
MASTERARBEIT

Titel der Masterarbeit

Integrating Linked Data in Mobile Augmented Reality Interfaces

- Development of a Mobile AR Mountain Guide

Verfasserin

Silvia Fürst, BSc

angestrebter akademischer Grad

Diplom-Ingenieurin (Dipl.-Ing.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 066 935

Studienrichtung lt. Studienblatt: Medieninformatik

Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Klas

Abstract

Today’s mobile phones (so-called “smartphones”) present powerful platforms and can be

used as gateway from the real to a virtual world. Therefore, they are an attractive target in the

domain of mobile Augmented Reality (AR). The basic idea of AR is to mix the real with the

virtual world by overlaying the user’s field of view with digital information (virtual graphics)

to describe the immediate physical environment. Thus, AR on mobile phones allows users to

directly access information that is relevant to a specific place or monument at anytime and

anywhere.

Currently, many mobile AR applications present client-server-based environments that make

use of proprietary data formats and access restricted data sources. Furthermore, they may be

based on a vision-based tracking system which includes hardware resource consuming image

pattern algorithms that require permanent connection to a server-side platform and do not allow

real-time execution on mobile phones. Thus, this work focuses on sensor-based tracking which

relies on the GPS radio, accelerometer, and digital compass of a mobile device to determine

the current position, orientation, and heading of the device. Sensor-based AR tracking systems

include a mathematical model that uses the information of the camera pose and GPS location

to project real-world objects into the captured view of the device. The main contribution of

this thesis is the conceptual and formal description of such a mathematical model.

Furthermore, AR systems need access to data sources to be able to identify real-world

objects. Therefore, the Linked Open Data (LOD) project which provides a huge amount of

interlinked data and is based on open standards and APIs, presents an appealing data source

for AR systems. In consequence, this work also investigates the exploitation of Linked Data

resources for integrating them into mobile AR systems in order to visualize LOD resources in AR

interfaces and to identify and describe real-world objects. We demonstrate the feasibility of the

presented approach in this work through the development of a proof-of-concept AR application

that runs in real-time and allows the identification of real-world mountains. The system fetches

Linked Data resources from two different LOD sets of the Web and consolidates (filters duplicate

resources and merges them) and stores the resources directly on the mobile phone, to finally

visualize them onto the screen of the device. The prototype is executable without permanent

network connection and therefore does not depend on any server-side platforms.

i

Zusammenfassung

Heutige Handys, sogenannte “Smartphones”, stellen mächtige Umgebungen dar, die als

Gateway von der realen zu einer virtuellen Welt eingesetzt werden können. Deshalb sind sie ein

attraktives Ziel in der Domäne der mobilen Augmented Reality (AR). Die Grundidee von AR ist

das Kombinieren der realen mit einer virtuellen Welt, indem das Livebild der Kamera mit digi-

taler Information überlagert wird, um auf diese Weise die unmittelbare physikalische Umgebung

zu beschreiben. Folglich, erlauben mobile AR Systeme, dass User direkt auf standortspezifisch

relevante Information jederzeit und überall zugreifen können.

Derzeit stellen viele mobile AR Applikationen Client-Sever-basierte Umgebungen dar, die

proprietäre Datenformate verwenden und nur auf beschränkte Datenquellen zugreifen. Weit-

ers sind einige AR Systeme auf visuelle Trackingsysteme aufgebaut. Visuelles Tracking bein-

haltet komplexe Bildanalysealgorithmen, die die Hardware Ressourcen von Mobilgeräten leicht

überfordern können und meistens eine permanente Verbindung zu einer serverseitigen Plattform

erforden. Dies führt dazu, dass visuelle AR Trackingsysteme oft nicht in Echtzeit auf Handys

ausgeführt werden können. Aus diesem Grund basiert der Ansatz dieser Arbeit auf ein Sensor-

basierendes Trackingsystem, welches den GPS-Chip, Beschleunigungssensor und digitalen Kom-

pass des Handys benutzt, um die Position, Orientierung sowie Ausrichtung des Gerätes zu

messen. Solche Systeme beinhalten ein mathematisches Modell, welches die Information über

die Kameraausrichtung und der GPS Positionierung des Handys verwendet, um Objekte aus der

realen Welt auf das aufgenommene Bild des Gerätes zu projizieren. Der Kernpunkt dieser Ar-

beit stellt die konzeptionelle sowie formale Beschreibung eines solchen mathematischen Modells

dar.

AR Systeme benötigen Zugriff auf Datenquellen, um Objekte aus der realen Welt identi-

fizieren zu können. Das Linked Open Data Projekt, welches eine enorme Menge an verlink-

ten Daten umfasst und auf offenen Standards und APIs basiert, stellt dabei eine verlockende

Datenquelle für AR Systeme dar. Daher wird in dieser Arbeit die Exploitation von Linked

Data Ressourcen in mobilen AR Systemen untersucht, um diese in AR Interfaces integrieren

zu können. Die vorliegende Arbeit beinhaltet die Entwicklung einer mobilen AR Applikation,

die in Echtzeit ausführbar ist und die es erlaubt Berge der realen Welt zu identifizieren. Das

System greift auf Linked Data Ressourcen von zwei verschiedenen LOD Plattformen des Webs

zu und konsolidiert (das Herausfiltern von identischen Ressourcen und das Zusammenführen

dieser) und speichert die Ressourcen direkt auf dem Handy. Der Prototyp ist ausführbar, ohne

dass eine permanente Netzwerkverbindung zu einer Serverumgebung besteht. Daher ist die

präsentierte AR Applikation unabhängig von jeglicher serverseitigen Plattform.

ii

Acknowledgements

First of all, I would like to thank my supervisor Univ.-Prof. Dr. Wolfgang Klas and my secondary

supervisors Dr. Stefan Zander and Dipl-Ing. Chris Chiu for all their thoughts, ideas, support,

and help along the way and who gave me the possibility to complete this thesis. A special

thanks goes out to my fellow student and friend Evelyn Hinterramskogler with whom I had

many useful discussions. Finally, I would like to express my gratitude to my family and friends

for all their support and encouragement.

iii

Table of Contents

Abstract i

Zusammenfassung ii

Acknowledgements iii

Table of Contents iv

List of Figures vii

List of Tables ix

Listings x

1 Introduction 1

1.1 Motivation . 1

1.1.1 AR Tracking Systems . 2

1.2 Problem Description . 3

1.2.1 2D Maps versus AR Interfaces . 3

1.2.2 Closed Datasets . 4

1.3 Attempt for Linked Data Integration . 5

1.4 Contribution . 6

1.5 Thesis Organization . 9

2 Background 10

2.1 Augmented Reality . 10

2.1.1 Area of Application . 12

2.2 Linked Open Data . 13

2.2.1 Integrated LOD Sets . 16

2.2.1.1 GeoNames . 16

2.2.1.2 LinkedGeoData . 17

2.2.1.3 DBpedia . 19

2.2.2 Resource Description Framework . 20

2.2.3 SPARQL . 21

2.3 Global Positioning . 22

2.3.1 Geodesy . 22

2.3.2 Global Positioning System . 23

2.4 Android . 26

2.4.1 Android Architecture . 26

iv

Table of Contents v

2.4.2 Android SDK . 27

2.4.3 Android Application Components . 28

2.4.4 Sensor Support . 30

2.5 Summary . 31

3 Related Work 32

3.1 AR Tracking Methods . 32

3.1.1 Vision-based Tracking . 33

3.1.2 Sensor-based Tracking . 34

3.1.3 Hybrid Tracking . 35

3.1.4 Discussion . 37

3.2 Sensor-based AR Applications . 38

3.2.1 Introduction of Works . 38

3.2.1.1 Commercial AR Applications . 38

3.2.1.2 Open-Source AR Applications 40

3.2.1.3 Mountain Identification Applications 42

3.2.1.4 Linked Data as AR Content . 42

3.2.2 Table of Discussed Works . 43

3.2.3 Feature Description and Discussion . 45

3.3 Summary . 48

4 Approach 50

4.1 Requirements and Design Considerations . 50

4.2 Abstract and Conceptual Architecture . 52

4.2.1 Abstract Model . 52

4.2.2 Conceptual Constituents . 53

4.3 LOD Integration . 55

4.3.1 Ontology Structures . 55

4.3.2 Discovering Identical Resources . 57

4.3.2.1 The Silk Framework . 57

4.4 Formal Model . 60

4.4.1 Symbols and Formal Definitions . 60

4.4.1.1 Angle of View of Camera . 62

4.4.1.2 Distance and Bearing . 63

4.4.1.3 Inclination Angle . 65

4.4.1.4 Field of View . 66

4.4.1.5 Screen Coordinates . 69

4.4.2 Tracking Algorithm . 70

4.5 Functional Model . 73

4.6 Summary . 75

5 Proof of Concept 77

5.1 Software Design . 77

5.1.1 Activities Overview . 78

5.1.2 AR Mode . 79

5.1.3 Map and Tour Mode . 81

5.1.4 Comparison of Approach and Proof of Concept Design 83

5.2 Software Implementation . 84

Table of Contents vi

5.2.1 Localization and Orientation . 84

5.2.1.1 Reading GPS Coordinates . 86

5.2.1.2 Accessing Accelerometer and Magnetic Field Sensors 88

5.2.2 Loading and Processing LOD Resources 90

5.2.2.1 LinkedGeoData - Integration . 92

5.2.2.2 GeoNames - Integration . 95

5.2.2.3 Filtering Identical Resources . 96

5.2.3 Storing Data . 98

5.2.3.1 Update Database Table . 100

5.2.4 Mathematical Model . 101

5.2.4.1 Distance Calculation . 102

5.2.4.2 Bearing Calculation . 103

5.2.4.3 Inclination Calculation . 103

5.2.4.4 Screen Coordinates Calculation 104

5.2.5 Querying Mountain Information . 105

5.2.6 Loading Tours . 108

5.2.7 Parsing and Plotting GPX Files on a Map 112

5.2.8 Recording Tour . 114

5.3 Summary . 115

6 Results and Discussion 117

6.1 Prototype Presentation . 117

6.1.1 AR Mode . 117

6.1.1.1 Additional Features . 118

6.1.2 Map and Tour-Guide Mode . 121

6.1.2.1 Additional Features . 122

6.2 Evaluation . 124

6.2.1 Test Environment . 124

6.2.2 Data Processing Performance . 125

6.2.2.1 Test Setup and Test Data Preparation 125

6.2.2.2 Data Processing Results . 127

6.2.3 AR Visualization Performance . 129

6.2.3.1 Test Preparation . 130

6.2.3.2 Visualization Performance Results 131

6.3 Summary . 135

7 Final Remarks 136

7.1 Conclusions . 136

7.2 Outlook . 138

A CD Attachment 139

B Curriculum Vitae 140

Bibliography 141

List of Figures

2.1 Milgram’s Reality-Virtuality Continuum . 11

2.2 Wikitude overlays the camera’s view with additional information about an up-
coming event at a specific location at the Old Town of Salzburg 11

2.3 Linked Open Data Cloud 2011 . 14

2.4 LOD sets increase from 2007 - 2011 . 15

2.5 RDF graph example . 20

2.6 Illustration of geographic latitude and longitude of the earth 23

2.7 GPS signal modulation . 24

2.8 Geographic position determination with four satellites 25

2.9 System architecture of Android . 26

2.10 Application life-cycle . 29

3.1 Overview of Wikitude architecture . 39

3.2 Overview of Layar architecture . 40

3.3 Architecture of Mixare for developers . 41

4.1 Abstract model of AR system . 52

4.2 Conceptual system architecture of proof-of-concept AR system 53

4.3 Angles of view of a camera lens . 62

4.4 Basic trigonometry triangle . 66

4.5 haov, vaov and borders of field of view . 67

4.6 Bearing angle within haov . 72

4.7 Functional model – loading content in AR interface 73

4.8 Functional model – loading LOD in map view . 74

4.9 Functional model – loading tours in map view . 75

5.1 Core classes of AR prototype . 78

5.2 Class diagram overview – AR mode . 80

5.3 Views of the AR interface . 80

5.4 Class diagram overview – Map and tour mode . 82

5.5 Tour recording mode . 83

5.6 Comparison of AR mode components and classes 83

5.7 Comparison of map/tour mode components and classes 84

5.8 Classes responsible for determining localization and orientation of device 85

5.9 Localization process . 86

5.10 Coordinate systems . 89

5.11 Classes responsible for data download . 91

5.12 LOD download . 92

5.13 Storing LOD resources . 99

vii

List of Figures viii

5.14 Classes responsible for screen coordinates calculation 101

5.15 Determination of screen coordinates . 102

5.16 Classes responsible for loading mountain information 105

5.17 Mountain information loading . 106

5.18 Classes responsible for loading GPS tracks . 109

5.19 Tour track loading . 110

5.20 Classes responsible for plotting GPS tracks . 113

5.21 Classes responsible for recording GPS tracks . 115

6.1 Home screen - entry point of application . 118

6.2 AR interface with visualized mountain object . 118

6.3 Displaying further mountain information . 118

6.4 System messages . 119

6.5 Progress dialogs for bypassing waiting time . 119

6.6 Range setter bar . 120

6.7 AR mode - options menu . 120

6.8 Map mode of AR application . 121

6.9 Loading of tours . 121

6.10 Tour mode . 122

6.11 Tour mode features . 123

6.12 Tour mode - recording tours . 123

6.13 Total resource processing durations . 129

6.14 Number of resources processed per second . 129

6.15 Visualization Performances on Samsung SL I9003 132

6.16 Visualization Performances on HTC Wildfire S 133

6.17 Raw and filtered Azimuth sensor values . 134

6.18 Raw and filtered Pitch sensor values . 134

List of Tables

1.1 Structure of this thesis . 9

2.1 Sensors supported by Android . 30

3.1 Comparison of sensor-based AR browsers . 44

4.1 Table of prefixes . 55

4.2 Mathematical symbols for formal model . 61

4.3 AR tracking algorithm . 71

5.1 Description of interactions from Figure 5.9 . 87

5.2 Description of interactions from Figure 5.12 . 92

5.3 Description of interactions from Figure 5.13 . 99

5.4 Description of Interactions from Figure 5.15 . 103

5.5 Description of interactions from Figure 5.17 . 107

5.6 Description of interactions from Figure 5.19 . 110

6.1 Evaluation Parameters . 126

6.2 Data processing durations . 127

6.3 Comparison of total data processing time . 128

6.4 Data storing durations . 129

6.5 Test target definition . 130

6.6 Evaluation parameters for visualization performance 131

6.7 Visualization performances in ms . 131

ix

Listings

2.1 GeoNames resource description in RDF/XML . 17

2.2 LinkedGeoData resource description in RDF/XML 18

2.3 DBpedia resource description in RDF/XML . 19

2.4 Example of RDF statement in RDF/XML format 20

2.5 SPARQL query example . 22

4.1 owl:sameAs example . 57

4.2 rdfs:seeAlso example . 57

4.3 Silk-LSL example: Interlinking mountain resources between LinkedGeoData and
GeoNames . 59

5.1 A code snippet of GPSService – Registration for location updates 87

5.2 A code snippet of ARMainActivity – Registration of sensor listener 88

5.3 A code snippet of ARMainActivity – onSensorChanged() 88

5.4 A code snippet of ARMainActivity – lowPassFilter() 90

5.5 SPARQL query against LinkedGeoData . 93

5.6 An example of a SPARQL query result received from the LinkedGeoData SPARQL
endpoint . 94

5.7 A code snippet of MountainDataHandler – downloadLinkedGeo() 94

5.8 A code snippet of MountainDataHandler – downloadGeoNames() 95

5.9 A code snippet of MountainDataHandler – Filtering identical resources using
Jaro-Winkler Distance . 97

5.10 Creating table in SQLite database . 98

5.11 A code snippet of Utils – Adding row to database table 100

5.12 A code snippet of Utils – insertDuplicate() 100

5.13 Inclination angle calculation . 104

5.14 Calculation of x screen coordinate . 104

5.15 Calculation of y screen coordinate . 105

5.16 A code snippet of MountainInfoFetcher – fetchData() 107

5.17 A code snippet of MountainInfoFetcher – onPostExecute() 108

5.18 A code snippet of TourDataFetcher – Filtering GPS tour details from HTML
page . 111

5.19 Example of GPX file structure . 112

5.20 Parsing GPX file with XPath API . 113

5.21 A code snippet of MountainMapTourOverlay – Plotting GPS tour onto map . 114

6.1 Defining of a test object in our AR system . 130

x

Chapter 1

Introduction

The continuous technical sophistication of today’s mobile devices led to the creation of new

application domains. One domain that currently receives enormous attention is that of mo-

bile Augmented Reality (AR). AR enables the supplementation of the real world with digital

information by using the mobile phone’s camera as video-see-through interface [1].

On the other hand, semantic data on the Web has increased significantly in the past few

years, mostly because of projects like the Linked Open Data (LOD) initiative1. The Linked

Data paradigm allows the publishing of data on the Web based on a set of specific principles

(cf. Section 2.2) and interlinks semantic data resources (e.g. real-world entities) through common

global identifiers (HTTP URIs). Many data providers have followed these principles the last few

years. Now, the so called “Web of Data” comprises descriptions about huge amounts of resources

from various topical domains such as people, animals, music but also physical locations [2].

Many mobile devices (especially smartphones) are powerful enough to obtain the current

position on earth (through the device’s built-in GPS chip) in order to use location information

as entry point to the Web of Linked Data. Thus, we could use Linked Data resources to identify

and describe real-world objects of our physical surroundings and visualize Linked Data in AR

interfaces of mobile AR systems. In consequence, the objective of this work is to merge AR

technologies with the principles of Linked Data. Thereby, we aim to realize a new approach for

accessing and discovering the Web of Linked Data within mobile AR interfaces.

1.1 Motivation

Today’s powerful mobile phones (also called smartphones) already present an everyday compan-

ion of an uprising number of people because they are a helpful assistant for people’s personal

(e.g. surfing in the Internet, taking pictures, sending messages) or business (e.g. taking business

calls, looking up emails) life. Pence [1] describes smartphones as “Swiss Army knifes of modern

1LOD community project: http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData/

1

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/

Chapter 1. Introduction 2

communication” because a smartphone not only presents a telephony device but also is equipped

with additional features such as GPS radio, digital camera, digital compass etc. Access to on-

line information is possible almost anywhere, as smartphones provide mobile networking. With

their growing computational power smartphones present powerful platforms that are able to

support mobile AR and thus the availability of AR systems on mobile devices already increased

significantly in the last few years [3].

Fundamental to the creation of mobile AR systems are accurate tracking techniques and

registration methods [4]. The term tracking in combination with AR systems stands for the

method of gathering permanently the field of view of the user by determining the current

location, orientation, and heading of the mobile device. Only an accurate tracking method

allows the following process of registration to work accordingly [5]. Registration is the method

of constantly aligning virtual objects with real-world objects. This is essential because the field

of view is changing on occasion by moving the device. Despite the movements, virtual and real

objects need to stay aligned, otherwise the AR system will not work correctly, as the real-world

objects would be wrongly annotated and in consequence, the AR system would not be accepted

by the user. As there exist different kinds of AR tracking methods, we further discuss them in

the next section.

1.1.1 AR Tracking Systems

For a mobile AR system to work properly, we are able to apply a vision-based, a sensor-based

or a hybrid AR tracking method:

The vision-based method is based on image matching algorithms. For instance, a vision-

based method can include the capturing of pictures through the phone’s integrated digital

camera and the subsequent comparing of them with reference pictures on a server-side database.

Comparing mechanisms are usually based on previously extracted features of the pictures. If

the photos match with those in the database, it is possible to identify an object and further

information about the recognized object can be gathered. But a vision-based tracking method

requires the use of complex pattern algorithms to determine matching pictures. They may

also be resource consuming and may overburden the device’s hardware [6]. Moreover, a vision-

based tracking system, only tracks objects which are in the view-point of the camera. To be

able to compare images in first place, it is necessary to set up a database of recorded reference

images. Thus, also a permanent connection to a server-side environment is necessary to compute

image pattern recognition algorithms. In addition, the robustness and accuracy of vision-based

tracking algorithms is effected by outdoor environmental conditions such as lighting conditions

or bad viewing conditions [7]. For instance, Ravi et al. [8] outline that the lightening conditions

for the recorded pictures change over time and may affect results of image comparisons. In

consequence, Ravi et al. suggest to build an image database, which contains day-time images

but also the night-time versions of them to overcome lightening problems. We discuss examples

of vision-based approaches in Section 3.1.1.

Chapter 1. Introduction 3

A sensor-based tracking method, on the other hand, requires the development of a mathe-

matical model that depends on several built-in sensors of a smartphone such as digital camera,

GPS radio, digital compass, and accelerometer. A sensor-based tracking system comprises a

complex algorithm which uses the GPS position of the device, sensor data (orientation and

direction information recorded by the device), and the geographical information (GPS coordi-

nates) of real-world objects (objects that have to be tracked) to determine the position of the

real-world objects relative to the current field-of-view of the device’s camera. Thus, the math-

ematical model is responsible for the calculation of screen coordinates in order to display AR

content within an AR interface in perfect alignment to the real-world objects. To avoid drift

the mathematical model has to update the screen coordinates of virtual objects periodically

with the current orientation and heading measurements [9]. A sensor-based approach allows to

display each real-world object of which geographical information is available. In consequence,

also objects which are covered by other objects are visualized by the AR system. This is not

possible if we utilize a vision-based tracking system.

Hybrid tracking systems combine techniques of sensor and vision-based methods. We de-

scribe examples of hybrid approaches also in Chapter 3.

In our work, we concentrate on a sensor-based tracking approach. Hybrid and vision-based

tracking methods, may require huge amounts of reference images on the client or service-side,

as well as complex image matching and classification algorithms. Thus, the integration of these

tracking approaches in a mobile AR system may easily overburden the processing power of

mobile phones. We further discuss this in Chapter 3.

1.2 Problem Description

In this section, we refer to two main problems which motivate our concentration on AR tech-

nologies on mobile phones and the additional integration of the principles of Linked Data to

such AR systems. We start with a discussion about issues that a normal 2D map view exhibits

in the context of spatial orientation. In the last part of this section, we discuss the problem

that most currently available AR systems use proprietary data formats and operate on top of

closed data repositories for delivering information about real-world objects.

1.2.1 2D Maps versus AR Interfaces

The implementation of an AR interface for visualizing resources might be advantageous in

contrast to the visualization resources on a 2D map: a map view can lead to multiple user

interactions to present the information the user desires [10]. AR allows the developing of more

conceivable UIs to ease user navigation and provide a more intuitive presentation of informa-

tion. Raubal and Panov [10] discuss several problems regarding user interaction with map-

centric mobile applications. In the following, we outline the most prominent problems with

map representations:

Chapter 1. Introduction 4

• North-up alignment of map: Most digital maps are aligned with the north-up direc-

tion (up on the map corresponds to north in the environment) just as analog maps. Based

on a study conducted by Seager and Fraser [11], people tend to rotate a map displayed

on a device by physical rotation towards a forward-up view (top-alignment of the map

corresponds to the environment that is in front of the viewer). In consequence, every

direction change by the user will lead to the additional user interaction of physical ro-

tating the device until the map is aligned with the real world. Then, users are able to

orient themselves more easily. Thus, Seager and Fraser [11] claim that people are able to

understand maps easier when they are forward-up aligned. They consolidate their claim

by referring to other accomplished studies [12–14].

• Zooming, user position, and static map extent: For maintaining orientation in

relation to the surrounding environment, the user position is usually displayed by a marker

in the center on a digital map of a mobile phone. To be able to get an overview of the

landscape or a more detailed view to observe visualized resources in contrast to the real-

word objects, users have to make use of the map scale or they have to navigate on the

map in order to extend the map view.

The comprehension of maps requires cognitive and spatial abilities [15]. If the user under-

stands the spatial relationship between the real 3D world and the flat 2D map, it is possible

that the user comprehends the map and is able to reference real-world objects with objects

displayed on the map [16]. Despite the fact that 2D maps are a common visualization technique

of the real world, AR interfaces represent an efficient yet alternative way for visualizing geo-

graphical information and also for accessing location-based data [6]. An AR interface reduces

the number of user interactions which a normal 2D map presentation requires (e.g. zooming,

map rotation) because the user only has to point the device over the real-world object (about

which the user requires more information) and has to wait until information is screened on the

display. The basic idea of AR is to place information directly on top of real-world aspects rather

than presenting information on isolated displays. By wrapping complex AR algorithms in easily

conceivable and intuitive UIs, AR allows to blur the distinction between the real world and the

UI [17]. Thus, users are not involved with complex cognitive processes to understand maps and

to maintain orientation on them. Suomela and Lehikoinen [6] confirm that AR UIs are intuitive

for the user because if virtual objects are integrated in live scenes, they become parts of the

real world and the user naturally knows how to interact with the real world.

1.2.2 Closed Datasets

Wikitude World Browser2 and Layar Reality Browser3 are two mobile AR browsers developed

for smartphones which enable to explore Points of Interest (POI) (cf. Definition 1.1 according

2Wikitude World Browser: http://www.wikitude.org/
3Layar Reality Browser: http://www.layar.com/

http://www.wikitude.org/
http://www.layar.com/

Chapter 1. Introduction 5

to the definition of [18]) through a mobile phone’s camera. They present the two most known

applications in the domain of mobile AR and are based on sensor-based tracking methods, as

introduced in Section 1.1.1. Wikitude and Layar exhibit a similar architectural structure which

comprises:

• an AR client presenting the running AR browser on the mobile phone,

• multiple provider servers which provide AR content4,

• and an AR server acting as handler between the client and the provider servers.

Definition 1.1 (Point of Interest (POI)). Is an individual data item typically as-

sociated with a geographic location (longitude, latitude, altitude) or a visual pattern

(marker, book cover etc.) that can be rendered in some way by the AR application.

The Point Of Interest data type must provide a description of the location or ref-

erence image used in tracking and the type of content to be rendered. (Butchard,

2011)

The user is able to choose between several AR overlays to load a certain set of POIs from a

specific content provider (e.g. Wikipedia5 articles, YouTube6 videos) into the AR interface [18].

Thus, POIs are hosted in isolated data repositories of the respective content providers.

However, these mobile AR systems exhibit severe problems and limitations regarding es-

pecially the integration of data sources. Although, they offer tools and APIs for publishing

user-generated content, they make use of proprietary data formats. Thus, a content creator

must contend with restricted control over the publishing of their own content [19] and they also

have to use a specific data format for each different AR system. Kim et al. [20] claim that the

providers of AR browsers “lack a ’generally applicable and comprehensive’ AR content model”.

In addition, AR browser platforms, such as Wikitude and Layar, do not include the pos-

sibility of adding user-generated content to extend information about a specific AR content.

Furthermore, data which are used in these systems can not be shared or reused in other sys-

tems. The user might experience domain-specific browsing because the displayed AR content is

fetched from static isolated data silos. AR content is not interchangeable between different AR

browser platforms. Thus, there is a need of data federation in order to fetch information about

a single resource from multiple sources. Then, the browsing experience becomes more extended.

1.3 Attempt for Linked Data Integration

In this work, we investigate the integration of LOD resources in mobile AR systems. The

principle of Linked Data relies on the publishing and the connection of structured data on the

Web under the consideration of certain publishing principles (cf. Section 2.2). Bizer et al. [21]

4Data displayed by AR browsers to describe real-world objects.
5Wikipedia: http://en.wikipedia.org/
6YouTube: http://www.youtube.com/

http://en.wikipedia.org/
http://www.youtube.com/

Chapter 1. Introduction 6

explained the LOD community project as the most visible example of adoption and application

of the Linked Data principles. The entities (resources) of the LOD sets are identified through

Uniform Resource Identifiers (URIs), thus resources and resource descriptions are retrievable

directly through HTTP or via a SPARQL endpoint7 [2]. The Resource Description Framework

(RDF)8 is used as data format and presents a graph-based data model which enables information

descriptions about things in the world by modeling data as statements in form of RDF triples

(subject, predicate, object) (cf. Section 2.2.2) [21]. The RDF data model allows to set RDF

links between related entities of different LOD sets and to generate in consequence a Web of

interlinked data.

Everyone is able to contribute to the LOD project by publishing RDF data and interlinking

the data with existing data of other Linked Data sets according to the Linked Data paradigm.

This openness already led to a considerable growth of Linked Data sets, from one data set in

the year 2007 to nearly 300 data sets (containing over 31 billion RDF triples with around 504

million RDF links between them) in the year 2011 [22]. As obvious, the number of data sets

has more or less doubled the last few years.

The huge amount of available interlinked data can be used in AR systems to describe real-

world aspects. Thereby, geographical information about the current whereabouts of the user’s

device is a possible entry point to the Web of Linked Data. The LOD paradigm enables it to

federate data from several different LOD sets to provide a comprehensive information source

for mobile AR systems. However, the federation of data from different LOD sets leads to

the occurrence of duplicate resource descriptions. Linked Data allows to define rules in order

to integrate and consolidate LOD resources properly in an AR system. In consequence, it is

possible to filter duplicate resources and to merge the remaining resources to a single RDF

graph. For instance, the identical resource detection can be based on a similarity metric such

as the Jaro-Winkler9 distance metric. We further discuss this in Section 4.3.2.

In the previous section, we mentioned that current mobile AR systems do not enable the

adding of information to a specific identified resource in order to extend the resource description.

In contrast, the principle of Linked Data (cf. Section 2.2) allows to link data to related data to

extend resource descriptions.

1.4 Contribution

The contribution of this work presents the creation of a formal and conceptual definition of

a mobile AR system that integrates LOD into AR interfaces. We demonstrate the feasibility

of our approach through a prototypical implementation of a mobile AR application for An-

droid10 phones to identify mountains. The prototype federates LOD resources from different

7HTTP-based query service that executes queries against Linked Data sets. cf. http://www.w3.org/TR/
rdf-sparql-query/

8Resource Description Framework: http://www.w3.org/RDF/
9Jaro-Winkler: a measure of similarity between two strings.

10Andorid: http://www.android.com/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/RDF/
http://www.android.com/

Chapter 1. Introduction 7

LOD sets and processes (filtering identical resources, merging and storing remaining resources)

data directly on the mobile device. Furthermore, our approach focuses on the creation of an AR

system that is built upon a sensor-based tracking method realized through a complex mathe-

matical model. This model comprises a tracking algorithm that takes recorded sensor data of

the device and the geographical information of the processed LOD resources for determining

proper screen coordinates to place virtual content on top of real-world objects on the screen of

the mobile device.

Our approach of integrating Linked Data resources into mobile AR systems exposes three

significant advantages compared to other existing mobile AR application approaches:

1. Most of the existing mobile AR applications exhibit closed architectural environments and

a closed object model because they use their own proprietary data formats for delivering

relevant data and they require mostly a permanent network connection. In those AR

systems, content providers have to provide data in a specific format. Consequently, they

have to adapt their content to each AR browser system at which they publish data. In

contrast, LOD makes use of HTTP which presents an uniform data access mechanism and

RDF which presents a standardized graph-based data model [21]. Our approach exploits

Linked Data as AR content and thus may present a possible approach to standardize AR

content by processing RDF-based data directly on the client side of a mobile AR system.

2. Furthermore, our intent is to prevent from the additional buffering and processing of AR

content on platform-specific Web servers. Our approach allows the use of the AR system

without a permanent network connection. We try to utilize available Linked Data Web

services and SPARQL endpoints to directly access the freely available data of the LOD

community, to federate, process, and store the data on the mobile device, and to use the

processed LOD resources to describe certain location points within an AR interface. The

storing of already processed data on the mobile device enables a later execution of the

system without maintaining network connection.

3. The possibility of browsing for further information about a specific resource is often not

provided. AR content sources of existing mobile AR applications systems are locked down

in isolated data repositories. Only content that is published by providers can be retrieved.

The principle of Linked Data includes that RDF links can be followed at run-time. By

using Linked Data sets as AR content sources, each resource is then identified by an URI

(each RDF resource presents an URI). This URI can be accessed if additional information

is requested. RDF descriptions of resources include links to related resources and these

can be followed link by link which lead do a more extended browsing experience. Our

approach is not restricted to a fixed set of data sources. The system retrieves resources

from multiple Linked Data sets.

We believe that our work contributes to the LOD initiative by providing a new type of

utilization for Linked Data in the domain of mobile AR computing.

Chapter 1. Introduction 8

Therefore, we specifically investigate the following research questions:

• What aspects have to be considered in developing a mathematical model that is capable

of presenting relevant aspects of the real world on the corresponding positions in an AR

interface?

• What elements should the AR tracking algorithm of the model comprise, to enable a

constant calculation of proper screen coordinates for visualizing content on top of real-

world aspects within an AR interface?

• How can Linked Data resources be exploited, to be able to integrate and visualize them

in an AR interface?

The proposed prototype of this work represents an AR mountain guide for identifying

mountains live in an AR interface. The application also offers the possibility to look up hiking

tours for a certain restricted area near the physical location of the device. Thus, we define an

additional research question:

• What kind of platform can serve as possible source for fetching hiking tours and how will

it be possible to display GPS tours saved within a GPX (GPS eXchange Format - GPS

data format) file on a map or an AR interface?

We already address the two main research questions in Chapter 3 and later in Chapter 4,

where we present and discuss our approach. At last, we demonstrate the implementation of our

approach in Chapter 5. The third research question is only briefly addressed within Chapter 3,

and then further discussed in Chapter 5.

On the basis of the defined research questions, we also defined three main research objectives

for this thesis:

• Evaluating the possibilities and requirements for developing an AR tracking method real-

ized through a mathematical model which takes advantage of the different sensors available

on current smartphones (e.g. digital compass, accelerometers etc.)

• Identifying of capabilities for exploiting certain Linked Data resources as AR content

within the model’s tracking algorithm so that it takes the current GPS information of the

device, the geo-locations of the resources near the device, and orientation and direction

sensor data in order to determine which mountains are in the current captured view of the

device’s digital camera view, and that it calculates in consequence screen coordinates for

displaying the aspects of the real world on the corresponding positions in an AR interface.

• Elaborating on methods for the aggregation of Linked Data to be able to display federated

data manifested in extended descriptions about a specific mountain.

Considering the fourth research question of this work, another research objective of this

work is the elaboration of a method that displays downloaded GPS tracks on a 2D map or in

an AR interface.

Chapter 1. Introduction 9

1.5 Thesis Organization

This thesis is structured as follows:

Chapter Title Description

Chapter 1 Introduction Provides an introduction into the motivation, attempt, and

contribution of this work and describes the specific objectives.

Chapter 2 Background Presents a literature review and offers an overview on the

technical background of this work by providing insights in AR,

LOD, Geodesy, and the Android OS.

Chapter 3 Related Work This chapter reports on publications and specific AR tracking

systems. We compare similar or somehow related AR approaches

and provide a current state-of-the-art analysis.

Chapter 4 Approach Describes our approach and the concepts behind the development

of a sensor-based tracking method for a mobile AR system that

integrates and processes Linked Data resources fetched from

different LOD sets as AR content. We outline how we exploit

LOD resources, we present the conceptual constituents of our AR

system, and we describe the mathematic model of the AR system

on a formal basis. We conclude this chapter with the presentation

of functional work flows our AR system will include.

Chapter 5 Proof of Concept Contains implementation details of our AR prototype that is

based on the conceptual architecture and the formal model

presented in Chapter 4. In this chapter, we present the class

structure and the data structures of the components of our AR

system. The chapter also includes the presentation of several

sequence processes and code snippets.

Chapter 6 Results and

Discussion

Comprises the presentation (several screen shots), evaluation, and

discussion of our developed mobile AR system.

Chapter 7 Final Remarks Delivers final conclusions on this work as well as outlooks and

other possible future works.

Table 1.1: Structure of this thesis

Chapter 2

Background

This chapter provides insights into the most relevant technologies and concepts used in this

work and delivers an overview about the relevant literature research. First of all, we describe

the basic idea and concept of AR and what application domains are existing for AR. After that,

we explain the LOD project where we also describe specific LOD sets that we use within our

proof-of-concept application. We explain RDF and the query language SPARQL as last topics

within the LOD section. The chapter also gives a brief introduction into Geodesy1 which is a

scientific discipline that studies the shape and size of the earth. We also provide an introduction

to the main concepts of GPS. We dedicade the last topic of this chapter to the Android operating

system: we describe the architecture of Android, the Android SDK, and the main aspects of an

Android application.

2.1 Augmented Reality

Augmented Reality can be seen as the principle of extending or complementing the real world

with virtual objects in real time. The aim of AR lies in adding computer-generated information

over real objects that are captured by the camera view. The augmented information let people’s

thoughts deepen on something they observe in the real world (e.g. a monument in the city) and

thus makes their experience of the perceived object more meaningful [23]. Although many

papers are dedicated to AR, there still exists no precise definition of AR until today [17].

Milgram et al. [24] explain the term AR by putting Reality and Virtual Reality (VR) as two

opposites on both sides of a continuum called Reality-Virtuality (RV) continuum (cf. Figure

2.1). Unlike in Virtual Reality where the whole scene consists of artificial objects, Augmented

Reality still allows the user to see the real world but combined with virtual objects.

Figure 2.1 illustrates the RV continuum of Milgram et al. [24], where the real world is placed

on the left side of the continuum called Reality. In the real world, a person observes objects

directly in her/his immediate surroundings. The VR is located on the right side of

1More information about Geodesy: http://www.iag-aig.org/

10

http://www.iag-aig.org/

Chapter 2. Background 11

Mixed Reality

Reality Augmented

Reality

Augmented

Virtuality

Virtual

Reality

Second LifeWikitude

Layar

Combat training

 environments

E
x
a

m
p

le

 A
p

p
s

 R
e
a

li
ty

-V
ir

tu
a
li
ty

C
o

n
ti

n
u

u
m

Figure 2.1: Milgram’s Reality-Virtuality Continuum2

the continuum where the environment is completely artificial, so all the appearing objects

are virtual objects. Examples for Virtual Realities are computer simulations, computer games

etc. An example for a VR presents “Second Life”. The term Mixed Reality (MR) stands for an

environment where the real world and the virtual world are combined and the objects of both

worlds are presented together, whereby the augmentation can happen in two different ways:

• augmenting the real world with virtual objects - Augmented Reality (AR)

• augmenting the virtual world with real objects - Augmented Virtuality (AV)

One example for AV, as mentioned in [25], is a soldier training simulation (or combat

training environment) where the environment is completely artificial for instance a simulation

presenting a forest where a training should be performed. The real soldier as person is operating

within this artificially created training simulation whereby he only observes his comrades as real-

world subjects. In Figure 2.1, we also depict examples for AR: the Wikitude World Browser

(cf. Figure 2.2) and the Layar Reality Browser, two AR client applications runnable on mobile

devices, which are able to superimpose the live camera view by displaying information on top of

real-world aspects like monuments. They provide an interface to access and interpret AR data.

Figure 2.2: Wikitude overlays the camera’s view with additional information about an upcoming
event at a specific location at the Old Town of Salzburg [26]

2Based on figures of [24, 25])

Chapter 2. Background 12

According to the fact that in AR the real world is augmented with virtual objects, an AR

system has to generate a composite view for the user. Azuma et al. [5] define an AR system to

have the following properties (excerpt from [5]):

• combines real and virtual objects in a real environment

• runs interactively, and in real time and

• registers (aligns) real and virtual objects with each other.

As already mentioned in Chapter 1.1, AR systems need to cover methods for tracking and

registration to be perceived as accurate AR systems [4]. Tracking aspects of the real world in

the near physical vicinity and register virtual objects with physical aspects in order to keep

them aligned. There already exist various kinds of tracking methods, which can be divided into

marker-based (cf. Definition 2.1) and marker-less (cf. Definition 2.2) tracking.

Definition 2.1 (Marker-based tracking). Marker-based tracking relies on optical

markers placed in the environment. The markers serve as reference points used

by an AR system for identifying marker patterns to display AR content in correct

alignment to the physical environment.

Definition 2.2 (Marker-less tracking). This tracking method can be classified as

vision-based, sensor-based, and hybrid tracking. Vision-based tracking methods rely

on pattern recognition and image matching algorithms to identify current position

and orientation of real-world objects in the physical environment. A sensor-based

tracking method relies on the used device’s built-in sensors like accelerometer, mag-

netometer or GPS radio and does not include any kind of image analysis processes.

Hybrid tracking methods improve the performance of vision-based methods by com-

bining them with sensor-based approaches [27].

In Section 3.1, we present and discuss the most relevant AR tracking approaches for mobile AR

systems.

2.1.1 Area of Application

First AR applications already appeared in the late 1960s. Over the years, researchers found

more and more areas which could benefit from AR. Now, AR is utilized for instance in the field

of medicine [28] (e.g. surgical training, AR overlay of medical scans), in the field of military

(e.g. training tools, supplementing field of view for pilot during flights) or also in the field of

entertainment (e.g. AR games, AR overlays during live sports broadcastings) [29].

Advances in AR tracking methods and the increasing computational power of mobile de-

vices, led to the development of AR systems for mobile phones [5]. Mobile AR enables the

Chapter 2. Background 13

creation of AR applications supporting the user in navigation, situational awareness, and geo-

located information retrieval. When combining location-aware computing with AR-based sys-

tems, the user has the possibility to discover pinpointed actual locations in the real world linked

with additional electronic information through optical see-through displays. Thus, AR is a

leading indicator of the next generation of Location-Based Services (LBS) [30]. To estimate

orientation and direction, the phone offers a digital compass and an accelerometer. In addition,

a built-in GPS chip determines the location information of the device. A mobile phone is also

suitable for vision-based tracking approaches, as the digital camera of the device can be used

for image recognition processes.

AR application platforms, such as Wikitude and Layar (cf. Section 1.2.2, Section 3.2.1.1),

call themselves AR browsers. An AR browser presents a client application that displays infor-

mation about things of the local surroundings on the top of the phone’s camera view. They

use the term “browser” because visualized data layers are like Web pages in traditional Web

browsers. An AR browser retrieves content from different online sources and users are able

to browse information directly in its corresponding real-world location. Today’s mobile AR

browsers not only allow to visualize textual overlays to pinpoint nearby physical objects, they

may also provide video or audio overlays or even 3D animated objects.

2.2 Linked Open Data

Linked Open Data is a W3C community project to interlink freely available information content

on the Web by means of semantic technologies [2]. Berners-Lee [31] outlined rules for the

provisioning of data by linking them to each other to gain a global information space:

• URIs should be used to give things in the LOD project a name.

• In order to be able to look up those names the use of HTTP URIs is important.

• People should be provided with useful information when they lookup an URI through the

usage of standards like RDF or SPARQL.

• The provided information for things has to include links to other URIs in order that more

things can be discovered through the following of the links.

In Figure 2.3, we present the LOD project of the year 2011. The figure illustrates the LOD

project in form of a cloud diagram. Within this diagram, each node presents a separate data

set. RDF (cf. Section 2.2.2) is used to interlink data from different data sources, which means

the interlinking happens in form of triples where a subject (resource in form of an URI) from

one data set is linked with an object (another URI or literal) from another data set [21]. The

presented LOD diagram reflects this interlinking of existing data sets (e.g. DBpedia, GeoNames,

or LinkedGeoData).

Chapter 2. Background 14

Figure 2.3: Linked Open Data Cloud 2011 [32]

Chapter 2. Background 15

The size of the nodes of the diagram in Figure 2.3 corresponds to the number of RDF

triples provided by each data set. The arrows visible between the nodes reveal that there are at

least 50 links between the data sets [33]. The thickness of the arcs indicates the number of links

between them. Moreover, the content of the cloud exhibits different categories. Each category is

marked through a different color. For instance, for this work, data sets which are marked yellow

(data sets of category “Geographic”) are important because they will be used to find out which

mountains are located in a certain area. The blue marked nodes are representing linking hubs

or cross-domains. A linking hub is a data set that contains a huge number of descriptions about

things which are again referenced several times in other more specialized data sets. The data

set is then referred to as hub because of the increasing number of links to other data sets [21].

The biggest linking hub, as seen in the diagram, is the DBpedia data set3.

The LOD cloud is growing constantly because the LOD project is open, which means that

anyone is able to contribute to the project by publishing data sets and interlinking them with

already existing data sets depicted in the diagram [21]. In Figure 2.4, we illustrate how fast the

size of the cloud has increased since the year 2007.

20
07

−0
5−

01

20
07

−1
0−

08

20
07

−1
1−

07

20
07

−1
1−

10

20
08

−0
2−

28

20
08

−0
3−

31

20
08

−0
9−

18

20
09

−0
3−

05

20
09

−0
3−

27

20
09

−0
7−

14

20
10

−0
9−

22

20
11

−0
9−

11

0
50

15
0

25
0

LOD Sets Increase

Date

D
at

as
et

s

Figure 2.4: LOD sets increase from 2007 - 2011

In May 2007, there only existed 12 Linked Data sets. Since 2007 until 2010 the volume

increased every year by more than a double. The last update happened in September 2011

which revealed a total of 259 data sets.

As the content of Linked Data on the Web increases year by year, the interest in creating

tools which are making use of this content grows too. There already exist Linked Data browsers

(navigate the information space), Linked Data search engines (crawl Linked Data from the

Web by following RDF links) but also domain-specific Linked Data applications (exploit data

3DBpedia is further described in Section 2.2.1.

Chapter 2. Background 16

of specific data sets) [21]. Linked Data applications, designed for mobile phones, are yet a bit

rare, but the interest in developing approaches in that kind of domain is growing. A noteworthy

already published location-aware Linked Data browser is DBpedia Mobile4 which visualizes

DBpedia entities on a 2D map.

DBpedia Mobile

According to [34], DBpedia Mobile is a DBpedia client application for mobile phones that

provides a map view on which the user can see her/his position and nearby DBpedia resources.

It is realized as a client-server application whereby queries, data processing and formatting,

and storage activities are performed completely on the server side by the Marbles5 Linked Data

engine. Marbles retrieves data from multiple sources and integrates it into a single graph. In

addition, Marbles generates Fresnel6-based views to present the retrieved data. Thus, if a user

selects a resource on the map, the server creates a Fresnel-based view that is displayed on the

device and contains a description of the selected resource and RDF links into other Linked Data

sets. In addition, DBpedia Mobile allows users to publish user-generated content and interlink

it with nearby DBpedia resources.

2.2.1 Integrated LOD Sets

As seen within the LOD cloud digram (cf. Figure 2.3), there are many LOD sets available for

accessing RDF data. In our proof-of-concept implementation, we use three different LOD sets

(GeoNames, LinkedGeoData, and DBpedia) for fetching mountain specific data. We further

describe them in the following sub-sections.

2.2.1.1 GeoNames

GeoNames represents a community project comprising a database which contains around 10

million names of geographical entities (e.g. countries, lakes) from all over the world. The official

website of GeoNames [35] notes that data contents are organized through nine different feature

classes to categorize geographical points of interest (mountains, lakes, cities etc.). There exist,

as well, 645 feature codes for further sub-categorizing the data sets. The category “T” can

be further sub-categorized in peak, rock, pass, mountain etc. In this work, the sub-categories

could be used to display different groups of mountains in the AR interface. For instance,

defining a filter to load mountains and rocks. Furthermore, resources of GeoNames can be freely

accessed using one of the many available Web services (mainly REST-based) or by exporting

the GeoNames database dump (text file) which is updated on a daily base.

An example RDF description file about a geographical entity, as obtained through one

of the GeoNames Web services, can be accessed via the URI http://sws.geonames.org/

4DBpedia Mobile: http://wiki.dbpedia.org/DBpediaMobile
5Marbles Linked Data engine: http://marbles.sourceforge.net/
6Fresnel: browser-independent vocabulary for specifying how RDF-graphs are presented

http://sws.geonames.org/2774332/about.rdf
http://sws.geonames.org/2774332/about.rdf
http://wiki.dbpedia.org/DBpediaMobile
http://sws.geonames.org/2774332/about.rdf
http://marbles.sourceforge.net/
http://sws.geonames.org/2774332/about.rdf
http://sws.geonames.org/2774332/about.rdf

Chapter 2. Background 17

2774332/about.rdf. The URI contains the code 2774332 which is a unique integer ID of

that certain entity, and the ending about.rdf of the URI enables the loading of the content

in RDF/XML format. We present the content of this file in Listing 2.1. It contains an RDF

description about the Kitzsteinhorn7. This example file starts with the definition of prefixes.

For instance, the prefix gn stands for the GeoNames ontology. The feature class and the feature

code are defined in lines 12 and 13. They reveal that the entity of name Kitzsteinhorn is

of class T and the feature code MT stands for the sub-category mountain in the GeoNames

ontology

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <rdf:RDF xmlns:cc="http://creativecommons.org/ns#"

3 xmlns:foaf="http://xmlns.com/foaf/0.1/"

4 xmlns:gn="http://www.geonames.org/ontology#"

5 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

6 xmlns:wgs84_pos="http://www.w3.org/2003/01/geo/wgs84_pos#">

7 <gn:Feature rdf:about="http://sws.geonames.org/2774332/">

8 <rdfs:isDefinedBy>http://sws.geonames.org/2774332/about.rdf</rdfs:isDefinedBy>

9 <gn:name>Kitzsteinhorn</gn:name>

10 <gn:alternateName>Kitzstein</gn:alternateName>

11 <gn:alternateName>Kitzsteinhorn</gn:alternateName>

12 <gn:featureClass rdf:resource="http://www.geonames.org/ontology#T"/>

13 <gn:featureCode rdf:resource="http://www.geonames.org/ontology#T.MT"/>

14 <gn:countryCode>AT</gn:countryCode>

15 <wgs84_pos:lat>47.18805</wgs84_pos:lat>

16 <wgs84_pos:long>12.68751</wgs84_pos:long>

17 <wgs84_pos:alt>3209</wgs84_pos:alt>

18 <gn:wikipediaArticle rdf:resource="http://en.wikipedia.org/wiki/Kitzsteinhorn"/>

19 <rdfs:seeAlso rdf:resource="http://dbpedia.org/resource/Kitzsteinhorn"/>

20 ...

21 </gn:Feature>

22 </rdf:RDF>

Listing 2.1: GeoNames resource description in RDF/XML

2.2.1.2 LinkedGeoData

According to the official LinkedGeoData website [36], LinkedGeoData presents a large Linked

Data spatial knowledge base that provides geographical data content collected from the Open-

StreetMap8 project as RDF triples and follows thereby the Linked Data principles. Currently,

LinkedGeoData comprises about 350 million geographical nodes (longitude, latitude coordi-

nates) and its RDF data content includes about 2 billion triples. Furthermore, LinkedGeo-

Data provides multiple interlinks with DBpedia and GeoNames. The goal of this project is

to add a spatial dimension to Linked Data. For instance, the URI for accessing the RDF

description of the resource Kitzsteinhorn at LinkedGeoData can be accessed through http:

7Mountain located in Austria
8OpenStreetMap: http://www.openstreetmap.org/

http://sws.geonames.org/2774332/about.rdf
http://sws.geonames.org/2774332/about.rdf
http://linkedgeodata.org/page/node36688518.rdf
http://linkedgeodata.org/page/node36688518.rdf
http://linkedgeodata.org/page/node36688518.rdf
http://linkedgeodata.org/page/node36688518.rdf

Chapter 2. Background 18

//linkedgeodata.org/page/node36688518.rdf. Every entity notation within Linked-

GeoData starts with the word node followed by an integer ID of that specific entity. We present

the content of an example RDF file from LinkedGeoData in Listing 2.2. The LinkedGeoData on-

tology is presented by the prefix lgdo in this example. An entity which is a real-word mountain

is defined as rdf:type of http://linkedgeodata.org/ontology/Peak.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:lgd="http://linkedgeodata.org/triplify/"

4 xmlns:lgdp="http://linkedgeodata.org/property/"

5 xmlns:owl="http://www.w3.org/2002/07/owl#"

6 xmlns:lgdo="http://linkedgeodata.org/ontology/"

7 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

8 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

9 xmlns:georss="http://www.georss.org/georss/" >

10 <rdf:Description rdf:about="http://linkedgeodata.org/triplify/node36688518">

11 <owl:sameAs rdf:resource="http://sws.geonames.org/2774332/"/>

12 <lgdo:contributor rdf:resource="http://linkedgeodata.org/triplify/user22422"/>

13 <lgdp:created_by>Potlatch 0.7b</lgdp:created_by>

14 <lgdo:ele rdf:datatype="http://www.w3.org/2001/XMLSchema#float">3203</lgdo:ele>

15 <rdfs:label>Kitzsteinhorn</rdfs:label>

16 <rdf:type rdf:resource="http://linkedgeodata.org/ontology/Peak"/>

17 <georss:point>47.1872574 12.6859959</georss:point>

18 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">12.6859959</

geo:long>

19 <geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">47.1872574</geo:lat>

20 </rdf:Description>

21 </rdf:RDF>

Listing 2.2: LinkedGeoData resource description in RDF/XML

OpenStreetMap

OpenStreetMap (OSM) presents a collaborative project aiming to collect free geographical data

to build an open modifiable map of the whole world [37]. Everyone has the chance to contribute

to the project and also has the possibility to make use of the geographical data set under the

terms of the Creative Commons Attribution-ShareAlike 2.0 (CC-BY-SA)9 license. To be able

to contribute to the project, one has to register at https://www.openstreetmap.org/

user/new, so that it is possible to upload self-recorded GPS data or even whole GPS tracks.

Moreover, registered users are allowed to modify incorrect data or enrich existing maps or vector

data with further information or even render maps with one of OSM’s provided editing tools [38].

As we intend to access GPS tracks within this work, we use OpenStreetMap we as the source for

loading GPS tracks from the Web. The tracks are listed at http://www.openstreetmap.

org/traces but unfortunately OpenStreetMap does not offer a Web service to be able to

access tour data more easier. The listed tracks are described by different tags that a creator

of a track determines during the uploading process. The tags allow to filter specific tracks.

9CC-BY-SA: http://creativecommons.org/licenses/by-sa/2.0/

http://linkedgeodata.org/page/node36688518.rdf
http://linkedgeodata.org/page/node36688518.rdf
http://linkedgeodata.org/ontology/Peak
https://www.openstreetmap.org/user/new
https://www.openstreetmap.org/user/new
http://www.openstreetmap.org/traces
http://www.openstreetmap.org/traces
http://creativecommons.org/licenses/by-sa/2.0/

Chapter 2. Background 19

However, all the tracks can only be listed within Web pages and you can only request tracks for

one tag at a time.

2.2.1.3 DBpedia

DBpedia is a community project based on Linked Data principles that extracts data sets from

Wikipedia and transforms them into RDF triples [39]. Auer et al. [39] outline that trough DB-

pedia it is possible to link Wikipedia contents with other data sets on the Web and the user has

the possibility to perform sophisticated queries against these contents. Thus, DBpedia contents

can easily be applied within Semantic Web applications. According to [40], the DBpedia version

3.7 contained descriptions of about 3.64 million things and about 1 billion pieces of information

(RDF triples) in September 2011. The RDF description about the resource Kitzsteinhorn at

DBpedia can be accessed via the URI http://dbpedia.org/data/Kitzsteinhorn.rdf

(cf. Listing 2.3). The DBpedia ontology is presented by the prefix dbpedia-owl. An entity

which presents a real-world mountain is defined as an entity of type dbpedia-owl:Mountain.

1 <?xml version="1.0" encoding="utf-8" ?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

4 xmlns:owl="http://www.w3.org/2002/07/owl#"

5 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

6 xmlns:dbpedia-owl="http://dbpedia.org/ontology/">

7 <rdf:Description rdf:about="http://dbpedia.org/resource/Kitzsteinhorn">

8 <rdf:type rdf:resource="http://dbpedia.org/ontology/Place" />

9 <rdf:type rdf:resource="http://dbpedia.org/class/yago/MountainsOfTheAlps"/>

10 <rdf:type rdf:resource="http://dbpedia.org/ontology/Mountain" />

11 <owl:sameAs rdf:resource="http://dbpedia.org/resource/Kitzsteinhorn" />

12 <owl:sameAs rdf:resource="http://linkedgeodata.org/triplify/node/36688518#id"/>

13 <owl:sameAs rdf:resource="http://rdf.freebase.com/ns/m/05qwmq"/>

14 <owl:sameAs rdf:resource="http://sws.geonames.org/2774332/"/>

15 <rdfs:comment xml:lang="en">The Kitzsteinhorn is a mountain in the main chain of the

Alps in the district of Kaprun, Salzburg, Austria. The Kitzsteinhorn is part of

the Hohe Tauern range in the eastern Alps and reaches a height of 3203 m above

sea level. It was first climbed in 1828 by Johann Entacher. The summit can be

reached using the Kaprun Gletscherbahnen (Glacier Railways), from the valley

station at 911 m.</rdfs:comment>

16 <geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#float">47.18805694580078</

geo:lat>

17 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#float">12.6875</geo:long>

18 <dbpedia-owl:mountainRange rdf:resource="http://dbpedia.org/resource/Hohe_Tauern"/>

19 <dbpedia-owl:elevation rdf:datatype="http://www.w3.org/2001/XMLSchema#double">3203</

dbpedia-owl:elevation>

20 </rdf:Description>

21 </rdf:RDF>

Listing 2.3: DBpedia resource description in RDF/XML

http://dbpedia.org/data/Kitzsteinhorn.rdf

Chapter 2. Background 20

2.2.2 Resource Description Framework

The Resource Description Framework (RDF) is a W3C standardized model for data interchange

on the Web [41]. The data model is based on a directed graph and its data content are statements

about resources. A statement represents a triple which consists of the following three parts [2]:

• Subject: an URI identifying the described resource about which the statement is made

• Predicate: exhibits the kind of relationship that exists between subject and object and

is also identified by an URI

• Object: represents a certain kind of property value and presents a literal value (string,

date etc.) or an URI

Figure 2.5 illustrates an example graph comprising two RDF statements. Subjects and

objects are the nodes within an RDF graph. The subject within this example presents the URI

http://dbpedia.org/resource/Kitzsteinhorn and is presented as an ellipse. The

arcs are the predicates directed from the subject node to the object node. Object nodes which

represent an URI are modeled as an ellipse, but objects which are literals are modeled as boxes.

http://dbpedia.org/resource/

 Kitzsteinhorn

dbpedia-owl:Mountain

rdf:type

dbpprop:elevation 3203

Figure 2.5: RDF graph example

Listing 2.4 depicts the RDF/XML syntax corresponding to the graph in Figure 2.5.

1 <?xml version="1.0" encoding="utf-8" ?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntaxns#" xmlns:dbpprop="http://

dbpedia.org/property/">

3 <rdf:Description rdf:about="http://dbpedia.org/resource/Kitzsteinhorn">

4 <dbpprop:elevation xmlns:dbpprop="http://dbpedia.org/property/" rdf:datatype="

http://www.w3.org/2001/XMLSchema#integer">3203</dbpprop:elevation>

5 </rdf:Description>

6 <rdf:Description rdf:about="http://dbpedia.org/resource/Kitzsteinhorn">

7 <rdf:type rdf:resource="http://dbpedia.org/ontology/Mountain"/>

8 </rdf:Description>

9 </rdf:RDF>

Listing 2.4: Example of RDF statement in RDF/XML format

http://dbpedia.org/resource/Kitzsteinhorn

Chapter 2. Background 21

An RDF/XML-based file starts with a root node named rdf:RDF, the XML declaration

and the necessary XML namespaces. The example in Listing 2.4 contains two statements.

The subjects of the statements are rdf:Description nodes which include an rdf:about

attribute that denotes the name of the subject through its URI. The rdf:Description tags

enclose the predicates of the statements with the objects as their value. In line 4 the object

presents a literal value and in line 7 we give an example of an object that presents an URI.

However, RDF does not provide the possibility to define classes of things in the world

and properties to describe relations between them [42]. Instead, vocabularies like the RDF

vocabulary description language - RDF Schema Specification (RDFS) 10 and the Web Ontology

Language (OWL)11 can be applied. They are more expressive languages for describing the

syntax and semantics of vocabularies in a machine-understandable way [42].

Using RDF as data model in the LOD context, leads to following benefits [2]:

• RDF is designed to be used globally, so that anybody is able to refer to anything. This is

possible through the utilization of globally unique identifiers namely HTTP URIs.

• Each RDF triple can present a starting point for exploring the huge data space on the Web.

Any URI in RDF graphs can be accessed to retrieve information. As a result, additional

information for each resource can be easily discovered by following the provided links.

• The RDF data model allows to mix and combine terms from different vocabularies for the

description of resources. Vocabularies sometimes do not comprise all terms to sufficiently

describe an entity. For instance, DBpedia entity descriptions mostly also contain terms of

the FOAF (Friend-of-a-Friend) Vocabulary Specification12, a vocabulary used to present

data about people, or W3C’S Basic Geo Vocabulary13, a vocabulary for representing

latitude, longitude and altitude information in the WGS84 geodetic reference datum.

• The RDF data model and the schema languages RDFS and OWL together are expressive

enough to present data as tightly or semi-structured as needed.

.

2.2.3 SPARQL

SPARQL is a W3C Candidate Recommendation and represents a query language for RDF [43].

SPARQL not only presents a query language but also a protocol for data access so that all

RDF data sources can be queried [44]. A SPARQL query specifies patterns within the data

which have to match to receive results. These patterns present triple patterns just like RDF

triples, whereby in the query each part of the triple can be a variable. For instance, the

10RDF Schema Specification: http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
11Web Ontology Language: http://www.w3.org/TR/owl-features/
12FOAF Vocabulary Specification: http://xmlns.com/foaf/spec/
13W3C Basic Geo Vocabulary: http://www.w3.org/2003/01/geo/

http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/owl-features/
http://xmlns.com/foaf/spec/
http://www.w3.org/2003/01/geo/

Chapter 2. Background 22

example presented in Listing 2.5 contains the variable ?movie which presents the subject of an

RDF triple. The results of such SPARQL queries can be result sets (triples) that matched the

determined pattern or RDF graphs.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX movies: <http://www.example.com/movies#>

3 SELECT ?movie

4 WHERE {

5 ?movie rdf:type movies:Movie .

6 ?movie movies:Director "Stephen King" .

7 }

8 ORDER BY ?movie

Listing 2.5: SPARQL query example

In the case of Listing 2.5, we specify two triple patterns within the WHERE clause. Variables

are indicated by an interrogation mark (e.g. ?movie). Furthermore, in SPARQL it is possible

to build prefixes. For instance, the prefix rdf stands for the URI http://www.w3.org/

1999/02/22-rdf-syntax-ns#. Generally, URI items are enclosed in angle brackets and

literals are enclosed in apostrophes within SPARQL queries. In line 5 of Listing 2.5, we define

that the type of the resources that we request, has to be of the class Movie. In line 6 we specify

that only movies of which the director is named Stephen King should be returned. Finally,

we define that results (which will be URIs of all the resources that match the two patterns in

line 5 and 6) have to be in alphabetic order (line).

2.3 Global Positioning

Global positioning plays an important role in this work because in our approach location-based

data is used to send spatial queries against LOD sets in order to fetch data about real-world

objects that are located in the near vicinity of the device. Thus, within the following section,

we give a brief overview of the scientific discipline Geodesy and we also explain details of the

Global Positioning System.

2.3.1 Geodesy

Geodesy is a scientific discipline with the purpose of surveying the earth’s shape and size and

of studying its gravity field [45]. For instance, Geodesy approaches the positioning of points on

the surface of the earth. Thereby, it uses different coordinate systems. The most common way

of measuring a geographical location on the globe is with the use of the geographical coordinate

system. The measures that are used in the geographical coordinate system are called longitude

and latitude (measure in degrees).

To understand latitude and longitude, one can imagine a globe covered full of vertical

and horizontal circles (cf. Figure 2.6). The longest circle horizontally is the equator whose

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#

Chapter 2. Background 23

Figure 2.6: Illustration of geographic latitude and longitude of the earth [46]

latitude is 0◦. The range of latitude values reaches from -90◦ to 90◦ (positive values in northern

hemisphere, negative values in southern hemisphere). The lines of longitude cross the latitude

lines and meet at the poles. Measurements of longitude start at the Prime Meridian (line

through Greenwich England) with 0◦ and proceed with negative values till -180◦ towards west

and positive values up to 180◦ towards east [47].

2.3.2 Global Positioning System

The Global Positioning System (GPS) is part of an existing satellite-based navigation system

also known as Navigation System for Timing and Ranging (NAVSTAR) which was founded by

The United States Department of Defense (USDOD) and can be used to gather signals with a

GPS receiver for determining current positions on the earth’s surface [48]. For instance, GPS

finds usage in navigation on land, air, and sea, as well as, in surveying the land and generating

precise geographical maps. The GPS system can be divided into three separate segments called

space, control, and user [49]:

Space Segment:

This segment represents the GPS satellites and GPS orbits around the globe. There are 24

satellites (and some more representing a substitute in case others won’t work anymore) which

are circling around the globe on GPS orbits. Thereby, the orbits are tilted in an angle of 55◦

relative to the equator and they are shifted in multiples of 60◦ against each other. Each orbit

contains four or more satellites which entails that at least four GPS satellites can be used around

the clock from most points on the earth, to gather signals for determining the current position

on earth. The satellites are equipped with a cesium atomic clock which is very accurate and

used to extend the sending signals with timing information [48]. According to [50], the signals

(sent by the GPS satellites) are two L-band carrier frequencies (L-band = 1,000 - 2,000 MHz)

called L1 and L2. The two carrier frequencies are modulated by two pseudo-random noise

(PRN) ranging codes, called coarse/acquisition (C/A) code and precision (P) code which are

Chapter 2. Background 24

illustrated in Figure 2.7. The C/A-code exhibits a 1,023 MHz chip rate (1 ms period) and

enables, for instance, accurate range measurements and simultaneous range measurements from

multiple satellites [48].

Figure 2.7: GPS signal modulation14

The C/A-code is carried only by the L1 signal which has a frequency of 1,575.42 MHz. In

Figure 2.7, the C/A-code is modulated onto the L1 carrier. The figure also illustrated that the

P-code can be modulated onto both L1 and L2 carriers, whereby it has a rate of 10.23 MHz

(7 days period) and presents the navigation ranging code [50]. The L2 signal (frequency of

1,227.6 MHz) is only used by military applications and allows amongst other properties a more

precise global positioning. In contrast, the L1 signal is freely available to the public.

In addition, each satellite sends a navigational message which comprises, for instance, the

system time, clock behavior, the almanac data (enables the calculation of the location of every

satellite within the GPS constellation - valid for several months) or the ephemeris data (enables

more precise calculation of satellite position for user position estimation - only valid for a few

hours) and presents a 50 Hz signal [48]. When transmitted, the navigational message is added

either to the C/A-code or the P-code as seen in Figure 2.7.

Control Segment:

The U.S. military owns several ground stations that are located around the world for control-

ling, tracking, and observing the GPS satellites. Six of them present monitor stations without

employed staff that continuously gather navigation signals of the GPS satellites [52]. These

monitored data are then transmitted to a master control station (in Colorado, U.S.) where the

data are analyzed. Thus, it is possible that the master station makes adjustments in case the

signals are not accurate enough anymore. Therefore, the control segment also comprises four

large ground-antenna stations which are responsible for constantly updating the GPS satellites

(e.g. updating orbiting position) [49].

14Based on figure of [51]

Chapter 2. Background 25

User Segment:

The user segment presents a GPS receiver. Most smartphones are already equipped with a

built-in GPS receiver. A receiver has the ability to receive, analyze, and elaborate on GPS

satellite signals to determine the current position on earth. A GPS receiver needs two different

information to be able to calculate a geographic position [53]:

• Location of 3 or more satellites: As earlier mentioned, the GPS satellites are contin-

ually sending a navigational message to the GPS receivers which contains among other

information the almanac data or the ephemeris data. The almanac data include informa-

tion about the orbits of all GPS satellites, so it is possible to determine the position of a

satellite for a certain time. Ephemeris is the measured deviation from the orbit of a GPS

satellite and is used for a more precise determination of the actual position of a satellite.

As a result, almanac and ephemeris data can be used to calculate a precise position of a

GPS satellite for a given time [53].

• Distance to the satellites: Transmitted signals of the satellites are traveling by speed

of light to the ground of the earth. The distance is gained by the time the signal needed

to arrive at the receiver multiplied by its speed (cf. Equation 2.1).

Distance = TransitT ime ∗ SpeedofLight (2.1)

After the determination of the geographical location of 3 different GPS satellites and the

distance of these satellites to the used GPS receiver, the process of trilateration is applied to

calculate the actual position on earth. The known information (3 geo-points and the distances

to the GPS receiver) is used to built 3 spheres (cf. Figure 2.8).

1

Figure 2.8: Geographic position determination with four satellites

The current possible GPS position lies on the intersections of these spheres and the possible

locations on earth is narrowed down to two. According to [53], it is impossible to synchronize the

Chapter 2. Background 26

clock of a GPS receiver with the expensive and precise atomic clocks of the GPS satellites. Thus,

the two location points, determined by using only three satellites, would be too inaccurate. In

order to calculate a more precise position on earth, the GPS receiver uses instead of three four

satellites (cf. Figure 2.8).

2.4 Android

Android presents a set of software modules including an operating system, middleware, and

several key applications designed for mobile devices. It is led by Google15 and was originally

developed by the Open Handset Alliance16. Moreover, Android is an open source development

platform, which means that a developer has complete access to the Android framework API.

Thus, users have the possibility to create their own applications and reuse the core components

of the Android architecture [54]. That is also one of the reasons why we chose to develop our

proof-of-concept AR prototype based on the Android mobile operating system.

2.4.1 Android Architecture

The Architecture of Android consists of several layers which are visible in Figure 2.9 and further

described in the following paragraphs.

1

Figure 2.9: System architecture of Android17

15Google: http://www.google.com
16Open Handset Alliance: http://www.openhandsetalliance.com/
17Based on figure of [55]

http://www.google.com
http://www.openhandsetalliance.com/

Chapter 2. Background 27

Applications

The first layer contains applications. Android comes with various core applications like calen-

dars, e-mail programs or Internet browsers. An average user mostly makes use of this layer [54].

Application Framework

As already mentioned above, the user has the possibility to access the Android framework API.

Beneath all core applications of Android lies a group of systems and services which include for

instance a set of Views (used to build a user friendly UI), Content Providers (enable to access

data of other applications), a Resource Manager (enables access to objects such as graphics

or layout files), a Notification Manager (for displaying notifications in the status bar) and an

Activity Manager (life-cycle management, provides navigation back-stack). With the reuse of

all these core components of the framework API the user can create a new fully executable

Android application, which does not differ from the phone’s core applications, because every

application can be built to have the same access to a device’s capabilities [54].

Libraries

Several components of Android are based on C/C++ libraries. Some of the core libraries are

listed in Figure 2.9 [54].

Android Runtime

Android programs are based on Java code. In consequence, Android contains several core

libraries of the Java programming language. Furthermore, the architecture also contains a

Dalvik Virtual Machine (VM) in this layer. If an Android application is executed, it runs with

its own instance of Dalvik VM and in its own process [54].

Linux Kernel

The whole architecture of Android is built on top of a Linux Kernel which serves as some kind

of abstraction layer between all the software components and the hardware components of an

Android device [54].

2.4.2 Android SDK

The Android software development kit (Android SDK) presents a set of development tools for

the creation of Android applications. The SDK is licensed under Creative Commons Attribution

2.518, freely available at the Android developer web site19, and runs on most major OS platforms

(eg. Windows20, Mac OS X21, or Linux22).

18Creative Commons Attribution 2.5: http://creativecommons.org/licenses/by/2.5/
19Android developer web site: http://developer.android.com/sdk/index.html
20Windows: http://www.microsoft.com/
21Mac OS X: http://www.apple.com/osx/
22Linux: www.linux.org/

http://creativecommons.org/licenses/by/2.5/
http://developer.android.com/sdk/index.html
http://www.microsoft.com/
http://www.apple.com/osx/
www.linux.org/

Chapter 2. Background 28

The SDK contains the Android platform, many tools, libraries, emulators, sample code,

and a complete documentation for creating Android apps. As Android applications are written

in Java, the Android SDK comprises an add-on to the Java Development Kit23 (JDK). There

is also a plug-in for the software development environment Eclipse24 freely available [56].

2.4.3 Android Application Components

As we present code snippets of the AR prototype within Chapter 5, we also describe the basic

components of an Android application in the following paragraphs. This is necessary to follow

the implementation explanations in Chapter 5.

Activities

An Android activity presents the presentation layer of an application [57]. An activity corre-

sponds to one window in which the UI is drawn and presented on the screen, so that the user has

the possibility to interact with the phone. Some examples of such interactions are for instance

the sending of messages, the taking of photos, and the viewing of photos in a gallery. Android

applications typically consist of several activities [58]. Each Android application comprises a

single main activity. The main activity provides the graphical interface which is displayed when

the application launches and thus presents the entry point to the application. Activities can

start other activities and they are organized in some kind of a back-stack hierarchy. The current

running activity is always on top of the stack. If a new one is started the old one is paused

and moved back into the stack of the system. If the back-key on the device is pushed, the old

activity in the back-stack is resumed and comes again on top of the stack [58].

Android applications are not destroyed and restarted very often, instead they are paused

and resumed many times. An Android application is designed to run in its own process as long

as possible, while its components are listening to state changes so that the application can react

as appropriate [58]. In Figure 2.10, we present the life-cycle events of an Android application

and the different kind of states an activity can transition into.

If a new activity is created, the system activates the onCreate() method. This method

is mostly used to set up the UI of the application. The triggering of onCreate() also causes

the starting of the onStart() and onResume() methods [59]. In case, the system puts an

activity back into the back-stack (because the user moves to another activity), the onPause()

method is activated and thus the new state of the activity changes to paused. If the activity is

in the pause state, the system is able to use two methods to change the state of an activity: the

onResume() method (if the activity is brought to the front again) or the onStop() method.

If resources had been released in the onPause() method, they should be acquired again in

the onResume() method [59]. The moment the activity becomes invisible for the user, the

23Java Development Kit: http://www.oracle.com/technetwork/java/javase/downloads/index.
html

24Eclipse: http://www.eclipse.org/

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/

Chapter 2. Background 29

New Activity

1. onCreate()

2. onStart()

3. onResume()

3. onResume()

2. onStart()

1. onRestart()

onStop() onResume() onPause()onDestroy()

<<kill>>

<<kill>>

Running

Paused

Stopped

Destroyed

Figure 2.10: Application life-cycle

system calls the onStop() method. However, after the system has stopped an activity, it can

re-activate this activity by calling the onRestart() method (followed by the onStart() and

onResume() methods) [59]. Sometimes, if an activity is in the back-stack, the Android system

decides to kill the activity. In this case, the onDestroy() method is triggered.

Not all of this state changing methods are used inside every Android application. Most of

the time, developers are only defining onCreate(), onPause(), and onResume() methods

within their Android projects [56].

Intents

Intents are used to send messages through the system. Therefore, they present asynchronous

communication mechanisms between the components of the Android system. Intents can also be

used to start Activities or to bind services and they present an object of passive data structure

which holds the information about the operation which has to be performed or of the actions

that took place and which were broad-casted across the system [58]. Moreover, intents can be

explicit or implicit [56]:

Explicit: The intent specifies the class that has to be loaded.

Implicit: The intent does not specify a target class name but defines an action which

should be performed.

Services

Services do not include an UI such as an activity. They present possible tasks which can be

executed in the background of activities. The system activates or stops a service within an

Chapter 2. Background 30

activity through intents. As long as the service is running, the application components can bind

to it [57]. As services perform processes in the background, they are able to ensure that the

system continues to execute certain tasks in the background, even if the application’s activities

are not visible or active any more. Thus, it is possible that applications, which are not in an

active state, are able to continue to respond to events through the use of an Android service [57].

2.4.4 Sensor Support

Our proof-of-concept AR prototype requires the access of several device sensors for making the

AR tracking and registering of virtual objects with real-world objects possible. Most smart-

phones, available on the market, are equipped with sensors that are able to detect physical

and environmental properties. For instance, the Android 2.3 version supports multiple kind of

sensor types which we list within Table 2.1 [60].

Sensor Type Usage

accelerometer measures acceleration in m/s2

gravity indicates the direction and magnitude of gravity in m/s2

gyroscope measures orientation - the rate of rotation around the

device’s local axis (< x, y, z >)

magnetic field measures magnetic field in micro-Tesla

light measures ambient light in lux

proximity measures distance of blocking object in centimeters

temperature measures temperature in degrees Celsius

rotation vector represents orientation of device as combination of angle

and axis in which the device rotates through an angle θ

around an axis < x, y, z >

pressure measures air pressure in kilo pascals

Table 2.1: Sensors supported by Android

In the course of this thesis, we only make use of the magnetic field and accelerometer sensors

to obtain the phones orientation and direction information constantly:

The accelerometer enables the measurement of acceleration along three directional axes

lateral (left-right), longitudinal (forward-backward), and vertical (up-down). The acceleration

is used to measure movement and is defined as the rate of change of velocity. Unfortunately,

velocity is not measured thus speed is directly measured by determining acceleration changes

over time [57].

The magnetic field sensor measures ambient magnetic field in micro-Tesla along the x-,

y-, and z-axes and is also known as compass because this sensor is able to detect the earth’s

magnetic field and thus indicates where north is [56]. In Section 5.2.1.2, we further explain the

implementation of those two sensor types within our AR prototype.

Chapter 2. Background 31

2.5 Summary

AR systems need to perform the process of tracking in order to permanently gather the current

field of view of the device, to be able to identify nearby location points. Registration is also

a necessary process of an AR system because the field of view of the device is changing on

occasion and yet virtual and real objects have to stay aligned, otherwise the AR system will not

be accepted by the user. Thus, our approach has to include proper methods for tracking and

registration. We discuss different tracking approaches in Chapter 3.

The LOD initiative already comprises a huge amount of data sets that can be accessed

easily with specific Web services and SPARQL endpoints. The amount of interlinked data is

growing year by year. Especially, LinkedGeoData and GeoNames offer geo-spatial data sets that

could be deployed within AR systems to visualize nearby location points in an AR interface.

RDF presents a rich data model and SPARQL presents a suitable query language for fetching

geo-spatial data from LOD sets. In addition, DBpedia presents a potential example for being

deployed as data provider in our AR prototype implementation, for the purpose of retrieving

additional information about already visualized resources. We discuss the most relevant aspects

of integrating and exploiting LOD resources within our AR system in Chapter 4 and we present

the realization of our approach design in Chapter 5.

At last, we gave an overview about the Android operating system because we will demon-

strate the feasibility of our approach presented in Chapter 4 through a prototypical implemen-

tation of a mobile AR application for Android devices. We use Android as operating system

due to the free and easy access to all the necessary features (such as digital camera, GPS radio,

sensor data etc.) which are essential in order to build a proper mobile AR application.

Chapter 3

Related Work

In this chapter, we describe the most relevant related works and accomplish a state-of-the-

art analysis of current sensor-based mobile AR systems. We already explained in Section 2.1,

that every accurate AR system needs to implement methods for tracking and registration. In

consequence, we discuss existing AR tracking approaches in the first part of this chapter. Then,

we point out that we focus on a sensor-based tracking approach in this work. Therefore, we

continue with a state-of-the-art analysis of currently existing AR applications that are based on

sensor-based AR tracking systems. In the last part of this chapter, we present these introduced

sensor-based AR applications within a table (Table 3.1) and compare specific features each of

the applications exhibits.

3.1 AR Tracking Methods

An AR system has to comprise an accurate registration between real and computer-generated

objects [29]. If users move their heads and change their viewpoint, visualized objects have to

stay aligned with the three-dimensional real-world objects. To assure alignment, our AR system

requires a proper tracking method. Then, it is able to ensure a precise estimation of the user’s

real-world viewing pose (we describe viewing pose in Definition 3.1 according to the definition

provided by [61]) with respect to the coordinate system of the visualized objects [61].

Definition 3.1 (Viewing Pose, 6DOF). The viewing pose is a six-degree of freedom

(6DOF) measurement: three degrees of freedom for position and three for orientation.

The tracked viewing pose defines the projection of 3-D graphics into the real-world

image so tracking accuracy determines the accuracy of alignment. (Neumann and

You, 1999)

We already explained in Chapter 2, that there exist marker-based and marker-less tracking

methods (cf. Definition 2.1, Definition 2.2). In this thesis, we focus on marker-less tracking

methods for mobile AR systems. In consideration, that there are many different distinctions of

32

Chapter 3. Related Work 33

marker-less AR tracking methods (cf. [27]), we separate them roughly into vision-based, sensor-

based, and hybrid tracking methods and we present existing approaches for each different type

of tracking method in the following sub-sections. Thereby, we chose the most relevant works of

the last view years and we only mention those approaches which are deployable outdoors and

follow the principle of inside-out tracking (cf. Definition 3.2 based on [62], [63]). Furthermore,

all presented approaches are executable on hand-held devices (mobile phones, PDAs or tablet

PCs). As we put focus on sensor-based tracking in our work, we further discuss sensor-based

AR systems in Section 3.2.

Definition 3.2 (Inside-out/Outside-in Tracking). Inside-out tracking implies that

the observer is moving and landmarks are fixed in the environment. The used camera

device is equipped with sensors to estimate position and orientation constantly and a

relationship between camera coordinates and world coordinates has to be determined.

In contrast, outside-in tracking is based on stationary observing of a scene. Thus,

the camera is stationary and the relationship between camera and world coordinates

is fixed. Landmarks (e.g. LEDs) are placed on the moving object (e.g. user) in order

to be tracked.

3.1.1 Vision-based Tracking

Marker-less vision-based tracking systems rely on image pattern recognition and natural feature-

detection processes to be able to estimate the camera position relative to the real-world objects.

Natural features are, for instance, points, lines, edges or textures. A vision-based tracking

system is able to provide higher accuracy than sensor-based systems due to error-prone sensor

measurements [64].

However, mobile phones are less powerful computing platforms and exhibit limited process-

ing power. Thus, it is difficult to apply natural feature-detection in mobile AR systems, as

this process is complex and resource consuming [65]. This is the reason why fully vision-based

tracking systems are not very common for outdoor mobile AR applications. Nevertheless, we

present two approaches in the following paragraphs:

Wagner et al. [65] present a natural feature tracking system that runs in real-time on

mobile phones and is capable of tracking full 6 degrees of freedom (6DOF) (cf. Definition 3.1)

from beforehand known textured planar targets. Their approach is based on existing feature

descriptors called SIFT (Scale-invariant feature transform) and Ferns. These are algorithms to

detect and describe local features in images. Wagner et al. modified both algorithms (SIFT,

Ferns) to make them suitable for mobile phones. They call the modified tracking techniques

PhonySIFT and PhonyFerns. These modified algorithms are able to detect a target and estimate

pose on a mobile device. An additional template-based tracker, called PatchTracker, increases

the performances of PhonySIFT and PhonyFerns. The PatchTracker uses the estimated pose

of the other trackers as starting pose to estimate a pose of a new frame and uses this pose for

Chapter 3. Related Work 34

continuous tracking in the following frames. Their approach runs at frame rate, relies on known

planar targets, and is not suitable for being execute in unknown environments.

Klein and Murray [66] developed a keyframe-based SLAM (Simultaneous Localization and

Mapping) system called PTAM (Parallel Mapping and Tracking) suitable for mobile phones

which is able to parallel track and map in unknown environments. Their system allows to

map features from the environment at runtime and it performs processes on two threads: one

thread manages camera frame tracking and camera registration. In the second thread, their

system optimizes the map by performing bundle adjustment (we describe bundle adjustment in

Definition 3.3 according to the definition provided by [67]). Klein and Murray’s approach runs

on an iPhone and allows the creation and supplementation of small maps. However, Wagner

et al. claims in [68] that their approach is limited to a small amount of key-points in a map

because of the low processing power of mobile phones.

Definition 3.3 (Bundle Adjustment). Bundle adjustment is the problem of refining

a visual reconstruction to produce jointly optimal 3D structure and viewing parame-

ter (camera pose and/or calibration) estimates. Optimal means that the parameter

estimates are found by minimizing some cost function that quantifies the model fit-

ting error, and jointly that the solution is simultaneously optimal with respect to both

structure and camera variations. The name refers to the bundles of light rays leaving

each 3D feature and converging on each camera centre, which are adjusted optimally

with respect to both feature and camera positions. (Triggs et al., 2000)

3.1.2 Sensor-based Tracking

AR systems that comprise a sensor-based tracking system rely on a device’s built-in GPS radio,

digital compass (magnetometer), and accelerometer but also on the geographic coordinates of

the real-world objects to be tracked. Through the determination of the current position on earth

(with the help of the GPS radio), it is possible to load information about resources for a specific

area near the device. The AR system uses sensor data measured by the digital compass and

accelerometer of the hand-held device to estimate the current camera pose (cf. Definition 3.1).

Additionally, such sensor-based AR system comprise a mathematical model which is able to

project virtual objects into the AR interface (that captures the current scene of the real-world)

of the AR system. The model computes projections based on the estimated camera pose and

the geographical information of local real-world objects. This means that the mathematical

model is able to calculate screen coordinates for a virtual object to be placed upon the real-

world objects and to augment in this way the current captured real-world scene with digital

information.

Kähäri and Murphy [69] developed an AR system called MARA1 (Mobile Augmented Re-

ality Applications) that presents one of the first sensor-based AR browsers running on mobile

1More information about the MARA project: http://research.nokia.com/page/219/

http://research.nokia.com/page/219/

Chapter 3. Related Work 35

phones. The system estimates current position and orientation of the device and supplements

the current camera view with virtual annotations. They fetch data for the annotations from

external Internet services to be able to determine if real-world objects are captured by the

device’s camera. Once real-world objects are visible, the system displays digital information

and provides hyperlinks (if available) to navigate to further respective information about the

selected visible object [69]. Their project also allows users to annotate locations with hyperlinks

to add text which can later be detected by other users.

The Wikitude World Browser and the Layar Reality Browser also rely on a fully sensor-

based tracking system. We further describe and compare Wikitude, Layar, and additional

sensor-based approaches in Section 3.2.

3.1.3 Hybrid Tracking

Hybrid tracking technologies mix methods of both vision and sensor-based tracking. Therefore,

measurements of vision-based and sensor-based tracking methods are fused to provide a more

robust tracking solution.

Takacs et al. [70] present an outdoor mobile augmented reality system which relies on image

matching through landmark recognition. Their system matches camera-phone images against

a database of geo-tagged images (images associated with GPS locations and names of specific

landmarks) by the use of an image retrieval algorithm. Their approach is client-server based.

On the server side, the geo-tagged images are grouped by location into cells. Then, they extract

features of images within a cell. The feature extraction process is additionally followed by a

clustering algorithm that builds groups of geometrically consistent meta-features (meta-features

which represent the most repeatable features in a cell). The generated feature descriptions are

compressed and stored in files on the server side. In consequence, the server always keeps feature

sets of the closest (to the mobile device location) location cells in memory. The mobile phone

uses these feature files for image matching processes and caches some of these files on the local

storage system. Thus, the mobile phone has to update the server with location information to

obtain new feature descriptions (which are not already in the local cache), in the case the user

moves to a new location. The client captures new images with the camera, extracts features,

matches them against the cached features and performs also a geometric consistency check.

The highest matching results lead to the displaying of information on the device’s display. This

approach presents a hybrid tracking method because GPS sensor data is combined with image

matching processes. They tested their approach on a mobile phone where it runs close to real

time and their system also achieved a high image matching rate [70].

Wagner et al. [68] describe a method for both outdoor and indoor localization that creates

panoramic maps in real time on a mobile phone and allows 3DOF (two values x and y for

position and one angle theta for orientation) tracking. Their approach includes, first of all, the

projection of camera frames onto a cylindrical map. During the mapping keypoint features are

Chapter 3. Related Work 36

extracted. These extracted keypoint features are used during the tracking process. They track

keypoints from one frame to the following, so keypoints in the camera image are matched against

their counterpart in the map. After the matching process, the system updates the orientation

and camera frames are again projected into the map space. The system always extends the map

with new features from viewing directions that have not been observed before. Their method

generates color and grayscale panoramas of the surrounding environment. It is possible to later

load these maps from the device’s storage, in order to start future initializations from existing

maps. If no map exists at the beginning, the tracking method relies on the orientation and

direction of the first frame that is fetched from the phone’s sensors (accelerometer and digital

compass).

Langlotz et al. [64] present an enhanced AR system for tracking and registering local POIs

which is suitable for mobile phones and therefore operates in real time. The technique of

generating panoramic maps proposed in [68] and a later extended work which allows annotating

these maps presented in [71], present the foundation of the tracking system of Langlotz et al.

which also includes the creation of panoramic maps on which local POIs are annotated. This

work focuses on improving the low re-detection rate of annotation on the map under different

environmental conditions (e.g. lightening). Therefore, they made three improvements [64]:

• Enhancement of the quality of panoramic maps through the help of an extended dynamic

range representation of the map.

• Improved exploitation of sensor features from currently available smartphones by applying

sensor-based tracking to restrict the search area for the vision-based tracking.

• Enhancement of the global consistency of their tracking systems is obtained by statistical

estimations. In that way, their system guarantees the reduction of the overall position

deviation of visualized points during the projections from the points from the original

panoramic map to the current captured panorama by the device.

They tested their system by implementing an AR campus guide application for mobile phones.

Their enhanced approach increases the re-detection rate of accurate matches to 90% despite of

significant lightening conditions [64].

The approach of Marimon et al. [72] presents a mechanism to fuse data of sensor measure-

ments (digital compass and accelerometers) from a mobile phone with data of visual (image

pattern) recognition methods. Thereby, they use an image recognition algorithm to identify

geo-referenced images of a database that match with the current captured view of a device’s

camera. The sensor data is then used to estimate the most probable location. Their system is

client-server based and performs all computations on the server side.

Reitmayr and Drummond [7] introduce a textured 3D model-based hybrid tracking system

which enables accurate, real-time overlay visualizations for hand-held devices. Model-based

tracking usually relies on specific features, such as, lines or edges. In their approach, they

Chapter 3. Related Work 37

use an edge-based tracker for estimating the camera pose in an urban outdoor environment

by performing edge detection on a rendering of a 3D textured model from the current pose

prediction. Sensor measurements (gyroscope measurements for fast motion, measurements of

gravity and magnetic field to avoid drift) are then fused with the pose estimates with an extended

Kalman filter (EKF) (we describe EKF in Definition 3.4 according to the definition provided

by [73]). The 3D models which are used for tracking are created from photographs. Creating

such 3D textured models for larger environments can be very laborious. Their approach was

tested on a hand-held AR platform consisting of a tablet PC, an USB camera, and Inertial

Measurement Unit (IMU).

Definition 3.4 (Kalman filter). The Kalman filter is a set of mathematical equations

that provides an efficient computational (recursive) means to estimate the state of

a process, in a way that minimizes the mean of the squared error. The filter is

very powerful in several aspects: it supports estimations of past, present, and even

future states, and it can do so even when the precise nature of the modeled system is

unknown. [...] A Kalman filter that linearizes about the current mean and covariance

is referred to as an extended Kalman filter or EKF. (Welch and Bishop, 1995)

3.1.4 Discussion

In this work, we put the focus on sensor-based tracking methods because by applying visual

tracking methods, only objects which are in the view-point of the device’s camera can be cap-

tured, analyzed, and compared with images in a database. Objects which are covered by other

objects can not be recorded by the camera and also not compared with reference images in a

database.

In addition, an image database has to contain similar images to the ones which are captured

by the device to even be able to recognize the captured real-world objects or to make the deter-

mination of the current position on earth possible in first place. Thus, the use of vision-based

tracking enforces the availability of an image database (with images of the environment in which

the tracking is performed). Estimating the camera pose in larger unconstrained environments is

undue because efficiently finding a matching reference image in a database with a huge amount

of images is very difficult [74].

As our approach is executable in outdoor environments, we would have to build a image

database in advance that comprises image data about the environment in which the tracking

will be executed. The extent of such a database would be enormous as the outdoor environment

is not restricted. Furthermore, the access to an external database, to be able to execute image

pattern algorithms, requires a permanent active connection between client and server side of the

AR system. Thus, a vision-based tracking system is more suitable for indoor AR systems which

require a image database of a smaller and constrained environment. A sensor-based tracking

Chapter 3. Related Work 38

system does not require a reference image database. It makes uses of the mobile device’s built-in

sensors to determine current position and orientation. As such a system uses the GPS radio of

the device, sensor-based systems are suitable for outdoor execution.

Our approach includes the integration of Linked Data resources to AR systems. Specific

Linked Data sets in the Web contain geographical data resource descriptions (e.g. latitude/longi-

tude information of resources) which we use to identify local real-world objects (e.g. mountains)

that appear in the captured field of view of a mobile device’s camera (cf. Section 4.4.1). Addi-

tionally, the GPS location information of the mobile device narrows the amount of loaded geo-

graphical data from the LOD sets down to data for a specific defined range. In our approach, we

do not require image matching processes, our approach is solely based on sensor-based methods.

We further discuss our approach in Chapter 4.

3.2 Sensor-based AR Applications

As we focus on a sensor-based AR tracking approach in this work, we now discuss existing

mobile AR applications that are based on fully sensor-based tracking systems.

3.2.1 Introduction of Works

In the next paragraphs, we categorize existing sensor-based AR applications according to the fol-

lowing categories: commercial AR applications, open-source AR applications, AR applications

for identifying mountains, and other applications that integrate Linked Data resources.

3.2.1.1 Commercial AR Applications

The AR applications presented in this sub-section exhibit similar system architectures [75]:

they comprise a main server which acts as handler between provider servers on which POI

(cf. Definition 1.1) information is stored and an AR browser client running on the a mobile

phone. Only the respective client application is able to communicate with the main server of

the AR system.

Wikitude World Browser

The Wikitude World Browser is an AR browser for smartphones which enables the discovery of

POIs on a live camera view. The Wikitude World Browser uses ARML2 (Augmented Reality

Markup Language) for mapping geo-referenced POIs and their metadata onto a mobile phone’s

display. In reference to [76], ARML is built on a subset of KML3 (Keyhole Markup Language).

Wikitude is the first browser supporting ARML. An ARML file contains entries which present

POIs. Users are able to generate their own ARML file which can be displayed within the

2ARML: http://www.openarml.org/
3KML is a XML-based standard for geographical annotations on 2D maps or 3D Earth browsers.

http://www.openarml.org/

Chapter 3. Related Work 39

Wikitude World Browser. The POIs of Wikitude are grouped into different Wikitude worlds.

An example of a Wikitude world is Wikipedia, where the loaded POIs are based on data from

Wikipedia. Each world presents a different data provider. Figure 3.1 illustrates a rough overview

of the architecture of Wikitude. The client application is running on the device and makes a

request (contains current location information) to the Wikitude server. The response to the

client’s request is an ARML file, which contains the search results (POIs) that have to be

displayed for that certain location and orientation of the phone.

1

Figure 3.1: Overview of Wikitude architecture4

Figure 3.1 also illustrates that providers have the possibility to add their content by creating

a Web service to communicate with their own Web server. The Wikitude server requests the

provider’s data by using HTTP GET requests [77]. Wikitude is able to process ARML files

only for displaying POIs, so the data returned from the provider’s Web service need to be in

ARML format. The Wikitude platform offers a map-interface through which users are able to

add POIs. If they want to add several POIs at once, they are also allowed to upload KML or

ARML files at the Wikitude platform.

Layar Reality Browser

The dutch Layar company also offers an AR browser which augments a smartphone’s camera

view with digital information. POIs are grouped into layers, similar to a Wikitude world. There

are several layers available to display different kinds of POIs (e.g. YouTube to display posted

YouTube videos near the device) and everyone can subscribe to create their own layer.

Figure 3.2 provides an overview about the architecture of the Layar platform. The exact

model structure is hidden from the user so a content developer is only able to create a layer

through the developer API provided by Layar. At the Layar Web platform, the user is able

to modify and publish layers. According to the developer documentation [78], a Layar service

provider has to provide an API URL to its Web service and also a database where the POIs

are stored. If the client API requests for POIs, then the Layar server forwards the request to

4Based on figure of [77]

Chapter 3. Related Work 40

the service provider. The getPOIs response, which presents the returned AR content, is later

sent back to the client API. The client API finally displays the POIs on the display. The Layar

browser allows JSON as response format. Layar does not use a standard format, such as ARML,

for describing AR content.

1

Figure 3.2: Overview of Layar architecture5

Sekai Camera

Sekai Camera6 is a Japanese social AR application. This application includes social-sharing

features and therefore users are able to post comments, images, videos, and audios in the

physical environment which can later be found by other users who come across and make use

of Sekai Camera [18]. The architectural infrastructure is closed and similar to that of Wikitude

and Layar. The Sekai Camera system includes a client application running on a mobile device,

a main server that communicates with the client application and extern POI providers, and the

POI servers of the providers. Sekai Camera also uses JSON as response data format [79] but it

does not use a standard format, such as ARML, for describing POIs.

3.2.1.2 Open-Source AR Applications

The AR applications which are available as open-source application provide their source code

to the public and thus allow developers to generate various kinds of AR applications based on

the provided AR framework.

5Based on figure of [78]
6Sekai Camera: http://sekaicamera.com/

http://sekaicamera.com/

Chapter 3. Related Work 41

Mixare

In contrast to Wikitude and Layar, Mixare7 represents an open source AR platform. Mixare

is downloadable as standalone launcher application (data is fetched from GeoNames, response

format of POIs in JSON) or developers are able to load the source code of Mixare to customize

an AR application that serves their needs.

1

Figure 3.3: Architecture of Mixare for developers8

Figure 3.3 clarifies that the architecture of Mixare does not comprise a main server as within

the architecture of Layar and Wikitude. The developer has the possibility to connect directly

his/her own Web server with an implemented Web service and a database for the POIs to the

client application. As developers have access to the source code, they can define which data

format they prefer for the POI responses. Mixare does not support any AR formats.

LibreGeoSocial

LibreGeoSocial9 presents a community project to build an open source framework for creating

mobile AR social network applications [18]. There exists a standalone LibreGeoSocial mobile

client for Android phones on the Android marked with which it is possible to obtain information

about captured nearby real-world objects. The information can be discovered through an AR

interface but also in form of lists or displayed on a 2D map.

Just like Wikitude and Layar, LibreGeoSocial allows to display different layers of geo-located

content (e.g. nearby posted YouTube videos) provided by third parties. However, Wikitude and

Layar require to push POI descriptions from the provider databases to their own platform, the

LibreGeoSocial framework fetches data directly in real time from the provider databases [80].

LibreGeoSocial does not provide any kind of AR relevant data format.

Additionally, LibreGeoSocial offers social networking features: users can share content with

other users by tagging objects, posting comments, images, audios or videos directly in the

physical environment. Thus, LibreGeoSocial allows to link user-generated content with geo-

location coordinates. In consequence, other users are able to detect content that was posted by

other users. Sekai Camera, also provides the functionality to link media to different geo-locations

but it is not possible to associate information or media with specific objects [80].

7Mixare: http://www.mixare.org/
8Based on figure of http://www.mixare.org/usage/
9LibreGeoSocial: http://www.libregeosocial.org/

http://www.mixare.org/
http://www.mixare.org/usage/
http://www.libregeosocial.org/

Chapter 3. Related Work 42

As the LibreGeoSocial framework is freely available and open source, developers are able

to load the source code and extend it with new functionalities or to build a completely new AR

scenario, e.g., AR games, AR tourism guide, AR shopping guide etc. [81].

3.2.1.3 Mountain Identification Applications

As the proof-of-concept AR application of this work identifies mountains, we outline existing

examples of such applications in the following paragraphs.

SwissPeaks

Karpischek et al. [82] presents an AR browser which runs on iPhones and which also enables to

detect mountains through a mobiles phone’s camera. SwissPeaks allows to display additional

information about a certain mountain in form of Wikipedia articles. Furthermore, it identifies

mountains by loading resources from GeoNames. Only mountains, which are in the user’s view-

point are displayed in an AR interface. In addition, the user is able to correct inaccurate sensor

data with manual user input. There is no information about the architecture of SwissPeaks

available to the public. It is also not known, if this AR system makes use of any kind of AR

data format for describing AR content.

Peak.AR

Peak.AR10 was developed by Salzburg Research11 and presents a fully commercial AR browser

for the identification of mountains. According to the official website of Peak.AR [83], the

AR content is extracted from OpenStreetMap and loaded to the local storage system of the

device during the first activation of the application. Thus, this application requires a single

active network connection. If the user taps on a visualized mountain icon, the distance to the

mountain, the height of the mountain, and the geographical coordinates are displayed on the

screen. Requesting further information about specific mountains is not possible. Unfortunately,

there is no further information about the architecture of this application available, so we do not

know how data is fetched from OpenStreetMap or if they use a specific AR format for the AR

content.

3.2.1.4 Linked Data as AR Content

One application which uses LOD resources within AR systems to identify real-world objects but

also for the provision of additional information about certain POIs presents the previous men-

tioned SwissPeaks application presented in [82]. But Karpischek et al. [82] do not describe how

10Peak.AR: http://peakar.salzburgresearch.at/
11Salzburg Research: http://www.salzburgresearch.at/

http://peakar.salzburgresearch.at/
http://www.salzburgresearch.at/

Chapter 3. Related Work 43

they process the LOD resources which they use as AR content within their work. Another exam-

ple that combines Linked Data principles with mobile AR systems presents the SmartReality12

project, which we further describe below.

SmartReality

SmartReality presents an Austrian research project started in October 2010 which defines a

SmartReality AR framework. This framework makes use of semantic and Web service technolo-

gies and combines them with AR technologies to provide information about local POIs in the

user’s physical environment [84]. A real-world object or simply a “thing” is called a Thing of

Interest (TOI) which has a name and an unique identifier (URI). TOIs are described semanti-

cally and linked to the Web of Linked Data. Further meta-data about a TOI can be retrieved

from other LOD sources.

The SmartReality project aims to support different types of application scenarios in order

to encourage the development of various smart AR environments. Therefore, they propose

to process data on a single platform so that different clients are able to access preprocessed

data from the SmartReality platform. The platform will federate data from various LOD sets

through the help of Web services and will manage semantic-based reasoning and aggregation of

the different types of LOD resources [84].

However, the AR applications that will be developed based on the SmartReality framework

will not present fully sensor-based AR system. Their attempt is to improve existing object

tracking algorithms for mobile devices. They already presented an example AR application

that is able to identify annotations of event posters and overlay them with virtual content on

top of the posters such as a map of the event location or audio and video samples of artists

mentioned on a poster.

We do not include SmartReality to the comparison table in Section 3.2.2 as it presents a

project that currently is under development and the created client applications of this project

also include object tracking algorithms. Thus, these applications are not comparable with the

sensor-based AR applications that we list in Table 3.1.

3.2.2 Table of Discussed Works

In Table 3.1, we compare all the presented sensor-based AR browsers of Section 3.2.1.1 and

Section 3.2.1.3. The last column of the table contains the AR system of our proof-of-concept

implementation. We compare the applications on the base of specific selected features that we

explain and discuss in Section 3.2.3.

12SmartReality: http://www.smartreality.at/

http://www.smartreality.at/

Chapter 3. Related Work 44

a
a
a

a
a
a

a
a
a

a
a a

A
tt

ri
b
u
te

s

P
ro

je
c
ts

W
ik

it
u
d
e

W
o
rl

d

B
ro

w
se

r

L
a
y
a
r

R
e
a
li
ty

B
ro

w
se

r

S
e
k
a
i

C
a
m

e
ra

M
ix

a
re

L
ib

re
G

e
o
S
o
c
ia

l
P

e
a
k
.A

R
S
w

is
sP

e
a
k
s

A
R

M
o
u
n
ta

in

G
u
id

e

L
ic

e
n
se

fr
ee

w
a
re

,

p
ro

p
ri

et
a
ry

fr
ee

w
a
re

,

p
ro

p
ri

et
a
ry

fr
ee

w
a
re

,

p
ro

p
ri

et
a
ry

fr
ee

w
a
re

,

o
p

en
so

u
rc

e

fr
ee

w
a
re

,
o
p

en

so
u

rc
e

fr
ee

w
a
re

,

p
ro

p
ri

et
a
ry

fr
ee

w
a
re

,

p
ro

p
ri

et
a
ry

n
o
t

a
v
a
il

a
b

le

to
th

e
p

u
b

li
c

F
e
d
e
ra

ti
o
n

In
fr

a
st

ru
c
tu

re

n
o

n
o

n
o

n
o

n
o

n
o

n
o

y
es

L
O

D
P

ro
c
e
ss

in
g

n
o

n
o

n
o

n
o

n
o

n
o

n
o

y
es

D
a
ta

R
e
p
re

se
n
ta

ti
o
n

S
ta

n
d
a
rd

A
R

M
L

,
K

M
L

-
-

-
-

-
-

-

F
il
te

rs
y
es

n
o

y
es

y
es

n
o

n
o

n
o

n
o

S
o
c
ia

l
N

e
tw

o
rk

in
g

F
e
a
tu

re
s

y
es

n
o

y
es

n
o

y
es

n
o

n
o

n
o

A
R

C
o
n
te

n
t

F
e
a
tu

re
s

In
fo

b
o
x
,

B
ro

w
si

n
g
,

M
u

lt
im

ed
ia

,
M

a
p

,

S
h

a
ri

n
g
,

R
o
u

te

In
fo

b
o
x
,

B
ro

w
si

n
g
,

M
u

lt
im

ed
ia

,
M

a
p

,

S
h

a
ri

n
g
,

R
o
u

te

In
fo

b
o
x
,

M
u

lt
im

ed
ia

,

M
a
p

,
S

h
a
ri

n
g

In
fo

b
o
x
,

B
ro

w
si

n
g

In
fo

b
o
x
,

M
u

lt
im

ed
ia

,
M

a
p

,

S
h

a
ri

n
g
,

R
o
u

te

In
fo

b
o
x

In
fo

b
o
x
,

B
ro

w
si

n
g

In
fo

b
o
x
,

B
ro

w
si

n
g

P
la

tf
o
rm

A
n

d
ro

id
,

B
la

ck
B

er
ry

O
S
1
3
,

iO
S
1
4
,

S
y
m

b
ia

n
1
5
,

b
a
d

a
1
6
,

W
in

d
o
w

s
P

h
o
n

e1
7

A
n

d
ro

id
,

B
la

ck
B

er
ry

O
S

,

iO
S

,
S

y
m

b
ia

n
,

b
a
d

a

A
n

d
ro

id
,

iO
S

A
n

d
ro

id
,

iO
S

A
n

d
ro

id
A

n
d

ro
id

,
iO

S
iO

S
A

n
d

ro
id

O
ff

-l
in

e
M

o
d
e

n
o

n
o

n
o

n
o

n
o

y
es

n
o

y
es

T
o
u
r

G
u
id

e
F
e
a
tu

re
s

n
o

n
o

n
o

n
o

n
o

n
o

n
o

y
es

T
a
b
l
e
3
.1
:

C
o
m

p
a
ri

so
n

o
f

se
n

so
r-

b
a
se

d
A

R
b

ro
w

se
rs

1
3
B

la
ck

B
er

ry
O

S
:
h
t
t
p
:
/
/
u
s
.
b
l
a
c
k
b
e
r
r
y
.
c
o
m
/

1
4
iO

S
:
h
t
t
p
:
/
/
w
w
w
.
a
p
p
l
e
.
c
o
m
/
i
o
s
/

1
5
S
y
m

b
ia

n
:
h
t
t
p
:
/
/
w
w
w
.
d
e
v
e
l
o
p
e
r
.
n
o
k
i
a
.
c
o
m
/
D
e
v
i
c
e
s
/
S
y
m
b
i
a
n
/

1
6
b
a
d
a
:
h
t
t
p
:
/
/
w
w
w
.
b
a
d
a
.
c
o
m
/

1
7
W

in
d
ow

s
P

h
o
n
e:
h
t
t
p
:
/
/
w
w
w
.
w
i
n
d
o
w
s
p
h
o
n
e
.
c
o
m
/

http://us.blackberry.com/
http://www.apple.com/ios/
http://www.developer.nokia.com/Devices/Symbian/
http://www.bada.com/
http://www.windowsphone.com/

Chapter 3. Related Work 45

3.2.3 Feature Description and Discussion

First of all, we introduce every criteria within Table 3.1 by describing its meaning followed by

a brief discussion to see how the criteria is realized in each of the selected projects.

License

We distinguish applications that are freeware or not available (e.g. only scientific approach)

to the public. Some of the listed commercial AR browsers are proprietary software products

(software is restricted in use). Thus, no modification and further distribution of the software is

allowed. Some applications are open source. In consequence, the source code of these applications

is freely available and users are able to load, modify, and extend the source code.

The AR browsers provided by Wikitude and Layar, as well as Sekai Camera, SwissPeaks, and

Peak.AR are commercial applications. It is possible to download these applications for free but

the user has no access to the source code. However, Wikitude and Layar provide developer APIs

which allow to create overlays. Only Mixare and LibreGeoSocial are open source applications,

so they can be used as an engine on which other apps can be built upon. We realized the AR

Mountain Guide as a proof-of-concept prototype for this thesis and therefore this application is

not available to the public at the moment.

Federation Infrastructure

This criteria exhibits if the infrastructure of the AR application includes the integration of data

from multiple data sources, so that it possible to retrieve information about a single resource

(POI) from several data sources.

Only our proof-of-concept prototype includes data federation. The AR Mountain Guide

retrieves geographical data about mountains from two different data sources (GeoNames and

LinkedGeoData). We describe our approach of federating and processing LOD resources in the

next chapter in Section 4.3.

Wikitude, Layar, Mixare, LibreGeoSocial, and SekaiCamera allow it to display different

groups of POIs (data from YouTube, Wikipedia etc.). The information about a single POI is

retrieved from a single data source. For instance, if the user loads the YouTube channel at

Wikitude, only information provided by the YouTube channel can be accessed for one resource.

There is no federation of data included. POI descriptions are locked down in isolated reposito-

ries. The infrastructure of Peak.AR and SwissPeaks also do not integrate data federation.

LOD Processing

Indicates if an application includes the processing of LOD resources on the client side. Processing

LOD resources means that identical resources are searched, merged and stored on the device.

Our prototype and SwissPeaks are the only listed applications that use LOD resources as

AR content. SwissPeaks fetches data only from GeoNames. Thus, the loaded resources do

Chapter 3. Related Work 46

not have to be checked for duplicate resources. The AR Mountain Guide fetches data from

LinkedGeoData and GeoNames and therefore includes the filtering of identical resources.

Data Representation Standard

Data format supported by an AR application to process and display AR content.

The Wikitude World Browser uses ARML for describing POIs. Layar hides data structures

from the user. Users are able to build AR overlays by creating a MySQL database and define

and store POI descriptions in that database. But there does not exist any form of AR data

format for describing the AR content. Also Mixare and LibreGeoSocial do not use an AR data

format. Data is processed directly on the client side. SekaiCamera, Peak.AR, and SwissPeaks

do not provide any information regarding the use of any data format for describing POIs. Our

approach includes the fetching of RDF-based data directly through Web services from LOD sets

like DBpedia or LinkedGeoData. Our system processes data on the device.

Filters

Indicates if the application provides filter options in order to load specific sets of POIs. For

example, whether it is possible to only load Wikipedia articles or nearby published YouTube

videos.

Wikitude World Browser, Sekai Camera, Mixare, and LibreGeoSocial provide filter options

which allow end-users to choose between different overlays and POI categories. The Layar

Reality Browser allows the loading of a single layer. But it is not possible to mix the layers for

loading different groups of POIs at once. Peak.AR, SwissPeaks, and our AR prototype do not

offer filters.

Social Networking Features

Projects which provide social networking features allow users to perform actions such as creating

profiles, inviting friends, posting digital comments or posting media (image/audio/video). The

user is able to share content and leave posts directly in physical space. Thus, friends of the social

network are able to detect these posts later. As a result, these applications allow the integration

of user-generated content directly through the AR interface of the application.

LibreGeoSocial and Sekai Camera offer social networking features and allow users to label

geo-locations in physical space and leave text messages or even voice messages for friends.

Wikitude offers a feature called myWorld18 that enables users to create their own AR world

and to geo-tag (associate with geo-coordinates) locations and notes in real-time directly on the

mobile device. This Wikitude feature allows users to share the new world with their friends.

All the other presented applications, including our AR prototype, do not offer such kind of

interactivity.

18Wikitude myWorld: http://www.wikitude.com/myworld

http://www.wikitude.com/myworld

Chapter 3. Related Work 47

AR Content Features

Typically, the displayed AR content can be selected (e.g. touch icon) to trigger an action, e.g.,

view more information, send SMS or e-mail, take picture etc. So, this feature indicates if there

are POI actions provided by the browser. POI actions could be:

Infobox: information about the POI is displayed in a separate window

Browsing: the browsing for further information is possible

Multimedia: it is possible to listen to audio samples or to watch videos that are associated

with a POI

Map: POI visualization on a 2D map

Sharing: share specific POI infos per e-mail, sms, or social networking platforms

Route: displaying route to POI on a 2D map

Wikitude, Layar, Sekai Camera, and LibreGeoSocial offer the most POI actions. The

Mixare standalone application only offers info boxes and browsing for further information. But

the developer my extend the browser with further POI actions by modifying the source code.

Peak.AR allows to display an info box if a POI is selected. SwissPeaks and our AR prototype

are able to display info boxes and it is possible to browse for further information.

Platform

This criteria indicates on which mobile platform an application is deployable.

The table shows that Wikitude and Layar applications are available for many different

mobile platforms. As these two platforms provide developer APIs for creating new AR overlays,

they aroused the interest of many users and developers, and therefore became available on

several mobile platforms. Mixare and Peak.AR are available for Android smartphones and

iPhones. LibreGeoSocial is only available for Android smartphones, and SwissPeaks only for

iPhones. Our prototype the AR Mountain Guide is deployable on the Android platform.

Off-line Mode

Indicates if the application also allows off-line support. Providing an off-line mode means that

the application does not require a permanent network connection to work properly. It is possible

to load AR content from the local storage system of the device.

Peak.AR provides an off-line mode. This means it is possible to load AR content in advance

to save it on the local storage system of the device and to use the stored data as POI source.

Our AR prototype also includes an off-line mode because the fetched resources from LinkeGeo-

Data and GeoNames are stored on the local storage system after they have been processed (cf.

Section 5.2.2). Additionally, GPS tour tracks may be saved on the the local storage system

of the device and therefore users are able to display the tours on the map without an active

network connection.

Chapter 3. Related Work 48

All the other appearing projects require permanent network connection for loading AR

content.

Tour Guide Feature

This feature indicates if an application offers tour guide options. Tour guide option could be:

- loading of GPS tracks for a specific area near the device

- displaying GPS tracks on a map

- offering of a guide mode, so that the user is able to pass a displayed tour

- recording of GPS tracks

- loading self-recorded GPS tracks of the local storage system of the device

Only our AR prototype includes tour guide features. The users are able to load tour tracks

on a map and to activate a tour guide mode to be guided through the displayed hiking tour.

We are interested in the possibilities of saving and exporting geo-coordinates in some kind of

output-file. Furthermore, we elaborate on the visualization of tours on 2D maps, instead of

integrating the tours in an AR interface. The visualization of tours in AR interfaces presents a

possible future work, but we do not elaborate on this topic within this work. We present the

realization of tour guide features in Chapter 5.

3.3 Summary

Several approaches of tracking methods for AR systems have already been developed. Currently

available AR browsers for mobile phones mostly utilize sensor-based methods. Vision-based

tracking systems include image matching and feature detection algorithms which may over-

burden the CPU of mobile phones if they are processed on the client side. Performing image

matching processes on the server side causes the need for a permanent network connection as

captured images by the device are transmitted to the server. Therefore, we define the conceptual

model as a sensor-based approach to reliably determine the user’s position and the camera’s

orientation based on this kind of tracking method.

Most AR browser platforms provide users the possibility to create AR content but the data

have to be in a certain data format that the respective AR browser uses. AR content providers

have to adapt their content to several AR systems to be able to publish content and visualize

this content with the browser clients. The need for elaborating on a general open standard

in the domain of AR and to standardize the way POIs are described and stored has to be

addressed. Each AR browser architecture implements the storing and delivering of AR content

in a different way. Wikitude’s data format ARML for describing POIs, presents the first AR

specification to standardize AR content descriptions [85]. Our approach of using Linked Data

sets and thus requesting POIs based on the RDF format presents one possible step towards AR

standardization.

Chapter 3. Related Work 49

The integration of Linked Data enables the creation of an AR system that follows an ar-

chitectural infrastructure that includes data federation. The Web of Linked Data comprises

geo-tagged resources which are linked with further descriptions. Data federation is possible

because for a single resource descriptions from multiple Linked Data sets are retrievable. The

examination of the architectural styles of most current AR browser systems exhibits that avail-

able AR content is locked down in separate data repositories. Thus, current AR browser systems

are limited regarding to the selection and integration of data sources. They do not support the

federation of POI description from different sources. Our approach exploits Linked Data re-

sources which can be accessed through standard Web technologies. No data are stored in a

separate database, no proprietary data format is necessary because Linked Data relies on the

two fundamental Web technologies HTTP and URIs [21], and the federation of data to fetch

related information of a single resource from multiple linked data sets is possible.

As a result of the previously accomplished state-of-the art analysis, we are able to affirm

that the approach of this thesis presents a new way in the domain of mobile AR to identify

aspects of the real world with the help of Linked Data sources and to deliver further information

about these real-world objects based on Linked Data resources.

Chapter 4

Approach

In the last chapter, we described several AR tracking methods but also current projects that

allow to visualize content within AR interfaces on mobile devices. Therefore, we now present

our sensor-based tracking approach that allows to integrate Linked Data resources in a mobile

AR system and to visualize these resources as virtual content within the AR interface of the

system.

In the first section of this chapter, we describe the requirements and design considerations

of our approach. We continue with an illustration of the abstract model of the AR system that

serves as our proof-of-concept implementation and we also present the conceptual constituents

of this system. In the next part of this chapter, we discuss aspects and issues of the integration of

LOD sets into our AR system. Then, we follow with a formal description of the system’s math-

ematical model. Finally, we present two activity models which present a functional illustration

of work flows of our proposed AR system.

4.1 Requirements and Design Considerations

Our attempt of designing a mobile AR system that is capable of integrating LOD resources

follows certain requirements and design considerations that we present in this section. Our

AR system is specifically designed for direct deployment on mobile devices. The system does

not present a client-server-based architecture where data is stored and processed on the server

side. We retrieve data through existing LOD Web services and aggregate, consolidate (e.g. filter

identical resources and merge them), and store LOD resources directly on the client side. Thus,

our approach does not require a permanent network connection and is not constrained to any

existing server-based infrastructure.

We separate our AR system in different modes: AR mode, Map mode, and Tour mode. The

AR mode comprises the main concepts of our approach: the realization of the mathematical

model, and the integration of LOD resources into AR interfaces. The other two modes present

additional features to the system, as our proof-of-concept prototype presents an AR mountain

50

Chapter 4. Approach 51

guide. The requirements for the map and tour mode will be mentioned in this section, but we will

not further discuss and approach them in the next sections of this chapter. However, we present

functional processes of the map and tour mode in Section 4.5 and we discuss implementation

specific aspects of the map and tour mode in Chapter 5.

AR mode:

• Informing the AR system about the user’s current location by using the GPS feature of

the used mobile phone.

• Permanently accessing the device’s sensors to determine the horizontal and vertical orien-

tation of the phone.

• Fetching of mountain resources from LOD sets, so that the AR system is able to use RDF

data as AR content.

• Identifying identical LOD resources in order to remove duplicate resources and to merge

the resource descriptions of the identical resources.

• Integration of recorded sensor data, GPS data, and Linked Data resources into the math-

ematical model to be able to calculate screen coordinates for virtual objects.

• Visualizing virtual objects (representing the real-world resources) on the corresponding

positions on the screen by using the earlier calculated screen coordinates.

• Consisting alignment of virtual objects with the corresponding real-world resources on the

screen, if the user moves the device in various directions.

• Retrieving additional information about resources.

Map/Tour mode:

• Displaying of a map.

• Loading hiking tours for a certain restricted area.

• Extracting tour data of GPX files. Followed by the processing and visualizing of GPX-

based tour data on a map.

• Displaying user position on the map by accessing the GPS radio of the device.

• Loading of mountain resources in the near vicinity and the screening of markers (presenting

the resources) on a map.

• Retrieval of additional information about displayed resources.

• Displaying digital compass for active tour guide mode.

Our approach will not include methods for loading tours into the AR interface of the AR system.

The scope of our approach is not to provide a mobile AR LOD browsing platform that

allows the visualization of all kind of LOD resources. We limit our scope to the use of mountain-

specific Linked Data resources and we fetch these kind of resources from three specific LOD sets

LinkedGeoData, GeoNames, and DBpedia to enable not only a theoretical elaboration of the

research questions in Section 1.4 but also to provide a demonstration of our approach in practice.

Chapter 4. Approach 52

Concerning the environment in which the AR system will be used, the system should be

designed to be accurate, robust, and low cost so that the system does not overburden the mobile

device’s hardware. This means we have to consider the issue of power consumption and the

draining of the battery life of the device. Our approach requires that the used mobile phone is

equipped with a digital camera, a GPS radio, a digital compass, an accelerometer, and it has

to offer networking support in order to access online LOD resources.

4.2 Abstract and Conceptual Architecture

In the primary part of this section, we present the abstract model of our AR system approach.

In the second part, we present the conceptual constituents of the proposed AR system that

integrates LOD resources and includes a sensor-based mathematical model.

4.2.1 Abstract Model

The model in Figure 4.1 presents an abstract illustration of our AR system. The AR system

is running on a mobile device and comprises the mathematical model which is in need of the

device’s recorded sensor data (location and orientation data), and the Linked Data resources

fetched from different LOD sets.

AR Mountain Guide

LOD

Web

Web
Services

Mathematical Model

Location
Data

Sensors

Orientation
Data

LOD
Resources

Direction
Data

z

y

x

Figure 4.1: Abstract model of AR system1

A sensor-based mobile AR system has to be informed about the current position on earth

and the orientation and direction of the device. This is important because with the knowledge

about heading and orientation of the device, it is possible to figure out which resources are

located near the device and whether some of them appear in the captured view of the digital

camera of the device. In our system, sensor data presents data received from the GPS radio to

obtain location information, and data recorded from the digital compass and accelerometer for

1The figure includes pictures from [32, 86]

Chapter 4. Approach 53

determining the current orientation and heading of the device. The mathematical model is in

need of sensor data because it is responsible for calculating the screen coordinates to visualize

LOD resources on the corresponding positions onto the device’s screen. As mentioned in the

previous section, we make use of Web services provided by LOD sets of the Web, to load LOD

resources.

4.2.2 Conceptual Constituents

In the following section, we explain our AR system on a conceptual basis. Therefore, we illustrate

in Figure 4.2 a component diagram of the proposed AR system that relies on a sensor-based

mathematical model (cf. Section 4.4). The component diagram meets the requirements specified

in Section 4.1 and is based on the abstract illustration (cf. Figure 4.1) presented in the previous

section.

1

Figure 4.2: Conceptual system architecture of proof-of-concept AR system

Figure 4.2 contains the package component AR System which comprises all the components of

the system:

• The system includes a SensorManager which is responsible for managing the access to the

sensors of the device, and for updating the system with new sensor values. With the help

of the SensorManager we are able to inform the AR system about the current heading

and orientation of the mobile device.

• The GPSManager is responsible for activating the GPS radio of the device in order to

determine the current position on earth and to update the other components of the system

about location changes.

• The LinkedDataLoader component is responsible for loading Linked Data resources in

form of RDF-based data from LOD sets. For accessing data, all the queries against the

Chapter 4. Approach 54

external LOD Web services are in need of spatial parameters (geographical coordinates)

to enable the fetching of resources that describe nearby real-world objects. Therefore,

the LinkedDataLoader is informed by the GPSManager about the current location of

the device and this information is used as the spatial parameters for the queries against

the LOD sets. After resources are locally available on the device, the component is also

responsible for the filtering of identical resources and for the merging and storing of the

remaining resources.

• The MathModel is responsible for recognizing real-world resources in the captured scene of

the device’s digital camera and for mapping the geographical coordinates of these resources

into screen coordinates. Thereby, the SensorManager and the GPSManager constantly

deliver the updated sensor values to the MathModel and the LinkedDataLoader provides

the LOD resources.

• The ARRenderer generates the AR Interface of the system. The interface consists of

several virtual layers and a camera layer (cf. Section 5.1.2). This component also manages

the drawing and redrawing of virtual objects on top of the live camera view. Thereby, the

ARRenderer uses the calculated screen coordinates from the MathModel component for

visualizing the virtual content.

• The CameraManager is responsible for accessing the digital camera of the device and for

providing the system with live camera view that serves as basis layer for the ARRenderer

to place virtual content on top of it.

As our proof-of-concept AR system also offers functions for displaying a map and for loading

tour tracks from the Web for a certain restricted area, two more components are visible in

Figure 4.2:

• The MapManager is responsible for displaying a map, if the user activates the map mode

of the system. This component is also associated with the GPSManager , as location

updates are used to visualize the current position on the map. Additionally, the system

is able to visualize LOD resources on the map. Thus, the MapManager is connected with

the LinkedDataLoader to be able to load Linked Data resources and to visualize them on

the map.

• The TourManager component implements methods for loading GPS tracks from the Web.

This component is associated with the GPSManager to be able to load nearby tours but

also with the MapManager , so that we are able to visualize loaded GPS tours on a 2D

map.

Chapter 4. Approach 55

4.3 LOD Integration

In this section, we discuss several aspects that we have to consider if we integrate LOD resources

into a mobile AR system. First of all, we explain the data structures of LOD sets to be able

to access specific resources and the respective descriptions. We also have to consider that the

data may comprise duplicate resources. Thus, in the last part of this section (Section 4.3.2), we

discuss the issue of identifying identical resources and of merging multiple resource descriptions.

4.3.1 Ontology Structures

To be able to receive data from LOD sets, we have to be aware of the data structures of

the Linked Data sets. Therefore, Linked Data ontologies enable it to categorize data and

search content of different types. An ontology defines classes of entities, instances, and their

properties [87]. Each Linked Data set of the LOD initiative defines an ontology which comprises

a different vocabulary and structure. Thus, we have to determine how the geo-information

instances of the entities are defined in each ontology. Then, we are able to define proper search

queries and to use location information as entry point to the LOD sets. In addition, we have to

determine how entity types are defined within the different ontologies, to be able to fetch sets

of data which exhibit a certain type such as places, mountains, or cities. As we already outlined

in Section 4.1, we use in the scope of our thesis only resources of LinkedGeoData, GeoNames,

and DBpedia. Thus, we discuss the structures of these ontologies in the following paragraphs.

Table 4.1 comprises all the prefixes that we use within this section to describe the different

ontologies.

Prefix URL

gn: http://www.geonames.org/ontology#

lgdo: http://linkedgeodata.org/ontology/

wgs84: http://www.w3.org/2003/01/geo/wgs84_pos#

dbpedia: http://dbpedia.org/resource/

dbpedia-owl: http://dbpedia.org/ontology/

dbpedia-prop: http://dbpedia.org/property/

rdf: http://www.w3.org/1999/02/22-rdf-syntaxns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

owl: http://www.w3.org/2002/07/owl#

dcterms: http://dublincore.org/documents/2012/06/14/dcmi-terms/

georss: http://www.georss.org/georss/

Table 4.1: Table of prefixes

GeoNames Ontology

The GeoNames ontology defines each instance to be of type gn:Feature. In addition, every

type belongs to a specific gn:featureClass and exhibits also a specific gn:featureCode.

For instance, the feature class T stands for mountains, hills, and rocks, and a feature code P

http://www.geonames.org/ontology#
http://linkedgeodata.org/ontology/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://www.w3.org/1999/02/22-rdf-syntaxns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://www.georss.org/georss/

Chapter 4. Approach 56

further sub-categorizes T into peaks or a feature code PASS into mountain passes. The name

of an entity is defined via the property gn:name.

The GeoNames ontology describes geo-spatial information with the properties wgs84:lat,

wgs84:long, and wgs84:alt of the W3C’s Basic Geo Vocabulary.

LinkedGeoData Ontology

The LinkedGeoData ontology defines classes as instances of owl:Class. Entities which present

mountains are expressed as a rdf:type of the class lgdo:Peak. This ontology does not

comprise sub-categorizes to further categorize mountains. To define an entity’s name, this

ontology uses the property rdfs:label.

LinkedGeoData applies W3C’s Basic Geo Vocabulary and describes geo-spatial informa-

tion as a pair of wgs84:lat and wgs84:long properties and also as a single property

with wgs84:geometry (e.g. POINT(12.7106 47.1003)). Additionally, LinkedGeoData

uses GeoRSS Simple encoding2 of the W3C Geospatial Vocabulary3 to also describe geograph-

ical information with the property georss:point. This ontology does not use the property

wgs84:alt for defining the elevation value of a geographical point. It describes the elevation

value of resources via the property lgdo:elevation.

DBpedia Ontology

We apply GeoNames and LinkedGeoData resources as the AR content that we visualize on

the screen, and we use DBpedia for fetching further descriptions about the already visualized

resources within the AR interface of the system. Thus, we describe more properties of the

DBpedia ontology than we did when presenting the LinkedGeoData and GeoNames ontologies.

The DBpedia ontology defines mountain resources as type dbpedia-owl:Mountain which

is also an entity of type owl:Class. DBpedia divides mountains into different categories (e.g.

glaciers of the Alps, glaciers of Austria, Glockner Group) using the property dcterms:subject.

The DBpedia ontology also provides a property (dbpedia-owl:mountainRange) to assign

mountains to the respective mountain range in which the mountain is located. This ontology

uses the two properties rdfs:label and dbpedia-prop:name for defining the label of the

corresponding DBpedia resource.

Geo-spatial information is available via the properties wgs84:lat, wgs84:long,

wgs84:geometry, and georss:point. Instead of using wgs84:alt, DBpedia defines the

elevation value of a resources with the property dbpedia-owl:elevation.

DBpedia entities are described by short and long abstracts. The ontology uses rdfs:com-

ment for defining short abstracts and dbpedia-owl:abstract for defining long abstracts

(about 500 words). As we access data on a mobile device, long descriptions are not suitable for

the small screens of mobile devices. Thus, we concentrate on the property rdfs:comment.

2GeoRSS: http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/#model
3W3C Geospatial Vocabulary: http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/

http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/#model
http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/

Chapter 4. Approach 57

4.3.2 Discovering Identical Resources

If we use several Linked Data sets to load data, we have to find a way to consolidate the

fetched resources. A single resource my occur multiple times in different Linked Data sets but is

identified with a different URI. Thus, we also have to resolve the issue of redundancy among the

various resources. This means that we have to filter identical resources and merge the remaining

resource descriptions. Comparing resources by their geographical coordinates to find redundant

resources is not efficient enough, as for the same resources often different geo-information is

available. Discrepancies of geographical locations from equivalent resources from different LOD

sets often exceed a distance of 20 m, sometimes hundreds of meters [88]. By contrast, some

ontologies include predicates which help in identifying identical resources:

owl:sameAs

The predicate owl:sameAs of the OWL ontology can be used to define that two different URIs

describe a single resource. Content creators are able to use this OWL predicate to interlink

differed LOD sets. Therefore, we can use it to merge data from different LOD repositories [89].

By example, the URI of the real-world entity Kitzsteinhorn at LinkedGeoData is http://

linkedgeodata.org/page/node36688518, at GeoNames at is http://sws.geonames.

org/2774332, and in DBpedia http://dbpedia.org/resource/Kitzsteinhorn.

Thus, a description of the Kitzsteinhorn at DBpedia includes statements (cf. Listing 4.1) which

define that this resource is also described at other LOD sets.

1 dbpedia:Kitzsteinhorn owl:sameAs gn:2774332

2 dbpedia:Kitzsteinhorn owl:sameAs lgdo:node36688518

Listing 4.1: owl:sameAs example

rdfs:seeAlso

The predicate rdfs:seeAlso of the RDF Schema Specification provides an alternative way

to refer to an further equivalent resource of different data sets. For instance, the GeoNames

ontology uses this predicate to interlink resources with related resources of external data sets

(cf. Listing 4.2).

1 gn:Kitzsteinhorn rdfs:seeAlso dbpedia:Kitzsteinhorn

Listing 4.2: rdfs:seeAlso example

4.3.2.1 The Silk Framework

If we fetch LOD resources and save them locally within a triple store, we are able to use

an existing framework to identify identical resources and to further merge identical resource

http: //linkedgeodata.org/page/node36688518
http: //linkedgeodata.org/page/node36688518
http://sws.geonames.org/ 2774332
http://sws.geonames.org/ 2774332
http://dbpedia.org/resource/Kitzsteinhorn

Chapter 4. Approach 58

descriptions into a single graph. The Silk [90] link discovery framework is a tool for discovering

identical resources within different data sets. The framework includes Silk - Link Specification

Language (Silk-LSL), which is a declarative language that allows to define certain linkage rules

to be able to compare properties of the entities. The user has the possibility to define conditions

that RDF links must comply in order to be interlinked. These link conditions can be based on

various similarity metrics (e.g. Jaro-Winkler Distance). In addition, it is possible to weight and

combine the receiving results through various similarity aggregation functions (e.g. weighted

average) [90]. The data sources can be accessed using the SPARQL protocol. Hence, it is

possible to identify identical links between local and remote data sources.

In Listing 4.3, we present a Silk-LSL example that enables to identify identical entities of

LinkedGeoData and GeoNames. A LSL file is XML based and starts with the root element

<Silk>. Within the <Interlinks> section in the LSL file we are able to define the interlinks

that have to be generated between the two LOD sets. In this example, we state that a link

of a given type (we use owl:sameAs, cf. line 5) has to be established between two entities if

a specified condition (defined under <LinkageRule> lines 17-36) is met. We define the sets

of data items, which have to be compared, through the <SourceDataset> (lines 6-11) and

<TargetDataset> (lines 12-16) directives. We also set a restriction for LinkedGeoData and

GeoNames resources to compare certain restricted groups of resources. The <RestrictTo>

(e.g. lines 7-10) statements may contain SPARQL expressions that are usually defined in the

WHERE clause of a SPARQL query [90]. In our example, we restrict the data sets to GeoNames

entities which exhibit a feature class gn:T and to LinkedGeoData entities which are of type

lgdo:Peak. Additionally, we restrict the data sets to the geographical information of these

entities expressed via the WGS84 Geo Positioning Ontology.

We are able to specify linkage rules using the <LikageRule> directive. A linkage rule

defines how the selected data items are to be compared for similarity [91]. In Silk, the input

comparison is based on distance measures and a threshold defined by the user. We define

a threshold of 1 in order to obtain a positive similarity score if distance values are between

0 and 1 (distance value 0 = perfect match, higher values imperfect) [91]. Similarity scores are

also between between 0 or 1 where higher values indicate a greater similarity.

First of all, we compare the names of the mountains using the Jaro-Winkler distance

(lines 20-22). We use the aggregation function max to combine the similarities of the Jaro-

Winkler distance metric. This function evaluates to the highest confidence in the group [91].

We also define a weight parameter of 2. The weight indicates which comparison metric results

are more relevant than others during the generation of a link between two resources [91], and it

is considered by the weighted average aggregation function that we use to combine the similar-

ities between the names of the entities and the similarities based on the geographical distance

between these entities (lines 24-34). To calculate the geographical distance we use a numer-

ical distance measure called wgs84 that allows us to define a maximum distance parameter

in kilometers. Prior the comparison, we transform the geographical resource information into

Chapter 4. Approach 59

equal formats to normalize these values because the different data sources use different data

formats (lines 25-32). Silk offers again various forms of transformation functions (e.g. lower

case, upper case transformations). In this example, we use the function concat which enables

the concatenation of two input strings.

1 <Silk>

2 ...

3 <Interlinks>

4 <Interlink id="mountain">

5 <LinkType>owl:sameAs</LinkType>

6 <SourceDataset dataSource="geonames" var="a">

7 <RestrictTo>

8 ?a gn:featureClass gn:T.

9 ?a wgs84:lat ?lat. ?a wgs84:long ?long.

10 </RestrictTo>

11 </SourceDataset>

12 <TargetDataset dataSource="linkedgeodata" var="b">

13 <RestrictTo>

14 ?b a lgdo:Peak. ?b wgs84:lat ?lat. ?b wgs84:long ?long.

15 </RestrictTo>

16 </TargetDataset>

17 <LinkageRule>

18 <Aggregate type="average" required="true">

19 <Aggregate type="max" required="true" weight="2">

20 <Compare metric="jaro" threshold="1">

21 <Input path="?a/gn:name"/> <Input path="?b/rdfs:label"/>

22 </Compare>

23 </Aggregate>

24 <Compare metric="wgs84" required="true">

25 <TransformInput function="concat">

26 <Input path="?a/wgs84:lat"/> <Input path="?a/wgs84:long"/>

27 <Param name="glue" value=" " />

28 </TransformInput>

29 <TransformInput function="concat">

30 <Input path="?b/wgs84:lat"/><Input path="?b/wgs84:long"/>

31 <Param name="glue" value=" " />

32 </TransformInput>

33 <Param name="unit" value="km"/> <Param name="threshold" value="1"/>

34 </Compare>

35 </Aggregate>

36 </LinkageRule>

37 <Filter threshold="0.8"/>

38 ...

39 </Silk>

Listing 4.3: Silk-LSL example: Interlinking mountain resources between LinkedGeoData

and GeoNames

Within a Silk file it is possible to set a filter for additionally filtering the generated links

(line 37). The threshold parameter allows the removal of all the links that fall below the defined

value. After the execution of the Silk file, the generated links present the foundation of merging

resources from LinkedGeoData and GeoNames to a single data graph. Using the Silk framework

is just one way to solve the issue of duplicate LOD resources. We will not make use of Silk

Chapter 4. Approach 60

in our proof-of-concept implementation because it was not possible to apply this framework on

a mobile device. Therefore, we realized another method which also relies on the Jaro-Winkler

distance measure and the calculation of the geometric distance of the resources to identify

identical resources in our data dump. We describe our realization of this filter method and the

further explanations in the next chapter in Section 5.2.2.3.

4.4 Formal Model

As the mathematical model of our proposed AR system is a central aspect of our approach, we

now describe the main elements of this model. Thereby, we describe it on a formal basis using

set theory and algebraic specifications. At last, we present the AR tracking algorithm of our

mathematical model based on the introduced symbols and equations.

4.4.1 Symbols and Formal Definitions

To be able to operate on the incoming sensor values and the loaded LOD resources, the math-

ematical model of our AR system comprises several calculation steps. We summarized these

calculations to a tracking algorithm that we present later in Section 4.4.2. In the following

sections, we define and explain all the calculations our mathematical model contains. There-

fore, we introduce a number of symbols that we use throughout this section to describe and

define the calculations, and the algorithm of the mathematical model within Table 4.2. Along

the presentation of the calculations, we also give a connected example scenario to present the

presented formulas in practice. In the end, this example scenario delivers screen coordinates for

a LOD resource which enable a proper visualization of a graphical icon representing this LOD

resource within the AR interface of our AR system.

First of all, we start with a formal definition of a LOD resource within our AR system and

the definition of the geographical location of the used device on which the AR systems runs

(cf. Definition 4.1). Then, we give further definitions for all the other symbols listed in Table 4.2

in the following sub-sections.

Definition 4.1. Let RES denote the set of all loaded LOD resources res ∈ RES
of our AR system. A resource res ∈ RES is defined as the 3-tuple (λres, ϕres, ψres).

Let DL be the set of all device location parameters dl ∈ DL, where a device location

dl ∈ DL is defined as the 3-tuple (λdl, ϕdl, ψdl).

Chapter 4. Approach 61

Symbols Description/Unit Reference

res Loaded LOD resources of the AR system Definition 4.1

dl Device location Definition 4.1

ds Device sensor parameters Definition 4.7

fov Field of view Definition 4.8

rp Resource position on the horizontal or vertical angle of view Definition 4.8

sp Screen point Definition 4.9

RES Set of all loaded LOD resources res Definition 4.1

DL Set of all device location parameters dl Definition 4.1

DS Set of all device sensor parameters ds Definition 4.7

FOV Set of all border parameters of the field of view fov Definition 4.8

RP Set of all resource positions rp on the horizontal and vertical

angle of view

Definition 4.8

SP Set of all screen points sp Definition 4.9

α Recorded azimuth angle of device / in degrees Section 4.4.1.4

ρ Recorded pitch angle of device / in degrees Section 4.4.1.4

λdl,λres Longitude of dl ∈ DL and res ∈ RES Definition 4.1

ϕdl,ϕres Latitude of dl ∈ DL and res ∈ RES Definition 4.1

ψdl,ψres Altitude of dl ∈ DL and res ∈ RES Definition 4.1

d Geodesic distance between device dl ∈ DL and resource

res ∈ RES/ in meters

Definition 4.3,

Definition 4.4

r Range radius within which LOD resources are queried / in

meters

β Bearing angle between device dl ∈ DL and resource

res ∈ RES / in degrees

Definition 4.5

θ Inclination angle from device dl ∈ DL to resource

res ∈ RES/ in degrees

Definition 4.6

haov, vaov Horizontal and vertical angle of view / in degrees Definition 4.2

lborder, rborder Left and right border of field of view fov / in degrees Definition 4.7

uborder, loborder Upper and lower border of field of view fov / in degrees Definition 4.7

screenw,

screenh

Screen width and height of device / in pixels Definition 4.7

xhaov, yvaov Position of resource res ∈ RES on horizontal and vertical

angle of view of camera / in degrees

Definition 4.8

xcor, ycor x and y coordinate for a resource res ∈ RES on screen / in

pixels

Definition 4.9

l Focal length of camera lens / in millimeters Definition 4.2

h, v Horizontal and vertical dimensions of camera image format /

in millimeters

Definition 4.2

Table 4.2: Mathematical symbols for formal model

Chapter 4. Approach 62

4.4.1.1 Angle of View of Camera

The angle of view of a camera defines the scene of the reality which the camera lens captures.

Figure 4.3 (a) illustrates that there are three types of angles: the horizontal haov, vertical vaov,

and diagonal daov angle of view. We also depict the focal length l of a lens and the horizontal h

and vertical v dimension of the used image format from the captured scene. The focal length

represents the distance from the center of the camera lens to a focal point (object of a scene) [92].

1

(a) Three angles of view

l
h

haov /2
haov /2

(b) haov - camera top view

Figure 4.3: Angles of view of a camera lens

In Figure 4.3 (b), we illustrate the different angles of view from the camera’s top view. We

split the triangle into two right triangles, so that we are able to apply a basic trigonometry

formula (cf. Definition 4.2).

Definition 4.2. We define two inverse trig functions

fhaov(l, h) = 2 arctan

(
h/2

l

)
(4.1)

fvaov(l, v) = 2 arctan

(
v/2

l

)
(4.2)

that calculate the viewing angles haov and vaov of a fixed focal length l and with the

given image format dimensions h and v.

As an example, let the fixed focal length l of the device’s camera lens be 3.53 mm and let the

horizontal image format h of the camera be 3.66 mm and the vertical image format 2.746 mm. In

Chapter 4. Approach 63

consequence, we obtain the horizontal and vertical angle of view with the following calculations:

haov = 2 ∗ arctan

(
3.66mm/2

3.53mm

)
= 2 ∗ arctan(0.5184136) ∗ (180/π)

= 2 ∗ 27.40284◦

≈ 54.8◦

vaov = 2 ∗ arctan

(
2.746mm/2

3.53mm

)
= 2 ∗ arctan(0.3889518) ∗ (180/π)

= 2 ∗ 22.2853◦

≈ 44.6◦

We additionally multiply by (180/π) to convert radians to degrees.

4.4.1.2 Distance and Bearing

In our mathematical model, we also need to include the determination of the distance in meters

between the current GPS location and the locations of real-world objects. There exist many

different ways to calculate the distance between two geographical points, whereby they vary in

complexity and accuracy.

For instance, T. Vincenty [93] published in the year 1975 two iterative methods for the

calculation of the distance between two locations on the surface of a spheroid (the earth’s shape

is seen as a globe that is sparsely flattened on its axes): the direct and inverse formula. The

direct formula determines a destination point representing the distance traveled and the azimuth

to the start point. With the help of the inverse formula it is possible to calculate the distance

between two geographical points and the bearing angle.

In our approach, we use Vincenty’s inverse formula for gaining the distance d (cf. Defini-

tion 4.3 and Definition 4.4) between two locations because the formula’s accuracy lies within

0.5 mm on the ellipsoid being used (e.g. WGS84) [94]. Simpler distance calculation methods,

such as the Haversine formula (which assumes that the earth is a sphere), exhibit less accuracy.

Definition 4.3. Let d(res, dl) denote the geographic distance between two points

res ∈ RES and dl ∈ DL. Let a and b be the major and minor semi-axes of the

ellipsoid. Then, we get the ellipsoidal flattening flat through Equation 4.3.

flat =
a− b
a

(4.3)

Chapter 4. Approach 64

Let (ϕres,λres) and (ϕdl,λdl) be two geographical points. The reduced latitude φ(ϕ)

(latitude on the auxiliary sphere) for the two points is defined by:

φdl = arctan
(
(1− flat) tanϕdl

)
(4.4)

φres = arctan
(
(1− flat) tanϕres

)
(4.5)

Furthermore, let ∆λ be the difference in longitude (λres-λdl) of two points res and dl.

Now, we set the initial value of λ = ∆λ. Then, we iterate over Equations 4.6-4.12

until λ converges.

sinσ =
√

(cosφres sinλ)2 + (cosφdl sinφres − sinφdl cosφres cosλ)2 (4.6)

cosσ = sinφdl sinφres + cosφdl cosφres cosλ (4.7)

σ = arctan
sinσ

cosσ
(4.8)

Now, let conc be Vincenty’s constant for computation of longitude difference:

sinα = cosφdl cosφres sinλ/ sinσ (4.9)

cos 2σm = cosσ − 2 sinφdl sinφres/ cos2 α (4.10)

conc =
flat

16
cos2 α

(
4 + flat (4− 3 cos2 α)

)
(4.11)

∆λ = λ−(1−conc) flat sinα
(
σ+conc sinσ

(
cos 2σm+conc cosσ (−1+2 cos2 2σm)

))
(4.12)

where σ denotes the angular distance of two points on the sphere and σm is the

angular distance on sphere from equator to line midpoint.

Vincenty developed this formula with the consideration to efficiently be applied in imple-

mentations. Therefore, in each iteration of the formula only each of sin, cos, sqrt, and arctan

are used. Thus, it usually takes four iterations to gain a result [94]. Is the change in λ negli-

gible, we are able to compute the geodesic distance d between the two points in the ellipsoid

(cf. Definition 4.4).

Definition 4.4. Let cona and conb be Vincenty’s constants for the computation of

σ, and let u2 be a geodesic constant u-squared. We obtain the distance d through

Equations 4.13-4.17.

u2 =
cos2 α (a2 − b2)

b2
(4.13)

Chapter 4. Approach 65

cona = 1 +
u2

16384

(
4096 + u2

(
− 768 + u2 (320− 175 u2)

))
(4.14)

conb =
u2

1024

(
256 + u2

(
− 128 + u2 (74− 47 u2)

))
(4.15)

∆σ = conb sinσ
(

cos 2σm +
1

4
conb

(
cosσ(−1 + 2 cos2 2σm) (4.16)

−1

6
conb cos 2σm (−3 + 4 sin2 σ) (−3 + 4 cos2 2σm)

))
d = b cona (σ −∆σ) (4.17)

where distance d ∈ [0, r] (r is the range in meters which we define to restrict the

number of real-world objects that are visualized within the AR interface).

The model for the earth ellipsoid, which we apply within the inverse formula for the distance

calculation in our approach, is WGS-84. Therefore, we define the semi-major axis (equatorial

radius) a = 6,378,137 m and the semi-minor axis (polar radius) b ≈ 6,356,752.314245 m and

thus we obtain f ≈ 1 / 298.257223563.

We mentioned earlier, that Vincenty’s inverse formula also provides initial and final bearing

values. According to [95], bearing is the measurement of direction between two points. In

Definition 4.5, we define Vincenty’s additional formulas for obtaining the initial and final bearing

angles. In our approach, we need the bearing angle β between the current position of the device

dl ∈ DL to each loaded resource res ∈ RES in order to be able to check if a resource lies within

the current field of view (cf. Section 4.4.1.4 and Defintion 4.8).

Definition 4.5. Let β1 be the initial bearing angle and let β2 be the final bearing

angle from dl = (λdl, ϕdl, ψdl) to res = (λres, ϕres, ψres). They are defined by

tanβ1 =
cosφres sinλ

cosφdl sinφres − sinφdl cosφres cosλ
(4.18)

tanβ2 =
cosφdl sinλ

− sinφdl cosφres + cosφdl sinφres cosλ
(4.19)

where we use φdl and φres from Equation 4.4 and Equation 4.5 and λ from Equa-

tions 4.6-4.12.

4.4.1.3 Inclination Angle

The inclination angle θ defines the angle from the current position on earth to the altitude ψres

(in meters) of a resource location. Altitude or elevation is the height above sea level of a resource

res ∈ RES or device location dl ∈ DL. We use the inclination value later to check if a resource

lies within the vertical angle of view vaov of the camera (cf. Equation 4.29). We determine the

Chapter 4. Approach 66

inclination angle θ by applying a basic trigonometry function. Figure 4.4 illustrates a triangle

with its three sides called hypotenuse, adjacent, opposite, and the angle θ. In Definition 4.6, we

define the respective inclination function.

1

Figure 4.4: Basic trigonometry triangle

Definition 4.6. Let ∆ψ be the difference in altitude

∆ψ =

ψres − ψdl if ψres > ψdl

(ψdl − ψres) ∗ −1 otherwise
(4.20)

of two points dl = (λdl, ϕdl, ψdl) and res = (λres, ϕres, ψres). Now, let ∆ψ be the

opposite side of the triangle in Figure 4.4 and let the distance d (cf. Definition 4.3

and Definition 4.4) between the points dl and res be the adjacent side of the triangle

in Figure 4.4. We define an inclination function θ(res, dl) as

fθ(res, dl) = arctan

(
∆ψ

d

)
(4.21)

By example, let the altitude of the current location be 342 m and the altitude of a resource

394 m. Now, if we have a distance of 4,496.86 m between the two locations, we are able to

obtain:

θ = arctan

(
394m− 342m

4, 496.86m

)
∗ (180/π) ≈ 0.6625◦

4.4.1.4 Field of View

The field of view presents the actual scene which the user observes through the display of the

device. If a resource appears in the current field of view, a marker will be visualized on top of

it. The virtual content and the real-world object have to stay aligned. Thus, every time the

user moves, the current field of view is re-calculated. Therefore, we use azimuth α and pitch ρ

values, as well as the horizontal haov and vertical vaov view angles of the camera lens to calculate

the borders of the field of view fov (cf. Definition 4.7). We obtain azimuth α and pitch ρ by the

Chapter 4. Approach 67

device’s built-in magnetometer and the accelerometer sensors. Azimuth and pitch define the

direction and orientation of a device. In our model, the azimuth angle α presents the direction

angle (the current heading of the device) α ∈ [0◦, 360◦] and the pitch angle ρ ∈ [−90◦, 90◦]

presents the rotation of the device forwards or backwards.

In Figure 4.5 (a), we illustrate the camera’s top view and in Figure 4.5 (b), there is the

camera’s side view visible. The green angle presents the horizontal or vertical angel of view

haov and vaov of the camera. The purple and the brown angles are the left, right, upper, and

lower borders of the field of view fov of the camera. The field of view itself is outlined by the

yellow colored area between the black arrows. The red angle presents the bearing angle β in

Figure 4.5 (a) and the inclination angle θ of a resource in Figure 4.5 (b). The black arrow in

the middle of the field of view presents the current heading direction α in Figure 4.5 (a) and

the current pitch angle ρ of the device in Figure 4.5 (b).

0°

90°

180°

270°

β haov

α

xaov
lborder

rborder

fov

360°

(a) Camera Top View

90°

-90°

yaov

fov

loborder

uborder

ρ 0°

 θ

vaov

(b) Camera Side View

Figure 4.5: haov, vaov and borders of field of view

Definition 4.7. Let DS be the set of all device sensor parameters ds ∈ DS that

we receive from the device sensors. Then, let ds = (α,ρ,haov,vaov,screenw,screenh)

be a 6-tuple of device sensor parameters. We define two border functions

flborder(ds) = α− haov
2

(4.22)

frborder(ds) = α+
haov

2
(4.23)

for obtaining the left and right borders of the horizontal field of view of the device’s

camera. The borders have to be between 0◦ and 360◦. Thus, let cond be a constant

Chapter 4. Approach 68

of 360◦ for the determination of the borders for the horizontal field of view. We

additionally define

lborder =

lborder + cond if lborder < 0

lborder otherwise
(4.24)

rborder =

rborder − cond if rborder > cond

rborder otherwise
(4.25)

to obtain lborder ∈ [0, cond] and rborder ∈ [0, cond]. Analogous, we define two further

border functions

fuborder(ds) = ρ+
vaov

2
(4.26)

floborder(ds) = ρ− vaov
2

(4.27)

for obtaining the upper border uborder ∈ [−90, 90] and lower border loborder ∈ [−90, 90]

of the vertical field of view of the camera.

Now, with the help of these borders we are able to determine if a resource lies in the current

field of view. Therefore, we have to map the bearing angle β (cf. Equation 4.18) onto the

horizontal angle of view haov (cf. Equation 4.1) and the inclination angle θ on the vertical angle

of view vaov (cf. Equation 4.2). For instance, we illustrate the mapping of the bearing angle β

in Figure 4.5 (a). The length of the blue arrow presents the mapped degree value of the current

position of the resource xhaov on the horizontal angle. In Definition 4.8, we formally define

the mapping of bearing angle β and inclination angle θ on the device’s horizontal and vertical

camera angle of view.

Definition 4.8. Let FOV be the set of all border parameters of the field of view

fov ∈ FOV . Then, let fov = (lborder,rborder,uborder,loborder) ∈ FOV be a 4-tuple

of field of view borders. Moreover, let RP be a set of points rp ∈ RP on the angle

of view of the camera, where rp is defined as a tuple (xhaov,yvaov). Let conx be a

constant of constant of -1000◦ and let cony be a constant of -180◦ in order to obtain

a negative value if rp does not lie in the angle of view. We define two functions

fxhaov(β, fov) =


β − lborder if β ≥ lborder

cond − lborder + β if β ≤ rborder

conx otherwise

(4.28)

Chapter 4. Approach 69

fyvaov(θ, fov) =

uborder − θ if θ ≥ loborder and θ < uborder

cony otherwise
(4.29)

where the coordinate xhaov ∈ [0, haov] and the coordinate yvaov ∈ [0, vaov] that de-

termine a resource position within the camera’s field of view in degrees.

To continue our example scenario, we already have the the horizontal and vertical angle

of view of the camera haov= 54.8◦ and vaov= 44.6◦. Additionally, we assume that we have a

camera azimuth of α = 346◦, a camera pitch of ρ = 1◦, a device screen width of screenw= 480 px,

and a screen height of screenh= 320 px. Thus, we have device sensor parameters ds=(346.0,

1.0,54.8,42.5,480,320)∈ DS. Now, we determine the borders of the field of view through the

following calculations:

lborder = 346◦ − 54.8◦

2
= 318.6◦

rborder = 346◦ +
54.8◦

2
= 373.4◦

rborder > 360◦ : rborder = 373.4◦ − 360◦ = 13.4◦

uborder = 1◦ +
44.6◦

2
= 23.3◦

loborder = 1◦ − 44.6◦

2
= −21.3◦

and obtain fov=(318.6,13.4,23.3,-21.3) ∈ FOV .

Now, let the bearing angle β be 342.96◦. Considering Equation 4.28, we have β ≥ lborder,

so we proceed with

xhaov = 342.96◦ − 318.6◦ ≈ 24.4◦

and obtain xhaov ∈ [0,54.8].

Then, we assume to have an inclination angle θ=0.6625◦. Considering Equation 4.29, we

have θ ≥ loborder and θ < uborder, so we proceed with

yvaov = 23.3◦ − 0.6625◦ ≈ 22.6◦

and obtain yvaov ∈ [0,44.6]. Finally, we obtain a point on the angle of view of the camera

rp=(24.4,22.6) ∈ RP .

4.4.1.5 Screen Coordinates

As we need to properly align the virtual content and the resources of the current field of view

on the screen of a device, we need screen coordinates in pixels to place the virtual content on

Chapter 4. Approach 70

the respective position onto the screen. Therefore, we have to transform angle coordinates xhaov

and yvaov into screen coordinates (pixel units) which we define in Definition 4.9.

Definition 4.9. Let screenw be the screen width and let screenh be the screen

height of ds ∈ DS. Moreover, let SP be a set of screen points sp ∈ SP where a

screen point sp is defined as a tuple (xcor,ycor). Then, we define two functions

fxcor(rp, ds) =
xhaov ∗ screenw

haov
(4.30)

fycor(rp, ds) =
yvaov ∗ screenh

vaov
(4.31)

where the coordinate xcor ∈ [0, screenw] and the coordinate ycor ∈ [0, screenh], to

obtain the position of a resource on the screen of a mobile device.

If we consider again our example scenario, we already have device sensor parameters

ds=(346.0,1.0,54.8,44.6,480,320) ∈ DS and a resource point rp=(24.4,22.6) ∈ RP on the angle

of view. Now, we calculate

xcor =
24.4◦ ∗ 480 px

54.8◦
≈ 213.7 px

ycor =
22.6◦ ∗ 320 px

44.6◦
≈ 162.2 px

to finally obtain the screen point sp=(213.7,162.2) ∈ SP .

4.4.2 Tracking Algorithm

In the previous subsection, we introduced and defined all the calculations we need to obtain

screen coordinates for the virtual content of our AR system. In this section, we put all the

calculations into a single algorithm (cf. Table 4.3). Therefore, you may have to consider the

previous section to clarify the meaning of each symbol. In order to map LOD resource locations

to screen coordinates, we use the device location dl = (λdl, ϕdl, ψdl) ∈ DL, the loaded LOD

resources res = (λres, ϕres, ψres) ∈ RES of the system, and the device sensor parameters

ds = (α, ρ, haov, vaov, screenw, screenh) ∈ DS as input parameters for the algorithm. The

output of the algorithm is a screen point sp = (xcor, ycor) ∈ SP which presents the position

on the screen at which a virtual object will be visualized. The input parameters which hold

the sensor data for orientation and direction information (α ∈ ds and ρ ∈ ds) are updated

constantly by the system. This is necessary because the visualized objects on the display have

to stay aligned with the respective real-world resources to assure a proper AR experience.

Starting with line 1 of Table 4.3, we define a loop to guarantee that the system repeats

the calculations for each resource. In lines 2 and 3, we calculate the distance in meters and

Chapter 4. Approach 71

the bearing angle in degrees between the device location dl and the current resource res using

Vincenty’s inverse formula (cf. Definition 4.3- 4.5). The next calculation step (line 4) comprises

the calculation of the inclination angle θ between the device dl and resource res by considering

the value of their altitudes ψdl and ψres and by applying a basic trigonometry formula as defined

in Definition 4.6 and Equation 4.21.

input : res, dl, ds, cond

output: sp = (xcor, ycor)

1 foreach res ∈ RES do

2 d(dl, res) = calculate distance;

3 β(dl, res) = calculate bearing;

4 θ(dl, res) = calculate inclination;

5 lborder = subtract half of haov ∈ ds from α ∈ ds;
6 if lborder < 0 then

7 lborder = add cond degrees to lborder;

8 end

9 rborder = add half of the haov ∈ ds to α ∈ ds;
10 if rborder > cond then

11 rborder = subtract cond degrees from rborder;

12 end

13 xhaov = conx;

14 if β ≥ lborder then

15 xhaov = subtract lborder from current β;

16 end

17 else

18 if β ≤ rborder then

19 xhaov = take cond, subtract lborder and add β;

20 end

21 end

22 xcor = take xhaov multiply by screenw ∈ ds and divide by haov;

23 uborder = add half of the vaov to ρ ∈ ds;
24 loborder = subtract half of the vaov from ρ ∈ ds;
25 yvaov = cony;

26 if θ ≥ loborder then

27 if θ < uborder then

28 yvaov = subtract θ from uborder;

29 end

30 end

31 ycor = take yvaov multiply by screenh ∈ ds and divide by vaov;

32 end

Table 4.3: AR tracking algorithm

In lines 5-22, we define the calculation steps to obtain the x-screen coordinate. Starting with

lines 5-12, we determine the left and right borders of the field of view as defined in Definition 4.7.

Chapter 4. Approach 72

When we move a device left or right, the full range of heading reaches from 0◦ to 360◦. But,

the result value of the left border calculation may be a negative value (line 6). Thus, let cond

be a constant value of 360◦, we add cond to the left border value (line 7) to obtain a border

value that lies in the range of [0◦, 360◦] (cf. Equation 4.24).

On the other hand, the right border calculation may lead to a value that is greater than

360◦ (line 10). Then, we subtract 360◦ from the right border value in line 11 (cf. Equation 4.25).

Continuing with line 13 of Table 4.3, we declare the variable xhaov and initialize it with

conx. conx presents a constant value of -1000◦. The negative value assures that no object is

visualized on the screen, if the bearing angle does not lie between the left and right border of

the field of view. That means that the resource is not visible and will not be visualized by the

system.

With the help of the left and right borders lborder and rborder and the bearing angle β we

are able to check if a resource lies within the field of view fov. Thus, in line 14 we check if

the bearing angle β is greater than or equal to the left border, and then we map the bearing

angle onto the horizontal angle of view as defined in Definition 4.8 to obtain the position of the

resource on the horizontal angle of view. In Figure 4.6 (a), we illustrate an example case to this

calculation step with the help of a compass rose and the respective heading degrees. The field

of view is highlighted with a blue color. The red dot presents the value of the bearing angle.

In this example, the bearing angle comprises a value that is greater than the left border of the

current field of view. This means that the if-clause of line 14 is true.

0°
360°

90°270°

190°

β

lborder

(a) β ≥ lborder

0°
360°

90°270°

190°

lborder

β

(b) β < lborder

Figure 4.6: Bearing angle within haov

In the case the bearing angle is not greater than the left border of the field of view, we

additionally check if the bearing angle is lower than or equal to the right border of the field of

view (line 18). Then, we obtain the position of the resource on the horizontal angle of view xhaov

by subtracting the left border value from 360◦ and adding the bearing angle value in line 19, as

defined in Definition 4.8. Figure 4.6 (b) illustrates this case: the bearing angle lies between 0◦

and the right border. Thus, β is lower than the right border. After the position of the resource

on the horizontal angle of view is determined, we perform the transformation into the x-screen

coordinate in line 22 of Table 4.3 (cf. Definition 4.9).

Chapter 4. Approach 73

The last part of the algorithm comprises the y-screen coordinate computation. Starting

with lines 23 and 24, we determine the upper and lower borders of the current field of view

(cf. Definition 4.8). As before, we declare the variable yvaov with a constant variable cony = -

180◦ (line 25). In consequence, we obtain a negative y-pixel value, if no re-initialization follows

in the following lines. For determining the position of a resource on the vertical angle, we

take the inclination angle and check if it is greater than or equal to the lower border, and we

additionally check in line 27, if the inclination angle is lower than the upper border because

then the resource lies within the current vertical viewing angle and we are able to map the

inclination angle on the vertical angle of view (cf. Equation 4.29). Finally, we determine the

y-screen coordinate ycor in line 31 (cf. Definition 4.9).

4.5 Functional Model

This part gives an overview of the functional processes of the mobile AR system. Thereby,

we provide three different activity models. The first model presents the control flow until the

system visualizes virtual content within the AR interface, and the remaining models contain

the control flow for loading content on a 2D map.

1

Figure 4.7: Functional model – loading content in AR interface

Chapter 4. Approach 74

The model in Figure 4.7 is separated into two parts: the left side of the model contains

activities that are triggered by the user and on the right side we present activities which are

triggered by the AR system. Beginning at the top of Figure 4.7, the user selects the AR mode

of the system. This provokes two activities simultaneously: the start of the sensor listening and

the GPS tracking. The access to the device’s sensors is necessary for recording the orientation

and direction values of the device. We use the sensor data later within the mathematical model

for the visualization of the AR content.

The GPS radio determines the current location of the device. At the first GPS fix, the

loading of Linked Data resources starts. Once RDF data is available, the system filters identical

resources to prevent duplicate resource occurrences and then they are merged and stored locally

on the device. After the LOD processing, the system executes the mathematical model calcu-

lations: bearing, distance, inclination, and x/y coordinate calculations. Afterwards, the system

visualizes virtual content on the screen. Now, the user has the possibility to select one of the

virtual objects. The selecting triggers the loading of further LOD resource descriptions about

the respective resource. In our application scenario, we load further resources description from

the DBpedia data set (cf. Chapter 5). Our AR system displays the loaded RDF-based DBpedia

resource descriptions on the screen, so that the user is able to observe additional information

about specific resources. In addition, the user has the possibility to close the AR mode of the

system.

1

Figure 4.8: Functional model – loading LOD in map view

Chapter 4. Approach 75

Figure 4.8 presents the flow of processes for loading virtual content on a 2D map. As soon

as the user activates the map mode of the system, the system provokes the GPS radio to obtain

the current location of the device. At the first location fix, the downloading of LOD resources

for a specific area starts. In this case, the system does not use the mathematical model to

calculate screen coordinates. This time, the system visualizes markers on the map after the

process of downloading LOD resources is completed. As soon as markers are visible on the

map, the user has the possibility to select a marker. The selection triggers again a downloading

process of LOD data. Then, the system displays the loaded data on the screen. In the end, the

user is able to close the map mode.

The user has also the possibility to load tours that are located near the device. In Figure 4.9,

we illustrate the tour mode where the user has to set a range (km) in which tours will be searched,

after she/he starts the tour mode. Then, the system triggers the GPS tracking to find a first

fix. As soon as the location of the device is determined, the system searches after GPS tours

at OpenStreetMap and presents received results in a list on the screen. Now, the user is able

to select a GPS tour of the list. If a tour is selected, the system presents the tour on the map.

Finally, the user is also able to close the tour mode of the system.

1

Figure 4.9: Functional model – loading tours in map view

4.6 Summary

Within this chapter, we presented design consideration and requirements for a mobile AR sys-

tem. We presented this AR system on a conceptual basis where we outlined, amongst other

Chapter 4. Approach 76

things, that we use three different Linked Data sets to access Linked Data resources: GeoNames,

LinkedGeoData, and DBpedia. Whereby, we access GeoNames and LinkedGeoData resources

during the loading process and thus use these resources as our AR content. If we need further

information about certain resources, we fetch the data from DBpedia.

Fetching data from different sources causes the availability of duplicate resources. Thus, we

described the Silk framework which includes Silk LSL a language that allows us to define rules

for discovering related resources, as possible solution for avoiding duplicate data. Subsequently,

it is possible to eliminate the discovered duplicate entries and merge the remaining resource

descriptions into a single RDF graph. For our prototypical implementation of our AR system

we do not use Silk, but we realized similar methods as the Silk framework provides to identify

duplicate resources which we present in Chapter 5.

Furthermore, we outlined again that our AR system is based upon a sensor-based mathe-

matical model. The model comprises several calculation steps which altogether compose an AR

tracking algorithm. The algorithm requires several input parameters: the geographical locations

of the LOD resources, the GPS location of the device, and sensor data representing heading and

orientation information of the device. The model is then capable of determining the current

angle of view and to check, if real-world resources lie within this angle of view. This is necessary

in order to finally be able to calculate screen coordinates for every resource within the captured

view, so that virtual content can be placed on top of the resources in the camera picture.

Chapter 5

Proof of Concept

This chapter describes the implementation process of the proof-of-concept Android AR appli-

cation, based on the formal and conceptual constituents presented in Chapter 4. First, we start

with the presentation of UML class diagrams of the AR prototype. These diagrams present

an overview of the classes of the system and provide a short introduction into our AR system.

Finally, we give a description of the most important implementation parts of our AR prototype

including a precise look into specific classes and sequence processes, and a presentation of actual

source code snippets.

5.1 Software Design

We explain the software design of our proof-of-concept prototype in this section by presenting

class diagrams. Thereby, we begin with the presentation of an overview diagram and we describe

the core classes of the system. Then, we present three diagrams for each mode (AR-, map-, and

tour-mode) the prototype comprises.

We divide classes within the following UML class diagrams into different groups, whereby

each group is marked by a different color. Yellow stands for classes which extend an activity,

the red ones present helper classes that support other classes of the application, green stands

for classes which extend an Android View (we describe views in Definition 5.1 according to the

definition provided by [56]) and the purple one extends also the View class but represents a

LOD resource. The attributes and methods of the classes are not presented and discussed in

this section. But we further discuss the classes, which are most relevant for the realization of

our approach, in Section 5.2 within the respective implementation parts of the prototype.

Definition 5.1 (View). Views are user interface (UI) elements that form the basic

building blocks of a user interface. A view could be a button, label, text field, or

many other UI elements. [...] Views are also used as containers for views, which

means that there’s usually a hierarchy of views in the UI. (Komatineni et al., 2011)

77

Chapter 5. Proof of Concept 78

5.1.1 Activities Overview

Figure 5.1 comprises all the activities our prototype includes and exhibits their relations to each

other. Two helper classes are also presented because they are used to start activities within the

application. In this figure, we additionally depict the sections in which we further discuss the

specific classes. However, to understand the purpose of each presented class, we briefly describe

them within the following paragraphs.

1

Figure 5.1: Core classes of AR prototype

StartActivity: Is the main activity of the application and presents the entry point to

the AR application. It contains the implementation of the UI which appears on the dis-

play as soon as the user activates the application. The user has the possibility to start

three different activities through this class: ARMainActivity to switch to the AR mode,

MountainMapActivity to switch to the map mode, and TourRecordActivity to switch

to the tour mode. StartActivity also triggers the TourDataFetcher to gather GPS tours

from the Web and it activates the GPSService.

GPSService: Represents an Android service that is responsible for providing an activ-

ity, which binds itself to this service, with location updates. Therefore, this class implements

Android’s LocationManager and the LocationListener to be able to access the built-in

GPS radio of the mobile device and to receive constantly location updates (cf. Section 5.2.1.1).

The system starts GPSService as soon StartActivity is activated. But the receiving of

location updates is not started until a certain activity binds itself to GPSService.

ARMainActivity: This class is the core heart of the AR mode of the prototype, which

defines the AR interface for the displaying of recognized mountains in the near vicinity and

it implements the access to the device’s sensors. This activity binds itself to GPSService to

Chapter 5. Proof of Concept 79

constantly obtain GPS location updates. Within the AR mode it is possible to activate the map

mode (starting MountainMapActivity). Leaving this activity causes the renewed activation

of StartActivity.

MountainMapActivity: This activity presents a map-viewing activity. We create map-

based activities by using the Google Maps Android API1. Thus, this class displays a Google

Maps interface element that allows us to display resources through special markers on it.

MountainMapActivity enables the activation of TourDataFetcher for loading GPS tours

from OpenStreetMap but also the renewed activation of StartActivity. Moreover, it receives

location updates from the GPSService.

TourDataFetcher: This class extends the abstract class AsyncTask. It contains event

handlers that allow to display a progress dialog on the screen to inform the user that the system

currently fetches tour data from OpenStreetMap. After the searching of tours is finished the

system starts the TourListViewActivity which is responsible for presenting the results on

the screen.

TourListViewActivity: This class extends ListActivity which enables to display

the results (received GPS tours) in a list, after the TourDataFetcher has finished the GPS

tour searching process. Every item on this list is selectable. Selecting an item in the list

causes the activation of MountainMapActivity and the system visualizes the tour on a map.

TourListViewActivity also allows the activation of the TourDataFetcher for starting

a new searching process to gather further GPS tracks. It is also possible to move back to

StartActivity.

TourRecordActivity: Presents also a map-based activity. This class enables the visu-

alization of a currently recorded GPS tracks on a map and to store these recorded tracks in a

GPX file. This class also enables the displaying of GPS tracks which are stored in a GPX file

within the local storage system of the device. This class binds itself to GPSService to receive

location updates every time the user moves and it is possible to move back to the home screen

by activating StartActivity again.

5.1.2 AR Mode

The class diagram in Figure 5.2, illustrates all the classes the system requires in the AR mode.

We shortly introduce each class in the following paragraphs:

ARView: It contains the implementation of our AR tracking algorithm (Table 4.3). Thus,

this class is responsible for visualizing virtual content (LOD resources which are instances of

MountainObject) on top of the camera view. In Figure 5.2, we illustrate that ARView is able

to comprise none or several objects of type MountainObject.

CamView: The purpose of this class is to implement the camera preview. Presents the

base view to be able to visualize objects on top of it.

1Google Maps Android API : https://developers.google.com/maps/documentation/android/

https://developers.google.com/maps/documentation/android/

Chapter 5. Proof of Concept 80

1

Figure 5.2: Class diagram overview – AR mode

CompassView: Implements an animated compass which appears on the left bottom side

of the screen.

In Figure 5.2, we use the word “adds” for the associations between the ARMainActivity

class and the view classes because in Android an activity adds views to the content view in order

to generate an UI. In our AR system, we need an AR interface in which resources are visualized

on top of the live camera view. Thus, we initialize ARView, CamView, and CompassView

within ARMainActivity. CamView presents the content view and we add the two remaining

views to this content view. As a result, CamView lies below ARView and CompassView which

means that virtual content is placed upon the live camera preview. Figure 5.3 illustrates this

method of piling views onto each other. These three layers constitute the AR interface of the

prototype.

1

Figure 5.3: Views of the AR interface

MountainObject: Represents a mountain resource loaded from LOD sets. We create

objects of type MountainObject within the MountainDataHandler class as soon as LOD

resources are available. MountainObject also comprises calculations of the mathematical

Chapter 5. Proof of Concept 81

model of which the results serve as input parameters for the tracking algorithm in the ARView

class. Moreover, this class comprises a drawing method for drawing canvas objects on the right

position of the screen.

Utils: This class comprises important helping methods used by other classes for instance

methods which check the availability of the Internet connection. Moreover, Utils extends

a SQLite2 helper class to manage database creation for the loaded LOD resources. Thus, it

implements methods for creating, opening, and upgrading the SQLite database on our mobile

device but also methods for performing functions (e.g. adding new resources) on this SQLite

database. In Figure 5.2, we illustrate which classes are in need of methods implemented in

Utils.

MountainDataFetcher: The MountainDataFetcher extends the abstract class

AsyncTask. Event handlers are used to display a progress dialog until a background process is

finished. Within the background process the system triggers the MountainDataHandler. As

visible in Figure 5.2, the system calls the MountainDataFetcher within the main activity

ARMainActivity and the MountainDataFetcher makes use of methods of the Mountain-

DataHandler during its background process.

MountainDataHandler: In this class, we define methods for downloading RDF data

from the GeoNames and LinkedGeoData data sets. Additionally, MountainDataHandler

is responsible for filtering identical resources, merging resource descriptions, and for saving

resources as objects of type MountainObject. This class also saves the filtered resources

within a SQLite database on the device, so that the application is later executable without a

permanent network connection (cf. Section 5.2.3).

MountainInfoFetcher: Extends the abstract class AsyncTask for fetching further in-

formation about specific mountains. It is activated by the MountainObject class. A progress

dialog indicates that in the background data is fetched from DBpedia. The system displays the

loaded results within a dialog on the screen.

5.1.3 Map and Tour Mode

As our prototype presents an AR mountain guide, we included a map and tour mode to the

prototype. In Figure 5.4 and in Figure 5.5, we present all classes our AR prototype additionally

comprises in order to display a map to present mountain markers on it but also classes which

enable the loading, screening, and recording of GPS tours. We already explained many of these

classes in the previous sub-section. Thus, we only discuss the remaining classes within this

section.

As visible in Figure 5.4, we use Android Overlays (we describe overlays in Definition 5.2

according to the definition provided by [57]) to annotate a map and to handle the user input

(touch event).

2SQLite: a lightweight relational database for data storage, cf. http://www.sqlite.org/

http://www.sqlite.org/

Chapter 5. Proof of Concept 82

Definition 5.2 (Overlay). Overlay is the class used to annotate your maps. Using

Overlays, you can use a Canvas to draw onto any number of layers that are displayed

on top of a Map View. (Meier, 2010)

In Figure 5.4, we use again the word “adds” for the associations between the class Moun-

tainMapViewActivity and the overlay classes of our AR system because we have to add

these overlays to the map view instance within MountainMapViewActivity. Then, the

system is able to display mountain markers on top of the map.

1

Figure 5.4: Class diagram overview – Map and tour mode

In our system, we define 4 different overlays which the system is able to add to the map view:

MountainMapItemizedOverlay: This class is responsible for visualizing markers onto

a MapView (implemented inside the MountainMapActivity) for each object of the class

MountainObject. It is also responsible for displaying the current user position on the map

and it implements a method that handles touch events. If a user selects a marker, a dialog

appears on the screen which contains information about the selected resource. The system

uses, as in the AR mode, the MountainInfoFetcher for the loading of additional resource

descriptions.

MountainMapTourOverlay: This class is responsible for visualizing a GPS tour track

on a map by drawing a line between the geographical points of the track.

MountainMapRouteOverlay: This overlay class is responsible for additionally visual-

izing the route to the start point of the current displayed tour.

TourRecordOverlay: If the user records a tour, this class is responsible for visualizing

the already passed path on a map by adding a line between the last recorded geographical point

and the new geographical point received from GPSService on the map.

Chapter 5. Proof of Concept 83

1

Figure 5.5: Tour recording mode

5.1.4 Comparison of Approach and Proof of Concept Design

To consider our approach of Chapter 4, we illustrate in Figure 5.6 and Figure 5.7 the components

of our conceptual model of an AR system (cf. Figure 4.2) in respect of the classes designed for

our proof-of-concept AR application.

1

Figure 5.6: Comparison of AR mode components and classes

As we already explained earlier, we define the calculations of the mathematical model

within the MountainObject and ARView classes. Thus, we realized the component Math-

Model through implementing these two classes. ARMainActivity, ARView, CompassView,

and CamView compose the AR interface of our AR system and thus comply with the responsi-

bilities of the ARRenderer component. Additionally, the CamView class takes over the respon-

sibilities of the CameraManager component. The tasks of the SensorManager component are

implemented within the ARMainActivity class, and the GPSManager component is realized

through the GPSService class.

Finally, the tasks of the LinkedDataLoader component are handled by the classes Mountain-

DataFetcher, MountainDataHandler, MountainInfoFetcher, and Utils. These classes

comprise all the methods for loading, filtering, processing, merging, and storing LOD resources

and for fetching further descriptions about specific resources if requested.

Chapter 5. Proof of Concept 84

Figure 5.7 comprises the remaining two components MapManager and TourManager of our

conceptual AR system of Chapter 4. We realized these two components through the implementa-

tion of the classes MountainMapActivity, TourRecordActivity, TourListViewActi-

vity, and 4 different overlay classes (summarized as Overlays class) in our proof-of-concept

AR prototype.

1

Figure 5.7: Comparison of map/tour mode components and classes

5.2 Software Implementation

This section contains the most relevant implementation parts of our AR prototype. Thereby,

we present implementation details of the main activity of the application, methods of how we

access GPS data, as well as sensor data for the estimation of orientation and direction of the

device, and the realization of the mathematical model. We also present the methods that allow

us to access Linked Data sets of the Web. In the last part of this section, we describe the

realization of tour features such as presenting tours on a 2D map or recording tours.

Most of the implementation sections include a class diagram and a sequence diagram to

provide a look into specific process flows of our system. We present only the most relevant

attributes and methods of the presented classes, and the sequence diagrams do not contain

every method that is actually executed. We only provide a rough overview of process flows of

the different implementation scenarios.

5.2.1 Localization and Orientation

In this section, we explain the components of the system that are responsible for determining

the current location on earth and the orientation of the device (cf. Figure 5.8).

StartActivity – Attributes/Methods

The class StartActivity of Figure 5.8, comprises the method onCreate() which is called

when the activity is starting. The onCreate() method contains for instance the activa-

tion of GPSService. Within onCreate() we also define a method for starting the activity

ARMainActivity. We use the two other methods onPause() and onResume() to handle

actions in the case the user leaves and resumes the AR application.

Chapter 5. Proof of Concept 85

1

Figure 5.8: Classes responsible for determining localization and orientation of device

ARMainActivity – Attributes/Methods

As visible in Figure 5.8, we separate the attributes of the class ARMainActivity in different

groups: Views, GPS, Sensor. Attributes of group Views present objects of the different views

of the AR system. ARMainActivity is used to set up the AR interface of the application. An

UI is provided by one or more view objects which are derived from the View class. Our system

includes 3 different views: CamView, ARView, and CompassView. Within onCreate() the

method setContentView() inflates the activity’s UI. The content view of our system is the

camera preview and the two other views are added to the content view.

Furthermore, we use the attributes of group Sensor for the process of reading sensor values

because ARMainActivity implements a method for accessing the accelerometer and magnetic

field sensors to retrieve values for the determination of the current heading and orientation of

the device (cf. Section 5.2.1.2).

Finally, the attributes of the third group GPS are responsible for the location parameters

delivered by GPSService. gpsservice is an instance of GPSService and is used for start-

ing (gpsservice.startGPS()) and stopping (gpsservice.stopGPS()) location updates.

isBound is a boolean variable which we use to check if the activity is currently bound or not

bound to GPSService. The method updateMain() is triggered after every location update

of GPSService (cf. Section 5.2.1.1). This method implements functions for handling the new

location (e.g. currentLocation is re-initialized with the new location) and to trigger data

downloads of Linked Data sets (cf. Section 5.2.2).

We use the methods onCreate(), onPause(), and onResume() for handling the life-

cycle of this activity (cf. Section 2.4.3). We describe the methods onSensorChanged() and

lowPassFilter() in Section 5.2.1.2.

Chapter 5. Proof of Concept 86

GPSService – Attributes/Methods

GPSService contains an attribute locationManager which is an instance of the Location-

Manager class. The location manager provides access to the system location service and imple-

ments a location listener. The location listener receives notifications from the location manager

the moment the location changes [60], and notifies the current activity periodically about the

location updates. Thus, we use the attribute locationManager to initialize the location man-

ager and to register for location updates as soon an activity asks for the current GPS location.

If the service is started, the system calls onStartCommand(). We use the startGPS() and

stopGPS() methods for registering and unregistering for location updates. In the next section,

we give more information about the class GPSService and explain the most relevant methods

of this class.

5.2.1.1 Reading GPS Coordinates

In this section, we explain the process of reading GPS coordinates by presenting a sequence

diagram (cf. Figure 5.9). This diagram illustrates the interactions between the three classes of

Figure 5.8 arranged in time sequence. We also present some of the methods as code snippets.

In Figure 5.9, we define the interactions with identification numbers and we describe these

interactions within Table 5.1.

1

Figure 5.9: Localization process

Chapter 5. Proof of Concept 87

ID Description

1 The user activates StartActivity by launching the AR application on the device.

2 onCreate() initializes the activity.

3 StartActivity starts the service GPSService.

4 This method is called the moment the service is started.

5,6 To define an UI for the application we call setContentView(). Then, the system

displays the desired content view.

7,8,9 The user selects a mode and triggers the start of ARMainActivity which is

initialized by onCreate().

10 onPause() is called when the system is about to start ARMainActivity.

11,12 We set the content view and add additional views to build the AR interface

(cf. Figure 5.3).

13 Is used to monitor sensor values and is called each time the sensor values change.

(cf. Listing 5.3)

14 We use bindService() to obtain a persistent connection to GPSService.

15 startGPS() (cf. Listing 5.1) triggers the location updates from GPSService.

16, 17 We request an instance of LOCATION SERVICE to be able to access the

LocationManager in order to request location updates by the use of a location

listener (cf. Listing 5.1).

18,19 onLocationChanged() is called for each location update and it triggers the

updateMain() method to inform ARMainActivity about the new location

update. We put these two methods in a loop box because they are repeated as long

as new location updates are received.

Table 5.1: Description of interactions from Figure 5.9

In Listing 5.1, we present the method startGPS() of GPSService. It contains the

initialization of the LocationManager with the Android system service LOCATION SERVICE.

The LocationManager registers the LocationListener called gpsListener with the

method requestLocationUpdates().

1 public void startGPS() {

2 LocationManager = (LocationManager) this.getSystemService(Context.LOCATION_SERVICE);

3 LocationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,100,1,gpsListener);

4 }

Listing 5.1: A code snippet of GPSService – Registration for location updates

The requestLocationUpdates() method requires four parameters comprising the name

of the GPS location provider the application uses (LocationManager.GPS PROVIDER), the

minimum time (100 ms) followed by the minimum distance change (1 meter) before the next up-

date is made, and at least, the name of the LocationListener itself. A LocationListener

comprises 4 methods. One of them is onLocationChanged(). It presents a callback method

called by the LocationManager every time the location changes. The parameter of this

Chapter 5. Proof of Concept 88

method is a new Location object that contains, among other things, information about lon-

gitude, latitude, and altitude values of the current location.

5.2.1.2 Accessing Accelerometer and Magnetic Field Sensors

The AR system requires information about heading and orientation of the mobile device to

be able to accurately register visualized resources in the AR interface. We are able to access

orientation and heading information of specific sensors offered by Android mobile phones.

In our AR system, we implement the sensor access within the ARMainActivity class.

In Listing 5.2, we present the initialization of the SensorManager with the Android system

service (SENSOR SERVICE) to be able to access the sensors. The SensorManager registers

the SensorEventListener for a specific sensor with the method registerListener().

SENSOR DELAY UI specifies an update rate for UIs [57].

1 sensorManager= (SensorManager) context.getSystemService(Context.SENSOR_SERVICE);

2 sensorManager.registerListener(this,sensorManager.getDefaultSensor(Sensor.

TYPE_MAGNETIC_FIELD),SensorManager.SENSOR_DELAY_UI);

3 sensorManager.registerListener(this,sensorManager.getDefaultSensor(Sensor.

TYPE_ACCELEROMETER),SensorManager.SENSOR_DELAY_UI);

Listing 5.2: A code snippet of ARMainActivity – Registration of sensor listener

A SensorEventListener requires the two methods: onAccuracyChanged() and

onSensorChanged(). In our work, we concentrate on the onSensorChanged() method

(cf. Listing 5.3) which the system calls every time the sensor values of the device change.

1 public void onSensorChanged(SensorEvent event) {

2 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

3 valuesAcc = event.values.clone();

4 if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)

5 valuesMag = event.values.clone();

6 filtvaluesMag = lowPassFilter(valuesMag, filtvaluesMag);

7 filtvaluesAcc = lowPassFilter(valuesAcc, filtvaluesAcc);

8 SensorManager.getRotationMatrix(R, I, filtvaluesAcc, filtvaluesMag);

9 SensorManager.remapCoordinateSystem(R,SensorManager.AXIS_X,SensorManager.AXIS_Z,outR);

10 SensorManager.getOrientation(outR, values);

11 azimuth = (float) Math.round(Math.toDegrees(values[0]));

12 pitch = (float) Math.round(Math.toDegrees(values[1]));

13 if (azimuth < 0)

14 azimuth += 360;

15 if (pitch != 0)

16 pitch *= -1;

17 arView.updateIncomingSensorValues(azimuth, pitch);

18 coView.updateIncomingSensorValues(azimuth);

19 }

Listing 5.3: A code snippet of ARMainActivity – onSensorChanged()

The parameter of the onSensorChanged() method in Listing 5.3 is a SensorEvent variable

which holds the sensor data as well as the sensor type. Thus, it is possible to check which sensor

Chapter 5. Proof of Concept 89

object actually triggers the event (lines 2 and 4). After the sensor type is identified, the sensor

data can be fetched by using the values of the passed event. As the sensors of type magnetic

field and accelerometer deliver values for x-, y- and z-axes, sensor data is passed to float arrays

with a length of 3 (line 3 and 5). Before we further process the sensor values, they undergo a

low pass filtering (lines 6 and 7). We explain the reason for the filtering of the sensor data later

within this section.

In line 8 of Listing 5.3, we define the getRotationMatrix() method which enables the

transformation of device coordinate system values to world coordinate system values. In the

world coordinate system (cf. Figure 5.10 (a)), the x-axis roughly points East being tangential

to the ground, the y-axis is again tangential to the ground at the current phone position but

points towards the magnetic North Pole and finally, leaving the z-axis pointing to the sky being

perpendicular to the ground [60]. In the coordinate system of the device (cf. Figure 5.10 (b)),

the x-axis is horizontal, the y-axis vertical, and the z-axis points out of the screen.

z

x

y

z

y

x

(a) World

z

x

y

(b) Device

Figure 5.10: Coordinate systems

The getRotationMatrix() method requires four parameters, where the rotation matrix

R and the inclination matrix I present output arguments (are filled with values when this func-

tion returns) and the previously filtered accelerometer and magnetic field values (filtvalues-

Acc, filtvaluesMag) are used as input arguments. The whole application is fixed in land-

scape mode. Thus, the x-axis of the device’s coordinate system is vertical and points up instead

of the y-axis. Android offers the remapCoordinateSystem() method for transforming val-

ues from portrait mode to landscape mode. It swaps the axes around and properly modifies the

rotation matrix R. The remapCoordinateSystem() method also requires four parameters

(line 9): the first parameter represents the input rotation matrix R (previously gained through

getRotationMatrix()), followed by two integer values indicating how the axes should be

swapped and finally, the output array outR which will be filled with values when the function

returns back and represents the modified rotation matrix. In line 10 of Listing 5.3, we define

the method getOrientation() which uses the previously modified rotation matrix to calcu-

late the phone orientation. The getOrientation() method returns an array containing the

Chapter 5. Proof of Concept 90

device’s rotation relative to the earth’s magnetic north (azimuth) value, and also the pitch and

roll values which are relative to the ground [56]. We only use azimuth and pitch values within

our approach (cf. Section 5.2.4).

As the orientation method returns radiant values, we transform them into degrees (List-

ing 5.3 lines 11 and 12). To get values in the range of 0◦ to 360◦ we add 360◦ if the calculated

azimuth value is less than null (lines 13-14). Furthermore, we multiply the pitch value by -1

(line 16) to be able to reverse the sign of the pitch value (plus to minus and minus to plus). Thus,

visualized objects on the screen move against the up and down movement of the device and the

virtual objects stay aligned with the respective real-world objects. Finally, we pass the recorded

values to other classes of the project by calling the updateIncomingSensorValues() meth-

ods.

Problems

Unfortunately, measurements returned by the accelerometer and magnetic field sensors are

coupled with noise. The earths magnetic field is a very weak signal. Thus, compasses are

vulnerable to distortions [96]. Distortions can be caused by magnetic substances (e.g. cars,

metal constructions of buildings) that are located near the compass and which disturb the

signal of the magnetic field. As a result, we implemented a filter for reducing noise. In lines 6

and 7 of Listing 5.3, the raw accelerometer and magnetic field values undergo a low-pass filtering

(cf. Listing 5.4, as seen in [97]), to smooth out noisy sensor readings. Otherwise, the values are

unsteady and lead to inaccurate visualizations of resources on the screen.

1 protected float[] lowPassFilter(float[] raw, float[] filtered) {

2 if (filtered == null) {

3 return raw;}

4 for (int i=0; i<raw.length; i++) {

5 filtered[i] = filtered[i] + alpha * (raw[i] - filtered[i]);}

6 return output;

7 }

Listing 5.4: A code snippet of ARMainActivity – lowPassFilter()

The lowPassFilter() method in Listing 5.4, contains two arguments presenting float arrays

of length 3. The input array contains the raw sensor data and the output array contains the

filtered data. This method forces that each new raw value is normalized against the smoothed

value. Thereby, the new sensor value is weighted with a factor alpha (0 ≤ α ≤ 1 - smaller values

cause more smoothing [97]) and added to the absolute sensor value. In Chapter 6, we provide

diagrams which illustrate the effects of this low pass filter.

5.2.2 Loading and Processing LOD Resources

In this section, we present the realization of the loading and processing of LOD resources within

our AR system. We start with the presentation of the classes and methods that we use to

Chapter 5. Proof of Concept 91

handle LOD resources in our system. Then, we explain the processing steps of the data in the

following sections.

In our AR system, we use two classes for loading data from LOD sets which we present in

Figure 5.11.

1

Figure 5.11: Classes responsible for data download

MountainDataFetcher – Attributes/Methods

The MountainDataFetcher class of Figure 5.11 extends the abstract class AsyncTask and

is responsible for displaying a progress dialog that indicates that we fetch data from LOD sets in

the background. Thus, the MountainDataFetcher contains an attribute called progressD

of type ProgressDialog. We present the three methods of this class within the sequence

diagram in Figure 5.12 and we describe them in Table 5.2.

MountainDataHandler – Attributes/Methods

The MountainDataHandler of Figure 5.11 comprises 3 attributes lgdList, gnMap, and

mountainHandler. lgdList is an array list that we use to save LinkedGeoData resources as

objects of type MountainObject. We do not transform GeoNames resources into Java objects

until we compare them with the resources of LinkedGeoData to identify identical resources.

Thus, we generate a hash map called gnMap to only store the URL of the resources as key and

we add the label of the resource to be able to compare the labels between the resources of the

two different LOD sets. Using a hash map, allows us to easily remove a GeoNames resource

form the map that is equal to a certain LinkedGeoData resource. Then, the system iterates

over the reduced gnMap and transforms the remaining GeoNames resources into Java Objects.

Finally, we use the array list mountainHandler to merge the generated LinkedGeoData and

GeoNames objects. This list contains all the mountains for a certain range and location that

the system has to visualize on the screen. In Figure 5.11, there are also five methods visible

which we explain within Table 5.2.

We present the interactions between the MountainDataFetcher and the MountainDa-

taHandler classes of our AR system in the sequence diagram in Figure 5.12. The descriptions

to these interactions follow in Table 5.2.

Chapter 5. Proof of Concept 92

1

Figure 5.12: LOD download

ID Description

1,2 Within updateMain() we start the LOD download by calling the method execute().

3 In this method, we initialize a progress dialog that informs the user that currently data is

loaded.

4 This method is responsible for the data download. It triggers the methods download-

LinkedGeo() and downloadGeoNames() of the MountainDataHandler.

5,6 These methods contain functions for loading data from LinkedGeoData and for processing

the loaded resources to generate objects of type MountainObject. (cf. Section 5.2.2.1).

7 This method contains functions for loading data from GeoNames (cf. Section 5.2.2.2).

8 The resources of both LOD sets are compared and descriptions are merged.

(cf. Section 5.2.2.3).

9 The system processes the remaining GeoNames resources and generates objects of type

MountainObject.

10 After the background work finishes, the system invokes this method. Within this method,

we define a toast notification (using the Toast3 class of Android) that pops up on the

surface of the window after the data is loaded, informing the user about the number of

loaded resources.

Table 5.2: Description of interactions from Figure 5.12

5.2.2.1 LinkedGeoData - Integration

LinkedGeoData provides two possibilities to access LOD resources [98]:

REST API: allows access to all nodes and ways stored within a database which is set up by

loading an OSM planet file4. This file contains all the map data (nodes, ways, and relations)

3Toast: helps to create and display a view containing a quick little message for the user, cf. http://
developer.android.com/reference/android/widget/Toast.html

4OSM planet file: http://wiki.openstreetmap.org/wiki/Planet.osm

http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/reference/android/widget/Toast.html
http://wiki.openstreetmap.org/wiki/Planet.osm

Chapter 5. Proof of Concept 93

of OpenStreetMap.

SPARQL endpoints: There exists a static and live endpoint, whereby the former enables

queries on data sets extracted from an OSM planet file and the latter queries on a copy of that

OSM planet file, which is additionally synchronized with updates from OSM.

We make use of a SPARQL endpoint for downloading LOD resources from LinkedGeoData

because the REST API provides only limited query capabilities. After testing the API, we also

noticed that the adding of randomly chosen coordinates to the API URL led most of the time to

internal server errors. The SPARQL endpoint5 that we use in our work is offered by OpenLink’s

Virtuoso6 database system. The LinkedGeoData ontology comprises a category defining peaks

(lgdo:Peak) of which we make use to retrieve resources of type mountain. In Listing 5.5,

we illustrate the SPARQL query that we use to fetch data from LinkedGeoData. The query

includes a pattern to fetch resources of type lgdo:Peak (line 11). We also define patterns to

retrieve the label (line 12) and the geo-coordinates (line 13-15) of this resource. Not for every

resource there is a property lgdo:ele available at the LinkedGeoData data set. Thus, we

define an optional graph pattern (line 16) which is only bound when a lgdo:ele property

exists.

1 Prefix lgdo: <http://linkedgeodata.org/ontology/>

2 Prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

4 Construct {

5 ?resource a lgdo:Peak ;

6 rdfs:label ?label ;

7 geo:lat ?lat ;

8 geo:long ?long ;

9 lgdo:ele ?ele . }

10 Where {

11 ?resource a lgdo:Peak .

12 ?resource rdfs:label ?label .

13 ?resource geo:lat ?lat .

14 ?resource geo:long ?long .

15 ?resource geo:geometry ?point .

16 Optional{ ?resource lgdo:ele ?ele . }

17 Filter(bif:st_intersects (?point, bif:st_point (12.683,47.217), 10)).}

Listing 5.5: SPARQL query against LinkedGeoData

Finally, the query includes a filter method (line 17) that allows to fetch those resources

which are located in the near vicinity of the current device location. Thereby, we use the

bif:st intersects function which is a geometry function provided by the OpenLink Vir-

tuoso database system. This function makes use of three arguments: the first two represent

longitude and latitude of the geo-location for which we search intersects, the third argument

represents the allowed maximum distance in kilometers between them [99]. By using the query

5LinkedGeoData SPARQL endpoint: http://linkedgeodata.org/sparql
6OpenLink - Virtuoso: http://virtuoso.openlinksw.com

http://linkedgeodata.org/sparql
http://virtuoso.openlinksw.com

Chapter 5. Proof of Concept 94

form Construct (line 4), it is able to return an RDF graph that is based on the template

defined in lines 5 to 9.

Listing 5.6 exemplifies a resulting RDF graph if we execute the SPARQL query of Listing 5.5

against the SPARQL endpoint of LinkedGeoData. It contains the resource description of the

peak “Bambachkopf” in the RDF/XML serializing format.

1 <rdf:RDF>

2 <rdf:Description rdf:about="http://linkedgeodata.org/triplify/node494054611">

3 <rdf:type rdf:resource="http://linkedgeodata.org/ontology/Peak"/>

4 <rdfs:label>Bambachkopf</rdfs:label>

5 <geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#double">47.2301061</geo:lat>

6 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">12.6812105</

geo:long>

7 <lgdo:ele rdf:datatype="http://www.w3.org/2001/XMLSchema#float">2516.0e0</lgdo:ele>

8 </rdf:Description>

9 </rdf:RDF>

Listing 5.6: An example of a SPARQL query result received from the LinkedGeoData

SPARQL endpoint

We use Apache’s HttpClient7 to execute the SPARQL query and to receive the resources

from the LinkedGeoData platform (in RDF/XML format) as input stream. Furthermore, we

use Androjena8 to manipulate the RDF/XML-based data. Within Listing 5.7, we present the

method of processing the RDF graph obtained from LinkedGeoData.

1 Model lgdModel = ModelFactory.createDefaultModel();

2 lgdModel.read(inputstream, "RDF/XML");

3 ResIterator i = lgdModel.listSubjects();

4 while (i.hasNext()) {

5 Resource resource = i.next();

6 String id = resource.getURI();

7 String lgdlabel = resource.getProperty(RDFS.label).getLiteral().toString();

8 Double lgdlat = resource.getProperty(lgdproplat).getDouble();

9 Double lgdlong = resource.getProperty(lgdproplong).getDouble();

10 Location lgdlocation = new Location("linkedgeodata");

11 lgdlocation.setLatitude(lgdlat);

12 lgdlocation.setLongitude(lgdlong);

13 if(resource.hasProperty(lgdpropelev)){

14 Double lgdalt = resource.getProperty(lgdpropelev).getDouble();

15 lgdlocation.setAltitude(lgdalt);

16 }else{

17 lgdlocation.setAltitude(Double.parseDouble(Utils.fetchAltitude(lgdlat.toString(),

lgdlong.toString())));

18 }

19 MountainObject lgdmo = new MountainObject(id, lgdlocation, lgdlabel);

20 lgdList.add(lgdmo);}

Listing 5.7: A code snippet of MountainDataHandler – downloadLinkedGeo()

7HttpClient: http://hc.apache.org/httpcomponents-client-ga/
8Androjena: Java API for Android which provides object classes for manipulating RDF graphs, resources,

properties, and literals. cf. http://code.google.com/p/androjena/

http://hc.apache.org/httpcomponents-client-ga/
http://code.google.com/p/androjena/

Chapter 5. Proof of Concept 95

In line 1 of Listing 5.7, we create an empty model called lgdModel. Then, we parse the

statements of the loaded RDF graph into lgdModel (line 2). To be able to access specific data

components, we create an iterator over lgdModel (line 3) by listing all the resources of the

model. Then, we iterate the model to access specific properties. We fetch the id, the label, and

the geo-coordinates of each resource and we use these parameters to generate a new object of

type MountainObject in line 19. Not for every resources there is an elevation value available

at the LinkedGeoData platform. Thus, we have to fetch this information with an extra method

implemented in our Utils class (line 17).

Finally, we add each new object to the array list lgdlist (line 20). This list will later be

used within the process of filtering identical resources (cf. Section 5.2.2.3).

5.2.2.2 GeoNames - Integration

GeoNames offers several Web services for accessing geo-spatial data contents, but no SPARQL

endpoint. Most of the Web services represent REST APIs and are in need of the parameter

“username”. Thus, a developer has to register a GeoNames account to be able to test and

implement one of the services. In our approach, we use the Web service called “Find Nearby

Toponym”. This service retrieves any resource of the GeoNames data set for a given geograph-

ical coordinate within a given radius (in km). The URL to this API9 allows the adding of

parameters to restrict the search process. Thus, it is possible to add a feature code parameter

(cf. Section 4.3.1) to be able to retrieve resources of type mountain. This API returns results

as XML, JSON or RDF/XML document [35].

In Listing 5.8, we present the REST API URL we use to access resources. We define several

parameters: the current location of the device, the feature class and feature codes the resources

have to exhibit, a fixed radius of 5 kilometer around the defined location in which resources

have to be filtered, the type of format the resulting data have to be in, the maximal number of

allowed result rows, and finally, for the request to work, our username.

1 String geonamesUrl = "http://api.geonames.org/findNearby?lat="+new Double(latitude).

toString() +"&lng="+new Double(longitude).toString()+ "&featureClass=T&featureCode=

MT&featureCode=PK&radius="+5+"&type=rdf&maxRows=50&username=botany";

2 gnModel.read(geonamesUrl, "RDF/XML");

3 ResIterator i = gnModel.listSubjectsWithProperty(propName);

4 while (i.hasNext()) {

5 Resource resource = i.next();

6 String id = resource.getURI();

7 String gnlabel = resource.getProperty(propName).getLiteral().toString();

8 gnMap.put(id, gnlabel); }

Listing 5.8: A code snippet of MountainDataHandler – downloadGeoNames()

We parse the result into an Androjena model and iterate the model to access the id and the

label of the fetched resources and to put these two parameters into a hash map called gnMap.

9GeoNames - FindNearby API: http://api.geonames.org/findNearby?

http://api.geonames.org/findNearby?

Chapter 5. Proof of Concept 96

We only filter the id and the label to prevent from unnecessary data processing. We generate

objects of type MountainObject not until we performed the filtering of identical resources.

Thus, we use gnMap during the identical search process which we explain in the next section.

5.2.2.3 Filtering Identical Resources

In Chapter 4, we described the Silk framework which is capable of discovering identical resources

when comparing different LOD sources. We were not able to implement the offered Silk jar file

within our Android project. Each Android application runs as an instance of the Dalvik VM

(cf. Section 2.4.1). The Dalvik VM converts the Java class files into a Dalvik executable (dex)

file [56]. Now, such a dex file has a limit of about 65,000 method references and as the Silk jar

file includes a huge amount of methods the Dalvik VM was not able to convert all Java classes.

Thus, we realized our own method (cf. Listing 5.9) for identifying identical mountain resources

between the GeoNames and LinkedGeoData data sets instead of using the Silk framework.

In Listing 5.9, we iterate the resources (saved as MountainObject) of the array list

lgdList. This is necessary so that we are able to compare every LinkedGeoData resource

with the GeoNames resources. As explained in the previous section, the label and id of all

GeoNames resources are saved within a hash map. Now, we iterate over this hash map and

access the label of each GeoNames resource.

To be able to compare the labels of resources from the two different data sets, we use the

Jaro-Winkler Distance metric. The LingPipe10 Java API offers a JaroWinklerDistance

class that includes a method for determining the Jaro-Winkler string comparison to obtain a

distance measure. We use this distance measure to decide if two labels correspond to the same

resource. JaroWinklerDistance returns a distance value in the range from 0 to 1, where

0 equals an exact string match and a value of 1 means that the two labels do not contain any

matching characters [101].

In our implementation, we put all resources which exhibit a perfect score of 0 into the hash

map equals (line 31). As some of the resources which result into a distance measure close

to 0 may also be equals, we have to consider scores higher than 0. For instance, if we have a

mountain named “Grieskogel” at LinkedGeoData and the same mountain named “Griesskogl”

at GeoNames, then we obtain a Jaro-Winkler distance measure of 0.06666666666666676. In

this case, we use a geometrical distance metric to decide whether these two labels describe the

same real-world mountain or not. We defined that a Jaro-Winkler distance measure up to 0.11

causes the execution of the additional geometrical distance measurement because with a score

of about 0.11 the difference between to labels is very minimal and the probability that these

two labels describe the same mountain is very high. Thus, all the resources which result into

a distance measure between 0 and 0.11 undergo the geometrical distance calculation in line 14

of Listing 5.9. If the geographical distance between the two resource locations lies beneath 200

10LingPipe is a tool kit for processing text using computational linguistics. cf. [100]

Chapter 5. Proof of Concept 97

meters (line 15) the two resources are equal. Thus, the system puts the GeoNames resource that

was currently compared with a LinkedGeoData resource into the equals hash map (line 26).

1 HashMap<String, String> equals = new HashMap<String, String>();

2 for(MountainObject lgdresource: lgdList){

3 for(String gnresource : gnmap.keySet()){

4 JaroWinklerDistance rwd = new JaroWinklerDistance();

5 String gnlabel = gnmap.get(gnresource);

6 double d=rwd.distance((CharSequence)gnlabel,(CharSequence)lgdresource.getTitle());

7 if(d < 0.11){

8 if(d>0){

9 Double gnlat = gnModel.getResource(gnresource).getProperty(gnproplat).

getDouble();

10 Double gnlong = gnModel.getResource(gnresource).getProperty(gnproplong).

getDouble();

11 Location gnlocation = new Location("geonames");

12 gnlocation.setLatitude(gnlat);

13 gnlocation.setLongitude(gnlong);

14 double dist = lgdresource.getMountainLocation().distanceTo(gnlocation);

15 if(dist < 200){

16 if(!equals.containsKey(gnresource)){

17 ARMainActivity.db.insertDuplicate(lgdresource.getURL(), gnlabel, gnlat,

gnlong, gnalt);

18 Double lgdlat = lgdresource.getLatitude();

19 if (lgdresource.getDistanceToUser() < (ARView.range * 1000)) {

20 if(lgdlat.toString().length()>=gnlat.toString().length()){

21 mountainsHandler.add(lgdresource);

22 }else{

23 MountainObject mo=new MountainObject(lgdresource.getURL(),gnlocation

,lgdresource.getTitle());

24 mountainsHandler.add(mo);

25 }}

26 equals.put(gnresource.toString(), gnlabel);

27 break;}}

28 }else if(d==0){

29 if(!equals.containsKey(gnresource)){

30 ...

31 equals.put(gnresource.toString(), gnlabel);}

32 break;}}

33 ...

34 }

35 for (String id : equals.keySet()) {

36 gnmap.remove(id); }

Listing 5.9: A code snippet of MountainDataHandler – Filtering identical resources

using Jaro-Winkler Distance

During the identification of identical resources, we merge identical resource descriptions.

Thus, we insert the new resource descriptions to the local database with the method insert-

Duplicate() (line 17) (cf. Listing 5.12). Thereby, we use the URL of the LinkedGeoData

resource to be able to insert the new additional values to the respective resource in the database.

Additionally, we add the resources to the array list mountainHandler in order to visualize the

resources which are in a certain range (lines 19-25) on the display. Before we are able to do this,

Chapter 5. Proof of Concept 98

we have to decide which geo-coordinates should be used for the further calculation steps within

the mathematical model. Thus, we compare the length of the digits of the latitude information

of the geographical coordinates. The latitude information which exhibits more decimal places is

the one used for further visualization processing steps in our system, as they are more accurate

than a latitude information with less decimal places [102].

After we are aware of all the identical resources, we iterate over the hash map equals

by fetching the URL of each resource and comparing it with the URLs of the resources saved

within the gnMap (lines 35-36). This way we are able to remove the resources from gnMap

that have a matching URL. In the end, we transform the remaining GeoNames resources like

the LinkedGeoData resources in Listing 5.7 into Java objects within the processGeoNames()

method, and we add the generated MountainObject objects to the mountainHandler array

list. Thus, LinkedGeoData and GeoNames resources are merged and ready to be visualized

within the AR interface.

5.2.3 Storing Data

Parallel to the processing of resources within the MountainDataHandler, we also store the

parameters of the MountainObject objects into a database on the local storage system of the

device. Thereby, we make use of the SQLite library provided by Android. The SQLite database

allows us to execute SQL commands for creating a table and for inserting new resources into

this table [57]. In order for this to work, the Utils class of our Android project extends the

abstract class SQLiteOpenHelper of the SQLite library. Thus, Utils acts as helper class to

simplify our database interactions. In Listing 5.10, we present the method for creating a table

within our database.

1 private static final String TABLE_NAME = "mountains";

2 private static final String KEY_ID = "id";

3 private static final String KEY_URL = "url";

4 private static final String KEY_NAME = "label";

5 private static final String KEY_LAT = "latitude";

6 private static final String KEY_LONG = "longitude";

7 private static final String KEY_ALT = "altitude";

8 private static final String KEY_ALT_NAME = "altname";

9 private static final String KEY_ALT_LAT = "altlatitude";

10 private static final String KEY_ALT_LONG = "altlongitude";

11 private static final String KEY_ALT_ELE = "altelevation";

12

13 public void onCreate(SQLiteDatabase db) {

14 String CREATE_TRIPLESTORE_TABLE = "CREATE TABLE " + TABLE_NAME + "("+ KEY_ID + "

INTEGER PRIMARY KEY," + KEY_URL + " TEXT unique," + KEY_NAME + " TEXT," +

KEY_LAT + " TEXT," + KEY_LONG + " TEXT," + KEY_ELE + " TEXT," + KEY_ALT_NAME +

" TEXT," + KEY_ALT_LAT + " TEXT," + KEY_ALT_LONG + " TEXT," + KEY_ALT_ELE + "

TEXT"+ ")";

15 db.execSQL(CREATE_TABLE);

16 }

Listing 5.10: Creating table in SQLite database

Chapter 5. Proof of Concept 99

First, we define several constants that present the various fields of the table in lines 2-7. We

additionally, define constants for an alternative name and geographical information in the case

the system identifies duplicate resources during the LOD resource processing (cf. Section 5.2.2.3).

Within the onCreate() method of Listing 5.10, we define the string variable called

CREATE TABLE that contains the SQL statement for creating a table within our database.

onCreate() is called by the system, if the database does not exists. We use an identifier as

primary key of the table and the URL is set to be unique to allow unique resource entries. Thus,

if a new data download is executed in the future and some of the resources are already stored

within the database the URL allows to identify identical resources and to prevent the renewed

storage of these resources. The db object of type SQLiteDatabase presents our physical

database on the local storage system of the device and the execSQL() method (line 15) allows

us to execute the SQL statement defined within CREATE TABLE.

In Figure 5.13, we illustrate the sequence of interactions if the system is activated and new

data is stored. The description of these interactions follows in Table 5.3.

1

Figure 5.13: Storing LOD resources

ID Description

1 We create a new instance of the Utils class to be able to access our database.

2 Is called once, if the database does not exist.

3 We use this method to create a table for the mountain resources within our database.

4 We use this method to add new values to the table of our database (cf. Listing 5.11).

5 This method allows to insert a new row to the table of our database.

6 The system closes the database connection.

Table 5.3: Description of interactions from Figure 5.13

The addMountain() method of Listing 5.11 accepts an object of type MountainObject

as parameter. In line 2, we get writable access to our database. The ContentValues class

Chapter 5. Proof of Concept 100

allows us to define the values that have to be inserted into the table. For instance, we primarily

define the table column identifier and then we define the new content for the table in this column

in line 4.

1 public void addMountain(MountainObject mo) {

2 SQLiteDatabase db = this.getWritableDatabase();

3 ContentValues values = new ContentValues();

4 values.put(KEY_NAME, mo.getTitle());

5 values.put(KEY_URL, mo.getURL());

6 values.put(KEY_LAT, mo.getMountainLocation().getLatitude());

7 values.put(KEY_LONG, mo.getMountainLocation().getLongitude());

8 values.put(KEY_ALT, mo.getMountainLocation().getAltitude());

9 db.insert(TABLE_NAME, null, values);

10 }

Listing 5.11: A code snippet of Utils – Adding row to database table

5.2.3.1 Update Database Table

During the process of identifying duplicate resources (cf. Listing 5.9) we update specific table

rows of the SQLite database. The system merges GeoNames resource descriptions with the

LinkedGeoData resource description if the two resources are identical. In this case, we have

to update the already stored LinkedGeoData resource descriptions within the database. In

Listing 5.12, we present the method insertDuplicate() that manages the updating of

specific table rows. The parameters of this method are the ID of the LinkedGeoData resource

that will be updated and the name and the geo-coordinates of the GeoNames resource that is

identical to the resource that exhibits the LinkedGeoData ID in the database. In the previous

section, we explained that the database table includes cells for alternative resource descriptions

(alternative name, latitude, longitude, and altitude). Now, we fill these cells of the table with

the incoming values of the method. The function update() enables the updating process.

Thereby, we have to define the name of the table, the new content values (GeoNames resources

descriptions) that have to be inserted, and the LinkedGeoData ID in order that the system finds

the respective row in the table that has to be modified.

1 public void insertDuplicate(String lgdid,String name,Double lat,Double lng,Double alt){

2 SQLiteDatabase db = this.getWritableDatabase();

3 ContentValues values = new ContentValues();

4 values.put(KEY_ALT_NAME, name);

5 values.put(KEY_ALT_LAT, lat.toString());

6 values.put(KEY_ALT_LONG, lng.toString());

7 values.put(KEY_ALT_ELE, alt.toString());

8 db.update(TABLE_NAME, values, KEY_URL+" = ?", new String[] {lgdid});

9 }

Listing 5.12: A code snippet of Utils – insertDuplicate()

Chapter 5. Proof of Concept 101

5.2.4 Mathematical Model

We implemented the mathematical model for the AR prototype based on the constructed

model presented in Chapter 4.4. Thereby, we separated the implementation of the mathe-

matical model in two different Java classes: the system prepares mountain specific data in the

MountainObject class and we defined the methods for the calculation of screen coordinates

for the virtual content within the ARView class. We present the most relevant attributes and

methods of ARView and MountainObject in Figure 5.14.

1

Figure 5.14: Classes responsible for screen coordinates calculation

ARView – Attributes/Methods

ARView contains an array list attribute called mountains that holds the downloaded mountain

resources as an instance of MountainObject. The two attributes azimuth and pitch of

type float hold the information about direction and orientation of the device. We need them to

determine the current field of view (cf. Section 4.4.1.4). The two attributes camanglewidth

and camangleheight are also of type float and they hold the values of the horizontal and

vertical angle of the devices’s digital camera (cf. Section 4.4.1.1).

The ARView class comprises the constructor method ARView(Context) and several other

methods which we present in the sequence diagram of Figure 5.15 and we explain them in

Table 5.4.

MountainObject – Attributes/Methods

The MountainObject class of Figure 5.14 comprises attributes for describing a LOD re-

source. We use the attributes of type Location for the calculation of the distance between

Chapter 5. Proof of Concept 102

the mountains and the device location. The result of this calculation is saved within the at-

tribute distanceToUser. A MountainObject instance also contains information about the

title of the resource (title), the Web link to this resource (url), the bearing (bearing)

value between current location and the location of the resources, and the inclination value

(inclination). Another attribute presents an instance of the class Bitmap called icon.

This is the icon that the system visualizes within the AR interface on the position (xCor,yCor).

The MountainObject class includes the get methods getDistance(), getBearing(),

getInclination(), getTitle(), getUrl(), and getMountainLocation() which the

system uses to access the variables of MountainObject. The constructor of the Mountain-

Object class MountainObject(String, Location, String) comprises three parame-

ters for the URL, the location, and the title of a loaded LOD resource. We describe the re-

maining methods of the class MountainObject (updateLocationValues() and draw())

in Table 5.4.

In Figure 5.15, we illustrate the sequence of interactions between the ARView and Moun-

tainObject classes and we describe them in Table 5.4.

1

Figure 5.15: Determination of screen coordinates

The mathematical model comprises four important calculation steps (distance, bearing,

inclination, and screen coordinates calculation) which we explain in the following sections.

5.2.4.1 Distance Calculation

Within the MountainObject class, we define the distance calculation between the current

device location and the location of a resource. Android’s Location package contains a method

called distanceTo(). This method requires the target location as argument. In the case of

this application, the target location is the location of a resource. distanceTo() implements

Vincenty’s inverse formula [93] for gaining the distance value. In Section 4.4, we presented and

explained Vincenty’s inverse formula.

Chapter 5. Proof of Concept 103

ID Description

1,2,3 The updateMain() method of ARMainActivity triggers the updateGPS-

Values() method of ARView to update the location object of ARView.

updateLocationValues() is called to force the re-calculation of distance and

bearing values of an object of type MountainObject.

4,5 onSensorChanged() monitors sensor values and is called as soon as these values

change. The new values are transmitted to ARView through the method update-

SensorValues(). (cf. Listing 5.3)

6 Methods for determining x and y screen coordinates in pixels. (cf. Listing 5.14 and

Listing 5.15)

7 After the screen coordinates determination, the positions of the mountain icons are

re-initialized by calling this method.

8 Used to force the view to draw and re-draw.

9,10 onDraw() forces the system to render virtual content. Thereby, the draw() method

of each MountainObject object is called. draw() defines functions for drawing a

bitmap on the right position of the screen.

Table 5.4: Description of Interactions from Figure 5.15

5.2.4.2 Bearing Calculation

We also define the bearing calculation inside the MountainObject class. Android provides

a method called bearingTo() for the calculation of the initial bearing in degrees East of

true North when traveling along the shortest path between the current location and the target

location [60]. Android’s bearingTo() method determines the bearing value also with the help

of Vincenty’s inverse formula which we explained in Section 4.4. The bearing value is later used

within the ARView class during the x-coordinate calculation for visualizing mountain icons on

the screen.

5.2.4.3 Inclination Calculation

As mentioned in Chapter 4, the calculation of the inclination angle between the current location

and a resource is based on a basic trigonometry function (cf. Section 4.4.1.3). We realized the

inclination angle calculation in our AR project (cf. Listing 5.13) in reference to Definition 4.6.

In Listing 5.13 line 2, we determine the opposite value by subtracting the altitude value of the

current device location from the altitude value of the mountain location. If the altitude of the

mountain is lower than the altitude of the device location, we obtain the opposite value by

subtracting the altitude value of the mountain location from the altitude value of the device

location. In lines 3 and 6, we use Equation 4.21 to obtain the inclination angle. The inclination

angle is later used in the class ARView for the calculation of the y screen coordinate.

Chapter 5. Proof of Concept 104

1 if (mountainLocation.getAltitude() > deviceLocation.getAltitude()) {

2 opposite = mountainLocation.getAltitude()- deviceLocation.getAltitude();

3 inclination = (float)Math.toDegrees(Math.atan(opposite/(double)getDistanceToUser()));

4 } else {

5 opposite = deviceLocation.getAltitude()- mountainLocation.getAltitude();

6 inclination = (float)Math.toDegrees(Math.atan(opposite/(double)getDistanceToUser()))

*-1; }

Listing 5.13: Inclination angle calculation

5.2.4.4 Screen Coordinates Calculation

If the user moves the device the virtual objects have to stay aligned with the real world objects.

Thus, new screen coordinates have to be calculated every time sensor values change. The

determination of the screen coordinates takes place in the ARView class.

Listing 5.14 contains the method for determining the x screen coordinate. This code is

based on the algorithm presented in the approach part of this thesis (Section 4.4.2). The

method requires the bearing value (cf. Section 5.2.4.2) as input argument. As mentioned in

Section 4.4, we have to determine the current field of view of the device to be able to check if a

mountain is located within the captured view. Thus, the horizontal view angel of the device’s

camera and the direction value are used to calculate the left and right borders of the view

angle (cf. Definition 4.7) in lines 2 and 3 of Listing 5.14. The field of view is always up-to-

date because the system re-initializes azimuth constantly through the onSensorChanged()

method within ARMainActivity.

1 private static float xValueChange(float bearingToMountain) {

2 double leftside = (azimuth-camanglewidth/2)<0 ? (azimuth-camanglewidth/2) + 360 : (

azimuth-camanglewidth/2) ;

3 double rightside = (azimuth+camanglewidth/2)>360 ? (azimuth+camanglewidth/2) - 360 :

(azimuth+camanglewidth/2);

4 float xDegreeValue = -1000;

5 if(bearingToMountain >= leftside){

6 xdegreeValue = (float) (bearingToMountain - leftside);

7 }else{

8 if(bearingToMountain <= rightside){

9 xDegreeValue = (float) (360 - leftside + bearingToMountain);}

10 }

11 float newXValue = xDegreeValue/camanglewidth*Utils.getScreenWidth();

12 return newXValue;

13 }

Listing 5.14: Calculation of x screen coordinate

The next step within the xValueChange() method (lines 5-10) is the mapping of the

resource onto the horizontal angle of view which we defined in Definition 4.8. Then, we obtain

the position on the horizontal screen angle (xhaov) of the current field of view of the camera.

To be able to draw an icon on the screen, we transform xhaov into a screen coordinate in line 11

(cf. Definition 4.9).

Chapter 5. Proof of Concept 105

We present the calculation of the y screen coordinate in Listing 5.15.

1 private float yValueChange(float m_inclination) {

2 float upperside = (camangleheight / 2) + pitch;

3 float lowerside = pitch - (camangleheight / 2);

4 float yDegreeValue = -180;

5 if (m_inclination >= lowerside) {

6 if (m_inclination < upperside) {

7 yDegreeValue = upperside - m_inclination; }

8 }

9 float newYValue = yDegreeValue/camangleheight*Utils.getScreenHeight();

10 return newYValue;

11 }

Listing 5.15: Calculation of y screen coordinate

We explained the algorithm of yValueChange() in the approach part of this work in

Section 4.4.2. This method requires the inclination angle (cf. Section 5.2.4.3) as input argument

and we have to determine the lower and upper borders (lines 2-3) using the pitch value and

the vertical angle of view of the camera based on Definition 4.7. Then, we map the resources

on the vertical angle of view (lines 5-8) as defined in Definition 4.8 to obtain the position on

the vertical screen angle (yhaov). Finally, we calculate the y screen coordinate (line 9) based on

Equation 4.31.

5.2.5 Querying Mountain Information

To be able to obtain more information about a specific resource within our AR system, the user

has to select visualized mountain icons on the screen to trigger the MountainInfoFetcher

which fetches the respective data from DBpedia.

1

Figure 5.16: Classes responsible for loading mountain information

ARView and MountainObject – Attributes/Methods

In Figure 5.16, we present the MountainInfoFetcher in combination with the two classes

ARView and MountainObject which we already described earlier in this chapter. As visible,

Chapter 5. Proof of Concept 106

ARView is able to comprise none or several objects of type MountainObject. Both of these

classes include the onTouchEvent() method. If a user touches the screen, the AR system

delivers a touch event to ARView. These methods implement the tasks that the system has to

perform in the case of a touch event. We further describe them in Table 5.5.

MountainInfoFetcher – Attributes/Methods

We implemented the loading of resource information as asynchronous task. Thus, Mountain-

InfoFetcher extends AsynchTask and therefore comprises 3 methods for three different

task states: onPre-

Execute(), doInBackground(), and onPostExecute(). We describe all these methods

including fetchData() within Table 5.5.

MountainInfoFetcher also contains two attributes, whereby one of them is an instance

of MountainObject. This attribute presents the resource for which additional data is re-

quested. The other attribute progressD is of type ProgressDialog. We need it to display

a progress dialog while the system loads additional information in the background.

In Figure 5.17, we present the sequence of interactions the system performs in the case the

user touches a mountain icon within the AR interface. The description of these interactions

follows in Table 5.5.

1

Figure 5.17: Mountain information loading

Chapter 5. Proof of Concept 107

ID Description

1,2 If we select a mountain icon a touch screen motion event occurs and the

onTouchEvent() method is called on that object. Within the onTouchEvent()

of ARView, we use the dispatchTouchEvent(event) method of the respective

MountainObject instance, to pass the touch screen motion event down to the

target view. This causes the activation of the onTouchEvent() of the

MountainObject class.

3 We start the data download with the method execute(), whereby we load data

for a specific instance of MountainObject.

4 Is called before the thread is started. In this method, we initialize a progress dialog

that informs the user that the system currently loads data.

5 In this method we load data from DBpedia for a specific resource.

6 This method extracts the loaded data from DBpedia and generates a HTML view.

(cf. Listing 5.16)

7,8 Invokes after the background computation finishes. We load data in a dialog which

we display on the screen. (cf. Listing 5.17)

Table 5.5: Description of interactions from Figure 5.17

In Listing 5.16, we present the fetchData() method. With the help of the Androjena

framework we create an empty model in line 1. Then, we initialize an instance of the RDFReader

class which is able to read a RDF/XML-serialized file. In line 3, we define the model into which

the statements should be loaded and the resource URI which contains the statements.

1 Model model = ModelFactory.createDefaultModel();

2 RDFReader r = model.getReader("RDF/XML");

3 r.read(model,"http://dbpedia.org/data/"+title+".rdf");

4 StringBuffer html = new StringBuffer();

5 html.append("<html><head></head><body><table cellpadding=’10’>");

6 StmtIterator it = model.listStatements(null,null, (RDFNode) null);

7 while (it.hasNext()) {

8 Statement s = it.nextStatement();

9 if(s.getPredicate().toString().contains("comment") && s.getObject().toString().

contains("@en")){

10 html.append("<tr><td bgcolor=’#F0F0F0’>More Facts:</

td></tr>");

11 String[] tempAbs = s.getObject().toString().split("\\@");

12 html.append("<tr><td>"+tempAbs[0]+"</td></tr>");}

13 ... }

14 html.append("</table></body></html>");

Listing 5.16: A code snippet of MountainInfoFetcher – fetchData()

We display mountain information in form of generated HTML views, thereby we use a String-

Buffer called html to append the extracted RDF data of DBpedia (line 4) within specific

HTML tags. In the end, this string buffer comprises a complete HTML page. To be able

to retrieve specific objects of the model, we use a statement iterator called it. Thereby, we

Chapter 5. Proof of Concept 108

iterate over every statement saved within the model and filter for instance in line 9 the property

comment. In addition, we define that the literal value of the respective object has to be in

English. If this statement exists, the object is transformed into a string value and added to

the string buffer html (lines 11-12). We also retrieve other objects of the model but we do not

present them within Listing 5.16.

We present a code snippet of the onPostExecute() method in Listing 5.17. It comprises

the creation of a WebView object (line 1) which we use to load data from the string buffer html

(line 2). Finally, we define a dialog to be able to add webview as content view and to display

the loaded data to the user.

1 WebView webview = new WebView(context);

2 webview.loadData(html.toString(), "text/html", "utf-8");

3 Dialog d = new Dialog(context, R.style.myBackgroundStyle) {

4 public boolean onKeyDown(int keyCode, KeyEvent event) {

5 if (keyCode == KeyEvent.KEYCODE_BACK)

6 this.dismiss();

7 return true;}};

8 d.setTitle("Mountain > " + mountain.getTitle());

9 d.addContentView(webview, new FrameLayout.LayoutParams(600, 300));

10 d.show();

Listing 5.17: A code snippet of MountainInfoFetcher – onPostExecute()

5.2.6 Loading Tours

Our AR prototype additionally includes tour features: the user has the possibility to load GPS

tours from OpenStreetMap11 or to load self-recorded GPS tours from the local storage system

of the device on a 2D map. We present the responsible classes of our AR system for loading

tracks in Figure 5.18.

StartActivity – Attributes/Methods

We already described the methods and most of the attributes of StartActivity in Sec-

tion 5.2.1. If the user selects the option to load tours from the Web, the system displays a

dialog on the screen with a seek bar on it. Thus, this class includes attributes of type Dialog

and SeekBar12. On the seek bar the user has to choose a progress value (kilometers) to define

the area in which GPS tours have to be searched at OpenStreetMap.

TourDataFetcher – Attributes/Methods

The TourDataFetcher class extends the abstract class AsynchTask and comprises three

methods for the three different task states: onPreExecute(), doInBackground(), and

11OSM GPS tracks available at: http://www.openstreetmap.org/traces
12A bar representing how far a operation has progressed.

http://www.openstreetmap.org/traces

Chapter 5. Proof of Concept 109

1

Figure 5.18: Classes responsible for loading GPS tracks

onPostExecute(). This class comprises an attribute of type ProgressDialog. This dialog

appears in front of the screen as soon as the system loads tours from OpenStreetMap. There is

also an attribute of type Location which holds information about the current location of the

device. The remaining attributes present array lists. We use these array lists to collect the title

of the tours (tourTitle), the distance to the starting point of the tours (tourDetail), the

OpenStreetMap link to the tours (tourLink), and a description of theses tours (tourDescr).

We use these lists to pass GPS track information to TourListViewActivity within an intent

(further described later within this section).

TourListViewActivity – Attributes/Methods

The class TourListViewActivity comprises the same array list attributes as the class

TourDataFetcher. Additionally, there is an array list (tourPoints) that holds all the

tracking points (lat/long pair) of a loaded tour. If the user selects a tour of the list, the GPS

coordinates of tourPoints are used to visualize the tour track on a map view. This class

extends a ListActivity13, thus we manage the activity life-cycle with the onCreate(),

onResume(), and onStop() methods.

In Figure 5.19, we present the interaction sequence between the StartActivity, the

GPSService, the TourDataFetcher, and the TourListViewActivity classes. We de-

scribe the depicted interactions within Table 5.6.

Within Listing 5.18 we present the doInBackground() method of the TourDataFetcher

which implements the loading of tour data from OpenStreetMap. As OSM offers a huge amount

on tracks we have to find a way to look for tracks which exhibit a certain property. The pro-

vided GPS tracks at OSM can be specified with tags to display specific tracks which exhibit

the certain property the tag stands for (e.g. Austria, Salzburg, running etc.). OSM does not

13Activity that displays a list of items.

Chapter 5. Proof of Concept 110

provide a Web Service to easily be able to fetch the GPS tracks. The tracks are listed on HTML

Web pages. Thus, we have to extract the tours out of the HTML page.

1

Figure 5.19: Tour track loading

ID Description

1 A user has to select a kilometer value on a seek bar to define a restricted area within which

GPS tours are located. An Android seek bar uses a listener which is a callback that

notifies a client if the progress level of the bar changes [60]. In this case, the listener uses

onStopTrackingTouch() to notify the AR system about the completion of the touch

gesture from the user.

2, 3 bindService() is used to bind StartActivity to GPSService and startGPS()

triggers the action of the GPS radio. Then, StartActivity receives location updates.

4, 5 The first location update triggers the execution of TourDataFetcher.

6 A progress dialog is created and displayed on top of the screen to inform the user that in

the background tours are fetched.

7 doInBackground() implements methods for fetching GPS tours (cf. Listing 5.18).

8, 9 After the completion of doInBackground(), the system executes onPostExecute()

which is responsible for starting the TourListViewActivity. The system uses an

intent (cf. Section 2.4.3) to start this activity which is extended with the array lists which

comprise the information of the loaded GPS tracks.

10,

11

Within the onCreate() method we set a list adapter to be able to display tour tracks

within a list. Every list item contains the name of the tour, a short description, and the

distance (information of the passed array lists). A graphical UI example of this result list

is available in Chapter 6. If a user selects an item of the list the system loads the actual

GPX file which contains the way points of the tour track. Then, the system activates

MountainMapActivity which is responsible for displaying this track onto the map

(cf. Section 5.2.7).

Table 5.6: Description of interactions from Figure 5.19

Chapter 5. Proof of Concept 111

In order for this to work, we use the Java HTML parser jsoup14. In Listing 5.18, we

present the method of extracting GPS tracks of an OSM HTML page. We iterate over the tags

OSM offers to list specific GPS tracks. To access the Web pages, we create an instance of the

Connection class by calling the method connect() and by passing a string (the URL of the

OSM Web page) as argument. With the help of jsoup’s get() method we are able to fetch and

to parse the HTML file (line 4). We save the content of the downloaded HTML file within a

Document object. Then, we are able to select and save individual HTML elements with jsoup’s

Elements object.

As all tracks on the GPS track Web sites of OSM are located within different HTML table

elements (e.g. table0, table1), we select for instance every table0 element and save it

within an Elements object (line 5). Then, we extract specific data elements out of the selected

elements within a for-loop. The OSM GPS track HTML pages hide the GPS starting points

within HTML link tags. Thus, we select the elements that exhibit a tag "a" and save them

within a new element called links (line 9). In consequence, we are able to iterate over all the

links within the OSM HTML file and to extract data that describe a GPS tour track.

1 for (String stag : tags) {

2 String tag = URLEncoder.encode(stag, "UTF-8");

3 Connection connection = Jsoup.connect("http://www.openstreetmap.org/traces/tag/"+tag);

4 Document doc = connection.get();

5 Elements content = doc.select("td.table0");

6 ...

7 for (Element element : content) {

8 String html = element.html();

9 Elements links = element.getElementsByTag("a");

10 for (Element link : links) {

11 Elements geoinfo =link.getElementsByAttributeValueStarting("href","/?lat");

12 for (Element specific : geoinfo) {

13 String astring = specific.toString().replace("<a href=’/?lat=", "");

14 astring = astring.replace("&lon=", ";");

15 String[] locationValues = astring.split(";");

16 tourLocation.setLongitude(Double.parseDouble(locationValues[1]));

17 tourLocation.setLatitude(Double.parseDouble(locationValues[0]));

18 float distance=((devicelocation.distanceTo(tourLocation)/1000)*100)/100;

19 ...

20 tourTitle.add(title);

21 tourDetail.add("Distance to Tourstart: "+ distance + " km");

22 tourLink.add(urlfile);

23 tourDescr.add(descr[1]);

24 }}}}

Listing 5.18: A code snippet of TourDataFetcher – Filtering GPS tour details from

HTML page

Whereby, we concentrate on the GPS tour-start coordinates but also on the title, the down-

load link, and a short description of each GPS track. For instance, we extract the tour-start

coordinates of a GPS track in Listing 5.18 and we save the extracted tour-start coordinates

14jsoup: http://jsoup.org/

http://jsoup.org/

Chapter 5. Proof of Concept 112

within a Location object named tourLocation (lines 16-17). We use the tour-start infor-

mation to calculate the distance to the tour start. Finally, we add the extracted information

for every GPS track to specific array lists (lines 20-23).

5.2.7 Parsing and Plotting GPX Files on a Map

If the user wants to view a GPS recorded tour on a map, all the way points of a GPX file

have to be extracted and plotted onto the map. We present the structure of a GPX file in

Listing 5.19 where the tag <trk> stands for track. <trk> includes the name (<name>) of the

GPS track and a tracking sequence (<trkseg>). The tracking sequence contains the tracking

points (<trkpt>) which present latitude and longitude coordinates of a recorded GPS track.

The <trkpt> directives enclose the elevation value (<ele>) of the current tracking point and

the recording time-stamp (<time>).

As GPX files exhibit a XML-based structure, we chose to parse the files with the help of

the Java XPath API15. This API allows the querying of XML-based files from Java programs.

1 <gpx xmlns="http://www.topografix.com/GPX/1/1" creator="" version="1.1" xmlns:xsi="http:

//www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.topografix.com/

GPX/1/1/gpx.xsd">

2 <trk>

3 <name>Example Track</name>

4 <trkseg>

5 <trkpt lat="47.296852" lon="12.772224">

6 <ele>784.552</ele>

7 <time>2011-10-27T08:00:19Z</time>

8 </trkpt>

9 <trkpt lat="47.296812" lon="12.772171">

10 <ele>779.938</ele>

11 <time>2011-10-27T08:00:29Z</time>

12 </trkpt>

13 ...

14 </trkseg>

15 </trk>

16 </gpx>

Listing 5.19: Example of GPX file structure

In Listing 5.20, we present the implementation of parsing GPX files in our system. We

create a new XPath object by using the XPathFactory. Then, xpath compiles the XPath

expression ("//trkpt") which forces that every tag named <trkpt> is selected as soon as the

XPath expression is executed. In line 3 we evaluate the compiled expression and we receive a

node-set as result. The system casts this node-set to a NodeList which we use to iterate over

each item of the list. Thereby, we select the latitude and longitude information of each node

and retrieve their text content (getTextContent()) (lines 6-7). We save the results within

a string array and then we add it to an array list (line 9). Later, we are able to iterate over the

points within this array list in order to plot them onto a map.

15XPath API: http://xml.apache.org/xalan-j/xpath_apis.html

http://xml.apache.org/xalan-j/xpath_apis.html

Chapter 5. Proof of Concept 113

1 XPath xpath = XPathFactory.newInstance().newXPath();

2 XPathExpression expr = xpath.compile("//trkpt");

3 Object fileObject = expr.evaluate(gpxfile,XPathConstants.NODESET);

4 NodeList nodes = (NodeList)fileObject;

5 for(int j = 0;j<nodes.getLength()-1;j++){

6 String lat =nodes.item(j).getAttributes().getNamedItem("lat").getTextContent();

7 String lng =nodes.item(j).getAttributes().getNamedItem("lon").getTextContent();

8 String point[] = {lng, lat};

9 arrPathPoints.add(point);

10 }

Listing 5.20: Parsing GPX file with XPath API

We present the responsible classes of our AR system for visualizing tracks on a map in

Figure 5.20.

1

Figure 5.20: Classes responsible for plotting GPS tracks

MountainMapActivity – Attributes/Methods

The MountainMapActivity class extends MapActivity and includes an attribute that is of

type MapView. MapView allows to display a map and it provides programmatic control of the

map display (zoom, overlays, display modes e.g. satellite, street) [57]. Furthermore, we define

an instance of the class MapController to be able to control the map (set center location,

set zoom levels). The onCreate(), onPause(), and onResume() methods are necessary for

managing the life-cycle of the activity. Moreover, this class comprises a drawPath() method

that is responsible for generating several instances of MountainMapTourOverlays. Thereby,

we use a loop to iterate through an array list of geographical points (all points of the GPS track)

to generate these overlays.

MountainMapTourOverlay – Attributes/Methods

We use overlays to parse a GPS tour on a map (cf. Definition 5.2). Thus, MountainMapTour-

Overlay extends the class Overlay. It comprises 4 attributes, whereby two of them present

instances of the class GeoPoint. Between these two points we have to visualize a line. The

attribute pathlength contains the path length of the GPS track that the system visualizes

Chapter 5. Proof of Concept 114

on the map. We use this value to display the length of the GPS track in kilometers on top of

the map as additional information for the user.

MountainMapTourOverlay also comprises a constructor with the geographical points of

the GPS tour track, the path length of the track, and the mode value as parameters. We add sev-

eral instances of the class MountainMapTourOverlay to the class MountainMapActivity

because each MountainMapTourOverlay instance presents a line between two geographical

points of a GPS track.

The draw() method of the class MountainMapTourOverlay actually draws a line be-

tween two geographical points. We present a part of this method in Listing 5.21. Within this

method, we define a projection to convert the passed GPS coordinates (presenting the GPS

points of the tour) into pixels (x/y screen coordinates) in lines 1-4. For plotting the path be-

tween these points, we use the drawLine() method (line 5). To be able to draw special start

and end markers, we use a string variable (mode) which indicates if certain coordinates present

the starting or ending GPS points of the tour (lines 6-11).

1 Point point = new Point();

2 projection.toPixels(gp1, point);

3 Point point2 = new Point();

4 projection.toPixels(gp2, point2);

5 canvas.drawLine((float) point.x, (float) point.y, (float) point2.x,(float) point2.y,

paint);

6 if(mode =="start"){

7 Bitmap start = BitmapFactory.decodeResource(MountainMapViewActivity.context.

getResources(),R.drawable.marker_start);

8 canvas.drawBitmap(start,point.x-(start.getWidth()/2),point.y-start.getHeight(),null);}

9 if(mode =="end"){

10 Bitmap end = BitmapFactory.decodeResource(MountainMapViewActivity.context.getResources

(),R.drawable.marker_end);

11 canvas.drawBitmap(end,point.x-(start.getWidth()/2),point.y-start.getHeight(),null);}

Listing 5.21: A code snippet of MountainMapTourOverlay – Plotting GPS tour onto

map

5.2.8 Recording Tour

Our AR prototype additionally provides the feature of recording GPS tracks and to write

recorded tracks into a GPX file on the local storage system of the mobile device. We present

the responsible classes of our AR system for recording GPS tracks in Figure 5.21.

TourRecordActivity – Attributes/Methods

The class TourRecordActivity comprises four attributes: we use the attribute mapView to

display a map and mapController allows us to control this map. The array list arrGeo-

PointList contains all the GPS points of a recorded GPS tour as instances of the class

GeoPoint. We use this list for drawing the currently recorded GPS tour on the map with the

Chapter 5. Proof of Concept 115

1

Figure 5.21: Classes responsible for recording GPS tracks

help of TourRecordOverlay. The other array list arrLocationList contains the recorded

geographical points as type Location (lat/long pair). We use this list for writing each tracking

point of the recorded GPS track into a GPX file.

As TourRecordActiviy extends the class MapActivity, we control the life-cycle of this

activity with the three methods onCreate(), onPause(), and onResume(). The method

updateMap() is called at every location update. We receive the new location point as type of

GeoPoint and as type of Location. In consequence, we are able to add every new location

point to arrGeoPointList and to arrLocationList. updateMap() also causes the map

view to re-draw. Thus, a new line is visualized between the last recorded geographical point

and the new one on the map.

The two remaining methods of TourRecordActivity are responsible for saving the

recorded GPS track (saveRecording()) within a GPX file and for loading a previously

recorded GPS track (loadRecording() of a GPX file from the local storage system of the

device.

TourRecordOverlay – Attributes/Methods

The class TourRecordOverlay comprises one attribute which is of type ArrayList<Geo-

Point>. This list contains the recorded GPS coordinates saved as instances of the GeoPoint

class. We use this list within the draw() method for drawing a line between the last two points

of the list. Thus, the user is able to view the already passed path on the map.

5.3 Summary

This chapter comprises the design and implementation of our proof-of-concept AR prototype.

The prototype is optimized for running on Android mobile phones that include a GPS radio,

digital camera, accelerometer, and magnetometer. Our AR system provides three different

modes: AR, map, and tour mode. The AR mode comprises an AR interface and is based on the

formal model presented in Chapter 4. The map mode displays resources on a 2D map and the

Chapter 5. Proof of Concept 116

tour mode offers tour features such as the loading of GPS tours from OpenStreetMap or from

the local storage system of the device, and the recording and saving of GPS tracks.

We implemented the receiving of GPS location updates with the help of an Android service

which enables the access to the GPS radio of the device. Each mode of the prototype presents

a separate Android activity. As soon as an activity of the system is in need of GPS location

updates, it binds itself to the GPS service.

The AR interface of our system consists of several Android views that are stacked one above

the other (cf. Figure 5.3). Thereby, the base view is the camera view which enables to capture

live scenes of the surroundings, whereby the system visualizes virtual content on top of it.

We fetch LOD resources from LinkedGeoData and GeoNames in RDF/XML-based format

and we manipulate the resources with the help of the Androjena framework. The two data

sets may include duplicate resources. We filter them by accomplishing two similarity measures:

the Jaro-Winkler distance and the geographical distance (determining geographical distance

between two resources). The system merges resource descriptions of two resources that are

identified as identical. During the processing of LOD resources they are stored in a SQLite

database on the local storage system of the mobile device. After the data preparation, the

system starts with the process of determining screen coordinates for a group of resources that

are located within a certain range near the device (based on the formal model introduced in

Section 4.4). In the end, the screen coordinates are used to visualize little triangle icons on the

display of the mobile device.

We present the AR Mountain Guide through the illustration of several screen shots of the

graphical interface of the prototype in the next chapter, where we also evaluate and discuss the

data processing and visualization performance of our AR system.

Chapter 6

Results and Discussion

This chapter consists of three main parts: within the first part we present our proof-of-concept

prototype by illustrating screen-shots of the AR application. The second part of this chapter

comprises the evaluation of our prototype. Thereby, we firstly concentrate on the performance of

processing LOD resources in our AR system. This means we measure how long the application

needs to parse, filter, and further process LOD resources. Secondly, we evaluate the visualization

performance1 of AR content in our AR system. In the last part of this chapter, we discuss our

findings.

6.1 Prototype Presentation

We divide the presentation of the prototype into two parts: the first part contains specifics

about the AR mode of the AR application (cf. Section 6.1.1) and the second part is dedicated

to the map and tour modes presentation (cf. Section 6.1.2).

6.1.1 AR Mode

We start with the illustration of the home screen of the AR application in Figure 6.1. The

home screen appears if the user starts the application and it comprises 3 different buttons on

the left side of the screen. The buttons represent the entry points to the various modes of the

application.

If the user activates the AR mode of the application, the AR interface presented in Figure 6.2

appears on the screen. The application visualizes recognized mountains as blue triangles with

grey boxes beneath them. The grey box contains the name of a mountain. For mountains,

which are located further than 5 kilometers from the current location of the device, we use

smaller triangles and a transparent blue color for the text boxes, as visible in Figure 6.2. The

interface also comprises a compass rose to inform the user about the current heading, and a

1The time that the visualized objects need to stabilize in front of the respective real-world object.

117

Chapter 6. Results and Discussion 118

refresh button to repeat the data download. We further explain these additional features in

Section 6.1.1.1.

Figure 6.1: Home screen - entry point of
application

Figure 6.2: AR interface with visualized
mountain object

If the user selects a visualized object on the screen, a dialog window opens. The dialog

contains extracted RDF data fetched from the DBpedia data set (cf. Figure 6.3 (a)). As already

explained in Section 5.2.5, a DBpedia resources description does not exist for every mountain

resource fetched from GeoNames or LinkedGeoData. Thus, if no further descriptions are avail-

able, we simply display the distance value from the mountain to the user and the elevation value

of the mountain (cf. Figure 6.3 (b)).

(a) DBpedia description is available (b) DBpedia description is not available

Figure 6.3: Displaying further mountain information

6.1.1.1 Additional Features

Besides the main functionalities, which we implemented to realize the research questions of

Section 1.4, we also created additional features for the prototype. We present them in the

following paragraphs:

Chapter 6. Results and Discussion 119

System Messages

If the GPS radio on the device is not activated, the user will be informed with the help of a

dialog visible in Figure 6.4 (a).

(a) GPS radio is inactive (b) No Internet connection is available

Figure 6.4: System messages

If the user taps on a button of the home screen to activate a mode, the application checks

if the device has access to the Internet. If there is no connection available, the alert dialog in

Figure 6.4 (b) appears on the screen. The different application modes can only be accessed if

an Internet connection is available and the GPS radio of the device is activated.

During the time the GPS radio searches for a satellite fix, a progress dialog appears on

the screen. At the first GPS fix, another progress dialog appears informing the user that the

system currently fetches mountain data from LOD sets. Both of these messages are visible in

Figure 6.5. The progress dialogs are necessary to let the users know that their action took effect

and to inform them that they have to wait a brief moment for the process to be completed.

(a) GPS fix is searched (b) Downloading process is active

Figure 6.5: Progress dialogs for bypassing waiting time

Chapter 6. Results and Discussion 120

Range Setter

In Figure 6.6, we present the AR interface of the application with a seek bar on top of it. On

this bar the user is able to modify the tracking range2 in order to restrict the data that the

system visualizes on the screen. The bar has a maximum value of 20 km. The higher the range

is, the more data we receive from the LOD sets. Thus, we defined a limit of 20 km to avoid an

overload of the screen with visualized LOD resources.

Figure 6.6: Range setter bar Figure 6.7: AR mode - options menu

Compass Rose/Refresh Button

Another feature is the animated compass rose on the left bottom side of the AR interface

(cf. Figure 6.6). The rose contains information about the current heading of the device, and

the little white dots on the compass rose represent recognized mountains in the near vicinity

of the device. Moreover, on the right bottom side of the AR interface in Figure 6.6 there is a

refresh button visible which can be used to repeat the loading and visualizing process of LOD

resources on the screen.

Option Menu

The AR mode also offers an option menu (cf. Figure 6.7) containing options (starting from the

right side of the menu) for:

• leaving the application,

• activating the home screen,

• changing the range,

• activating the map mode to visualize the mountains on a 2D map.

2The range in which real-life mountains can be referenced with LOD resources.

Chapter 6. Results and Discussion 121

6.1.2 Map and Tour-Guide Mode

If the user selects the map view or tour guide button of the home screen, the map mode will be

activated. The map mode manages the visualization of mountain resources or GPS tour tracks

on a 2D map.

In the map mode, the system loads mountain data from LOD sets and visualizes the re-

sources on the map by placing markers on the respective positions of the map (cf. Figure 6.8).

Figure 6.8: Map mode of AR application

The orange marker represents the current user position and the blue markers are the moun-

tain resources. In addition, there is a circle visible which indicates the current chosen range.

If the user selects a mountain marker the system fetches, as within the AR mode, further

information from DBpedia and displays it within a dialog.

If the user selects the last button of the home screen (cf. Figure 6.1), the system asks if the

user wants to load tours from the Web or if she/he wants to record GPS tours. In case the user

selects the tour loading option, a dialog (cf. Figure 6.9 (a)) appears. The user has to select a

range (in kilometers) on the seek bar of Figure 6.9 (a), so that the system is able to load data

for a certain restricted range.

(a) Seek bar for setting tour loading range (b) Tour tracks presented in a list view

Figure 6.9: Loading of tours

Chapter 6. Results and Discussion 122

After the loading of tour tracks is completed, the system presents the results within a list,

as described in Section 5.2.6. An example list view is visible in Figure 6.9 (b), where each item

of the list comprises the title of the loaded tour track, followed by the distance to the tour start,

and a short description of the track. If the user selects a tour of the list, the system visualizes

the GPS tour on the map (cf. Figure 6.10 (a)).

(a) GPS track displayed on the map (b) Tour guide mode is activated

Figure 6.10: Tour mode

Figure 6.10 (a) also illustrates a blue button on the right upper side of the AR interface.

This button can be used to activate the tour guide mode which means that the system displays

a marker on the map which represents the current user position (cf. Figure 6.10 (b)). Also a

compass appears on the screen to additionally support the user with the orientation. As soon

as the user walks in reality to another location, the marker moves to the respective position on

the map. Thus, the user is able to take a guided tour by following the tour track displayed on

the screen.

6.1.2.1 Additional Features

Option Menu

The map mode also offers an option menu (cf. Figure 6.11 (a)). It comprises options (starting

from the right bottom side of the menu) for closing the whole application, for loading tours

(from OpenStreetMap or from the local storage system), for activating the home screen, for

setting a new range in which mountain resources are loaded, and for switching between street

or satellite map views.

Route Calculation

If a tour is displayed on the map, the user has the additional option to calculate the route to the

tour start. We utilize a Google Maps Web service3 to calculate the route between the current

location of the device and the tour start location. In Figure 6.11 (b), we illustrate that we use

3Google Maps route calculation service: https://developers.google.com/maps/documentation/
directions/#Routes

https://developers.google.com/maps/documentation/directions/#Routes
https://developers.google.com/maps/documentation/directions/#Routes

Chapter 6. Results and Discussion 123

(a) Option menu of map mode (b) The calculated route to the tour-start visualized in
green

Figure 6.11: Tour mode features

a green color for visualizing the additionally calculated route to the tour-start. In addition, the

system displays the path lengths of both paths (tour track and calculated route to tour-start)

on the right bottom side of the screen.

Recording Tours

The AR prototype also provides the possibility to record tours, and to save them as GPX files

on the local storage system of the device. Through the option menu (cf. Figure 6.12 (a)) the

user is able to start the recording of a GPS track. After activating the record mode, a first

location fix is searched by the GPS radio of the device. Then, a blue glowing dot appears on

the map to display the current position on the map. If the user moves, the blue dot on the map

moves to the respective direction on the map. We highlight the already passed path by linking

the recorded GPS coordinates with blue lines. As soon as the user stops the recording, she/he

is able save the passed path in a GPX file through entering a name for that file, as illustrated

in Figure 6.12 (b).

(a) Option menu of tour recording mode (b) Dialog to enter GPX file name

Figure 6.12: Tour mode - recording tours

Chapter 6. Results and Discussion 124

6.2 Evaluation

During the evaluation, we focused on two main criteria: first, the duration for processing the

downloaded resources from LinkedGeoData and GeoNames, and secondly, the performance of

the sensor-based AR tracking method which means the measuring of the duration until virtual

content stabilizes on the correct position within the AR interface of our AR prototype. Addi-

tionally, we performed the evaluation on two different devices: Samsung Galaxy SL I90034 and

HTC Wildfire S5. We used two devices in order to find out whether our AR system exhibits sim-

ilar data processing and visualization performance behaviors on devices where each comprises

a processor that runs at a different clock speed.

The evaluation section of this work is structured as follows: in Section 6.2.1, we describe

our test environment of the evaluation. We dedicate Section 6.2.2 to the evaluation of the

LOD resource processing performances of our prototype, where we firstly explain the test setup

(cf. Section 6.2.2.1) and then we describe details about the test data that we used to simulate

the data processing live on the test devices (cf. Section 6.2.1). At last, we present the results of

the data processing evaluation in Section 6.2.2.2. In Section 6.2.3, we discuss the evaluation of

sensor-based tracking performances of the prototype. We begin with the outlining of the test

setup (cf. Section 6.2.3.1) and we conclude this section with the presentation of the results of

the visualization performance tests (cf. Section 6.2.3.2).

6.2.1 Test Environment

In the following, we present the two devices we included in the evaluation.

The Samsung Galaxy SL I9003, released in February 2011, is powered by a 1 GHz ARM

Cortex-A8 processor with PowerVR SGX530 GPU. This device provides 512 MB of RAM

(478 MB of RAM to the user) and it is shipped with the Android operating system Froyo

(Android 2.2). It exhibits a 4 inch 16M-color super clear LCD capacitive touchscreen with a

resolution of 480x800 pixel. The Samsung Galaxy I9003 is additionally equipped with a 5 MP

camera allowing 2592x1944 pixels and a GPS radio with A-GPS support. Internet access is

provided through 2G GPRS/EDGE (Class 12) or 3G HSDPA (7.2 MB/s), and Wi-Fi (802.11

b/g/n) [103].

We also used the HTC Wildfire S for the evaluation of our AR prototype. This HTC

smartphone was released in February 2011 and is powered by a 600 MHz Qualcomm MSM7227

processor and provides 512 MB RAM (150 MB of storage available to the user). This device

uses the Andreno 200 GPU for graphics. It exhibits a 3.2-inch TFT capacitive touchscreen

(supports 256 K colors) with a resolution of 480x320 pixels and it comes with the Android

4Technical specification of the Samsung SL I9003: http://www.samsung.com/at/consumer/
mobile-phone/mobile-phone/smartphones/BGT-I9003-spec?subsubtype=galaxy

5Technical specification of the HTC Wildfire S: http://www.htc.com/www/smartphones/
htc-wildfire-s/#specs

http://www.samsung.com/at/consumer/mobile-phone/mobile-phone/smartphones/BGT-I9003-spec?subsubtype=galaxy
http://www.samsung.com/at/consumer/mobile-phone/mobile-phone/smartphones/BGT-I9003-spec?subsubtype=galaxy
http://www.htc.com/www/smartphones/htc-wildfire-s/#specs
http://www.htc.com/www/smartphones/htc-wildfire-s/#specs

Chapter 6. Results and Discussion 125

operating system Gingerbread (Android 2.3). The Wildfire S is also equipped with a 5 MP

camera (allowing 2592x 944 pixels) and a GPS radio. Connection to the Internet is possible via

Wi-Fi (802.11 b/g/n) and mobile broadband with a 2G GPRS/EDGE (Class 10) connection or

a 3G HSDPA (7.2 MB/s) connection [104].

The two devices feature the regular sensors such as accelerometer, proximity sensor, digital

compass, and ambient light sensor.

6.2.2 Data Processing Performance

In this section, we present the evaluation of the data processing performance of our AR system.

This evaluation exhibits if our prototype is capable of processing LOD resources in reasonable

time on the two different mobile phones presented in Section 6.2.1. With processing perfor-

mance we mean the time the prototype needs for parsing LOD resources from a file into an

Androjena model, for transforming the resources of the Androjena model into Java objects, for

the identification and merging of identical resources, and for storing the processed resources

locally on the mobile phone.

We do not evaluate the downloading performance of resources from the Web because this

depends for instance on the Internet connection speed and the available bandwidth at the time

the evaluation is taken which does not lie in the focus of our evaluation.

6.2.2.1 Test Setup and Test Data Preparation

This evaluation includes the analysis of the execution time of different LOD resource processing

operations:

• Parsing data from a local RDF file into an RDF model.

• Filtering identical resources and merging identical resource descriptions.

• Processing (saving as Java object) the resources.

• Storing the resources in a SQLite database on the device.

In particular, we execute these operations with different amounts of resources:

20, 100, 200, 500, 1,000, 1,500, 2,000

For instance, during a test round where 20 resources are used, we process 10 resources

originally downloaded from LinkedGeoData and 10 resources fetched from GeoNames. Thereby,

a single resource is described by several triples. Thus, in total each test round includes the

processing of 170, 850, 1,700, 4,250, 8,500, 12,750, and 15,000 triples.

We fetched the LOD resources, used for this evaluation, from the LinkedGeoData and

GeoNames platforms in RDF/XML-serialized format. An example, RDF graph of data from

LinkedGeoData is visible in Listing 5.6 and from GeoNames in Listing 2.1. In total, we have

Chapter 6. Results and Discussion 126

14 different RDF/XML-based files containing test data in the amounts of 10, 50, 100, 250, 500,

750, and 1,000 resources per data set. Furthermore, each LinkedGeoData resource is described

by 5 triples and each GeoNames resource by 12 triples. For instance, a test file that contains 10

different resources from LinkedGeoData contains 50 triples and a test file of 10 resources from

GeoNames 120 triples. The test data dumps also contain identical resources (two resources that

describe the same real-world object but exhibit different URIs) to be able to evaluate also the

processing duration of the filtering of identical resources during a test round.

The data processing evaluation consists of 10 test rounds for each test data group and in

each test round the following operations are performed: first of all, the AR system parses the

LinkedGeoData and GeoNames test resources from 2 files (stored on the mobile device) into

two separate Androjena models (cf. Section 5.2.2). The next task is to process the Linked-

GeoData resources of the model which means that the model is iterated and the label and the

geographical coordinates of each resource are saved as Java object of type MountainObject

(cf. Section 5.2.4). Then, these objects are saved within a Java array list (cf. Section 5.2.2). The

following processing step is the identifying of identical resources from the two different test data

sources. Thereby, the method presented in the previous chapter in Listing 5.9 is performed to

filter identical resources and to merge resource descriptions if a GeoNames resource is identical

to an already processed LinkedGeoData resource. Then, the system transforms the remaining

GeoNames resources into Java objects (of type MountainObject) in order to add the newly

processed GeoNames objects also to the Java array list that contains the already processed

LinkedGeoData resources.

Every data processing duration is written into a log file on the local storage system of the

device. Thereby, we generated log files for every test data dump size. In the end, we obtained

14 different log files (7 per device) containing data processing evaluation results.

For our data processing evaluation, we defined several evaluation symbols that we present

and explain in Table 6.1.

Symbol Definition / Unit

tparsing Arithmetic mean for parsing of resources / in ms

tprocessing Arithmetic mean for processing of resources / in ms

tidentical Arithmetic mean for detecting identical resources / in ms

tstoring Arithmetic mean for storing resources on the device / in ms

ttotal Total processing duration of resources / in ms (cf. Definition 6.1)

RESpsec Set of all resources processed per second / in quantity

Table 6.1: Evaluation Parameters

The evaluation symbols for describing the processing durations in milliseconds present the

arithmetic mean of processing durations obtained from 10 conducted test rounds. We de-

termine the total processing duration ttotal by summing up all data operation durations (cf.

Definition 6.1).

Chapter 6. Results and Discussion 127

Definition 6.1. Let tparsing be the arithmetic mean of 10 rounds of parsing Linked-

GeoData and GeoNames resources in an RDF model. Let tidentical be the arithmetic

mean of 10 rounds of filtering identical resources, and let tprocessing be the arithmetic

mean of 10 rounds of processing the resources. We obtain ttotal by Equation 6.1:

ttotal = tparsing + tidentical + tprocessing (6.1)

Parallel to these operation steps, the system stores data into a SQLite database (cf. Sec-

tion 5.2.3). The system performs the storing in a background thread and thus do not has impact

on the processing duration of parsing, processing, and identifying of identical resources. This

is why we do not add this operation duration to the total amount of processing durations in

Equation 6.1.

6.2.2.2 Data Processing Results

All tests were performed on two different devices presented in Section 6.2.1. In Table 6.2, we

list the results of the data processing tests. As expected, all operation steps took more time

on the less powerful HTC device than on the Samsung device. Furthermore, on both devices,

results for tparsing are always higher than results for tprocessing and tidentical. As explained in

Section 6.2.2.1, resources are described by several triples. Therefore, parsing the resources into

the model depends on the amount of triples. As soon as the triples are in the Androjena model,

we do not access all the triples but specific ones like the ones containing the label and the

geo-coordinates of a resource (cf. Listing 5.7). The system also makes use of label and geo-

coordinates of a resource during the process of detecting identical resources. Thus, during the

processing and filtering operation steps, fewer data are processed which leads to lower processing

durations.

Resources 20 100 200 500 1,000 1,500 2,000

Samsung

tparsing 472 2,342 4,995 11,519 24,520 38,518 51,215

tprocessing 112 569 1,037 2,658 6,465 9,564 13,073

tidentical 76 369 735 4,499 22,259 38,096 65,776

HTC

tparsing 4,354 20,482 39,786 102,832 211,150 320,625 446,888

tprocessing 628 2,854 5,684 17,811 28,179 41,033 57,902

tidentical 342 3,599 10,080 59,114 203,134 468,091 816,177

Table 6.2: Data processing durations

The average time for processing of resources tprocessing (saving the URI, label, and geo-coordinates

of a resource as Java object) exhibits the fastest processing durations in all test data groups on

both devices. Thereby, tprocessing reveals reasonable processing durations for test data dump

sizes up to 1,000 resources on the Samsung device and up to 200 resources on the HTC device.

Chapter 6. Results and Discussion 128

Table 6.2 exhibits that the average processing time tidentical is acceptable for identifying

identical resources when processing 20, 100, 200, and 500 resources on the Samsung device and

20, 100, and 200 resources on the HTC device. But tidentical increases to an unacceptable height

when filtering identical resources in higher amounts of resources. The higher the amount of

resources the more labels have to be compared. Furthermore, our method for identifying iden-

tical resources (cf. Listing 5.9) includes the calculation of the geometrical distance between two

resources that exhibit a low Jaro-Winkler distance (e.g. a Jaro-Winkler distance of 0 equates

to similarity). So, this additional calculation step within the identical search process also con-

tributes to the higher processing durations, if there are several possible equal resources in the

two data dumps.

In Table 6.3, we present the total processing time ttotal of resources from all operation steps

(cf. Definition 6.1) but also how much resources per second RESpsec our AR system was able

to process within each test data group.

Resources 20 100 200 500 1,000 1,500 2,000

Samsung
ttotal 660 3,280 6,766 18,675 53,243 86,178 130,064

RESpsec 30.30 30.49 29.56 26.77 18.78 17.41 15.38

HTC
ttotal 5,325 26,934 55,550 179,756 442,463 829,749 1,320,967

RESpsec 3.76 3.71 3.60 2.78 2.26 1.81 1.51

Table 6.3: Comparison of total data processing time

Generally, the total data processing duration ttotal on the Samsung device was acceptable

when loading up to 200 resources. On the HTC device, the total processing duration ttotal was

only acceptable when using 20 test resources. As we restricted our prototype into loading not

more than 50 resources, we additionally determined ttotal for 50 resources on the HTC device

which resulted in about 13 seconds. This time is acceptable but nevertheless a bit high. In

Figure 6.13, we illustrate the different processing durations of ttotal on both devices where we

marked the size of the test data dumps on the x-axis and we displayed the processing durations

in milliseconds along the y-axis. On the HTC device the processing durations clearly took more

time for all data dump sizes than on the Samsung device because the HTC exhibits a weaker

CPU performance.

Additionally, we present in Figure 6.14, the number of processed resources per second on

both devices where the size of the test data dumps is marked on the x-axis and the processed

resources per second ratios are displayed along the y-axis. The figure illustrates that on the

Samsung device the system was able to process much more resources per second than on the

HTC device. Moreover, the figures show that on both devices there is a linear dependency

between the number of resources and their processing time recognizable. This means both

devices become slower in processing data the more test resources we load.

Chapter 6. Results and Discussion 129

Total Processing Time

Resources (#)

D
ur

at
io

n
(m

s)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

20100200 500 1,000 1,500 2,000

HTC
Samsung

Figure 6.13: Total resource processing
durations

Resources processed per Second

Resources (#)

R
es

ou
rc

es
 p

er
 S

ec
on

d
(#

)

5

10

15

20

25

30

20100 200 500 1,000 1,500 2,000

HTC

Samsung

Figure 6.14: Number of resources pro-
cessed per second

In Table 6.4, we present the processing durations for storing resources in the database on

the local storage system of the device. As explained in the previous section, the system performs

the storing of data in a separate background process. Thus, we present the results for the storing

processes in a separate table. The amounts of test resources, presented in the table, are lower

than the original test data dump sizes because we store data after the identifying of identical

resources. If the system detects identical resources, it adds the additional descriptions to the

respective resource within the database. In consequence, resource descriptions are merged.

As expected, the HTC device needs more time for storing data than the Samsung device.

With an amount of 467 resources the HTC device already needs about 2 minutes and the

Samsung device only about 14 seconds to store the data. Thus, the HTC device is in this case

about eight times slower than the Samsung device. Storing higher amounts on the HTC device

ends in unacceptable storing durations. tstoring is acceptable for test data dump sizes up to 467

resources on the Samsung device and on the HTC device up to 93 resources.

Resources 18 93 197 467 929 1,368 1,842

Samsung tstoring 496 2,655 5,590 13,997 29,256 45,293 68,044

HTC tstoring 1,649 7,302 27,724 115,570 166,385 301,654 343,567

Table 6.4: Data storing durations

6.2.3 AR Visualization Performance

A basic execution process of our AR prototype is the visualization of AR content on top of

real-world objects. Thus, the visualization performance concentrates on the execution time of

our AR system until the AR content stabilizes on the proper position within the AR interface.

This test procedure relies on human impact because it is based on pointing which means during

the test the user hast to point the mobile device at pre-defined physical targets. We present

these defined targets in the following section.

Chapter 6. Results and Discussion 130

We performed this evaluation in order to prove that our AR prototype is capable of stabi-

lizing AR content in reasonable time on top of the respective real-world objects.

6.2.3.1 Test Preparation

We defined five different test targets that we used to point the device at. In Table 6.5, we

present all the test targets that we used during the visualization tests. These targets are all

physical objects located in Austria and we classify them according to the three different terms

peak, place, and monument. In Table 6.5, we present the name, the location, the elevation, and

the type of classification of each test target.

Target Location (lat/long) Elevation Classification

Sonntagberg 47.996183◦,14.761759◦ 580 m place

St. Michael 48.015033◦,14.614883◦ 545 m place

Stift Seitenstetten 48.035612◦,14.654921◦ 334 m monument

Wetterkogel 47.882967◦,14.783077◦ 1,111 m peak

Plattenberg 48.016454◦,14.553695◦ 600 m peak

Table 6.5: Test target definition

In Listing 6.1, we present how we defined the test targets programmatically. We directly

stored these test targets as Java objects and then we added them to the mountains array

list which contains all the pre-processed resources for a certain restricted range near the device

(cf. Section 5.2.4). The AR system iterates the mountains array list and visualizes every

object within this list on the screen, as soon as the real-world object appears in the field of view

of the device’s camera.

1 Location location1 = new Location("Sonntagberg");

2 location1.setLatitude(47.996183);

3 location1.setLongitude(14.761759);

4 location1.setAltitude(580);

5 MountainObject object1 = new MountainObject(null, location1, "Sonntagberg");

6 ARView.mountains.add(object1);

Listing 6.1: Defining of a test object in our AR system

During the evaluation, the user has to pan the device because the panning causes the sensor

values for heading and orientation to change. Thus, the icon is moving on the screen as new

screen coordinates are calculated at every sensor value change. Now, in this evaluation, we

measure the time until the icon stabilizes upon the respective physical target object.

Moreover, this test procedure requires user input: at the beginning the user has to determine

an admissible target region on the device screen. Touching the screen causes the visualization

of a box (30x30 pixels) around the physical target region that the user currently captures with

the device’s camera. During the test execution, the test target is presented as graphical icon

Chapter 6. Results and Discussion 131

on the screen. The test includes that the user pans the device. Thereby, we distinguish two

different pan directions: left and right. A left or a right pan of 180◦ from the current test target

causes the test to start. As soon as the test starts, the user has to pan back to the test target.

The moment the user reaches the starting position and the icon is visualized on top of the test

target within the previously defined box, the visualization succeeds which causes the test to

stop. We repeated the tests for every test target and every pan direction 10 times.

The user has to initialize every test round manually, whereby the total amount of time until

the icon is visualized on the proper position on the screen of each test round is written into a

log file and stored on the local storage system of the device. For every test target and every

pan direction, a separate log file was generated.

To evaluate the AR visualization performance of our approach, we define 4 mathematical

symbols listed in Table 6.6. We obtain these values for the evaluation parameters directly

through our implemented AR prototype, as in the previous evaluation presented in Section 6.2.2.

Symbol Definition / Unit

tHTC Arithmetic mean of visualization performances on HTC / in ms

tSamsung Arithmetic mean of visualization performances on Samsung / in ms

σHTC Standard deviation of visualization performances on HTC / in ms

σSamsung Standard deviation of visualization performances on Samsung / in ms

le Left pan of device

ri Right pan of device

Table 6.6: Evaluation parameters for visualization performance

6.2.3.2 Visualization Performance Results

We summarize the results of the visualization tests in Table 6.7.

Test Target Stift Seitenstetten St. Michael Sonntagberg Plattenberg Wetterkogel

Pan Direction le ri le ri le ri le ri le ri

tSamsung 5,831 6,583 5,867 6,043 5,454 5,920 6,029 6,229 5,136 6,432

σSamsung 907 576 947 874 1,072 857 966 1,610 947 1,488

tHTC 6,289 5,178 5,714 5,201 6,388 5,407 6,586 6,033 5,535 5,447

σHTC 752 759 878 588 594 712 900 649 1,224 870

Table 6.7: Visualization performances in ms

Table 6.7 exhibits that all average performance durations tHTC lie between 5.2 and 6.6

seconds and all average performance durations tSamsung lie between 5.1 and 6.6 seconds. Thus,

our system exhibits a constant AR content visualization performance for a proper visualization

Chapter 6. Results and Discussion 132

of icons on top of the real-world objects on both test devices. In Figure 6.15 and Figure 6.16, we

illustrate the arithmetic mean of left and right movements for each target object. Figure 6.15

exhibits that tSamsung for the pan direction re is always a bit higher than for the pan direction le.

On the HTC device, all the tests when performing le took longer than for the tests with pan

direction re. Although, the difference of the average performance durations of the test rounds

when performing left or right pans is minimal, we ascribe this trend to the sequence of conducting

the two different tests. Because on the Samsung device we firstly performed the tests for the

right panning of the device and on the HTC we started with the left panning of the device.

When performing 10 times left movements, the user gets used to it and thus she/he pans the

device a bit faster during the second evaluation test rounds with the different pan direction.

The visualization performance results on the HTC device are nearly equal to the results, when

performing the tests on the Samsung device. Thus, this time the less powerful HTC does not

exhibit any kind of weakness which means that our AR system provides a proper and equal AR

content visualization performance for both devices.

We illustrate the standard deviations σSamsung and σHTC of Table 6.7 together with the

arithmetic mean results in Figure 6.15 and Figure 6.16. Within these figures, the test targets are

displayed along the x-axis where each test target comprises a bar for left and right pan directions

and the visualization durations in milliseconds are marked on the y-axis. Both figures illustrate

the standard deviation of the individual sample means. The values for the standard deviation

σHTC lie between 0.6 and 1.2 seconds and for σSamsung between 0.6 and 1.6 seconds. Thus, the

variability of the individual performance durations is acceptable.

Visualization Performances Samsung

Target

D
ur

at
io

n
(m

s)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Stift Seitenstetten St. Michael Sonntagberg Plattenberg Wetterkogel

left

right

Figure 6.15: Visualization Performances on Samsung SL I9003

The small time variations that we nonetheless obtained in the different test rounds can be

ascribed to the panning of the devices by the user that each test requires. Not in every test

round, the user is able to pan back to the starting point in the same amount of time. Moreover,

each slightly movement of the device causes a re-calculation of screen coordinates of the AR

content. The user has to make smooth and calm movements so that the AR content stops

moving around on the screen and stabilizes itself on top of the target object.

Chapter 6. Results and Discussion 133

Visualization Performances HTC

Target

D
ur

at
io

n
(m

s)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Stift Seitenstetten St. Michael Sonntagberg Plattenberg Wetterkogel

left

right

Figure 6.16: Visualization Performances on HTC Wildfire S

Sometimes, the alignment of icons and real-world objects can be inaccurate. Reasons for

inaccurate AR content visualizations are for instance imprecise recorded direction and orienta-

tion sensor values or inaccurate location and GPS information. We discuss these issues in the

following paragraphs.

Inaccurate Orientation Values

As we already mentioned in Section 5.2.1.2, we use the magnetometer of the device in com-

bination with the accelerometer to provide magnetic north orientation. Magnetometers pick

up every possible magnetic field in the near environment. This leads to interferences with the

sensor values and inaccurate orientation estimations. Magnetic fields interfere with the earth’s

magnetic field all the time, whereby interferences can be caused by cars, metal structure of

buildings, the built-in Bluetooth chip or speakers of a mobile device itself.

To reduce the sensor noise, we use a low pass filter (cf. Section 5.2.1.2 in Listing 5.4). The

low pass filter eliminates fast changing sensor values and allows only slow changes of values. To

be able to show the effects of the low pass filter, we recorded raw and filtered azimuth and pitch

values and put them together in two diagrams (Figure 6.17 and Figure 6.18). Within both

figures, we illustrated the amount of recorded sample sets along the x-axis and we marked the

measured degrees of azimuth or pitch on the y-axis. As visible, the filter method filters sudden

changes in the sensor reading out. We obtain a more accurate orientation estimate through the

filter than from the raw sensor values alone. Additionally, the system is more robust in case of

sudden fast motions.

Inaccurate GPS Location Information

Our AR tracking approach contains the distance and bearing calculation to the real-world

objects. This requires accurate location information of the device and the resource. In some

situations, the location information of the resources, provided by the LOD sets, is not exact.

Chapter 6. Results and Discussion 134

Azimuth Sensor Data

Samples

D
eg

re
es

10

20

30

40

50

100 200 300 400

raw
filtered

Figure 6.17: Raw and filtered Azimuth sensor values

Pitch Sensor Data

Samples

D
eg

re
es

−5

0

5

10

50 100 150

raw
filtered

Figure 6.18: Raw and filtered Pitch sensor values

Sometimes different data sets provide different location information for the same resource and it

is not certain which is more accurate. We are not able to measure the quality of the geographical

information of location resources that are provided by the LOD sets. Hence, to make our

system more accurate, we merge resource descriptions of identical resources. As a result, some

resources exhibit two different geo-coordinates (one pair from LinkedGeoData and the other

from GeoNames). During the visualization process the system takes the geo-coordinates with

the longest digits (the highest number of decimal degrees) for further calculation steps because

the higher the number of the decimal degrees is the more accurate the geo-coordinates are

(cf. Section 5.2.2.3).

In addition, the recorded GPS location of the mobile device can also be inaccurate. As

explained in Section 2.3.2, the GPS radio of the device needs to lock with more than 3 satellites

in order to determine an accurate location. Clear view of sky enables better lock possibility

with enough GPS satellites. The more satellites the GPS receiver locks with the better it is.

Buildings and trees can interfere with the GPS connection to the satellites and can lead to

inaccurate or non-existing location information. However, the quality of the positioning service

not only depends on external conditions but also on the hardware of the used mobile device

Chapter 6. Results and Discussion 135

(quality of the phone’s GPS radio). Thus, we do not evaluate the accuracy of recorded GPS

location information.

6.3 Summary

Our evaluation does not contain any processing operations that requires a network connection.

The use of third party Web services generally may end up in slow, unstable or totally broken

connections because of server errors on the provider side that would influence our evaluation

results.

The evaluation of our proof-of-concept prototype includes LOD processing operations on

two different devices (cf. Section 6.2.1). The data processing operations took an acceptable

amount of time when processing up to 200 resources on the Samsung device. The less powerful

HTC device already exhibited weakness when processing about 100 resources. In reality, 200

visualized resources overload the screen thus we limited the amount of resources that actually

can be visualized to 50 and we additionally provide a range limit of 20 km.

We also evaluated the performance of AR content visualizations on both devices. This

evaluation test relies on human impact. The user has to pan the device 180◦ until she/he

captures the test target and the AR content stabilizes on top of the test object. The average

duration for each test target took about 5 to 6.5 seconds until the icon is visualized on top of

the respective real-world object on both devices. Thus, our AR prototype exhibits a constant

visualization performance for the higher and less powerful test devices used in this evaluation.

However, these tests are affected by the user’s movements of the device. Thus, the variations

of the results between the test rounds depend on the time the user needs until she/he pans the

device back to the target resource and on how smoothly she/he pans the device. The variations

between the test results can also be caused by noisy orientation and direction sensor values. To

prevent sensor value inaccuracies we use a low pass filter (cf. Section 5.2.1.2) which eliminates

sudden sensor value changes. As a result, we obtain more accurate orientation estimates.

Incorrect icon visualizations can also be caused by inaccurate GPS location information.

As LinkedGeoData and GeoNames are community driven projects, the provided geographical

coordinates of some resources might not be accurate enough. Fortunately, users are able to

contribute and to improve the quality of data by correcting inaccurate resource descriptions.

In addition, the accuracy of the recorded GPS location information of the device’s GPS radio

depends on the quality of the provided hardware of the device and on the external conditions

(is there free view of sky?) during the execution of the application.

In conclusion, we could observe that our prototype is capable of processing LOD resources

on the device and of visualizing them on proper positions in reasonable time on mobile phones.

Thus, we were able to proof the feasibility of our approach of integrating Linked Data in a

mobile sensor-based AR system in order to identify and describe real-world objects (based on

the LOD resource descriptions) in the near physical environment.

Chapter 7

Final Remarks

7.1 Conclusions

In this work, we investigated the integration of Linked Data into a mobile AR system. The Web

of Linked Data offers a huge amount of interlinked data and the LOD project is growing year

by year. Therefore, LOD presents an attractive data source for AR systems. Based on Linked

Data resources, it is possible to identify and describe real-world objects within AR interfaces.

In this thesis, we provided an overview on the different kinds of AR systems that exist

and discussed problems and limitations of current approaches (cf. Chapter 3). Vision-based AR

systems rely on complex image pattern algorithms and mostly depend on an external server

infrastructure. Such systems can be very resource consuming for the mobile phone’s hardware.

As a consequence, we put the focus on sensor-based AR systems which rely solely on the built-in

sensors of a mobile device. In our work, we gave an overview on existing sensor-based AR systems

for mobile phones and compared them with our approach (cf. Chapter 3). Most commercial

mobile AR browsers use proprietary standards for describing AR content and they fetch data

from isolated data repositories. Moreover, they mostly rely on client-server architectures and

require permanent network connections. On the other hand, exploiting LOD to use it as AR

content in AR systems such as our approach aims at is rarely investigated.

In consequence, we discussed how we are able to exploit LOD resources and presented

background information on the structures, ontologies, and technologies of LOD (cf. Chapter 4).

Federating LOD resources from different sources and merging them leads to the availability of

duplicate resources. Hence, we introduced an existing framework (Silk-framework cf. [90]) that

provides tools for identifying identical resources in different LOD sources in order to be able

to merge resource descriptions. In our work, we identify identical resources by comparing their

labels using the Jaro-Winkler distance and we additionally determine the geographical distance

between the two resources if the Jaro-Winkler distance metric does not result in a perfect match

(a Jaro-Winkler distance value of 0) (cf. Chapter 5). If the system identifies two resources as

identical, it merges the resource descriptions of these two resources.

136

Chapter 7. Final Remarks 137

On the basis of the assumption that we focus on sensor-based AR systems, our work includes

the presentation of a conceptual model. Thereby, we outline that the AR system comprises a

mathematical model which is capable of determining the current field of view of the device’s

digital camera based on the orientation and heading information of the device (cf. Chapter 4).

Under the awareness of the current field of view, the model allows the calculation of screen

coordinates for projecting LOD resources into the AR interface of the system. We described this

mathematical model on a formal basis where we introduced and defined all including calculations

through formal notation.

As a proof of concept, we implemented the proposed conceptual and formal model as a

AR application for Android mobile phones (cf. Chapter 5). The prototype presents an AR

mountain guide and is capable of identifying mountains in the near surroundings. The sys-

tem accesses three different LOD platforms whereby it uses LinkedGeoData and GeoNames for

fetching geo-coordinates to identify real-world objects, and it uses DBpedia to deliver further

resource descriptions about the visualized objects. Our AR system includes methods for fed-

erating, consolidating (identifying and merging identical resources), and storing LOD resources

directly on the mobile device. It is possible to execute the prototype without permanent net-

work connection. Moreover, the application is able to display GPS tracks on a 2D map. The

GPS tracks are fetched from OpenStreetMap. Additionally, it is possible to record GPS tracks

and store it on the mobile phone’s local storage system.

Finally, we conducted an evaluation in order to give insights on the performance of the

AR prototype (cf. Chapter 6). We tested the data processing execution which focuses on the

parsing, consolidation, and storing of LOD resources on the mobile device. The results of this

evaluation revealed that the prototype is able to process a sufficient amount of LOD resources

in acceptable time on two different mobile devices (Samsung SL i9003, HTC Wildfire S). The

second evaluation concentrates on the AR content visualization performance. Thereby, we

determined the time the AR systems needs to stabilize visualized LOD resources on top of

proper screen positions (on top of the respective real-world objects). This evaluation showed

that our prototype allows visualizations in reasonable time live on top of the captured view of

a more powerful (Samsung SL i9003) but also a less powerful (HTC Wildfire S) smartphone.

Consequently, we are able to affirm that the development of the AR prototype proofs the

feasibility of our approach. We were able realize the research objectives of this work which we

defined in Section 1.4 and we implemented the functional requirements presented in Section 4.1

in order to enable the realization of an AR system for mobile phones. Hence, the main objective

which was the integration of LOD resources into an AR interface of a sensor-based mobile AR

system has been transposed. Therefore, our work contributes to the domain of Linked Data

because we developed a new form of LOD exploitation and application but also to the domain

of AR because we introduced a new possible way of standardizing AR content. Our work can

be used as basis for ongoing research in the domains of LOD and AR. Therefore, we present

several possible future works in the following section.

Chapter 7. Final Remarks 138

7.2 Outlook

Exploiting LOD in sensor-based mobile AR systems was successful and approved itself as a

contribution to the domain of mobile AR. Nevertheless, we present several suggestions of possible

future works in the following paragraphs:

In our work, we only use three different LOD sets for proving the feasibility of our approach.

In future, the federation of LOD resources could be extended to much more LOD sets than three

and therefore the process of consolidating the resources has to be improved.

Another suggestion is the integration of a feature that allows users to make annotations

directly in physical space in order to contribute to the LOD project. Thus, the user could

generate new resources, extend descriptions of existing resources or link existing resources with

related ones directly through the AR interface of the AR system.

There is a need for open standards and APIs for AR applications. Wikitude’s ARML

(cf. Chapter 3) is a notable example for an AR content specification to describe POIs. RDF the

graph-based data model used by the LOD project could also be deployed as AR standard for

AR applications. RDF includes properties which allow to express geo-coordinates for a POI.

Thus, by using RDF as AR content standard for mobile AR browsers it is possible to uniquely

identify real-world objects by referencing them with LOD resources.

Concerning the feature of downloading GPS tours which our prototype provides, it would

be useful if there exists a GPS track platform that offers an API for fetching specific tours.

Or even a complete new approach could be the saving of GPS tracks within RDF/XML-based

files and to store them in further consequence within a new Linked Data platform (e.g. like

DBpedia) which then only provides interlinked GPS tours. A Web page (or RDF/XML-based

file) that describes a single GPS tour could contain additional information about the tour like

duration, distance, time, links to pictures of the tour, special features of the tour, points of

interests that are located along the tour or the degree of difficulty. In addition, these tours

could be interlinked with other similar tours, e.g. tours that have been recorded in the same

geographical area.

As the prototype of this work enables the recording of GPS tours, it would be possible to

integrate an interface that allows to upload self-recorded tracks to the proposed Linked Data

platform that contains interlinked GPS tracks to increase the Web of Linked Data and to share

tracks with everyone.

Furthermore, our prototype only allows the displaying of GPS tracks on a 2D map. There-

fore, another possible future work could be the developing of an AR interface that integrates

GPS tracks by augmenting the live view with visualized arrows and lines presenting the path

and visualized signs on the side of the road. Concerning the domain of Linked Data, there could

not only be displayed mountain data and navigation icons but also RDF-based data informing

the user about nearby hostels.

Appendix A

CD Attachment

We have attached a CD-ROM to this work that contains our AR prototype as Android project.

Executing this Android project through Eclipse requires the installation of the Android SDK

and the ADT plugin for Eclipse. The attachment comprises all the necessary files and libraries

to deploy the AR prototype on an Android (version 2.2 or higher) mobile phone. Detailed

installation guidelines are summarized in a “README.TXT” file which is located in the root

directory of the attached CD-ROM.

139

Appendix B

Curriculum Vitae

SILVIA MARIA FÜRST
Student at

University of Vienna, Faculty of Computer Science

Email: silvia.fuerst@gmx.at

PERSONAL INFORMATION

Born: September 30, 1986 in Steyr, Austria

Nationality: Austria

Single, no children

EDUCATION

2010 - 2013

Master studies at the University of Vienna in Media Informatics

2006 - 2010

Bachelor studies at the University of Vienna in Informatics

2001 - 2006

HLW Stadt Haag, Lower Austria – Key course element Spanish

140

Bibliography

[1] Harry E. Pence. Smartphones, Smart Objects, and Augmented Reality. The Reference

Librarian, 53(1, 2):136–145, 2011.

[2] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool, 1st edition, 2011.

[3] Ronald Azuma, Mark Billinghurst, and Gudrun Klinker. Editorial: Special section on

mobile augmented reality. Comput. Graph., 35(4):vii–viii, 2011.

[4] Freek Uijtdewilligen. A framework for context-aware applications using augmented reality:

A train station navigation proof-of-concept on Google Android. PhD thesis, University of

Twente, 2010.

[5] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon Julier, and

Blair MacIntyre. Recent Advances in Augmented Reality. IEEE Computer Graphics and

Applications, 21:34–47, 2001.

[6] Riku Suomela and Juha Lehikoinen. Taxonomy for visualizing location-based information.

Virtual Real., 8:71–82, September 2004.

[7] Gerhard Reitmayr and Tom W. Drummond. Going out: Robust model-based tracking for

outdoor augmented reality. In Proceedings of 5th IEEE and ACM International Sympo-

sium on Mixed and Augmented Reality (ISMAR), pages 109–118, 2006.

[8] Nishkam Ravi, Pravin Shankar, Andrew Frankel, Ahmed Elgammal, and Liviu Iftode.

Indoor Localization Using Camera Phones. In Proceedings of the Seventh IEEE Workshop

on Mobile Computing Systems & Applications, pages 19–, 2006.

[9] D. W. F. (Rick) van Krevelen and Ronald Poelman. A Survey of Augmented Reality

Technologies, Applications and Limitations. The International Journal of Virtual Reality,

9(2):1–20, 2010.

[10] Martin Raubal und Ilija Panov. A Formal Model for Mobile Map Adaptation. Location

Based Services and TeleCartography II, pages 11–34, 2009.

141

Bibliography 142

[11] Will Seager and Danae Stanton Fraser. Comparing physical, automatic and manual map

rotation for pedestrian navigation. In Proceedings of the SIGCHI conference on Human

factors in computing systems, CHI ’07, pages 767–776, 2007.

[12] Anthony J. Aretz and Christopher D. Wickens. The mental rotation of map displays.

Human Performance, 5(4):303–328, 1992.

[13] Marvin Levinew, Iris Marchon, and Gerard Hanley. The placement and misplacement of

you-are-here maps. Environment and Behavior, 16(2):139–157, 1984.

[14] Matt J. Rossano, David H. Warren, and Allison Kenan. Orientation Specificity – How

general is it? American Journal of Psychology, 108(3):359–380, 1995.

[15] Juha Lehikoinen. An evaluation of augmented reality navigational maps in head-worn

displays. Proceedings of IFIP INTERACT01: Human-Computer Interaction, 2001.

[16] Oulasvirta Antti, Estlander Sara, and Nurminen Antti. Embodied interaction with a 3D

versus 2D mobile map. Personal and Ubiquitous Computing, 13:303–320, 2009.

[17] Daniel Wagner. Handheld Augmented Reality. PhD thesis, Graz University of Technology,

2007.

[18] Ben Butchart. Augmented Reality for Smartphones. In Institutional Web Managers

Workshop, 2011.

[19] Alex Hill, Blair MacIntyre, Maribeth Gandy, Brian Davidson, and Hafez Rouzati.

KHARMA - KML/HTML Augmented Reality Mobile Architecture. [Online]. Available:

https://research.cc.gatech.edu/kharma/content/kharma-framework,

[Accessed January 2012].

[20] Gerard J. Kim, Youngsun Kim, and Christine Perey. A Proposal for Reference AR System

Architecture Based on Standardized Content Model. International AR Standards Meeting,

June 2011.

[21] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So Far. Int.

J. Semantic Web Inf. Syst, 5(3):1–22, 2009.

[22] World Wide Web Consortium (W3C). Linked Open Data W3C SWEO Community

Project. [Online]. Available: http://www.w3.org/wiki/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData, [Accessed February 2012].

[23] The EDUCAUSE Learning Initiative. 7 things you should know about Augmented Real-

ity. [Online]. Available: http://www.educause.edu/ir/library/pdf/ELI7007.

pdf, [Accessed August 2011]., 2005.

https://research.cc.gatech.edu/kharma/content/kharma-framework
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.educause.edu/ir/library/pdf/ELI7007.pdf
http://www.educause.edu/ir/library/pdf/ELI7007.pdf

Bibliography 143

[24] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. Augmented Reality:

A Class of Displays on the Reality-Virtuality Continuum. In Proceedings of the SPIE

Conference on Telemanipulator and Telepresence Technologies, volume 2351, pages 282–

292, 1994.

[25] STL Partners Telco 2.0, Perey Research, and Consulting. Augmented Reality: Is

there a valuable role for telcos? 2011. [Online]. Available: http://www.perey.

com/Augmented_Reality_Analyst_Note_Jan_31_2011.pdf, [Accessed Septem-

ber 2011].

[26] Pucky2012. Wikitude World Browser @Salzburg Old Town. 2011. [Picture on

the Web]. Available: http://commons.wikimedia.org/wiki/File:Wikitude_

World_Browser_@Salzburg_Old_Town.jpg, [Accessed October 2012].

[27] Feng Zhou, Duh Henry Been-Lirn, and Billinghurst Mark. Trends in augmented reality

tracking, interaction and display: A review of ten years of ISMAR. In Proceedings of the

7th IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR ’08,

pages 193–202, 2008.

[28] Tobias Sielhorst, Marco Feuerstein, and Nassir Navab. Advanced Medical Displays: A

Literature Review of Augmented Reality. J. Display Technol., 4(4):451–467, Dec 2008.

[29] Ronald T. Azuma. A Survey of Augmented Reality. Presence, 6:355–385, 1997.

[30] George Percivall. Increasing market opportunities for Augmented Reality through col-

laborative development of open standards. Position Paper - for the International AR

Standards Meeting, 2011.

[31] Tim Berners-Lee. Linked data, 2006. [Online]. Available: http://www.w3.org/

DesignIssues/LinkedData.html, [Accessed April 2012].

[32] Richard Cyganiak and Anja Jentzsch. Linking Open Data cloud diagram, 2011.

[Picture on the Web]. Available: http://richard.cyganiak.de/2007/10/lod/

lod-datasets_2011-09-19_colored.png, [Accessed May 2012].

[33] Richard Cyganiak. The Linking Open Data cloud diagram. [Online]. Available: http:

//richard.cyganiak.de/2007/10/lod/, [Accessed October 2011].

[34] Christian Becker and Christian Bizer. DBpedia Mobile-A Location-Aware Semantic Web

Client. In Proceedings of the Semantic Web Challenge, ISWC ’08, 2008.

[35] GeoNames. About GeoNames. [Online]. Available: http://www.geonames.org, [Ac-

cessed August 2011].

[36] LinkedGeoData. LinkedGeoData.org - The Linked Geo Data Knowledge Base. [Online].

Available: http://linkedgeodata.org/About, [Accessed August 2011].

http://www.perey.com/Augmented_Reality_Analyst_Note_Jan_31_2011.pdf
http://www.perey.com/Augmented_Reality_Analyst_Note_Jan_31_2011.pdf
http://commons.wikimedia.org/wiki/File:Wikitude_World_Browser_@Salzburg_Old_Town.jpg
http://commons.wikimedia.org/wiki/File:Wikitude_World_Browser_@Salzburg_Old_Town.jpg
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://richard.cyganiak.de/2007/10/lod/lod-datasets_2011-09-19_colored.png
http://richard.cyganiak.de/2007/10/lod/lod-datasets_2011-09-19_colored.png
http://richard.cyganiak.de/2007/10/lod/
http://richard.cyganiak.de/2007/10/lod/
http://www.geonames.org
http://linkedgeodata.org/About

Bibliography 144

[37] Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata: Adding a spatial

dimension to the web of data. In Proceedings of the 8th International Semantic Web

Conference, ISWC ’09, pages 731–746. Springer-Verlag, 2009.

[38] OpenStreetMap Wiki. Beginners’ guide. [Online]. Available: http://wiki.

openstreetmap.org/wiki/Beginners%27_guide, [Accessed September 2011].

[39] Sören Auer, Chris Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the

6th International Semantic Web Conference, ISWC ’07, pages 722–735. Springer, 2007.

[40] Chris Bizer. DBpedia 3.7 released including 15 localized Editions.

2011. [Online]. Available: http://blog.dbpedia.org/2011/09/11/

dbpedia-37-released-including-15-localized-editions/, [Accessed

September 2011].

[41] Patrick Hayes. RDF Semantics (W3C Recommendation 10 February 2004). World Wide

Web Consortium, 2004.

[42] W3C. Rdf vocabulary description language 1.0 rdf schema. [Online]. Available: http:

//www.w3.org/TR/rdf-schema/, [Accessed March 2012].

[43] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of

SPARQL. In International Semantic Web Conference, pages 30–43, 2006.

[44] Jeffrey T. Pollock. The Semantic Web for Dummies. Wiley Publishing, Inc., 1st edition,

2009.

[45] James Q. Jacobs. Geodesy Page - Definitions. 2006. [Online]. Available: http://www.

jqjacobs.net/astro/geodesy.html, [Accessed October 2011].

[46] Djexplo. Illustration of geographic latitude and longitude of the earth. 2011. [Picture

on the Web]. Available http://commons.wikimedia.org/wiki/File:Latitude_

and_Longitude_of_the_Earth.svg, [Accessed October 2012].

[47] IBM. Geodtische Lngen- und Breitengrade. [Online]. Available: http:

//publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=

/com.ibm.db2.udb.doc/opt/csbgeo06.htm, [Accessed October 2011].

[48] Mohinder S. Grewal, Lawrence R. Weill, and Angus P. Andrews. Global Positioning

Systems, Inertial Navigation, and Integration. Wiley-Interscience, 2007.

[49] Ahmed El-Rabbany. Introduction to Gps: The Global Positioning System. Artech House,

second edition, 2002.

http://wiki.openstreetmap.org/wiki/Beginners%27_guide
http://wiki.openstreetmap.org/wiki/Beginners%27_guide
http://blog.dbpedia.org/2011/09/11/dbpedia-37-released-including-15-localized-editions/
http://blog.dbpedia.org/2011/09/11/dbpedia-37-released-including-15-localized-editions/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.jqjacobs.net/astro/geodesy.html
http://www.jqjacobs.net/astro/geodesy.html
http://commons.wikimedia.org/wiki/File:Latitude_and_Longitude_of_the_Earth.svg
http://commons.wikimedia.org/wiki/File:Latitude_and_Longitude_of_the_Earth.svg
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/csbgeo06.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/csbgeo06.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/csbgeo06.htm

Bibliography 145

[50] Department of Defense (DoD) and the Department of Transportation (DoT). NAVSTAR

GPS Operations. [Online]. Available: http://tycho.usno.navy.mil/gpsinfo.

html, [Accessed November 2011].

[51] Enemy. GPS signal modulation scheme. 2008. [Picture on the Web]. Available:

http://commons.wikimedia.org/wiki/File:GPS_signal_modulation_

scheme2.svg, [Accessed October 2012].

[52] Federal Aviation Administration. Navigation programs - global positioning system - con-

trol segment. [Online]. Available: http://www.faa.gov/, [Accessed October 2012].

[53] Corvallis Microtechnology. Introduction to the Global Positioning System for GIS and

TRAVERSE. [Online]. Available: http://cmtinc.com/gpsbook/, [Accessed January

2012].

[54] Android Developers. App Framework. [Online]. Available: http://developer.

android.com/about/versions/index.html, [Accessed August 2011].

[55] Alvaro Fuentes Vasquez (Kronox). Diagram system architecture android. 2009. [Picture

on the Web]. Available: http://commons.wikimedia.org/wiki/File:Diagram_

android.png, [Accessed October 2012].

[56] Satya Komatineni, Dave MacLean, and Sayed Y. Hashimi. Pro Android 3. Apress, 1st

edition, 2011.

[57] Reto Meier. Professional Android 2 Application Development. Wiley Publishing, Inc.,

2nd edition, 2010.

[58] Android Developers. API Guides. [Online]. Available: http://developer.android.

com/guide/, [Accessed August 2011].

[59] Donn Felker and Joshua Dobbs. AndroidTM Application Development For Dummies.

Wiley Publishing, Inc., 1st edition, 2011.

[60] Android Developers. References. [Online]. Available: http://developer.android.

com/reference/, [Accessed August 2011].

[61] Ulrich Neumann and Suya You. Natural Feature Tracking for Augmented Reality. IEEE

Transactions on Multimedia, 1(1):53–64, 1999.

[62] Amir H. Behzadan and Vineet R. Kamat. Visualization of construction graphics in outdoor

augmented reality. In Proceedings of the 37th conference on Winter simulation, WSC ’05,

pages 1914–1920. Winter Simulation Conference, 2005.

[63] Bonnie Danette Allen, Gary Bishop, and Greg Welch. Course 11 – Tracking: Beyond 15

Minutes of Thought. In SIGGRAPH 2001 Courses, 2001.

http://tycho.usno.navy.mil/gpsinfo.html
http://tycho.usno.navy.mil/gpsinfo.html
http://commons.wikimedia.org/wiki/File:GPS_signal_modulation_scheme2.svg
http://commons.wikimedia.org/wiki/File:GPS_signal_modulation_scheme2.svg
http://www.faa.gov/
http://cmtinc.com/gpsbook/
http://developer.android.com/about/versions/index.html
http://developer.android.com/about/versions/index.html
http://commons.wikimedia.org/wiki/File:Diagram_android.png
http://commons.wikimedia.org/wiki/File:Diagram_android.png
http://developer.android.com/guide/
http://developer.android.com/guide/
http://developer.android.com/reference/
http://developer.android.com/reference/

Bibliography 146

[64] Tobias Langlotz, Claus Degendorfer, Alessandro Mulloni, Gerhard Schall, Gerhard Reit-

mayr, and Dieter Schmalstieg. Robust detection and tracking of annotations for outdoor

augmented reality browsing. Computers & Graphics, 35(4):831 – 840, 2011.

[65] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and Dieter

Schmalstieg. Real-time detection and tracking for augmented reality on mobile phones.

IEEE Transactions on Visualization and Computer Graphics, 16:355–368, 2010.

[66] Georg Klein and David Murray. Parallel tracking and mapping on a camera phone. In

Proc. Eigth IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR’09), Orlando, October 2009.

[67] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle

Adjustment - A Modern Synthesis. In Proceedings of the International Workshop on Vision

Algorithms: Theory and Practice, ICCV ’99, pages 298–372. Springer-Verlag, 2000.

[68] Wagner Daniel, Mulloni Alessandro, Langlotz Tobias, and Schmalstieg Dieter. Real-

time panoramic mapping and tracking on mobile phones. In 2010 IEEE Virtual Reality

Conference (VR), pages 211–218, 2010.

[69] Markus Kähäri and David J. Murphy. MARA Sensor Based Augmented Reality System

for Mobile Imaging Device. In Proceedings of the 5th Annual IEEE and ACM International

Symposium on Mixed and Augmented Reality, ISMAR ’06, pages 180–180, 2006.

[70] Takacs Gabriel, Chandrasekhar Vijay, Gelfand Natasha, Xiong Yingen, Chen Wei-Chao,

Bismpigiannis Thanos, Grzeszczuk Radek, Pulli Kari, and Girod Bernd. Outdoors aug-

mented reality on mobile phone using loxel-based visual feature organization. In Proceed-

ings of the 1st ACM international conference on Multimedia information retrieval, MIR

’08, pages 427–434, 2008.

[71] Tobias Langlotz, Daniel Wagner, Alessandro Mulloni, and Dieter Schmalstieg. Online

creation of panoramic augmented reality annotations on mobile phones. Pervasive Com-

puting, IEEE, 11(2):56 –63, 2012 (submitted 2010).

[72] David Marimon, Tomasz Adamek, Arturo Bonnin, and Tomasz Trzcinski. Enhancing

global positioning by image recognition. Technical report, Telefonica Research and De-

velopment - Barcelona, Spain, 2011.

[73] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[74] Rémi Paucher and Matthew Turk. Location-based Augmented Reality on mobile phones.

In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 9 – 16, 2010.

Bibliography 147

[75] Vinny Reynolds, Michael Hausenblas, Axel Polleres, Manfred Hauswirth, and Vinod

Hegde. Exploiting Linked Open Data for Mobile Augmented Reality. In W3C Work-

shop: Augmented Reality on the Web, Barcelona, 2010.

[76] Martin Lechner, CTO, and Wikitude-GmbH. ARML Specification for Wikitude. [Online].

Available: http://www.openarml.org/wikitude4.html, [Accessed October 2011].

[77] Wikitude GmbH. Wikitude Webservice Documentation. [Online]. Available: http://

www.wikitude.me/w4/wme/assets/WikitudeWebservice.pdf, [Accessed Jan-

uary 2012]., 2011.

[78] Layar. Layar Developer Documentation. [Online]. Available: http://www.layar.

com/documentation/browser/, [Accessed January 2012].

[79] Sekai Camera Support Center. Sekai camera openair api for publishers. [Online]. Avail-

able: http://support.sekaicamera.com/en/archives/category/business,

[Accessed March 2012].

[80] Pedro de-las Heras-Quiros, Raul Roman, Roberto Calvo, Jose Gato-Luis, and Juan F.

Gato-Luis. Mobile augmented reality browsers should allow labeling objects. In W3C

Workshop: Augmented Reality on the Web, Barcelona, 2010.

[81] Morfeo Competence Center. Morfeo LibreGeoSocial. [Online]. Available: http://

libregeosocial.morfeo-project.org/, [Accessed March 2012].

[82] Stephan Karpischek, Claudio Marforio, Mike Godenzi, Florian Michahelles, and Stephan

Heuel. Mobile augmented reality to identify mountains. In Adjunct Proceedings of the 3rd

European Conference on Ambient Intelligence, AmI ’09, 2009.

[83] Salzburg Research. Peak.AR - FAQ. [Online]. Available: http://peakar.

salzburgresearch.at/faq/, [Accessed January 2012].

[84] Lyndon Nixon, Jens Grubert, and Gerhard Reitmayr. SmartReality: Augmented Real-

ity + Services + Semantics. In Proceedings of the 2nd International Augmented Reality

Standards Workshop, Barcelona, 2011.

[85] Thomas Visser. A survey of XML languages for augmented reality content. In Proc. of

AR Standardization Forum, Barcelona, 2011.

[86] Ssolbergj. Compass Rose. 2010. [Picture on the Web]. Available: http://commons.

wikimedia.org/w/index.php?title=File:Blue_compass_rose.svg, [Ac-

cessed October 2012].

[87] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl.

Acquis., 5:199–220, June 1993.

http://www.openarml.org/wikitude4.html
http://www.wikitude.me/w4/wme/assets/WikitudeWebservice.pdf
http://www.wikitude.me/w4/wme/assets/WikitudeWebservice.pdf
http://www.layar.com/documentation/browser/
http://www.layar.com/documentation/browser/
http://support.sekaicamera.com/en/archives/category/business
http://libregeosocial.morfeo-project.org/
http://libregeosocial.morfeo-project.org/
http://peakar.salzburgresearch.at/faq/
http://peakar.salzburgresearch.at/faq/
http://commons.wikimedia.org/w/index.php?title=File:Blue_compass_rose.svg
http://commons.wikimedia.org/w/index.php?title=File:Blue_compass_rose.svg

Bibliography 148

[88] Chris Van Aart, Bob Wielinga, and Willem RobertVan Hage. Mobile cultural heritage

guide: location-aware semantic search. In Proceedings of the 17th international conference

on Knowledge engineering and management by the masses, EKAW’10, pages 257–271,

2010.

[89] Ontotext AD. FactForge Inference. [Online]. Available: http://www.ontotext.com/

factforge/inference, [Accessed July 2012].

[90] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk - A Link Discov-

ery Framework for the Web of Data. In Proc. of LDOW ’09, 2009.

[91] Anja Jentzsch. Link Specification Language. 2012. [Online]. Available: http:

//www.assembla.com/spaces/silk/wiki/Link_Specification_Language,

[Accessed July 2012].

[92] Peter Ward. Digital Video Camerawork. Focal Press, 2000.

[93] Thaddeus Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with appli-

cation of nested equations. Survey Review, 22(176):88–93, 1975.

[94] Chris Veness. Vincenty formula for distance between two Latitude Longi-

tude points. [Online]. Available: http://www.movable-type.co.uk/scripts/

latlong-vincenty.html, [Accessed September 2011].

[95] Jim Riesterer, Scott Hughes, Dan Narsavage, and Diana Boyack. Introduction to To-

pographic Maps - Get A Bearing. [Online]. Available: http://geology.isu.edu/

geostac/Field_Exercise/topomaps/bearing.htm, [Accessed November 2011].

[96] Bruce Hoff and Ronald Azuma. Autocalibration of an electronic compass in an outdoor

augmented reality system. In Proceedings of the International Symposium on Augmented

Reality, ISAR 00, pages 159–164, Munich, 2000.

[97] Thom Nichols. Smoothing Sensor Data with a Low-Pass Filter.

2011. [Online]. Available: http://blog.thomnichols.org/2011/08/

smoothing-sensor-data-with-a-low-pass-filter, [Accessed August 2011].

[98] Claus Stadler, Jens Lehmann, Konrad Hffner, and Sören Auer. Linkedgeodata: A core

for a web of spatial open data. Semantic Web Journal, 2011.

[99] LinkedGeoData. Virtuoso Functions Guide - st intersects. [Online]. Available: http:

//docs.openlinksw.com/virtuoso/fn_st_intersects.html, [Accessed July

2011].

[100] Alias-i. Lingpipe 4.1.0. 2008. [Online]. Available: http://alias-i.com/lingpipe/,

[Accessed September 2012].

http://www.ontotext.com/factforge/inference
http://www.ontotext.com/factforge/inference
http://www.assembla.com/spaces/silk/wiki/Link_Specification_Language
http://www.assembla.com/spaces/silk/wiki/Link_Specification_Language
http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://geology.isu.edu/geostac/Field_Exercise/topomaps/bearing.htm
http://geology.isu.edu/geostac/Field_Exercise/topomaps/bearing.htm
http://blog.thomnichols.org/2011/08/smoothing-sensor-data-with-a-low-pass-filter
http://blog.thomnichols.org/2011/08/smoothing-sensor-data-with-a-low-pass-filter
http://docs.openlinksw.com/virtuoso/fn_st_intersects.html
http://docs.openlinksw.com/virtuoso/fn_st_intersects.html
http://alias-i.com/lingpipe/

Bibliography 149

[101] Alias-i. Class JaroWinklerDistance (LingPipe API). 2011. [Online]. Avail-

able: http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/

JaroWinklerDistance.html, [Accessed September 2012].

[102] Sterling Udell. Beginning Google Maps Mashups with Mapplets, KML, and GeoRSS: From

Novice to Professional. Apress, 1st edition, 2008.

[103] GSM Arena. Samsung I9003 Galaxy SL. [Online]. Available: http://www.gsmarena.

com/samsung_i9003_galaxy_sl-3761.php, [Accessed August 2012].

[104] Flipkart.com. HTC Wildfire S. [Online]. Available: http://www.flipkart.com/

htc-wildfire-s-mobile-phone/p/itmcz2pz4zq7hmzq, [Accessed August 2012].

http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/JaroWinklerDistance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/JaroWinklerDistance.html
http://www.gsmarena.com/samsung_i9003_galaxy_sl-3761.php
http://www.gsmarena.com/samsung_i9003_galaxy_sl-3761.php
http://www.flipkart.com/htc-wildfire-s-mobile-phone/p/itmcz2pz4zq7hmzq
http://www.flipkart.com/htc-wildfire-s-mobile-phone/p/itmcz2pz4zq7hmzq

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.1.1 AR Tracking Systems

	1.2 Problem Description
	1.2.1 2D Maps versus AR Interfaces
	1.2.2 Closed Datasets

	1.3 Attempt for Linked Data Integration
	1.4 Contribution
	1.5 Thesis Organization

	2 Background
	2.1 Augmented Reality
	2.1.1 Area of Application

	2.2 Linked Open Data
	2.2.1 Integrated LOD Sets
	2.2.1.1 GeoNames
	2.2.1.2 LinkedGeoData
	2.2.1.3 DBpedia

	2.2.2 Resource Description Framework
	2.2.3 SPARQL

	2.3 Global Positioning
	2.3.1 Geodesy
	2.3.2 Global Positioning System

	2.4 Android
	2.4.1 Android Architecture
	2.4.2 Android SDK
	2.4.3 Android Application Components
	2.4.4 Sensor Support

	2.5 Summary

	3 Related Work
	3.1 AR Tracking Methods
	3.1.1 Vision-based Tracking
	3.1.2 Sensor-based Tracking
	3.1.3 Hybrid Tracking
	3.1.4 Discussion

	3.2 Sensor-based AR Applications
	3.2.1 Introduction of Works
	3.2.1.1 Commercial AR Applications
	3.2.1.2 Open-Source AR Applications
	3.2.1.3 Mountain Identification Applications
	3.2.1.4 Linked Data as AR Content

	3.2.2 Table of Discussed Works
	3.2.3 Feature Description and Discussion

	3.3 Summary

	4 Approach
	4.1 Requirements and Design Considerations
	4.2 Abstract and Conceptual Architecture
	4.2.1 Abstract Model
	4.2.2 Conceptual Constituents

	4.3 LOD Integration
	4.3.1 Ontology Structures
	4.3.2 Discovering Identical Resources
	4.3.2.1 The Silk Framework

	4.4 Formal Model
	4.4.1 Symbols and Formal Definitions
	4.4.1.1 Angle of View of Camera
	4.4.1.2 Distance and Bearing
	4.4.1.3 Inclination Angle
	4.4.1.4 Field of View
	4.4.1.5 Screen Coordinates

	4.4.2 Tracking Algorithm

	4.5 Functional Model
	4.6 Summary

	5 Proof of Concept
	5.1 Software Design
	5.1.1 Activities Overview
	5.1.2 AR Mode
	5.1.3 Map and Tour Mode
	5.1.4 Comparison of Approach and Proof of Concept Design

	5.2 Software Implementation
	5.2.1 Localization and Orientation
	5.2.1.1 Reading GPS Coordinates
	5.2.1.2 Accessing Accelerometer and Magnetic Field Sensors

	5.2.2 Loading and Processing LOD Resources
	5.2.2.1 LinkedGeoData - Integration
	5.2.2.2 GeoNames - Integration
	5.2.2.3 Filtering Identical Resources

	5.2.3 Storing Data
	5.2.3.1 Update Database Table

	5.2.4 Mathematical Model
	5.2.4.1 Distance Calculation
	5.2.4.2 Bearing Calculation
	5.2.4.3 Inclination Calculation
	5.2.4.4 Screen Coordinates Calculation

	5.2.5 Querying Mountain Information
	5.2.6 Loading Tours
	5.2.7 Parsing and Plotting GPX Files on a Map
	5.2.8 Recording Tour

	5.3 Summary

	6 Results and Discussion
	6.1 Prototype Presentation
	6.1.1 AR Mode
	6.1.1.1 Additional Features

	6.1.2 Map and Tour-Guide Mode
	6.1.2.1 Additional Features

	6.2 Evaluation
	6.2.1 Test Environment
	6.2.2 Data Processing Performance
	6.2.2.1 Test Setup and Test Data Preparation
	6.2.2.2 Data Processing Results

	6.2.3 AR Visualization Performance
	6.2.3.1 Test Preparation
	6.2.3.2 Visualization Performance Results

	6.3 Summary

	7 Final Remarks
	7.1 Conclusions
	7.2 Outlook

	A CD Attachment
	B Curriculum Vitae
	Bibliography

