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Abstract

Space and numbers are two important concepts which philosophers created for the descrip-
tion of natural phenamena. From the beginnig, it seemed that there is a kind of equivalence
(duality) between the space (geometry) and numbers (algebra).
In modern mathematics, this equivalence can be expressed by category theory. An important ex-
ample is duality between commutative C∗–algebras and locally compact topological Hausdorff
spaces. But there is a wide array of algebras which have noncommutative product between the
members. Noncommutative geometry is the study of topological spaces whose commutative
C∗–algebra of functions is replaced by a noncommutative algebra.
There are some physical evidences that tell us space time has a noncommutative structure in very
small lenght scale.
The aim of my Thesis is to introduce deformation quantization which arises from the noncom-
mutativity of space time. In this view point, deformation quantization appears as a product on
the deformed algebra of smooth functions on space time manifold. This product is an associative
and noncommutative product and called star product.
Kontsevich has shown that star product exists as a general formula of quantization of an arbitrary
Poisson manifold. Physical interpretation of star product appears in Poisson sigma models which
are topological quantum field theories and provide a unification for some class of field theories.
It seems that maybe there is a grand unified field theory behind noncommutativity properties of
space time.

Zusammenfassung

Räume und Zahlen sind zwei wichtige philosophische Konzepte für die Beschreibung natürlichen
Phänomene. Von Anfang an schien es, dass eine Art von Äquivalenz (Dualität) zwischen ge-
ometrischen Räumen (also der Geometrie) und Zahlen (also Algebren) existiert.
In der modernen Mathematik kann diese Äquivalenz z.B. mittels der Kategorientheorie aus-
gedrückt werden. Ein wichtiges Beispiel ist dabei die Dualität zwischen kommutativen C∗-
Algebren und lokal kompakten topologischen Hausdorff Räumen. Neben diesen kommutativen
Algebren gibt es aber auch eine breite Palette von nichtkommutativen Algebren, d.h. Algebren
deren Multiplikation von der Reihenfolge der Faktoren abhängt. Nichtkommutative Geome-
trie ist demnach das Studium von topologischen Räumen, wobei jeweils eine nichtkommutative
Funktionenalgebra (C∗-Algebra) das duale Gegenstück bildet.
Es gibt einige physikalische Hinweise auf eine nichtkommutative Struktur der Raumzeit für sehr
kleine Läengenskalen.
Das Ziel meiner Arbeit ist es, ausgehend von einer nichtkommutativer Raumzeit Deformation-
squantisierungen von Funktionenalgebren zu diskutieren. In dieser Hinsicht erscheint eine De-
formationsquantisierung als nichtkommutatives Produkt auf der Algebra der glatten Funktionen
auf der Raumzeit-Mannigfaltigkeit. Dieses assoziative und nichtkommutative Produkt wird als
Sternprodukt (star product) bezeichnet.
Kontsevich konnte zeigen, dass für jede Mannigfaltigkeit mit einer sogenannten Poisson Struktur
ein Sternprodukt definiert werden kann und konnte eine explizite Formel dafür angeben. Allerd-
ings ist diese Zuweisung nicht eindeutig möglich, es müssen Äquivalenzklassen von Sternpro-
dukten betrachtet werden. Eine physikalische Interpretation von Sternprodukten wird im Rah-
men von Poisson Sigmamodelle klar. Poisson Sigmamodelle sind topologische Quantenfeldthe-
orien und eine Verallgemeinerung einer großen Klasse von Feldtheorien.
Es deutet sehr vieles darauf hin, dass die Nichtkommutativität von Raum und Zeit wertvolle
Hinweise für die Struktur einer möglichen großen vereinheitlichten Theorie, also einer grand uni-
fied field theory, geben könnte.
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Chapter 1

Some historical introduction

1.1 Foundamental Duality

Space and numbers are two important concepts which philosophers created for the description of
natural phenamena. From the beginning, it seemed that there is a kind of duality between space
(geometry) and numbers (algebra). The first equivalence was found by the Greek mathematician
Menaechmus (380 − 320BC). He solved problems and theorems by using a method that has a
strong resemblance to the use of coordinates. Actually he introduced analytic geometry.
The next evidence was discovered by the Persian mathematician Khayyam in the eleventh cen-
tury. He saw a strong relationship between geometry and algebra, when he wanted to solve the
cubic equation with geometrical methods.
At the end, analytic geometry has traditionally been attributed to Rene Descartes. He has shown
that the geometrical point can be represented by a set of numbers. [1]
A revolution in geometry happened in the 19th century by Gauss, Riemann, Hilbert, Poincare and
Klein which is based on the Cantor set theory and a revolution in algebra by Galois, Dedekind,
Kronecher,.... In this modern perspective, space is a set with an inner structure (a finite number
of axioms). For example:Topology, smooth structures, measures. An algebra is a set with some
operations between the members. The duality between geometry and algebra can be expressed
by category theory (in other words, we can express the geometrical information of a space by the
algebra of functions defined on that space).
The two famous examples for dualities are:
1) Hilberts Nullstellen theorem: Duality between affine algebraic varieties and finitely generated
commutative algebras.
2) The Gelfand-Naimark theorem: Duality between commutative C*-algebras and locally com-
pact topological Hausdorff spaces.
But there is a wide array of algebras which have noncommutative product between the mem-
bers. The most important of them are noncommutative C*-algebras which naturally appear in
mathematics and theoretical physics, for examle in Harmonic analysis, differential geometry and
quantum mechanics.
This led us to the theory of Von Neumann algebras and was the birth of noncommutative geom-
etry. Actually noncommutative geometry is the study of topological spaces whose commutative
C∗–algebra of functions is replaced by a noncommutative algebra.
The idea of noncommutative geometry was revived by Alain Connes. [2]
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So we can replace the old concept of space (as a set of points) with the new concept of space (as
a noncommutative algebra of functions).

1.2 Physical evidence behind noncommutative space time

Noncommutative structure of phase space was suggested by the creators of quantum mechanics:
Phase space in quantum mechanics is defined by replacing the classical momentum pi and posi-
tion qi by Hermitian operators p̂i and q̂i which satisfy the Heisenberg commutation relation and
therefore the uncertainty principle. It means that the notion of a point in quantum phase space is
meaningless.
We can reformulate quantum field theory with a noncommutative structure for space time coordi-
nates at Planck scale in order to introduce an effective ultraviolet cutoff. Ultraviolet divergences
arise when we try to measure the amplitude of field oscillations at a point in space time. We can
assume the structure of space time in the small length scale should be noncommutative. This
means that it is impossible to measure exactly the position of a particle since the space coordi-
nates could not be simultaneously diagonalized (quantization of phase space).
Thus quantization of a classical space is defined by replacing space time coordinates xi by the
Hermitian generators x̂i of a noncommutative C∗–algebra of functions on space time manifold
and satisfying the commutation relations:

[x̂i, x̂j ] = iθij(x̂). (1.1)

.

The simplest case is where θij is a constant, real valued antisymmetric M ×M matrix (M is
the dimention of space time).
So, we can write uncertainty relation for space time coordinates:

∆xi.∆xj ≥ (
1
2

)θij . (1.2)

.

It means that a point in space time is replaced by a Planck cell .
Quantized space time was suggested by Snyder in 1947 [5]. His idea was that if we could create
a structure of space time that is pointless on very small length scales, then the ultraviolet diver-
gence of quantum field theory might disappear. One consequence of this idea is that the classical
general relativity would break down at this scale because space time would not be described by
a differential manifold any more.
Now, we study some physical evidence for noncommutative space time:

1) Landau problem:
Consider a homogeneous and constant magnetic field B and a particle with charge e moving in
B. The action is:

S =
∫
dt(

1
2
mẋiẋi −

e

c
Bµνx

iẋi). (1.3)
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Where Bµν = −Bνµ and Aν = Bµνx
µ and the canonical momentum is:

πi =
∂L

∂ẋi
= mẋi + (

e

c
)Bijxj . (1.4)

The poisson bracket between coordinate and momentum is:{
πi, x

j
}

= δji . (1.5)

From (1.4) and (1.5) we can write:{
ẋi, x

j
}

+ (
e

mc
)Bik

{
xk, xj

}
= (

1
m

)δji

⇒
{
xk, xj

}
= (

c(B−1)kj

e
)δji − (

mc(B−1)ki

e
)
{
ẋi, x

j
}
. (1.6)

We assume strong magnetic field and small mass. In this limit, the last equation simplifies
and we have: {

xk, xj
}

= (
c

e
)(B−1)kj . (1.7)

It means that the coordinates do not commute.

2) Divergencies in quantum field theory:
In quantum field theory, loop contributions to the transition amplitudes diverge. For example in
Euclidian space, the real scalar field Φ4 theory which is described by the Lagrangian [15]:

L =
1
2
∂µΦ∂µΦ− 1

2
m2Φ2 +

g

4!
Φ4. (1.8)

The generating functional of correlation functions is:

Z[J ] =
∫

[dΦ]exp(−iS), (1.9)

Z[J ] = {1 +
g

4
∆F (0)

∫
d4x

∫
d4y

∫
d4zJ(y)∆F (y − z)J(x)∆F (x− z) + ...}

× exp{− i
2

∫
d4x

∫
d4yJ(x)∆F (x− y)J(y)}. (1.10)

The loop contribution in the formula appears in term ∆F (0) =
∫

d4q
(2π)4

1
q2−m2 , thus the result is

divergent. There may be other divergences and the renormalisation procedure may remove some
of them. If all divergencies can be removed with a finite number of counter terms, the theory is
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called renormalisable. The Φ4 theory in 4 dimensions is renormalisable.
The quantum theory of gravity is not renormalisable. The hope to have a renormalisable theory
of quantum gravity is a motivation for noncommutative coordinates.

3) Quantization of gravity:
In the way of quantization of gravity, it clarified that the space time structure might have a non-
commutative structure. For measuring the distance l between two points in space time, energy
E has to be deposited in that region of space time:

λ ≈ l : E = (hc)/λ ≈ (hc)/l. (1.11)

It means, as the distance l decreases the energy E increases. At the Planck scale we have:

l ≈ lpl =
√

(hG)/c3

⇒ E = (hc)
√
c3/(~G). (1.12)

The Schwarzshild radius is:

rs = 2GM/c2 = 2
√

~G/c3 = 2lpl. (1.13)

It means that a black hole is generated during the measurement. In order to avoid the ap-
pearence of a black hole, we need a minimal length which can be implemented by commutation
relations [16].

1.3 Deformation and quantization

The 20th century started with two revolutions in theoretical physics:
1) Relativity,
2) Quantum mechanics.
The aim of both classical and quantum mechanics are to study the evolution of observable quanti-
ties. An observable in classical mechanics is a smooth function f ∈ C∞(M) on a Poisson manifold
M , called the phase space. The time evolution of an observable f is given by:

df

dt
= {H, f} . (1.14)

Where {, } is the Poisson bracket on C∞(M) and H is the Hamiltonian of the system. The
Poisson bracket is completley determined by its action on coordinate functions (pi, qi)ni=1:

{pi, qj} = −δij , (1.15)

where pi and qj are momentum and position, local coordinates on the 2n dimensional Poisson
manifold M .

An observable in quantum mechanics is a self adjoint operator f̂ ∈ B(H) on a complex projec-
tive Hilbert spaceH , called state space. The time evolution of an observable (Heisenberg picture)
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is given by:

df̂

dt
= −i~

[
Ĥ, F̂

]
, (1.16)

where [, ] is a Lie algebra structure on B(H). It satisfies the canonical commutaion relation:

[p̂i, q̂j ] = −i~δij . (1.17)

Therefore the following question naturally arises:
Is there any way to construct quantum mechanics from classical mechanics? The answer is yes!
This method is called quantization.

Deformation quantization:
As we can see in the last part of my discussion, the word Quantization played a very impor-
tant role in the revolution of physics. From the beginning of quantum mechanics, it seemed
that quantum mechanics is some kind of deformed classical mechanics. The method we can use
in order to construct quantum mechanics from classical mechanics is called Deformation quanti-
zation. Deformation quantization was discussed by Bayen, Flato, Fronsdal, Lichnerowicz and
Sternheimer [18]. The observables in classical mechanics (f ∈ C∞(M)) have a commutative C∗–
algebra structure and in quantum mechanics (f̂ ∈ B(H)) a noncommutative C∗–algebra struc-
ture. Deformation quantization is a way to construct a noncommutative C∗–algebra of quantum
observables from a commutative C∗–algebra of classical observables. See [25] for a general defi-
nition of quantization.
The starting point is the phase space (a Poisson manifold) with the commutative algebra of ob-
servables. Then one tries to construct a noncommutative algebra of quantum observables by
defining a new noncommutative product (star product) which introduces a noncommutative
structure to the algebra of functions. As we will see, deformation quantization is based on al-
gebraic structures. We can also extend our discussion in the geometrical language (by the duality
between algebra and geometry). Thus we can explain it with the geometrical perspective.
We can illustrate the quantization method by the following diagram [20]:

classical mechanics←→ quantum mechanics
algebra of functions on manifold←→ algebra of observables

manifold phase space←→ Hilbert space

Generally, a deformation of mathematical objects is a family of some kind of objects depend-
ing on some parameters [19]. We are concerned with deformation of algebras.
Deformation of an algebra is encoded as a product, so called Star product. Let Â be a noncommu-
tative algebra of functions on a noncommutative space:

Â =
C〈〈x̂1, ..., x̂n〉〉

I
, (1.18)

where I is the ideal generated by the commutation relation of the coordinate functions, and the
commutative algebra of functions:

A =
C〈〈x1, ..., xn〉〉

[xi, xj ]
, (1.19)
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i.e.,
[
xi, xj

]
= 0. Our aim is to relate these algebras by an isomorphism W : A → Â. Let us

first consider the vector space structure of the algebras. In order to construct a vector space
isomorphism, a basis has to be choosen in both algebras and then they have to be satisfied by
Poincare-Birkhoff-Witt property, then W is an isomorphism of vector spaces [16].
In order to extend W to an algebra isomorphism, we have to introduce a new noncommutative
multipication ∗ in A. This star product in defined by:

W (f ∗ g) = W (f) ·W (g) = f̂ · ĝ, (1.20)

where f, g ∈ A and f̂ , ĝ ∈ Â. W is an algebra isomorphism:

(A, ∗) ∼= (Â, ·) (1.21)

The information on the noncommutativity of Â is encoded in the star product.

The main goal of my Thesis is to introduce star products and study some physical applica-
tions which appear in Poisson sigma models. The main reasons which motivate us to consider
Poisson sigma models is the relation of this model with quantization theory which appear in the
Kontsevich quantization theorem. In this theorem, Kontsevich gives us a universal formula for de-
formation quantization expressed in terms of some graphs. This formula imitates the Feynman
diagrams expansion in quantum field theory. The Poisson sigma model provides a unification
for some class of field theories.

In chapter 2, I will strudy some applicatoins of commutative C∗–algebras and some topo-
logical concepts which are related to the Gelfand-Naimark theorem. In chapter 3, I will study
noncommutative space time, some examples and Hopf algebras.
I will study the mathematics of star products (deformation quantization) in chapter 4 and intro-
duce a very important theorem which was proved by Kontsevich.
In chapter 5, I will introduce Poisson sigma models and the physical interpretation of star prod-
ucts.
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Chapter 2

C∗–algebras and their geometry

2.1 Introduction to C∗–algebras

The aim of this chapter is to introduce the Gelfand-Naimark theorem. I will start with the C∗–
algebra and continue with the fundamental theorems which lead us to the Gelfand-Naimark
theorem. The C∗–algebras are based on Banach algebras, and Banach algebras are a special case
of algebras which have a normed space structure. There is also an interesting relation between
normed spaces and topological vectore spaces [21], [22], [23], [24].
For constructing a Banach algebra, in a first step, we need to define a norm on an arbitrary vector
space X and make a Banach space from X .

Definition 2.1.1 (seminorm). LetX be a vector space on a field F . A mapX −→ R is called a seminorm
on X if it satisfies the following axioms:

1) ∀x, y ∈ X : ‖x+ y| ≤ ‖x‖+ ‖y‖ ,
2) ∀x ∈ X,α ∈ F : ‖αx‖ ≤ |α| . ‖x‖ . (2.1)

Definition 2.1.2. Let X be a F -vector space with a seminorm. X is called a normed space if :

∀x ∈ X : ‖x‖ = 0 =⇒ x = 0. (2.2)

Then the pair (X, ‖.‖) is called a normed space.

Definition 2.1.3. A normed space X is called a Banach space if every Cauchy sequence (with respect to
the metric which defines the norm) is convergent.

Definition 2.1.4. LetA be an algebra over a ringR. It is called a normed algebra if it satisfies the following
axioms:

1) A is a normed space, (2.3)
2) ∀x, y ∈ A : ‖xy‖ ≤ ‖x‖ . ‖y‖ . (2.4)

Definition 2.1.5. A normed algebra A is called a Banach algebra if A is a Banach space.
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We have introduced a Banach algebra structure. The next step is to construct a ∗-algebra from
a normed algebra A. Thus we need an additional structure on the algebra A.

Definition 2.1.6. Let A be a (complex) normed algebra. An involution is a map A → A(a 7→ a∗) such
that the following axioms hold:
∀a, b ∈ A,α ∈ F :

1) (a∗)∗ = a, (2.5)
2) (a+ b)∗ = a∗ + b∗, (2.6)
3) (ab)∗ = b∗a∗, (2.7)
4) (αa)∗ = ᾱa∗. (2.8)

Definition 2.1.7. A normed algebra A with an involution ∗ : A → A is called ∗-algebra and denoted by
(A, ∗).

Now we are ready to define a C∗-algebra:

Definition 2.1.8. A star Banach algebra is called C∗–algebra if:

∀x ∈ A : ‖x∗x‖ = ‖x‖2 . (2.9)

Definition 2.1.9. Let A be a C∗–algebra and x ∈ A. Then we have the following definitions:

1) x is Hermitian if x = x∗, (2.10)
2) x is normal if xx∗ = x∗x, (2.11)
3) x is unitary if xx∗ = x∗x = 1, (2.12)

4) x is a projection if x2 = x∗ = x (2.13)
5) x is a partial isometry if xx∗ or x∗x is a projection. (2.14)

The C∗-algebras have some important properties. One of them will be described in the next
theorem. These properties arise from the involution map defined in definition (2.1.7).

Theorem 2.1.10. Let A be a C∗–algebra, then:

1) ∀x ∈ A : ‖x∗‖ = ‖x‖ , (2.15)
2) ∀a ∈ A : ‖a‖ = sup {‖ax‖ ;x ∈ A, ‖x‖ ≤ 1} . (2.16)

Proof. 1) By the definition of norm on A, we have:

∀x ∈ A : ‖x‖2 = ‖x∗x‖ ≤ ‖x∗‖ . ‖x‖ ⇒ ‖x‖2 ≤ ‖x∗‖ . ‖x‖ ⇒ ‖x‖ ≤ ‖x∗‖ . (2.17)

On the other side:

(x∗)∗ = x⇒ ‖x∗‖2 = ‖x∗∗x∗‖ = ‖xx∗‖ ≤ ‖x‖ . ‖x∗‖ ⇒ ‖x∗‖ ≤ ‖x‖ . (2.18)

Thus by the last two equations we have:

‖x‖ = ‖x∗‖ . (2.19)

2) By definition (2.1.1) we have

‖ax‖ ≤ ‖a‖ . ‖x‖ , (2.20)
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since ‖x‖ ≤ 1 we have

‖ax‖ ≤ ‖a‖ , (2.21)

so by the definition of supremum of a set, we have:

‖a‖ = sup {‖ax‖ ;x ∈ A, ‖x‖ ≤ 1} . (2.22)

Proposition 2.1.11. Let A be a C∗–algebra. If x ∈ A is an invertible element, then x∗ is also invertible
and

(x−1)∗ = (x∗)−1. (2.23)

Example The complex field is a unitalC∗–algebra with involution given by complex conjugation:

α ∈ C : α→ ᾱ. (2.24)

2.2 Algebra of continuous functions

In this section we study a special case of C∗–algebras, the algebra of continuous functions over
the topological spaces which we denoted by C(X) (X is a topological space). This algebra plays
a very important role in our goal.
I start with the definition of a topology on a set:

Definition 2.2.1. Let X be an arbitrary set and T be a set of subsets of X . T is called a topology on X , if
satisfies the following axioms:

1) X ∈ T,∅ ∈ T, (2.25)

2) ∀i ∈ I,Gi ∈ T ⇒
⋃
i∈I

Gi ∈ T, (2.26)

3) ∀i ∈ I,Gi ∈ T ⇒
n⋂
i=1

Gi ∈ T. (2.27)

I is an index set.

Definition 2.2.2. The set Gi ∈ T in the last definition is called open set in X .

Definition 2.2.3. Let X be a topological space. An open cover of X is a set {Gi}i∈I of open subset of X
such that:

X ⊆ ∪i∈IGi. (2.28)

Now, I introduce some important examples of topological spaces.

Definition 2.2.4. Let X be a topological space. Then we have the following definitions:
1) X is called compact if each open cover of X has a finite sub cover.
2) X is called locally compact if every point of X has a compact neighbourhood.
3) X is called Hausdorff if two distinct points have disjoint neighbourhoods.
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Example Let X be a compact topological Hausdorff space. C(X) is the set of all complex contin-
uous functions X → C. Then the set C(X) is a Banach algebra with the norm:

∀f ∈ C(X) : ‖f‖ = sup {‖f(x)‖ ;x ∈ X, ‖x‖ ≤ 1} (2.29)

and it is a unital commutative C∗-algebra with the following involution f → f∗:

∀x ∈ X : f∗(x) = ¯f(x)→ ‖f∗f‖ = ‖f‖2 , (2.30)

with unital element: ∀x ∈ X : I(x) = 1.

Example Let X be a locally compact topological Hausdorff space, then

C0(X) = {f : X → C; f(∞) = 0} (2.31)

is a commutative C∗–algebra without unit element,

∀f ∈ C0(X) : ‖f‖∞ = ‖f‖ . (2.32)

Proposition 2.2.5. The commutative C∗–algebra C0(X) is a unital algebra if and only if X is a compact
space.

Example Let H be a Hibert space and B(H) the set of all bounded linear operators on H . Then
B(H) is a Banach algebra under the uniform norm:

∀o ∈ B(H) : ‖o‖ := sup {‖o(x)‖ ;x ∈ H, ‖x‖ ≤ 1} , (2.33)

and it is a noncommutative C∗–algebra with an involution:

o→ o∗ : ∀x, y ∈ H : 〈o(x), y〉 = 〈x, o∗(y)〉 . (2.34)

Remark Let A be an algebra over a ring R. A subset I ⊂ A is called a left ideal of A, if it satisfies
the following axioms:
1) I is a submodule of A,
2)∀x ∈ A, i ∈ I : ix ∈ I .

Example Let A be a ∗–algebra. Let I be a self adjiont ideal of A (I = I∗). Then the quotient
algebra A/I is a ∗–algebra with the involution given by: ∀x ∈ A:(x+ I)∗ = x∗ + I .

2.3 Spectral theory

The spectral theory was introduced by David Hilbert in his formulation of Hilbert space theory
and generally in functional analysis, bounded operators. The important point is that the spec-
trum of a point of a unital algebra is a non-empty set (Gelfand theorem). The spectrum of a
bounded operator is always a closed, bounded and non-empty subset of the complex plane.

Definition 2.3.1. Let A be an algebra (over a complex ring). The spectrum of x ∈ A is defined by:

SpA(x) = {α ∈ C; (x− αI) is not invertible} (2.35)
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Theorem 2.3.2. Let A be a unital algebra. Then:

∀x, y ∈ A : SpA(xy) ∪ {0} = SpA(yx) ∪ {0} (2.36)

Proof. Let α /∈ SpA(xy) ∪ {0}, then there is an inverse of (xy − αI). We denote by u. If u =
(xy − αI)−1, thus:

u(xy − αI) = uxy − αu = I

(xy − αI)u = xyu− αu = I

⇒ xyu− αu = I

⇒ xyu = I + αu

⇒ y(xyu)x = yx+ αyux+ α− α
⇒ (yx− α)(yux− I) = α and (yux− I)(yx− α) = α (2.37)

Thus (yx − αI) is invertible so α /∈ SpA(yx) ∪ {0}, thus SpA(xy) ∪ 0 ⊆ SpA(yx) ∪ {0}. Similary
we can show that SpA(yx) ∪ {0} ⊆ SpA(xy) ∪ {0}, thus SpA(xy) ∪ {0} = SpA(yx) ∪ {0}.

Now we start to review some important theorems which are the basis of commutative spaces.

Theorem 2.3.3 (Gelfand Theorem). Let A be a unital Banach algebra. If x ∈ A, then the spectrum of x
is not empty.

SpA(x) 6= ∅. (2.38)

Theorem 2.3.4 (Gelfand-Mazur Theorem). A unital Banach algebra in which every nonzero element is
invertible, is an isometry-isomorphic to the complex field.

It means that every complex unital Banach algebra which is a division algebra is isomorphic
to the complex numbers.

Definition 2.3.5. Let A be an algebra. The spectral radius of x ∈ A is defined by:

r(x) = sup {|α| , α ∈ SpA(x)} . (2.39)

Theorem 2.3.6 (Beurling Theorem). Let A be a unital Banach algebra and x ∈ A. Then:

r(x) = infn≥1 ‖xn‖1/n = limn→∞ ‖xn‖1/n . (2.40)

Proposition 2.3.7. If x is a self adjoint element of a C∗–algebra A, then:

r(x) = ‖x‖ . (2.41)

Theorem 2.3.8. Let A be a C∗–algebra and x ∈ A. Then SpA(x) is a compact subset of the complex disk
of radius r(x) = ‖x‖ and so:

SpA(x∗) = {ᾱ;α ∈ SpA(x)} , (2.42)

SpA(x2) =
{
α2;α ∈ SpA(x)

}
. (2.43)
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2.4 Gelfand-Naimark theorem

We are ready to study the Gelfand-Naimark theorem. In the last section, we studied a special
class of algebras (C∗–algebras). Now we introduce some geometrical structures on the algebras,
it means that we should define a topology which arises from continuous functions.

Definition 2.4.1. Let A be a commutative Banach algebra and Ω(A) the set of all non-zero complex linear
functionals on A. We define a map x̂ : Ω(A)→ C as follows:

∀f ∈ Ω(A) : x̂(f) = f(x). (2.44)

x is a member of A.

In the next definition, we make a topological structure on Ω(A).

Definition 2.4.2. The topology defined by {x̂}x∈A on Ω(A) (weak topology on Ω(A) with subbase{
x−1(Oi)

}
i∈I for open set Oi in C) is called Gelfand topology. Therefore {x̂}x∈A are continuous with

respect to the Gelfand topology.

Definition 2.4.3. Let I be a left (right) Ideal in the ring R. I is called a maximal Ideal onR if I 6= R and
for every left (right) Ideal J of R, I ⊂ J ⊂ R implies J = I or J = R.

Definition 2.4.4. There is a bijection between the maximal ideal of A and Ω(A). The set Ω(A) with the
Gelfand topology is called the space of maximal ideal of A

Remark (First isomorphism theorem in ring theory).
Let R and R′ be two rings and ϕ : R −→ R′ be a ring homomorphism with kernel K. Then we
have R/Ker(ϕ) ∼= Im(ϕ).

Proposition 2.4.5. Let I be a maximal ideal of a Banach algebra A, then there is a f ∈ Ω(A) such that
I = kerf , so by the first isomorphism theorem we have:

A/I ≈ C. (2.45)

Definition 2.4.6. Let A be a commutative Banach algebra. Then the Gelfand transformation is defined as
a map G : A→ C(Ω(A)) satisfying:

∀x ∈ A : G(x) = x̂. (2.46)

Proposition 2.4.7. The Gelfand transformation is an algebraic homomorphism. It is an isomorphism if
and only if A is a semisimple algebra.

Theorem 2.4.8. Let A be a commutative Banach algebra. Then Ω(A) is a locally compact topological
Hausdorff space with respect to the Gelfand topology.

Definition 2.4.9. Let A and B be two ∗-algebras. A ∗-homomorphism between A and B is a complex
linear map π : A→ B such that the following axioms are satisfied:

1) ∀x, y ∈ A : π(xy) = π(x)π(y), (2.47)
2) ∀x ∈ A : π(x∗) = π(x)∗. (2.48)

Proposition 2.4.10. By the last definition the map π is a complex-module homomorphism and also is a
complex-algebra homomorphism.
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Proposition 2.4.11. Let A be a C∗–algebra, then the Gelfand transformation G : A → C(Ω(A)) can be
written as follows:

∀f ∈ Ω(A), x ∈ A : x̂(f) = f(x)⇒ SpA(x) = {f(x);x ∈ A} = x̂(Ω(A)) (2.49)

In the commutative case, G is a bijection.

Now, we are ready for the Gelfand–Naimark theorem.

Theorem 2.4.12. Let A be a commutative C∗–algebra, then the Gelfand transformation is a C∗–algebra
isomorphism:
1) If A is a unital algebra, there exist a unique compact topological Hausdorff space X = Ω(A) such
that:A ≈ C(X).
2) If A is not unital, there exist a unique locally compact topological Hausdorff space X = Ω(A) but
noncompact such that: A ≈ C0(X).

So, the Gelfand-Naimark theorem shows that there is an equivalence between a locally com-
pact topological Hausdorff space and a commutativeC∗–algebra. In the other words, all informa-
tion about a compact topological Hausdorff space X is encoded in the commutative C∗–algebra
of complex continuous functions on X . Thus, a noncommutative C∗–algebras might be inter-
preted by the algebra of continuous functions of a noncommutative space. This is the substance
of noncommutative geometry.
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Chapter 3

Noncommutative space time

3.1 Commutative spaces

Space time in classical physics has the structure of a differentiable manifold. Let M be a smooth,
compact, oriented and real or complex manifold. Let C∞(M) be the set of all infinitely differen-
tiable (real or complex) functions on M then C∞(M) is a commutative, associative algebra with
pointwise addition and multipilication:

1) ∀f, g ∈ C∞(M), x ∈M : (f + g)(x) = f(x) + g(x), (3.1)
2) ∀f, g ∈ C∞(M), x ∈M : (f.g)(x) = f(x).g(x). (3.2)

Now, we review two important theorems:
1) Banach-Stone theorem.
2) Nash theorem.

Theorem 3.1.1 (Banach-Stone theorem). Let X and Y be compact topological Hausdorff spaces and
T : C(X)→ C(Y ) be a surjective linear isometry, then there exists a homomorphism ϕ : Y → X with:

1)∀y ∈ Y ;∃g ∈ C(Y ) :|g(y)| = 1; (3.3)
2)∀y ∈ Y ;∀f ∈ C(X) : (Tf)(y) = g(y)f(ϕ(y)). (3.4)

This theorem implies the next proposition:

Proposition 3.1.2. Let M and N be differentiable manifolds. They are diffeomorphic if and only if the
commutative algebras of smooth functions C∞(M) and C∞(N) are isomorphic.

Thus, the informations on a manifold M can be expressed as a commutative algebra C∞(M).
For example, every point of manifold M can be identified with pure states of C∞(M) or geomet-
rical objects on a manifold such as a differential forms, tensor fields, vector bundles, etc can all
be defined algebraically in term of C∞(M).
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Example Let Γ (M) be a set of all smooth vector fields X on a manifold M , then Γ (M) is a left
C∞(M) -module. An important property of X is the fact that it can be defined as a derivation of
the commutative algebra C∞(M):

X : C∞(M)→ C∞(M)
∀f, g ∈ C∞(M) :
X(fg) = X(f)g + fXg (3.5)

It leads us to identify Γ (M) with the derivations of the algebra C∞(M):

Γ (M) ≡ Der(C∞(M)). (3.6)

Generally, we can construct differential calculus in purley algebraic term over commutative
algebras as follow:
1) Topological information of a smooth manifold M is encoded in smooth function A = C∞(M)
as in Banach-Stone theorem.
2) Vector bundles over M correspond to projective finitely generated modules over A.
3) Vector fields on M are identified with derivations of A.
4) In general, a linear differential operator of order p+ 1, which images section of a vector bundle
E → M to section of another bundle F → M is seem to be an R-linear map ∆ : Γ (E) → Γ (F )
such that for any p+ 1 element f1, ...fp+1 ∈ A:

[fp+1, [fp, ... [f1,∆] ...]] = 0. (3.7)

Where the bracket [f,∆] : Γ (E)→ Γ (F ) is defined:

∀s ∈ Γ (E) : [f,∆] (s) = ∆(f · s)− f ·∆(s) (3.8)

For more details see [30].

To define a differential calculus on an arbitrary algebra A, we should pay attention to the
partial derivations and the observations that they fulfill two important properties:
1) It is a linear operator.
2) It satisfies the Leibniz rule.
Thus our aim is to find the operators acting on the algebra A that satisfy the last two conditions.
One type of such operators are given by the adjiont action of an element of a Lie algebra L on L
itself. Generally we have the definition:

Definition 3.1.3. The adjoint endomorphism or adjiont action is an endomorphism of a Lie algebra L such
that for every x ∈ L:

adx : L→ L,

∀y ∈ L : adx(y) = [x, y] . (3.9)

This definition satisfies the linearity condition and the Leibniz rule ( by using the Jacobi identity).

Definition 3.1.4. The mapping ad : L→ End(L) given by x 7→ adx is a representation of a Lie algebra
and is called the adjiont representation of the algebra.

Theorem 3.1.5. Let L be a semisimple Lie algebra, then adL = Der(L).

And the second important theorem in my discussion is Nash theorem:
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Theorem 3.1.6 (Nash). Let M be a compact manifold of dimansion m. For every positive and integer
number n � m, M can be embedded in Rn.

The coordinates of the embedding spaceM are generators of an algebra of polynomials which
is dense in C(Rn) ( Stone-Weierstrass theorem ) and the equations which define the manifold M
are relations in C(Rn). The ideal I generated by the relations makes a quotient algebra struc-
ture C(Rn)/I and the quotient of C(Rn) by the ideal I is equal to C∞(M) ( first isomorphism
theorem).

Example Sphere S2 is embedded in R3 and the equation which defines S2 is:

gabx
axb = R2, (3.10)

Where xa are coordinates in R3. Consider the algebra Pol of polynomials in the xa and let I be the
ideal generated by the relation gabxaxb = r2 so by the definition of an ideal, I consists of elements
of Pol with gabx

axb − r2 as factor. Then the quotient algebra A = Pol/I is dense in the algebra
C(S2). Any element of A can be represented as a finite multipole expansion of the form:

f(xa) = f0 + fax
a +

1
2
fabx

axb + ... (3.11)

Later we will discuss more about the vector space of fa1a2... and define the product of the xa in
order to introduce a multipicative structure and promote the vector space to an algebra.
To construct the derivations of A we use the Lie algebra of su(2) (S2 ' SU(2)). Let λa be a base
of su(2). The adjoint action of su(2), λa 7→ g−1λag = Λbaλb maps the element g ∈ SU(2) onto the
element Λba ∈ SO(3). The base of su(2) can be considered as a set ea of vector fields on S2. For
more detail see [3].

So we have a commutative differential geometry and we present the following diagram:

Manifold M // commutative algebra A = C∞(M) G.N

theorem
// geometrical object, induced by A

Figure 3.1: Duality in commutative case

This leads us to the suggestion to generalize this diagram to noncommutative manifolds with
noncommutative algebras. But we should not forget that over an arbitrary algebra there are many
differential calculi.
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3.2 Noncommutative spaces

The aim of noncommutative geometry is the study of topological spaces whose commutative
algebra of functions is replaced by a noncommutative algebra. We should know that there are
many sources of noncommutative spaces. We can identify at least four methods to construct non-
commutative spaces [12]:
1) noncommutative quotient;
2) algebraic and C∗-algebraic deformations;
3) Hopf algebras and quantum groups;
4) cohomological constructions.

The main notion in noncommutative geometry is that noncommutative geometry is a pointless
geometry. It means that we should swich to the algebraic perspective of geometrical structures.
Since one of the important concepts that we need in physics is differentibale structures and also
differential calculus on a space, then we focus on these structures.
The algebraic viewpoint of differential calculus on commutative spaces can motivate us to define
differential calculus on noncommutative spaces. As we have seen in the last part, the differential
geometry of a manifold M can be described as an algebra of functions defined on M . The coor-
dinates of M are generators of the algebra and vector fields are the derivations, thus differential
geometry on M can be described as operations on an algebra of functions. It leads us to develop
a noncommutative version of differential geometry by replacing the algebra of functions C∞(M)
by an abstract associative and noncommutative algebra A. One possibility is the algebra Mn of
n× n complex matrices. Since Mn is finite dimensional we have a finite noncommutative geom-
etry.
Thus our aim is to find the operators acting on Mn. By equation (3.9) and theorem (3.1.5) we can
construct a differential calculus on the matrix algebras as follow:

∀A,B ∈Mn : adA(B) := [A,B] . (3.12)

The set of all derivations on the matrix algebra Mn, one interest are differentials d of an ele-
ment A ∈Mn defined by:

dA := [F,A] . (3.13)

where F is any fix self adjoint matrix of square one. Thus F 2 = 1 and it implies d2 = 0.
This method opens the door to make a differential calculus on matrix algebra and also to formu-
late noncommutative structures of many physical theories.

Example The fuzzy sphere is a simple example for a noncommutative space. The algebra of
fuzzy sphere can be constructed by using Berezin‘s quantization [7], [8] for the function algebra
over the sphere and the result is the matrix algebra of finite dimension. But we should keep in
mind that the way to introduce a differential calculus is not unique. For example see [9].
Let us consider commutative functions on the sphere S2. As I said in the last part, smooth func-
tions on S2 can be written as a polynomial in xa:

f(xa) = f0 + fa1x
a1 +

1
2
fa1a2x

a1xa2 + ... (3.14)
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We shall now construct a sequence of noncommutative approximation to C(S2). We start with
truncating the expansion of all functions of C(S2) Eq(3.18) to the constant term. This reduces the
algebra C(S2) to the algebra of complex numbers A1 = C, so the geometry of S2 reduces to that
of a point. Now we assume that we keep the expansion up to the term linear in xa:

f(xa) = f0 + fax
a, (3.15)

and the set A2 of all these functions is a four dimention vector space. Our aim is to introduce a
new product which establishes A2 as an algebra. One possibility is the algebra M2 of complex
2× 2 matrices. We replace:

xa 7→ x̃a = kσa, (3.16)

where σa are the Pauli matrices
[
σa, σb

]
= 2iεabcσc and the parameter k must be related to the

radius R:

xaxa = x̃ax̃a = R2 ⇒ 3k2 = R2. (3.17)

Suppose next that we also keep the quadratic term of expansion (3.14) in xa:

f(xa) = f0 + fa1x
a1 +

1
2
fa1a2x

a1xa2 . (3.18)

This is we consider the set of functionsA3of this form. This set is a nine dimentional vector space.
As in the case of A2, we introduce the algebra M3 of 3× 3 matrices. We replace:

xa 7→ x̃a = kJa, (3.19)

where Ja are the three dimensional irreducible representation of SU(2) and k must be 8k2 = R2.
In general, suppose we keep the terms up to n-th order in the xa and denote the resulting vector
space by An. Because of the constraint (3.10), there are (2r + 1) independent monomials to n-th
order in the expansion (3.11) and

∑n−1
r=0 (2r + 1) = n2 is the dimension of vector space An. As

before we can replace n-dimensional irreducible representation of the Lie algebra su(2):[
Ja, Jb

]
= 2iεabcJc, (3.20)

and also parameter k is related to R by the equation:

R2 = (n2 − 1)k2. (3.21)

For large n we have k = r
n and when k → 0 then n→∞.

We introduce a new constant K = 4πkR, It has a dimension of (Length)2 and plays a rule like
Planck‘s constant in quantum mechanics. So we have:

K̄ =
K

2π
= 2kR. (3.22)

By the (3.19), (3.20) and (3.22) we can write:

1
k2

[
x̃a, x̃b

]
= 2iεabc

1
k
x̃c ⇒

[
x̃a, x̃b

]
= 2iεabckx̃c

= 2iεabc
K̄

2R
xc ⇒

[
x̃a, x̃b

]
= iεabcK̄R

−1x̃c, (3.23)

and we introduce Cabc := R−1εabc, then we have:[
x̃a, x̃b

]
= iCabcK̄x̃

c. (3.24)

So in the limit K̄ → 0 we have commutativity and all of points of the sphere can be distinguished.
We shall be more interested in differential calculus on the fuzzy sphere. Since we have a matrix
algebra then we can use of the results for the differential calculus on matrix algebras. For more
details see [3], [4].
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Now we have a noncommutative differential geometry and we can show the following dia-
grams:

Noncommutative
manifold

- Noncommutative algebra
Â

- geometrical objects
induced by Â

Figure 3.2: Duality in noncommutative case

Manifold M - Commutative algebra
A = C∞(M)

- geometrical objects
induced by A

?
Noncommutative
manifold M -

Noncommutative
algebra Â -

geometrical objects
induced by Â

?

Deformation

?

Deformation

Figure 3.3: Duality in general form

By the last two figures, we can illustrate the following diagram:

Phase space M - Physical observable
A = C∞(M)

- Classical mechanics

?
Noncommutative
space time -

Physical observable
f̂ ∈ Â - Quantum mechanics

?

Deformation

?

Deformation

Figure 3.4: Physical interpretation

Remark Since the product of Hermitian operators is not Hermitian (unless they commute), then
the set of all Hermitian operators does not form an algebra. Therfore Â should be a complex
algebra of all operators which include the Hermitian operators.
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3.3 Symmetry and Hopf algebra

In the commutative space time, symmetries are described by Lie groups and their Lie algebras,
but in the noncommutative space time, this is no longer true.
Let us consider the noncommutative relation between coordinate functions

[
x̂µ, x̂ν

]
= iθµν . Now

we want to check Poincare symmetry in the noncommutative case. The derivative act on coordi-
nate in classical case:

[
∂̂ν , x̂µ

]
= δµν .

There are tow consistent ways to define commutation relation of derivatives. Simplest choice is:[
∂̂ν , ∂̂µ

]
= 0. (3.25)

Another possibility compatible with the coordinate algebra is obtained by observing that:

x̂µ − iθµν ∂̂ν (3.26)

commutes with all coordinates x̂µ and all derivatives ∂̂ν .It is possible when we assume that this
expression equals some constant, 0 say [17]. Then we have:

x̂µ − iθµν ∂̂ν = 0⇒ ∂̂ν = −iθ−1
µν x̂

µ ⇒
[
∂̂µ, ∂̂ν

]
= −iθ−1

µν . (3.27)

.

So the Poincare Lie algebra (symmetry) is broken by the existence of the noncommutative
structure θµν . Thus we need a new structure such that the deformed space is invariant under that.
This structure is called a Hopf algebra. Hopf algebras occur naturally is in algebraic topology
[31], [32], [33].
We start to define some structures which used in the definition of Hopf algebra. These structures
are coalgebras and bialgebras.

Definition 3.3.1. A triple (H,π, η) is called a unital associative algebra over a ring R if it satisfies the
following axioms:
1) H is a R-module.
2) The map π : H ⊗H → H such that:

∀hi, hj ∈ H : π(hi ⊗ hj) = hihj .

is a module homomorphism.
3) The map η : R→ H is a module homomorphism.
4) The following diagrams are commutative:

H ⊗H ⊗H -π ⊗ 1
H ⊗H

?

1⊗ π

H ⊗H -
H

?

π

π

=̂ (hihj)hk = hi(hjhk)

Figure 3.5: Associativity
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R⊗H - H ⊗H
η ⊗ 1

� H ⊗R

?

H

1⊗ η

∇PPPPPPPPPq

���������)

∼= ∼=
=̂ 1H · h = h · 1H = h

Figure 3.6: Unity

Definition 3.3.2. A triple (H,∆, ε)is called a coalgebra over a ring R if it satisfies the following axioms:
1) H is a R-module.
2) The map ∆ : H → H ⊗H such that:

∀hi, hj ∈ H : ∆(hihj) = hi ⊗ hj . (3.28)

is a module homomorphism.
3) The map ε : H → R in a module homomorphism.
4) The following diagrams are commutative:

H ⊗H ⊗H �
∆⊗ 1

H ⊗H
6

1⊗∆

H ⊗H � H

6
∆

∆

Figure 3.7: co-associativity

H ⊗R � H ⊗H
ε⊗ 1

- R⊗H

6

H

1⊗ ε

∆
PPPPPPPPPq

���������)

∼= ∼=

Figure 3.8: co-unity axiom

Remark Fig. (3.7) and (3.8) obtained from (3.5) and (3.6) by inversing arrows (dual structures).

Definition 3.3.3. A quintuple (H,π,∆, η, ε) is called a bialgebra over a ring R if satisfies the following
axioms:
1) The triple (H,π, η) is a unital associative algebra.
2) The triple (H,∆, ε) is a coalgebra.
3) The following diagram are commutative:

a) ∆ ◦ π = (π ⊗ π) ◦ (1H ⊗ τ ⊗ 1H) ◦ (∆⊗∆). (3.29)
b) ∆ ◦ η = η ⊗ η. (3.30)
c) ε ◦ π = ε⊗ ε. (3.31)
d) ε ◦ η = 1R. (3.32)
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τ is a module homomorphism:

τ : H ⊗H → H ⊗H (3.33)
τ(h1 ⊗ h2) = h2 ⊗ h1. (3.34)

.

Definition 3.3.4. (H,π,∆, η, ε, S) is called a Hopf algebra if satisfies the following axioms:
1) The quintuple (H,π,∆, η, ε) is a bialgebra over a ring R.
2) The map S : H → H is an algebra anti homomorphism such that:

π ◦ (1⊗ S) ◦∆ = π ◦ (S ⊗ 1) ◦∆ = η ◦ ε (3.35)

Definition 3.3.5. The algebra anti homomorphism S : H → H in the last definition is called the antipode.

Definition 3.3.6. An invertible element F ∈ H ⊗H is called a twist if it satisfies:

(F ⊗ 1H)(∆⊗ 1)F = (1H ⊗ F )(1⊗∆)F, (3.36)
(ε⊗ 1)F = 1H⊗H = (1⊗ ε)F. (3.37)

Using a element F one can define a new Hopf algebra structure on H with a new coproduct
∆F :

∆F (h) = F∆ (h)F−1. (3.38)

This called twisted coproduct.

Definition 3.3.7. Let H be a Hopf algebra and A be a unital associative algebra. We say H (left) act on
A if there is bilinear map H ⊗A→ A such that:

h⊗ a 7→ h . a. (3.39)

compatible with the algebra structure on H :

(hh′) . a = h . (h′ . a), (3.40)
1H . f = f. (3.41)

And also with the coalgebra structure on H :

h . π(a⊗ a′) = π ◦∆(h) . (a⊗ a′), (3.42)
h . 1A = 1A ◦ ε(h). (3.43)

Definition 3.3.8. A Hopf algebra is called cocommutative if:

τ ◦∆ (x) = ∆ (x) . (3.44)

Example A simple example of a Hopf algebra is the universal envelope of a Lie algebra. Let L
be a Lie algebra with generators T i satisfying:[

T i, T j
]

= iεijk T
k. (3.45)
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The universal enveloping algebra of L is defined as the quotient algebra u(L) = T (L)
I such that

T (L) is tensor algebra of generators and I is an Ideal generated by T i ⊗ T j − T j ⊗ T i −
[
T i, T j

]
.

Then u(g) is a Hopf algebra with the following structure maps:

1) ∆ : u(L)→ u(L)⊗ u(L), (3.46)
∆(x) = (x⊗ 1) + (1⊗ x)

2) ε : u(g)→ C, (3.47)
ε(x) = 0

3) S : u(L)→ u(L), (3.48)
s(x) = −x.

The universal enveloping algebra is cocommutative, which means that:

τ ◦∆(x) = ∆(x) (3.49)

with the permutation τ(x⊗ y) = y ⊗ x.

Example Let G be an arbitrary finite group and F (G) = {f : G→ C} be the set of all complex
functions on G, then F (G) is a Hopf algebra:
1) The algebra structure with the following maps:

a) π : F (G)⊗ F (G)→ F (G), (3.50)
π(f1 ⊗ f2)(g) = f1(g)f2(g),

b) η : C→ F (G), (3.51)
η(k) = k1F (G),

where f1, f2 ∈ F (G) and g ∈ G.
2) The coalgebra structure with the following maps:

a) ∆ : F (G)→ F (G)⊗ F (G), (3.52)
∆(f)(g1 ⊗ g2) = f(g1.g2),

b) ε : F (G)→ C, (3.53)
ε(f) = f(e),

where f ∈ F (G) and g1, g2 ∈ G and e is the unit element ofG. The antipode S : F (G)→ F (G)
is also given by:

S(f)(g) = f(g−1). (3.54)

So F (G) is a Hopf algebra and it is a commutative Hopf algebra because the algebra of functions
is commutative.

Example (Group Hopf algebra) Let G be a matrix group of complex n× n matrices. The CG is a
C-algebra and is called group algebra of G over C. An element of CG is given by :

CG 3 x = Σg∈Gagg, (3.55)

such that ag ∈ C. The generators tij form a basis of CG; i, j = 1, ..., n and the generators have 1 in
the ith row and jthcolumn, and 0 everywhere else. It is enough to specify the structure maps for
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generators because the generators generate CG. Thus we have:

∆(tij) = Σktik ⊗ tkj , (3.56)

ε(tij) = 1, (3.57)

S(tij) = (t−1)ij . (3.58)

This Hopf algebra is commutative because:

tijt
m
n = tmn t

i
j . (3.59)

Definition 3.3.9. A quantum group is a pair (Q,R) such that Q is a Hopf algebra and R is an additional
structure, which we will describe with following:

Let us consider the group Hopf algebra CG of some matrix group G. The additional structure
is defined as a R-Matrix:

R : CG⊗ CG→ C,

R(tik ⊗ t
j
l ) ≡ R

ij
kl. (3.60)

The R-matrix is not an arbitrary matrix. It has to be a solution of the Quantum-Yang-Baxter-
Equation [17]

R12R13R23 = R23R13R12, (3.61)

where (R13)ijklmn = δjmR
ik
ln, R12 and R23 are defined accordingly.

As we have seen in the last example, the group Hopf algebra CG is a commutative Hopf
algebra. The R-matrix introduces a deformation to a noncommutative Hopf algebra (because
generally tensor product is not commutative). Thus the quantum group is a noncommutative
Hopf algebra. We denote it by CGq .

Now we come back to the Poincare symmetry which we discussed before. The starting point
is the universal enveloping algebra of Poincare algebra, u(p). This Hopf algebra has the coprod-
uct:

∀x ∈ u(p) : ∆(x) = x⊗ 1 + 1⊗ x. (3.62)

We introduce a twist F ∈ u(g)⊗ u(g), which satisfies the cocycle condition:

(F ⊗ 1)(∆⊗ 1)F = (1⊗ F )(1⊗∆)F. (3.63)

Thus we can define a coproduct ∆F (x) by the twist F :

∆F (x) = F∆(x)F−1. (3.64)

In the case of canonical deformation, the twist is:

F = exp

(
i

2
θµνPµ ⊗ Pν

)
, (3.65)

where Pµ are the translation generators. Therefore, we obtain:

∆FPµ = F∆PµF−1 = exp

(
i

2
θµνPµ ⊗ Pν

)
(Pµ ⊗ 1 + 1⊗ Pµ) exp

(
−i
2
θµνPµ ⊗ Pν

)
⇒ ∆FPµ = Pµ ⊗ 1 + 1⊗ Pµ, (3.66)
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since the translation generators commute.
And for the Lorentz generator Mµν , we have:

∆FMµν = exp

(
i

2
θµνPµ ⊗ Pν

)
(Mµν ⊗ 1 + 1⊗Mµν) exp

(
−i
2
θµνPµ ⊗ Pν

)
⇒ ∆FMµν = (Mµν ⊗ 1 + 1⊗Mµν) +

i

2
θαβ
(

((ηαµPν − ηανPµ)⊗ Pβ

+ Pα ⊗ (ηβµPν − ηβνPµ)
)

(3.67)

And also the action of generators on coordinates are:

(Pµx̂α) = iδαµ , (3.68)

(Mµν x̂
α) = i (x̂µ∂ν − x̂ν∂µ) x̂α = i

(
x̂µδ

α
ν − x̂νδαµ

)
. (3.69)

Using the definition (3.3.7), due to the deformed coproduct of the generators above and their
action on coordinates, we have:

Pµ . π
(
x̂α ⊗ x̂β − x̂β ⊗ x̂α

)
= Pµ .

[
x̂α, x̂β

]
:= ∆FPµ

(
x̂α ⊗ x̂β − x̂β ⊗ x̂α

)
(3.70)

⇒ Pµ .
[
x̂α, x̂β

]
= (Pµ ⊗ 1 + 1⊗ Pµ)

(
x̂α ⊗ x̂β − x̂β ⊗ x̂α

)
= 0. (3.71)

And acting on the right hand side of the (1.1) yields the same result:

Pµ . iθ
αβ = 0. (3.72)

Next consider the Lorentz generator Mµν :

Mµν . π
(
x̂α ⊗ x̂β − x̂β ⊗ x̂α

)
= Mµν .

[
x̂α, x̂β

]
:= ∆FMµν

(
x̂α ⊗ x̂β − x̂β ⊗ x̂α

)
. (3.73)

As before, the result is equal to zero, acting on the right hand side of (1.1) yields:

Mµν . iθ
αβ = 0. (3.74)

Therefore, the noncommutative relations are consistent with the twisted Poincare Hopf alge-
bra. It means that the symmetry of the noncommutative space is expressed by the Hopf algebra.
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Chapter 4

Star Product

4.1 Deformation

Now we are ready to study deformation quantization. Let us start with the general definition of
deformation in pure mathematics, and then we come back to our case, namely Poisson manifolds.

Definition 4.1.1. Lex X be a module over a ring R and α ∈ R. The set X [[α]] of formal power series in
the formal parameter α with cofficients in X is given by the Cartesian product X [[α]] =

∏∞
r=0(Xr) such

that Xr = X for all r. Each sequence (xr) = (x0, x1, ...) in X is denoted as a formal power series:

x =
∞∑
r=0

(αrxr). (4.1)

Remark . X [[α]] is also a module over the ring R.

Remark . LetX,Y, Z beR-modules. Then an operation • : X×Y −→ Z induces a corresponding
operation ◦ : X [[α]]× Y [[α]] −→ Z [[α]] such that:

(
∞∑
r=0

(αrxr)) ◦ (
∞∑
s=0

(αsxs)) =
∞∑
r=0

(αr)
∞∑
s=0

(xs • yr−s) (4.2)

.

Remark Let X and Y be R-modules and HomR(X,Y ) is a set of all R-module homomorphisms.
Then:

HomR(X,Y ) [[α]] ∼= HomR[[α]](X [[α]] , Y [[α]]). (4.3)

We can extent all algebraic structures to formal power series.
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Definition 4.1.2. Let A be an algebra over a field F (of characteristic zero). A formal deformation of A is
a F [[α]]-bilinear multipication law µα : A [[α]]⊗A [[α]]→ A [[α]] on the algebra A [[α]] of formal power
series in a variable α with coeffcients in A, satisfying the following axioms:

1)∀a, b ∈ A : µα(a⊗ b) = a · b+ µ1 (a⊗ b)α+ µ2 (a⊗ b)α2 + ... (4.4)
where a.b is the pointwise multipication.
2)∀a, b, c ∈ A : µα (µα (a⊗ b)⊗ c) = µα (a⊗ µα (b⊗ c)) , Associativity.

Since A is an algebra, then there is a multipication map [26], [27]:

π : A⊗A→ A (4.5)
∀a, b ∈ A : π (a⊗ b) = a · b. (4.6)

And since A [[α]] is a formal power series of A, then there is a multipication map:

πα : A [[α]]⊗A [[α]]→ A [[α]] (4.7)
∀a, b ∈ A [[α]] : πα (a⊗ b) =: a • b. (4.8)

Thus, by the definition (4.1.2), if A [[α]] be a formal deformation of A, then we can write:

a • b = a · b+ Σ∞r=0α
rπr (a⊗ b) . (4.9)

In physical terms, A has a Poisson structure, such that A is the quasi-classical limit of the as-
sociative algebra A [[α]], and the algebra A [[α]] is called deformation quantization of the Poisson
algebra A. Also α can be regarded as a quantum parameter such as the Planck constant [28].
Now, we come back and limit ourselves to Poisson manifolds.

4.2 Poisson manifold

Definition 4.2.1. Let A be a vector space over a field F . A Poisson bracket on A is a bilinear function
{, } : A×A −→ A such that the following axioms are satisfied:

1) ∀x1, x2 ∈ A : {x1, x2} = −{x2, x1} (skew symmetry), (4.10)
2) ∀x1, x2, x3 ∈ A : {{x1, x2} , x3}+ {{x2, x3} , x1}+ {{x3, x1} , x2} = 0(Jacobi identity). (4.11)

Definition 4.2.2. Let A be a F -vector space with a Poisson bracket. A is called a Poisson algebra if there
is a commutative product on A, A×A −→ A such that satisfies the follow axiom:

∀x1, x2, x3 ∈ A : {x1, x2x3} = x2 {x1x3}+ {x1, x2}x3 (Leibniz rule). (4.12)

Definition 4.2.3. A manifold M with a Poisson structure is called Poisson manifold.

Remark . Let M be a Poisson manifold and g ∈ C∞(M). Let the map f 7→ {f, g} be a derivation
on C∞(M). This implies the existence of a vector field Xg (Hamiltonian vector field) on M such
that:

∀f ∈ C∞(M) : Xg(f) = {f, g} . (4.13)
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Thus the Poisson bracket depends only on the derivative of f ∈ C∞(M).

Remark . Let M be a Poisson manifold. The map between the tangent and cotangent bundle on
M implies the existence of a bivector field α on M such that:

∀f, g ∈ C∞(M) : {f, g} = 〈df ⊗ dg, α〉 , (4.14)

where 〈, 〉 is the usual pairing between the tangent and cotangent bundle.

Remark . Locally we can write the Poisson bracket with an antisymmetric tensor αij = −αji:

∀f, g ∈ C∞(M) : {f, g} = αij(X)∂i(f)∂j(g), (4.15)

and by the Jacobi identity we have:

αij∂jα
kl + αkj∂jα

li + αlj∂jα
ik = 0. (4.16)

Now we can define a deformation on the algebra of smooth complex functions on a Poisson
manifold. This deformation is called star product.

Definition 4.2.4 (Star product). Let M be a Poisson manifold and C∞(M) be a set of all smooth com-
plex functions on M . The formal star product on M is a C [[α]]-bilinear product ∗ : C∞(M) [[α]] ×
C∞(M) [[α]] −→ C∞(M) [[α]]:

∀f, g ∈ C∞(M) : f ∗ g =
∞∑
r=0

(αrCr(f, g)), (4.17)

Such that Cr : C∞(M)× C∞(M) −→ C∞(M) are C- bilinear function, satisfing the following axioms:

1) ∗ is an associative product:∀f, g, h ∈ C∞(M) : (f ∗ g) ∗ h = f ∗ (g ∗ h),
2) C0(f, g) = f.g,

3) 1 ∗ f = f ∗ 1 = f =⇒ Cr(1, f) = Cr(f, 1) = 0,∀r � 0
4) ∀f, g ∈ C∞(M) : iα {f, g} = (C1(f, g)− C1(g, f)). (4.18)

Definition 4.2.5. Let M be a Poisson manifold and C∞(M) is the set of all smooth complex functions on
M . The pair (C∞(M) [[α]] , ∗) such that ∗ is a star product on M is called deformation quantization on
M .

Example Let M = Rn and α ∈ Γ(∧2TM) be a Poisson structure with constant coefficient α =
αij∂i ⊗ ∂j such that αij = −αji ∈ R.
The Moyal product is defined as a formal exponential of α:

∀f, g ∈ C∞ (M) : (4.19)
f ∗ g = π ◦ exp (iα~) (f ⊗ g) , (4.20)

where π : C∞(M) ⊗ C∞(M) → C∞(M) is the ordinary product on C∞(M). Then by definition
of Moyal product we have:

f ∗ g = π (f ⊗ g) +
(
iαij~

)
π (∂i ⊗ ∂j) (f ⊗ g) +O

(
~2
)
⇒ (4.21)

f ∗ g = f · g +
(
iαij~

)
π (∂if ⊗ ∂jg) +O

(
~2
)
⇒ f ∗ g = f · g +

(
iαij~

)
∂if∂jg +O

(
~2
)

(4.22)

⇒ ∀x ∈M : f ∗ g (x) = exp

{
i~αij

∂

∂xi
∂

∂yj

}
f (x) g (y) |x=y . (4.23)
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Now we check the axioms of the definition (4.2.4):
The second, third and fourth axioms are simply satisfied. For the associativity, we have:

((f ∗ g) ∗ h) (x) = exp

{
i~αij

∂

∂xi
∂

∂zj

}
(f ∗ g) (x)h (z) |x=z

=

(
exp

{
i~αij

∂

∂xi
∂

∂zj

}(
exp

{
i~αlk

∂

∂xl
∂

∂yk

}
f(x)g(y)

)
x=y

h(z)

)
x=z

=
(
exp

{
i~αij

(
∂

∂xi
+

∂

∂yi

)
∂

∂zj

}
exp

{
i~αlk

∂

∂xl
∂

∂yk

}
f(x)g(y)h(z)

)
x=y=z

=
(
exp

{
i~αij

∂

∂xi
∂

∂zj

}
exp

{
i~αij

∂

∂yi
∂

∂zj

}
exp

{
i~αlk

∂

∂xl
∂

∂yk

}
f(x)g(y)h(z)

)
x=y=z

=
(
exp

{
i~αij

∂

∂xi

(
∂

∂zj
+

∂

∂yj

)}
f(x)(g ∗ h)(y)

)
x=y

=
(
exp

{
i~αij

∂

∂xi
∂

∂yj

}
f(x)(g ∗ h)(y)

)
x=y

= (f ∗ (g ∗ h)) (x). (4.24)

Example (quantum plane) [39]. Let us consider two vector fields x ∂
∂x and x ∂

∂y on the two di-
mensional real space R2. A star product is defined on the functions f, g ∈ C∞(M) as follows:

f ∗ g := π ◦ exp
(
i~x

∂

∂x
⊗ y ∂

∂y

)
(f ⊗ g) = π (f ⊗ g) + i~π

(
x
∂

∂x
⊗ y ∂

∂y

)
(f ⊗ g) +O

(
~2
)

⇒ f ∗ g = f · g + i~π
(
x
∂f

∂x
⊗ y ∂g

∂y

)
+O

(
~2
)
⇒ f ∗ g = f · g + i~

(
xy
∂f

∂x

∂g

∂y

)
+O

(
~2
)
.

(4.25)

And the Poisson bracket is :

{f, g} =
1
i~
xy

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
. (4.26)

By replacing f, g with the coordinate functions, we have:

x ∗ y = x · y + i~ (x · y) +O
(
~2
)
⇒ x ∗ y = Σ∞n=0

(
i~
n!

)
x · y ⇒ x ∗ y = ei~ (x · y) . (4.27)

And simply we can calculate:

y ∗ x = x · y. (4.28)

Thus by the last two equations we obtain:

x ∗ y = ei~ (y ∗ x) . (4.29)

Example [16] In Quantum mechanics, we have the Heisenberg commutation relations between
momenta and position operators, [

Qi, Pj
]

= i~δij . (4.30)

In normal ordering, where all momenta are on the right and all coordinates on the left, thus we
obtain for the ∗-product:

f ∗N g(Q,P ) = π ◦ exp(−i~∂Pi
⊗ ∂Qi)f(Q,P )⊗ g(Q,P ) (4.31)
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For symmetrical ordering we have:

f ∗S g(P,Q) = π ◦ exp( i~
2

(∂Qi ⊗ ∂Pi
− ∂Pi

⊗ ∂Qi))f(Q,P )⊗ g(Q,P ). (4.32)

Definition 4.2.6. Let M be a smooth manifold and ∗ and ∗̃ be two star products on M . This two
products are equivalent if there is a formal power series µ = IC∞(M) +

∑∞
r=1(αrµr) of linear maps

µr : C∞(M) −→ C∞(M) such that:

1) µ(I) = I,

2) ∀f, g ∈ C∞(M) : µ(f ∗ g) = µ(f)∗̃µ(g).

Definition 4.2.7. A star product is called differentiable if Cr are differentiable operators.

Example Let us consider the last example. There ∗N and ∗S are equivalent ∗-product. Using
matrices in the exponent, these formulae can be written as follow:

f ∗N g(q, p) = π ◦ exp( i~
2
α̃ij∂i ⊗ ∂j)f(q, p)⊗ g(q, p), (4.33)

f ∗S g(q, p) = π ◦ exp( i~
2
αij∂i ⊗ ∂j)f(q, p)⊗ g(q, p), (4.34)

where

(α̃ij)i,j=q,p =
(

0 0
−2 0

)
and

(αij)i,j=q,p =
(

0 1
−1 0

)

α is the antisymmetric part of α̃ ( remember that every matrix can be written as a symmetric
and antisymmetric parts: A = 1

2 (A+AT ) + 1
2 (A−AT )).

These ∗-products are connected by the transformation µ,

µ = exp(
i~
4
θijS ∂i∂j) = exp(− i~

2
∂q∂p), (4.35)

where θS is the symmetric part of α̃, α̃ij = αij + θijS :

(θij)S =
(

0 −1
−1 0

)

Then we have:

f ∗S g = µ−1(µf ∗N µg). (4.36)

4.3 Kontsevich theorem

The natural subsequent step is to look for the existence of a star product on an arbitrary Poisson
manifold (i.e. existence of deformation quantization on an arbitrary Poisson manifold).
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The existence of a star product on a sympletic phase space at first was shown by DeWilde and
Lecomte in 1983 [34]. The existence of star product on a general Poisson manifold was solved by
Kontsevich in 1997 [35].

Theorem 4.3.1 (Kontsevich). For any Poisson bivector field α in some domain of Rn, there exists a star
product ∗k. It is given by the following formula:

∀f, g ∈ C∞(Rn) :

f ∗k g =
n=0∑
∞

hn
∑

Γ∈Gn

ωΓBΓ,α(f, g) (4.37)

Let us explain the symbols which appear in the Kontsevich formula:

1. h is the formal deformation parameter.

2. The index n in Gn (n ≥ 0) is the order in the formal deformation parameter.

3. Γ ∈ Gn is an admissible graph of order n, which satisfies the following properties:

a) Γ has (n+ 2) vertices labeled by {1, 2, ...n, L,R}. L and R are just symbols for left and
right.

b) Γ has 2n edges, labeled by i1, j1, ..., in, jn.

c) The edges ik and jk start at the vertex k and end there.

d) The edges ik and jk have to end at different vertices.

4. ωΓ is called the weight for the graphs Γ and is more complicated [19]

5. For every Γ ∈ Gn, there is an associated bi-differentiable operator BΓ,α and a weight ωΓ.

6. The edges correspond to derivatives and the vertices correspond to the Poisson structure
α. If an edge ends at a vertex, it means that the derivative of the corresponding Poisson
structure acts on the corresponding Poisson structure.
If it ends on L or R, it means that the derivative acts on the function f or g, respectively.

Now, we review some examples of Kontsevich graphs.
Examples:
1) Graph to nth order for the Moyal product. The Poisson structure is constant and derivatives
can only act on the functions f and g:

f ∗ g =
∞∑
r=0

~
r!

(αi1j1 ...αirjr )(∂i1 ...∂irf)(∂j1 ...∂jrg) (4.38)
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Figure 4.1: Kontsevich diagram, α is constant.

2) Third order, nonconstant Poisson structure:
In this case we have:

BΓ(f, g) = αi1j1(∂j1∂i3α
i2j2)αi3j3(∂i1∂i2f)(∂j2∂j3g) (4.39)
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i2 j2
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Figure 4.2: nonconstant Poisson structure

The physical interpretation of the Kontsevich construction was given by Cattaneo and Felder
[50]. It is a topological quantum field theory in terms of the Poisson sigma model, which we
discuss in the next chapter.
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Chapter 5

Poisson sigma model

5.1 Introduction

The Poisson sigma models were defined for the first time in 1993 by Ikeda [42] and independly
by Schaller and Strobl [43], [44]. This model is a topological field theory where the target space
is a Poisson manifold and the world sheet is a 2- dimensional surface with boundary (like a
disk). It provides a unification for some class of field theories like: 2-dimentional gravity theory
and Yang-Mills field theory [46]. In this chapter we will survey some aspects of Poisson sigma
models. After that, we will study the relation between Poisson sigma models on surfaces with
boundary and deformation quantization.

Classical field theory :
Let (M,Σ, π, F ) be a fiber bundle with fiber F . Σ, M and F are smooth manifolds and π : M −→
Σ is a smooth function. M is called target space and Σ is called base space.
Let Σ be an affine Minkowski space time. Fields on Σ are smooth sections of π : M −→ Σ (π
usually called fiber bundle) denoted by φ. Thus we have: φ : Σ −→M .
Classical field theory starts with a smooth manifold Σ, which represents space time and a bundle
π on Σ. The observables (Physical quantities) constructed from Γ∞ (Σ), (Γ∞(Σ) is the set of
sections on Σ) and have an algebraic form, usually formal polynomials in the fields and their
derivatives [19].
An action is defined as a functional consisting of an integral over Σ as follows:

S : Γ∞ (Σ)→ R (5.1)

S [φ] =
∫

Σ

L [φ] . (5.2)

In local coordinates the action L [φ] can be expressed in terms of polynomials in the field and
their derivatives. The state of the system is a field (in the language of C∗-algebra, state is a map
from the algebra of observables to the complex numbers [45]), which minimizes the action S [φ].
We call it classical solution of the system. The Euler-Lagrange equations arises from this mini-
malization.
An observable A is a function of the field Γ∞ (Σ), namley a polynomial in them and their deriva-
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tives. Let us write A = FA(φ). We declare that:

〈A〉 =
∫

[Dφ] e−
i
~S[φ]FA (φ)∫

[Dφ] e−
i
~S[φ]

. (5.3)

[Dφ] is a measure on the space of the fields. This formula is called Feynman path integral [15].
In the laboratory, we can study scattering processes by use of cross sections. These cross sections
can be expressed in terms of 〈A〉, see e.g. [47], [48].

Sigma model:
In this model, the field operator X is a map from the space time manifold Σ (with boundary),
called world sheet to an auxiliary space M , usually a Riemannian manifold.(In the two dimen-
tional case, it can be illustrated as a surface which is swept out in space time by a string). A
Lagrangian is a functional of the field: L(X, Ẋ).
There are also sigma models coupled to a gauge theory. In this model there is a principle G-
bundle over space time, denoted by P . G is a compact Lie group which acts by isometries on M .
The Lagrangian is written in term of two elementary fields:
1) A section X of the fiber bundle MP = P ×GM with fiber M ,
2) Connection A on P .
The sigma-model where M is a Poisson manifold, is called Poisson sigma-model.

Topological quantum field theory:
A topological quantum field theory is a field theory such that the partition function, depends
only on the topological structure of the base manifold (worldsheet). For example, the partition
function does not depend on the metric of space time. In the mathematical view point, a topo-
logical field theory can be defined as a functor from the category of topological manifolds with
boundary to the category of vector spaces [49].

5.2 Lagrangian and field equations for Poisson sigma models

Let M (target space) be a smooth manifold endowed with a Poisson structute α. The field is
defined as a pair (A,X) where X is a section of bundle: X : Σ → M and takes values in the
Poisson manifold M and A is a connection on the budle, a one-form on Σ and takes values in the
pull-back of the cotangent bundle X∗(T ∗M). The action is defined as:

S(X,A) =
∫

Σ

〈A, dX〉+
1
2
〈A,α(X)A〉 . (5.4)

Let (xµ) be local coordiante functions on Σ and (Xi) be coordinate functions on M , then we
can write:

v ∈ TσΣ⇒ A(v) = Aµνdx
µ(v)dXi ⇒ A(v) = Ãi(v)dXi ∈ T ∗M

⇒ A : TΣ→ T ∗M. (5.5)
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So, the connection A is understood locally as a map from TΣ to T ∗M . And also:

X : Σ→M ⇒ ∀σ ∈ Σ : X(σ) = (X1(σ), ..., Xn(σ))⇒ X(σ) = Xi(σ)∂i, (5.6)

dX = d(Xi∂i) = dXi∂i. (5.7)

Thus we can write the action more clearly in a local form. For the first term in the action we have:

〈A, dX〉 =
〈
Aµidx

µ ∧ dXi, dXj(∂j
〉

= Aµidx
µ ∧ dXj

〈
dXi, ∂j

〉
=

= Aµidx
µ ∧ dXjδij ⇒ 〈A, dX〉 = Aµjdx

µ ∧ dXj = Aj ∧ dXj .

⇒ 〈A, dX〉 = Aj ∧ dXj . (5.8)

For second term, we can write:

〈A,α(X)A〉 =
〈
Aµldx

µ ∧ dX l, (αij(X)∂i ∧ ∂j)(Aνkdxν ∧ dXk)
〉

=

= AµlAνkα
ij(X)dxµ ∧ dxν(∂i ∧ ∂j)(dX l ∧ dXk)

⇒ 〈A,α(X)A〉 = AµlAνkα
ij(X)dxµ ∧ dxν(∂i(dX l) ∧ ∂j(dXk)) =

= AµlAνkα
ij(X)dxµ ∧ dxνδliδkj

⇒ 〈A,α(X)A〉 = AµiAνjα
ij(X)dxµ ∧ dxν = αij(X)Ai ∧Aj

⇒ 〈A,α(X)A〉 = αij(X)Ai ∧Aj . (5.9)

So we can write the action in the local form as:

S(X,A) =
∫
Ai ∧ dXi +

1
2
αij(X)Ai ∧Aj . (5.10)

By the Euler-Lagrange equation we can calculate the field equations as follows:

∂k(
L

∂(∂kAi)
)− ∂L

∂Ai
= 0⇒ ∂L

∂Ai
= dXi + αij(X)Aj = 0, (5.11)

∂k(
∂L

∂(∂kXi)
)− ∂L

∂Xi
= 0⇒ ∂L

∂Xi
= dAi +

1
2
∂αjk(X)
∂Xi

Aj ∧Ak = 0. (5.12)

The temrs Ai ∧ dXi and 1
2α

ij(X)Ai ∧Aj are 2-forms on Σ. It means that the action only depends
on the topology of Σ.
Now, one question may be asked: Which transformations preserve the action? The action is
invariant under the following local gauge transformations:

δεX
i = αij (X) εj , (5.13)

δεAi = −dεi −
∂αij

∂Xi
Ajεk, (5.14)

where εi are the infinitesmal parameters and functions on Σ. Now we show that the action is
invariant under the gauge transformations:

δε
(
Ai ∧ dXi

)
= δεAi ∧ dXi +Ai ∧ d

(
δεX

i
)

=
(
−dεi −

∂αij

∂Xi
Ajεk

)
∧ dXi+

+Ai ∧
(
dαij (X) εj + αij (X) dεj (X)

)
⇒ δε

(
Ai ∧ dXi

)
= −dεi ∧ dXi − ∂αjk

∂Xi
εkAj ∧ dXi +Ai ∧

∂αij

∂Xk
dXkεj +Ai ∧ αij (X) dεj . (5.15)

39



We used: dαij(X) = ∂αij

∂Xk dX
k. And for the second term in the action, we have:

δε
(
αij (X)Ai ∧Aj

)
= δεα

ij (X)Ai ∧Aj + αij (X) δεAi ∧Aj + αij (X)Ai ∧ δεAj

⇒ δε
(
αij (X)Ai ∧Aj

)
=
∂αij

∂Xk
αkl (X) εlAi ∧Aj − αij (X) dεi ∧Aj −

∂αlk

∂Xi
αij (X) εkAl ∧Aj−

− ∂αlk

∂Xj
αij (X) εkAi ∧Al − αij (X)Ai ∧ dεj . (5.16)

By this calculation we can write the variation of the action as follows:

δεS = −
∫
dεi ∧ dXi +

∫ (
−∂α

jk

∂Xi
εkAj ∧ dXi +

∂αij

∂Xk
εjAi ∧ dXk

)
+

+
∫ (

αijAi ∧ dεj −
1
2
αijAi ∧ dεj −

1
2
αijAi ∧ dεj

)
+
∫

1
2

(
∂αij

∂Xk
αklεlAi ∧Aj−

− ∂αlk

∂Xi
αijεkAl ∧Aj −

∂αlk

∂Xj
αijεkAi ∧Al

)
. (5.17)

We can rewrite the term −
∫
dεi ∧ dXi as follows:

−
∫
dεi ∧ dXi = −

∫
d ∧

(
εi ∧ dXi

)
. (5.18)

Since the integration is over a closed surface, by Stokes‘ theorem the first integration is equal to
zero. The second and third integrations are also canceled, and thus remains just the last integra-
tion:

δεS =
∫

1
2

(
∂αij

∂Xk
αklεlAi ∧Aj −

∂αlk

∂Xi
αijεkAl ∧Aj −

∂αlk

∂Xj
αijεkAi ∧Al

)
. (5.19)

By changing the indices and use αij = −αji, we have:

δεS =
∫

1
2
εk

(
αkl

∂αji

∂X l
+ αjl

∂αik

∂X l
+ αil

∂αkj

∂X l

)
Ai ∧Al. (5.20)

This is just the Jacoby Identity and so is zero. Thus the variation of the action with respect to
the infinitesimal transformations (5.13) and (5.14) is zero. This symmetry is an extension of more
familiar gauge symmetries. [50].

5.3 Path integral approach to the Kontsevich formula

In this section, we will show that the star product between two functions f, g ∈ C∞(M) is given
by the semiclassical expansion of the path integral over all (X,A) of the Poisson sigma model on
a disk Σ.
We claim that the formula of the star product is given by:

f ∗ g (x) =
∫
X(∞)=x

f (X (1)) g (X (0)) e
i
~S[X,A]dXdA. (5.21)

Cattaneo and Felder suggested this formula using the insights and ideas of quantization theory
in physics [50].
In this formula, the three points {0, 1,∞} are distinct and in cyclic order on the unit circle. Cyclic
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means that if we start from 0 and move counterclockwise on the circle, we first meet 1 and then
∞. Semiclassical expansion means an expansion around the classical solution X(u) = x and
A(u) = 0 for every point belonging to the boundary: u ∈ ∂Σ.
Now, we should check the three axioms of star products in the definition (4.2.4):

1)f ∗ 1 = 1 ∗ f = f,

2)f ∗ (g ∗ h) = (f ∗ g) ∗ h,
3)C0 (f, g) = f · g

4) {f, g} =
1
i~

(C1(f, g)− C1(g, f))

For the first axiom we have:

f ∗ 1 (x) =
∫
X(∞)=x

f (X (1)) 1 (X (0)) e
i
~S[X,A]dXdA =∫

X(∞)=x

f (X (1)) e
i
~S[X,A]dXdA = f(x) (5.22)

Similary, we have 1 ∗ f = f , thus the first axiom is satisfied.
The second axiom:

(f ∗ g) ∗ h (x) =
∫
X(∞)=x

(f ∗ g) (X (1))h (X (0)) e
i
~S[X,A]dXdA. (5.23)

The topological nature of the model allows us to move the points on the boundary and since the
algebra C∞(M) is an associative algebra, then:

(f ∗ g) ∗ h (x) =
∫
X(∞)=x

∫
X′(∞)=X(1)

{f(X ′(1))g(X ′(0))}h(X(0))e
i
~S[X,A]e

i
~S[X′,A′]dXdAdX ′dA′

=
∫
X(∞)=x

∫
X′(∞)=X(1)

f(X ′(1)) {g(X(∞))h(X(0))} e i
~S[X,A]e

i
~S[X′,A′]dXdAdX ′dA′

=
∫
X(∞)=x=X′(0)

f(X ′(1))(g ∗ h)(X ′(∞))e
i
~S[X′,A′]dX ′dA′ = f ∗ (g ∗ h)(x).

(5.24)

Let us turn to the third axiom. We expand the exponential in the integration:

f ∗ g (x) =
∫
X(∞)=x

f (X (1)) g (X (0)) e
i
~S[X,A]dXdA

=
∫
X(∞)=x

f (X (1)) g (X (0)) dXdA+O (~) . (5.25)

By the integration of the first term in the right hand side, we have:∫
X(∞)=x

f (X (1)) g (X (0)) dXdA = f (x) g (x) |X(∞)=x= (f · g) (x) |X(∞)=x . (5.26)

So the zeroth term is satisfied. To prove the higher order terms, there are some quantum field
theory methods [51]

Remark We assumed that Σ is a disk. It means we considerd the simplest topology with bound-
ary. In general case, when Σ is an arbitrary topological space with boundary, it is not easy to
check the associativity condition. It means, associativity depends on the toplogical structure of
the word sheet. In the sympletic case the above formula essentially reduces to the original Feyn-
man path integral formula for quantum mechanics [50] .
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5.4 Conclusion

The dream of physicists is to unify all four forces in one fundamental force. This method is called
unified field theory. The main problem is to unify quantum physics and Einstein’s general rela-
tivity. Actually we try to reconcile them in order to treat them as a single theory. There are three
famous condidates for unification:
Loop quantum gravity, string theory and noncommutative geometry, which are failure to unify
quantum physics and general relativity unitl now.
As we studied in this thesis, the quantization method which arises from the noncommutativity
idea of space time, implies the Kontsevich theorem. This theorem gives us a general formula of
quantization of an arbitrary Poisson manifold. The physical interpretation of Kontsevich theo-
rem appears in Poisson sigma models which are topological quantum field theories and provide
a unification for some class of field theories. It seems that maybe there is a grand unified field
theory behind noncommutativity properties of space time.
Let us come back to the word unification. This word has a deep meaning in philosophy, physics
and also mathematics. I would like to start with some kind of unification in physics and mathe-
matics and then compare them with the unified field theory which physicists try to construct.

Newtonian mechanics as a unifying theory:
From the Greek philosophy until Newtonian mechanics, there was a philosophical framework of
physics, it contained two different subjects, physics of the cosmos which described the moving
of planets and physics of the Earh, which described the phenomenas on earth. This framework
culminated when Kepler described the cosmology with three laws and Galileo postulated me-
chanics and calculated projectile motion with some geometrical methods (Galileo dynamics).
“My dream is to introduce all natural phenomenas from the mechanical principles”(Isaac Newton).
Newtonian mechanics is a set of postulates such that Kepler’s laws and Galileo’s principles fol-
low from it as a consequence, so Newtonian mechanics behaves as a unifying theory:
Unification of cosmology and Galileo dynamics.
The important note is, that Newton used Kepler’s and Galileo’s principles as a motivation and
postulated classical mechanics.

Special theory of relativity as a unifying theory:
This theory was born because of some inconsistencies. One of them was in electrodynamics. The
Maxwell equations are not invariant under the Galileo transformations. Special relativity actually
is a theory of space and time unifying the magnetic and electric forces. These are two succesfull
examples for unification of two different subjects.

Why is the unification of gravitaion and quantum physics unsuccessfull? Some mathemati-
cians believe that the problem is behind the mathematical structure of these theories. We just
mix the theories whitout attention to the contradictions which arise from their mathematical con-
cepts. Maybe we need to have some kind of unification in the mathematics and from there, we
should construct a unification in physics!

Category theory as a unifying theory in mathematics:
Category theory was developed in the second half of the 20th century. Categories were first in-
troduced by Saunders Mac Lane and Samuel Eilenberg during 1942-1945 in algebraic topology and
then developed independently as a branch of mathematics. This theory starts with the obser-
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vation that all mathematical structures (algebras, topology, geometry,...) can be unified within
framework. We can simplify mathematical structures by introducing a family of objects (like
sets) and arrows (like morphisms between sets). A key goal is to represent any physical quantity
A with an arrow between two special objects (the state-object and quantity-value object) in the
appropriate a Topos.
Topos is a special type of category. The construction of a theory in physics is equivalent to find-
ing a representation in a topos. For example classical physics uses the topos of sets and other
theories introduce a different topos. This fact about pure mathematics motivates us to develop
fundamentally new ways of constructing theories in physics [54].
If there is a unification of theories, noncommutativity of space time may help us to understand,
how the final theory should look like.
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