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Abstract

Next Generation Sequencing (NGS) is a powerful tool to gain new insights in molecular
biology. With the introduction of the first bench top NGS sequencing machines (e.g.
Ion Torrent, MiSeq), this technology became even more versatile in its applications and
the amount of data that are produced in a short time is ever increasing. The demand
for new and more efficient sequence analysis tools increases at the same rate as the
throughput of sequencing technologies. New methods and algorithms not only need to
be more efficient but also need to account for a higher genetic variability between the
sequenced and annotated data. To obtain reliable results, information about errors and
limitations of NGS technologies should also be investigated. Furthermore, methods need
to be able to cope with contamination in the data.
In this thesis we present methods and algorithms for NGS analysis. Firstly, we present

a fast and precise method to align NGS reads to a reference genome. This method, called
NextGenMap, was designed to work with data from Illumina, 454 and Ion Torrent tech-
nologies, and is easily extendable to new upcoming technologies. We use a pairwise
sequence alignment in combination with an exact match filter approach to maximize the
number of correctly mapped reads. To reduce runtime (mapping a 16x coverage human
genome data set within hours) we developed an optimized banded pairwise alignment
algorithm for NGS data. We implemented this algorithm using high performance pro-
graming interfaces for central processing units using SSE (Streaming SIMD Extensions)
and OpenCL as well as for graphic processing units using OpenCL and CUDA. Thus,
NextGenMap can make maximal use of all existing hardware no matter whether it is a
high end compute cluster or a standard desktop computer or even a laptop. We demon-
strated the advantages of NextGenMap based on real and simulated data over other
mapping methods and showed that NextGenMap outperforms current methods with
respect to the number of correctly mapped reads.

The second part of the thesis is an analysis of limitations and errors of Ion Torrent and
MiSeq. Sequencing errors were defined as the percentage of mismatches, insertion and
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deletions per position given a semi-global alignment mapping between read and refer-
ence sequence. We measured a mean error rate for MiSeq of 0.8% and for Ion Torrent of
1.5%. Moreover we identified for both technologies a non-uniform distribution of errors
and even more severe of the corresponding nucleotide frequencies given a difference in
the alignment. This is an important result since it reveals that some differences (e.g.
mismatches) are more likely to occur than others and thus lead to a biased analysis.
When looking at the distribution of the reads accross the sample carrier of the sequenc-
ing machine we discovered a clustering of reads that have a high difference (> 30%)
compared to the reference sequence. This is unexpected since reads with a high differ-
ence are believed to origin either from contamination or errors in the library preparation,
and should therefore be uniformly distributed on the sample carrier of the sequencing
machine.
Finally, we present a method called DeFenSe (Detection of Falsely Aligned Sequences)

to detect and reduce contamination in NGS data. DeFenSe computes a pairwise align-
ment score threshold based on the alignment of randomly sampled reads to the reference
genome. This threshold is then used to filter the mapped reads. It was applied in com-
bination with two widely used mapping programs to real data resulting in a reduction
of contamination of up to 99.8%. In contrast to previous methods DeFenSe works inde-
pendently of the number of differences between the reference and the targeted genome.
Moreover, DeFenSe neither relies on ad hoc decisions like identity threshold or mapping
quality thresholds nor does it require prior knowledge of the sequenced organism.
The combination of these methods may lead to the possibility of transferring knowl-

edge from model organisms to non model organisms by the usage of NGS. In addition,
it enables to study biological mechanisms even in high polymorphic regions.

Parts of this thesis have been published in the following articles:

1. P. Rescheneder, A. von Haeseler, and F.J. Sedlazeck (2011) MASon: Million Align-
ments In Seconds - A Platform Independent Pairwise Sequence Alignment Library
for Next Generation Sequencing Data. Proceedings of the International Conference
on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS 2012),
195-201, SciTePress, Setubal, Portugal. (DOI: 10.5220/0003775701950201)

All methods including developments presented in this thesis are freely available from
http://www.cibiv.at/software/ngm.

http://www.cibiv.at/software/ngm
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Chapter 1

Overview

1.1 Motivation

The advent of Next Generation Sequencing (NGS) has led to new insights in molecular
biology. Current emerging technologies like benchtop sequencing are boosting NGS
to become a standard method in molecular biology (Glenn, 2011). The wide spread
usage of NGS technologies requires fast and inexpensive ways to analyse the data. In
recent years the usage of clusters and cloud computing systems where discussed (Schatz,
2009; Niemenmaa et al., 2012; David et al., 2011). However, what if one has no access
to clusters or the conditions of the project prohibit the distribution of the data (e.g.
personalized data)? A cheap and easily accessible solution would be the analysis on
desktop computers. Although they are less powerful in terms of numbers of computation
per second or amount of memory, it should be possible to adopt technologies that the
gaming industry has develop to speed up computations. These could be then used either
to reduce the runtime of sequence analysis tools or to perform more computations, e.g.
to analyse reads with a higher number of differences compared to the reference. Since
methods like Bowtie (Langmead et al., 2009) or BWA (Li and Durbin, 2009) already
achieve a short runtime one would focus on the latter explicitly, i.e. more throughout
searches. Note in this context that, new NGS technologies like Ion Torrent have the
trend to produce longer reads with a higher number of errors. Thus, more throughout
search methods are inevitable to successfully align those reads to a reference sequence
(Glenn, 2011).

To obtain reliable results after the initial processing of NGS data one has to account
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2 Chapter 1 Overview

for systematic errors or biases introduced by the experimental setting (e.g. batch effect,
preparation error, sequencing error) or the used software. Typically one expects the
software to be well tested and to return the correct results. This is often demonstrated
by several benchmarks done by the developers. In contrast to the used software it is often
not trivial to assess the effect on the experimental results of used sequencing technologies
and experimental protocols. The batch effect and effects of DNA amplification are well
known and method exist to account for this (e.g. Li and Rabinovic (2007)). However,
the influence of the used NGS technology is difficult to estimate. A few papers were
published to measure the sequencing error for NGS technologies (Huse et al., 2007;
Suzuki et al., 2011; Glenn, 2011; Loman et al., 2012), still it is often unclear what errors
or biases to expect. Possible biases in the frequency of inserted nucleotides will influence
latter analysis. Furthermore, this might not only be related to the sequencing technology
but further might differ from machine to machine.

Another cause of error is contamination introduced during or before sample prepa-
ration. Here, we define contamination as reads that origin from a different organism
than intended to be sequenced. Especially in cases like ChIP or RNA sequencing one
relies on a clustering of reads at a specific region on the genome. The conclusions drawn
from such an analysis would be severely compromised if part of the reads came from
a different genomic region or even from a different organism/species than sequenced.
Detection of contamination is not trivial since the percentages of mismatches, insertions
and deletions for a read when aligned to the reference depends on the sequencing tech-
nology but also on the genetic diversity of a locus (e.g. how many differences can we
expect between the organism and the annotated genome). It would be ideal to have a
method that automatically adjusts to the underlying experimental settings and detect
reads that should not be taken into account.

Currently it is not foreseeable how the advent of NGS technologies will change our
viewpoint of genetics. It is clear that NGS already has a deep impact in the way science is
currently done (Zhang et al., 2011). To gain further insights based on NGS technologies
several issues have to be addressed. Those mentioned before represent only the tip of
the iceberg but might open the field for other experiments. One example would be
the mapping of sequenced genomes of a population to a distantly related annotated
reference genome. This may lead to a fast and cheap way to identify population specific
mechanisms like rearrangements, inversion, recombination hotspots, the estimation of
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site frequency spectra of SNPs etc. .

1.2 Contributions

We have addressed a number of issues in the field of Next Generation Sequence analysis.
To this end, a number of algorithms have been developed and implemented. The results
of this work are presented in the subsequent chapters.

Chapter 2 gives a brief introduction to NGS. Frequently used sequencing technologies
are briefly described and discussed. Furthermore, it provides a brief introduction
in reference based sequence mapping and de novo assembly of NGS data.

Chapter 3 presents an efficient mapping approach (NextGenMap) utilizing modern
hardware resources. The algorithm focuses on correctly mapping a high num-
ber of reads. Real and simulated data analysis show the improvement over other
mapping methods.

Chapter 4 presents an optimized algorithm to compute pairwise alignments for NGS
data . The algorithm was implemented with a variety of different high performance
APIs (SSE, OpenCL, Cuda) and is designed to utilize current CPUs as well as
graphic cards. This algorithm is used in the program of NextGenMap and DeFenSe
(see chapters 3 and 6).

Chapter 5 presents an error rate analysis of Ion Torrent and MiSeq data. It outlines
advantages and disadvantages of each technology and gives insights about platform
specific sequencing errors.

Chapter 6 presents DeFenSe a method to automatically detect and reduce contamina-
tion in NGS data. It uses the algorithm from chapter 4 to compute an alignment
score threshold based on the experimental data.

Chapter 7 gives a brief summary of the results obtained in this thesis.
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Chapter 2

Next Generation Sequencing

2.1 Next Generation Sequencing Technologies

2.1.1 Introduction

The Human Genome Project (The International Human Genome Sequencing Consor-
tium, 2001) started in 1989 with the goal to reveal the human genome information by
the use of DNA sequencing. This is the process of determining the order of the nu-
cleotides (adenine, guanine, cytosine and thymine) along a DNA molecule. In 2001,
after 12 years, a human draft genome was published (The International Human Genome
Sequencing Consortium, 2001). Now 11 years later sequencing on a genome level has
become a routine method in molecular biology.

Genome-sequencing leads to insights about the gene structure and genotype variation
within a population, and to the discovery of genetic causes of diseases. Previous strate-
gies like Sanger sequencing (Sanger et al., 1977), and even more so chemical sequencing
following Maxam−Gilbert (Maxam and Gilbert, 1977), were cost and labor intensive.
Furthermore, they did not provide a large amount of sequence information. This led to
the development of parallel capillary sequencing machines. Still the amount of sequence
information was not efficient to study genomes of various organisms.

Next Generation Sequencing (NGS) technologies such as 454 and Illumina signifi-
cantly increased the amount of sequence information compared to previous technologies
(MacLean et al., 2009; Glenn, 2011). At the same time NGS reduced the costs for ex-
periments for sequencing a human genome from several million down to few thousand

5



6 Chapter 2 Next Generation Sequencing

Figure 2.1: The principle of sequencing technologies. Image taken from Nature Reviews
MacLean et al. (2009) and modified according to (Glenn, 2011)

dollars. Another difference between NGS and the former used sequencing technologies is
that NGS uses a real time sequencing technology. This means during the PCR reaction
the machine retrieves information which nucleotide was incorporated. In contrast to e.g.
Sanger sequencing, where the included nucleotide is determined long time after the PCR
reaction took place.

There are various applications where NGS is applied to. Apart from Genome-sequencing
it is used in RNA sequencing, which gives deeper insights about the genes and their ex-
pression levels. ChIP- sequencing studies are used to identify genomic regions with
interesting features (depending on the experimental goal), for example transcription
factor binding sites.

Figure 2.1 summarizes the principles of 454 and Illumina (Solexa) sequencing tech-
nologies. The detailed technological aspects of each sequencing technologies have been
extensively described and discussed elsewhere (Hall, 2007; Holt and Jones, 2008; Me-
dini et al., 2008; Shendure and Ji, 2008), therefore we only give a brief summary of
technologies that are used in this thesis.

2.1.2 454 sequencing

454 was the first NGS technology on the market (Margulies et al., 2005). It is based
on pyro-sequencing, this is the process of determining the sequence by the intensity of
emitted light signals. Figure 2.1 (a) displays the principle of the sequencing procedure.
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The first step is the ligation of the adapter sequence to the sequence of interest. One of
the adapters allows the sequence to bind on the library beads. After the binding PCR is
used to amplify the template sequences on the individual beads. The sequencing process
is then carried out on a PicoTiterPlate, which consist of approximately 1.6 million wells.
Per well, a bead containing the sequence, a DNA polymerase and a chemiluminescent
enzyme is placed. The sequencing process consists of different cycles. Per cycle only
one type of dNTP (Desoxyribonukleosidtriphosphate, N= A, C, G, T) is added. If the
DNA polymerase can incorporate this nucleotide, pyrophosphate is released and the
nucleotide is attached to the sequence. If more than one nucleotide of the same type
occurs as a substring, then all complementary nucleotides are incorporated within the
same sequencing cycle. The pyrophosphate is used as a substrate for the Enzymatic
reaction chain that leads to the emission of light intensity corresponding to the amount
of pyrophosphate. Given the number of pyrophosphates released per cycle and the
resulting intensity of the light, it is possible to determine the number of nucleotides
that were incorporated. Per cycle an image is recorded that gives information about the
light intensity and the read group where a nucleotide was attached. After each cycle, a
washing step removes unused dNTPs and the next cycle starts with a different dNTP.
The current read length limitation is ∼ 700 bp (Glenn, 2011).

2.1.3 Solexa / Illumina sequencing

The Illumina sequencing technology was launched in 2006. Figure 2.1 (b) displays the
principle of the sequencing procedure. Similar to Sanger sequencing and 454, the tech-
nology is based on sequencing by synthesis (Mardis, 2008). In contrast to 454, where
the sequencing reaction takes place on a bead, sequencing is performed on a glass slide.
After the ligation of the adapter sequence, the template sequences are attached to a
glass layer. In the next step, a PCR amplification takes place. The amplification step is
called bridge amplification since the 3′ and 5′ ends of the template sequence are attached
to the sequencing surface during the synthesis of the second strand. The result of the
amplification are clusters with a large number of copies of the same sequence. Prior to
the sequencing step, the reverse strand of the template sequence is cleaved and washed
away. A DNA polymerase is used to incorporated ddNTP (nucleotides with reversible
dye-terminators) to the sequence. After each addition of a ddNTP, the polymerase stops
and the unincorporated ddNTP are washed out. The fluorophor of the added nucleotide
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is excitated and an image of the flow cell is taken. Subsequently, the fluorophor and the
terminators are cleaved, washed out and the next cycle begins.

The maximum read length of Illumina sequencing is currently 150 base pair. The
technology is capable of producing paired end reads, i.e. both ends of a template can be
sequenced. Thus, Illumina can determine up to 300 nucleotides per template.

2.1.4 Ion Torrent sequencing

The Ion Torrent sequencing technology was the first benchtop technology released 2011
from Life Technologies (Rothberg et al., 2011). The sequencing technology is related to
the 454 technology (Glenn, 2011). It uses beads where the fragmented DNA is bound
to by one of the adapter sequences. Subsequent to PCR amplification of the bound
template, each bead is loaded into individual sensor wells. All four nucleotides are
added sequentially (dNTP). In contrast to 454, the insertion of a nucleotide is measured
by the release of a proton during extension of the sugar-phosphate backbone of the newly
synthesized DNA strand (Rothberg et al., 2011). For each attached nucleotide a proton
(H+) is released and the pH change is detected by the sensor on the bottom of the well.
A washing step to remove unused nucleotides and to readjust the pH is performed before
a new cycle starts. Figure 2.2 displays the principle of the Ion Torrent technology. The
current read length is up to ∼300bp.

2.1.5 MiSeq sequencing

The MiSeq system was the second benchtop sequencing technology released in 2011 by
Illumina (Glenn, 2011). MiSeq uses the same technology as the Illumina technologies.
Only the sequencing slide is smaller.

2.1.6 Discussion

The various Next Generation Sequencing (NGS) technologies open a broad field of bio-
logical questions that can be addressed with the help of DNA sequencing. This ranges
from the determination of gene and genome sequences to the measurement of gene ex-
pression for RNA sequencing. However, sometimes one technology is more suited to
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Figure 2.2: The general method of the Ion Torrent sequencing technology. Image taken
from Rothberg et al. (2011).

answer a particular biological questions than the other. For example, 454 produces
typically long reads, which allows the positioning of such on a reference sequence with
higher confidence. On the other hand, 454 is known for having problems in determining
the number of nucleotides incorporated per cycle (Huse et al., 2007; Suzuki et al., 2011;
Glenn, 2011). The resulting increased probability for insertions and deletions (indels)
can cause problems in the alignment that might not be encountered with Illumina data,
where one expects to see mismatches as the main source of errors. (Suzuki et al., 2011;
Glenn, 2011).

Current technologies like benchtop sequencers (e.g. Ion Torrent) or single molecule
sequencers (e.g. Pac Bio) promotes the wide use of sequencing technologies even further.
However, their impact for molecular biology and medicine is yet not assessable.

Given the increased production of data and the reduction in costs it became a routinely
used method in molecular biology. Nonetheless, it is important to note that they are
not error free. Current NGS technologies show two different types of platform specific
errors (either mismatches or indels). In principal this could be used in complementary
sequencing approaches when correcting the errors of one technology by the other used
technology and vice versa. However, in real life this is rarely the cases since only very
few labs have access to two different sequencing technologies.
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2.2 Computational approaches to analyze Next

Generation Sequencing data

One of the first steps after obtaining the reads in every NGS analysis is either a reference
based mapping (Trapnell and Salzberg, 2009), or a de novo assembly (Chaisson et al.,
2009) of the sequencing data.

Reference based mapping requires a genome of the same or at least a closely related
species. The objective is to identify for a read the highest similar regions on the reference
sequence. This has to be done for every read. Reference based mapping is used for
various applications of NGS experiments, e.g. whole genome, RNA, or ChIP sequencing.

De novo assembly aims to identify reads with a highly similar overlap, which are then
grouped together in contigs. The objective is to assemble the genome or at least a large
fraction of it independent of a reference genome. One application of NGS experiments
that de novo assembly can be used for is RNA sequencing, e.g. identification of novel
splice variants, and whole genome sequencing.

When designing and implementing computational methods for NGS analysis one has
to keep in mind the amount of data produced per sequencing run, and that the data
maybe produced with different error characteristics (Flicek and Birney, 2009; Glenn,
2011). There are mainly two types of data; one consisting of long (>300bp) but few
reads (e.g. 454 and Ion Torrent). And the other consisting of short reads (≤<150bp)
but millions of them (e.g. Illumina). These different characteristics of the two data
types make it often hard or nearly impossible to have one algorithm for their analysis.

Currently there are many reference based mappers and de novo assemblers available
that either focus on speed or on a high number of mapped reads (Li and Homer, 2010).
Those that have speed as their main objective are based on Burrows Wheeler Trans-
formation, e.g. Bowtie (Langmead et al., 2009) and BWA (Li and Durbin, 2009). In
contrast, applications that focus on a high number of mapped reads, e.g. SHRiMP2
(David et al., 2011) and SSaha2 (Ning et al., 2001), are based on pairwise sequence
alignment algorithms.

Generally the choice of the mapping or assembly algorithm is strongly influenced by the
experimental setup. For example, sequencing reads from the unknown genome sequence
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of a species have to be processed by a de novo assembler. ChIP-Seq experiments, on the
other hand, cannot be analyzed without a reference sequence or genome.

2.2.1 Reference based mapping

The main objective of a reference mapping program is to identify the region of the genome
where a read originated from. Unlike earlier programs like Blast (Altschul et al., 1990)
or Blat (Kent, 2002), NGS mappers are designed to align short sequences to a closely
related genome. The main assumption of every mapper is that there are just very few, if
any, differences between the read and the corresponding genomic region. The number of
maximally allowed differences is different for nearly every approach. Although to assume
only a few, if any, differences seems to be a trivial assumption it is important for the
design of mapping programs.

Figure 2.3 displays the general principle of contemporary methods. The Burrows-
Wheeler as well as the seed based methods report for each read the starting position of
the region in the reference with the lowest number of differences between the read and
the region on the plus strand. This is typically reported either in the current standard
formats SAM/BAM (Li et al., 2009) or in their program specific formats. For a recent
overview see (Schbath et al., 2012).

The most frequently used reference based mapping programs, e.g. Bowtie (Langmead
et al., 2009) and BWA (Li and Durbin, 2009), are based on a suffix array that allows a
sequence based search with up to n mismatches, insertions or deletions. The Burrows
Wheeler Transformation (BWT) (Burrows and Wheeler, 1994) leads to very efficient
running time. BWT is a lossles compression, which basically permutes and transforms
the order of the sequence (Burrows and Wheeler, 1994). The longer the sequence the
more one profits from the transformation. The BWT groups subsequences together
that occur multiple times in the genome. This allows a fast access of subsequences.
For example, using BWA, if there exists an exact matching read, BWA can identify its
location in O(m), where m is the read length. When searching for non exact matches
BWA uses an approach to minimize the search space. The maximal number of differences
allowed between a read and a region on the reference depends on the read length, e.g.
it can be set to 2 differences for a 36bp read. High numbers of difference are possible,
however they increase the runtime. Both methods BWA and Bowtie are designed to
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Figure 2.3: Generalized workflow of available mapping strategies. (a) describes the mech-
anism of a seed word approach. (b) displays the principle of Burrows Wheeler
based mapping methods. Image taken from Trapnell and Salzberg (2009)

align a set of short sequences. Whereas BWA-SW is optimized to align long sequences
(>100bp). Details of those methods have been described and discussed elsewhere (Flicek
and Birney, 2009; Li and Durbin, 2009).

The focus of the second approach lies on a fast identification of putative locations
where the best matching region between a read and the reference is most likely to be
found. To identify these locations, either the reference genome or the reads are split in
small (12bp to 15bp) words and their positions are stored in a hash table. These hashed
words are often referred to as seed words. Currently there are two types of seed words
used. A seed word consist either of one consecutive genomic region (used in SSaha2
(Ning et al., 2001)), or of a region where defined positions are not required to match
named spaced seed words (used in SHRiMP2 (Rumble et al., 2009)). After this initial
search, a more accurate alignment, e.g. Smith-Waterman (Smith and Waterman, 1981)
and Needleman Wunsch (Needleman and Wunsch, 1970), between the read and a smaller
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subset of the before identified subregions is computed.

Both methods (BWT based and hash based) do not guarantee to identify the optimal
alignment. However, typically both methods identify the optimal alignment region as
the number of differences between the read and the optimal region on the genome is
typically low.

2.2.2 De novo assembly

The main objective of de novo assemblers is an accurate reconstruction of the original
sequence. However, the algorithms are mainly optimized to assemble the longest possible
sequence stretch based on the reads. Figure 2.4 displays a general principles of the
available methods. In contrast to previous methods that were designed for sequences of
approximately 800bp in length (Pevzner et al., 2001), current de novo assemblers are
developed to process a high number of short sequences (100bp - 150bp). The majority
of programs uses the modified De Bruijn graph (Pevzner et al., 2001) where seed words
build up a graph based data structure such that each seed word that overlaps with a
different seed word given a read is connected (Figure 2.4 (a,2)). The nodes in this graph
represent the seed words and are connected by edges, if they are observed overlapping
each other. A set of connected nodes is often referred as a path

After such a graph is constructed an error correction is applied to reduce the number
of alternative paths. Alternative paths are generated by similar regions that lead to
two distinct sequences. This can either be because of sequencing errors or because of
low complexity regions in the genome. To reduce the effect of sequencing errors, the
frequency of all observed seed words is measured. If an alternative path exists of which
the nodes have a reduced frequency, than the nodes of its counterpart path, the path
is erased. For example, a path of the nodes (GCTGTAG) is detected that is supported
by only 10 reads whereas a different path (GCTTTAG) exists that differs only by one
mismatch and is supported by thousand of reads. In such a case, both paths are merged
and the predicted sequencing error is corrected (Figure 2.4 (a,3 + 4)). In the end,
consensus sequences are reported based on the corrected graph (Figure 2.4 (b)).

Advantages and disadvantages of de novo assembly were exhaustively discussed and
described elsewhere. (Flicek and Birney, 2009; Zhang et al., 2011; Narzisi and Mishra,
2011; MacLean et al., 2009).
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Figure 2.4: Schematic cartoon of a de novo assembly. (a) Simplified cartoon of the
construction of a dependency seed word graph. (b) An example of one Bruijn
graph of two related plasmids that share a common locus. The chosen seed
word size was 30bp. The open loops reveal regions where the two plasmids
are dissimilar. Image taken from Flicek and Birney (2009)



Chapter 3

NextGenMap: Next Generation

Mapping

3.1 Introduction

The usage of Next Generation Sequencing (NGS) technologies allows for comprehensive
analysis of genomes, transcriptomes, methylomes and epigenomes. Technologies such as
Illumina or 454 have overtaken traditional sequencing strategies and generate data in the
order of giga base pairs per machine and day (Metzker, 2010; Glenn, 2011). Enhanced
resolution is accompanied by reduced costs per experiment compared to e.g. Sanger
sequencing (Sanger et al., 1977) methods. Therefore, NGS is becoming a widely used
method in modern molecular biology. In all cases of an NGS experiment, one bioinfor-
matic challenge concerns the mapping or assembling of the reads. Two strategies are in
use: reference based mapping and de-novo assembly (MacLean et al., 2009). The latter
refers to sequence reconstruction without consulting already sequenced genomes. In con-
trast, reference based mapping relies on a closely related annotated genome sequence to
which each read is aligned. An appropriate reference genome brings along the advantage
of requiring a lower sequencing depth compared to de novo assembly. Moreover, this
strategy is also used, when it comes to RNA sequencing to detect transcription factors
or ChIP-Seq to detect binding sites where in general reads from a model organism are
mapped to its genome. In summary, mapping approaches of reads provide a wide range
of applications. However, if one wants to transfer genomic information from an avail-
able reference genome to a still unexplored organism, the performance of the available

15
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methods is often not clear. Thus, it is necessary to understand the potential pitfalls
and advantages of currently popular mapping programs. From a bioinformatics point
of view, two essential criteria have to be taken into account when designing mapping
algorithms for NGS data (Flicek and Birney, 2009). First, the sheer amount of data
demands an efficient usage of computational resources. This includes optimization for
runtime as well as memory requirements. Second, while lowering the computational
burden of processing, the algorithm has to be able in most of the cases, to obtain the
same results as an optimal alignment approach, i.e. handle mismatches, insertions, and
deletions that may result from sequencing errors or evolutionary processes. The latter
requirement becomes important when mapping reads from an unexplored and evolu-
tionary distantly related species to well studied reference genome. Here, the currently
popular mappers like Bowtie (Langmead et al., 2009) or BWA (Li and Durbin, 2009)
are not optimal as they are too conservative in their mapping process. To keep their
computation time low (e.g. mapping a 10x human genome data set within hours), they
typically allow just for a small number of mismatches. For a recent survey of available
mapping application see Li and Homer (2010).

The ability to cope with a large number of mismatches, insertions and deletions during
mapping becomes more pronounced when the read length is increased while the error
percentage remains the same. This can be processed by using seed based mappers like
SHRiMP2 (David et al., 2011), which are typically slow. However, the here presented
method called NextGenMap was designed to allow for a high number of differences
while having a reduced runtime. We will show that NextGenMap outperforms currently
available mapping programs with respect to mapping accuracy while maintaining the
runtime at a competitive level.

NextGenMap utilizes high performance hardware such as a graphic processing units
(GPU). The integration of GPUs as co-processing units allows for a computational speed
up by exploiting widely available hardware. The parallelization of a GPU enables simul-
taneous calculations of several thousand computations per second (Vouzis and Sahinidis,
2011; Liu et al., 2009; Trapnell and Salzberg, 2009). The substantial runtime reduc-
tion permits a more thorough sequence based search to identify the optimal alignment
position, while still, outperforming ordinary CPU-based mapping algorithms. As the
majority of desktop PCs are equipped with graphic cards, the mapping procedure can
be deployed on standard workstations. Thus, the usage of NextGenMap as a standard
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analysis tool offers a solution for institutes not equipped with expensive high perfor-
mance computing infrastructure. To further facilitate the usage of desktop PCs, an
user adjustable memory footprint is proposed that splits the data automatically into
sub packages according to the available hardware. This enables the analysis of NGS
data derived from, e.g. the human genome, on a standard PC. We introduce a novel
evaluation method, that is used for the performance comparison of NextGenMap with
currently available mapping programs. The evaluation allows to analyze the case when
mapping data from organisms where the genomic sequence is unknown, to distantly
related reference genomes. This method evaluates the accuracy of the mapping result
based on a per base level for each read. In the following, we describe the NextGenMap
approach. Then we will describe the results of a comparative simulation study, where
we evaluate the performance of five state-of-art reference based mappers. Furthermore,
we apply NextGenMap to real sequence data from Arabidopsis thal. and human.

3.2 Methods

3.2.1 NextGenMap

In the following we describe NextGenMap’s mapping strategy and discuss its perfor-
mance. NextGenMap comprises three work-steps. First, it suggests candidate regions in
the reference genome where a read potentially maps. This is done on the CPU. Second,
for each candidate region NextGenMap computes a banded alignment score on the CPU
or if available on the GPU. Third, for candidate regions with the highest alignment
score per read, a banded alignment is computed on the CPU or GPU. A more detailed
description and discussion about the computations of alignments on CPUs and GPUs
can be found in chapter 4.

3.2.1.1 Candidate region search

The candidate search is based on small exact matching seed words of length k (k ∈
{2, . . . , 32}). First, the reference genome is indexed, similar to other read mappers (Li
and Durbin, 2009; Langmead et al., 2009; David et al., 2011), and a hash table is created.
Each seed word is mapped to exactly one number, which is unique with respect to the
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nucleotide sequence. Each genomic position of the seed word is stored in a k-hash table
using a hashing approach. Next, for each read we extract all seed words. Given the list of
seed words, all corresponding genomic position in the k-hash table are extracted. These
positions are corrected by the location of the seed words in the read such that all point
to the starting position of the alignment region. Due to insertions and deletions not all
starting positions have to point at the same genomic region. Therefore, we introduce
a spacing variable h, which defines the range in that all occurred starting positions are
grouped together. Next we measure the number of observed seed words at a genomic
position. If this number exceeds an user definable threshold w, we submit the genomic
region and the corresponding read to the score computation.

3.2.1.2 SW alignment score computation

Here we compute the alignment score between a read and all its candidate regions,
suggested in step 1. To improve runtime, and to achieve linear space requirement we
compute the alignment scores only for a banded SW-alignment (Gusfield, 1997). The
computational/storage complexity reduces to O(l × c) for the alignment matrix, where
l is the read length and c is the corridor width. The parameter c specifies the maximal
number of consecutive insertions or deletions. We note that the spacing parameter h,
introduced in the previous section, is equal to c/2. Thus, the user specifies only the
corridor width, c, and h is adjusted accordingly. Typically c << l. To find the region
with the highest score, we do not need to store the full alignment matrix. By doing so,
we can reduce the space complexity to O(c) (Gusfield, 1997). The memory usage is now
independent of the read length and depends only on the corridor width that reflects the
length of the longest consecutive insertions or deletions. This reduction allows us to store
the data on fast on-chip memory. Since we do not backtrack the optimal alignments,
we reduce the branching behavior of NextGenMap that increases the efficiency of the
GPU usage even more. In addition, the remaining variables are also stored in fast GPU
memory. Only read and reference genome are stored in global memory. These reductions
make it possible that each GPU thread computes one alignment score. Contrary to
previous work (Vouzis and Sahinidis, 2011; Liu et al., 2009; Trapnell and Salzberg,
2009), we can now compute millions of scores simultaneously on the GPU. Hence we use
the full potential of the GPU.



3.2 Methods 19

3.2.1.3 SW alignment computation

For all region(s) in the reference genome that achieved the highest SW-alignment score,
we finally compute the actual banded alignment. This computation including the back-
tracking step take place on the CPU or on the GPU. Due to the efficient implementation,
each thread computes one alignment. This step concludes the mapping of the reads. To
reduce idle times of the CPU, while the SW scores and, subsequently the alignments,
are computed on the GPU, the CPU computes in the mean time the candidate regions
for the next reads. This guarantees maximal load of GPU and CPU.

3.2.2 Simulation and evaluation process

All mapping programs, including NextGenMap, are based on heuristic approaches that
influences their mapping performance. To assess the performance of every mapping
method, we measured the runtime and the mapping accuracy. We define mapping ac-
curacy differently for real data sets and for simulated data sets. For real data sets, we
simply give the number of mapped reads as we are lacking of a better metric. In case
of the simulated data, we know where each read was generated from and its original
alignment to the used reference sequence. Therefore, we can compute the number of
correctly, wrongly and not mapped nucleotides.

Figure 3.1 summarises the simulation and evaluation pipeline. Our simulation process
consist of two stages. First, a reference chromosome is read in. This is altered by random
mutations. An user defined parameter gives the probability of observing a mutation at
each position. If a position is altered it is decided if it is a mismatch or an insertion
and deletion (indel). The probability of an indel is 10% given a mutation, for simplicity
the indel length is fixed by 1. The probability for an insertion or deletion are both 50%
given the event of an indel. For each mutation event the probability of all alternative
nucleotides compared to the original in the reference are equal. This mechanism follows
a Juckes Cantor (Jukes and Cantor, 1969) model except we also simulate insertions and
deletions. If a mutation takes place, we track the type of mutation plus its location on
the reference genome. Second, we simulate the process of sequencing by a simplified
model. We randomly select locations across the altered genome as starting positions
of reads. For each sampled read, we run over the sequence. Given an user defined
probability, every position has the chance to become a sequencing error. If the event of a
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sequencing error occur, we follow the same strategy as described above given a mutation.
In addition, we store every sequencing error that altered the read sequence. In the end,
we store in one file the resulting read sequence and additionally the true alignment given
the original reference sequence. The latter is used to evaluate the mapping of the reads.
Note that the sequencing error will not affect any other read, whereas a mutation will
be present in every read that overlaps with the mutated position.

In the evaluation procedure we then mapped the simulated reads to the original ref-
erence sequence and compare the results to the previously stored true alignments. For
each read we compute the fraction of correctly placed (pC), wrongly placed (pF ), and
not placed (pNP ) nucleotides, with respect to the reference genome. The mapping of
each read can therefore be characterised by these three fractions, which naturally sum
up to one. The fractions (pC , pF , pNP ) can be viewed as a point inside an equilateral
triangle (Cannings and Edwards, 1968; Strimmer and von Haeseler, 1997). For a given
point inside the triangle, the p’s correspond to the length of the perpendiculars from the
point to the sides of the triangle. If one of the p’s is close to one, then the point will be
close to a corner of the triangle. Thus, each corner represents an extreme case, where
a read is not mapped at all (left corner), entirely wrongly mapped (right corner) or
correctly mapped (upper corner). To illustrate this, assume that the alignment of a read
consists only of correctly mapped nucleotides and wrongly mapped nucleotides then the
resulting point (pC , pF , 0) would fall onto the right side of the triangle. The centre of
the triangle describes the situation where one third of the read is correctly, one third is
wrongly and one third is not mapped at all. This illustration provides a comprehensive
view of the performance of the reference mapping programs. To account for the different
coverage of points inside the triangle, we introduce a color density gradient that reflects
the percentage of reads falling in each area.

3.2.3 Comparative study of reference based mapping methods

We selected five of the most frequently used programs to evaluate their performance
and to compare them to NextGenMap. Bowtie (Langmead et al., 2009), BWA (Li
and Durbin, 2009) and BWA-SW (Li and Durbin, 2010) are chosen as representatives
for the Burrows Wheeler based approaches. In addition, SSaha2 (Ning et al., 2001)
and SHRiMP2 (David et al., 2011) are selected as programs based on local sequence
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alignment. Every mapping program was tuned to exploit the available hardware as good
as possible. The measured runtime (wall clock time) includes indexing and mapping
time for all programs as these steps define a full mapping process. For NextGenMap
we measured the wall clock time with (NextGenMap+GPU) and without the graphic
card (NextGenMap). All programs were executed with the default, respectively with
the recommended parameter settings (see chapter 3.2.5). All programs were executed
on the same PC, equipped with an AMD Phenom II X4 965 Quard-Core with 16 GB of
memory and a GTX 480 graphic card.

3.2.4 Real data

The human data set consisted of 10 million reads (100bp long) randomly sampled from
SRR064182 (NCBI Sequence Read Archive). We used the human genome (GRCh37)
as a reference genome to map the reads with the individual mapping methods. The
Arabidopsis thaliana data consists of 14 million sequencing reads (36bp long) from strain
Bur-0 (Ossowski et al., 2008). The reference sequence of strain Col-0 was used for
mapping the reads.

3.2.5 Parameter settings

NextGenMap comes with default settings for short (< 150bp) and long (> 150bp) se-
quences. In addition, NextGenMap includes preconfigured parameters that specify the
sensitivity of the search (for example, the number of mismatches to expect). This pa-
rameter has three levels (low, normal, high). For the real data sets and the majority of
the simulated data sets (S1, S2 and S3) this parameter were set to normal. Whereas in
the case of S4, we set the parameter to enable a more throughout search to high.

For data sets with short sequences NextGenMap uses by default a seed word size
of 12 and require minimum two exact matches of seed words between a read and a
region of the reference to trigger the SW alignment score calculation. Seed words were
extracted from the reference at each position and from the reads at every second position,
except for dataset S4 where NextGenMap used an increased sensitivity parameter that
extracted seed words starting at every position from the reads. The Smith-Waterman
scoring parameters were set to +5 for a matching base pair, -2 for a mismatch, and -5
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Evaluation
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Figure 3.1: Simulation schema: Step 1: A reference genome is read in. Step 2: a
target genome sequence is simulated from the reference genome by randomly
positioning mismatches, insertions and deletions. Step 3: sequence reads
are simulated by randomly sampling sequences of a fixed length from the
target genome. Each read is then subject to a possible sequencing errors.
Thus, each read might differ from the corresponding region in the reference
genome either due to the evolutionary process (blue) or to sequencing errors
(orange). Step 4: The reads are mapped to the reference genome using the
original reference sequence. Step 5: The reads are evaluated based on the
true alignments.
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for insertions or deletion. The width of the banded Smith-Waterman alignment was set
to 20; allowing for a maximum of 10 consecutive insertions or deletions.

The other programs were executed with the respective recommended parameter set-
tings. However, some adaptations were necessary: For data set S4 we ran Bowtie with
”-l 20 -n 3 -e 400 -a –best -strata”, which increased the performance in terms of mapped
reads. For the other data sets Bowtie was executed with ”-S -f” parameters. The pa-
rameters of BWA were adjusted using: ”-k 3 -l 20 -n 9 ” for S4 to achieve more mapped
reads. SSaha2 was executed with ” -solexa -best 1 -cut 2000 ”. SHRiMP2 was executed
with ” -strata -local ”.

3.3 Results

Program human Arabidopsis thal.

M (%) U(%) runtime (min) M (%) U (%) runtime (min)

Bowtie 50.1 50.1 164 min 66.4 66.4 7

BWA 69.4 66.8 153 min 66.9 54.3 9

BWA-SW 91.6 88.6 124 min 54.9 40.1 14

SSaha2 - - > 4 days 93.8 68.1 512

SHRiMP2 93.4 62.4 65 hours 85.7 64.4 34

NextGenMap 94.2 88.9 587 min 97.3 75.8 19

NextGenMap (+GPU) 94.2 88.9 417 min 97.3 75.8 16

Table 3.1: Percentages of mapped (M) and uniquely mapped reads (U) for human data
(10 million reads; read length of 100bp) and Arabidopsis thal. Bur-0 data
(14 million reads; read length of 36bp) mapped to Arabidopsis thal. Col-0.
The data sets differ since the mapping of Arabidopsis thal. includes a ∼ 5

times higher evolutionary distance between the sequenced and the reference
sequence compared to the human data.

3.3.1 Evaluation of a real data set from human

Here we evaluate the performance of NextGenMap on real data when reads and reference
genome are both from human. Table 3.1 shows the percentages of mapped and uniquely
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mapped reads for different mapping programs, when aligning 10 million human reads.
BWA-SW was the fastest mapper (134 min), followed by BWA and Bowtie requiring
153 and 164 minutes, respectively. SHRiMP2 had the longest runtime (65 hours) and
mapped 93% of the reads. NextGenMap mapped 94% of the reads within 417 minutes
using the graphic card and under 10 hours without using the graphic card. This data
set represents a standard case of mapping reads to a reference. Next we will have a look
at the performance of the different mappers if we increase the evolutionary distance
between the reference genome and the sequenced reads.

3.3.2 Evaluation of a real data set from Arabidopsis thaliana

To further evaluate the performance of NextGenMap and other mappers on data, that
now show a lower extend of similarity between the read and the reference, we used the
Arabidopsis thaliana strain Col-0 as reference genome and reads from Arabidopsis thal.
strain Bur-0 as target genome (Ossowski et al., 2008). The evolutionary distance between
both strains is about 0.6% (Nordborg et al., 2005). This is about 5 times the evolutionary
distance between two human individuals. We aligned 14 million Bur-0 reads of length
36 (Nordborg et al., 2005) to the reference genome Col-0 (genome size about 157 million
base pairs). Table 3.1 shows the percentage of mapped and uniquely mapped reads.
NexGenMap mapped the most reads (97.3%) followed by SSaha2 (93.8%), SHRiMP2
(85.7%) and BWA-SW (54.9%). BWA and Bowtie mapped only two thirds of the reads
(67% and 66% respectively). The Burrows Wheeler based approaches require to set
an upper limit on the number of mismatches, insertions and deletions to the reference
genome per read. If this bound is exceeded, then they cannot map the read, an event
that is likely given the increased evolutionary distance (0.6%) to the reference. Since
BWA-SW is designed for long reads (> 100bp) it can not cope with this data set. In
terms of runtime, NextGenMap (16 min and 19 min with CPU only) beats SSaha2 (521
min) as well as SHRiMP2 (34 min). Bowtie and BWA run significantly faster (7 min, 9
min), but only mapped two thirds of the reads. BWA-SW required 14 minutes. Thus,
an evolutionary distance of 0.6% between target genome (Bur-0) and reference genome
(Col-0) already leads to a dramatic drop of the number of mapped reads for Bowtie and
BWA. The run-time advantage of Bowtie and BWA comes with the expense of loosing
many reads, compared to the other SW-based mappers. We also note that the fraction
of (uniquely) mapped reads provides only a very simplified picture of the performance
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of NGS mappers. Important information like the number of reads that are wrongly
mapped or the number of reads that are only partially mapped is missing. However,
this information would help to provide a more detailed description of the mappers. To
further elucidate the effect of the evolutionary distance of a target genome to its reference
genome, we carried out a detailed simulation study.

3.3.3 Simulated data sets

We simulated three Illumina type data S1, S2, and S3 with read lengths of 36 bp,
72bp, and 150 bp, respectively. We assume that the target genome has an evolutionary
distance of 1% to the reference genome. This represents for example the situation when
using a closely related species, such as chimp and human as target and reference species,
respectively. Alternatively it resembles the case where the evolutionary distance within a
species is around 1%, e.g. as it is the case in Candida albicans (MacCallum et al., 2009).
A fourth simulation (S4) covers a more extreme scenario, where the targeted genome
has an evolutionary distance of 10% to the reference genome. Table 3.2 summarizes the
simulation settings. For Arabidopsis thaliana we simulated a 15 fold and for Drosophila
melanogaster a 20 fold coverage.

ID
Reference Evolutionary Read Sequencing Number of
organism (chr 1) distance(%) length error(%) reads

S1 Arabidopsis thal. 1 36 2 12.6

S2 Arabidopsis thal. 1 72 2 6.3

S3 Drosophila mel. 1 150 2 3.1

S4 Drosophila mel. 10 72 2 6.4

Table 3.2: Overview of the simulated data sets.

Table 3.3 summarizes the percentages of mapped and uniquely mapped reads for the
four simulation scenarios and for different mapping programs. While the alignment
based methods (SSaha2, SHRiMP2, NextGenMap) show a high percentage of mapped
and uniquely mapped reads regardless of read length and evolutionary distance to the
reference genome, the Burrows Wheeler based mapping programs are greatly affected
by read length and evolutionary distance as shown by the decline of the fraction of
mapped reads. A more detailed analysis of the mapping results are shown in Figure
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3.2. The percentages at the corners indicate the fraction of reads that represent three
extreme cases, i.e. reads that are entirely correctly mapped (top corner), not mapped
(left corner) or mapped entirely wrong (right corner).

Program S1 (%) S2 (%) S3 (%) S4 (%)

M U M U M U M U

Bowtie 80.8 80.8 52.4 52.4 15.1 15.1 33.1 33.1

BWA 90.1 84.8 87.4 83.3 77.6 75.7 55.5 53.8

BWA-SW 56.1 52.2 93.3 89.3 100.0 95.5 35.4 33.4

SSaha2 98.6 91.4 100.0 95.5 100.0 95.2 96.8 88.2

SHRiMP2 99.3 92.8 100.0 95.5 100.0 95.2 93.3 88.3

NextGenMap 99.8 93.2 100.0 95.5 100.0 95.2 100.0 94.4

NextGenMap (+GPU) 99.8 93.2 100.0 95.5 100.0 95.2 100.0 94.4

Table 3.3: Percentages of mapped reads (M) and uniquely mapped reads (U) for simu-
lated data given the outcome of different mapping programs.

3.3.3.1 S1: 36p reads from a close relative of a model organism

Column 1 in Figure 3.2 displays the performance of the mapping programs for S1. Overall
the mapping accuracy is high and all programs map only a small fraction of the reads
to the wrong position on the reference genome (2-4%). The main difference lies in
the fraction of unmapped reads. BWA-SW and the Burrows Wheeler based methods
(Bowtie, BWA) display a relatively high fraction of not mapped reads (44%, 19% and
10%, respectively), while the local alignment based methods show only 1% of not mapped
reads. Except for BWA-SW, all methods map at least 70% of all reads entirely correct.
Next, we analyzed the accuracy of the mapping. All methods place most of the reads
with a high fraction of correctly mapped nucleotides, as indicated by the deep red color
at the top corner of the triangles. Among these, however, NextGenMap has with 83% of
entirely correctly placed reads the highest accuracy. The computing times range from
three to six minutes for the Burrows Wheeler based approaches. NextGenMap+GPU
takes 7 minutes (8 minutes when using the CPU), BWA-SW takes 11 minutes and
SHRiMP2 takes 12 minutes performing the mapping. SSaha2 is with 117 minutes by far
the slowest program in this study. In summary, for simulation data set S1. NextGenMap
shows the best performance with respect to the number of correctly mapped reads.
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3.3.3.2 S2: 72bp reads from a close relative of a model organism

Simulation S2 ( Figure 3.2, Column 2) differs from S1 by using twice as long reads. Note
that the average percentage of differences (mutations and sequencing errors) is 3% and
therefore the same as in S1. On the one hand, greater read length brings along a higher
number of differences between the read and the reference genome. On the other hand,
it reduces the chance that the read is wrongly mapped. The simulation confirms our
intuition; the percentage of wrongly mapped reads drops (2%) for all methods when
compared to S1. Due to the increased number of differences between read and reference
genome, the Burrows Wheeler based approaches show an increase in the percentage of
not mapped reads. For Bowtie 48%, and for BWA 13% of the reads were not mapped.
BWA-SW fails to align 7% of the reads. The other programs map all the reads to
the reference genome. Except for BWA-SW, the number of entirely correctly mapped
reads is reduced for all methods. However, still SSaha2 ( 72%), SHRiMP2 ( 75%),
and NextGenMap (81%) map more reads correctly than BWA-SW (63%). Runtime
wise, the Burrows Wheeler based approaches (Bowtie, BWA) performs best, however,
again they have the shortest runtimes at the expense of a large fraction of not mapped
reads. NextGenMap shows the best performance with respect to the number of entirely
correctly mapped reads while having a competitive runtime (4 minutes on the GPU and
6 minutes for the CPU version). BWA-SW and SHRiMP2 required 16 and 11 minutes
respectively, to map the reads. Again SSaha2 has the longest runtime (47 minutes).

3.3.3.3 S3: 150bp reads from a close relative of a model organism

In simulation S3 (Column 3, Figure 3.2) the read length is again doubled and equals to
150bp. In this simulation, we observe the same trend as in S2 but now on a different
reference sequence; Bowtie fail to map a large portion of reads (85%), while BWA
showed only a reduced capability to map the reads (22% not mapped). BWA-SW and
the other local alignment based methods map all the reads. In terms of entirely correctly
mapped reads, NextGenMap showed again the best performance with 79% reads followed
by SHRiMP2 with 74% of correctly mapped reads. As before, Bowtie (2 minutes) and
BWA (5 minutes) delivered again the fastest runtime. However, NextGenMap succeeded
in mapping 79% of the reads entirely correctly within 2 minutes (4 minutes without using
the graphic card). The remaining mapping programs required 11 to 18 minutes to finish
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the mapping.

3.3.3.4 S4: 72bp reads from a distant relative of a model organism

The target genome in simulation S4 has an evolutionary distance of 10% to the reference
genome. Using default settings of Bowtie and BWA they both map fewer than 5% of
the reads. To allow Bowtie and BWA to stay competitive, an adequate adjustment of
the parameters was done. As a result Bowtie and BWA map 33% and 55% respec-
tively. However, this adjustment increased the computing time considerably. Figure
3.2, column 4 shows the results. The mapping with Bowtie needed 18 minutes, while
BWA lasted about 8 hours. With the exception of BWA-SW, the alignment based pro-
grams map a large fraction of reads. This shows the advantage of SW alignment based
mapping approaches compared to Burrows Wheeler based approaches. However, the
number of entirely correctly mapped reads drops dramatically. NextGenMap shows a
much smaller variation compared to the other SW based methods, the yellow and red
colors are concentrated at the top corner. The color gradient shows that SSaha2 and
SHRiMP2 deliver a high fraction of partially correctly mapped reads with a relatively
large variation. NextGenMap shows with 46% of entirely correctly mapped reads the
best performance. However, the color distribution indicates that NextGenMap has a
tendency to map nucleotides to the wrong positions rather than not mapping them
(colored area tends to the right). SSaha2 and SHRiMP2 are more conservative by not
mapping the nucleotides (colors tend to the left). In summary, NextGenMap maps more
reads than all other programs considered while maintaining a low number of wrongly
positioned reads. This even holds for a large evolutionary distance between reads and
reference genome.

3.4 Discussion

The first crucial step in the reference sequence based analysis of Next Generation Se-
quencing data is the mapping procedure. All subsequent analyses are influenced by the
outcome of the mapping. Different sources of sequence difference between sample and
reference sequence play a role. First of all, any kind of sequenced genome exhibits a
certain amount of variation compared to the available reference sequence. Secondly,
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the reads themselves may contain errors introduced by e.g. sequencing or base calling
errors. Thus, there is a high probability that a sequence read is not 100% identical to
the corresponding genomic region in the reference and the probability increases with in-
creasing genetic distance between target and reference genome, read length and sequence
quality. Still, the most frequently used assembly/mapping programs handle deviations
between read and the reference genome by just allowing a maximal number of deviations
(nucleotide differences) and, if supported, gaps. It is, thus, an improvement of NextGen-
Map to be equally good applicable over all analyzed read lengths, making our program
the most versatile mapper. That is NextGenMap does not restrict the alignment via a
threshold on the number of mismatches or gaps. NextGenMap enables an user-defined
mapping stringency via defining the seed word length, the alignment scoring function
and the adjustable banded alignment. By allowing a higher flexibility, we map more
reads correctly to their corresponding genomic position compared to standard mapping
algorithms. This becomes especially relevant when the target and reference genome are
rather distantly related. As a consequence of the more comprehensive mapping it is
possible to reduce the sequencing depth, or the increased number of mapped reads will
result in more statistical power to detect SNPs for instance. Our evaluation on real
data demonstrated the capability of NextGenMap. Here, NextGenMap beats the second
best mapping program (SHRiMP2) by mapping 1% more reads for the human data and
by 3% more reads for the Arabidopsis thal. data, respectively. The reduced capability
of BWA-SW when aligning short reads is known (Li and Durbin, 2010) and therefore
not taken into account. Bowtie performs good on short reads while BWA-SW shows a
reduced capability to align short reads. In contrast, BWA-SW becomes more reliable
for longer reads while Bowtie has problems to align longer reads. NextGenMap shows
equally good applicability over all analyzed read lengths, making our program the most

Comparing to BWA or Bowtie, NextGenMap aligned 1/3 more reads. The most
striking strength of NextGenMap is demonstrated by the simulated data set with a higher
evolutionary distance (S4), where NextGenMap mapped 49% of all reads, whereas other
programs suffer severely from such an evolutionary distance. Thus, the real strength of
NextGenMap becomes apparent, when one expects large differences between the reads
and the reference genome. This is the case, if one wants to sequence a genome from a
taxon that is distantly related to a neighbour taxon, of which the genome sequence is
already available.
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Apart from the increased sensitivity a major strength of NextGenMap lies in exploit-
ing the available resources of a PC. Using a graphics card as co processor allows an
extensive search for putative alignments without dramatic increase in runtime. Porting
Smith-Waterman local alignment on the GPU has been reported before (Vouzis and
Sahinidis, 2011; Liu et al., 2009). However, the authors focused on a parallelization of
one SW alignment computation rather than calculating several hundreds SW alignments
in parallel as done here.

While technical improvements will certainly help to speed up mapping attempts, it is
also necessary that the advancement in speed is used to increase the applicability of map-
ping approaches including the de novo sequencing of non model organisms. NextGenMap
fills this niche. Even if it may not be possible to reconstruct the large scale organization
of an unknown genome, the knowledge of the annotated genome of a model organism to-
gether with NextGenMap may provide first insights into the gene content of a non-model
organism. NextGenMap will, depending on the sequencing depth also provide local in-
formation about genomic architectures. Therefore, mapping approaches may serve as a
better strategy to gain insights into genomes than de novo approaches. This provides
a quick and efficient knowledge transfer on the gene level of model organisms towards
non-model organisms without studying or knowing their genomes.

To evaluate the different mapping programs, we introduced a novel evaluation schema
together with a visualisation of the performance of the programs. We are aware that
the simulation scheme is quite simple and could be easily extended using tools from
molecular evolution, e.g. Dawg (Cartwright, 2005). For the time being, we believe that
a simple Jukes-Cantor model (Jukes and Cantor, 1969) is sufficient to mimic important
sources of genomic variability, if organisms are not too distantly related. Although we
did not apply an advanced sequencing error model, we believe that we could mimic the
general picture of the error sources. More in depth modelling of the individual error
sources is possible but was not the scope of this work. The simulations already show the
advantages of our approach with respect to speed and of the SW-alignment approach
with respect to mapping accuracy. Moreover, SW brings along the advantage of being a
well-understood method that offers the possibility to discuss the alignment significance in
a statistical framework. This allows to evaluate alignments not only based on heuristics
but on proper statistics.
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3.5 Conclusion

NextGenMap can efficiently process deep sequencing data. Furthermore, we demonstrate
that NextGenMap maps successfully reads with relatively large evolutionary distance
between the targeted genome and the annotated reference sequence. This and its usage
of graphic cards make NextGenMap a flexible tool to transfer knowledge from model to
non-model organisms.
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Figure 3.2: Results of selected mapping programs for simulation settings S1 to S4 as
described in Table 3.2. The percentage in the center summarizes the frac-
tion of the reads, where the relative frequencies of correct, wrong and not
mapped nucleotides are always less than one. The other numbers represent
the percentages of the reads that fall onto the corners of the triangle. The
evaluation was carried out only on uniquely mapped reads. The runtime (in
minutes) of each program is depicted below the triangle.



Chapter 4

MASon: Million Alignments within

Seconds

4.1 Introduction

Analyzing NGS data is a demanding task. Keeping pace with the ongoing technological
developments poses a great challenge to bioinformatics. The first step when analyzing
NGS data is mapping reads to a known reference sequence. In the previous chapter, we
introduced a way to map reads using a seed word based approach in combination with a
local alignment approach. To guarantee a fast and reliable search for (putative) mapping
positions, we optimized the pairwise alignment method for GPUs and CPUs. In this
chapter, we will go into the details of the optimizations and of the implementations of
a Smith-Waterman based alignment algorithm on various high performance hardware
platforms.

The general problem that arises when mapping millions of reads to a large reference
genome is that the number of required alignment computations increases. Typically the
computation of the alignments consumes the main part of the runtime of the mapping
software. To reduce the number of required alignments, every mapping method including
NextGenMap applies a filtering step based on the information of the candidate search
(see chapter 3 for details). When a more stringent filtering step is applied, the number of
required alignments per read is close to one. This results in a fast runtime and typically
a high percentage of reads are still mapped. However, if one is interested in accurately
aligning reads also to high polymorphic regions, one requires a relaxed filtering strategy,

33
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and therefore the number of alignment computations again increases. This typically
results in an increased runtime of the mapping methods. The objective of this chapter
is to provide a solution to this problem that accomplish a high number of alignments
while achieving a low (within second(s)) runtime.

As mentioned before, the general problem is to compute millions of alignments. There
are two possibilities to reduce the overall runtime. One possibility is to utilize available
hardware by parallelizing the alignment problem or by using SIMD (single instruction
multiple data) instructions. Previous approaches, e.g. CUDASW++ (Liu et al., 2009),
GPU-Blast (Vouzis and Sahinidis, 2011) or striped Smith-Waterman (Farrar, 2007),
focused on improving the performance of one single alignment calculation. Contrary to
these methods we focus here on a high number of local alignments to be simultaneously
calculated.

The other possibility is to adapt the alignment algorithm to the underlying problem.
Several optimization strategies are known for pairwise alignments. In this chapter, we
will combine some of these to optimize a Smith-Waterman local alignment algorithm for
NGS data. Since sequencing technologies show a decline in accuracy at the end of the
read (Harismendy et al., 2009), a local pairwise alignment (Smith and Waterman, 1981)
approach is especially suited for this, since it terminates the alignment as soon as too
many mismatches, insertions or deletions occur.

In the following we will describe and discuss the optimization strategies. We will
describe strategies for porting the optimized alignment implementations on Nvidia’s
Compute Unified Device Architecture (CUDA) (Kirk and Mei, 2010), the Open Com-
puting Language (OpenCL) (Stone et al., 2010) and Streaming SIMD Extensions (SSE)
(Raman et al., 2000). The results will be compared to a CPU implementation of the
optimized algorithm and to an optimal Smith-Waterman algorithm. Finally, we measure
the performance on different platforms and discuss their advantages and disadvantages.

All optimizations and implementations are provided in a C++ library called MASon.
We focus on the interfaces for an easy integration and usage of MASon in existing
mapping methods. In addition, MASon is designed to automatically adjust itself to the
underlying hardware in terms of memory and number of available computing cores.
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4.2 Methods

4.2.1 Programming interfaces

To fully utilize every hardware platform ranging from desktop CPUs and GPUs to highly
parallel server processors, we are using different application programming interfaces
(APIs).

4.2.1.1 SSE

The Streaming SIMD Extension (SSE) (Raman et al., 2000) is a single instruction mul-
tiple data (SIMD) instruction set. SSE was introduced by Intel with the Pentium III
processor. Today, SSE is available on virtually all computers. The SSE specification
consists of several vector instructions that execute a single operation on four different
floating point variables in parallel. Originally, SSE was designed to speed up single
precision floating point operations as they occur in image or signal processing. Newer
versions of SSE also support instructions on other data types.

4.2.1.2 CUDA

The Compute Unified Device Architecture (CUDA) (Kirk and Mei, 2010) is a C/C++
parallel computing architecture developed by Nvidia. It enables developers to write
scalable C code in a CPU like manner that can be executed on a graphic processing unit
(GPU). In contrast to CPUs, GPUs have an architecture that is designed to maximize
instruction throughput. This is achieved by a high number of streaming processing
units that are arranged in multiprocessors. Every graphic card has global memory that
is comparable to the RAM for the CPU. When running computations on the GPU all
data has to reside in this global memory, which typically has 1-2 GB available. To gain
performance, they can later be split and moved to more efficient memory types of the
GPU. These memory types are located directly on each multiprocessor and are orders
of magnitudes faster than global memory. However, they are typically very small (16-48
kb per multiprocessor).
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4.2.1.3 OpenCL

The Open Computing Language (OpenCL) (Stone et al., 2010) is an open standard
that provides an unified programming interface for heterogeneous platforms including
GPUs and multi core CPUs. In contrast to CUDA, OpenCL is not limited to a single
hardware manufacturer. OpenCL provides an API that enables software developers to
take advantage of the parallel computation capabilities of modern hardware, such that
a single implementation runs on a wide range of different platforms. The execution as
well as the memory model is very similar to CUDA.

4.2.2 Implementation

Computing Smith-Waterman (SW) alignments is very demanding in terms of runtime
and memory resources. The time as well as the space complexity is O(|| R || × || G ||).
For NGS, R is the read length and G is typically the length of a small sub region
of the genome identified by an exact matching approach (Ning et al., 2001; Rumble
et al., 2009; Homer et al., 2009). |R| is typically small, ranging from 36 up to 150
bases for Illumina sequencing. However, usually there are millions of reads produced
by each experiment. For example, when sequencing the human genome with 20-fold
coverage using Illumina technologies (150bp) the number of reads m is ca. 400 million.
In addition, exact matching approaches usually report more than one possible mapping
regions per read. For example, when mapping to the human genome, using an exact
matching substring of 12, the number n of putative subregions per read is n = 180.
Thus, the number of alignments (m × n) that has to be computed is 72 billion. To
deal with this large number of alignments, one needs to employ available hardware as
efficiently as possible. For NGS data parallelizing the computation of a single alignment
is not useful because the computational cost for a single alignment is low. Therefore,
we use a single thread to compute one alignment and focus on computing as many
alignments in parallel as possible. This brings along the problem that every hardware
platform has different capacities when it comes to parallel computation. On a singe
CPU one can only use a small (4-8) number of threads. In contrast, a GPU is only
working efficiently when running a high number (thousands) of threads in parallel. This
means that a minimum number of alignment computations (batch size) is required to
fully utilize a GPU. However, this minimal number varies between GPUs. To ensure
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that our implementation fully loads different GPUs, independent of their architecture,
we calculate the batch size b:

b = Nmp × tmax (4.1)

where Nmp is the number of multiprocessors, tmax is the maximum number of threads
per multiprocessor. We furthermore require that

b×Malign ≤Mavail (4.2)

where Malign is the memory required per alignment and Mavail is the available global
memory on the graphic card (Nvidia, 2009) and b is chosen accordingly to equation 4.2.
If b×Malgin exceeds Mavail, b is reduced accordingly. For modern GPUs the batch size
ranges from 50,000 to 100,000 alignment computations. This high numbers cause the
problem that the memory available for computing a single alignment is small. Thus, we
implemented a SW alignment that is less memory demanding. To achieve an efficient
solution, we make one prior assumption. Most NGS projects sequence individuals from
a species for which a reference genome already exist, e.g. 1000 Genomes Project Consor-
tium (2010), or they sequence a new species that is closely related to a species for which
a reference genome already exists. Thus, we assume that the number of insertions and
deletions between the read and a genomic regions are typically small. We implemented
a k−difference alignment, also called banded alignment algorithm citepGusfield1997.
Here, only a small corridor surrounding the diagonal from upper left to lower right of
the matrix H is computed. Thus, the complexity is reduced to O(|| R || ×c), where c

is the corridor width and c <<|| G ||. The memory reduction allows the computation
of a high number of alignments in parallel such that the GPU is fully loaded. However,
due to its size even the reduced matrix H has to be stored in global memory. Since the
global memory is slow the computing time would be still too high to compute alignments
for all putative genomic regions. To further reduce the computing time, we take into
account the observation that in NGS mapping only the alignments between a read and
the sub regions of the genome that show the highest alignment scores are of interest.
To identify the best matching sub region in the first place, the optimal alignment score
is sufficient. Thus, the matrix H can be reduced to a vector of length c and the space
complexity is reduced to O(c) (Gusfield, 1997). Note that the memory usage of score
computation is independent of read length. However, the computational complexity re-
mains O(|| R || ×c) and the corridor width c will indirectly depend on the read length,
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since it determines the number of consecutive insertions and deletions. The reduced
memory requirements allow us to store H in fast on-chip (shared) memory. In addition,
all remaining variables, like the scoring function, are also stored in fast memory (private,
constant and texture). Only read and reference sequences are stored in global memory.
This minimizes the access to global memory. Our approach works for all corridor sizes
smaller than 100 on current GPUs (2011). Since the length of indels is typically small
this restriction of the corridor size is not likely to limit the applications.

Although GPUs are powerful co-processing units, they are not available on every
computer. In such cases a fast computation of alignments on CPUs is desirable. Except
for multi-threaded programming, the most common mechanisms for parallelization on
the CPU is SSE. As mentioned before, SSE allows the programmer to execute a single
instruction on multiple values. The data type that is used determines the number of
concurrently processed instructions. Since we are working with sequences shorter than
2000 base pairs, 16 bits are sufficient to store the alignment score. Thus, we can store
eight values in the 128 bit wide XMM registers. This speeds up score calculations by
processing eight alignments in parallel. However, since SSE only supports a limited set
of instructions (in our case: compare, add and max), the observed speedup will be lower
than eight.

OpenCL offers another possibility to increase performance on the CPU. As mentioned,
OpenCL device code is independent of the hardware. However, to achieve maximal
performance it is necessary to optimize the implementation of the SW algorithm for
the different platforms (CPU and GPU). The most important difference between both
platforms is that on the GPU it is necessary to use optimized memory access patterns
(Nvidia, 2009), whereas on the CPU these patterns would hinder an optimal caching and
therefore degrades performance. The second major difference is that on the CPU the
OpenCL compiler implicitly uses SSE instructions to increase performance. However,
this is only possible when using specific (vector) data types, which cannot be used
efficiently on a GPU. Besides these two points the OpenCL code we use for GPUs is
identically to the one we use for CPUs.

To allow NGS application programmers to employ these technologies, we created a
software library that consists of three implementations. (1) A CPU version including
SSE instructions, (2) a CUDA based version for Nvidia graphic cards and (3) an OpenCL
implementation suitable for GPUs and CPUs. All of them are encapsulated in dynamic
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Score computation (Alignment computation)

c = 15 c = 30

Implementations 36 72 100 150 200 500 700 1000

C
P
U

classical SW -
(9.67)

-
(33.56)

-
(61.42)

-
(132.12)

-
(229.19)

-
(1420)

- (2737) - (5602)

SeqAn -
(6.77)

-
(12.82)

-
(17.49)

-
(25.87)

-
(64.08)

-
(159.59)

-
(223.53)

-
(320.04)

banded SW 3.00
(6.73)

5.95
(12.72)

8.26
(17.33)

12.68
(25.64)

34.61
(63.75)

81.94
(153.88)

114.73
(214.79)

164.09
(305.92)

+ SSE 0.98
(6.73)

1.95
(12.72)

2.71
(17.33)

4.06
(25.64)

10.23
(63.75)

26.37
(153.88)

36.90
(214.79)

52.72
(305.92)

+ OpenCL 1.06
(3.31)

1.97
(6.98)

2.64
(9.38)

3.87
(13.77)

10.33
(36.76)

24.59
(87.28)

34.19
(122.08)

48.90
(171.13)

G
P
U

+ CUDA 0.07
(0.40)

0.14
(0.77)

0.21
(1.10)

0.33
(1.70)

0.76
(2.79)

1.77
(6.55)

2.47
(9.24)

3.53
(12.68)

+ OpenCL
(Nvidia)

0.07
(0.36)

0.14
(0.70)

0.20
(1.01)

0.31
(1.56)

0.67
(2.82)

1.50
(6.76)

2.07
(9.66)

2.96
(14.79)

+ OpenCL (ATI) 0.09
(0.41)

0.16
(0.79)

0.22
(1.08)

0.29
(1.67)

0.79
(3.90)

1.65
(10.52)

2.70
(30.59)

3.24
(886.99)

Table 4.1: Runtime (in seconds) of the different library implementations, computing
1 million local alignments. The c defines the corridor width used for the
alignment. The runtimes required for calculating local alignments are shown
in parentheses.

linked libraries (DLLs) also called shared objects. Programmers are able to use them
by loading the DLL during runtime. This only requires a few lines of code. Each DLL
exports functions to calculate the similarity score and the alignment. To optimally use
the available hardware, the libraries report a recommended batch size for the score and
the alignment calculation.
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4.3 Results & Discussion

To evaluate the runtime of the different implementations and hardware platforms, we
created eight simulated datasets with read lengths ranging from 36bp to 1000bp. Each
data set consists of 1 million reads and the corresponding reference sequences. The
length of the reference sequences is determined by || G ||=|| R || +c, where c is the
corridor width. A 2% sequencing error is assumed, consisting of mismatches modeled
accordingly to Jukes and Cantor (Jukes and Cantor, 1969), insertions, and deletions.
Two computers were used for the runtime tests. Both are equipped with two 2.6 GHz
Intel Xeon X5650 processors and 32 GB memory. The first computer is equipped with
a Nvidia GTX480 card and the second with an ATI Radeon HD 6970 card. OpenSUSE
is used as operating system.

First, we compared the performance of the different implementations to the alignment
algorithm implemented in the SeqAn (Döring et al., 2008) package. Unfortunately, we
were not able to get the banded SW as implemented in SeqAn working. Therefore, we
used the semi-global alignment option of the package as a substitute for comparison.
Comparisons are based on short read (36bp - 150 bp) and long read (200bp - 1000bp)
data. The short read data represents current Illumina technologies, whereas the long
read data represents current 454 and Pacific Biosciences technologies. For aligning the
short reads we use a corridor size of 15 otherwise of 30.

Table 4.1 shows the runtimes (in seconds) of computing the alignment scores for 1
million reads. As expected, the banded SW alignment shows a near linear runtime
behavior for a fixed c whereas the classical SW shows a quadratic runtime behavior as
read length increases. For example, aligning 1 million reads of the length 36 takes 10
seconds using the classical SW and 3 seconds using the banded SW. Using a read length
of 150 (4 times 36) the runtime of the classical SW increases by a factor of 13 to 132
seconds whereas the banded SW alignment requires only 13 seconds (factor of 4). Table
4.1 also illustrates the influence of the different programming APIs. For SSE we observe
an average speedup of 3 compared to the banded SW without SSE. Surprisingly, OpenCL
performs slightly better on the CPU than SSE. This demonstrates that the OpenCL
compiler uses SSE instruction very efficiently. On a GPU the OpenCL implementation
performs slightly better than CUDA for the score computation. However, the differences
are marginal. Both GPU implementations outperform SSE by a factor of 14 to 18.
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We are only interested in computing the alignment for the genomic region that provides
the highest score. Comparing the runtimes of the two banded alignments (Table 4.1)
illustrates the benefits of computing the score without the backtracking. Backtracking
slows down the computation by a factor of 2 to 3. SSE could not be applied efficiently
to the backtracking step as the number of control flow statements makes it difficult to
process more than one alignment. Therefore, the SSE library uses the standard banded
SW implementation. OpenCL achieves a speedup of 1.5 - 2 compared to the banded
SW. Again the graphic card based implementations show a performance boost (9 − 13

times faster) compared to the CPU (OpenCL) based implementations. In contrast to
the score computation, CUDA outperforms OpenCL when aligning long reads. This is
probably due to one of the current shortcomings of the OpenCL API. At the moment
there is no way to query the maximal memory allocation size. Thus, we could not use
available global memory as efficiently as with CUDA.

Overall the results demonstrate that OpenCL on the CPU as well as on the GPU
shows the same performance as SSE and CUDA, respectively. Furthermore, the runtimes
demonstrate a clear advantage of using the GPU compared to the CPU for aligning reads
and computing scores. So far, we did not take into account the possibility to use more
than one core on the CPU.

To investigate how the computation times of our CPU implementations scale with
an increasing number of threads we use OpenMP (Dagum and Menon, 1998) for paral-
lelization. Since OpenCL also offers an implicit parallelization mechanism we use two
different versions for this comparison. OpenCL CPU1 uses the OpenCL API, whereas
OpenCL CPU2 relies on OpenMP to manage the execution on several CPU cores. Due
to Intel’s Hyper-Threading technologies we could measure the runtime using 1 to 24
threads simultaneously. The resulting speedups compared to a single threaded execu-
tion for 1 million 150bp reads are shown in Figure 4.1. Surprisingly, OpenCL CPU2
shows a better performance than OpenCL CPU1. This indicates that the parallelization
with multiple cores using OpenMP performs better than using OpenCL directly. Since
parallelization is the main focus of the OpenCL API, this is an unexpected result. SSE
and OpenCL CPU1 perform equally well. Here, we see an almost linear speedup for
up to 12 threads. This corresponds to the number of cores the computer is equipped
with. Thus, it appears that our implementations benefit only marginally from Intel’s
Hyper-Threading.
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 (B) SW alignments
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Figure 4.1: Speedup of the CPU based implementations for an increasing number of
CPU threads compared to one OpenCL GPU run (dashed line). (A) shows
the results of calculating the local alignment scores for 1 million 150bp se-
quence pairs. (B) shows the result for the same data set calculating the local
alignment.

To compare the computational power between a CPU and a GPU we measure the
number of scores/alignments computed within the respective runtime of the fastest GPU
implementation. For comparison we use an increasing number of threads for the CPU
implementations and take OpenCL (Nvidia) as baseline. Figure 4.2 shows the results for
1 million reads of 150bp length. The two Xeon hexa-core processors never achieve the
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performance of a single GPU (Nvidia GTX 480), when using the banded algorithm for
score computation. Also the SSE and OpenCL CPU2 implementations compute ∼ 10%

less local alignment scores than the GPU. For alignment calculation the OpenCL CPU2
version outperforms the GPU based implementation when using more than 12 threads.
However, two Xeon X5650 processors compute only ∼ 20% more alignments than a
single graphic card. Note that a single Xeon X5650 is more than twice as expensive as
a GTX480.

4.4 Conclusion

The increase of read length and number of reads leads to a computational problem when
analyzing NGS data. Therefore, the demand for fast, flexible and sensitive processing
software for NGS is obvious.

This chapter describes a pairwise local sequence alignment algorithm (Smith-Waterman)
adapted to analyze NGS data. We show that our optimizations increase the performance
by a factor of 5 to 57 compared to a classical SW implementation.

We demonstrate the benefits of using high performance programming interfaces (SSE,
OpenCL, and CUDA) when analyzing NGS data. By incorporating SSE instructions
a speedup between 3 to 4 times is observed without additional costs for processing
units. Furthermore, usage of wide spread and inexpensive hardware such as graphic
cards can substantially reduce runtime. Using a GPU can improve the performance of
alignment score computation by a factor of 40 to 55 compared to a single CPU thread.
Moreover, our results show that for score computation one Nvidia GTX480 graphic card
outperforms two Intel Xeon X5650 processors. A computer equipped with 4 graphic
cards and 12 CPU cores computes 16 million alignment scores or 3.3 million alignments
for a read length of 150 bp in one second. Score computation for 4 × 108 reads of the
length 150 (20-fold coverage of the human genome) requires approximately 75 minutes.
Thus, an exhaustive search also on large NGS data can be performed in reasonable time.

Since OpenCL allows writing programs for CPUs as well as for GPUs we investigated
its applicability for sequence alignments. Our results show that OpenCL outperforms
SSE for reads longer than 72bp on the CPU. On the GPU OpenCL outperforms CUDA
for reads smaller than 200bp. Interestingly OpenCL could not handle multiple CPU
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threads as efficiently as OpenMP. However, we are confident that this will be resolved
in the near future.
The key outcome of this work is MASon, a C++ library that is capable of processing

millions of short (36bp - 1500bp) sequence alignments efficiently. MASon includes SSE
and OpenCL based implementations for CPUs as well as GPU based implementations
using CUDA and OpenCL. All implementations are encapsulated in dynamic linked
libraries and can therefore be easily integrated into existing or upcoming applications
for NGS. By using our library system every developer is able to write applications
that optimally utilize modern hardware, ranging from desktop computers to high-end
cluster systems. Future work will include extending the libraries with a global alignment
algorithm.
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Figure 4.2: Percentage of score (A) and alignment (B) computations compared to
OpenCL (Nvidia GPU) for 1 million 150 bp long sequence pairs.
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Chapter 5

On the accuracy of MiSeq and Ion

Torrent sequencing technologies

5.1 Introduction

In the previous chapters 3 and 4 we discussed methods to align Next Generation Se-
quencing (NGS) reads to a reference genome. To obtain a reliable result from a NGS
related experiment, one also has to take into account the specific limitations and errors
that come along with each NGS technologies. As some NGS technologies are better
suited to answer particular questions than others (Glenn, 2011) the choice of the NGS
technology becomes a key task in experimental design. In this chapter, we will give
insights into the performance (e.g. number of reads) and error structure for two bench-
top sequencing technologies. Although we are focusing on two specific technologies, the
methods and algorithms applied here can be used for every sequencing technology.

Life Technologies was the first to release a benchtop sequencing platform named Ion
Torrent (Rothberg et al., 2011). Illumina followed with their sequencing platform named
MiSeq (Glenn, 2011). Both technologies are a cost efficient alternative to sequence small
DNA samples within hours.

As of August 2011, Life Technologies and Illumina each benchmarked the performance
of their sequencing platform based on a re-sequencing of the genome of Escherichia coli
Dh10b. Life Technologies claimed the outstanding performance of Ion Torrent in terms
of uniform coverage of the reference genome and low number of consensus mismatches
(Life Technogies Corp., 2011b) when compared to MiSeq. Interestingly, Illumina claimed

47
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in their comparison of the two technologies also the outstanding performance of MiSeq
in terms of a low read error (Illumina Inc., 2011b). However, Illumina assessed the
performance by counting insertions and deletions without focusing on mismatches. Thus,
we now have two comparisons of the sequencing technologies at hand. It is somehow
unfortunate that their result, although the data was the same, cannot be compared due
to the companies differing quality criteria.

Here we investigate the accuracy of both technologies using an unified scheme of
quality assessment. First, we analyze the performance focusing on the individual reads.
We first measure the sequencing error and its distribution across the reads, as well
as possible sequencing error biases related to each of the four nucleotides. We define
sequencing error as the percentage of differences (mismatches, insertions and deletions)
between the read and the reference sequence. Second, we compare the performance of
both technologies focusing on the genomic level. Specifically, we assess the per base
coverage distribution along the reference genome as well as the performance to obtain
the biological signal such as the distribution of variant sites. In this context, we define
variant sites as positions that differ between the reference genome and the sequenced
genome.

5.2 Methods

5.2.1 Data

To assess the performance of MiSeq and Ion Torrent, we analyzed publicly available
sequencing data of Escherichia coli strain Dh10b. We obtained 5 Ion Torrent data sets
(C22-169, GAT-541, B13-328, B15-410, B14) sequenced by Life Technologies Inc. (Life
Technogies Corp., 2011a). In addition, we obtained one Ion Torrent data set sequenced
in Münster, Germany (MU). For simplicity we will refer to all Ion Torrent data sets
using the prefix “Ion_”. Currently, Life Technologies offers more data sets for Dh10b.
We selected the subset such that 3 chip technologies (314, 316, 318) are represented.
B14 (B14) was generated with Chip 314. B13-328 (B13), B15-410 (B15) and MU are
based on Chip 316 and C22-169 (C22), GAT-541 (GAT) were produced on Chip 318.
The comparison of this data should, therefore, provide a comprehensive overview of
the general characteristics of Ion Torrent, and should highlight advantages as well as
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current limitations of this technology. For the MiSeq technology, we obtained one data
set for Escherichia coli strain Dh10b sequenced by Illumina Inc. (Miseq-110721-R1,
Miseq-110721-R2) (Illumina Inc., 2011a).

5.2.2 Mapping of reads

We used NextGenMap (see chapter 3) to map the reads to the reference genome of
Escherichia coli Dh10b. NextGenMap uses a seed word approach to identify putative
mapping regions. We chose a word length of 12bp throughout all the mapping runs.
For each of the putative mapping regions NextGenMap computes semi-global alignment
scores for the entire read. For the best scoring region then a semi-global alignment
(Gusfield, 1997) is computed. This guarantees that the read is aligned over its entire
length. When a read has more than one best scoring region on the genome we cannot
place it unambiguously. To take the resulting ambiguity in the placement of this read into
account in the downstream analysis, e.g. when computing the per base coverage or the
sequencing error, we assigned a weight of one divided by the number of best mapping
positions. Afterwards we computed the per read sequencing error as the number of
mismatches, insertions and deletions divided by the alignment length. The reads that
were mapped to the minus strand were reverse complemented to preserve the assignment
of sequencing order for the position wise computation of the sequencing error. The
position wise sequencing error was computed based on all alignments summing up the
number of mismatches, insertions and deletions per position in the alignment.

5.2.3 Identification of variants

The identification of variant sites is an important procedure when sequencing a genome.
Variant sites are positions in the genome of the sequenced individual or clone that differ
from the reference genome. To assess the influence of the technologies on the detection
of sequence variants, we used the example of comparing two Escherichia coli strains,
Dh10b and W3110. The latter strain was used as a reference sequence. For the analysis
we first assessed the set of true sequence variants distinguishing the two strains. To this
end, we aligned the genome sequence of W3110 against the genome of Dh10b. Mauve
1.3.1 (Darling et al., 2010) was used with the default parameters (Table 5.1). Any
sequence difference observed in the genomic alignment was taken as the truth.
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Parameter Value

Default seed weight yes

Use seed families no

Determine LCBs yes

Assume collinear genomes no

Full Alignment yes

Iterative refinement yes

Sum of pairs LCB scoring yes

Min LCB weight yes

Scoring matrix HOXD

Table 5.1: Parameters used for genomic alignment.

In the next step, we mapped the reads from the data sets of Dh10b to the genome
of W3110. Mapped reads that have a higher difference than 10% were discarded. Vari-
ant detection was carried out using samtools mpileup with recommended parameters,
followed by bcftools and vcftools (Li et al., 2009). The minimum coverage was set to
5. Note, that variant calling was performed using only the uniquely mapped reads.
The obtained variants were rejected if their quality value was < 20 (Q20) (Li et al.,
2008) or if the variant frequency (number of reads that support the variant at a specific
position) was below 90%. Variant qualities are phred-scaled quality scores that repre-
sent the confidence of the alternative allele. We computed the variant frequency based
on all reads that support the variant divided by the number of reads that overlap the
variant positions. The variants that survived the filtering thresholds were then taken
as experimentally derived candidates. We next compared our experimentally candidate
variants to the variants obtained from the whole genome alignment and computed the
true positive, false positive and false negative rates. We define false positives as variants
that are not in the set of true differences. As true positive we consider positions that
are part of the true differences. False negatives are variants that were not found but are
present in the true set of variants.
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5.3 Results

5.3.1 Comparison on the raw read level

To investigate the performance of the two sequencing technologies we first focused on
the read sequences. Table 5.2 shows the read numbers, lengths and redundancies per
data set. In this context, we define redundancy as the number of reads that have the
same nucleotide sequence and length. As an example, given 10 reads and 5 are copies
of one read, than the redundancy is 50%. Both MiSeq data sets have a read length of
150bp (Table 5.2), which is the current maximum read length of Illumina (Glenn, 2011).
Ion Torrent reads displays a large variation of read lengths ranging from 3bp up to
396bp. The average redundancy of reads across all Ion Torrent data sets is substantially
(0.35%) than for the MiSeq data (17.56%). Given our definition of redundancy, this may
be partially an effect of the varying read lengths in the data sets of Ion Torrent. Despite
their higher redundancy, MiSeq still obtain in absolute numbers the higher number of
unique reads due to its substantially higher read output (2 × 8.5mil).

Data sets # Reads Mean length # Bases pairs Red. (%) Rel.date Chip

MiSeq R1 8,584,754 150.0 1,296,297,854 19.75 8-2011 HiSeq

MiSeq R2 8,584,754 150.0 1,296,297,854 15.36 8-2011 HiSeq

Ion_GAT 5,255,430 228.1 1,203,970,524 0.58 10-2011 318

Ion_C22 6,479,267 240.0 1,561,441,854 0.27 12-2011 318

Ion_B15 2,761,903 239.5 664,131,578 0.37 10-2011 316

Ion_B13 1,687,490 100.3 175,570,901 0.78 6-2011 316

Ion_MU 3,055,192 212.8 653,210,758 0.04 9-2011 316

Ion_B14 350,109 222.0 78,073,794 0.04 8-2011 314

Table 5.2: Read statistic from the individual data sets. For MiSeq we obtained only one
data set of paired end reads marked by R1, R2. The data sets with the prefix
Ion_ were sequenced by three different chip generation from Ion Torrent. We
define redundant reads (red.) as the percentage of reads that have an identical
nucleotide sequence and read length.

The quality values for the various sequencing runs are summarized in Figure 5.1.
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Typically the higher the quality value the higher is the probability that the nucleotide
is correctly called (Cock et al., 2010). Both technologies show an increase in low quality
values towards the ends of the reads. The quality values of the two technologies are not
directly comparable as they both use different software to compute the values (Glenn,
2011; Loman et al., 2012). Note, two sites each in the two MiSeq distributions represent
obvious distortions in the distribution of the quality scores (R1: Pos 34 and 99 ; R2: 29
and 79). Presumably the increase of the low quality values is due to a technical problem
during sequencing.

5.3.2 Sequencing error estimation

We aligned the reads to the Escherichia coli Dh10b reference genome using a semi-global
alignment (Gusfield, 1997), i.e., we align the whole read to the reference. Table 5.3
summarizes the mapping statistics for uniquely mapped reads. As we are interested in
the sequencing error of the machines, we investigated the sequencing error distribution
across all mapped reads. NextGenMap could uniquely map 93.04% and 93.00% for
MiSeq R1 and MiSeq R2, respectively. For Ion Torrent, NextGenMap could uniquely
map between 93.53% to 92.64% of the reads.

First, we computed the overall sequencing error per technology based on all mapped
reads. We measured the sequencing error per position over all the alignments based on
the number of observed mismatches, insertions and deletions at each site. For comparing
the sequencing error of each technology we chose the mean and the median position wise
sequencing error across all alignments. Table 5.4 summarizes the results. The Ion_B14
data show the highest mean sequencing error of 20.68%, while MiSeq R1 has the lowest
error of 1.94%. The median sequencing error across the alignment positions reveals a
slightly different picture (Table 5.4). The data sets of Ion_B13 and Ion_B15 have the
lowest error rates of 1.36% and 1.30% respectively. Still, the Ion_B14 shows the largest
median sequencing error (10.68%) of all data sets .

Next we assessed the sequencing error for those reads that show a sequencing error ≤
10%. The percentages of remaining reads are shown in Table 5.3. Not surprisingly, the
mean and median sequencing error is reduced. For the mean sequencing error MiSeq
R1 shows with 0.06% the lowest sequencing error. Ion_MU shows the highest mean
sequencing error (3.23%) followed by Ion_B14 (2.89%). When comparing the median
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Figure 5.1: Per base quality values quantized into 4 categories. The percentage of reads
was normalized per read position.

sequencing error, all data sets apart from Ion_B14 and Ion_MU show a median error
≤ 1.00%. MiSeq R1 has again the lowest median sequencing error of 0.32%.

Figure 5.2 shows the position wise sequencing error accross the alignments of reads
having a sequencing error ≤ 10%. The sequencing error increases to the end of the align-
ments. When we analyse the different types of errors, i.e. mismatches, insertions and
deletions, we observe for MiSeq an increased mismatch rate compared to the insertion
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Uniq. mapped (%)

Data sets All With thresh. (%) Not covered pos. Mean cov.

MiSeq R1 93.04 80.74 70 120.01

MiSeq R2 93.00 78.77 118 117.04

Ion_GAT 93.37 82.90 67 115.00

Ion_C22 93.53 84.42 72 150.71

Ion_B15 93.19 88.09 90 67.93

Ion_B13 92.93 86.60 111 18.68

Ion_MU 92.64 60.52 143 44.55

Ion_B14 92.72 59.81 86,584 4.92

Table 5.3: Mapping statistics of the 8 data sets from Escherichia coli Dh10b. The
second column depicts the percentage of uniquely mapped reads. The third
displays the % of uniquely mapped reads that have more then 10% differences
(wT) respectively. All sequencing data sets share 30 positions that are not
covered. Those are the first 30 position of the reference genome and might be
due to a bias introduced in the used programs.

and deletion rates across all positions. This is a typical sequencing error pattern for Illu-
mina technologies (Glenn, 2011; Suzuki et al., 2011). For MiSeq R1 97.97% of all errors
are due to mismatches. For Miseq R2 we observe that 98.09 % of all errors are due to
mismatches. The situation is completely different for the Ion Torrent data. For the data
set Ion_B14 insertions and deletions make up for 93.78% of the sequencing errors within
the first 222bp (average read length). Whereas above 222bp the fraction of mismatches
for a given sequencing error increases to 36.86%. The high insertion/ deletion rate of
93.78% for the first 222bp can be explained by the sequencing technology (Glenn, 2011).
This is, Ion Torrent measures the number of inserted nucleotides based on the release of
H+, which makes it hard to determine the exact number of inserted nucleotides. How-
ever, we speculate that the increased mismatch rate (36.86%) towards the end of the
alignments is caused by the pairwise semi-global sequence alignment. Since the cost of
a mismatch is typically lower than the insertion or deletion costs, alignment tools tend
to favor mismatches over insertions/deletions towards the end of the sequences. The
number of alignments decrease above 222bp (average read length), given an error at the
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Mean seq error (%) Median seq error (%)

Data sets (0%) (90%) (90%)_150 (0%) (90%) (90%)_150

MiSeq R1 1.94 0.55 0.55 1.47 0.32 0.32

MiSeq R2 2.72 0.80 0.80 2.15 0.46 0.46

Ion_GAT 3.37 1.84 0.61 1.94 0.92 0.52

Ion_C22 3.17 2.01 0.56 1.66 0.92 0.46

Ion_B15 2.10 1.55 0.55 1.30 0.87 0.49

Ion_B13 3.27 1.63 1.63 1.36 0.46 0.46

Ion_MU 10.59 3.23 1.11 4.73 1.49 0.85

Ion_B14 20.68 2.89 1.00 10.68 1.75 1.00

Table 5.4: Mean and median sequencing errors per position over all mappable reads for
different similarity cutoffs. The columns ”_150“ depicts the resulting mean
sequencing error across all technologies with the alignment length of MiSeq
(150bp).

end of the read it is more likely to be aligned with a mismatch than an insertion or
deletion. This would lead to an increase in the percentage of mismatches as we observe
it. The same holds for the other Ion Torrent data sets. In summary, we observe an in-
creased insertion/ deletion rate compared to mismatch rate in all Ion Torrent data sets.
However, towards the end of sequence reads an increased percentage of mismatches is
observed.

Since the Ion Torrent technology yields longer reads (average: 222bp) compared to
MiSeq (average: 150bp) we compared the sequencing error only for the first 150 positions
in the alignment. For Ion_B14 the mean sequencing error reduces from 2.89% to 1.00%.
Three Ion Torrent data sets (Ion_B15, Ion_GAT, Ion_C22) and Miseq R1 have a mean
sequencing error ≤ 0.61%. When measuring the median sequencing error all technologies
have a sequencing error ≤ 1.00%.

Next, we computed the nucleotide frequencies given a sequencing error to assess a pos-
sible bias. The frequencies of the four nucleotides in the reference genome of Escherichia
coli Dh10b are almost the same (A= 24.76% ,C= 25.21%, G= 25.33% ,T=24.70%).
Given this and given the assumption that the coverage across the genome is more or less
uniform we would expect that the observed nucleotide frequencies given a sequencing
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Figure 5.2: The per base sequencing error of all 8 data sets. The sequencing error was
computed based on all reads that could be aligned given a maximum of 10%
errors in the alignment.

error are also uniformly distributed. First, we investigated the sequencing error struc-
ture based on all mappable reads without a threshold. Figure 5.3 shows the nucleotide
distribution of the mapped reads given a sequencing error normalized by the number of
errors per alignment position.

We measure a decreased probability of mismatches given a G (16.07% ) in the reference
compared to A, C, T (25.16%, 26.95%, 22.62%) for Miseq R1 and similar values for MiSeq
R2. For MiSeq R1 we identified one site (position 34) with an increased mismatch rate
(43.12%) given a G in the reference. Note that the positions corresponds to the observed
positions of fluctuation of quality values for R1 (Figure 5.1). We observe two slightly
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increased position of indels at position 122 and 135 having 20.71% (insertion: 5.95%,
deletion: 14.76%) and 18.60% (insertion: 5.20% deletion: 13.40%) of indels respectively
compared to an average rate of 15.89% (insertion: 5.76%, deletion: 10.12%) of indels
across all alignments. For MiSeq R2 we observe two sites at position 29 (39.47%) and
79 (34.72%) showing an increased mismatch rate given a G in the reference. Note that
this corresponds to the observed fluctuation of quality values for R2 (Figure 5.1). At
position 68 we notice an increased sequencing error due to mismatches from 83.88% on
average to 90.24% given an A, C and T in the reference genome.

For the Ion Torrent data sets we measure an increased average insertion rate of an
A (12.95%) compared to the other types of insertions, across all Ion Torrent data sets.
Ion_B14 has an increased percentage of having an insertion of an A (14.06%) compared
to inserting other nucleotides across the alignment (insertion: C (7.59%), G (6.91%),
T(8.76%)).

When we repeat the entire analysis focusing only on reads with an sequencing error
≤ 10% the overall picture does not change. Figure 5.4 shows the nucleotide distribution
of the mapped reads given a sequencing error. For MiSeq R1 and R2 the majority of
the increased sequencing error sites are removed, apart from position 68 MiSeq R2, that
shows an increase of mismatches from 90.24% to 99.92% given a sequencing error. For
Ion Torrent, we measure on average accross all data sets, an increase in the insertion
rate of an A from 12.95% to 14.51%. The second most abundant sequencing error type
is a deletion given an C (12.94%) in the reference.

Next we investigate if the position of the reads on the sample carrier in the sequencing
machine is associated with an increase in sequencing error. We extracted the location of
a read on the sample carrier based on its read name. A density plot is computed based
on the number of reads distributed over the sequencing machine. The results are shown
in Figure 5.5. Here we compare the location of reads with a sequencing error ≤ 10% to
those reads showing a sequencing error ≥ 30%. Reads with a sequencing error ≥ 30%
are usually rejected from the analysis as they are believed to origin from contamination
or other reasons. However, if the source of dissimilarity is related to library preparation,
e.g. contamination and amplification artifacts, those occurrence would be uniformly
distributed over the sample carrier. For Ion Torrent, we observe that the majority of
reads with a sequencing error ≥ 30% originated in the upper right corner. For MiSeq,
we observe those reads having a sequencing error of ≥ 30% at the border of the sample
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carrier. Whereas those that show a sequencing error ≤ 10% are in the middle of the
sample carrier.

5.3.3 Comparison on the genomic level

5.3.3.1 Coverage distribution

Achieving an uniform coverage of the sequenced genome is important for nearly every
NGS experiment to determine the e.g. site frequency spectrum or transcription rate. We
computed the per base coverage accross the reference genome to investigate the ability of
each technology to achieve an evenly covered genome. The per base coverage is computed
by the number of overlapping reads per position of the reference genome. As shown in
Table 5.3 there are 86,584 positions for Ion_B14 not covered by reads. However, we
did not observe contiguous not covered regions, apart from the first 30 positions. As
they occur in every sequencing data set, they might be an artifact of the programs.
Since the number of reads vary between 350,109 (Ion_B14) and 8.5 mil (MiSeq R1)
for the different data sets we adjusted the per base coverage using the Z transformation
(Ragazzini and Zadeh, 1952). This shifts the mean value to 0 and normalize the standard
deviation to 1. Figure 5.6 shows the average coverage per 1000bp adjusted by the overall
depth of sequencing. All sequencing technologies show a relatively even coverage across
the genome.

5.3.3.2 Identification of variants

Often sites that differ between the reference genome and the sequenced genome are of in-
terest (Nordborg et al., 2005; Mackay et al., 2012). The accuracy of benchtop sequencers
to reveal such variant sites is an important information. A genomic alignment between
the Escherichia coli strains Dh10b and a close relative W3110 revealed 179 mismatch
positions between W3110 and Dh10b. Those were taken to assess the suitability of
the sequence performance of the two NGS technologies for the identification of the true
sequence variants.

First, we mapped the Dh10b reads from each data set to the Escherichia coli strain
W3110. Table 5.5 shows the percentage of uniquely mapping reads with a sequencing
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error ≤ 10%. Based on these reads we derived the variant positions using samtools (Li
et al., 2009).

Data sets Uniq. mapped wt (%) detected True positive False positive missing SNPs

MiSeq R1 86.31 165 153 12 26

MiSeq R2 88.98 166 154 12 25

Ion_GAT 86.29 162 147 15 32

Ion_C22 87.59 159 142 17 32

Ion_B15 91.61 153 147 6 32

Ion_B13 90.42 144 144 0 35

Ion_MU 62.86 150 146 4 33

Ion_B14 62.37 104 103 1 76

Table 5.5: Variant discovery based on Escherichia coli W3111. The reference set of true
variants was computed based on a genomic alignment between Escherichia coli
Dh10b and Escherichia coli W3111. In total 179 variants could be discovered,
based on the genomic alignment. We define false positive as differences that
are not in the set of the 179 true variants. True positive are those differences
that have also been found in the genomic alignment. False negatives are those
differences that were not found by the sequencing data sets but appeared
present in the genomic alignment. We did not list the true negative since
those are all remaining positions of the Escherichia coli genome.

None of the data sets identify all true variants. The MiSeq data sets R1 and R2 showed
both a true positive number of 153 and 154 by identifying 165 and 166 variant sites
respectively. When combining both MiSeq data sets we identified 168 variants resulting
in a true positive number of 155. Ion_B14 discovered 104 variant sites with the lowest
true positive number of 103. This is probably due to the low coverage of this particular
data set (mean coverage of 4.9). Ion_B15 has 147 true positives. When combining
Ion_B15, Ion_B13 and Ion_GAT the true positives increased to 172 compared to both
MiSeq data sets having 155 true positives. Combining the two MiSeq and Ion_B15 data
resulted in 170 true positive variant sites out of 179 differences.
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5.4 Discussion

Here we assess the performance of MiSeq and Ion Torrent based on previously pub-
lished data sets. We measure the total sequencing error as the percentage of observed
differences (mismatches, insertions and deletions) comparing the read with the aligned
region in the reference genome of Escherichia coli Dh10b. In agreement to the Illumina
application note (Illumina Inc., 2011b) and Loman et al. (2012), we observe that MiSeq
has a lower total sequencing error compared to Ion Torrent. In our case, we measure
an increased error of Ion_B14 (2.89%) compared to the MiSeq (R1: 0.55% and R2:
0.80%) data. Only when measuring the median sequencing error across all mappable
reads we observe that Ion_B15 (1.30%) and Ion_B13 (1.36%) have a lower sequencing
error compared to MiSeq R1 (1.47%) and R2 (2.15%).

In recent years multiple paper appeared that discussed the sequencing error across
different NGS platforms (Harismendy et al., 2009; Suzuki et al., 2011; Loman et al.,
2012). To contribute to this field, we have investigated how the measurement of mis-
matches, insertions and deletions influence the total sequencing error. For the same
data set (Ion_B14) processed with the same method, we measured a sequencing error
ranging from 20.68% to 1.75%. This is a 12 fold difference in the sequencing error by
measuring one time the mean sequencing error over all mapped reads (20.68%) and one
time the median sequencing error over all mapped reads having a sequencing error ≤
10% (1.75%). Clearly, this is not an useful comparison, however, it shows how reliable
a measurement of sequencing error might be. Furthermore, the measurement of the se-
quencing error might be influenced by the chosen mapping method. For example, Suzuki
et al. (2011) measured the sequencing error based on the mapping results obtained from
Bowtie (Langmead et al., 2009) . Using the default options for Bowtie maximum of 3
mismatches are allowed. Given the average read length of Ion_B14 this would result
in alignments with a maximum of 1.35 % errors, ten times less what was used here. In
addition, Bowtie is not able to handle insertion or deletions (Langmead et al., 2009; Li
and Homer, 2010). Both would result in a reduced sequencing error for Ion Torrent, in
the same time lowering the number of mappable reads. For our study we did not apply
quality trimming as we were interested in the sequencing error characteristic of each
technology. We used a semi global alignment approach to align the full read length.
Using a local alignment method in combination with quality trimming will lead to a
reduction of measured sequencing error. We further speculate that the total sequencing
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error depends on the scoring matrix, used to map the reads to the reference genome.
However, we did not investigate this here. Comparable to Suzuki et al. (2011) we did not
use the quality values for the analysis and we did not take the paired end information
for MiSeq into account.

Loman et al. (2012) published a comparison of currently available benchtop sequencing
technologies focusing mainly on insertion and deletion rates of the sequenced reads. In
contrast to the paper of Loman et al. (2012), we investigated the accuracy of Ion Torrent
based on multiple data sets published between June and December 2011. Thus, we could
investigate the sequencing accuracy of different chip technologies (314, 316 and 318) for
Escherichia coli Dh10b. In our study the data sets Ion_B13 and Ion_B14 were from
chip generation 314 and 316 whereas Ion_C22 and Ion_GAT were produced using chip
318. We observe (Table 5.2) an improvement of the newer chip (318) in terms of number
of reads, mean coverage, not covered positions and a decreased sequencing error.

It is also for the first time that the nucleotide frequency given a sequencing error
across all alignments was measured and investigated. Since it reveals biases given a
nucleotide in the reference we speculate that this is an important information for every
SNP analysis. For MiSeq, we observed a decreased frequency of mismatches given a G
(16.07%) in the reference compared to the other nucleotides A (25.16%), C (26.95%)
and T (22.62%) or indels (9.20%). In case of Ion Torrent, we measured an increased
average frequency of having an insertion of an A (14.51%) across the available data sets.
A deletion given a C (12.94%) in the reference has the second highest sequencing error
frequency on average across all Ion Torrent data sets.

To gain additional insights into the sequencing process we measured the distribution of
reads across the sample carrier in the sequencing machine. Here we observe a clustering
of reads having a sequencing error ≥ 30% to the right top of the sequencing chip of Ion
Torrent. For MiSeq we observe reads having a sequencing error ≥ 30% on the border
of the sequencing slide and at one line crossing the slide. This cannot be the result
of a contamination or error in the library preparation as those would result in a more
uniform distribution. One possible explanation for this observation would be that the
distribution of nucleotides on the sample carrier is often not uniform and therefore leads
to the incorporation of wrong nucleotides.

The performance comparison to identify sequence variants across the genome was car-
ried out based on a genomic alignment between Escherichia coli Dh10b and Escherichia
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coli W3111. In our analysis, non of the used sequencing data sets could recover all true
variants. MiSeq revealed the highest true positive number of 156. However, a combi-
nation of MiSeq and Ion Torrent data revealed an increase of true positive variant sites
of 157. This shows that a combination of both technologies might be the best way to
obtain new insights. However, due to the combination one has to note that the overall
coverage is also increased. This contribute to the increase of true positives.

In agreement with Glenn (2011) we suggest to define and use a set of standard method
or even establish a standardized workflows for measuring sequencing error. To promote
this, we combined all methods used in this analysis together in a program called MoNTY
(Measurements fOr Ngs TechnologY). This requires a mapped read file and the used
reference genome for mapping. In addition to a standard pipeline, we suggest sequencing
always the same defined set of organisms and strains. Only the identical input material
in combination with the usage of the same methods to analyse the data allows for an
objective comparison of each sequencing technology.
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Figure 5.3: Nucleotide frequencies given a sequencing error in the alignment for all
mapped reads. The types of differences are summarized into 12 categories
which includes mismatches (mutation from A (ref) to a non A: A->!A),
insertion (an insertion of an A: A ins) and deletions (a deletion of an A: A
del). As an example, given a set of reads from which 25% show a mismatch
of an A (reference) to a C, the figure would show a light blue (A->!A) peak
on the first position. This indicates that the set of reads seem to have a bias
towards this mutation at position 1. In the following, we refer always to the
percentage given a sequencing error.
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Figure 5.4: Nucleotide frequencies given a difference in the alignment for a read set of
maximum of 10% errors in the alignment.
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Figure 5.5: Density plot of the read location on the sample carrier in the sequencing
machine: The density from white (no) to dark red (high density) of reads
given their errors compared to the genomic location. Interestingly we observe
a clustering in the upper right corner for the Ion Torrent data sets of reads
that have a sequencing error of ≥ 30%. For MiSeq, we observe a clustering
of reads with a sequencing error of ≥ 30% on the border of the sequencing
area as well as at one line across the sequencing slide.
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Figure 5.6: The averaged coverage of reads accross the reference genome of all 8 data
sets. The coverage was adjusted using a Z transformation such that the mean
= 0 and standard deviation = 1.



Chapter 6

DeFenSe: Detection of Falsely

Aligned Sequences

6.1 Introduction

In the previous chapters we discussed two important topics when designing a Next
Generation Sequencing (NGS) study. In chapter 3, we showed how to process sequencing
data if a reference genome is available. In addition, we discussed methods to speed up the
process of aligning the reads to a reference sequence in chapter 4. We have discussed how
to assess the limitations and errors of NGS technologies (chapter 5). This is important
to choose the appropriate technology for every NGS related experiment.

Another important aspect of every NGS related experiment is how to detect reads
that are mapped but did not origin from the intended genome, e.g. an E. coli read
is mapped when sequencing human, or belong to regions that are not present in the
reference genome, e.g. due to genomic rearrangements. This signal has the potential for
misinterpretation and classification of the data. In this chapter, we suggest one possible
method to detect and remove the number of falsely aligned reads. With the possibil-
ity to align reads also to highly polymorphic regions the risk increases that reads are
mapped although they originate from a different genome than intended to be sequenced.
As one example, we may sequence an Arabidopsis thal. genome but observe also reads
originating from an Escherichia coli genome. We refer to such reads as contaminating
reads. In addition, medium or large insertion events, e.g. retro elements, lead to ge-
nomic regions that are sequenced but not present in the reference genome citepLee2012.

67
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Aligning those reads will lead to a wrong signal in the data analysis, which may result in
misinterpretation of the data. To solve this problem, we start with the assumption that
all reads that are either contaminating reads or are due to genomic insertions have a
higher number of differences compared to reads that origin from a genomic region that is
present in the reference sequence. Differences are defined as the number of mismatches,
insertions and deletions per read. We refer to wrongly mapped reads as reads that are
mapped but are either contaminating reads or based on genomic insertion events or were
not positioned on the location they originated from. Correctly mapped reads are reads
that are mapped to the genomic region where they are sequenced from.

There are four different filtering approaches for detecting wrongly mapped reads in
the field of NGS analysis. An identity threshold is used to reject reads that have a
higher number of differences than specified by the user. Identity is computed for each
alignment based on the number of matches divided by the alignment length. Alter-
natively a mapping quality (Li et al., 2008) threshold is applied to reject those reads
where the number of mismatches between the best scoring alignment and all observed
alignments weighted by the quality values per mismatch position is lower than specified
by the user. Note that both filter methods relies on ad hoc decisions or values for a
given experiment. The two other methods are published and specifically address the
reduction of contaminating reads. ContEst (Cibulskis et al., 2011) uses prior knowledge
of the genotype of the sequenced organism to filter the inferred variant sites. The other
method introduced by Schmieder and Edwards (2011) relies on prior knowledge of the
organism and genomic sequence where the contaminating reads origin from. It filters
the reads based on a mapping to the reference genome of the organism that caused the
contamination.

To reduce wrongly mapped reads the objective is to reject those reads that map with
a higher number of differences than expected. This will be reflected in the alignment
score for each read. The range of the alignment scores for correctly mapped reads is
hard or nearly impossible to compute and is therefore unknown. This is because the
optimal alignment score threshold is depending on the sequencing error, the genetic
difference between the sequenced genome and the reference genome, the read length, the
alignment method and other factors that we can not estimate and may vary between
sequencing runs. Nevertheless, it is possible to compute the alignment score distribution
of randomly mapped reads. Given this score distribution we can test if an alignment
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score observed after mapping is significantly higher/better than the alignment scores of
randomly mapped reads.

Here we present DeFenSe (Detection of Falsely aligned Sequences) an approach that
computes the score distribution per data set of randomly mapped reads and uses the
gathered information to reject wrongly mapped reads. DeFenSe works independently of
adhoc decisions and does not require prior knowledge.

6.2 Methods

DeFenSe is divided into two parts. First, it computes the alignment score distribution
of randomly mapped reads. Second, it computes the alignment score for the mapped
reads and tests if the alignment score is significantly higher, than expected given the
random score distribution.

6.2.1 Determination of the alignment score threshold

To determine the alignment score distribution DeFenSe randomly selects n reads (n ≈
100, 000). Subsequently a relaxed candidate search strategy is applied. The candidate
search is based on seed words of length k, by default k = 12. First, on every second
position of the reference genome a seed word is extracted and its corresponding genomic
positions is stored in a hash table. Second, every read is splitted in overlapping seed
words. For each seed word all corresponding genomic positions are extracted from the
hash table. Based on the relative position of the seed word in the read and the position
in the genome a region of length l = ||read||+c is extracted, where c > 0 determines the
number of allowed consecutive insertions or deletions and ||read|| is equal to the read
length. For every region an alignment score is computed based on a scoring function
s. The resulting alignment score is stored. This is done n ×m times, where m are all
locations of all observed seed words per read. DeFenSe uses MASon (chapter 4). This
allows DeFenSe to fully utilize CPUs and if available a graphic card to speed up the
alignment score computation. Finally, DeFenSe reports the threshold, which is the 95%
quantile of the obtained alignment score distribution. This value represents the lower
alignment scoring border of reads that are not mapped by chance.
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To test each read based on the before computed alignment score value, DeFenSe re-
computes the alignment score given the reported CIGAR string and the used reference
genome (Li et al., 2009). A CIGAR string stores the necessary information to recon-
struct the alignment reported by the mapping method. For each mapped read DeFenSe
first reconstructs the alignment using the available information in the SAM entry. Next
it computes the corresponding alignment score based on the scoring schema s. If the ob-
tained alignment score is lower than the 95% quantile of the random mapping alignment
score distribution, the read is rejected.

6.2.2 Evaluation

To evaluate the performance of DeFenSe we used real data from the Sequence Read
Archive (SRA) of NCBI and introduced a contamination using sequencing reads from
Escherichia coli. Table 6.1 summarizes the data. Every data set (D1, D2, D3, C1) was
mapped with two different programs, SSaha2 (Ning et al., 2001) and SHRiMP2 (David
et al., 2011) using their default or recommended parameter settings. In the evaluation,
we focused on the number of uniquely mapped reads using SHRiMP2 both with local
(SHRiMP2_lo) and global (SHRiMP2_gl) alignment options, and SSaha2, which uses a
local alignment approach. After mapping, DeFenSe was used to screen the aligned reads.
To compare the results from DeFenSe to other approaches, we screened the mapped
data sets using an identity threshold. We computed identity based on the number of
matches divided by the alignment length. Here, we choose a 95% (ident95) and a 90%
(ident90) identity threshold to filter the mapped reads. Based on the computed mapping
quality we screened the data set requiring a mapping quality > 20 (mapQV20) (Li et al.,
2008). The mapping quality is computed by the majority of mapping programs and gives
information on the confidence of the mapped read. Most of the time people recommend
to filter for this value to obtain a reliable mapping results.
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Dataset Organism Experiment number of reads read length (bp).

D1

SRR013327 Arabidopsis thal. Genome-Seq 61,105,690 40

SRR013328 Arabidopsis thal. Genome-Seq 57,810,956 40

D2 SRR333517 Drosophila mel. Genome-Seq 57,316,770 40

D3 SRR063698 Drosophila mel. Genome-Seq 56,154,204 95

C1 ERR023717 Mus musculus ChIP-Seq 37,746,682 36

SRR364816 Escherichia coli Genome-Seq 30,656,098 101

Table 6.1: Data sets used for evaluation obtained from NCBI SRA. All non Escherichia
coli data sets were contaminated with 30.7 million Escherichia coli reads of
the corresponding read length.

6.3 Results

6.3.1 Genome-Seq: Arabidopsis thaliana short reads

D1 consists of 118.92 million reads with length 40bp from Arabidopsis thaliana and
30.66 million reads from an Escherichia coli Genome-Sequencing experiment. This cor-
responds to a 20.50% contamination. The mapping results are summarized in Table
6.2.

SHRiMP2 using a global alignment (SHRiMP2_gl) uniquely mapped 54.48% of Ara-
bidopsis thal. reads. In addition, it aligned 0.20% (62,558 reads) of the Escherichia coli
reads. SHRiMP2 using a local alignment (SHRiMP2_lo) approach mapped 56.48% of
the Arabidopsis thal. reads and 1.50% (459,189 reads) of the Escherichia coli reads.
SSaha2 mapped the most Arabidopsis thal. reads (66.62%). However, it also mapped
49.84% of the Escherichia coli reads.

Applying ident95 we could reduce the fraction of mapped Escherichia coli reads in
both SHRiMP2 approaches (global: 1.04 × 10−3% and local: 0.33% ). However, at
the same time the percentages of Arabidopsis thal. reads were reduced to 35.23% for
SHRiMP2_gl and to 39.90% for SHRiMP2_lo. When filtering using ident95 for the
data set mapped with SSaha2 reduced the fraction of aligned Escherichia coli reads
from 49.84% to 47.07%. For the Arabidopsis thal. reads we measured a reduction from
66.62% to 64.44%.
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The mapping quality per mapped read is only available for SSaha2. When applying
mapQV20 the fraction of mapped Escherichia coli reads dropped to 0.03%. In addition,
the percentage of mapped Arabidopsis thal. reads were reduced from 66.62% to 36.66%.

Subsequently, we filtered the results with DeFenSe. Figure 6.1 shows the resulting
alignment score distribution (green) for data set D1. The alignment score distribution
and the resulting score threshold given a 95% quantile for the local alignment (threshold
= 95) was computed in 3 minutes. We obtained a similar runtime for computing the score
threshold for the global alignment threshold (threshold = 92). We next determined the
alignment score distribution for the reads mapped by SHRiMP2_lo and SSaha2 (Figure
6.1 A and B respectively). Figure 6.2 shows the score distribution plus the scoring
thresholds for each mapping method.

Using the global alignment threshold computed by DeFenSe for SHRiMP2_gl we
measured a reduction of Escherichia coli reads from 0.20% to 0.19%. The Arabidopsis
thal. reads were reduced from 54.48% to 54.28%. For the results of SHRiMP2_lo
we observed a reduction from 1.5% to 0.66% of mapped Escherichia coli reads. For
Arabidopsis thal., we measured a reduction from 56.48% to 55.64% of mapped reads.
When filtering the mapped reads from SSaha2 we observe a reduction of Escherichia coli
reads from 49.84% to 0.20%. For the Arabidopsis thal. reads 50.73% were preserved.

SHRiMP2_gl global aln.(%) SHRiMP2_lo local aln.(%) SSaha2 local aln.(%)

Organism Drosophila Escherichia Drosophila Escherichia Drosophila Escherichia

mel. coli mel. coli mel. coli

uniq. mapped 54.48 0.20 56.48 1.5 66.62 49.84

ident95 35.23 1.04× 10−3 39.90 0.33 55.83 47.07

ident90 44.16 0.02 49.44 0.86 64.44 49.64

mapQV20 NA NA NA NA 36.66 0.03

DEFENSE 54.28 0.19 55.64 0.66 50.73 0.20

Table 6.2: Percentage of uniquely mapped reads for D1 for all three mappers. The
Table shows the result of filtering the mapped reads using different identity
and mapping quality thresholds. DEFENSE computed the filtering threshold
based on the raw reads.
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Figure 6.1: Local alignment score histograms of D1. The 95% quantile threshold (red)
of the randomly mapping score distribution (green) was used to filter the
mapped (orange) reads of SHRiMP2_lo (A) and SSaha2 (B)

6.3.2 Genome-Seq: Drosophila mel. short reads

D2 consists of 57.32 million reads (40bp long) from Drosophila melanogaster and 30.66
million reads from Escherichia coli. This corresponds to a 34.84% contamination. D2

differs from D1 since Drosophila mel. has a higher genetic variability than Arabidopsis
thal. (Nordborg et al., 2005; Mackay et al., 2012). In addition, the contamination rate
is increased resulting in a more challenging data set for filtering. The mapping results
of the individual methods are shown in Table 6.3.

SHRiMP2_gl aligned 85.28% of the Drosophila mel. reads and 0.37% of the Es-
cherichia coli reads. For mapping with SHRiMP2_lo we got 85.88% Drosophila mel.
reads and 12.65% of the Escherichia coli reads. The mapping of SSaha2 again resulted
in the highest percentage of uniquely mapped reads. For Drosophila mel. we measured
85.91% uniquely mapped reads but at the same time 56.64% of the Escherichia coli
reads were uniquely mapped.

The results for applying ident95 and ident90 are shown in Table 6.3. When apply-
ing ident95 on the mapped data set from SHRiMP2_gl 84.90% of the Drosophila mel.
reads remained. For Escherichia coli, 0.32% (97,588 reads) of the reads remained. For
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Figure 6.2: Score histograms of the 4 selected data sets. Marked in red are those reads
that origin from the Escherichia coli data set. In green, those reads from
the original data set. The black line marks the score cutoff.

SHRiMP2_lo we measured 81.92% of uniquely mapped Drosophila mel. reads. The
ident95 for SHRiMP2_lo reduced the mapped Escherichia coli reads from 12.65% to
8.86%. Mapping with SSaha2 and applying ident95 resulted in 83.46% of mapped
Drosophila mel. reads and 53.35% of Escherichia coli reads.

When filtering according to mapQV95 74.91% of uniquely mapped Drosophila mel.
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SHRiMP2_gl global aln.(%) SHRiMP2_lo local aln.(%) SSaha2 local aln.(%)

Organism Drosophila Escherichia Drosophila Escherichia Drosophila Escherichia

mel. coli mel. coli mel. coli

uniq. mapped 85.28 0.37 85.88 12.65 85.91 56.64

ident95 79.40 2.09× 10−4 81.92 8.86 83.46 53.35

ident90 83.44 3.28× 10−3 85.54 8.86 85.77 56.46

mapQV20 NA NA NA NA 74.91 9.09× 10−3

DEFENSE 84.90 0.32 85.15 0.47 84.38 0.07

Table 6.3: Percentage of uniquely mapped reads for D2 for all three mappers. The Table
shows the filtering of the mapped reads using different identity and mapping
quality thresholds. DEFENSE computed the filtering threshold based on the
raw reads.

reads were preserved for the mapping of SSaha2. Only 0.01% (2,787) of Escherichia coli
reads remained.

DeFenSe computed the score distribution for randomly mapped reads in less than
5 minutes based on 67 million alignment scores. The score distribution for all three
mapping results plus the filtering decision are shown in Figure 6.2. For SHRiMP2_gl
84.90% of the Drosophila mel. reads and 0.32% of the Escherichia coli reads remained.
Using SHRiMP2_lo 85.15% of the Drosophila mel. reads were preserved while the
Escherichia coli reads were reduced from 12.65% to 0.47%. A similar picture is observed
when filtering the result of the SSaha2 mapping. Here, 84.38% of the Drosophila mel.
reads were preserved while the Escherichia coli reads were reduced from 56.64% to 0.07%.
DeFenSe maintained 98.23% of the mappedDrosophila mel. reads while rejecting 99.88%
of the Escherichia coli reads.

6.3.3 Genome-Seq: Drosophila mel. long reads

Data set D3 consists of 56.15 million reads with 95bp from Drosophila melanogaster.
The 30.66 million reads from Escherichia coli were sampled with the respective read
length. This results in 35.31% contamination. D3 differs from D2 by an increase of
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the read length by a factor of 2. The mapping results are shown in Table 6.4 for the
programs SHRiMP2_gl (global alignment), SHRiMP2_lo (local alignment) and SSaha2
respectively.

SHRiMP2_gl mapped 79.02% of the Drosophila mel. reads. For the local alignment
method we measured that 80.51% of the Drosophila mel. reads were uniquely mapped to
the reference genome. Both instances of SHRiMP2 mapped nearly non (global: 4.63 ×
10−3% and local: 3.59 × 10−3%) of the Escherichia coli reads. This is probably due to
the larger read length of 95bp. SSaha2 mapped again the highest percentage (83.32%)
of Drosophila mel. reads. However, a high percentage of Escherichia coli reads (55.87%)
were also mapped.

When filtering with ident95 we observed a reduction of mapped Drosophila mel. reads
for the mapping of SHRiMP2_gl from 80.51% to 67.56%. For the local alignment method
the percentage is decreased from 79.02% to 62.67% of uniquely mapped Drosophila mel.
reads. Filtering the mapping of SSaha2 resulted in a reduction of Drosophila mel. reads
from 83.32% to 72.16%. At the same time, the percentage of Escherichia coli reads were
reduced from 55.87% to 50.17%.

Filtering the mapping result of SSaha2 according to mapQV20 resulted in a reduction
of Drosophila mel. reads from 83.32% to 74.88%. The percentage of Escherichia coli
reads were reduced from 55.87% to 50.17%.

DeFenSe required 12 minutes to compute the score distribution based on 243 million
alignment scores. The score distribution for the mapped reads plus the scoring threshold
are shown in Figure 6.2. For SHRiMP2_gl DeFenSe reduced the percentage of mapped
Drosophila mel. reads from 79.02% to 78.83%. For SHRiMP2_lo, DeFenSe preserved
all Drosophila mel. reads. When filtering the results of SSaha2 DeFenSe reduced the
percentage of mapped Drosophila mel. reads from 83.32% to 81.35% while remaining
0.02% of mapped Escherichia coli reads.

6.3.4 ChIP-Seq: Mus musculus

Data set C1 consists of 37.75 million reads of 36bp from a ChIP-Seq experiment of Mus
musculus. The Escherichia coli reads were sampled with the respective read length.
This results in a contamination of 44.82%. The mapping results are shown in the Table
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SHRiMP2_gl global aln.(%) SHRiMP2_lo local aln.(%) SSaha2 local aln.(%)

Organism Drosophila Escherichia Drosophila Escherichia Drosophila Escherichia

mel. coli mel. coli mel. coli

uniq. mapped 79.02 4.63× 10−3 80.51 3.59× 10−3 83.32 55.87

ident95 62.67 0.00 67.56 3.26× 10−5 72.16 50.17

ident90 72.66 1.60× 10−4 76.64 7.50× 10−5 80.80 55.13

mapQV20 NA NA NA NA 74.88 3.89× 10−3

DEFENSE 78.83 4.63× 10−3 80.51 3.59× 10−3 81.35 0.02

Table 6.4: Percentage of uniquely mapped reads for D3 for all three used mappers.
The Table shows the filtering of the mapped reads using different identity
and mapping quality thresholds. DEFENSE computed the filtering threshold
based on the raw reads.

6.5 for the programs SHRiMP2_gl (global alignment), SHRiMP2_lo (local alignment)
and for SSaha2.

When mapping the reads with SHRiMP2_gl 70.31% of the Mus musculus and 2.22%
of the Escherichia coli reads were uniquely mapped. SHRiMP2_lo resulted in an in-
creased percentage of mapped Mus musculus (76.98%) and Escherichia coli (44.26%)
reads compared to the global alignment version. SSaha2 mapped 74.89% of Mus muscu-
lus reads while again mapping the highest percentage of mapped Escherichia coli reads
of 51.95%.

Filtering the results of SHRiMP2_gl using ident95 resulted in a reduction from 70.31%
to 61.24% of Mus musculus reads. The Escherichia coli reads were reduced from 2.22%
to 1.38 × 10−3%. After filtering (ident95), the mapping result of SHRiMP2_lo 66.29%
of the Mus musculus reads were preserved while 15.04% of the Escherichia coli reads
remained. When applying ident95 on the mapping results for SSaha2 70.91% of the
mapped Mus musculus and 48.31% of the mapped Escherichia coli reads remained

When applying mapQV20 on the mapping result from SSaha2 only 50.28% of the Mus
musculus remained. At the same time, only 3.89× 10−3% of the Escherichia coli reads
remained.

DeFenSe required 76 minutes to compute the score threshold based on 736 million.
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SHRiMP2_gl global aln. (%) SHRiMP2_lo local aln. (%) SSaha2 local aln. (%)

Organism Drosophila Escherichia Drosophila Escherichia Drosophila Escherichia

mel. coli mel. coli mel. coli

uniq. mapped 70.31 2.22 76.98 44.26 74.89 51.95

ident95 61.24 1.38× 10−3 66.29 15.04 70.91 48.31

ident90 65.29 0.02 72.85 30.96 74.40 51.58

mapQV20 NA NA NA NA 50.28 1.67× 10−3

DEFENSE 63.81 6.55× 10−3 64.32 0.01 63.92 1.61× 10−3

Table 6.5: Percentage of uniquely mapped reads for C1 for all three used mappers. The
Table shows the filtering of the mapped reads using different identity and map-
ping quality thresholds. DEFENSE computed the filtering threshold based
on the raw reads.

alignment scores. The score distribution plus the scoring thresholds are shown in Figure
6.2. When filtering the result from SHRiMP2_gl we measured a reduction from 70.31%
to 63.81% for the mapped Mus musculus while nearly all Escherichia coli reads were
rejected (6.55 × 10−3% remaining). 64.32% of the Mus musculus reads remained after
filtering the outcome of SHRiMP2_lo. The percentage of Escherichia coli reads were
reduced from 44.26% to 0.01%. Filtering the results of SSaha2 resulted in a reduction
from 74.89% to 63.92% of Mus musculus reads. At the same time, nearly all Escherichia
coli reads (1.61× 10−3% remaining) were rejected.

6.4 Discussion

One of the first steps when analyzing NGS data is to align the reads to a reference
genome, if existing. Various mapping methods have been published aiming either at
a short runtime or on mapping reads in highly polymorphic regions. To align reads
into high polymorphic regions, a mapping method has to allow for a high number of
differences between the read and the reference sequence. Allowing for a high number
of differences increases the risk of a read being mapped although it original location
is not present on the reference sequence. This is the case, when a read origins either
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from a different species or from a genomic location that is not present due to genomic
rearrangements. In such a scenario, the mapping of contaminating reads will lead,
for example, to a wrong identification of SNPs, depending on the analysis and the
experiment, which results in a wrong or not reliable interpretation of the data.

The method presented here detects such contaminating reads. In general, DeFenSe
is based on the assumption that contaminating reads or generally speaking reads that
are mapped to a wrong location in the reference genome, show a higher number of
differences between the read and the reference compared to reads that are mapped to
the correct position. Based on this assumption it is theoretically possible to compute
the score distribution of correctly mapped reads. However, this is in practice nearly
impossible since one has to correctly estimate several parameters including sequencing,
mapping and preparation errors. Therefore, we compute the score distribution of ran-
domly mapped reads. This represents those reads that are mapped by chance. Given
this score distribution we use the 95% quantile to reject those reads that are mapped
by chance (having a lower score) given the mapped data. Note that this works indepen-
dent of the mapping method, sequencing error rate, contamination rate and differences
between the sequenced and the reference genome.

We assessed the performance of DeFenSe by comparing it to the filtering based on
the identity and the mapping quality of the mapped reads. In contrast to DeFenSe the
identity is depending on the overall error rate and the distance between the sequenced
genome and the reference genome. This could be shown when comparing data sets D1

and D2, which have both the same read lengths and were sequenced with the same
technology but differ in the sequenced organisms. In case of Arabidopsis thal., using
the ident95 resulted in aligning only 0.33% of the Escherichia coli reads, whereas in
the case of Drosophila mel. 8.86% of the Escherichia coli reads remained present after
filtering. Note that the same filtering process gives two completely different results in
terms of avoiding contaminating reads. In contrast to DeFenSe, where only 0.66% (D1)
and 0.47% (D2) of the Escherichia coli reads remained after filtering the mapped data of
SHRiMP2_lo. Furthermore, ident95 completely failed on filtering results obtained from
SSaha2. SSaha2 is a local alignment based mapping method. This is because SSaha2
seems to reduce the alignment length to such a level, where only very few differences
are present. The approach fails here because the identity is computed based on the
alignment length and the number of differences within the alignments. In contrast,
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DeFenSe also uses the information of the length of the alignment in comparison to the
original read length by looking at the alignment score.

The mapping quality (Li et al., 2008) is computed based on the number of mismatches
and their quality values given the best scoring alignment in comparison to the quality
values of mismatch positions of all observed alignments per read. The assumption is
that a mismatch is most of the time related to a low quality value of a particular base.
As shown filtering according to the mapping quality works. However, when it comes
to polymorphic regions we have the problem that most of the mismatches have a high
quality value. Therefore, reads assigned to such regions will probably get a low mapping
quality score and might subsequently be filtered out. In all of the data sets, we observed
that DeFenSe preserved a higher percentage of mapped reads from the organism that
was sequenced. For example, when filtering D2 using the mapping quality we observe
a reduction from 85.91% (SSaha2) of mapped Drosophila mel. reads down to 74.91%.
When filtering with DeFenSe additional 10% (84.38%) of the Drosophila mel. reads
were preserved. For both instances of SHRiMP2 we did not obtain a mapping quality
for the alignments.

While filtering using DeFenSe obviously improved the results for mapping with SSaha2
the results using both SHRiMP2 versions are not striking. Still, in case of the local
alignment version we could demonstrate that DeFenSe always reduces the percentage of
bacterial reads while maintain the percentage of reads originated by the used reference
sequence. For the global alignment version of SHRiMP2 the identity threshold identifies
more bacterial reads compared to DeFenSe. However, this comes with the disadvantage
of rejecting up to 20% (D1) of those reads that originated from the same organism as
the reference sequence compared to the result of DeFenSe.

The current version of DeFenSe can not cope with different raw read lengths. This
is because the alignment score is influenced by different read lengths. One expects that
shorter reads lead to a reduced alignment score compared to longer reads. Therefore, all
shorter reads will automatically have the risk to be rejected. This issue will be solved in
the next release of DeFenSe and enable the usage for other technologies besides from Illu-
mina. Another requirement of DeFenSe is that the sampled distribution has to be more
or less normally distributed. If this is not the case, for example, if the relaxed mapping
strategy always identifies only the best scoring position, then the method does not work
correctly. The next version of DeFenSe will report the probability of malfunctioning on
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the sample process.

To conclude, DeFenSe works based on the underlying raw reads and is independent of
ad hoc decisions and prior knowledge. This makes it interesting for non model organisms
where we typically have minor or no knowledge available. For model organisms we
suggest a combination of tools that are already available (e.g. ContEst (Cibulskis et al.,
2011)) and DeFenSe. This allows to apply prior knowledge in combination with a method
to reduce wrongly mapped reads and improve the reliability of NGS results.
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Chapter 7

Summary

In this thesis we have addressed four relevant topics for the analysis of Next Generation
Sequence (NGS) analysis.

Firstly, we have addressed the problem of mapping NGS reads to a reference genome
(chapter 3). Here we focused on maximizing the number of accurately placed reads,
independently of read length and distance from the reference genome. This requires a
search strategy to align reads without a cut off for the number of mismatches, insertions
and deletions. This is becoming more important because new technologies produce
longer reads with an increased absolute number of sequence differences and many of
newly sequenced organisms have a considerably large evolutionary distance to reference
genomes. We demonstrated the advantages of this method based on real and simulated
data.

Secondly, we optimized a local pairwise alignment algorithm for the use in the score
of NGS analysis (chapter 4) and showed its advantage in terms of runtime over the stan-
dard implementation. In addition, we implemented the algorithm on various hardware
platforms and compared currently available high performance technologies like vector
instruction sets on the CPU and optimizations on the GPU. The result of this was an op-
timized library implementation for pairwise alignments, which was used in the chapters
3 and 6.

Third, we have presented methods to characterize technical biases of current sequenc-
ing technologies, exemplified on two benchtop technologies: Ion Torrent and MiSeq
(chapter 5). We discovered a bias in the nucleotide frequencies of sequencing errors as
well as a spatial clustering of reads with an increased error rate related to a location on
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the sample carrier in the sequencing machine. These and other characterizations (e.g.
different error sources: mismatches vs. indels) presented in this thesis, revealed issues
that should be taken into account when choosing the appropriate sequencing technology
for an experiment.

Due to the sensitivity of NGS technology not only DNA from the targeted sample
is sequenced, but also contaminating reads occur (e.g. E. coli in a human sample).
These reads can represent serious problems for biological inference. Here we presented
a method that detects and excludes contaminating reads (chapter 6). In contrast to
previous approaches, this method automatically adapts to the underlying genetic diver-
sity between the reference and the sequenced genome as well as the sequencing error
rate. This makes it applicable to the analysis of model and non-model organisms. We
demonstrated its utility with real data for different data from organisms and varying
read lengths.

All methods and programs are open source (Artistic License (Perl) 1.0). For docu-
mentation and download see: http://www.cibiv.at/software/ngm

Program Description

NextGenMap
A program to map NGS reads to a

reference genome/ transcripts (chapter 3)

NextGenBench
Benchmark system for NGS mapper

(chapter 3)

MASon (Million C++ optimized alignment library package

Alignments within Seconds) for NGS (chapter 4)

MoNTy (Measurements Performs several measurements and plots to reveal

for NGS Technology) the quality of a sequenced data set (chapter 5)

DeFenSe (Detection of Method to detect and reduce contamination

Falsely Aligned Sequences) in NGS data (chapter 6)

http://www.perlfoundation.org/artistic_license_1_0
http://www.cibiv.at/software/ngm
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