obstruction to a local flatness.

The bundle maps ∂∗ : Λk+1T ∗M ⊗ AM → ΛkT ∗M ⊗ AM induced by
the Kostant codifferential give rise to smooth subbundles im(∂∗) ⊂ ker(∂∗) ⊂
ΛkT ∗M⊗AM . Therefore, we may form the quotient bundles ker(∂∗)/ im(∂∗).
We know from above that these bundles are induced by the P -modules
Hk(g−1, g), and since the action of P+ on the cohomologies is trivial, we
get the isomorphism

ker(∂∗)/ im(∂∗) ∼= G0 ×G0 H
k(g−1, g).

In particular, the bundles depend on the underlying G-structure only and
any smooth form ϕ ∈ Ωk(M,AM) such that ∂∗ϕ = 0 may be projected to
a section ϕH of the bundle G0 ×G0 H

k(g−1, g). Now we apply this to the
curvature of a normal parabolic geometry.

Definition 1.5. Let (p : G → M,ω) be a normal parabolic geometry with
curvature κ ∈ Ω2(M,AM). Then the harmonic curvature κH is defined to
be the image of κ in the space of sections of the bundle G0 ×G0 H

2(g−1, g).

The harmonic curvature is a much simpler object then the curvature since
it is a section of a bundle depending only on the underlying G-structure.
It turns out however that it contains the complete information about the
curvature. The explicit relation between the curvature and its harmonic
part is given in the following theorem which is a special case of theorem
3.1.12. in [4].

Before stating the theorem, recall that H2(g−1, g) is graded according to
degrees of the representative cocycles. Since this grading is g0-invariant, it
translates to a grading on G0×G0 H

2(g−1, g). Hence the harmonic curvature
has three components (κH)` of homogeneity ` = 1, 2, 3. By definition, the
same grading is on the bundle G0 ×G0 L(Λ2g−1, g). Since the isomorphism
g−1
∼= g/p of g0-modules gives the identification TM ∼= G0 ×G0 g−1, this

bundle may be identified with Λ2T ∗M⊗gr(AM), where gr(AM) = G0×G0 g

is the associated graded bundle to

AM = A−1M ⊃ A0M ⊃ A1M ∼= T ∗M



24 1. BACKGROUND ON PARABOLIC GEOMETRIES

defined by gri(AM) = AiM/Ai−1M . Thus a section gr(κ) of the bundle
Λ2T ∗M ⊗ gr(AM) has also three components gr`(κ) according to homo-
geneities ` = 1, 2, 3. Now we are ready to formulate the following.

Theorem 1.6. Let (p : G → M,ω) be a normal parabolic geometry of type
(G,P ) and κ its curvature. Then the component gr`(κ) of lowest homogene-
ity ` is a section of the subbundle ker(�) ⊂ Λ2TM∗ ⊗ AM , and under the
natural identification of this bundle with ker(∂∗)/ im(∂∗), the section gr`(κ)

coincides with the homogenous component of degree ` of κH . In particu-
lar, for normal parabolic geometries vanishing of the harmonic curvature κH
implies vanishing of the curvature κ.

1.3. Weyl structures

As we saw in the previous section, most of the normal |1|-graded par-
abolic geometries are equivalent to their underlying G-structures. Now the
natural task is to describe the Cartan connection and its curvature in terms
of data on the underlying G-structure G0 → M . This is the theme of this
section. At the end, we also obtain the Bianchi and Ricci identities from
proposition 1.3 in terms of geometric objects associated to the G-structure.

1.3.1. Weyl structures. Let us consider the same setting as in the
previous section. That is, let g = g−1⊕g0⊕g1 be a |1|-graded semisimple Lie
algebra, G a Lie group with Lie algebra g, let P ⊂ G be a parabolic subgroup
for the given grading and G0 ⊂ P the Levi subgroup. Let (p : G →M,ω) be
a parabolic geometry of type (G,P ), and consider its underlying principal
G0-bundle p0 : G0 → M . By definition, G0 = G/P+ and thus there is a
natural projection π : G → G0, which is a principal bundle with structure
group P+ = exp(g1) (which is always trivial by topological reasons).

Definition 1.6. A (local) Weyl structure for the parabolic geometry (p :

G → M,ω) is a (local) smooth G0-equivariant section σ : G0 → G of the
projection π : G → G0.

To formulate a proposition on the existence of global Weyl structures,
let us recall that the tangent bundle TM is the associated bundle G0×G0 g−1

and the cotangent bundle is isomorphic to G0 ×G0 g1. In particular, smooth
sections of T ∗M can be identified with smooth G0-equivariant functions
G0 → g1. Now the following proposition shows that global Weyl structures
always exist and that they form an affine space. For a proof, see 5.1.1. in
[4].

Proposition 1.7. For any |1|-graded parabolic geometry (p : G → M,ω),
there exist a global Weyl structure σ : g0 → G.
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Fixing one Weyl structure σ, there is a bijective correspondence between the
set of all Weyl structures and the space Γ(T ∗M) of smooth sections of the
cotangent bundle. Explicitly, this correspondence is given by mapping Υ ∈
Γ(T ∗M) viewed as a function Υ : G0 → g1 to the Weyl structure σ̂(u) :=

σ(u) exp(Υ(u)).

1.3.2. Weyl connections and Rho-tensor. Given a Weyl structure
σ : g0 → G on a |1|-graded parabolic geometry (p : G → M,ω), we can
consider the pullback σ∗ω ∈ Ω1(G0, g) of the Cartan connection. Equivari-
ancy of σ then implies G0-equivariancy of σ∗ω and since the G0-module g

decomposes as g−1 ⊕ g0 ⊕ g1, we get a G0-invariant decomposition σ∗ω =

σ∗ω−1+σ∗ω0+σ∗ω1. Then using the properties of ω, we easily prove that the
component σ∗ω0 ∈ Ω1(G0, g0) defines a principal connection on the bundle
p0 : G0 → M and the component σ∗ω1 determine a T ∗M -valued one-form
P ∈ Ω1(M,T ∗M). For details, see 5.1.2. in [4]. These facts lead to the
following definitions.

Definition 1.7. Let σ : G0 → G be a Weyl structure for a |1|-graded para-
bolic geometry (p : G →M,ω).
(1) The principal connection σ∗ω0 on the bundle G0 →M is called the Weyl
connection associated to the Weyl structure σ.
(2) The one-form P ∈ Ω1(M,T ∗M) induced by the positive component of
σ∗ω is called the Rho-tensor associated to the Weyl structure σ.

Since σ∗ω0 is a principal connection on the bundle G0, it gives rise to an
induced linear connection on any vector bundle associated to G0. All these
induced connections will be refered to as the Weyl connections corresponding
to the Weyl structure σ. Moreover, it is easy to see that the map σ × idV :

G0 × V → G × V composed with the projection G × V → G ×P V factors to
an isomorphism of vector bundles

G0 ×G0 V
∼=−−→ G ×P V.

Hence each natural vector bundle is via σ associated to the principal bundle
G0 and the Weyl connection defines a linear connection on it.

For most natural vector bundles, we can formulate this result in a more
coceptual way. Namely, consider that V is a finite dimensional representation
of P which is completely reducible as a representation of G0. Now let us put
V 0 := V and V i := g1 · V i−1 for i > 0. Then it is easy to prove that each of
the subspaces V i is P -invariant. Essentialy, this follows from the fact that P
is diffeomorphic to G0 × g1. Considering the action of the grading element,
we also find that for each i the subspace V i+1 is strictly smaller than V i.
Hence we get a P -invariant filtration V = V 0 ⊃ V 1 ⊃ · · · ⊃ V N ⊃ {0} such
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that for each i, the action of g1 maps V i to V i+1. As a G0-module, V splitts
into a direct sum of quotient spaces V i/V i+1, which is known as associated
graded module gr(V ). Such a filtration is called the composition series of
the representation V and we write it as

V = V 0/V 1 +
�� V 1/V 2 +

�� · · · +
�� V N−1/V N +

�� V N .

In this notation, V N ⊂ V is a P -submodule, V N−1/V N is a submodule in
V/V N , etc. Now since the filtration is P -invariant, it induces a filtration
V iM on any natural bundle VM = G ×P V . Moreover, the infinitesimal
action of g1 defines a P -equivariant map g1 × V i → V i+1 inducing a bundle
map • : T ∗M × V iM → V i+1M since T ∗M = G0 ×G0 g1 and thus the
composition series for V induces an analogous composition series for the
bundle VM .

The associated graded bundle gr(VM) = ⊕i(V iM/V i+1M) is equal to
G ×P gr(V ) and it may be identified with G0 ×G0 gr(V ) = G0 ×G0 V since
the action of the nilpotent part of P on gr(V ) is trivial and V ∼= gr(V )

as G0-modules. So the previous result which says that any Weyl structure
induces an isomorphism VM ∼= G0 ×G0 V may be reformulated in the way
that any Weyl structure induces an isomorphism

VM ∼= gr(VM),

which defines a splitting of the filtration. Let us note that a complete re-
ducibility of V is rather a weak condition. In particular, it is satisfied for all
representations which are restrictions of a representation of G.

1.3.3. The effect of a change of Weyl structures. Analyzing the
effect of a change of Weyl structure to the isomorphism VM ∼= gr(VM),
to the associated Weyl connection and Rho-tensor, we easily obtain the fol-
lowing proposition which is a special case of the propositions 5.1.5, 5.1.6
and 5.1.8 in [4]. The bracket { , } appearing in the proposition is the alge-
braic bracket from 1.2. It is induced by the Lie bracket g1 × g−1 → g0 and
g1 × g0 → g1 respectively. The symbol • is used for both the bundle maps
gr0(AM)× VM → VM and T ∗M × VM → VM since they are induced by
the same infinitesimal action of p on V (restricted to g0 and g1 respectively).

Proposition 1.8. Let σ̂ and σ be two Weyl structures related by σ̂(u) =

σ(u) exp(Υ(u)) for an one-form Υ. For a representation V of P which is
completely reducible as a representation of G0, we have:
(1) The isomorphisms VM 3 s 7→ (s0, . . . , sN ) ∈ gr(VM) corresponding to
σ̂ and σ are related by

ŝk =
k∑
i=0

(−1)i

i!
(Υ•)isk−i (1.3)
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(2) For a smooth section s of a bundle VM and ξ ∈ TM , the Weyl connec-
tions ∇̂ and ∇ are related by

∇̂ξs = ∇ξs− {Υ, ξ} • s (1.4)

(3) The Rho-tensors P̂ and P associated to σ̂ and σ are related by

P̂(ξ) = P(ξ) +∇ξΥ +
1

2
{Υ, {Υ, ξ}} (1.5)

Remark 1.1. For any |1|-graded parabolic geometry (G → M,ω) one de-
fines bundles of scales Lλ as the natural line bundle associated to an one-
dimensional representation λ : G0 → R. Its derivative λ′ : g0 → R is a Lie
algebra homomorphism vanishing on the semisimple part of g0, so it is just a
linear functional on the (one-dimensional) center z(g0). Hence the bundle of
scales corresponds to multiples of the grading element E. From the property
(2) in the previous theorem we have ∇̂ = ∇ implies Υ = 0 which by propo-
sition 1.7 implies σ̂ = σ. Thus the induced linear connections on bundles of
scales are in bijective correspondence with Weyl structures. This correspon-
dence leads to definitions of closed and an exact Weyl structures. Namely,
the closed Weyl structure is a Weyl structure inducing a flat connection on
Lλ and the exact Weyl structure corresponds to a connection induced by a
global trivialization of Lλ. The corresponding connections on the tangent
space form an affine space modelled on closed respectively exact one-forms.
For details, see section 5.1.4 and corollary 5.1.7 in [4].

1.3.4. Description of |1|-graded geometries via Weyl structures.
The goal of this section is to give a description of |1|-graded normal parabolic
geometries in terms of data associated to a Weyl structure. Such a descrip-
tion is provided by theorem 5.2.3 in [4] which we are ready to formulate.

Theorem 1.9. Let p0 : G0 → M be a G-structure with a structure group
G0 ⊂ P ⊂ G such that H1(g−1, g)1 = 0, and let (p : G → M,ω) be the
unique normal parabolic geometry of type (G,P ) extending this G-structure,
κ its curvature and κH its harmonic curvature.
(1) The Weyl connections associated to Weyl structures σ : G0 → G are
exactly the principal connections on G0 with ∂∗-closed torsion. All these
connections have the same torsion T , which coincides with the homogenous
component of degree one of κH .
(2) For such a Weyl connection let R be the curvature. Then the Rho-tensor
satisfies gr0(∂∗)(R + ∂P) = 0 and is uniquely determined by �P = −∂∗R.
The remaining components of the harmonic curvature are given by the com-
ponents in ker(�) of R respectively the covariant exterior derivative Y of
P.
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(3) The Cartan curvature κ of ω is represented by

(T,U, Y ) ∈ Ω2(M,TM ⊕ End0(TM)⊕ T ∗M),

where T and Y are defined in (1) and (2) and U := R+ ∂P.

According to (3), the curvature U = R+ ∂P is the g0-component of the
Cartan curvature. This curvature is called the Weyl curvature due to the
analogy with the conformal case, where this quantity coincides exactly with
the (invariant) conformal Weyl curvature. In contrast to the conformal case,
the Weyl curvature is not invariant in general. The invariant piece is the
irreducible component corresponding to the g0-component of the harmonic
curvature.

Using the data associated to a Weyl structure, we can also express the
two cannonical objects we defined, namely the fundamental derivative and
the tractor conection. Proposition 5.1.10 in [4] specialized to the |1|-graded
case yields

Proposition 1.10. Let σ : G0 → G be a Weyl structure, ∇ and P the
corresponding Weyl connection and Rho-tensor, VM = G ×P V a natural
vector bundle and AM the adjoint tractor bundle. For s ∈ Γ(AM) and
t ∈ Γ(VM) let s 7→ (s−1, s0, s1) and t 7→ (t0, . . . , tN ) be the isomorphisms
with associated graded bundles given by σ.
(1) The fundamental derivative is given by

(Dst)i = ∇s−1ti + P(s−1) • ti−1 − s0 • ti − s1 • ti−1, (1.6)

(2) If t is a section of a tractor bundle and ξ ∈ TM , then the tractor con-
nection ∇T is given by

(∇Tξ t)i = ∇ξti + P(ξ) • ti−1 + ξ • ti+1 (1.7)

1.3.5. Bianchi and Ricci identities. Given a full description of the
Cartan curvature by the previous theorem and the expression for the fun-
damental derivative by the previous proposition, we can reformulate the
Bianchi identities and the Ricci identity from proposition 1.3 and write these
identities in terms of geometric objects associated to the Weyl structure.

Proposition 1.11. Let ∇ be a Weyl connection given by a choice of Weyl
structure, T and R its torsion and curvature, let P be the corresponding
Rho-tensor and U the Weyl curvature. Then for X,Y, Z ∈ TM we have:
(1) Algebraic Bianchi identity∑

cycl.

−U(Y,Z)(X) + T (T (X,Y ), Z) + (∇XT )(Y,Z) = 0
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(2) Differential Bianchi identity∑
cycl.

(∇XR)(Y,Z) + U(T (X,Y ), Z)− {P(T (X,Y )), Z} = 0

(3) Ricci identity

(∇2Z)(X,Y )− (∇2Z)(Y,X) = R(X,Y )(Z)−∇T (X,Y )Z

Proof. (1) The algebraic Bianchi identity follows by taking the part in
gr−1(AM) ∼= TM of the Bianchi identity (1) in proposition 1.3. Then for
s1, s2, s3 ∈ TM the expression appearing in the sum in this equation has the
form

{s1, κ0(s2, s3)} − κ−1({s1, s2}, s3) + κ−1(κ−1(s1, s2), s3) + (∇s1κ−1)(s2, s3)

One can easily deduce that the algebraic bracket of gr0(AM) ∼= End(TM)

and gr−1(AM) is given simply by applying the endomorphism. Hence the
first summand is equal to −κ0(s2, s3)(s1) which is equal to −U(s2, s3)(s1)

according to the previous theorem. The theorem also implies that the
second term vanishes and that κ−1(κ−1(s1, s2), s3) = T (T (s1, s2), s3) and
(∇s1κ−1)(s2, s3) = (∇s1T )(s2, s3). The result then follows by renaming the
sections.
(2) The differential Bianchi identity follows by taking the part of the Bianchi
identity (1) in proposition 1.3 corresponding to gr0(AM) ∼= End0(TM).
Then the interior of the sum appearing in the equation has the form

{s1, κ1(s2, s3)} − κ0({s1, s2}, s3) + κ0(κ−1(s1, s2), s3) + (∇s1κ0)(s2, s3)

since the part in gr0(AM) of the fundamental derivative of κ0 with respect
to s1 ∈ TM coincides with the Weyl connection according to (1.6). Using
the theorem and that s1, s2, s3 ∈ TM , this is equal to

{s1, Y (s2, s3)}+ U(T (s1, s2), s3) + (∇s1U)(s2, s3),

where Y = d∇P. From the definition of the exterior derivative d∇, the
definition of the torsion T and the differential ∂, we conclude∑

cycl.

{s1, Y (s2, s3)} = −
∑
cycl.

((∇s1∂P)(s2, s3) + {P(T (s1, s2)), s3}).

Now inserting this into the equation (1) and using that U = R + ∂P, the
result (2) follows.

(3) A formula for the Ricci identity in terms of Weyl connection is
obtained by taking the part of Ricci identity from 1.3 corresponding to
gr−1(AM) ∼= TM . By definition, we have D2σ(s1, s2) = Ds1Ds2σ−DDs1s2

σ

and using (1.6) we find that its part in TM is equal to

∇s1∇s2σ −∇∇s1s2σ + {P(s1), s2} • σ.
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Alternating in s1 and s2 and the use of definition of the differential ∂ then
leads to the equation

D2σ(s1, s2)−D2σ(s2, s1) = ∇2σ(s1, s2)−∇2σ(s2, s1) + ∂P(s1, s2) • σ.

The term D{s1,s2}σ on the right-hand side of (2) in 1.3 evidently vanishes
and the part in TM of the first term −Dκ(s1,s2)σ is equal to

−∇κ−1(s1,s2)σ + κ0(s1, s2) • σ = −∇T (s1,s2)σ + U(s1, s2) • σ,

due to (1.6) and the theorem. And since U = R + ∂P, the result of (3)
follows. �

Remark 1.2. The curvature term U(Y,Z)(X) in the algebraic Bianchi iden-
tity can be replaced by R(Y, Z)(X) without any change since∑

cycl.

∂P(Y,Z)(X) = (∂2P)(Y,Z,X) = 0.

This follows from the definition of ∂ and the fact that the algebraic bracket
{ , } is induced by the Lie bracket and thus satisfies Jacobi identity.

1.4. Construction of invariant operators via curved Casimirs

For any natural vector bundle associated to a parabolic geometry, there
is a curved Casimir operator which acts on the space of smooth sections
of the bundle and which reduces to the canonical action of the quadratic
Casimir element on the homogeneous model of the geometry. The essential
properties of the curved Casimir operator are that it is natural in a strong
sense and that it acts by a scalar on a bundle associated to an irreducible
representation. One concludes from these properties that one can use the
curved Casimir operator systematically to construct invariant differential
operators. This is a difficult task in general, since since the classification
via homomorphisms of induced modules of the invariant operators on locally
flat parabolic geometries does not apply to the case of a general (|1|-graded)
parabolic geometry.

1.4.1. Invariant differential operators on homogeneous spaces.
Linear invariant differential operators are linear differential operators intrin-
sic to the given structure. In the case of the homogeneous model M = G/P ,
it is evident what it means. The invariant operators are those which inter-
twine the G-action on sections of homogenous vector bundles induced by the
left action of G on G/P . Formally, given two homogeneous vector bundles
VM = G ×P V and WM = G ×P W on M = G/P , invariant differen-
tial operator is a differential operator D : Γ(VM) → Γ(WM) such that
D(g · s) = g ·D(s) for all s ∈ Γ(VM) and g ∈ G.
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It is well-known that an action on sections of a homogeneous vector bun-
dle VM extends to an action on the jet prolongations JkVM which makes
JkVM into a homogeneous bundle. Then it is easy to see that any invari-
ant differential opeartor D of order 5 k between homogeneous bundles VM
and WM corresponds to a morphism D̃ : JkVM → WM of homogeneous
bundles. Next, one defines the k-th order symbol of D as the vector bundle
map SkT ∗M ⊗ VM → WM given by the restriction of D̃ to the kernel of
the projection πkk−1 : JkVM → Jk−1VM .

Since the k-th jet prolongation JkVM is a homogeneous vector bundle,
it is induced by a representation which we denote by JkV , i.e. JkVM =

G×P JkV , and any invariant operator D̃ : JkVM →WM corresponds to a
P -module homomorphism JkV →W . Hence the problem of classification of
linear invariant differential operators onM = G/P boils down to an algebraic
problem of classification of homomorphisms of P -modules. Although the
representations JkV inducing the jet bundles are quite complicated, the
structure of such homomorphisms is known completely.

Let us remark that he proof of this classification is via a duality relating
these homomorphism to homomorphisms of induced modules. Namely, con-
sidering the infinite jet prolongation J∞VM = G×P J∞V , which is defined
as the direct limit of the system · · · → Jk+1VM → JkVM → · · · and hence
allows to let the order k free, one finds that

J∞V = (U(g)⊗U(p) V
∗)∗,

where U(g) is the universal enveloping algebra of the Lie algebra g. In
the case that V is an irreducible representation with highest weight λ, the
induced module Mp(λ) = U(g) ⊗U(p) V

∗ is called generalized Verma mod-
ule. The duality is obtained essentialy by identifying J∞V with J∞e (G,V )

and g with left-invariant vector fields on G which gives an identification
of U(g) with the space of left-invariant differential operators on C∞(G,R).
Thus in the dual picture, the invariant operators between irreducible bundles
Γ(VM)→ Γ(WM) correspond to P -module homomorphismsW ∗ →Mp(λ).
And since the left action of g on generalized Verma modules makes them into
(g, P )-modules, the algebraic version of Frobenius reciprocity implies that P -
homomorphismsW ∗ →Mp(λ) correspond to (g, P )-module homomorphisms
Mp(µ)→Mp(λ), where µ is the highest weight of W .

The question of existence of such homomorphisms is a purely represen-
tation theoretical task and there is a complete answer in terms of the highest
weights of representations. The homomorphisms between (ordinary) Verma
modules (where p is the Borel algebra), have been completely characterized
by Verma and Bernstein-Gelfand-Gelfand, cf. [1]. The generalization to an
arbitrary parabolic p ⊂ g have been given by Lepowsky and Boe, cf. [2] and
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[3]. Let us mention that the existence of a non-zero homomorphism between
Verma modules induces a homomorphism between generalized Verma mod-
ules, called the standard homomorphism. It may be zero, and even when this
happens, there might be some other homomorphism, which is then called a
non-standard homomorphism.

1.4.2. Invariant operators on curved manifolds. In the case of a
parabolic geometry on a manifold M which is not locally flat and thus is not
isomorphic to a homogeneous space, there are several definitions of operators
intrinsic to the given structure. The definition from the flat case does not
apply since there is no induced action of G on sections of natural vector bun-
dles and hence the G-equivariancy has no sense. Nevertheless, we may use
the fact that left multiplications of G are exactly the automorphisms of the
flat geometry G→ G/P , and hence replace the G-equivariancy property by
the property of commuting with automorphisms of the given geometry. This
leads to the notion of natural operators defined in [15]. But, this naturality
requirement is too weak in our case since there are nearly no morphisms of
geometries on general manifolds. Therefore, the following stronger restric-
tion of the class of operators is mostly specified.

By an invariant operator for geometry (G →M,ω), we mean a linear dif-
ferential operator acting between natural bundles on M which one can write
out by a universal formula in terms of Weyl connection and its curvature
such that the formula is independent of the choice of Weyl structure. Obvi-
ously, such invariant operators are natural in the sense as above and thus,
restricted to the subcathegory of locally flat geometries, they coincide with
the invariant differential operators on homogeneous spaces defined in the pre-
vious subsection. The definition of invariant operators may be viewed as a
generalization of the ususal notion of invariant operators from the conformal
geometry. These are defined as formal expressions in Levi-Civita connection
which remain invariant under rescalings of the metric.

In contrast to the case of a locally flat manifold, higher order invariant
operators JkVM →WM on a curved manifold M cannot be constructed in
the same algebraic way as in the flat case since the jet prolongations JkVM
are not associated to the Cartan bundle G for k > 1. Nevertheless, there is a
class of invariant differential operators which correspond to homomorphisms
of P -modules just like in the flat case, with the exception that the P -modules
are different. Namely, one can consider so called semi-holonomic jet prolon-
gation J̄kVM of the bundle VM , see [10]. This vector bundle comes with
a natural inclusion JkVM ↪→ J̄kVM and the important property is that, in
contrast to normal (holonomic) jets, this bundle is associated to the Cartan
bundle and thus is induced by a P -module J̄kV . Hence any homomorphism
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J̄kV →W gives rise to an operator

JkVM ↪→ J̄kVM →WM.

The operators arising in such a way are called strongly invariant operators.
For instance, this is the case of all first-order operators since J̄1VM =

J1VM . Strongly invariant operators behave similarly to invariant opera-
tors on homogeneous spaces. In particular, they can be translated to other
bundles by means of the curved translation principle, see [16].

In the dual picture, strongly invariant operators arise from homomor-
phisms of induced modules, called semi-holonomic Verma modules. In con-
trast to the holonomic case, they do not provide the classification of invariant
operators since it may happen that for a non-zero homomorphism, the com-
position above defining the operator vanishes. On the other hand, it may
also happen that despite the fact that there is no non-zero homomorphism
of semi-holonomic Verma modules, there still exists an invariant operator
between the corresponding bundles, as we shall see.

1.4.3. Curved Casimir operator. The curved Casimir operator is an
invariant differential operator acting between natural vector bundles, which
is a generalization of the well-known Casimir element from the representation
theory. First let us recall its definition. The Casimir element for a semisimple
Lie algebra g is an element from the center of the universal enveloping algebra
U(g) defined by C :=

∑
` ξ
` · ξ`, where {ξ`} is a basis of g and {ξ`} is the

dual basis with respect to the Killing form. This is well-defined since the
(non-degenerate) Killing form induces an isomorphism g ∼= g∗ of G-modules
and C is independent of the choice of the basis {ξ`}. It is also easy to see
that C acts on any representation of G by a G-equivariant map. Now the
idea is to let the Casimir operator act on the space of smooth sections of
a homogeneous bundle G ×P V → G/P . This is possible since there is an
induced action of G on the sections and thus also the infinitesimal action of
g. One can easily compute the form of this action. Namely, for X ∈ g and a
section f viewed as a P -equivariant function G→ V , we get X ·f = −RX ·f ,
where RX ∈ X(G) is the right invariant vector field generated by X. Hence
the action of C on a section f is given by C(f) =

∑
`Rξ` ·Rξ` · f .

The generalization to the case of a general parabolic geometry is ob-
tained by rewritting this formula in terms of the fundamental derivative.
Concretely, since the right invariant vector field RX is in particular invari-
ant under P , it defines a section sX in the adjoint tractor bundle A(G/P ).
And since the differentiation of an equivariant f with respect to such a vec-
tor field is exactly the definition of the fundamental derivative, we can write
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C(f) =
∑

`Ds
ξ`
·Dsξ`

·f . Now this expression defines the curved Casimir op-
erator on general parabolic geometries. Using the definition of the iteration
D2 and naturality of D, one finds that C can be expressed as the following
composition. For details, see proposition 1 in [5].

Γ(VM)
D2
// Γ(⊗2A∗M ⊗ VM)

B⊗idV// Γ(VM)

Definition 1.8. On general parabolic geometries, the curved Casimir oper-
ator is the operator C := (B ⊗ id) ◦D2.

An immediate consequence of the defining formula is that the curved
Casimir operator inherits strong naturality properties of the fundamental
derivative. Namely, it commutes with with all natural vector bundle mor-
phisms. In particular, it preserves sections of natural subbundles and re-
stricts to the curved Casimir of the subbundle. Similarly, the induced op-
erator on sections of a natural quotient bundle coincides with the curved
Casimir on that bundle.

Further properties of the curved Casimir follows from a fromula in terms
of suitably chosen local dual frames for the adjoint tractor bundle

AM = TM +
�� End0(TM) +

�� T ∗M.

Namely, let us choose a local frame ϕ` for the subbundle T ∗M . This frame is
automatically orthogonal with respect to the bilinear form on T ∗M × T ∗M
induced by the Killing form B since T ∗M is induced by g1 and B vanishes
on g1×g1. On the other hand, B gives a duality g1

∼= g/p of P -modules and
thus induces a non-degenerate bilinear form on T ∗M × TM . Therefore, we
can choose a basis ψ` for TM which is dual to ϕ`. Moreover, one can easily
prove that ψ` may be chosen such that it is orthogonal, see lemma 1 in [5].

Now let D denote the fundamental derivative and let • denote the action
of T ∗M on VM induced by the representation of g1 on V . Further, let 〈 , 〉
be the inner product on weights of g0, resp. gC0 , induced by the Killing form.
Then the curved Casimir can be expressed using the local dual frames ψ`
and ϕ` as follows.

Theorem 1.12. For any (|1|-graded) parabolic geometry (G → M,ω) and
any natural vector bundle VM , the action of the curved Casimir on a s ∈
Γ(VM) has the form

C(s) = c(s)− 2
∑
`

ϕ` •Dψ`s

where c : VM → VM is a tensorial bundle map which acts on each irre-
ducible component WM ⊂ VM by multiplication by cW . If −λ is the lowest
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weight of the inducing irreducible representation W , then this scalar is given
by

cW = 〈λ, λ+ 2ρ〉

Proof. The theorem is a combination of proposition 3 and theorem 1
in [5]. �

In particular, the theorem shows that the curved Casimir is a differential
operator of order at most one and that it acts by multiplication by a scalar
on irreducible bundles, which can be easily computed from representation
theory data. This scalar is refered to as Casimir eigenvalue.

Fixing a Weyl structure σ, we can express the formula from the theorem
for the curved Casimir in terms of data on the underlying G-structure asso-
ciated to σ. Namely, inserting (s)σ = (ψ`, 0, 0) into equation (1.6) for the
fundamental derivative, we get

Dψ`s = ∇ψ`s+ P(ψ`) • s.

Therefore, the formula for the curved Casimir operator in terms of the Weyl
connection and the Rho-tensor reads as

C(s) = c(s)− 2
∑
`

ϕ` • ∇ψ`s− 2
∑
`

ϕ` • P(ψ`) • s (1.8)

1.4.4. Construction of invariant operators. Finally, we show how
to apply the curved Casimir operator to construct invariant operators. Let us
explain the idea in the simplest case first. Therefore, assume a tractor bundle
VM = G ×P V induced by a G-representation V with a simple composition
series

V = V 0/V 1 +
�� V 1.

and assume that the representations V 0/V 1 and V 1 are irreducible. Then
the curved Casimir acts by scalars c0 and c1 on the corresponding bundles
VM/V 1M and V 1M respectively. Now consider the operator C − c1. By
definition, it is an invariant operator Γ(VM) → Γ(VM) which vanishes on
V 1M . Hence if c0 6= c1, then it defines a splitting Γ(VM/V 1M)→ Γ(VM)

of the tensorial projection Γ(VM) → Γ(VM/V 1M). In the case that the
eigenvalues c0 and c1 coincide, we get an invariant operator Γ(VM/V 1M)→
Γ(V 1M).

Now this idea can be implemented to the case of a longer filtration of
the representation V . Consider a tractor bundle VM = G ×P V induced by
a G-representation V with a composition series

V = V 0/V 1 +
�� V 1/V 2 +

�� · · · +
�� V N−1/V N +

�� V N .
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For such a V , each of the subquotients V i/V i+1 splits into a direct sum of
irreducible representations of P . Let ci1, . . . , cini denote the different eigen-
values of the curved Casimir operator on the bundles induced by these irre-
ducible representations. Next, let us form an operator Li := Πni

j=1(C − cij)
which then maps Γ(V iM) → Γ(V i+1M) and hence L := Li+1 ◦ · · · ◦ LN
maps Γ(V i+1M) → 0. This means that if the curved Casimir eigenvalue
cW on an irreducible bundle WM ⊂ V iM/V i+1M is different from all
of the numbers ci1, . . . , cini , then L, restricted to WM , defines a splitting
Γ(WM)→ Γ(V iM).

Now let us assume that cW coincides with an eigenvalue corresponding
to an irreducible bundleW ′M ⊂ V kM/V k+1M for a k > i. Such a case is of
the main interest since it is easy to see that the operator L := Li+1 ◦ · · · ◦Lk
restricted to WM then defines an invariant operator Γ(WM) → Γ(W ′M).
Indeed, the naturality of the curved Casimir implies that the factors in L can
be commuted freely and so we may act first with the factor C−cW from Lk to
get a map Γ(WM)→ Γ(V i+1M). Next, the composition with Li+1◦· · ·◦Lk−1

yields an operator Γ(WM) → Γ(V kM) by definition. Acting further with
the rest of Lk, everything from Γ(V kM) is mapped to Γ(V k+1M) up to
the bundle W ′M . Hence projecting to V kM/V k+1M , we obtain an induced
operator Γ(WM)→ Γ(W ′M).

The conclusion is that whenever there is a coincidence of the Casimir
eigenvalues occuring somewhere in the composition series, there is an invari-
ant operator between the respective bundles and we even know a formula
for this operator. Fixing a Weyl structure, the formula can be expressed in
terms of Weyl connection by use of the explicit form of C given by equation
(1.8) in the previous subsection.

Let us mention that it can also happen that the induced invariant op-
erator vanishes. This may be detected by computing the principal symbol
of the operator which is easier than the computation of the whole formula
for the operator. An algorithm for the symbol computation can be deduced
from the construction of the operators. For general |1|-graded semisimple
Lie algebras it was developed by Čap and Gover in a forthcoming article.
A detailed description of the construction of invariant operators vie curved
Casimirs in the case of a conformal geometry can be found in [6].



CHAPTER 2

Almost Grassmannian geometry

2.1. Introduction

In this introductory part, we give a definition of an almost Grassmannian
geometry (in sequel AG-geometry), we introduce the corresponding structure
and basic natural bundles. We also collect some basic properties which we
will need later on.

2.1.1. Almost Grassmannian geometry. Let us consider the Lie al-
gebra g = sl(n,R). It can be viewed as the so called split real form of
gC = sl(n,C), characterized by the property that there exists a Cartan sub-
algebra h ≤ g such that all roots of gC restricted to h are real-valued. Of
course, this h is the subspace of tracefree real diagonal n×n-matrices. Taking
the usual choice of basis of h and denoting by ei : h→ C the linear functional
which extracts the ith entry on the diagonal, the restricted roots of sl(n,R)

are ∆r = {ei − ej : 1 ≤ i, j ≤ n, i 6= j} and its subsystem of positive roots
is ∆+

r = {ei − ej : i < j}. The set of simple roots is then {α1, . . . , αn−1},
where αi = ei − ei+1. In terms of the simple roots, the positive roots are
exactly the combinations of the form αi + · · · + αj for 1 ≤ i < j ≤ n − 1.
Obviously, the Satake diagram for sl(n,R) has white nodes only and thus
coincides with the Dynkin diagram An−1. For more details on the structure
theory of sl(n,C) and sl(n,R), see sections 2.2. and 2.3. in [4].

Now consider a parabolic geometry of type (G,P ), where the Lie algebra
of G is equal to g = sl(n,R) and the parabolic subgroup P ⊂ G is determined
by a |1|-grading of g. As we described in the previous chapter, any |1|-grading
of g = sl(n,R) is given by a choice of one simple root, say αp, and has the
form

g =
⊕

ht(α)=1

g−α ⊕ (h⊕
⊕

ht(α)=0

gα)⊕
⊕

ht(α)=1

gα,

where ht(α) = 1 if and only if α contains the simple root αp as a summand,
i.e. α = αi + · · · + αp + · · · + αj . The corresponding diagram then has the
pth node crossed. The grading is easily visible in block form with blocks of

37
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sizes p, n− p:

g−1 =

0 0

∗ 0

 , g0 =

∗ 0

0 ∗

 , g1 =

0 ∗

0 0

 .

Definition 2.1. A parabolic geometry of type (G,P ) on a manifoldM with
dim(M) = pq, where p, q > 1 and the parabolic subgroup P is determined
by the grading of sl(p + q,R) as above is called the almost Grassmanian
geometry of type (p, q).

In sequel, we exclusively consider the case of almost Grassmanian ge-
ometries of type (2, q), i.e. the |1|-graded parabolic geometry characterized
by the diagram

◦ × ◦ . . . ◦ .

The simple root which corresponds to the crossed node is α2 = e2 − e3 and
so it is easy to see that the g1-part of the grading is formed by root spaces
corresponding to roots α1+α2+· · ·+αi and α2+· · ·+αi for 3 ≤ i ≤ q+1. In
the form of block matrices, the elements of the Lie algebra g = sl(2 + q,R)

may be viewed as
(
U Z
Y V

)
with block sizes 2 and q respectively. Then g0

consists of block diagonal matrices
(
U 0
0 V

)
, the subalgebra g1 consists of those

matrices for which only the Z-block is non-zero and similarly, g−1 consists
of those for which only the Y -block is non-zero. Hence we see that

g−1 = R2∗ � Rq, g0 = s(gl(2,R)⊕ gl(q,R)), g1 = R2 � Rq∗,

where � denotes the outer tensor product. Obviously, the component g−1

may be also viewed as the space of linear maps R2 → Rq while g1 may be
identified with linear maps Rq → R2.

As a Lie group G with Lie algebra g we take SL(2 + q,R) and as the
parabolic subgroup P , we take the stabilizer of R2 in R2+q. Since p = g0⊕g1

is exactly the stabilizer of this subspace in g, it is easy to see that this is
the maximal parabolic subgroup for this grading, In terms of matrices, P
is the subgroup of block upper triangular matrices with block sizes 2 and
q. The resulting Levi subgroup G0 ⊂ P is then the group of block diagonal
matrices with these block sizes, i.e. G0 = S(GL(2,R)×GL(q,R)) ⊂ SL(2 +

q,R). From the definition of P we conclude that the homogeneous model
G/P of almost Grassmannian geometry is the Grassmannian Gr2(R2+q) of
2-dimensional subspaces of R2+q.

2.1.2. Underlying structure. From the description above we see that
the underlying G0-structure p0 : G0 →M of an almost Grassmannian geome-
try of type (2, q) is given by the reduction of GL(2q,R) to the structure group
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G0 formed by block diagonal matrices with blocks (C1, C2) ∈ GL(2,R) ×
GL(q,R) such that det(C1) det(C2) = 1. Viewing elements Y ∈ g−1 as lin-
ear maps R2 → Rq, the adjoint action Ad : G0 → GL(g−1) defining the
G0-structure is immediately seen to be given by Ad(C1, C2)(Y ) = C2Y C

−1
1 .

The standard representations of GL(2,R) and GL(q,R) define the basic
representations R2 and Rq of G0, which then induce the basic natural vector
bundles associated to G0: a rank 2 vector bundle E → M and a rank q

vector bundle F →M . Since the tangent bundle TM can be identified with
G0 ×G0 g−1 and g−1 = L(R2,Rq), we get an isomorphism

TM ∼= E∗ ⊗ F (2.1)

Moreover, since (C1, C2) ∈ G0 acts by det(C1)−1 on the one-dimensional
representation Λ2R2∗ and by the same scalar det(C2) = det(C1)−1 on the
one-dimensional representation ΛqRq, we get an isomorphism Λ2R2∗ ∼= ΛqRq

of G0-modules, which then results into an isomorphism

Λ2E∗ ∼= ΛqF. (2.2)

Conversely, let us assume that on a manifoldM of dimension 2q we have
given vector bundles E and F of rank 2 respectively q and isomorphisms as
in (2.1) and (2.2). Then it is easy to show that these data define a first order
G0-structure p0 : G0 → M with structure group G0. Indeed, we consider
the fibered product GL(R2, E)×M GL(Rq, F ) of the linear frame bundles of
E and F . The fiber of this bundle over x ∈ M is formed by pairs (ψ1, ψ2)

of isomorphisms ψ1 : R2 → Ex and ψ2 : Rq → Fx. Then we define G0

to be a subspace in this bundle consisting of those pairs which respect the
isomorphism (2.2) in the sense that the following diagram commutes

Λ2E∗
∼= // ΛqF

Λ2R2∗ ∼= //

Λ2ψ1

OO

ΛqRq
Λqψ2

OO

The group G0 acts on G0 by composition from the right. Visibly, the action
is free and transitive on the fibers of the natural projection p0 : G0 →M and
hence G0 becomes a smooth principal G0-bundle. The reduction i : G0 →
P1M is then given by assigning to a frame (ψ1, ψ2) ∈ G0 the isomorphism
TxM → g−1 defined by ξ → ψ−1

2 ◦ ξ ◦ψ1 ∈ R2∗⊗Rq = g−1, where the vector
ξ ∈ TxM is viewed as a linear map E → F according to isomorphism (2.1).

Hence we conclude that a choice of E, F , and isomorphisms (2.1) and
(2.2) is equivalent to a first orderG0-structure p0 : G0 →M . Such a structure
is called an almost Grassmanninan structure of type (2, q). And since it is
easy to check that the cohomological condition in theorem 1.5 is satisfied, we
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know that such a structure is equivalent to a normal almost Grassmannian
geometry on M .

It is obvious that for the homogeneous model, the auxilliary bundles E
and F are the two tautological bundles over the Grassmannian. The bundle
E is the subbundle in Gr(2,R2+q) × R2+q whose fiber over a 2-dimensional
subspace is given by that subspace, while F is the quotient of the trivial
R2+q-bundle by the subbundle E.

2.1.3. Abstract index notation. In sequel, we use an abstract index
notation, which is similar to the spinorial abstract index notation used in
4-dimensional conformal geometry. For the basic vector bundles, we put
E := EA′ and F := EA and follow the usual convention that dualizing makes
upper indices into lower indices and vice versa, and concatenation of indices
corresponds to tensor products of bundles. Then the isomorphisms (2.1) and
(2.2) have the form

TM = EA′ ⊗ EA = EAA′ respectively Λ2EA′ ∼= ΛqEA.

For the tangent and cotangent bundle we also use the usual tensor inices,
i.e. TM = Ea and T ∗M = Ea. The tensorial and spinorial notation will be
used alternately in sequel.

We demonstrate the efficiency of the abstract index formalism on com-
puting the explicit form of the algebraic bracket from 1.2, which we will need
later on. Let us recall that the algebraic bracket acts on the adjoint tractor
bundle AM , which under a choice of Weyl structure is a graded bundle with
grading components induced by representations g−1, g0 and g1 of G0. These
are isomorphic to the bundles TM , End0(TM) and T ∗M respectively.

By definition, the algebraic bracket is induced by the Lie bracket on
the grading components of the matrix algebra g. If we adopt the same
abstract index notation for the representations R2 and Rq inducing E and
F , then we can write typical elements Y ∈ g−1 = R2∗ � Rq, (U, V ) ∈ g0 =

s(gl(2,R)⊕ gl(q,R)) and Z ∈ g1 = Rq∗ � R2 as

Y = yAA′ , (U, V ) = (uA
′

B′ , v
A
B), Z = zA

′
A .

Now the form of the Lie bracket in these abstract indices can be read off its
form in block matrices. Namely, the Lie bracket g0 × g−1 → g−1 has the
form 

U 0

0 V

 ,

 0 0

Y 0


 =

 0 0

V Y − Y U 0

 ,

which leads to the following formula in abstract indices

[(U, V ), Y ]AA′ = vABy
B
A′ − uB

′
A′y

A
B′ .



2.1. INTRODUCTION 41

Hence viewing g0 as a submodule of endomorphisms of g−1, an element
(uA

′
B′ , v

A
B) ∈ g0 is identified with the map (u, v)A

′B
A B′ = vBAδ

A′
B′−uA

′
B′δ

B
A . Passing

to bundles, we see that a section of A0M ∼= End0(TM) may be written as

(α, β)A
′B

A B′ = βBA δ
A′
B′ − αA

′
B′δ

B
A

for some α ∈ End(EA′) and β ∈ End(EA). Using such an identification, we
have

Lemma 2.1. For ξAA′ ∈ TM , ϕA′A ∈ T ∗M and (α, β)A
′B

A B′ = βBA δ
A′
B′−αA

′
B′δ

B
A ∈

End0(TM) the algebraic bracket has the following form

(1) {(α, β), ξ}AA′ = −αC′A′ξAC′ + βACξ
C
A′

(2) {(α, β), ϕ}A′A = αA
′

C′ϕ
C′
A − βCAϕA

′
C

(3) {ϕ, ξ}A′BA B′ = −ϕC′A ξBC′δA
′

B′ − ϕA
′

C ξ
C
B′δ

B
A

Proof. By construction, the bracket End0(TM)×TM → TM is simply
given by the application of endomorphisms, while the bracket End0(TM)×
T ∗M → T ∗M is given by applying the negative of the dual of an endo-
morphism. The equations (1) and (2) then follow from the identification
(α, β)A

′B
A B′ = βABδ

B′
A′ − αB

′
A′ δ

A
B. The most interesting point is the bracket

TM × T ∗M → End0(TM), which can be deduced from the form of Lie
bracket g1 × g−1 → g0. In block matrices, we have

0 Z

0 0

 ,

 0 0

Y 0


 =

ZY 0

0 −Y Z

 ,

which yields [Z, Y ] = (zA
′

C y
C
B′ ,−zC

′
A y

B
C′) in abstract indices. Viewing g0 as

g−1 → g−1, this element corresponds to −zC′A yBC′δA
′

B′ − zA
′

C y
C
B′δ

B
A . �

2.1.4. Irreducible bundles. By definition, each irreducible natural
vector bundle on an almost Grassmannian geometry (G →M,ω) is an asso-
ciated bundle to G, induced by an irreducible representation of the parabolic
subgroup P ⊂ G = SL(2 + q,R). We will deal here with real representa-
tions only. The description of the complex irreducible representations co-
incides with the real ones since any complex irreducible representations of
SL(2 + q,R) is the complexification of a real irreducible representation, and
the same is true for P .

In sequel, we consider representations of P , which are completely re-
ducible as representations of the corresponding Lie algebra p, since this is
the case of our interest. In such a case, there is a complete description avail-
able. Namely, any finite dimensional completely reducible representation V
of p is obtained by trivially extending a completely reducible representation
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of g0 = R ⊕ sl(2,R) ⊕ sl(q,R) to p, see e.g. section 3.2.10 in [4] for details.
The irreducible representation of g0 is given by the irreducible representation
of its semisimple part gss0 = sl(2,R)⊕ sl(q,R) and a linear functional on its
center z(g0) = R.

It follows from from the theory of semisimple Lie algebras that irre-
ducible representations of gss0 are classified by highest weights of its simple
factors, see e.g. [13] or chapter 2 in [4]. In our case, the simple factors
are sl(2,R) respectively sl(q,R), and so the highest weights are functionals
on the corresponding Cartan subalgebras hsl(2) and hsl(q). Since evidently
the Cartan subalgebra of g is equal to h = hsl(2) ⊕ hsl(q) ⊕ z(g0), specifying
the highest weights of sl(2,R) and sl(q,R) and the functional on z(g0) (ie.
specifying the irreducible representation of p) defines a weight of g. We call
this weight the highest weight of the irreducible representation of p. It does
not need to be g-dominant since the functional on z(g0) may have negative
values. We will denote highest weights in the usual way by labeled Dynkin
diagrams. That is, if λ = a1λ1 + · · · + aq+1λq+1 is the expression of the
highest weight λ in terms of the fundamental weights λ1, . . . λq+1 of g, then
for each 1 ≤ i ≤ q + 1 we write the number ai over a node of the diagram
corresponding to the simple root αi.

λ =
a1

◦
a2

×
a3

◦
a4

◦ ···

aq+1

◦

This weight is a highest weight of a representation of p iff it is p-dominant,
i.e. the coefficients ai are non-negative for all i 6= 2. We also assume that
the all coefficients are intergral since exactly these representations integrate
to representations of P .

Now let us describe the highest weights of the representations R2 and Rq

inducing the basic bundles EA′ respectively EA. We will use the well-known
fact that any irreducible representation of p with highest weight λ for a g-
dominant weight λ is given as the subspace in the g-irreducible representation
with highest weight λ on which g1 acts trivially, see e.g. 3.2.11. in [4]. So
to get the highest weight of R2, let us consider the standard representation
R2+q of g. Of course, it is an irreducible g-representation with highest weight
λ1 and it is an easy observation that R2 is the subspace in R2+q on which
g1 acts trivially. So we conclude that the highest weight of p-representation
R2 is λ1, i.e.

HGW (R2) =
1

◦
0

×
0

◦
0

◦ ···
0

◦

Next, consider irreducible g-representations ΛkR2+q corresponding to funda-
mental weights λk for k > 1. Since the standard representation decomposes
as R2+q = R2 ⊕ Rq as a g0-module, the k-th exterior power of the standard
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representation decomposes as ΛkR2+q = ⊕i+j=kΛiR2 ⊗ ΛjRq. It is an easy
observation that the subspace on which g1 acts trivially is given by the part
in which i is as large as possible. Hence for k = 2, we obtain that weight λ2

corresponding to the crossed node is the highest weight of one-dimensional
representation Λ2R2 ∼= ΛqRq∗, where only the center of g0 acts non-trivially.
For k = 3, we obtain Λ2R2 ⊗ Rq and so the highest weight of Rq is λ3 − λ2.
Similarly, we deduce that the highest weight of ΛkRq is λk+2−λ2. Diagram-
maticly:

HGW (Rq) =
0

◦
−1

×
1

◦
0

◦ ···
0

◦

HGW (Λ2Rq) =
0

◦
−1

×
0

◦
1

◦ ···
0

◦

HGW (Λq−1Rq) =
0

◦
−1

×
0

◦
0

◦ ···
1

◦

The description of highest weights of the duals of these basic repre-
sentations and their exterior powers follows from the isomorphism R2∗ ∼=
R2 ⊗ (Λ2R2)∗ induced by the wedge product. From here we conclude that
the highest weight of R2∗ is λ1 − λ2. Similarly, for 1 ≤ k < q, we get that
ΛkRq∗ is irreducible with highest weight λq+2−k. Thus we have

HGW (R2∗) =
1

◦
−1

×
0

◦
0

◦ ···
0

◦

HGW (Rq∗) =
0

◦
0

×
0

◦
0

◦ ···
1

◦

Let us next look at representations inducing the tangent bundle TM = EAA′
and the cotangent bundle T ∗M = EA′A , i.e. the adjoint representations g−1

and g1 respectively. If we use the isomorphisms g−1
∼= R2∗�Rq g1

∼= Rq∗�R2,
we conclude from above that these are the irreducible representations of
highest weight λ1 − 2λ2 + λ3 respectively λ1 + λq+1, i.e.

HGW (g−1) =
1

◦
−2

×
1

◦
0

◦ ···
0

◦

HGW (g1) =
1

◦
0

×
0

◦
0

◦ ···
1

◦

2.1.5. Weights. The one-dimensional representations of center z(g0)

can be obviously labelled by scalars which we will call weights. These repre-
sentations give rise to line bundles overM , which we call bundles of densities.
We fix the labelling such that representation Λ2R2 corresponding to the fun-
damental weight λ2 has weight -1. The induced line bundle Λ2EA′ ∼= ΛqEA
of weighted functions of weight -1 will be denoted E [−1]. The dual bundle
Λ2EA′ ∼= ΛqEA is identified with E [1] and via tensor product, we get bundle
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E [w] of weighted functions of weight w for any w ∈ Z. Since we know from
the previous section that Λ2R2 has highest weight λ2, the highest weight of
the representation inducing E [w] in Dynkin diagram notation is

0

◦
−w
×

0

◦
0

◦ ···
0

◦ .

This labelling fits together with the classical notion of conformal weight
in the sense that both notions coincide in the case of a four-dimensional
manifold, where our structure is eqiuvalent to the conformal structure.

Of course, we can tensorize any bundle F with the bundle E [w] of
weighted functions. We obtain so called weighted bundle, which we de-
note simply by F [w]. In the notation of Dynkin diagrams, F [w] is evidently
obtained from F by adding −w to the label over the crossed node.

We write εA′B′ for the section of Λ2EA′ [−1] which gives the identification
E [1] ∼= Λ2EA′ via f 7→ fεA′B′ for f ∈ E [1]. The inverse mapping is given
by Λ2EA′ 3 vA′B′ 7→ −1

2vA′B′ε
A′B′ , where εA′B′ is inverse to εA′B′ . These

objects can be used to raise and lower primed indices similarly as a metric
is used in conformal geometry. One must be careful though since εA′B′ is
antisymmetric. We use the convention for lowering and raising of primed
indices such that vB′ = vA

′
εA′B′ and vB

′
= vA′ε

A′B′ . We have also a sim-
ilar object εA1A2...Aq (with inverse εA1A2...Aq) which gives the identification
ΛqEA ∼= E [1]. But the raising of unprimed indices given by this object is
quite different from the previous case. Only in the case that q = 2, we have
εAB and εAB analogueical to εA′B′ and εA′B′ . Then the object εABεA

′B′ is a
section of S2T ∗M [2] and thus it defines a conformal metric.

2.1.6. Harmonic curvature. Recall that the harmonic curvature κH
is represented by a P -equivariant function G → H2(g−1, g). The cohomology
H2(g−1, g) can be computed (as a P -module) by Kostant’s version of the
Bott-Borel-Weil theorem, c.f. theorem 3.3.5 in [4]. This theorem gives a
bijective correspondence between the irreducible components of H2(g−1, g)

and certain elements in so called Hasse diagram of the parabolic p. For
details, see sections 3.2 and 3.3 in [4]. It turns out that H2(g−1, g) consits
of two irreducible components with highest weights

3

◦
−3

×
0

◦
1

◦ ···
1

◦ ,
0

◦
0

×
1

◦
0

◦ ···
3

◦ .

The corresponding highest weight modules can be described explicitely as
follows. The first one is the intersection of the kernels of the two possible
contractions of

(S2R2 ⊗ R2∗)� (Λ2Rq∗ ⊗ Rq) ⊂ Λ2g∗−1 ⊗ g−1,
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while the second is the kernel of a unique contraction on the space

Λ2R2 � S3Rq∗ ⊗ Rq ⊂ Λ2g∗−1 ⊗ g0.

This information on H2(g−1, g) directly translates into a description of the
harmonic curvature components. Namely, we obtain two components of two
different homogeneities. The first one is of homogeneous degree one and lies
in Γ((S2E⊗E∗)� (Λ2F ∗⊗F )) ⊂ Ω2(M,TM). According to theorem 1.9, it
coincides with the torsion of any Weyl connection. The second component is
of homogeneous degree two and is a section of Λ2E � (S2F ∗ ⊗ sl(F )). Since
it is a section of a subbundle of

G0 ×G0 (Λ2g∗−1 ⊗ g0) ∼= Λ2T ∗M ⊗ End(TM),

it may be interpretated as a part of the curvature of a linear connection on
the tangent bundle. The explicit description of the harmonic curvature in
terms of data associated to the Weyl structure is given in the next section.

2.1.7. Basic tractor bundles. The description of the basic tractor
bundles is simple. Let Eα denote the standard tractor bundle, i.e. the
bundle induced by the standard representation of G = SL(2+q,R) on R2+q.
By definition, the parabolic subgroup P ⊂ G is the stabilizer of R2 in R2+q,
and the associated bundle to the P -representation R2 is EA′ . This means
that EA′ is a smooth subbundle of Eα. On the other hand, the quotient
P -representation R2+q/R2 is the trivial extension of the representation Rq

of the subgroup G0 ⊂ P . This corresponds to the bundle EA, so we get a
short exact sequence

0→ EA′ → Eα → EA → 0 (2.3)

of natural vector bundles. Of course, this sequence does not admit a natural
splitting since the P -representation R2+q is indecomposable. On the other
hand, we can view EA′ ⊂ Eα as a filtration of the vector bundle Eα, and so
we have Eα = EA +

�� EA′ in the notation introduced in the previous chapter.
Since any irreducible representation of sl(2+q,R) is isomorphic to a subrep-
resentation of some tensor power of the standard representation, any tractor
bundle corresponding to an irreducible representation can be found in some
tensor power of the standard tractor bundle. Thus the filtration EA +

�� EA′
gives rise to a filtration of any tractor bundle. As an example, consider the
tractor bundles ΛkEα for k = 2, . . . , q + 1 which correspond to the other
fundamental representations. For these bundles we get

ΛkEα = ΛkEA +
�� EA′ � Λk−1EA +

�� Λ2EA′ � Λk−2EA.
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2.1.8. Almost quaternionic structures. At the end of this section,
we briefly introduce almost quaternionic geometries and the related struc-
tures. These geometries are similar to Grassmannian geometries in many
aspects due to the fact that both are |1|-graded parabolic geometries with
the corresponding Lia algebra g being a real form of gC = sl(n,C). In par-
ticular, analogues of our results will apply also to these structures, although
we will mention the almost Grassmannian case exclusively.

The real form g which corresponds to the almost quaternionic geometry
is the Lie algebra sl(n,H) of quaternionic n×n matrices with vanishing real
trace. The Satake diagram of sl(n,H) has 2n−1 dots, alternatingly black and
white starting and ending with a black dot. Similarly to the Grassmannian
case, the almost quaternionic geometry is defined by a parabolic subgroup
given by crossing of the second root, i.e. it corresponds to the diagram

• × • ◦ • ◦ ··· • .

In quaternion block matrices, the parabolic has the form
(
a Z
X A

)
with blocks

of size 1 and q := n−1, i.e. X ∈ Hq, Z ∈ Hq∗, a ∈ H and A ∈Mq(H), where
re(a) + re(tr(A)) = 0. The entries a and A span g0, X spans g−1

∼= Hq and
Z spans g1

∼= Hq∗. As the group G we choose the group PGL(1 + q,H), the
quotient of all invertible quaternionic linear endomorphisms of H1+q by the
closed normal subgroup of all real multiples of the identity. Then we define
the parabolic P ⊂ G to be the stabilizer of the quaternionic line spanned by
the first basis vector. Thus the homogeneous space G/P can be identified
with the quaternionic projective space HP q of quaternionic lines in H1+q.
The Levi subgroup G0 ⊂ P is the quotient of block diagonal matrices

(
a 0
0 A

)
with a 6= 0 and A ∈ GL(q,H) by real multiples of the identity and the
adjoint action of G0 on g−1

∼= Hn is given by X 7→ A(Xa−1). From this
description, we can deduce the geometric interpretation of the quaternionic
structure. Namely, having a manifold M of dimension 4n, it is equivalent
to a rank three subbundle Q ⊂ L(TM, TM) such that locally around each
point of M we can find with a local smooth frame {I, J,K}, satisfying the
usual relations of the standard basis {i, j, k} of im(H). For details, see 4.1.7
in [4].

By the above description of the Levi subgroup we haveG0
∼= GL(1,H)×R∗

GL(q,H). We can multiply on the right by any real multiple of the iden-
tity, so without loss of generality we can reduce the first factor to Sp(1).
Thus we see that the almost quaternionic geometry is a first-order struc-
ture with a reduction to G0 = Sp(1) ×Z2 GL(q,H). The group G̃0 =

S(GL(1,H) × GL(q,H)) is the universal cover of G0 and the choice of the
structure group G̃0 makes no difference locally. Hence the complexified tan-
gent bundle TCM = TM ×R C is equipped by the reduction of its structure
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group to G̃C
0 = S(GL(2,C) × GL(2q,C)). In other words, TCM satisfies

the fundamental identifications (2.1) and (2.2) for complex bundles E = EA′

F = EA. So the almost quatrnionic structures correspond to (complexified)
almost Grassmannian structures of type (2, 2q). We may therefore include
them into our framework if we deal with the complex P -modules and the
complexified tangent bundle.

2.2. Weyl structures for AG geometries

Let (p : G →M,ω) be a normal almost Grassmannian geometry and let
us choose a Weyl structure σ : G0 → G. By definition, the Weyl connection
∇ on the tangent bundle TM is a linear connection induced by the principal
connection σ∗ω on G0. In this section, we give a detailed description of
these connections on AG-structures, we also give a geometric description
of the harmonic curvature of Cartan connection and we show how various
geometric objects transform under a change of Weyl structure.

2.2.1. Weyl connections for AG geometries. According to theorem
1.9, Weyl connections are exactly those linear connections which have ∂∗-
closed torsion. And moreover, all Weyl connections have the same torsion
T which coincides with the homogeneous component of degree one of the
harmonic curvature. We know from the above description of the harmonic
curvature that this component is a section of (S2E ⊗ E∗) � (Λ2F ∗ ⊗ F ).
Thus we conclude that the torsion of Weyl connection satisfies

TA
′B′C

A B C′ ∈ E
(A′B′)C
[A B] C′

(2.4)

Now let us describe the ∂∗-closedness condition in more detail. By (1.2),
a general formula for the bundle map induced by the Kostant codifferential
∂∗ : Λ2g∗−1 ⊗ g−1 → g∗−1 ⊗ g0 on decomposable elements has the form

∂∗(φ0 ∧ φ1 ⊗ ξ) = φ0 ⊗ {φ1, ξ} − φ1 ⊗ {φ0, ξ}.

The formula for the algebraic bracket in lemma 2.1 yields

∂∗(φ0 ∧ φ1 ⊗ ξ)A
′B′C

A B C′ = −(φ0)A
′

A (φ1)I
′
Bξ

C
I′δ

B′
C′ − (φ0)A

′
A (φ1)B

′
I ξ

I
C′δ

C
B

+ (φ1)A
′

A (φ0)I
′
Bξ

C
I′δ

B′
C′ + (φ1)A

′
A (φ0)B

′
I ξ

I
C′δ

C
B .

Hence we see that in the case of the AG geometry, the condition ∂∗T = 0 is
equivalent to

TA
′I′C

A B I′δ
B′
C′ + TA

′B′I
A I C′δ

C
B = 0,

and this is visibly equivalent to vanishing of both the traces appearing in
this formula. Thus the full characterization of the Weyl connections is that
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its torsion is totally trace-free and enjoys the symmetry (2.4). Equivalently,
in the Young diagram notation the torsion is a section of

T ∈ Γ( EA′ ⊗ q − 16
?
... EA[2]). (2.5)

In sequel, we will deal with Weyl connections which correspond to exact
Weyl structures as introduced briefly in remark 1.1. The bundle of scales
for an almost Grassmannian geometry is the bundle E [1] = Λ2EA′ ∼= ΛqEA.
Thus any section of E [1] defines an exact Weyl structure which in turn in-
duces exact Weyl connections on all natural bundles. The advantage of using
exact Weyl connections is that they preserve εA′B′ ∼= εA...B and so we ob-
tain simplier formulae. Moreover, the difference of two such connections is
an exact one-form. Observe that the class of exact Weyl connections is an
analogueue of Levi-Civita connections from the conformal geometry. Indeed,
recall that the Levi-Civita connection of a metric g is a torsion-free connec-
tion which preserves g. In almost Grassmannian geometry, the exact Weyl
connection of a scale ε is a connection with a totally trace-free torsion with
the above symmetry which preserves ε. Of course, in dimension four these
two notions coincide.

2.2.2. Curvature of Weyl connections. Our conventions for the tor-
sion Tabc and curvature Rabcd of a connection ∇a on the tangent bundle TM
are determined by Ricci identity from proposition 1.11 which in abstract
indices has the form

(∇a∇b −∇b∇a)uc = Rab
c
eu
e − Tabe∇euc.

In almost Grassmaniann geometry, we have TM = Ea = EAA′ and thus ∇a =

∇A′A , Tabc = TA
′B′C

A B C′ and for the curvature Rabcd = RA
′B′C D′

A B C′D , we have

RA
′B′C D′

A B C′D = RA
′B′C

A B Dδ
C′
D′ −RA

′B′D′

A B C′δ
C
D,

where the components RA′B′CA B D and RA′B′D′A B C′ are the curvatures of the con-
nection ∇A′A on the bundles EA and EA′ respectively. Since the Weyl connec-
tion preserves the isomorphism εA

′B′ ∼= εA...B, we conclude that the curva-
tures satisfy RA′B′IA B I = −RA′B′I′A B I′ . Moreover, for an exact Weyl connection
the volume forms are parallel and thus these traces vanish.

By theorem 1.9, the curvature of a Weyl connection decomposes as R =

U − ∂P, where the Weyl part U satisfies gr0(∂∗)(U) = 0 and ∂P is the part
containing only the Rho-tensor. Let us first look in more detail at the latter
part of the curvature. From the formula (1.1) for the Lie algebra differential
∂ : g∗−1⊗g1 → Λ2g∗−1⊗g0, we conclude that the action of the induced bundle
map ∂ on P has the form ∂P(ξ, ζ) = {P(ξ), ζ} − {P(ζ), ξ}. According to the
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explicit form of the algebraic bracket in AG geometry from lemma 2.1, this
equation reads as

{P(ξ), ζ}C D′
C′D = −P(ξ)I

′
Dζ

C
I′δ

D′
C′ − P(ξ)D

′
I ζIC′δ

C
D.

If we fix the abstract index notation which we use for Rho tensor P in such
a way that P(ξ)A

′
A = PI

′A′

I A ξ
I′
I , then the previous equation may be written as

{P(ξ), ζ}C D′
C′D = −(PA

′B′

A D δ
C
Bδ

D′
C′ + PA

′D′

A B δB
′

C′ δ
C
D)ξAA′ζ

B
B′ .

Therefore, for the part ∂P of the curvature we get

(∂P)A
′B′C D′

A B C′D = −PA′D′A B δB
′

C′ δ
C
D+PB

′D′

B A δA
′

C′δ
C
D−PA

′B′

A D δ
C
Bδ

D′
C′+PB

′A′

B D δ
C
Aδ

D′
C′ (2.6)

Now let us describe the Weyl curvature U . By definition, it is a two-
form with values in the bundle End0(EAA′) of trace-free endomorphisms of
the tangent bundle. This bundle is induced by g0 and thus decomposes with
respect to the action of G0 as End0(EAA′) = E ⊕End0(EA)⊕End0(EA′). Since
(E B′A′ )0

∼= E(A′B′)[1] and since two-forms obviously decompose as

EA′A ∧ EB
′

B = E(A′B′)
[AB] ⊕ E(AB)[−1],

the domain of U viewed as a subbundle of EA′B′C′DABCD′ decomposes into irre-
ducibles as follows:

Λ2EA′A ⊗ End0(ECC′) = 2 · E(A′B′)
(AB) ⊕ 2 · E[AB][−1]⊕ 2 · E(AB)[−1]⊕ 3 · E(A′B′)

[AB]

⊕ ED(ABC)0
[−1]⊕ E(A′B′C′D′)

[AB] [1]⊕ E(A′B′)D
(ABC)0

⊕ ED(ABC)0
[−1]⊕ E(A′B′)D

[ABC]0
.

(2.7)
Moreover, the Weyl curvature U lies in the kernel of gr0(∂∗), and so we need
to make this condition explicit in order to describe U . The bundle map
gr0(∂∗) is induced by the Kostant codifferential Λ2g∗−1⊗ g0 → g∗−1⊗ g1, and
thus on decomposable elements by (1.2) has the form

gr0(∂∗)(φ0 ∧ φ1 ⊗A) = φ0 ⊗ {φ1, A} − φ1 ⊗ {φ0, A}.

According to (2.1), this yields

gr0(∂∗)(φ0 ∧ φ1 ⊗A)A
′B′

A B = (φ0)A
′

A ((φ1)B
′

I A
I
B − (φ1)I

′
BA

B′
I′ )

− (φ1)A
′

A ((φ0)B
′

I A
I
B − (φ0)I

′
BA

B′
I′ ),

and so the equation gr0(∂∗)(U) = 0 reads

UA
′B′I

A I B − U
A′I′B′

A B I′ = 0, (2.8)

where these components of U are the Weyl curvatures of ∇ viewed as a
connection on EA and EA′ respectively, i.e.

UA
′B′C D′

A B C′D = UA
′B′C

A B Dδ
D′
C′ − UA

′B′D′

A B C′δ
C
D. (2.9)
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Since one can easily conclude from proposition 1.4 that the map gr0(∂∗) :

Λ2EA′A ⊗ End0(EBB′)→ EA
′B′

A B is surjective and we have

EA′B′A B = E(A′B′)
(AB) ⊕ E

(A′B′)
[AB] ⊕ E[AB][−1]⊕ E(AB)[−1],

we see that the ∂∗-closedness condition (2.8) on U translates into four equa-
tions for irreducible components corresponding to these bundles. Thus the
Weyl curvature splits according to (2.7), but the multiplicity of the "trace"
bundles is less. Namely, each irreducible bundle has multiplicity one with
one exeption - the bundle E(A′B′)

[AB] has multiplicity two. The explicit form of
equation gr0(∂∗)(U) = 0 in terms of irreducible components of U is given in
lemma A.1 in appendix.

The next ingredients which reveal the structure of the curvature, are the
Bianchi identities. Indeed, we know from 1.6 that all components of the cur-
vature κ of the Cartan connection can be expressed in terms of components
of the harmonic curvature. By 1.9, this means that we can express in terms
of torsion all components of U , up to its harmonic part. According to the
description of the harmonic curvature given in the previous section, it is the
part of U in ED(ABC)0

[−1]. The list of formulae for the other components,
obtained from the Bianchi identity, is given in lemma A.2 in appendix.

2.2.3. Linearized transformations. Assume we are given two Weyl
structures σ and σ̂, related by σ̂(u) = σ(u) exp(Υ(u)) for an one-form Υ.
The full transformation of the associated objects for arbitrary one-graded
geometry is described in proposition 1.8. In the sequel, we will deal with
the linearized transformation only. It is sufficient for our purposes since if
the linearized transformation vanishes then it follows by integration that
the full transformation vanishes. Hence the transformation formula (1.3)
giving the isomorphism VM 3 s 7→ (s0, . . . , sN ) ∈ gr(VM) simplifies to
ŝk = sk−Υ• sk−1. The linearized transformation of the covariant derivative
of a section s ∈ VM obviously coincides with the full formula (1.4), i.e.
∇̂ξs = ∇ξs − {Υ, ξ} • s, where ξ ∈ TM and • is the bundle map induced
by the action of g0 on VM . By (1.5), the linearized transformation of Rho-
tensor is evidently equal to P̂(ξ) = P(ξ) +∇ξΥ.

Now let us work out in detail the transformations which we will need in
sequel. Let us start with the induced connection on the tangent bundle. In
this case, the action • is induced by the bracket of g0 and g−1 and thus is
given by the algebraic bracket, i.e. ∇̂ξζ = ∇ξζ − {{Υ, ξ}, ζ} for ξ, ζ ∈ TM .
In abstract index notation for the AG geometry, by lemma 2.1 we get

{{Υ, ξ}, ζ}AA′ = {Υ, ξ}AI ζIA′ − {Υ, ξ}I
′
A′ζ

A
I′

= −ΥI′
I ξ

A
I′ζ

I
A′ −ΥI′

I ξ
I
A′ζ

A
I′ ,
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and from here, we conclude

∇̂A′A ζBB′ = ∇A′A ζBB′ + ΥI′
Aζ

B
I′ δ

A′
B′ + ΥA′

I ζ
I
B′δ

B
A

Similarly, the linearized transformation of the covariant derivative on ϕ ∈
T ∗M has the form ∇̂ξζ = ∇ξζ − {{Υ, ξ}, ϕ} and its explicit form can be
deduced by applying lemma 2.1. Namely, we have

{{Υ, ξ}, ϕ}A′A = ΥA′
I ξ

I
I′ϕ

I′
A + ΥI′

Aξ
I
I′ϕ

A′
I ,

and thus we obtain

∇̂A′A ϕB
′

B = ∇A′A ϕB
′

B −ΥB′
A ϕ

A′
B −ΥA′

B ϕ
B′
A

These basic formulae for linearized transformations for covariant derivatives
on the tangent and cotangent bundle can be easily extended to arbitrary
tensor bundles. For instance, for the covariant derivative of a torsion T ∈
Λ2T ∗M ⊗ TM , we get

∇̂A′A TB
′C′D

B C D′ = ∇A′A TB
′C′D

B C D′ −ΥB′
A T

A′C′D
B C D′ −ΥA′

B T
B′C′D
A C D′

−ΥC′
A T

B′A′D
B C D′ −ΥA′

C T
B′C′D
B A D′ + ΥI′

AT
B′C′D
B C I′ δ

A′
D′ + ΥA′

I T
B′C′I
B C D′δ

D
A .

(2.10)
The formula for linearized transformation of the covariant derivative of a
weighted function f ∈ E [w] can be deduced from the transformation of the
connection induced on E [B′C′] ∼= E [−1]. We compute

∇̂A′A εB
′C′ = ∇A′A εB

′C′ −ΥB′
A ε

A′C′ −ΥC′
A ε

B′A′ = ∇A′A εB
′C′ −ΥA′

A ε
B′C′ ,

since Υ
[A′

A εB
′C′] = 0, and hence for a f ∈ E [w] we conclude

∇̂A′A f = ∇A′A f + wΥA′
A f.

Likewise, for a section s of a weighted bundle F [w] = F⊗E [w], the linearized
transformation of ∇s is ∇̂s+wΥ · s, where ∇̂s is the transformation for F .
The linearized transformation of the Rho-tensor in abstract indices evidently
has the following simple form

P̂A
′B′

A B = PA
′B′

A B +∇A′A ΥB′
B . (2.11)

2.3. Invariant operators for AG geometry

As we mentioned in section 1.4.1, invariant linear operators between
natural bundles over locally flat geometries are in bijective correspondence
with homomorphisms of generalized Verma modules and thus they are well-
known from representation theory. In this section, we give their description
in the case of a (locally flat) almost Grassmannian geometry. We introduce
the non-standard invariant operators and known results about their curved
analogues.
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2.3.1. Invariant operators on flat AG geometires. It is well-known
from the literature that all the standard operators (corresponding to stan-
dard homomorphisms between Verma modules) for a locally flat almost
Grassmannian structure are obtained from the de Rham resolution of the
sheaf of constant functions. The de Rham resolution splits according to the
decomposition of bundles of differential forms into irreducible G0-modules
and the standard invariant operators are exactly components of the exte-
rior derivative and their non-zero compositions. Let us look in a detail at
the de Rham sequence for almost Grassmannian structure of type (2, q).
Obviously, for any k the bundle of k-forms is irreducible as a SL(2q,R)-
module but it decomposes into irreducibles with respect to the action of
SL(2,R)×SL(q,R). This decomposition is easy to deduce if we look at how
the primed indices inherit the symmetry of unprimed indices and vice versa.
The fact that EA′ is a rank two bundle and thus each alternation over more
than two primed indices vanishes yields that any k-form which is symmetric
in more then two unprimed indices vanishes and thus the Young diagram of
SL(q,R)-factor must have two columns at most. Moreover, the number of
rows with two boxes is equal to the number of contracted primed indices.
Hence we conclude that the components of ΛkEA′A are

Sk−2iEA′ [−i]⊗ k − i
6

?
...
... ... i
6
?EA,

where 0 ≤ i ≤ k
2 . Of course, if k − i > q then the component vanishes,

and if k − i = q then we get a one more copy of E [−1] ∼= ΛqEA and the
Young diagram contains q boxes less. In particular, we see that for k ≤ q,
the bundle of k-forms decomposes into [k2 ] + 1 components, while for k > q

we have q − [k2 ] + 1 components. Thus the split de Rham sequence has a
triangular pattern. The case of a locally flat eight dimensional manifold
with AG structure is shown in figure 1. All standard invariant operators
are components of the exterior derivative (short arrows) and their non-zero
compositions. There are two possible compositions in each square. These
compositions coincide up to the sign and are denoted by the longer arrows.
Hence the standard operators are of order one and two rspectively.

In addition to the standard operators, there is by the theory of Verma
modules a family of non-standard operators, which are of our main interest.
In figure 1, they are the long arrows on the left. They are of order four and

transform sections of k6
?
... ... EA[−k] to sections of k + 26

?
... ... EA[−k− 2]. In terms

of the flat connection, they are given by

s 7→ εA′B′εC′D′∇A
′

A ∇B
′

B ∇C
′

C ∇D
′

D s,
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Figure 1. Non-standard operators and the de Rham reso-
lution on an eight-dimensional manifold equipped with the
AG-structure.

followed by the unique projection to the target bundle. Indeed, one can
easily check that for flat connection this formula remains invariant under
the change of Weyl structure.

Definition 2.2. For each q and 0 ≤ k ≤ q − 2 the fourth-order invariant
operators

k6
?
... ... EA[−k]→ k + 26

?
... ... EA[−k − 2]

are called the non-standard operators on locally flat AG geometries.
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2.3.2. Invariant operators on curved AG geometries. As men-
tioned in 1.4.2, first-order operators are strongly invariant and thus the
whole triangular pattern of the De Rham sequence lifts to the case of a
general manifold with the AG structure. In contrast to components of the
exterior derivative, the non-standard operators are not strongly invariant,
c.f. [19]. Therefore, their existence on a curved manifold is not obvious. A
partial answer to the question of their existence is given in theorem 5.1 in
[11]:

Theorem 2.2. Let M be a torsion free AG-structure of type (2, q). For each
integer k such that 0 ≤ k ≤ q − 2 there is a fourth order invariant operator,

�ABCD : k6
?
... ... EE [−k]→ k + 26

?
... ... EE [−k − 2],

which coincides with the corresponding non-standard operator on flat struc-
tures.

We give an alternative proof of a part of this theorem in the next chapter.
Namely, we construct the first operator from this family (the one acting on
functions) via Curved Casimir operators. We also get an explicit formula
for this operator, and we prove that the operator can be extended to an
invariant operator on AG-structures with non-vanishing torsion.

Before doing this, we compute explicit formulae for some of the compo-
nents of the exterior derivative. Namely, we will need in sequel the formulae
for those components appearing in the beginning of the sequence, i.e. the
upper corner in firgure 1. It is more usual to draw the diagram rotated by
90 degrees, such that the non-standard operators appear in the bottom row.
Then the beginning of the sequence corresponds to the left corner. The no-
tation for components of the exterior derivative appearing in this part of De
Rham resolution is shown in figure 2. The components are basically indexed
by Young diagrams of the SL(q,R)-factor of the target bundles.

EA′ ⊗ EA
d

((

EA′A
d

%%

d
99

// EA′ ⊗ EA[−1]

d

''

E

d

::

EA[−1]

d
66

EA[−2]

Figure 2. Notation for components of the exterior derivatives.
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Realizing bundle EA as the kernel of alternation map E[AB]C → E[ABC]

(which we denote also by E (ABC)) and bundle EA as the kernel of E[AB]∨
E[CD] → E[ABCD], (denoted also by E (ABCD) in sequel), we get the following.

Lemma 2.3. For f ∈ E, µA′A ∈ EA
′

A , αAB ∈ E(AB)[−1], AA′B′A B ∈ E
(A′B′)
[AB] and

νA
′

ABC ∈ EA
′

(ABC) we have

(df)A
′

A = ∇A′A f

(d µ)AB = 2∇A′(Aµ
B′

B)εA′B′

(d µ)A
′B′

A B = 2∇(A′

[A µ
B′)
B] + TA

′B′I
A B I′µ

I′
I

(dα)A
′

ABC = 3
2∇

A′

[AαB]C

(d A)A
′

ABC = 3
2∇

C′
C A

A′B′

A B εB′C′ +
3
2T

A′B′I
A B I′A

I′C′

I C εB′C′

− 3
2∇

C′

[CA
A′B′

A B]εB′C′ −
3
2T

A′B′I
[A B|I′A

I′C′

I|C]εB′C′

(d ν)ABCD = −2∇A′[Aν
B′

|CD|B]εA′B′ − 2∇A′[Cν
B′

|AB|D]εA′B′

Proof. The formulae for components of the exterior derivative are ob-
tained essentially as follows. First we embed the given component into the
bundle of exterior forms, then we apply the exterior derivative and then we
project to the target bundle. Thus we need to make explicit the embeddings
and projections. The formula for the exterior derivative is well-known from
the literature. On a (p− 1)-form ω it is defined by

(dω)a1...ap = p∇[a1ωa2...ap] +
p(p− 1)

2
T[a1a2

eω|e|a3...ap].

Since the first equation is obvious, let us start with the second and third.
The embedding is trivial in this case and so the components are given by the
two projections of

(dµ)A
′B′

A B = ∇A′A µB
′

B −∇B
′

B µ
A′
A + TA

′B′I
A B I′µ

I′
I .

The result then follows from the symmetry of the torsion, (2.4). The fourth
and fifth equation follow from the formula for the exterior derivative on
two-forms:

(dω)A
′B′C′

A B C = ∇A′A ωB
′C′

B C +∇B′B ωC
′A′

C A +∇C′C ωA
′B′

A B

+ TA
′B′I

A B I′ω
I′C′

I C + TB
′C′I

B C I′ω
I′A′

I A + TC
′A′I

C A I′ω
I′B′

I B .
(2.12)

The form of the isomorphism E [−1] ∼= Λ2EA′ implies that the embedding of
E(AB)[−1] into Λ2EA′A is given by ωA′B′A B = −1

2αABε
A′B′ . Inserting this into

(2.12) and projecting to EA′[AB]C [−1], the second torsion-term vanishes due
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to the symmetry of the torsion (2.4) and the other two vanish due to its
trace-freeness, and so we immediately obtain the equation

(dα)A
′

[AB]C =
3

2
∇A′[AαB]C .

This formula coincides with the projection to EA′(ABC)[−1] since the total
alternation of unprimed indices vanishes due to the symmetry of α. The
fifth equation is obtained by setting ωA′B′A B = AA

′B′

A B in (2.12) and projecting
to EA′[AB]C [−1]. We get

(dA) A
′B′C′

[A B]C εB′C′ = (∇ B′

[B A C′A′

|C|A]−∇
B′
C A

C′A′

A B +TA
′B′I

A B I′A
I′C′

I C −T
A′B′I
C[A|I′A

I′C′

I|B])εB′C′

and since the first term on the right may be written as

∇ B′

[B A C′A′

|C|A] = −1

2
∇B′C AC

′A′

A B +
3

2
∇ B′

[C AC
′A′

A B],

and we may also rewrite in the same way the last term on the right, we
obtain

(dA) A
′B′C′

[A B]C εB′C′ ≡
3

2
∇C′C AA

′B′

A B εB′C′ +
3

2
TA
′B′I

A B I′A
I′C′

I C εB′C′

modulo terms in EA′[ABC][−1]. Hence the projection of dA to EA′(ABC)[−1]

yields the resulting equation. The last equation is obtained by applying the
formula for the exterior derivetive on

ωA
′B′C′

A B C = −4

9
(νA

′

A(BC)ε
B′C′ + νB

′

B(CA)ε
C′A′ + νC

′

C(AB)ε
A′B′),

(since this is the embedding inverse to the projection Λ3EA′A → EA
′

(ABC)[−1]),
and then projecting to E (ABCD)[−2]. Again, there is no contribution of
torsion. This can be proved either by a direct computation or by the following
represenatation-theoretical argumentation. By (2.5), the torsion may be
viewed as totaly symmetric in primed indices. Thus its action on νA′ABC must
be symmetric in two or four indices. In particular, there is no non-zero
complete contraction and so there is no contribution to E (ABCD)[−2]. �

Remark 2.1. The argument from the end of the proof can be generalized
to the whole bottom row of the figure 2. We conclude that formulae for all
components of the exterior derivative appearing there do not depend on the

torsion. Namely, for s ∈ EA′ � k
6

?
... ... EA[−k + 1] ⊂ EA′[A1...Ak][B1...Bk−1][−k + 1]

we deduce

(d
k6
?
... ...
s)A1...AkB1...Bk = ∇A′[A1

sB
′

|B1...Bk|A2...Ak]εA′B′ +∇
A′

[B1
sB
′

|A1...Ak|B2...Bk]εA′B′

up to a scalar multiple, and for s ∈ k6
?
... ... EA[−k] ⊂ E[A1...Ak][B1...Bk][−k] we

get
(ds)A

′
A1...Ak+1B1...Bk

= ∇A′[A1
sA2...Ak+1]B1...Bk .



CHAPTER 3

Construction of the non-standard operator

3.1. Construction in the torion-free case

We use the curved Casimir operator to construct a curved anologue of the
non-standard operator E → E [−2] for the Grassmannian geometry, i.e. for
an almost Grassmannian geometry which allows existence of a torsion-free
connection. We show that although the direct application of the procedure
of the construction via curved Casimirs described in the first chapter yields
a vanishing operator, the operator can be obtained by a modification of this
procedure, similarly as the square of the conformal Laplacian is constructed
in [6].

3.1.1. Suitable tractor bundle. In order to construct the nonstan-
dard operator E → EA[−2], we need a suitable tractor bundle first. In
particular, the trivial representation and the representation EA must oc-
cur in the composition series of such tractor bundle. It turns out that the
right tractor bundle is a weighted version of Eα, i.e. the tractor bundle
induced by the irreducible representation C(2+q)∗ of sl(2 + q).

The composition series of this bundle is obtained in the following way.
The standard tractor bundle Eα by (2.3) has a natural subbundle EA′ and
the quotient Eα/EA′ is isomorphic to EA. Therefore, the dual bundle EA is a
subbundle of the cotractor bundle Eα := (Eα)∗ and Eα/EA is isomorphic to
EA′ . Hence we have a filtration of Eα which we describe by the composition
series Eα = EA′ +

�� EA. Let us write Y A
α for the cannonical section of EAα which

gives the injecting morphism EA → Eα. We have the following exact sequence

0 // EA
Y // Eα // EA′ //

ξ
tt

0,

which splitts when we choose a Weyl structure. We denote the splitting
EA′ → Eα by ξA

′
α . Every section of the standard cotractor bundle can be

then written either as an expression in the ”injectors” Y , ξ or simply as a
“row vector“ as follows

vα = vA′ξ
A′
α + vAY

A
α =

(
vA′ vA

)
.
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From the composition series of the standard cotractor bundle, we can
easily deduce the form of the composition series of E[αβ]:

E[αβ] = E [1] +
�� EAB′ +

�� E[AB].

Here we used the isomorphism E [1] ∼= E[A′B′] given by εA′B′ . A section
vαβ ∈ E[αβ] can be expressed as

vαβ = σεA′B′ξ
A′

[α ξ
B′

β] + µAB′Y
A

[α ξ
B′

β] + ρABY
A

[αY
B
β]

or shortly displayed as a row vector vαβ =
(
σ µAB′ ρAB

)
with ρAB =

ρ[AB]. From the composition series of E[αβ], we conclude the composition
series for its second symmetric power:

E[αβ] ∨ E[γδ] = E [2] +
�� EAB′ [1] +

��
E[AB][1]

⊕

EAB′ ∨ ECD′

+
�� E[AB]CD′ +

�� E[AB] ∨ E[CD].

Now we use the isomorphism EA′ ∼= EA
′
[1] to raise the all primed indices.

Then we get

E[αβ] ∨ E[γδ] = E [2] +
�� EA′A [2] +

��
E[AB][1]

⊕

EA′A ∨ EB
′

B [2]

+
�� EA′[AB]C [1] +

�� E[AB] ∨ E[CD].

If we write its section vαβγδ as a “transposed matrix” for better readibility,
we have

vαβγδ =



σ

µA
′

B

BA′B′
AB αAB

νA
′

ABC

ρABCD


,

where BA′B′
AB = BB′A′

BA , αAB = α[AB], νA
′

ABC = νA
′

[AB]C , ρABCD = ρ[AB][CD] =

ρ[CD][AB]. The representatives in the interior of this matrix are chosen in
such way that we have

vαβγδ = σεA′B′εC′D′ξ
A′

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ] + µA
′

A εA′B′εC′D′Y
A

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ]

+BA′B′
AB εA′C′εB′D′Y

A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ] + αABεC′D′Y
A

[αY
B
β] ∨ξ

C′

[γ ξ
D′

δ]

+νC
′

ABCεC′D′Y
A

[αY
B
β] ∨Y

C
[γ ξ

D′

δ] + ρABCDY
A

[αY
B
β] ∨Y

C
[γ Y

D
δ] .
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We are using here a shortened notation

Y A
[α ξ

B′

β] ∨ξ
C′

[γ ξ
D′

δ] = 1
2(Y A

[α ξ
B′

β] ξ
C′

[γ ξ
D′

δ] + Y A
[γ ξ

B′

δ] ξ
C′

[α ξ
D′

β] )

= 1
4(Y A

α ξ
B′
β ξC

′
γ ξD

′
δ − Y A

β ξ
B′
α ξC

′
γ ξD

′
δ + Y A

γ ξ
B′
δ ξC

′
α ξD

′
β − Y A

δ ξ
B′
γ ξC

′
α ξD

′
β ).

So this is a map EAB′C′D′ → E[αβ]∨E[γδ] which factorizes through EAB′[C′D′].
Similarly, the other terms give other injections into E[αβ]∨E[γδ] and the sym-
metries of tractor indices translates to the indices of the same kind (primed
or unprimed), i.e. Y A

[αY
B
β] = Y

[A
[α Y

B]
β] , ξ

A′

[α ξ
B′

β] = ξ
[A′

[α ξ
B′]
β] etc.

We are finally approaching the composition series of the tractor bundle
Eα. We realize this bundle as the kernel of the alternation map E[αβ] ∨

E[γδ] → E[αβγδ] and denote by E (αβγδ). Since the fourth skewsymmetric
power of the standard tractor bundle has the simple composition series

E[αβγδ] = E[AB][1] +
�� EA′[ABC][1] +

�� E[ABCD],

from the composition series of E[αβ] ∨ E[γδ] we read off

E (αβγδ) = E [2] +
�� EA′A [2] +

��
E[AB][1]

⊕

E(A′B′)
(AB) [2]

+
�� EA′(ABC)[1] +

�� E (ABCD), (3.1)

where E (ABC) is the kernel of E[AB]C → E[ABC], and E (ABCD) is the kernel
of E[AB]∨E[CD] → E[ABCD]. By definition of E (αβγδ), its section is exactly a
section vαβγδ of E[αβ] ∨ E[γδ] for which v[αβγδ] = 0. Looking at its expression
via the injectors given above, we find that this condition is equivalent to the
equation

BA′B′
AB εA′C′εB′D′Y

A
[α ξ

C′
β Y B

γ ξ
D′

δ] + αABεC′D′Y
A

[αY
B
β ξ

C′
γ ξD

′

δ]

+νC
′

ABCεC′D′Y
A

[αY
B
β Y

C
γ ξ

D′

δ] + ρABCDY
A

[αY
B
β Y

C
γ Y

D
δ] = 0.

The other terms do not appear because the alternation over three primed in-
dices vanishes. This equation is obviously equivalent to the following system
of three equations

−B[A′B′]
[A B]

εA′C′εB′D′ + αABεC′D′ = 0,

νC
′

[ABC] = 0,

ρ[ABCD] = 0.

Tensor B[A′B′]
[A B]

, which is by the first equation determined by αAB, is one
of the two irreducible components of (in pairs) symmetric tensor BA′B′

A B =
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BB′A′

B A . The second irreducible component will be denoted AA′B′A B := B
(A′B′)
(A B)

in sequel. A section vαβγδ ∈ Eα is then given by the expression

vαβγδ = σεA′B′εC′D′ξ
A′

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ] + µA
′

A εA′B′εC′D′Y
A

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ]

+AA
′B′

A B εA′C′εB′D′Y
A

[α ξ
C′

β] ∨Y
B

[γ ξ
D′

δ] + αABεC′D′(Y
A

[αY
B
β] ∨ξ

C′

[γ ξ
D′

δ] + Y A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ] )

+νC
′

ABCεC′D′Y
A

[αY
B
β] ∨Y

C
[γ ξ

D′

δ] + ρABCDY
A

[αY
B
β] ∨Y

C
[γ Y

D
δ] ,

where AA′B′A B = A
(A′B′)
(A B)

, αAB = α[AB], νC
′

ABC = νC
′

[AB]C , ν
C′

[ABC] = 0, ρABCD =

ρ[AB][CD] = ρ[CD][AB] and ρ[ABCD] = 0. We will display such section as a
matrix 

σ

µA
′

A

AA
′B′

A B | αAB

νC
′

ABC

ρABCD


The action of the nilpotent part g1 of the algebra g gives rise to the ac-

tion of one-form on the standard tractor bundle which maps the component
in EA′ to EA and the component in EA to zero. This action can be immedi-
ately computed from the matrix representation of g. For ϕA′A ∈ T ∗M and a
standard cotractor vα =

(
vA′ vA

)
, we have

(ϕ • v)α = −
(
vA′ vA

)0 ϕA
′

A

0 0

 =
(

0 − ϕA′A vA′ ,
)

which we can write using the second notation as (ϕ • v)α = −ϕA′A vA′Y A
α .

This shows the form of the action of a one-form ϕ on the injectors Y , ξ:

(ϕ • ξ)A′α = −ϕA′A Y A
α , ϕ • Y = 0.

Now we use these basic relations to compute the action of a one-form on a
tractor vαβγδ ∈ E (αβγδ) to obtain the following.
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Lemma 3.1. Displaying sections as matrices, the action of T ∗M on a sec-
tion of E (αβγδ) has the form

ϕ •



σ

µA
′

A

AA
′B′

A B | αAB

νC
′

ABC

ρABCD


=



0

−4ϕA
′

A σ

−2ϕ
(A′

(A µ
B′)
B) | − ϕ

A′

[Aµ
B′

B]εA′B′

−2ϕB
′

[BA
A′C′

A]C εA′B′ − 2ϕC
′

C αAB − 2ϕC
′

[BαA]C

−1
2(νC

′

AB[Cϕ
D′

D] + νC
′

CD[Aϕ
D′

B])εC′D′


(3.2)

Proof. The action on the first term in the compositon serie of the trac-
tor vαβγδ equals

σεA′B′εC′D′((ϕ • ξ)A
′

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ] + ξA
′

[α (ϕ • ξ)B′β] ∨ξ
C′

[γ ξ
D′

δ]

+ξA
′

[α ξ
B′

β] ∨(ϕ • ξ)C′[γ ξ
D′

δ] + ξA
′

[α ξ
B′

β] ∨ξ
C′

[γ (ϕ • ξ)D′δ] )

= σεA′B′εC′D′(−ϕA
′

A Y
A

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ] − ξ
A′

[α ϕ
B′

|A|Y
A
β] ∨ξ

C′

[γ ξ
D′

δ]

−ξA′[α ξ
B′

β] ∨ϕ
C′
A Y

A
[γ ξ

D′

δ] − ξ
A′

[α ξ
B′

β] ∨ξ
C′

[γ ϕ
D′

|A|Y
A
δ] )

When we use the displayed symmetries of tractor indices and we rename some
of the summing indices, we see that the all four summands are equal and
therefore the action on the first term results in−4ϕA

′
A σεA′B′εC′D′Y

A
[α ξ

B′

β] ∨ξ
C′

[γ ξ
D′

δ] .
Proceeding in the same way term by term we find that

(ϕ • v)αβγδ =

−4ϕA
′

A σεA′B′εC′D′Y
A

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ] − 2ϕB
′

B µ
A′
A εA′C′εB′D′Y

A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ]

−ϕB′B µA
′

A εA′B′εC′D′Y
A

[αY
B
β] ∨ξ

C′

[γ ξ
D′

δ] − 2ϕB
′

B A
A′C′

A C εA′B′εC′D′Y
A

[αY
B
β] ∨Y

C
[γ ξ

D′

δ]

−2ϕC
′

C αABεC′D′Y
A

[αY
B
β] ∨Y

C
[γ ξ

D′

δ] − 2ϕC
′

B αACεC′D′Y
A

[αY
B
β] ∨Y

C
[γ ξ

D′

δ]

−ϕD′D νC
′

ABCεC′D′Y
A

[αY
B
β] ∨Y

C
[γ Y

D
δ] .

The symmetry of the tractor indices in the second term translate into the
symmetry of the pairs A,C ′ and B,D′. Therefore,it decomposes into two
components: one symmetric in A,B and symmetric in C ′, D′ and the second
skewsymmetric in A,B and skewsymmetric in C ′, D′. The symmetry in
C ′, D′ translates to A′, B′ and thus we get

−2ϕB
′

B µ
A′
A εA′C′εB′D′Y

A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ]

= −2ϕ
(B′

(B µ
A′)
A) εA′C′εB′D′Y

A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ] − 2ϕ
[B′

[B µ
A′]
A] εA′C′εB′D′Y

A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ] .
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The last term can be replaced by −ϕB′[Bµ
A′

A]εA′B′εC′D′Y
A

[α ξ
C′

β] ∨Y
B

[γ ξ
D′

δ] because
our convention for raising and lowering of primed indices yields equations
εB
′A′εA′C′εB′D′ = εC′D′ and εB

′A′εA′B′ = 2. Inserting this into the formula
for the action of ϕ on vαβγδ gives

(ϕ • v)αβγδ

= −4ϕA
′

A σεA′B′εC′D′Y
A

[α ξ
B′

β] ∨ξ
C′

[γ ξ
D′

δ] − 2ϕ
(B′

(B µ
A′)
A) εA′C′εB′D′Y

A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ]

−ϕB′[Bµ
A′

A]εA′B′εC′D′(Y
A

[αY
B
β] ∨ξ

C′

[γ ξ
D′

δ] + Y A
[α ξ

C′

β] ∨Y
B

[γ ξ
D′

δ] )

−2(ϕB
′

[BA
A′C′

A]C εA′B′ + ϕC
′

C αAB + ϕC
′

[BαA]C)εC′D′Y
A

[αY
B
β] ∨Y

C
[γ ξ

D′

δ]

−1
2(νC

′

AB[Cϕ
D′

D] + νC
′

CD[Aϕ
D′

B])εC′D′Y
A

[αY
B
β] ∨Y

C
[γ Y

D
δ] ,

and the result follows by rewritting in the matrix notation. �

3.1.2. Casimir eigenvalues. To construct the non-standard operator
we need to determine the eigenvalues of the curved Casimir operator on
tractor bundle E (αβγδ)[w]. Its composition series is obtained from the series
(3.1) for E (αβγδ) by twisting each component of the series by the weight w:

E (αβγδ)[w] =

E[AB][w + 1]

E [w + 2] +
�� EA′A [w + 2] +

�� ⊕ +
�� EA′(ABC)[w + 1] +

�� E (ABCD)[w].

E(A′B′)
(AB) [w + 2]

(3.3)
By 1.12 the formula for Casimir eigenvalues is ci = 〈λi, λi + 2ρ〉 where ρ is
the lowest form which is from definition given by the sum of all fundamental
weights (or equivalently the half of the sum of positive roots), i.e. in Dynkin
diagram notation

ρ =
1

◦
1

×
1

◦
1

◦ ···
1

◦ .

The weights −λi are the lowest weights of the irreducible p-representations
inducing the bundles appearing in the composition series. Since we will work
with tensor representations only, the lowest weight −λi of a g-representation
coincides with the highest weight of the dual g-representation. Hence the
lowest weights of representations inducing the basic bundles EA′ and EA can
be easily deduced from the description of highest weights in section 2.1.4.



3.1. CONSTRUCTION IN THE TORION-FREE CASE 63

Namely, in Dynkin diagram notation they are

−LOW (EA′) =
1

◦
−1

×
0

◦
0

◦ ···
0

◦

−LOW (EA) =
0

◦
0

×
0

◦
0

◦ ···
1

◦ .

For the duals we conclude

−LOW (EA′) =
1

◦
0

×
0

◦
0

◦ ···
0

◦

−LOW (EA) =
0

◦
−1

×
1

◦
0

◦ ···
0

◦ ,

and thus for the tangent and cotangent bundle we get

−LOW (Ea = EAA′) =
1

◦
0

×
0

◦
0

◦ ···
1

◦

−LOW (Ea = EA′A ) =
1

◦
−2

×
1

◦
0

◦ ···
0

◦ .

From the lowest weights of the basic bundles we deduce the lowes weights of
all representations appearing in composition series (3.1) of Ea. And since
the convention for the bundle of densities fixed in section 2.1.5 in Dynkin
diagram notation reads

−LOW (E [w]) =
0

◦
w

×
0

◦
0

◦ ···
0

◦ ,

we also easily get the expressions for lowest weights appearing in the com-
position series (3.3) of Ea[w]. Namely, in terms of minus lowest weights
−λi, the composition series has the form

0

◦
w+2

◦
0

◦
0

◦ ···
0

◦

=



0

◦
w+2

×
0

◦
0

◦ ···
0

◦

1

◦
w

×
1

◦
0

◦ ···
0

◦

2

◦
w−2

×
2

◦
0

◦ ···
0

◦ |
0

◦
w

×
0

◦
1

◦ ···
0

◦

1

◦
w−2

×
1

◦
1

◦ ···
0

◦

0

◦
w−2

×
0

◦
2

◦ ···
0

◦


Now we choose the usual basis e1, e2, e3, . . . , eq+2 of h∗ with the property

that e1 + e2 + e3 + · · ·+ eq+2 = 0 and we express the highest weights in this
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basis. The advantage of this expression is that the inner product of weights
then coincides with the standard inner product in Rq+2.

With this choice of a basis, the fundamental weights equal

e1 + e2 + e3 + · · ·+ ei for i = 1, 2, . . . , q + 1

which implies that the lowest form equals

ρ = (q + 1)e1 + qe2 + (q − 1)e3 + · · ·+ eq+1

This can be written as a vector in Rq+2

ρ = (q + 1, q, q − 1, . . . , 1,−(q + 1)(q + 2)

2
)

For the weights λi, we get

λ0 =
0

◦
w+2

×
0

◦
0

◦ ···
0

◦ = (w + 2)(e1 + e2)

= (w + 2, w + 2, 0, . . . , 0,−2w − 4)

λ1 =
1

◦
w

×
1

◦
0

◦ ···
0

◦ = e1 + w(e1 + e2) + e1 + e2 + e3

= (w + 2, w + 1, 1, 0, . . . , 0,−2w − 4)

λ1
2 =

2

◦
w−2

×
2

◦
0

◦ ···
0

◦ = 2e1 + (w − 2)(e1 + e2) + 2(e1 + e2 + e3)

= (w + 2, w, 2, 0, . . . , 0,−2w − 4)

λ2
2 =

0

◦
w

×
0

◦
1

◦ ···
0

◦ = w(e1 + e2) + e1 + e2 + e3 + e4

= (w + 1, w + 1, 1, 1, 0, . . . , 0,−2w − 4)

λ3 =
1

◦
w−2

×
1

◦
1

◦ ···
0

◦ = e1 + (w − 2)(e1 + e2) + 2e1 + 2e2 + 2e3 + e4

= (w + 1, w, 2, 1, 0, . . . , 0,−2w − 4)

λ4 = − = (w,w, 2, 2, 0, . . . , 0,−2w − 4)

Now it is easy to calculate the Casimir eigenvalues. We have

c0 = (w+2)(w+2+2(q+1))+(w+2)(w+2+2q)+(2w+4)(2w+4+
(q + 1)(q + 2)

2
)

If we put

p(w, q) = (2w + 4)(2w + 4 +
(q + 1)(q + 2)

2
)

then we get
c0 = 2w2 + 10w + 4qw + 8q + 12 + p(w, q)



3.1. CONSTRUCTION IN THE TORION-FREE CASE 65

Similarly

c1 = (w + 2)(w + 2 + 2(q + 1)) + (w + 1)(w + 1 + 2q)

+(1 + 2(q − 1)) + p(w, q)

= 2w2 + 4qw + 8w + 8q + 8 + p(w, q)

c1
2 = (w + 2)(w + 2 + 2(q + 1)) + w(w + 2q)

+2(2 + 2(q − 1)) + p(w, q)

= 2w2 + 4qw + 6w + 8q + 8 + p(w, q)

c2
2 = (w + 1)(w + 1 + 2(q + 1)) + (w + 1)(w + 1 + 2q) + 1 + 2(q − 1)

+1 + 2(q − 2) + p(w, q)

= 2w2 + 4qw + 6w + 8q + p(w, q)

c3 = (w + 1)(w + 1 + 2(q + 1)) + w(w + 2q) + 2(2 + 2(q − 1))

+1 + 2(q − 2) + p(w, q)

= 2w2 + 4qw + 4w + 8q + p(w, q)

c4 = w(w + 2(q + 1)) + w(w + 2q) + 2(2 + 2(q − 1))

+2(2 + 2(q − 2)) + p(w, q)

= 2w2 + 4qw + 2w + 8q − 4 + p(w, q)

Hence the differences of Casimir eigenvalues c0 − ci are

0

−2w − 4

−4w − 4 | −4w − 12

−6w − 12

−8w − 16


. (3.4)

3.1.3. Operators obtained from the curved Casimir construc-
tion. As we can observe from (3.4), the coincidence of the Casimir eigenval-
ues in the top-slot and the bottom-slot happens for the weight w = −2. So
this is the case when the construction yields an invariant operator between
the respective bundles, as explained in section 1.4. Hence the right tractor
bundle to consider is Eα[−2]. It follows from (3.3) that its composition
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series has the form

Eα[−2] =

EA[−1]

E +
�� EA′A +

�� ⊕ +
�� EA′ ⊗ EA[−1] +

�� EA[−2]

EA′ ⊗ EA
(3.5)

Obviously, the curved Casimir operator acts by zero on the bundle of func-
tions E which appears in the injecting slot and so we have c0 = 0. Then it
follows from (3.4) that the next Casimir eigenvalues are c1 = c3 = c4 = 0

and c1
2 = 4, c2

2 = −4. Hence we observe that this case is highly degenerate
in the sense that four out of six eigenvalues coincide. This indicates that the
curved Casimir construction yields more invariant operators. In view of the
composition series (3.5), the situaton can be schematically displayed as

4

0

C
''
0

C(C−4)(C+4)

AA 0

C
''
0

−4

(3.6)

This shows that the curved Casimir operator C itself gives rise to invariant
operators

∇1 : E → EA′A and ∇2 : EA′ ⊗ EA[−1]→ EA[−2],

and the composition C(C − 4)(C + 4) gives rise to a "middle" operator

M : EA′A → EA
′ ⊗ EA[−1].

These induced invariant operators can be drawn as

EA[−1]

E

∇1

##
+
�� EA′A

M

==
+
�� ⊕ +

�� EA′ ⊗ EA[−1]

∇2

&&
+
�� EA[−2].

EA′ ⊗ EA

By construction, the composition C2(C−4)(C+4) induces invariant operators
E → EA′ ⊗ EA[−1] and EA′A → EA[−2]. It is easy to see that these
operators are given by compositions M∇1 and∇2M respectively. And finally,
we also get an invariant operator E → EA[−2]. It is induced by C3(C −
4)(C + 4) and it is obviously given by the composition ∇2M∇1.
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Although the construction guarantees that this operator is invariant, we
do not know its order (or even whether it is non-zero) and so we do not know
whether it is an analog of the non-standard operator. Before computing a full
formula, it is helpful to look at the homogenous model. If we assume that the
underlying manifoldM is locally flat, then there is an easy general algorithm
for computing formulae for the induced operators from the knowledge of the
Casimir eigenvalues and the action of T ∗M on the given tractor bundle.
Applying this algorithm, we can easily find that both the compositions M∇1

and ∇2M vanish in the locally flat case and hence so does ∇2M∇1. We do
not describe this algorithm here because we are going to compute the full
formulae for ∇1, ∇2, M on a general (curved) manifold M in the course of
this section and then the vanishing of M∇1 and ∇2M on flat manifolds will
become obvious.

Hence we conclude that ∇2M∇1 is not the curved analog that we wanted
to construct. Nevertheless, vanishing of M∇1 and ∇2M implies the existence
of another invariant operator in the following sense. Let us consider once
more the composition C2(C−4)(C+4) of the curved Casimir operators acting
on the tractor bundle Eα[−2]. In view of the Casimir eigenvalues displayed
in (3.6), it is easy to see that it acts trivially on the all exept the first
two irreducible pieces of the composition series (3.5), and so the operator
C2(C − 4)(C + 4) descends to an invariant operator

E +
�� EA′A → EA′ ⊗ EA[−1] +

�� EA[−2] .

Now the main observation is that the image in EA′⊗ EA[−1] by construction
depends only on E , and not on EA′A . Concretely, choosing a Weyl structure
σ, this operator is by definitions of ∇1, ∇2, M given byf

µ

 7→
 M∇1(f)

∇2M(µ) + Dσ(f)

 , (3.7)

where Dσ is an operator E → EA[−2], which is not invariant in general.
The subscript stresses that it depends on the choice of the Weyl structure
σ. But in the same time, it is obvious that Dσ becomes invariant when the
operators M∇1 and ∇2M happen to vanish. Indeed, the exact dependence
of Dσ on a choice of σ is easy to compute. Let us consider a change of Weyl
structure σ(u) 7→ σ̂(u) = σ(u)exp(Υ(u)). Then the invariance of (3.7) yields M∇1(f)

∇2M(µ−Υ • f) + Dσ̂(f)

 =

 M∇1(f)

∇2M(µ) + Dσ(f)−Υ •M∇1(f)

 ,
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and from here we read off the transformation formula for Dσ:

Dσ̂(f) = Dσ(f)−Υ •M∇1(f) +∇2M(Υ • f) (3.8)

In particular, Dσ becomes an invariant operator D whenever the compositions
M∇1 and∇2M vanish. This is the case for a locally flat manifold and it turns
out that then D coincides with the non-standard operator. In the rest of this
section, we show that M∇1 and ∇2M vanish identically also in the torsion-
free case and so we will prove the following

Theorem 3.2. In the case of a manifold endowed with Grassmannian (i.e.
torsion-free almost Grassmannian) structure, the action of C2(C − 4)(C + 4)

on the tractor bundle Eα[−2] gives rise to an invariant operator D : E →
EA[−2] which is a curved analog of the non-standard operator on functions.

In the rest of this section, we compute formulae for the operators ∇1,
∇2, M and Dσ and we use them to prove this theorem.

3.1.4. Abstract formulae for ∇1, ∇2, M. We compute formulae for
∇1, ∇2, M in an abstract way first. This means that we do not use the
explicit form of the action of T ∗M . Let us display again the formula (1.8)
for the curved Casimir operator

C(s) = c(s)− 2
∑
`

ϕ` • ∇ψ`s− 2
∑
`

ϕ` • P(ψ`) • s.

For the sake of simplicity, we replace C by −1
2C. Then we can write the

formula for this modified Casimir operator in a simple shortened way as

C = −1

2
c.+∇ •+P • •.

Now we consider its action on our tractor bundle Eα[−2]. In the previous
subsections, we have computed how this tractor bundle decomposes (3.5)
and we computed the eigenvalues on the individual irreducible pieces, cf.
3.6. Although we have also computed the explicit form of the action •, we
do not use it now and we write the action of C on Eα[−2] analogous to
the previous equation as

C



f

µ

A | α

ν

ρ


=



0

∇ • f

−2A+ (∇ • µ)1 + (P • •f)1 | 2α+ (∇ • µ)2 + (P • •f)2

∇ •A+∇ • α+ P • •µ

∇ • ν + P • •A+ P • •α


(3.9)
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where the brackets ()1 and ()2 denote the projections to the corresponding
irreducible representations in the middle slot.

Now the operators ∇1, ∇2 are defined just by this action of C and so we
get

∇1(f) = ∇ • f and ∇2(ν) = ∇ • ν (3.10)

The operator M is by definition induced by C(C+2)(C−2) (the eigenvalues are
divided by -2 now) and since we can permute the factors in this composition
freely, its action on µ equals

(C − 2)(C + 2)C



0

µ

0 | 0

0

0


= (C − 2)(C + 2)



0

0

(∇ • µ)1 | (∇ • µ)2

P • •µ

0


according to (3.9). Acting with the next factor, we get

(C − 2)



0

0

0 | 4(∇ • µ)2

2P • •µ+∇ • (∇ • µ)1 +∇ • (∇ • µ)2

∇ • (P • •µ) + P • •(∇ • µ)1 + P • •(∇ • µ)2


and this equals

0

0

0 | 0

−4P • •µ− 2∇ • (∇ • µ)1 + 2∇ • (∇ • µ)2

−2P • •(∇ • µ)1 + 2P • •(∇ • µ)2 +∇ •∇ • (∇ • µ)1 +∇ •∇ • (∇ • µ)2


where we used (3.9) again. Now the expression in the upper slot gives a
formula for M. We divide it by the factor -2 for the sake of simplicity and
so we get

M(µ) = ∇ • (∇ • µ)1 −∇ • (∇ • µ)2 + 2P • •µ (3.11)
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3.1.5. Explicit formulae for ∇1, ∇2, M. Now we use the explicit
form of the action • of T ∗M on the tractor bundle E (αβγδ)[−2] computed
in (3.2) to make the formulae (3.10) and (3.11) for the operators ∇1, ∇2 and
M explicit. From now on, we omit the brackets while expressing the action
of these operators on sections. We write simply ∇1f instead of ∇1(f), Mµ
instead of M(µ) etc.

The case of the operators ∇1 and ∇2 is very easy. We obtain the corre-
sponding formulae directly from (3.2). Namely, we have

(∇1f)A
′

A = (∇ • f)A
′

A = −4∇A′A σ

for a function f ∈ E and

(∇2ν)ABCD = (∇ • ν)ABCD = −1

2
(∇A′[Aν

B′

|CD|B] +∇A′[Cν
B′

|AB|D])εA′B′

for a section νA
′

ABC = νA
′

[AB]C ∈ E
A′

(ABC)[−1]. These expressions may look
familiar. Indeed, they differ from the expressions for the exterior derivative
from lemma 2.3 just by a scalar multiple. Hence we have proved the following

Proposition 3.3. Up to a non-zero scalar multiple, the operators ∇1, ∇2

coincide with components of the exterior derivative.

In order to make the formula (3.11) for the operator M explicit, we
first compute what is the result of going from the second slot to the fourth
one (counting from the top) along the two possible paths. Concretely, we
compute ϕ • (ψ • µ)1 and ϕ • (ψ • µ)2.

Lemma 3.4. Let ϕ,ψ, µ ∈ EA′A . Then the following holds

ϕ • (ψ • µ)1
C′
ABC = (2ϕA

′

[Aψ
B′

B]µ
C′
C + 2ϕA

′

[Aψ
C′

|C|µ
B′

B] − ϕ
C′
C ψ

A′

[Aµ
B′

B]

+3ϕC
′

[Cψ
A′
A µ

B′

B])εA′B′

ϕ • (ψ • µ)2
C′
ABC = (3ϕC

′
C ψ

A′

[Aµ
B′

B] − 3ϕC
′

[Cψ
A′
A µ

B′

B])εA′B′

Proof. According to (3.2), the left-hand path gives

ϕ • (ψ • µ)1
C′
ABC = −2ϕA

′

[A(ψ • µ)1
B′C′

B]C εA′B′

= 2ϕA
′

A ψ
(B′

(B µ
C′)
C) εA′B′ − 2ϕA

′
B ψ

(B′

(A µ
C′)
C) εA′B′

When we expand the symmetrizations and we keep the alternation over A
and B, we obtain

ϕ• (ψ •µ)1
C′
ABC = (ϕA

′

[Aψ
B′

B]µ
C′
C +ϕA

′

[Aψ
C′

B]µ
B′
C +ϕA

′

[Aψ
B′

|C|µ
C′

B] +ϕA
′

[Aψ
C′

|C|µ
B′

B])εA′B′
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This can be written also in the following way

ϕ • (ψ • µ)1
C′
ABC = (2ϕA

′

[Aψ
B′

B]µ
C′
C + 2ϕA

′

[Aψ
[C′

B] µ
B′]
C + 2ϕA

′

[Aψ
[B′

|C|µ
C′]
B]

+2ϕA
′

[Aψ
C′

|C|µ
B′

B])εA′B′

The two terms in the middle can be replaced by 2ϕA
′

C ψ
[B′

[A µ
C′]
B] −6ϕA

′

[Cψ
[B′

A µ
C′]
B]

and contracting with εA′B′ gives (−ϕC′C ψ
[A′

[A µ
B′]
B] +3ϕC

′

[Cψ
[A′

A µ
B′]
B] )εA′B′ . There-

fore, we get

ϕ • (ψ • µ)1
C′
ABC = (2ϕA

′

[Aψ
B′

B]µ
C′
C + 2ϕA

′

[Aψ
C′

|C|µ
B′

B] − ϕ
C′
C ψ

A′

[Aµ
B′

B]

+3ϕC
′

[Cψ
A′
A µ

B′

B])εA′B′

as we claimed. The right-hand path gives

ϕ • (ψ • µ)2
C′
ABC = −2ϕC

′
C (ψ • µ)2AB − 2ϕC

′

[B(ψ • µ)2A]C

= 2ϕC
′

C ψ
A′

[Aµ
B′

B]εA′B′ + ϕC
′

B ψ
A′

[Aµ
B′

C]εA′B′ − ϕ
C′
A ψ

A′

[Bµ
B′

C]εA′B′

The expansion of the alternations in the last two terms (and keeping the
alternation over A and B) yields the following expression for the right-hand
path

ϕ • (ψ • µ)2
C′
ABC = (2ϕC

′
C ψ

A′

[Aµ
B′

B] + ϕC
′

[Bψ
A′

A]µ
B′
C − ϕC

′

[Bψ
A′

|C|µ
B′

A])εA′B′

The last two terms can be replaced by ϕC′C ψ
A′

[Aµ
B′

B] − 3ϕC
′

[Cψ
A′
A µ

B′

B] and thus
we obtain

ϕ • (ψ • µ)2
C′
ABC = (3ϕC

′
C ψ

A′

[Aµ
B′

B] − 3ϕC
′

[Cψ
A′
A µ

B′

B])εA′B′

�

From the second equation in the previous lemma we conclude

Lemma 3.5. For any one-form µ the Rho-tensor satisfies

(P • •µ)C
′

ABC = −2∂P(µ)C
′A′B′

C[AB] εA′B′ + 2∂P(µ)C
′A′B′

[CAB] εA′B′ .

Proof. The action of P on µ is defined by P • •µ =
∑

` ϕ
` •P(ψ`) •µ =∑

`(ϕ
` • (P(ψ`) • µ)1 + ϕ` • (P(ψ`) • µ)2). So this term is given by the sum

of the two possible paths and thus by lemma 3.4 we get

(P • •µ)C
′

ABC = 2(PA
′B′

[AB]µ
C′
C + PA

′C′

[A|C|µ
B′

B] + PC
′A′

C[A µ
B′

B])εA′B′ . (3.12)

On the other hand, ∂P viewed as a two-form with values in endomorphisms
of the tangent bundle has been computed in (2.6). From this equation, we
deduce that the value of ∂P on the one-form µ is equal to

∂P(µ)C
′A′B′

C A B = −PA′B′A C µ
C′
B + PC

′B′

C A µ
A′
B − PA

′C′

A B µ
B′
C + PC

′A′

C B µ
B′
A . (3.13)
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Alternating indices A and B and contracting A′ and B′ immediately yiekds

∂P(µ)C
′A′B′

C[AB] εA′B′ = (−PA′B′[A|C|µ
C′

B] + PC
′B′

C[A µA
′

B] − PA
′C′

[AB]µ
B′
C + PC

′A′

C[B µ
B′

A])εA′B′ .

Since the alternation over three primed indices vanishes, we observe that the
second term on the right-hand side can be written as

PC
′B′

C[A µA
′

B]εA′B′ = PB
′C′

C[A µA
′

B]εA′B′ + PA
′B′

C[A µ
C′

B]εA′B′

Replacing the term by this expression we get

∂P(µ)C
′A′B′

C[AB] εA′B′ =

(−PA′B′[A|C|µ
C′

B] + PB
′C′

C[A µA
′

B] + PA
′B′

C[A µ
C′

B] − PA
′C′

[AB]µ
B′
C + PC

′A′

C[B µ
B′

A])εA′B′ .

Now the sum of the first and the third term on the right can be written as

−PA′B′[A|C|µ
C′

B]εA′B′ + PA
′B′

C[A µ
C′

B]εA′B′ = −PA′B′[AB]µ
C′
C εA′B′ + 3PA

′B′

[AB µC
′

C]εA′B′ ,

and similarly

PB
′C′

C[A µA
′

B]εA′B′ − PA
′C′

[AB]µ
B′
C εA′B′ = −PA′C′[A|C|µ

B′

B]εA′B′ + 3PA
′C′

[AC µ
B′

B]εA′B′ .

The two terms skew-symmetric in all unprimend indices in the two previous
equations sum up to −3PC

′A′

[CA µ
B′

B]εA′B′ , and thus we obtain

∂P(µ)C
′A′B′

C[AB] εA′B′ = (−PA′B′[AB]µ
C′
C −PA

′C′

[A|C|µ
B′

B]−P
C′A′

C[A µ
B′

B]−3PC
′A′

[CA µ
B′

B]εA′B′)εA′B′ .

Taking next the alternation over all unprimed indices in (3.13) yields

∂P(µ)C
′A′B′

[CAB] εA′B′ = (−PA′B′[A Cµ
C′

B] + PC
′B′

[CA µA
′

B] − PA
′C′

[AB µ
B′

C] + PC
′A′

[CB µ
B′

A])εA′B′ .

Since the alternation over three primed indices vanishes, the first and the
third term on the right-hand side sum up to −PC′A′[CA µ

B′

B]εA′B′ , so we conclude

∂P(µ)C
′A′B′

[CAB] εA′B′ = −3PC
′A′

[CA µ
B′

B]εA′B′ .

Hence the right-hand side of the equation in the lemma is

−2∂P(µ)C
′A′B′

C[AB] εA′B′ + 2∂P(µ)C
′A′B′

[CAB] εA′B′

= (2PA
′B′

[AB]µ
C′
C + 2PA

′C′

[A|C|µ
B′

B] + 2PC
′A′

C[A µ
B′

B])εA′B′ ,

and this is equal to the formula (3.12) for P • •µ. �

The latter two lemmas motivate a simplier notation which makes the
formulae similar to formulae known from conformal geometry. Namely, we
may view EA′ ⊗ EA[−1] as the image of the bundle map Π : Eabc →
EA′(ABC)[−1] defined by

Π (s)C
′

ABC := (sA
′B′C′

[AB]C − s
A′B′C′

[ABC] )εA′B′ , (3.14)

and represent each section sA′ABC ∈ EA
′

(ABC)[−1] by its preimage sabc ∈ ⊗3Ea,
which we denote by the same symbol but with tensor indices. Of course, this
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correspondence is not bijective. For two sections s1
abc and s

2
abc of Eabc which

have the same image under the map Π and thus represent the same section
of EA′(ABC)[−1], we use the notation s1

abc ≡ s2
abc modulo Ker(Π ). The

map Π can be thought of as a projection to a subbundle. Indeed, it is a
composition of the projection from ⊗3EA to our realization of EA as the
kernel of Alt : E[AB]C → E[ABC] with a contraction of two primed indices
such that it factorizes through E(ab)c. It is obvious that it coincides with
the contraction with the conformal metric gab := εA′B′ε

AB in the case of a
four-dimensional manifold (q = 2). Hence the projection Π can be viewed
as a replacement for that. Using this projection we may reformulate the
previous two lemmas as follows.

Lemma 3.6. The following equations hold modulo Ker(Π ):

(ϕ • (ψ • µ)1)abc ≡ 2ϕaψbµc + 2ϕaψcµb − ϕcψaµb,

(ϕ • (ψ • µ)2)abc ≡ 3ϕcψaµb,

(P • •µ)abc ≡ −2∂P(µ)cab ≡ 2Pabµc + 2Pacµb + 2Pcaµb. (3.15)

Proof. By definition (3.14) of projection Π , the image of the riht-hand
side of the first equation under Π is equal to

(2ϕA
′

[Aψ
B′

B]µ
C′
C + 2ϕA

′

[Aψ
C′

|C|µ
B′

B] − ϕ
C′
C ψ

A′

[Aµ
B′

B])εA′B′

− (2ϕA
′

[Aψ
B′
B µC

′

C] + 2ϕA
′

[Aψ
C′
C µ

B′

B] − ϕ
C′

[Cψ
A′
A µ

B′

B])εA′B′ .

By lemma 3.4, this is evidently equal to ϕ • (ψ • µ)1
C′
ABC modulo terms in

EC′[ABC]. And since both terms lie by construction in the kernel of the complete
alterantion of unprimed indices, they are equal. One can also check directly
that the second line in the previous expression sum up to 3ϕC

′

[Cψ
A′
A µ

B′

B]εA′B′ .
Analogously, the second and the third equation can be derived directly from
lemma 3.4 respectively lemma 3.5 (and equation (3.12) in the proof) by use
of the definition of the map Π . �

In sequel, we will need the expression for the difference and the sum of
the two paths from the previous lemma since exactly these terms appear in
the formula (3.11) for the operator M. One verifies directly from the lemma
that modulo Ker(Π ) we have

(ϕ • (ψ • µ)1 − ϕ • (ψ • µ)2)abc ≡ 8ϕ[aψc]µb + 4ϕaψ[bµc] (3.16)

(ϕ • (ψ • µ)1 + ϕ • (ψ • µ)2)abc ≡ 2ϕaψcµb + 2ϕaψbµc + 2ϕcψaµb. (3.17)

.
Using the latter lemma we immediately obtain an explicit form of the

equation for the invariant operator M. Recall that U denotes the Weyl
curvature defined in section 1.3.4.
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Proposition 3.7. Up to a non-zero scalar multiple, the operator M is given
by the composition M = Π ◦ M̃, where

(M̃µ)abc = ∇a∇[bµc] + Uacb
eµe − Tace∇eµb. (3.18)

Proof. It is a direct consequence of equations (3.15) and (3.16) that
the formula (3.11) for the operator M can be written as Π applied to

(M̃µ)abc = 8∇[a∇c]µb + 4∇a∇[bµc] + 4∂P(µ)acb.

Now we use Ricci identity to the first term and we get

(M̃µ)abc = 4(Racb
eµe − Tace∇eµb +∇a∇[bµc] + ∂P(µ)acb).

But R+ ∂P is the Weyl curvature U and the result follows. �

Formula (3.18) for the operator M simplifies in the torsion-free case.
Namely, we show in this case that M is a composition of components of the
exterior derivative, and hence coincides with the standard operator between
corresponding bundles in the split de Rham resolution.

Corollary 3.8. In the case that the torsion of ∇ vanishes, the operator M
coincides with the composition dd of components of the exterior derivative
up to a non-zero scalar multiple.

Proof. Let us look first at the lower order terms in the formula (3.18)
for the operator M̃. The term involving torsion vanishes by assumption. The
term involving Weyl curvature is non-zero but it vanishes when projected to
EA′⊗ EA[−1]. This can be explained as follows. According to corollary A.3
in appendix, vanishing of the torsion of ∇ implies that the Weyl curvature
Uacb

e is irreducible, and equal to

Uacb
e = ϕA C B

EεA
′C′δB

′
E′ ,

where ϕA C B
E ∈ EE(ACB)0

[−1]. Hence we have Uacbeµe = ϕA C B
EµB

′
E ε

A′C′ ,

and this is mapped to zero when projected under Π to EA′(ABC)[−1]. Thus
the operator M is given simply by the projection Π of∇a∇[bµc] = ∇a(dµ)bc.

On the other hand, we have from lemma 2.3 the following formula for the
exterior derivative

(dd µ)A
′

ABC =
3

2
∇A′[A(d µ)B]C .

In the torsion-free case, by the same lemma we also have

(d d µ)A
′

ABC =
3

2
(∇C′C (d µ)A

′B′

A B −∇
C′

[C (d µ)A
′B′

A B])εB′C′ .
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These formulae can be rewritten as

(dd µ)C
′

ABC = 3
2∇

C′

[A(d µ)A
′B′

B]C εA′B′ = −3∇A′[A(d µ)B
′C′

B]C εA′B′

(d d µ)C
′

ABC = 3
2(∇B′C (d µ)C

′A′

A B −∇
B′

[C (d µ)C
′A′

A B])εA′B′

= 3(∇A′A (d µ)B
′C′

B C −∇
A′

[A(d µ)B
′C′

B C])εA′B′

and so we see that the equations for exterior derivatives can be written with
the help of the projection Π simply as

dd µ = −3Π (∇d µ)

d d µ = 3Π (∇d µ).

And since d = d +d , we get dd −d d = −3Π ◦∇d = −3M, which shows
that M is given by the difference of the two possible paths in the De-Rham
sequence from one-forms to three-forms. Since d2 = 0, these two paths give
the same operator up to the sign and hence we end up with

M = −2

3
dd =

2

3
d d

�

Now it is a straightforward consequence of this corollary and the propo-
sition 3.3 that the compositions M∇1 and ∇2M vanish. Indeed, M∇1 =

dd d = 0 since d d is the projection of d2 to EA[−1] and∇2M = d dd =

0 since d d is the projection of d2 to EA[−2]. So the existence of the in-
variant operator D from theorem 3.2 is proved.

3.1.6. A formula for the operator D. In order to complete the proof
of theorem 3.2, we need to show that, in the case of a locally flat manifoldM ,
the operator D coincides with the non-standard operator on functions. This
becomes obvious after we find an explicit formula for D. By definition, D is
induced by an action of C2(C−4)(C+4) on the tractor bundle Eα[−2] in the
torsion-free case, see 3.1.3. Hence we need to express this operator formed
by curved Casimirs in terms of data associated to a Weyl structure. We
first use formula (3.9) for the curved Casimir operator to obtain an abstract
formula for D in terms of the action • of T ∗M on the tractor bundle Eα,
whose explicit form is given by equation (3.2) and then we make this formula
explicit.

Lemma 3.9. In terms of the action •, we have

D(f) = ∇ •∇ • (∇ •∇ • f)1 +∇ •∇ • (∇ •∇ • f)2

− 2P • •(∇ •∇ • f)1 + 2P • •(∇ •∇ • f)2

− 2∇ •∇ • (P • •f)1 + 2∇ •∇ • (P • •f)2

(3.19)
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Proof. The operator D is defined by equation (3.7) for the action of
C2(C − 4)(C + 4) on a section of the tractor bundle Eα[−2]. By this
equation, a formula for D is obtained by acting on a section that has a non-
zero injecting slot and the all other slots zero. Using formula (3.9) for the
curved Casimir operator (divided by -2) and the fact that individual factors
of the composition of curved Casimirs commute, we get

C2(C + 2)(C − 2)



f

0

0 | 0

0

0


= C(C − 2)(C + 2)



0

∇ • f

(P • •f)1 | (P • •f)2

0

0


.

We have already computed the action of (C − 2)(C + 2)C on a section with a
one-form µ in the second slot from the top and zero in the other slots while
computing the abstract formula for the operator M in the section 3.1.4. There
we obtained M(µ) in the slot above the bottom, and in the bottom-slot we
obtained the following formula

−2P • •(∇ • µ)1 + 2P • •(∇ • µ)2 +∇ •∇ • (∇ • µ)1 +∇ •∇ • (∇ • µ)2.

Hence inserting µ = ∇ • f into this formula, we get the formula appearing
in the bottom slot of C(C − 2)(C + 2)(∇ • f). Explicitly, this formula reads

−2P••(∇•∇•f)1+2P••(∇•∇•f)2+∇•∇•(∇•∇•f)1+∇•∇•(∇•∇•f)2.

These terms are already four terms from the formula (3.19) and thus we only
need to show that the action of C(C − 2)(C + 2) on the middle slot in the
equation above yields the remaining two terms. Applying the factor C + 2

first, by (3.9) we get
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C(C − 2)(C + 2)



0

0

(P • •f)1 | (P • •f)2

0

0



= C(C − 2)



0

0

0 | 4(P • •f)2

∇ • (P • •f)1 +∇ • (P • •f)2

P • •(P • •f)1 + P • •(P • •f)2


.

Now we apply C − 2 and we get zeros everywhere up to the two slots in the
bottom. We do not need to care about the bottom slot since this will be
killed by the remaining factor C. The slot above the bottom equals

−2∇ • (P • •f)1 + 2∇ • (P • •f)2

and after an application of C, we get in the bottom slot

−2∇ •∇ • (P • •f)1 + 2∇ •∇ • (P • •f)2.

�

Having abstract formula (3.19) for D, it suffices to use equation (3.2) for
the action • to make formula (3.19) explicit. But a straightforward use of
this equation leads to complicated formulae with many indices. In order to
reduce their number, we are going to find an explicit formula in a compact
form, which is similar to the formula (3.18) for M. Namely, we will write
Dσ = Π ◦ D̃σ where D̃σ is a (non-invariant) operator E → ⊗4Ea and Π is a
projection ⊗4Ea → EA[−2]. It turns out that a suitable projection is the
one defined for any ρ ∈ ⊗4Ea by

Π (ρ)ABCD = (
1

2
ρA
′B′C′D′

[AB][CD] +
1

2
ρA
′B′C′D′

[CD][AB] − ρ
A′B′C′D′

[A B C D])εA′B′εC′D′ . (3.20)

It is easy to see that the map Π is a combination of the projection of
EABCD to E (ABCD), realized as the the kernel of Alt : E[AB] ∨ E[CD] →
E[ABCD], with a contraction of primed indices such that the resulting map
factors through E(ab) ∨ E(cd). In the case of a four-dimensional manifold M ,
this map obviously coincides with the contraction of two pairs of indices
with conformal metric. Hence Π may be viewed as a replacement of that.
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Similarly to the case of the map Π , for two sections ρ1, ρ2 ∈ ⊗4Ea that have
the same image under Π we write ρ1 ≡ ρ2 mod Ker(Π ). The following
lemma summarizes basic properties of the projection Π , which will be used
systematically throughout the text.

Lemma 3.10. Let ϕ ∈ Ea, ν ∈ ⊗3Ea and ρ ∈ ⊗4Ea. Then the following
identities hold modulo Ker(Π ).

(1) ϕ •Π (ν) = −Π (ν ⊗ ϕ), in particular ϕdνabc ≡ 0 if Π (ν) = 0,
(2) ρabcd ≡ ρbacd ≡ ρabdc ≡ ρcdab,
(3) ρa(bc)d ≡ ρ(a|bc|d), ρa[bc]d ≡ ρ[a|bc|d],
(4) ρ A′B′C′D′[A B C]D ≡ ρ

A′B′C′D′

[A B C D] ≡ 0.

(5) 2ρ
[A′C′]B′D′

A B C D
≡ ρA′B′C′D′A B C D ≡ 2ρ A

′B′C′D′

[A C] B D

Proof. (1): By equation (3.2) for the action •, we have

ϕ •Π (ν)ABCD = −1

2
(Π (ν)A

′

AB[Cϕ
B′

D] + Π (ν)A
′

CD[Aϕ
B′

B])εA′B′ ,

and this is by definition (3.14) of the projection Π equal to

ϕ •Π (ν)ABCD = −1
2ν

E′F ′A′

[AB][C ϕ
B′

D]εE′F ′εA′B′ −
1
2ν

E′F ′A′

[CD][Aϕ
B′

B]εE′F ′εA′B′

+ 1
4(νE

′F ′A′

[ABC] ϕ
B′
D − νE

′F ′A′

[ABD] ϕ
B′
C + νE

′F ′A′

[CDA] ϕ
B′
B − νE

′F ′A′

[CDB] ϕ
B′
A )εE′F ′εA′B′ .

The formula in the second line is evidently skew-symmetric in all unprimed
indices. It can be written as νE′F ′A′[ABC ϕB

′

D]εE′F ′εA′B′ , and thus the formula for
ϕ • Π (ν) up to the sign coincides with the defining formula (3.20) for Π

applied on ν ⊗ ϕ. The consequence of the first equation says in other words
that the projection Π factorizes through Π ⊗ id.
(2): The statement says that Π factorizes also through E(ab) ∨ E(cd) which
follows directly from the definition (3.20) of the map Π .
(3): The claim can be easily shown from (2). Namely, we compute

ρa(bc)d ≡
1

2
ρabcd +

1

2
ρacbd ≡

1

2
ρabcd +

1

2
ρcadb ≡

1

2
ρabcd +

1

2
ρdbca ≡ ρ(a|bc|d),

and one can analogously verify the second equation.
(4): Follows directly from definition (3.20) of Π . It can be also deduced
from the fact that Π is the projection on irreducible bundle E (ABCD)

and this bundle does not appear in the decomposition of the tensor product
E[ABC] ⊗ ED.
(5): By definition, Π acts on ρabcd by contracting A′ and B′ and alternating
over A and B. On the other hand, since the alternation over A′, B′ and C ′

vanishes, we have

2ρ
[A′C′]B′D′

A B C D
εA′B′ = ρA

′B′C′D′

A B C D .
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And since the alternation over indices A and B of 2ρ A
′B′C′D′

[A C] B D can be written
as

ρ A
′B′C′D′

[A|C|B] D − ρ
A′B′C′D′

C[A B]D = ρ A
′B′C′D′

[A B]C D − 3ρ A
′B′C′D′

[A B C]D ,

the result follows by applying (4). �

Now we use projections Π and Π and their basic properties sum-
marized in the previous lemmas to make the abstract formula (3.19) for D
explicit. Denoting by Sab := P(ab) the symmetrization of Rho-tensor, we get

Proposition 3.11. The invariant operator D induced by curved Casimirs in
the sense of equation (3.7) is given by projection Π of

(D̃f)abcd ≡ 3∇(abcd)f − 8Sad∇bcf + 8Scd∇abf (3.21)

Proof. Let us start with the leading part of equation (3.19) defining
operator D. We see that it is given by a sum of the two possible paths from
the top slot to the bottom slot. Namely, it is given by an action of ∇• on
ν := ∇• (∇•∇•f)1 +∇• (∇•∇•f)2. By equation (3.17), this sum satisfies

νabc ≡ 2∇a∇b(∇ • f)c + 2∇a∇c(∇ • f)b + 2∇c∇a(∇ • f)b

modulo Ker(Π ). Since (∇ • f)a = −4∇af according to (3.2), this is equal
to

νabc ≡ −8(∇a∇b∇cf +∇a∇c∇bf +∇c∇a∇bf).

Now the leading part is given by an action of ∇• on this tensor. According
to lemma 3.10, we have (∇ • ν)abcd ≡ −∇dνabc modulo Ker(Π ) and so the
leading part of D is given by projection Π of

(∇ • ν)abcd ≡ 8(∇d∇a∇b∇cf +∇d∇a∇c∇bf +∇d∇c∇a∇bf).

It is easy to see that the total symmetrization of an element of E(ab)∨E(cd) is
given exactly by the sum of permutations appearing on the right-hand side of
the previous equation, and hence we conclude (∇•ν)abcd ≡ 24∇(a∇b∇c∇d)f

modulo Ker(Π ).
The lower order terms in abstarct formula (3.19) are of two kinds. In

both cases, there occurs a difference of the two possible paths from up to
down. Let us strat with the first pair of terms. By definition we have

−2P • •(∇ •∇ • f)1 + 2P • •(∇ •∇ • f)2

= −2
∑

` ϕ
` • (P(ψ`) • (∇ •∇ • f)1 − P(ψ`) • (∇ •∇ • f)2)
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and according to (3.2) and (3.16), we get

(P(ψ`) • (∇ •∇ • f)1 − P(ψ`) • (∇ •∇ • f)2)abc

≡ 2P(ψ`)a∇b(∇ • f)c + 2P(ψ`)a∇c(∇ • f)b − 4P(ψ`)c∇a(∇ • f)b

= −8P(ψ`)a∇b∇cf − 8P(ψ`)a∇c∇bf + 16P(ψ`)c∇a∇bf

modulo Ker(Π ). Substituting corresponding terms in the equation above
and using lemma 3.10 leads to

(−2P • •(∇ •∇ • f)1 + 2P • •(∇ •∇ • f)2)abcd

≡ −16(Pda∇b∇cf + Pda∇c∇bf − 2Pdc∇a∇bf) mod Ker(Π ).

Now consider the other pair of lower order terms in (3.19). By definition of
P • • we have

−2∇ •∇ • (P • •f)1 + 2∇ •∇ • (P • •f)2

= −2∇ •
∑

`(∇ • (ϕ` • P(ψ`) • f)1 −∇ • (ϕ` • P(ψ`) • f)2).

Similarly to the previous case, we apply (3.16) to the difference occuring in
the sum. Then by lemma 3.10 we obtain

(−2∇ •∇ • (P • •f)1 + 2∇ •∇ • (P • •f)2)abcd

≡ −16∇d(∇a(Pbcf) +∇a(Pcbf)− 2∇c(Pabf)) mod Ker(Π ).

Putting the partial results together (and removing the overall factor 8) yields
the following formula for the operator D̃ which is a preimage of D under Π .

(D̃f)abcd ≡ 3∇(a∇b∇c∇d)f − 2Pda∇b∇cf − 2Pda∇c∇bf + 4Pdc∇a∇bf

− 2∇d∇a(Pbcf)− 2∇d∇a(Pcbf) + 4∇d∇c(Pabf)

By lemma 3.10, this can be rewritten as

(D̃f)abcd ≡ 3∇(a∇b∇c∇d)f − 8P(bc)∇a∇df + 8Pab∇c∇df

−8(∇aP(bc))∇df + 8(∇cPab)∇df − 4(∇a∇dP(bc))f + 4(∇c∇dPab)f

Hence we see that there appears automatically only the symmetrization S of
Rho-tensor in the formula for D obtained from the curved Casimir construc-
tion. Namely, we can equivalently write

(D̃f)abcd ≡ 3∇(a∇b∇c∇d)f − 8Sbc∇a∇df + 8Sab∇c∇df

−8(∇aSbc −∇cSab)∇df − 4(∇d∇aSbc −∇d∇cSab)f mod Ker(Π ).

(3.22)
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The result then follows by observing that the whole second line in this for-
mula vanishes in the torsion-free case. Indeed, lemma A.5 in the appendix
shows that the differential Bianchi identity implies

∇A′A SC
′B′

C B −∇
C′
C SA

′B′

A B = QA
′C′B′

A C B =
1

1− q
εA
′C′∇B′E WA C

E
B

But since the right-hand side lies in EA′(ABC)[−1], it vanishes when projected

to EA′ ⊗ EA[−1] by Π and so we have

∇aSbc ≡ ∇cSab mod Ker(Π ). (3.23)

Then the second line in (3.22) vanishes since by lemma (3.10) Π factorizes
through Π ⊗ id. �

We can read off the formula (3.21) for D that it is a true fourth order
operator with the principal part equal to Π ◦ Symm(∇4). In the case
of a locally flat manifold, the operator can be written in terms of a flat
connection for which the covariant derivatives may be commuted freely and
thus by definition of Π , D descends to

Dflat
ABCD = (∇ A′

[A ∇
B′

B]∇
C′

[C ∇
D′

D] −∇
A′

[A∇
B′
B ∇C

′
C ∇D

′

D])εA′B′εC′D′ ,

which is the non-standard operator on functions. This completes the proof
of theorem 3.2.

3.1.7. Factorization of D. At the end of this section, we find a simple
formula for the invariant operator D. Although (3.21) is already quite simple
formula, we can find even a better one in the sense that it is analogous to
the formula for Paneitz operator from conformal geometry and it shows that
the operator D factorizes through the bundles EA′A and EA′⊗ EA[−1]. Such
a formula may be deduced directly from an alternative construction of the
operator D, described in the appendix, c.f. proposition B.1.

Let S1 and S2 denote the irreducible components of the symmetric Rho-
tensor S lying in E(A′B′)

(AB) and E[AB][−1] respectively. Then the following
holds.

Proposition 3.12. The operator D, which is a non-standard invariant op-
erator on functions on torsion-free structures, is given by D = Π ◦ D̃ where

(D̃f)abcd = ∇a(∇b∇c − 4S1
bc + 4S2

bc)∇df (3.24)

Proof. We start with the formula (3.21) for D and we show that it is
equivalent to (3.24). Let us rewrite the leading term first. By lemma 3.10,
it can be written as

3∇(a∇b∇c∇d)f ≡ ∇a∇b∇c∇df +∇a∇c∇b∇df +∇a∇c∇d∇bf
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modulo Ker(Π ) for any function f ∈ E . The last two summands are equal
becuse ∇a is torsion-free. Therefore, we can rewrite the right-hand side as
3∇a∇b∇c∇df − 2∇a(∇b∇c −∇c∇b)∇df and then the use of Ricci identity
yields

3∇(a∇b∇c∇d)f ≡ 3∇a∇b∇c∇df − 2∇aRbcde∇ef

We know that the only non-zero part of the Weyl curvature Ubcde = Rbcd
e +

∂(P)bcd
e in the torsion-free case is the harmonic curvature. But since the

harmonic curvature is symmetric in three unprimed indices, it vanishes under
our projection and thus we have Rbcde∇ef ≡ −∂(P)bcd

e∇ef , which by 3.15
equals

Rbcd
e∇ef ≡ Pbc∇df + Pcb∇df + Pcd∇bf mod Ker(Π ).

This is obviously equivalent to 2Sbc∇df + Scd∇bf and so we conclude

3∇(a∇b∇c∇d)f ≡ 3∇a∇b∇c∇df − 4∇aSbc∇df − 2∇aScd∇bf.

Now we distribute the parenthesis and we add lower-order terms from (3.21).
Then by lemma 3.10 we obtain

(D̃f)abcd ≡ 3∇a∇b∇c∇df − 4(∇aSbc)∇df − 2(∇cSab)∇df

− 12Sad∇b∇cf + 6Scd∇a∇bf mod Ker(Π ),

which, dropping the factor 3, is by (3.23) equivalent to

(D̃f)abcd ≡ ∇a∇b∇c∇df−2(∇aSbc)∇df−4Sbc∇a∇df+2Scd∇a∇ef. (3.25)

This formula is the one obtained from the alternative construction described
in the appendix and it is easy to see its equivalence to (3.24). Indeed, it may
be rewritten as

(D̃f)abcd ≡ ∇a(∇b∇c∇df − 4Sbc∇df + 2Scd∇bf) + 2(∇aSbc −∇cSab)∇df

and equation 3.23 says that the second summand on the right-hand side
vanishes. Now we replace the tensor S by the sum S1 + S2 of its irreducible
components. Since the projection Π contracts C ′ and D′, it maps the term
with S1

cd to zero, and thus we get

(D̃f)abcd ≡ ∇a(∇b∇c∇df − 4S1
bc∇df − 4S2

bc∇df + 2S2
cd∇bf).

And since from (5) in lemma 3.10 we conclude ∇aS2
cd∇bf ≡ 4∇aS2

bc∇df, we
end up with formula (3.24). �

The equation (3.24) shows that D̃ can be written as a composition of three
operators: f 7→ µa = ∇af, µa 7→ ν̃abc = ∇c∇aµb+4(S2

ca−S1
ca)µb, and ν̃abc 7→

ρ̃abcd = ∇aν̃bcd ≡ ∇dν̃abc. The first one is oviously the differential (df)a.
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According to the definitions of the projections Π and Π , the composition
of the last operator with the projection Π equals

ν̃abc 7→
1

2
(∇B′[DΠ (ν̃)A

′

|AB|C] +∇B′[BΠ (ν̃)A
′

|CD|A])εA′B′ .

But this is the formula from lemma 2.3 for the action of the exterior derivative
d on Π (ν̃), and hence we get the following

Corollary 3.13. Let A be a non-invariant operator EA′A → EA
′ ⊗ EA[−1]

given by A = Π ◦ Ã, where

Ã(µ)abc = ∇c∇aµb + 4(S2
ca − S1

ca)µb.

Then the invariant operator D coincides with the (unique) projection of dAd
to the bundle EA[−2].

Hence we found out that the case of a torsion-free almost Grassmannian
geometry is completely parallel to the situation in conformal geometry as it
is described in [6] and [12]. Namely, the standard procedure of the curved
Casimir construction yields a vanishing operator d Md (M is an analog of
the Maxwell operator from conformal geometry). The construction also gives
an invariant operator D in a "non-standard" way which we described above
and it may be viewed as an analog of the Paneitz operator from conformal
geometry. A formula for D is obtained from d Md by replacing the invariant
operator M by the non-invariant operator A, as illustrated in the following
figure.

EA′ ⊗ EA

((

EA′A

d %%

99

M=dd
//

A
,,

EA′ ⊗ EA[−1]

d ''

E
d

::

D=d Ad

33EA[−1]

d

66

EA[−2]

The special form of the operator D in the torsion-free case leads to the
definition of an analog of conformal Q-curvature which was intensively stud-
ied recently, e.g. [12]. It is a polynomial expression in curvature associated
to a scale which is not invariant but enjoys certain special properties with
respect to changes of scale. Namely, changing the scale the Q-curvature
depends linearly on the change and this dependance is described by the
operator D. In contrast to the conformal case, the Grassmannian analog
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Q of the Q-curvature is not a scalar (for q > 2) but it is a section of
EA[−2] ⊂ Λ4EA′A = Λ4T ∗M . The precise formulation is given in the

following proposition. For a proof see appendix B.

Proposition 3.14. In the case of a torsion-free almost Grassmannian ge-
ometry, there exists a section QABCD ∈ E (ABCD)[−2] which transforms as
Q̂ = Q + Dω under the change of Weyl structure given by an exact one-form
Υ = ∇ω. This section is given by Q = Π (Q̃), where

Q̃abcd = −∇a∇bPcd + 2PacPbd − 2PabPcd.

3.2. The case of non-vanishing torsion

In the case that the torsion of the Weyl connection ∇ does not vanish,
the operator M obtained from the curved Casimir construction does not
coincide with the composition dd of components of exterior derivatives and
so the compositions Md and d M do not vanish. Indeed, one can make these
compositions explicit using the formula (3.18) for M and check that they are
actually non-zero invariant operators of order two with the torsion in symbol.
This means that the construction of an invariant operator D via the curved
Casimir operator, as described in the previous section, fails in the sense that
the operator Dσ defined by (3.7) depends on the choice of Weyl structure.
Namely, its linearized transformation is non-zero of order two in the initial
function and of order one in Υ.

Nevertheless, we prove in this section that there exists a fix which makes
Dσ into an invariant operator on structures with arbitrary torsion. A formula
for this operator, which we dentote by Dcorr is given in theorem 3.15 below.
The proof is via an explicit calculation of its linearized transformation. Using
the symmetry of the torsion we show that the invariance is a consequence of
the algebraic Bianchi identity. After that we show in proposition 3.21 that
there is no correction of the form d (A + corr.)d.

3.2.1. Main result. In order to find a fix of Dσ, it is worthwhile to
take the simplest formula which defines this operator in the torsion-free case.
Hence we consider that Dσ is given by formula (3.24). Since it is of the form
d Ad, it is natural to try to find a correction of the form d (A + corr.)d
first. Of course, by a correction we mean a linear combination of lower-order
terms involving torsion (reffered as correction terms in sequel). We find out
that the correction of this form leads to an operator which is not invariant
but has a very simple transformation formula. This formula is quadratic in
the torsion, and can be canceled by adding a correction which we denote
by C, and which is formed by terms of the form T 2 · ∇2f and T · ∇T · ∇f .
Hence we get an invariant extension of D to structures with non-vanishing
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torsion. Precisely, using the projection Π defined in the previous section
by equation (3.20) we conclude the following.

Theorem 3.15. There exists an extension Dcorr of the non-standard opera-
tor E → EA[−2] which is invariant on almost Grassmannian structures of
type (2, q) with an arbitrary torsion. It is defined by applying the projection
Π to

D̃
corr
abcd = ∇a(∇b∇c − 4S1

bc + 4S2
bc − 4Tbc

e∇e −
6

q + 2
∇eTbce)∇d + C̃abcd,

where the correction C̃ is equal to

C̃A
′B′C′D′

A B C D = −2TB
′E′F

B C F ′T
A′F ′E
A F E′∇

C′
E ∇D

′
D + 4

q−2T
B′E′F
B C F ′(∇

C′
E T

A′F ′E
A F E′)∇

D′
D

− 12
q2−4

TB
′C′F

B C F ′(∇
E′
E T

A′F ′E
A F E′)∇

D′
D .

Remark 3.1. It follows from the proof of proposition 3.21 below that the
correction appearing in the first part of operator Dcorr is the unique correction
of terms in linearized transformation of Dσ, which are linear in the torsion.
This correction can be obtained by a modification of the construction of D
described in appendix B. On the other hand, it turns out that the form
of correction C is not unique due to the existence of second-order invariant
operators with square of torsion in their leading parts. We can even write
down immediately one of these operators. Denoting by # the algebraic
action of the torsion, it is given by a projection of dT#T#d to EA[−2].

Remark 3.2. The formula for Dcorr in theorem 3.15 is written in terms of
an exact Weyl connection, and is invariant with respect to exact changes.
As explained in remark 3.3, the formula for Dcorr can be easily modified to
a formula invariant to all changes of Weyl structure by adding some other
correction terms, c.f. formula (3.37) .

proof of the theorem 3.15. The idea of the proof is very simple.
We compute the linearized transformation of D̃

corr
and we show that it van-

ishes under the projection Π . We proceed in three steps. First we use
basic transformation laws for transformations of covariant derivatives of ten-
sors and properties of the projection Π to make explicit the variation of

D̃
1
abcd := ∇a(∇b∇c − 4S1

bc + 4S2
bc − 4Tbc

e∇e −
6

q + 2
∇eTbce)∇d. (3.26)

In the second step, we use the algebraic Binchi identity to express this vari-
ation exclusively in terms of torsion. Then we determine the variation of
correction C̃ and we show δ(D̃

1
+ C̃) ≡ 0 mod Ker(Π ).



86 3. CONSTRUCTION OF THE NON-STANDARD OPERATOR

3.2.2. Transformation of D1. First recall that the outer covariant
derivatives define invariant operators d and d . Hence equation (3.26) defin-
ing D1 has the form D1 = d A1d, where A1 is a (non-invariant) operator
which is given by applying the projection Π defined by (3.14) to

(Ã
1
µ)abc := ∇c∇aµb − 4S1

caµb + 4S2
caµb − 4Tca

e∇eµb −
6

q + 2
(∇eTcae)µb.

It is easy to see from this equation that A1 is a torsion extension of the
(non-invariant) operator A from corollary 3.13, and so D1 is of the form
d (A + corr.)d. Thus a computation of the linearized transformation of
D1 boils down to a computation of the transformation of A1. Namely, the
variation satisfies δ(D1f) = d δ(A1)(df). The variation of A1 is obtained
easily by applying basic rules for transformations of covariant derivatives of
tensors and and some properties of the projection Π .

Lemma 3.16. For an one-form µ the variation δ(A1)(µ) is given by applying
the projection Π to

δ(Ã
1
)(µ)abc ≡ 4Υ[a∇c]µb + 4µ[c∇|b|Υa] + 2ΥeTac

eµb − 4ΥbTac
eµe.

Proof. Since δ satisfies a Leibnitz formula, the variation of A1 is equal
to the projection Π of

δ(Ã
1
)(µ)abc = δ(∇c)(∇aµb) +∇cδ(∇a)(µb)− 4δ(S1

ca)µb + 4δ(S2
ca)µb

−4Tca
eδ(∇eµb)− 6

q+2δ(∇e)(Tca
e)µb.

Now we analyze these summands one by one. Let us start with the first line
of the previous equation. According to the rule for the transformation of the
covariant derivative of a two-tensor described in section 2.2.3, we have

δ(∇C′C )(∇A′A µB
′

B ) = −ΥA′
C ∇C

′
A µ

B′
B −ΥB′

C ∇A
′

A µ
C′
B −ΥC′

A ∇A
′

C µ
B′
B −ΥC′

B ∇A
′

A µ
B′
C .

Since alternation over three primed indices vanishes, after contracting A′ and
B′ we may replace the first two terms by −ΥC′

C ∇A
′

A µ
B′
B εA′B′ . After skewing

in A and B we may replace the second two summands by −ΥC′
C ∇A

′

[Aµ
B′

B] +

3ΥC′

[C∇
A′
A µ

B′

B], and thus we get

δ(∇C′C )(∇A′[Aµ
B′

B]εA′B′) = (−2ΥC′
C ∇A

′

[Aµ
B′

B] + 3ΥC′

[C∇
A′
A µ

B′

B])εA′B′ .

By lemma 3.10, the alternation over three unprimed indices vanishes under
Π and so the previous equation implies

δ(∇c)(∇aµb) ≡ −2Υc∇aµb mod Ker(Π ). (3.27)

Applying the transformation law for the covariant derivative of a one-form
given in section 2.2.3 to the second summand, i.e. ∇cδ(∇a)(µb), we get

∇C′C δ(∇A
′

A )(µB
′

B ) = ∇C′C (−ΥB′
A µ

A′
B −ΥA′

B µ
B′
A ).
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And since the projection Π by definition alternates the indices A, B and
contracts A′, B′ with a two-form ε, this equation yields

∇cδ(∇a)(µb) ≡ 2∇cΥaµb = 2(∇cΥa)µb + 2Υa∇cµb. (3.28)

For next terms, i.e. −4δ(S1
ca)µb and 4δ(S2

ca)µb, by (2.11) we get

−4δ(S1)C
′A′

C A µ
B′
B = −4µB

′
B ∇

(C′

(C Υ
A′)
A)

4δ(S2)C
′A′

C A µ
B′
B = 4µB

′
B ∇

[C′

[C Υ
A′]
A] .

Now since we compute

εA′B′AltAB(4µB
′

B ∇
[C′

[C Υ
A′]
A] ) = εA′B′(µ

C′
C ∇A

′

[AΥB′

B] − µ
C′

[C∇
A′
A ΥB′

B]),

we get 4µB
′

B ∇
[C′

[C Υ
A′]
A] ≡ µC

′
C ∇A

′
A ΥB′

B modulo Ker(Π ) by definition of the
action of Π on µb∇cΥa. For the other term we use the equation

∇(C′

(C Υ
A′)
A) =

1

2
∇C′C ΥA′

A +
1

2
∇A′A ΥC′

C −∇
[C′

[C Υ
A′]
A] ,

and so modulo Ker(Π ) we obtain

− 4δ(S1
ca)µb + 4δ(S2

ca)µb ≡ −4µb∇(cΥa) + 2µc∇aΥb. (3.29)

Now summing the equations (3.27), (3.28) and (3.29) together, we get

δ(Ãµ)abc ≡ −2Υc∇aµb + 2µb∇cΥa + 2Υa∇cµb − 4µb∇(cΥa) + 2µc∇aΥb,

and since by definition Π factorizes through E(ab)c, we may rewrite the
right-hand side as follows,

δ(Ãµ)abc ≡ 4Υ[a∇c]µb + 4µ[c∇|b|Υa] mod Ker(Π ). (3.30)

Now let us continue with correction terms of A1. The first term, Tcaeδ(∇eµb)
is computed according to the rule for the transformation of covariant deriv-
ative of an one-form. Namely, we have

δ(∇E′E µB
′

B ) = −ΥB′
E µ

E′
B −ΥE′

B µ
B′
E = −ΥB′

B µ
E′
E −ΥE′

E µ
B′
B + 4Υ

[B′

[B µ
E′]
E] .

Since by definition Π contracts A′ and B′, and since the torsion is trace-free,
we get

4TC
′A′E

C A E′Υ
[B′

[B µ
E′]
E] ≡ 2TC

′E′E
C A E′Υ

B′

[Bµ
A′

E] = 0 mod Ker(Π ).

From here and the eqaution above we conclude

Tca
eδ(∇eµb) ≡ −2Tca

eΥ(eµb) mod Ker(Π ) (3.31)

Concerning the second correction term, i.e. (∇eTcae)µb, the transformation
law (2.10) and the trace-freeness of the torsion directly yields

δ(∇e)(Tcae) = (q + 2)(ΥeTca
e).
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By this equation and equations (3.30) and (3.31), the variation δ(Ã
1
µ)abc =

δ(Ãµ)abc − 4Tca
eδ(∇eµb)− 6

q+2δ(∇e)(Tca
e)µb is equivalent modulo Ker(Π )

to

δ(Ã
1
µ)abc ≡ 4Υ[a∇c]µb + 4µ[c∇|b|Υa] + 8Tca

eΥ(eµb) − 6(ΥeTca
e)µb,

and the result follows by rewritting the last two terms on the right. �

Having an expression for the transformation of the operator A1, we can
now easily express the variation δ(D1f) = d δ(A1)(df). According to the def-
inition of d , its action on δ(A)(df) is obtained as the image of ∇dδ(Ã)(df)abc

under the projection Π . Hence the previous lemma for µa = ∇af immedi-
ately implies that

δ(D̃
1
f)abcd ≡ ∇d(4Υ[a∇c]∇bf + 4(∇bΥ[a)∇c]f

+ 2ΥeTac
e∇bf − 4ΥbTac

e∇ef) mod Ker(Π )
(3.32)

Now we use the Ricci identity and properties of the projection Π summa-
rized in lemma 3.10 to put this variation into the following simple form.

Lemma 3.17. For a function f ∈ E the variation δ(D1f) is given by applying
the projection Π to

δ(D̃
1
f)abcd ≡ 4(Rcab

e −∇aTbce + Tbc
fTaf

e)Υ[e∇d]f (3.33)

Proof. Let us treat the terms in (3.32) which does not contain torsion
first. Acting with the outer covariant derivative we get

∇d(4Υ[a∇c]∇bf + 4(∇bΥ[a)∇c]f) ≡ 4(∇dΥ[a)∇c]∇bf + 4Υ[a∇|d|∇c]∇bf

+ 4(∇d∇bΥ[a)∇c]f + 4(∇bΥ[a)∇|d|∇c]f.

Now let us consider the two summands which are of order one in Υ. By (2)
in lemma 3.10, their sum is equivalent to

4(∇dΥ[b)(∇c]∇af −∇|a|∇c]f) = −4(∇dΥ[b)Tc]a
e∇ef.

and this obviously is equivalent to 2(∇dΥb)Tac
e∇ef modulo Ker(Π ) since

(∇dΥc)Tba
e∇ef ≡ 0 due to the skew-symmetry of the torsion and by the

definition of Π . Concerning the term of order three in f , commuting the
derivatives of f we get

4Υ[a∇|d|∇c]∇bf = 4Υ[a∇|d∇b|∇c]f − 4Υ[a∇|d|(Tc]be∇ef)

Expanding the alternation in the second term on the right we conclude that
this term is equal to 2Υb∇d(Tace∇ef) modulo Ker(Π ). Thus we get

∇d(4Υ[a∇c]∇bf + 4(∇bΥ[a)∇c]f) ≡ 4Υ[a∇|d∇b|∇c]f + 4(∇d∇bΥ[a)∇c]f

+ 2Υb∇d(Tace∇ef) + 2(∇dΥb)Tac
e∇ef,
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and the last two terms on the right obviously sum up to 2∇d(ΥbTac
e∇ef).

Now adding the terms in (3.32) containing torsion we obtain

δ(D̃
1
f)abcd ≡ 4Υ[a∇|d∇b|∇c]f + 4(∇d∇bΥ[a)∇c]f

+ 2∇d(ΥeTac
e∇bf −ΥbTac

e∇ef) mod Ker(Π ).

According to the property (3) in lemma 3.10, we may write

δ(D̃
1
f)abcd ≡ 4Υa∇[d∇b]∇cf + 4(∇[d∇b]Υa)∇cf

+ 2∇d(ΥeTac
e∇bf −ΥbTac

e∇ef).

Now applying Ricci identity to both the terms in the first line and removing
the bracket in the second line yields

δ(D̃
1
f)abcd ≡ 2Υa(Rdbc

e∇ef − Tdbe∇e∇cf) + 2(Rdba
eΥef − Tdbe∇eΥa)∇cf

+ 2(∇dΥe)Tac
e∇bf + 2Υe(∇dTace)∇bf + 2ΥeTac

e∇d∇bf

− 2(∇dΥb)Tac
e∇ef − 2Υb(∇dTace)∇ef − 2ΥbTac

e∇d∇ef,

and this obviously is equivalent to

δ(D̃
1
f)abcd ≡ 4Rcab

eΥ[e∇d]f − 4(∇aTbce)Υ[e∇d]f + 4ΥaTbc
e∇[e∇d]f

+ 4(∇[eΥb])Tac
e∇df + 2ΥeTac

e∇d∇bf − 2(∇dΥb)Tac
e∇ef.

modulo Ker(Π ). The first two terms on the right are those appearing in
the formula (3.33). The sum of the next two terms is by Ricci identity and
by exactness of the Weyl structure equal to

4ΥaTbc
e∇[e∇d]f +4(∇[eΥb])Tac

e∇df = 2ΥaTbc
eTde

f∇ff +2Tbe
fΥfTac

e∇df,

and this is evidently equivalent to 4Tbc
fTaf

eΥ[e∇d]f modulo Ker(Π ). The
result then follows from the fact that the last two terms in the previous
formula for δ(D̃

1
f) cancel. This can be deduced as follows. Since the torsion

is skew-symmetric, we may apply again the property (3) in lemma 3.10 to
get

2ΥeTac
e∇d∇bf − 2(∇dΥb)Tac

e∇ef ≡ 2ΥeTac
e∇[d∇b]f − 2(∇[dΥb])Tac

e∇ef.

This is by Ricci identity and exactness of Υ equivalent to 2Tac
eTbd

fΥ[e∇f ]f

modulo Ker(Π ), and by (2) in 3.10 we obtain

2Tac
eTbd

fΥ[e∇f ]f ≡ 2Tac
(eTbd

f)Υ[e∇f ]f = 0.

�
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3.2.3. Use of the Bianchi identity. Although the formula (3.33) for
the transformation of D1 has a nice form, it turns out that there is no simple
correction, which would cancel the curvature term appearing in the formula.
On the other hand, the formula reminds the algebraic Bianchi identity, c.f.
equation (1) in proposition 1.11, and so it is natural to use this identity to
get a simplification. Indeed, the following lemma shows, that the curvature
term in (3.33) can be replaced by terms involving torsion, which then leads
to a very simple form of this formula.

Namely, let ϑab be a two-form and let ϑ1
ab, ϑ

2
ab denote its irreducible

components in subbundles isomorphic to E(A′B′)
[AB] and E(AB)[−1] respectively.

Then the action of the curvature on ϑab satisfies the following.

Lemma 3.18. For any two-form ϑab = ϑ1
ab + ϑ2

ab, we have

Rcab
eϑed ≡ (∇aTbce)ϑed − TbcfTaf e(ϑ1

ed − ϑ2
ed) mod Ker(Π ).

Proof. First we prove that the curvature Rcabe can be replaced by the
Weyl curvature Ucabe by showing (∂P)cab

eϑed ≡ 0 modulo Ker(Π ) for any
two-form ϑed. According to formula (2.6) for the action of the differential on
the Rho-tensor, we have

(∂P)cab
eϑed = −PA′B′A C ϑ

C′D′

B D + PC
′B′

C A ϑ
A′D′

B D − PA
′C′

A B ϑ
B′D′

C D + PC
′A′

C B ϑ
B′D′

A D .

Since the projection Π contracts A′, B′ and C ′, D′ with two-form ε and
since it alternates the indices A,B and C,D by definition, we get

(∂P)cab
eϑed ≡ −2PC

′A′

C A ϑ
B′D′

B D − PA
′B′

A C (ϑ2)C
′D′

B D − PA
′C′

A B (ϑ1)B
′D′

C D

modulo Ker(Π ). The skew-symmetry of ϑ1 in the unprimed indices and
the skew-symmetry of ϑ2 in the primed indices by (5) in lemma 3.10 yields
the following two equations:

2PA
′C′

A C (ϑ1)B
′D′

B D ≡ PA
′C′

A B (ϑ1)B
′D′

C D mod Ker(Π ),

2PA
′C′

A C (ϑ2)B
′D′

B D ≡ PA
′B′

A C (ϑ2)C
′D′

B D mod Ker(Π ).

Hence replacing the corresponding terms in the equation above, we get
(∂P)cab

eϑed ≡ −4P(ca)ϑbd, and this vanishes under the projection Π by
property (3) in lemma 3.10 since it is symmetric in two indices and skewsym-
metric in the other two. Hence we conclude Rcabeϑed ≡ Ucabeϑed.

Now we apply lemma A.2 from appendix to express the Weyl curvature
in Ucabeϑed in terms of torsion modulo terms in Ker(Π ). In order to do so,
we first write Ucabe according to (2.9) as

Ucab
e = UC

′A′B′

C A E′δ
E
B − UC

′A′E
C A Bδ

B′
E′ .
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Then by the definition of the projection Π , we get

Uacb
eϑed ≡ U

C′[A′B′]
C A E′

ϑE
′D′

B D − U
C′A′E
C[A B]ϑ

B′D′

E D mod Ker(Π ). (3.34)

We see that the components of the curvature tensor U we need to express
in terms of the torsion are U (C′A′)E

C[A B]
, U [C′A′]E

C[A B]
, U C′[A′B′]

(C A) E′
and U C′[A′B′]

[C A] E′
.

The latter three components are obtained directly from lemma A.2. The
first component is not listed in this lemma but it can be easily expressed by
means of the other components:

U
(C′A′)E
C[A B]

=
1

3
U

(C′A′)E
B(C A)

− 1

3
U

(C′A′)E
A(C B)

+ U
(C′A′)E
[CA B]

(3.35)

Before replacing the components of U by the expressions from the appendix,
we make one more simplification yet. If we go through the list of the irre-
ducible components of the curvature tensor U which is displayed in (2.7),
then we see that only four of them can contribute to the projection Π .
Namely, the target bundle E (ABCD)[−2] shows up only in the tensor prod-
uct of the component E(A′B′)

[AB] of Λ2(EA′A ) with the component of U lying in

E(C′D′)
[CD] or E(C′D′)F

(CDE)0
and in the tensor product of the component E(AB)[−1] of

Λ2(EA′A ) with the component of U lying in E(CD)[−1] or EF(CDE)0
[−1]. This

implies that the other components of U can be neglected. Then equation
(A.24) from the appendix simplifies as follows.

U
(C′A′)E
B(C A)

= −∇I′(CT
C′A′E
A)B I′ + T

I′(C′|F |
B (C|F ′|T

A′)F ′E
A )F I′

− 1
q+2∇

I′
I T

C′A′I
B(C|I|δ

E
A)

mod terms in E(A′B′)
(AB) .

Now we use this equation to replace the corresponding terms in equation
(3.35). We obtain a formula which can be simplified by use of the fact that
the torsion is skew-symmetric in the two lower unprimed indices and that
for any such tensor vCAB ∈ EC[AB], we have

1

3
v(CA)B −

1

3
v(CB)A =

1

3
vCAB +

1

3
v[A|C|B] = v[A|C|B] − v[ACB].

Using this we conclude that the first component is equal to

U
(C′A′)E
C[A B]

= −∇I′[BT
A′C′E
A]C I′ + T

I′(C′|F |
[B|C F ′|T

A′)F ′E
A ]F I′

− 1
q+2∇

I′
I T

C′A′I
C[A|I|δ

E
B]

mod terms in E(A′B′)
(AB) , E(A′B′)D

[ABC]0
.

The second component is obtained directly from equation (A.24), which
simplifies to

U
[C′A′]E
C[A B]

= −T I
′[C′|F |

[B|C F ′|T
A′]F ′E
A ]F I′

mod terms in E(A′B′)
(AB) , E(A′B′)D

[ABC]0
.

Next, by (A.21) and by (A.23) we get

U
C′[A′B′]

(C A) E′
= 0 mod terms in E(A′B′)

(AB) ,
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respectively

U
C′[A′B′]

[C A] E′
= − 1

q+2∇
I′
I T

C′[A′|I|
C A I′

δ
B′]
E′ mod terms in E[AB][−1].

Now we have collected all components we need and we substitute the corre-
sponding terms in (3.34). We obtain

Ucab
eϑed ≡ (∇I′BTA

′C′E
A C I′ − T

I′(C′|F |
BC F ′

T
A′)F ′E
A F I′

+ T
I′[C′|F |
B C F ′

T
A′]F ′E
A F I′

)ϑB
′D′

E D .

modulo Ker(Π ). Since by definition Π acts by a complete contraction of
primed indices and there is no non-zero complete contraction of E(A′C′)[B′D′]

and E [A′C′](B′D′), we may write

Ucab
eϑed ≡ (∇I′BTA

′C′E
A C I′ )ϑ

B′D′

E D − T
I′C′F
BC F ′T

A′F ′E
A F I′ (ϑ

(B′D′)
E D

− ϑ[B′D′]
E D

)

modulo Ker(Π ). The symmetry and trace-freeness of the torsion implies
that the right-hand side allows a unique complete contraction of primed
indices. This implies in turn that we can swap the indices B′ and the upper
I ′ in the last expression. Then the desired statement is obtained by renaming
the summing index I ′ to E′ and rewriting in the tensor indices. �

Now we set ϑab := Υ[a∇b]f and apply this lemma to the formula (3.33)
for the variation of the operator D1. We immediately get

δ(D̃
1
f)abcd ≡ 8Tbc

fTaf
eϑ2
ed mod Ker(Π ) (3.36)

where ϑ2
ed is the component of Υ[e∇d]f in E(AB)[−1]. Hence we found out

that the operator D1 has very simple transformation law. In particular, we
have proved that D1 is almost invariant in the sense that it corrects all terms
which are linear in torsion.

3.2.4. Transformation of C. To finish the proof of theorem 3.15, we
need to show that the variation of the correction C cancels the variation of
D1. In order to do so, we make the variations of individual terms which
constitue C explicit by applying basic rules for transformations of covariant
derivatives of tensors and by applying properties of Π and properties of the
torsion.

Lemma 3.19. The following equations hold modulo Ker(Π ):

(a) δ(TB
′E′F

B C F ′T
A′F ′E
A F E′∇

C′
E ∇D

′
D f) ≡ 2TB

′E′F
B C F ′T

A′F ′E
A F E′Υ

C′

[E ∇
D′

D]f,

(b) δ(TB
′E′F

B C F ′(∇
C′
E T

A′F ′E
A F E′)∇

D′
D f) ≡ (q − 2)TB

′E′F
B C F ′T

A′F ′E
A F E′Υ

C′
E ∇D

′
D f

+ 3TB
′C′F

B C F ′T
A′F ′E
A F E′Υ

E′
E ∇D

′
D f,

(c) δ(TB
′C′F

B C F ′(∇
E′
E T

A′F ′E
A F E′)∇

D′
D f) ≡ (q + 2)TB

′C′F
B C F ′T

A′F ′E
A F E′Υ

E′
E ∇D

′
D f,
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Proof. (a): Since the torsion is invariant, it suffices to determine the
variation of ∇C′E ∇D

′
D f . Applying the rule for the transformation of a one-

form from 2.2.3 we have

δ(∇C′E ∇D
′

D f) = −ΥD′
E ∇C

′
D f −ΥC′

D ∇D
′

E f,

and after contracting the indices C ′ and D′ we obtain 2εC′D′Υ
C′

[E∇
D′

D]f , and
the result follows (by definition of Π ).
(b): Due to the invariance of torsion, it is sufficient to determine the variation
of∇C′E TA

′F ′E
A F E′ . Due to the trace-freeness of torsion, the general formula (2.10)

for the variation of covariant derivative of torsion in our case simplifies to

δ(∇C′E )(TA
′F ′E

A F E′) = qΥC′
E T

A′F ′E
A F E′ −ΥA′

E T
C′F ′E
A F E′ −ΥF ′

E T
A′C′E
A F E′ + ΥI′

ET
A′F ′E
A F I′ δ

C′
E′ .

This can be also written as

δ(∇C′E )(TA
′F ′E

A F E′) = (q − 2)ΥC′
E T

A′F ′E
A F E′ + 2Υ

[C′

E T
A′]F ′E
A F E′

+ 2Υ
[C′

E T
F ′]A′E
A F E′

+ ΥI′
ET

A′F ′E
A F I′ δ

C′
E′ .

Since primed indices are two-dimensional and the torsion is symmetric in
primed indices, the second term on the right equals

2Υ
[C′

E T
A′]F ′E
A F E′

= ΥI′
ET

F ′E
I′A F E′ε

C′A′

and the same holds for the third term up to a permutation of A′ and F ′.
Therefore, variation (b) satisfies

δ(TB
′E′F

B C F ′(∇
C′
E T

A′F ′E
A F E′)∇

D′
D f) = (q − 2)TB

′E′F
B C F ′T

A′F ′E
A F E′Υ

C′
E ∇D

′
D f

+ TB
′E′F

B C F ′(Υ
I′
ET

F ′E
I′A F E′ε

C′A′ + ΥI′
ET

A′E
I′A F E′ε

C′F ′ + ΥI′
ET

A′F ′E
A F I′ δ

C′
E′ )∇D

′
D f

and it is sufficient to show that contraction with εA′B′εC′D′ of terms in the
second line leads to identical terms, which sum up to the contraction of
3ΥeTbc

fTaf
e∇df . Since there is no permutation on unprimed indices, we

supress them for a moment. Then the contraction of the second line may be
displayed as

εA′B′εC′D′T
B′E′

F ′(Υ
I′TE′

F ′
I′ε

C′A′ + ΥI′TE′
A′
I′ε

C′F ′ + ΥI′TA
′F ′

I′δ
C′
E′ )∇D

′
f

and since the torsion is symmetric, it is easy to see that all terms are equal
to ΥI′T J

′E′F ′TE′F ′I′∇J ′f and thus their sum is equal to

3ΥI′T J
′E′F ′TE′F ′I′∇J ′f = 3TB

′C′F
B C F ′T

A′F ′E
A F E′Υ

E′
E ∇D

′
D fεA′B′εC′D′ .

(c): Analogously to the previous case, it suffices to compute the variation of
∇E′E TA

′F ′E
A F E′ . Since the torsion is trace-free, we get directly from (2.10) that

it is equal to (q + 2)ΥE′
E T

A′F ′E
A F E′ and hence the result follows. �
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Now it is an easy observation that C corresponds to a linear combination
of terms from the previous lemma written schematically as −2(a)+ 4

q−2(b)−
12
q2−4

(c) and thus the variation of C is equivalent to

δ(C̃f)A
′B′C′D′

A B C D ≡ −4TB
′E′F

B C F ′T
A′F ′E
A F E′Υ

C′

[E ∇
D′

D]f + 4TB
′E′F

B C F ′T
A′F ′E
A F E′Υ

C′
E ∇D

′
D f

= −4TB
′E′F

B C F ′T
A′F ′E
A F E′Υ

C′

(E ∇
D′

D)f.

And since evidently

TB
′E′F

B C F ′T
A′F ′E
A F E′Υ

C′

(E ∇
D′

D)f ≡ 2TB
′C′F

B C F ′T
A′F ′E
A F E′Υ

[E′

(E∇
D′]
D) f

modulo Ker(Π ), we have

δ(C̃f)abcd ≡ −8Tbc
fTaf

eϑ2
ed mod Ker(Π ),

where ϑ2
ed is the component of Υ[e∇d]f in E(ED)[−1]. Visibly this is up to

the sign the same formula as formula (3.33) for δ(D̃
1
f)abcd. Hence the sum

of these two variations vanishes under the projection Π , and so we obtain

δ(Dcorr) = δ(D1) + δ(C) = 0,

which shows that the operator Dcorr is invariant. �

Remark 3.3. Let us now explain how to get a formula for Dcorr which is
invariant to all changes of Weyl structures. If we trace back where we used
the exactness of the Weyl connection, we find that it was only at the end
of the section 3.2.2. Concretely, there we used twice that the one-form Υ

describing the change of Weyl structure is closed, i.e.

(dΥ)ab = 2∇[aΥb] + Tab
eΥe = 0.

In the case of a change described by an one-form Υ which is not closed, the
equation (3.33) has the form

δ(D̃
1
f)abcd ≡ 4(Rcab

e −∇aTbce + Tbc
fTaf

e)Υ[e∇d]f

+ 2(dΥ)ebTac
e∇df − (dΥ)dbTac

e∇ef.

We did not use exactness in sections 3.2.3 and 3.2.4, and so we deduce

δ(D̃
corr

f)abcd ≡ 2(dΥ)ebTac
e∇df − (dΥ)dbTac

e∇ef.

Now we easily find a correction which leads to an operator invariant to
arbitrary change of the Weyl structure since there is an obvious correction
which cancels (dΥ)ab. Namely, by (2.11) we have δ(P[ab]) = ∇[aΥb], and from
(2.10) trace-freeness of the torsion we conclude δ(∇eTabe) = (q + 2)ΥeTab

e.
Hence

δ(2P[ab] +
1

(q + 2)
∇eTabe) = (dΥ)ab,
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and so the operator invariant to arbitrary change is given by applying the
projection Π to

D̃
corr
abcd − 2(2P[eb] +

1

(q + 2)
∇fTebf )Tac

e∇d + (2P[db] +
1

(q + 2)
∇fTdbf )Tac

e∇e.

(3.37)

3.2.5. Non-existence of factorization. Now we prove that there ex-
ists no correction of the form d (A+corr.)d, which would lead to an invariant
operator. Indeed, there is not much feedom in varying the second order op-
erator A. This is reflected in the following lemma.

Lemma 3.20. Any torsion-extension of A : EA′A → EA
′ ⊗ EA[−1] has the

form Ator = Π ◦ Ãtor where

(Ãtorµ)abc = (Ãµ)abc + αTca
e∇eµb + β(∇eTcae)µb

for some numerical coefficients α, β.

Proof. Since µ 7→ T 2 · µ is invariant, it is easy to see that potential
correction terms of Aµ are of the form T · ∇µ or (∇T ) · µ. As we described
in the previous chapter, the torsion lies in

TA
′B′C

A B C′ ∈ (E(A′B′)
C′)0 ⊗ (E[AB]

C)0
∼= EA′ ⊗ q − 16

?
... EA[2].

Therefore, both correction terms T · ∇µ and (∇T ) · µ lie in

(⊗2EA′ ⊗ EA′)⊗ (⊗2EA ⊗ q − 16
?
... EA)[2].

Since there is a unique way of the contraction of primed indices and there are
two projections of the tensor product of EA’s to EA[−1], the multiplicity
of the bundle EA′⊗ EA[−1] in this tensor product is two. It means that we
have four potential correction terms - two for each of the two types. Using the
projection Π , the representatives may be written as Π (ν) where νA′B′C′A B C

equals one of the following four expressions

TC
′A′E

C A E′∇
E′
E µ

B′
B , T

C′A′E
C A E′∇

E′
B µ

B′
E , (∇E

′
E T

C′A′E
C A E′)µ

B′
B , (∇E

′
B T

C′A′E
C A E′)µ

B′
E

The first two terms differ by TC
′A′E

C A E′∇
E′

[Eµ
B′

B] and this is equivalent to the

invariant expression TC′A′EC A E′∇
(E′

[E µ
B′)
B] modulo Ker(Π ). Therefore, the first

two terms transform in the same way. We can easily prove (e.g. by a direct
computation) that, up to the sign, the fourth term also transforms in the
same way as the first two terms do. This implies that each torsion-correction
of the "middle" operator A may be written as projection Π of a linear
combination of the first and the third term, i.e. a linear combination of
Tbc

e∇eµd and (∇eTbce)µd. �
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Now we observe that the correction terms from this lemma are those
appearing in the formula for the operator D1 given by the equation (3.26).
Hence an immediate consequence of this lemma is that any torsion-extension
of operator D of a form d (A+ corr.)d is given by a projection under Π of

(D̃
tor
f)abcd := (D̃

1
f)abcd + α∇a(Tbce∇e∇df) + β∇a((∇eTbce)∇df) (3.38)

for some new coefficients α, β. We prove that demanding the invariance in
some special cases yields α = β = 0. In other words, if Dtor is invariant,
then it coincides with D1, which is a contradiction. Thus we conclude

Proposition 3.21. There is no extension of the operator D to an operator of
the form d(A+corr.)d which is invariant on almost Grassmannian structures
with non-vanishing torsion.

Proof. Assume that such an invariant operator exists. Then we know
that it is given by equation (3.38) for some scalars α, β. By assumption, the
variation of Dtor is zero. On the other hand, we deduce from equation (3.31)
in the proof of theorem 3.15 that variations of the correction terms are

δ1
abcd := δ(∇a(Tbce∇e∇df)) ≡ −2∇d(TcaeΥ(e∇b)f) (3.39)

δ2
abcd := δ(∇a((∇eTbce)∇df)) ≡ (q + 2)∇d(TcaeΥe∇bf) (3.40)

modulo Ker(Π ). Now we assume an action of Dtor on a function f which
satisfies ∇af(0) = 0. Then from (3.36), we get δ(D1f) = 0 at the origin and
from (3.39) and (3.40), we conclude that at 0 we have

δ1
abcd ≡ −TcaeΥe∇d∇bf − TcaeΥb∇d∇ef

δ2
abcd ≡ (q + 2)Tca

eΥe∇d∇bf

modulo Ker(Π ). According to property (3) in lemma 3.10, we get

Tca
eΥe∇d∇bf ≡ TcaeΥe∇[d∇b]f mod Ker(Π )

and this vanishes at the origin since the alternation of the second covariant
derivative of f is given by an action of the torsion on the first derivative.
Thus at the origin, we obtain

δ1
abcd ≡ −TcaeΥb∇(d∇e)f and δ2

abcd ≡ 0 mod Ker(Π ).

Hence demanding invariance of Dtor yields equation αTca
eΥb∇(d∇e)f ≡ 0,

which is in the case of non-vanishing torsion satisfied only for α = 0 since
the value of the symmetrized second derivative of f and the form Υa at the
origin can be chosen freely.

Next assume a change of Weyl structures described by a one-form Υa

which satisfies Υa(0) = 0. In such a case, we also get δ(D1) = 0 at the
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origin according to (3.36) and for exact Weyl structures, equations (3.39)
and (3.40) simplify as follows

δ1
abcd ≡ −(∇(dΥe))Tca

e∇bf,

δ2
abcd ≡ (q + 2)(∇(dΥe))Tca

e∇bf mod Ker(Π ).

Thus demanding invariance of Dtor in this case yields equation

(−α+ (q + 2)β)(∇(eΥa))Tbc
e∇df ≡ 0

Since the derivative of f and the derivative of Υa can be chosen freely at
the origin and since α is fixed to 0, this equation is satisfied only for β = 0.
Hence we see that Dtor must be equal to D1, which is a contradiction since
D1 is not invariant. Indeed, (3.36) shows that its linearized transformation
contains a non-zero term quadratic in torsion. �

Remark 3.4. It follows from the proof of this proposition that any invariant
torsion-extension of the non-standard invariant operator on functions must
be of a form D1+ terms quadratic in torsion, i.e. terms of the form T 2 · ∇2,
T ·(∇T ) ·∇. These terms cancel the variation of D1 given by equation (3.36),
which has the form δ(D1) = Υ·T 2 ·∇. In a sense, the invariance of the torsion
can be viewed as the obstruction to existence of an invariant extension of D
in a form d (A+corr.)d similarly as the invariance of the Bach tensor can be
thought of as the obstruction to the existence of the curved analogue of the
cube of the Laplacian in conformal geometry in the dimension 4, cf. [14].





APPENDIX A

Bianchi identity

Irreducible components of curvature. Let us consider a linear con-
nection ∇A′A on the tangent bundle TM = EAA′ induced by a Weyl connection
σ∗ω0. According to the description of its curvature in section 2.2.2, we have

RA
′B′C

A B D = UA
′B′C

A B D − PA
′B′

A D δ
C
B + PB

′A′

B D δ
C
A

RA
′B′D′

A B C′ = UA
′B′D′

A B C′ + PA
′D′

A B δB
′

C′ − PB
′D′

B A δA
′

C′ ,

for the corresponding curvatures of ∇A′A on EA and EA′ respectively. Since
RA

′B′I
A B I = −RA′B′I′A B I′ , taking traces over C and D and over C ′ and D′ in the

previous equations yields UA′B′IA B I = −UA′B′I′A B I′ . Moreover, for exact Weyl
connections these traces satisfy

Uab
I′
I′ = −UabII = 2P[ab]. (A.1)

Since the components of Weyl curvature UA′B′CA B D and UA′B′D′A B C′ are sections
of bundles EA′A ∧ EB

′
B ⊗ECD respectively EA′A ∧ EB

′
B ⊗ED

′
C′ , they decompose

according to the obvious decompositions EA′A ∧ EB
′

B = E(A′B′)
[AB] ⊕ E(AB)[−1]

and ECD = (ECD)0 ⊕ E , respectively ED
′
C′ = (ED′C′)0 ⊕ E . The last two

decompositions are decompositions into a trace-free part and a trace part.
And since we have shown above that these traces are the same up to the
sign, we may write the decompositions as

UA
′B′E

A B C = εA
′B′ϕAB

E
C + V A′B′

A B
E
C − 2(εA

′B′ϕAB + V A′B′

A B )δEC

UA
′B′C′

A B E′ = εA
′B′ϕAB

C′
E′ + V A′B′

A B
C′
E′ + q(εA

′B′ϕAB + V A′B′

A B )δC
′

E′ ,
(A.2)

for objets V A′B′

A B , V A′B′

A B
C′
E′ , V A′B′

A B
E
C symmetric in A′, B′, skewsymmetric in

A, B and satisfying V A′B′
AB

I′
I′ = V A′B′

AB
I
I = 0, and for objects ϕAB, ϕABC

′
E′ ,

ϕAB
E
C symmetric in A, B and satisfying ϕABI

′
I′ = ϕAB

I
I = 0.

In terms of V ’s and ϕ’s, we can easily write down the corresponding rep-
resentatives of the irreducible representations occuring in the decomposition

99
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2.7 of the Weyl curvature. Namely, for the traces of U we have

2 · E(A′B′)
(AB)  εI

′(A′ϕAB
B′)

I′ , V
A′B′

I (A
I
B)

2 · E[AB][−1]  ϕI[A
I
B], V

I′[A′B′]
AB I′

εA′B′

2 · E(AB)[−1]  ϕAB, ϕI(A
I
B)

3 · E(A′B′)
[AB]  V A′B′

A B , V
I′(A′B′)
A B I′

, V A′B′I
I [B C],

and modulo these trace-terms, the representatives of the other irreducible
components are

E(ABC)0
D[−1]  ϕ(AB

D
C)

E(A′B′C′D′)
[AB] [1]  V

(A′B′C′)
A B E′

εE
′D′

E(A′B′)D
(ABC)0

 V A′B′D
A (B C)

ED(ABC)[−1]  ϕA[B
D
C]

E(A′B′)D
[ABC]0

 V A′B′D
[A B C]

Now the ∂∗-closedness of U gives relations between some of these represen-
tatives. To make these relations precise, we substitute the components of U
into equation (2.8) describing ∂∗-closedness of U by V ’s and ϕ’s defined by
(A.2). We obtain

εA
′B′ϕAI

I
B + V A′B′I

A I B − εA
′I′ϕAB

B′
I′ − V A′I′

A B
B′
I′

− (q + 2)(εA
′B′ϕAB + V A′B′

A B ) = 0.

The term ϕAB
B′A′ = −εA′I′ϕABB

′
I′ is symmetric in A′ and B′ due to the

definition of ϕABC
′
D′ and the fact that the fibre dimension of EA′ equals

two. Thus taking symmetrizations and alternations in A,B and A′, B′ of
the equation above yields the following

Lemma A.1. The ∂∗-closedness of U is equivalent to the following system
of equations

V A′B′

I(A
I
B) = ϕAB

A′B′ (A.3)

V
I′[A′ B′]
A B I′ = εA

′B′ϕI[A
I
B] (A.4)

ϕAB =
1

q + 2
ϕI(A

I
B) (A.5)

V A′B′

A B = − 1

q + 2
(V A′B′

I[A
I
B] + V

I′(A′ B′)
A B I′) (A.6)
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Algebraic Bianchi identity. It follows from the description of the har-
monic curvature in section 2.1.6 that its homogeneous component of degree
two is the irreducible component of the Weyl curvature which lies in the
trace-free part of E(ABC)

D, i.e. it is the trace-free part of ϕ(AB
D
C). In the

case that the harmonic curvature of homogeneity one, i.e. the torsion van-
ishes, this is the only non-zero part of the Weyl curvature. It means in turn
that the all other irreducible components of U can be expressed in terms
of torsion. To find these formulae, we apply the algebraic Bianchi identiy
which by 1.11 has the form

U[ab
e
c] = ∇[aTbc]

e − T[ab
fTc]f

e. (A.7)

In order to express irreducible components of U , one should consider various
traces and symmetrizations of this equation. First, let us consider the trace
over c and e. Expanding the alternations, we get

Uab
i
i+Uia

i
b+Ubi

i
a = ∇aTbii+∇iTabi+∇bTiai−TabjTij i−TiajTbji−TbijTaji

Now observe that equation (2.8) describing the ∂∗-closedness of U is equiv-
alent to Uiaib = 0. Together with the trace-freeness of the torsion, we get

Uia
i
b = Ubi

i
a = ∇aTbii = ∇bTiai = Tab

jTij
i = 0,

and since evidently −TiajTbji−TbijTaji = 0, the contracted Bianchi identity
simplifies to Uabii = ∇iTabi. Now when we substitute U by expression (A.2),
we get

−2q(q + 2)(εA
′B′ϕAB + V A′B′

A B ) = ∇I′I TA
′B′I

A B I′ .

And since TA′B′IA B I′ = T
(A′B′)I
[A B] I′

according to (2.4), taking the parts which are
symmetric respectively skew-symmetric in A and B gives the following two
equations

ϕAB = 0 (A.8)

V A′B′

A B = − 1

2q(q + 2)
∇I′I TA

′B′I
A B I′ . (A.9)

Then identities (A.8) and (A.5) immediately imply

ϕI(A
I
B) = 0. (A.10)

In order to express the other irreducible components of U , it is convenient
to consider the trace of equation (A.7) over C ′ and E′. Expanding the
alternations therein and replacing the tensor U by its components according
to (2.9), we get

2UA
′B′E

A B C − U
A′B′I′

A B I′δ
E
C + UB

′A′E
C A B − U

I′A′B′

B A I′δ
E
C + UB

′A′E
B C A − U

B′I′A′

B A I′δ
E
C

= ∇I′CTA
′B′E

A B I′ − T
I′A′J
C A J ′T

B′J ′E
B J I′ − T

B′I′J
B C J ′T

A′J ′E
A J I′ .
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Now we substitute the Weyl curvature U according to (A.2):

2εA
′B′ϕAB

E
C + 2V A′B′

A B
E
C − 2(q + 2)V A′B′

A B δEC + εB
′A′ϕCA

E
B + V B′A′

C A
E
B

−ϕCAA
′B′δEB − V I′A′

C A
B′
I′δ

E
B − (q + 2)V B′A′

C A δEB + εB
′A′ϕBC

E
A

+V B′A′

B C
E
A − ϕBCA

′B′δEA − V B′I′

B C
A′
I′δ

E
A − (q + 2)V B′A′

B C δEA

= ∇I′CTA
′B′E

A B I′ − T
I′A′J
C A J ′T

B′J ′E
B J I′ − T

B′I′J
B C J ′T

A′J ′E
A J I′

(A.11)
In order to obtain trace-terms first, let us now compute the trace over A and
E of this equation.

2εA
′B′ϕIB

I
C − εA

′B′ϕIC
I
B + 2V A′B′

I B
I
C − V A′B′

I C
I
B

−ϕCBAB
′
+ qϕBC

A′B′ + V I′A′

B C
B′
I′ − qV I′B′

B C
A′
I′

−(q − 3)(q + 2)V A′B′

B C = −T I′A′JC I J ′T
B′J ′I
B J I′ .

(A.12)

The symmetrization of this equation in A′ and B′ yields

2V A′B′I
I B C − V

A′B′I
I C B + (q − 1)ϕBC

A′B′ − (q − 1)V
I′(A′B′)
B C I′

−(q − 3)(q + 2)V A′B′

B C = −T I
′(A′|J |

C I J ′
T
B′)J ′I
B J I′

Now we are going to symmetrize and alternate in the indices B and C in order
to get equations for V ’s and ϕ’s appearing in this equation. The alternation
yields

3V A′B′I
I [B C] − (q − 1)V

I′(A′B′)
B C I′

− (q − 3)(q + 2)V A′B′

B C = T
I′(A′|J |
I [C |J ′|T

B′)J ′I
B] J I′

= 0,

which, combined with equations (A.6) and (A.9), implies

V A′B′I
I [B C] = −2V A′B′

B C =
1

q(q + 2)
∇I′I TA

′B′I
B C I′ (A.13)

V
I′(A′B′)
B C I′

= −qV A′B′

B C =
1

2(q + 2)
∇I′I TA

′B′I
B C I′ . (A.14)

On the other hand, the symmetrization yields

V A′B′I
I (B C) + (q − 1)ϕBC

A′B′ = T
I′(A′|J |
I (B |J ′|T

B′)J ′I
C) J I′

.

From here and (A.3) we get

ϕBC
A′B′ = V A′B′I

I (B C) =
1

q
T
I′(A′|J |
I (B |J ′|T

B′)J ′I
C) J I′

. (A.15)

Taking the alternation over indices A′ and B′ in (A.12) leads to

2εA
′B′ϕIB

I
C − εA

′B′ϕIC
I
B + (q + 1)V

I′[A′B′]
B C I′

= −T I
′[A′|J |

C I J ′
T
B′]J ′I
B J I′

.
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It follows from (A.10) that all terms are actually skewsymmetric in B and
C and thus this equation is equivalent to

3εA
′B′ϕI[B

I
C] + (q + 1)V

I′[A′B′]
B C I′

= T
I′[A′|J |
I [C |J ′|T

B′]J ′I
B] J I′

.

This together with the equation (A.4) yields

V
I′[A′B′]
B C I′

= εA
′B′ϕI[B

I
C] =

1

q + 4
T
I′[A′|J |
I [C |J ′|T

B′]J ′I
B] J I′

. (A.16)

The equations (A.8), (A.9), (A.10), (A.13), (A.14), (A.15), (A.16) form
a complete list of expressions for traces of V ’s and ϕ’s. Now we come back
to the equation (A.11) in order to express also the trace-free parts. Taking
the alternation of A′ and B′ in (A.11) yields

2εA
′B′ϕAB

E
C − εA

′B′ϕCA
E
B − εA

′B′ϕBC
E
A − V I′[A′B′]

C A I′δ
E
B − V

I′[B′A′]
C B I′δ

E
A

= −T I
′[A′J

C A J ′
T
B′]J ′E
B J I′

− T I
′[A′J

C B J ′
T
B′]J ′E
A J I′

.

The term ϕAB
E
C has two trace-free components. The first one is the har-

monic part of the Weyl curvature which lies in EE(ABC)0
and which we ob-

viously cannot express from the previous equation. In order to express the
second one, which is the component in EE(ABC)0

, we alternate the previous
equation in B and C. We get

3εA
′B′ϕA[B

E
C] = −T I

′[A′|J |
[C|A J ′|T

B′]J ′E
B] J I′

− T I
′[A′|J |

C B J ′
T
B′]J ′E
A J I′

+V
I′[A′B′]

[C|A I′|δ
E
B] + V

I′[B′A′]
B C I′

δEA .

This equation can be writte also in the form

εA
′B′ϕA[B

E
C] = T

I′[A′J
A [C|J ′|T

B′]J ′E
B] J I′

− T I
′[A′J

[A C|J ′|T
B′]J ′E
B] J I′

−V I′[A′B′]
A[C |I′|δ

E
B] + V

I′[A′B′]
[A C |I′|δ

E
B].

Then the application of (A.16) gives

εA
′B′ϕA[B

E
C] = T

I′[A′J
A [C|J ′|T

B′]J ′E
B] J I′

− T I
′[A′J

[A C|J ′|T
B′]J ′E
B] J I′

− 1
q+4T

I′[A′|J |
I A J ′

T
B′]J ′I
[B J I′

δEC] + 1
q+4T

I′[A′|J |
I [A|J ′| T

B′]J ′I
B |J I′|δ

E
C].

(A.17)
Now we take the symmetrization of (A.11) in A′ and B′. We obtain

2V A′B′E
A B C − 2(q + 2)V A′B′

A B δEC + V A′B′E
C A B − ϕCAA

′B′δEB

−V I′(A′ B′)
C A I′δ

E
B − (q + 2)V A′B′

C A δEB + V A′B′E
B C A + ϕBC

A′B′δEA

−V I′(B′ A′)
B C I′δ

E
A − (q + 2)V A′B′

B C δEA

= ∇I′CTA
′B′E

A B I′ − T
I′(A′J
C A J ′

T
B′)J ′E
B J I′

− T I
′(A′J

B C J ′
T
B′)J ′E
A J I′

,
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and this can be simplified with the help of (A.14) to

2V A′B′E
A B C + V A′B′E

C A B + V A′B′E
B C A − ϕCAA

′B′δEB

+ϕBC
A′B′δEA − 2V A′B′

C A δEB − 2V A′B′

B C δEA − 2(q + 2)V A′B′

A B δEC

= ∇I′CTA
′B′E

A B I′ − T
I′(A′J
C A J ′

T
B′)J ′E
B J I′

− T I
′(A′J

B C J ′
T
B′)J ′E
A J I′

.

Alternating over A, B and C and applying (A.9) then yields

V A′B′E
[A B C] = 1

4(∇I′[CT
A′B′E
A B] I′ − 2T

I′(A′J
[C A J ′

T
B′)J ′E
B] J I′

− q+4
q(q+2)∇

I′
I T

A′B′I
[A B|I′|δ

E
C]),

(A.18)

while the symmetrization in B and C gives

V A′B′E
A (B C) − ϕA(C

A′B′δEB) + ϕBC
A′B′δEA − 2(q + 1)V A′B′

A (B δ
E
C)

= ∇I′(CT
A′B′E
|A|B) I′ + T

I′(A′J
A (C J ′

T
B′)J ′E
B) J I′

.

Then by equations (A.15) and (A.9) we have

V A′B′E
A (B C) = −∇I′(CT

A′B′E
B)A I′ + T

I′(A′J
A (C J ′

T
B′)J ′E
B) J I′

+1
qT

I′(A′|J |
I A |J ′| T

B′)J ′I
(B J I′

δEC) + 1
qT

I′(A′|J |
I B J ′

T
B′)J ′I
C J I′

δEA

− q+1
q(q+2)∇

I′
I T

A′B′I
A(B|I′|δ

E
C).

(A.19)

Now the only bit missing is V (A′B′C′)
A B E′

. In order to obtain a formula for this
term, we come back and consider a trace of the Bianchi identity (A.7) over
indices C and E. It has the form

UA
′B′I

A B I − qU
A′B′C′

A B E′ + UC
′A′I

I A Bδ
B′
E′ − UC

′A′B′

B A E′ + UB
′C′I

B I Aδ
A′
E′ − UB

′C′A′

B A E′

= ∇C′I TA
′B′I

A B E′ − T
C′A′J
I A J ′ T

B′J ′I
B J E′ − T

B′C′J
B I J ′ T

A′J ′I
A J E′ ,

and replacing U by ϕ’s and V ’s according to (A.2) we get

−qεA′B′ϕABC
′
E′ − qV A′B′

A B
C′
E′ − q(q + 2)V A′B′

A B δC
′

E′

+εC
′A′ϕIA

I
Bδ

B′
E′ + V C′A′

I A
I
Bδ

B′
E′ − εC

′A′ϕBA
B′
E′ − V C′A′

B A
B′
E′

−(q + 2)V C′A′

B A δB
′

E′ + εB
′C′ϕIB

I
Aδ

A′
E′ − V B′C′

I B
I
Aδ

A′
E′

−εB′C′ϕBAA
′
E′ − V B′C′

B A
A′
E′ − (q + 2)V B′C′

B A δA
′

E′

= ∇C′I TA
′B′I

A B E′ − T
C′A′J
I A J ′ T

B′J ′I
B J E′ − T

B′C′J
B I J ′ T

A′J ′I
A J E′ .
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Its symmetrization over A′, B′ and C ′ gives

(2− q)V (A′B′C′)
A B E′

+ 2V
(C′A′|I|
I [A B]

δ
B′)
E′ + (q + 2)(2− q)V (A′B′

A B
δ
C′)
E′

= ∇(C′

I T
A′B′)I
A B E′

− 2T
(C′A′|J |
I [A J ′

T
B′)J ′I
B] J E′

.

From here and by (A.13) and (A.9), we get

V
(A′B′C′)
A B E′

= 1
2−q (∇(C′

I T
A′B′)I
A B E′

− 2T
(C′A′|J |
I [A |J ′|T

B′)J ′I
B] J E′

− q
2(q+2)∇

I′
I T

(A′B′|I|
A B I′

δ
C′)
E′ ).

(A.20)

Now we have expressions in terms of torsion for all irreducible compo-
nents of the Weyl curvature (up to its harmonic part). We can omit the use
of V ’s and ϕ’s and rewrite these results using only the components UabEC
and UabC

′
E′ and algebraic operations applied to its indices.

Lemma A.2. The components of the Weyl curvature Uabec = Uab
E
Cδ

C′
E′ −

Uab
C′
E′δ

E
C satisfy the following equations.

UA
′B′I

A B I = −UA′B′I′A B I′ =
1

q + 2
∇I′I TA

′B′I
A B I′

U
I′[A′B′]

(B C) I′
= U

I′(A′B′)
[B C] I′

= U
[A′B′]I
I (B C)

= U
(A′B′)I
I [B C]

= 0

U
I′(A′B′)

(B C) I′
= U

(A′B′)I
I (B C)

=
1

q
T
I′(A′|J |
I (B |J ′|T

B′)J ′I
C) J I′

U
I′[A′B′]

[B C] I′
= U

[A′B′]I′

I [B C]
=

1

q + 4
T
I′[A′|J |
I [C |J ′|T

B′]J ′I
B] J I′

U
(A′B′C′)
[A B] E′

= − 1

q − 2
∇(C′

I T
A′B′)I
A B E′

+
2

q − 2
T

(C′A′|J |
I [A |J ′|T

B′)J ′I
B] J E′

+
1

q2 − 4
∇I′I T

(A′B′|I|
A B I′

δ
C′)
E′

U A′B′C′

(A B) E′ = −2

q
T
I′C′|J |
I (A |J ′|T

[A′|J ′I|
B) J I′

δ
B′]
E′ (A.21)

U
[A′B′]E
A [B C]

= T
I′[A′J
A [C|J ′|T

B′]J ′E
B] J I′

− T I
′[A′J

[A C|J ′|T
B′]J ′E
B] J I′

(A.22)

U
A′[B′C′]
[A B] E′

= − 1

q + 2
∇I′I T

A′[B′|I|
A B I′

δ
C′]
E′ +

1

q + 4
T I
′A′J

I[C|J ′|T
[B′|J ′I|
B] J I′

δ
C′]
E′ (A.23)

− 1

q + 4
T
I′[A′|J |
I A J ′

T
B′]J ′I
[B J I′

δEC] +
1

q + 4
T
I′[A′|J |
I [A |J ′|T

B′]J ′I
B |J I′|δ

E
C]
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U
(A′B′)E
[A B C]

=
1

4
∇I′[CT

A′B′E
A B] I′ −

1

2
T
I′(A′J
[C A J ′

T
B′)J ′E
B] J I′

+
1

4(q + 2)
∇I′I TA

′B′I
[A B|I′|δ

E
C]

U
(A′B′)E
A(B C)

= −∇I′(CT
A′B′E
B)A I′ + T

I′(A′J
A (C J ′

T
B′)J ′E
B) J I′

(A.24)

+
1

q
T
I′(A′|J |
I A |J ′| T

B′)J ′I
(B J I′

δEC) +
1

q
T
I′(A′|J |
I B J ′

T
B′)J ′I
C J I′

δEA

− 1

q + 2
∇I′I TA

′B′I
A(B|I′|δ

E
C)

Proof. Taking various traces in the defining equations (A.2) for ϕ’s and
V ’s yields

UA
′B′I

A B I = −UA′B′I′A B I′ = −2qV A′B′

A B

U I
′A′B′

B C I′ = ϕBC
A′B′ + V I′A′B′

B C I′ + qV A′B′

B C

UA
′B′I

I B C = εA
′B′ϕIB

I
C + V A′B′I

I B C − 2V A′B′

C B

Here we used that ϕAB = 0 according to (A.8). From the second equality
and (A.14), we conclude

U
I′[A′B′]

(B C) I′
= U

I′(A′B′)
[B C] I′

= 0,

U
I′(A′B′)

(B C) I′
= ϕBC

A′B′ ,

U
I′[A′B′]

[B C] I′
= V

I′[A′B′]
B C I′

and the third one together with equations (A.10) and (A.13) implies

U
[A′B′]I
I (B C)

= U
(A′B′)I
I [B C]

= 0,

U
(A′B′)I
I (B C)

= V A′B′I
I (B C),

U
[A′B′]I′

I [B C]
= εA

′B′ϕI[B
I
C]

Taking suitable algebraic operations in (A.2) gives the following expressions
for the non-trace terms.

U
(A′B′C′)
[A B] E′

= V
(A′B′C′)
A B E′

+ qV
(A′B′

A B
δ
C′)
E′ ,

U
[A′B′]E
A [B C]

= εA
′B′ϕA[B

E
C],

U
(A′B′)E
[A B C]

= V A′B′E
[A B C] − 2V A′B′

[A B δ
E
C]

U
(A′B′)E
A(B C)

= V A′B′E
A(B C) − 2V A′B′

A(B δEC)

For the remaining components of the Weyl curvature, we have

U A′B′C′

(A B) E′ = εA
′B′ϕAB

C′
E′ = −2ϕAB

C′[A′δ
B′]
E′
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and

U
A′[B′C′]
[A B] E′

= V
A′[B′C′]
A B E′

+ qV
A′[B′

A B
δ
C′]
E′ = −V I′A′[B′

A B I′
δ
C′]
E′ + qV

A′[B′

A B
δ
C′]
E′

The rest is a direct consequence of equations (A.9), (A.15), (A.16), (A.17),
(A.18), (A.19) and (A.20). �

Corollary A.3. In the torsion-free case, the Weyl curvature Uabec satisfies

Uab
e
c = WAB

E
Cε

A′B′δC
′

E′ ,

for some WAB
E
C ∈ EE(ABC)0

[−1].

By (A.1) and by equation (1) in the previous lemma, we have

Corollary A.4. The skew-symmetric part of the Rho-tensor associated to
an exact Weyl connection satisfies

− 2(q + 2)P[ab] = ∇iTabi. (A.25)

In particular, it vanishes in the torsion-free case.

Differential Bianchi identity. According to proposition 1.11, the dif-
ferential Bianchi identity has the form

∇[aRbc]
e
d − T[ab

fRc]f
e
d = 0.

We assume in this paragraph that the Weyl connection ∇a is torsion-free.
Then the differential Bianchi identity simplifies to ∇[aRbc]

e
d = 0. Now we

rewrite this equation using the structure of the Riemannian curvature Rbced
described in 2.2.2. Namely, we replace Rbced by Ubced−∂(P)bc

e
d which yields

∇[aUbc]
e
d = ∇[a∂(P)bc]

e
d (A.26)

This equivalent reformulation of the differential Bianchi identity can be fur-
ther simplified because the vanishing of the torsion implies that by A.3 the
only non-zero part of Ubced is its harmonic part WAB

E
C ∈ EE(ABC)0

[−1].
Hence if we set

Qabc := 2∇[aPb]c,

we conclude from (A.26) the following.

Lemma A.5. In the case of a Grassmannian geometry (i.e. the torsion-free
case), the differential Bianchi identity implies

QA
′B′C′

A B C =
1

1− q
εA
′B′∇C′E WA B

E
C ,

where WAB
E
C is the harmonic part of the curvature lying in EE(ABC)0

[−1].
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Proof. It follows from the previous discussion that the left-hand side
of (A.26) equals

1

3

∑
cycl(abc)

εB
′C′∇A′A WB C

E
Dδ

D′
E′

while the right-hand side equals
1

3

∑
cycl(abc)

(−PB′D′B C δC
′

E′δ
E
D + PC

′D′

C B δB
′

E′ δ
E
D − PB

′C′

B D δ
E
C δ

D′
E′ + PC

′B′

C D δ
E
Bδ

D′
E′ )

according to equation (2.6) for ∂(P). Now it is useful to use the tensor Qabc
in order to expand this sum. Then we get that equation (A.26) is equivalent
to the equation

εB
′C′∇A′A WB C

E
Dδ

D′
E′ + εC

′A′∇B′B WC A
E
Dδ

D′
E′ + εA

′B′∇C′C WA B
E
Dδ

D′
E′

= −QA′B′D′A B C δC
′

E′δ
E
D −QA

′B′C′

A B D δ
D′
E′ δ

E
C +QA

′C′D′

A C B δB
′

E′ δ
E
D

+QA
′C′B′

A C D δ
D′
E′ δ

E
B −QB

′C′D′

B C A δA
′

E′δ
E
D −QB

′C′A′

B C D δ
D′
E′ δ

E
A

Now the claim of the lemma is obtained from here by taking suitable traces
and algebraic operations. Namely, taking the trace over D′ and E′ yields

2εB
′C′∇A′A WB C

E
D + 2εC

′A′∇B′B WC A
E
D + 2εA

′B′∇C′C WA B
E
D

= −QA′B′C′A B C δ
E
D − 2QA

′B′C′

A B D δ
E
C +QA

′C′B′

A C B δ
E
D

+2QA
′C′B′

A C D δ
E
B −QB

′C′A′

B C A δ
E
D − 2QB

′C′A′

B C D δ
E
A

and since
−Qabc +Qacb −Qbca = −Q[abc] = −∇[aPbc] = 0

in the case of vanishing torsion, the previous equation is equivalent to

εB
′C′∇A′A WB C

E
D + εC

′A′∇B′B WC A
E
D + εA

′B′∇C′C WA B
E
D

= −QA′B′C′A B D δ
E
C +QA

′C′B′

A C D δ
E
B −QB

′C′A′

B C D δ
E
A

Now the trace over C and E yields

εA
′B′∇C′E WA B

E
D = −qQA′B′C′A B D +QA

′C′B′

A B D −Q
B′C′A′

B A D (A.27)

since the tensorW is trece-free. The tensorQabc is skewsymmetric in the first
two enteries and so it splitts as Q = Q1 +Q2, where (Q1)A

′B′C′

A B C = Q
(A′B′)C′

[A B] D

and (Q2)A
′B′C′

A B C = Q
[A′B′]C′

(A B) D
. Then the symmetrization of (A.27) over A′, B′

and C ′ implies
(Q1)

(A′B′C′)
A B D

= 0

and the alternation of (A.27) in A′ and B′ gives

εA
′B′∇C′E WA B

E
D = −qQ[A′B′]C′

A B D
+ 2Q

[A′|C′|B′]
(A B) D

= (1− q)(Q2)A
′B′C′

A B D
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since 2(Q2)
[A′|C′|B′]
A B D

= (Q2)A
′B′C′

A B D . The alternation of (A.27) in B′ and C ′

leads to
εA
′[B′∇C

′]
E WA B

E
D = −(q + 1)Q

A′[B′C′]
A B D

−Q[B′C′]A′

B A D

which is equivalent to

−1

2
εB
′C′∇A′E WA B

E
D = −(q + 1)(Q1)

A′[B′C′]
A B D

+
q − 1

2
(Q2)B

′C′A′

A B D .

Inserting the previous equation for Q2 into this equation yields

(Q1)
A′[B′C′]
A B D

= 0.

All together, we have got

QA
′B′C′

A B C = (Q2)A
′B′C′

A B C =
1

1− q
εA
′B′∇C′E WA B

E
C .

�





APPENDIX B

An analogue of Q-curvature

In the first part we give an alternative construction of the invariant op-
erator D : E → EA[−2] in the torsion-free case. In the second one we use
this construction to prove proposition 3.14, which shows the existence of an
Grassmannian analogue of the conformal Q-curvature.

An alternative contruction of D. We will proceed along the lines of
[12] where the second power of conformal Laplacian is constructed since this
is the conformal analogue of our operator D. In contrast with the previous
construction, where we used an operator for splitting the tractor bundle Eα
induced by curved Casimir operators, we will use an operator for splitting the
tractor bundle Λ2Eα and then we act by the analogue of conformal Laplacian.

So let us start with the tractor bundle Λ2Eα instead of Eα, and let us
compute the action of T ∗M = EA′A and TM = EAA′ on it. It follows from
the elementary action of Υ ∈ T ∗M and ξ ∈ TM on the costandard tractor
bundle Eα = EA′ +

�� EA that the action on

Λ2Eα = E [1] +
�� EA′A [1] +

�� E[AB]

is

Υ •


f

µA
′

A

ρAB

 =


0

−ΥA′
A f

2ΥA′

[Aµ
B′

B]εA′B′

 , ξ •


f

µA
′

A

ρAB

 =


−ξAA′µA

′
A

−ξBB′ρABεA
′B′

0


Now it is easy to express the action of the tractor connection, fundamental
derivative and the differential part of the curved Casimir operator on Λ2Eα.
The tractor connection is defined by ∇Tψ t = ∇ψt + P(ψ) • t + ξ • t which
yields

(∇T )A
′

A


f

µB
′

B

ρBC

 =


∇A′A f − µA

′
A

∇A′A µB
′

B − PA
′B′

A B f − ε
A′B′ρAB

∇A′A ρBC + 2PA
′B′

A[B µC
′

C]εB′C′

 (B.1)

The differential part of the curved Casimir operator C equals −2
∑

l ϕ
l •

(∇ψlt+P(ψl)•t) for a local basis ϕl of T ∗M and its dual basis ψl. Therefore,
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the action of C on Λ2Eα can be written as

C


f

µA
′

A

ρAB

 =


c0f

c1µ
A′
A + 2∇A′A f

c2ρAB − 4∇A′[Aµ
B′

B]εA′B′ + 4PA
′B′

[AB]fεA′B′


where c0, c1, c2 are Casimir eigenvalues on the irreducible bundles E [1], EA′A [1]

and Λ2EA respectively. Obviously, the same formula holds for the action of
C on Λ2Eα[w] but the eigenvalues become polynomial in the weight w. It
follows from the computation of Casimir eigenvalues in the previous section
that the differences to the first eigenvalue are

0

−2w − 2

−4w − 8


and so there are two degenerate cases – the first one is w = −1 and the
second one is w = −2.

In a non-degenerate case, the operator (C−c1)(C−c2) induces an invariant
splitting Sw : E [w+1]→ Λ2Eα[w] which is an analog of the conformal tractor-
D operator. Using the formula for the curved Casimir displayed above, we
get

Sw(f) =


(w + 1)(w + 2)f

(w + 2)∇A′A f

−∇A′[A∇
B′

B]fεA′B′ + (w + 1)PA
′B′

A B fεA′B′


In the case of w = −1, we have c0 = 0 (the corresponding bundle is the

bundle of functions on M in such a case), c1 = 0 and c2 = −4. Therefore,
C induces an invariant operator E → EA′A which is the exterior derivative of
course. The splitting operator S−1 : E → Λ2Eα[−1] is induced by C(C + 4)

and has the form

S−1(f) =


0

∇A′A f

−∇A′[A∇
B′

B]fεA′B′


We observe that the operator S−1 factorizes through EA′A and so we can view
it as an operator EA′A → Λ2Eα[−1] acting on ∇A′A f .

Since we have c0 = c2 and c1 = c0 + 2 in the second degenerate case
w = −2, the operator (C − c0)(C − c0 − 2) induces an invariant operator
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�AB : E [−1] → Λ2EA[−2]. It follows form the formula for curved Casimir
that

�AB = εA′B′(∇A
′

[A∇
B′

B] + PA
′B′

[AB])

This is a strongly invariant operator and so we can replace the connection
∇A′A by the tractor connection (∇T )A

′
A . We obtain an invariant operator

�TAB acting on weighted tractor bundles of the weight -1. Therefore, we can
construct the invariant operator

�TAB ◦ S−1 : E → Λ2EA ⊗ Λ2Eα[−2]

The target space has the following composition series.

Λ2Eα ⊗ Λ2EA[−2] = Λ2EA[−1] +
��
EA′EA EA[−1]

⊕

EA′Λ3EA[−1]

+
��

EA[−2]

⊕

EA[−2]

⊕

Λ4EA[−2]

Using the formula for the tractor connection given above, we make the for-
mula for �TAB ◦ S−1 explicit. It is easy to show that we get zero in the
projecting slot Λ2EA[−1]. In the two slots in the middle, we get an expres-
sion which also vanishes in the torsion-free case. Therefore, we can project
�TAB ◦S−1 to EA[−2] which yields an invariant operator E → EA[−2]. It
turns out that this operator coincides with the operator D and so we obtain
an alternative construction of D which yields also a new formula for D.

Proposition B.1. The action of the operator �TAB ◦ S−1 on f ∈ E is given
by

�TAB ◦ S−1(f) =


0

0 | 0

D(f) | ∗ | ∗


Proof. We compute the action of �TAB on S−1(f) explicitely using the

expression for the action of the tractor connection. Then we show that only
the slots in the bottom are non-zero and that we obtain the formula defining
the operator D in the slot corresponding to EA[−2].

The action of

�TAB = εA′B′(∇T ) A
′

[A (∇T )B
′

B] + εA′B′P
A′B′

[AB]
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on the section

S−1(f) =


0

∇C′C f

−∇C′[C∇
D′

D]fεC′D′


of Λ2Eα[−1] is obtained by a double use of the expression (B.1) for the action
of tractor connection on Λ2Eα. In the first slot, we get

εA′B′(−∇A
′

[A∇
B′

B] −∇
B′

[B∇
A′

A] − ε
A′B′εC′D′∇C

′

[A∇
D′

B]) = 0

In the second slot, we end up with the expression

εA′B′(∇A
′

[A∇
B′

B]∇
C′
C f −∇C

′
C ∇A

′

[A∇
B′

B]f + 3∇C′[C∇
A′
A ∇B

′

B]f

P A′C′

[A|C|∇
B′

B]f + PC
′A′

C[A ∇
B′

B]f + P A′B′

[A B]∇
C′
C f − 3P C′A′

[C A ∇
B′

B]f)
(B.2)

which defines an invariant operator E → EC′[AB]C . Now we split this formula
into the irreducible parts according to EC′[AB]C = EC′[ABC] ⊕ E

C′

(ABC). The
component in EC′(ABC) can be written with the help of the projection Π

defined in (3.14) as Π applied to

∇a∇b∇cf −∇c∇a∇bf + Pac∇bf + Pca∇bf + Pab∇cf.

It follows from the proof of lemma 3.5 that the part with the Rho-tensor
equals ∂(P)acb

e∇ef . Moreover, the first two terms can be rewritten by ap-
plying twice Ricci identity, and so the last expression may be written as Π

applied to

−∇a(Tbce∇ef)− Tace∇e∇bf +Racb
e∇ef + ∂(P)acb

e∇ef.

Now we observe that in the torsion-free case the first two terms vanish and
the second two sum up to Uacbe∇ef . The Weyl curvature is by A.3 equal
to Uaceb = WAC

E
Bε

A′C′δB
′

E′ for some WAC
E
B ∈ EE(ACB)0

[−1] and thus the
term Uacb

e∇ef is maped to zero under Π by the definition of Π . Hence
we conclude that the projection of (B.2) to EC′(ABC) vanish. Similarly, the
projection of (B.2) to the slot corresponding to EC′[ABC] yields

εA′B′(−UA
′C′B′E

[A C B] E′∇
E′
E f + TA

′C′E
[A C|E′∇

E′

E|∇
B′

B]f)

which also vanishes in the case of vanishing torsion, and so the whole formula
(B.2) appearing in the second level of �TAB ◦S−1(f) vanishes. In the bottom
level, we get

εA′B′εC′D′AltAB ◦AltCD(−∇A′A ∇B
′

B ∇C
′

C ∇D
′

D f + 4PB
′C′

B C ∇
A′
A ∇D

′
D f

− 2PA
′B′

A C ∇
C′

[B∇
D′

D]f − PA
′B′

A B ∇
C′
C ∇D

′
D f + 2∇A′A PB

′C′

B C ∇
D′
D f)
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Since

AltCD(PA
′B′

A C ∇
C′

[B∇
D′

D]f) =
1

2
PA
′B′

A B ∇
C′

[C∇
D′

D]f −
3

2
PA
′B′

A[B ∇
C′
C ∇D

′

D]f,

the projection of the bottom slot to E (ABCD)[−2] can be obtained by ap-
plying the projection Π defined in (3.20) to

−∇a∇b∇c∇df + 4Pbc∇a∇df − 2Pab∇c∇df + 2(∇aPbc)∇df.

But up to the sign this is formula (3.25) for the operator D. �

Proof of proposition 3.14. Now we use the alternative construction
of the operator D from proposition B.1 to construct an analogue Q of the Q-
curvature in such way that the form of its transformation becomes obvious.
At first, let us choose a scale and consider the following non-invariant section
of the tractor bundle Λ2Eα

Iσ =


−1

0

−PC′D′[C D]εC′D′

 .

The reason why we assume such section is that it has a special transfor-
mation. Namely, its linearized transformation under the change of Weyl
structure described by a one-form ΥA′

A is

δ(Iσ) =


0

ΥC′
C

−∇C′[CΥD′

D]εC′D′


From here we see that if ΥA′

A is an exact form given by ∇A′A ω, we get

δ(Iσ) = S−1(ω)

Now we form �TABI
σ which is a section of Λ2EA ⊗ Λ2Eα[−2]. Then the

previous equation together with the invariance of �TAB imply

δ(�TABI
σ) = �TABS−1(ω) (B.3)

In the perspective of proposition B.1, this equation says that �TABI
σ trans-

forms in the bottom-slot of Λ2EA ⊗ Λ2Eα[−2] only and, moreover, the piece
which corresponds to EA[−2] transforms essentially via D(ω). In order to
state this properly, we compute �TABI

σ explicitely.
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From the definition of �TAB, we get

�TABI
σ =

(
εA′B′(∇T ) A

′

[A (∇T )B
′

B] + εA′B′P
A′B′

[AB]

)


−1

0

−PC′D′[CD]εC′D′


Let us compute the leading term first. From equation (B.1) for the action of
the tractor curvature, we get

(∇T )B
′

B


−1

0

−PC′D′[CD]εC′D′

 =


0

PB
′C′

B C + εB
′C′PE

′F ′

[BC]εE′F ′

−∇B′B PC
′D′

[CD]εC′D′


and the action of (∇T )A

′
A on the resulting section yields
−PB′A′B A − ε

B′A′PE
′F ′

[BA]εE′F ′

∇A′A PB
′C′

B C + εB
′C′∇A′A PE

′F ′

[BC]εE′F ′ + εA
′C′∇B′B PE

′F ′

[A C]εE′F ′

(−∇A′A ∇B
′

B PC
′D′

[CD] + 2PA
′C′

A[C PB
′D′

|B|D] − PA
′B′

A[C PC
′D′

|B|D] + PA
′B′

A[C PC
′D′

D]B )εC′D′


We see from here that the first slot of �TABI

σ equals

εA′B′(−PB
′A′

[BA] − ε
B′A′PE

′F ′

[BA]εE′F ′)− εA′B′P
A′B′

[AB] = 0

while the second one equals

εA′B′(∇A
′

[AP
B′C′

B]C +∇C′[AP
A′B′

B]C −∇
C′

[AP
A′B′

|C|B])

= εA′B′(∇A
′

[AP
B′C′

B]C −∇
C′
C PA

′B′

[AB] + 3∇C′[CP
A′B′

A B])

This slot corresponds to the bundle E[AB] ⊗ EC
′

C [−2] which splits into two
irreducible parts. The first one is EC′[ABC][−2] and we find easily that the
projection of the formula to this part equals

2∇(C′

[C P
A′)B′

A B]
εA′B′ .

And since we consider the torsion-free case, this is by A.5 equal to
1

1− q
εC
′A′∇B′E W[C A

E
B] = 0.

The other part of the second slot lies in EC′(ABC)[−2], and it can be obviously
written as Π applied to ∇aPbc − ∇cPab. Since we consider a torsion-free
case, the Rho-tensor Pab coincides with its symmetric part Sab and so lemma
3.23 (which is also a consequence of A.5) shows that ∇aPbc−∇cPab ≡ 0 mod
Ker(Π ). Thus we conclude from the differential Bianchi identity that the
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whole second slot vanishes. The third slot of �TABI
σ lies in E[AB]⊗E[CD][−2]

and equals

AltAB ◦AltCD(−∇A′A ∇B
′

B PC
′D′

C D + 2PA
′C′

A C PB
′D′

B D − PC
′D′

A C PA
′B′

B D

+ PC
′D′

A C PA
′B′

D B − PA
′B′

A B PC
′D′

C D )εA′B′εC′D′

= AltAB ◦AltCD(−∇A′A ∇B
′

B PC
′D′

C D + 2PA
′C′

A C PB
′D′

B D − 2PA
′B′

A B PC
′D′

C D

+ 3PA
′B′

A[B PC
′D′

C D])εA′B′εC′D′ .

We conclude from this formula that its projection to E (ABCD)[−2] can be
written as Π (Q̃)ABCD where

Q̃abcd = −∇a∇bPcd + 2PacPbd − 2PabPcd.

Since we have just proved

�TABI
σ =


0

0 | 0

QABCD | ∗ | ∗

 ,

and from B.1 we know

�TABS−1(ω) =


0

0 | 0

D(ω) | ∗ | ∗

 ,

it follows from (B.3) that
δ(Q) = D(ω).
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